
Analysing the Security Properties
of Object-Capability Patterns

Toby Murray

Hertford College

�
Oxford University Computing Laboratory

A thesis submitted for the degree of

Doctor of Philosophy

Hilary Term, 2010

This thesis is dedicated to
Bel,

who has taught me more than anyone else.

Acknowledgements

Thanks firstly to my supervisor, Gavin Lowe, whose conscientious and ded-
icated supervision of this work improved it, and its presentation, more than
I can say, and whose wisdom and guidance were invaluable throughout this
entire process. I couldn’t have asked for a better supervisor. Gavin also
contributed directly to the development of valuable parts of this work, as
explained in the statement of authorship that follows.

Thanks to Fred Spiessens and Bill Roscoe for examining this thesis.
Thanks to Andrew Simpson and Bill Roscoe for their advice and feedback
on this work as it progressed during my transfer and confirmation of status.

Thanks to Bill Roscoe for valuable discussions about CSP and to Fred
Spiessens for the same regarding Scoll and authority.

Thanks to the anonymous reviewers of [ML09b] and [ML09a], and those
at NICTA, whose feedback helped to improve the presentation in Chapter 5.

Thanks to David Wagner for useful discussions about authority and cau-
sation that ultimately influenced the work in Chapter 7, and for indirectly
bringing to my attention the need to consider vulnerabilities due to recursive
invocation.

Thanks to Bill Frantz, David-Sarah Hopwood, Matej Koš́ık, Charles
Landau, Alex Murray, Mark Seaborn and David Wagner, who helped me
assemble Table 2.1.

Thanks to all of the people on cap-talk and e-lang, including Mark Miller
and Jonathan Shapiro, and all of my old workmates from DSTO’s Annex
project. You have greatly influenced my thinking about capability systems
and have undoubtedly influenced the work contained in this thesis.

My greatest thanks to Duncan Grove and Chris North, and also to Dave
Munro, Rob Esser, Ed Lowrey and Ken Yiu, for encouraging and facilitating
me to undertake this doctorate.

Thanks so much to my family and friends, both in Oxford and back
home, for their love and support. Thanks especially to Mark Larsen, whose
friendship helped make Oxford home.

Thanks finally to my wife, Bel, for her unwavering support during times
of crisis, and her sacrifice throughout this adventure. She knew from the
beginning that Oxford was the place to be.

This work was supported by a John Crampton Travelling Scholarship,
for which I am extremely grateful.

Statement of Authorship

The following parts of this thesis contain work carried out jointly with my
supervisor, Gavin Lowe.

• The use and form of the PosConjEqT safe abstraction of the Trade-
marks guard object, which appears in Section 4.1.3, was conceived by
Gavin Lowe.

• Gavin Lowe also conceived the technique used to model and analyse the
Membrane in the concurrent context, which appears in Section 4.3.4.

• The proofs of Lemmas 5.3.6 and 5.3.7 were adapted from a proof that
was co-written with Gavin Lowe and appears in [ML07].

• The basic structure of the refinement check for testing weakened
refinement-closed noninterference properties, which appears in Sec-
tion 5.3.3, was conceived by Gavin Lowe. This work also appears
in [ML09b].

• The proof of Theorem 5.5.3 is a simple generalisation of a proof that
was conceived by Gavin Lowe. This work also appears in [ML09a].

• The proof of Lemma A.0.6 is a simple extension of a proof that was
co-written with Gavin Lowe and appears in [ML07].

Analysing the Security Properties of
Object-Capability Patterns

Toby Murray

Hertford College
University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Hilary Term, 2010

The object-capability model is an increasingly popular architecture for build-
ing secure software systems. This model promotes the construction of
reusable patterns for enforcing security properties within object-capability
systems. In this thesis, we apply the process algebra CSP, and its auto-
matic refinement-checker FDR, to analyse object-capability patterns and
prove whether they uphold the security properties they are designed to en-
force.

We show how CSP can accurately model object-capability systems and
patterns, and express their wide variety of features.

We show that complex safety properties of object-capability patterns can
be reasoned about by encoding them as CSP refinement checks for FDR.
This enables one to detect vulnerabilities automatically in patterns due to
concurrent and recursive invocation.

We show that CSP’s theory of data-independence can be applied to al-
low one to generalise the results obtained from analysing small fixed-sized
systems, to systems of arbitrary size.

We show how to reason about the information flow properties of object-
capability patterns. We argue that in order to do so sensibly, one must make
the assumption that objects can directly influence each other only through
their overt interactions together. We show how traditional noninterference
properties can be adapted to take this assumption into account, and how
they can then be tested with FDR.

We consider how to reason about liveness properties of object-capability
patterns under necessary fairness assumptions. We prove that such proper-
ties cannot always be expressed as CSP refinement checks for FDR, making
them impossible for FDR to test precisely, but how FDR can be applied to
reason about them by testing sufficient conditions for them instead.

To reason about authority, we develop a framework for expressing gen-
eral non-causation properties and show how it can capture various kinds of
authority, as well as the notions of defensive correctness and defensive con-
sistency. We show that, for deterministic systems, non-causation of safety
effects can be expressed as refinement checks in CSP models that FDR can
support. However, for nondeterministic systems, we prove that even certain
simple non-causation properties cannot be precisely captured this way.

Engineers in established fields use applied mathematics to
predict the behavior and properties of their designs with great
accuracy. Software engineers, despite the fact that their cre-
ations exhibit far more complexity than physical systems, do
not generally do this and the practice of the discipline is still at
the pre-scientific or craft stage. . . . [T]he applied mathematics of
software is formal logic, and calculating the behavior of software
is an exercise in theorem proving. Just as engineers in other dis-
ciplines need the speed and accuracy of computers to help them
perform their engineering calculations, so software engineers can
use the speed and accuracy of computers to help them prove the
. . . theorems required to predict the behavior of software.

John Rushby [Rus89].

Contents

1 Introduction 1
1.1 The Problem . 1
1.2 Our Approach . 2
1.3 Contribution and Thesis Organisation 3

2 Preliminaries 6
2.1 CSP . 6

2.1.1 Syntax . 6
2.1.2 Notation . 8
2.1.3 Semantics . 9
2.1.4 Verifying Properties of CSP Processes 12

2.2 The Object-Capability Model 13
2.2.1 Current Object-Capability Systems 14

2.3 Modelling Object-Capability Systems in CSP 17
2.3.1 System Model . 17
2.3.2 An Example System 20
2.3.3 Modelling Trusted Objects 21
2.3.4 Non-Blocking Communication 23
2.3.5 Single-Threaded Systems 24
2.3.6 Data Independence . 26

3 Safety 30
3.1 Safe Authenticating Trademarks 30

3.1.1 Deriving a Safe Implementation 31
3.1.2 Summary . 39

3.2 Safe Coercing Sealer-Unsealers 39
3.2.1 Deriving a Safe Implementation 40

3.3 Related Work . 50
3.4 Conclusion . 52

4 Analysing Systems of Arbitrary Size 54
4.1 Generalising Previous Results 54

4.1.1 Safe Abstraction and Aggregation 56
4.1.2 Aggregation via Untrusted Objects 58

4.1.3 Data-Independence on Aggregated Identities 62
4.1.4 Concluding the Trademarks Safety Analysis 67
4.1.5 Generalising the Sealer-Unsealer Safety Analysis . . . 69
4.1.6 Summary . 70

4.2 Handling Object Creation . 71
4.2.1 Implicit Object Creation via Aggregation 71

4.3 Safe Revocable Membranes 72
4.3.1 The Membrane Pattern 72
4.3.2 Revocable Membranes 74
4.3.3 The Single-Threaded Case 76
4.3.4 The Concurrent Case 79
4.3.5 Summary . 86

4.4 Related Work . 86
4.5 Conclusion . 90

5 Information Flow 92
5.1 Introduction . 92
5.2 Defining Information Flow for Object-Capability Patterns . . 94

5.2.1 Refinement . 94
5.2.2 A Necessary Assumption 96
5.2.3 A Definition . 96

5.3 Testing Information Flow for Object-Capability Patterns . . . 97
5.3.1 Choosing an Appropriate Property 98
5.3.2 Deriving a Testable Characterisation 103
5.3.3 Deriving an Automatic Test 110

5.4 Applying the Test . 114
5.4.1 Modelling the Data-Diode Implementation 115
5.4.2 Analysing the Data-Diode Implementation 116
5.4.3 Fixing the Data-Diode Implementation 118

5.5 Generalising Information Flow Analyses 119
5.5.1 Safe Abstraction and Aggregation 120
5.5.2 Data-Independence . 122
5.5.3 Generalising the Data-Diode Analysis 124

5.6 Related Work . 125
5.7 Conclusion . 126

6 Liveness 128
6.1 Liveness in CSP . 129

6.1.1 Testing Liveness Directly in CSP 129
6.1.2 Fairness . 130
6.1.3 Liveness under Fairness in LTL 132
6.1.4 The Refusal-Traces Model 135
6.1.5 LTL Semantics . 137
6.1.6 Testing for Liveness under Fairness via Refinement . . 139
6.1.7 Sufficient Conditions for Liveness under Fairness . . . 143

6.2 Live Authenticating Trademarks 145
6.2.1 Deriving a Live Trademarks Implementation 147
6.2.2 Summary . 152

6.3 Generalising Liveness Analyses 153
6.3.1 Generalising the Live Trademarks Analysis 154
6.3.2 Summary . 156

6.4 Related Work . 156
6.5 Conclusion . 159

7 Authority: Exploring Causation 161
7.1 Simple Non-Causation Properties 162

7.1.1 Causation as Counterfactual Dependence 163
7.1.2 Causing Event-Occurrence 164
7.1.3 Preventing Event-Occurrence 167

7.2 A Framework for Non-Causation Properties 168
7.2.1 Encoding Effects . 168
7.2.2 Causation and Prevention 170

7.3 Using the Framework to Capture Authority 171
7.3.1 Delegable Authority 171
7.3.2 Non-Delegable Authority 173
7.3.3 Revocable Authority 175
7.3.4 Single-Use Authority 177
7.3.5 Summary . 179

7.4 Safety and Liveness Effects 179
7.5 Defensive Correctness and Consistency 184

7.5.1 Defining Defensively Correct Trademarks 187
7.5.2 Discussion . 188

7.6 Testing Non-Causation and Non-Prevention 189
7.6.1 Deterministic Systems 189
7.6.2 Nondeterministic Systems 193

7.7 Related Work . 195
7.8 Conclusion . 200

8 Conclusion 202
8.1 Future Work . 204

Bibliography 209

A Subsidiary Results 225

List of CSP Snippets

2.1 The most general object in an object-capability system. . . . 18
2.2 The most general active and inactive objects respectively. . . 25

3.1 The behaviour of a slot object. 32
3.2 The behaviour of a guard. 33
3.3 The specification of a safe guard. 35
3.4 The behaviour of a safe stamped object. 36
3.5 The behaviour of a recursively invocable guard. 37
3.6 The specification of a safe recursively invocable guard. 38
3.7 The behaviour of a box. 41
3.8 The specification of a safe coercing unsealer. 43
3.9 The specification of a safe recursively invocable unsealer. . . . 47
3.10 The behaviour of a safe recursively invocable unsealer. 50

4.1 Object behaviours in terms of T = facets(Specimen). 63
4.2 Specimen’s behaviour in terms of T = facets(Specimen). . . . 64
4.3 Safe Trademarks spec in terms of T = facets(Specimen). . . . 64
4.4 A PosConjEqTT traces anti-refinement of behaviourT (Guard). 66
4.5 An aggregation of multiple stamped objects. 69
4.6 The behaviour of a gate. 74
4.7 A membrane aggregation in the single-threaded context. . . . 77
4.8 A specification for safe revocation. 78
4.9 An aggregation of the membrane for the concurrent context. . 82
4.10 A weaker revocation specification for the concurrent context. 85

5.1 The behaviours of High and Low. 95
5.2 Observing system-level traces and individual component be-

haviours. 112
5.3 A test harness for weakened refinement-closed noninterference

properties. 112
5.4 The specification for testing Weakened RCFNDC. 114
5.5 The scheduler for testing Weakened RCFNDC. 115

6.1 A specification for testing a sufficient condition for SEF ⇒ ♦ e.145
6.2 The behaviour of a live guard using non-blocking sends. . . . 147
6.3 An object that cannot refuse Guard’s Return messages. 148

6.4 The specification for testing the liveness of a guard. 150
6.5 The behaviour of a live stamped object with multiple facets. . 151

7.1 The behaviour of a Non-Delegable Authority (NDA). 174
7.2 A system for which non-prevention cannot be tested by

refinement-checking. 194

1 Introduction

1.1 The Problem

The object-capability model [Mil06] is becoming an increasingly popular ar-
chitecture for the construction of secure software systems. Several current
research projects, including secure programming languages like E [Mil06],
Joe-E [MWC10] and Cajita [MSL+08], and microkernel operating systems
like the Annex Capability Kernel [GMO+07] and seL4 [EKE08, DEE08], im-
plement the object-capability model to provide platforms on which secure
software systems may be constructed from untrusted components.

The object-capability model enables this alchemical-sounding feat in two
ways. Firstly, it explicitly reifies all permissions in the form of delegable,
unforgeable capabilities [DH66]. A subject is permitted to interact directly
with only those entities for which it possesses capabilities, and subjects
possess no capabilities by default. Hence, untrusted components may be
granted few capabilities, in accordance with the principle of least author-
ity [Mil06]1, thereby limiting the damage they can potentially cause. Sec-
ondly, the object-capability model allows the construction of trusted secu-
rity enforcing abstractions [Mil06] that mediate the interactions of untrusted
components. This enables one to enforce and express security policies of wide
generality, while also allowing different stakeholders that may be present in
a system to each enforce their own security requirements by deploying their
own security-enforcing abstractions.

An object-capability system is an instance of the object-capability model
and comprises a set of objects connected to each other by capabilities. Ob-
jects communicate with each other by sending messages on capabilities. Any
such system may be visualised as a directed graph, whose nodes are the sys-
tem’s objects and each edge from an object o1 to another o2 represents o1

possessing a capability that allows it to send messages to o2.
Consider an object-capability system and some stakeholder who wishes

for some security requirements to be upheld in this system. Naturally, some
of the objects in the system will be trusted by the stakeholder, while others
will be untrusted. The stakeholder will rely upon the objects he or she

1The principle of least authority is a refinement of Saltzer and Schroeder’s principle
of least privilege [SS75] that takes into account the indirect effects a subject may cause.

1.2 Our Approach 2

trusts to enforce their security requirements and may view the system as a
collection of trusted islands in a sea of untrusted components. This thesis
is concerned with the problem of how the stakeholder can ensure that their
security requirements will be upheld in such a system, when relying only on
the objects that he or she trusts.

These relied-upon objects may be viewed as one or more security-
enforcing abstractions that together ensure that the stakeholder’s security
requirements are met. Like functional abstractions, a security enforcing ab-
straction may be reused, and be deployed whenever the security property it
enforces needs to be ensured. In this sense, each security-enforcing abstrac-
tion may be viewed as a security design pattern [GHJV95]. For this reason,
we refer to object-capability-based security-enforcing abstractions as object-
capability patterns. The question we wish to answer, therefore, is “given
an object-capability pattern, how can we analyse this pattern to prove (or
disprove) that it upholds the security properties it was designed to enforce?”

1.2 Our Approach

This thesis examines the application of the process algebra Communicating
Sequential Processes [Hoa85, Ros97] (CSP) and its automatic model-checker
FDR [Ros94, RGG+95, GGH+05] to this problem. For a particular pattern,
and the security property it is designed to enforce, our approach is to con-
struct a CSP model of an object-capability system that contains the pattern:
we explicitly model the behaviour of the relied-upon objects that implement
the pattern while modelling the behaviour of the other untrusted objects
as being arbitrary. We then use FDR to analyse this formal model auto-
matically to prove whether the pattern upholds its security property. This
is achieved by encoding security properties in the form of CSP refinement
assertions, which FDR can check automatically.

This approach is largely inspired by Spiessens’ previous work [Spi07,
SV05], in which the Scoll language [JSV05] and its Scollar model-
checker [SJV05] were conceived, implemented and applied to this same prob-
lem2. In adopting CSP and FDR, we aim to improve upon Spiessens’ work
by extending the kind of security properties one can easily reason about,
as well as increasing the level of detail at which one can model the relied
upon objects in an object-capability pattern and, therefore, the utility of
the approach overall.

We use CSP and FDR, over alternative formalisms and tools, for the
following reasons. Firstly, object-capability systems come in many flavours;
we need a formalism that is capable of accurately modelling both single-
threaded and concurrent systems, as well as phenomena like recursive and

2Unlike ours, Spiessens’ work also considered how to automatically derive formal mod-
els for the behaviour of the relied-upon objects in a pattern so as to uphold a particular
security property; however, that problem is beyond the scope of this thesis.

1.3 Contribution and Thesis Organisation 3

concurrent reentrancy. As we will see in this thesis, CSP’s natural expres-
siveness means that it is well suited to these tasks. Secondly, we wish to
reason about a range of security properties. This requires a formalism with
a rich semantic framework within which such properties can be expressed.
Perhaps CSP’s greatest strengths are its incredibly rich arsenal of denota-
tional semantic models and its supporting body of theory, in which one can
express and verify a very wide range of security properties. CSP’s notion of
refinement is particularly useful for expressing certain subtle security prop-
erties (such as the weakened refinement-closed noninterference properties
that we define in Chapter 5).

Thirdly, we require a formalism for which tools exist to automatically
check that some semantic property is true of a system modelled in that
formalism. The FDR tool is particularly suited to this task. It auto-
matically tests properties framed in terms of CSP refinement assertions
which, coupled with CSP’s various semantic models, are able to express
a wide variety of properties for automatic verification [Ros05]. It is the ex-
istence of FDR, CSP’s arsenal of denotational semantic models and theory
of refinement, and CSP’s rich body of supporting theory (e.g. that of data-
independence [Laz99]), that make CSP preferable to other process algebras
and related formalisms.

Finally, CSP has an excellent track-record for being successfully applied
to reason about the security properties of many security-relevant systems,
including cryptographic protocols [Low96, RSG+00], access control mod-
els [KN06, Bry05], operating system kernels [KT09], intrusion-detection sys-
tems [RL05] and real-world security policies [RA03].

1.3 Contribution and Thesis Organisation

The main contribution of this thesis is to demonstrate how CSP and FDR
can be applied to reason about a range of relevant security properties of
object-capability patterns, to allow one to design patterns that are free of
vulnerabilities and provably enforce their security properties. The thesis
contents are organised as follows, mostly in accordance with the kinds of
security property investigated.

In Chapter 2, we introduce and explain the main concepts that un-
derpin the work in this thesis. We provide a brief overview of CSP, and
discuss the object-capability model and the systems that embody it. Then
we describe our basic approach to modelling object-capability systems in
CSP and using FDR to reason about them. In particular, we describe how
we model untrusted objects in CSP that can exhibit any and all behaviours
permitted by the object-capability model, and how one can define an object-
capability system modelled in CSP by using CSP’s theory of refinement. We
also discuss how to model single-threaded object-capability systems, such as
object-capability languages like Joe-E and Cajita. We then describe how

1.3 Contribution and Thesis Organisation 4

CSP’s theory of data-independence [Laz99] can be applied to allow us to
prove that a property that is agnostic to data (such as one involving only
capability propagation) holds for an object-capability system that is also ag-
nostic to data, regardless of the specific data that exists within that system.
This allows us, in the analyses performed in subsequent chapters, basically
to ignore data when it is not relevant, confident that the results we obtain
are unaffected by it.

In Chapter 3, we demonstrate how to reason about safety properties
of object-capability patterns. We show how complicated safety properties,
such as safe coercion, can be expressed naturally as CSP refinements and
automatically checked using FDR. We demonstrate that this approach can
automatically discover vulnerabilities in object-capability patterns that arise
through concurrent and recursive invocation of relied-upon objects that are
otherwise difficult to manually diagnose. To our knowledge, we demonstrate
the first automatic detection of instances of each of these kinds of vulnerabil-
ity in an object-capability pattern. This illustrates the extra expressiveness
and utility of our approach over its predecessors.

In Chapter 4, we show how to generalise the results obtained from
analysing a pattern deployed in a small fixed-sized system to allow us to
conclude that the pattern upholds its security properties when deployed cor-
rectly in any arbitrary-sized system. We borrow Spiessens’ idea of aggrega-
tion [Spi07] and couple this with Lazić’s theory of data-independence [Laz99]
for CSP. This allows us to treat small fixed-sized systems as safe abstractions
of larger systems of arbitrary size, in which a pattern might be instanti-
ated. Inspired by Spiessens [Spi07], we show how this approach can be used
to reason about patterns that make use of unbounded object-creation by
analysing such a pattern that implements a revocation policy that cannot
be directly expressed in Scoll. We prove that this pattern upholds slightly
different revocation properties when deployed in single-threaded and con-
current object-capability systems; this conclusion would be difficult to draw
using previous approaches.

In Chapter 5, we show how to reason about the information flow proper-
ties of object-capability patterns. We discover that, in order to talk sensibly
about the information flow properties of an object-capability pattern, one
must make the necessary assumption that the only way for objects to di-
rectly influence each other is by sending and receiving messages. We show
how traditional information flow properties can be modified to take this as-
sumption into account, and how these modified properties can be expressed
in terms of CSP refinement assertions to enable them to be automatically
tested by FDR. To our knowledge we provide the first formal analysis of the
information flow properties of an object-capability pattern that is able to
detect covert channels present within that pattern. We also show how the
approach developed in Chapter 4 can be extended to allow one to draw con-
clusions about the information flow properties of object-capability patterns

5

deployed in systems of arbitrary size with unbounded object creation.
In Chapter 6, we show how to reason about the liveness properties of

object-capability patterns. Such properties cannot be expressed in previ-
ous formalisms like Scoll, which can reason only about liveness possibil-
ities [Spi07]. We prove that liveness properties under necessary fairness
assumptions cannot be directly expressed as CSP refinements in any CSP
model that FDR might support, preventing FDR from being able to test
them directly. Instead, we show how to analyse these properties by using
FDR to test sufficient conditions for them. We demonstrate this by provid-
ing the first formal analysis of the liveness properties of an object-capability
pattern. We find that this approach yields useful results for this pattern,
but that it is unclear how well it would apply in general to other patterns.
Also, the approach is not as straightforward to apply as one would like. We
conclude that it would be worthwhile investigating whether other model-
checking approaches (e.g. [Ros01, SLDW08, Liu09]) could be adapted to
test liveness properties of object-capability patterns.

In Chapter 7, we investigate to what degree properties involving an ob-
ject’s authority can be expressed in CSP and automatically checked using
FDR. An object’s authority is the set of effects it can cause in a system by
sending and receiving messages to and from other objects. We show how
authority may be captured formally by presenting a framework for express-
ing non-causation properties, which we show can capture complex kinds of
authority including delegable, non-delegable, revocable and single-use au-
thority. We show, with the aid of Clarkson and Schneider’s hyperproperties
notion [CS10], that our framework can distinguish two primitive kinds of
effect that can be caused, namely the safety and liveness effects respec-
tively. This distinction then enables us to formalise the intuitive notions of
defensive correctness and defensive consistency [Mil06] within our frame-
work, which we show how to do. To our knowledge, this is the first time
that such ideas have been formally captured. We show that non-causation
of safety effects, and their opposites, can be judged using FDR for determin-
istic systems. However, we prove that in general non-causation properties
(tested over all refinements) of nondeterministic systems cannot be directly
expressed as refinement checks for FDR to carry out. We conclude that
alternative model-checking approaches, besides those based on refinement
checking, should be investigated to enable their automatic verification.

Finally, in Chapter 8, we conclude and consider avenues for future work.
Appendix A contains some subsidiary results that are used at various points
in this thesis. In this way, this thesis provides a comprehensive study on the
utility and limits of refinement checking for analysing the security properties
of object-capability patterns.

2 Preliminaries

In this chapter, we introduce and discuss the main concepts and ideas that
underpin the work in later chapters of this thesis.

2.1 CSP

In this section we give a brief overview of the parts of CSP used in this
thesis1. Further details may be found in [Ros97].

CSP is a process algebra for describing and reasoning about concurrent
systems. CSP’s syntax describes systems of concurrently executing processes
that perform atomic events drawn from the set Σ; these processes communi-
cate with each other by synchronising on the performance of common events.
In this thesis, we restrict our attention to a fragment of CSP in which the
set Σ of events is finite, which is necessary in order to allow systems to be
checked with FDR.

CSP has a number of semantic models that give meaning to it and al-
low one to reason formally about systems described in CSP. We begin by
discussing CSP’s syntax before describing some notation and the main se-
mantic models that we use in this thesis. We then explain how one formally
analyses a system described in CSP using its automatic refinement checker,
FDR.

2.1.1 Syntax

CSP has a rich syntax for describing processes. The primitive process STOP
can perform no activity and represents deadlock. For an event a ∈ Σ, the
process a→ P can perform the event a and then behave like the process P .
For a set of events A ⊆ Σ, the process ?a : A → Pa is initially willing to
perform all of the events from the set A and offers its environment the choice
of which should be performed. Once a particular event, x ∈ A, has been
performed, it behaves like the process Pa with the identifier a bound to the
value x that was chosen.

CSP allows multi-part events to be defined, where a dot is used to sepa-
rate each part of an event. The “?” and “!” operators are then used to offer

1The fragment of CSP used in this thesis excludes termination.

2.1 CSP 7

specific sets of events by pattern-matching on the structure of multi-part
events. Suppose we define the set of events {plot.x.y | x, y ∈ N}. Then the
process plot?x?y → STOP offers its environment all of the events from the
set {plot.x.y | x, y ∈ N}, whilst the process plot?x : {1, . . . , 5}!3 → STOP
offers all events from {plot.x.3 | x ∈ {1, . . . , 5}}.

The process P � Q can behave like either the process P or the pro-
cess Q and offers its environment the initial events of both processes, giving
the environment the choice as to which process it behaves like. If the en-
vironment chooses an initial event of P , P � Q goes on to behave like P ,
and similarly for Q. The process P u Q can also behave like either P or Q
but doesn’t allow the environment to choose which; instead, it makes this
choice internally. It therefore nondeterministically offers its environment the
initial events of either P or Q (but not both). The “u” operator is often
used, therefore, to model nondeterminism.

The “$” operator can also be used to model nondeterminism and, like the
“?” operator, is used to pattern-match on multi-part events. For instance,
the process plot$x : {1, . . . , 5}!3→ STOP nondeterministically chooses the
value x from the set {1, . . . , 5}. Having done so, it is willing to perform the
single event plot.x.3.

The process P . Q may behave like either P or Q. It can refuse to behave
like P but cannot refuse to behave like Q. The “.” operator is sometimes
called the timeout operator because P . Q may be thought of as an abstract
model of a process that can initially offer its environment the initial events
of P . However, it makes this offer only for a limited time, after which it
offers its environment only the initial events of Q.

P \A denotes the process obtained when P is run but all occurrences of
the events in A are hidden from its environment. The environment cannot
observe the occurrence of these events and is, therefore, prevented from
synchronising on them. The hiding operator is often used to abstract away
from the occurrence of irrelevant events.

The process if b then P else Q behaves like P if b is true and like Q
otherwise. The notation b & P is shorthand for if b then P else STOP .
The process let x = y within P behaves like the process P with the
identifier x bound to the value y.

The process P [[y1, . . . , yn/x1, . . . , xn]] behaves like the process P except
that, for all i ∈ {1, . . . , n}, it performs the event yi whenever P performs
the event xi. The process c.P behaves like the process P except that, for
each event x ∈ Σ, c.P performs the event c.x whenever P performs x. Both
of these operators are used, therefore, to rename certain events.

The process P ‖
A

Q runs the processes P and Q in parallel forcing them to

synchronise on all events from the set A. The process S = ‖
i∈{1,...,n}(Pi, Ai)

is the alphabetised parallel composition of the n processes P1, . . . , Pn on their
corresponding alphabets A1, . . . , An. Each process Pi may perform events

2.1 CSP 8

only from its alphabet Ai, and each event must be synchronised on by all
processes in whose alphabet it appears. The syntax P1 A1‖A2 P2 is equivalent
to ‖

i∈{1,...,2}(Pi, Ai).

The process P ||| Q runs P and Q in parallel with no synchronisation
(and, hence, no communication) between the two. We say that P and Q are
interleaved here.

A process diverges when it performs an infinite amount of internal ac-
tivity without performing a visible event from Σ. If we take the pro-
cess P = a → P that continually performs the event a and then we in-
ternalise the occurrence of a using the hiding operator, arriving at the pro-
cess P\{a}, we see that P\{a} diverges immediately because each occurrence
of a results in P \ {a} performing some internal activity and P can perform
an infinite number of as. The primitive process div diverges immediately
and, for our purposes, is equivalent to the process P \ {a} above. A process
that never diverges is said to be divergence-free.

The process CHAOSA is the most nondeterministic, divergence-free pro-
cess that performs events from the non-empty set A. This process may be
defined as follows2.

CHAOSA = $a : A→ CHAOSA u STOP.

If s is a sequence of events from Σ and P is a process that can perform
the sequence of events s, then P / s denotes the process whose behaviour
is exactly the behaviour that P exhibits after P performs the sequence of
events s.

2.1.2 Notation

We use the following notation. Sequences are written between angle-
brackets, so the sequence that contains the first 3 natural numbers is writ-
ten 〈0, 1, 2〉. Let s and t be sequences. Then sˆ t denotes the sequence
obtained by concatenating s and t. We write s ≤ t to mean that s is prefix
of t, i.e. s ≤ t⇔ ∃u • sˆu = t. We write s < t when s is a strict prefix of t,
i.e. when ∃u • sˆu = t ∧ u 6= 〈〉. If s is a sequence, then #(s) denotes the
length of s.

Within the context of multi-part events, the notation {|c1.c2.ck|} de-
notes the set of events whose first k components are respectively c1, c2 . . . , ck.
So {|plot|} = {plot.x.y | x, y ∈ N} and {|plot.1|} = {plot.1.y | y ∈ N} using
the example from the previous subsection.

If X is a set, then PX denotes the powerset of X. X∗ denotes the set
containing all finite sequences whose elements are drawn from the set X. We
use “−” to denote set difference, so that if X and Y are sets, then X − Y
denotes the set obtained by removing all Y -elements from X.

2Note that this definition is sufficient for the standard denotational models of CSP
used most commonly in this thesis. However, for more intricate models (such as the FL
model discussed in Chapter 6) a more subtle definition is required.

2.1 CSP 9

2.1.3 Semantics

CSP has a number of semantic models. We describe the three most often
used denotational semantic models, each of which will be used in this thesis.
Others will also be used, but will be introduced later as necessary.

In any denotational semantic model M, one process P is said to be
refined by another Q, when every behaviour that M records as being able
to be performed by Q, M also records as being able to be performed by P .
In this case, we write P vM Q and say that Q refines P inM. Intuitively, Q
therefore refines P when Q is consistent with P while being less ambiguous,
because there are fewer possibilities for how it might behave. When P is
refined by Q, we sometimes call P an anti-refinement of Q.

Given two finite-state processes P and Q, FDR is used to automati-
cally test whether the refinement P vM Q holds, when M is one of CSP’s
standard denotational semantic models. As explained later, by framing the
security properties of a system in terms of such refinement statements, we
can use FDR to check them automatically.

The Traces Model

The traces model is the simplest of CSP’s denotational semantic models and
gives meaning to a process by recording the finite sequences of events from
Σ that it may perform. We write traces(P) for the set of all finite sequences
of visible events that can be performed by the process P . traces(P) is P ’s
representation in the traces model.

For any process P , traces(P) always contains the empty sequence 〈〉 and
is always prefix-closed, meaning that and if s is a member of traces(P) then
so is every trace t for which t ≤ s.

We say that Q is a traces-refinement of P when Q refines P in the traces
model. This occurs precisely when traces(Q) ⊆ traces(P). In this case, we
write P vT Q. When P ’s representation traces(P) in the traces model is
identical to that of Q, traces(Q), we say that P and Q are trace-equivalent
and write P ≡T Q, so that P ≡T Q⇔ traces(P) = traces(Q).

The traces model does not record enough information for one to rea-
son about nondeterminism. This can be seen by noting that traces(a →
STOP � b → STOP) = traces(a → STOP u b → STOP) = {〈〉, 〈a〉, 〈b〉}.
The first of these processes in deterministic while the second is nondeter-
ministic.

The Stable-Failures Model

The stable-failures model is more expressive than the traces model and can
be used to reason about nondeterminism. In the stable-failures model, a
process P is represented by the two sets traces(P) and failures(P). So the
stable-failures model records at least as much information about a process

2.1 CSP 10

as the traces model. failures(P) is the set of P ’s stable-failures. Each stable-
failure is a pair (s,X), and represents that P can perform the sequence of
events s ∈ traces(P) and then reach a stable state from which no internal
activity can occur and none of the events in X can be performed. When
(s,X) ∈ failures(P), we say that P can stably refuse X after performing the
trace s.

For a process P , let T = traces(P) and F = failures(P), so that T
and F capture P ’s representation in the stable-failures model. Then T
and F satisfy the following healthiness conditions, which we present in the
form of axioms of the stable-failures model [Ros97].

F1. T contains the empty sequence 〈〉 and is prefix-closed.

F2. (s,X) ∈ F ∧ Y ⊆ X ⇒ (s, Y) ∈ F .

F3. (s,X) ∈ F ∧ a ∈ Σ ∧ sˆ〈a〉 /∈ T ⇒ (s,X ∪ {a}) ∈ F .

Axiom F2 arises because whenever P can stably refuse to perform some
set X of events, P can also stably refuse to perform any subset of events Y of
X. Axiom F3 arises because if P cannot perform some event a directly after
the trace s, then P must be able to stably refuse a whenever it stabilises
(i.e. reaches a stable state) directly after s.

Note that because the process div never stabilises, failures(div) = {}.
This highlights the fact that the stable-failures model records only stable
refusal information, avoiding recording information about events that may
be refused from unstable states (i.e. those from which internal activity can
occur). Also, when P is divergence-free, traces(P) may be calculated from
failures(P) as traces(P) = {s | (s,X) ∈ failures(P)}. Hence, traces(P)
adds extra information above what is recorded in failures(P) only when P
is not divergence-free.

Letting F = failures(a → STOP u b → STOP), (〈〉, {a}) ∈ F since if
the internal choice in this process is resolved to the right, so that it is willing
initially to perform only b, then it refuses a initially. Similarly, (〈〉, {b}) ∈ F
too. However, (〈〉, {a, b}) /∈ F because this process must initially be able to
perform either a or b, so it cannot initially refuse to perform both events.

Neither (〈〉, {a}) nor (〈〉, {b}) are present in failures(a → STOP � b →
STOP), however, since this process can refuse neither a nor b initially.
Hence, the nondeterminism present in the process mentioned in the previous
paragraph, that is absent in this one, is clearly captured in the previous one’s
stable-failures semantics (i.e. in F above) by the presence of each of these
two stable-failures.

Indeed, the presence of nondeterminism in a divergence-free process is
defined in terms of its stable-failures semantics. A process acts nondeter-
ministically if at some point in time it can both perform and refuse some
event. This is captured by the following definition of determinism (i.e. the
absence of nondeterminism).

2.1 CSP 11

Definition 2.1.1 (Determinism). A CSP process P is deterministic, written
det(P), iff it is divergence-free and

6 ∃ s, e • sˆ〈e〉 ∈ traces(P) ∧ (s, {e}) ∈ failures(P).

We say that some process Q is a stable-failures refinement of another P ,
iff traces(Q) ⊆ traces(P) ∧ failures(Q) ⊆ failures(P). In this case we
write P vF Q. We have, for instance, that a → STOP u b → STOP vF
a→ STOP � b→ STOP .

We say that P and Q are stable-failures equivalent when traces(P) =
traces(Q) ∧ failures(P) = failures(Q). In this case, we write P ≡F Q.

The Failures-Divergences Model

The failures-divergences model is also more expressive than the traces model
and can reason about not only nondeterminism but also divergence, which
the stable-failures model cannot. It is the most commonly used denotational
semantic model for CSP.

This model is divergence-strict, meaning that it records information
about divergence but treats divergence as catastrophic by effectively as-
suming that once a process can diverge, it can do anything at all. In
this model, a process P is represented by the sets failures⊥(P) and
divergences⊥(P). failures⊥(P) and divergences⊥(P) are each obtained
from the sets failures(P) and divergences(P) respectively in such a way
that reflects the divergence-strictness of the failures-divergences model.
divergences(P) contains those traces s ∈ traces(P) where directly after per-
forming s, P can perform an infinite amount of internal activity and so
diverge.

failures⊥(P) and divergences⊥(P) are each obtained from the underlying
sets by applying a transformation that encodes the divergence-strictness
assumption that once a process diverges it can do anything at all. For
this reason, divergences⊥(P) includes every extension t of every trace s ∈
divergences(P) and failures⊥(P) includes any failure that might be exhibited
following any trace s ∈ divergences⊥(P).

divergences⊥(P) = divergences(P) ∪ {s | ∃ t ∈ divergences(P) ∧ t ≤ s}
failures⊥(P) = failures(P) ∪ {(s,X) | s ∈ divergences⊥(P) ∧ X ⊆ Σ}

Note that when divergences(P) = {} (i.e. when P is divergence-free),
failures⊥(P) = failures(P). In this case, the failures-divergences model
records exactly the same information about P as is recorded by the stable-
failures model.

For any process P , let F = failures⊥(P), D = divergences⊥(P) and
T = {t | (t,X) ∈ F}. Then T and F satisfy Axioms F1–F3 above.
The following two axioms are also satisfied by F and D and encode the
divergence-strictness of this model.

2.1 CSP 12

D1. s ∈ D ∧ t ∈ Σ∗ ⇒ sˆt ∈ D.

D2. s ∈ D ∧ X ⊆ Σ⇒ (s,X) ∈ F .

We say that one process Q is a failures-divergences refinement of
another P when failures⊥(Q) ⊆ failures⊥(P) ∧ divergences⊥(Q) ⊆
divergences⊥(P). In this case we write P vFD Q. Sometimes we will write
simply P v Q, which should be interpreted to mean failures-divergences
refinement unless otherwise stated. We say that P and Q are failures-
divergences equivalent, written P ≡FD Q, iff failures⊥(P) = failures⊥(Q) ∧
divergences⊥(P) = divergences⊥(Q).

Observe that in the failures-divergences model, a divergence-free process
is refined only by other divergence-free processes3. Also, div is failures-
divergences refined by every other process, meaning that it is the least refined
process in the failures-divergences model.

For most of this thesis, we restrict our attention to divergence-free pro-
cesses; we often use the failures-divergences model to specify refinement as-
sertions that include the requirement that a divergence-free process cannot
be refined by one that can diverge.

2.1.4 Verifying Properties of CSP Processes

Having described CSP and its semantic models, we now describe the basic
technique of how to use FDR to prove that a system modelled in CSP
satisfies a particular property. This is done by expressing the property in
terms of a CSP refinement statement that can be automatically checked
using FDR.

Naturally, any system that we want to analyse will be represented by
some CSP process Sys. Usually, we begin by formally stating the property
that we wish Sys to satisfy. This property is most often stated in terms of
Sys’s representation in one of the three denotational semantic models men-
tioned above, i.e. the traces, stable-failures and failures-divergences models.

A common example of a property that one might want to test is that none
of the events from a certain set A can occur in Sys4. Let cannotOccurA(Sys)
denote this property which, for an arbitrary process P , is most easily ex-
pressed in the traces model, as follows.

cannotOccurA(P) =6 ∃ s, a • sˆ〈a〉 ∈ traces(P) ∧ a ∈ A. (2.1)

To use FDR to decide whether cannotOccurA(Sys), we express the prop-
erty cannotOccurA(P) in terms of a CSP refinement statement that men-
tions P , and then test this refinement in FDR with Sys in place of P .

3This is not true for the stable-failures model, however, since P vF P u div for any
process P because the stable-failures model doesn’t record information about divergence.

4This is actually a very simple safety property. We will see more complex ones later
in Chapter 3.

2.2 The Object-Capability Model 13

Consider the most general process that never performs any event from A.
This process is simply CHAOSΣ−A. Its traces include all traces except those
that contain some A-event. Hence, for some process P , cannotOccurA(P)
holds precisely when P performs no trace s that cannot be performed by
CHAOSΣ−A, i.e. precisely when traces(P) ⊆ traces(CHAOSΣ−A). Hence,
we have that

cannotOccurA(P)⇔ CHAOSΣ−A vT P (2.2)

We can use FDR to test that Sys can perform no A-events, then, by
having FDR test whether CHAOSΣ−A vT Sys.

Refinement-Closed Properties

Note that this refinement check, CHAOSΣ−A vT P , for the property
cannotOccurA(P) is of the form Spec vM G(P) where Spec is some fixed
specification process (CHAOSΣ−A), G() is a CSP expression involving P
(the identity expression) and M is a CSP model (the traces model).

Consider an arbitrary property Prop(P) expressed in terms of P ’s rep-
resentation in some denotational semantic model M. It is straightforward
to show that when Prop(P) can be expressed as a refinement check of the
form Spec vM G(P), that Prop must be refinement-closed in M5. A prop-
erty is refinement-closed in a semantic model M precisely when, if it holds
for any process P , it must also hold for all of P ’s refinements in M.

Definition 2.1.2 (Refinement-Closed). The property Prop is refinement-
closed in the denotational model M iff

∀P • Prop(P)⇒ ∀Q • P vM Q⇒ Prop(Q).

One may observe that the property cannotOccurA(P) is refinement-
closed in the traces model since if some process P has no trace sˆ〈a〉 (where
a ∈ A), then neither can any of P ’s traces refinements Q since for each
traces(Q) ⊆ traces(P) by definition.

Most useful security properties are refinement-closed in the model in
which they are expressed, including safety and liveness properties, which
are examined later in Chapters 3 and 6 respectively. An exception to this
are some information flow properties [Low07]; we examine information flow
properties in Chapter 5.

2.2 The Object-Capability Model

Before describing how we model object-capability systems in CSP, we first
describe the object-capability model, and the kinds of systems that embody

5This follows because each CSP operator, and hence the context G(), is monotonic
under vM [Ros08].

2.2 The Object-Capability Model 14

it, in more detail. This allows us to better understand what needs to be
included in our CSP models of object-capability systems.

The object-capability model [Mil06] is a model of computation and se-
curity that aims to capture the semantics of many actual object-based pro-
gramming languages and capability-based systems, including all of those
listed later in Table 2.1. An object-capability system is an instance of the
model and comprises just a collection of objects, connected to each other
by capabilities. An object is a protected entity comprising code and muta-
ble state that together define its behaviour. An object’s state includes both
data and the capabilities it possesses. A capability c is an unforgeable object
reference that allows its holder to send messages to the object it references
by invoking c. In any object-capability system, capabilities and data are
primitively distinct, meaning that each can always be distinguished from
the other6.

In an object-capability system, the only overt means for objects to in-
teract is by sending messages to each other. Capabilities may be passed
between objects only within messages. In practice, object o can pass one
of its capabilities c directly to object p only by invoking a capability it
possesses that refers to p, including c in the invocation. This implies that
capabilities can be passed only between objects that are connected, perhaps
via intermediate objects.

Each object may expose a number of interfaces, known as facets. A
capability that refers to an object o also identifies a particular facet of o to
which messages sent on that capability are directed. This allows the object
to expose different functionality to different clients by handing each of them
a capability that identifies a separate facet, for example.

An object may also create others. In doing so, it must supply any re-
sources required by the newly created object, including its code and any
data and capabilities it is to possess initially. Hence, a newly created object
receives its first capabilities solely from its parent. When creating an object,
the parent exclusively receives a capability to the child. Thus, an object’s
parent has complete control over those objects the child may come to in-
teract overtly with in its lifetime. This is the basis upon which mandatory
security policies can be enforced [Mil06].

2.2.1 Current Object-Capability Systems

The object-capability model is purposefully very general, and leaves room
for different object-capability systems that implement it to vary in a number
of different ways.

As hinted at previously, there are two main kinds of object-capability
systems, namely operating systems and programming languages. In an

6Because of this, traditional password capability systems [APW86], in which capabili-
ties are just data strings, are not object-capability systems.

2.2 The Object-Capability Model 15

object-capability operating system, each operating system process may be
thought of as a separate object and inter-process communication occurs by
passing messages on capabilities that refer to individual processes. In an
object-capability language, objects are akin to those from object-oriented
languages; capabilities are simply object references and sending a message
to an object is achieved by calling one of its methods.

Examples of object-capability operating systems that are currently in
use or under development include CapROS [Lan09] (which is derived from
EROS [SSF99], a reimplementation of KeyKOS [Har85]), Coyotos [SDN+04,
SA07], NICTA’s seL4 [EKE08, DEE08] and the Annex Capability Ker-
nel [GMO+07]. Plash [Sea07] and Capsicum [Wat09] both implement object-
capability environments atop POSIX operating systems and, as such, we
consider them to be virtualised object-capability operating systems. Cur-
rent object-capability languages include E [Mil06], Cajita [MSL+08] (which
is part of Google’s Caja project), Joe-E [MWC10, MW08], Emily [Sti07],
Tamed Pict [Koš08] and Class [DY08].

In an object-capability operating system, each object (i.e. each operating
system process) usually executes concurrently to all others. In contrast,
most object-capability languages are single-threaded, meaning that a single-
thread of control is shared between all objects in any such system; as one
object invokes another, the thread of control migrates from the invoker to
the invokee, and then returns to the invoker when the invokee returns from
the invocation. Hence, different object-capability systems can have vastly
different concurrency semantics.

Table 2.1 depicts a taxonomy of current object-capability systems, cat-
egorising them across the following dimensions. A system is concurrent if
it is not single-threaded. A system has inter-thread blocking sends if it is
concurrent and allows one object to perform a blocking send of a message to
another object that doesn’t share the same thread of control. Such sending
will block the sender until the recipient is ready to receive the message. A
system may exhibit the following forms of reentrancy : concurrent, recursive,
neither or both. A system exhibits concurrent reentrancy if it is concurrent
and a single object can receive an invocation from one thread whilst in the
middle of processing a previous invocation from some other thread. A system
exhibits recursive reentrancy if a single object can be executed recursively
by a single thread. A system may provide non-blocking communications for
sending, receiving or both. It is not required for a sender to be notified when
a non-blocking send completes and in many systems no such notification is
provided. A system provides the equality primitive EQ if it provides a facil-
ity to determine whether two arbitrary capabilities refer to exactly the same
object, even if this facility is not universally available.

Table 2.1 illustrates the sheer diversity of current object-capability sys-
tems. When modelling object-capability patterns, we therefore require a
formalism that is flexible enough to be able to cope with this diversity, by

2.2 The Object-Capability Model 16

S
y
st

e
m

K
in

d
C

o
n

c
u

rr
e
n
t

In
te

r-
T

h
re

a
d

B
lo

ck
in

g
S

e
n

d
s

R
e
e
n
tr

a
n

c
y

N
o
n

-B
lo

ck
in

g
C

o
m

m
s.

E
Q

E
L

a
n

gu
ag

e
Y

es
N

o
R

ec
u

rs
iv

e
S

en
d

+
R

ec
v
.

Y
es

C
a

ji
ta

L
a
n

gu
ag

e
N

o
N

/A
R

ec
u

rs
iv

e
S

en
d

+
R

ec
v
.8

Y
es

J
o
e-

E
L

a
n

gu
ag

e
N

o
N

/A
R

ec
u

rs
iv

e
S

en
d

+
R

ec
v
.8

Y
es

E
m

il
y

L
a
n

gu
ag

e
N

o
N

/A
R

ec
u

rs
iv

e
N

o
Y

es
C

la
ss

L
a
n

gu
ag

e
N

o
N

/A
R

ec
u

rs
iv

e
N

o
Y

es
T

a
m

ed
P

ic
t

L
a
n

gu
ag

e
Y

es
N

o
R

.+
C

on
cu

rr
en

t
S

en
d

+
R

ec
v
.

N
o

E
R

O
S

/
C

ap
R

O
S

O
S

Y
es

Y
es

N
o

N
o

Y
es

C
oy

ot
os

O
S

Y
es

Y
es

N
o

S
en

d
9

Y
es

se
L

4
O

S
Y

es
Y

es
N

o
S

en
d

9
N

o
A

n
n

ex
O

S
Y

es
Y

es
R

.+
C

on
c.

1
0

S
en

d
N

o
P

la
sh

V
ir

t.
O

S
Y

es
Y

es
R

.+
C

on
c.

1
0

S
en

d
+

R
ec

v
.

Y
es

C
a
p

si
cu

m
V

ir
t.

O
S

Y
es

Y
es

R
.+

C
on

c.
1
0

S
en

d
+

R
ec

v
.

Y
es

T
a
b

le
2.

1:
A

ta
x
on

om
y

of
cu

rr
en

t
ob

je
ct

-c
ap

ab
il

it
y

sy
st

em
s.

7

7
B

il
l

F
ra

n
tz

,
D

av
id

-S
a
ra

h
H

o
p
w

o
o
d
,

M
a
te

j
K

o
š́ı

k
,

C
h
a
rl

es
L

a
n
d
a
u
,

A
le

x
M

u
rr

ay
,

M
a
rk

S
ea

b
o
rn

a
n
d

D
av

id
W

a
g
n
er

a
ll

p
ro

v
id

ed
in

p
u
t

to
th

is
ta

b
le

.
8

T
h
e
r
e
f
s
e
n
d

li
b
ra

ry
[C

lo
0
8
]

p
ro

v
id

es
n
o
n
-b

lo
ck

in
g

co
m

m
u
n
ic

a
ti

o
n

in
J
o
e-

E
a
n
d

C
a
ji

ta
.

9
T

h
is

fa
ci

li
ty

is
p
ro

v
id

ed
in

se
L

4
a
n
d

C
oy

o
to

s
th

ro
u
g
h

th
ei

r
n
o
n
-b
lo
ck
in
g
S
en

d
o
p

er
a
ti

o
n
s

w
h
ic

h
a
re

b
es

t-
eff

o
rt

se
n
d
in

g
p
ri

m
it

iv
es

th
a
t

d
o
n
’t

n
o
ti

fy
th

e
se

n
d
er

if
se

n
d
in

g
fa

il
s

fo
r

so
m

e
re

a
so

n
[D

E
E

0
8
,

S
A

0
7
].

1
0

A
n
n
ex

,
P

la
sh

a
n
d

C
a
p
si

cu
m

h
av

e
si

m
il
a
r

re
en

tr
a
n
cy

.
In

ea
ch

,
a

se
p
a
ra

te
th

re
a
d

is
a
ll
o
ca

te
d

a
t

m
in

im
u
m

to
ea

ch
o
b

je
ct

.
W

h
il
e

w
a
it

in
g

fo
r

a
re

p
ly

m
es

sa
g
e,

a
n

o
b

je
ct

’s
th

re
a
d

is
fr

ee
to

p
ro

ce
ss

o
th

er
in

co
m

in
g

m
es

sa
g
es

.
T

h
is

cr
ea

te
s

th
e

p
o
ss

ib
il
it

y
fo

r
b

o
th

co
n
cu

rr
en

t
a
n
d

re
cu

rs
iv

e
re

en
tr

a
n
t

in
v
o
ca

ti
o
n
.

2.3 Modelling Object-Capability Systems in CSP 17

being able to express each of the different phenomena captured in Table 2.1.
Fortunately, CSP is able to express them all.

2.3 Modelling Object-Capability Systems in CSP

In this section, we describe our approach to modelling object-capability
systems in CSP. Note that we ignore the issue of object creation for now.
This will be handled later on in Chapter 4.

2.3.1 System Model

We model an object-capability system System that comprises a set Object
of objects as the alphabetised parallel composition of a set of pro-
cesses {behaviour(o) | o ∈ Object}, one for each object o ∈ Object ,
on their corresponding alphabets {α(o) | o ∈ Object}. So System =

‖
o∈Object

(behaviour(o), α(o)). The behaviour of each object o ∈ Object is

captured by the process behaviour(o), which may perform events from the
object’s alphabet α(o).

The facets of each object o ∈ Object are denoted facets(o). We restrict
our attention to those well-formed systems in which facets(o)∩ facets(o′) 6=
{} ⇒ o = o′. Recall that an individual capability refers to a partic-
ular facet of a particular object. Hence, we define the set Capability =⋃
o∈Object facets(o) containing all entities to which capabilities may refer.

The events that each process behaviour(o) can perform represent it send-
ing and receiving messages to and from objects in the system. We de-
fine events of the form f1.f2.op.arg to denote the sending of a message
from the object with facet f1 to facet f2 of the object with this facet, re-
questing it to perform operation op, passing the argument arg and a re-
ply capability f1, which can be used later to send back a response. Here
f1, f2 ∈ Capability . Arguments are either capabilities, data or the special
value null, so arg ∈ Capability ∪ Data ∪ {null}, for some set Data of data.
An operation op comes from the set {Call,Return}. These operations model
a call/response remote procedure call sequence in an object-capability op-
erating system or a method call/return in an object-capability language.

The alphabet of each object o ∈ Object contains just those events in-
volving o. These include those events that represent o sending a message
(i.e. those events f1.f2.op.arg for which f1 ∈ facets(o)), and those that
represent o receiving a message (i.e. those for which f2 ∈ facets(o)). Hence

α(o) = {|f1.f2 | f1, f2 ∈ Capability ∧ (f1 ∈ facets(o) ∨ f2 ∈ facets(o))|}.

We require that the process behaviour(o) representing the behaviour of
each object o ∈ Object adheres to the basic rules of the object-capability
model, such as not being able to use a capability it has not legitimately

2.3 Modelling Object-Capability Systems in CSP 18

acquired. We codify this by defining the most general process that in-
cludes only those behaviours that can be legitimately exhibited by an ob-
ject o under the rules of the object-capability model. Letting facets =
facets(o) denote the set that comprises o’s facets, and caps ⊆ Capability
and data ⊆ Data denote the sets of capabilities and data that o ini-
tially possesses, the most general process that includes just those be-
haviours permitted by the object-capability model that o may perform is
denoted UntrustedOS (facets, caps, data) and appears in Snippet 2.1.11

UntrustedOS (facets, caps, data) =
?me : facets?c : caps ∪ facets?op?arg : caps ∪ data ∪ {null} →

UntrustedOS (facets, caps, data) �
?from : Capability − facets?me : facets?op?arg →

let C ′ = {arg , from} ∩ Capability ;D′ = {arg} ∩Data within
UntrustedOS (facets, caps ∪ C ′, data ∪D′)


u STOP.

Snippet 2.1: The most general object in an object-capability system.

This process represents that an arbitrary object that exposes the set of
facets facets, and whose capabilities and data are caps and data respectively,
may invoke any capability c ∈ caps ∪ facets that it possesses, requesting any
operation op, and including in that invocation any argument arg ∈ caps ∪
data ∪ {null} it has, along with a reply capability me ∈ facets to one of its
facets. Such an object may also receive any invocation from any other, such
that the reply capability included in the invocation is from ∈ Capability −
facets, to one of its facets me ∈ facets, requesting an arbitrary operation op,
and containing an arbitrary argument arg . If such an invocation occurs, the
object may acquire the reply capability from, as well as any capability or
datum arg contained as an argument.

The “u STOP” clause allows this process to be able to deadlock at
any time and ensures that it is maximally nondeterministic (and therefore
as general as possible) in the stable-failures model. With this clause, this
process is failures equivalent to one where each “?” symbol is replaced by a
nondeterministic choice involving “$”12.

The behaviour behaviour(o) of an object o ∈ Object , whose ini-
tial capabilities and data are caps(o) and data(o) respectively, is
then valid if and only if all behaviours it contains are present in
UntrustedOS (facets(o), caps(o), data(o)). This leads to the following defi-
nition of a valid object-capability system.

11The purpose of the “OS” subscript in this name is explained later in Section 2.3.5.
12We do not use “$” here (although doing so might be more intuitive) because in any

use “$a : A” the set A must be non-empty.

2.3 Modelling Object-Capability Systems in CSP 19

Definition 2.3.1 (Object-Capability System). An object-capability system
is a tuple (Object , behaviour , facets,Data), where:

• Object is the finite set that contains the unique names of the objects
that comprise the system;

• Data is the finite set of data that may exist in the system;

• facets is a function that gives the finite set of names for the facets that
each object o ∈ Object exposes, such that

∀ o, o′ ∈ Object • facets(o) ∩ facets(o′) 6= {} ⇒ o = o′;

and

• behaviour is a function that maps object names to CSP processes,
giving the behaviour of each object in the system such that, letting
Capability =

⋃
o∈Object facets(o), there exist functions caps : Object →

P Capability and data : Object → P Data that assign minimal initial
capabilities and data to each object so that, for each o ∈ Object ,

UntrustedOS (facets(o), caps(o), data(o)) vFD behaviour(o).

In an object-capability system (Object , behaviour , facets,Data), the alphabet
of each object o ∈ Object is denoted α(o) and defined as

α(o) = {|f1.f2 | f1, f2 ∈ Capability ∧ (f1 ∈ facets(o) ∨ f2 ∈ facets(o))|}.

An object-capability system (Object , behaviour , facets,Data) is captured by
the CSP process System defined as13

System = ‖
o∈Object

(behaviour(o), α(o)).

Sometimes, when no ambiguity is created by doing so, we will identify an
object-capability system (Object , behaviour , facets,Data) by the CSP pro-
cess System = ‖

o∈Object
(behaviour(o), α(o)) that captures it.

Some Remarks on the System Model

Before continuing, it is worth making a few remarks about our system model
for object-capability systems, embodied in Definition 2.3.1.

Firstly, our model of an object-capability system differs from previous
ones (such as Spiessens’ [Spi07]) in that it explicitly includes the notion of

13Note that for some of the analyses performed in this thesis, when building a sys-
tem System, we sometimes apply FDR’s normalise compression function [RGG+95] to
each behaviour(o) before composing them in parallel to make the resulting System quicker
for FDR to analyse.

2.3 Modelling Object-Capability Systems in CSP 20

facets, via the facets function. We made this choice because many object-
capability systems, like seL4, Coyotos and the Annex kernel, primitively
support facets in one form or another (usually in the form of unmodifiable
meta-information attached to each capability that identifies a particular
facet of the target object). In other systems, like E and Joe-E for instance,
facets must be implemented manually. We choose to supports facets prim-
itively, despite them not being primitively available in all object-capability
systems, to allow us to more easily model object-capability systems like seL4
and Annex. When modelling systems without direct support for facets, one
can simply give each object o just a single unique facet by, for instance,
setting facets(o) = {o}.

Secondly, this model was designed to be the simplest model that is ad-
equate to reason about the sorts of systems and properties covered in this
thesis. While it is sufficient for our purposes, it is by no means as complete
as one might otherwise like. For instance, our model of data is very simple
and effectively treats all data as unguessable. Also, we allow only a single
capability to be sent in each message. Each of these limitations could be
overcome by appropriately extending the definitions above, although doing
so might affect the complexity of model-checking the resulting systems. The
results and basic techniques obtained and employed in this thesis should
translate readily to any such extended model.

Finally, note from these definitions, because the process UntrustedOS is
divergence-free, each behaviour(o) must also be divergence-free (or else the
failures-divergences refinement wouldn’t hold). This means that we effec-
tively choose to restrict our attention to those systems in which all objects
are divergence-free. Doing so does not prevent us from modelling untrust-
worthy objects that might perform an infinite amount of internal compu-
tation that does not directly effect other objects in the system, since such
behaviour can be modelled by an object that repeatedly sends messages to
itself for instance. However, this restriction does make much of the technical
analysis involving CSP’s semantic models simpler because it implies that the
process System that represents any such object-capability system will itself
be divergence-free.

2.3.2 An Example System

To illustrate our approach to modelling object-capability systems in CSP,
we now present a small example in which we model the object-capability
system depicted in Figure 2.1.

This system contains just two objects, Alice and Bob. Neither initially
possesses a capability to the other; although each possesses a capability to it-
self, as is natural for each object to do in an object-capability system14. The

14In future, we will avoid drawing these self-loops in pictures of object-capability sys-
tems to reduce clutter.

2.3 Modelling Object-Capability Systems in CSP 21

Figure 2.1: A very simple object-capability system.

behaviour of each object is unknown. We therefore model each as being com-
pletely untrusted, i.e. as instances of the most general process UntrustedOS

from Snippet 2.1. We give each a capability to itself, and we allow each to
initially possess all data in the system. This leads to the following definitions
for the behaviour of each.

behaviour(Alice) = UntrustedOS (facets(Alice), {Alice},Data),

behaviour(Bob) = UntrustedOS (facets(Bob), {Bob},Data).

Let Object = {Alice,Bob}. Each of these objects exposes just
a single facet, so we may set facets(o) = {o} for all o ∈ Object .
This object-capability system is then captured formally by the tuple
(Object , behaviour , facets,Data), where Data denotes the set of all data in
the system. For now, we let Data be just a singleton set containing a
fresh value, so that Data = {SomeDatum}. (Object , behaviour , facets,Data)
is trivially an object-capability system under Definition 2.3.1 because, for
any CSP process P , it is naturally the case that P vFD P . Per Def-
inition 2.3.1, this object-capability system is captured by the CSP pro-
cess System = ‖

o∈System
(behaviour(o), α(o)).

We would expect that in this system, by the rules of the object-capability
model, neither Alice nor Bob should ever be able to send a message to
the other. Hence, we would expect that in System, no event from the
set A = {|o.o′ | o, o′ ∈ {Alice,Bob} ∧ o 6= o′|} should ever occur, i.e. that
cannotOccurA(System) should hold, where cannotOccurA is the property
defined by Equation 2.1. By Equation 2.2, we can test that this property
holds by testing whether

CHAOSΣ−A vT System.

Testing this assertion in FDR reveals that it holds, as one would expect15.

2.3.3 Modelling Trusted Objects

The system in Figure 2.1 contains two objects that can exhibit any and
all behaviours, given the capabilities that each object possesses. Both ob-
jects therefore naturally model completely untrusted objects, about whose

15Using the machinery presented in Chapter 4, one can generalise this result to show
that in any object-capability system no two disjoint subgraphs of objects can ever become
connected. We leave doing so as an exercise to the reader.

2.3 Modelling Object-Capability Systems in CSP 22

behaviour we can make no assumptions. Security-enforcing patterns are
necessarily implemented by trusted objects, however. A trusted object is
one whose behaviour we are prepared to make some assumptions about.
To model a trusted object, we must therefore be able to faithfully model
those aspects of its behaviour that we rely upon. These are precisely those
aspects of its behaviour that are designed to enforce the security property
implemented by the pattern that it instantiates.

A trusted object doesn’t usually exhibit the full range of behaviours that
can be exhibited by the process UntrustedOS from Snippet 2.1. Indeed, what
one usually trusts about such an object is that it will not perform certain
behaviours that it might otherwise be capable of performing. An example is
a trusted object that possesses a capability but is trusted never to divulge
that capability to any other object. Modelling a trusted object therefore
involves defining a CSP process that exhibits the behaviours we expect the
object to possibly perform, while not exhibiting the behaviours that we trust
the object not to perform.

For instance, suppose we altered the system depicted in Figure 2.1 by
giving Alice a capability to Bob and by changing Bob’s behaviour so that he
is trusted never to invoke any object (including itself), being willing only
to be invoked by other objects. We model Bob’s new (trusted) behaviour
by defining the process NeverInvokes(facets, caps, data) that represents an
object whose facets are facets and that initially possesses the capabilities
and data from the sets caps and data respectively, and is trusted to never
invoke any object.

NeverInvokes(facets, caps, data) =?from : Capability − facets?me : facets?op?arg →
let C ′ = {arg , from} ∩ Capability ;D′ = {arg} ∩Data within
NeverInvokes(facets, caps ∪ C ′, data ∪D′)


u STOP.

Notice that to define this process, we have basically altered the definition
of the process UntrustedOS from Snippet 2.1 by removing the clause that
allows it to exhibit those behaviours that model an object calling itself or
another object, i.e. by restricting the behaviours it may exhibit to exclude
all those that we trust the object never to perform.

Note also that the restriction that from, the reply capability passed with
the invocations of NeverInvokes, comes from the set Capability − facets
(i.e. that from is not one of the object’s own facets) does not imply that
any object that implements NeverInvokes must check who has invoked it
and allow only those invocations to proceed that come from objects other
than itself. Instead, it merely represents that an object that implements
NeverInvokes must never be involved in invocations in which the reply ca-
pability in the invocation is one of its own facets, i.e. must never invoke
any object including itself. This same point applies to every other object
modelled in this thesis.

2.3 Modelling Object-Capability Systems in CSP 23

This new system would be instantiated by altering behaviour(Alice) to
give her a capability to Bob and by altering behaviour(Bob) so that his
behaviour is given by the process NeverInvokes rather than by UntrustedOS ,
so that

behaviour(Alice) = UntrustedOS (facets(Alice), {Alice,Bob},Data),

behaviour(Bob) = NeverInvokes(facets(Bob), {Bob},Data).

While this system and the system in Figure 2.1 are each incredibly sim-
ple, our approach to modelling object-capability systems in CSP is very gen-
eral. In particular, our approach can express each of the various phenomena
captured in Table 2.1, thanks to CSP’s high degree of expressiveness. We
discuss two of these phenomena now, namely non-blocking communication
and single-threaded vs. concurrent systems. Most of the others will be
discussed later in this thesis, in the context of the patterns within which
each becomes relevant. Recursive reentrancy, for instance, is discussed in
Chapter 3, where we model trusted objects that can be recursively invoked.

2.3.4 Non-Blocking Communication

In any object-capability system (Object , behaviour , facets,Data), cap-
tured by the process System = ‖

o∈Object
(behaviour(o), α(o)), each

event f1.f2.op.arg that represents a communication between one object o1 ∈
Object and another o2 ∈ Object (where o1 6= o2 ∧ ∀ i ∈ {1, 2} • fi ∈
facets(oi)) will necessarily be present in just the alphabets α(o1) and α(o2)
of o1 and o2 respectively. Because System is formed as an alphabetised
parallel composition, every event that it performs must be synchronised
on by all behaviour(o) in whose alphabet the event appears. This means
that f1.f2.op.arg can occur only when both behaviour(o1) and behaviour(o2)
are willing to perform it. A consequence is that even if the sender o1 wants
to perform this event (i.e. wants to send this message to facet f2 of o2), the
communication cannot occur until o2 is ready to perform this same event
(i.e. is ready to receive this message). If this is the only event that o1 is
willing to perform, then o1 will block until o2 is ready to perform it with
him.

As such, we say that all communication in our CSP models of object-
capability systems is blocking. Some object-capability systems also include
support for non-blocking object invocation (see Table 2.1). Non-blocking
object invocations are implemented in actual object-capability systems atop
blocking communication primitives either by buffering them and deferring
their execution to a later time (as occurs in E, Joe-E and Cajita), by per-
forming them in a separate thread (as occurs in Tamed Pict, Plash, Annex
and Capsicum), or by discarding the invocation if the receiver is not ready
to receive it (as occurs in seL4 and Coyotos).

Each of these approaches can be modelled in CSP atop our basic block-
ing model of communication. However, for simplicity, we mainly concern

2.3 Modelling Object-Capability Systems in CSP 24

ourselves with blocking invocation only in this thesis (meaning that, for
the most part, the work in this thesis might need to be extended to fully
cover those object-capability patterns in which trusted objects make use of
non-blocking invocation). We do however briefly consider the third form of
non-blocking invocation in Section 6.2 in the context of liveness.

2.3.5 Single-Threaded Systems

Observe from Table 2.1 that many current object-capability systems are
single-threaded, meaning that in each of them all objects share a single
thread of control. However, our technique for modelling object-capability
systems, embodied in Definition 2.3.1, naturally gives each object o ∈ Object
its own thread of control by representing it as a distinct process behaviour(o)
that runs in parallel to all others.

It is important to be able to model single-threaded systems accurately,
as certain object-capability patterns work correctly only when deployed in
single-threaded environments [Mur08]. We show how this can be done by
simply imposing extra restrictions on Definition 2.3.1.

An object is active iff it is currently executing and is inactive otherwise.
In a single-threaded object-capability system, it is naturally the case that
only one object is ever active at a time. The object that is currently active
can invoke other objects. When it does so, the invokee becomes active
and the invoker (who was the active object) becomes inactive. In a single-
threaded object-capability system, we must therefore distinguish between
when each object is active and inactive, and impose the restriction that
only one object is ever active at a time.

