
GADTless Programming in Haskell 98

Martin Sulzmann1 and Meng Wang2

1 School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543

sulzmann@comp.nus.edu.sg
2 Oxford University Computing Laboratory,

Wolfson Building, Parks Road, Oxford OX1 3QD, UK
meng.wang@comlab.ox.ac.uk

Abstract. Generalized algebraic data types (GADTs) allow to write so-
phisticated, type-safe programs and transformations. But not many lan-
guages, respectively their underlying implementations, support GADTs.
We show that Pottier’s and Gauthier’s polymorphic typed defunction-
alization, which was supposed to rely on GADTs, can actually be rep-
resented in Haskell 98. Our results help to get a better understanding
of GADTs and we identify sufficient conditions under which we can re-
place GADTs with features available in standardized languages such as
Haskell 98.

1 Introduction

Generalized algebraic data types (GADTs) are an extension of (boxed) existen-
tial types [12]. In contrast to algebraic data types we may refine the type of a
GADT depending on the particular constructor. The power behind GADTs is
that we can make use of these type refinements when pattern matching over a
GADT.

There is a real “industry” that exploits the power of GADTs in sophisticated
ways to write more expressive programs and transformations. We refer to [14,
24, 19, 20] for a selection of examples. This trend is supported by an increas-
ing number of functional and object-oriented language implementations [18, 9]
which support GADTs and thus allow more users to make use of GADTs in
their programs. However, GADTs still have to be adopted by standard language
definitions [13, 17] (respectively, whether GADTs will be part of a new language
standard is still under active discussion [8]). Hence, it is important to identify
conditions under which powerful features such as GADTs can be replaced by
simpler features while not substantially changing the programs and their mean-
ing. We refer to this as GADTless programming.

In this paper, we consider GADTless programming in Haskell 98 [17]. Haskell
98 represents a minimal, portable version of the Haskell language including an
accompanying standard library. We show that some non-trivial GADT-based
transformations and programming examples can actually be expressed in “pure”

Haskell 98. As we will see later, we need one extension, rank-2 types, which is
not part of Haskell 98 but supported by common implementations.

Specifically, we make the following contributions:

– We review the polymorphic defunctionalization transformation by Pottier
and Gauthier to a target language with support for GADTs. We show that
the GADTs arising in the defunctionalization of polymorphic programs can
be represented in terms of a form of type coercion expressible via Haskell 98’s
newtype construct (Section 5.2). Thus, polymorphic typed defunctionaliza-
tion can be supported by type-preserving compilers which support Haskell
98 style newtype but not necessarily GADTs.

– Other uses of GADTs require an alternative encoding approach where we
use explicit coercion functions . For the first time, we identify sufficient con-
ditions under which an encoding of GADTs with explicit coercion functions
is possible (Section 6).

In some cases, GADTs can also be encoded by type classes which are part
of Haskell 98. To be precise, Haskell 98 supports single-parameter and construc-
tor classes. In our opinion, GADTless programming using type classes is more
complicated. We defer a detailed discussion to Section 7.

We continue in Section 2 where we introduce some basic notation used
throughout the paper. Section 3 reviews the key concepts behind GADTs. In
source programs, we use GADTs as supported by GHC. In Section 4, we discuss
the key ideas behind the encodings of GADTs via newtype and explicit coercion
functions. Section 7 concludes and also discusses related work. The Appendix
contains additional material such as proofs of the results stated.

2 Preliminaries

We write ō to denote a sequence of objects o1, ..., on. We write fv(o) to denote
the set of free variables in some object o.

We assume that the reader is familiar with the concepts of substitution,
unifiers, most general unifiers (m.g.u.) etc [11]. For example, [t/a] denotes the
substitution which has the effect of replacing each occurrence of variable a by
term t. Often, we abbreviate [t1/a1, ..., tn/an] by [t̄/ā].

We make use of constraints C consisting of conjunction of primitive con-
straints such as t1 = t2 describing equality among types t1 and t2. The set of
types is described below. We also assume basic familiarity with first-order logic.
We write |= to denote the model-theoretic entailment relation. We refer to [25]
for details.

Types are stratified into simple types which consist of variables a, functions
t1 → t2 and user-definable types T t̄ (for example lists [t], pairs (t1, t2) etc). Type
schemes can either be simple types t or of the form ∀ā.C ⇒ t. We commonly
write σ to refer to type schemes. We write ∀ā.t as a short-hand for ∀ā.b = b ⇒ t.

We assume a functional expression language consisting of variables x, func-
tion application e1 e2, function abstraction λx.e and let statements let f =

2

e1 in e2 which can be optionally annotated let f :: ∀ā.C ⇒ t; f = e1 in e2 where
ā = fv(C, t). In source programs, we commonly omit the quantifier ∀ā. We also
assume case statements case e of [pi → ei]i∈I where patterns p are of the form x or
K p̄. K is the constructor belonging to a user-definable type T ā. We assume that
the types of constructors and primitive functions are recorded in some initial type
environment Γinit. Type environments Γ are of the form {x1 : σ1, ..., xn : σn}.
We assume that fv(Γ) = fv(σ1) ∪ ... ∪ fv(σn).

3 Generalized Algebraic Data Types

The power of GADTs comes through (local) type refinement which effectively
corresponds to the presence of (local) type equalities t1 = t2. To illustrate the
workings of GADTs, we take look at a classic example. The following defines a
GADT Exp a to represent a simple expression language and a strongly-typed
evaluator eval for this language. We will make use of GHC Haskell style syn-
tax [6] in example programs throughout the paper

data Exp :: * -> * where
Zero :: Exp Int
Succ :: Exp Int -> Exp Int
Pair :: Exp b -> Exp c -> Exp (b,c)

eval :: Exp a -> a
eval = \ x -> case x of

Zero -> 0
(Succ e) -> (eval e) + 1
(Pair x y) -> (eval x, eval y)

At first look it may be surprising that eval has type ∀a.Exp a → a. For
example, consider the first clause where we return the value 0 of type Int which
clearly does not match the expected result type a. However, the program is
well-typed because of the type refinement enabled by the pattern match over
Zero.

Here is a more detailed explanation. Variable x has type Exp a. For the
program to be well-typed, we must verify that the pattern clause Zero->0 has
type Exp a → a. When pattern matching over constructor Zero of type Exp Int
we refine type a to Int within the body of the pattern clause. We can represent
type refinement with either substitutions or type equalities. We choose the latter.
Hence, we must check that 0 has type a under the (local) type equality Int = a.
Intuitively, it should be clear that this check is successful.

