Chapter 1
SPARQL og: SPARQL with Rulesand
Quantification

Francois Bry, Tim Furche, Bruno Marnette, Clemens Ley, Benedikt Linse, and
Olga Poppe

Abstract SPARQL has become the gold-standard for RDF query languages. Never-
theless, we believethereis further room for improving RDF query languages. In this
chapter, we investigate the addition of rules and quantifier alternation to SPARQL.
That extension, called SPARQL og, extends previous RDF query languages by arbi-
trary quantifier alternation: blank nodes may occur in the scope of all, some, or none
of the universal variables of arule. In addition SPARQLog is aware of important
RDF features such as the distinction between blank nodes, literals and IRIs or the
RDFS vocabulary. The semantics of SPARQL0og is closed (every answer is an RDF
graph), but lifts RDF's restrictions on literal and blank node occurrences for inter-
mediary data. We show how to define a sound and complete operational semantics
that can be implemented using existing logic programming techniques. While full
SPARQLog is Turing complete, we identify a decidable (in fact, polynomial time)
fragment SWARQL og ensuring polynomial data-complexity inspired from data ex-
change. Furthermore, we prove that SPARQL og with no universal quantifiersin the
scope of existential ones (V3 fragment) is equivalent to full SPARQLog in pres-
ence of graph projection. Thus, the convenience of arbitrary quantifier alternation
comes, in fact, for free. These results, though here presented in the context of RDF
querying, apply similarly also in the more general setting of data exchange.

1.1 Introduction

Access to data in a machine-processable, domain-independent manner plays a cen-
tral rolein the future growth of the Internet. Information on legislative proceedings,
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census data, scientific experiments and databases, as well as the data gathered by
socia network applications is now accessible in form of RDF data. The Resource
Description Framework (RDF) isadataformat for the Web with aformal semantics
that is achieving considerable popularity. Compared to relational databases, RDF
is mostly distinguished by (1) a speciaization to ternary statements or “triples’ re-
lating a subject, via a predicate, to an object, (2) the presence of blank nodes that
allow statementswhere subject or object are unknown, and (3) specific semanticsfor
a small, predefined vocabulary (RDF Schema, or RDFS) reminiscent of an object-
oriented type system.

With the staggering amount of data available in RDF form on the Web, the sec-
ond indispensable ingredient becomes the easy selection and processing of RDF
data. For that purpose, alarge number of RDF query languages (see [9] for arecent
survey) has been proposed, with SPARQL [18] the most prominent representative.
In this paper, we build on SPARQL to remedy two of the most significant weak-
nesses of SPARQL from our perspective: SPARQL og extends SPARQL to support
the distinguishing features of RDF such as blank nodes and the logical core [15]
of the RDFS vocabulary. More technically speaking, we extend SPARQLog with
rules and quantifier alternation. In SPARQL og, Blank nodes can be constructed by
existentially quantified variables in rule heads. It alows full alternation between
existential and universal quantifiersin arule. This sharply contrasts with previous
approachesto rule-based query languages that either do not support blank nodes (in
ruleheads) at all [17, 22], or only alimited form of quantifier alternation [24, 20, 10].

To illustrate the benefits of full quantifier alternation, imagine an information
system about university courses. We distinguish three types of rules with existential
quantifiers (and thus blank nodes) based on the alternation of universal and existen-
tia quantifiers:

(2) “Someone knows each professor” can be represented in SPARQL og as

1 PREFI X uni: <http://exanple.org/uni>
FROM  <http://|nu.de/staff/>

3
EX ?pers ALL ?prof

5 CONSTRUCT { ?pers foaf:knows ?prof }
WHERE { ?prof rdf:type uni:professor }

We call such rules 3V rules. Some approaches such as [24] are limited to rules of

thisform. We show that arecursiverulelanguagethat islimited to these kind of rules
isstrictly less expressive than alanguagethat allowsrules also of the form discussed
under (2) and (3). The gain is that languages with only 3V rules are still decidable.
However, as shown in Section 1.5.1.1, there are larger fragments of SPARQL og that
are still decidable.
(2) Imagine, that we would like to state that each lecture must be “practiced” by
another course (such as atutorial or practice lab) without knowing more about that
course. This statement can not be expressed by 3V rules. In SPARQLog it can be
represented as