We do so by refining the behaviour of the most general ob-
ject, UntrustedOS from Snippet 2.1, into two processes. The first,
UntrustedActive lang , defines the possible behaviours of the most general
object that is currently active in a single-threaded system. The second,
Untrusted lang , does the same for the most general object that is currently
inactive in a single-threaded system. These processes appear in Snippet 2.2.

In a single-threaded system, an object that exposes the facets facets and
possesses the capabilities caps and data data and is currently active may per-
form all of the behaviours that UntrustedActive lang(facets, caps, data) may
perform. Such an object may invoke any capability c ∈ caps − facets that
is possesses that designates some other object besides itself. Having done
so, it naturally becomes inactive. Alternatively, it may invoke a capabil-
ity to ∈ facets that refers to itself, in which case it remains active. When
active, it cannot be invoked by any other object, however, because all other
objects are inactive.

When the same object is currently inactive, it may perform all of the
behaviours that Untrusted lang(facets, caps, data) may perform. Such an ob-
ject can only wait to be invoked by another, for which the reply capability
included in the invocation is from ∈ Capability − facets. Once invoked, this

2.3 Modelling Object-Capability Systems in CSP 25

UntrustedActive lang(facets, caps, data) =
?from : facets?c : caps − facets?op?arg : caps ∪ data ∪ {null} →

Untrusted lang(facets, caps, data) �
?from : facets?to : facets?op?arg : caps ∪ data ∪ {null} →

UntrustedActive lang(facets, caps, data)


u STOP,

Untrusted lang(facets, caps, data) =?from : Capability − facets?to : facets?op?arg →
let C ′ = {arg , from} ∩ Capability ;D′ = {arg} ∩Data within
UntrustedActive lang(facets, caps ∪ C ′, data ∪D′)


u STOP.

Snippet 2.2: The most general active and inactive objects respectively.

object may obtain the reply capability from and whatever argument arg was
contained in the invocation, and becomes active.

For simplicity, these definitions forbid an active object from being able
to send a message and then remain active. Such a facility, as is provided in
the single-threaded subset of E for instance, is useful only for non-blocking
sends. Our single-threaded system model would therefore need to be ex-
tended further to cover single-threaded systems, like the single-threaded
subset of E, in which non-blocking invocations can occur.

With these definitions, we can easily give a formal definition of a single-
threaded object-capability system as a straightforward special case of Defi-
nition 2.3.1.

Definition 2.3.2 (Single-Threaded Object-Capability System). An object-
capability system, (Object , behaviour , facets,Data), is single-threaded iff
there exists a single initially active object p ∈ Object such that

UntrustedActive lang(facets(p), caps(p), data(p)) vFD behaviour(p) ∧
∀ o ∈ Object − {p} •

Untrusted lang(facets(o), caps(o), data(p)) vFD behaviour(o).

To illustrate this idea, suppose the system depicted in Figure 2.1 was
a single-threaded object-capability system. One of the objects, Alice or
Bob, must be initially active, with the other being initially inactive. Sup-
pose Alice is the initially active object. Recall that the behaviour of
each is completely unknown and so each must be modelled as being com-
pletely untrusted. Then this single-threaded system could be modelled by
setting behaviour(Alice) = UntrustedActive lang(facets(Alice), {Alice},Data)
and behaviour(Bob) = Untrusted lang(facets(Bob), {Bob},Data), keeping the
other definitions unchanged.

2.3 Modelling Object-Capability Systems in CSP 26

At this point, the rationale behind the use of the subscripts “OS” and
“lang” on the Untrusted processes is apparent, since (as shown in Table 2.1)
the majority of object-capability operating systems are concurrent, while
the majority of object-capability languages are single-threaded.

One can see by inspecting the syntax of UntrustedActive lang and
Untrusted lang , that all behaviours of each can be exhibited by UntrustedOS ,
as one would expect. This leads to the following result.

Theorem 2.3.3. Given any three sets F , C and D,

UntrustedOS (F,C,D) vFD UntrustedActive lang(F,C,D)

and
UntrustedOS (F,C,D) vFD Untrusted lang(F,C,D).

The following result states formally that in any single-threaded object-
capability system, as defined by Definition 2.3.2, only one object is ever
active at a time. It is straightforward to prove and is used later on in this
thesis.

Lemma 2.3.4. Let (Object , behaviour , facets) be a single-threaded
object-capability system captured by the CSP process System =

‖
o∈Object

(behaviour(o), α(o)). Then for all traces s ∈ traces(System), there

exists a unique object that is active after System has performed s.

Proof. This result is proved straightforwardly by induction on the length of
s; its proof has been omitted for brevity.

2.3.6 Data Independence

Recall the system depicted in Figure 2.1, and our proof that in it neither
Alice nor Bob can ever send a message to the other. Recall that we proved
this result with the set Data of all data in the system being just a singleton
set. However, one intuitively expects that this result should hold no matter
what data exists in this system, i.e. that it should hold for all choices for
the set Data.

There are two reasons for this intuitive expectation. Firstly, the be-
haviour of each of the objects in this system is largely unconcerned with
data; varying the choice for the set Data should not affect how these objects
behave other than to affect the data that may be contained in messages they
send and receive, of course. Secondly, the property we are testing is also
unconcerned with data, so varying the set Data should not affect whether
it holds or not.

These intuitions are captured formally by the concept of data-
independence [Wol86]. Informally, a system is data-independent in a data
type when it handles members of that type uniformly, not distinguishing
one member of that type from another. The theory of data-independence

2.3 Modelling Object-Capability Systems in CSP 27

for CSP is due mostly to Lazić [Laz99]. A summary of the main results ap-
pears in [Ros97, Chapter 12]. We may apply these results to show that the
property cannotOccurA(System) that we proved about the system System
depicted in Figure 2.1 will hold for any choice of the set Data.

Informally, a CSP process that is data-independent in some type (equiv-
alently some set) T may be written so as to be parameterised by T such
that the only things it does with members of T are to [Laz99, p. 55]:

• use the“?” or “$” operators to offer or choose between members of T ,
as in ?x : T or $x : T ;

• store them, perhaps in its local variables;

• use the “!” operator to perform events whose components contain val-
ues of T that were previously stored in a local variable; and

• perform equality tests between members of T , either explicitly (e.g. as
in if x = y then P else Q) or implicitly (e.g. through the synchro-
nisation of two processes, as in c!x → STOP ‖

{|c|}
c!y → STOP which

will proceed only if x = y).

A number of further syntactic requirements are also imposed on a CSP
process that is to be data-independent in T . In particular, its program text
must not use or mention [Ros97, Section 12.2.2]:

• concrete members of T ;

• operations on values of T , other than those which treat values of T as
opaque tokens such as tuple and list formation and other polymorphic
operations;

• predicates on values of T , other than equality tests;

• operations such as |T | that reveal information about T (in this case
its size); and

• replicated constructs (e.g. ‖
t∈T) whose indexing set depends in any

way on T other than nondeterministic selection (e.g. $x : T).

A range of data-independence theorems exist, each of which applies in
different circumstances. Each of these theorems is used to show that a
process PT , which is data-independent in some type T , satisfies a certain
property Prop for all choices of T if Prop(PT) holds for just a few concrete
choices for the set T whose size is less than or equal to some threshold.

The simplest of these theorems is Theorem 2.3.5 below, which is a re-
statement of [Ros97, Theorem 15.2.1]. It requires that the process PT sat-
isfies the semantic condition NoEqTT and that the property Prop being
tested doesn’t depend on the value of T . A process PT satisfies NoEqTT

2.3 Modelling Object-Capability Systems in CSP 28

iff it never needs to test two values of T for equality. Theorem 2.3.5 is used
to show that some property encoded as a refinement assertion SpecT v PT
holds for all choices of T if SpecT v PT holds when T is a singleton set,
i.e. it gives a data-independence threshold for T of 1 for the refinement
SpecT v PT . The theorem requires that the specification SpecT also satis-
fies NoEqTT , plus the extra restriction that the only operation that SpecT
can perform on members of T is to use “$” to nondeterministically choose
members of T , as in $x : T .

Theorem 2.3.5. Suppose SpecT and SystemT are processes that are data-
independent in T and both satisfy NoEqTT . Suppose further that the only
operation that SpecT performs on members of T is to choose between them
using the nondeterministic selection operator, as in $x : T . Then, letting v
mean either vT , vF or vFD,

SpecT v SystemT

holds for for all non-empty choices for T if it holds for any non-empty choice
for T , including a singleton set.

For the case of traces-refinement, SpecT may also use the query operator
to choose between members of T , as in ?x : T .

Consider the CSP process System from Section 2.3.2 that models the
object-capability system depicted in Figure 2.1. Treating the set Data as a
type, System is data-independent in the type Data. Since it never tests two
values of Data for equality, System also satisfies NoEqTData . The specifi-
cation CHAOSΣ−A against which this system was tested in Section 2.3.2 is
totally unconcerned with Data and satisfies the conditions of Theorem 2.3.5
with respect to the type Data. Hence, we may apply Theorem 2.3.5 to the
refinement check CHAOSΣ−A vT System. Recall that this check passed
when Data was instantiated as a singleton set. Hence, by Theorem 2.3.5,
we conclude that this same property holds for any choice of the set Data,
i.e. irrespective of the data present in the object-capability system.

Most of the security properties and patterns that we consider in this
thesis are fairly unconcerned with data. In fact, almost all systems analysed
in this thesis are data-independent in the set Data and satisfy NoEqTData .
Because most of the security properties that we test in this thesis are
unconcerned with data, most of the specifications used in the refinement
checks that embody those security properties satisfy the conditions of The-
orem 2.3.5 with respect to the set Data. Therefore, unless stated otherwise,
for all systems in this thesis we instantiate the set Data to be the singleton
set Data = {SomeDatum}. Using Theorem 2.3.5, each result that we obtain
then naturally generalises to any choice for the set Data in each of these
systems.

Some patterns analysed in this thesis (such as the Data Diode pattern
considered in Chapter 5) do make use of data, and when analysing these we

2.3 Modelling Object-Capability Systems in CSP 29

will have to take data into account explicitly. This is why we have included
data in our framework for modelling object-capability systems. However,
for the majority of patterns and properties that we consider, Theorem 2.3.5
allows us to quietly ignore data where it is not relevant, confident in the
knowledge that it doesn’t affect the results we obtain. The reader should
assume, therefore, that each result obtained in this thesis is unaffected by
the choice for Data unless we specifically instantiate the set Data to be
something other than the singleton set {SomeDatum}.

3 Safety

In this chapter, we show how safety properties of object-capability patterns
can be examined in CSP. These are the simplest of the security properties
considered in this thesis and serve as an ideal starting point before we look
at more complicated properties in later chapters.

Following Lamport’s now universal definition [Lam77] a safety property
asserts that something (bad) cannot happen. Safety properties are usually
expressed as refinement tests in the traces model.

We show how to reason about safety properties with reference to two re-
lated object-capability patterns designed to help an object securely handle
arbitrary, possibly malicious, capabilities that it might be given. These pat-
terns are the low-level building blocks from which larger security-enforcing
object-capability patterns (such as the IOU protocol [Clo06] on which the
DonutLab system relies [SMS05] and patterns [Mil06, Chapter 11] for con-
finement [Lam73] to name just a few) are composed. In this sense, they
play a role similar to low-level cryptographic protocols1, on which secure
application-level protocols are constructed, that have long been targeted for
formal verification.

In Sections 3.1 and 3.2, we model and reason about the safety properties
of implementations of the Trademarks and Sealer-Unsealer patterns, first
described in [Mor73], respectively. We show how the safety properties of
each pattern can be expressed in terms of CSP traces refinement checks,
for FDR to carry out, by defining appropriate specification processes. This
allows us to define, and automatically verify, complicated safety properties,
such as safe coercion, that would otherwise be difficult to state and prove.

We use FDR to help us iteratively derive safe implementations of each
pattern. In doing so, we illustrate how this approach allows one to diagnose
and correct vulnerabilities in patterns that arise in the presence of concur-
rency, as well as those that arise from recursive invocation.

3.1 Safe Authenticating Trademarks

In this section, we use FDR to help derive a safe implementation of the
Trademarks [Mor73] pattern. This pattern is designed to allow an object o

1Thanks to David Wagner for this analogy.

3.1 Safe Authenticating Trademarks 31

to determine whether the object p referred to by an arbitrary capability that
it has been given is of a particular kind. Knowing that p is of a certain kind
might allow o to make assumptions about p’s behaviour, for instance.

Instantiating the pattern constructs two objects, a stamp and a guard.
The stamp can be used to mark objects with the stamp’s unique trademark.
The guard is then used to determine whether the object designated by an
arbitrary capability carries the trademark of the corresponding stamp. In
this case, we say that the object passes the guard. A guard therefore au-
thenticates objects that have been stamped by the corresponding stamp.

The Trademarks pattern can be implemented trivially using EQ , which
recall is an equality primitive available in some object-capability systems
that, given two capabilities, returns true if and only if it can be determined
that they both refer to exactly the same object and false if and only if it can
be determined that they don’t. In this trivial Trademarks implementation,
corresponding stamps and guards each have access to a common capability
set object. Stamping an object adds (the capability that designates) it to the
set. The guard authenticates a capability, c, by simply testing for inclusion
in the set by enumerating each capability, d, it contains and testing for each
whether cEQ d = true.

In many cases, however, it will be impractical to maintain such a ca-
pability set for each stamp-guard pair. In many object-capability systems
that rely on automatic garbage collection mechanisms to reclaim objects
that are no longer in use, keeping such a set may prevent defunct objects
from being reclaimed. Generally, this solution imposes a storage cost on the
stamp-guard pair that is proportional to the number of stamped capabili-
ties. Authenticating a capability might also take time proportional to the
number of stamped capabilities. A better solution would impose a constant
storage and runtime cost regardless of the number of stamped capabilities.

3.1.1 Deriving a Safe Implementation

We can derive such a solution by adapting the implementation of an object-
capability authentication pattern, due to Stiegler, known as the Nontrans-
ferable Claim Check [Sti06]. The basic idea is that each stamp-guard pair
has access to a common slot object that is unique for each stamp-guard
pair. A slot is able to store a single capability. Stamping an object involves
passing it a capability to the stamp’s slot.

To check whether the object that an arbitrary capability c designates
has been stamped, the guard first clears the slot and then invokes c with a
message, m, that instructs the object to store a capability to itself into its
slot. Note that m does not contain any capabilities since we expect that
if c has been stamped, it will already have been given a capability to the
slot. We assume that each stamped object has access to a capability that
designates itself. In many object-capability systems, objects automatically
have access to such a capability. In systems without this feature, a stamped

3.1 Safe Authenticating Trademarks 32

object could be given a capability to itself at the same time that it is given
its slot capability (i.e. while it is being stamped).

The guard’s slot will be modified in response to message m if c has been
stamped or c forwards m to a stamped object. When the invocation of c
returns, any capability, d, contained in the slot can be compared against c.
If cEQ d = true, we assume that the original capability that was invoked, c,
has been stamped since only stamped objects have a capability that allows
them to store a copy of themselves in the slot. If the slot contains no such
capability d, then we assume that c has not been stamped. If cEQ d 6=
true we assume that c might have forwarded the invocation to an authentic
object, d, and therefore might not have been stamped.

A Draft Implementation

We model this implementation in CSP as follows. We begin with
a slot, which is modelled as an object with two facets, readme and
writeme, for reading and modifying its contents respectively. The process
ASlot(readme,writeme, val) models a slot object with facets readme and
writeme that initially contains the value val , and appears in Snippet 3.1.

ASlot(readme,writeme, val) =
?from : Capability − {readme,writeme}!readme!Call!null→

readme!from!Return!val → ASlot(readme,writeme, val) �
?from : Capability − {readme,writeme}!writeme!Call?newVal →

writeme!from!Return!null→ ASlot(readme,writeme,newVal)

Snippet 3.1: The behaviour of a slot object.

Calling its read facet, readme, causes it to Return its current contents,
val . Calling its write facet, writeme, passing a value, newVal , causes it to
replace its current contents with newVal , Returning null in response.

A guard, me, whose slot’s read- and write-facets are slotR and slotW
respectively, is modelled as the process AGuard(me, slotR, slotW), which is
defined in Snippet 3.2.

A guard waits to be invoked with a Call message containing a capability,
specimen, that designates the object to be authenticated. The guard then
clears its slot by Calling its write facet, slotW , with the value null, waiting
for it to Return. Once the slot has been cleared, the guard Calls the specimen
to instruct it to store a capability to itself in its slot, waiting for it to Return.
The guard then Calls the slot’s read facet, slotR, to query its new value, val .
We use equality between object names to simulate a reliable EQ primitive. If
val = specimen (i.e. the two are EQ) then the guard indicates that specimen
is authentic by Returning a capability to itself to its invoker, from. It then
reverts to its initial state. If val 6= specimen, the guard indicates that

3.1 Safe Authenticating Trademarks 33

AGuard(me, slotR, slotW) =
?from : Capability − {me}!me!Call?specimen : Capability →
me!slotW !Call!null→ slotW !me!Return!null→
me!specimen!Call!null→ specimen!me!Return!null→
me!slotR!Call!null→ slotR!me!Return?val →
if val = specimen then

me!from!Return!me → AGuard(me, slotR, slotW)
else me!from!Return!null→ AGuard(me, slotR, slotW)

Snippet 3.2: The behaviour of a guard.

specimen is not authentic by Returning null to its invoker before reverting
to its initial state.

We model a stamped object, me, whose slot’s write-facet is slotW ,
that possesses the capabilities caps and data data, as the process
AStamped(me, slotW , caps, data). The implementation of this pattern ap-
pears to place a number of unstated assumptions on the behaviour of a
stamped object. Rather than trying to discern all of these assumptions a
priori, we will use FDR to uncover them for us. To do so, we can begin
with a relatively unconstrained model of a stamped object and successively
refine it until we find one that meets the assumptions of the implementation,
i.e. one in which the implementation is safe.

We start by making the obvious assumption that a stamped object
should not pass its capability that designates its slot’s write-facet, slotW , to
any other object. We also choose to model the more general case in which
a stamped object executes with its own thread of control, as occurs in an
object-capability operating system for example. Any implementation that
is safe in this context will also be safe in the more restrictive single-threaded
context, in which all objects share a single thread of control2.

AStamped(me, slotW , caps, data) =

me?to : caps?op?arg : (caps − {slotW }) ∪ data ∪ {null} →
AStamped(me, slotW , caps, data) �

me!me?op?arg : caps ∪ data ∪ {null} →
AStamped(me, slotW , caps, data) �

?from : Capability − {me}!me?op?arg →
let C ′ = {arg , from} ∩ Capability ;D′ = {arg} ∩Data within
AStamped(me, slotW , caps ∪ C ′, data ∪D′)


u STOP

Therefore, AStamped(me, slotW , caps, data) is similar to the model of

2This follows from Theorem 2.3.3 and the fact that safety being refinement-closed over
the traces model implies it is also refinement-closed over the failures-divergences model,
since any failures-divergences refinement of a process is also a traces-refinement.

3.1 Safe Authenticating Trademarks 34

a completely untrusted object executing with its own thread of control,
UntrustedOS ({me}, caps, data), from Snippet 2.1, except that it never passes
slotW as an argument to an invocation. Indeed it represents the most
general object that adheres to this restriction.

We analyse this implementation by instantiating the system depicted
in Figure 3.1. Recall that our basic approach to analysing object-capability
patterns involves coupling an instance of each pattern with untrusted objects
that represent arbitrary objects that may exist in a system in which the
pattern is instantiated. These untrusted objects should exhibit any and all
behaviours permitted by the context in which the pattern is being analysed.

Figure 3.1: Instantiating the draft Trademarks implementation.

The instantiation depicted in Figure 3.1 comprises a stamped object,
Stamped, whose corresponding slot and guard are Slot and Guard respec-
tively. Notice that Stamped is given a capability to every facet of every
object in the system. This is done because we don’t want to place any con-
straints on the capabilities that may be possessed by a stamped object. The
slot’s read- and write-facets are SlotRead and SlotWrite respectively. The
system also contains an untrusted object, Specimen, that represents an ar-
bitrary unstamped object that may exist in a system in which this pattern
is instantiated.

If this pattern is instantiated correctly, Specimen should not possess
a capability to any of Slot’s facets, since by definition Specimen does not
carry Guard’s trademark. Hence, we give Specimen all capabilities except
those from facets(Slot). Setting Object = {Guard,Slot,Stamped,Specimen},
facets(Slot) = {SlotRead,SlotWrite} and facets(other) = {other} for other 6=
Slot, we have:

behaviour(Guard) = AGuard(Guard, SlotRead, SlotWrite),

behaviour(Stamped) = AStamped(Stamped,SlotWrite,Capability ,Data),

behaviour(Slot) = ASlot(SlotRead,SlotWrite, null),

behaviour(Specimen) =
UntrustedOS (facets(Specimen),Capability − facets(Slot),Data).

The object-capability system (Object , behaviour , facets,Data) is then in-
stantiated as described in Section 2.3.1 yielding the CSP process System.

3.1 Safe Authenticating Trademarks 35

A safe guard is one that authenticates only stamped objects. Hence, we
can define the process SafeGuard(me, sObjs) that models just the behaviour
of a guard with identity me that authenticates only those objects in the
set sObjs. In doing so, we ignore the internal behaviour of the guard as
well as the behaviour of other objects in the system, modelling only the
guard’s behaviour at its interface to its clients. SafeGuard(me, sObjs) is an
idealised model of a safe guard – i.e. one that never authenticates anything
but stamped objects. It is defined in Snippet 3.3.

SafeGuard(me, sObjs) =
?from : Capability − {me}!me!Call?specimen : Capability →
if specimen ∈ sObjs then(

me!from!Return!me → SafeGuard(me, sObjs) u
me!from!Return!null→ SafeGuard(me, sObjs)

)
else me!from!Return!null→ SafeGuard(me, sObjs)

Snippet 3.3: The specification of a safe guard.

Notice that we use internal choice to model whether an authentication
of a stamped object is successful or not. This is done because here we are
interested in safety only; a safe guard doesn’t always have to authenticate
stamped objects, but merely never authenticate non-stamped objects.

We can test whether Guard is safe then by testing whether, in System,
it can ever behave differently to its idealised representation in SafeGuard .
We do so by testing whether

SafeGuard(Guard, {Stamped}) vT
System \ (Σ− SafeGuardEvents(Guard))

where SafeGuardEvents(me) gives (a slight superset of) the events that can
be performed at the client interface of a safe guard with identity me. It is
defined simply as

SafeGuardEvents(me) =
{|from.me.Call,me.from.Return | from ∈ Capability − {me}|}.

FDR reveals that this refinement doesn’t hold. Exploring the counter-
example reveals that System can perform the following trace.

〈Stamped.Guard.Call.Guard, Guard.SlotWrite.Call.null,
SlotWrite.Guard.Return.null, Stamped.SlotWrite.Call.Guard,

Guard.Guard.Call.null, Guard.Guard.Return.null,
SlotWrite.Stamped.Return.null, Guard.SlotRead.Call.null,
SlotRead.Guard.Return.Guard, Guard.Stamped.Return.Guard〉

The problem is evident from the trace above, in which we have underlined
the cause of the error. We see that Stamped places Guard in the slot in
between when Guard clears and subsequently checks Slot’s contents.

3.1 Safe Authenticating Trademarks 36

Refining the Implementation

We can see from the counter-example above that a stamped object must
never try to store anything in its slot other than a capability to itself. We can
therefore refine the behaviour of a stamped object to impose just this further
restriction. We redefine the process AStamped as appears in Snippet 3.4.

AStamped(me, slotW , caps, data) =
let caps ′ = caps − {slotW } within

me?to : caps ′?op?arg : caps ′ ∪ data ∪ {null} →
AStamped(me, slotW , caps, data) �

me!me?op?arg : caps ∪ data ∪ {null} →
AStamped(me, slotW , caps, data) �

me!slotW !Call!me → AStamped(me, slotW , caps, data) �
?from : Capability − {me}!me?op?arg →

let C ′ = {arg , from} ∩ Capability ;D′ = {arg} ∩Data within
AStamped(me, slotW , caps ∪ C ′, data ∪D′)


u STOP

Snippet 3.4: The behaviour of a safe stamped object.

Reinstantiating the system using this new definition of the behaviour
of a stamped object and repeating the refinement-test in FDR reveals that
it does indeed now hold. The extra restriction ensures that, in this small
system, Guard can authenticate only Stamped and nothing else. However, it
should be noted that this analysis is far from exhaustive. The limitations of
this analysis are discussed further in Section 3.1.2.

Recursive Reentrancy

In all object-capability languages, including E, Joe-E and Cajita, objects
may be recursively invoked. It is worth considering the implications of this if
our Trademarks implementation were to be deployed in an object-capability
language. Suppose it were, producing a guard object, guard. Suppose
guard is invoked with a specimen, specimen. At the point that guard calls
specimen to tell it to place a capability to itself in its slot, specimen may
be able to recursively call guard.

This kind of synchronous recursive invocation creates concurrency that
might cause guard to behave unpredictably. We would like to know that
our guard implementation remains safe in this kind of situation, otherwise
deploying it in an object-capability language would require the programmer
to implement extra functionality to prevent it from being recursively invoked
while invoking a specimen3.

3This can be achieved for example by adding a boolean flag, inuse, that is set before

3.1 Safe Authenticating Trademarks 37

Our model of a guard, AGuard(me, slotR, slotW), with identity me and
slot capabilities slotR and slotW , does not allow for this kind of recursive
invocation. We can extend it, however, to allow for it, giving the pro-
cess AGuardR(me, slotR, slotW , rtstack ,maxsz) that includes a model of a
call-stack, rtstack , whose maximum size is maxsz . This process appears in
Snippet 3.5.

AGuardR(me, slot , rtstack ,maxsz) =
#(rtstack) < maxsz &
?from : Capability − {me}!me!Call?specimen : Capability →
me!slotW !Call!null→ slotW !me!Return?!null→
me!specimen!Call!null→
AGuardR(me, slot , 〈〈from, specimen〉〉ˆrtstack ,maxsz)


�

#(rtstack) > 0 &
let 〈〈from, specimen〉〉ˆst = rtstack within
specimen!me!Return!null→
me!slotR!Call!null→ slotR!me!Return?val →
if val = specimen then
me!from!Return!me → AGuardR(me, slot , st ,maxsz)
else
me!from!Return!null→ AGuardR(me, slot , st ,maxsz)


Snippet 3.5: The behaviour of a recursively invocable guard.

If there is room on the stack to store another invocation, then the object
is willing to be Called. When it invokes a specimen it places a record of the
Call that it is currently processing on the stack in the form of a 2-element
sequence, 〈from, specimen〉, that contains the object that Called it, from, as
well as the specimen it is invoking, specimen. The object is willing to be
Returned to only if there is a record on the stack. In this case, it is willing
to accept a Return only from the last specimen, specimen, it Called whose
name will be on the top of the stack.

Note that all invocations other than to specimens are modelled as before,
not allowing for recursive invocation while they complete. This is sound
because the usual context in which recursive invocation can occur is single-
threaded. Hence, the only objects that can invoke the guard whilst these
invocations are completing are those that have been invoked themselves.
These other invocations are performed on objects that can be relied upon not
to recursively invoke the guard, and this can be confirmed by inspecting their
code. Hence, the guard cannot be invoked during these other invocations in

the invocation of the specimen and cleared after the invocation returns. The object must
then check whether it is not already inuse before servicing invocations.

3.1 Safe Authenticating Trademarks 38

SafeGuardR(me, sObjs, rtstack ,maxsz) =#(rtstack) < maxsz &
?from : Capability − {me}!me!Call?specimen : Capability →
SafeGuardR(me, sObjs, 〈〈from, specimen〉〉ˆrtstack ,maxsz)


�

#(rtstack) > 0 &
let 〈〈from, specimen〉〉ˆst = rtstack within
if specimen ∈ sObjs thenme!from!Return!me → SafeGuardR(me, sObjs, st ,maxsz)
u
me!from!Return!null→ SafeGuardR(me, sObjs, st ,maxsz)


else
me!from!Return!null→ SafeGuardR(me, sObjs, st ,maxsz)


Snippet 3.6: The specification of a safe recursively invocable guard.

the context in which we are analysing this pattern.
All vulnerabilities in object-capability patterns, of which the author is

aware (see e.g. [Wag08b, Wag08a]), that have arisen due to recursive in-
vocation require the vulnerable object to be recursively invoked only once.
We can test whether a single recursive invocation of a guard can make it
unsafe by reinstantiating the first safe guard implementation in the context
of the system depicted in Figure 3.1, setting the behaviour of the guard,
Guard, to AGuardR(Guard, SlotRead, SlotWrite, 〈〉, 2). Doing so gives us the
new process System.

A recursive guard with a maximum call-stack size of 1 should be equiv-
alent to a non-recursive guard. Hence, AGuard(Guard, SlotRead,SlotWrite)
should be equivalent to AGuardR(Guard,SlotRead,SlotWrite, 〈〉, 1). Testing
this equivalence in FDR, by testing whether each process failures-divergences
refines the other, reveals that it does indeed hold.

To test whether Guard is still safe now that it can be recur-
sively invoked, we need to extend the definition of a working guard,
SafeGuard(me, sObjs) with identity me that authenticates only the objects
in the set sObjs, to also be recursively invocable. Doing so yields the process
SafeGuardR(me, sObjs, rtstack ,maxsz), which appears in Snippet 3.6.

Again, we expect that SafeGuard(Guard, {Stamped}) should be (failures-
divergences) equivalent to SafeGuardR(Guard, {Stamped}, 〈〉, 1). Testing
this assertion in FDR reveals that it holds.

We can then test whether single recursive invocations to Guard can make
it unsafe by testing whether

SafeGuardR(Guard, {Stamped}, 〈〉, 2) vT
System \ (Σ− SafeGuardEvents(Guard)).

3.2 Safe Coercing Sealer-Unsealers 39

FDR reveals that this refinement does hold. Hence, we have some confidence
that our Trademarks implementation can be applied in an object-capability
language without fearing that recursive invocations will make it unsafe.

3.1.2 Summary

We have derived a safe Trademarks implementation, built using EQ , that
functions in the presence of concurrently executing objects and recursive in-
vocation. Subject to the caveats regarding exhaustiveness below, our anal-
ysis indicates that a guard will never authenticate a non-stamped object so
long as each of its stamped objects never (1) divulges any of its slot capa-
bilities, and (2) never tries to place anything in any of its slots other than a
capability to itself.

In analysing this pattern, we have considered it in just a small context
involving only a handful of objects. This means that our analysis is far from
exhaustive. We have considered, for example, systems in which a guard has
stamped only a single object, and that contain only one unstamped object
(besides the guard and its slot). Also, when considering recursive invocation,
our model allowed only a single recursive call to occur.

These analyses, therefore, give us confidence that our pattern is safe.
However, on their own, they do not prove that it will be safe in all possible
deployments. Later, in Chapter 4, we will show how the results from these
small analyses can be generalised to systems of arbitrary size. In doing so we
obtain results that are more exhaustive than those obtained here, allowing
us to assert our safety results with greater confidence.

3.2 Safe Coercing Sealer-Unsealers

The Trademarks implementation of the previous section is an example of
an authentication pattern; a guard authenticates capabilities that carry its
trademark. We now consider a similar pattern that is based instead on the
idea of coercion [TMHK95].

We explain coercion in the context of the Trademarks pattern, since this
is familiar; however, it can be applied in other cases too. We will analyse
one such case that extends the basic idea slightly. Coercion works as follows.
Suppose an object o is given a capability c, purportedly carrying a particular
trademark. o can perform some operation with c but is willing to do so only
if c carries the purported trademark. o sends a message that contains c to
a coercer object that is associated with the trademark that c purportedly
carries. The coercer object will respond with one of two messages indicating
success or failure respectively. If the message indicates success, it will contain
a capability d that o can be sure carries the purported trademark. In this
case, we say that c has been coerced to d. Otherwise a message indicating
failure contains no capabilities and o cannot assume that c has the purported

3.2 Safe Coercing Sealer-Unsealers 40

trademark.
Note that even if c successfully coerces, o cannot infer that c carries

the purported trademark. c might, for instance, be a proxy that forwards
invocations to d, thereby allowing c to be coerced to d. The disadvantages
of coercion over authentication are clear. No matter whether coercion is
successful or not, o cannot determine if c was authentic. In many cases, this
information could be vital.

Coercion does have the advantage that it doesn’t require a discrimination
primitive like EQ in order to implement. As we will see later in Chapter 4
and the ones that follow it, patterns that use EQ make the task of general-
ising analysis results for them more difficult than those that do not. Hence,
avoiding EQ can have its advantages.

We consider the implementation of a pattern that uses coercion. The
pattern4 is known as the Sealer-Unsealer pattern [Mor73]. Instantiating the
Sealer-Unsealer pattern creates two objects, a sealer and a corresponding
unsealer. Invoking the sealer, passing it a capability c, causes it to return a
capability b to an opaque box object. We say that c is the contents of the
box b, or that c has been sealed to produce b. b conveys no authority on its
own, except when used with the unsealer that corresponds to the sealer that
produced b. The corresponding unsealer is used to coerce a capability b′,
that purportedly refers to a box b, to the box’s contents c.

3.2.1 Deriving a Safe Implementation

We use FDR to help us analyse the safety of an implementation of this
pattern, whose basic structure is due to Stiegler [Sti04]. Here, each sealer-
unsealer pair has access to a unique slot object. When creating a new box,
b, the sealer hands b a capability to its slot object. When invoked with a
purported box, b′, the unsealer first clears its slot before invoking b′ with
a message m instructing it to place its contents in its slot. When this
invocation returns, the unsealer simply checks its slot and returns whatever
capability the slot contains, if any. The intuition is that only valid boxes
have access to the unsealer’s slot object and that each box is trusted to place
only its contents in its slot.

If b′ is a valid box, then upon receiving m, it will place c in its slot,
thereby allowing the unsealer to coerce b′ to c successfully. Alternatively, b′

might be some kind of proxy that forwards messages to a valid underlying
box b. If b′ chooses to forward m, the coercion will be successful; otherwise,
if this pattern functions correctly, the coercion should fail and the unsealer
should not return c.

4Note that this pattern can also be implemented using authentication rather than
coercion [Yee99, VH04] (although with naturally different security properties). Languages
that provide support for unforgeable record field names allow a particularly elegant im-
plementation [VH04, p. 204].

3.2 Safe Coercing Sealer-Unsealers 41

Notice that this implementation is very similar to the Trademarks im-
plementation presented earlier. One notable difference is that an unsealer,
unlike a guard, does not apply any primitive test, such as EQ , to the slot’s
contents before deciding what to return to its invoker. Despite this similar-
ity, the security properties of these patterns are very different.

A Draft Implementation

Slots have the same behaviour as before. We model an unsealer
with identity me and slot capabilities slotR and slotW as the process
AnUnsealer(me, slotR, slotW), defined as follows5.

AnUnsealer(me, slotR, slotW) =
?from : Capability − {me}!me!Call?specimen : Capability →
me!slotW !Call!null→ slotW !me!Return!null→
me!specimen!Call!null→ specimen!me!Return!null→
me!slotR!Call!null→ slotR!me!Return?val →
me!from!Return!val → AnUnsealer(me, slotR, slotW)

When Called with a capability, specimen, that potentially refers to a
box sealed with the corresponding sealer, our unsealer implementation first
clears its slot before Calling the specimen, telling it to place its contents in
its slot. The unsealer then reads the contents, val , of the slot and Returns
val to its invoker, from.

A box, me, whose capability to the write-facet of its slot is
slotW and whose contents is contents, is modelled by the process
ABox (me, slotW , contents), defined in Snippet 3.7. When Called, a box
simply places its contents in its slot, Returning null.

ABox (me, slotW , contents) =
?from : Capability − {me}!me!Call!null→
me!slotW !Call!contents → slotW !me!Return!null→
me!from!Return!null→ ABox (me, slotW , contents)

Snippet 3.7: The behaviour of a box.

At this point, we are ready to perform a safety analysis on this pattern.
Before doing so, it is worth considering what safety properties we should
test. Consider, for example, the following safety property that is analogous
to the one applied earlier to the Trademarks pattern: “an unsealer should
never successfully unseal anything other than a valid box”. This property is
unsuitable for this pattern because the pattern is based on coercion rather
than authentication. This means that if we invoke an unsealer, passing a

5This implementation is derived from [MSL+07, Figure 13].

3.2 Safe Coercing Sealer-Unsealers 42

specimen to it that is really a proxy to a valid box, that the specimen should
rightly be unsealed, for the same reason that a proxy should rightly coerce
to the valid underlying object for which it is a proxy.

Therefore, the safety property that we want to verify for this pattern
is that an unsealer should Return the contents of one of its boxes b, to an
object that has Called it, only if the Call included a valid capability that
proxies to b. An object proxies to b in response to being invoked if it is b or
invokes an object that proxies to b. An unsealer never proxies by definition.

This property is captured by the specification process SafeUnsealer
which appears in Snippet 3.8. Given a system captured by a process System,
that contains an unsealer unsealer and corresponding box bx , whose con-
tents is conts and slot is slot , we can test whether this unsealer is safe in
System by testing whether

SafeUnsealer(unsealer , bx , conts) vT System \ α(slot).

The property captured by SafeUnsealer(unsealer , bx , conts) is that,
once unsealer has been Called by some object from passing some spec-
imen specimen, and once unsealer has Called specimen and received
specimen’s subsequent Return message, that unsealer will Return conts to
from only if specimen proxied to bx when unsealer Called it.

This is the reason that we cannot hide the events of objects other than
slot , when performing the refinement test above, since their behaviour may
need to be tracked in order to determine whether specimen proxies to bx .

Initially, unsealer should be waiting to be Called by some object from,
with some argument capability specimen. Other objects may invoke each
other while unsealer is waiting. This is captured by the two sides of the ex-
ternal choice “�” in SafeUnsealer . Once unsealer is Called, the specification
transitions to the process SafeUnsealer ′(unsealer , bx , conts, from, specimen),
which remembers which object, from, Called unsealer and what argument,
specimen, they passed. The processes SafeUnsealer ′′ and SafeUnsealer ′′′

represent subsequent specification states and can be ignored for now. When
in the state captured by SafeUnsealer ′, unsealer Calls specimen. However,
while this invocation is taking place, other invocations may also occur in the
system. This is captured by the external choice in SafeUnsealer ′.

Once specimen has been Called, the specification transitions to the pro-
cess SafeUnsealer ′′(objectof (specimen), specimen = bx).6 The first argu-
ment here is the name of the object that has the facet specimen. The
second indicates whether specimen has proxied to bx , which is true at this
point if and only if specimen = bx .

The job of SafeUnsealer ′′(current , hasProxied) is to monitor the invoca-
tions that occur in System following unsealer ’s Call to specimen, and update
hasProxied accordingly as to whether specimen has proxied to bx in response
to unsealer ’s Call. It therefore keeps track, via the parameter current , of

6The function objectof maps a facet name to the unique object that has this facet.

3.2 Safe Coercing Sealer-Unsealers 43

otherthan(o) = Capability − facets(o)

SafeUnsealer(unsealer , bx , conts) =
?from : otherthan(unsealer)!unsealer !Call?specimen : Capability →

SafeUnsealer ′(unsealer , bx , conts, from, specimen) �
?other : otherthan(unsealer)?to : otherthan(unsealer)?op?arg →

SafeUnsealer(unsealer , bx , conts)

SafeUnsealer ′(unsealer , bx , conts, from, specimen) =

let

SafeUnsealer ′′(current , hasProxied) =
?c : facets(current)?to : otherthan(unsealer)?op?arg →

SafeUnsealer ′′(objectof (to), hasProxied ∨ (to = bx)) �
?other : otherthan(current)?to : otherthan(unsealer)?op?arg →

SafeUnsealer ′′(current , hasProxied) �
specimen!unsealer !Return!null→ SafeUnsealer ′′′(hasProxied)

SafeUnsealer ′′′(hasProxied) =
?other : otherthan(unsealer)?to : otherthan(unsealer)?op?arg →

SafeUnsealer ′′′(hasProxied) �
if hasProxied then

unsealer !from!Return$c : {conts, null} →
SafeUnsealer(unsealer , bx , conts)

else unsealer !from!Return!null→ SafeUnsealer(unsealer , bx , conts)

within

unsealer !specimen!Call!null→
SafeUnsealer ′′(objectof (specimen), specimen = bx) �

?other : otherthan(unsealer)?to : otherthan(unsealer)?op?arg →
SafeUnsealer ′(unsealer , bx , conts, from, specimen)

Snippet 3.8: The specification of a safe coercing unsealer.

3.2 Safe Coercing Sealer-Unsealers 44

the most recent object that has been invoked in the chain of invocations be-
ginning at unsealer ’s Call to specimen. Originally, this object is, of course,
objectof (specimen). If current invokes a capability to, objectof (to) becomes
the new current and hasProxied is updated accordingly. hasProxied is set
from false to true precisely when the object that current invokes is bx . Once
it becomes true, it remains that way.

While current ’s invocation is taking place, other invocations may of
course occur in the system. Alternatively, specimen may Return from
unsealer ’s original Call, in which case the specification transitions to
SafeUnsealer ′′′(hasProxied). This process simply allows unsealer to Return
conts to from (unsealer ’s original Caller), only if hasProxied is true. Of
course, invocations between other objects may take place while unsealer is
Returning to from, hence this process also allows these to occur.

To analyse this pattern, we instantiate it in the context of the system
depicted in Figure 3.2. Here, we see an unsealer Unsealer, and associated
box Box and slot Slot, as well as two untrusted objects, Contents and Alice.
Contents is the contents of Box while Alice is an arbitrary object that inter-
acts with this pattern. Each has as many capabilities as possible, meaning
that each has all capabilities other than those to Slot. This is done because
we don’t want to place any restrictions on the objects that may be the con-
tents of a box or may interact with this pattern respectively, other than
those imposed naturally by the pattern itself.

Figure 3.2: Instantiating the Sealer-Unsealer implementation.

The set Object and function facets are set as one would expect from
Figure 3.2. The behaviour of each object is also as one would expect, namely:

behaviour(Box) = ABox (Box,SlotWrite,Contents),

behaviour(Slot) = ASlot(SlotRead, SlotWrite, null),

behaviour(Unsealer) = AnUnsealer(Unsealer,SlotRead,SlotWrite),

behaviour(Alice) =
UntrustedOS (facets(Alice),Capability − facets(Slot),Data),

behaviour(Contents) =
UntrustedOS (facets(Contents),Capability − facets(Slot),Data).

3.2 Safe Coercing Sealer-Unsealers 45

Notice that the system (Object , facets, behaviour ,Data) is not a single-
threaded object-capability system, since it contains two objects, Alice and
Contents, that are initially active. This pattern was developed in the con-
text of the single-threaded subset of the object-capability language E. We
begin by considering it in this more concurrent context, however, in order
to see whether this pattern can be deployed in concurrent object-capability
systems, such as operating systems like seL4 or Coyotos.

To test the safety of this pattern in this context, we simply test whether
SafeUnsealer(Unsealer,Box,Contents) vT System \ α(Slot). This test com-
pletes in less than 10 seconds in FDR, which reveals that it does not hold.
Examining the counter-example, we see that System can perform the fol-
lowing trace.

〈Alice.Unsealer.Call.Contents, Unsealer.SlotWrite.Call.null,
Alice.Box.Call.null, SlotWrite.Unsealer.Return.null,
Box.SlotWrite.Call.Contents, Unsealer.Contents.Call.null,
SlotWrite.Box.Return.null, Contents.Unsealer.Return.null,
Unsealer.SlotRead.Call.null, SlotRead.Unsealer.Return.Contents,
Unsealer.Alice.Return.Contents〉

Again, we have underlined the cause of the safety violation in the trace.
We see Alice Calls the Unsealer, passing Contents as the specimen. Unsealer
then clears its slot. At this point, Alice (who recall is executing with her own
thread of control, independently of all other objects) Calls Box. Box responds
as it should by placing Contents in Slot. Meanwhile, the Unsealer Calls the
specimen it has been passed, namely Contents, who Returns immediately.
Once this has occurred, the Unsealer then reads the Slot’s current value,
which is now Contents and subsequently Returns this to Alice as it should.

This violates the safety property because Alice’s specimen, Contents,
doesn’t proxy to Box when Unsealer Calls Contents, but Unsealer still Returns
Contents to Alice.

A Less Concurrent Setting

The problem here is readily apparent. The unsealer expects that the ob-
jects that it invokes, and the objects that those objects invoke in response
to these invocations and so on, have exclusive potential access to its slot
and, therefore, that something will be placed in its slot after it has cleared
it only in response to its invocation of the specimen it has been passed.
This assumption is perfectly valid in the original single-threaded context in
which this pattern was developed. However, it is clearly violated in a more
concurrent setting, such as an object-capability operating system.

The problem here arises because of concurrent access to shared mutable
state, in the form of the slot that is shared between the unsealer and the
box. Such vulnerabilities can arise in any concurrent system with shared
mutable state, and are certainly not unique to concurrent object-capability

3.2 Safe Coercing Sealer-Unsealers 46

systems. We have shown that FDR can easily detect the vulnerability here
as a simple safety violation, which is perhaps unsurprising since FDR has
a long history of detecting bugs that arise from concurrent access to shared
mutable state. This shows the dangers inherent in taking a pattern from one
context and applying it directly to another that is very different [Mur08],
but how these dangers can be avoided by first detecting them using FDR.

Having determined that this pattern is not safe in the more concurrent
setting, we now consider it in the context in which it was originally designed:
a single-threaded object-capability language that allows recursive invocation
of objects.

We extend the model, AnUnsealer(me, slotR, slotW), of an unsealer,
me, with slot capabilities slotR and slotW , to allow for recursive in-
vocation when it invokes a specimen. Doing so gives us the process
AnUnsealerR(me, slotR, slotW , rtstack ,maxsz) that has the same form as
the recursive guard, AGuardR, from Snippet 3.5.

AnUnsealerR(me, slotR, slotW , rtstack ,maxsz) =

#(rtstack) < maxsz &
?from : Capability − {me}!me!Call?specimen : Capability →
me!slotW !Call!null→ slotW !me!Return!null→
(specimen 6= me &
me!specimen!Call!null→
AnUnsealerR(me, slotR, slotW , 〈〈from, specimen〉〉ˆrtstack ,maxsz))


�

#(rtstack) > 0 &
let 〈〈from, specimen〉〉ˆst = rtstack within
specimen!me!Return!null→
me!slotR!Call!null→ slotR!me!Return?val →
me!from!Return!val →
AnUnsealerR(me, slotR, slotW , st ,maxsz)


Notice here that the unsealer will Call a given specimen only if that

specimen is not the unsealer itself. We impose this restriction to model
the natural phenomenon that, in any implementation of this pattern, the
message sent to a specimen telling it to place its contents in its slot (often
called a “divulge” message) will be recognisably different to the message
sent to invoke an unsealer when passing it a specimen (often called an “un-
seal” message). Any unsealer implementation will therefore typically reject
divulge messages, preventing any unsealer from (recursively) Calling itself
when passed a specimen capability that refers to itself.

The specification process, SafeUnsealer(unsealer , bx , conts), must also
be extended to allow recursive invocation of unsealer . Doing so yields the
process SafeUnsealerR(unsealer , bx , conts, rtstack ,maxsz), in Snippet 3.9.

Despite its apparent complexity, this process is in some ways much sim-
pler than its non-recursively invocable counterpart, SafeUnsealer from Snip-
pet 3.8. In particular, because we’re applying it only to single-threaded

3.2 Safe Coercing Sealer-Unsealers 47

SafeUnsealerR(unsealer , bx , conts, rtstack ,maxsz) =
#(rtstack) < maxsz &
?from : otherthan(unsealer)!unsealer !Call?specimen : Capability →
unsealer !specimen!Call!null→
let rtstack ′ = 〈〈from, specimen, specimen = bx 〉〉ˆrtstack within
SafeUnsealerR(unsealer , bx , conts, rtstack ′,maxsz)


�(

rtstack = 〈〉 &
?c!bx !Call?arg → SafeUnsealerR(unsealer , bx , conts, rtstack ,maxsz)

)
�

#(rtstack) > 0 &
let 〈〈from, specimen, hasProxied〉〉ˆst = rtstack within
?c!bx !Call?arg →
SafeUnsealerR(unsealer , bx , conts, 〈〈from, specimen, true〉〉ˆst ,maxsz)
�
specimen!unsealer !Return!null→
if hasProxied then

unsealer !from!Return$c : {conts, null} →
SafeUnsealerR(unsealer , bx , conts, st ,maxsz)

else
unsealer !from!Return!null→
SafeUnsealerR(unsealer , bx , conts, st ,maxsz)


Snippet 3.9: The specification of a safe recursively invocable unsealer in the
single-threaded context.

systems, it doesn’t need to keep track of all object invocations in order to
determine when specimen proxies to bx . This is because in a single-threaded
system, if bx is Called at any time in between when unsealer Calls specimen
and specimen subsequently Returns, then specimen must have proxied to bx .
Hence, besides the behaviour of unsealer , this specification needs to track
only the invocations of bx .

This process is otherwise similar to the specification of a recursively
invocable guard, SafeGuardR from Snippet 3.6. Consider the first of the
three main clauses, separated by external choice “�” symbols. If there is
room on the stack for another invocation of unsealer , it is willing to accept
such an invocation from an object from, passing a valid capability specimen.
If such an invocation is received, unsealer then of course Calls specimen and
a new entry is pushed onto the stack which contains from, specimen and
a flag, called hasProxied , indicating whether specimen has proxied to bx .
Initially this is true if and only if specimen is bx as before.

The second main clause is applicable to all states of the system before

3.2 Safe Coercing Sealer-Unsealers 48

unsealer has received any invocations, or at any other time when the stack
is empty. In this state, bx may be Called by other objects in the system.
Hence, the specification allows this.

The third main clause is applicable in all states in which the stack is non-
empty. Here, if bx is Called, then the current specimen, which is sitting on
top of the stack, has proxied to bx and hence the boolean value hasProxied
is set to true. Alternatively, the current specimen may Return to unsealer .
In this case, the specification allows unsealer to Return conts to its Caller,
from, only if specimen has proxied to bx , i.e. only if hasProxied is true.

We re-instantiate the system depicted in Figure 3.2 as a single-threaded
object-capability system using the recursively invocable unsealer behaviour
for Unsealer. Setting Object and facets as before, and keeping the same
behaviour for Box and Slot, this gives the following new behaviours for the
remaining objects in this system.

behaviour(Unsealer) = AnUnsealerR(Unsealer, SlotRead, SlotWrite, 〈〉, 2),

behaviour(Alice) =
UntrustedActive lang(facets(Alice),Capability − facets(Slot),Data),

behaviour(Contents) =
Untrusted lang(facets(Contents),Capability − facets(Slot),Data).

As before with the recursively invocable guard, we allow only a sin-
gle recursive invocation of Unsealer to occur in order to keep the analysis
tractable. We also set Alice to be the object that is initially active. This
choice is arbitrary since the object, Alice or Contents, that is initially active
can immediately invoke the other. If this occurs, because Alice and Contents
possess identical capabilities and data, the system will transition to a state
that is identical to the initial state of the same system in which the other
object is initially active.

To test whether Unsealer remains safe in this system, we simply test
whether

SafeUnsealerR(Unsealer,Box,Contents, 〈〉, 2) vT
System \ (Σ− (α(Unsealer)− α(slot)) ∪ {|x.Box.Call | x ∈ Capability |}).

Notice that we hide all events in System other than those (1) in the
alphabet of Unsealer that do not involve Slot, and (2) those that represent
Box being Called, since only these events are relevant to the specification.

Performing this test in FDR reveals that it does not hold. FDR returns
a counter-example in which System performs the following trace.

3.2 Safe Coercing Sealer-Unsealers 49

〈Alice.Unsealer.Call.Contents, Unsealer.SlotWrite.Call.null,
SlotWrite.Unsealer.Return.null, Unsealer.Contents.Call.null,
Contents.Unsealer.Call.Box, Unsealer.SlotWrite.Call.null,
SlotWrite.Unsealer.Return.null, Unsealer.Box.Call.null,
Box.SlotWrite.Call.Contents, SlotWrite.Box.Return.null,
Box.Unsealer.Return.null, Unsealer.SlotRead.Call.null,
SlotRead.Unsealer.Return.Contents, Unsealer.Contents.Return.Contents,
Contents.Unsealer.Return.null, Unsealer.SlotRead.Call.null,
SlotRead.Unsealer.Return.Contents, Unsealer.Alice.Return.Contents〉

Let us examine what is going on here. Alice begins by invoking the
Unsealer, passing it Contents. Unsealer clears its slot before invoking Contents
as it would any other specimen. Contents then recursively Calls Unsealer, to
have it unseal Box. Box is subsequently unsealed successfully, as one would
expect, with Unsealer then Returning Contents to Contents (the final event on
the third-to-last line). Contents then Returns to Unsealer who invoked it orig-
inally. At this point, Slot still contains Contents, i.e. Contents is left sitting
in Slot after the recursive invocation of Unsealer completes. Hence, when
Unsealer subsequently reads Slot’s contents, it finds Contents and dutifully
Returns it to Alice.

This violates the pattern’s safety property because Unsealer has Returned
Contents to Alice, but Alice’s specimen, namely Contents, never proxied to
Box. Indeed, while there is a chain of invocations from Contents to Box, this
chain involves Unsealer and, as we said earlier, an unsealer cannot proxy by
definition. Hence, this counter-example represents a valid vulnerability in
this pattern that can arise due to recursive invocation of an unsealer.

This behaviour is certainly possible in a real implementation of this
pattern. Indeed, it was first described by David Wagner [Wag08b] in the
context of a Cajita implementation of this pattern [MSL+07] on which we
have based our model. We purposefully chose this implementation that we
knew should exhibit this behaviour to see whether it would be detected
by our approach. Despite our purposeful choice, this result nevertheless
represents the first time that a vulnerability due to recursive invocation has
been automatically detected in an object-capability pattern.

This is significant precisely because vulnerabilities due to recursive in-
vocation are, by their very nature, hard to manually diagnose. Indeed, the
implementation that we have modelled here, although created for pedagog-
ical purposes rather than actual deployment, was written by an object-
capability languages expert. The vulnerability in that implementation,
which was published openly, went undetected for months by all who read
the paper [MSL+07] in which it was contained.

Fixing the pattern is straightforward; one just modifies the behaviour
of an unsealer to clear its slot once it has read its value. Indeed, had we

3.3 Related Work 50

AnUnsealerR(me, slotR, slotW , rtstack ,maxsz) =

(#(rtstack) < maxsz) &
?from : Capability − {me}!me!Call?specimen : Capability →
me!slotW !Call!null→ slotW !me!Return!null→
(specimen 6= me &
me!specimen!Call!null→
AnUnsealerR(me, slotR, slotW , 〈〈from, specimen〉〉ˆrtstack ,maxsz))


�

(#(rtstack) > 0) &
let 〈〈from, specimen〉〉ˆst = rtstack within
specimen!me!Return!null→
me!slotR!Call!null→ slotR!me!Return?val →
me!slotW !Call!null→ slotW !me!Return!null→
me!from!Return!val →
AnUnsealerR(me, slotR, slotW , st ,maxsz)


Snippet 3.10: The behaviour of a safe recursively invocable unsealer.

modelled the implementation of this pattern from the revised Cajita speci-
fication [MSL+08] rather than the outdated original document, this attack
would not have been found.

Fixing the Implementation

We redefine the behaviour of an unsealer so that it clears its slot after reading
from it, as shown in Snippet 3.10. Reinstantiating the system with this new
implementation and repeating the test reveals that it now holds. Having an
unsealer clear its slot after reading from it ensures that this pattern remains
safe when up to a single recursive invocation of an unsealer can be performed.
While we strongly suspect that allowing more recursive invocations would
not give rise to any other safety violations, proving this statement is left as
future work.

3.3 Related Work

Safety Properties of Object-Capability Systems Safety properties
for access control systems (of which object-capability systems are a specific
example) are known to be undecidable in the general case [HRU76]. How-
ever, for many classes of system, they are known to be both decidable and
feasible to compute.

It should be noted that all safety properties (indeed all refinement tests)
for our CSP models are decidable in FDR precisely when the CSP processes
that represent the specification being tested and the system being analysed

3.3 Related Work 51

are finite-state. All specifications and systems used in this thesis are finite-
state by construction.

The analysis of safety properties in capability systems has a long history
beginning with the work of Lipton and Snyder [LS77] on the Take-Grant
protection model, in which safety properties are decidable in polynomial
time. Variants of this model have been used often since then to analyse
how capabilities can propagate (or, perhaps more precisely, be prevented
from doing so) in various kinds of object-capability system [SW00, EKE08,
Boy09].

Despite their utility for reasoning about the limits of capability prop-
agation in different object-capability systems, these models, as argued by
Spiessens and Van Roy [SV05], are not well suited for reasoning about the
safety properties of different object-capability patterns. This is because they
include no notion of object behaviour, assuming all objects to be fully un-
trusted. Objects that implement a pattern (like Guard or Unsealer) are, by
their nature, not untrusted. Their behaviour is, by definition, absolutely
relevant to the safety properties of the patterns they implement.

Analysing Object-Capability Patterns Spiessens’ Scoll lan-
guage [Spi07] is, to our knowledge, the first formalism for analysing
the security properties of object-capability patterns. Scoll allows the
behaviour of objects to be explicitly specified and can reason about safety
properties. Scoll can also reason about what Spiessens calls liveness
possibilities, which are discussed further in Section 6.4.

Scoll has the advantage over our approach that the behaviour of objects
that implement a pattern can be automatically calculated to satisfy a set
of safety properties that the pattern is to enforce. This calculation must be
performed manually in our approach, as we have done in this chapter, by
manually refining an initial (possibly) unsafe implementation to a safe one
with the help of the counter-examples returned from FDR.

Scoll has the disadvantage compared to our approach that it cannot
directly model single-threaded systems but must instead conservatively over-
approximate them with more concurrent models. This means that it would
be difficult to determine the safety of the Sealer-Unsealer implementation
that we analysed, whose safety we showed relies on being deployed in a
single-threaded system.

To explain, the behaviour of each object in a Scoll system increases
monotonically over time, meaning that once an action becomes possible
it remains possible forever. Hence, an initially inactive object modelled
naturally in Scoll would stay active forever once it is first invoked. This
would lead to spurious counter-examples being returned, from any Scoll
analysis of this pattern in a single-threaded context, that would be difficult
or impossible to remove.

Also, expressing the safety property of the Sealer-Unsealer pattern,

3.4 Conclusion 52

which is based on coercion and thus involves detecting proxying, in Scoll
would require one to augment the model of the pattern such that the model
itself performs the necessary bookkeeping in order to detect when proxying
has occurred. This is because Scoll safety properties can assert only that
certain individual facts do not become true. One cannot express that certain
sequences of actions are forbidden, without augmenting the system model
with extra bookkeeping to explicitly track when such sequences occur and
to trigger a special fact in this case. In contrast, when using our approach
this bookkeeping can be performed by a separate specification process. This
has the advantage that the specification can be easily adapted and applied
to other coercion patterns.

Unlike our approach, Scoll has yet to be applied to detect vulnerabilities
due to the presence of concurrency and recursive invocation.

Analysing Object-Capability Patterns in CSP Ours [Mur08] is the
only prior work of which we are aware that has formally analysed a Sealer-
Unsealer pattern based on coercion. The analysis performed in [Mur08]
detects the vulnerability in this pattern that arises when deployed in the
concurrent context. However, the analysis performed in [Mur08] is very lim-
ited and ad hoc, considering the pattern only in a very restricted scenario
and without recursive invocation. That analysis also failed to formally cap-
ture the idea of safe coercion, which we have formalised here. In contrast
to [Mur08], the analysis here is far more exhaustive and systematic.

3.4 Conclusion

We have shown how the safety properties of some related object-capability
patterns, based on the ideas of authentication and coercion, can be analysed
in CSP and automatically checked by expressing them as traces refinement
checks that can be carried out in FDR. As argued earlier, these patterns
are somewhat akin the low-level cryptographic protocols, since they are the
building blocks from which larger security-enforcing patterns are composed.
In this sense, they are ideal targets for formal verification.

We saw that one can express complicated safety properties, such as safe
coercion which requires detecting when one object has proxied to another, in
the form of traces refinement checks. This is done by encoding those proper-
ties as specification processes, making use of CSP’s natural expressiveness.
It is unclear to what degree these kinds of properties could be stated and
checked using previous formalisms for analysing object-capability patterns.
Because we could accurately encode these safety properties in CSP, we were
able to automatically detect subtle vulnerabilities in these patterns that
arise due to concurrency and recursive invocation. Both kinds of vulnerabil-
ity are difficult to diagnose manually; hence, our technique has undoubted
value.

3.4 Conclusion 53

We saw that CSP’s expressiveness also allows us to consider the same
pattern in different contexts, such as single-threaded vs. concurrent systems,
and to compare how its security properties differ in each case. The Sealer-
Unsealer example from Section 3.2, in which we saw that this pattern cannot
be deployed safely in the concurrent context, demonstrates that this kind of
comparison is vital in order to avoid deploying patterns in unsafe contexts.

There are three primary limitations to the work presented in this chap-
ter. Firstly, we have analysed only small instantiations of each pattern that
comprise no more than a handful of objects. Hence, it is unclear (and we cer-
tainly have no formal grounds yet on which to argue) whether the results we
have obtained here can generalise to arbitrary sized systems in which these
patterns might be deployed. Secondly, our system models do not account
for the ability of objects, in real object-capability systems, to create new
objects. We have completely ignored the issue of object creation. Thirdly,
our analyses of patterns involving recursive invocation allow the objects that
implement a pattern to be recursively invoked only once. In the following
chapter, we show how to overcome the first two limitations. Overcoming
the third is left as future work.

4 Analysing Systems of Arbitrary Size

The work presented in the previous chapter has two primary limitations.
The first is that the results obtained there apply only to the small systems
that were analysed, which contain no more than a handful of objects. The
second is that this work completely ignored the issue of object creation. In
this chapter, we show in turn how each of these limitations can be overcome.

In Section 4.1 we show how the results obtained in the previous chapter
can be generalised to systems of arbitrary size. Roughly, we show that any
arbitrary-sized system can be safely abstracted by a small fixed-size system
by aggregating [Spi07] multiple objects in the arbitrary-sized system together
and representing them as a single object in the small fixed-sized system. We
then apply the theory of data-independence [Laz99] to generalise the analysis
of the small fixed-sized system to all systems of arbitrary size that it safely
abstracts.

Then, in Section 4.2, we argue that these same techniques can be used to
model patterns and systems in which objects can create arbitrary numbers
of other objects. The basic idea is to model a parent object and all children
it might create as a single object that aggregates the parent and all of its
children together [Spi07]. We demonstrate this technique in Section 4.3 by
analysing an implementation of the revocable Membrane pattern, which uses
object creation as part of its normal functioning. We find that this imple-
mentation upholds a slightly weaker revocation property in the concurrent
context when compared with the single-threaded context1.

The ideas behind much of this chapter’s contents were heavily influenced
by similar work of Spiessens [Spi07].

4.1 Generalising Previous Results

Recall Section 3.1, in which we derived a safe Trademarks implementation.
These results were obtained be analysing the pattern instantiated in the
system depicted in Figure 3.1. This system contains just one untrusted ob-
ject, Specimen, that has capabilities to a stamped object, Stamped, and its

1While similar analyses have been performed previously (e.g. [Spi07, Section 8.3.1]),
ours is the first to explicitly model and reason about the membrane’s revocation property,
which cannot be expressed directly using these previous formalisms.

4.1 Generalising Previous Results 55

corresponding guard, Guard. Our approach to analysing object-capability
patterns in CSP has limited value unless we can generalise the results ob-
tained in that section to the larger systems in which this pattern might be
deployed.

Intuitively, one might hope to be able to generalise the results obtained
for the Trademarks pattern to any system that includes (implementations of)
all of the non-Untrusted objects in Figure 3.1 (i.e. Guard, Slot and Stamped)
composed with arbitrary objects, each of which has no capability to a non-
Untrusted object that Specimen doesn’t have. In other words, one might
hope that these results can be generalised to any system of the form depicted
in Figure 4.1.

Figure 4.1: Generalising the results of the Trademarks safety analysis.

In Figure 4.1, the bold arrows from the cloud labelled “other objects”
indicate that there could be multiple objects in this cloud that have capabil-
ities to Guard and/or Stamped. The bold arrow from Stamped to the cloud
represents Stamped possessing capabilities to some subset of objects in the
cloud. The objects within the cloud can have any behaviour permitted in
our model and can be interconnected in any way at all. We will generalise
the results obtained earlier to all such systems.

Consider the (infinite) set of finite systems represented by the depiction
in Figure 4.1. Let I denote this set of systems. In order to generalise our
analysis results to all systems in I, we must find a finite collection, C, of
finite systems, each of which FDR can analyse, such that if the analysis
holds for all systems in C, it holds for all systems in I.

We use a two-step approach to achieve this. We begin by showing that
any particular finite system, System ∈ I, represented by the depiction in
Figure 4.1, can be safely captured by a finite abstraction, System ′, that
has the form of the system depicted in Figure 3.1, but where the cloud is
replaced by a single untrusted object, Specimen, which is given all of the
facets and all of the capabilities of all of the objects it replaces. Borrowing
from Spiessens [Spi07], we call this idea, by which a collection of objects is
replaced by a single one, aggregation. We also say that System ′ is a safe
abstraction of System. We then use the theory of data-independence to
show that it suffices to analyse just a finite set C of finite System ′ in order

4.1 Generalising Previous Results 56

to obtain results that apply to all possible finite System ∈ I.
Recall that the basic ideas of data-independence were introduced in Sec-

tion 2.3.6 and, as argued there, Theorem 2.3.5 has been (implicitly) applied
throughout this thesis so far to allow our results, for patterns and properties
that are indifferent to data, to generalise over all choices for the set Data.

4.1.1 Safe Abstraction and Aggregation

We begin by formalising the first step of this process, which is using ag-
gregation to build safe abstractions of systems. Given some finite system,
System, that we wish our results to generalise to, we define what it means
for some other finite system, System ′, to be a safe abstraction of System.
This occurs precisely when any analysis result in which we are interested
that holds for System ′ also holds for System.

Recall, from Section 2.1.4, that the safety properties examined in the pre-
vious chapter are refinement-closed (see Definition 2.1.2) in the traces model,
meaning that each holds for System if and only if it holds for all of System’s
traces refinements. Recall that one system is a traces refinement of another,
when all sequences of visible events that can occur in the first can occur in
the second. (In our case modelling object-capability systems, one system is
a traces refinement of another when every sequence of message exchanges
that can occur in the first can occur in the second.) We therefore insist that
in order for System ′ to be a safe abstraction of System with respect to these
properties, that the traces refinements of System ′ include all traces refine-
ments of System. This occurs when System ′ is an anti-traces-refinement of
System (since refinement is transitive), i.e. when System ′ vT System. This
argument can be generalised from the traces model to properties that are
refinement-closed in any CSP model M. Letting M denote an arbitrary
CSP model, recall that we write P vM Q to mean that Q is a refinement
of P in the model M.

Definition 4.1.1 (Safe Abstraction wrt Refinement-Closed Properties).
One process P is a safe abstraction of another process Q with respect to
properties that are refinement-closed in some model M iff P vM Q.

We now formally define the process by which a system, System ∈ I,
might be abstracted by a system, System ′, in which a collection K of objects
in System is replaced by a single object o in System ′. Borrowing Spiessens’
terminology, we say that o aggregates all of the objects in K. o must be
able to exhibit every behaviour, when run in System ′, that can be exhibited
by the collection K of objects it aggregates in System. This implies that o
must expose every facet, and possess every capability and datum, of every
object in K.

We formalise this idea by defining a surjective function, Abs, that maps
object names in System to corresponding object names in System ′. Each

4.1 Generalising Previous Results 57

object o′ in System ′ aggregates the set of objects in System that are mapped
to it under Abs, i.e. Abs−1(o′). Aggregation is formally defined as follows.