Let us take a look at the formal underpinnings of GADTs. The GADT type
system is based on a variant of the familiar Hindley/Milner type system. Because
we choose to use type equalities to represent type refinement we use a variant
of the HM(X) type system framework [15] where the constraint domain X is
the Herbrand constraint domain. The core GADT system can be summarized in
the following four typing rules. All other typing rules are the familiar ones from

3

HM(X) and are omitted for brevity.

(Eq)
C,Γ %GADT e : t1

C |= t1 = t2
C,Γ %GADT e : t2

(Pat)

p : t1 %PAT ∀b̄.(D Γp)
b̄ ∩ fv(C,Γ, t2) = ∅

C ∧ D,Γ ∪ Γp %GADT e : t2

C,Γ %GADT p → e : t1 → t2

(PVar) x : t %PAT (True {x : t}) (PK)
K : ∀ā, b̄.D ⇒ t → T ā

b̄ ∩ ā = ∅ p : [t̄/ā]t %PAT ∀b̄′.(D′ Γp)
K p : T t̄ %PAT ∀b̄′, b̄.(D′ ∧ [t̄/ā]D Γp)

We assume that constraints C and D contain type equalities. Via rule (Eq) we
can change the type of an expression to t2 if the given constraint C implies that
t1 and t2 are equal, written C |= t1 = t2. Applied to our above example, we can
deduce that Int = a, {0 : Int} %GADT 0 : a.

In rule (Pat), we type check pattern clauses. Out of the pattern p we extract
the constraints arising and compute the pattern binding which assigns types to
pattern variables. For simplicity, we assume that constructors K take a single
argument only. See rule (PK). We ignore the universal quantifier ∀b̄ for the
moment. In our representation, we assume that the types of constructors are
normalized such that their result type matches the type of the GADT. Thus,
we find that Zero : ∀a.Int = a ⇒ Exp a. It is straightforward to convert source
GADT definitions such as data Exp :: * -> * where Zero::Exp Int to the
external representation. The main point to note is that the constraint D arising
out of p is used in combination with the given constraint C to type check the
body e of the pattern clause. Also note that constraint D is only used for type
checking e and does not affect other program parts.

The universal quantifier ∀b̄ comes into play in case of (boxed) existential
types. For example, consider

data Exp :: * -> * where Pair::Exp a -> Exp b -> Exp (a,b)

which is written Pair : ∀a, b, c.(b, c) = a ⇒ Exp b → Exp c → Exp a in the in-
ternal system. Notice that variables b and c do not appear in the result type
Exp a. We refer to them as “existential” or “abstract” variables. In programs
we are not allowed to make any specific assumptions about them. Hence, logi-
cally these variables must be considered as universally quantified. We take care
of this in the type system by checking that b̄ ∩ fv(C,Γ, t2) = ∅ in rule (Pat).

The challenge for the typed intermediate languages of todays modern com-
piler systems is to have a sufficiently rich target language which can host GADTs.
A naive translation of GADTs to “plain” System F will result in a loss of type-
preservation. The reason is that via rule (Eq) (type refinement) we can change
the type of an expression without changing the expression itself. There exist
sophisticated extensions of System F, for example consider [5, 26, 23], which
support a “cast” operator to translate type refinement. For example, in [26]
the expression e is translated to γ ! e where · ! · represents a new language

4

construct which takes a witness γ for t1 = t2 and an expression e of type t1
and yields an expression of type t2. But not every language and its underlying
implementation support such cast operations.

4 GADT Encodings via Newtypes and Explicit Coercions

To encode GADTs in a conventional system such as Haskell 98 we need to model
type equalities t1 = t2 and their effect. The idea is to replace each type refinement
step via safe coercion functions. Each type refinement step e : t1 " e : t2 is then
turned into the function application γ e where γ is the coercion representing
the “directed” equality t1 = t2 (from left to right). In essence, the encodings
apply the proofs-are-programs principle where the coercion γ represents a proof
(term) for t1 = t2. Of course, to ensure correctness of this encoding scheme, we
need to guarantee that at run-time each coercion γ evaluates to the identity by
construction.

There are two approaches known in the literature to encode such coercion
functions. One approach, employed in [1, 3, 16, 28], uses “Leibniz” equality

newtype a :=: b = Proof { coerce :: forall f . f a -> f b }
refl :: a :=: a
refl = Proof id
newtype Flip f a b = Flip { unFlip :: f b a }
symm :: a :=: b -> b :=: a
symm p = unFlip (coerce p (Flip refl))
trans :: a :=: b -> b :=: c -> a :=: c
trans p q = Proof (coerce q . coerce p)

newtype Id a = Id { unId :: a }
to :: a :=: b -> (a -> b)
to p = \ a -> unId (coerce p (Id a))
newtype Inv a b = Inv { unInv :: b -> a }
from :: a :=: b -> (b -> a)
from p = to (symm p)

In the above, we employ newtype declarations as supported by Haskell 98
extended with rank-2 type (notice the forall f). The purpose of the rank-2
type is to ensure that the identity function is the only inhabitant of a :=: b.
We ignore here the two “exceptional” cases ⊥ and \ x -> ⊥.

Types introduced via the newtype declaration are new, distinct types iso-
morphic to existing ones. We will refer to such types as newtypes from now on.
They are similar to (labeled) data type declaration such as

data a :=: b = Proof { coerce :: forall f . f a -> f b }

The difference is that newtypes cause no run-time type overhead. Constructor
Proof coerces a value from type a :=: b to type forall f . f a -> f b. The
important point is that these coercions can be implemented without execution
time overhead; newtype does not change the underlying representation of an
object [17].

5

The up-shot of the above is that the new type a:=:b encodes Leibniz’ law
which states that if a and b are equivalent then we may substitute one for the
other in any context. In the above, we provide a few sample type coercion func-
tions representing the expected equality laws: reflexivity, symmetry and transi-
tivity. Functions to and from represent directed coercions. Thus, we can encode
the GADT program from Section 3 in Haskell 98 as follows.

data Exp’ a where
Zero’ :: a :=: Int -> Exp’ a
Succ’ :: a :=: Int -> Exp’ a -> Exp’ a
Pair’ :: a :=: (b,c) -> Exp’ b -> Exp’ c -> Exp’ a

eval’ :: Exp’ a -> a
eval’ = \ x -> case x of

(Zero’ p) = (from p) 0
(Succ’ p e) = (from p) (((to p) (eval’ e)) + 1)
(Pair’ p x y) = (from p) ((eval’ x, eval’ y))

Each GADT equation t1 = t2 appearing in a constructor is turned into an
additional argument t1:=:t2. For example, Zero : ∀a.Int = a ⇒ Exp a is turned
into Zero′ : ∀a.Int :=: a → Exp′ a. We find that Exp’ a is a Haskell 98 data
type (though we use here GHC syntax for writing data type declarations). In
the body of each pattern clause, we replace each type refinement step (Eq) via
an application of the directed coercion functions to or from.