PREFI X uni: <http://exanple.org/uni>
2 FROM <http://I|nu.de/staff/>

4 ALL ?lec EX ?crs
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CONSTRUCT { ?crs uni:practices ?lec }
6 WHERE { ?lec rdf:type uni:lecture }

Such rules are referred to as V3 rules. Recent proposals for rule extensions to
SPARQL are limited to this form, if they consider blank nodes in rule heads at
al. Thereasonisthat in SPARQL CONSTRUCT patterns a fresh blank nodeis con-
structed for every binding of the universal variables (see Section 10.2.1in [18]). For
amore detailed comparison of SPARQL and SPARQL og, see Sections 1.4 and 1.3.
(3) To the best of our knowledge, SPARQLog is the first RDF query language that
supports the third kind of rules, where quantifiers are allowed to aternate freely:
This allows to express statements such as, for each lecture there is a course that
“practices’ that lecture and is attended by all students attending the lecture. Thisis
represented in SPARQL og as
PREFI X uni: <http://exanple.org/uni>
2 FROM <http://lmu. de/staff/>

4 ALL ?lec EX ?crs ALL ?stu
CONSTRUCT { ?crs uni:practices ?lec . ?stu uni:attends ?crs }
6 WHERE { ?lec rdf:type uni:lecture . ?stu uni:attends ?lec }

In Section 1.5.2, we show (for the first time) that rules with full quantifier alter-
nation can be normalized to V3 form if we allow triple projection (more precisely,
if we consider only the default graph in the RDF dataset as semantic of a SPAR-
QLog program). Thus full quantifier alternation does not add to the expressiveness
of SPARQLog under default-graph semantics. Rather, for al languages with v3
rules and triple projection the rewriting in Section 1.5.2 allows arbitrary quantifier
alternation to be added for free.

In addition to flexible support for existential information through full quantifier
aternation, SPARQL og captures the essentials of RDF through two further charac-
teristics: First, SPARQLog is a closed RDF query language, i.e., the answer to an
SPARQL og program is again an RDF dataset. Second, SPARQL og can express the
logical core of the RDFS semantics (pdf from [15]).

In particular, we follow RDF in alowing blank nodes not in predicate position
for answers (as well as literals only in object position). We show that these limita-
tions make the traditional approach of defining a closed semantics for a rule based
query language as initial models unpractical. Nonetheless, we show how a closed
semantics of a rule based query language for RDF can be defined that captures the
consequences of the program under RDF entailment. A consequence of that seman-
ticsisthat intermediary data, but only intermediary data, may violate the limitations
posed by RDF (see also [23]).

With this semantics SPARQLog is unsurprisingly Turing complete. Therefore,
we also consider fragmentsof SPARQL og that are decidablein polynomial time. We
(dlightly) extend results from [13] to also cover quantifier alternation and identify
a tractable fragment, called SWARQLog. It is based on the notion of super-weak
acyclicity from [13] (which is itself inspired from, though strictly more genera
than, the notion of weak-acyclicity in data-exchange [6]). SWARQL og also remains
strictly more expressive than restrictions of SPARQLog to 3V rules asin [24].
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Contributions. The paper is organised along the following contributions:

1. An extension of SPARQL with rules and free quantifier alternation, called
SPARQL og isintroduced in Section 1.4.

2. The semantics of SPARQLog is defined in terms of entailment in Section 1.4.2.
We show how this semantics can be implemented by areduction to the evaluation
of a standard logic program without existential quantifiersin Section 1.4.3.

3. SPARQLog is shown to be Turing-compl ete, but asignificant decidabl e fragment
isidentified in Section 1.5.1.1.

4. A rewriting for SPARQL og programsto reduce quantifier alternation to V3 form,
i.e., rules where no universal quantifier occursin the scope of an existential one,
isgivenin Section 1.5.2 and shown to be equivalent under default-graph seman-
tics.

5. The experimental evaluation of a basic prototype shows that the reduction to
standard logic programming easily competes with existing SPARQL engines
even when considering only the restricted fragment of SPARQLog equivalent
to SPARQL, see Section 1.5.3.

The results in this chapter are partially based on previous results on RDFLog, a
Datalog extension with quantifier alternation, see[3, 2].