Definition 4.1.2 (Aggregation). Let (Object , behaviour , facets,Data) be
an object-capability system captured by the CSP process System =

‖
o∈Object

(behaviour(o), α(o)). Then another object-capability system,

(Object ′, behaviour ′, facets ′,Data), with identical data and captured by the
CSP process System ′ = ‖

o∈Object ′
(behaviour ′(o), α′(o)), is an aggregation of

the first when there exists some surjection Abs : Object → Object ′ such that
for all o′ ∈ Object ′, facets ′(o′) =

⋃
{facets(o) | o ∈ Abs−1(o′)} and

∀ s ∈ traces(System) • ∀X ∈ P Σ •
(s |̀ α′(o′), X) ∈ failures(‖

o∈Abs−1(o′)
(behaviour(o), α(o)))⇒

(s |̀ α′(o′), X) ∈ failures(behaviour ′(o′)).

(4.1)

Note that from Definition 2.3.1, this definition implies that for each
o′ ∈ Object ′, α′(o′) =

⋃
{α(o) | o ∈ Abs−1(o′)}.

It is easily shown that all aggregations are safe abstractions with respect
to refinement-closed properties. We show this with respect to properties
that are refinement-closed in the failures-divergences model.

Theorem 4.1.3. Let (Object , behaviour , facets,Data) and (Object ′,
behaviour ′, facets ′,Data) be two object-capability systems with identical
data captured by the CSP processes System = ‖

o∈Object
(behaviour(o), α(o))

and System ′ = ‖
o∈Object ′

(behaviour ′(o), α′(o)) respectively, such that

System ′ is an aggregation of System. Then System ′ v System.

Proof. Suppose the conditions of the lemma. From Definition 2.3.1, both
System and System ′ must be divergence-free. Hence, we need to show only
that failures(System) ⊆ failures(System ′). Consider some failure (s,X) ∈
failures(System) then. We show that it is also present in failures(System ′).

(s,X) ∈ failures(System)

⇔ {associativity}

(s,X) ∈ failures(‖
o′∈Object ′

(
‖
o∈Abs−1(o′)

(behaviour(o), α(o)), α′(o′)
)

)

⇔ {alphabetised parallel composition}
∃{Xo′ | o′ ∈ Object ′} • ∀ o′ ∈ Object ′ •
(s |̀ α′(o′), Xo′) ∈ failures(‖

o∈Abs−1(o′)
(behaviour(o), α(o))) ∧⋃

o′∈Object ′ Xo′ ∩ α′(o′) = X ∩
⋃
o′∈Object ′ α

′(o′)

⇒ {assumption}
∃{Xo′ | o′ ∈ Object ′} • ∀ o′ ∈ Object ′ •
(s |̀ α′(o′), Xo′) ∈ failures(behaviour ′(o′)) ∧⋃

o′∈Object ′ Xo′ ∩ α′(o′) = X ∩
⋃
o′∈Object ′ α

′(o′)

⇔ {alphabetised parallel composition}
(s,X) ∈ failures(System ′)

4.1 Generalising Previous Results 58

Note that this result implies that all aggregations are also safe abstrac-
tions with respect properties that are refinement-closed in the traces or
stable-failures models as well since, in the proof above, System is necessar-
ily also a traces and stable-failures refinement of System ′ because System ′

is divergence-free.
This result implies that all behaviours (recorded in the failures-

divergences model) that can be observed of a system, can also be observed
in any valid aggregation of that system. However, this does not prevent
extra behaviours from being exhibited in the aggregation that cannot be
exhibited in the original system. In this sense, an aggregation is usually
(what Spiessens calls) an over approximation of the system that it aggre-
gates, because it may exhibit behaviours that cannot be observed of the
original system and so properties might fail to hold for the aggregation that
otherwise hold for the system being aggregated. However, we can be sure
that no property that is refinement-closed in the traces, stable-failures or
failures-divergences model can ever hold for an aggregation but fail to hold
for a system that it aggregates.

4.1.2 Aggregation via Untrusted Objects

We now prove some results that show how untrusted objects can be used to
build aggregations (and, hence, safe abstractions) of systems by replacing a
collection of objects by a single untrusted one. We first consider the general
case and then consider the single-threaded case.

We first show that in any object-capability system, any finite collection,
U , of objects can be replaced by a single UntrustedOS object that has all of
U ’s facets, capabilities and data, yielding another object-capability system
that is an aggregation of the first. We then prove the analogues of this result
for the single-threaded case: that in a single-threaded object-capability sys-
tem, (1) any finite collection U of initially inactive objects can be aggregated
by a single Untrusted lang object that has all of their facets, capabilities and
data; and (2) any finite collection U of objects that includes the initially
active object, can be aggregated by a single UntrustedActive lang object that
has all of their facets, capabilities and data. In either single-threaded case,
the aggregation yields another single-threaded system.

For each of these results, it is enough to show that the result holds when
U has size 2. This result can then be extended to all finite non-empty sets U
by induction.

The General Case

Theorem 4.1.4. Let (Object , behaviour , facets,Data) and (Object ′,
behaviour ′, facets ′,Data) be two object-capability systems with identical

4.1 Generalising Previous Results 59

data captured by the CSP processes System = ‖
o∈Object

(behaviour(o), α(o))

and System ′ = ‖
o∈Object ′

(behaviour ′(o), α′(o)) respectively, such that Object

has size at least 2 and
∣∣Object ′

∣∣ = |Object |− 1. Let o1 and o2 be elements of
Object and Abs : Object → Object ′ be a surjection that maps each element
of Object to a unique element of Object ′, except o1 and o2 which are mapped
to the same element p′, such that:

∀ o′ ∈ Object ′ − {p′} • behaviour ′(o′) = behaviour(o) ∧
facets ′(o′) = facets(o),where Abs−1(o′) = {o}; and

behaviour ′(p′) =
UntrustedOS (facets ′(p′), caps(o1) ∪ caps(o2), data(o1) ∪ data(o2)),

where
facets ′(p′) = facets(o1) ∪ facets(o2)

and caps and data are the functions that give the minimal set of initial
capabilities and data respectively for each object o ∈ Object (see Defini-
tion 2.3.1). Then System ′ is an aggregation of System.

Proof. Suppose the conditions of the theorem and consider some o′ ∈
Object ′. Clearly, facets ′(o′) =

⋃
{facets(o) | o ∈ Abs−1(o′)}. We prove

Equation 4.1 is satisfied.
If o′ 6= p′ then, letting p be the unique element of Object such

that Abs(p) = o′, then ‖
o∈Abs−1(o′)

(behaviour(o), α(o)) ≡FD behaviour(p).

Hence, Equation 4.1 is trivially satisfied.
Otherwise, o′ = p′. Let Pp′ = ‖

o∈Abs−1(p′)
(behaviour(o), α(o)), then

Pp′ = behaviour(o1) α(o1)‖α(o2) behaviour(o2).

Similarly, let Qp′ be defined as

Qp′ = UntrustedOS (facets(o1), caps(o1), data(o1)) α(o1)‖α(o2)

UntrustedOS (facets(o2), caps(o2), data(o2)).

Then, by Definition 2.3.1, Qp′ vFD Pp′ . Consider an arbitrary trace
s ∈ traces(System) and an arbitrary failure (s |̀ α′(p′), X) ∈ failures(Qp′).
It suffices to show that (s |̀ α′(p′), X) is a failure of behaviour ′(p′) =
UntrustedOS (facets ′(o′), caps(o1) ∪ caps(o2), data(o1) ∪ data(o2)).

Because behaviour(p′) and Qp′ are both divergence-free (by Defini-
tion 2.3.1) and behaviour(p′) can deadlock at any time, it is enough to show
that s |̀ α′(p′) ∈ traces(behaviour ′(p′). We do so by induction on the length
of s |̀ α′(p′).

The base case holds trivially since 〈〉 is a trace of every process.
For the inductive case, the induction hypothesis says that for all s ∈

traces(System), #(s |̀ α′(p′)) = n ⇒ s |̀ α′(p′) ∈ traces(behaviour ′(p′)).

4.1 Generalising Previous Results 60

Consider some trace s ∈ traces(System) such that #(s |̀ α′(p′)) = n+ 1. We
show that s |̀ α′(p′) ∈ traces(behaviour ′(p′)).

Let t̂ 〈e〉 = s|̀ α′(p′). Then t has length n, so by the induction hypothesis,
t ∈ traces(behaviour ′(p′)). We must show that the e can follow, after this
process has performed t.

e ∈ α(o1) ∪ α(o2). So let i ∈ {1, 2} be such that e ∈ α(oi). Then

s |̀ α′(p′) |̀ α(oi)ˆ〈e〉 ∈ traces(behaviour(oi)).

By Lemma A.0.1 (from Appendix A) and Definition 2.3.1,

UntrustedOS (facets ′(p′), caps(o1) ∪ caps(o2), data(o1) ∪ data(o2)) vFD
UntrustedOS (facets(oi), caps(oi), data(oi)) vFD behaviour(oi).

Hence,
s |̀ α′(p′) |̀ α(oi)ˆ〈e〉 ∈ traces(behaviour ′(p′)).

By Lemma A.0.2 (from Appendix A), s |̀ α′(p′)ˆ〈e〉 must also be a trace of
behaviour ′(p′).

The Single-Threaded Case

We now prove the analogues of Theorem 4.1.4 for the single-threaded case.

Theorem 4.1.5. Let (Object , behaviour , facets,Data) and (Object ′,
behaviour ′, facets ′,Data) be two single-threaded object-capability sys-
tems with identical data, captured by the CSP processes System =

‖
o∈Object

(behaviour(o), α(o)) and System ′ = ‖
o∈Object ′

(behaviour ′(o), α′(o))

respectively, such that Object has size at least 3 and
∣∣Object ′

∣∣ = |Object |−1.2

Let o1 and o2 be members of Object that are initially inactive in System.
Let Abs : Object → Object ′ be a surjection that maps each element of Object
to a unique element of Object ′ except for o1 and o2 which are both mapped
to the same element p′, such that:

∀ o′ ∈ Object ′ − {p′} • behaviour ′(o′) = behaviour(o) ∧
facets ′(o′) = facets(o),where Abs−1(o′) = {o}; and

behaviour ′(p′) =
Untrusted lang(facets ′(p′), caps(o1) ∪ caps(o2), data(o1) ∪ data(o2)),

where facets ′(p′) = facets(o1) ∪ facets(o2), and caps and data are the func-
tions that give the minimal set of initial capabilities and data respectively
for each object o ∈ Object (see Definition 2.3.2).

Then System ′ is an aggregation of System.

2We require Object to have size at least 3 because it must contain at least 2 initially
inactive objects to be aggregated in addition to the single object that is initially active.

4.1 Generalising Previous Results 61

Proof. Suppose the conditions of the lemma. Following the proof of Theo-
rem 4.1.4, let Qp′ = Untrusted lang(facets(o1), caps(o1), data(o1)) α(o1)‖α(o2)

Untrusted lang(facets(o2), caps(o2), data(o2)). Then, by Definition 2.3.2 and
Lemma A.0.1 (from Appendix A), it is sufficient to show that for every trace
s ∈ traces(System), if s |̀ α′(p′) is a trace of Qp′ , then it is also a trace of
behaviour ′(p′).

We do so by induction on the length of the trace s |̀ α′(p′). To complete
this inductive proof, we strengthen the claim to also require that, after
behaviour(p′) has performed some trace s |̀ α′(p′), p′ is active if and only if
o1 is active or o2 is active after Qp′ has performed the same trace.

The proof by induction then follows the same structure as in the previous
proof. For the inductive case, we must show that behaviour ′(p′) can perform
some event e after performing a trace t, as before. There are two cases to
consider: e ∈ {|f1, f2 | f1 ∈ facets(o1), f2 ∈ facets(o2)|} or not. The first
case holds straightforwardly, applying Lemma A.0.3 (from Appendix A) in
a similar manner to the application of Lemma A.0.2 in the previous proof.

In the second case, e /∈ {|f1, f2 | f1 ∈ facets(o1), f2 ∈ facets(o2)|}, e
represents one of the objects, o1 or o2, receiving a message from some other
object that is not o1 or o2. From Lemma 2.3.4, both o1 and o2 must be
inactive after Qp′ performs t and, from the induction hypothesis, so must p′.
Applying Lemma A.0.3 again, we can show that behaviour(p′) can perform e
after t, since one of the components of Qp′ can. Once e has been performed,
whichever object (o1 or o2) was involved in performing e becomes active, as
does p′. Hence, the claim remains true as required.

Theorem 4.1.6. Let (Object , behaviour , facets,Data) and (Object ′,
behaviour ′, facets ′,Data) be two single-threaded object-capability sys-
tems with identical data, captured by the CSP processes System =

‖
o∈Object

(behaviour(o), α(o)) and System ′ = ‖
o∈Object ′

(behaviour ′(o), α′(o))

respectively, such that Object has size at least 2 and
∣∣Object ′

∣∣ = |Object |−1.
Let o1 ∈ Object be the object that is initially active in System and
o2 ∈ Object be another arbitrary object. Let Abs : Object → Object ′ be a
surjection that maps each element of Object to a unique element of Object ′

except for o1 and o2 which are both mapped to the same element p′, such
that:

∀ o′ ∈ Object ′ − {p′} • behaviour ′(o′) = behaviour(o) ∧
facets ′(o′) = facets(o),where Abs−1(o′) = {o}; and

behaviour ′(p′) =
UntrustedActive lang(facets ′(p′), caps(o1) ∪ caps(o2), data(o1) ∪ data(o2)),

where facets ′(p′) = facets(o1)∪facets(o2) and caps and data are the functions
that give the minimal set of initial capabilities and data respectively for each
o ∈ Object (see Definition 2.3.2).

Then System ′ is an aggregation of System.

4.1 Generalising Previous Results 62

Proof. This proof is a straightforward adaptation of that for Theorem 4.1.5.

4.1.3 Data-Independence on Aggregated Identities

Theorem 4.1.4 proves that any (finite) system represented by Figure 4.1, is
safely abstracted by the system that has the form of Figure 3.1, in which
Specimen has all of the facets, capabilities and data of each of the objects
that it aggregates.

Running with this example for the remainder of this subsection, let U
be the set of objects that make up the cloud in Figure 4.1 and let T =⋃
{facets(u) | u ∈ U}. Then each (finite) system represented by this

figure corresponds to a different (finite) value for T . To verify that this
pattern is safe in all such systems, we can check that the pattern is safe in all
systems SystemT that have the form of Figure 3.1, where facets(Specimen) =
T for each. In other words, we need to verify the safety of SystemT for all
non-empty choices for the set T .

We do so by treating T as a type in which (as we will show) SystemT is
data-independent (see Section 2.3.6). We can then apply data-independence
theory to derive a data-independence threshold for T that allows us to verify
SystemT for all choices for T by checking SystemT for just a few concrete
choices for T whose size are less than or equal to the threshold.

We must first show that SystemT is, indeed, data-independent in T =
facets(Specimen). We begin by writing this system, and all components of
it, so as to be parameterised by the set T , giving the process SystemT .

SystemT = ‖
o∈Object

(behaviourT (o), αT (o)),

where for all o ∈ Object = {Specimen, Stamped, Slot,Guard},

αT (o) = {f.c.op.arg , c.f.op.arg |
f ∈ facetsT (o), op ∈ {Call,Return},
c ∈ T ∪ {SlotRead, SlotWrite,Guard, Stamped},
arg ∈ T ∪ {SlotRead,SlotWrite,Guard,Stamped, null} ∪Data};

facetsT (Specimen) = T and facetsT (o) = facets(o) as before otherwise.
We then define behaviourT for each of the objects in the system as

shown in Snippets 4.1 – 4.2. We can see from inspection that each
of the behaviours and, hence, the entire system is data-independent in
T . Writing the safe Trademarks specification, which recall is the process
SafeGuard(Guard, {Stamped}) from Snippet 3.3, in terms of T gives the
process SpecT , which is also clearly data-independent in T and appears in
Snippet 4.3.

Letting SafeGuardEventsT = {|from.Guard.Call,Guard.from.Return |
from ∈ T ∪ {Stamped, SlotRead, SlotWrite}|}, we want to show for all non-
empty T that

SpecT vT SystemT \ (Σ− SafeGuardEventsT).

4.1 Generalising Previous Results 63

behaviourT (Guard) =
let

AllFroms = T ∪ {Stamped,SlotRead,SlotWrite},
AllCaps = T ∪ {Stamped, SlotRead, SlotWrite,Guard},
AllVals = AllCaps ∪Data ∪ {null}

within
?from : AllFroms!Guard!Call?specimen : AllCaps →
Guard!SlotWrite!Call!null→ SlotWrite!Guard!Return!null→
Guard!specimen!Call!null→ specimen!Guard!Return!null→
Guard!SlotRead!Call!null→ SlotRead!Guard!Return?val : AllVals →
if val = specimen then
Guard!from!Return!Guard→ behaviourT (Guard)

else Guard!from!Return!null→ behaviourT (Guard)

behaviourT (Slot) =
let ST (val) =

let
AllFroms = T ∪ {Stamped,Guard},
AllVals = T ∪ {Stamped,SlotRead,SlotWrite,Guard, null} ∪Data,

within
?from : AllFroms!SlotRead!Call!null→
SlotRead!from!Return!val → ST (val) �

?from : AllFroms!SlotWrite!Call?newVal : AllVals →
SlotWrite!from!Return!null→ ST (newVal)

within ST (null)

behaviourT (Stamped) =
let

AllFroms = T ∪ {SlotRead,SlotWrite,Guard},
AllTos = T ∪ {SlotRead,Guard},
AllVals = T ∪ {Stamped, SlotRead, SlotWrite,Guard, null} ∪Data,
AllArgs = T ∪ {Stamped,SlotRead,Guard, null} ∪Data,

within

Stamped?to : AllTos?op : {Call,Return}?arg : AllArgs →
behaviourT (Stamped) �

Stamped!Stamped?op : {Call,Return}?arg : AllArgs ∪ {SlotWrite} →
behaviourT (Stamped) �

Stamped!SlotWrite!Call!Stamped→ behaviourT (Stamped)
?from : AllFroms!Stamped?op : {Call,Return}?arg : AllVals →

behaviourT (Stamped)


u STOP

Snippet 4.1: Object behaviours in terms of T = facets(Specimen).

4.1 Generalising Previous Results 64

behaviourT (Specimen) =
let P (caps) =

let
AllFroms = {Guard, Stamped, SlotRead,SlotWrite},
AllVals = T ∪ {Stamped,SlotRead,SlotWrite,Guard, null} ∪Data,
AllArgs = T ∪ caps ∪ {null} ∪Data,
AllTos = T ∪ caps,
AllCaps = T ∪ {Stamped, SlotRead, SlotWrite,Guard}

within
?from : T?to : AllTos?op : {Call,Return}?arg : AllArgs →
P (caps) �

?from : AllFroms?to : T?op?arg : AllVals →
P (caps ∪ ({arg , from} ∩AllCaps))


u STOP

within P (T ∪ {Guard, Stamped})

Snippet 4.2: Specimen’s behaviour in terms of T = facets(Specimen).

We will use standard data-independence results to argue that 2 is a sufficient
data-independence threshold for T to show this result.

SpecT =
let

AllFroms = T ∪ {Stamped,SlotRead,SlotWrite},
AllCaps = T ∪ {Stamped, SlotRead,SlotWrite,Guard}

within
?from : AllFroms!Guard!Call?specimen : AllCaps →

if specimen = Stamped then(
Guard!from!Return!Guard→ SpecT u
Guard!from!Return!null→ SpecT

)
else Guard!from!Return!null→ SpecT

Snippet 4.3: Safe Trademarks spec in terms of T = facets(Specimen).

Applying Data-Independence Theorems to our System

Recall that data-independence theorems distinguish between different prop-
erties of a system, such as whether its operational semantics contains no
equality tests between members of T . Recall that in this case, we say that
the system satisfies the property NoEqTT . SystemT clearly does not sat-
isfy NoEqTT because behaviourT (Guard), which appears in Snippet 4.1,

4.1 Generalising Previous Results 65

contains the explicit equality test “val = specimen” in which the values
being compared might both be from T .

For processes that contain equality tests, data-independence theorems
distinguish between two kinds of processes. Roughly speaking, a process is
said to satisfy the condition PosConjEqTT if it becomes STOP whenever
an equality test between members of T fails. (This definition is good enough
for our purposes. A more precise formulation appears in [Laz99].) SystemT

doesn’t satisfy PosConjEqTT because behaviourT (Guard) does not.
The relevant data-independence theorem from [Ros97]3, for systems that

satisfy neither NoEqTT nor PosConjEqTT that is applicable to SystemT

and SpecT , can be applied to show that 8 is a sufficient data-independence
threshold for T . This theorem implies that we can verify the Trademarks
pattern for all systems captured by Figure 4.1 by performing 7 relatively
cheap refinement tests in FDR, on top of those already performed in the
previous chapter.

In general, however, this approach doesn’t scale very well. Increasing
the data-independence threshold by 1 roughly doubles the complexity of the
associated refinement check. This has significant consequences later on when
we further generalise the analysis performed here to systems containing an
arbitrary number of stamped objects. Doing so effectively doubles the data-
independence threshold. Hence, it is in our interest to find a means by which
the lowest data-independence threshold can be used here.

For systems that satisfy NoEqTT or PosConjEqTT , one can usually
find data-independence thresholds of no more than 2 for traces refinement
checks. Whilst SystemT doesn’t satisfy PosConjEqTT , we can build a
safe abstraction of it that does. This then enables us to derive a data-
independence threshold of 2 for our safety property.

Observe that Snippet 4.4, which redefines behaviourT (Guard) so as to sat-
isfy PosConjEqTT , is a traces anti-refinement of behaviourT (Guard) from
Snippet 4.1. Hence, when used in place of the original in SystemT , any trace
of the original SystemT will also be present in the new SystemT . Hence, if
the new system is safe, the original one will be as well.

Let this new definition of behaviourT (Guard) replace the original in
SystemT . We will use results that underlie the theory of data-independence
to show that if SystemT is not safe for some set T with size greater than
2, then SystemT is not safe when T is of size 2. We do so by adopting an
approach taken by Roscoe and Broadfoot [RB99] to solve a similar problem
in the context of verifying cryptographic protocols.

The basic idea is to relate the behaviours of a large system in which
|T | > 2 to those of a small system in which |T | = 2 and to show that the
presence of unsafe behaviours in the former imply the presence of related
unsafe behaviours in the latter, which will show up when the safety property
is applied to the small system. Fix T for some large system such that

3The relevant theorem is Theorem 15.2.3. For brevity, we avoid quoting it here.

4.1 Generalising Previous Results 66

behaviourT (Guard) =
let

AllFroms = T ∪ {Stamped,SlotRead,SlotWrite},
AllCaps = T ∪ {Stamped, SlotRead, SlotWrite,Guard},
AllVals = AllCaps ∪ {null} ∪Data

within
?from : AllFroms!Guard!Call?specimen : AllCaps →
Guard!SlotWrite!Call!null→ SlotWrite!Guard!Return!null→
Guard!specimen!Call!null→ specimen!Guard!Return!null→
Guard!SlotRead!Call!null→ SlotRead!Guard!Return?val : AllVals →
Guard!from!Return!null→ behaviourT (Guard)
u
(if val = specimen then
Guard!from!Return!Guard→ behaviourT (Guard)

else STOP)


Snippet 4.4: A PosConjEqTT traces anti-refinement of behaviourT (Guard).

|T | > 2 and let T ′ be any 2-element set, which is used in place of T in the
small system. The relation between behaviours is constructed by taking a
surjective function φ : T → T ′ that maps each member of T to a member
of T ′. Observe that φ cannot be injective.

We write φ(T) to mean {φ(t) | t ∈ T} which is of course equivalent to
T ′. Given a process, PT , that is parameterised by T , we write Pφ(T) to mean
PT with T replaced by φ(T) = T ′ and the renaming induced by φ applied
to the values of any parameters that contain members of T that appear in
PT . Given a trace of events s, we write φ(s) to mean the result of applying
φ to each component of each event of type T in s. As argued by Roscoe and
Broadfoot [RB99], it can be shown that if PT is data-independent in T and
satisfies PosConjEqTT and φ is any function whose domain is T , then

{φ(s) | s ∈ traces(PT)} ⊆ traces(Pφ(T)) (4.2)

Given any surjection φ : T → T ′, observe that, for our sys-
tem, Systemφ(T) = SystemT ′ . This is because all components, such as
behaviourT (Stamped), of SystemT that take parameters containing values
of type T in-fact take the every member of T , which will map to the en-
tirety of T ′ under φ.

Equation 4.2 implies, then, that any unsafe trace, s, in the large system
will show up in the small system as the trace φ(s), for all φ : T → T ′.
It then remains to be shown that for all such unsafe traces s of the large
system, there exists some φ : T → T ′ such that φ(s) is not present in the
safety specification process SpecT ′ – meaning that this safety violation will
be detected in the small system, SystemT ′ .

4.1 Generalising Previous Results 67

So consider the unsafe traces, s, that the large system might exhibit.
These are those that are not present in SpecT , which appears in Snippet 4.3,
but might be present in SystemT \ (Σ − SafeGuardEventsT), where recall
SafeGuardEventsT = {|from.Guard.Call,Guard.from.Return | from ∈ T ∪
{Stamped,SlotRead,SlotWrite}|}.

• s might contain two consecutive Call or Return events, which would
certainly show up as two consecutive Call or Return events in φ(s) and
would thus not be present in SpecT ′ .

• s might instead contain a subsequence 〈from.Guard.Call.specimen,
Guard.from ′.Return.res〉, where from 6= from ′, in which Guard Returns
to the wrong object. The only circumstance in which this safety viola-
tion won’t be detected by SpecT ′ is when from and from ′ are both mem-
bers of T and for all φ : T → T ′ it is the case that φ(from) = φ(from ′).
This is clearly impossible, however, since |T ′| = 2 so we can always
find some φ that maps from to one element of T ′ and from ′ to the
other.

• Finally, s might contain a subsequence 〈from.Guard.Call.specimen,
Guard.from.Return.Guard〉 where specimen 6= Stamped. In this case,
φ(s) will contain a similar subsequence 〈from ′.Guard.Call.specimen ′,
Guard.from ′.Return.Guard〉, where specimen ′ 6= Stamped too and thus
this safety violation will be detected in the small system as well.

Therefore, if we can show that no safety violation occurs in SystemT

when |T | = 2 and |T | = 1, we can conclude that no safety violation can
occur in any SystemT when |T | > 2 and that, therefore, the Trademarks
implementation remains safe in all systems captured by Figure 4.1. FDR
reveals that the refinement check holds in both cases, with each check com-
pleting in under a second.

We have shown that a single instantiation of the Trademarks imple-
mentation in any system of the form of Figure 4.1 is safe. This effectively
generalises the safety results to any system in which this pattern is deployed
in which a single stamped object exists. We can generalise these results
further, however, to any system in which this pattern is deployed in which
multiple stamped objects exist. We do so in the following subsection in
order to conclude the safety analysis of the Trademarks implementation.

4.1.4 Concluding the Trademarks Safety Analysis

Observe that any system in which the Trademarks implementation is cor-
rectly deployed will contain a guard, some stamped objects and some other
objects. Each stamped object may have arbitrary capabilities, whilst none
of the other (non-stamped) objects will have capabilities to the guard’s slot.
Any such system is therefore captured by Figure 4.2.

4.1 Generalising Previous Results 68

Figure 4.2: Concluding the Trademarks safety analysis.

Consider an arbitrary system, System, captured by this figure. Let U
denote the set that contains all facets of all objects in the cloud labelled
“stamped objects” and let T denote the set that contains all facets of all
objects in the cloud labelled “other objects”. We assert that System can be
safely abstracted by a system, SystemT,U , of the form of Figure 3.1, where
facets(Specimen) = T and facets(Stamped) = U , in which the behaviour of
Stamped is extended to aggregate all of the stamped objects in System.

In order to ensure that Stamped properly aggregates all stamped ob-
jects from System, we need to extend its behaviour so that it: has and
makes use of multiple facets (so that it can accommodate each of the facets
in U), can send messages between its facets (to model communication be-
tween the stamped objects in System), and may place any capability to
any of its facets in its slot (to model any of the stamped objects it ag-
gregates placing a capability to itself in their common slot). Extending
the behaviour of a stamped object in this way yields the new process
AStamped(facets, slotW , caps, data) in Snippet 4.5, which is now param-
eterised by the set facets that contains its facets, rather than its single
identity me as before (see Snippet 3.4).

We claim whilst neglecting to show, based on the similarity between
this definition of AStamped and that of UntrustedOS , that a result analo-
gous to Theorem 4.1.4 can be proved to show that any finite collection of
stamped objects can be aggregated by a single instance of AStamped above.
Hence, System can be safely abstracted by SystemT,U , which has the form
of Figure 3.1, when Stamped’s behaviour is

AStamped(U,SlotWrite, T ∪ U ∪ {Guard, SlotRead, SlotWrite},Data).

SystemT,U can be defined similarly to SystemT from the previous section,
with each object behaviour also expressed in terms of the sets T and U , as
can the specification SpecT,U . Note that we use the new PosConjEqT-
satisfying definition of Guard’s behaviour. Doing so reveals that SystemT,U

is data-independent in both T and U and satisfies both PosConjEqTT and
PosConjEqTU as one would expect. Similar arguments can be made to

4.1 Generalising Previous Results 69

AStamped(facets, slotW , caps, data) =
let caps ′ = (caps − {slotW }) within

?me : facets?to : caps ′?op?arg : caps ′ ∪ data ∪ {null} →
AStamped(facets, slotW , caps, data) �

?from : facets?to : facets?op?arg : caps ∪ data ∪ {null} →
AStamped(facets, slotW , caps, data) �

?from : facets!slotW !Call?arg : facets →
AStamped(facets, slotW , caps, data) �

?from : Capability − facets?me : facets?op?arg →
let C ′ = {arg , from} ∩ Capability ;D′ = {arg} ∩Data within

AStamped(facets, slotW , capsC ′, data ∪D′)


u STOP

Snippet 4.5: An aggregation of multiple stamped objects.

those before that 2 is a sufficient data-independence threshold for each set T
and U . Therefore, we conclude that if this system is safe for all choices of
T and U of size 1 and 2, that it will be safe for all non-empty choices of T
and U .

We must therefore carry out 2 refinement checks in FDR (one in which
|U | = 2 ∧ |T | = 1, the other in which |U | = |T | = 2), on top of those
carried out in the previous section. Carrying out these tests reveals that
the system is safe in both cases; the tests take no more than a few seconds
to complete. This is in sharp contrast to the tests required here for the
original (non-PosConjEqT) definition of Guard’s behaviour, which involve
thresholds for both T and U of 8 and take around 24 hours to complete!

This generalises the safety results for this pattern obtained in the pre-
vious chapter to any system in which it might be deployed where stamped
objects carry only a single trademark. We leave further generalisation of
the safety results for this pattern as future work.

4.1.5 Generalising the Sealer-Unsealer Safety Analysis

We can also apply these same basic techniques to easily generalise the safety
analysis of the single-threaded recursively-invocable Sealer-Unsealer from
Section 3.2 to all single-threaded systems that have the form of Figure 4.3.

Let System be an arbitrary system captured by Figure 4.3 and let T
denote the facets of the objects in the “other objects” cloud. Then System
is safely abstracted by the system SystemT that has the form of Figure 3.2
in which facets(Alice) = T . Because SystemT contains no equality tests
between members of T , it satisfies NoEqTT .

Recall that the specification process against which the system in Fig-
ure 3.2 is checked, to assert that the Sealer-Unsealer implementation is safe,

4.1 Generalising Previous Results 70

Figure 4.3: Generalising the Sealer-Unsealer safety analysis.

is the process SafeUnsealerR from Snippet 3.9. Theorem 2.3.5 is not ap-
propriate for this specification. However, we can apply another theorem
from [Ros97, Section 15.2] instead, namely Theorem 15.2.2 which we avoid
quoting here for brevity, which implies that a threshold for T of 2 is sufficient
for verifying the safety of the Sealer-Unsealer in SystemT . The refinement
check required to test this safety property when |T | = 2 takes less than
30 seconds to complete in FDR. The test passes, thereby generalising the
Sealer-Unsealer safety analysis to all systems captured by Figure 4.3.

4.1.6 Summary

We have shown how to generalise the results obtained in the previous chap-
ter to arbitrary-sized systems. To do this, we developed the theory of
safe abstraction and aggregation from Section 4.1.1, inspired by similar
ideas of Spiessens [Spi07], and coupled this with CSP’s theory of data-
independence [Laz99].

We saw that patterns that make use of EQ can require more work when
applying this technique, when the systems in question don’t satisfy NoEqT
for the relevant data-independent types. Most patterns (the Sealer-Unsealer
included) don’t make use of EQ4 and so these techniques should be easy to
apply in most cases. For patterns that do make use of EQ , and don’t
satisfy NoEqT, we have seen that it is sometimes possible to still obtain
easily tractable thresholds by manually constructing PosConjEqT safe ab-
stractions of these patterns. Therefore, we have reason to believe that the
techniques demonstrated here ought to be fairly widely applicable.

This demonstration that patterns that don’t make use of EQ are easier
to formally analyse, provides some formal justification to the opinion held
by some object-capability practitioners that limiting the use of EQ can be
desirable (see e.g. [Tri06]).

Note that whilst we have been able to generalise our earlier results to a
considerable degree, we still cannot claim that the analysis performed here

4Indeed, some object-capability systems provide no EQ primitive whatsoever.

4.2 Handling Object Creation 71

is fully exhaustive. One further generalisation, for example, would be to
systems that allow an object to be recursively invoked an arbitrary number
of times. We leave this as future work.

4.2 Handling Object Creation

So far, we have quietly ignored the issue of object creation. Recall from
Section 2.2, that, in most object-capability systems, each object has the
ability to create new objects. Upon creating an object, o, the creator is
exclusively given a capability that refers to o. The creator, p, (and only
the creator) of an object, o, may initially endow it with a subset of p’s
capabilities. p, as the sole recipient of the initial capability that refers to
o, therefore has complete control over those objects that o might come to
interact with in its lifetime.

In some object-capability systems, like almost all object-capability lan-
guages including E, Cajita and Joe-E, any object has the ability to create
an arbitrary number of new objects5. In others, like object-capability op-
erating systems including seL4, EROS and KeyKOS, the ability to create
new objects can be limited, perhaps by the total amount of memory allo-
cated to an object for itself and its children6. In any case, we have so far
avoided explicitly modelling object creation in our CSP representation of
the object-capability patterns that we have analysed. We must be able to
capture object-creation in our CSP models if they are to be accurate repre-
sentations of reality. In this section, we show how the techniques developed
so far in this chapter can be used to achieve this. In doing so, we continue
to borrow ideas from the work of Spiessens [Spi07].

4.2.1 Implicit Object Creation via Aggregation

In our CSP models, each object is represented by its own CSP process.
Observe, then, that we cannot model unbounded object creation explicitly,
as this would result in the parallel composition of an unbounded number
of processes, resulting in an infinite-state system. This system would be
impossible for FDR to model-check at the time of writing when it can handle
only finite-state systems. This means that we have no choice but to represent
the arbitrary number of child objects that a single object, p, might create
as a finite, bounded collection of objects that aggregate all of p’s children
together. In most, if not all, cases, it is simplest to aggregate all of p’s
children together into a single object.

Even when aggregating all of p’s children into a single object, we still
cannot distinguish the act of p creating one child from the act of p creating

5The only exception to this of which we are aware is the work of Koš́ıc [Koš09].
6In KeyKOS and EROS, the abstraction used to track this allocation is known as the

space bank [Har85, Sha99].

4.3 Safe Revocable Membranes 72

another, since doing so would lead to a system with an unbounded number
of states. We must therefore not only aggregate children together, but also
represent the creation of different children identically. Note that this is
exactly the technique employed by Spiessens [Spi07] when facing the same
problem, although in the context of Scoll rather than CSP.

We go one step further than Spiessens, however, by avoiding explicitly
representing the act of object creation at all. While we could incorporate
extra events into our CSP models to represent object creation, doing so
appears to add little extra expressiveness whilst increasing their complexity.
Instead, our CSP models initially incorporate all possible children that might
be created. This makes our CSP models less precise abstractions of the real
systems they are modelling but, because they allow more behaviours than
real systems in question, they remain safe abstractions nonetheless.

Under this approach, generalisations performed earlier in this chapter
already cover systems with unbounded object creation. For example, Fig-
ure 4.2 represents all systems in which the “other objects” in the cloud can
each create an arbitrary number of children and each stamped object can
also create an arbitrary number of children. A child of a stamped object
may itself be stamped or not, influencing in which cloud it appears, depend-
ing on whether its parent endows it with a capability to the parent’s slot’s
write facet.

This realisation demonstrates that we already have the machinery needed
to reason about object creation; we’ve just chosen to ignore this fact until
now for ease of exposition. To make this point explicit, we now consider
the analysis of a pattern that uses unbounded object creation as part of its
normal functioning.

4.3 Safe Revocable Membranes

4.3.1 The Membrane Pattern

The Membrane pattern [Don76, Raj89, Mil06] has a long history of applica-
tion in object-capability systems; however, its basic idea has only recently
been distilled and given its current name. Its primary function is to ensure
that some behaviour or policy is applied to all capabilities that are reachable
from a particular capability. It is best understood by example.

Suppose we have three untrusted objects, Alice, Bob and Carol, and that
Alice is to have access to Bob and Bob is to have access to Carol. Alice’s
access to Bob is to be mediated in some way by an object FrwdsToBob that
sits in between Alice and Bob and forwards a subset of the messages that
it receives, from Alice, to Bob; it returns whatever response it receives from
Bob, to Alice. This scenario is depicted in Figure 4.4.

In the case in which FrwdsToBob simply forwards all messages it receives

4.3 Safe Revocable Membranes 73

Figure 4.4: Membranes by Example.

to Bob, it might behave as the process AFrwdsTo(FrwdsToBob,Bob) where

AFrwdsTo(me, target) =
?from : Capability − {me}!me!Call?arg → me!target !Call!arg →
target !me!Return?res → me!from!Return!res → AFrwdsTo(me, target).

More generally, though, FrwdsToBob might impose some kind of policy
on Alice’s access to Bob, for example by forwarding only certain kinds of
messages (perhaps forwarding only read-messages, rather than both read-
and write-messages, thereby providing Alice with read-only access to Bob),
or by forwarding messages only if some slot object, not depicted, contains
a non-null value (so that by writing a null value to the slot, Alice’s access to
Bob can be revoked7). In this way, FrwdsToBob might control Alice’s access
to Bob in accordance with some security policy that it is to enforce.

However, suppose Alice invokes FrwdsToBob with a message that contains
a capability to herself, which FrwdsToBob dutifully forwards to Bob, thereby
giving Bob a capability that refers directly to Alice. Bob can now easily pass
to Alice a capability that refers directly to himself, thereby giving Alice direct
access to Bob in violation of the security policy. Alternatively, Bob might
return to Alice (via FrwdsToBob) a capability to Carol which Alice might
then use to acquire a direct capability to Bob in violation of the policy.
Furthermore, in many instances, Alice acquiring just a direct capability to
Carol might violate the spirit of the security policy. Suppose Bob represents
a file that contains a number of component objects, including Carol, and that
FrwdsToBob forwards only read-messages. Alice obtaining direct access to
Carol might allow her to write to Carol and, in so doing, alter Bob’s contents,
despite supposedly having only read-only access to Bob.

We can see then that because it allows capabilities to pass unaltered
between Alice and Bob, FrwdsToBob is an ineffective tool for enforcing these
kinds of security policy. In the general case, it is desirable for whatever
policy FrwdsToBob enforces on Alice’s access to Bob, to also be applied to
all capabilities that pass in between Alice and Bob via FrwdsToBob. This is
the function of the Membrane pattern.

The Membrane pattern extends the behaviour of FrwdsToBob by having
it wrap all capabilities that pass via it between Alice and Bob. Wrapping
a capability, c, involves creating a new forwarding object, f , that has the
same behaviour as FrwdsToBob but has c as its target rather than Bob. f is

7This is an instance of Redell’s Caretaker pattern [Red74] for revocation.

4.3 Safe Revocable Membranes 74

then passed in place of c. In this way, f will also wrap any capabilities that
pass across it, which is exactly what is required. With this new behaviour,
FrwdsToBob and all children it creates form a so-called “membrane” that
sits between Alice and Bob, hence the name of this pattern. This mem-
brane should prevent Alice from obtaining direct access to Bob so long as,
initially, neither has any means to pass capabilities to the other except via
FrwdsToBob.

The use of object creation as a part of its proper functioning makes
the Membrane pattern an ideal candidate for analysis in order to demon-
strate how to reason about (patterns that involve) object creation using the
techniques developed earlier in this chapter.

4.3.2 Revocable Membranes

We will analyse a membrane implementation that implements a revocation
policy. Here, each forwarding object that comprises the membrane has ac-
cess to a common slot object, s, that it checks before deciding whether to
forward each invocation to its target. Invocations are forwarded so long
as s contains a non-null value. s is a special slot object that accepts only
the value null as an argument to write-messages. Hence, s will permanently
contain the value null after it has been written to for the first time. The first
write to s thus causes the membrane to be revoked. We refer to s as a gate,
the act of writing to s as closing s and s’s write-facet as its close-facet.

The behaviour of a gate with read- and close-facets readme and
closeme respectively, whose initial value is val , is captured by the process
AGate(readme, closeme, val), which is defined in Snippet 4.6.

AGate(readme, closeme, val) =
?from : Capability − {readme, closeme}!readme!Call!null→

readme!from!Return!val → AGate(readme, closeme, val) �
?from : Capability − {readme, closeme}!closeme!Call!null→

closeme!from!Return!null→ AGate(readme, closeme, null)

Snippet 4.6: The behaviour of a gate.

We wish to analyse this pattern deployed in the class of systems captured
by Figure 4.5. Here we see a revocable membrane interposed between two
disjoint clouds of objects, neither of which has access to the other except
possibly via the close facet, GateClose, of the gate object, Gate. Each cloud
is labelled with the set that comprises all facets of all objects in the cloud.
This figure seems to capture most, if not all, instantiations of this pattern
that don’t trivially break the security properties it is designed to uphold (by
e.g. providing direct access between the two clouds of “other objects”).

4.3 Safe Revocable Membranes 75

Figure 4.5: A general analysis of the revocable Membrane pattern. Each
cloud of objects is labelled with the set, T , U or V , that comprises all facets
of all objects in the cloud.

Objects that implement the membrane, upon receiving a message, first
check the value of their common gate, Gate, by invoking its read-facet,
GateRead, to decide whether to forward the message. The behaviour of the
gate is simply AGate(GateRead,GateClose,GateClose). Note that GateClose
provides a potential channel between the two clouds of objects. Indeed, it is
expected that any object in either cloud should be able to revoke the mem-
brane by invoking GateClose. However, because GateClose does not allow
the gate’s value to be updated so as to hold a capability, we expect that the
presence of this channel should not thwart the membrane.

We will model a data-independent safe abstraction that captures the
class of systems depicted in Figure 4.5. When doing so, our goal will be to
aggregate each cloud of objects in the figure into a separate object, giving a
final safe abstraction with a total of four objects, as depicted in Figure 4.6.
Here, we see a direct correspondence with the sets of facets in Figure 4.5,
indicating which object in Figure 4.6 aggregates which cloud of objects in
Figure 4.5.

Figure 4.6: A safe abstraction of the revocable Membrane pattern. Here,
facets(Alice) = T , facets(Memb) = U and facets(Bob) = V .

We will model this pattern in the single-threaded context before mod-
elling it in the concurrent context, because the former case is simpler to

4.3 Safe Revocable Membranes 76

model8.

4.3.3 The Single-Threaded Case

We will define a single-threaded system, SystemT,U,V , that has the form of
Figure 4.6 and show that it is an aggregation and, hence, safe abstraction
of any single-threaded system captured by Figure 4.5. We will then analyse
SystemT,U,V to draw conclusions about how the revocable Membrane pattern
behaves generally in the single-threaded context.

It makes most sense to assume that Alice is the object that is initially
active. It is clear that Alice and Bob each need to initially possess a capability
to GateClose. In order to absolutely ensure that Alice and Bob are both
data-independent in T , U and V , we construct each such that if it initially
possesses any capability from one of these sets, then it initially possesses all
of the capabilities from that set9. Doing so causes no problem, of course,
since an untrusted object that initially possesses all capabilities from U , for
example, safely abstracts the same object that possesses any subset of the
capabilities in U . This leads to the following definitions for the behaviour
of all objects except Memb.

behaviour(Alice) = UntrustedActive lang(T, T ∪ U ∪ {GateClose},Data),

behaviour(Bob) = Untrusted lang(V, V ∪ {GateClose},Data),

behaviour(Gate) = AGate(GateRead,GateClose,GateClose).

Whilst we set the gate’s initial contents to be a capability to its close-facet,
this choice is somewhat arbitrary since any non-null value would do.

The Membrane

It remains to define the initial capabilities and the behaviour of Memb. Re-
call that Memb aggregates all of its children that it creates. We define the
behaviour of a revocable membrane whose initial target is target , whose
gate’s read-facet is gateR, and whose initial forwarding object and all chil-
dren it may create are drawn from the set U , as ARMembU ({target}, gateR).
This process is defined in Snippet 4.7.

The process ARMembU (targets, gateR) is the aggregation of a membrane
whose forwarding objects are drawn from the set U , whose common gate’s

8We choose to model this pattern in the concurrent context despite the question of
how to implement the Membrane pattern in an object-capability operating system being
currently unresolved. It is generally agreed that creating a new forwarding object to wrap
each capability that traverses a membrane is simply too expensive in this context (see
e.g. [Bri07]).

9Alternatively, if Alice is to initially possess a capability u from U , for instance, we
could have her nondeterministically select u from the entirety of U , which would ensure
her behaviour is data-independent in U . Giving her every capability in U , however, makes
it easier to ensure that we don’t introduce implicit equality tests between members of U ,
allowing our system to satisfy NoEqTU and us to obtain a lower threshold for U .

4.3 Safe Revocable Membranes 77

ARMembU (targets, gateR) =
?from : Capability − U?me : U !Call?arg →
me!gateR!Call!null→ gateR!me!Return?val →
if val = null then

me!from!Return!null→ ARMembU (targets, gateR)
else

me$target : targets!Call$uarg : wrapU (arg)→ target !me!Return?res →
me!from!Return$ures : wrapU (res)→
let T ′ = {arg , res} − (U ∪ {null} ∪Data)
within ARMembU (targets ∪ T ′, gateR);

wrapU (null) = {null},
wrapU (other) = if other ∈ Data then {other} else U.

Snippet 4.7: A membrane aggregation in the single-threaded context.

read-facet is gateR and the set of all objects to which some forwarding object
of the membrane may forward invocations to is targets. An initial membrane
that has just a single target target and whose gate’s read facet is gateR is
naturally captured, then, by the process ARMembU ({target}, gateR).

The process ARMembU (targets, gateR) receives invocations to all facets
in the set U from any object other than one from the set U . This means that
it may receive invocations to facets that represent forwarding objects that
have not yet been created; however, doing so safely abstracts any process
that keeps track of those objects from U that have been created so far and
only allows those ones to be Called, whilst helping to avoid introducing
any implicit equality tests between members of U . Any such invocation
is forwarded to some target, target ∈ targets, chosen nondeterministically.
Only capability arguments are ever wrapped. Wrapping null or an argument
from Data leaves it unchanged. Each time an argument arg is wrapped and
a new child is created to forward invocations to arg , arg is added to the set
of potential targets targets (so long as arg is not a member of U).

Because we avoid keeping track of those children from U that have al-
ready been created to ensure we don’t introduce implicit equality tests be-
tween members of U , we allow the identity of each new child to be selected
nondeterministically from the entirety of U . Choosing the identity of each
new child nondeterministically from the entirety of U is safe, since U is a
superset of the set of all children yet to be created and so the behaviour
of ARMembU will be an anti-refinement of the behaviour of a process that
chooses identities of new children only from those that haven’t yet been
allocated.

We argue (whilst again neglecting to prove) that ARMembU is a suitable
aggregation of a membrane in the single-threaded context. Note that it is

4.3 Safe Revocable Membranes 78

not likely to be a suitable aggregation in a more concurrent context, however,
because there it might be possible for one child object to be invoked while
another is handling a separate invocation, for example. In this case, the
aggregated object would need to include extra behaviours, like being able
to receive new invocations whilst it is currently servicing others, in order to
be a proper aggregation.

The behaviour of Memb can now be defined. Memb must initially possess
some capability from V that is its initial target. We therefore give it the
entirety of V for the same reason that Alice initially possesses the entirety
of U as discussed above. Memb’s behaviour is therefore

behaviour(Memb) = ARMembU (V,GateRead).

Analysing the System

This completes the system, SystemT,U,V , which is data-independent in T , U
and V and satisfies NoEqTT , NoEqTU and NoEqTV .

There are two security properties that we expect this pattern to uphold
in SystemT,U,V . Firstly, we expect that Alice should not be able to obtain
direct access to Bob or, more precisely, that no event from the set {|a.b |
a ∈ T, b ∈ V |} should ever be able to be performed. We can test this by
checking that STOP vT SystemT,U,V \ (Σ− {|a.b | a ∈ T, b ∈ V |}).

Secondly, we expect that once revocation occurs, that the membrane will
no longer be willing to forward invocations. The obvious interpretation of
this property is captured by the specification process RevocationSpecT,U,V ,
which asserts that after GateClose has been Called, Memb (for which
facets(Memb) = U recall) will no longer Call anyone except GateRead to
check the gate’s value. This process appears in Snippet 4.8.

RevocationSpecT,U,V =

let A = {|u.x.Call | u ∈ U, x ∈ T ∪ U ∪ V ∪ {GateClose}|} within
?e : Σ− {|f.GateClose.Call | f ∈ T ∪ U ∪ V |} → RevocationSpecT,U,V �
?from : T ∪ U ∪ V !GateClose!Call!null→ CHAOSΣ−A

Snippet 4.8: A specification for safe revocation.

Testing this revocation property of SystemT,U,V amounts to testing
whether RevocationSpecT,U,V vT SystemT,U,V .

Observe that neither of the specifications above, STOP and
RevocationSpecT,U,V , ever stores or makes use of any particular value of
T , U or V . That is, anytime that either of these processes uses one value of
T , U or V , it might just as easily use another from the respective set. Both
specifications, therefore, satisfy the conditions of Theorem 2.3.5. Hence, be-
cause SystemT,U,V satisfies NoEqTT , NoEqTU and NoEqTV , we can test

4.3 Safe Revocable Membranes 79

each refinement for all non-empty choices for T , U and V by testing whether
it holds when each set is instantiated as a singleton set, disjoint from the
others.

Thus let T = {Alice}, U = {Memb} and V = {Bob}. Testing the
above refinements, with these values for T , U and V , reveals that both
hold. We can conclude, therefore, that the revocable membrane pattern is
safe generally in the single-threaded context.

4.3.4 The Concurrent Case

We now consider how to model this pattern in the concurrent context. We
will see that doing so is more complicated than for the single-threaded con-
text, but that the basic techniques described in this chapter can still be
applied with some minor extensions.

The main difficulty that arises is trying to define an accurate aggregation
of a membrane when each object that comprises it can be invoked simulta-
neously. Recall that the aggregation used in the single-threaded context (de-
fined in Snippet 4.7) is not an aggregation in the concurrent context, because
in the concurrent context each child of the membrane can be invoked simul-
taneously. We could define a process that is always willing to be invoked.
However, this leaves the question open as to when it should stop forward-
ing invocations. Suppose it receives two invocations, performing the trace
〈from.me.Call.null, from ′.me ′.Call.null〉, for two of its facets me and me ′, and
then checks its gate for the first invocation and finds that it is closed. A
simple process would simply now refuse to forward any invocations, includ-
ing the second invocation from from ′ that it has already received. However,
this process is not a valid aggregation, since the child me ′ that received the
second invocation has not yet learnt that the membrane has been revoked.
This implies that any reasonably accurate aggregation needs to maintain
separate state for each child that it aggregates. This would prevent it from
being data-independent in the type of its children since the amount of state
it needs to store is dependent on the number of children it creates.

We conjecture that finding an accurate aggregation for the membrane in
the concurrent context is difficult because the behaviour of the membrane
and each its children is not monotonically increasing [Spi07]. We say that
an object’s behaviour is monotonically increasing if and only if whenever
the object performs two sequences s and t of events, such that the events
contained in t are a subset of those contained in s, then its behaviour after
performing t is a refinement of its behaviour after performing s. Consider the
other aggregations we’ve constructed for the concurrent case so far, namely
UntrustedOS in Snippet 2.1 and AStamped in Snippet 4.5. The behaviour of
both objects increases monotonically over time as they interact with others
in their environment. This is in contrast to the children of a membrane,
each of whose behaviours decreases once it learns that the membrane has
been revoked. We conclude, therefore, that building accurate aggregations

4.3 Safe Revocable Membranes 80

for the concurrent context of objects whose behaviour cannot be modelled
so as to increase monotonically over time is non-trivial.

This suggests that we should consider whether we can obtain verification
results for the revocable membrane pattern by modelling it using a less accu-
rate aggregation (although one that is still, by definition, a safe abstraction),
whose behaviour is mostly monotonically increasing.

We adopt the following strategy. Recall that our goal is to create an
aggregation of a membrane whose initial forwarding object and all children it
might create are drawn from the set U . We build an aggregation that models
one of the objects u ∈ U accurately. Because it is modelled accurately, the
behaviour of u is not monotonically increasing. This aggregation models the
other objects from U ′ = U − {u} very approximately (but safely), so that
their behaviour is in-fact monotonically increasing. While this aggregation
will be a safe abstraction, we cannot expect the revocation property encoded
by RevocationSpecT,U,V (in Snippet 4.8) to hold for the other objects in U ′;
however, we might test whether it holds for the object u that has been
modelled accurately.

This suggests that we could construct a specification process that asserts
that the forwarding object u satisfies this revocation property but ignores
the behaviour of the (other) forwarding objects in U ′. If we can show that u,
chosen arbitrarily from U , is safe, we can conclude by symmetry all U are safe
and that the membrane implementation is safe generally in the concurrent
context.

The Membrane

We begin by modelling the aggregation of the membrane. A membrane
whose forwarding objects are drawn from the set U , whose initial set of
targets is targets, and whose capability to its gate’s read-facet is gateR, and
for whom the single object u ∈ U is modelled accurately, is captured by the
process ARMembCU (u, targets, gateR) which appears in Snippet 4.9.

The membrane is modelled as a parallel composition of two processes:
SingleFU (u, gateR) and OtherFsU (U ′, targets, froms, gateR) where U ′ = U−
{u} and initially froms = {}. The first process in this composition represents
the single forwarding object u that is modelled accurately; its behaviour is
not monotonically increasing. The second represents a very coarse but safe
abstraction of the other forwarding objects; its behaviour is monotonically
increasing. The set froms tracks the total set of objects that have invoked
one of the forwarding objects in U ′.

Certain internal events, which are hidden away when the two processes
are composed together, are used to communicate between the two processes.
Their purpose will be explained shortly.

The process OtherFsU (U ′, targets, froms, gateR) is very nondeterministic
and captures all possible behaviours of the forwarding objects in U ′. It
nondeterministically allows any of these forwarding objects to receive a Call

4.3 Safe Revocable Membranes 81

(from a client) or Return (from a target that has previously been Called on
behalf of some client) at any time, in which case the argument arg is added
to the set of potential targets targets, so long as it is not a member of U ,
Data or the value null. The object from that sent the message is also added
to the set froms of potential clients that have Called one of the forwarding
objects in U ′. OtherFsU also nondeterministically allows any object me ∈ U ′
to Call gateR or receive a Return message from gateR. In the latter case,
the value val Returned by gateR is discarded. This aggregation, therefore,
never explicitly learns that the membrane has been revoked, in order for
its behaviour to be monotonically increasing. The aggregation may also
nondeterministically Call any target target ∈ targets and it may also Return
to any client from ∈ froms that has Called it.

OtherFsU may also participate in the internal events gettarget, recvtarget
and updatetargets, which are used to allow it to communicate with the pro-
cess SingleFU , which represents the single forwarding object u ∈ U that
is being modelled accurately. These events are explained directly in the
context of SingleFU .

SingleFU (u, gateR) is an accurate model of the single forwarding ob-
ject u, whose gate’s read-facet is gateR. It may receive a Call from any
non-U object from passing some argument arg . It then Calls gateR to learn
the current value val held by its gate and simply Returns null to from if
val = null. Otherwise, it should Call some target on behalf of from, passing a
wrapped copy of the argument arg . This raises the question as to which tar-
get it should Call. This target must be some capability that was previously
wrapped by the membrane, i.e. it must come from the set targets held by
the process OtherFsU . Hence, SingleFU then communicates with OtherFs
to have OtherFs nondeterministically select some target target ∈ targets
that SingleFU will subsequently Call. The gettarget event is used to ask
OtherFs to nondeterministically choose the target target , which is then sent
to SingleFU on the channel recvtarget. Having received target , SingleFU

then Calls it on behalf of from, passing it a wrapped copy uarg of from’s
argument arg .

Having Called target , SingleFU then waits for target to Return from this
Call with some result res. SingleFU then Returns a wrapped copy ures of
res to from. arg and res must then be added to the set targets, held by
OtherFsU , of the membrane’s targets. This is achieved by communicat-
ing arg and res to OtherFsU on the channel updatetargets. SingleFU then
returns to its initial state.

The process ARMembCU (u, targets, gateR) is data-independent in U ,
but is parameterised by a constant symbol u of type U , against which it
implicitly compares members of U for equality. For instance, when the
first Call message is received by ARMembCU (u, targets, gateR), there is an
implicit equality test performed to determine whether the Call is for the
object u or whether it is for one of the other objects from U ′ = U − {u}.

4.3 Safe Revocable Membranes 82

ARMembCU (u, targets, gateR) =
let U ′ = U − {u} within
(SingleFU (u, gateR) E({u})‖E(U ′) OtherFsU (U ′, targets, {}, gateR)) \ I,

E(Z) = {|c.z, z.c, | o ∈ Capability ∧ z ∈ Z|} ∪ I,
I = {|gettarget, recvtarget, updatetargets|},

OtherFsU (U ′, targets, froms, gateR) =

U ′ 6= {} &
?from : Capability − U$me : U ′$op : {Call,Return}?arg →

let T ′ = {arg} − (U ∪ {null} ∪Data) within
OtherFsU (U ′, targets ∪ T ′, froms ∪ {from}, gateR) u

$me : U ′!gateR!Call!null→ OtherFsU (U ′, targets, froms, gateR) u
gateR$me : U ′!Return?val → OtherFsU (U ′, targets, froms, gateR) u
$me : U ′$target : targets!Call$uarg ∈ (U ∪ {null} ∪Data)→

OtherFsU (U ′, targets, froms, gateR) u
froms 6= {} &

$me : U ′$from : froms!Return$ures ∈ (U ∪ {null} ∪Data)→
OtherFsU (U ′, targets, froms, gateR)

u STOP


�
gettarget→ recvtarget$target : targets →

OtherFsU (U ′, targets, froms, gateR) �

updatetargets?arg?res →
let T ′ = {arg , res} − (U ∪ {null} ∪Data) within
OtherFsU (U ′, targets ∪ T ′, froms, gateR),

SingleFU (u, gateR) =
?from : Capability − U !u!Call?arg →
u!gateR!Call!null→ gateR!u!Return?val →
if val = null then
u!from!Return!null→ SingleFU (u, gateR)

else
gettarget→ recvtarget?target →
u!target !Call$uarg : wrapU (arg)→ target !u!Return?res →
u!from!Return$ures : wrapU (res)→ updatetargets!arg !res →
SingleFU (u, gateR).

Snippet 4.9: An aggregation of the membrane for the concurrent context.

4.3 Safe Revocable Membranes 83

ARMembCU obviously behaves differently depending on the outcome of this
implicit equality test. Hence, it doesn’t satisfy NoEqTU . It also doesn’t
satisfy PosConjEqTU , because when some u′ ∈ U ′ is Called (and so the
implicit equality test u′ = u fails), ARMembCU obviously doesn’t deadlock
and become STOP . However, ARMembCU (u, targets, gateR) does satisfy
the weaker property PosConjEqT′U,{u} [RB99]. For some set C of con-

stants of type U , the property PosConjEqT′U,C is similar to the prop-
erty PosConjEqTU but exempts any equality tests between members of U
for which one argument is a constant from C from having to satisfy the
PosConjEqTU restriction. This will become important directly when we
analyse the membrane.

Analysing the System

To analyse this model of the membrane, we instantiate the system depicted
in Figure 4.6 as before, except that we now instantiate Alice and Bob as
instances of UntrustedOS and replace the behaviour of the membrane Memb
as one would expect, so that

behaviour(Alice) = UntrustedOS (T, T ∪ U ∪ {GateClose},Data),

behaviour(Bob) = UntrustedOS (V, V ∪ {GateClose},Data),

behaviour(Memb) = ARMembCU (u, V,GateRead),

for some member u ∈ U that we fix later when fixing the value of U . Doing
so, we arrive at the system SystemT,U,V (u), parameterised by the sets T , U
and V and the constant symbol u ∈ U . SystemT,U,V (u) satisfies NoEqTT ,
NoEqTV and PosConjEqTU,{u}.

We wish to verify two safety properties of this system. The first property
we want to check is, as before, that

STOP vT SystemT,U,V (u) \ (Σ− {|a.b | a ∈ T, b ∈ V |}), (4.3)

i.e. that the clouds labelled T and V in Figure 4.5 cannot become directly
connected. Because SystemT,U,V (u) satisfies NoEqTT and NoEqTV , ap-
plying Theorem 2.3.5, we obtain thresholds for this test for T and V of 1
as before. To derive a threshold for U , we use the following result that is
similar to Equation 4.2 and is derived from [RB99].

Let PU (u1, . . . , un) be a process, parameterised by some set U and
some constants u1, . . . , un from U , that is data-independent in U and satis-
fies PosConjEqT′U,C where C = {u1, . . . , un}. Let φ be a surjection whose
domain is U that is faithful to each constant in C, meaning that for all
u′ ∈ U and c ∈ C, φ(u′) = φ(c)⇔ u′ = c. Then

{φ(s) | s ∈ traces(PU (u1, . . . , un))} ⊆
traces(Pφ(U)(φ(u1), . . . , φ(un))).

(4.4)

4.3 Safe Revocable Membranes 84

This result can be used to show that the set U can be instantiated with
size 2 and the constant u chosen arbitrarily, such that if the resulting system
satisfies Equation 4.3 then so must any larger system where |U | > 2 and T
and V are unchanged.

Consider any such large system SystemT,U,V (u) for which |U | > 2
and u is some arbitrary constant in U . Consider a small fixed-sized sys-
tem SystemT,US ,V (uS) in which the set U is instantiated by the set US

of size 2 and the constant u ∈ US is chosen arbitrarily and denoted uS .
Let u′s denote the element of US that is not uS . Let φ be a surjec-
tion such that φ(u) = uS and φ(u′) = u′S for all u′ ∈ U − {u}. Then
SystemT,US ,V (uS) = SystemT,φ(U),V (φ(u)), so by Equation 4.4,

{φ(s) | s ∈ traces(SystemT,U,V (u))} ⊆ traces(SystemT,US ,V (uS)). (4.5)

Now consider any trace s of SystemT,U,V (u) that violates the refinement
of Equation 4.3. It must contain some event e from {|a.b | a ∈ T, b ∈ V |}.
Note that φ(e) ∈ {|a.b | a ∈ T, b ∈ V |} too and that φ(e) is present in φ(s)
which must be a trace of SystemT,US ,V (uS). Hence, this smaller system
would also fail the refinement check.

We therefore test the refinement of Equation 4.3 twice with T , U and V
instantiated as disjoint sets of fresh values: once when |T | = |U | = |V | = 1
and again when |T | = |V | = 1 ∧ |U | = 2 with u chosen arbitrarily from U .
It holds in both cases, thus proving that the revocable membrane upholds
this safety property generally in the concurrent context.

The second safety property we would like to check is that the revo-
cation property holds for the forwarding object u ∈ U . We modify the
previous revocation specification RevocationSpecT,U,V from Snippet 4.8 to
assert the revocation property for just the object u, arriving at the specifi-
cation RevocationSpecC T,U,V (u) below.

RevocationSpecC T,U,V (u) =

let A = {|u.x.Call | x ∈ T ∪ U ∪ V ∪ {GateClose}|} within
?e : Σ− {|f.GateClose.Call | f ∈ T ∪ U ∪ V |} → RevocationSpecC T,U,V (u)

�?from : T ∪ U ∪ V !GateClose!Call!null→ CHAOSΣ−A

We assert this revocation property by testing that

RevocationSpecC T,U,V (u) vT SystemT,U,V (u). (4.6)

Theorem 2.3.5 may be applied as before to show that 1 is a sufficient
threshold for T and V when testing this refinement. For U , we apply the
same argument as before to show that it is sufficient to test this refinement
when |U | = 2 and u is chosen arbitrarily, to guarantee it for all larger systems
with arbitrary choices of u.

Consider the systems SystemT,U,V (u) and SystemT,US ,V (uS) and φ
as before. Then Equation 4.5 holds. Then consider any trace s of

4.3 Safe Revocable Membranes 85

SystemT,U,V (u) that violates Equation 4.6. s must contain some event d ∈
{x.GateClose.Call. | x ∈ T ∪ U ∪ V } followed by some event e ∈ {|u.z.Call |
z ∈ T ∪ U ∪ V ∪ {GateClose}|}. Note that φ(d) ∈ {x.GateClose.Call. | x ∈
T ∪ US ∪ V } and φ(e) ∈ {|uS .z.Call | z ∈ T ∪ US ∪ V ∪ {GateClose}|}.
So φ(s), which is guaranteed to be a trace of SystemT,US ,V (uS) is not a

trace of RevocationSpecC T,US ,V (uS) and so the small system would fail the
refinement as well.

Hence, we carry out the above refinement check twice, as with the pre-
vious one. We find, perhaps surprisingly, that the check does not hold, even
when |U | = 1 (with U = {Memb}). FDR returns the following trace as a
counter-example.

〈Alice.Memb.Call.null, Memb.GateRead.Call.null,
GateRead.Memb.Return.GateClose, Bob.GateClose.Call.null,
Memb.Bob.Call.null〉

We see here that Alice Calls the membrane Memb who then checks the
value held in its gate and finds the gate to be open. Then Bob (concur-
rently) Calls GateClose and closes the gate, after which Memb proceeds to
forward Alice’s invocation to Bob. This indicates that this revocation prop-
erty cannot be upheld in the concurrent context because another object can
close a membrane’s gate in between when the membrane has checked it and
found it to be open, and subsequently forwards the invocation. This allows
a membrane to forward at least a single invocation after its gate has been
closed.

We should expect, however, that a membrane should forward no more
than one invocation after its gate has been closed. RevocationSpecC T,U,V (u)
is easily modified to assert this weaker revocation property, yielding a new
specification WeakRevocationSpecC T,U,V (u) defined in Snippet 4.10.

WeakRevocationSpecC T,U,V (u) =

let A = {|u.x.Call | x ∈ T ∪ U ∪ V ∪ {GateClose}|} within
?e : Σ− {|f.GateClose.Call | f ∈ T ∪ U ∪ V |} →

WeakRevocationSpecC T,U,V (u)

�?from : T ∪ U ∪ V !GateClose!Call!null→WeakRevocationSpecC ′T,U,V (A),

WeakRevocationSpecC ′T,U,V (A) =

?e : Σ−A→WeakRevocationSpecC ′T,U,V (A) �?a : A→ CHAOSΣ−A.

Snippet 4.10: A weaker revocation specification for the concurrent context.

By a similar argument to that used above, we can show that
the thresholds obtained for RevocationSpecC T,U,V (u) are suitable for
WeakRevocationSpecC T,U,V (u). Testing the refinement

WeakRevocationSpecC T,U,V (u) vT SystemT,U,V (u)

4.4 Related Work 86

twice as with the previous one, as dictated by these thresholds, reveals that
it holds in both cases. Hence, we can conclude that the revocable membrane
upholds this weaker revocation property generally in the concurrent context.

4.3.5 Summary

We’ve modelled the revocable membrane in both the single-threaded and
concurrent contexts. We saw that creating a suitable aggregation in the
single-threaded context was far simpler than for the concurrent context and
concluded that, in general, building accurate aggregations of collections of
objects whose behaviours are not monotonically increasing is problematic in
the concurrent context. Instead, we built a less accurate (but safe) aggre-
gation that modelled just one of the membrane’s forwarding objects u ∈ U
accurately, while allowing the behaviour of the others to increase mono-
tonically. We then verified that the single accurately modelled, arbitrarily
chosen forwarder u was safe and, by symmetry, concluded that each of the
membrane’s forwarders must be safe and so the membrane as a whole must
be too. This was easily achieved since the aggregation satisfied the data-
independence property PosConjEqT′U,{u}.