The alternative to the newtypes method is to represent type equality via
some explicit coercion functions [2].

type EQ a b = (a->b,b->a)
refl :: EQ a a
refl = (id,id)
sym :: EQ a b -> EQ b a
sym (f,g) = (g,f)
trans :: EQ a b -> EQ b c -> EQ a c
trans (f1,g1) (f2,g2) = (f2.f1,g1.g2)
list :: EQ a b -> EQ [a] [b]
list (f,g) = (map f, map g)

The gist of the GADT encoding method remains the same. In contrast to
the newtypes approach, the explicit coercion approach incurs a run-time penalty.
For example, consider the compositional law for lists where we actually have to
traverse the entire list to coerce each element into its proper type. We also need
to guarantee that each coercion evaluates to the identity at run-time. This is
enforced by the type system in case of the newtypes approach.

As we will shortly show in the upcoming Section 5.2, the GADTs which arise
in Pottier’s and Gauthier’s polymorphic typed defunctionalization transforma-
tion can be encoded via newtypes. For many other GADT programs we seem to
require explicit coercions in the encoding. The details are in Section 6.

6

5 Defunctionalization

Defunctionalization [21, 22] is a global program transformation to turn higher-
order programs into first-order order ones. The basic idea is to replace every
lambda abstraction with its own data constructor that will carry what environ-
ment is needed, and replace every application of the higher-order function with
an apply function that will interpret the data structure.

For example, defunctionalization of the higher-order program

empty = \ x1 -> False
insert = \ x2 -> \ x3 -> \ x4 -> (x2==x4) ||(x3 x4)
res = insert 1 empty 2

yields the following first order program

apply = \ f -> \ arg ->
case f of
X1 -> False
X2 -> let x2 = arg in X3 x2

(X3 x2) -> let x3 = arg in X4 x2 x3

(X4 x2 x3) -> let x4=arg in (x2==x4) || (apply x3 x4)

empty = X1

insert = X2

res = apply (apply (apply (insert 1)) empty) 2

We assume that primitives == and || are not affected by defunctionalization.
Function closure construction is encoded as injection (construction of a sum of
type Arrow a b) whereas function application is encoded as case analysis (sum
elimination). We represent Arrow a b via a data type where for each lambda
abstraction we introduce the following constructors. Free variables are passed in
as arguments to constructors.

X1: ∀a.Arrow a Bool
X2: ∀a.Arrow a (Arrow (Arrow a Bool) (Arrow a Bool))
X3: ∀a.a → Arrow (Arrow a Bool) (Arrow a Bool)
X4: ∀a.a → Arrow a Bool → Arrow a Bool

We have achieved a defunctionalization of programs, but the problem is that
the transformation is not type-preserving (assuming we use Hindley/Milner or
System F as our target language). The first problem is that the above construc-
tors do not share the same (result) type. Hence, we cannot represent them via
an algebraic data type. The second problem is that function apply is not ty-
pable in Hindley/Milner or System F. For example, the first clause of apply
has return type Bool whereas the second clause returns a value of different type
Arrow (Arrow a Bool) (Arrow a Bool).

A possible work-around is to specialize function apply with each monomor-
phic type; in the case of (parametric) polymorphism, monomorphization is needed
prior to defunctionalization. However, this leads to code duplication and is even

7

impossible in case the source language supports polymorphic recursion (which
is the case for Haskell 98).

Fortunately, Pottier and Gauthier [19] came up with an ingenious idea to
solve this problem. They show how to define a type-preserving defunctionaliza-
tion of polymorphic programs if the target language is enriched with GADTs. We
rewiew the gist of their method in Section 5.1. A closer inspection of their method
reveals that the GADTs arising in the defunctionalization of polymorphic pro-
grams can be replaced via newtypes. We formalize this insight in Section 5.2.

5.1 Polymorphic Typed Defunctionalization via GADTs

We apply Pottier’s and Gauthier’s type-preserving defunctionalization transfor-
mation to our running example. Their key idea is to use a GADT (instead of an
algebraic data type) to represent the sum type Arrow .

data Arrow :: * -> * -> * where
X1 :: Arrow a1 Bool
X2 :: Arrow a1 (Arrow (Arrow a1 Bool) (Arrow a1 Bool))
X3 :: a -> Arrow (Arrow a Bool) (Arrow a Bool)
X4 :: a1 -> Arrow a1 Bool -> Arrow a1 Bool

In the GADT type system, function apply is well-typed.

apply :: Arrow a1 a2 -> a1 -> a2
apply = \ f -> \ arg ->

case f of
X1 -> False
X2 -> let x = arg in X3 x2
(X3 x2) -> let x3 = arg in X4 x2 x3
(X4 x2 x3) -> let x4=arg in (x2==x4) || (apply x3 x4)

For example, consider the last case. Pattern matching over (X4 x2 x3) yields a
binding {x2 : a1; x3 : Arrow a1 Bool} and (local) constraint Bool = a2 . The let
statement yields the binding {x4 : a1}. We straightforwardly find that (x2==x4)
|| (apply x3 x4) has type Bool . From Bool = a2 and via application of rule
(Eq) we can conclude that this program text has also type a2. Hence, the pattern
clause agrees with the type annotation. Similarly, we can verify type correctness
of the first three cases.

The upshot of Pottier’s and Gauthier’s method is that defunctionalization
can be added to the toolbox of type-preserving compiler writers if the target
language supports GADTs. Our insight is that GADTs are not necessary in
Pottier’s and Gauthier’s defunctionalization method. We can always replace the
GADTs arising in the defunctionalization via newtypes while retaining type
preservation. That is,

First, we replace the Arrow GADT by

8

data Arrow’:: * -> * -> * where
X1’ :: a2 :=: Bool -> Arrow’ a1 a2
X2’ :: a2 :=: (Arrow’ (Arrow’ a1 Bool) (Arrow’ a1 Bool)) -> Arrow’ a1 a2
X3’ :: a1 :=: Arrow’ a Bool -> a2 :=: Arrow’ a Bool -> a -> Arrow’ a1 a2
X4’ :: a2 :=: Bool -> a1 -> Arrow’ a1 Bool -> Arrow’ a1 a2

Each GADT constructor such as X1:∀a1,a2.a2=Bool ⇒ Arrow a1 a2 is turned
into X1’:∀a1,a2.a2:=:Bool → Arrow’ a1 a2. We find that Arrow’ is a Haskell
98 data type (though we use here GHC syntax for writing data type declara-
tions).