1.2 Preliminaries

In this paper, we adopt the notions of RDF vocabulary, RDF graph, (simple) RDF
interpretation, and (simple) RDF entailment from [11].

Definition 1.1 (RDF Graph [11]). An RDF vocabulary V consists of two digjoint
sets called IRIs U and literals L. The blank nodes B is a set digoint from U and
L. An RDF graph is a set of RDF triples where an RDF triple is an element of
(UUB)xUx (UULUB). If t = (s,p,0) isan RDF triplethen s is the subject, p is
the predicate, and o is the object of t.

The set L of literals consists of three subsets, plain literals, typed literals and
literals with language tags. In this work we consider only plain literals (and thus
drop IL, the interpretation function for typed literals, see Section 1.3in [11], in the
following definitions).

Definition 1.2 (RDF Interpretation [11]). An interpretation | of an RDF vocab-
ulary V = (U,L) is atuple (IR,LV,IP,IEXT,IS) where IR is a non-empty set of
resources such that L C LV C IR, IP is aset of propertiesand IEXT : IP — 2/RxIR|
and IS : U — IRUIP are mappings.

RDF assigns a special meaning to a predefined vocabulary, called RDFS (RDF
Schema) vocabulary. For exampleit isrequired that IEXT (1P (rdfs:subPropertyOf))
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is transitive and reflexive. The formulation of theses constraints on RDF interpre-
tation makes use of a notion of a class. We have omitted this notion in the defi-
nition above for ssimplicity. The logical core of RDFS has been identified in [15],
denoted as pdf. An RDF interpretation | is a pdf interpretation if | satisfied the
constraints specified in Definition 3 in [15]. pdf entailment is the same as RDF
entailment, but assigns specific semantics to the RDFS vocabulary (e.g., transitivity
of rdf:subClassOf).

Definition 1.3 (Interpretation of an RDF Graph [11]). Let | be the RDF (pdf)
interpretation (IR, LV,IP,IEXT,IS) and A : B — IR amapping. Then [ + Al(e) = a
if eistheliteral a, [I+A](e) = 1S(e) if eisalRl, [I4+A](e) = A(e) if e is ablank
node, and [l + Al(e) = true if e = (s,p,0) is an RDF triple over V, I(p) € IP and
(I(s),1(0)) € IEXT(I(p)). Finaly I(g) = trueif there isamapping A : B — IR such
that [| + A](t) = truefor al RDF triplest € g.

The semantics of RDF is completed by the notion of entailment: An RDF graph
g RDF-entails (pd f-entails) an RDF graph h if for all RDF (pdf) interpretations|,
I(h) = trueif I(g) = true [11]. Thisis eguivalent to saying that there is a homomor-
phism from g to h.

We extend the notion of RDF graph to an RDF dataset asin SPARQL. In[18] an
RDF dataset is defined as a set of RDF graphs each associated with an identifying
IRI of which oneis marked as the default graph. Here, we choose aformalization of
RDF dataset close to an RDF graph that simplifies latter notation, but captures the
same intuition.

Definition 1.4 (RDF Dataset). An RDF dataset D is a set of quadruplesfrom (U U
B) x Ux (UULUB) x (Uu{e}) such that for al (s, p,0,9), (s, p/,0,d) it holds
that if {s,0} N{s,0'} =b-0andbe Btheng=g'.

Thus, an RDF dataset is a set of triples each extended with an IRI or ¢ that indi-
cates the provenance of the triple from one RDF graphs. Triples from two distinct
RDF graphsin asame RDF dataset may not share any blank node. In other words, A
RDF dataset is a set of extended RDF triples, where extended means that each triple
is assigned a provenance in the form of the name of an RDF graph. A RDF dataset
requires that if the same blank node occur in two extended triples of the dataset,
then these triples have the same provenance. ¢ indicates that the triple occurs in
the default graph, otherwise the IRI identifies the named graph the triple originates
from.

For an RDF dataset D, we denote with D[g] = {(s, p,0) : 3(s,p,0,9) € D} the
triples (without the graph identifier) in D that belong to the RDF graph with IRI
ge Uu{o}.

We can lift the notion of RDF-entailment to RDF datasets as follows: An RDF
dataset D RDF-entails (pd f-entails) an RDF dataset E iff for al g € IRIU{¢} D[g]
RDF-entails E[g].