We believe that this technique is generally applicable in cases such as
this where one needs to build an aggregation of a collection of objects whose
behaviours don’t increase monotonically.

This analysis allowed us to conclude that the membrane satisfies slightly
different revocation properties when in the single-threaded and concurrent
contexts respectively. In particular, it satisfies a stronger revocation prop-
erty in the former context in which it is impossible for a membrane’s gate
to be closed while the membrane is invoked.

To our knowledge, this is the first time that the revocable membrane
pattern has been modelled and its revocation properties explicitly reasoned
about. In particular, Spiessens’ previous analysis [Spi07, Section 8.3.1] of
the membrane pattern did not consider its revocation properties explicitly,
thereby preventing that analysis from distinguishing how the membrane’s
revocation properties differ between the single-threaded and concurrent con-
texts, as we have done here.

4.4 Related Work

Aggregation and Safe Abstraction The ideas of aggregation and safe
abstraction as described in this chapter were inspired by similar ideas of
Spiessens in the context of the Scoll formalism [Spi07]. As here, a Scoll
aggregation collects the behaviours of multiple objects into a single object.
As here, Scoll aggregations are also safe abstractions. Safe abstractions in
Scoll are referred to as safe approximations.

Scoll is essentially a deductive system. An initial system comprises a set

4.4 Related Work 87

of of facts that are true initially and a set of rules for how to derive new
facts from the current set, as the system evolves.

Our approach requires that a safe abstraction of a system exhibit all
behaviours of that system. Similarly, in the context of Scoll, one system is
a safe approximation of another if every fact derivable in the latter is also
derivable in the former.

Scoll has the useful property that any collection of objects, S, can be
accurately aggregated into a single object, o, with a single identity such
that any fact derivable about any object from S can now be derived for o.
Restated in the terminology familiar from this chapter: in a Scoll system, any
cloud of objects, where T denotes the set comprising all of their facets, can
always be accurately aggregated into a single object, o, where facets(o) = T ,
resulting in a system for which any Scoll safety property always yields a
data-independence threshold for T of 1.

In contrast, in our CSP models, it is not always straightforward to accu-
rately aggregate a cloud of objects into a single object. An obvious example
is the membrane object in the concurrent context from the previous subsec-
tion. Recall that we conjectured that an accurate aggregation was difficult
to achieve here because the behaviour of a membrane’s children does not
increase monotonically over time. This situation cannot arise in Scoll, since
the Scoll formalism admits only behaviours that increase monotonically over
time. Hence, the cases in which aggregation is more complicated to achieve
and the resulting analysis more complicated to perform in CSP cannot be
expressed directly in Scoll.

In our approach, after constructing some aggregation, there is no guar-
antee that the resulting system will be adequately data-independent in the
type T of aggregated facets to yield a data-independence threshold of 1.
These problems cannot arise in Scoll, specifically because the Scoll formal-
ism effectively prevents one from specifying behaviours that are not data-
independent or contain equality tests between members of data-independent
types. Scoll also effectively limits the safety properties one can test so to be
expressible as specifications captured by Theorem 2.3.5, thereby inducing
effective data-independence thresholds of just 1.

Again, we see that the complications that arise when using our tech-
nique that cannot arise when using Scoll, do so only in cases that cannot
be directly expressed in Scoll. It should be noted that any Scoll system can
be expressed in CSP, since Scoll systems are instances of what Roscoe calls
positive deduction systems [RB99]. CSP has often been used in the past
to express such deductive systems within the context of analysing crypto-
graphic protocols, where such deductive systems capture the behaviour of a
hostile intruder [RSG+00].

Scoll has a distinct advantage over our approach when it comes to ag-
gregation. In particular, one can apply a straightforward syntactic transfor-
mation to a Scoll system in order to produce an aggregation of it (with the

4.4 Related Work 88

transformation being parameterised by which objects are being aggregated
together, of course). As far as we are aware, no similar procedure exists by
which one can syntactically produce an aggregation of a CSP system.

On the other hand, the extra expressiveness of our CSP models means
that we can reason easily about behaviours and properties that are more
difficult to reason about in Scoll. For example, it is difficult to see how
one can directly reason about properties such as “the object may Return
only to its most recent Caller and no-one else” (as SpecT from Snippet 4.3
does implicitly) in Scoll. Scoll is also incapable of directly reasoning about
behaviours such as revocation (as we did when analysing the revocable Mem-
brane pattern in Section 4.3), because Scoll can express only behaviours that
are monotonically increasing. Such behaviours must be simulated in Scoll
by using multiple objects to represent a single object before and after re-
vocation has occurred, for instance. This naturally makes reasoning about
such properties more complicated in Scoll.

We have also seen that we can build aggregations, such as of the revo-
cable membrane in Section 4.3, whose behaviour does not increase mono-
tonically over time. This allowed us to reason directly about the revocation
properties of a revocable Membrane pattern in each of the single-threaded
and concurrent contexts and to prove that they are in-fact different in each
case. Spiessens [Spi07, Section 8.3.1] also analysed a Membrane pattern us-
ing Scoll, applying aggregation to reason about object creation. However,
Spiessens’ analysis could not consider revocation directly and, therefore, did
not draw such distinctions.

Despite its extra complications, we argue that the approach advocated in
this chapter of this thesis has important advantages over the closest ancestor
from which it was derived. However, the Scoll approach to aggregation also
has some advantages over our approach. We conclude, therefore, that each
approach has its strengths and weaknesses and that each may be preferable
in different circumstances.

Data-Independence We have applied data-independence arguments in
this chapter to show that security violations in arbitrary sized systems, in
which object-capability patterns might be deployed, must show up in the
smaller fixed-sized systems we have analysed. Similar arguments have been
made, using the same data-independence results that we’ve applied here,
by others when performing a range of previous security analyses, including
of cryptographic protocols [RB99, Bro01, Kle08] and intrusion detection
systems [RL05].

The approach taken in this chapter has been to apply data-independence
arguments to various types, T , U and so on, that are subtypes of a larger
type, Capability , that comprises all facets in a system. In contrast, in the
context of security protocols for example, the usual approach has been to
apply data-independence arguments to an entire type, such as the type of

4.4 Related Work 89

agent identities in a system, treating certain values from that type as con-
stants (see e.g. [RB99]). In either case, the end result is much the same.

We have also applied data-independence arguments to multiple subtypes,
T , U and so on, at once, as in the analysis of the Membrane pattern in which
data-independence arguments were applied to three subtypes. In contrast,
Lazić and Roscoe [LR99] show how to apply data-independence arguments
to a type that is effectively partitioned into subtypes by predicates that
range over the type. It is conceivable that we could have applied Roscoe
and Lazić’s more general theory; however, our approach is arguably simpler
whilst being sufficient for our purposes.

Analysing Object-Capability Patterns in CSP Ours [Mur08] is the
only prior work of which we are aware that applies CSP to analyse object-
capability patterns. This chapter significantly expands upon that work. It
should be noted that in [Mur08] the idea of aggregation is applied informally
to model a revocable Membrane. The resulting model is much the same
as the single-threaded one that appears in Snippet 4.7. This similarity is
only a happy accident, however, since the model from [Mur08] was derived
informally without the machinery presented in the first part of this chapter
to ensure it was sound. In particular, that model implicitly assumes that
a data-independence threshold of 1 for the type containing the membrane’s
facets (and the types that contain the facets of each of the other untrusted
objects respectively) is sufficient when analysing this pattern. Here, we have
shown that this unstated assumption is correct for the single-threaded case
only.

Unfortunately, in [Mur08], the same model of an aggregated revocable
membrane is used in both the single-threaded and concurrent contexts. As
argued earlier in this chapter, the aggregation used in the single-threaded
context is simply not valid in the concurrent context, in which two objects
that make up a membrane can be invoked simultaneously for instance. The
extra work taken to formalise the ideas of aggregation and safe abstraction in
this chapter made this flaw abundantly clear when it wasn’t before. Hence,
the formal theory in this chapter has certainly proved its worth.

Architectural Refinement In [vdM09], van der Meyden considers the
problem of preserving information flow policies under architectural refine-
ment. A system architecture A1 that comprises a set D1 of components may
be architecturally refined by an architecture A2 that comprises a set D2 of
components. A2 specifies the internal structure of some of the components
of A1 and so D2 contains more components than D1 because some of the
components inD1 have been broken up into separate components in D2. The
notion of architectural refinement is captured by a surjection r : D2 → D1.
Each component d ∈ D1 in A1 is represented in A2 by the set of compo-
nents r−1(d1) ⊆ D2.

4.5 Conclusion 90

Comparing this idea against Definition 4.1.2, we observe a strong simi-
larity between van der Meyden’s notion of architectural refinement and the
idea of aggregation (which we’ve adapted from Spiessens [Spi07]). In partic-
ular, saying that A1 is an architectural refinement of A2 is very much like
saying that A2 is an aggregation of A1. We discuss architectural refinement
further in Section 5.6.

4.5 Conclusion

In this chapter we have shown how to reason about patterns in systems of
arbitrary size in which objects may create arbitrary numbers of others. One
does so by building a fixed-sized safe abstraction of any arbitrary-sized sys-
tem, by aggregating multiple objects from the arbitrary-sized system into a
single object, and then applying CSP’s theory of data-independence to gen-
eralise the analysis of the fixed-sized system to all such arbitrary-sized ones.

We saw that this approach could be used to generalise the safety analyses
performed in the previous chapter to a considerable degree. However, we
still cannot say that these analyses are fully exhaustive. For example, the
the Sealer-Unsealer analysis considers only unsealers that can be recursively
Called no more than once. We leave these problems as future work.

We saw that results for patterns that make use of EQ can be harder
to generalise because such systems do not generally satisfy the data-
independence property NoEqT. For the Trademarks pattern, we showed
in Section 4.1.3 that an easily tractable data-independence threshold could
still be obtained by building a safe abstraction of the pattern that satisfies
the weaker data-independence property PosConjEqT.

We believe this approach should be widely applicable to generalising
the analysis of safety properties of patterns that make use of EQ . This
is because, like our Trademarks implementation, most of these patterns
(such as the Grant Matcher [Mil00] and Stiegler’s NonTransferable Claim
Check [Sti06], for instance) use EQ tests to decide whether to perform some
special behaviour that should occur only when an EQ test succeeds. Each
EQ test may therefore be captured by a process of the form if c = d then
P else Q, where P represents the special behaviour guarded by the EQ test.
These patterns can always be safely abstracted by a PosConjEqT process
that instead does Q u if c = d then P else STOP (see Snippet 4.4).
This abstraction won’t fail any safety property involving the occurrence of
the special behaviour P that the original process doesn’t.

For the vast majority of patterns, which don’t make use of EQ , this extra
effort is unnecessary, as shown by the generalisation of the Sealer-Unsealer
safety analysis in Section 4.1.5.

We also saw that these same techniques can be used to reason about
patterns involving unbounded object creation. We demonstrated this by
analysing a revocable Membrane implementation in both the single-threaded

4.5 Conclusion 91

and concurrent contexts, finding that it upholds a weaker revocation prop-
erty in the latter case due to the extra concurrency that exists there.

We observed some difficulties in the concurrent context with creating
accurate aggregations of objects whose behaviour is not monotonically in-
creasing, as is the case with the revocable Membrane. We showed that one
can instead create less accurate (but still safe) aggregations that accurately
model the behaviour of only one of the aggregated objects u ∈ U , chosen
arbitrarily, whilst modelling the others very abstractly to allow their be-
haviour to be monotonically increasing. We saw that one can then reason
about just the behaviour of u and, by symmetry, draw conclusions about
the behaviour of the aggregation in general. We saw that tractable data-
independence thresholds could be obtained for the type U being aggregated
because the resulting aggregation naturally satisfied the data-independence
property PosConjEqT′U,{u} by treating u as a constant symbol of type U .
We believe that this technique should be widely applicable, since all such
aggregations should also naturally satisfy PosConjEqT′ in this way.

This chapter has effectively shown how to apply Spiessens’ idea of aggre-
gation [Spi07, Section 5.7.4], developed in the context of the Scoll formalism,
to our CSP models, with the help of Lazić’s theory of data-independence
for CSP. The extra power afforded by CSP allows us to reason accurately
about behaviours and properties that cannot be expressed directly in Scoll;
however, this power renders the resulting theory, and its application, some-
what more complex. This complexity is fully paid for in the next chapter,
where we extend these ideas to reason about covert channels (i.e. those not
explicitly modelled) of object-capability patterns in arbitrary-sized systems.
This is beyond the scope of Scoll, which can reason only about explicitly
modelled phenomena.

5 Information Flow

5.1 Introduction

In this chapter, we consider how to analyse the information flow properties of
object-capability patterns. These properties are more sophisticated than the
safety properties we have examined so far and are concerned with detecting
influence and, hence, information flow between objects.

For instance, consider the system depicted in Figure 5.1, which we will
use as a running example throughout this chapter. It contains two arbi-
trary objects, High and Low, that have access to high- and low-classification
data respectively. The object, DataDiode, placed between High and Low,
is designed to allow Low to send data to High but to prevent information
flowing in the reverse direction, in accordance with the standard multi-level
confidentiality policy (see e.g. [BL76]).

Figure 5.1: A simple system containing a data-diode.

DataDiode processes each message sent to its write-facet, DDWriter, by
storing whatever data is contained in the message. In response to each
message sent to its read-facet, DDReader, DataDiode sends back a reply
message that contains the data it is currently storing. In this way, it allows
data (but not capabilities1) to be written to DDWriter and then read from
DDReader.

There are two ways in which information might flow from High to Low,
in violation of the system’s security policy, namely either via overt or covert
means. Information flows via overt means when it is carried in a message sent
between objects. So Low may obtain some high-classification data overtly
by receiving a message, from some object with facet f , in which that data is
contained, in which case the system will perform some event f.Low.op.arg
where arg is some datum of high classification. Hence, a lack of overt infor-

1Recall from Section 2.2 that a fundamental property of any object-capability system
is that capabilities must be distinguishable from data.

5.1 Introduction 93

mation flow from High to Low can be expressed trivially as a safety property
(see Chapter 3) that asserts that no such events can ever occur2.

Expressing a lack of covert information flow, on the other hand, requires
a more sophisticated property, which asserts that High cannot influence,
or interfere with, Low. This idea was formalised in the seminal work of
Goguen and Meseguer [GM82] as the property of noninterference, which
asserts that any two executions of the system that differ only in the actions
of High should be indistinguishable to Low, meaning that they both have
the same effect upon Low. Equivalently, noninterference asserts that High’s
actions in the system should have no effect upon Low.

As an example, suppose that DataDiode is implemented such that it
stores only a single datum at a time; invoking its read-facet, DDReader,
causes it to return the datum it currently holds after which it becomes
empty; however it accepts messages sent to its write-facet, DDWriter, only
when it is empty. Then consider the following two executions of the system
that differ only in High’s actions. In the first, Low writes some data to
DataDiode, High reads this data and then Low writes some more data. In the
second, Low writes some data to DataDiode but High chooses not to read this
data, then Low tries to write some more data to DataDiode but this request
fails since High has not yet read the data that was previously written. We see
here that these two executions can be distinguished by Low because in the
former Low’s second write succeeds whilst in the latter it fails. Equivalently,
we might say that High reading from DataDiode affects whether Low’s second
write succeeds or fails, thereby affecting Low. Therefore, noninterference is
not satisfied by this system.

In this example, DataDiode allows information to propagate covertly
from High to Low because High can signal to Low by choosing to read from
DataDiode or not, which causes an effect that Low can observe. Noninter-
ference can therefore be used to capture the idea that DataDiode does not
allow information to pass covertly from High to Low.3

Many different information flow properties have been defined for CSP
processes that capture the idea of noninterference (and other similar no-
tions) in different ways (see e.g. [GCS91, Rya91, RWW94, Ros95, FG95,
Foc96, For99, RS01, Low07] amongst others). In this chapter, we consider
how to apply these kinds of properties in order to reason about whether
security-enforcing patterns like DataDiode allow unwanted covert flows of
information, i.e. whether these patterns contain unwanted covert channels.
This kind of analysis is vital in order to ensure that confidentiality policies
are not inadvertently violated by the security-enforcing abstractions suppos-
edly deployed to enforce them.

2This kind of overt information flow was first analysed explicitly in the context of
object-capability systems by Spiessens [Spi07].

3Note that our use of the words “covert” and “overt” here may differ from how these
terms are used by others. In particular, others may consider both kinds of information
flow discussed above to be overt.

5.2 Defining Information Flow for Object-Capability Patterns 94

In Section 5.2, we derive a general definition for information flow se-
curity for determining the information flow properties of object-capability
patterns modelled in CSP. In Section 5.3 we show how this general definition
can be instantiated and then automatically tested in FDR. In Section 5.4,
we use FDR to automatically detect covert channels in an implementa-
tion [Mil06, Figure 11.2] of the Data-Diode pattern (depicted in Figure 5.1),
before showing how the implementation can be corrected. We then show, in
Section 5.5, how to generalise the analysis of information flow properties of
object-capability patterns to systems of arbitrary size, by adapting the ap-
proach taken earlier in Chapter 4. We then demonstrate this by generalising
the analysis of the Data-Diode pattern to systems with arbitrary numbers
of high and low objects with arbitrary high and low data.

5.2 Defining Information Flow for Object-
Capability Patterns

In this section, we derive a general definition for information flow security
for object-capability patterns modelled in CSP.

5.2.1 Refinement

We begin by considering the issue of refinement. Many standard information
flow properties are known to suffer from the so-called refinement paradox (of
which Lowe provides some examples in [Low07]). A property Prop suffers
from the refinement paradox when for some process P , Prop(P) holds but
Prop(Q) doesn’t hold for some (failures-divergences) refinement Q of P .
Restricting our attention to divergence-free P and Q (as we do throughout
this thesis), refinement here corresponds to resolving nondeterminism in P .
The refinement paradox is dangerous, then, because it allows a process to
be judged secure, when under some resolution of its nondeterminism, it may
in-fact be insecure.

A fail-safe way to avoid the refinement paradox is to employ proper-
ties that are refinement-closed [Low07]. Recall (from Section 2.1.4) that a
property is refinement-closed when for all processes P , it holds for P only
if it holds for all of P ’s refinements. This suggests that we can avoid the
refinement paradox, when constructing a general definition of information
flow security for object-capability patterns, by choosing a definition that is
refinement-closed.

While this would ensure that we avoid the refinement paradox, this ap-
proach is not generally appropriate for analysing object-capability patterns
modelled in CSP as described in this thesis. In particular, any definition
of information flow security should not necessarily be closed over all re-
finements of a system System = ‖

o∈Object
(behaviour(o), α(o)) to which it is

being applied. This is because such processes have refinements that we need

5.2 Defining Information Flow for Object-Capability Patterns 95

to exclude in order to talk sensibly about the information flow properties of
patterns modelled as part of System.

Consider, for example, the system depicted in Figure 5.1, in which High
and Low each exhibit arbitrary behaviour. Considering the more general
case in which this pattern is being instantiated in a context, such as an
object-capability operating system, where each object runs concurrently to
all others, High and Low are each represented in System by an instance of
the UntrustedOS process, which is defined in Snippet 2.1. For appropri-
ate definitions giving the facets of each object and for the sets HighData
and LowData (each of which is a subset of the set Data that contains all
data in the system) that contain the high- and low-classification data in the
system respectively, the behaviours of High and Low are given in Snippet 5.1.

behaviour(High) =
UntrustedOS (facets(High), facets(High) ∪ {DDReader},HighData),

behaviour(Low) =
UntrustedOS (facets(Low), facets(Low) ∪ {DDWriter},LowData).

Snippet 5.1: The behaviours of High and Low.

These processes that represent the behaviour of High and Low respec-
tively are each highly nondeterministic, which makes System highly non-
deterministic. The nondeterminism in Low means that initially (and in
every subsequent state) Low may either perform or refuse to perform the
event Low.Low.Call.null, in which Low invokes itself, depending on how
Low’s initial nondeterminism is resolved. Initially, High can perform the
event High.High.Call.null, in which High calls itself. Taken together, this
means that System has a refinement that exhibits both of the following
behaviours:

• the trace 〈High.High.Call.null, Low.Low.Call.null〉 in which the nonde-
terminism in Low is resolved such that Low chooses to invoke itself
initially and this invocation occurs after High invokes itself, and

• the failure (〈〉, {Low.Low.Call.null}) in which the nondeterminism in
Low is resolved the other way such that initially Low chooses not to
invoke itself, without High invoking itself.

The presence of these two behaviours means that System fails
various refinement-closed information flow properties, including Lowe’s
Refinement-Closed Failures Non-Deducibility on Compositions [Low07] and
Roscoe’s Lazy Independence [Ros97, Section 12.4]. To see why, consider the
partial executions of the system that precede the occurrence/refusal of the
event Low.Low.Call.null in each case above. In the first case, this execution
involves High calling itself. In the second case, this execution is the empty

5.2 Defining Information Flow for Object-Capability Patterns 96

trace in which no events have taken place. Both of these executions differ
only in the occurrence of High events, yet Low behaves differently after each
of them (by calling itself in the first case and refusing to do so in the second).
Hence, any refinement of System that contains these two behaviours should
fail noninterference.

5.2.2 A Necessary Assumption

However, we need to rule out this refinement in order to talk sensibly about
the information flow properties of DataDiode. The two behaviours above rep-
resent the situation in which High’s interactions with just itself can (some-
how) affect Low. We cannot hope to ever prevent High from covertly sending
information to Low in any system that allows this kind of information flow
to occur. Hence, we cannot talk sensibly about the information flow prop-
erties of the Data-Diode pattern in any such system that exhibits both of
these behaviours.

In more general terms, in order to talk sensibly about the information
flow properties of object-capability patterns, we need to assume that the
only way for one object to directly influence another is through overt message
passing (i.e. sending it a message or receiving a message from it), since it
is only overt message passing that security-enforcing objects like DataDiode
that instantiate these patterns can hope to control. We assume therefore
that objects can influence each other only by exchanging messages and that
the only objects influenced by the sending and receipt of a message are
the message’s sender and receiver. This implies that the transmission of a
message from some object o1 to some object o2 should not affect any other
object o3 /∈ {o1, o2}. Thus, in any system, we assume that the resolution
of nondeterminism in each object o can be influenced only by the message
exchanges in which o has partaken before the nondeterminism is resolved.

Without specifying how the nondeterminism in any object o may be
resolved after it has engaged in some sequence s of message exchanges, this
therefore implies that whenever o performs s, its nondeterminism should be
resolved consistently. Two resolutions of the nondeterminism in a process
after it has performed s are inconsistent when it can perform some event e
in one but refuse e in the other. Under this definition observe that, in
the example above, the two different resolutions of the nondeterminism in
Low, depending on whether High has performed its event that Low cannot
overtly observe, are inconsistent. In the first case, Low performs the event
Low.Low.Call.null initially, i.e. after it performs the empty trace; however,
in the second, it refuses this event initially.

5.2.3 A Definition

When applying an information flow property to a system System, we there-
fore restrict our attention to those refinements of System that correspond

5.3 Testing Information Flow for Object-Capability Patterns 97

to the resolution of nondeterminism in its component objects, in which this
sort of inconsistency cannot arise. For a refinement System ′ of System, this
occurs precisely when for every pair of behaviours of System ′, no object per-
forms some trace sˆ〈e〉 in one but refuses e after performing s in the other,
i.e. exhibits the failure (s, {e}) in the other. Observe that this corresponds
precisely to saying that the behaviour of each object in System ′ must be
deterministic (see Definition 2.1.1).

If the behaviour of each object o ∈ Object in some refinement System ′

of System = ‖
o∈Object

(behaviour(o), α(o)) is deterministic, then it must be

representable by a deterministic process bo that naturally refines its origi-
nal behaviour behaviour(o). Hence, System ′ must be (failures-divergences)
equivalent to the parallel composition of a set of deterministic processes bo,
one for each o ∈ Object , each of which refines its corresponding behaviour(o).
We call such a System ′ a deterministic componentwise refinement of System.

Definition 5.2.1 (Deterministic Componentwise Refinement). Sys ′ is a de-
terministic componentwise refinement of an alphabetised parallel composi-
tion Sys = ‖

i∈{1,...,n}(Pi, Ai) iff there exists n processes Q1, . . . , Qn such that

Sys ′ ≡FD ‖i∈{1,...,n}(Qi, Ai) and ∀ i ∈ {1, . . . , n} • Pi vFD Qi ∧ det(Qi).

The set of deterministic componentwise refinements of an alphabetised
parallel composition Sys is denoted DCRef (Sys).

Given some information flow property Prop, we should therefore ap-
ply Prop to all deterministic componentwise refinements of System =

‖
o∈Object

(behaviour(o), α(o)) in order to test whether System satisfies the

information flow property encoded by Prop under the assumption that the
only way for one object to affect another in System is through overt inter-
action. This leads to the following general definition of information flow
security for object-capability patterns modelled in CSP, which is parame-
terised by the information flow property Prop being tested.

Definition 5.2.2 (Information Flow Security for Object-Capability Pat-
terns). An object-capability system captured by the CSP process System =

‖
o∈Object

(behaviour(o), α(o)) is secure under componentwise refinement

with respect to the information flow property Prop iff ∀System ′ ∈
DCRef (System) • Prop(System ′).

5.3 Testing Information Flow for Object-
Capability Patterns

This general definition is instantiated by choosing an appropriate informa-
tion flow property to substitute for Prop. There are two questions that must
be resolved in order to produce an automatic test for information flow se-
curity for object-capability patterns: firstly, what properties φ are suitable

5.3 Testing Information Flow for Object-Capability Patterns 98

to substitute for Prop and, secondly, given a substitute φ for Prop, how
can we automatically test that φ holds for all deterministic componentwise
refinements of some system? We address both of these questions in this
section.

5.3.1 Choosing an Appropriate Property

We begin by considering the question of which properties are suitable choices
to substitute for Prop in Definition 5.2.2.

Standard laws of CSP for alphabetised parallel composition [Ros97] may
be trivially applied to show that any alphabetised parallel composition of
deterministic processes yields a deterministic process. Hence, any determin-
istic componentwise refinement is itself deterministic. Therefore, any choice
for Prop will be applied only to deterministic processes.

This significantly reduces the number of effectively different choices
for Prop. This is because while many different information flow proper-
ties have been described in the literature, many of these properties coincide
when applied only to deterministic processes. We will show that there are
basically only two effectively different choices for Prop.

One reason for this is that any property coincides with its refinement-
closure when applied to deterministic processes. The refinement-closure of
a property φ is the property RCφ that holds for a process P iff φ(Q) holds
for all (failures-divergences) refinements Q of P .

Definition 5.3.1 (Refinement-Closure). The refinement-closure of a prop-
erty φ is the property RCφ where

RCφ(P) = ∀Q • P v Q⇒ φ(Q).

A deterministic process P has no proper failures-divergences refine-
ments [Ros97, Lemma 9.1.1] (meaning that it is its only refinement) and
so

φ(P)⇔ (∀Q • P v Q⇒ φ(Q))⇔ RCφ(P).

Given the choice between either a property φ or its refinement-
closure RCφ, when choosing an appropriate substitute for Prop in Defi-
nition 5.2.2, we should prefer RCφ. This is because RCφ is guaranteed
to be a refinement-closed property and refinement-closed properties may
be expressed in terms of refinement checks that are simpler than those for
non-refinement-closed properties [Ros05]. It turns out that this makes the
resulting information flow property, obtained by substituting RCφ for Prop
in Definition 5.2.2, easier to express as a refinement check for FDR. This is
because this refinement check can be constructed by adapting the refinement
check for RCφ, as shown later in Sections 5.3.2 and 5.3.3.

5.3 Testing Information Flow for Object-Capability Patterns 99

Transitive Noninterference Properties

Most of the transitive noninterference properties4 φ, which capture the ba-
sic noninterference property that the occurrence of actions by high objects
can have no effect upon the remaining (low) objects in the system, coin-
cide with Lowe’s Refinement-Closed Failures Non-Deducibility on Compo-
sitions [Low07] (RCFNDC) when applied to deterministic processes. Lowe
shows that [Low07, Theorem 4] RCFNDC is equivalent to the refinement-
closure of any property that is no stronger than RCFNDC but no weaker
than Focardi’s Failures Non-Deducibility on Compositions [Foc96]. This
includes a number of other properties from the literature (see [Low07, Fig-
ure 1]) including those of Focardi et al. [FG95, Foc96] and Forster [For99].
Hence, RCFNDC coincides with all of these properties when applied to de-
terministic processes.

For convenience, we use the following characterisation of RCFNDC de-
rived from [Low07, Low09]. Like other transitive noninterference properties
for CSP, RCFNDC detects whether the occurrence of high events from some
set H can influence the occurrence of the remaining (low) events from the
set L, where H and L together partition the total alphabet of the system.

Proposition 5.3.2 (RCFNDC). A divergence-free process P satisfies
RCFNDC, written RCFNDC (P), iff

6 ∃ s, l • s |̀ H 6= 〈〉 ∧ l ∈ L ∧(
(sˆ〈l〉 ∈ traces(P) ∧ (s \H, {l}) ∈ failures(P)) ∨
(s \Hˆ〈l〉 ∈ traces(P) ∧ (s, {l}) ∈ failures(P))

)
.

We show that, for deterministic processes, RCFNDC also coincides with
any property that is no stronger than Roscoe’s Lazy Independence [Ros97,
Section 12.4] (which is stronger than RCFNDC) and no weaker than Ryan’s
traces-based formulation of noninterference for CSP processes [Rya91, Equa-
tion 1] (which is weaker than Focardi’s Failures Non-Deducibility on Com-
positions).

We use the following characterisation of Lazy Independence, which comes
from [ML09b].

Proposition 5.3.3 (Lazy Independence). A divergence-free process P sat-
isfies Lazy Independence, written LIND(P), iff

6 ∃ s1, s2, l • s1 \H = s2 \H ∧ l ∈ L ∧
s1ˆ〈l〉 ∈ traces(P) ∧ (s2, {l}) ∈ failures(P).

4This name is used to distinguish them from the so-called intransitive noninterfer-
ence properties [HY86, Rus92, RG99] that are more sophisticated. We briefly discuss
intransitive noninterference properties later in this subsection.

5.3 Testing Information Flow for Object-Capability Patterns 100

Lowe shows that Lazy Independence is stronger than RCFNDC [Low07,
Theorem 3], meaning LIND(P) ⇒ RCFNDC (P) but not the reverse. We
show that for deterministic processes, if RCFNDC holds then so does Lazy
Independence. This allows us to conclude that the two properties coincide
for deterministic processes.

Lemma 5.3.4. If P is deterministic then RCFNDC (P)⇒ LIND(P).

Proof. We prove the contrapositive, namely ¬LIND(P)⇒ ¬RCFNDC (P).
So assume ¬LIND(P). By Proposition 5.3.3, P has some traces s1 and

s2, such that s1 \ H = s2 \ H, and some event l ∈ L, such that s1 ˆ〈l〉 ∈
traces(P) ∧ (s2, {l}) ∈ failures(P). Because P is deterministic, s1 6= s2 and,
because s1 \ H = s2 \ H, we must have that s1 |̀ H 6= 〈〉 ∨ s2 |̀ H 6= 〈〉.
There are two cases to consider: both s1 and s2 contain H events or not.

Suppose both traces s1 and s2 contain H events. Let t be the longest
prefix of s1 such that t \ H ∈ traces(P). Then t |̀ H 6= 〈〉 because t must
contain at least the first H event in s1. So t is a strict prefix of s1 ˆ 〈l〉.
Let e be the event that follows t in s1 ˆ 〈l〉. Then necessarily e ∈ L. So
t̂ 〈e〉 ∈ traces(P) but t\H 〈̂e〉 /∈ traces(P). Because P is divergence-free, by
Axiom F3, t\H 〈̂e〉 /∈ traces(P)⇒ (t\H, {e}) ∈ failures(P). So (t\H, {e}) ∈
failures(P) and P clearly fails the first disjunct of Proposition 5.3.2. Hence
¬RCFNDC (P) clearly holds.

On the other hand, suppose that one of s1 or s2 contains no H events.
Let this be sj and the other one be si. Then si |̀ H 6= 〈〉 and si \H = sj .
By Proposition 5.3.2, ¬RCFNDC (P) clearly holds.

Ryan’s traces-based formulation of noninterference [Rya91, Equation
1] may be written as follows, adapting a similar characterisation of it
from [RG99].

Proposition 5.3.5 (Traces Noninterference). A divergence-free process P
satisfies Traces Noninterference, written TNI (P), iff

6 ∃ s, l • l ∈ L ∧(
(sˆ〈l〉 ∈ traces(P) ∧ s \H ∈ traces(P) ∧ s \Hˆ〈l〉 /∈ traces(P)) ∨
(s \Hˆ〈l〉 ∈ traces(P) ∧ s ∈ traces(P) ∧ sˆ〈l〉 /∈ traces(P))

)
.

Traces Noninterference is clearly weaker than RCFNDC, meaning that
RCFNDC (P)⇒ TNI (P) but not the reverse. We show that Ryan’s Traces
Noninterference is equivalent to RCFNDC for deterministic processes by
showing that the latter is the refinement-closure of the former (see Defini-
tion 5.3.1). We do so via a couple of lemmas.

Lemma 5.3.6. For a divergence-free process P , ¬RCFNDC (P) ⇒ ∃Q •
P v Q ∧ ¬TNI (Q).

5.3 Testing Information Flow for Object-Capability Patterns 101

Proof. So suppose ¬RCFNDC (P) for some divergence-free process P .
Without loss of generality, suppose P fails the first disjunct of Proposi-
tion 5.3.2 (the second is handled similarly). Then there exists some trace s,
such that s |̀ H 6= 〈〉, and event l ∈ L such that s ˆ 〈l〉 ∈ traces(P) ∧
(s \ H, {l}) ∈ failures(P). Then, by Lemma A.0.6, P has a divergence-
free refinement Q such that s ˆ 〈l〉 ∈ traces(Q), s \ H ∈ traces(Q) but
s \ H ˆ 〈l〉 /∈ traces(Q). This Q clearly fails the first disjunct of Proposi-
tion 5.3.5 and so ¬TNI (Q) holds.

Lemma 5.3.7. For a divergence-free process P , ∃Q • P v Q ∧
¬TNI (Q)⇒ ¬RCFNDC (P).

Proof. So suppose we have a divergence-free process P that has a refine-
ment Q such that ¬TNI (Q). Without loss of generality, suppose Q fails the
first disjunct of Proposition 5.3.5 (the second is handled similarly). Then
there exists some trace s and event l ∈ L such that sˆ〈l〉 ∈ traces(Q) ∧
s\H ∈ traces(P) ∧ s\Hˆ〈l〉 /∈ traces(Q). Then s 6= s\H, so s |̀ H 6= 〈〉. By
Axiom F3, (s \H, {e}) ∈ failures(Q) and so Q clearly fails the first disjunct
of Proposition 5.3.2. Because P v Q, Q’s traces and failures are a subset of
P ’s, so P clearly fails this disjunct too. So ¬RCFNDC (P) holds.

The following theorem, which states that RCFNDC is the refinement-
closure of Traces Noninterference, follows straightforwardly from Lem-
mas 5.3.6 and 5.3.7.

Theorem 5.3.8. For any divergence-free process P ,

RCFNDC (P)⇔ (∀Q • P v Q⇒ TNI (Q)).

The following corollary shows that RCFNDC coincides for deterministic
processes, with any property that is no stronger than Lazy Independence
and no weaker than Traces Noninterference.

Corollary 5.3.9. Let φ be a property such that for any divergence-free pro-
cess P , LIND(P)⇒ φ(P)⇒ TNI (P). Then for a deterministic process Q,

RCFNDC (Q)⇔ φ(Q).

Proof. Consider any property φ and deterministic process Q as stated in the
corollary. Then

LIND(Q)⇒ φ(Q)⇒ TNI (Q). (5.1)

By Lemma 5.3.4, RCFNDC (Q) ⇒ LIND(Q). By Theorem 5.3.8,
RCFNDC (Q) ⇔ TNI (Q). So TNI (Q) ⇒ LIND(Q), and hence
LIND(Q) ⇒ TNI (Q) ⇒ LIND(Q). Thus LIND(Q) ⇔ TNI (Q). Hence,
we may replace each by RCFNDC (Q) in Equation 5.1, giving

RCFNDC (Q)⇒ φ(Q)⇒ RCFNDC (Q).

5.3 Testing Information Flow for Object-Capability Patterns 102

Gibson-Robinson has also shown that the refinement-closure of a number
of transitive noninterference properties is equivalent to RCFNDC [GR09].
With our results, this covers nearly all of the transitive noninterference prop-
erties for CSP processes.

The only transitive noninterference properties, of which we are aware,
that do not coincide with RCFNDC for deterministic processes, all coin-
cide with Focardi and Gorrieri’s Nondeterministic Noninterference [FG95]
(NNI).

Definition 5.3.10 (NNI). A divergence-free process P satisfies NNI iff

∀ s ∈ traces(P) • s |̀ L ∈ traces(P).

For deterministic processes, NNI coincides with the following refinement-
closed property, which is just the first half of the characterisation of
RCFNDC from Proposition 5.3.2. Because this property is refinement-closed
and can be seen as asserting that the occurrence of high events cannot cause
low events to occur, when they otherwise wouldn’t have, we refer to it as
Refinement-Closed Noninterference by Causation (RCNIC).

Definition 5.3.11 (Refinement-Closed Noninterference by Causation). A
process satisfies Refinement-Closed Noninterference by Causation, written
RCNIC (P), iff

6 ∃ s, l • s |̀ H 6= 〈〉 ∧ l ∈ L ∧
sˆ〈l〉 ∈ traces(P) ∧ (s \H, {l}) ∈ failures(P).

The correspondence between NNI and RCNIC for deterministic processes
follows from the latter being the refinement-closure of the former, as shown
by Gibson-Robinson [GR09, Theorem 3.5]5. The correspondence between
NNI and the remaining transitive noninterference properties is shown by
Gibson-Robinson [GR09, Theorems 3.7 and 3.9].

Summary

We conclude, therefore, that, generally speaking, there exist only two sen-
sible substitutes for Prop in Definition 5.2.2 when considering transitive
noninterference properties: namely RCFNDC (or, equivalently, Lazy Inde-
pendence) and RCNIC. These two properties cover the entire literature of
which we’re aware on transitive noninterference properties for determinis-
tic CSP processes and are refinement-closed, which (as we will see in Sec-
tions 5.3.2 and 5.3.3), allows us to derive a refinement check that can be
automatically carried out in FDR to test whether they hold for all deter-
ministic componentwise refinements of a system.

5The property referred to here as RCNIC is equivalent to Gibson-Robinson’s Weak
Operational Noninterference [GR09].

5.3 Testing Information Flow for Object-Capability Patterns 103

One may observe that RCNIC detects only when the occurrence of H-
events causes some L-event to be able to occur, but doesn’t detect when
H-events cause some L-event to be refused. Hence, RCNIC is appropriate
to apply only for those systems in which the low objects cannot detect the
refusal of their events, i.e. those in which each low object cannot detect
when it has tried to perform some event l ∈ L but that event has been
refused by the other object that it involves. RCFNDC, on the other hand,
incorporates RCNIC (as its first disjunct) so not only detects when H-events
cause L-events to occur but also when they cause them to be refused. This
makes RCFNDC strictly stronger than RCNIC so, being conservative, one
might argue that RCFNDC is generally the better choice unless one knows
that low objects cannot detect the refusal of their events. We return to this
issue later in Section 5.4.2.

Finally, while we have focused only on transitive noninterference proper-
ties in this section, it should be noted that similar arguments can be made for
intransitive noninterference properties (e.g. [HY86, Rus92, RG99, vdM08])
for CSP processes; however, a full examination of this kind of property is
beyond the scope of this thesis.

5.3.2 Deriving a Testable Characterisation

In the previous subsection, we showed that it suffices to choose some
refinement-closed information flow property to substitute for Prop in Defi-
nition 5.2.2, and that the number of such choices is very limited in practice
since most information flow properties coincide for deterministic processes.

In the remainder of this section, we show, given a specific refinement-
closed property φ to substitute for Prop, how to automatically test
that φ holds for all deterministic componentwise refinements of a system
(i.e. whether Definition 5.2.2 holds when φ replaces Prop) using FDR.

We first show how to derive a testable characterisation of Definition 5.2.2
when Prop is replaced by some some refinement-closed property φ. This
is required since Definition 5.2.2 is not readily testable, because it quan-
tifies over all deterministic componentwise refinements System ′ of the sys-
tem System to which it is being applied. A testable characterisation analyses
just the traces and failures of System in order to determine whether φ holds
for all System ′ ∈ DCRef (System). From this testable characterisation, we
can then derive an automatic refinement check as demonstrated later in
Section 5.3.3.

We begin by noting that all such φ (e.g. RCFNDC, RCNIC or even
some refinement-closed intransitive noninterference property) share a com-
mon structure: any φ tests whether the occurrence of events from some set
can be influenced, or interfered with, by some other events occurring in the
system. We therefore call any such property a Refinement-Closed Noninter-
ference Property, which is captured formally by the following definition.

5.3 Testing Information Flow for Object-Capability Patterns 104

Definition 5.3.12 (Refinement-Closed Noninterference Property). A prop-
erty φ is called a Refinement-Closed Noninterference Property when it can
be written as follows

φ(P) =6 ∃ s1, s2, e • s1ˆ〈e〉 ∈ traces(P) ∧ (s2, {e}) ∈ failures(P) ∧
Pred(s1, s2, e),

for some predicate Pred such that Pred(s1, s2, e)⇒ s1 |̀ {e} = s2 |̀ {e}.

This definition can be understood as follows. It asserts that the system
being analysed cannot exhibit any two related behaviours: one s1 ˆ 〈e〉 in
which some event e does occur, the other (s2, {e}) in which e is refused. The
relationship between the two behaviours is captured by Pred . The presence
of these two behaviours indicates that the occurrence of the event e can be
influenced by whatever is different about s1 and s2, which is captured by
Pred . The requirement that Pred(s1, s2, e) ⇒ s1 |̀ {e} = s2 |̀ {e} simply
restricts our attention to those properties for which this difference is not
the occurrence, or not, of e itself, since it makes little sense to talk about
whether something can be influenced by itself.

For instance, RCNIC asserts that the occurrence of high events from H
cannot cause low events from L to occur, by asserting that in any two
behaviours s1 (in which high events occur) and s2 (in which high events
don’t occur), any low event that can follow s1 must always be able to follow
s2 (i.e. cannot be refused after s2). Hence, the occurrence of high events
cannot cause low events to occur when they otherwise might not have. Pred
for RCNIC reflects this, and is

e ∈ L ∧ s1 |̀ H 6= 〈〉 ∧ s2 = s1 \H. (5.2)

Similarly, RCFNDC asserts that the occurrence of high events from H
cannot influence the occurrence of low events from L, by asserting that
in any two behaviours that differ only in that high events have occurred
in one but not in the other, if a low event can be performed after one it
must always be able to occur after the other. This is reflected in Pred for
RCFNDC, which is

e ∈ L ∧ ((s1 |̀ H 6= 〈〉 ∧ s2 = s1 \H) ∨ (s2 |̀ H 6= 〈〉 ∧ s1 = s2 \H)). (5.3)

Likewise, Pred for Lazy Independence is

e ∈ L ∧ s1 \H = s2 \H. (5.4)

A refinement-closed ipurge-based definition of intransitive noninterfer-
ence [HY86, Rus92, vdM08] could also be expressed as a refinement-closed
noninterference property by choosing Pred to be some suitable encoding of
the intransitive purge function. Roscoe and Goldsmith’s formulation of in-
transitive noninterference [RG99] is essentially the conjunction of multiple

5.3 Testing Information Flow for Object-Capability Patterns 105

applications of a variation of Lazy Independence (where H and L need not
partition the system’s alphabet) and therefore should also be expressible as
a refinement-closed noninterference property.

We show here how to take any refinement-closed noninterference prop-
erty φ and to produce a testable characterisation of the property that applies
φ to all deterministic componentwise refinements of a system.

Observe that any φ examines pairs of behaviours, s1ˆ〈e〉 and (s2, {e}), of
a system System and that applying φ to all of System’s deterministic com-
ponentwise refinements System ′ ∈ DCRef (System) is equivalent to having
φ examine all pairs s1 ˆ〈e〉 and (s2, {e}) that can be exhibited by all such
System ′ ∈ DCRef (System). We say that two behaviours s1 〈̂e〉 and (s2, {e})
that can be exhibited by a deterministic componentwise refinement System ′

of System are consistent.

Definition 5.3.13 (Consistency). Two behaviours s1 〈̂e〉 and (s2, {e}) of an
alphabetised parallel composition Sys = ‖

i∈{1,...,n}(Pi, Ai) are consistent iff

∃Sys ′ ∈ DCRef (System) • s1ˆ〈e〉 ∈ traces(Sys ′) ∧ (s2, {e}) ∈ failures(Sys ′).

In this case, we write Con(s1 〈̂e〉, (s2, {e})). We say that s1 〈̂e〉 and (s2, {e})
are inconsistent otherwise.

So consider some refinement-closed noninterference property φ, where
(following Definition 5.3.12)

φ(Sys) =6 ∃ s1, s2, e • s1ˆ〈e〉 ∈ traces(Sys) ∧ (s2, {e}) ∈ failures(Sys) ∧
Pred(s1, s2, e).

The property obtained by substituting φ for Prop in Definition 5.2.2 then
holds for some system Sys iff

∀Sys ′ ∈ DCRef (Sys) • φ(Sys ′)

⇔ ∀Sys ′ ∈ DCRef (Sys) •6 ∃ s1, s2, e • s1ˆ〈e〉 ∈ traces(Sys ′) ∧
(s2, {e}) ∈ failures(Sys ′) ∧ Pred(s1, s2, e)

⇔ 6 ∃Sys ′ ∈ DCRef (Sys), s1, s2, e • s1ˆ〈e〉 ∈ traces(Sys ′) ∧
(s2, {e}) ∈ failures(Sys ′) ∧ Pred(s1, s2, e)

⇔ 6 ∃ s1, s2, e • ∃Sys ′ ∈ DCRef (Sys) • s1ˆ〈e〉 ∈ traces(Sys ′) ∧
(s2, {e}) ∈ failures(Sys ′) ∧ Pred(s1, s2, e) ∧
s1ˆ〈e〉 ∈ traces(Sys) ∧ (s2, {e}) ∈ failures(Sys).

This is equivalent to the property φCon defined as

φCon(Sys) =6 ∃ s1, s2, e • s1ˆ〈e〉 ∈ traces(Sys) ∧
(s2, {e}) ∈ failures(Sys) ∧
Pred(s1, s2, e) ∧ Con(s1ˆ〈e〉, (s2, {e})).

(5.5)

5.3 Testing Information Flow for Object-Capability Patterns 106

Thus, φCon(Sys)⇔ ∀Sys ′ ∈ DCRef (Sys) • φ(Sys ′).
To produce a testable characterisation of φCon , we need to derive some

semantic condition that can be applied to determine whether two behaviours
s1 ˆ〈e〉 and (s2, {e}) are consistent, i.e. can be exhibited by a composition
of deterministic refinements of the system’s components. We therefore need
a way to test whether any two s1ˆ〈e〉 and (s2, {e}) can be exhibited by the
system without any of its components (that take part in the two behaviours)
having to act nondeterministically.

The CSP laws for alphabetised parallel composition [Ros97] imply that
an alphabetised parallel composition Sys = ‖

i∈{1,...,n}(Pi, Ai) can exhibit

both of the behaviours s1ˆ〈e〉 and (s2, {e}) iff:

• All components involved in performing the traces s1 ˆ〈e〉 and s2 are
able to perform their events at the appropriate time, i.e.

∀ i ∈ {1, . . . , n} • (s1ˆ〈e〉) |̀ Ai ∈ traces(Pi) ∧ s2 |̀ Ai ∈ traces(Pi),

• and, at least one of the components that could be involved in refusing e
after s2 is able to at the appropriate time, i.e.

∃ j ∈ {1, . . . , n} • e ∈ Aj ∧ (s2 |̀ Aj , {e}) ∈ failures(Pj).

A component acts nondeterministically when it both performs and re-
fuses some event d after some trace t (see Definition 2.1.1). The only event
that is refused as part of s1 〈̂e〉 and (s2, {e}) occurring is the event e. Hence,
the only components that can act nondeterministically while these two be-
haviours are being exhibited are those components Pj that can be involved
in refusing e, i.e. those Pj for whom e is in their alphabet Aj .

One of these components Pj (for whom e ∈ Aj) must act nondetermin-
istically while contributing to s1ˆ〈e〉 and (s2, {e}), then, if:

• It is the only component that can refuse e at the appropriate time
(i.e. it is the only component for whom (s2 |̀ Aj , {e}) ∈ failures(Pj)),
and,

• the trace after which it refuses e (s2 |̀ Aj) is the same one after which
it must also perform e as part of s1ˆ〈e〉, i.e. s1 |̀ Aj = s2 |̀ Aj .6

This idea is captured in the following testable characterisation of con-
sistency, which we call apparent consistency. It asserts that two behaviours
are apparently consistent when there exists at least one component Pj that
can be involved in refusing e (i.e. for whom e ∈ Aj) at the appropriate time
(so that (s2 |̀ Aj , {e}) ∈ failures(Pj)), without having to act nondetermin-
istically (so s1 |̀ Aj 6= s2 |̀ Aj).

6Note that e.g. s2 |̀ Ajˆ〈e〉 6≤ s1 |̀ Aj because s1 |̀ {e} = s2 |̀ {e} and e ∈ Aj .

5.3 Testing Information Flow for Object-Capability Patterns 107

Definition 5.3.14 (Apparent Consistency). Two behaviours, s1 ˆ〈e〉 and
(s2, {e}), of an alphabetised parallel composition Sys = ‖

i∈{1,...,n}(Pi, Ai),

are apparently consistent iff

∃ j ∈ {1, . . . , n} • e ∈ Aj ∧ s1 |̀ Aj 6= s2 |̀ Aj ∧ (s2 |̀ Aj , {e}) ∈ failures(Pj).

We now prove that apparent consistency is equivalent to consistency, for
pairs of behaviours that violate refinement-closed noninterference properties.
We do so via couple of lemmas. We first show that apparent consistency is
necessary for consistency.

Lemma 5.3.15 (Apparent consistency is necessary for consistency). If two
behaviours that violate a refinement-closed noninterference property are con-
sistent, then they are apparently consistent.

Proof. We prove the contrapositive, i.e. that two behaviours that are not
apparently consistent are inconsistent.

Suppose we have two behaviours, s1ˆ〈e〉 and (s2, {e}), of a system Sys =

‖
i∈{1,...,n}(Pi, Ai) that violate a refinement-closed noninterference property.

Then by Definition 5.3.12, s1 |̀ {e} = s2 |̀ {e}. Suppose further that these
behaviours are not apparently consistent, i.e. by Definition 5.3.14 that

6 ∃ j ∈ {1, . . . , n} • e ∈ Aj ∧ s1 |̀ Aj 6= s2 |̀ Aj ∧ (s2 |̀ Aj , {e}) ∈ failures(Pj).

We have that ∀ i ∈ {1, . . . , n} • (s1 ˆ 〈e〉) |̀ Ai ∈ traces(Pi) and for some
j ∈ {1, . . . , n}, e ∈ Aj ∧ (s2 |̀ Aj , {e}) ∈ failures(Pj). So we know that for
all such Pj , s1 |̀ Aj = s2 |̀ Aj . Since e ∈ Aj , we also have that (s1 〈̂e〉) |̀ Aj =
s1 |̀ Ajˆ〈e〉. Hence

s1 |̀ Ajˆ〈e〉 ∈ traces(Pj) ∧ (s1 |̀ Aj , {e}) ∈ failures(Pj).

This proves that for the two behaviours to arise, all such Pj must act nonde-
terministically. Hence, there exists no Sys ′ ∈ DCRef (Sys) that can exhibit
both behaviours and so by Definition 5.3.13, they must be inconsistent.

We now show that apparent consistency is also sufficient for consistency.

Lemma 5.3.16 (Apparent consistency is sufficient for consistency). If two
behaviours that violate a refinement-closed noninterference property are ap-
parently consistent, then they are consistent.

Proof. We prove this by showing how to construct a deterministic compo-
nentwise refinement that exhibits both behaviours.

Suppose we have two behaviours, s1ˆ〈e〉 and (s2, {e}), of a system Sys =

‖
i∈{1,...,n}(Pi, Ai) that violate a refinement-closed noninterference property.

Then by Definition 5.3.12, s1 |̀ {e} = s2 |̀ {e}. Suppose further that these
behaviours are apparently consistent, i.e. by Definition 5.3.14 that for some
j ∈ {1, . . . , n}, e ∈ Aj ∧ (s2 |̀ Aj , {e}) ∈ failures(Pj) ∧ s1 |̀ Aj 6= s2 |̀ Aj .

5.3 Testing Information Flow for Object-Capability Patterns 108

Now, by Definition 5.3.13, to show that these two behaviours are consis-
tent, we seek a deterministic componentwise refinement Sys ′ ∈ DCRef (Sys)
that can exhibit both of them. From Definition 5.2.1, Sys ′ is equivalent
to some composition ‖

i∈{1,...,n}(Qi, Ai) where ∀ i ∈ {1, . . . , n} • Pi v Qi ∧
det(Qi). We show that such an Sys ′ exists by showing that such a set of
processes Qi exists whose composition can exhibit both behaviours. We do
this by showing how to construct each Qi from the corresponding Pi.

We require that ∀ i ∈ {1, . . . , n} • (s1ˆ〈e〉) |̀ Ai ∈ traces(Qi) ∧ s2 |̀ Ai ∈
traces(Qi), and (s2 |̀ Aj , {e}) ∈ failures(Qj), for j above.

For the remaining Qi, i 6= j, we simply require each to exhibit the
appropriate traces. We can achieve this simply by taking the deterministic
trace-equivalent refinement of each Pi. That is, for each i 6= j, we define
Qi to be the process that has the same stable failures as Pi, except that
whenever Pi can perform a trace tˆ〈d〉, Qi cannot have any refusal (t,X)
where d ∈ X. Lemma A.0.4, proves that such a process exists for all Pi.

We construct Qj in two steps. We first remove any traces that would
prevent a deterministic process from refusing e after s2 |̀ Aj , i.e. we remove
all failures associated with the trace s2 |̀ Aj ˆ〈e〉 and any extension of it.
Lemma A.0.6, shows that for any Pj , one can always do this to arrive at a
process, Rj , that refines Pj and for which s |̀ A2 〈̂e〉 /∈ traces(Rj). Hence, by
Axiom F3, all refinements of Rj (including Rj itself) must have the failure
(s2 |̀ Aj , {e}). Also, because s1 |̀ Aj 6= s2 |̀ Aj , it must be the case that
s1ˆ〈e〉 ∈ traces(Rj), since it wasn’t removed when forming Rj .

We then simply take Qj to be the deterministic trace-equivalent refine-
ment of Rj . Qj is thus guaranteed to have the stable failure (s2 |̀ Aj , {e}). It
will also have the trace s1̂ 〈e〉|̀ Aj . Hence, the composition ‖

i∈{1,...,n}(Qi, Ai)

can exhibit both behaviours. So they must be consistent.

The following theorem follows directly from Lemmas 5.3.15 and 5.3.16.

Theorem 5.3.17. Two behaviours that violate a refinement-closed nonin-
terference property are apparently consistent iff they are consistent.

This allows us to take a refinement-closed noninterference property φ and
give a testable characterisation of the property obtained by substituting φ
for Prop in Definition 5.2.2. Recall that this is equivalent to the prop-
erty φCon , defined by Equation 5.5, which makes use of the predicate Con
(see Definition 5.3.13) to consider only consistent pairs of behaviour. This
testable characterisation is then obtained by replacing the use of Con in the
definition of φCon by its testable counterpart, namely apparent consistency
from Definition 5.3.14. We call this testable characterisation of φCon the
Weakened Counterpart for Compositions of φ, which is defined as follows.

Definition 5.3.18 (Weakened Refinement-Closed Noninterference Prop-
erty for Compositions). The weakened counterpart for compositions of a

5.3 Testing Information Flow for Object-Capability Patterns 109

refinement-closed noninterference property φ, where

φ(P) =6 ∃ s1, s2, e • s1ˆ〈e〉 ∈ traces(P) ∧ (s2, {e}) ∈ failures(P) ∧
Pred(s1, s2, e),

is the property W φ, defined for alphabetised parallel compositions Sys =

‖
i∈{1,...,n}(Pi, Ai) as

W φ(Sys) =6 ∃ s1, s2, e • s1ˆ〈e〉 ∈ traces(Sys) ∧ (s2, {e}) ∈ failures(Sys) ∧
Pred(s1, s2, e) ∧
∃ j ∈ {1, . . . , n} • e ∈ Aj ∧ s1 |̀ Aj 6= s2 |̀ Aj ∧

(s2 |̀ Aj , {e}) ∈ failures(Pj).

We call W φ a weakened refinement-closed noninterference property for short.

The following corollary states that the property W φ is equivalent to the
property obtained by substituting φ for Prop in Definition 5.2.2.

Corollary 5.3.19. Let φ be a refinement-closed noninterference property
and W φ be its weakened counterpart for compositions. Then for any alpha-
betised parallel composition Sys

W φ(Sys)⇔ ∀Sys ′ ∈ DCRef (Sys) • φ(Sys ′).

Substituting the definition of Pred for RCFNDC (see Equation 5.3) into
the definition of W φ above therefore gives us a testable property that cor-
responds to applying RCFNDC to all deterministic componentwise refine-
ments of a system. We call this property Weakened RCFNDC for Compo-
sitions or Weakened RCFNDC for short.

Definition 5.3.20. An alphabetised parallel composition Sys =

‖
i∈{1,...,n}(Pi, Ai) satisfies Weakened RCFNDC for Compositions, written

WRCFNDC (Sys), iff

6 ∃ s, l • s |̀ H 6= 〈〉 ∧ l ∈ L ∧
(
sˆ〈l〉 ∈ traces(Sys) ∧ s \H ∈ traces(Sys) ∧
∃ i • l ∈ Ai ∧ s |̀ Ai 6= s \H |̀ Ai ∧ (s \H |̀ Ai, {l}) ∈ failures(Pi)

)
∨
(
s \Hˆ〈l〉 ∈ traces(Sys) ∧ s ∈ traces(Sys) ∧
∃ i • l ∈ Ai ∧ s |̀ Ai 6= s \H |̀ Ai ∧ (s |̀ Ai, {l}) ∈ failures(Pi)

)
 .

Corollary 5.3.21. For any alphabetised parallel composition Sys

WRCFNDC (Sys)⇔ ∀Sys ′ ∈ DCRef (Sys) • RCFNDC (Sys ′).

The same can be done for RCNIC (the Pred for which is given by Equa-
tion 5.2), in which case we obtain the property that corresponds to Weakened
RCFNDC with the second disjunct above removed.

5.3 Testing Information Flow for Object-Capability Patterns 110

5.3.3 Deriving an Automatic Test

We now show how to construct a refinement check to allow FDR to auto-
matically test weakened refinement-closed noninterference properties, such
as Weakened RCFNDC above. For a specific weakened refinement-closed
noninterference property W φ, its refinement check can be constructed by
either adapting any existing check for φ, or from scratch by applying the ba-
sic ideas outlined in this section with previous ones for expressing properties
as refinement checks (see e.g. [Ros05, Low09]). For the sake of brevity, we
will show how to take the former approach. However, these ideas can be eas-
ily extended to produce tests for weakened refinement-closed noninterference
properties W φ when there is no pre-existing test for φ.

Testing Refinement-Closed Noninterference Properties

We begin with an overview of how refinement checks for refinement-closed
noninterference properties are constructed (see [Low09]).

Refinement-closed noninterference properties come from a larger class of
properties known as binary failures properties. This is the class of proper-
ties that examine pairs of stable failures and are violated by the presence of
certain related pairs. Lowe [Low09] has shown that all binary failures prop-
erties can be expressed in the form of CSP refinement tests; most of these
tests are finite state, enabling them to be automatically tested by FDR.
Any such property φ applied to a process Sys can be expressed in terms
of a CSP refinement test that runs two copies of the process Sys in a test
harness, Harness(Sys), looking for pairs of failures (one from the first copy,
the other from the second) that violate the property. The harness can be
defined as

Harness(Sys) = (left.Sys ||| right.Sys) ‖
{|left,right|}

Sched

for some deterministic scheduler process, Sched , that allows the two copies
of Sys to exhibit all behaviours that could lead to violations of the property
in question. Each copy of Sys performs its events on separate fresh channels,
left and right, in order to allow them to be distinguished.

A specification process, Spec, is constructed that is the most general
process that mimics the behaviour of the test harness, except that it exhibits
none of the pairs of failures that violate the property. One can test whether
the property holds for some process Sys then by testing whether

Spec vF Harness(Sys).

Lowe [Low09] provides a method for deriving both Spec and Harness to
ensure they are correct by construction that, although not complete, works
for all cases considered to date, including for RCFNDC.

5.3 Testing Information Flow for Object-Capability Patterns 111

We consider how such tests can be modified in order to allow weakened
refinement-closed noninterference properties to be automatically tested us-
ing FDR. We use the test for RCFNDC as an example, but the general
technique can be applied with equal success to other refinement-closed non-
interference properties, such as RCNIC, in order to express their weakened
counterparts as refinement tests. The following is a slight adaptation of the
Spec and Sched processes derived in [Low09] for RCFNDC.

Spec =

left?h : H → Spec′

� left?l : L→ (right.l→ Spec u STOP)
� right?l : L→ (left.l→ Spec u STOP)

 u STOP,
Spec′ =

left?h : H → Spec′

� left?l : L→ right.l→ Spec′

� right?l : L→ left.l→ Spec′

 u STOP,
Sched =

left?h : H → Sched
� left?l : L→ right.l→ Sched
� right?l : L→ left.l→ Sched .

The test works as follows. Sched allows the left copy of Sys to perform
events in H and L. The right copy of Sys is allowed to perform only L events.
Both copies must perform the same L events. The first specification process,
Spec, corresponds to states in which no H event has yet been performed by
the left copy of Sys. Once an H event is performed, the specification evolves
to Spec′. Spec′ is constructed to ensure that (0) assuming both copies
perform the same L events, that once some H event has been performed by
the left copy, (1) whenever an L event is performed by either copy of Sys, (2)
the other copy cannot refuse it. This corresponds exactly to the definition
of RCFNDC (see Proposition 5.3.2) for Sys, which is equivalent to

6 ∃ s1, s2, e •
(1) s1ˆ〈e〉 ∈ traces(Sys) ∧ e ∈ L ∧ (2) (s2, {e}) ∈ failures(Sys) ∧
(0) ((s1 |̀ H 6= 〈〉 ∧ s2 = s1 \H) ∨ (s2 |̀ H 6= 〈〉 ∧ s1 = s2 \H)).

Testing Weakened Refinement-Closed Noninterference Properties

We now show a fairly general method that can be applied to adapt a refine-
ment test, like that above for RCFNDC, for a refinement-closed noninter-
ference property to instead test for its weakened counterpart.

We begin by observing that we can rewrite a weakened refinement-closed
noninterference property W φ (see Definition 5.3.18) equivalently (for alpha-
betised parallel compositions Sys = ‖

i∈{1,...,n}(Pi, Ai)) as

W φ(Sys) =6 ∃ s1, s2, e • s1ˆ〈e〉 ∈ traces(Sys) ∧ s2 ∈ traces(Sys) ∧
Pred(s1, s2, e) ∧
∃ j ∈ {1, . . . , n} • e ∈ Aj ∧ s1 |̀ Aj 6= s2 |̀ Aj ∧

(s2 |̀ Aj , {e}) ∈ failures(Pj).

5.3 Testing Information Flow for Object-Capability Patterns 112

Hence, weakened refinement-closed noninterference properties are violated
by the presence of three behaviours: two traces of the system Sys and one
stable failure of one of the system’s components Pj .

At first glance, this suggests that in order to express such a property
as a refinement test, we would need to create a test harness that runs two
copies of the system Sys (in order to test if the two traces can be exhibited),
as well as a copy of each component of Sys (in order to test if the stable
failure can be exhibited). However, we can achieve the same result by simply
running two copies of each component Pi of the system Sys. We run two
copies of a modified system, WSys, that allows us to observe both system-
level traces as well as the behaviour of individual components by applying
a renaming to each component before composing them. Given a system,
Sys = ‖

i∈{1,...,n}(Pi, Ai), we can create a process, WSys, that allows us to

observe both system-level traces and individual component behaviours as
depicted in Snippet 5.2.

WSys = ‖
i∈{1,...,n}(Pi[[

sys.x, cmp.i.x/x, x]], {sys.x, cmp.i.x | x ∈ Ai}).

Snippet 5.2: Observing system-level traces and individual component be-
haviours.

Here sys and cmp are fresh channels over which WSys performs system-
level and individual component events respectively. Pi[[sys.x, cmp.i.x/x, x]] is
the process that can perform either of the events sys.x or cmp.i.x, whenever
Pi can perform the event x. The alphabetised parallel composition forces all
of the transformed Pi to synchronise on all events performed on the channel
sys, while events performed on any of the cmp channels occur without any
synchronisation. This means that we can observe system-level traces by
observing the sys channel. At some point in time, we can then observe the
behaviour of individual components by observing the various cmp channels.

This allows us to build a modified test harness, WHarness, that can be
applied to a system Sys = ‖

i∈{1,...,n}(Pi, Ai) as depicted in Snippet 5.3.

WHarness(Sys) = (left.WSys ||| right.WSys) ‖
{|left,right|}

WSched .

Snippet 5.3: A test harness for weakened refinement-closed noninterference
properties.

WSched is explained shortly, as it is derived from the specification pro-
cess WSpec, against which WHarness is tested for refinement. WSpec is
constructed by adapting Spec as follows. In general, the specification pro-

5.3 Testing Information Flow for Object-Capability Patterns 113

cess, Spec, for a (non-weakened) refinement-closed noninterference property
applied to some process Sys, is constructed so that whenever the left (respec-
tively right) copy of Sys performs a trace s1ˆ〈e〉 and the right (respectively
left) copy of Sys performs the related trace s2, Spec never refuses the event
right.e (respectively left.e). Hence, it will be refined by Harness(Sys) if and
only if the right (respectively left) copy of Sys cannot refuse the event e after
performing the trace s2. We call the states in which Spec never refuses the
event right.e (respectively left.e) above, its critical states.

For a weakened refinement-closed noninterference property applied to
some composition, Sys = ‖

i∈{1,...,n}(Pi, Ai), we require that, once in a

critical state, rather than the other copy of Sys not being able to refuse
the event e, that instead none of the individual components, Pi, that
have e in their alphabets (e ∈ Ai) and have performed different traces
(s1 |̀ Ai 6= s2 |̀ Ai) can refuse e. This gives us a recipe for adapting Spec, to
make WSpec, as follows.

• Change all references to the channels left and right to left.sys and
right.sys respectively.

• Maintain a set, S, of components that have performed different traces
so far, i.e. for whom s1 |̀ Ai 6= s2 |̀ Ai; S is initially empty.

• For each system-level event that is performed, determine which com-
ponents have now performed different traces, and add those to S.

• The critical states in which Spec could not refuse the event right.e
(respectively left.e) may be expressed as right.e → Q (respectively
left.e→ Q) for some process Q. Have WSpec instead do

right.sys.e→ Q . NR(right,S, e)

(respectively left.sys.e→ Q . NR(left,S, e)), where

NR(chan,S, e) = ?a : {chan.cmp.i.e | Pi ∈ S ∧ e ∈ Ai} → STOP.

This instead allows WSpec to perform (but also refuse) right.sys.e (re-
spectively left.sys.e) while preventing it from refusing any of the events
right.cmp.i.e (respectively left.cmp.i.e) for all Pi that have performed
different traces so far and that have e in their alphabets. We have
WSpec become STOP after refusing none of the right.cmp.i.e (respec-
tively left.cmp.i.e) since at this point only a subset of the components
that have e in their alphabets may have performed e and, hence, the
composition might have lost synchronisation. Note that the scheduler,
WSched , explained directly, also becomes STOP in the corresponding
state to ensure the test remains sound.