The challenge is to replace apply by an equivalent definition which is typable
in Haskell 98. The key observation is that uses of the GADT rule (Eq) for typing
apply can be omitted by inserting newtypes coercions to or from.

apply’ :: Arrow’ a1 a2 -> a1 -> a2
apply’ = \ f -> \ arg ->

case f of
(X1’ ep2) -> (to ep2) False
(X2’ ep2) -> let x2 = arg in (to ep2) (X3’ x2 refl refl)
(X3’ ep1 ep2 x2) -> let x3 = arg in (to ep2) (X4’ x2 ((from ep1) x3) refl)
(X4’ ep2 x2 x3) -> let x4=arg in (to ep2) ((x2==x4) || (apply’ x3 x4))

empty = X1’ refl
insert = X2’ refl
res = apply’ (apply’ (apply’ insert 1)) empty) 2

For example, in the last clause application of the coercion (to ep1) has the same
effect as application of the typing rule (Eq) under constraint Bool = a2 . Thus,
we achieve a type-preserving defunctionalization via newtypes for our running
example. The above observation can be generalized for all GADTs which arise
in Pottier’s and Gauthier’s defunctionalization method. The details are in the
next section.

5.2 Polymorphic Typed Defunctionalization via Newtypes

Our scheme follows the approach in [19]. Defunctionalization is defined in terms
of judgments Γ %DF e : t " e′ where we assume that source expression e has
type t under environment Γ , and the target expression e′ is the defunctionalized
version of e. We write [[t]] to denote the defunctionalized version of type t (which
naturally extends to type environment [[Γ]]):

[[a]] = a [[t1 → t2]] = Arrow′ [[t1]] [[t2]] [[T t̄]] = T [[t̄]]

The crucial difference to [19] is that we only rely on Haskell 98 features in the
target language. For each lambda abstraction λx.e : t1 → t2, where ȳ = fv(λx.e)
and each yi has type ti in the given type environment, we introduce a Haskell
98 data constructor X’ : ∀a1, a2, fv(t1, t2, t̄).a1 :=: [[t1]] → a2 :=: [[t2]] → [[t̄]] →
Arrow’ a1 a2 to the initial type environment. We assume that a1 and a2 are fresh
variables. For example, for \ x1 -> False we introduce X1’ : ∀a1, a2, b.a1 :=:

9

(Var)
(x : ∀ā.t) ∈ Γ

Γ $DF x : [t̄/ā]t " x
(App)

Γ $DF e1 : t2 → t " e′1 Γ $DF e2 : t2 " e′2

Γ $DF e1 e2 : t " apply′ e′1 e′2

(Abs)

ȳ = fv(λx.e) ȳ = y1, ..., yn Γ $HM yi : ti for i = 1, .., n

Γ $HM X ′ : (a1 :=: [[t1]]) → (a2 :=: [[t2]]) → [[t̄]] → Arrow a1 a2

Γ ∪ {x : a1, ep1 : a1 :=: t1, ep2 : a2 :=: t2} $DF e : t2 " e′

Γ $DF λx.e : t1 → t2 " X ′ refl refl ȳ

(Eq1)

Γ $DF e : t1 " e′

p : (t1 :=: t2) ∈ Γ

Γ $DF e : t2 " (from p) e′
(Eq2)

Γ $DF e : t2 " e′

p : (t1 :=: t2) ∈ Γ

Γ $DF e : t1 " (to p) e′

Fig. 1. GADTless Defunctionalization

b → a2 :=: Bool → Arrow’ b a2 which could be simplified to X1’ : ∀a1, a2.a2 :=:
Bool → Arrow’ a1 a2 as we have done in the previous section.

Let us take a closer look at the defunctionalization rules in Figure 1. Each
lambda-abstraction is injected into the datatype Arrow′ with the correspond-
ing data constructor. See rule (Abs). Proof witnesses encapsulating the identity
function (refl) and free term variables (ȳ) are passed in as arguments. We write
Γ %HM yi : ti to denote well-typing in Hindley/Milner extended with new-
types. The defunctionalization of function body e is done under an environment
extended with two proof witnesses named as ep1 and ep2: one for the input type
and one for the output type. Note that we bind the lambda variable x with type
a1 instead of t1 in the environment under which e is typed. Rule (Eq1) is used
to coerce the type of x from a1 to t1. As a result, every occurrence of x in e
is expected to be substituted with (from ep1) x in e′. The defunctionalization
result e′ does not appear in rule (Abs)’s conclusion; instead, it is used in con-
structing the special function apply’ during a post-translation step (see below).
This reflects the fact that in a defunctionalized program, actual function bodies
are all collected by the definition of apply’, and each closure residues at the
invocation site only encapsulates an unique identifier and a value environment.
For each function application, the closure is passed to function apply’ for proper
dispatching. See rule (App).

The purpose of rules (Eq1) and (Eq2) is to mimic the GADT typing rule
(Eq) by inserting appropriate directed type coercions. Recall that the difficulty
of defunctionalization lies in defining a well-typed function apply. In the GADT-
based defunctionalization setting, given apply’s type Arrow a1 a2 → a1 → a2,
each defunctionalized function \ x -> e′ of type [[t1]] → [[t2]] must be made to
match apply’s signature. In other words, a function of type [[t1]] → [[t2]] must
accept an input of type a1 and returns an output of type a2. Consider the
third case of our running example, the function \ x3 -> X4 x2 x3 is of type

10

Arrow a Bool → Arrow a Bool which does not match function apply’s signa-
ture a1 → a2. This is the very and only place (i.e. the definition of apply) where
we deploy rule (Eq) to achieve type preservation in the GADT-based defunc-
tionalization scheme. By construction, pattern X for function \ x -> e′ always
carries the assertion a1 = [[t1]] and a2 = [[t2]], which allows rule (Eq) to coerce
from a1 to [[t1]] and from [[t2]] to a2 when e′ is typed. In the case of \ x3 ->
X4 x2 x3, pattern matching X3 yields the constraints a1 = Arrow a Bool and
a2 = Arrow a Bool, which justifies the type a1 → a2. Note that in defunction-
alization, uses of local type equality constraints are always “straightforward”:
coercions are only between types where a equality constraint of the two syntacti-
cally appears in the store. Thus, the logic implication (|=) used in rule (Eq) can
be simplified as set inclusion (∈). Applied to our Haskell 98-based type-directed
translation, this property guarantees that either rule (Eq1) or (Eq2) can be used
in place of (Eq) when needed, as proof witnesses of correct types should be
directly available from the environment.