For the semantics of SPARQLog, we make use of the following mapping from
RDF graphs and datasets to first-order formulas:
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Definition 1.5 (Canonical Formula). For an RDF graph g = {(s1,p1,01),- -,
(Sn, Pn,On) } we define the canonical formula

¢(g) =db;... Ebm(R(Sl, pl,Ol) VARAN R(Sq, Pn, On))

where by, ..., by are the blank nodes occurring in g and Ris afixed ternary relation
symbol.

For an RDF dataset D containing the graph identifiers uy, ..., u, we define the
canonical formula

¢(D)= A Ebﬁi...ﬂb‘rﬁhi( /\  R(spou))

1<i<n (s,p,0,uj)eD

whereby',..., by, arethe blank nodes occurring in the graph with identifier u; and
Risafixed relation symbol with arity 4.

Itisworth noting (and easy to prove) that the notion of RDF entailment coincides
with first-order entailment on the canonical formulas of RDF graphs, resp. RDF
datasets.

Lemma 1.1. Let g, h be RDF graphs (datasets). Then g RDF-entails h iff ¢(g)
FO-entails ¢ (h).

1.3 SPARQL RuleLanguages

1.3.1 SPARQL and Rule Extensions of SPARQL

As briefly outlined above, SPARQLog is distinguished from previous RDF query
languages by the support for arbitrary quantifier alternation. SPARQL [18], which
is quickly becoming the yardstick for RDF query languages, supportsonly V3 quan-
tification in what corresponds to rule heads: Each blank node in a CONSTRUCT
clauseisinstantiated once for each binding tuple of the (universal) variablesin that
clause. Otherwise, SPARQL og and SPARQL queriesareroughly equivalent withthe
exception of negation and typed literals that are not supported in SPARQL og. Fur-
thermore, SPARQL only considers what amounts to a single (non-recursive) rule.

There have been several proposals[17, 20] for extending SPARQL with multiple
rules. Typically these either explicitly do not deal with blank nodesin CONSTRUCT
clauses as [17] or consider only V3 quantification as in basic SPARQL [20]. Their
semantics also differs considerably from SPARQL og as they support negation with
answer-set or well-founded semantics. It is worth noting that the characterization
of the decidable class of super-weakly acyclic programs as well as the V3 rewriting
carry over to SPARQL og with negation fairly immediately.
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As SPARQLog [20] consider querying not asingle RDF graph but a set of named
RDF graphs with may contain dynamically computed views. The authors extend
named RDF graphsto so called networked graphs allowing:

1. “reuse of RDF graphs enabling the dynamic copying of contentsfrom one graph
to the other,

2. viewing RDF graphsin away that is defined by another RDF graph and

3. dynamic networking of RDF graphs. RDF graphs constitute databases and the
meaning they describe comes from their dynamic networking” [20].

In a sense, networked graphs are a mixture of SPARQL datasets and SPARQLog
programs.

Definition 1.6 (Networ ked Graph, adopted from [20]). A networked graph Gy =
(N,G,[Gy,...,Gn)],V) is encoded in a named RDF graph with name N where G is
an RDF graph containing the explicit triples to be included in Gy. [G1,...,Gpn] isa
list of networked graphs and v a mapping from that list of networked graphs to an
RDF graph called the view definition of Gy. The view definition is included in Gy
by statements of the form:

N g: definedBy "query".

wherethe prefix g isappropriately boundand " quer y" aliteral containinga CON-
STRUCT rule. We call theliteral asub-query of the networked graph definition. The
view definition is the union of the sub-queries.

The following example from [20] illustrates the notion of networked graph. We
assume that the named RDF graph ISWebGraph contains information about re-
searchers working at the Information Systems and Semantic Web lab of the In-
stitute of computer science (IFI) and the named RDF graph IFIAdminGraph infor-
mation about the administrative staff at IFl. Then the named graph u : IFIGraph
shown below is a networked graph: (u:IFIGraph,{ u:ISWeb u:workingGroupOf
u:IFl. u:IFl u:belongsTo u:CSDepartment }, [ISWebGraph, IFIAdminGraph], v).
v maps the RDF named graph IFIAdminGraph to itself and the RDF named graph
ISWebGraph to an RDF graph about personsthat work at u: | Fl if they are known
to work at u:ISWeb.