5.4 Applying the Test 114

WSched is formed by simply taking the deterministic trace-equivalent
refinement (see Lemma A.0.4 in Appendix A) of WSpec, which can usually
be derived syntactically as shown below. The test is carried out against a
system Sys, then, by testing the refinement

WSpec vF WHarness(Sys).

In order to apply the recipe to develop WSpec from Spec, we simply need
to determine how to update the set S after each system-level event has been
performed. We use the test for RCFNDC as an example. Observe that with
RCFNDC, it is only the events from H that can add differences between s1

and s2, since both copies of the system perform the same L events. Hence,
for each h ∈ H that is performed, for all i, s1 |̀ Ai 6= s2 |̀ Ai, if and only if
h ∈ Ai. Therefore, S needs to be updated only for each H event, h, that is
performed by simply adding all of the Pi for whom h ∈ Ai; we denote this
set by cmpsWith(h), where cmpsWith(h) = {Pi | i ∈ {1, . . . , n} ∧ h ∈ Ai}.
This leads to the definition of WSpec for Weakened RCFNDC, which appears
in Snippet 5.4.

WSpec =left.sys?h : H →WSpec′(cmpsWith(h))
� left.sys?l : L→ (right.sys.l→WSpec u STOP)
� right.sys?l : L→ (left.sys.l→WSpec u STOP)

 u STOP,
WSpec′(S) =left.sys?h : H →WSpec′(S ∪ cmpsWith(h)) �

left.sys?l : L→ (right.sys.l→WSpec′(S) . NR(right,S, l))
� right.sys?l : L→ (left.sys.l→WSpec′(S) . NR(left,S, l))


u STOP.

Snippet 5.4: The specification for testing Weakened RCFNDC.

As stated earlier, WSched is the deterministic trace-equivalent refine-
ment of WSpec. It can be derived syntactically from WSpec and appears in
Snippet 5.5.

5.4 Applying the Test

We have shown how to define information flow security for object-capability
patterns modelled in CSP as weakened refinement-closed noninterference
properties, such as Weakened RCFNDC, and how to construct refinement
checks to allow these properties to be automatically tested by FDR. In
particular, we now have a refinement check, namely that above for Weak-
ened RCFNDC, that can be applied to CSP models of object-capability

5.4 Applying the Test 115

WSched =
left.sys?h : H →WSched ′(cmpsWith(h))
� left.sys?l : L→ right.sys.l→WSched
� right.sys?l : L→ left.sys.l→WSched ,

WSched ′(S) =
left.sys?h : H →WSched ′(S ∪ cmpsWith(h)) �
left.sys?l : L→ (right.sys.l→WSched ′(S) � NR(right,S, l))
� right.sys?l : L→ (left.sys.l→WSched ′(S) � NR(left,S, l)).

Snippet 5.5: The scheduler for testing Weakened RCFNDC.

patterns to reason about their information flow properties. In this section,
we demonstrate its application for reasoning about how an implementation
of the Data-Diode pattern, depicted in Figure 5.1, allows information to
flow.

5.4.1 Modelling the Data-Diode Implementation

We analyse an implementation of the Data-Diode from [Mil06, Figure 11.2].
For brevity, we consider just the more general concurrent context in which
each object executes with its own thread of control. We begin by considering
the Data-Diode pattern instantiated in the system depicted in Figure 5.1.

Recall that in this system, High and Low are each arbitrary objects
that have access to high- and low-classification data respectively. The sets
HighData and LowData, each of which is a subset of the set Data of all data
in the system, contain the high- and low-classification data respectively. The
behaviours of High and Low are given as indicated earlier in Snippet 5.1.

A data-diode is an object that has two facets, a read-facet and a write-
facet7. It stores a single datum and begins life holding some initial value.
Invoking its read-facet causes it to return its current contents. Invoking its
write-facet with a Data argument causes it to replace its current contents
with the argument. We model a data-diode with read-facet readme and
write-facet writeme that initially contains the datum val from the set Data
as the CSP process ADataDiode(readme,writeme, val), defined as follows.

ADataDiode(readme,writeme, val) =
?from : Capability − {readme,writeme}!readme!Call!null→

readme!from!Return!val → ADataDiode(readme,writeme, val) �
?from : Capability − {readme,writeme}!writeme!Call?newVal : Data →

writeme!from!Return!null→ ADataDiode(readme,writeme,newVal).

7It is unclear whether the read and write interfaces should be implemented as facets
of a single object or as forwarding objects of a composite object. We choose the former
option at this point and will explore the latter in Section 5.4.3.

5.4 Applying the Test 116

Observe that this process passes Data items only, refusing all Capability
arguments.

The behaviour of DataDiode is as one would expect, given that it starts
life holding no datum (i.e. holding the null value null), namely

behaviour(DataDiode) = ADataDiode(DDReader,DDWriter, null).

The facets of each object are as one would expect, namely
facets(DataDiode) = {DDReader,DDWriter} and facets(other) = {other}
for other 6= DataDiode. To complete the system, it remains to define
the sets HighData, LowData and Data. For now, we will instantiate
HighData and LowData simply as disjoint singleton sets and allow them
to partition the total set Data of data. So let HighData = {HighDatum},
LowData = {LowDatum} and Data = HighData ∪ LowData. Letting
Object = {High,DataDiode, Low}, the system is then modelled by the object-
capability system (Object , behaviour , facets,Data) and captured by the pro-
cess System = ‖

o∈Object
(behaviour(o), α(o)) per Definition 2.3.1.

5.4.2 Analysing the Data-Diode Implementation

As explained earlier, we can easily express the notion that DataDiode doesn’t
allow Low to obtain high data by overt means as a safety property. We
define the set X of events that represent Low acquiring any HighData.
X = {f.l.op.d | f ∈ Capability , l ∈ facets(Low), op ∈ {Call,Return}, d ∈
HighData}. We then simply test that no X-events can occur in System by
testing whether CHAOSΣ−X vT System. FDR reveals that this test holds.
We conclude that Low cannot obtain any HighData overtly in this system.

Having ruled out this overt information flow, we will now apply Weak-
ened RCFNDC to System to test whether information can flow from High
to Low by covert means. To do so, we must define the sets H and L of high
and low events respectively. Recall that Weakened RCFNDC tests whether
the occurrence of high events in H can affect the occurrence of events in L
(and so influence the low objects that perform L-events). H and L must
partition the effective alphabet of System, meaning that H and L must be
disjoint and that System must perform no events outside of H ∪ L.

Let H = {|h.DDReader,DDReader.h, h.h′ | h, h′ ∈ facets(High)|} denote
the set of events that represent High interacting with itself and DDReader.
Similarly let L = {|l.DDWriter.Call.arg ,DDWriter.l.Return.null, l.l′ | l, l′ ∈
facets(Low)|} denote the set of events representing Low interacting with it-
self and DDWriter. Then these sets are clearly disjoint. FDR reveals that
STOP vT System \ (H ∪ L), so System can perform no events outside of
H ∪ L. This implies, for example, that neither High nor Low can obtain
a capability to the other. So H and L partition the effective alphabet of
System.

Applying the refinement check for Weakened RCFNDC from the previous
section to System with these definitions of H and L, using FDR, tests that

5.4 Applying the Test 117

High’s interactions with itself and DataDiode cannot interfere with Low, and
so tests whether DataDiode provides a covert channel from High to Low.

Performing the test in FDR reveals that Weakened RCFNDC doesn’t
hold for System. FDR returns the following stable-failure that can be ex-
hibited by the test-harness WHarness(System) (see Snippet 5.3) but not by
the specification WSpec (see Snippet 5.4) for Weakened RCFNDC.(
〈left.sys.High.DDReader.Call.null, right.sys.Low.DDWriter.Call.LowDatum〉,
{left.cmp.DataDiode.Low.DDWriter.Call.LowDatum}

)
This stable-failure indicates that the right copy of System can perform

the trace 〈Low.DDWriter.Call.LowDatum〉, while the left copy can exhibit the
stable-failure (〈High.DDReader.Call.null〉, {Low.DDWriter.Call.LowDatum})
because DataDiode refuses the event Low.DDWriter.Call.LowDatum after the
event High.DDReader.Call.null has occurred. We see that the second disjunct
from Definition 5.3.20 of Weakened RCFNDC is clearly violated, then, if
we let s = 〈High.DDReader.Call.null〉, l = Low.DDWriter.Call.LowDatum and
Pi = DataDiode.

This counter-example indicates that (in the right copy of System) ini-
tially Low can invoke DDWriter but that (in the left copy) if High invokes
DDReader, it can cause Low’s invocation to be refused. This occurs because
DataDiode cannot service requests from High and Low at the same time. This
constitutes a clear covert channel, since High can signal to Low by invoking
DDReader which alters whether Low’s invocation is accepted.

We note that Low may be unable to observe this covert channel in some
object-capability systems, e.g. those in which a sender of a message is un-
detectably blocked until the receiver is ready to receive it. In this kind of
system, Low is unable to detect the refusal of his own events by the other
objects that partake in those events. Hence, in this case Low is unable
to detect when High causes Low events to be refused and can only detect
when High causes Low events to occur. For this kind of system, one might
wish to apply an information flow property that detects only when High can
cause Low events to occur by using RCNIC (Definition 5.3.11) in place of
RCFNDC, and so apply RCNIC’s weakened counterpart for compositions,
namely Weakened RCNIC (as given by Definition 5.3.18), rather than Weak-
ened RCFNDC. Recall that Weakened RCNIC is equivalent to Weakened
RCFNDC with the second disjunct of Definition 5.3.20 removed. Likewise,
the refinement check for Weakened RCNIC is a simplification of that for
Weakened RCFNDC (in which the scheduler WSched never allows the right
copy of the system to choose the next L-event to be performed).8 However,
we choose to make the conservative assumption that this counter-example
represents a valid fault that needs to be corrected.

8Performing this check for Weakened RCNIC in FDR reveals that it holds for System.

5.4 Applying the Test 118

5.4.3 Fixing the Data-Diode Implementation

Correcting the fault here involves modifying the data-diode implementation
so that its interfaces for writing and reading, DDWriter and DDReader, can
be used simultaneously. We do so by promoting these interfaces from being
facets of a single process to existing as individual processes in their own
right. These processes simply act now as proxies that forward invocations
to the facets of an underlying ADataDiode process, as depicted in Figure 5.2.

Figure 5.2: An improved Data-Diode implementation.

The behaviour of a proxy me that forwards invocations it receives using
the capability target is given by the following process AProxy(me, target)

AProxy(me, target) =
?from : Capability − {me}!me!Call?arg : Data ∪ {null} →
me!target !Call!arg → target !me!Return?res : Data ∪ {null} →
me!from!Return!res → AProxy(me, target).

The data-diode is now a composite of three entities, DDReader, DDWriter
and DataDiode, and as such is referred to as DDComposite. We model
the system depicted in Figure 5.2 as an object-capability system com-
prising the objects from Object = {High,DDComposite, Low}, where
facets(DDComposite) = {DDReader,DDWriter,DDR,DDW} and, letting
R = {|DDReader.x, x.DDReader | x ∈ facets(DDComposite)−{DDReader}|},
W = {|DDWriter.x, x.DDWriter | x ∈ facets(DDComposite)− {DDWriter}|},
DD = ADataDiode(DDR,DDW, null) and the other definitions be as before,

behaviour(DDComposite) =(
(AProxy(DDReader,DDR) ‖

R

DD) ‖
W

AProxy(DDWriter,DDW)

)
\ (R ∪W).

DDComposite is formed by taking the two proxies, DDReader and
DDWriter, and composing them in parallel with DataDiode, whose read-
and write-interfaces are now DDR and DDW respectively. Notice that we
then hide the internal communications within DDComposite since these are
not visible to its outside environment and it is unclear how to divide these
events between the sets H and L.

Performing the appropriate traces refinement checks in FDR reveal that
Low cannot acquire any HighData, and that System can perform no events

5.5 Generalising Information Flow Analyses 119

outside of H∪L, as before. FDR reveals that Weakened RCFNDC holds for
System. Hence, we are unable to detect any covert channels in this model
of the improved Data-Diode implementation.

5.5 Generalising Information Flow Analyses

We have shown how to reason about the information flow properties of
object-capability patterns deployed in small, fixed-sized systems. We now
show how to adapt the approach taken in Chapter 4 to allow us to generalise
these information flow analyses to arbitrary-sized systems.

As an example, we will show how to generalise the Data-Diode analysis
to all systems that have the form of Figure 5.3, and have arbitrary HighData
and LowData. Here, the objects within each cloud can be interconnected in
any way whatsoever; however, the only capability to an object outside of the
high object cloud that each high object may possess is DDReader. The same
is true for the low objects and DDWriter. This figure captures all systems
containing an arbitrary number of high and low objects and, thus, all those
in which each object may create arbitrary numbers of others that share its
security level.

Figure 5.3: Generalising the Data-Diode analysis.

Recall that the approach we took in Chapter 4 had two steps. The first
step of this approach was to choose an arbitrary large system to which we
wanted our results to generalise, such as one of the systems captured by Fig-
ure 5.3, and argue that a small system, like that depicted in Figure 5.2, was
a safe abstraction of the larger one with respect to any refinement-closed
security property φ, meaning that if φ held for the small system, it was
guaranteed to hold for the larger one (see Definition 4.1.1). This argument
was made by showing that each cloud of objects in the larger system was
aggregated by a corresponding object in the small system, meaning that the
small system was an aggregation of the larger one (see Definition 4.1.2).
We showed that this approach was sound for refinement-closed properties
because an aggregation was refined by any system it aggregated (see The-
orem 4.1.3). Hence, any aggregation was a safe abstraction of any larger
system it aggregated with regards to any refinement-closed property.

The final step of this process (see Section 4.1.3) involved generalising the
analysis over all such larger systems (i.e. generalising over all such clouds

5.5 Generalising Information Flow Analyses 120

that might exist in any of them). This was done by generalising the analysis
of the (small-sized) aggregation to all choices for the sets of facets of each
of the aggregating objects it contained, by applying the theory of data-
independence [Laz99].

We show how to adapt each of these steps to allow us to generalise
the analysis of weakened refinement-closed noninterference properties, like
Weakened RCFNDC, to arbitrary-sized systems.

5.5.1 Safe Abstraction and Aggregation

We begin by noting that the original definition of safe abstraction was
with regards to refinement-closed properties; however, weakened refinement-
closed noninterference properties are not refinement-closed. Hence, we need
to adapt the notion of safe abstraction to capture when, given two systems
System and System ′, System ′ is a safe abstraction of System with respect
to a weakened refinement-closed noninterference property W φ.

System ′ is a safe abstraction of System with respect to some W φ
when W φ(System ′) ⇒ W φ(System). Recall that W φ is (by construction)
equivalent to the property obtained by substituting φ for Prop in Defini-
tion 5.2.2, so W φ(System) ⇔ ∀SystemD ∈ DCRef (System) • φ(SystemD)
and similarly for System ′. We can guarantee, then, that W φ(System ′) ⇒
W φ(System) if DCRef (System) ⊆ DCRef (System ′).9 Hence, we take this as
the definition for safe abstraction with respect to any weakened refinement-
closed noninterference property.

Definition 5.5.1 (Safe Abstraction wrt Weakened Refinement-Closed Non-
interference Properties). One alphabetised parallel composition Sys ′ is a safe
abstraction of another Sys wrt weakened refinement-closed noninterference
properties iff DCRef (System) ⊆ DCRef (System ′).

We must now show that all aggregations (as defined by Definition 4.1.2)
are safe abstractions with regards to weakened refinement-closed noninter-
ference properties, i.e. that if System ′ is an aggregation of System then
DCRef (System) ⊆ DCRef (System ′). The following theorem does so.

Theorem 5.5.2. Let (Object , behaviour , facets,Data) and (Object ′,
behaviour ′, facets ′,Data) be two object-capability systems with identical
data captured by the CSP processes System = ‖

o∈Object
(behaviour(o), α(o))

and System ′ = ‖
o∈Object ′

(behaviour ′(o), α′(o)) respectively, such that

System ′ is an aggregation of System. Then we have that DCRef (System) ⊆
DCRef (System ′).

Proof. Suppose the conditions of the theorem. Then from Definition 4.1.2,
there exists a surjection Abs : Object → Object ′ such that for all o′ ∈ Object ′,

9Because of the definition of DCRef (see Definition 5.2.1), this subset relation is
interpreted modulo failures-divergences equivalence.

5.5 Generalising Information Flow Analyses 121

facets ′(o′) =
⋃
{facets(o) | o ∈ Abs−1(o′)} and Equation 4.1 is satisfied.

Both systems clearly have the same alphabet.
Let SystemD ≡FD ‖o∈Object

(bo, α(o)) be an arbitrary deterministic com-

ponentwise refinement of System (so that ∀ o ∈ Object • behaviour(o) v
bo ∧ det(bo)). We must show that there exists a deterministic component-
wise refinement, System ′D = ‖

o′∈Object ′
(bo′ , α

′(o′)) (where ∀ o′ ∈ Object ′ •
behaviour ′(o′) v bo′ ∧ det(bo′)), of System ′ such that SystemD ≡FD
System ′D. We show this by showing how to construct each bo′ .

Observe that SystemD ≡FD ‖o′∈Object ′
(Po′ , α

′(o′)) where, for each o′ ∈
Object ′, Po′ = ‖

o∈Abs−1(o′)
(bo, α(o)). Each Po′ must be deterministic because

it is the alphabetised parallel composition of deterministic processes. We
use each Po′ as a template from which to derive the corresponding bo′ from
behaviour ′(o′).10

Consider some o′ ∈ Object ′. Then ‖
o∈Abs−1(o′)

(behaviour(o), α(o)) v
Po′ , hence, by Equation 4.1, ∀ s ∈ traces(System) • (s |̀ α′(o′), X) ∈
failures(Po′)⇒ (s |̀ α′(o′), X) ∈ failures(behaviour ′(o′)).

Let Fo′={(t,X) ∈ failures(Po′) | ∃ s ∈ traces(System) • s |̀ α′(o′)=t}.
Then Fo′ ⊆ failures(behaviour ′(o′)). Because Po′ is deterministic, by Ax-
iom F3, (t,X) ∈ Fo′ ∧ (t, Y) ∈ Fo′ ⇒ (t,X ∪ Y) ∈ Fo′ .

Using Lemma A.0.6, we can remove all traces {t ˆ 〈e〉 ∈
traces(behaviour ′(o′)) | ∃X • e ∈ X ∧ (t,X) ∈ Fo′} from behaviour ′(o′),
giving us a valid refinement Ro′ . In doing so, we can never remove any
failure (t, Y) ∈ Fo′ because each application of Lemma A.0.6 to a process
P , to remove the traces associated with some failure (s,X) ∈ Fo′ , for which
Fo′ ⊆ failures(P) yields a process Q for which Fo′ ⊆ failures(Q). Suppose
otherwise for a contradiction. Then it must be the case that in remov-
ing traces associated with some failure (s,X) ∈ Fo′ , we must remove some
failure (t, Y) ∈ Fo′ . By Lemma A.0.6, this happens only if t = s and
(t,X ∪ Y) /∈ failures(P). However, this is impossible since we know that
(t,X ∪ Y) ∈ Fo′ and Fo′ ⊆ failures(P).

So Fo′ ⊆ failures(Ro′) and ∀(t,X) ∈ Fo′ • ∀x ∈ X • tˆ〈x〉 /∈ traces(Ro′).
By Lemma A.0.4, we define bo′ to be the deterministic trace-equivalent re-
finement of Ro′ . It must be the case that, in applying this lemma, no failure
(t,X) ∈ Fo′ has been removed. Hence, Fo′ ⊆ failures(bo′) ∧ det(bo′).

It remains to be shown that SystemD ≡FD ‖o′∈Object ′
(bo′ , α

′(o′)).

Note that because both are deterministic, it is enough to show that
failures(SystemD) ⊆ failures(‖

o′∈Object
(bo′ , α

′(o′))). We note that, for all

o′ ∈ Object ′, the containment of Fo′ in failures(bo′) means that ∀ s ∈
traces(SystemD) • (s |̀ α′(o′), X) ∈ failures(Po′) ⇒ (s |̀ α′(o′), X) ∈
failures(bo′). The argument then proceeds as in Lemma 4.1.3.

10We can’t simply set each bo′ = Po′ since behaviour ′(o′) v Po′ is not generally true.

5.5 Generalising Information Flow Analyses 122

5.5.2 Data-Independence

We have shown that we can use aggregation to build smaller safe abstrac-
tions of larger systems with respect to weakened refinement-closed nonin-
terference properties. This means that, for example, any particular larger
system captured by Figure 5.3 can be safely abstracted by the small system
depicted in Figure 5.2 when (in the small system) we set facets(High) and
facets(Low) to be the sets of facets of all high and low objects in the larger
system respectively.

Recall that the second step of our generalisation technique involves ap-
plying the theory of data-independence to show that the small system is
secure for all disjoint choices for the sets facets(High) and facets(Low), thus
generalising the analysis to all larger systems captured by Figure 5.3. We say
that facets(High) and facets(Low) are data-independent types of the small
system. Recall that data-independence theory allows us to derive a thresh-
old for each data-independent type such that if we can show that the small
system is secure for all choices for each type no larger than the respective
threshold, then we can conclude that the small system is secure for all (non-
empty) disjoint choices for each type. These thresholds naturally depend on
both the system being analysed and property being tested.

We now present a theorem from which we derive a corollary that allows
us to automatically calculate suitable data-independence thresholds when
testing Weakened RCFNDC for systems that satisfy NoEqT (which, recall,
asserts that the system need perform no equality tests between members of a
data-independent type). While this theorem applies directly only to Weak-
ened RCFNDC, its proof should be able to be adapted straightforwardly to
cover other weakened refinement-closed noninterference properties.

As in Section 4.1.3, the basic idea is to relate behaviours of a large
system, in which a data-independent type T has size larger than the thresh-
old, to a small system, in which the same data-independent type has size
of the threshold, and show that the presence of insecure behaviours in the
large system imply the presence of corresponding insecure behaviours in the
small one. We relate the behaviours of the large system to corresponding
behaviours of the small system by a surjection φ : T → T ′ that maps mem-
bers of the type T instantiated in the large system to members of that same
type instantiated (as T ′, whose size is the threshold) in the small system.

We will use the following standard result. Let PT be a process that is
data-independent in some set T and satisfies NoEqT for T , meaning that
PT never needs to test two values of T for equality. Let φ be a surjection
whose domain is T , where we write φ(T) for {φ(t) | t ∈ T} and φ−1(X) for
{y | y ∈ T ∧ φ(y) ∈ X}. Then [Laz99, Theorem 4.2.2], lifting φ to events
and traces, we have that

{(φ(s), X) | (s, φ−1(X)) ∈ failures(PT)} ⊆ failures(Pφ(T)). (5.6)

5.5 Generalising Information Flow Analyses 123

Theorem 5.5.3. Let ST = ‖
i∈{1,...,n}(PT,i, AT,i) be an alphabetised parallel

composition, whose components and alphabets are polymorphically parame-
terised by some set T , such that ST and each PT,i are data-independent in T
and satisfy NoEqT for T . Also let HT and LT be two sets polymorphically
parameterised by T that partition the alphabet of ST for all non-empty T .
Let W denote the maximum number of distinct elements of T that appear
in any single event from LT . Then W + 1 is a sufficient data-independence
threshold for T for WRCFNDC (ST).

Proof. Assume the conditions of the theorem. Suppose for some T with
size greater than W , ST fails Weakened RCFNDC for HT and LT . Then
let T̃ = {t̃0, . . . , t̃W } for fresh elements t̃0, . . . , t̃W . We show that ST̃ fails
Weakened RCFNDC for HT̃ and LT̃ .

Let φ : T → T̃ be a surjection; we fix the choice of φ below. Lift φ to
events by applying φ to all components of type T . Then φ maps an event in
the alphabet of ST to an event in the alphabet of ST̃ . Also, lifting φ to sets
of events, ∀ i ∈ {1, . . . , n} • φ(AT,i) = AT̃ ,i, φ(HT) = HT̃ and φ(LT) = LT̃ .

Observe that Sφ(T) = ST̃ . So, by Equation 5.6, the presence of certain
behaviours in ST implies the presence of related behaviours in ST̃ . Recall
the definition of Weakened RCFNDC (Definition 5.3.20). Suppose ST fails
the first disjunct of Definition 5.3.20 for HT and LT . We show that ST̃ fails
this disjunct for HT̃ and LT̃ . The second disjunct is handled similarly. Then
there exists some s, l and i ∈ {1, . . . , n} such that

s |̀ HT 6= 〈〉 ∧ l ∈ LT ∧ sˆ〈l〉 ∈ traces(ST) ∧ s \HT ∈ traces(ST) ∧
l ∈ AT,i ∧ s |̀ AT,i 6= s \HT |̀ AT,i ∧ (s \HT |̀ AT,i, {l}) ∈ failures(PT,i).

Let t0, . . . , tk−1 be the distinct members of T that appear in l. Then
k ≤ W . Choose φ(ti) = t̃i for 0 ≤ i ≤ k − 1 and let φ(t) = t̃k for all
other t ∈ T − {t0, . . . , tk−1}. Let s̃ = φ(s) and l̃ = φ(l). Then s̃ |̀ H̃ 6=
〈〉 ∧ l̃ ∈ L̃ ∧ l̃ ∈ AT̃ ,i ∧ s̃ |̀ AT̃ ,i 6= s̃ \ H̃ |̀ AT̃ ,i. Applying Equation 5.6

to ST , we have s̃ˆ〈l̃〉 ∈ traces(ST̃) ∧ s̃ \ H̃ ∈ traces(ST̃). Further, {l} =

φ−1({l̃}) by construction. So, applying Equation 5.6 to PT,i, we obtain
(s̃ \ H̃ |̀ AT̃ ,i, {l̃}) ∈ failures(PT̃ ,i) as required.

Observe that, in this proof, l is necessarily an event in the alphabet of a
process that can perform both HT and LT events. Hence, we can strengthen
this result to take W to be the maximum number of distinct values of type T
in all such events in LT .

Corollary 5.5.4. Let ST = ‖
i∈{1,...,n}(PT,i, AT,i) be an alphabetised parallel

composition, whose components and alphabets are polymorphically parame-
terised by some set T , such that ST and each PT,i are data-independent in T
and satisfy NoEqT for T . Also let HT and LT be two sets polymorphically
parameterised by T that partition the alphabet of ST for all non-empty T .

5.5 Generalising Information Flow Analyses 124

Let W denote the maximum number of distinct elements of T that appear
in any single event from

LT ∩
⋃
{AT,i | i ∈ {1, . . . , n} ∧ AT,i ∩HT 6= {} ∧ AT,i ∩ LT 6= {}}.

Then W + 1 is a sufficient data-independence threshold for T for
WRCFNDC (ST).

5.5.3 Generalising the Data-Diode Analysis

We now apply these ideas to generalise the analysis of the Data-Diode pat-
tern to all systems captured by Figure 5.3 with arbitrary HighData and
LowData.

Consider an arbitrary system captured by Figure 5.3. Let HighObjects
and LowObjects denote the (obviously disjoint) sets of objects in the high
and low object clouds respectively. Then let T =

⋃
o∈HighObjects facets(o)

and U =
⋃
o∈LowObjects facets(o) denote the sets that contain all facets of the

high and low objects respectively. HighData and LowData are the sets of
high and low data in this system, each of which is a subset of the set Data
of all data in this system. Let V = Data.

Then this system can be safely abstracted by a system SystemT,U,V of
the form of Figure 5.2 where we set facets(High) = T , facets(Low) = U and
(within this abstraction) LowData = HighData = Data = V , i.e. initially
we give both High and Low access to all data. We give High and Low access
to all data because we’re focusing here only on the covert information flow
properties of the Data-Diode pattern; its overt information flow properties
(which can be expressed as safety properties) can be generalised using the
techniques of Chapter 4. Then SystemT,U,V and all of its components are
data-independent in T , U and V and satisfy NoEqT for each.

We then define the sets HT,U,V and LT,U,V of high and low events
in SystemT,U,V as follows.

HT,U,V = {|t.DDReader,DDReader.t, t.t′ | t, t′ ∈ T |},
LT,U,V =
{|u.DDWriter.Call.d,DDWriter.u.Return.null, u.u′ | u, u′ ∈ U, d ∈ V ∪ {null}|}.

To apply Corollary 5.5.4, we first need to show that HT,U,V and LT,U,V
partition the effective alphabet of SystemT,U,V , i.e. that

STOP vT SystemT,U,V \ (HT,U,V ∪ LT,U,V)

for all non-empty, disjoint T , U and V . Theorem 2.3.5 implies that 1 is
a sufficient threshold for each set to prove this. Instantiating each set as
a singleton set containing a fresh element and performing the test in FDR
reveals that it holds as required.

5.6 Related Work 125

To verify Weakened RCFNDC, Corollary 5.5.4 suggests thresholds for
T , U and V of 1, 2 and 2 respectively. This implies we need to carry out the
test for Weakened RCFNDC in FDR 4 times in order to show that it holds
for all non-empty disjoint T , U and V . The most expensive of the 4 tests
implied by these thresholds examines about 6.3 million state-pairs, taking
less than 4 minutes to compile and complete on a desktop PC; the others
are far cheaper. All tests pass, thus generalising our analysis of the covert
information flow properties of the improved Data-Diode implementation.

5.6 Related Work

Information Flow in the Take-Grant Model In [Bis96], Bishop con-
siders information flow in the Take-Grant protection model, which models
object-capability systems. This considers only how information can flow in
object-capability systems under the assumption that all objects are maxi-
mally hostile, since the Take-Grant model doesn’t take into account the be-
haviour of trusted security-enforcing objects. For this reason, it cannot be
used to reason about the information flow properties of object-capability pat-
terns, which are (by definition) implemented by trusted security-enforcing
objects.

Overt Flow and Object-Capability Patterns As we’ve said earlier,
Spiessens’ work on the Scoll formalism [SV05, Spi07] was the first to examine
the security properties of object-capability patterns by taking into account
the behaviour of trusted objects. As part of this work, Spiessens looked at
overt information flow, including [Spi07, Section 8.4] a scenario that is very
similar to the system depicted in Figure 5.1 that we’ve analysed here. In
this chapter, we’ve mainly focused on the covert information flow properties
of object-capability patterns, since overt information flow can be readily
captured via safety properties, which were examined in detail in Chapter 3.

It should be noted that Scoll could also be used to reason about covert
information flow. However, doing so would require the person who is con-
structing the model of a system to include in that model all of the means by
which information can propagate covertly within the system. Our approach
has the advantage that no such a priori knowledge of the mechanisms for
covert information propagation is necessary, because these mechanisms are
implicitly encoded in the information flow property being applied [ML09a].

Architectural Refinement and Information Flow We briefly dis-
cussed van der Meyden’s work on information flow and architectural re-
finement [vdM09] in Section 4.4 and noted that van der Meyden’s notion of
architectural refinement shares some similarities with the idea of aggregation
(which we’ve adapted from Spiessens [Spi07]). In particular, saying that A1

5.7 Conclusion 126

is an architectural refinement of A2 is similar to saying that A2 is an aggre-
gation of A1. Hence, one might say that architectural refinement is similar
to the idea that is the reverse of aggregation, which we’ll call disaggregation
for lack of a better term.

van der Meyden considers the problem of whether architectural refine-
ment preserves information flow policies. That is, if we have architecturesA1

and A2, where A1 is a refinement of A2, and we build a system in accordance
with the refined architecture A1, does that system respect the information
flow properties of the original architecture A2? van der Meyden shows that
the answer is “yes” for a range of intransitive noninterference properties. In
this sense, van der Meyden has shown that architectural refinement preserves
a range of intransitive information flow properties.

In Section 5.5.1, we showed that if System is an aggregation of System ′,
then any definition for information flow security for object-capability pat-
terns that conforms to our general characterisation (Definition 5.2.2) holds
for System ′ if it holds for System. In this sense, we showed that information
flow security for object-capability patterns is preserved by disaggregation.

This therefore resonates with van der Meyden’s proof that intransitive
noninterference is preserved by architectural refinement.

5.7 Conclusion

In this chapter, we have seen that CSP can be applied to reason about
the information flow properties of object-capability patterns. We saw that,
in order to do so, one needs to make the necessary assumption that the
only objects affected by a message exchange are those who partake in it.
We found that this assumption could be encoded into a general definition
(Definition 5.2.2) for information flow security for object-capability patterns.
This definition is parameterised by an information flow property Prop and
encodes the assumption above by deeming a system to be secure just when
Prop holds for all of the system’s deterministic componentwise refinements.

We saw that when choosing a transitive refinement-closed noninterfer-
ence property to substitute for Prop to instantiate this general definition,
that there are really only two effectively different choices that one can make:
namely RCFNDC (equivalently Lazy Independence) or RCNIC. We found
that one can mechanically derive a testable characterisation W φ of this def-
inition when it is instantiated with such a refinement-closed noninterference
property φ. This is done by weakening φ to ignore all pairs of inconsistent
behaviour. We also saw that a refinement check for W φ could be derived
from the refinement check for φ, therefore allowing the general definition to
be instantiated and then automatically tested by refinement checking.

We demonstrated this by defining the property Weakened RCFNDC for
Compositions, which instantiates the general definition with RCFNDC, and
deriving a refinement check for Weakened RCFNDC from that for RCFNDC.

5.7 Conclusion 127

The same could also be done with RCNIC to a produce a weaker property
that detects only when high events cause low events to occur, whose defini-
tion and associated refinement check are a simplification of those for Weak-
ened RCFNDC. We found that the automatic test for Weakened RCFNDC
was particularly useful for detecting and helping to correct covert channels
in an implementation of the Data-Diode pattern. We expect that these tests
should be widely applicable to other object-capability patterns too.

Finally, we saw that these kinds of analyses could be generalised to
arbitrary-sized systems by adapting the techniques presented in Chapter 4.
We proved a result that allows one to easily derive data-independence thresh-
olds for these analyses for systems that satisfy NoEqT. Since the majority
of object-capability patterns don’t use EQ , we expect CSP models of them
to satisfy NoEqT, allowing their information flow analyses to be easily gen-
eralised in this way. We leave the generalisation of these kinds of analyses
for systems that don’t satisfy NoEqT as future work.

While this chapter has focused on transitive noninterference properties,
we believe that the same approach could also be taken to apply intran-
sitive noninterference properties to object-capability patterns. This is be-
cause, as argued in Section 5.3.2, we expect most intransitive noninterference
properties can be expressed equivalently for deterministic processes as some
refinement-closed noninterference property,

As discussed later in Section 8.1 in Chapter 8, the work in this chapter is
not directly applicable, without extension, to systems in which objects have
access to shared clocks, by which they can exploit possible timing channels.
Addressing this limitation to allow such channels to be detected is an obvious
avenue for future work.

The techniques demonstrated in this chapter are vital, amongst other
reasons, for ensuring that patterns designed to enforce certain confidential-
ity policies do not inadvertently violate those same policies by containing
unknown covert channels. They can also be applied to ensure that a pattern
properly prevents one set of objects, or one set of actions, from inappropri-
ately interfering with other parts of a system.

All of the properties examined so far in this thesis have been readily
expressible as refinement checks, enabling them to be automatically tested
by FDR. In this sense, we’ve been able to stay within the bounds of what
can be easily tested using FDR. We leave this realm in the following chapter,
where we examine liveness properties under necessary fairness assumptions.
We will find that these properties cannot be precisely expressed as refinement
checks for FDR, which will force us to test sufficient conditions for them
instead.

6 Liveness

In this chapter, we consider how to reason about certain kinds of liveness
properties of object-capability patterns. A liveness property is one that
asserts that something (good) must happen [Lam77], as opposed to a safety
property that, recall, asserts that something (bad) must not happen. An
example of such a property of an object-capability pattern might be that,
once invoked, a trusted object must (eventually) Return to its caller, in
order to avoid blocking the caller forever. Liveness tests of CSP processes
are usually performed in the stable-failures or failures-divergences models,
unlike safety properties which are usually tested via traces refinement checks.

Broadly speaking, the notion of liveness has two different interpretations
in the context of CSP. Often, liveness is interpreted in the context of CSP
to mean any property that asserts the absence of certain stable failures (and
sometimes also divergences), i.e. any property that must be tested using a
stable-failures or failures-divergences refinement check. Under this interpre-
tation, a property like deadlock freedom is normally considered a liveness
property. We depart from this convention in this thesis, instead adopt-
ing Alpern and Schneider’s [AS85] characterisation of liveness, under which
deadlock freedom is actually considered a safety property (albeit one that,
unlike most other safety properties, must be tested in the stable-failures
model rather than the traces model). We do so because Alpern and Schnei-
der’s notion of liveness turns out to be most appropriate for our purposes.

In Section 6.1, we introduce Alpern and Schneider’s concept of liveness
and show how it applies to CSP. We see, under this notion of liveness, that
liveness properties are fundamentally different to safety properties because
they deal with infinite behaviours, i.e. those of infinite length that take
infinitely long to observe. This makes them more tricky to test for CSP
processes than safety properties, most notably because it requires us to apply
some kind of fairness assumption to the process being checked. We show how
to encode traditional notions of fairness in CSP, and how to express liveness
properties under these fairness assumptions, using a fragment of LTL and its
associated refusal-traces semantics borrowed from Lowe [Low08]. We then
prove that, in general, it is impossible to express tests for liveness properties
under these fairness assumptions via CSP refinement checks for FDR to
carry out. Instead, we derive some sufficient conditions, which can be applied
in certain circumstances, for certain liveness properties under the strong

6.1 Liveness in CSP 129

event fairness assumption. We show that these sufficient conditions can be
framed as stable-failures refinement checks, and so be checked automatically
by FDR.

In Section 6.2, we apply the results from Section 6.1 to analyse the
liveness of the safe Trademarks implementation from Section 3.1, arguing
that the results obtained can be easily adapted to similar patterns, including
the Sealer-Unsealer implementation of Section 3.2. We consider an intuitive
liveness property, expressed in LTL, that we would like the Trademarks
pattern to uphold. Using the results from Section 6.1, we use FDR to
analyse this liveness property of this pattern. We argue that untrusted
capabilities cannot be easily handled whilst ensuring liveness when using
blocking invocation only. We model the use of non-blocking invocation as
exists in some object-capability operating systems like seL4 and Coyotos,
and show how it can be used to ensure a live Trademarks implementation.

In Section 6.3, we then discuss how liveness analyses of object-capability
patterns can be generalised to systems of arbitrary size, using the techniques
developed earlier in Chapter 4. We illustrate this by showing how to gen-
eralise the liveness analysis of the Trademarks pattern from Section 6.2 in
this way.

6.1 Liveness in CSP

6.1.1 Testing Liveness Directly in CSP

Under Alpern and Schneider’s definitions [AS85], liveness properties differ
fundamentally from safety properties because they can be violated by system
behaviours of infinite length while not being violated by any behaviour of
finite length. A safety property, on the other hand, is violated by an infinite
length behaviour b only if it is also violated by some finite behaviour which
is a prefix of b [AAH+85, cited in [Kin94]]. This means that, while all safety
violations can be detected by observing only finite behaviours, properly
detecting liveness violations requires one to observe behaviours of infinite
length that take infinitely long to occur1.

Consider, for instance, the liveness property that asserts that some
event e must occur, commonly written “♦ e” when applying (see e.g. [PV01,
Puh03, Puh05, SLDW08, Low08]) Linear Temporal Logic (LTL) [Pnu77]
to CSP. Clearly, ♦ e is violated by any finite behaviour in which e does
not occur that ends in deadlock. However, ♦ e is also violated by any be-
haviour of infinite length in which e does not occur. For some processes,
such as S = a → S, the only behaviours they contain that violate ♦ e are
traces of infinite length, in this case the infinite trace 〈a, a, a, . . .〉.

In general, liveness properties can be expressed and reasoned about only

1Notice that under this characterisation of safety and liveness, deadlock-freedom is
indeed a safety property because all deadlocks take only a finite amount of time to observe.

6.1 Liveness in CSP 130

in semantic models that accurately capture behaviours of infinite length.
Of CSP’s three standard denotational semantic models (namely the traces,
stable-failures and failures-divergences models) introduced in Section 2.1,
only the failures-divergences model records infinite behaviours. The only
kind of infinite behaviour recorded in the failures-divergences model is di-
vergence, which occurs when a process performs an infinite amount of inter-
nal activity without performing a visible event. Applying the CSP hiding
operator to a process P to obtain a process P \X, in which all events in the
set X are hidden, effectively turns all events x ∈ X into internal activity.
Hence, one way to detect liveness violations in the form of infinite traces is
to use hiding to turn these infinite traces into infinite unbroken sequences
of internal actions, i.e. into divergences, which can then be detected using
a refinement test in the failures-divergences model.

As noted previously by Lowe [Low08], to test that ♦ e holds for some
divergence-free process P , one simply tests whether

e→ div vFD P \ (Σ− {e}). (6.1)

This test fails iff P can either: deadlock before performing e, since in this
case P \ (Σ−{e}) will be able to refuse {e} initially which the specification
cannot; or perform an infinite sequence of non-e events, since in that case
P \ (Σ−{e}) will be able to diverge initially which the specification cannot.

6.1.2 Fairness

The applicability of this direct approach to testing liveness properties in
CSP tends to be limited in practice. This is because to reason about live-
ness properties, one usually needs to make some kind of fairness assump-
tion [AFK88, LPS81, VVK05]. No such assumption is taken into account
by a direct test of a liveness property, such as that from Equation 6.1.

A fairness assumption implicitly restricts the infinite traces that a pro-
cess can perform by forbidding all of those that would be judged to be unfair,
i.e. all those that violate the fairness assumption. Fairness usually means
that “if a choice is possible sufficiently often, then it is sufficiently often
taken” [AFK88]. The inclusion of unfair infinite behaviours in a process’s
semantics can often result in false violations of liveness properties being
detected that could not arise in any fair implementation.

Take, for example, the parallel composition T = S ||| e→ STOP , where
recall S = a → S, and consider whether T satisfies ♦ e. Under no fairness
assumptions, T clearly fails ♦ e because it can perform an infinite sequence
of as. Indeed, applying the test from Equation 6.1 would reveal that it does
not hold because T \ (Σ−{e}) can initially diverge. However, this raises the
question as to whether this infinite behaviour of T is fair. Many intuitive
notions of fairness would say “no”.

A number of different fairness notions (see e.g. [LPS81, AFK88, VVK05]
for just a fraction) have been proposed that might be applicable to T above.

6.1 Liveness in CSP 131

On the one hand, we might say that any implementation of T that comprises
two concurrently executing processes – one of which performs as, the other
of which performs the event e – is unfair when one process is scheduled
sufficiently often while the second is ready to be scheduled, without the
second process ever being scheduled. Different interpretations of “sufficiently
often” naturally give rise to stronger and weaker specific notions of fairness.
In CSP, a process is ready to be scheduled when it has some event that is
stably available, meaning that the process is in a stable state in which this
event cannot be refused2. With this in mind, we frame fairness in general
terms without reference to the particular structure of the system in question
nor to its alphabet, as follows.

Definition 6.1.1 (A General Characterisation of Fairness). Unfairness ex-
ists in some behaviour of infinite length when, from some point onwards in
that behaviour, some event was stably available sufficiently often but never
occurred. A fair infinite behaviour is one that contains no unfairness.

As we explain later in Section 6.1.3, it turns out that no standard denota-
tional model for CSP can distinguish between when an event is guaranteed
to be stably available (i.e. when the process in question is guaranteed to
transition to a stable state in which the event is available) and when the
event is merely guaranteed to be stably available if the process transitions
to a stable state. Hence, in Definition 6.1.1, by “stably available” we really
mean “stably available on the assumption that the process in question sta-
bilised at this point”. This turns out to have implications, which we discuss
later in Section 6.1.5, when judging the fairness of infinite behaviours in
which an event may have been stably available sufficiently often but this
information was not recorded in the behaviour.

Because of its generality and natural expression within the concepts
(namely the occurrence and stable refusal/availability of events within linear
execution traces [Ros08]) embodied in the standard denotational semantic
models of CSP, we choose to adopt Definition 6.1.1 as a useful general char-
acterisation of fairness for infinite behaviours. However, alternatives exist
(see e.g. [AFK88, Puh05]) that might be preferable in certain circumstances.

Weak event fairness and strong event fairness [Lam00, PV01, SLDW08]
are examples of fairness properties that fit naturally within Definition 6.1.1.
These concepts specialise the notions of weak and strong fairness [Lam77]
respectively, applying them to the occurrence of events. Weak event fairness
asserts that an event that is continually available occurs infinitely often.
Strong event fairness asserts that an event that is available infinitely often
occurs infinitely often; it naturally implies weak event fairness.

In practice, these kinds of fairness assumptions are upheld in real systems
that implement a corresponding fair scheduling policy. However, the corre-

2The requirement for stability here is needed, for example, to ensure that the event
that is available cannot subsequently become unavailable before the process is scheduled.

6.1 Liveness in CSP 132

spondence between the fairness of a system’s scheduling algorithm to one of
these fairness assumptions can be shown only by modelling the scheduling
algorithm and showing that for all objects that run in that system, that the
fairness assumption is upheld. No such proof of any real object-capability
system has ever been done, as far as we are aware. Therefore, these kinds of
fairness assumptions are used in this chapter not because we are sure that
any current object-capability system guarantees them, but simply because
in CSP we cannot sensibly talk about the kinds of liveness properties in
which we are interested without them.

6.1.3 Liveness under Fairness in LTL

Liveness and fairness properties are usually expressed as formulae in LTL.
Lowe [Low08] presents an encoding of a fragment of LTL for CSP processes
that is suitable for our purposes here. An LTL formula comprises atomic
formulae that may be composed together with temporal operators and stan-
dard boolean operators. We consider a fragment of Lowe’s dialect of LTL
that uses the following atomic formulae.

• e: For an event e ∈ Σ, this formula means that the event e is (guar-
anteed to be) performed initially.

• available e: For an event e ∈ Σ, this formula means that the event e
cannot be stably refused initially; if stability is observed initially,
then e must be stably available.

In our fragment of LTL, the following temporal operators are used to
combine atomic formulae together, along with the standard boolean opera-
tors other than negation.

• ♦: For some property φ, ♦φ asserts that φ is eventually satisfied.

• �: For some property φ, �φ asserts that φ is always satisfied.

The fragment of LTL that we use expresses formulae φ that adhere to the
following grammar, which has been chosen so as to be the simplest fragment
capable of expressing the kinds of liveness and fairness properties in which
we are interested.

φ ::= e | available e | φ ∧ φ | φ ∨ φ | φ⇒ φ | ♦φ | �φ.

The properties of strong and weak event fairness are expressed in our
fragment of LTL in the usual way (see e.g. [Lam00, PV01, SLDW08]).

Definition 6.1.2 (Strong and Weak Event Fairness). The property of strong
event fairness, denoted SEF , is defined in LTL as

SEF =
∧
e∈Σ

(�♦ available e⇒ �♦ e).

6.1 Liveness in CSP 133

The property of weak event fairness, denoted WEF , is defined in LTL as

WEF =
∧
e∈Σ

(♦� available e⇒ �♦ e).

Testing a liveness property φ, such as the property ♦ e, under one of these
fairness assumptions ψ, is equivalent to testing the property encoded by the
LTL formula ψ ⇒ φ [Liu09]. So, for instance, the property that asserts that
the event e must eventually occur under the assumption of strong event
fairness is expressed by the LTL formula SEF ⇒ ♦ e.

To see how liveness under these fairness assumptions works, consider the
process P , where

P = a→ P � b→ P.

In P , both a and b are always stably available, hence under the assumption
of either strong or weak event fairness, both events should occur infinitely
often. Hence, writing P |= φ to mean that P satisfies the property encoded
by the LTL formula φ, we have

P |= WEF ⇒ �♦ b, P |= SEF ⇒ �♦ b,

and similarly for a.
On the other hand, consider the process Q where

Q = a→ Q u b→ Q.

Suppose the internal choice in Q is always resolved to the right so that b is
never stably available in Q. In this case, we see that under either strong or
weak event fairness the event b need never occur. Hence, we have that

Q 6|= SEF ⇒ ♦ b, Q 6|= WEF ⇒ ♦ b,

and similarly for a. This makes sense since Q is refined by the process R =
a→ R in which b need never occur. It indicates that our notion of fairness
does not forbid one branch of an internal choice being ignored forever, since
this would invalidate our expectations about refinement.

To see the difference between strong and weak event fairness, consider
the process S where

S = a→ c→ S � b→ c→ S.

The event b is not stably available continually in S; although it is stably
available infinitely often. Hence

S 6|= WEF ⇒ �♦ b, S |= SEF ⇒ �♦ b,

and similarly for a.

6.1 Liveness in CSP 134

Finally, we illustrate a (perhaps non-obvious) consequence that arises
from giving our fragment of LTL, and hence our fairness properties, a de-
notational interpretation borrowed from Lowe [Low08], i.e. that arises from
defining the semantics for our fragment of LTL in terms of one of CSP’s
standard denotational semantic models.

The formulae for strong and weak event fairness from Definition 6.1.2 are
syntactically identical to the LTL encodings of strong and weak event fair-
ness that have appeared previously (e.g. [PV01, Puh03, Puh05, SLDW08,
Liu09]). However, their semantics differ subtly from those of most of their
predecessors, which, unlike ours, have been given in terms of an operational,
rather than denotational, semantics. Giving our fragment of LTL a deno-
tational interpretation avoids problems that can arise with an operational
interpretation of liveness and fairness properties, as explained later in Sec-
tion 6.4. However, it does mean that our notions of strong and weak event
fairness behave slightly differently than one might initially expect.

To see why, consider the process T where

T = a→ T . b→ T.

The operational semantics of the “.” operator imply that T can initially
perform a; however, T can also initially perform some internal activity and
transition to a stable state where it can perform only b. Because T can
perform internal activity in its initial state, from which a is available, T ’s
initial state is unstable.

The process T satisfies the property available b because initially b cannot
be stably refused. Hence, T satisfies � available b and so we have that

T |= WEF ⇒ �♦ b, T |= SEF ⇒ �♦ b.

Note, of course, that these properties do not hold for a since T doesn’t
satisfy available a.

T satisfying available b may seem surprising if one considers that b is not
guaranteed to be initially stably available in T . For instance, in the case
that T performs a initially, b never becomes stably available before a occurs.
This highlights the fact that available b does not imply that b must be stably
available initially; but only that b must be available whenever the process is
observed to stabilise before performing a visible event.

This means that our notions of strong and weak event fairness are per-
haps a little stronger than one might otherwise expect them to be. For the
case of T above, for instance, both of our fairness properties judge as unfair
the infinite behaviour in which T performs only as forever.

This situation arises unavoidably because we choose to give a denota-
tional, rather than an operational, semantics for our fragment of LTL, and in
particular the atomic formula available e. All of CSP’s standard denotational
semantic models purposefully choose not to positively record the presence of
instability [Ros09]. This means, for instance, that the process e → STOP

6.1 Liveness in CSP 135

cannot be distinguished from the process e → STOP . e → STOP in
any standard denotational model, Hence, any denotational interpretation of
available e (over a standard denotational model) must necessarily say that
the second process satisfies available e because the first one does so trivially.

Hence, no denotational interpretation of available e can assert that e must
become stably available before any visible event is performed, but only that
e must be available in those cases that the process is observed to stabilise
before performing a visible event. This is precisely what available e means
under our denotational interpretation, which we present shortly.

In practice, this slight oddity of our fairness properties is not problematic
and the benefits obtained from adopting a denotational interpretation of our
fragment of LTL far outweigh any negative consequences of doing so.

6.1.4 The Refusal-Traces Model

Lowe [Low08] presents a semantic encoding for LTL in the denotational
semantic model for CSP known as the refusal-traces model [Muk93], which
is also called the refusal-testing model. Indeed, this model turns out to be
the least discriminating one that can accurately capture the semantics of
many LTL formulae, including our fairness properties above, for divergence-
free processes. This is because these kinds of property require a model
that records information about the stable availability of individual events
throughout (infinite) execution traces. The refusal-traces model is the least
powerful model that does so accurately for divergence-free processes.

The refusal-traces model records finite behavioural traces that have the
following forms:

1. 〈X1, a1, X2, a2, . . . , Xn, an〉, which is a partial behaviour;

2. 〈X1, a1, X2, a2, . . . , Xn, an,Σ〉, which is a completed behaviour that
has ended in deadlock.

Above, each Xi is either: a set of events that can be stably refused after
performing the sequence of events 〈a1, . . . , ai−1〉, such that ai /∈ Xi; or the
special symbol •, used to indicate that no stable refusal was observed in
between the events ai−1 and ai occurring.

For example, the process a → STOP . STOP has the refusal traces
〈•, a,Σ〉 and 〈Σ〉, indicating that a can be performed initially without sta-
bility being observed, before it deadlocks, or that it may deadlock initially.
The process a → STOP u STOP has the same refusal traces except that
it also has all of the refusal-traces in the set {〈X, a,Σ〉 | X ⊆ Σ − {a}},
indicating that it can initially stabilise and refuse everything except a be-
fore performing a. Because both processes can initially stabilise and refuse
to perform a, neither satisfies the property “available a” nor the (stronger)
property “a”.

6.1 Liveness in CSP 136

Let RefToken = P Σ ∪ {•} be the set of refusal tokens. We treat • as if
it were the smallest member under ⊆ of RefToken, so that e.g. • ⊆ {}, a /∈•
for any a ∈ Σ, and X ∪ • = X.

Let PRT be the set of partial refusal traces, namely all those of form 1
above, and let DRT be the set of deadlocked refusal traces, namely all those
of form 2 above. Then the set of all finite refusal-traces RT is the union of
these two sets: RT = PRT∪DRT . A process P is represented in the refusal-
traces model by its setR[[P]] of finite refusal-traces, whereR[[P]] ⊆ RT . Like
in the other denotational models, the representation R = R[[P]] of any CSP
process P satisfies certain axioms. Each axiom Ri below essentially lifts the
corresponding axiom Fi of the stable-failures model (see Section 2.1) to the
refusal-traces model. Here, s ranges over PRT , t over RT and A and B over
RefToken.

R1. R contains the empty sequence 〈〉 and is prefix-closed.

R2. sˆ〈A, a〉ˆt ∈ R ∧ B ⊆ A⇒ sˆ〈B, a〉ˆt ∈ R .

R3. sˆ〈A, b〉ˆt ∈ R ∧ A 6= • ∧ sˆ〈A, a〉 /∈ R⇒ sˆ〈A ∪ {a}, b〉ˆt ∈ R.

Note that • is a possible value for B in R2.
For a divergence-free process P , we have that any partial behaviour can

always be extended either by deadlock or by the performance of an event.

∀ s ∈ R[[P]] ∩ PRT • sˆ〈Σ〉 ∈ R[[P]] ∨ ∃ a • sˆ〈•, a〉 ∈ R[[P]]. (6.2)

Refinement, denoted vR, in the refusal-traces model is defined as usual:

P vR Q⇔ R[[Q]] ⊆ R[[P]].

Of course, to capture properties like ♦ e, we need to be able to reason
about infinite behaviours. Lowe [Low08] shows how the refusal-traces model,
despite recording only finite behaviours, can capture infinite refusal-traces
of the following form3, where ai /∈ Xi for all i:

〈X1, a1, X2, a2, . . . , Xn, an, . . .〉.

A process P can exhibit an infinite refusal trace t of the above form iff
all of t’s finite prefixes are present in R[[P]]. Letting IRT denote the set of
all infinite refusal traces, the set of P ’s infinite refusal traces I[[P]] is

I[[P]] = {t ∈ IRT | ∀ s < t • s ∈ R[[P]]}.
3This result holds only for fragments of CSP, like that used in this thesis, that do

not involve unbounded nondeterminism and that use a finite alphabet. Incidentally, the
argument that proves this result is the same one that proves that the failures-divergences
model can accurately predict divergence – a behaviour of infinite length – in P \X when P
is divergence-free, whilst recording only finite traces and failures of P [Ros97].

6.1 Liveness in CSP 137

6.1.5 LTL Semantics

The semantics of LTL formulae φ are usually defined over individual linear
behaviours s, giving a satisfaction relation s |= φ that holds for a linear
behaviour s if and only if the behaviour s satisfies φ. A property φ then
holds for a process P , written P |= φ, iff s |= φ for all behaviours s of P .

Lowe [Low08] takes a slightly different approach, instead, for each for-
mula φ, defining the set F [[φ]] of refusal-traces (both finite and infinite) that
satisfy φ, so that

P |= φ⇔ R[[P]] ∪ I[[P]] ⊆ F [[φ]].

Under Lowe’s semantics, we may then say that, for an individual refusal-
trace s, s |= φ ⇔ s ∈ F [[φ]] and P |= φ ⇔ ∀ s ∈ R[[P]] ∪ I[[P]] • s |= φ.
From this, we translate Lowe’s semantics for the temporal operators of our
fragment of LTL, originally presented in terms of F [[φ]] in [Low08], to the
more traditional s |= φ form.

Definition 6.1.3 (LTL Refusal-Traces Semantics). Let n be a natural num-
ber, s be an arbitrary partial refusal-trace of length n, t be an arbitrary
deadlocked refusal trace of length n + 1 and u be an arbitrary infinite re-
fusal trace so that

s = 〈X1, a1, X2, a2, . . . , Xn, an〉,
t = 〈X1, a1, X2, a2, . . . , Xn, an,Σ〉,
u = 〈X1, a1, X2, a2, . . . , Xn, an, . . .〉,

where in each case, for all relevant i, ai /∈ Xi. For a refusal-trace w, let
wi denote w with the first i refusal-and-event pairs removed. Then the
semantics of the temporal operators in our fragment of LTL are defined as
follows.

s |= a iff n = 0 ∨ (n > 0 ∧ a1 = a),
t |= a iff n > 0 ∧ a1 = a,
u |= a iff a1 = a,

s |= available a iff n = 0 ∨ (n > 0 ∧ a /∈ X1),
t |= available a iff n > 0 ∧ a /∈ X1,
u |= available a iff a /∈ X1,

s |= ♦φ iff true,
t |= ♦φ iff ∃ i ∈ {0, . . . , n} • ti |= φ,
u |= ♦φ iff ∃ i ∈ N • ui |= φ,
s |= �φ iff ∀ i ∈ {0, . . . , n} • si |= φ,
t |= �φ iff ∀ i ∈ {0, . . . , n} • ti |= φ,
u |= �φ iff ∀ i ∈ N • ui |= φ.

Let v be an arbitrary partial, deadlocked or infinite refusal-trace. Then
the semantics of the boolean operators in our fragment of LTL are defined
as follows, as one would expect.

6.1 Liveness in CSP 138

v |= φ ∧ ψ iff s |= φ and s |= ψ,
v |= φ ∨ ψ iff s |= φ or s |= ψ,
v |= φ⇒ ψ iff if s |= φ then s |= ψ.

For a divergence-free CSP process P , we extend the satisfaction relation
above to define when P satisfies an LTL formula φ as follows.

P |= φ⇔ ∀ v ∈ R[[P]] ∪ I[[P]] • v |= φ.

For any refusal-trace v, we write v 6|= φ when it is not the case that
v |= φ. We do likewise for the relation P |= φ, so that P 6|= φ iff there exists
some refusal-trace v ∈ R[[P]] ∪ I[[P]] such that v 6|= φ.

Notice that all partial behaviours s satisfy conditions of the form ♦φ.
This is because any such s, by itself, cannot be said to violate such a con-
dition, since, by Equation 6.2, s can always be extended and any such ex-
tension might satisfy the condition4. For the same reason, observe that the
empty refusal-trace 〈〉, which is necessarily a partial refusal-trace, satisfies
any property that can be expressed in our fragment of LTL.

The intuition that no deadlock refusal trace t can satisfy any formula
φ of the form �♦φ1 or ♦�φ1, for an atomic formula φ1, can be trivially
proved by considering tn = 〈Σ〉 and whether tn |= φ1, which it must in order
for t to satisfy �♦φ1 or ♦�φ1.

The reader can confirm that each of the examples considered in Sec-
tion 6.1.3 and the judgements made there are consistent with these seman-
tics. As a further example, consider the process

P = a→ d→ P . (b→ P u c→ P),

which initially can always stabilise and perform either b or c, or perform a
from an unstable state. Having performed a, it stabilises and then performs d
before returning to its initial state. It turns out that P contains no fair
behaviours, under strong event fairness, that violate the liveness property

♦ b ∨ ♦ c. Hence
P |= SEF ⇒ (♦ b ∨ ♦ c).

To see why, observe that the only behaviours of P that violate the
property ♦ b ∨ ♦ c are the infinite refusal-traces from the set B =
{〈•, a,X1, d, . . . , •, a,Xn, d, . . .〉 | ∀ i • Xi ⊆ Σ − {d}}. However, none
of these behaviours satisfy SEF since each actually satisfies the property

�♦(available b ∧ available c), because of the presence of the infinite number
of • refusals. This follows from the fact that our semantics, when applied

4These kinds of condition are said to be machine closed [AL91, VVK05] or, as origi-
nally introduced, feasible [AFK88].

6.1 Liveness in CSP 139

just to an individual refusal-trace v, deems that v |=
∧
e∈Σ available e when-

ever v begins with •. While this may seem counter-intuitive, it doesn’t
cause any problems because we judge satisfaction of an LTL formula across
all behaviours of a process.

Indeed our semantics has no choice but to operate in this way for •.
This is because • means not that instability was positively observed but
that stability wasn’t observed, even if the process in question did actually
stabilise. As explained earlier in Section 6.1.3, no standard denotational
model for CSP records positively the presence of instability. This implies
that, under a denotational interpretation, available e can mean only that
e must be available whenever the process is observed to stabilise before
performing a visible event. Under this understanding of available e, we see
that every refusal-trace v that begins with • must satisfy

∧
e∈Σ available e

because v beginning with • means that no stability was observed in v before
the first visible event was performed.

While the behaviours from B don’t satisfy strong event fairness, some
of them, such as the refusal-trace 〈•, a, {b, c}, d, . . .〉, do satisfy weak event
fairness. Hence, we have that

P 6|= WEF ⇒ (♦ b ∨ ♦ c).

Also, while the behaviours in B satisfy �♦(available b ∧ available c), P
has others that do not. An obvious example is the infinite behaviour
〈{a, c, d}, b, {a, c, d}, b, . . . , {a, c, d}, b, . . .〉. This behaviour satisfies both
SEF and WEF . Hence,

P 6|= SEF ⇒ ♦ b ∧ ♦ c, P 6|= WEF ⇒ ♦ b ∧ ♦ c.

Finally, the definition of the satisfaction relation P |= φ means that
every property φ expressible in our fragment of LTL is refinement-closed
in the refusal-traces model. This includes, of course, liveness properties
under fairness assumptions, like SEF ⇒ ♦ b. This follows because if P |= φ
then every behaviour of P must satisfy φ, and because any behaviour of a
refinement Q of P is necessarily a behaviour of P .

6.1.6 Testing for Liveness under Fairness via Refinement

We now consider how we might test liveness properties under fairness as-
sumptions, such as SEF ⇒ ♦ e, expressible with the fragment of LTL defined
above. As usual, we would like to be able to express these kinds of property
using refinement checks that can be automatically carried out in FDR. We
will prove that no refinement test F (P) vM G(P) exists, where F () and
G() are CSP contexts and M is a standard denotational CSP model that
FDR might support, that can express P |= SEF ⇒ ♦ e (and similarly for
WEF) and similar properties that express liveness under fairness assump-
tions. This prevents such properties being directly tested using FDR at
present.

6.1 Liveness in CSP 140

In order to prove this, it is enough to show that the result holds whenM
is FL [Ros08, Ros09], the most discriminating denotational model that
ignores divergence, and that it also holds when M is FL⇓ and FL#,
the divergence-recording counterparts to FL that don’t record infinite be-
haviours other than divergences. We begin by explaining each of these.

In [Ros09] Roscoe considers the different kinds of non-trivial5 denota-
tional models that can be defined for divergence-free CSP processes and
shows that these models form a natural hierarchy in terms of their ability
to distinguish processes. The topmost element of this hierarchy, i.e. the
most discriminating model, is the model FL, which Roscoe further refines
in [Ros08]. The bottommost element is the traces model. This hierarchy in-
cludes the stable-failures model (which sits directly above the traces model)
and the refusal-traces model (which sits in between the stable-failures model
and FL). We call all such models finite linear observation models.
FL records finite behavioural sequences of the following form:

〈A0, a0, A1, a1, . . . , An−1, an−1, An〉. (6.3)

This sequence represents that the process in question can perform the trace
of visible events 〈a0, a1, . . . , an−1〉, with the events it can stably accept whilst
doing so captured naturally by the Ai. Each Ai is a generalised acceptance,
being either: a set of visible events that can be stably accepted at its point
in the trace; or the special symbol •, which, like in the refusal-traces model,
is used to indicate that no stability was observed at this point in the trace
even if the process being observed actually stabilised at this point.

We write FL[[P]] to denote the set of finite behaviours of the form of
Equation 6.3 of a divergence-free process P recorded by FL.

Despite its apparent similarity to the refusal-traces model, one may ob-
serve that FL is strictly more powerful by considering the processes P =
(a→ STOP � b→ STOP) u STOP and Q = a→ STOP u b→ STOP u
STOP . P and Q have identical semantics in the refusal traces model since
both have all initial refusals that are a subset of Σ. However, they are dis-
tinguished in FL since P has the initial acceptances {a, b} and {}, while Q
has the initial acceptances {a}, {b} and {}.

Each finite linear observation model M, in this hierarchy, can be de-
fined in terms of a function that can be applied to FL[[P]] to give P ’s
representation in M [Ros09]. Consider the stable-failures model. The
pair (traces(P),failures(P)), which is the representation of P in the stable-
failures model, may be defined in terms of a function from FL[[P]] as fol-
lows. Let the set traces(P) = {tr(s) | s ∈ FL[[P]]}, where the function
tr gives the sequence of events performed in any finite refusal-trace, and
let the set failures(P) =

⋃
{f(s) | s ∈ FL[[P]] ∧ last(s) 6= •}, where

f(s) = {(tr(s), X) | X ⊆ Σ− last(s)}.
5A denotational model is trivial when it identifies all processes.

6.1 Liveness in CSP 141

Note that the failures-divergences model cannot be defined in this way,
because FL does not record information about divergence. In fact, at least
four separate hierarchies of CSP models exist [Ros08]; here, we concentrate
on just three of them that together contain all of the standard CSP models
that FDR might support. Two other hierarchies of models also exist that
each precisely mimic the first hierarchy of finite linear observation models.
These other two hierarchies contain respectively the the divergence-strict
and non-divergence-strict divergence-recording counterpart of every finite
linear observation model. The hierarchy of divergence-strict models contains
the failures-divergences model.

The divergence-strict counterpart M⇓ of a finite linear observation
model M, is obtained by augmenting M so that it also records the finite
traces of a process on which it can diverge while completely ignoring what a
process can actually do after it may have diverged. M⇓ treats divergence as
catastrophic, by effectively assuming that once a process can diverge, it can
do anything. The failures-divergences model is the divergence-strict coun-
terpart of the stable-failures model. The topmost element of the hierarchy
of divergence-strict models is the model FL⇓, the divergence-strict counter-
part of FL. As one might expect, each divergence-strict model M⇓ can be
defined in terms of a function from FL⇓ to M⇓ [Ros08].

The non-divergence-strict divergence-recording counterpart M# of a fi-
nite linear observation modelM is similar toM’s divergence-strict counter-
part,M⇓, in that it augmentsM by also recording the finite traces on which
a process can diverge, but unlike M⇓, M# dispenses with the divergence-
strict assumption. That is, M# does not assume that once a process can
diverge, it can do anything at all. The topmost element of the hierarchy
of non-divergence-strict divergence-recording models is the model FL#, the
non-divergence-strict divergence-recording counterpart of FL. Each non-
divergence-strict divergence-recording model M# can naturally be defined
in terms of a function from FL# toM#. While FDR does not currently sup-
port refinement-checking in any non-divergence-strict divergence-recording
model M#, there is no reason why it couldn’t be extended to do so.

The finite linear observation models M, divergence-strict models M⇓
and non-divergence-strict divergence-recording models M# are the only
standard models of CSP that FDR might reasonably support. This is be-
cause the only other standard denotational models for CSP are ones that
become more powerful than these three kinds of model, only when applied
to processes that are not finitely nondeterministic [Ros08]. FDR cannot
support processes that are not finitely nondeterministic. Hence, FDR can
reasonably support refinement checking only in these three kinds of model.