The last step of defunctionalization is a post-translation process which com-
pletes the definition of function apply’. For each lambda abstraction in the
source program whose defunctionalization derivation ends with

(Abs)

ȳ = fv(λx.e) ȳ = y1, ..., yn Γ %HM yi : ti for i = 1, .., n

Γ %DF X ′ : (a1 :=: [[t1]]) → (a2 :=: [[t2]]) → [[t̄]] → Arrow a1 a2

C,Γ ∪ {x : a1, ep1 : a1 :=: t1, ep2 : a2 :=: t2} %DF e : t2 " e′

C,Γ %DF λx.e : t1 → t2 " X ′ refl refl ȳ

we generate a pattern clause patclx of the form

X’ ep1 ep2 ȳ -> let x = arg in (to ep2) e′

We collect all such clauses to build

apply :: Arrow a1 a2 -> a1 -> a2

apply = \ f -> \ arg ->

case f of patclx

It follows straightforwardly that defunctionalized programs produced by our
scheme are operationally equivalent to the target program generated in [19]. The
only difference is the additional occurrence of coercions to refl or from refl
which evaluate to the identity. Recall that coercions among new, isomorphic
types can be implemented without execution time overhead because newtype
does not change the underlying representation of an object [17].

The important result is that defunctionalized programs are well-typed Haskell
98 programs. Recall that %HM refers to the Hindley/Milner system extended
with newtypes.

Theorem 1 (Well-Typed). Let Γ %HM e : t and e is defunctionalized to e′.
Then [[Γ]] %HM e′ : [[t]].

We can also state completeness. That is, all well-typed programs can be
defunctionalized.

11

Theorem 2 (GADTless Defunctionalization Completeness). Let Γ %HM

e : t. Then Γ %DF e : t " e′ for some e′.

Proofs of the above results are given in Appendix B.

6 Further GADTless Programming Examples

The GADT examples we have seen so far could straightforwardly be encoded
via newtypes. In this section, we observe that for many other GADT examples
the explicit coercion encoding approach appears to be more suitable.

Let’s attempt an encoding of the trie example found in [4]. A trie is a finite
map from keys to values whose structure depends on the type of keys, here
encoded as products and sums in GADT variants:

data Either a b where
Left :: a -> Either a b
Right :: b -> Either a b

data Trie k v where
TUnit ::
Maybe v -> Trie () v

TSum :: forall k1 k2.
Trie k1 v -> Trie k2 v -> Trie (Either k1 k2) v

TProd :: forall k1 k2.
Trie k1 (Trie k2 v) -> Trie (k1, k2) v

A trie for a unit type is maybe one value, a trie for a sum is a product of
tries, and a trie for a product is a composition of tries. An important operation
on tries is the merging of two maps with the same domain and co-domain.

merge :: (v -> v -> v)
-> Trie k v -> Trie k v -> Trie k v

merge c (TUnit Nothing) (TUnit Nothing) =
TUnit Nothing

merge c (TUnit Nothing) (TUnit (Just v’)) =
TUnit (Just v’)

merge c (TUnit (Just v)) (TUnit Nothing) =
TUnit (Just v)

merge c (TUnit (Just v)) (TUnit (Just v’)) =
TUnit (Just (c v v’))

merge c (TSum ta tb) (TSum ta’ tb’) =
TSum (merge c ta ta’) (merge c tb tb’)

merge c (TProd ta) (TProd ta’) =
TProd (merge (merge c) ta ta’)

The second two last function clauses are interesting. The patterns of the
first and second argument constrain k to Either k1 k2 and Either k1’ k2’,
respectively. Hence, we have

Either k1 k2 = k = Either k1′ k2′

from which we can follow k1 = k1′ and k2 = k2′.

12

The point is that in the GADT type system we can deduce t1 = t′1,...,tn = t′n
from T t1 ...tn = T t′1...t

′
n for any n-ary type constructor T . This is the standard

“decomposition” law for Herbrand type constructors. In terms of the encoding
schemes described in Section 4, this means that we need to decompose the proof
term associated to T t1 ...tn = T t′1...t

′
n into a proof term associated to ti = t′i.

But it seems impossible to define such a decomposition law in Haskell 98 using
newtypes.

The explicit coercion encoding approach seems more flexible when it comes
to decomposition. For simplicity, we only give parts of the definition of the
decomposition law for the Either a b data type.

decomp1 :: (Either a b -> Either c d) -> (a->c)
decomp1 f = \ a -> case (f (Left a)) of

Left c -> c

We inject the a value into the Either a b data type, apply the incoming coercing
function and then extract the c value. Notice that if (input) function f behaves
like the identity function, the resulting (output) function behaves like the identity
function as well. We can therefore argue that decomposition for Either a b is
(correctly) definable in Haskell 98. Thus, we can rewrite the “trie” example in
an equivalent form which is accepted by Haskell 98. Due to space limitations we
provide the details in Appendix A.

There are many other examples which can be translated using the explicit
coercion approach. A comprehensive list of examples can be found under 3

http://users.ox.ac.uk/~wolf2335/projects/translate-gadt/

In fact, it almost seems that all practical examples can be encoded. Though,
not every decomposition function is definable. Here is the (contrived) critical
example.

data Foo a where
K :: Foo a

data Erk a b c where
I :: c -> Erk a a c

f :: Erk (Foo a) (Foo Int) a -> a
f (I x) = x + 1

First, we convince ourselves that the above program is well-typed in the GADT
system. The pattern I x in combination with the type annotation implies that
Foo a = Foo Int. By decomposition, we conclude that a = Int. Thus, the
program text x+1 can be given type Int. Hence, the above is well-typed. To
translate the above, we need to define a function of type EQ (Foo a) (Foo Int)
-> EQ a Int. We claim it is impossible to define such a function with satisfies
the invariant. It suffices to show that a function

decompFoo :: (Foo a->Foo Int)->(a->Int)

3 Examples are also part of the technical report version [27].

13

with the property that decompFoo (\ x->x) evaluates to \ x->x is not defin-
able.

The problem here is that a value of type a cannot be injected into a value of
type Foo a. So, clearly the incoming function of type Foo a->Foo Int is use-
less. Effectively, we could omit the function parameter altogether. Parametricity
tells us that any function of type a->Int must be a constant function. Hence,
decompFoo applied to any function of type Foo a->Foo Int yields a constant
function. Hence, an encoding of the above critical example is impossible.