1u:l FlGraph {
u: | SWeb u: wor ki ngG oupOf u: I FI . u:lFl u:bel ongsTo u: CSDepart nent .
3 u:l Fl Graph g:definedBy "CONSTRUCT { ?s ?p 70 }
FROM NAMED u: | FI Adm nGr aph

5 WHERE { GRAPH u: | FI Admi nGraph { ?s ?p 2?0 } }"
u: | FI Graph g: definedBy "CONSTRUCT { ?person u:worksAt u:lFl }
7 FROM NAMED u: | SWebGr aph
VWHERE { GRAPH u: | SWebG aph {
9 ?person u:worksAt u:lSweb. }" }

The advantage of this approach is the ability to encode the view definitions di-
rectly into RDF graphs where their definitions can also be processed by RDF tools
that are not networked aware.

In SPARQL og, we can provide the same definition (using u: | FI Gr aph as de-
fault graph). However, SPARQLog also alows multiple different named graphs as
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targetsfor the same construction. Moreimportantly, SPARQL og providesfull quan-
tifier alternation and has a far simpler semantics (admittedly partly due to the ab-
sence of negation):

1 FROM NAMED u: | FI Adnmi nGr aph
FROM NAMED u: | SWebGr aph
3
CONSTRUCT { wu: | SWeb u: wor ki ngGroupOf u: | FI.
5 u: | FI u: bel ongsTo u: CSDepart nent }

7 ALL ?s ?p ?0
CONSTRUCT { ?s ?p ?0 }
9 WHERE GRAPH u: | FI Admi nGraph { ?s ?p ?0 }

11 ALL ?person
CONSTRUCT { ?person u:worksAt u:lFl }
13 WHERE GRAPH u: | SWebGraph { ?person u:worksAt u:lSWeb. }

1.3.2 Other Rule-based RDF Query Languages

The other class of recursive, rule-based query languages for RDF are adaptations
of F-Logic for RDF: Asin the case of extending SPARQL, these often do not con-
sider blank nodes in rule heads at all [22]. To the best of our knowledge, the only
decidable rule-based RDF query language with blank nodes in rule heads has been
proposed in [24]. Decidability is obtained by restricting rules to 3V form. In this
paper, we show that a much less restrictive (and strict super-) class of SPARQLog
programsis still decidable, viz. super-weakly acyclic SPARQLog.

Most other RDF query languages such as RQL [12], [10], or SeRQL [1] are
limited to what amounts to single SPARQL og rules and do not treat issues such as
rule chaining, query closure (i.e., that an answer to a query is again an RDF graph
or dataset), and arbitrary quantifier alternation.

SPARQLog shares some similarity with rule extensions for description logics.
[19] gives an overview over the limits and possibilities of combining description
logics and datalog with and without negation, thereby pointing out minimal un-
decidable combinations of the two methodologies. Due to the possibility of deriv-
ing concepts from base concepts, concept and role inclusion axioms, which are not
present in SPARQL og, this problemis fundamentally different and harder to tackle.
In particular, the undecidability results from [19] do not carry over to SPARQLog.
Moreover such approaches either disallow existential quantifiersin rule heads (but
alow them in facts or TBox-Axioms), or use full logic programming with function
symbols and negation as in dlvhex.

1.3.3 Quantifier Alternation in Data Exchange

Asdiscussed in more detail in Chapter 11, existential quantification and its expres-
siveness have been extensively studied in dataexchange[6]. A dataexchange setting
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consists of two database schemata, a source schema Sand the target schema T, and
aset of constraints X. The data exchange problemisto find, given a source database
| over schema S, a target database J over schema T such that (1,J) satisfies 2. In
thiscase J is called a solution for the data exchange problemfor | and 2. A solution
J is universal, if there is a homomorphism from J to any other solution J’ of the
setting.