We show that no refinement-test in any finite-linear observation model,
divergence-strict model, or non-divergence-strict divergence-recording model
can express general liveness properties under strong or weak event fairness.
We do so by generalising a proof by Roscoe in [Ros05].

6.1 Liveness in CSP 142

In [Ros05], Roscoe considers the expressive power of failures-divergences
refinement, providing a characterisation of a number of classes of properties
that can, and cannot, be expressed as refinement checks in this model. We
generalise a small part of his work in order to prove our result.

Given a property, to express it in the form of a CSP refinement test in
some modelM, we need to find two CSP contexts, F () and G(), such that
for any process P , P satisfies the property iff F (P) vM G(P). The following
theorem, which is adapted from [Ros05, p. 106], shows how to demonstrate
that a particular property cannot be expressed in this way for any finite-
linear observation model, divergence-strict model or non-divergence-strict
divergence-recording model M.

Theorem 6.1.4. Let the set of all visible events Σ be finite. Let M
be a finite linear observation model, a divergence-strict model, or a non-
divergence-strict divergence-recording model, and let Prop be some property
of CSP processes where we write Prop(P) to mean that Prop is satisfied
by process P . If there exists an infinite decreasing (under vM) sequence
〈Bk | k ∈ N〉 of trace-equivalent and divergence-free processes, and a
single divergence-free process B∗ that is the limit of this sequence, where
∀ k ∈ N • B∗ ≡T Bk ∧ Prop(Bk) but ¬Prop(B∗), then no refinement-test
F (P) vM G(P) exists that can express Prop(P) for arbitrary P .

Proof. Let M[[P]] denote P ’s representation in M. Then we have that
M[[B∗]] =

⋃
k∈NM[[Bk]]. We use proof by contradiction. Suppose there is

a refinement test of the form F (P) vM G(P) that expresses Prop(P). We
must have ∀ k ∈ N • F (Bk) vM G(Bk) but F (B∗) 6vM G(B∗). Then G(B∗)
must have some behaviour b ∈ M[[G(B∗)]] −M[[F (B∗)]] that F (B∗) does
not. Hence, ∀ k ∈ N • b /∈M[[F (Bk)]], and so

∀ k ∈ N • b /∈M[[G(Bk)]]. (6.4)

Observe that b cannot be a divergence since B∗ is trace-equivalent to
every Bk and, for any process P , the divergences of G(P) depend only on P ’s
traces and divergences. Consider arbitrary CSP processes P and Q and an
arbitrary CSP context H(). Then, whenever b is a behaviour of H(P) that
is not a divergence, there exists a finite set Φ of behaviours of P such that
b ∈M[[H(Q)]] whenever Φ ⊆M[[Q]]. It follows that there exists some finite
set Φ of B∗’s behaviours that gives rise to the behaviour b ∈ M[[G(B∗)]].
Because Φ is finite, for some sufficiently large choice of k we must have that
Φ ⊆M[[Bk]] and, therefore, b ∈ M[[G(Bk)]]. This contradicts Equation 6.4.
Hence, φ is not expressible as F (P) vM G(P).

Corollary 6.1.5. No refinement test in any standard denotational model
for CSP that FDR might support can express the properties SEF ⇒ ♦ e,
WEF ⇒ ♦ e, SEF ⇒ �♦ e and WEF ⇒ �♦ e.

6.1 Liveness in CSP 143

Proof. Let

B∗ = a→ B∗ u b→ B∗,

B0 = a→ B0 . b→ B0,

Bk = a→ Bk−1 u b→ Bk−1, for k > 0.

Then, in all finite-linear models, divergence-strict models and non-
divergence-strict divergence-recording models, B∗ is indeed the limit of the
decreasing sequence 〈B0, B1, . . .〉, and B∗ is trace-equivalent to each Bk.
Observe that B0 |= WEF ⇒ �♦ b and so ∀ k • Bk |= WEF ⇒ �♦ b
and, hence, ∀ k • Bk |= WEF ⇒ ♦ b too. However, B∗ 6|= SEF ⇒ ♦ b
because B∗ has the refusal-trace 〈{b}, a, {b}, a, . . .〉 that satisfies SEF and,
hence, B∗ 6|= SEF ⇒ �♦ b too. Note finally that if P |= WEF ⇒ φ then
P |= SEF ⇒ φ for any process P and formula φ from our fragment of LTL,
and similarly if P 6|= SEF ⇒ φ then P 6|= WEF ⇒ φ. Thus, the result
follows by Theorem 6.1.4.

6.1.7 Sufficient Conditions for Liveness under Fairness

Because we cannot frame liveness under strong or weak event fairness in
terms of CSP refinement tests for FDR, we instead consider some sufficient
conditions for the properties SEF ⇒ ♦ e and SEF ⇒ �♦ e that can be
expressed as refinement tests in the stable-failures model. We show that,
for certain kinds of systems, it is sufficient to show the absence of certain
stable-failures in order to guarantee these properties.

Recall that the systems analysed in this thesis are all expressed as CSP
processes System = ‖

o∈Object
(behaviour(o), α(o)) that are the alphabetised

parallel composition of processes, one for each object. We therefore restrict
our attention to liveness properties applied to arbitrary alphabetised parallel
compositions Sys = ‖

i∈{1,...,n}(Pi, Ai). Suppose such a system contains a

component process Pj that has some event e ∈ Aj in its alphabet such that
Pj\Σ−{e} is divergence-free. This means that Pj cannot perform an infinite
sequence of non-e events, i.e. that each non-e event that Pj performs brings
it closer either to deadlocking or to performing e. We would expect, then,
that if Sys 6|= SEF ⇒ ♦ e, that Pj must become permanently blocked in Sys
at some point before e is performed. This is clearly true in the case that
Sys has no infinite behaviours that satisfy SEF but fail ♦ e. We prove that
this result also holds when Sys does have such infinite behaviours.

Lemma 6.1.6. Let Sys be an alphabetised parallel composition, Sys =

‖
i∈{1,...,n}(Pi, Ai), of divergence-free processes Pi and e be an event from

Σ (which is finite). Let Pj be a component of Sys such that e ∈ Aj and
Pj \Aj − {e} is divergence-free. Let s be an infinite refusal-trace of Sys, so
s ∈ I(Sys). Then s |= SEF and s 6|= ♦ e only if e never occurs in s and s
has an infinite suffix t = 〈X1, a1, X2, a2, . . .〉 such that ∀ i > 0 • Ai ⊆ Xi.

6.1 Liveness in CSP 144

Proof. Assume the conditions of the lemma. We use proof by contradiction.
Suppose s has no such infinite suffix t. Then, because Aj is necessarily
finite, there exists some set A ⊆ Aj such that ∀ a ∈ A • s |= �♦ available a.
Since s |= SEF and s 6|= ♦ e, it must be the case that infinitely many
events from A occur in s without e occurring. Hence, Pj must be able
to perform infinitely many A-events without performing e. However, this
clearly contradicts P \ (Σ− {e}) being divergence-free. Hence s must have
such a suffix t.

Observe that Lemma 6.1.6 holds when ♦ e is replaced by �♦ e and the
consequence that s contains no occurrence of e is relaxed to t containing no
occurrence of e.

Lemma 6.1.7. Let Sys be an alphabetised parallel composition, Sys =

‖
i∈{1,...,n}(Pi, Ai), of divergence-free processes Pi and e be an event from

Σ (which is finite). Let Pj be a component of Sys such that e ∈ Aj and
Pj \ Aj − {e} is divergence-free. Let s be an infinite refusal-trace of Sys,
so s ∈ I(Sys). Then s |= SEF and s 6|= �♦ e only if s has an infinite
suffix t = 〈X1, a1, X2, a2, . . .〉 such that ∀ i > 0 • Ai ⊆ Xi ∧ ai 6= e.

With these results, we can now prove sufficient conditions for SEF ⇒ ♦ e
and SEF ⇒ �♦ e respectively.

Corollary 6.1.8. Let Sys be an alphabetised parallel composition, Sys =

‖
i∈{1,...,n}(Pi, Ai), of divergence-free processes Pi and e be an event from

Σ (which is finite). Let Pj be a component of Sys such that e ∈ Aj and
Pj \ Aj − {e} is divergence-free. If Sys has no stable-failure (s,Aj) where
s |̀ {e} = 〈〉, then Sys |= SEF ⇒ ♦ e.

Proof. We prove the contrapositive. So suppose we have some alphabetised
parallel composition Sys and event e as stated and that Sys 6|= SEF ⇒ ♦ e.
Then there exists some behaviour t ∈ R[[Sys]] ∪ I[Sys] such that t |= SEF
but t 6|= ♦ e. There are two cases to consider, namely t is finite or not.

If t is finite (i.e. t ∈ R[[Sys]]), then it must be a deadlock refusal-trace
〈X1, a1, . . . , Xn, an,Σ〉 from DRT . Let s = 〈a1, . . . , an〉 be the trace of events
performed in t. Then s |̀ {e} = 〈〉 and (s,Σ) ∈ failures(Sys). Hence, because
refusals are subset-closed by Axiom F2, (s,Aj) ∈ failures(Sys).

If t is not finite, then t is an infinite behaviour from I[[Sys]] that satisfies
SEF and fails ♦ e. Then, by Lemma 6.1.6, t necessarily contains infinitely
many refusals Xi where for each, Xi ⊇ Aj . Let s be the sequence of events
in t that precedes the first such refusal Xi. Then s |̀ {e} = 〈〉 and (s,Xi) ∈
failures(Sys). Because refusals are subset-closed by Axiom F2, (s,Aj) ∈
failures(Sys) as required.

By a similar argument, applying Lemma 6.1.7 instead of Lemma 6.1.6,
we see that a sufficient condition for SEF ⇒ �♦ e is the absence of all
stable-failures (s,Aj) for an arbitrary trace s.

6.2 Live Authenticating Trademarks 145

Corollary 6.1.9. Let Sys be an alphabetised parallel composition, Sys =

‖
i∈{1,...,n}(Pi, Ai), of divergence-free processes Pi and e be an event from

Σ (which is finite). Let Pj be a component of Sys such that e ∈ Aj and
Pj \ Aj − {e} is divergence-free. If Sys has no stable-failure (s,Aj), then
Sys |= SEF ⇒ �♦ e.

So let Sys, Pj and e be as described in the statements of these results.
Each of the sufficient conditions from Corollaries 6.1.8 and 6.1.9 can be
readily expressed as stable-failures refinement tests involving Sys. To test
the sufficient condition for Sys |= SEF ⇒ ♦ e, we simply build the most
general specification process Spec that can never refuse all events from Aj
before e has been performed and test whether Spec vF Sys. Spec can be
written as shown in Snippet 6.1.

Spec =
(?d : Σ−Aj → Spec) .

($a : Aj → if a = e then CHAOSΣ else Spec).

Snippet 6.1: A specification for testing a sufficient condition for SEF ⇒ ♦ e.

Spec can perform all events from Σ. We use the . operator to allow Spec
to refuse all events from Σ−Aj but force it to always offer at least one event
from Aj . Hence, before performing its first e, Spec may refuse any set of
events X where X ∩ Aj ⊂ Aj , but may never refuse the entirety of Aj . We
then have that

(CHAOSΣ vFD (Pj \ Σ− {e}) ∧ Spec vF Sys)⇒ Sys |= (SEF ⇒ ♦ e).

The first of these refinement checks ensures that Pj \(Σ−{e}) is divergence-
free. Having checked this, the second refinement assertion tests the sufficient
condition for SEF ⇒ ♦ e.

Similarly, the sufficient condition for �♦ e is tested by replacing
“CHAOSΣ” in Snippet 6.1 above with “Spec”, to assert that the system
in question must continue to never refuse the entirety of Aj after each oc-
currence of e.

In the following section, we apply these results to analyse the liveness of
the safe Trademarks implementation from Section 3.1 under the assumption
of strong event fairness.

6.2 Live Authenticating Trademarks

An obvious drawback of both our Trademarks and Sealer-Unsealer imple-
mentations from Chapter 3, is that a specimen, handed to a guard or un-
sealer respectively, can mount a denial-of-service attack against the guard

6.2 Live Authenticating Trademarks 146

or unsealer by never Returning control to it after being Called. This then
prevents the guard or unsealer from responding to its caller.

Generally, in an object-capability operating system, an object cannot
rely on an untrusted object, to which it holds a capability, to be ready to
receive an invocation or to reply to an invocation. In a single-threaded
object-capability language, an object cannot rely on an untrusted object, to
which it holds a capability, to return from a blocking invocation.

These observations have obvious consequences for implementers of au-
thentication and coercion abstractions like our Trademarks and Sealer-
Unsealer implementations. No object-capability language of which the au-
thor is aware provides any means to guard against an object that is invoked,
using a blocking invocation, from refusing to return control to its invoker.
Hence, in such systems, it is impossible to build an authentication or coer-
cion mechanism that is invulnerable to denial-of-service, when that mech-
anism relies on having to perform blocking invocations on specimens to be
authenticated or coerced respectively.

In object-capability languages that provide an EQ primitive, one may
use the capability set approach described at the beginning of Section 3.1 to
provide a live implementation of the Trademarks pattern, in which a guard
maintains a collection of authentic capabilities, testing a specimen against
each for equality in order to authenticate it. This approach can also be
adapted to implement the Sealer-Unsealer pattern by using EQ to maintain
an associative mapping from boxes to their contents (see [Yee99]). How-
ever, as previously noted, this solution is problematic for garbage collection
and its time and storage complexity can scale linearly with the number of
authentic capabilities. In general, we conclude that if authentication or co-
ercion are to be available in an object-capability language for which liveness
is of concern for application developers, the language should provide these
services primitively.

In the case of object-capability operating systems, the problem of un-
responsive objects that must be invoked can be avoided if the operating
system includes primitives for inter-process-communication (IPC) that do
not require the sender of a message to block indefinitely waiting for the
receiver to be ready to receive it. Such facilities are available in systems
that implement IPC operations in which a timeout can be specified that
defines the maximum time that the thread performing the IPC operation is
willing to block waiting for it to complete. Examples of object-capability
operating systems that provide such a facility include seL4 and Coyotos (see
Figure 2.1), which provide non-blocking send primitives that are guaran-
teed not to block a sender at all, as if the sender had specified a timeout
of 0. We model this facility and show how it can be used in these systems
to implement a live Trademarks implementation. The strategies employed
here and the results obtained also apply to similar patterns, including the
Sealer-Unsealer implementation from Section 3.2.

6.2 Live Authenticating Trademarks 147

6.2.1 Deriving a Live Trademarks Implementation

A Draft Implementation

We modify the behaviour of a guard so that it uses a non-blocking send when
Calling specimens and no longer waits for a Return message before continuing
but instead waits a fixed time for the specimen to place a capability to itself
inside its slot before continuing.

Adapting the model of a guard, AGuard(me, slotR, slotW) with identity
me and slot capabilities slotR and slotW respectively, to follow this strategy
gives the new definition which appears in Snippet 6.2.

AGuard(me, slotR, slotW) =
?from!me!Call?specimen : Capability →
me!slotW !Call!null→ slotW !me!Return!null→(

me!specimen!Call!null→ AGuard ′(me, slotR, slotW , from, specimen)
. AGuard ′(me, slotR, slotW , from, specimen)

)
AGuard ′(me, slotR, slotW , from, specimen) =

me!slotR!Call!null→ slotR!me!Return?val →
if val = specimen then

me!from!Return!me → AGuard(me, slotR, slotW)
else me!from!Return!null→ AGuard(me, slotR, slotW)

Snippet 6.2: The behaviour of a live guard using non-blocking sends.

When Calling a specimen, specimen, we use the CSP timeout operator
to allow the guard to continue to its next state, AGuard ′, if the sending
of the Call message cannot complete promptly. Hence, the guard need not
block when performing this send. Note that we model the guard so that its
next state is identical whether the send completes or not, giving it no way
of knowing if the send completed successfully. This models the semantics
of the non-blocking send primitives in object-capability operating systems
like seL4 and Coyotos [DEE08, SA07]. Once in this next state, the guard
avoids waiting for a Return from the specimen and instead goes ahead and
reads the slot’s value. CSP has no in-built explicit model of time, but in a
real implementation it is likely that the guard would wait a fixed amount of
time before reading the slot’s value.

The basic liveness property that we would like our Trademarks imple-
mentation to satisfy is that whenever a guard is Called with a specimen, it
must return a response to its caller in a finite amount of time. If this prop-
erty is upheld by a guard with identity me, then when that guard performs
its first from.me.Call.specimen event when being invoked, it must eventually
perform either me.from.Return.null or me.from.Return.me no matter what
happens. Assuming the object, from, that has Called the guard is willing to

6.2 Live Authenticating Trademarks 148

accept its Return message, their parallel composition should be able to per-
form one of the Return messages in a finite amount of time after the guard
has been Called.

We define the behaviour of an object with facets facets, initial capabili-
ties caps and data data, that is live to all Return messages of a guard guard
– i.e. it never refuses to accept a Return message from guard – as the pro-
cess LiveToGuardsReturn(facets, caps, data, guard). This appears in Snip-
pet 6.3.

LiveToGuardsReturn(facets, caps, data, guard) =
?me : facets?c : caps ∪ facets?op?arg : caps ∪ data ∪ {null} →

LiveToGuardsReturn(facets, caps, data, guard) �
?from : Capability − facets?me : facets?op?arg →

let C ′ = {arg , from} ∩ Capability ;D′ = {arg} ∩Data within
LiveToGuardsReturn(facets, caps ∪ C ′, data ∪D′)


. guard?me : facets!Return?arg →

let C ′ = {arg , guard} ∩ Capability ;D′ = {arg} ∩Data within
LiveToGuardsReturn(facets, caps ∪ C ′, data ∪D′)

Snippet 6.3: An object that cannot refuse Guard’s Return messages.

This process has all behaviours of UntrustedOS (facets, caps, data) ex-
cept that it cannot ever refuse to perform any of the events from the set
{|guard .me.Return | me ∈ facets|}. Notice that we use the timeout oper-
ator, “.”, to ensure that it can never refuse to perform any of the events
in this set. LiveToGuardsReturn can refuse all other events at any time
because its definition is equivalent to one where there is a “u STOP” clause
on the left-hand side of the “.” operator. This follows because, for any
processes P and Q, (P u STOP) . Q ≡F P . Q.

To analyse the liveness of our Trademarks implementation, we instan-
tiate the system depicted in Figure 6.1, giving us the process System. It
extends the system depicted earlier in Figure 3.1 with an extra object,

Figure 6.1: Testing the Trademarks implementation for liveness.

6.2 Live Authenticating Trademarks 149

LiveDriver, whose behaviour is as follows.

behaviour(LiveDriver) =
LiveToGuardsReturn({LiveDriver},Capability − facets(Slot),Data,Guard)

The behaviour of the other objects is as before.

The Liveness Specification

The liveness property we expect to be upheld in System can be expressed
in LTL as follows.

SEF ⇒
∧

specimen∈Capability(
� LiveDriver.Guard.Call.specimen ⇒
♦(Guard.LiveDriver.Return.null ∨ Guard.LiveDriver.Return.Guard)

)
(6.5)

It asserts that, under the assumption of strong event fairness, for all
specimen ∈ Capability , whenever LiveDriver Calls Guard passing specimen,
eventually Guard should Return to LiveDriver.

Observe that System satisfies the liveness property from Equa-
tion 6.5 iff, for all traces s of System whose last event is from the set
{LiveDriver.Guard.Call.specimen | specimen ∈ Capability}, we have6

(System / s) |=
SEF ⇒
(♦Guard.LiveDriver.Return.null ∨ ♦Guard.LiveDriver.Return.Guard).

LettingR = {Guard.LiveDriver.Return.null,Guard.LiveDriver.Return.Guard},
observe that behaviour(Guard) \ (Σ − R) is divergence-free. (Alternatively,
FDR can be used to confirm this.) For any process P , P \ X being
divergence-free implies that ∀ t ∈ traces(P) • (P / t) \X is divergence-free.
Hence, applying Corollary 6.1.8, we see that System satisfies the liveness
property from Equation 6.5 if

6 ∃ s, t, c • c ∈ C ∧ t |̀ R = 〈〉 ∧
(sˆ〈c〉ˆt, α(Guard)) ∈ failures(System),

(6.6)

where C = {LiveDriver.Guard.Call.specimen | specimen ∈ Capability} is the
set of events representing LiveDriver Calling Guard.

We therefore want to test whether System can refuse all events from
α(Guard) in any stable-state that it can reach in between Guard being Called
by LiveDriver (i.e. performing an event from C) and Guard subsequently
Returning to LiveDriver (i.e. performing an event from R). Inspired by the
specification in Snippet 6.1, we build a specification LiveGuardSpec that
exhibits no such refusals and appears in Snippet 6.4. LiveGuardSpec is
parameterised by the set of events that should not be refused in between
Guard being Called by LiveDriver and subsequently Returning.

6Recall that P / s denotes the process that P evolves to after performing the trace s.

6.2 Live Authenticating Trademarks 150

LiveGuardSpec(A) =(
?e : Σ→ if e ∈ C → LiveGuardSpec′(A) else LiveGuardSpec(A)

)
u STOP,

LiveGuardSpec′(A) =
?e : Σ−A→ LiveGuardSpec′(A) .(

$a : A→ if a ∈ R then LiveGuardSpec(A) else LiveGuardSpec′(A)
)

Snippet 6.4: The specification for testing the liveness of a guard.

Initially, LiveGuardSpec(A) allows arbitrary non-divergent behaviour un-
til an event from the set C of events representing LiveDriver Calling Guard oc-
curs. It then evolves to the process LiveGuardSpec′(A). LiveGuardSpec′(A)
is similar to Spec from Snippet 6.1 in that it allows all refusals except those
in which the entirety of A is refused, until Guard Returns to LiveDriver by
performing some event from R. Our liveness property is then upheld if

LiveGuardSpec(α(Guard)) vF System.

Testing this assertion in FDR reveals that it does not hold. Examin-
ing the counter-example indicates that the system can perform the trace
of events 〈Stamped.SlotRead.Call.null, LiveDriver.Guard.Call.Specimen〉 before
deadlocking. Here, before Guard invokes Slot, Stamped invokes Slot’s read-
facet before choosing to refuse to accept Slot’s Return message, thereby pre-
venting anyone else from Calling Slot. This prevents Guard from doing so,
causing the system to deadlock. Stamped has, in effect, conspired to mount
a denial-of-service attack against Guard.

Refining the Implementation

Preventing this attack requires that each stamped object never refuses to
accept a Return message from any of its slots, otherwise it can cause its
guards to stop responding.

Some thought (and experimentation with FDR) reveals that this attack
is equally possible when a stamped object is permitted to hand out capabili-
ties that refer to its slots to untrusted objects, since this allows an untrusted
object to deadlock a slot in the same way that Stamped does above. We re-
fine the behaviour of a stamped object, AStamped(facets, slotW , caps), with
facets facets, slot write capability slotW and capabilities caps, to include
these restrictions by giving it an extra parameter, slotR, that is (a capability
to) its slot’s read-facet. It never refuses to accept a Return message originat-
ing from its slot (i.e. one for which the reply capability is slotW or slotR)
and never passes slotW or slotR to any other object. This new behaviour
appears in Snippet 6.5.

6.2 Live Authenticating Trademarks 151

AStamped(facets, slotW , slotR, caps, data) =
let caps ′ = caps − {slotW , slotR} within

?me : facets?to : caps ′?op?arg : caps ′ ∪ data ∪ {null} →
AStamped(facets, slotW , slotR, caps, data) �
?me : facets!slotW !Call?arg : facets →
AStamped(facets, slotW , slotR, caps, data) �
?from : Capability − facets?to : facets?op?arg →
let C ′ = {arg , from} ∩ Capability ;D′ = {arg} ∩Data within
AStamped(facets, slotW , slotR, caps ∪ C ′, data ∪D′) �
?from : facets?to : facets?op?arg : caps ∪ data ∪ {null} →
AStamped(facets, slotW , slotR, caps, data)


.?from : {slotR, slotW }?me : facets!Return?arg →
let C ′ = {arg , from} ∩ Capability ;D′ = {arg} ∩Data within
AStamped(facets, slotW , slotR, caps ∪ C ′, data ∪D′)

Snippet 6.5: The behaviour of a live stamped object with multiple facets.

We again use the timeout operator to ensure that this process can never
refuse to perform any of the events in the set {|from.me.Return | from ∈
{slotW , slotR} ∧ me ∈ facets|}, which models the restriction that a stamped
object can never refuse to be Returned to from its slot. In practice, every
object in a single-threaded object-capability language automatically obeys
this restriction, since in that context it is impossible for any object to refuse
to be Returned to. In the case of an object-capability operating system,
this restriction can be adhered to simply by ensuring that stamped objects
always invoke their slots in a strict send-and-receive sequence.

When performing the check against the system with this new behaviour
for Stamped, FDR indicates that it does not hold and returns the following
stable-failure of System.(
〈Stamped.SlotWrite.Call.Stamped, LiveDriver.Guard.Call.Specimen〉,
Σ− {SlotWrite.Stamped.Return.null}

)
.

Here, Guard becomes blocked after it Calls Stamped while waiting for
Stamped’s prior Call to SlotWrite to Return. While this counter-example
looks similar to the previous one, it is actually quite different. Unlike with
the previous counter-example, the entire system has not deadlocked here
because the event SlotWrite.Stamped.Return.null is not included in the refusal
(and FDR indicates that it is in fact available here). This behaviour clearly
violates the sufficient condition for our liveness property. However, it isn’t
clear that this behaviour violates the liveness property itself. For instance,
under strong event fairness, so long as Guard isn’t blocked continually then
our liveness property is not violated by this behaviour.

6.2 Live Authenticating Trademarks 152

Given that Guard has become blocked here (perhaps only temporarily)
while waiting for Slot to Return to Stamped, an obvious question to ask is
whether Guard can ever become blocked in any other circumstance, i.e. be-
come blocked while an event representing Slot Returning to Stamped is also
refused. Let D = {|x.y.Return | x ∈ facets(Slot), y ∈ facets(Stamped)|} be
the set of all such events. We can test this by testing whether

LiveGuardSpec(α(Guard) ∪D) vF System. (6.7)

FDR reveals that this test does indeed hold. Hence, we can conclude
that whenever all of Guard’s events are refused after it has been Called but
before it Returns, that some event from D must be available.

By Lemma 6.1.6, Guard cannot Return due to the presence of some infinite
refusal-trace s that satisfies SEF but violates our liveness property only if s
has an infinite suffix t in which all of Guard’s events are refused continually.
In t, then, some event from D must be continually available. Since s |= SEF ,
some event from D must occur infinitely often in t. Suppose that we can
show that whenever some event from D occurs, no event from D can be
immediately stably accepted. Then the existence of s would be impossible.

In this case, we would need only show that the system can’t deadlock
(i.e. stably refuse all of Σ) before Guard Returns. This is already implied,
however, by the refinement check above having passed, since this rules out
the possibility of α(Guard) ∪D being refused and refusals are subset-closed
by Axiom F2.

We can complete our liveness analysis, therefore, by showing that in
(all refinements of) System whenever some event from D occurs, no event
from D can be immediately stably accepted. This is implied by the absence
of certain traces, namely those in which two consecutive D events occur.
We therefore define the most general process that can never perform two
consecutive events from D as follows.

Spec =?x : (Σ−D)→ Spec �?d : D →?x : (Σ−D)→ Spec

We then test simply whether Spec vT System. FDR reveals that this test
holds. From this, we conclude that System satisfies our liveness property
from Equation 6.5.

Repeating the safety checks performed earlier in Section 3.1, reveals
that this implementation of the Trademarks pattern is still safe. Hence,
we conclude that non-blocking sends can be used to implement Trademarks
that are both safe and live.

6.2.2 Summary

We’ve shown that FDR can be applied to derive and verify a live Trademarks
implementation by testing sufficient conditions for the liveness of that im-
plementation. However, because we could use FDR only to test the stronger

6.3 Generalising Liveness Analyses 153

sufficient condition, rather than the liveness property itself, we found that
FDR returned counter-examples that violated the sufficient condition but
not (necessarily) the liveness property.

We therefore had to go to some extra trouble, by performing some extra
checks using FDR, to make sure that these counter-examples didn’t represent
true violations of the liveness property. Not only did this entail extra effort,
but the process was quite ad hoc; it isn’t clear that the same strategy that
we took could be applied in other examples. Therefore, it is difficult to say
whether the overall strategy of using FDR to reason about liveness properties
by testing sufficient conditions for them, could be widely applied.

We conclude, therefore, that using FDR to reason about liveness proper-
ties in this way requires more effort than one would like, and may not scale
well to other object-capability patterns whose structure and behaviour may
be vastly different to our Trademarks implementation. We argue that it
is probably worthwhile investigating alternative approaches to testing live-
ness properties under fairness assumptions. One promising kind of approach
(see e.g. [Ros01, SLDW08, Liu09], all of whose notions of fairness are dif-
ferent to ours as explained later in Section 6.4), examines the operational
semantics of a system directly to identify certain strongly connected sub-
graphs7 within it that represent infinite fair behaviours that violate some
liveness property. We suggest that this approach could be adapted to test
liveness properties under our notions of fairness. We briefly discuss how
later in Section 8.1.

6.3 Generalising Liveness Analyses

We now consider how we might generalise the liveness analysis performed in
this chapter by applying the approach from Chapter 4, which was used there
to generalise the safety results obtained in Chapter 3. Note that, unlike in
Section 5.5, because the properties we are testing here are all refinement-
closed in the stable-failures model, we can apply the approach taken in
Chapter 4 directly.

In particular, recall (from Section 4.1.1) that every aggregation is a
safe abstraction with regards to properties that are refinement-closed in the
traces, stable-failures and failures-divergences models. Since the properties
tested with FDR in this chapter are refinement-closed in the stable-failures
model, we can therefore be confident that if such a property holds for an
aggregation, the property will also hold for every system that the aggrega-
tion aggregates. Hence, aggregations are safe abstractions with respect to
the properties tested with FDR in this chapter.

7A directed graph is strongly connected when each node is reachable from all others.

6.3 Generalising Liveness Analyses 154

6.3.1 Generalising the Live Trademarks Analysis

We generalise the analysis of the system depicted in Figure 6.1, to all systems
that take the form of Figure 6.2. By symmetry, if this system can be proved
live, we can conclude that a guard will always return to a caller who is
willing to accept the return.

Figure 6.2: Generalising the Trademarks liveness analysis.

Let T denote the set of facets of objects in the “other objects” cloud
and U denote the set of facets for the “stamped objects”. Then we build
a safe abstraction of this system by instantiating the system depicted in
Figure 6.1, setting facets(Specimen) = T and facets(Stamped) = U , using
the updated definition of a stamped object’s behaviour, AStamped , from
Snippet 6.5 that is an accurate aggregation of multiple live stamped objects.

Calculating the Thresholds

Recall that this system does not naturally satisfy NoEqTT or NoEqTU be-
cause Guard can perform equality tests on members of both of these types. It
can be difficult to find low, tractable, data-independence thresholds for Sys-
tems that don’t satisfy NoEqT. We worked around this problem when gen-
eralising the Trademarks safety analysis earlier, in Section 4.1.3, by building
an anti-(traces)-refinement of the process AGuard that satisfied the weaker
property PosConjEqT, which allows processes to perform only those equal-
ity tests in which they always become STOP whenever a test fails.

To take the same approach here, we would need to build a stable-failures
anti-refinement of Guard’s behaviour that satisfies the stable-failures version
of PosConjEqT, which differs from the traces version of PosConjEqT
used above in that processes must become div rather than STOP after a
failed equality test. Recall that Equation 4.2 was used to derive a thresh-
old of 2 for the traces refinement check that asserted the safety of the
PosConjEqT Trademarks implementation. To our knowledge, while we
strongly suspect it to be true, the stable-failures analogue of Equation 4.2 has
never been proved, however. This prevents us from taking the PosConjEqT
approach for liveness properties at this time.

6.3 Generalising Liveness Analyses 155

Therefore, the best we can do here is to apply standard data-
independence theorems that are designed for generalising stable-failures
refinement checks performed for systems that satisfy neither NoEqT nor
PosConjEqT. Applying the appropriate theorem (namely Theorem 15.2.4
from [Ros97]) gives data-independence thresholds for T and U of 7.

Making the Refinement Checks Tractable

A little bit of care is needed in order to allow the resulting refinement checks
implied by these thresholds to be carried out. In particular, the specification
process LiveGuardSpec contains few states but many transitions between
those states. This means that this process becomes very difficult for FDR
to compile as the sizes of T and U increase. In order to remedy this, we
express the refinement from Equation 6.7 equivalently using a specification
process that avoids this problem.

We instead perform the equivalent check

LiveGuardSpec2 vF (System ‖
Σ−α(Guard)−D

CHAOSΣ−α(Guard)−D) \ Σ− I,

where I = {|LiveDriver.Guard.Call,Guard.LiveDriver.Return|} is the set of
events representing communication between LiveDriver and Guard, and the
specification LiveGuardSpec2 is

LiveGuardSpec2 =
LiveDriver!Guard!Call?specimen : Capability →(
Guard!LiveDriver!Return!Guard→ LiveGuardSpec2 u
Guard!LiveDriver!Return!null→ LiveGuardSpec2

)
u STOP.

On the right-hand-side of this refinement, we use lazy abstraction [Ros97,
Section 12.1.1] to abstract away the occurrence of all events other than those
from α(Guard)∪D that we want System to not be able to refuse in between
Guard being Called by LiveDriver and subsequently Returning. We then hide
all events not relevant to the specification LiveGuardSpec2. The specification
asserts that the process on the left-hand-side cannot refuse Guard Returning
to LiveDriver after LiveDriver has Called Guard. The laws of hiding in the
stable-failures model [Ros97, Section 8.4] imply that such a refusal occurs if
and only if System can refuse the entire set α(Guard)∪D in between Guard
being Called and subsequently Returning. Hence, this test is equivalent to
that in Equation 6.7.

The process Spec that asserts that no two consecutive D-events can
occur also has the same problem as LiveGuardSpec. Observe, however, that
in order to test that no two consecutive D-events can occur, we can partition
the set Σ of all events into two equivalence classes: those events that are, and
aren’t, in D respectively. We can then rename the events according to these

6.4 Related Work 156

equivalence classes, i.e. we rename all D events to some fresh event d and all
other events to some fresh event o. Using the CSP renaming operator, this
renaming can be expressed as System[[d, o/d ∈ D, o ∈ Σ−D]]. We then need
to assert that this process cannot perform the event d consecutively, while
being sure that the only other event it can perform is o. This is captured
by the specification

Spec2 = o→ Spec2 � d→ o→ Spec2.

Observe that the number of states and transitions in Spec2 remains constant
as the sizes of T and U increase. We then simply test that

Spec2 vT System[[d, o/d ∈ D, o ∈ Σ−D]].

These tests are certainly within FDR’s capabilities for the given thresh-
olds. Carrying out both of these tests when |T | = |U | = 7 take about 3
and-a-half hours to complete in total. The other tests, for which |T | <
7 ∨ |U | < 7, are of course much less expensive to perform. Hence, whilst
certainly being sub-optimal, this approach isn’t entirely impractical.

6.3.2 Summary

We conclude that with the current body of theory, generalising liveness
results for systems that do not satisfy NoEqT, including for patterns that
make use of EQ , is possible, but may be impractical in some cases.

Note that the situation is much better for systems that satisfy NoEqT,
such as the Sealer-Unsealer implementation from Section 3.2. In this case,
we can obtain data-independence thresholds for each data-independent type
of no more than 2 [Ros97, Theorems 15.2.1 and 15.2.2]. A threshold of 2
yields not only systems whose state-spaces are small enough that they are
quick for FDR to explore, but also specifications that are simple enough for
FDR to compile that refinement checks need not be re-expressed equivalently
to make them tractable, as we did with LiveGuardSpec2 and Spec2 above.

Because the vast majority of object-capability patterns don’t make use
of EQ , it is likely that most systems under analysis will satisfy NoEqT.
Hence, we conclude that generalising liveness analyses using the techniques
described in this thesis is fairly practical for this most common case, while
likely being tractable if not entirely practical otherwise.

6.4 Related Work

Liveness Analyses of Object-Capability Patterns To our knowledge,
our work represents the first liveness analysis of an object-capability pattern.
Note that Spiessens’ Scoll [Spi07] formalism allows one to reason about what
are called liveness possibilities of object-capability patterns. Unlike liveness

6.4 Related Work 157

properties, which assert that something must happen, liveness possibilities
assert that something is not impossible. Liveness possibilities are, there-
fore, much weaker than liveness properties. Scoll is unable to reason about
liveness properties, unlike our approach.

The Expressiveness of CSP Refinement Theorem 6.1.4 is a generali-
sation of a result from Roscoe’s paper [Ros05] examining the expressiveness
of failures-divergences refinement. Here, Roscoe shows that all properties
that are not closed over the normal topology for CSP processes, cannot be
expressed as refinement checks of the form F (P) vFD G(P) without the
use of something like divergence-creating hiding in G() or possibly running
multiple copies of P in F ()8.

Informally, a property is closed when, given a sequence of processes
〈Pk | k ∈ N〉 that converges to a process P ∗, if each Pk satisfies the
property, then so does P ∗. Observe that the liveness property ♦ e is not
closed, since it is satisfied by P0 = e→ STOP and every Pk = a→ Pk−1 for
k > 0, but is not satisfied by P ∗ = a → P ∗. This explains why divergence-
creating hiding has to be used in order to frame this property as a refinement
check (see Equation 6.1).

Expressing LTL Properties as Refinement Checks We saw that for
some properties φ (like SEF ⇒ ♦ e), expressed in our fragment of LTL,
one could not express P |= φ for an arbitrary process P as a refinement
check in any standard denotational model for CSP that FDR might support.
In [Low08], Lowe shows that for any property φ that can be expressed in the
bounded positive fragment of LTL, that one can express P |= φ in terms of
a refinement-check Spec vR P carried out in the refusal-traces model. The
bounded-positive fragment of LTL purposefully omits the ♦ operator.

Liveness and Fairness in CSP Previous approaches (see e.g. [PV01,
Puh03, Puh05, SLDW08, Liu09]) to testing liveness properties φ under fair-
ness assumptions ψ for CSP have generally produced methods in which the
resulting properties ψ ⇒ φ are not tested by expressing them as CSP re-
finement checks, but rather by examining the operational semantics of a
system. These approaches have the advantage over ours that one can test
a liveness property, like SEF ⇒ ♦ e, directly without having to resort to
testing sufficient conditions for it instead, as we’ve shown one must when
trying to test these properties using refinement-checking. However, these
previous approaches have other drawbacks when compared to ours.

Most of these previous approaches have defined the semantics of LTL
over (linear unwindings of) a process’s operational semantics. This has two
related drawbacks, when compared to our approach. Firstly, as demon-
strated by Puhakka et al. [PV01, Puh03, Puh05], this can lead to processes

8G() must not be uniformly continuous or F () must not be distributive [Ros05].

6.4 Related Work 158

that are semantically equivalent being distinguished by LTL properties un-
less care is taken to ensure that all such properties respect the congruences
of the ordinary denotational semantic models of CSP.

Consider, for example, the semantically equivalent processes P \{b} and
Q, where P = b → a → P and Q = a → Q. Despite being seman-
tically equivalent, under most operational characterisations of available a
(see e.g. [PV01, Puh03, Puh05, SLDW08, Liu09]), Q |= available a while
P 6|= available a. Hence, Q |= WEF ⇒ �♦ a while P 6|= WEF ⇒ �♦ a.
Our approach does not suffer from this problem because we borrow our LTL
semantics from Lowe [Low08], who defined it over a process’s representation
in the refusal-traces model. Hence, it necessarily respects the congruences
of this model.

Secondly, most previous definitions (notably from those papers besides
Lowe’s cited in the previous paragraph) of the predicate available a, that
have been defined in terms of an operational semantics, have omitted any
requirement that a be available from a stable state. This then leads to
liveness properties under fairness assumptions that give unintuitive results.
Consider, for example, the process R = a → R . b → STOP . Under our
definition of available a, R 6|= available a because a is available only from
an unstable state in R. However, under the previous operational definitions
of available a, R |= available a. Hence, under these previous definitions,
R |= � available a.

Under such a definition of available a, R |= WEF ⇒ ♦ a. However,
this is problematic because R is refined, in all standard denotational CSP
models, by the process S where S = b→ STOP . Clearly S 6|= WEF ⇒ ♦ a
under any sane semantics. This means that these operational interpretations
of available a that omit the requirement that a be stably available, yield
properties that assert liveness under fairness that are not refinement closed.
Our approach avoids this problem by requiring stable availability.

In [SLDW08, Liu09], an algorithm is developed for testing liveness prop-
erties under fairness assumptions, like SEF ⇒ ♦ e, with SEF interpreted
under a definition of availability that does not require stability. This algo-
rithm, essentially, tests for the absence of certain strongly connected sub-
graphs (SCSs) within the operational semantics of a system being analysed.
The algorithm identifies those SCSs that represent infinite behaviours that
satisfy the fairness assumption (e.g. SEF) but violate the liveness property
(e.g. ♦ e) being tested under this fairness assumption.

Roscoe has also considered the problem of testing certain liveness prop-
erties under fairness assumptions of CSP systems that model shared variable
programs [Ros01]. Roscoe frames tests for liveness as tests that assert the
absence of certain stable-failures and certain fair divergences. A fair di-
vergence with respect to some set of events A is an infinite sequence t of
events that can be performed by a process, where t contains infinitely many
occurrences of each event a ∈ A.

6.5 Conclusion 159

FDR has been augmented with an algorithm to test for the absence of
fair divergence. This algorithm tests for the absence of certain strongly
connected components9 in a process’s operational semantics [Ros01], such
as those that, for each event a ∈ A, have an a-labelled edge.

Based on the similarity of these two operational approaches for test-
ing liveness properties under fairness assumptions, we conjecture that these
approaches might be adapted to test liveness properties under fairness as-
sumptions as defined in this chapter, in order to overcome the limitation
that such properties cannot be tested by refinement checking. We briefly
discuss how later in Section 8.1.

6.5 Conclusion

In this chapter, we have considered how liveness properties of object-
capability patterns can be checked using FDR. We have seen that, as with
previous work on liveness, one needs to make fairness assumptions in or-
der to rule out certain kinds of infinite behaviour that would not arise in
any fair implementation but would otherwise violate the liveness property
in question. We proved that it is impossible to frame certain tests for live-
ness under reasonable notions of fairness in terms of CSP refinement checks
for FDR. In particular, we proved that no refinement check in any standard
CSP model that FDR might support can express properties like SEF ⇒ ♦ e,
where SEF denotes the fairness property of strong event fairness (see Defi-
nition 6.1.2). Instead, we derived some sufficient conditions for testing prop-
erties like SEF ⇒ ♦ e that were stated in terms of the absence of certain
stable-failures. These sufficient conditions can be expressed as stable-failures
refinement tests for FDR to carry out.

We applied this work to examine the liveness of the Trademarks pat-
tern, arguing that non-blocking communication must be used in order to
build a live implementation of this pattern. We modelled the use of such
non-blocking communication and defined an intuitive liveness property that
asserted that a guard should always respond to a caller in a finite amount of
time under the assumption of strong event fairness. We used FDR to derive
an implementation of the Trademarks pattern that satisfied this property,
by having FDR test sufficient conditions for it. While we could successfully
prove that an improved Trademarks implementation satisfied this property,
we had to go to some extra trouble when analysing it in order to rule out
spurious counter-examples returned by FDR that violated the sufficient con-
dition being tested but not the property itself. This process of ruling out
these spurious counter-examples was somewhat ad hoc; it is unclear how
well this approach would apply to other object-capability patterns.

We also considered how to generalise liveness results, and showed how
to generalise the liveness analysis of the Trademarks pattern to systems of

9A strongly connected component is a maximal strongly connected subgraph.

6.5 Conclusion 160

arbitrary size. This was made more difficult because this pattern makes use
of EQ , which prevented the system from satisfying NoEqT and resulted
in data-independence thresholds being obtained that were higher than we
would have liked. We conclude that it is more difficult, although probably
still feasible, to generalise liveness results for patterns that make use of EQ
than those that don’t. We expect that liveness results can be easily gener-
alised, however, for the vast majority of patterns, like the Sealer-Unsealer
implementation and others analysed in this thesis, that don’t use EQ .

We conclude that using FDR as described in this chapter can be a work-
able approach for analysing the liveness properties of some object-capability
patterns. However, it requires more effort than one would like and it is
unclear how well it could be applied in general. We argue that alterna-
tive approaches that examine the operational semantics of a system directly
(see e.g. [Ros01, SLDW08, Liu09]) should be investigated for testing the live-
ness properties of object-capability patterns, and that such previous work
might be able to be adapted for this purpose. We briefly sketch one such
possibility later in Section 8.1.

7 Authority: Exploring Causation

In this second-to-last chapter, we consider the problem of how to rea-
son about authority in object-capability systems. Adopting Miller’s def-
initions [Mil06], an object’s authority in some system is the collection of
effects that it can cause to occur through its overt interactions (i.e. through
sending and receiving messages) with other objects in that system. Many
object-capability patterns are designed to provide certain objects with cer-
tain kinds of authority, or to control the authority of certain objects in some
way. A full formal analysis of these patterns therefore requires a formal
framework for reasoning about authority.

As a simple example, consider Figure 7.1. Here, we see three objects:
Alice, Bob and Carol. Suppose that the system is such that initially Alice
Calls Bob, which causes Bob to Call Carol. We say then that Alice has the
authority to cause Bob to Call Carol. We seek a formal framework in which
this statement, and other more complex ones, can be made and proved. Such
a framework will need to be able to express properties that capture what it
means for one object to cause something to happen, and should ideally be
a framework for expressing general properties about causation.

Figure 7.1: A simple example of causation and authority.

A more elaborate example that we will consider later in this chapter is the
security-enforcing pattern known as the Non-Delegatable Authority [MG08]
(NDA). The NDA is a pattern for granting an object o1 the authority to
invoke another o2, while preventing o1 from being able to delegate to some
object o3 (by passing it a capability) the same authority that o1 has to
invoke o2. Our framework for reasoning about authority should also allow
us to reason about this security property, and others like it.

In this chapter we develop a framework in which properties involving
causation and authority can be defined, and consider how such properties
can be tested using FDR. We begin in Section 7.1 by giving a general defini-
tion for non-causation in object-capability systems, akin to Definition 5.2.2,

7.1 Simple Non-Causation Properties 162

that encodes that an object’s authority is defined to include only those ef-
fects that it can cause through its overt interactions. We then present some
simple non-causation properties that might be used to instantiate the gen-
eral definition and show, with reference to some small examples, how they
capture simple elements of an object’s authority. Then, in Section 7.2, we
distill out the commonalities present in these simple non-causation proper-
ties to produce a general framework for expressing non-causation properties
for reasoning about authority. Our framework can express complex notions
of causation that are useful for reasoning about certain kinds of authority
that become relevant in the context of certain object-capability patterns.
We demonstrate this in Section 7.3 by showing, through a number of exam-
ples, how the framework can capture complex forms of authority, namely
delegable, non-delegable, revocable and single-use authority.

We show in Section 7.4 that, in this framework, one can distinguish two
primitive kinds of effects, namely the safety and liveness effects respectively,
by identifying effects with refusal-traces hyperproperties [CS08, CS10]. Then
in Section 7.5, we show how Miller’s [Mil06] notions of defensive correct-
ness and defensive consistency can be captured in our framework as non-
causation properties for certain kinds of effects. Defensive correctness and
consistency are properties that assert that an object helps protect its clients
from each other’s misbehaviour by bounding the authority of its clients to
interfere with each other’s interactions with the object. As has been argued
by others [Mil06, MWC10], they are very useful properties for an object-
capability pattern to satisfy in order to allow its clients to be mutually
suspicious of each other, thereby reducing each client’s vulnerability overall.
Miller argues that defensive correctness incorporates notions of safety and
liveness, while defensive consistency incorporates just safety [Mil06, Section
5.6]. Our formalisation of these ideas makes this point explicit by using the
distinction between safety and liveness effects from Section 7.4.

Finally, in Section 7.6, we consider the degree to which a non-causation
property can be automatically checked using FDR. This is required in order
to check that a pattern, like the NDA, properly confines authority, or that an
object is defensively consistent or correct. We show that all safety effects can
be expressed as refinement checks. When this check is finite-state, one can
use FDR to test for the non-causation of some safety effect, or the effect’s
opposite, in any finite deterministic system using at most two refinement
checks. However, we prove that in general it is not possible to check non-
causation of even the most simple safety effects for nondeterministic systems
using refinement checking with FDR.

7.1 Simple Non-Causation Properties

Before trying to construct a general framework for expressing causation
properties, for reasoning about authority in object-capability systems, we

7.1 Simple Non-Causation Properties 163

first present a number of basic examples of different kinds of causation in
which one might be interested, in order to shed light on the basic kinds of
property we want to express.

The job of each of the causation properties we might want to express is to
analyse the behaviours of a process System = ‖

o∈Object
(behaviour(o), α(o))

that represents an object-capability system in order to decide whether cer-
tain causal relationships exist within that system. For instance, we might
wish to know whether one object can cause another to send a message to
a third, in order to reason about the first object’s authority. To do so, we
will define a non-causation property φ that asserts that no such causation
exists.

In line with Miller’s definition of authority we restrict our attention to
overt causation, i.e. causation arising from sending and receiving messages
between objects. As in Chapter 5, where we restricted our attention to
covert flows of information that arise through overt interactions, this means
that when considering the refinements of System, we will restrict our atten-
tion to its deterministic componentwise refinements (see Definition 5.2.1).
This leads to the following general definition for non-causation in an object-
capability system.1

Definition 7.1.1 (Non-Causation for Object-Capability Systems). An
object-capability system captured by the CSP process System =

‖
o∈Object

(behaviour(o), α(o)) exhibits none of the causation captured by

some non-causation property Prop iff ∀SystemD ∈ DCRef (System) •
Prop(SystemD).

Observe that this definition implies that in some system System, an
object has the authority to cause some effect iff it can cause that effect
in any of System’s deterministic componentwise refinements SystemD ∈
DCRef (System). Hence, an object’s authority in System really captures
its potential authority, which is the union of its actual authority in all
such SystemD.

Recall that each such SystemD is a deterministic process. We will con-
sider a number of deterministic example systems that exhibit various kinds
of causation and show how the various kinds of causation can be captured
by various non-causation properties φ that we will define. We will see that
each of these properties shares a common structure, which can be distilled
to produce a general framework for specifying non-causation properties φ
that can be used in place of Prop in Definition 7.1.1.

7.1.1 Causation as Counterfactual Dependence

Like many other definitions for causation within (models of) computational
systems (see e.g. [Gro05, CHK08, BBDC+09]), we adopt a notion of causality

1Note that the results that we obtain later in Section 7.6 are unchanged if this defini-
tion is altered to quantify over all refinements of System.

7.1 Simple Non-Causation Properties 164

rooted in Lewis’ [Lew73] idea of counterfactual dependence. Consider some
factual scenario in which some effect B is observed in the presence of some
potential cause A, and the question of whether A causes B here. Roughly
speaking, Lewis argues that we should consider the set of counterfactual
(i.e. not corresponding to the reality we have observed) scenarios in which
A is absent and choose the counterfactual scenario from that set that is most
alike to the factual scenario. If B is absent in this counterfactual scenario,
then B is counterfactually dependent on A in the factual scenario and so A
is a cause of B in that scenario2.

Depending on one’s choice for the kinds of things that A and B represent,
one can construct various definitions for different kinds of causation for CSP
processes. Our focus on capturing an object’s authority, via the things it
can overtly cause to occur, means that we will restrict our attention to those
A that represent overt activity by a particular object. Hence, we will define
properties that assert that the activity of a particular object cannot cause
various effects.

7.1.2 Causing Event-Occurrence

We begin with a very simple example. Consider the system depicted in
Figure 7.2. Suppose this is a single-threaded system and that Alice is the
object that is initially active and that Alice’s behaviour is to simply Call
Bob, passing the null argument, and then deadlock. Hence

behaviour(Alice) = Alice.Bob.Call.null→ STOP.

Figure 7.2: A simple example of event causation.

Bob’s behaviour is to simply wait to be Called; once Called, Bob Calls
Carol, passing the null argument, and then deadlocks. Hence

behaviour(Bob) =
?from : Capability − {Bob}!Bob!Call?arg → Bob.Carol.Call.null→ STOP.

Carol simply waits to be Called and then deadlocks, so

behaviour(Carol) = from : Capability − {Carol}!Carol!Call?arg → STOP.

2If there are multiple counterfactual scenarios in which A is absent that are each
equally most alike to the factual scenario, then B must be absent in all of them in order
to be counterfactually dependent on A in the factual scenario.

7.1 Simple Non-Causation Properties 165

When composed together to form the depicted system, we see that
Alice will simply Call Bob, after which Bob will simply Call Carol. No
other behaviours can arise in this system. Hence the system System1 =

‖
o∈Object

(behaviour(o), α(o)) will be equivalent to the sequential process in

which just these two interactions occur, i.e.

System1 = Alice.Bob.Call.null→ Bob.Carol.Call.null→ STOP.

It is clear that, in System1, Alice’s activity causes Bob to Call Carol.
Indeed, Bob cannot Call Carol here unless Alice first Calls Bob. Hence, Bob
Calling Carol is clearly counterfactually dependent on Alice being present
and executing her behaviour.

Able To Occur vs. Must Inevitably Occur

There are two ways in which we might say that Alice causes Bob to Call Carol.
We can observe that, in System1, Bob must inevitably Call Carol. However,
in the counterfactual scenario in which Alice doesn’t act but the behaviour
of the other objects remains unchanged, Bob doesn’t inevitably Call Carol.
Hence, we might say that Alice causes Bob to inevitably Call Carol. Indeed,
this counterfactual scenario is captured by the process System1 ‖

α(Alice)

STOP

that is identical to System1 except that all of Alice’s events are blocked by
forcing them to synchronise with the process STOP . For any process P and
set of events A, let P |A abbreviate P ‖

A

STOP . Observe that System1 |α(Alice)

immediately deadlocks. We capture this kind of causation formally by ob-
serving that

System1 |= ♦Bob.Carol.Call.null ∧
System1 |α(Alice) 6|= ♦Bob.Carol.Call.null,

using the fragment of LTL (see Section 6.1.5) defined over the refusal-traces
model (see Section 6.1.4) in Chapter 6. Note that we may often want to
incorporate a fairness assumption when deciding whether an event inevitably
occurs. For instance, to incorporate the assumption of strong event fairness
(see Definition 6.1.2) we would replace the property ♦Bob.Carol.Call.null
above with SEF ⇒ ♦Bob.Carol.Call.null.

Besides this first kind of causation, we can also observe that in System1
the event Bob.Carol.Call.null is able to occur at some point, but in the coun-
terfactual scenario System1 |α(Alice), in which Alice doesn’t act, this event can
never occur. So we might also say that Alice causes Bob to be able to Call
Carol. We can capture this sort of causation formally, in the refusal-traces
model, by observing that

∃ s ∈ R[[System1]] ∪ I[[System1]] • tr(s) |̀ {e} 6= 〈〉 ∧
6 ∃ s ∈ R[[System1 |α(Alice)]] ∪ I[[System1 |α(Alice)]] • tr(s) |̀ {e} 6= 〈〉,

7.1 Simple Non-Causation Properties 166

where e = Bob.Carol.Call.null and the function tr(s) returns the trace of
events performed in a refusal-trace s.

Each kind of causation can be captured simply by a non-causation prop-
erty that asserts that it cannot occur. For instance, in some system Sys, the
object whose alphabet is A does not cause an event e to inevitably occur iff

Sys |= ♦ e⇒ Sys |A |= ♦ e. (7.1)

Similarly, the object whose alphabet is A does not cause the event e to
be able to occur in Sys iff

∃ s ∈ R[[Sys]] ∪ I[[Sys]] • tr(s) |̀ {e} 6= 〈〉 ⇒
∃ s ∈ R[[Sys |A]] ∪ I[[Sys |A]] • tr(s) |̀ {e} 6= 〈〉. (7.2)

Note that the presence of neither notion of causation necessarily implies
the other. For instance, suppose we have a system comprising four objects,
Alice, Bob, Carol and Dave in which Alice, Carol and Dave are initially active.
Alice is initially willing only to Call Bob. Bob is initially willing only to be
Called by anyone. Carol and Dave initially both try to Call Alice, but each
can do so only after Alice has Called Bob. Then the overall behaviour of this
system could be captured by the CSP process

System2 = Alice.Bob.Call.null→(
Carol.Alice.Call.null→ STOP �
Dave.Alice.Call.null→ STOP

)
.

Here, we see that Bob causes Carol to be able to Call Alice, since Carol
is not able to Call Alice when Bob doesn’t act. However, Bob doesn’t
cause Carol to inevitably Call Alice since System2 has the refusal-trace
〈•,Alice.Bob.Call.null, •,Dave.Alice.Call.null,Σ〉 that ends in deadlock and so
doesn’t satisfy ♦Carol.Alice.Call.null.

Similarly, an object that causes an event to inevitably occur need not
cause that event to be able to occur. Consider a system comprising four
objects Alice, Bob, Carol and Dave, in which Alice, Bob and Carol are initially
active. Dave is willing to be Called by any object. The object that first Calls
Dave determines his subsequent behaviour. If Called initially by Alice, Dave
then waits to be Called by Bob and then after that waits to be Called by
Carol and then deadlocks. If initially Called by Bob, Dave then waits to
be Called by Carol and then deadlocks. If initially Called by Carol, Dave
deadlocks immediately. Alice, Bob and Carol each simply try to Call Dave
initially. This system could be captured by the CSP process

System3 =
Alice.Dave.Call.null→ Bob.Dave.Call.null→ Carol.Dave.Call.null→ STOP
� Bob.Dave.Call.null→ Carol.Dave.Call.null→ STOP
� Carol.Dave.Call.null→ STOP.

7.1 Simple Non-Causation Properties 167

Because System3 |= ♦Carol.Dave.Call.null and System3 |α(Bob) =
Alice.Dave.Call.null → STOP � Carol.Dave.Call.null → STOP clearly
fails to satisfy ♦Carol.Dave.Call.null, Bob causes Carol to inevitably
Call Dave. However, since System3 |α(Bob) also has refusal traces in
which Carol.Dave.Call.null does occur, Bob doesn’t cause Carol to be able
to Call Dave here.

7.1.3 Preventing Event-Occurrence

Just as an object can cause some effect to occur, it can also cause that effect
to not occur. In this case, we say that it prevents the effect. Prevention is
the natural opposite of causation.

Consider a system comprising three objects Alice, Bob and Carol, in
which Alice and Bob both try to Call Carol and Carol is initially willing to
be Called by anyone. Suppose that after Calling Carol, both Alice and Bob
refuse to send a Return message back to Carol, thereby causing the system
to deadlock. This system could be captured by the CSP process

System4 = Alice.Carol.Call.null→ STOP � Bob.Carol.Call.null→ STOP.

Then we see that, in System4, Alice prevents Bob from inevitably Calling
Carol, since

System4 6|= ♦Bob.Carol.Call.null ∧
System4 |α(Alice) |= ♦Bob.Carol.Call.null.

A non-causation property for this kind of prevention might state that
in a system Sys an object with alphabet A cannot prevent an event e from
inevitably occurring iff when Sys 6|= ♦ e then Sys |A 6|= ♦ e. This can be
written equivalently as

Sys |A |= ♦ e⇒ Sys |= ♦ e. (7.3)

Observe that this equation is very similar to Equation 7.1 except that the di-
rection of the implication has been reversed. Recall also that if one wanted to
incorporate a fairness assumption, like strong event fairness, into this defini-
tion, then one could replace each occurrence of ♦ e above by e.g. SEF ⇒ ♦ e
(see Definition 6.1.2).

Suppose now that Alice can never refuse to Return to Carol after Calling
her and that Carol can never refuse to accept any such Return. Then the
system could be captured by the CSP process

System5 = Alice.Carol.Call.null→ Carol.Alice.Return.null→ System5 �
Bob.Carol.Call.null→ STOP.

Suppose we also make the fairness assumption of strong event fairness here.
Then System5 |= (SEF ⇒ ♦Bob.Carol.Call.null), i.e. under this fairness as-
sumption Bob inevitably Calls Carol in System5. Hence, in System5, Alice

7.2 A Framework for Non-Causation Properties 168

does not prevent Bob from inevitably Calling Carol under strong event fair-
ness.

This example highlights the difference between this kind of authority
and information flow. In any object-capability system that signals an error
to Bob when he tries to Call Carol while Carol is busy servicing Alice’s Call,
Bob will be able to detect that Alice has Called Carol. Hence, we might
certainly conclude that Alice can pass information to Bob in System5 because
she can delay Bob from Calling Carol in a way that is observable to Bob.
However, under reasonable fairness assumptions, Alice can delay Bob from
being able to Call Carol only for a finite amount of time. Under such fairness
assumptions, she is unable, therefore, to prevent Bob from inevitably Calling
Carol, despite being able to pass information covertly to Bob through her
overt interactions with Carol.

Note that an object can never prevent another from being able to pos-
sibly perform some event. Suppose otherwise for a contradiction that in
some system Sys some object with alphabet A can prevent some event e
from possibly being performed. Then Sys |A must have some ordinary
trace s ∈ traces(Sys |A) in which e occurs that is not present in traces(Sys).
However, this is clearly impossible since the former is always a traces-
refinement of the latter.

7.2 A Framework for Non-Causation Properties

We have shown a number of examples of different kinds of event causation
and prevention, and non-causation properties (Equations 7.1, 7.2 and 7.3)
designed to capture each. Of course, these non-causation properties are
just a fraction of those in which one might be interested when analysing
a particular pattern. For many patterns, for instance, one might wish to
analyse not whether some object has the authority to cause or prevent the
occurrence of an event, but whether it can cause or prevent a second object
from causing an event to occur, and so on. (Later, we will see examples of
patterns for which this kind of causation is very relevant.)

The non-causation properties that we’ve seen so far are all very similar
to one another. So it seems natural to wonder whether these similarities can
be distilled into a framework for specifying other non-causation properties,
including those hinted at in the previous paragraph. In this section, we
devise such a framework.

7.2.1 Encoding Effects

We begin by considering how to characterise the different effects that our
non-causation properties should reason about. We make the straightfor-
ward observation that an effect may be characterised by the set of systems
(i.e. CSP processes) in which it is present. For instance, the effect that is

7.2 A Framework for Non-Causation Properties 169

the inevitable occurrence of the event e is naturally characterised by the set
of systems in which e inevitably occurs, i.e. the set of systems that satisfy
the LTL property ♦ e.

A system, in turn, may be characterised by its representation in a CSP
denotational semantic model. We saw in Chapter 6 that in order to reason
about certain properties, like SEF ⇒ ♦ e, we needed to use the refusal-traces
model. Hence, for the remainder of this chapter, we restrict our attention
to the refusal-traces model and stipulate that a system is characterised by
its representation within that model.

We may therefore identify each effect with a set E of sets R where each
set R is the representation of some divergence-free process P in the refusal-
traces model, so that R = R[[P]] ∪ I[[P]].

It can be shown, however, that any divergence-free process P is captured
equally well in the refusal-traces model by its set of completed refusal-traces
as it is by R[[P]] ∪ I[[P]]. A refusal-trace is completed iff it is finite and
ends in deadlock, or it is infinite. The set of all completed refusal-traces
is CRT = DRT ∪ IRT , the union of the sets of deadlocked and infinite
refusal-traces respectively. Any divergence-free process P is then captured
equally well by the set C[[P]] = (R[[P]]∪I[[P]])∩CRT as it is by R[[P]]∪I[[P]].

The following lemma proves this.

Lemma 7.2.1. For any divergence-free processes P and Q,

(R[[P]] ∪ I[[P]] = R[[Q]] ∪ I[[Q]])⇔ (C[[P]] = C[[Q]]).

Proof. Suppose we have two divergence-free processes P and Q. We prove
(R[[P]] ∪ I[[P]] 6= R[[Q]] ∪ I[[Q]]) ⇔ (C[[P]] 6= C[[Q]]). We show the only-if-
direction, since the if-direction is trivial. Suppose R[[P]] ∪ I[[P]] 6= R[[Q]] ∪
I[[Q]]. Without loss of generality, suppose that P has a refusal-trace s that
Q does not. Then if s ∈ CRT the claim follows trivially. If s /∈ CRT
then s ∈ R[[P]] ∩ PRT and so, by Equation 6.2, P must have at least one
completed extension t of s, where t ∈ C[[P]] ∧ s ≤ t. Recall that s /∈ R[[Q]].
By Axiom R1, R[[Q]] is prefix-closed, which implies that t /∈ R[[Q]] ∪ I[[Q]],
i.e. t /∈ C[[Q]]. So C[[P]] 6= C[[Q]] as required.

This means we can identify each effect with a set E that contains
sets C[[P]] of completed refusal-traces of each divergence-free process P in
which the effect is present. For instance, letting CSP denote the set that
contains all divergence-free CSP processes, the effect that is the eventual
occurrence of the event e is captured by the set E♦ e where

E♦ e = {C[[P]] | P ∈ CSP ∧ P |= ♦ e}. (7.4)

The effect that is the possible occurrence of the event e is captured by
the set EEF e where3

EEF e = {C[[P]] | P ∈ CSP ∧ ∃ s ∈ traces(P) • s |̀ {e} 6= 〈〉}. (7.5)

3This name is designed to be suggestive of the CTL [CES86] property EF e.

7.2 A Framework for Non-Causation Properties 170

We let Effect = P {C[[P]] | P ∈ CSP} denote the set of all effects. We
say that an effect E ∈ Effect is present in a divergence-free process P ∈ CSP
iff C[[P]] ∈ E. An effect E is absent in P iff C[[P]] /∈ E.

The absence of some effect E is itself another effect, which we denote E,
and call the complement of E:

E = {C[[P]] | P ∈ CSP ∧ C[[P]] /∈ E}. (7.6)

7.2.2 Causation and Prevention

From this, we can easily give a general characterisation of non-causation and
non-prevention for these kinds of effect.

An object with alphabet A ⊆ Σ does not cause some effect E ∈ Effect
in system Sys iff

C[[Sys]] ∈ E ⇒ C[[Sys |A]] ∈ E. (7.7)

An object with alphabet A ⊆ Σ does not prevent some effect E ∈ Effect
iff it does not cause the absence of that effect, i.e. iff C[[Sys]] ∈ E ⇒
C[[Sys |A]] ∈ E, which is equivalent to

C[[Sys |A]] ∈ E ⇒ C[[Sys]] ∈ E. (7.8)

We refer to any such property obtained by substituting some concrete
effect for E in Equation 7.7 or 7.8 as a non-causation or non-prevention prop-
erty respectively. Any such property is applied to some system System =

‖
o∈Object

(behaviour(o), α(o)) by testing it for all SystemD ∈ DCRef (System)

in accordance with Definition 7.1.1.
Observe that non-causation (Equation 7.7) may be viewed as just an-

other effect. For instance, the effect E that is the object with alphabet A
being unable to cause some effect E1 may be captured as

E = {C[[P]] | P ∈ CSP ∧ C[[P]] ∈ E1 ⇒ C[[P |A]] ∈ E1}.

The same also applies to non-prevention (Equation 7.8).
We can also view causation as an effect. The effect E that is the object

with alphabet A causing effect E1 may be defined as

E = {C[[P]] | P ∈ CSP ∧ C[[P]] ∈ E1 ∧ C[[P |A]] /∈ E1}.

Of course we may do likewise for prevention.
As we will see in the following section, treating causation and prevention

as effects allows us to reason accurately about some of the more esoteric
elements of an object’s authority that may be influenced and controlled by
various patterns.

7.3 Using the Framework to Capture Authority 171

7.3 Using the Framework to Capture Authority

One can observe that substituting the definition for the effect E♦ e of e
inevitably occurring (Equation 7.4) into Equations 7.7 and Equation 7.8,
and applying Lemma 7.2.1, would yield equations that are equivalent to
Equations 7.1 and 7.3 respectively. The same applies for the effect EEF e

(Equation 7.5) of e possibly occurring and Equation 7.2. Hence, the non-
causation properties we’ve encountered so far can be expressed easily in our
framework. However, we can also express far more elaborate non-causation
properties for reasoning about authority in this framework.