The above suggests that in order to represent the decomposition law via
the explicit coercion approach, (1) we must demand that for each data type
T a1...an, all type parameters a1,...,an appear in the argument type of at least
one constructor. This immediately rules out examples such as the above phantom
type Foo a and also abstract types such as IO a. 4 In addition, (2) we require
that type parameters a1, ..., an appear in a positive position in the argument of
a constructor. We say that a data type T a1...an is decomposable iff the above
conditions (1) and (2) are satisfied.

Theorem 3 (GADTless Programming via Explicit Coercions). Every
GADT program which only uses decomposable types can be encoded via explicit
coercions.

A proof sketch of the above result is given in Appendix C.

7 Conclusion and Related Work

The main result of this paper is that Pottier’s and Gauthier’s [19] GADT-based
polymorphic typed defunctionalization can actually be expressed in Haskell 98
using newtypes to encode GADTs (Section 5.2). Thus, a type-preserving poly-
morphic defunctionalization becomes possible for many systems without having
to extend the typed-intermediate language with GADTs (or something equiva-
lent).

The idea of using newtypes to encode GADTs originates from the work by
Baars and Swierstra [1], Hinze and Cheney [3], and possibly many others. But
many GADT programs can only be encoded using explicit coercion functions.
The idea of using explicit coercion functions to mimic GADT style program ap-
pears first in the work by Yang [29]. His method has been re-invented later by
Chen, Zhu and Xi [2]. In our second main result, we establish for the first time
sufficient conditions under which an encoding of GADTs with explicit coercions
is possible in Haskell 98 (Section 6). The disadvantage of the explicit coercion
compared to the newtypes approach is that explicit coercions impose a run-time
penalty. Furthermore, there are (albeit contrived) GADT programs which cannot
seem to be encoded via explicit coercions. This happens if one cannot “decom-
pose” type equations (respectively their associated proof terms/coercions).

Interestingly, the “decomposition” problem also arises when translating type
class programs [7].
4 A phantom type has a type parameter which does not appear as an argument of a

constructor. The constructors of an abstract type are not visible to the user.

14

class Foo a where foo :: a->Int
instance Foo a => Foo [a] where

foo [] = 1
foo _ = 2

bar :: Foo [a] => a->Int
bar = foo

Based on the System F-style translation scheme described in [7], we are
unable to translate function bar. The program text demands a dictionary for
Foo a but the annotation only supplies a dictionary for Foo [a]. This is the
wrong way around. The instance declaration tells us how to construct Foo [a]
given Foo a but the other direction does not hold in general.

Many other programming language features appear to be (roughly) equiv-
alent in terms of expressive power to GADTs. For example, type classes, as
pioneered by Weirich [28], can also be used to encode GADT style behavior.
Kiselyov [10] provides numerous examples of ingenious type class encodings of
GADT programs. The gist of his idea is to turn each (value) pattern clause into
an (type class) instance declaration. A drawback of the type class encoding is
that the original GADT program has to go under some substantial rewrites.
Furthermore, GADTs are closed whereas type class instances are open. Hence,
both concepts seem to complement, rather than substitute, each other.

In conclusion, we could show that some non-trivial GADT-based transfor-
mations and programs can actually be expressed in Haskell 98. Our results help
to get a better understanding of GADTs and under which conditions we can
replace them with features available in Haskell 98.

Acknowledgments

We thank Gregory Duck, Manuel M. T. Chakravarty, James Cheney, Oleg Kise-
lyov, Simon Peyton Jones and Jeremy Wazny for their comments on previous
versions of this paper.

References

1. A. I. Baars and S. D. Swierstra. Typing dynamic typing. In Proc. of ICF’02, pages
157–166. ACM Press, 2002.

2. C. Chen, D. Zhu, and H. Xi. Implementing cut elimination: A case study of
simulating dependent types in Haskell. In Proc. of PADL’04, volume 3057 of
LNCS, pages 239–254. Springer-Verlag, 2004.

3. J. Cheney and R. Hinze. A lightweight implementation of generics and dynamics.
In Proc. of Haskell Workshop’02, pages 90–104. ACM Press, 2002.

4. J. Cheney and R. Hinze. First-class phantom types. TR 1901, Cornell University,
2003.

5. K. Crary and S. Weirich. Flexible type analysis. In Proc. of ICFP’99, pages
233–248. ACM Press, 1999.

6. Glasgow haskell compiler home page. http://www.haskell.org/ghc/.

15

7. C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler. Type classes in
Haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, 1996.

8. http://hackage.haskell.org/trac/haskell-prime.
9. A. Kennedy and C. V. Russo. Generalized algebraic data types and object-oriented

programming. In Proc. of OOPSLA’05, pages 21–40. ACM Press, 2005.
10. O. Kiselyov. Typed lambda-expressions without gadts.

http://www.haskell.org//pipermail/haskell-cafe/2005-January/008212.html,
2005. Haskell-Cafe Mailing List.

11. J. Lassez, M. Maher, and K. Marriott. Unification revisited. In Foundations of
Deductive Databases and Logic Programming. Morgan Kauffman, 1987.

12. K. Läufer and M. Odersky. An extension of ML with first-class abstract types. In
ACM SIGPLAN Workshop on ML and its Applications, pages 78–91, 1992.

13. Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML.
MIT Press, 1997.

14. H. Nilsson. Dynamic optimization for functional reactive programming using gen-
eralized algebraic data types. In Proc. of ICFP’05, pages 54–65. ACM Press, 2005.

15. M. Odersky, M. Sulzmann, and M Wehr. Type inference with constrained types.
Theory and Practice of Object Systems, 5(1):35–55, 1999.

16. E. Pasalic. The Role of Type Equality in Meta-Programming. PhD thesis, Oregon
Health & Science University, OGI School of Science & Engineering, September
2004.

17. S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

18. S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-
based type inference for GADTs. In Proc. of ICFP’06, pages 50–61. ACM Press,
2006.

19. F. Pottier and N. Gauthier. Polymorphic typed defunctionalization. In Proc. of
POPL’04, pages 89–98. ACM Press, January 2004.

20. F. Pottier and Y. Régis-Gianas. Towards efficient, typed LR parsers. In ACM
Workshop on ML, volume 148 of Electronic Notes in Theoretical Computer Science,
pages 155–180, 2006.

21. John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In ACM ’72: Proceedings of the ACM annual conference, pages 717–740,
New York, NY, USA, 1972. ACM Press.

22. John C. Reynolds. Definitional interpreters revisited. Higher Order Symbol. Com-
put., 11(4):355–361, 1998.

23. Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A type system for certified
binaries. In Proc. of POPL’02, pages 217–232. ACM Press, 2002.