Different classes of constraints have been considered. An important class are tu-
pel generating dependencies (TGD). These are roughly SPARQL og rules where the
quantifier alternation isrestricted to one aternation of theform V3. Thereforeadata
exchange problem for TGDs resembl es the problem of computing the semantics for
agiven SPARQL og program P with dataset D. Hence the set of universal solutions
could be considered a suitable semantics for P. Universal solutions have a drawback
tough: they are not closed under homomorphism. Hence if universal solutions were
used to define the semantics of SPARQL og this semantics would not be closed un-
der RDF entailment. Still it is easy to see that the set of universal solutions of P is
a subset of the denotational semantics [[P]] defined in Section 1.4.2. In addition we
show that the operational semantics [P] is auniversal solution (Lemma1.2). Thisis
not surprising since our operational semanticsis closely related to the chase proce-
dure which can be used to compute universal solutions [4]. Nonetheless one could
state that we have extended the chase procedure to awider class of constraints (by
allowing arbitrary quantifier alternation) and to a more general data model where
the input database can contain blank nodes.

It has been observed in [8] that TGDs are not closed under composition. That
is there are two finite sets of TGDs X; and 2> such that there is no finite set of
TGDs that defines the same database to database mapping as X1 o X». Nonetheless
[8] shows that there is a finite set X of non-TGDs constraints that is equivalent to
31035, It turns out that this set X isin fact a set constraints with V3V quantifier
aternation that can be expressed in SPARQL og. This showsthat if projectionis not
alowed (as in the standard data exchange setting or when all rulesin a SPARQLog
program are required to construct into the default graph), then the extra quantifier
alternation does add expressive power.

1.4 SPARQL og: SPARQL with Rules and Quantification

SPARQL has quickly become the standard for querying RDF data. Part of its suc-
cess is certainly that it is a fairly compact language. Here we want to investigate
how SPARQL can be extended with two features, rules and arbitrary quantification,
without sacrificing most of its simplicity and the basic flavor of the language.

Rules are an acknowledged part of the Semantic Web vision. The CONSTRUCT
query form of SPARQL can be seen as aform of non-recursive single-rule program
and offer an obvious start point for a full rule language. With full rules SPARQL
becomesby itself capable of computing such important concepts as the subsumption
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hierarchy in RDFS data or a person’s social network in FOAF (friend of a friend)
data.

The following SPARQLog program illustrates how we extend SPARQL’s syn-
tax to accommodate rules. Rather than a single CONSTRUCT-WHERE clause, in the
following called rule, we allow any number of these to occur in the document. The
bodiesof SPARQL og rulesare mostly standard SPARQL WHERE clauses. The heads
are CONSTRUCT clauses that may be adorned with GRAPH patterns that specify the
target graph of the rule. If no such pattern is present, the result of the rule is added
to the default graph of the dataset. If such a pattern is present, it is added to the
graph named in the GRAPH pattern. This alows, e.g., for hiding intermediary re-
sults. Note, that the dataset clauses FROMand FROM NAMED occur only once for
al rules. Thus all rules query the same dataset.

1 PREFI X : <htt p://exanpl e. or g/ #ns>.
PREFI X foaf: <http://xm ns.com foaf/0.1/>.

3 PREFI X wine: <http://ww. w3. org/ TR/ 2003/ PR- owl - gui de- 20031209/ wi ne#>
FROM <http://exanpl e. or g>

5 FROM NAMED <htt p: // exanpl e. or g/ bavari ans>

7 ALL ?x ?y
CONSTRUCT { ?x rdf:type :bavarian-|ook-alike } Rs
o WHERE { { { ?x :likes ?y . ?y rdf:type wi ne: Wne .
?y wine:locatedln wine:ltalianRegion } UN ON
1 { ?x :likes ?y . ?y rdf:type wi ne: Wne .
?y wine:locatedln wine: FrenchRegion } } .
13 GRAPH <ht t p: // exanpl e. or g/ bavari ans>
{ ?x rdf:type :bavarian }
15
ALL ?x
17 CONSTRUCT GRAPH <ht t p: // exanpl e. or g/ bavari ans> R2
{ ?x rdf:type :bavarian }
19 WHERE { ?x rdf:type : eur opean. ?x foaf: knows "Edrmund" }
21 ALL ?x
CONSTRUCT { ?x rdf:type :european } R1
23 WHERE { ?x foaf:knows "Angela" . ?x foaf: knows "N col as" .