Defining any such property requires us simply to define the effect in
which we’re interested in detecting whether it can be caused or prevented
respectively. We present a number of examples of effects that themselves
involve causation, such as detecting when one object o1 causes another o2

to cause a third o3 to perform some action, or when o1 prevents some effect
involving o2 causing some effect involving o3.

We show how these subtle kinds of influence manifest themselves in some
common patterns for controlling authority in object-capability systems. In
doing so, we take the first steps along the path towards formally analysing
the ways in which these patterns influence and control the propagation of
authority in object-capability systems.

Note that each example system that we will consider is a deterministic
process and should be thought of as a deterministic componentwise refine-
ment of the system in which the pattern is instantiated in each case.

7.3.1 Delegable Authority: Capturing the Authority to Del-
egate One’s Authority

Consider the system depicted in Figure 7.3. Here Bob has capabilities to
Carol and Dave. Carol and Dave are initially inactive while Bob’s behaviour
is completely unknown and untrusted. In one deterministic possibility for
Bob’s behaviour, Bob may repeatedly Call Carol, in which case the entire
system could behave equivalently to the deterministic CSP process

System6 = Bob.Carol.Call.null→ System6.

Figure 7.3: Delegable authority.

In this case, we would naturally observe that Bob causes Carol to be
repeatedly Called. Indeed, letting EEGEF e denote the effect that is the

7.3 Using the Framework to Capture Authority 172

event e being able to repeatedly occur, so that

EEGEF e = {C[[P]] | P ∈ CSP ∧ ∃ s ∈ C[[P]] • tr(s) |̀ {e} = 〈e, e, . . .〉}, (7.9)

we see that

System6 ∈ EEGEFBob.Carol.Call.null ∧ System6 |α(Bob) /∈ EEGEFBob.Carol.Call.null.

Hence, Bob has the authority to cause Carol to be able to be repeatedly
Called.

In another possible implementation of Bob, however, Bob’s behaviour
might instead have him just invoke Dave, passing Dave his capability to
Carol, and then deadlock. Suppose that Dave’s behaviour is then to repeat-
edly Call the capability he was passed by Bob. In this case, the system could
be captured by the CSP process

System7 = Bob.Dave.Call.Carol→ System7′,

System7′ = Dave.Carol.Call.null→ System7′.

It is easily confirmed that, in System7, Dave causes Carol to be
able to be repeatedly Called, since System7 ∈ EEGEFDave.Carol.Call.null ∧
System7 |α(Dave) /∈ EEGEFDave.Carol.Call.null. Hence, Dave has the authority
to cause Carol to be able to be repeatedly Called. However, Dave has this
authority here only because Bob passes to Dave a capability to Carol that
Dave doesn’t initially possess. Hence, we will show that in System7, Bob
causes Dave to cause Carol to be able to be Called repeatedly, i.e. that Bob’s
authority includes the authority to cause Dave to cause Carol to be able to
be repeatedly Called.

We saw above that Bob has the authority to cause Carol to be repeatedly
Called. So, we might say that the inclusion in Bob’s authority of the author-
ity to cause Dave to cause Carol to be able to be repeatedly Called, captures
the idea that Bob’s authority includes the ability to delegate to Dave the
authority over Carol that Bob has. By delegation, we mean the simple act in
which one object passes one of its capabilities to another object by sending
it a message containing that capability [MG08]; however, it should be noted
that this is a somewhat restrictive definition of delegation and that other
definitions might be more appropriate in other circumstances.

To capture this part of Bob’s authority, we first define the effect E1 that
is Dave causing Carol to be able to be repeatedly Called.

E1 =

{
C[[P]] P ∈ CSP ∧ P ∈ EEGEFDave.Carol.Call.null ∧

P |α(Dave) /∈ EEGEFDave.Carol.Call.null

}
. (7.10)

We then capture that Bob causes this effect by noting that

C[[System7]] ∈ E1 ∧ C[[System7 |α(Bob)]] /∈ E1,

since System7 |α(Bob) = STOP .

7.3 Using the Framework to Capture Authority 173

7.3.2 Non-Delegable Authority

We saw that in the system depicted in Figure 7.3, (1) Bob has the author-
ity to delegate to Dave that part of his authority over Carol with which
he can cause Carol to be repeatedly Called, by passing his Carol-capability
to Dave, and that (2) Bob’s authority to delegate this Carol-authority to
Dave could be captured in our framework. The ease with which authority
may be delegated, simply by passing capabilities, has often been viewed as
a negative trait of capability-based systems [MG08]. For instance, some
(e.g. [WBDF97]) have argued that this means that objects need to be
trusted too much, or (e.g. [LSM+98]) that it makes mandatory access con-
trols [And72] more difficult to enforce, including (as argued in [Kar88]) en-
forcing confinement [Lam73] and (as argued in [Gon89]) the Bell-LaPadula
*-property [BL76].

The Non-Delegatable Authority [MG08] (NDA) pattern was proposed to
solve this problem. In particular, it can be deployed in the context of the
system depicted in Figure 7.3 to allow Bob to Call Carol without allowing him
to delegate this authority to Dave. The pattern is deployed by modifying
that system to instead have the form of Figure 7.4.

Figure 7.4: Non-delegable authority.

Rather than having direct access to Carol, Bob now has access
to TheNDA, an object that implements the NDA pattern and acts as an
intermediary between Bob and Carol. We say that Bob is TheNDA’s sub-
ject and that Carol is its target. The job of an NDA is to give its subject
non-delegable authority to invoke its target. The behaviour of an NDA me
whose subject is subject and whose target is target may be modelled by the
process AnNDA(me, subject , target), defined in Snippet 7.1.

An NDA waits to be Called by anyone (e.g. Bob or any object to whom
Bob passes his TheNDA-capability). In response to being invoked, an NDA
Calls its subject (in our case Bob). The purpose of this Call is to ask the
subject whether it wants the NDA to Call the NDA’s target (which, in our
case, is Carol). Depending on the result arg Returned by the NDA’s subject,
the NDA may then Call its target. Specifically, an NDA will call its target
iff its subject Returns a non-null argument, i.e. iff arg 6= null. Having Called
its target or not, the NDA then Returns to its original Caller, from.

Intuitively, Bob cannot delegate the authority to Call Carol that TheNDA
provides to him because this authority is not represented by any capability
that Bob possesses, thereby preventing it from being delegable by definition.
We can see this as follows. Suppose Bob’s behaviour is to simply pass to Dave

7.3 Using the Framework to Capture Authority 174

AnNDA(me, subject , target) =
?from : Capability − {me}!me!Call!null→
me!subject !Call!null→ subject !me!Return?arg →
if arg = null then

me!from!Return!null→ AnNDA(me, subject , target)
else

me!target !Call!null→ me!from!Return!null→
AnNDA(me, subject , target)

Snippet 7.1: The behaviour of a Non-Delegable Authority (NDA).4

his TheNDA-capability and then refuse to partake in any further interactions
with any other object. Dave and Carol behave as before while TheNDA’s be-
haviour is as one would expect, namely AnNDA(TheNDA,Bob,Carol). Then
the system could be captured by the CSP process

System8 = Bob.Dave.Call.TheNDA→ Dave.TheNDA.Call.null→ STOP.

After Dave Calls TheNDA, TheNDA tries to Call Bob, but this call will
never succeed since Bob is not willing to be Called by TheNDA. Obviously,
since Carol can never be invoked in System8, we see that Bob cannot delegate
to Dave his authority to cause Carol to be repeatedly invoked here. We
have proved that this is the case when each behaves as in System8, and we
expect this result to hold generally. In order to conclude that Bob has no
such authority generally, we would of course need to show that this result
holds for all possible behaviours of Bob and Dave, i.e. for all deterministic
componentwise refinements of this system when Bob and Dave are each an
instance of the UntrustedOS process (see Snippet 2.1).

While Bob cannot delegate this authority to Dave, he cannot be pre-
vented altogether from sharing it with Dave [Don81, MG08]. Indeed, Bob
can still behave in such a way as to allow Dave to cause Carol to be repeat-
edly invoked. Suppose Bob’s behaviour is altered so that initially he passes
to Dave his TheNDA-capability and accepts and responds affirmatively to
all future invocations. The behaviour of this modified system could then be
captured by the CSP process System9 defined as follows.

4We model a simplified implementation of the NDA (see [MG08] for the full imple-
mentation) that doesn’t allow Bob to specify the argument that is passed to Carol, nor to
receive any value that might be Returned by Carol. These features are unnecessary because
Carol accepts only the null argument and doesn’t send back Return messages. However,
the model could be easily extended to accommodate them if needed.

7.3 Using the Framework to Capture Authority 175

System9 = Bob.Dave.Call.TheNDA→ System9′,

System9′ =
Dave.TheNDA.Call.null→
TheNDA.Bob.Call.null→ Bob.TheNDA.Return.Bob→
TheNDA.Carol.Call.null→ TheNDA.Dave.Return.null→
System9′.

We see that Bob causes Dave to cause Carol to be repeatedly Called in
System9, since

C[[System9]] ∈ E1 ∧ C[[System9 |α(Bob)]] /∈ E1,

where E1 is as defined in Equation 7.10 in Section 7.3.1, namely as

E1 =

{
C[[P]] P ∈ CSP ∧ P ∈ EEGEFDave.Carol.Call.null ∧

P |α(Dave) /∈ EEGEFDave.Carol.Call.null

}
.

The question then arises as to how Bob shared this authority with Dave.
He certainly can’t have shared it by delegating to Dave because Bob dele-
gated to Dave in System8 but couldn’t share his authority there. So this ex-
ample doesn’t demonstrate that Bob’s Carol-authority is delegable. Rather,
it hints that in order for Bob to share this authority with Dave, Bob prob-
ably needs to repeatedly actively collaborate with Dave or an object acting
on his behalf (in our case TheNDA).

This highlights the fundamental difference between delegable and non-
delegable authority. Delegable authority can be shared by the single simple
irreversible act of delegation, while non-delegable authority can be shared
only via repeated collaboration with those objects with whom it is being
shared [MG08].

7.3.3 Revocable Authority: Capturing the Authority to Re-
voke Another’s Authority

The previous examples both involved one object having the authority to
cause another to cause some effect. We now consider some examples in which
one object has the authority to prevent another from causing some effect.
The first such example involves one object revoking another’s authority.
Consider the system depicted in Figure 7.5. It contains the objects Alice,
Bob, Carol and Proxy. Proxy is a revocable forwarder or caretaker [Red74],
designed to grant Bob revocable authority to invoke Carol.

Proxy forwards messages sent to its CForward facet onto Carol. Calling its
CRevoke facet causes it to stop forwarding messages to Carol. Once revoked,
CForward still continues to process Call messages, however. For simplicity,
suppose the behaviour of Alice is to simply Call CRevoke and then deadlock.

7.3 Using the Framework to Capture Authority 176

Figure 7.5: Revocable authority with the Caretaker pattern.

Bob’s behaviour is to simply repeatedly Call CForward. Carol simply accepts
Call messages. Finally, neither Carol nor Proxy send back Return messages
when invoked. Then the system could be captured by the CSP process
System10 where

System10 = Alice.CRevoke.Call.null→ System10′ �
Bob.CForward.Call.null→ CForward.Carol.Call.null→ System10,

System10′ = Bob.CForward.Call.null→ System10′.

Here, System10′ represents the state that the system evolves to once Proxy
has been revoked.

In System10, Bob causes Carol to be able to be Called. Indeed,
CForward.Carol.Call.null can occur in System10 but not in System10 |α(Bob).
We also find that Alice prevents Carol from inevitably being Called,
since System10 |α(Alice) |= ♦CForward.Carol.Call.null but System10 6|=
♦CForward.Carol.Call.null.

More interesting, however, is that Alice’s active presence in System10
affects Bob’s authority. Without Alice present, Bob inevitably causes Carol
to be invoked. However, with Alice actively present, it’s possible for Bob to
cause Carol to be invoked but not inevitable. We might say, then, that Alice
has a subtle kind of authority over Bob, since her active presence modulates
Bob’s authority. This subtle kind of authority that Alice has over Bob is, of
course, a manifestation of Alice’s authority to revoke Bob’s Carol-authority.

We can capture this in our framework as follows. We say that Bob
inevitably causes Carol to be invoked when: (1) Bob causes Carol to be
able to be invoked (meaning that Carol cannot be invoked without Bob’s
presence) and (2) Carol is inevitably invoked in Bob’s presence. This effect
may be captured as the set E defined as

E =

{
C[[P]] P ∈ CSP ∧ (C[[P]] ∈ EEF e ∧ C[[P |α(Bob)]] /∈ EEF e) ∧

C[[P]] ∈ E♦ e

}
where e = CForward.Carol.Call.null, using Equations 7.4 and 7.5.

We can then capture that Alice prevents this effect by noting that

C[[System10]] /∈ E ∧ C[[System10 |α(Alice)]] ∈ E.

7.3 Using the Framework to Capture Authority 177

C[[System10]] /∈ E since, in System10, Carol is not inevitably Called.
C[[System10 |α(Alice)]] ∈ E since, in System10 |α(Alice), Carol is inevitably
Called and Bob causes Carol to be able to be Called. Therefore, Alice’s
authority to revoke Bob’s authority over Carol manifests itself as an effect
involving Bob causing Carol to be Called that Alice can prevent.

7.3.4 Single-Use Authority

Our final example of preventing an effect involving causation comes from
Spiessens [Spi06]. Consider now the system depicted in Figure 7.6, which
contains an object OneShot that forwards only the first invocation it receives
to Carol; after being invoked once it still accepts future invocations but
doesn’t forward them to Carol. Carol simply accepts Call messages, while
Alice and Bob repeatedly Call OneShot.

Figure 7.6: A system with a single-use object.

This system could be captured by the CSP process System11 where

System11 = Alice.OneShot.Call.null→ OneShot.Carol.Call.null→ System11′

�
Bob.OneShot.Call.null→ OneShot.Carol.Call.null→ System11′,

System11′ = Alice.OneShot.Call.null→ System11′ �
Bob.OneShot.Call.null→ System11′.

This system is similar to System10 in that OneShot can be considered as
a kind of revocable forwarder that forwards to Carol, which is automatically
revoked upon its first use. However, in this system, Bob no longer has the
authority to cause Carol to be Called, since ♦OneShot.Carol.Call.null holds
for both System11 and System11 |α(Bob). This makes sense, since no matter
whether Bob acts or not, Carol is inevitably Called. Hence, Bob is powerless
to alter whether Carol is inevitably Called and so he should rightly have no
authority in this regard.

In System11, Alice’s active presence is what prevents Bob from having
the authority to cause Carol to be invoked. Indeed, if we let E1 denote the
effect that is Bob causing Carol to be able to be Called, so that

E1 = {C[[P]] | P ∈ CSP ∧ C[[P]] ∈ EEF e ∧ C[[P |α(Bob)]] /∈ EEF e},

7.3 Using the Framework to Capture Authority 178

where e = OneShot.Carol.Call.null, we see that

C[[System11 |α(Alice)]] ∈ E1 ∧ C[[System11]] /∈ E1.

So Alice prevents Bob from causing Carol to be able to be Called here. Sim-
ilarly, we could also show that Alice prevents Bob from causing Carol to be
inevitably Called here.

However, System11 contains a more subtle form of prevention too, which
was first noted by Spiessens [Spi06]. This form of prevention captures Alice’s
authority to revoke Bob’s access to Carol, which he has by virtue of OneShot,
by Alice using OneShot.

Observe that when Alice Calls OneShot for the first time and does so
before Bob has Called OneShot, she does exercise a subtle influence over
Bob. Indeed, before Alice Calls OneShot in this way, Bob is able to Call
OneShot and have it Call Carol on his behalf. After Alice Calls OneShot,
however, Bob’s invocation of OneShot has no effect.

This kind of influence can be captured as follows. We note that before
Alice Calls OneShot, it is inevitably the case that when Bob Calls OneShot,
OneShot then inevitably Calls Carol. After Alice Calls OneShot, this is no
longer the case. We capture the effect that is OneShot inevitably Calling
Carol in response to Bob’s invocation of it as the set E.

E =

{
C[[P]] | P ∈ CSP ∧
P |= ♦(Bob.OneShot.Call.null ∧ ♦OneShot.Carol.Call.null)

}
(7.11)

We then note that C[[System11 |α(Alice)]] ∈ E and C[[System11]] /∈ E since
all of the infinite refusal-traces of System11 that begin with

〈•,Alice.OneShot.Call.null, •,OneShot.Carol.Call.null, •, . . .〉

do not satisfy ♦(Bob.OneShot.Call.null ∧ ♦OneShot.Carol.Call.null). Hence,
Alice’s authority to revoke Bob’s access to Carol, by using OneShot, may be
captured in our framework in this way as a form of prevention.

The effect that Alice is preventing here is that inevitably Bob Calls
OneShot, and when this happens OneShot then inevitably Calls Carol. This
effect can be viewed as a weak form of causation, in which Bob Calling
OneShot causes it to inevitably Call Carol. However, the notion of causality
here is not one based on counterfactual dependence. Whatever this causa-
tion is, that is captured by the effect E defined in Equation 7.11, it should
not be considered to be part of Bob’s authority because, as we noted above,
Bob is powerless to affect whether Carol is inevitably invoked here.

This kind of causation is actually rooted in the idea that some potential
cause A causes some effect B when A is sufficient to produce B, even if A is
not necessary for B. Identifying causation with counterfactual-dependence
requires that causes be necessary rather than sufficient5. This example

5This distinction between sufficiency and necessity comes from [Par03] and [Hal04].

7.4 Safety and Liveness Effects 179

demonstrates that a notion of causation based on necessity rather than suf-
ficiency is possibly the better choice for modelling authority.

7.3.5 Summary

We’ve seen that a wide range of causation properties can be expressed in
our framework that are useful for capturing various elements of an object’s
authority. These various elements are relevant to a range of object-capability
patterns designed to provide or control authority in various ways. In this
sense, we have taken the first steps towards formally analysing the ways in
which these patterns provide and control authority.

Each system that we’ve considered here should be thought of as a de-
terministic componentwise refinement of some (possibly nondeterministic)
system in which the pattern being analysed is instantiated in each case. A
full analysis of these patterns would require us to be able to test these non-
causation properties for all deterministic componentwise refinements of each
system, in accordance with Definition 7.1.1. We discuss the prospects for
doing so using FDR later in Section 7.6.

A Note on Authority and Information Flow

Observe that in System10 in Section 7.3.3 and System11 in Section 7.3.4,
Alice is unable to pass any information to Bob covertly through her overt
actions in the system, even though Alice has influence over Bob’s authority
and, hence, some kind of authority over Bob. These examples indicate, then,
that one object can have authority over another without necessarily being
able to pass information to it.

Recall that in System5 in Section 7.1.3, we saw that one object could
pass information to another without having certain kinds of authority over
it. Taken together, these examples indicate that authority and information
flow are somewhat independent of each other, despite both having natural
formulations in terms of counterfactual causation. (Noninterference prop-
erties, for instance, assert that the presence of High activity doesn’t affect
Low, and naturally imply a counterfactual comparison of Low between the
scenarios in which High does and does not act.)

7.4 Safety and Liveness Effects

We now show that, in our framework, two different primitive kinds of effect
can be distinguished, namely the safety and liveness effects respectively. As
we will see later, this distinction is integral to our formalisation of Miller’s
notions of defensive correctness and consistency, and is also useful for under-
standing which kinds of non-causation and non-prevention properties can
be more easily tested using FDR. We make this distinction with the aid
of Clarkson and Schneider’s hyperproperties framework [CS08, CS10], and

7.4 Safety and Liveness Effects 180

adapt one of their results to show that every effect can be expressed as the
intersection of a safety effect and a liveness effect.

Observe that what we call an effect above might more generally be called
simply a refusal-traces property. An effect E is identified with the refusal-
traces property Prop that holds for a process P iff the effect is present in E,
so that ∀P ∈ CSP • Prop(P)⇔ C[[P]] ∈ E.

It turns out that each effect E corresponds to a unique element from the
class of refusal-traces hyperproperties [CS08, CS10], and vice-versa. Clark-
son and Schneider recently introduced the notion of a hyperproperty to
capture a broad class of security properties, across a range of formalisms,
that includes traditional safety and liveness properties, as well as informa-
tion flow properties and various other kinds of property. The concept of a
hyperproperty is, therefore, necessarily very abstract; its abstract definition
is made meaningful by instantiating it within a particular semantic frame-
work. Here, we present the abstract definitions and then show how they
may be instantiated in the context of the refusal-traces model. When in-
stantiated this way, each hyperproperty corresponds to a unique effect and
vice-versa. We then adopt Clarkson and Schneider’s distinction between
safety and liveness hyperproperties to distinguish safety and liveness effects.

In the abstract definition of a hyperproperty, a system is represented
by a non-empty set of infinite sequences of states σ. We call each of these
sequences an execution of the system. Any completed finite execution of
a system that ends in some state σ is represented by the infinite sequence
obtained from the finite one by infinitely stuttering the final state σ. The
set of all such infinite-length executions is denoted Ψinf . The set of all
partial (incomplete) executions, which are finite sequences of states σ, is
denoted Ψfin .

Certain constraints may be imposed on the representation of a valid
system. Hence, the set Rep denotes the set containing all valid system
representations. Each member of Rep is therefore a non-empty set of infinite
executions that represents a valid system.

A hyperproperty HProp for system representation Rep is then a set of
systems from Rep, namely just those that satisfy the condition that HProp
represents. The set of all hyperproperties for system representation Rep is
then P Rep. The hyperproperty true is of course Rep and the hyperproperty
false is {}.

Each effect E is trivially mapped onto a corresponding hyperproperty by
mapping each completed refusal-trace s ∈ C[[P]] ∈ E onto a corresponding
infinite execution. Each state σ of an infinite execution is either:

• a pair (X, a) where a ∈ Σ and (X ⊆ Σ ∧ a /∈ X) ∨ X = •, or

• the symbol dl (for “deadlock”).

Then each completed refusal trace is mapped onto an infinite sequence of
states σ as follows.

7.4 Safety and Liveness Effects 181

• A deadlocked refusal trace 〈X1, a1, X2, a2, . . . , Xn, an,Σ〉 corresponds
to the infinite execution 〈(X1, a1), (X2, a2), . . . , (Xn, an), dl, dl, . . .〉, in
which the final dl state is stuttered infinitely, and vice-versa.

• An infinite refusal-trace 〈X1, a1, X2, a2, . . . , Xn, an, . . .〉 corresponds to
the infinite execution 〈(X1, a1), (X2, a2), . . . , (Xn, an), . . .〉, and vice-
versa.

The set Rep of valid system representations is simply those sets of infi-
nite executions that correspond to C[[P]] for some process P ∈ CSP. Hence,
every effect E ∈ Effect corresponds to a hyperproperty for this system repre-
sentation Rep and vice-versa. We call such a hyperproperty a refusal-traces
hyperproperty. Since each refusal-traces hyperproperty corresponds to an
effect and vice-versa, we will therefore use the words “effect” and “hyper-
property” interchangeably from now on, noting that by “hyperproperty” we
mean a refusal-traces hyperproperty.

Clarkson and Schneider distinguish two kinds of hyperproperty, namely
the safety and liveness ones. The definition of each kind captures the nat-
ural intuitions about safety and liveness properties to which we have ap-
pealed in Chapters 3 and 6, for example. Recall that a safety property
asserts that something (bad) never occurs, while a liveness property as-
serts that something (good) must occur [Lam77, AS85]. Liveness proper-
ties have the intuitive characteristic that any incomplete observation of a
system can always be possibly extended so as to satisfy any liveness prop-
erty [VVK05, AFK88, AL91]. Each of these intuitions is captured in the
context of hyperproperties as follows.

Clarkson and Schneider define the set Obs of all observations that could
be made of any system in a finite amount of time, while allowing the observer
to restart the system at any point while it is being observed to observe
multiple finite executions of the system6. Each observation is therefore a
finite set of finite executions from Ψfin .

Obs = Pfin Ψfin ,

where Pfin X denotes the set of all finite subsets of X.
Given an observation M ∈ Obs and a set T of finite or infinite executions,

we say that M is a prefix of T , written M ≤ T , when the observation M
can be made of T , i.e.

M ≤ T ⇔ (∀ s ∈M • ∃ t ∈ T • s ≤ t).

Under this definition, T can of course contain new executions not in M as
one would expect.

6Equivalently, allowing the observer to run multiple copies of the system in parallel.

7.4 Safety and Liveness Effects 182

The set Obs(Rep) contains all observations that could be made of any
valid system. Hence,

Obs(Rep) = {M | M ∈ Obs ∧ ∃Sys ∈ Rep •M ≤ Sys}.

Then a safety hyperproperty is one that asserts that something bad can
never happen. This bad thing is necessarily an observation M ∈ Obs(Rep).
Once this bad thing has occurred, the property is violated forever; no further
action by the system can undo the violation. This leads naturally to the
following definition from [CS10], which parallels the standard definition for
safety properties [AS85].

Definition 7.4.1 (Safety Hyperproperty for system representation Rep).
A hyperproperty HProp is a safety hyperproperty for system representation
Rep iff

∀Sys ∈ Rep • Sys /∈ HProp ⇒(
∃M ∈ Obs(Rep) •M ≤ Sys ∧

(∀Sys ′ ∈ Rep •M ≤ Sys ′ ⇒ Sys ′ /∈ HProp)

)
.

Observe that each finite (i.e. partial or deadlocked) refusal-trace can be
trivially mapped onto a finite sequence of states σ in which dl is always the
last element if it is present. Each member of the set Obs(Rep) of observations
of valid systems then simply corresponds to a set M ⊆ R[[P]] of partial and
deadlocked refusal traces that can be exhibited by some process P ∈ CSP.
Then some observation M ∈ Obs(Rep) is a prefix of a system Sys ∈ Rep
iff the finite set M ′ of finite refusal-traces that corresponds to M can be
exhibited by the system Sys ′ ∈ CSP for which C[[Sys ′]] corresponds to Sys,
i.e.

M ≤ Sys ⇔M ′ ⊆ R[[Sys ′]].

Hence, some effect E ∈ Effect corresponds to a safety hyperproperty iff

∀Sys ∈ CSP • C[[Sys]] /∈ E ⇒(
∃M • |M | ∈ N ∧M ⊆ R[[Sys]] ∧

(∀Sys ′ ∈ CSP •M ⊆ R[[Sys ′]]⇒ C[[Sys ′]] /∈ E)

)
.

(7.12)

We therefore call such an effect a safety effect.
All of the safety properties considered so far in this thesis can be ex-

pressed as safety effects. This can be seen by simply considering the bad
thing that each of these properties asserts cannot arise and observing that
it can be represented by a finite set M of finite refusal-traces.

The most extreme example, which demonstrates the power of safety hy-
perproperties for expressing interesting security properties, would be the
refinement-closed noninterference properties (see Definition 5.3.12) from
Chapter 5, each of which can be expressed as a safety hyperproperty. The
bad thing in this case is necessarily two refusal-traces s1 and s2, related by

7.4 Safety and Liveness Effects 183

(a suitable adaptation of) Pred (from traces to refusal-traces) such that e
follows one but is stably refused after the other. Any weakened refinement-
closed noninterference property (see Definition 5.3.18) can also be expressed
as a safety hyperproperty, although of the composition WSys (see Snip-
pet 5.2) that allows us to observe both system-level and individual compo-
nent refusals.

A liveness hyperproperty is one such that any incomplete observation
can always be extended so as to satisfy that property. This is captured by
the following definition [CS10], which parallels the standard definition for
liveness [AS85].

Definition 7.4.2 (Liveness Hyperproperty for system representation Rep).
A hyperproperty HProp is a liveness hyperproperty for system representation
Rep iff

∀M ∈ Obs(Rep) • ∃Sys ′ ∈ Rep •M ≤ Sys ′ ∧ Sys ′ ∈ HProp.

Note that this definition allows M to contain observations that end in
deadlock. However, observe that any such M ∈ Obs(Rep) cannot be ex-
tended so as to satisfy the liveness property �♦ e. Hence, in order to ensure
that �♦ e is a liveness refusal-traces hyperproperty, we need to restrict our
attention to those M in the above definition that contain only executions
that correspond to partial refusal-traces from PRT .

Any effect E ∈ Effect corresponds to a liveness hyperproperty under this
restriction iff

∀M • ∀Sys ∈ CSP • |M | ∈ N ∧M ⊆ R[[Sys]] ∩ PRT ⇒
∃Sys ′ ∈ CSP •M ⊆ R[[Sys ′]] ∧ C[[Sys ′]] ∈ E. (7.13)

Naturally, we call such an effect a liveness effect.
As one might expect, each of the effects E♦ e, EEF e and EEGEF e from

Equations 7.4, 7.5 and 7.9 respectively are liveness effects. Also, all of
the liveness properties considered so far in this thesis can be expressed as
liveness effects. This includes liveness properties like SEF ⇒ ♦ e and more
complicated ones like that in Equation 6.5. Finally, one can observe that
the property of deadlock-freedom is both a safety and a liveness effect.

Clarkson and Schneider show that every hyperproperty for system rep-
resentation Rep can be expressed as the intersection of a safety and liveness
hyperproperty for Rep respectively. This parallels the well-known analogue
of this result for the standard definitions of safety and liveness [AS85]. The-
orem A.0.7, which appears in Appendix A, is a straightforward adaptation
of their result, which cannot be applied directly because of our slightly spe-
cialised definition of a liveness effect. It states that for every effect E ∈ Effect
there exists a safety effect ES and a liveness effect EL where E = ES ∩EL.

7.5 Defensive Correctness and Consistency 184

7.5 Defensive Correctness and Consistency

In this section, we show how Miller’s notions of defensive correctness [Mil06,
Section 5.5] and defensive consistency [Mil06, Section 5.6] can be formalised
in our framework. These are intuitive security properties that have of-
ten been applied informally in the past when informal analyses of object-
capability patterns and systems have been carried out, and are widely re-
garded amongst those who build object-capability systems as being very im-
portant properties for patterns to uphold (see e.g. [MWC10]). We present
here the first attempt to capture these properties formally. We begin by
explaining and motivating each of them.

Suppose we have some pattern implemented by an object, such as
the Guard object that implements the Trademarks pattern in the systems
depicted in Figures 3.1 and 6.1 (the second of which we repeat here for con-
venience as Figure 7.7). Suppose Guard has a number of clients that want

Figure 7.7: Defining defensively correct Trademarks.

to use its service. If Guard is defensively correct then none of Guard’s clients
needs to rely on any of Guard’s other clients in order for Guard to provide it
with correct service. Each of Guard’s clients that wants correct service will
still have to interact with Guard in a way that allows Guard to be able to
provide it with correct service, however. An object o is defensively correct
when [Mil06, MWC10],

under the assumption that every object that o relies upon for
its correctness is correct, o provides correct service to each of its
clients c when c interacts with o in such a way as to allow o to
provide it with correct service, irrespective of the behaviour of
o’s other clients c′.

The assumption that every object that o relies upon for its correctness
is correct is required because if o provides incorrect service to c because of a
bug in some service that o relies upon, then this bug is rightly considered a
fault of the relied upon service and not of o [Mil06, Section 5.5]. Similarly,
the assumption that c interacts with o in such a way that o can provide it
correct service is necessary because o’s inability to provide c correct service

7.5 Defensive Correctness and Consistency 185

because c doesn’t respect o’s preconditions should not be considered a fault
of o. This is why, for instance, when analysing the liveness of the Trademarks
implementation in Section 6.2, we tested that Guard would eventually Return
to only those clients (namely just LiveDriver) that could be guaranteed to
accept the Return message.

Defensive correctness is a very useful property because it absolves each
client of o from having to rely on the correctness of o’s other clients. When
o is defensively correct, each client of o need only rely on those things that o
(transitively) needs to rely on in order to expect correct service from o.
This greatly reduces the degree to which each client of o is vulnerable to the
misbehaviour of other objects in the system.

Widely used objects should therefore ideally be verified to be defensively
correct in order to ensure that their presence doesn’t inadvertently make
large collections of objects vulnerable to each other’s misbehaviour.

Defensive consistency is a weaker form of defensive correctness. Miller
notes that correctness is a combination of safety and liveness. Defensive con-
sistency incorporates safety only [Mil06, Section 5.6]. Therefore, an object o
is defensively consistent when,

under the assumption that every object that o relies upon for its
correctness is correct, whatever service that o provides to each
of its clients c is never incorrect when c interacts with o in such a
way as to allow o to avoid providing it incorrect service, although
o may be prevented from giving c any service, irrespective of the
behaviour of o’s other clients c′.

The clients of an object that is defensively consistent may be able to
cause it to not provide service to other clients, but they cannot cause the
service it does provide to be incorrect. A defensively consistent object may,
therefore, be vulnerable to denial-of-service but should still be incorruptible
by its clients [Mil06, Section 5.6].

Observe that an object that is defensively correct or consistent limits
the authority of its clients to interfere with each other, and that the clients
of a defensively correct (respectively consistent) object o cannot cause o to
give incorrect or no service (respectively give service that is not correct) to
a client c when c behaves so as to allow o to be able to render it such service
and the objects on which o relies are correct, i.e. when o would otherwise
give such service to c. Hence, defensive correctness and defensive consistency
may each be framed as a non-prevention property that asserts that for each
client c of o, the other clients don’t have the authority to prevent the effect
involving:

• o always giving service that is correct to c, for defensive correctness,
or

• o never giving incorrect service to c, for defensive consistency,

7.5 Defensive Correctness and Consistency 186

when that effect would have otherwise been present. Concurring with
Miller’s observation [Mil06, Section 5.6], the effect in the case of defen-
sive correctness naturally incorporates both a safety component (o never
gives incorrect service to c) and a liveness component (o always gives ser-
vice to c), while in the case of defensive consistency the effect incorporates
only the safety component.

Suppose we can frame each kind of effect and let ECorr (o, c) be the effect
in the case of defensive correctness and ECon(o, c) be the effect in the case of
defensive consistency. ECorr (o, c) asserts that o never gives incorrect service
to c and always gives service to c, while ECon(o, c) asserts that o never gives
incorrect service to c. ECon(o, c) is naturally a safety effect, while ECorr (o, c)
is the intersection (i.e. conjunction) of ECon(o, c) and a liveness effect that
asserts that o always gives service to c.

Then consider some system System containing (at least) o, c and some
other clients c′ of o, and let C be the set of all clients of o including c. Because
defensive correctness and consistency are both properties involving author-
ity and because authority is calculated over just those deterministic com-
ponentwise refinements of System, we have that o is defensively correct or
consistent in System when it is defensively correct or consistent respectively
in each SystemD ∈ DCRef (System) in accordance with Definition 7.1.1.

So consider some SystemD ∈ DCRef (System) and consider the process
Systemc

D = SystemD |⋃c′∈C−{c} α(c′) in which the activity of all clients of o

other than c has been blocked. Then C[[Systemc
D]] ∈ ECorr (o, c) precisely

when the objects on which o relies to provide c correct service are behav-
ing correctly and c is behaving in such a way as to allow o to provide it
correct service, since if either was not true o could not provide c correct
service and so we would have C[[Systemc

D]] /∈ ECorr (o, c). o fails to pro-
vide c correct service in SystemD of course when C[[SystemD]] /∈ ECorr (o, c).
It follows o is not defensively correct in some SystemD, then, precisely if
∃ c ∈ C • C[[Systemc

D]] ∈ ECorr (o, c) ∧ C[[SystemD]] /∈ ECorr (o, c). Therefore,
o is defensively correct in System precisely when for all for all c ∈ C and
SystemD ∈ DCRef (System), we have that

C[[Systemc
D]] ∈ ECorr (o, c)⇒ C[[SystemD]] ∈ ECorr (o, c). (7.14)

The same is true for defensive consistency, of course, when we replace
ECorr (o, c) by ECon(o, c). So o is defensively consistent in System precisely
when for all c ∈ C and all SystemD ∈ DCRef (System), we have that

C[[Systemc
D]] ∈ ECon(o, c)⇒ C[[SystemD]] ∈ ECon(o, c). (7.15)

Note that because the counterfactual comparison is performed in each
case against Systemc

D, in which the events of all clients other than c have
been blocked, these definitions allow one to detect when the combined efforts
of two or more clients affect c’s interactions with o. This means these defi-
nitions therefore cover the case in which two or more clients must conspire
in order to affect c.

7.5 Defensive Correctness and Consistency 187

Hence, it appears as if defensive correctness and consistency can each
be expressed as the conjunction (over C) of multiple applications of Defini-
tion 7.1.1 in which Prop is replaced by Equations 7.14 and 7.15 respectively.

Of course, the conjunction over C is not necessary when System is sym-
metric in C, since in this case we can test the property for one such c ∈ C
and conclude by symmetry that it must hold for the others.

We see that defensive consistency thus asserts the non-prevention of
some safety effect ECon(o, c) (that asserts that o never gives incorrect ser-
vice to c), while defensive correctness asserts the non-prevention of some
effect ECorr (o, c) that is the conjunction of ECon(o, c) and a liveness effect
(that asserts that o always gives service to c). This formalises Miller’s ob-
servation in our context that defensive correctness involves both safety and
liveness while defensive consistency involves only safety.

7.5.1 Defining Defensively Correct Trademarks

We demonstrate these ideas in the context of the Trademarks analyses per-
formed earlier in Sections 3.1 (safety) and 6.2 (liveness). In Section 3.1,
we tested a safety property of the Trademarks pattern. From this we can
easily describe a safety effect ECon(Guard, c) that asserts that the Guard ob-
ject from the Trademarks pattern, instantiated as e.g. in Figure 7.7 above,
never gives incorrect service to client c. ECon(Guard, c) is the safety ef-
fect in which Guard′s behaviour towards c is trace-equivalent to the pro-
cess SafeGuard c(Guard, {Stamped}) where SafeGuard c(me, sObjs) is the be-
haviour of a guard me, whose set of stamped objects is sObjs, that is always
safe for client c. It is defined as follows.

SafeGuard c(me, sObjs) =
c!me!Call?specimen : Capability →
if specimen ∈ sObjs then(

me!c!Return!me → SafeGuard c(me, sObjs) u
me!c!Return!null→ SafeGuard c(me, sObjs)

)
else me!c!Return!null→ SafeGuard c(me, sObjs)

The safety effect ECon(Guard, c) is then defined as

ECon(Guard, c) =

C[[P]]
P ∈ CSP ∧
∀ s ∈ R[[P]] • tr(s) |̀ α(Guard) ∩ α(c) ∈

traces(SafeGuard c(Guard, {Stamped}))

 .

So Guard is defensively consistent in some system System when for all of
Guard’s clients c and for all SystemD ∈ DCRef (System), Equation 7.15
holds.

To assert defensive correctness, we also define the liveness effect Ec,L that
asserts that c is always given service by Guard. Ec,L is defined by adapting
the liveness property (Equation 6.5) tested for the Trademarks pattern in

7.5 Defensive Correctness and Consistency 188

Section 6.2. Client c is always given service, under the assumption of strong
event fairness, when the system satisfies the liveness property φ defined as
follows.

φ = SEF ⇒
∧

specimen∈Capability�♦ c.Guard.Call.specimen ∧(
� c.Guard.Call.specimen ⇒
♦(Guard.c.Return.null ∨ Guard.c.Return.Guard)

) .

This property asserts not only that whenever c Calls Guard, Guard must
eventually Return, but also that c can always eventually Call Guard and so
can always get service. The liveness effect Ec,L is then defined as

Ec,L = {C[[P]] | P ∈ CSP ∧ P |= φ}.

Guard gives correct service to client c in some SystemD then when
C[[SystemD]] ∈ ECon(Guard, c) ∩ Ec,L. Hence let ECorr (Guard, c) =
ECon(Guard, c) ∩ Ec,L. Guard is defensively correct in some system System
then when for all clients c of Guard and for all SystemD ∈ DCRef (System),
Equation 7.14 holds.

7.5.2 Discussion

We have seen that the informal notions of defensive correctness and con-
sistency can be formalised in our framework and that Miller’s intuitions
regarding these properties and safety and liveness are naturally captured in
terms of safety and liveness effects.

We expect that these properties should be very useful for analysing
object-capability patterns. Applying them properly would require one to
be able to judge non-prevention for all deterministic componentwise refine-
ments of a system. We discuss the prospects for doing so with FDR in the
following section.

It should be noted, however, that the assumptions encoded in the defi-
nitions of defensive correctness and consistency mean that they cannot be
used in place of testing ordinary safety and liveness properties for object-
capability patterns. For instance, Guard is defensively consistent when the
service it gives (if any) to all clients c is correct despite arbitrary activity
from other clients only in those circumstances in which each of the objects
on which Guard relies is correct. We saw in Section 3.1 that Guard relies
on Stamped not to divulge its capability to its slot’s write-facet in order
to remain safe. Hence, testing that Guard is defensively consistent would
not detect that Guard is unsafe when Stamped divulges its slot’s write-facet
capability. Hence, ordinary safety and liveness properties are still required
in order to check that the objects on which a pattern relies are correct.

Testing for these properties considers whether o gives expected service to
some client c only in those cases in which c behaves in such a way as to allow

7.6 Testing Non-Causation and Non-Prevention 189

o to give it such service. Hence, unlike when we analysed the Trademarks
pattern for liveness in Section 6.2, testing for these properties does not re-
quire one to manually construct implementations of clients, like LiveDriver,
whose behaviour doesn’t prevent the property being tested from being vi-
olated. The assumption that any client that expects some kind of service
will behave in a way so as to allow it to be provided with that service, is
automatically encoded in the definitions of defensive defensive correctness
and consistency.

The same applies of course to the objects on which o relies, as noted
above. This means that when testing whether an object is defensively con-
sistent or correct, one can model all of its clients and all of the objects
on which it relies as instances of the most general process, e.g. as instances
of UntrustedOS (see Snippet 2.1). One expects that all such objects could be
aggregated into a single UntrustedOS object. This reflects the intuitive ex-
pectation that the judgement about whether an object is defensively correct
or consistent respectively can be made independently of its clients and the
objects on which it relies, i.e. independently of its environment [MWC10].

7.6 Testing Non-Causation and Non-Prevention

We now consider to what degree FDR can be applied to allow one to
check Definition 7.1.1 when Prop is replaced by some non-causation or non-
prevention property, i.e. a property of the form of Equations 7.7 or 7.8 for
an arbitrary effect E. We need to be able to test this, for instance, in order
to be able to check automatically that a pattern, like the NDA, properly
confines authority or that an object is defensively consistent or correct.

7.6.1 Deterministic Systems

We begin by considering the simpler problem of testing for non-causation
(or similarly non-prevention) of some effect E for deterministic systems,
which naturally have no proper deterministic componentwise refinements.
Let E be some effect and System be some deterministic system so
that DCRef (System) = {System}. Then, by Definition 7.1.1 and Equa-
tion 7.7, testing for non-causation of E by an arbitrary object whose
alphabet is A in System is equivalent to testing C[[SystemD]] ∈ E ⇒
C[[SystemD |A]] ∈ E for all SystemD ∈ DCRef (System), which just amounts
to testing that

C[[System]] ∈ E ⇒ C[[System |A]] ∈ E. (7.16)

For prevention, recall that by Equation 7.8, the direction of this implication
is simply reversed.

Suppose, for an arbitrary process P , we can test whether C[[P]] ∈ E
using a refinement check in FDR. This refinement check will naturally be
of the form F (P) vM G(P) for CSP contexts F () and G() and some

7.6 Testing Non-Causation and Non-Prevention 190

CSP model M that FDR might support. Then we can easily test for
non-causation or non-prevention of the effect E by performing at most
two of these refinement checks: one with System in place of P , the other
with System |A in place of P .

This check will be easiest for FDR to carry out when the CSP con-
text F () used on the left-hand side of this refinement is just some constant
process Spec, i.e. is a context that makes no use of its argument P what-
soever [Ros05]. It turns out that when E is some safety effect, deciding
whether E is present in some arbitrary process P , i.e. whether C[[P]] ∈ E,
is equivalent to testing such a refinement in the refusal-traces model

Spec vR G(P).

Theorem 7.6.1. Let E be a safety effect. Then there exists a fixed specifi-
cation process Spec and a CSP context G() that makes no use of divergence-
creating hiding such that for all divergence-free processes P ∈ CSP

C[[P]] ∈ E ⇔ Spec vR G(P).

Proof. We extend Roscoe’s proof from [Ros05, Theorem 3.2].
From Equation 7.12, E may be characterised by a set S of finite sets M

of finite refusal-traces such that each set M ∈ S corresponds to some pro-
cess P ∈ CSP for which C[[P]] /∈ E, M ⊆ R[[P]] and ∀Q ∈ CSP • M ⊆
R[[Q]] ⇒ C[[Q]] /∈ E. Given such an S and an arbitrary process P , we have
that

C[[P]] ∈ E ⇔ ∀M ∈ S •M 6⊆ R[[P]].

We will build a refinement check from S that asserts exactly this.
Consider some M of S and some process P . We first build a refinement

check that asserts that M 6⊆ R[[P]]. We then simply take the conjunction
of this test across all M ∈ S, which can itself be expressed as a refinement
check as we’ll see.

Let s be a member of M , i.e. s is a finite refusal-trace that is either
a partial or deadlocked refusal-trace. Consider the process T (s) defined as
follows.

T (〈•, a〉ˆt) = pong2→ a→ T (t),
T (〈X, a〉ˆt) = (?x : X → ping→ STOP) � (pong→ a→ T (t)),

T (〈Σ〉) = dotest→?x : Σ→ ping→ STOP,
T (〈〉) = dotest→ STOP.

We define the process Test(s, P) which places P and T (s) in parallel. T (s)
acts as a testing process and is designed so that Test(s, P) exhibits certain
behaviours iff P can perform s, i.e. iff s ∈ R[[P]]. Letting Σ− = Σ −
{ping, pong, pong2, dotest}, we have

Test(s, P) = (T (s) ‖
Σ−
P) \ Σ−.

7.6 Testing Non-Causation and Non-Prevention 191

Consider Test(〈X, a〉 ˆ t, P). We see that it can stably refuse {ping}
initially iff P can stably refuse X initially. When P stably refuses X initially,
Test(〈X, a〉ˆ t, P) can make progress after performing pong only if P can
perform a. Hence, we have that 〈X, a〉 ∈ R[[P]] iff 〈{ping}, pong〉 ˆu ∈
R[[Test(〈X, a〉ˆt, P)]] where u /∈ {〈Σ〉, 〈〉}. For Test(〈•, a〉ˆt, P), we see that
〈•, a〉 ∈ R[[P]] iff 〈•, pong2〉ˆu ∈ R[[Test(〈•, a〉ˆt, P)]] where u /∈ {〈Σ〉, 〈〉}.

Let U = {〈X1, a1, . . . , Xn, an〉ˆ〈Σ − {dotest}, dotest, {ping}〉 | n ∈ N ∧
∀ i ∈ {1, . . . , n} • (Xi = {ping} ∧ ai = pong) ∨ (Xi = • ∧ ai = pong2)}.
Then we have that

U ∩R[[Test(s, P)]] 6= {} ⇔ s ∈ R[[P]].

We define a specification Spec that can exhibit none of the refusal-traces
from U . One way that Spec can be written is as follows.

Spec =
(pong→ CHAOSΣ . ping→ CHAOSΣ) u
(dotest→ ping→ STOP) u
(pong→ Spec) u (pong2→ Spec) u STOP

Spec allows arbitrary behaviour following any occurrence of pong from a
state in which ping is not refused. Spec also allows arbitrary behaviour
following any ping occurrence. This is because, in either case, once this has
happened, the behaviour being exhibited cannot be from U . Spec allows
ping to be refused always except after a dotest event. Hence, we then have
that Spec vR Test(s, P)⇔ s /∈ R[[P]].

We need to extend this test to assert that M 6⊆ R[P]. We may do so by
defining the process Combine(M,P) as

Combine(M,P) = ‖
{dotest} s∈M

Test(s, P).

For each s ∈M , Combine(M,P) runs a copy of Test(s, P) in parallel to all
others forcing them all to synchronise on the occurrence of the dotest event.
This is sound because M is finite. The net effect is that Combine(M,P)
can exhibit a refusal-trace from U iff each Test(s, P) can. Hence, we have

Spec vR Combine(M,P)⇔M 6⊆ R[[P]].

Finally, to assert that ∀M ∈ S • M 6⊆ R[[P]] (i.e. to express C[[P]] ∈ E
for some process P), consider the process u

M∈S Combine(M,P) that can

exhibit all of the refusal-traces that can be exhibited by each Combine(M,P)
for all M ∈ S. Then we have that

Spec vR uM∈S Combine(M,P)⇔ ∀M ∈ S •M 6⊆ R[[P]].

Let G() be the CSP context that is defined as G(P) =

u
M∈S Combine(M,P). We see that

Spec vR G(P)⇔ C[[P]] ∈ E.

7.6 Testing Non-Causation and Non-Prevention 192

Note finally that G() uses no divergence-creating hiding, as required, since
the hiding used in Test(s, P) cannot cause divergence.

By Theorem 7.6.1, one can judge whether C[[P]] ∈ E for some safety
effect E by testing a refinement of the form Spec vR G(P) for some CSP
context G(). In many cases, the context G() is just the identity function
and the specification Spec is constructed so that it never exhibits the bad
thing that the safety effect in question asserts cannot arise. In other cases,
for instance, the context G() may run multiple copies of its argument P
when the bad thing (characterised by the set M from Equation 7.12) is a
set of multiple behaviours. A notable concrete example of a safety effect of
this kind is any refinement-closed noninterference property. Recall that it
is exactly this technique that is used to test these properties in FDR (see
Section 5.3).

We illustrate the simplest case. Suppose we define the safety effect Enot e

that asserts that the event e can never occur.

Enot e = {C[[P]] | P ∈ CSP ∧ ∀ s ∈ traces(s) • s |̀ {e} = 〈〉}. (7.17)

Then testing that P ∈ C[[P]] is equivalent to testing that

CHAOSΣ−{e} vR P.

From Equation 7.16, to test non-causation of this effect in some deter-
ministic system System by some object with alphabet A, we first test if
CHAOSΣ−{e} vR System. If this refinement doesn’t hold, we can conclude
that this effect is not caused in System. If this refinement holds, however,
we then test whether CHAOSΣ−{e} vR System |A. If this check doesn’t
hold, then the object with alphabet A causes the effect Enot e in System;
otherwise, it doesn’t. So we can test non-causation of this safety effect with
at most two refinement checks.

We can, of course, do similarly to test non-prevention of this effect
(by performing the tests in the reverse order). Observe, however, that
non-prevention of the effect Enot e is equivalent to non-causation of the ef-
fect Enot e (see Equation 7.6). Note also that Enot e = EEF e from Equa-
tion 7.5. Hence, testing non-prevention of Enot e is equivalent to testing
non-causation of EEF e. So, in general, we can also test non-causation or
non-prevention of those liveness effects whose complement is a safety effect7

that can be expressed by a finite-state refinement check.
Note that the refinement check Spec vR G(P) may not always be finite-

state, meaning that it may not always be possible for it to be checked auto-
matically by FDR. However, to our knowledge, the vast majority of useful
safety hyperproperties can be expressed as finite-state refinement checks.
This includes all of the safety hyperproperties (such as the safety properties

7The complement of a safety property is called an observable property [Abr91, CS10].

7.6 Testing Non-Causation and Non-Prevention 193

from Chapter 3 and the refinement-closed information flow properties from
Chapter 5) considered in this thesis.

We conclude, therefore, that one can usually check non-causation or
non-prevention of some safety effect, or its complement, for a deterministic
system System by performing at most two refinement checks in FDR.

Testing non-causation/-prevention for deterministic systems of non-
safety effects, whose complement is not a safety effect, is more difficult.
This is because such effects necessarily involve observing infinite behaviours.
Some non-safety effects, like the effect E♦ e from Equation 7.4, can be
expressed as refinement checks (see the refinement check given in Equa-
tion 6.1), by mapping the infinite behaviours that they involve onto diver-
gences using hiding. Others, like the effect E = {C[[P]] | P ∈ CSP ∧ P |=
SEF ⇒ ♦ e} that asserts that e eventually occurs under the assumption of
strong event fairness, cannot be expressed as refinement checks for FDR,
as shown by Corollary 6.1.5. Non-causation of these effects may be able to
be tested, however, in certain cases by using refinement checks that express
sufficient conditions for the effect (or its absence), as we did when testing for
liveness properties under notions of event fairness in Chapter 6. However,
it is unclear how well this approach scales to arbitrary systems.

We leave open the question as to how to test non-causation and non-
prevention of arbitrary non-safety effects for deterministic systems via
refinement-checking. We briefly discuss some possibilities in Section 8.1.

7.6.2 Nondeterministic Systems

We now consider to what degree one can test non-causation or non-
prevention of some effect E for all deterministic componentwise refinements
of a nondeterministic system using FDR8. We’ve seen that for determinis-
tic systems, safety effects are generally easier to test via refinement checks.
Therefore, it seems natural to consider just safety effects first.

It turns out that even for the simplest of the safety effects, one cannot in
general test for their non-causation/-prevention over all deterministic com-
ponentwise refinements of a nondeterministic system by using refinement
checking in FDR. Furthermore, this result is unchanged even if we consider
testing non-causation/-prevention over all refinements of a nondeterministic
system.

Consider the safety effect Enot e from Equation 7.17 and the system
depicted in Figure 7.8, and suppose we wish to decide whether Alice prevents
the effect Enot Bob.Emma.Call.null (equivalently, whether Alice causes Bob to be
able to Call Emma).

8For an effect that can be expressed as a finite-state refinement check, one can of course
test whether the effect is caused or prevented in some nondeterministic system itself (with-
out considering that system’s refinements) by performing at most two refinement checks.
However, the refinement paradox (see Section 5.2) makes this approach problematic.

7.6 Testing Non-Causation and Non-Prevention 194

Figure 7.8: A simple example of event causation.

behaviour(Alice) = Alice.Bob.Call.null→ STOP,

behaviour(Bob) =
?from : Capability − {Bob}!Bob!Call!null→ Bob.Emma.Call.null→ STOP,

behaviour(Carol) =
?from : Capability − {Carol}!Carol!Call!null→ behaviour(Carol),

behaviour(Dave) =
Dave.Carol.Call.null→ behaviour(Dave) u Dave.Bob.Call.null→ STOP,

behaviour(Emma) =?from : Capability − {Emma}!Emma!Call!null→ STOP.

Snippet 7.2: A system for which non-prevention cannot be tested by
refinement-checking.

Letting Object and facets be defined naturally as one would expect from
Figure 7.8, suppose the behaviour of each object is given as in Snippet 7.2,
yielding the CSP process System = ‖

o∈Object
(behaviour(o), α(o)) that cap-

tures the entire system per Definition 2.3.1.
Then consider the deterministic componentwise refinement SystemD of

this system in which Dave’s behaviour is given by the deterministic pro-
cess bDave, defined as

bDave = Dave.Carol.Call.null→ bDave.

SystemD is equivalent to the process that behaves like

Alice.Bob.Call.null→ Bob.Emma.Call.null→ STOP ||| bDave.

Alice clearly causes Bob to be able to Call Emma here. Because
SystemD ∈ DCRef (System), by Definition 7.1.1, Alice prevents the ef-
fect Enot Bob.Emma.Call.null in System.

Now consider the (infinite) sequence 〈Systemk | k ∈ N〉 of systems
that are identical to System except that, for each k ∈ N, in Systemk,

7.7 Related Work 195

behaviour(Bob) = Pk where

P0 = Dave.Carol.Call.null→ P0 . Dave.Bob.Call.null→ STOP,
Pk = Dave.Carol.Call.null→ Pk−1 u Dave.Bob.Call.null→ STOP, for k > 0.

Observe that P0 can never refuse to perform the event Dave.Bob.Call.null.
Hence, in all failures-divergences refinements of each Pk, this event can oc-
cur. Hence, in all deterministic componentwise refinements of each Systemk,
the event Bob.Emma.Call.null can occur without Alice acting. Therefore,
under Definition 7.1.1, in every Systemk, Alice is unable to cause Bob to
be able to Call Emma (equivalently Alice is unable to to prevent the ef-
fect Enot Bob.Emma.Call.null).

Note that the sequence 〈Systemk | k ∈ N〉 of processes is strictly
decreasing (since each Systemk+1 v Systemk in all standard denotational
models of CSP) and that System is the limit of this sequence. Also, each
Systemk is trace-equivalent to all others, as well as to System. So, because all
processes here are divergence-free, we may apply Theorem 6.1.4 to conclude
that no refinement check exists, in any CSP model that FDR might support,
that is equivalent to testing non-prevention of the effect Enot e (equivalently,
non-causation of the effect EEF e that asserts that e can occur) for all de-
terministic componentwise refinements of a nondeterministic system. Note
that this argument does not rely on any fairness assumptions.

This implies that in general, even for the most simple non-causation and
non-prevention properties, Definition 7.1.1 cannot be tested by refinement
checking with FDR, and so cannot in general be a safety hyperproperty
when instantiated with a non-causation or non-prevention property for Prop.
In fact, we see that these conclusions would remain unchanged even if we
altered Definition 7.1.1 to quantify over all refinements of the system being
examined, rather than only its deterministic componentwise refinements.
This is because Alice is unable to prevent the effect Enot Bob.Emma.Call.null in
all refinements of each Systemk.

We are forced to conclude, therefore, that refinement checking is not very
well suited to testing non-causation and non-prevention for nondeterministic
systems, and that alternative testing methodologies should be investigated.
We briefly consider some possibilities later in Section 8.1.

7.7 Related Work

Counterfactual Causality We based our definition of causation upon
Lewis’ notion of counterfactual-dependence [Lew73]. This has also been
the basis of a number of other definitions for causation, including those of
Pearl et al. [HP03, Gro05, HP05, HP07]. Unlike ours, these other definitions
modify the basic notion of counterfactual dependence in order to arrive
at a definition that captures so-called “commonsense” notions of causality.

7.7 Related Work 196

The following example is often used in the literature to motivate why, and
originally appeared in [Hal04].

Consider two children, Billy and Suzy. Suzy and Billy both picked up
rocks and threw them at a bottle. Suzy’s rock got there first, shattering the
bottle. Both throws were perfectly accurate and occurred simultaneously. In
this scenario, the bottle shattering is not counterfactually dependent on Suzy
having thrown her rock since if she hadn’t thrown, Billy’s rock would have hit
the bottle and caused it to shatter. However, it has been repeatedly argued
(see e.g. [HP03, Hal04, HP05, HP07, CHK08]) that concluding that Suzy’s
throw did not cause the bottle to shatter defies commonsense reasoning.
This argument then leads to the conclusion that counterfactual dependence
is not, on its own, a good measure of causation here.

However, this conflates two questions about causation, namely (1) “Did
Suzy’s throw cause the bottle to shatter?” and (2) “Did Suzy have the au-
thority to cause the bottle to shatter?” While counterfactual dependence
might not be entirely appropriate for deciding the first question, it is cer-
tainly appropriate for deciding the second. In this scenario, no matter what
Suzy chose to do on her own, Billy still would have thrown. Suzy had no
real power, therefore, to alter whether the bottle was going to shatter or
not. Hence, she rightly had no authority in this regard.

Another approach that, like ours, applies Lewis’ notion of counterfactual
dependence directly as a definition for causation is that of Groce [Gro05].
Groce’s definition of causation considers linear event traces and the question
of whether one event A causes a subsequent event B to occur in a particular
trace. Groce’s definition considers all counterfactual traces (i.e. ones that
differ from the observed trace) of the system in question in which A doesn’t
occur and ranks them according to how alike each is to the observed trace.
If B is absent in all of the most alike traces to the observed one, then A
is judged to be the cause of B in the observed trace. In this way, Groce’s
definition precisely encodes Lewis’ notion of counterfactual dependence.

The ranking of the counterfactual traces according to how alike they are
to the observed one is achieved straightforwardly via a distance metric. In
our approach, no such distance metric is required since there is only one
counterfactual scenario to consider, namely Sys |A (see e.g. Equation 7.7).

Authority Analysis In earlier work [ML07] trying to capture authority
via causation, we devised a different definition for causation based on Lewis’
notion of counterfactual dependence. This definition, like Groce’s, consid-
ered causation within individual traces. It states that in some trace sˆ〈e〉 of
a deterministic system Sys, that some object with alphabet A doesn’t cause
the event e to occur in this trace iff s \Aˆ〈e〉 ∈ traces(Sys). This definition
for non-causation was extended to nondeterministic systems by taking its
refinement-closure, which can be checked automatically in FDR by using a
refinement test that runs two copies of the system being analysed.

7.7 Related Work 197

Unfortunately, this definition does not always yield correct answers. For
instance, consider the system Sys that is defined as

Sys = a→ b→ STOP ||| e→ STOP,

in which the occurrence of the event a clearly never causes the event e to
occur. However, the definition from [ML07] says that a causes e to occur
in the trace 〈a, b, e〉 of Sys since 〈a, b, e〉 \ {a} = 〈b, e〉 is not a trace of Sys.
For this reason, we consider this definition of causation to be far less useful
than one would like.

These problems are avoided by the definitions used in this thesis which
avoid considering individual execution traces, and instead ask whether the
presence of an object can cause an effect (like the possible or inevitable
occurrence of an event) to occur in some system. Of course, the approach
taken in this thesis is also much more general, since it can reason not only
about causing event occurrence but also a range of other effects in which
one might be interested, as demonstrated in Section 7.3.

Analysing Authority Propagation In [Spi07, Chapter 9] and [SQV06],
Spiessens et al. consider the use of directed graphs, called authority flow
graphs, to model and reason about the propagation of authority in systems
of interacting components. The nodes of an authority flow graph are the
components of a system and its edges capture how authority may flow be-
tween the system’s components. The definition of a component’s authority,
used by Spiessens et al. here, is defined somewhat informally as its ability
“to directly or indirectly induce an effect” [SQV06]. This definition is not,
therefore, explicitly wedded to any specific notion of causation, unlike our
notion of authority which is defined in terms of counterfactual dependence.

The transitive closure of an authority flow graph captures the reach-
able authority in a system [SQV06, Spi07]. Given a system and some kind
of authority, whose propagation in that system we are interested in, one
naturally defines constraints on the propagation of this authority by impos-
ing constraints on the corresponding authority flow graph and its transitive
closure. Spiessens et al. show how finding authority flow graphs that cap-
ture systems in which certain authority flow constraints are satisfied, can
be captured in terms of the bounded transitive closure problem, and how
this problem can be solved automatically by using Quesada’s DomReacha-
bility [QVDC06] graph constraint solver.

This work differs to ours because it is not concerned with detecting a
component’s possible authority, in terms of counterfactual causation, but is
instead concerned with finding configurations of components, and the flows
of authority between them, under which certain authority flow constraints
are satisfied.

7.7 Related Work 198

CSP Specification Slicing In [LLO+09], Leuschel et al. consider the
problem of CSP specification slicing and present two static analysis tech-
niques known as must be executed before (MEB) and could be executed before
(CEB). Each of these techniques operates over the syntax of a CSP process.
Given an event that is mentioned in a process’s syntax, the MEB and CEB
analyses return those parts of the process’s syntax that must be and could
be executed respectively before this event occurs.

For instance, in the process P = a → c → STOP u b → c → STOP ,
for the event c, the CEB analysis would report that the underlined syntax
in “a→ c→ STOP u b→ c→ STOP” could be executed before c occurs.
The MEB analysis would report that the underlined syntax in “a → c →
STOP u b → c → STOP” must be executed before c occurs; this doesn’t
include the events a and b because P has executions in which c can occur
without a occurring and similarly for b.

There is a sense in which this slicing information could be useful for
inferring information about causation. However, the analysis techniques
presented by Leuschel et al. fail to distinguish between external and in-
ternal choice, i.e. they treat “�” and “u” identically. This makes the re-
sults obtained from these analyses less useful than one might like for non-
deterministic processes. In particular, P above has the refinement Q where
Q = a→ c→ STOP . In Q, a must clearly occur for c to occur; this would
be reflected in the MEB analysis of Q. However, this information is not
reflected in the MEB analysis for P .

Hence, these slicing techniques, whilst sharing some intuitive similarities
with our ideas of counterfactual causation, cannot be used directly to infer
useful information about event causation for nondeterministic processes.

Non-Counterfactual Causality Causation has also been studied in the
context of other process algebras. However, the kind of causation typically
examined in these other contexts is not based on counterfactual dependence
and is therefore less useful than one would like for our purpose of reasoning
about authority.

For instance, Sewell and Vitek consider causality in the context of their
box-π calculus [SV03]. In this approach, the influence of each principal in a
system is tracked through a colouring semantics, in which each principal in
the system is assigned a colour and the edges in the system’s operational se-
mantics (i.e. in its labelled transition system) are labelled with these colours
as the system evolves to reflect those principals whose actions may have in-
fluenced the system’s current execution.

For instance, consider a system that comprises the four principals Alice,
Bob, Carol and Dave in which Alice and Bob each initially try to Call Carol.
Carol waits to be called, at which point she Calls Dave. This system could

7.7 Related Work 199

be captured by the CSP process System12 defined as

System12 = Alice.Carol.Call.null→ Carol.Dave.Call.null→ STOP �
Bob.Carol.Call.null→ Carol.Dave.Call.null→ STOP.

Here, the first Carol.Dave.Call.null-event would carry the colours of Alice and
Carol, while the second would carry the colours of Bob and Carol.

This analysis says that Alice can cause the the first Carol.Dave.Call.null-
event and Bob can cause the second. However, neither has the authority to
cause Dave to be called in this system under a definition based on counter-
factual dependence, which we’ve shown is most useful in this chapter.

Similar problems exist with other process algebra semantics that prim-
itively incorporate causal information. These include so-called “true” con-
currency semantics, which usually incorporate information about the causal
relationship between events. Event structures [Win89] are a notable example
with many variations.

Under typical event structure encodings of CSP-like languages, such
as van Glabbeek and Vaandrager’s bundle event structures encoding
from [vGV03], event a causes event b in system trace s when a comes
before b in all system traces containing the same events as s [LBK97].
Under such an encoding, the event Alice.Carol.Call.null would be iden-
tified as a unique cause of the event Carol.Dave.Call.null in the trace
〈Alice.Carol.Call.null,Carol.Dave.Call.null〉 of System12 above. However, this
identification is not very useful for reasoning about authority here.

Responsiveness In [RSR04, RRS05], Reed et al. consider the problem of
determining when, given two processes P and Q whose alphabets are αP and
αQ respectively, such that αQ ⊆ αP , whether composing some refinement
RQ of Q with some refinement RP of P to form RP αP ‖αQ RQ, can cause
RP to block on some set of events A ⊆ αP ∩ αQ when RP otherwise would
not have on its own. The absence of this causation is captured by the
property RespondsToLiveA(RP , RQ) holding for all refinements RP and RQ
of P and Q respectively.

RespondsToLiveA(RP , RP) =
∀ s • (s,A) ∈ failures(RP αP ‖αQ RQ)⇒ (s,A) ∈ failures(RP).

Observe how similar this property is in spirit to the non-causation prop-
erties defined in this chapter. Unlike the properties in this chapter, the
counterfactual comparison in responsiveness compares RP composed with
RQ, which naturally restricts the behaviours of RP , against RP on its own,
where no such restrictions exist. In this way, responsiveness asserts that the
addition of a component to a system that restricts the possible behaviours
of the rest of the system doesn’t cause another component to be blocked.
Our non-causation properties, on the other hand, assert that the addition

7.8 Conclusion 200

of a component to a system that enables more behaviours in the rest of the
system doesn’t cause certain effects.

Unlike our non-causation properties, responsiveness can be expressed as
a CSP refinement check and so automatically tested by FDR. It would be
interesting to investigate further the similarities and differences between our
non-causation properties and the notion of responsiveness.

Fault Tolerance Finally, our non-causation properties, including our for-
mulations of defensive correctness and consistency, seem to share some intu-
itive similarities with certain formulations of fault tolerance [Ros97, Section
12.3]. These formulations of fault tolerance involve a counterfactual compar-
ison between two scenarios involving the same system: one in which errors
and faults can be introduced arbitrarily, and another when all such faults
are absent. It would be worth investigating further the connections between
these ideas.

7.8 Conclusion

In this chapter, we have considered how one might reason about authority in
object-capability systems, modelled in CSP. We developed a framework for
expressing general non-causation properties that is able to express various
kinds of effects, whose causation is defined simply in terms of counterfactual
dependence. In our framework, an effect is encoded by the corresponding
(completed) refusal-traces property that holds for all divergence-free pro-
cesses in which that effect is present. The flexibility of this approach is
evident in the various kinds of authority that our framework can capture,
including delegable, non-delegable, revocable and single-use authority.