24. T. Sheard. Languages of the future. SIGPLAN Not., 39(10):116–119, 2004.
25. J.R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.
26. M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Donnelly. System F

with type equality coercions. In Proc. of ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI’07), pages 53–66. ACM Press, 2007.

27. M. Sulzmann and M. Wang. A systematic translation of guarded recursive data
types to existential types. Technical Report TR22/04, The National University of
Singapore, 2004.

28. S. Weirich. Type-safe cast: (functional pearl). In Proc. of ICFP’00, pages 58–67.
ACM Press, 2000.

29. Z. Yang. Encoding types in ML-like languages. In Proc. of ICFP ’98, pages 289–
300. ACM Press, 1998.

16

A GADT Encoding Examples via Explicit Coercions

type EQ a b = (a->b,b->a)

sym :: EQ a b -> EQ b a
sym (f,g) = (g,f)

data Trie k v where
TUnit ::
EQ k () -> Maybe v -> Trie k v

TSum :: forall k1 k2.
EQ k (Either k1 k2) -> Trie k1 v -> Trie k2 v -> Trie k v

TProd :: forall k1 k2.
EQ k (k1,k2) -> Trie k1 (Trie k2 v) -> Trie k v

merge :: (v -> v -> v) -> Trie k v -> Trie k v -> Trie k v
merge c (TUnit (g1,h1) Nothing) (TUnit (g2,h2) Nothing) =

TUnit (g1,h1) Nothing
merge c (TUnit (g1,h1) Nothing) (TUnit (g2,h2) (Just v’)) =

TUnit (g1,h1) (Just v’)
merge c (TUnit (g1,h1) (Just v)) (TUnit (g2,h2) Nothing) =

TUnit (g1,h1) (Just v)
merge c (TUnit (g1,h1) (Just v)) (TUnit (g2,h2) (Just v’)) =

TUnit (g1,h1) (Just (c v v’))
merge c (TSum (g1,h1) ta tb) (TSum (g2,h2) ta’ tb’) =

TSum (g1,h1) (merge c ta ((comp ((decompE1 (g1.h2)),(decompE1 (g2.h1)))) ta’))
(merge c tb ((comp ((decompE2 (g1.h2)),(decompE2 (g2.h1)))) tb’))

merge c (TProd (g1,h1) ta) (TProd (g2,h2) ta’) =
let k1’k1 = ((decompP1 (g1.h2)),(decompP1 (g2.h1)))

k2’k2 = ((decompP2 (g1.h2)),(decompP2 (g2.h1)))
in TProd (g1,h1) (merge (merge c) ta (comp2 k1’k1 k2’k2 ta’))

comp :: EQ a b -> Trie a v -> Trie b v
comp (f’,g’) (TUnit (f,g) v) = TUnit (f.g’, f’.g) v
comp (f’,g’) (TSum (f,g) t1 t2) = TSum (f.g’, f’.g) t1 t2
comp (f’,g’) (TProd (f,g) t1) = TProd (f.g’, f’.g) t1

comp’ :: EQ v v’ -> Trie k v -> Trie k v’
comp’ (f’,g’) (TUnit eq v) = TUnit eq (compM f’ v)
comp’ eq’ (TSum eq t1 t2) = TSum eq (comp’ eq’ t1) (comp’ eq’ t2)
comp’ eq’ (TProd eq t1) = TProd eq (comp’ ((comp’ eq’), (comp’ (sym eq’))) t1)

comp2 :: EQ a b -> EQ a’ b’ -> Trie a (Trie a’ v) -> Trie b (Trie b’ v)
comp2 eq1 eq t = comp’ (comp eq, comp (sym eq)) (comp eq1 t)

compM :: (a->b) -> Maybe a -> Maybe b
compM f Nothing = Nothing
compM f (Just x) = Just (f x)

decompP1 :: ((a,b) -> (c,d)) -> (a->c)

17

decompP1 f = \ a -> case (f (a,undefined)) of
(c,_) -> c

decompP2 :: ((a,b) -> (c,d)) -> (b->d)
decompP2 f = \ b -> case (f (undefined,b)) of

(_,d) -> d

decompE1 :: (Either a b -> Either c d) -> (a->c)
decompE1 f = \ a -> case (f (Left a)) of

Left c -> c

decompE2 :: (Either a b -> Either c d) -> (b->d)
decompE2 f = \ b -> case (f (Right b)) of

Right d -> d

B Defunctionalization Proofs

Theorem 1 follows straightforwardly from the two lemmas below. We use σapply′

as an abbreviation of function apply’’s type Arrow′ a1 a2 → a1 → a2. We
assume types of X ′, refl , to and from are known and are omitted from the
environment.

Lemma 1. Let Γ %HM e : t and Γ %DF e : t " e′. Then [[Γ]] ∪ apply′ :
σapply′ %HM e′ : [[t]].

Proof. By structural induction on the derivation of Γ %DF e : t " e′.
◦ Case (Abs). The rule is

ȳ = fv(λx.e) ȳ = y1, ..., yn Γ %HM yi : ti for i = 1, .., n

Γ %HM X ′ : (a1 :=: [[t1]]) → (a2 :=: [[t2]]) → [[t̄]] → Arrow a1 a2

Γ ∪ {x : a1, ep1 : a1 :=: t1, ep2 : a2 :=: t2} %DF e : t2 " e′

Γ %DF λx.e : t1 → t2 " X ′ refl refl ȳ

Given Γ %HM refl : a :=: a, by rule (App), we have Γ %HM X ′ refl refl ȳ :
Arrow′ [[t1]] [[t2]]. Since [[t1 → t2]] = Arrow′ [[t1]] [[t2]], we conclude Γ %HM

X ′ refl refl ȳ : [[t1 → t2]].
◦ Case (App). The rule is

Γ %DF e1 : t2 → t " e′1 Γ %DF e2 : t2 " e′2
Γ %DF e1 e2 : t " apply′ e′1 e′2

By induction, we have

[[Γ]].apply′ : σapply′ %HM e′1 : Arrow′ [[t2]] [[t]]

[[Γ]].apply′ : σapply′ %HM e′2 : [[t2]]

By rule (App), we conclude [[Γ]].apply′ : σapply′ %HM apply′ e′1 e′2 : [[t]].

18

Lemma 2. apply′ : σapply′ %HM λf.λarg.case f of patclx : σapply′ .