We saw that one could distinguish those effects involving safety from
those that involve liveness, by identifying each effect with an equivalent
refusal-traces hyperproperty [CS10]. The safety and liveness effects are then
simply those that correspond to safety and liveness hyperproperties respec-
tively. We found that Miller’s notions of defensive correctness and consis-
tency can be expressed straightforwardly within our framework. We argued
that defensive correctness naturally asserts the non-prevention of an effect
that involves both a safety component and a liveness one, whilst defensive
consistency asserts the non-prevention of just the safety component.

We also found, however, that the flexibility our approach makes it dif-
ficult to test non-causation properties using automatic refinement-checking.
We saw that every safety effect can be expressed as a CSP refinement test.
We concluded that this allows one to judge non-causation of those safety
effects, and their complements, whose associated refinement check is finite-
state, for deterministic systems by performing at most two refinement checks
in FDR. This may not be possible for other effects however, particularly
those that cannot be expressed in the form of CSP refinement checks for

7.8 Conclusion 201

FDR. An example is the effect of some event e inevitably occurring under
strong event fairness, which is equivalent to the LTL property SEF ⇒ ♦ e,
which we saw in Chapter 6 cannot be expressed as a refinement check for
FDR.

For a nondeterministic system, we argued that one must judge non-
causation by considering all of its deterministic componentwise refinements.
We found that even for the simplest of safety effects, which can be easily
expressed as CSP refinement checks, one cannot always express their non-
prevention (equivalently non-causation of their complements) for all deter-
ministic componentwise refinements of some systems as a refinement check
for FDR. We showed that the same is also true if one wants to instead test
this for all refinements of a system. We are forced to conclude, therefore,
that refinement checking is ill-suited to testing non-causation properties of
nondeterministic systems. We argue that alternative testing methodologies
should be investigated for this purpose. We discuss some possibilities later
in Section 8.1.

8 Conclusion

In this thesis, we have examined the use of the process algebra CSP, and
its automatic refinement-checker FDR, for analysing security properties of
object-capability patterns.

We’ve seen that CSP is naturally very expressive, and can be used to
model most, if not all, of the wide variety of features and differences that ex-
ist between current object-capability systems (see Table 2.1) with ease and
accuracy. For instance, we’ve seen that CSP can express both concurrent
and single-threaded systems (see Section 2.3.5), as well as recursively invoca-
ble objects (see e.g. Snippet 3.10), non-blocking invocation (see Section 6.2)
and the EQ primitive (see e.g. Snippet 3.2). CSP’s expressiveness is also
an asset when formalising security properties as refinement checks to be au-
tomatically carried out by FDR. In Chapter 3, we saw that complex safety
properties, like safe coercion (see Snippet 3.9), can be easily expressed in
CSP as traces refinement checks by defining suitable specification processes.
We showed in that chapter that CSP’s ability to express interesting systems
and safety properties allows one to automatically detect vulnerabilities in
patterns that arise due to recursive and concurrent invocation.

CSP’s rich body of semantic theory has also been a major asset. In
Chapter 4, we saw that CSP’s theory of data-independence is particularly
useful for allowing one to generalise the results of analysing small fixed-sized
systems to systems of arbitrary size. We showed that this can be done by
treating a fixed-sized system as a safe abstraction of a set of arbitrary-sized
systems, in which the behaviour of multiple objects has been aggregated into
a single one, and that the theory of data-independence could be applied
to generalise this analysis to all such arbitrary-sized systems. This also
allowed us to model and reason about patterns that make use of unbounded
object creation. In particular, we showed that this approach allowed one to
detect subtle differences in the revocation property upheld by a revocable
Membrane implementation when deployed in single-threaded and concurrent
systems respectively.

In Chapter 5, CSP’s denotational theory of refinement was used to
encode the necessary and intuitive assumption that must be made when
analysing the information flow properties of an object-capability pattern,
namely that each object can directly influence the others only through
its overt interactions with them. We saw that this assumption could be

203

easily expressed using CSP’s theory of refinement by defining that a sys-
tem is secure under some information flow property iff that property holds
for all of the system’s deterministic componentwise refinements (see Defini-
tion 5.2.2). We showed that traditional noninterference properties can be
adapted to take this assumption into account, producing the class of weak-
ened refinement-closed noninterference properties (see Definition 5.3.18).
We saw that these properties can be readily tested using FDR by expressing
them as CSP refinement checks. We showed that this approach allows one
to diagnose covert channels present in an object-capability pattern, and to
generalise the analysis of such patterns to systems of arbitrary size with a
slight extension of the theory developed earlier in Chapter 4.

CSP’s rich diversity of semantic models was also invaluable for allowing
us to formally state liveness properties of object-capability patterns under
fairness assumptions in Chapter 6. We saw that such properties could be
encoded in a fragment of LTL, whose semantics (from Lowe [Low08]) was
defined over the refusal-traces model. This allowed us to express an intuitive
liveness property to be analysed of the Trademarks pattern. We showed that
this liveness property could be verified by performing certain stable-failures
refinement checks in FDR that together constituted a sufficient condition
for the property.

We also saw in Chapter 7 that the refusal-traces model could be used
as a base on which to build a flexible framework for expressing general non-
causation properties. We showed how the framework that we developed in
that chapter is capable of expressing interesting and complicated elements
of an object’s authority, such as non-delegable and single-use authority, as
well as the intuitive notions of defensive correctness and consistency. These
results indicate that CSP, and its associated denotational semantic models,
are apt for formalising complicated security properties.

However, we also found that CSP refinement checking with FDR, whilst
being incredibly useful for reasoning about safety and information flow prop-
erties of object-capability patterns, is not powerful enough to be used to
analyse the full range of security properties in which one might be inter-
ested. In Chapter 6 we saw, that while CSP’s semantic models are more than
adequate for expressing liveness properties under fairness assumptions, that
such properties cannot always be precisely expressed as refinement checks in
any such model that FDR might support. Similarly in Chapter 7, while we
showed that non-causation of safety effects and their complements can be ex-
pressed as CSP refinement checks for deterministic systems, we also saw that
no refinement check, in any standard CSP model that FDR might support,
could express certain very simple non-causation properties for nondetermin-
istic systems. We argue, therefore, that alternative approaches should be
investigated for verifying these kinds of properties.

In summary, we conclude that CSP and FDR are, together, a very useful
combination for analysing the security properties of object-capability pat-

8.1 Future Work 204

terns. However, more work is required in order to extend the reach of this
approach beyond safety and information flow properties to include e.g. live-
ness and non-causation properties as well. Fortunately, CSP’s strong foun-
dation of rich semantic models provides the perfect base from which such
further work can proceed.

8.1 Future Work

We conclude this thesis by considering avenues for future work.

Automatic Analysis of Liveness Properties In Chapter 6, we saw
that liveness properties like SEF ⇒ ♦ e cannot be expressed as CSP re-
finement checks for FDR, preventing FDR from being able to automatically
check them directly. We argue that alternative automatic testing approaches
should be examined for these kinds of property. In particular, we conjecture
that existing work (such as [Ros01, SLDW08, Liu09]) on testing liveness
properties by examining a system’s operational semantics could probably
be adapted to allow one to automatically verify the kinds of liveness prop-
erties considered in Chapter 6. We sketch one such possibility, based on the
work in [Liu09].

The standard explicit-state, automata-based approach [VW86] to testing
liveness properties expressed as LTL formulae φ against a system’s opera-
tional semantics A involves first constructing [WVS83] a Büchi automa-
ton [Büc62] B that corresponds to the LTL formula ¬φ, i.e. a Büchi au-
tomaton that accepts those and only those infinite behaviours that violate
the liveness property φ. One then constructs the product A × B of A and
B, which is a Büchi automaton that accepts all infinite behaviours that can
be exhibited by A that are accepted by B. Then the liveness property φ is
satisfied by the system iff the language recognised by A×B is empty. This
occurs precisely when A×B contains no reachable non-trivial strongly con-
nected subgraph (SCS) that is accepting, i.e. an SCS that contains a node
(sA, sB), where naturally sA and sB are states of A and B respectively, for
which sB is an accepting state of B.

Testing a liveness property φL (e.g. ♦ e) under a fairness assumption
φF (e.g. SEF) is equivalent to testing the property φF ⇒ φL (e.g. SEF ⇒
♦ e). Hence, one way to test liveness under fairness using this standard
approach involves building a Büchi automaton B that corresponds to the
formula ¬(φF ⇒ φL) and then computing A × B as usual. However, the
construction of B usually scales poorly with the size of the LTL formula
to which it corresponds (in the worst case, scaling exponentially). Recall
that the fairness assumptions that we’ve used in this thesis, namely SEF
and WEF from Definition 6.1.2, involve a conjunction over every event in
Σ. Previous work by others [SLDW08, Liu09] examining the application of
this approach using the SPIN model checker [Hol03] with similar fairness

8.1 Future Work 205

assumptions, indicate that it is unlikely to work well when Σ contains more
than a few events, and is therefore infeasible for us.

This problem is avoided in [Liu09, Chapter 4] by constructing B to corre-
spond to just the formula ¬φL. The accepting SCSs ofA×B then correspond
to all behaviours of A that violate φL, whether fair or unfair. Unfair be-
haviours that violate φF are then pruned away by algorithmically identifying
the fair SCSs of the product that (correspond to behaviours that) satisfy
the fairness assumption φF . The system then satisfies φF ⇒ φL iff none of
these fair SCSs are accepting.

Adapting this approach therefore requires one to be able to identify
whether the behaviours captured by an SCS of some product A×B satisfy
our fairness assumptions SEF and WEF . We briefly sketch how to do so.

Let S be a non-trivial SCS in the product A×B of a system’s operational
semantics A and a Büchi automaton B. Let NS and ES be the sets of states
and edges respectively of S. When sA and s′A are states of A, we write

sA
x−→ s′A to mean that from state sA the system can transition to state s′A

by performing the event x from Σ ∪ {τ}, where τ is the special event used
to represent internal activity [Ros97, Chapter 7]. We also write sA

x−→ to
mean that there exists a state s′A of A such that sA

x−→ s′A. Then for each
node (sA, sB) ∈ NS , let

stableStates((sA, sB)) = {s′A | sA(
τ−→)∗s′A ∧ s′A 6

τ−→}

denote the set of states s′A reachable from sA in the system’s operational
semantics under zero or more τ -transitions such that each s′A is stable.

Then for each (sA, sB) ∈ NS , let

availableEvents((sA, sB)) =

{e | e ∈ Σ ∧ ∀ s′A ∈ stableStates((sA, sB)) • s′A
e−→}

denote the set that contains those events e that are available from every
τ -reachable stable state s′A in the system’s operational semantics from sA.
Then, let

sometimesAvailableEvents(S) =
⋃

(sA,sB)∈NS
availableEvents((sA, sB)),

alwaysAvailableEvents(S) =
⋂

(sA,sB)∈NS
availableEvents((sA, sB)),

be the sets that contain those events that are sometimes and always respec-
tively stably available at some point during S. Let performedEvents(S) be
the set of events performed in S, i.e.

performedEvents(S) =
{e | e ∈ Σ ∧ ∃(sA, sB), (s′A, s

′
B) ∈ NS • ((sA, sB), e, (s′A, s

′
B)) ∈ ES}.

Then we conjecture that S satisfies SEF iff

sometimesAvailableEvents(S) ⊆ performedEvents(S).

8.1 Future Work 206

Similarly, we conjecture that S satisfies WEF iff

alwaysAvailableEvents(S) ⊆ performedEvents(S).

For example, consider the process P = a→ P . b→ STOP . Under our
LTL semantics from Chapter 6, P |= WEF ⇒ ♦ b and similarly for SEF .
P ’s operational semantics A has two transitions from its initial state: one
labelled with a, which is a self-loop, and another labelled with τ that leads
to a state from which the only transition available is labelled with b and
leads to a terminal state with no outgoing transitions. The product A× B
of A and the Büchi automaton B that corresponds to the formula ¬♦ b, has
just a single state that has a single transition, namely a self-loop labelled
with a. A×B has just one non-trivial SCS, which we denote S; S is, in fact,
the entire automaton. S is accepting.

By the above definitions, we have that sometimesAvailableEvents(S) =
alwaysAvailableEvents(S) = {b}, but that performedEvents(S) = {a}. We
see that {b} 6⊆ {a}. This indicates that, under the conjectures above, none of
the behaviours captured by this SCS that violate the liveness property ♦ e,
satisfy either of these fairness assumptions. Hence, under these conjectures,
none of the behaviours present in A that violate ♦ e satisfy SEF or WEF .
This is, of course, consistent with P satisfying WEF ⇒ ♦ b and SEF ⇒ ♦ b.

Analysing Non-Causation Properties In Chapter 7, we concluded
that refinement-checking is not well suited for testing non-causation prop-
erties of nondeterministic systems. One obvious avenue for future work in-
volves identifying ways in which these kinds of property can be mechanically
verified.

One potential avenue would be to analyse these properties by using mech-
anised logical proof directly over the denotational semantic models in which
they are defined (i.e. directly over the refusal-traces model) with the aid
of mechanical theorem proving technologies. The CSP-Prover [IR05, IR08]
tool could be particularly useful here.

CSP-Prover is a collection of theory libraries and proof tactics for the
Isabelle [Pau94] proof assistant. CSP-Prover encodes many of CSP’s stan-
dard denotational semantic models as Isabelle theories, allowing one to write
CSP processes and prove semantic refinement between them using Isabelle’s
interactive theorem proving interfaces. CSP-Prover has also been used to
reason about CSP’s denotational semantic models themselves [IR06, SRI09].

We conjecture that one could extend CSP-Prover to allow one to state
and prove non-causation properties of CSP processes. Doing so would
first require the refusal-traces model to be formalised in CSP-Prover.
Given [IR06, SRI09] that a number of other models, including the stable-
failures and stable-revivals [Ros09] models, have been formalised in CSP-
Prover, we expect that formalising the refusal-traces model should be a
relatively straightforward task of adapting these existing encodings. Having

8.1 Future Work 207

formalised the refusal-traces model, one would then likely identify a number
of key lemmas and results to be proved, regarding non-causation properties,
that would assist generally in proving non-causation properties of nondeter-
ministic processes.

Besides this approach based on interactive theorem proving, it remains to
be seen whether mechanisms for the automatic verification of non-causation
properties by model-checking may be found. It can be observed that all of
the properties that we have proved in this thesis cannot be tested by auto-
matic refinement checking, involve detecting the presence of certain infinite
behaviours that are not infinite traces. This can be seen by examining The-
orem 6.1.4 and noting that what sets B∗ there apart from each Bk must
be some infinite behaviour that is not an infinite trace (since B∗ is trace-
equivalent to each Bk). As a concrete example, in Section 7.6.2, what sets
System (where causation does exist) apart from each Systemk (in which cau-
sation doesn’t exist), is the set of infinite refusal-traces in which the event
Dave.Bob.Call.null is always stably refused. These refusal-traces are present
in System but not in any Systemk.

One way to understand why these properties cannot be tested by refine-
ment checking is to observe that the only way to test for infinite behaviours
using CSP refinement checking is to map those infinite behaviours onto cor-
responding divergences using hiding, and then assert the absence of such
divergences. Recall that it is precisely this approach that is taken to test
the liveness property ♦ e under no fairness assumption (see Equation 6.1).
An infinite behaviour that is not an infinite trace cannot be mapped in this
way onto a corresponding divergence, because the hiding ignores the extra
refusal/acceptance information that is necessarily present in the behaviour.

As implied by the discussion above in the context of liveness proper-
ties, model-checking algorithms based on identifying certain SCSs within
the operational semantics of a system are appropriate for testing prop-
erties that involve detecting certain infinite behaviours (see e.g. [Ros01]).
Hence, we conjecture that it might be possible to adapt pre-existing SCS-
based techniques to detect infinite behaviours that cannot be observed using
refinement-checking, i.e. those infinite behaviours that are not infinite traces.
This might allow one to model-check properties that cannot otherwise be
tested using refinement-checking, including non-causation properties.

Timed Information Flow In Chapter 5, we showed that information
flow properties of object-capability patterns should be tested under the as-
sumption that the only way for objects to influence each other directly is
by exchanging messages. This assumption was naturally encoded by assert-
ing that an information flow property holds for a system iff that property
holds for all deterministic componentwise refinements of that system (see
Definition 5.2.2).

While useful, this assumption may be overly restrictive in some cases.

8.1 Future Work 208

In particular, it assumes that objects do not have access to a global clock
or other sources of timing information, and therefore makes it difficult to
assert the absence of possible timing channels in object-capability patterns.

Huang and Roscoe [HR06] have considered the problem of expressing
noninterference properties for timed systems that contain a global clock and
in which each entity may have access to timing information. They show
how to adapt traditional noninterference properties, including Roscoe’s Lazy
Independence (see Proposition 5.3.3), to this timed setting.

One promising avenue of future work therefore involves extending
Huang and Roscoe’s work to provide a characterisation of timed weak-
ened refinement-closed noninterference properties, which would adapt our
notion of a weakened refinement-closed noninterference property (see Def-
inition 5.3.18) to this timed setting. Doing so should allow us to analyse
object-capability patterns to detect possible timing channels within them.

Analysing Source Code Finally, perhaps the most interesting area for
future work involves applying the approaches developed in this thesis to
the analysis of object-capability patterns expressed directly in source code.
This source code would either be C code, in the case of a pattern deployed
in an object-capability operating system, or code in some object-capability
language like E or Cajita.

The most straightforward way to apply the work in this thesis to the
analysis of such source code would be to translate the source code into an
appropriate representation in CSP. This translation would produce a CSP
system, similar to those crafted by hand in this thesis, that models the
pattern and its environment. One could then apply the analysis techniques
developed in this thesis to the automatically generated CSP representation
of the pattern to analyse the pattern’s security properties.

CSP has often been used as a target language into which higher-level
languages can be translated (or compiled) in order to formally analyse sys-
tems expressed in the higher-level language. This basic approach has been
applied to the analysis of cryptographic protocols expressed in a high-level
domain specific language [Low98], shared-variable multithreaded programs
expressed in a C-like language [Ros01, RH07] and web services protocols
expressed in SOAP [Kle08] to name a few. Hence, we believe that this ap-
proach would be likely to yield useful results. A good first step would involve
investigating to what degree Roscoe et al.’s SVA [Ros01, RH07] tool could
be applied directly to this problem.

In order to ensure that the approach is sound, one could produce (or bor-
row, see e.g. [Nor98]) a formal semantics for the source language and prove
that the translation from the source language to CSP preserves the security
properties being analysed. Having done so, one could then be confident that
the translation does not hide real vulnerabilities in the source nor introduce
spurious ones in its CSP translation.

Bibliography

[AAH+85] Mack W. Alford, Jean-Pierre Ansart, Günter Hommel, Leslie
Lamport, Barbara Liskov, Geoff P. Mullery, and Fred B. Schnei-
der. Distributed systems: methods and tools for specification.
An advanced course. Springer-Verlag, New York, NY, USA,
1985. 129

[Abr91] Samson Abramsky. Domain theory in logical form. Annals of
Pure and Applied Logic, 51(1-2):1–77, 1991. 192

[AFK88] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Apprais-
ing fairness in languages for distributed programming. Dis-
tributed Computing, 2(4):226–241, 1988. 130, 131, 138, 181

[AL91] Mart́ın Abadi and Leslie Lamport. The existence of refinement
mappings. Theoretical Computer Science, 82(2):253–284, 1991.
138, 181

[And72] James P. Anderson. Computer security technology planning
study, Volume 2. Technical Report ESD-TR-73-51, Electronic
Systems Division, Air Force Systems Command, Hanscom
Field, Bedford MA, USA, October 1972. 173

[APW86] M. Anderson, R. D. Pose, and C. S. Wallace. A password
capability system. The Computer Journal, 29(1):1–8, 1986. 14

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Infor-
mation Processing Letters, 21(4):181–185, October 1985. 128,
129, 181, 182, 183

[BBDC+09] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni,
and Richard Trefler. Explaining counterexamples using causal-
ity. In Proceedings of the 21st International Conference on
Computer Aided Verification (CAV ’09), volume 5643 of Lec-
ture Notes in Computer Science, pages 94–108. Springer-
Verlag, 2009. 163

Bibliography 210

[Bis96] Matt Bishop. Conspiracy and information flow in the take-
grant protection model. Journal of Computer Security,
4(4):331–360, 1996. 125

[BL76] David E. Bell and Leonard J. LaPadula. Secure computer sys-
tem: Unified exposition and MULTICS interpretation. Techni-
cal Report MTR-2997 Rev. 1, The MITRE Corporation, Bed-
ford, MA, USA, March 1976. 92, 173

[Boy09] Andrew Boyton. A verified shared capability model. In Pro-
ceedings of the 4th Workshop on Systems Software Verification
(SSV ’09), volume 254 of Electronic Notes in Theoretical Com-
puter Science, pages 25–44, 2009. 51

[Bri07] Marcus Brinkmann. Membrane implementations?, Jan-
uary 2007. E-mail communication to the cap-talk mail-
ing list, available at: http://www.eros-os.org/pipermail/

cap-talk/2007-January/007342.html. 76

[Bro01] Philippa J. Broadfoot. Data independence in the model checking
of security protocols. D.Phil. thesis, Oxford University Comput-
ing Laboratory, September 2001. 88

[Bry05] Jeremy Bryans. Reasoning about XACML policies using CSP.
In Proceedings of the 2005 workshop on Secure Web Services
(SWS ’05), pages 28–35. ACM Press, 2005. 3

[Büc62] J. R. Büchi. On a decision method in restricted second order
arithmetic. In Proceedings of the 1st International Congress
on Logic, Methodology, and Philosophy of Science, pages 1–11.
Stanford University Press, 1962. 204

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic ver-
ification of finite-state concurrent systems using temporal logic
specifications. ACM Transactions on Programming Languages
and Systems (TOPLAS), 8(2):244–263, 1986. 169

[CHK08] Hana Chockler, Joseph Y. Halpern, and Orna Kupferman.
What causes a system to satisfy a specification? ACM Trans-
actions on Computational Logic, 9(3):1–26, 2008. 163, 196

[Clo06] Tyler Close. Credit transfer for market-based infrastructure.
In Proceedings of the 10th International Conference on Finan-
cial Cryptography and Data Security (FC ’06), volume 4107 of
Lecture Notes in Computer Science, pages 160–165. Springer,
2006. 30

[Clo08] Tyler Close. The ref send API, 2008. Available at: http:

//waterken.sourceforge.net/. 16

http://www.eros-os.org/pipermail/cap-talk/2007-January/007342.html
http://www.eros-os.org/pipermail/cap-talk/2007-January/007342.html
http://waterken.sourceforge.net/
http://waterken.sourceforge.net/

Bibliography 211

[CS08] Michael R. Clarkson and Fred B. Schneider. Hyperproperties.
In Proceedings of the 21st IEEE Computer Security Founda-
tions Symposium (CSF ’08), pages 51–65, 2008. 162, 179, 180

[CS10] Michael R. Clarkson and Fred B. Schneider. Hyperproperties.
Journal of Computer Security, 2010. To appear. Preprint avail-
able at: http://www.cs.cornell.edu/fbs/publications/

Hyperproperties.JCS.pdf. 5, 162, 179, 180, 182, 183, 192,
200, 227

[DEE08] Philip Derrin, Dhammika Elkaduwe, and Kevin Elphin-
stone. seL4 Reference Manual. NICTA, 2008. Avail-
able at: http://www.ertos.nicta.com.au/research/sel4/

sel4-refman.pdf. 1, 15, 16, 147

[DH66] Jack B. Dennis and Earl C. Van Horn. Programming semantics
for multiprogrammed computations. Communications of the
ACM, 9(3):143–154, March 1966. 1

[Don76] James E. Donnelley. A distributed capability computing sys-
tem. In Proceedings of the Third International Conference on
Computer Communication, pages 432–440, 1976. 72

[Don81] James E. Donnelley. Managing domains in a network operating
system. In Proceedings of the Local Networks and Distributed
Office Systems Conference, May 1981. 174

[DY08] P. Dinges and N. Yonezaki. Structural operational semantics
for an idealised object-capability programming language. In
Proceedings of the 25th Convention of the Japan Society for
Software Science and Technology, 2008. 15

[EKE08] Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone.
Verified protection model of the seL4 microkernel. In Pro-
ceedings of the 2nd International Conference on Verified Soft-
ware: Theories, Tools, Experiments (VSTTE ’08), pages 99–
114. Springer, 2008. 1, 15, 51

[FG95] Riccardo Focardi and Roberto Gorrieri. A classification of se-
curity properties for process algebras. Journal of Computer
Security, 3(1):5–33, 1995. 93, 99, 102

[Foc96] Riccardo Focardi. Comparing two information flow security
properties. In Proceedings of the 9th IEEE Computer Secu-
rity Foundations Workshop (CSFW ’96), pages 116–122. IEEE
Computer Society, 1996. 93, 99

http://www.cs.cornell.edu/fbs/publications/Hyperproperties.JCS.pdf
http://www.cs.cornell.edu/fbs/publications/Hyperproperties.JCS.pdf
http://www.ertos.nicta.com.au/research/sel4/sel4-refman.pdf
http://www.ertos.nicta.com.au/research/sel4/sel4-refman.pdf

Bibliography 212

[For99] Richard Forster. Non-Interference Properties for Nondetermin-
istic Processes. D.Phil. thesis, Oxford University Computing
Laboratory, 1999. 93, 99

[GCS91] John Graham-Cumming and J. W. Sanders. On the refine-
ment of non-interference. In Proceedings of the 4th IEEE Com-
puter Security Foundations Workshop (CSFW ’91), pages 35–
42. IEEE Computer Society, 1991. 93

[GGH+05] Paul Gardiner, Michael Goldsmith, Jason Hulance, David Jack-
son, Bill Roscoe, Bryan Scattergood, and Philip Armstrong.
Failures-Divergences Refinement: FDR2 User Manual. Formal
Systems (Europe) Ltd, 2005. 2

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995. 2

[GM82] Joseph A. Goguen and José Meseguer. Security policies and
security models. In Proceedings of the 1982 IEEE Symposium
on Security and Privacy (SP ’82), pages 11–20, 1982. 93

[GMO+07] Duncan Grove, Toby Murray, Chris Owen, Chris North, Jeremy
Jones, M. R. Beaumont, and B. D. Hopkins. An overview of
the Annex system. In Proceedings of the 23rd Annual Computer
Security Applications Conference (ACSAC ’07), pages 341–352,
2007. 1, 15

[Gon89] Li Gong. A secure identity-based capability system. In Pro-
ceedings of the 1989 IEEE Symposium on Security and Privacy
(SP ’89), pages 56–65. IEEE Computer Society, 1989. 173

[GR09] Thomas Gibson-Robinson. On the refinement-closure of infor-
mation flow properties. Undergraduate project report submit-
ted to the Oxford University Computing Laboratory, 2009. 102

[Gro05] Alex David Groce. Error Explanation and Fault Localization
with Distance Metrics. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA, 2005. 163,
195, 196

[Hal04] Ned Hall. Two concepts of causation. In Causation and Coun-
terfactuals, chapter 9. MIT Press, 2004. 178, 196

[Har85] Norman Hardy. The KeyKOS architecture. Operating Systems
Review, 19(4):8–25, 1985. 15, 71

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985. 2

Bibliography 213

[Hol03] Gerard J. Holzmann. The SPIN model checker: Primer and
reference manual. Addison-Wesley, 2003. 204

[HP03] Mark Hopkins and Judea Pearl. Clarifying the usage of struc-
tural models for commonsense causal reasoning. In Proceed-
ings of the AAAI Spring Symposium on Logical Foundations of
Commonsense Reasoning, 2003. 195, 196

[HP05] J. Y. Halpern and J. Pearl. Causes and explanations: A
structural-model approach. Part I: Causes. British Journal for
the Philosophy of Science, 56(4):843–888, 2005. 195, 196

[HP07] Mark Hopkins and Judea Pearl. Causality and counterfactuals
in the Situation Calculus. Journal of Logic and Computation,
17(5):939–953, 2007. 195, 196

[HR06] Jian Huang and A. W. Roscoe. Extending noninterference
properties to the timed world. In Proceedings of the 2006 ACM
symposium on Applied computing (SAC 2006), pages 376–383.
ACM, 2006. 208

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman.
Protection in operating systems. Communications of the ACM,
19(8):461–471, 1976. 50

[HY86] J. Thomas Haigh and William D. Young. Extending the non-
inference model of MLS for SAT. In Proceedings of the 1986
IEEE Symposium on Security and Privacy (SP ’86), pages 232–
239. IEEE Computer Society Press, 1986. 99, 103, 104

[IR05] Y. Isobe and M. Roggenbach. A generic theorem prover of CSP
refinement. In Proceedings of the 11th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2005), page 108. Springer Verlag, 2005. 206

[IR06] Yoshinao Isobe and Markus Roggenbach. A complete axiomatic
semantics for the CSP stable-failures model. In Proceedings
of the 17th International Conference on Concurrency Theory
(CONCUR ’06), volume 4137 of Lecture Notes in Computer
Science, pages 158–172. Springer, 2006. 206

[IR08] Y. Isobe and M. Roggenbach. CSP-Prover: A proof tool for the
verification of scalable concurrent systems. Journal of Com-
puter Software, Japan Society for Software Science and Tech-
nology (JSSST), 25(4):85–92, 2008. 206

[JSV05] Yves Jaradin, Fred Spiessens, and Peter Van Roy. SCOLL:
A language for safe capability based collaboration. Research

Bibliography 214

Report INFO-2005-10, Université catholique de Louvain, 2005.
2

[Kar88] Paul Ashley Karger. Improving Security and Performance for
Capability Systems. PhD thesis, Computer Laboratory, Uni-
versity of Cambridge, 1988. Also published as University of
Cambridge Computing Laboratory Technical Report No. 149.
173

[Kin94] Ekkart Kindler. Safety and liveness properties: A survey.
EATCS-Bulletin, 53:268–272, June 1994. 129

[Kle08] Eldar Kleiner. A Web Services Security Study using Casper and
FDR. D.Phil. thesis, Oxford University Computing Laboratory,
2008. 88, 208

[KN06] Eldar Kleiner and Tom Newcomb. Using CSP to decide safety
problems for access control policies. Research Report RR-06-04,
Oxford University Computing Laboratory, University of Ox-
ford, January 2006. 3

[Koš08] Matej Koš́ık. Taming of Pict. In Proceedings of the 34th Inter-
national Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM 2008), volume 4910 of Lecture
Notes in Computer Science, pages 610–621, 2008. 15

[Koš09] Matej Koš́ık. Toward Robust Software Systems Composed
from Defensively Correct Components. PhD thesis proposal,
Slovak University of Technology in Bratislava, 2009. Avail-
able at: http://www.altair.sk/mediawiki/upload/2/22/

Kosik-thesis.pdf. 71

[KT09] Maxwell Krohn and Eran Tromer. Non-interference for a prac-
tical DIFC-based operating system. In Proceedings of the 2009
IEEE Symposium on Security and Privacy (SP ’09), pages 61–
76, 2009. 3

[Lam73] Butler Lampson. A note on the confinement problem. Com-
munications of the ACM, 16(10):613–615, 1973. 30, 173

[Lam77] Leslie Lamport. Proving the correctness of multiprocess pro-
grams. IEEE Transactions on Software Engineering, 3(2):125–
143, March 1977. 30, 128, 131, 181

[Lam00] Leslie Lamport. Fairness and hyperfairness. Distributed Com-
puting, 13(4):239–245, 2000. 131, 132

http://www.altair.sk/mediawiki/upload/2/22/Kosik-thesis.pdf
http://www.altair.sk/mediawiki/upload/2/22/Kosik-thesis.pdf

Bibliography 215

[Lan09] Charles Landau. CapROS: The Capability-based Reliable Op-
erating System, 2009. Available at: http://www.capros.org.
15

[Laz99] Ranko S. Lazić. A Semantic Study of Data Independence with
Applications to Model Checking. D.Phil. thesis, Oxford Uni-
versity Computing Laboratory, 1999. 3, 4, 27, 54, 65, 70, 120,
122

[LBK97] Rom Langerak, Ed Brinksma, and Joost-Pieter Katoen. Causal
ambiguity and partial orders in event structures. In Proceed-
ings of the 8th International Conference on Concurrency The-
ory (CONCUR ’97), pages 317–331. Springer-Verlag, 1997. 199

[Lew73] David Lewis. Causation. Journal of Philosophy, 70(17):556–
567, 1973. 164, 195

[Liu09] Yang Liu. Model Checking Concurrent and Real-Time Systems:
The PAT Approach. PhD thesis, National University of Singa-
pore, 2009. Draft available at: http://www.comp.nus.edu.

sg/~liuyang/thesis/thesis.pdf. 5, 133, 134, 153, 157, 158,
160, 204, 205

[LLO+09] Michael Leuschel, Marisa Llorens, Javier Oliver, Josep Silva,
and Salvador Tamarit. The MEB and CEB static analysis for
CSP specifications. In Revised Selected Papers from Proceedings
of the 18th International Symposium on Logic-Based Program
Synthesis and Transformation (LOPSTR 2008), volume 5438
of Lecture Notes in Computer Science, pages 103–118. Springer-
Verlag, 2009. 198

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’96), vol-
ume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer-Verlag, 1996. 3

[Low98] Gavin Lowe. Casper: A compiler for the analysis of security
protocols. Journal of computer security, 6(1):53–84, 1998. 208

[Low07] Gavin Lowe. On information flow and refinement-closure. In
Proceedings of the 7th International Workshop on Issues in the
Theory of Security (WITS ’07), 2007. 13, 93, 94, 95, 99, 100

[Low08] Gavin Lowe. Specification of communicating processes: tem-
poral logic versus refusals-based refinement. Formal Aspects of
Computing, 20(3):277–294, 2008. 128, 129, 130, 132, 134, 135,
136, 137, 157, 158, 203

http://www.capros.org
http://www.comp.nus.edu.sg/~liuyang/thesis/thesis.pdf
http://www.comp.nus.edu.sg/~liuyang/thesis/thesis.pdf

Bibliography 216

[Low09] Gavin Lowe. On CSP refinement tests that run multiple copies
of a process. In Proceedings of the Seventh International Work-
shop on Automated Verification of Critical Systems (AVoCS
’07), volume 250 of Electronic Notes in Theoretical Computer
Science, pages 153–170, 2009. 99, 110, 111

[LPS81] Daniel J. Lehmann, Amir Pnueli, and Jonathan Stavi. Impar-
tiality, justice and fairness: The ethics of concurrent termina-
tion. In Proceedings of the 8th Colloquium on Automata, Lan-
guages and Programming (ICALP 1981), volume 115 of Lecture
Notes in Computer Science, pages 264–277. Springer-Verlag,
1981. 130

[LR99] Ranko Lazić and A. W. Roscoe. Data independence with gener-
alised predicate symbols. In International Conference on Par-
allel and Distributed Processing Techniques and Applications
(PDPTA), pages 319–325. CSREA Press, June 1999. 89

[LS77] R. J. Lipton and L. Snyder. A linear time algorithm for deciding
subject security. Journal of the ACM, 24(3):455–464, 1977. 51

[LSM+98] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckel-
bauer, Ruth C. Taylor, S. Jeff Turner, and John F. Farrell.
The inevitability of failure: The flawed assumption of security
in modern computing environments. In Proceedings of the 21st
National Information Systems Security Conference, pages 303–
314, 1998. 173

[MG08] Toby Murray and Duncan Grove. Non-delegatable author-
ities in capability systems. Journal of Computer Security,
16(6):743–759, December 2008. 161, 172, 173, 174, 175

[Mil00] Mark Miller. Grant Matcher Puzzle, 2000. Available at:
http://www.erights.org/elib/equality/grant-matcher/

index.html. 90

[Mil06] Mark Samuel Miller. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control. PhD
thesis, Johns Hopkins University, 2006. 1, 5, 14, 15, 30, 72, 94,
115, 161, 162, 184, 185, 186

[ML07] Toby Murray and Gavin Lowe. Authority analysis for least
privilege environments. In Proceedings of the Joint Workshop
on Foundations of Computer Security and Automated Reason-
ing for Security Protocol Analysis (FCS-ARSPA ’07), pages
113–130, 2007. iv, 196, 197

http://www.erights.org/elib/equality/grant-matcher/index.html
http://www.erights.org/elib/equality/grant-matcher/index.html

Bibliography 217

[ML09a] Toby Murray and Gavin Lowe. Analysing the information flow
properties of object-capability patterns. In Proceedings of the
Sixth International Workshop on Formal Aspects of Security
and Trust (FAST 2009), 2009. To appear. iii, iv, 125

[ML09b] Toby Murray and Gavin Lowe. On refinement-closed security
properties and nondeterministic compositions. In Proceedings
of the Eighth International Workshop on Automated Verifica-
tion of Critical Systems (AVoCS ’08), volume 250 of Electronic
Notes in Theoretical Computer Science, pages 49–68, 2009. iii,
iv, 99

[Mor73] James H. Morris, Jr. Protection in programming languages.
Communications of the ACM, 16(1):15–21, 1973. 30, 40

[MSL+07] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike
Stay. Caja: Safe active content in sanitized JavaScript (draft),
2007. Draft from December 31, 2007, available at: http:

//google-caja.googlecode.com/files/caja-2007.pdf. 41,
49

[MSL+08] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad,
and Mike Stay. Caja: Safe active content in sani-
tized JavaScript (draft), 2008. Draft from June 7, 2008,
available at: http://google-caja.googlecode.com/files/

caja-spec-2008-06-07.pdf. 1, 15, 50

[Muk93] Abida Mukarram. A Refusal Testing Model for CSP. D.Phil.
thesis, University of Oxford, 1993. 135

[Mur08] Toby Murray. Analysing object-capability security. In Pro-
ceedings of the Joint Workshop on Foundations of Computer
Security, Automated Reasoning for Security Protocol Analysis
and Issues in the Theory of Security (FCS-ARSPA-WITS ’08),
pages 177–194, 2008. 24, 46, 52, 89

[MW08] Adrian Matthew Mettler and David Wagner. The Joe-E lan-
guage specification, version 1.0. Technical Report EECS-2008-
91, University of California, Berkeley, August 2008. 15

[MWC10] Adrian Mettler, David Wagner, and Tyler Close. Joe-E: A
security-oriented subset of Java. In Proceedings of the 17th
Annual Network and Distributed System Security Symposium
(NDSS 2010), 2010. To appear. Available at: http://www.

eecs.berkeley.edu/~daw/papers/joe-e-ndss10.pdf. 1, 15,
162, 184, 189

http://google-caja.googlecode.com/files/caja-2007.pdf
http://google-caja.googlecode.com/files/caja-2007.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://www.eecs.berkeley.edu/~daw/papers/joe-e-ndss10.pdf
http://www.eecs.berkeley.edu/~daw/papers/joe-e-ndss10.pdf

Bibliography 218

[Nor98] Michael Norrish. C Formalised in HOL. PhD thesis, Computer
Laboratory, University of Cambridge, 1998. Also published
as University of Cambridge Computing Laboratory Technical
Report No. 453. 208

[Par03] James D. Park. Causes and explanations revisited. In Proceed-
ings of the International Joint Conference on Artificial Intelli-
gence, pages 154–162. Morgan Kaufman, 2003. 178

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover,
volume 828 of Lecture Notes in Computer Science. Springer,
1994. 206

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings
of the 18th Annual Symposium on Foundations of Computer
Science, pages 46–57, November 1977. 129

[Puh03] Antti Puhakka. Using fairness in process-algebraic verification.
Technical Report 24, Institute of Software Systems, Tampere
University of Technology, 2003. 129, 134, 157, 158

[Puh05] Antti Puhakka. Using fairness constraints in process-algebraic
verification. In Proceedings of the Second International Col-
loquium on Theoretical Aspects of Computing (ICTAC 2005),
volume 3722 of Lecture Notes in Computer Science, pages 546–
561. Springer, 2005. 129, 131, 134, 157, 158

[PV01] Antti Puhakka and Antti Valmari. Liveness and fairness in
process-algebraic verification. In Proceedings of the 12th Inter-
national Conference on Concurrency Theory (CONCUR ’01),
volume 2154 of Lecture Notes in Computer Science, pages 202–
217. Springer, 2001. 129, 131, 132, 134, 157, 158

[QVDC06] L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using
dominators for solving constrained path problems. In Proceed-
ings of the 8th International Symposium on Practical Aspects
of Declarative Languages (PADL ’06), volume 3819 of Lecture
Notes in Computer Science, page 73. Springer, 2006. 197

[RA03] Peter Ryan and Ragni Ryvold Arnesen. A process algebraic
approach to security policies. In Proceedings of the Sixteenth
International Conference on Data and Applications Security
(DBSec ’02), volume 256 of IFIP Conference Proceedings, pages
301–312. Kluwer, 2003. 3

[Raj89] Susan A. Rajunas. The KeyKOS/KeySAFE system design.
Technical Report SEC009-01, Key Logic, Inc., March 1989. See
http://www.cis.upenn.edu/~KeyKOS. 72

http://www.cis.upenn.edu/~KeyKOS

Bibliography 219

[RB99] A. W. Roscoe and P. J. Broadfoot. Proving security protocols
with model checkers by data independence techniques. Journal
of Computer Security, 7(2-3):147–190, 1999. 65, 66, 83, 87, 88,
89

[Red74] David D. Redell. Naming and Protection in Extendable Oper-
ating Systems. PhD thesis, University of California, Berkeley,
1974. Published as Project MAC Technical Report TR-140,
Massachusetts Institute of Technology. 73, 175

[RG99] A. W. Roscoe and M. H. Goldsmith. What is intransitive nonin-
terference? In Proceedings of the 12th IEEE Computer Security
Foundations Workshop (CSFW ’99), page 228. IEEE Computer
Society, 1999. 99, 100, 103, 104

[RGG+95] A. W. Roscoe, Paul H. B. Gardiner, M. H. Goldsmith, J. R.
Hulance, D. M. Jackson, and J. B. Scattergood. Hierarchical
compression for model-checking CSP or how to check 1020 din-
ing philosophers for deadlock. In Proceedings of the First Inter-
national Workshop on Tools and Algorithms for Construction
and Analysis of Systems (TACAS ’95), pages 133–152, London,
UK, 1995. Springer-Verlag. 2, 19

[RH07] A. W. Roscoe and David Hopkins. SVA, a tool for analysing
shared-variable programs. In Proceedings of AVoCS 2007, pages
177–183, 2007. Available at: http://web.comlab.ox.ac.uk/

oucl/work/bill.roscoe/publications/119.pdf. 208

[RL05] Gordon Thomas Rohrmair and Gavin Lowe. Using data-
independence in the analysis of intrusion detection systems.
Theoretical Computer Science, 340(1):82–101, 2005. 3, 88

[Ros94] A. W. Roscoe. Model-checking CSP. In A. W. Roscoe, editor,
A Classical Mind: Essays in Honour of C. A. R. Hoare, pages
353–378. Prentice-Hall, 1994. 2

[Ros95] A. W. Roscoe. CSP and determinism in security modelling.
In Proceedings of the 1995 IEEE Symposium on Security and
Privacy (SP ’95), page 114. IEEE Computer Society, 1995. 93

[Ros97] A. W. Roscoe. The Theory and Practice of Concur-
rency. Prentice Hall, Upper Saddle River, NJ, USA, 1997.
Available at: http://www.comlab.ox.ac.uk/people/bill.

roscoe/publications/68b.pdf. 2, 6, 10, 27, 65, 70, 95, 98,
99, 106, 136, 155, 156, 200, 205

[Ros01] A. W. Roscoe. Compiling shared variable programs into
CSP. In Proceedings of the 2001 PROGRESS Workshop,

http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/119.pdf
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/119.pdf
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

Bibliography 220

2001. Available at: http://web.comlab.ox.ac.uk/oucl/

work/bill.roscoe/publications/82.ps. 5, 153, 158, 159,
160, 204, 207, 208

[Ros05] A. W. Roscoe. On the expressive power of CSP refinement.
Formal Aspects of Computing, 17(2):93–112, August 2005. 3,
98, 110, 141, 142, 157, 190

[Ros08] A. W. Roscoe. The three platonic models of divergence-strict
CSP. In Proceedings of the 5th International Colloquium on
Theoretical Aspects of Computing (ICTAC 2008), volume 5160
of Lecture Notes in Computer Science, pages 23–49. Springer-
Verlag, 2008. 13, 131, 140, 141

[Ros09] A. W. Roscoe. Revivals, stuckness and the hierarchy of
CSP models. Journal of Logic and Algebraic Programming,
78(3):163–190, 2009. 134, 140, 206

[RRS05] J. N. Reed, A. W. Roscoe, and J. E. Sinclair. Machine-verifiable
responsiveness. In Proceedings of the 5th International Work-
shop on Automated Verification of Critical Systems (AVoCS
2005), volume 145 of Electronic Notes in Theoretical Computer
Science. Elsevier Science, 2005. 199

[RS01] P. Y. A. Ryan and S. A. Schneider. Process algebra and non-
interference. Journal of Computer Security, 9(1/2):75–103,
2001. 93

[RSG+00] Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe,
and Bill Roscoe. Modelling and Analysis of Security Protocols:
the CSP Approach. Addison-Wesley, 2000. 3, 87

[RSR04] J. N. Reed, J. E. Sinclair, and A. W. Roscoe. Responsiveness
of interoperating components. Formal Aspects of Computing,
16(4):394–411, 2004. 199

[Rus89] John Rushby. Formal methods and critical systems in the real
world. In Formal Methods for Trustworthy Computer Systems
(FM89), pages 121–125. Springer-Verlag Workshops in Com-
puting, 1989. vi

[Rus92] John Rushby. Noninterference, transitivity and channel-control
security policies. Technical Report CSL-92-02, SRI Interna-
tional, December 1992. 99, 103, 104

[RWW94] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-
interference through determinism. In Proceedings of the Third
European Symposium on Research in Computer Security (ES-
ORICS ’94), pages 33–53. Springer-Verlag, 1994. 93

http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/82.ps
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/82.ps

Bibliography 221

[Rya91] P. Y. A. Ryan. A CSP formulation of non-interference and
unwinding. Cipher, pages 19–30, Winter 1991. 93, 99, 100

[SA07] Jonathan S. Shapiro and Jonathan W. Adams. The
Coyotos Microkernel Specification - Version 0.6+, Septem-
ber 2007. Available at: http://www.coyotos.org/docs/

ukernel/spec.html. 15, 16, 147

[SDN+04] Jonathan Shapiro, Michael Scott Doerrie, Eric Northup, Swa-
roop Sridhar, and Mark Miller. Towards a verified, general-
purpose operating system kernel. In Proceedings of the 1st
NICTA Workshop on Operating System Verification, October
2004. 15

[Sea07] Mark Seaborn. Plash: tools for practical least privilege, 2007.
Available at: http://plash.beasts.org. 15

[Sha99] Johnathan Strauss Shapiro. EROS: A Capability System. PhD
thesis, University of Pennsylvania, 1999. 71

[SJV05] Fred Spiessens, Yves Jaradin, and Peter Van Roy. SCOLL and
SCOLLAR: Safe collaboration based on partial trust. Research
Report INFO-2005-12, Université catholique de Louvain, 2005.
2

[SLDW08] Jun Sun, Yang Liu, Jin Song Dong, and Hai H. Wang. Speci-
fying and verifying event-based fairness enhanced systems. In
Formal Methods and Software Engineering, Proceedings of the
10th International Conference on Formal Engineering Methods
(ICFEM ’08), pages 5–24. Springer-Verlag, 2008. 5, 129, 131,
132, 134, 153, 157, 158, 160, 204

[SMS05] Marc Stiegler, Mark S. Miller, and Terry Stanley. 72 hours
to DonutLab: A PlanetLab with no center. Technical Report
HPL-2005-5, HP Laboratories, Polo Alto, 2005. 30

[Spi06] Fred Spiessens. Some examples of non-trivial causal influ-
ence (authority), 2006. Available at: http://www.scoll.

evoluware.eu/causalityinwrongdirection.pdf. 177, 178

[Spi07] Alfred Spiessens. Patterns of Safe Collaboration. PhD thesis,
Université catholique de Louvain, Louvain-la-Neuve, Belgium,
February 2007. 2, 4, 5, 19, 51, 54, 55, 70, 71, 72, 79, 86, 88, 90,
91, 93, 125, 156, 197

[SQV06] Fred Spiessens, Luis Quesada, and Peter Van Roy. Confinement
analysis with graph reachability constraints. In Proceedings of
the 1st Workshop on Constraints in Software Testing, Verifica-
tion and Analysis, pages 58–72, 2006. 197

http://www.coyotos.org/docs/ukernel/spec.html
http://www.coyotos.org/docs/ukernel/spec.html
http://plash.beasts.org
http://www.scoll.evoluware.eu/causalityinwrongdirection.pdf
http://www.scoll.evoluware.eu/causalityinwrongdirection.pdf

Bibliography 222

[SRI09] D. Gift Samuel, Markus Roggenbach, and Yoshinao Isobe. The
stable revivals model in CSP-Prover. In Proceedings of the
Eighth International Workshop on Automated Verification of
Critical Systems (AVoCS ’08), volume 250 of Electronic Notes
in Theoretical Computer Science, pages 119–134. Elsevier Sci-
ence Publishers B. V., 2009. 206

[SS75] Jerome H. Saltzer and Michael D. Schroeder. The protection
of information in computer systems. Proceedings of the IEEE,
63(9):1208–1308, September 1975. 1

[SSF99] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Far-
ber. EROS: A fast capability system. In Proceedings of the
Seventeenth ACM Symposium on Operating Systems Principles
(SOSP ’99), pages 170–185, 1999. 15

[Sti04] Marc Stiegler. A PictureBook of Secure Cooperation,
2004. Presentation. Available at: http://erights.org/

talks/efun/SecurityPictureBook.pdf. 40

[Sti06] Marc Stiegler. The E Language in a Walnut. Available at:
http://www.skyhunter.com/marcs/ewalnut.html, 2006. 31,
90

[Sti07] Marc Stiegler. Emily: A high performance language for en-
abling secure cooperation. In Proceedings of the Fifth Interna-
tional Conference on Creating, Connecting and Collaborating
through Computing (C5 ’07), pages 163–169, 2007. 15

[SV03] Peter Sewell and Jan Vitek. Secure composition of untrusted
code: box π, wrappers, and causality types. Journal of Com-
puter Security, 11(2):135–187, 2003. 198

[SV05] Fred Spiessens and Peter Van Roy. A practical formal model for
safety analysis in capability-based systems. In Revised Selected
Papers of the 2005 International Symposium on Trustworthy
Global Computing (TGC ’05), volume 3705 of Lecture Notes in
Computer Science, pages 248–278. Springer, 2005. 2, 51, 125

[SW00] Jonathan S. Shapiro and Sam Weber. Verifying the EROS con-
finement mechanism. In Proceedings of the 2000 IEEE Sympo-
sium on Security and Privacy (SP ’00), page 166. IEEE Com-
puter Society, 2000. 51

[TMHK95] E. Dean Tribble, Mark S. Miller, Norm Hardy, and David
Krieger. Joule: Distributed application foundations. Tech-
nical Report ADd03.4P, Agorics Inc., Los Altos, Decem-
ber 1995. Available at: http://www.erights.org/history/

joule/index.html. 39

http://erights.org/talks/efun/SecurityPictureBook.pdf
http://erights.org/talks/efun/SecurityPictureBook.pdf
http://www.skyhunter.com/marcs/ewalnut.html
http://www.erights.org/history/joule/index.html
http://www.erights.org/history/joule/index.html

Bibliography 223

[Tri06] Dean Tribble. EQ not required by object-cap model, De-
cember 2006. E-mail communication to the cap-talk mail-
ing list, available at: http://www.eros-os.org/pipermail/

cap-talk/2006-December/006246.html. 70

[vdM08] Ron van der Meyden. What, indeed, is intransitive noninterfer-
ence? (extended abstract). In Proceedings of the 12th European
Symposium on Research in Computer Security (ESORICS ’07),
volume 4734 of Lecture Notes in Computer Science, 2008. 103,
104

[vdM09] Ron van der Meyden. Architectural refinement and notions of
intransitive noninterference. In Proceedings of the First Inter-
national Symposium on Engineering Secure Software and Sys-
tems (ESSoS 2009), volume 5429 of Lecture Notes in Computer
Science, pages 60–74. Springer, 2009. 89, 125

[vGV03] Rob van Glabbeek and Frits Vaandrager. Bundle event struc-
tures and CCSP. In Proceedings of the 14th International Con-
ference on Concurrency Theory (CONCUR ’03), pages 57–71.
Springer-Verlag, 2003. 199

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and
Models of Computer Programming. MIT Press, 2004. 40

[VVK05] Hagen Völzer, Daniele Varacca, and Ekkart Kindler. Defining
fairness. In Proceedings of the 16th International Conference on
Concurrency Theory (CONCUR ’05), volume 3653 of Lecture
Notes in Computer Science, pages 458–472. Springer, 2005. 130,
138, 181

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic
approach to automatic program verification. In Proceedings
of the First IEEE Symposium on Logic in Computer Science
(LICS ’86), pages 322–331, 1986. 204

[Wag08a] David Wagner. An attack on a mint, March 2008. E-mail
communication to the e-lang mailing list, available at:
http://www.eros-os.org/pipermail/e-lang/2008-March/

012516.html. 38

[Wag08b] David Wagner. A broken brand?, March 2008. E-mail commu-
nication to the e-lang mailing list, available at: http://www.
eros-os.org/pipermail/e-lang/2008-March/012508.html.
38, 49

[Wat09] Robert Watson. Capsicum - an incremental approach to ca-
pability systems, 2009. Available at: http://www.cl.cam.ac.
uk/research/security/capsicum/. 15

http://www.eros-os.org/pipermail/cap-talk/2006-December/006246.html
http://www.eros-os.org/pipermail/cap-talk/2006-December/006246.html
http://www.eros-os.org/pipermail/e-lang/2008-March/012516.html
http://www.eros-os.org/pipermail/e-lang/2008-March/012516.html
http://www.eros-os.org/pipermail/e-lang/2008-March/012508.html
http://www.eros-os.org/pipermail/e-lang/2008-March/012508.html
http://www.cl.cam.ac.uk/research/security/capsicum/
http://www.cl.cam.ac.uk/research/security/capsicum/

Bibliography 224

[WBDF97] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W.
Felten. Extensible security architectures for Java. In Proceed-
ings of the Sixteenth ACM Symposium on Operating Systems
Principles (SOSP ’97), pages 116–128. ACM, 1997. 173

[Win89] Glynn Winskel. An introduction to event structures. In REX
School of Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, pages 364–397. Springer-
Verlag, 1989. 199

[Wol86] Pierre Wolper. Expressing interesting properties of programs in
propositional temporal logic. In Proceedings of the 13th ACM
SIGACT-SIGPLAN symposium on Principles of Programming
Languages (POPL ’86), pages 184–193, New York, NY, USA,
1986. ACM. 26

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Rea-
soning about infinite computation paths. In Proceedings of the
24th Annual Symposium on Foundations of Computer Science
(SFCS ’83), pages 185–194. IEEE Computer Society, 1983. 204

[Yee99] Ka-Ping Yee. A stab at a sealer in E, 1999. E-
mail communication to the e-lang mailing list, avail-
able at: http://www.eros-os.org/pipermail/e-lang/

1999-November/002983.html. 40, 146

http://www.eros-os.org/pipermail/e-lang/1999-November/002983.html
http://www.eros-os.org/pipermail/e-lang/1999-November/002983.html

A Subsidiary Results

Lemma A.0.1. For any sets F , C and D, for all F ′ ⊆ F , C ′ ⊆ C and
D′ ⊆ D,

UntrustedOS (F,C,D) vFD UntrustedOS (F ′, C ′, D′),

and
Untrusted lang(F,C,D) vFD Untrusted lang(F ′, C ′, D),

and

UntrustedActive lang(F,C,D) vFD UntrustedActive lang(F ′, C ′, D).

Proof. By inspection.

The following lemmas state that, as an untrusted object interacts with its
environment, its range of possible behaviours can only increase over time. As
such, we say that its behaviour increases monotonically with its interactions
with other objects in any system.

Lemma A.0.2. Let Au denote the set of events that appear in a se-
quence u. Then for any sets F , C and D and traces s and t from
traces(UntrustedOS (F,C,D)), if At ⊆ As then

UntrustedOS (F,C,D) / s vFD UntrustedOS (F,C,D) / t.

Proof. Straightforward.

Lemma A.0.3. Let Au denote the set of events that appear in a sequence
u and fix U to mean either UntrustedActive lang or Untrusted lang . Then for
any sets F , C and D, and traces s and t from traces(U(F,C,D)), if At ⊆ As
and U(F,C,D) is active after performing s if and only if it is active after
performing t, then

U(F,C,D) / s vFD U(F,C,D) / t.

Proof. Straightforward.

226

Lemma A.0.4 (Trace-equivalent deterministic refinements). Every pro-
cess P with finite alphabet that is both X-free and divergence-free has a
deterministic refinement, Q, that is trace equivalent to it.

Proof. Suppose we have a X- and divergence-free process, P . We mechan-
ically define the set of stable-failures of Q, FQ, as follows, with Q’s traces,
TQ = {s | (s,X) ∈ FQ}.

FQ = failures(P)− {(s,X) | ∃ e • sˆ〈e〉 ∈ traces(P) ∧ e ∈ X}

Clearly, the FQ is contained in failures(P). Also, since we never remove any
stable failure (s, {}), TQ = traces(P). Also, there exists no stable-failure
(s, {e}) ∈ FQ, for which sˆ〈e〉 ∈ TQ. Hence, if there exists some process
Q that has these traces and failures, then this Q will be a deterministic,
trace-equivalent refinement of P .

In order to show that such a Q exists, we need the following result.

Theorem A.0.5. Assuming the alphabet Σ is finite, for any choice of F
and T = {s | (s,X) ∈ F} that satisfies the axioms (see Section 2.1) of the
stable failures model, there is a CSP process whose traces and stable failures
are T and F respectively.

Hence it will be enough to show that TQ and FQ satisfy the axioms
F1–F3 of the stable failures model.

Axiom F1. Clearly TQ is non-empty and prefix-closed since it is equal to
traces(P), which satisfies these conditions.

Axiom F2. Q satisfies F2 since P does, and whenever we remove a failure,
we remove all failures with larger refusal sets.

Axiom F3. We prove this by contradiction. Suppose (v,X) ∈ FQ and
vˆ〈a〉 /∈ TQ but (v,X ∪{a}) /∈ FQ. Since the traces and failures of P satisfy
this axiom and we remove none of P ’s traces when forming TQ, it must be
the case that (v,X ∪ {a}) was one of the failures removed from failures(P).
Hence, there must exist some e, where sˆ〈e〉 ∈ traces(P) ∧ e ∈ X ∪ {a}.
Since (v,X) ∈ FQ by assumption, we have that ∀ e′ ∈ X • v 〈̂e′〉 /∈ traces(P)
or else this failure would have been removed. Hence, it must be the case that
e = a, i.e. that vˆ〈a〉 ∈ traces(P), equivalently vˆ〈a〉 ∈ TQ, which clearly
contradicts our assumptions. Hence this axiom must be satisfied.

Lemma A.0.6. Given a divergence- and X-free process P with finite al-
phabet, and some failure (s, Y) ∈ failures(P), there exists a divergence-free
refinement, Q, of P that does not have the traces {sˆ〈e〉 | e ∈ Y } and
whose failures are defined as follows:

FQ = failures(P)−
{(sˆ〈e〉ˆt,X) | e ∈ Y, t ∈ Σ∗, X ⊆ Σ} −
{(s,X) | (s,X ∪ Y) /∈ failures(P)}.

The traces of Q are simply defined as TQ = {s | (s,X) ∈ FQ}.

227

Proof. We must show that TQ and FQ satisfy the axioms F1–F3 of the
stable failures model.

Axiom F1. Clearly TQ is non-empty: it contains, at least, the empty trace.
It is prefix-closed since traces(P) is, and we remove an extensions-closed set
of traces.

Axiom F2. Q satisfies F2 since P does, and whenever we remove a failure,
we remove all failures with larger refusal sets.

Axiom F3. Suppose (v,X) ∈ FQ and v ˆ 〈a〉 /∈ TQ. Then (v,X) ∈
failures(P). We perform a case analysis.

• Case vˆ〈a〉 6= sˆ〈e〉 for any e ∈ Y . Then, vˆ〈a〉 is not a trace that
has been removed from P . So, because vˆ〈a〉 /∈ TQ, vˆ〈a〉 /∈ traces(P)
either. Then, because P satisfies F3, (v,X ∪ {a}) ∈ failures(P). And
hence (v,X ∪ {a}) ∈ FQ, by construction.

• Case v = s ∧ a = e for some e ∈ Y . Then (s,X) ∈ FQ and sˆ
〈e〉 /∈ TQ. Recall that (s, Y) ∈ failures(P). We must have, then,
that (s,X ∪ Y) ∈ failures(P) since if it were not, (s,X) would have
been removed and hence not be present in FQ. Hence, because P
satisfies Axiom F2 and e ∈ Y , (s,X ∪ {e}) ∈ failures(P). Then
(s,X ∪ {e}) ∈ FQ by construction, since only those failures (s, Z) for
which (s, Z ∪ Y) /∈ failures(P) are removed. Because v = s ∧ a = e,
then (v,X ∪ {a}) ∈ FQ as required.

Theorem A.0.7. For any effect E, there exists a safety effect ES and a
liveness effect EL such that

E = ES ∩ EL

Proof. This proof is a direct adaptation of that for Theorem 5 from [CS10,
Appendix D]. Given an effect E, our strategy is to construct a safety ef-
fect ES that contains E as a subset. We also construct a liveness effect EL
that contains E and then show that their intersection is E.

To construct ES , we define the safety effect Safe(E) for which the bad
thing that it asserts cannot happen is a finite set of executions that cannot
be extended so as to satisfy E. So Safe(E) contains systems all of whose
observations (i.e. finite sets of finite refusal-traces) can be extended to sat-
isfy E.

Safe(E) =

{
C[[P]] P ∈ CSP ∧ ∀M • |M | ∈ N ∧M ⊆ R[[Sys]]⇒

(∃P ′ ∈ CSP •M ⊆ R[[P ′]] ∧ C[[P ′]] ∈ E)

}
We show that Safe(E) is a safety effect. Consider any system Sys ∈ CSP

for which C[[Sys]] /∈ Safe(E). Then there exists some finite set M where

228

M ⊆ R[[Sys]] and

∀Sys ′ ∈ CSP •M ⊆ R[[Sys ′]]⇒ C[[Sys ′]] /∈ E. (A.1)

Because M ⊆ R[[Sys]], we have that C[[Sys]] /∈ E. Hence, C[[Sys]] /∈
Safe(E) ⇒ C[[Sys]] /∈ E and so (∃Sys ′ ∈ CSP • M ⊆ R[[Sys ′]] ∧ C[[Sys ′]] /∈
Safe(E)) ⇒ (∃Sys ′ ∈ CSP • M ⊆ R[[Sys ′]] ∧ C[[Sys ′]] /∈ E) since in both
cases we can set Sys ′ = Sys. It follows that

(∀Sys ′ ∈ CSP •M ⊆ R[[Sys ′]]⇒ C[[Sys ′]] /∈ E)⇒
(∀Sys ′ ∈ CSP •M ⊆ R[[Sys ′]]⇒ C[[Sys ′]] /∈ Safe(E)).

(A.2)

So, combining Equations A.1 and A.2,

∀Sys ′ ∈ CSP •M ⊆ R[[Sys ′]]⇒ C[[Sys ′]] /∈ Safe(E).

Hence Safe(E) satisfies Equation 7.12 and so is a safety effect.
To construct EL we define the liveness effect Live(E) that asserts that it’s

always possible either to satisfy E or for satisfying E to become impossible
due to Safe(E) having been violated. Formally

Live(E) = E ∪ Safe(E).

We show that Live(E) is a liveness effect. Consider any partial observation
M where |M | ∈ N ∧M ⊆ R[[P]]∩PRT for some process P ∈ CSP. Suppose
there exists some process P ′ ∈ CSP for which M ⊆ R[[P ′]] and C[[P ′]] ∈ E.
Then C[[P ′]] ∈ Live(E) as required. Otherwise, we must have that for all
processes P ′ ∈ CSP, if M ⊆ R[[P ′]] then C[[P ′]] /∈ E. Let P ′ be an arbitrary
process such that M ⊆ R[[P ′]]. Then following the same reasoning that led
to Equation A.1, C[P ′] /∈ Safe(E) so C[[P ′]] ∈ Safe(E). So C[[P ′]] ∈ Live(E)
again. Hence Live(E) satisfies Equation 7.13 and so is a liveness effect.

We now show that E ⊆ Safe(E). Consider any process P ∈ CSP for
which C[[P]] ∈ E. Then for any finite M ⊆ R[[P]] there exists a process P ′

such that M ⊆ R[[P ′]] and C[[P ′]] ∈ E, namely P itself. So C[[P]] ∈ Safe(E).
Hence, Safe(E) = E ∪ Safe(E).

Let ES = Safe(E) and EL = Live(P). Then

ES ∩ EL = Safe(E) ∩ Live(E)

= (E ∪ Safe(E)) ∩ (E ∪ Safe(E))

= E ∩ (Safe(E) ∪ Safe(E))
= E ∩ {C[[P]] | P ∈ CSP}
= E.

	Introduction
	The Problem
	Our Approach
	Contribution and Thesis Organisation

	Preliminaries
	CSP
	Syntax
	Notation
	Semantics
	Verifying Properties of CSP Processes

	The Object-Capability Model
	Current Object-Capability Systems

	Modelling Object-Capability Systems in CSP
	System Model
	An Example System
	Modelling Trusted Objects
	Non-Blocking Communication
	Single-Threaded Systems
	Data Independence

	Safety
	Safe Authenticating Trademarks
	Deriving a Safe Implementation
	Summary

	Safe Coercing Sealer-Unsealers
	Deriving a Safe Implementation

	Related Work
	Conclusion

	Analysing Systems of Arbitrary Size
	Generalising Previous Results
	Safe Abstraction and Aggregation
	Aggregation via Untrusted Objects
	Data-Independence on Aggregated Identities
	Concluding the Trademarks Safety Analysis
	Generalising the Sealer-Unsealer Safety Analysis
	Summary

	Handling Object Creation
	Implicit Object Creation via Aggregation

	Safe Revocable Membranes
	The Membrane Pattern
	Revocable Membranes
	The Single-Threaded Case
	The Concurrent Case
	Summary

	Related Work
	Conclusion

	Information Flow
	Introduction
	Defining Information Flow for Object-Capability Patterns
	Refinement
	A Necessary Assumption
	A Definition

	Testing Information Flow for Object-Capability Patterns
	Choosing an Appropriate Property
	Deriving a Testable Characterisation
	Deriving an Automatic Test

	Applying the Test
	Modelling the Data-Diode Implementation
	Analysing the Data-Diode Implementation
	Fixing the Data-Diode Implementation

	Generalising Information Flow Analyses
	Safe Abstraction and Aggregation
	Data-Independence
	Generalising the Data-Diode Analysis

	Related Work
	Conclusion

	Liveness
	Liveness in CSP
	Testing Liveness Directly in CSP
	Fairness
	Liveness under Fairness in LTL
	The Refusal-Traces Model
	LTL Semantics
	Testing for Liveness under Fairness via Refinement
	Sufficient Conditions for Liveness under Fairness

	Live Authenticating Trademarks
	Deriving a Live Trademarks Implementation
	Summary

	Generalising Liveness Analyses
	Generalising the Live Trademarks Analysis
	Summary

	Related Work
	Conclusion

	Authority: Exploring Causation
	Simple Non-Causation Properties
	Causation as Counterfactual Dependence
	Causing Event-Occurrence
	Preventing Event-Occurrence

	A Framework for Non-Causation Properties
	Encoding Effects
	Causation and Prevention

	Using the Framework to Capture Authority
	Delegable Authority
	Non-Delegable Authority
	Revocable Authority
	Single-Use Authority
	Summary

	Safety and Liveness Effects
	Defensive Correctness and Consistency
	Defining Defensively Correct Trademarks
	Discussion

	Testing Non-Causation and Non-Prevention
	Deterministic Systems
	Nondeterministic Systems

	Related Work
	Conclusion

	Conclusion
	Future Work

	Bibliography
	Subsidiary Results