Proof. Let’s consider a lambda abstraction whose defunctionalization derivation
ends with

ȳ = fv(λx.e) ȳ = y1, ..., yn Γ %HM yi : ti for i = 1, .., n

Γ %HM X ′ : (a1 :=: [[t1]]) → (a2 :=: [[t2]]) → [[t̄]] → Arrow a1 a2

Γ ∪ {x : a1, ep1 : a1 :=: t1, ep2 : a2 :=: t2} %DF e : t2 " e′

Γ %DF λx.e : t1 → t2 " X ′ refl refl ȳ

Applying Lemma 1 to the premise yields

[[Γ]] ∪ {apply′ : tapply′ , x : a1, ep1 : a1 :=: [[t1]], ep2 : a2 :=: [[t2]]} %HM e′ : [[t2]]

Applying rule (App), we have

[[Γ]] ∪ {apply′ : tapply′ , x : a1, ep1 : a1 :=: [[t1]], ep2 : a2 :=: [[t2]]} %HM

(to eq2) e′ : a2

Note that patclx is of the form X’ ep1 ep2 ȳ -> let x=arg in (to eq2) e′.
Given the lambda variable arg’s type a1. Pattern matching of X’ produces the
bindings ep1 : a1 :=: [[t1]] and ep2 : a2 :=: [[t2]]. The let introduction gives us
x : a1.

By rules (Let) and (Clause), we have

[[Γ]] ∪ {apply′ : tapply′ , arg : a1} %HM

X ′ ep1 ep2 ȳ → let x = arg in (to eq2) e′ : Arrow′ a1 a2 → a2

Since ȳ = fv(λx.e), we have

{apply′ : tapply′ , arg : a1} %HM

X ′ ep1 ep2 ȳ → let x = arg in (to eq2) e′ : Arrow′ a1 a2 → a2

Because this holds for every lambda abstraction, we conclude

apply′ : σapply′ %HM λf.λarg.case f of patclx : σapply′

Proof of Theorem 2.

Proof. By structural induction on the derivation of Γ %HM e : t.
◦ Case (Abs). The rule is

Γ ∪ {x : t1} %HM e : t2

Γ %HM λx.e : t1 → t2

By induction, we have Γ ∪ {x : t1} %DF e : t2 " e′. Since {ep1, ep2}∩ fv(e) = ∅,
we have Γ ∪ {x : t1, ep1 : a1 :=: t1, ep2 : a2 :=: t2} %DF e : t2 " e′.

If we apply rule (Eq1) with eq1 to every occurrence of x in e, we obtain

Γ ∪ {x : a1, ep1 : a1 :=: t1, ep2 : a2 :=: t2} %DF e : t2 " e′′

where e′′ is e′ with every occurrence of x substituted by (from eq1) x. Thus,
by rule (Abs), we conclude Γ %DF λx.e : t1 → t2 " X ′ refl refl ȳ.

19

C GADTless Explicit Coercion Proofs

The essence to GADTless encoding is the mimicking of GADT typing rule (Eq)
with explicit coercions. A measurement of expressiveness of an encoding ap-
proach is how much valid (i.e. equivalent to identity) proof witnesses can be
constructed comparing to constraint implication |= (defined below) used in the
GADT type system.

(Sym)
t1 = t2 ∈ C

C |= t2 = t1
(DCompA)

C |= t1 → t3 = t2 → t4

C |= t1 = t2C |= t3 = t4

(Arrow)
C |= t1 = t2
C |= t3 = t4

C |= t1 → t3 = t2 → t4

(Comp)
C |= ti = t′i

for i = 1, ..., n

C |= T t1...tn = T t′1...t
′
n

(Trans)
C |= t1 = t2
C |= t2 = t3
C |= t1 = t3

(DCompT)
C |= T t1...tn = T t′1...t

′
n

C |= ti = t′i for i = 1, ..., n

To prove the claim of Theorem 3, it is sufficient to show that all the above rules
are expressible via explicit coercions given only decomposable types are used
in decomposition. The following corresponding coercion functions constructed
are equivalent to the identity operationally assuming the input functions are
identity.

sym :: EQ a b -> EQ b a
sym (f,g) = (g,f)

trans :: EQ a b -> EQ b c -> EQ a c
trans (f1,g1) (f2,g2) = (f2.f1,g1.g2)

arrow :: EQ a1 b1 -> EQ a2 b2 -> EQ (a1->a2) (b1->b2)
arrow (f1,g1) (f2,g2) = (\ g -> f2.g.g1, \ g -> g2.g.f1)

W.l.o.g we assume each data constructor takes exactly one argument. No phan-
tom variables are allowed given the decomposable requirement.

T ā = T1 a1

| T2 a2

...
| Tn an

comp :: EQ a1 t1 -> EQ a2 t2 -> ... -> EQ an tn -> EQ (T ā) (T t̄)
comp (f1,g1) (f2,g2) ... (fn,gn) = (f1’.f2’.....fn’), (g1’.g2’.....gn’)

where f1’ :: T a1 ... an -> T t1 a2 ... an

f1’ (T1 x1) = T1 (f1 x1)
f1’ x = x
...

20

fn’ :: T a1 a2 ... an -> T a1 ... an−1 tn

fn’ (Tn xn) = Tn (fn xn)
fn’ x = x
g1’ :: T t1 a2 ... an -> T a1 ... an

g1’ (T1 x1) = T1 (g1 x1)
g1’ x = x
...
gn’ :: T a1 ... an−1 tn -> T a1 ... an

gn’ (Tn xn) = Tn (gn xn)
gn’ x = x

Given the decomposable assumption, we only consider parameters at positive
positions.

dcompA :: EQ (a1->a2) (b1->b2) -> EQ a2 b2

dcompA (f,g) = (\ x -> f (\ y -> x) undefined, \ x -> g (\ y -> x) undefined)

Due to laziness, evaluations of the above coercion functions do not diverge.
However, it does not work in a strict language.

Decomposition can be defined as well by: 1. injecting the value into a data
type whose conversion functions are available; 2. coercing the data type 3. pro-
jecting the data type which gives back the original value with a different type.

decompT1 :: EQ (T ā) (T t̄) -> EQ a1 t1

decompT1 (f,g) = (\ x -> project1 (f (inject1 x), \ x -> project1 (g (inject1 x))
where project1 :: T a1 ... an -> a1

project1 (T1 x1) = x1

inject1 :: a1 -> T a1 ... an

inject1 x1 = (T1 x1)
...
decompTn :: EQ (T ā) (T t̄) -> EQ an tn

decompTn (f,g) = (\ x -> projectn (f (injectn x), \ x -> projectn (g (injectn x))
where projectn :: T a1 ... an -> an

projectn (Tn xn) = xn

injectn :: an -> T a1 ... an

injectn xn = (Tn xn)

Note that though a projection function projecti is partial, it always works with
data constructed by the corresponding injection function injecti. Thus, coercion
functions constructed above are total.

21