?x foaf: knows "Elisabeth" }

In the example above, Ry queries the default dataset (there is no GRAPH pattern
in the body) to find people who know the German chancellor, the French president,
and the British queen. Triples classifying these people as European are added to the
default graph. In Ry that default graph is queried for such people that also know
the former Bavarian prime minister. Triples classifying such people as Bavarian are
added to the named graph http://example.org/bavariansthat is also included in the
dataset in the dataset clause of line 5. Rs queries that named graph (containing the
results of R, as well as any statements contained in the graph from the beginning)
for Bavarians. If the default graph contains the information that such a person also
likes Italian or French wine, then wethat person can not be areal Bavarian, but must
be alook-alike posing as a Bavarian.

Note that all rules carry explicit quantification clauses, e.g.,, ALL ?x. These
clauses are added to support SPARQL 0g's second major addition over SPARQL :

SPARQL’s CONSTRUCT rules alow the construction of RDF graphs. Unfortu-
nately, the construction of one of RDF's most significant innovations, the provision
of existential information in form of blank nodes, is poorly supported: Blank nodes
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can be constructed, but they are always scoped over all (universal) variables of the
query. This makes most grouping tasks involving blank nodes (e.g., the construction
of a container for al authors for each paper) impossible. In absence of rulesthisis
a significant limitation. We suggest the use of an explicit quantifier clause to over-
comethislimitation: Rather than assuming that all blank nodesto be constructed are
in the scope of all universal variables, we allow arbitrary quantifier quantification as
in first-order logic.

To illustrate the issue of quantifier alternation and what kind of queries can be
expressed, consider three examples. We choose to use explicit existential variables
rather than blank nodes as their use in SPARQL is somewhat confusing (in bodies
they play the role of normal variables, but in heads they are treated as existential).

The first, By, asserts that there is a Presenter for each TalkEvent who also
attends that same event.

PREFI X eswc: <http://ww. eswc2006. or g/t echnol ogi es/ ont ol ogy#>

ALL ?x EX ?y B1
4 CONSTRUCT { ?y eswc: attendeeAt ?x . ?y rdf:type eswc: Presenter }
VWHERE { ?x rdf:type eswc: Tal kEvent }

The second, By, asserts that there is a MeetingRoomPlace that is the location
of al talks.

1 EX ?x ALL ?y B,
CONSTRUCT { ?y eswc: hasLocation ?x . ?x rdf:type eswc: Meeti ngRoonPl ace }
3 WHERE { ?y rdf:type eswc: Tal kEvent }

The third, B3, asserts that there for each TalkEvent there is someone that holds
that talk and therefore is known by all attendees of the talk.

1 ALL ?x EX ?y ALL ?z B3
CONSTRUCT { ?x eswc: hel dBy ?y . ?z foaf:knows ?y }
3 WHERE { ?x rdf:type eswc: Tal kEvent. ?z eswc: attendeeAt ?x }

The difference between the three cases is, of course, the scope of the existen-
tia variable (or blank node): In the first case, which is the only one unmodified
SPARQL supports, one fresh blank node is created for each binding of the univer-
sal variable. In the second case, a single blank node is created that is the object in
al hasLocation triples. In the third case, one fresh blank node is created for each
binding of ?x (each talk), but that same blank nodeis object in al knows triplesfor
attendees of that talk.

It is worth noting that the latter two cases are essential for constructing many
group or set like structuresin RDF. For instance for RDF containers, RDF represen-
tations of n-ary relations [16], and RDF reification it is best and common practice
to use blank nodes for the container, relation, or statement object. Unfortunately,
SPARQL does not support either of these cases.

In presence of rules (and thus not in SPARQL) and graph projection we show
in Section 1.5.2 that quantifier alternation, though convenient, actually does not in-
crease the expressiveness. In other words, if rules and graph projection is present
cases 2 and 3 can be expressed using only rules as in case 1. Nevertheless, even
in these cases quantifier aternation is far more convenient (see rewriting in Sec-
tion 1.5.2).
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1.4.1 SPARQLog Syntax

As illustrated above, SPARQLog mostly adds rules and quantifier alternation to
SPARQL. There are afew other restrictions and simplifications:

1. We do not consider OPTI ONAL and FI LTER expressions in this chapter. As
negation in SPARQL is expressed via OPTI ONAL and i sBound, SPARQLog
as presented hereis based on positive SPARQL.

2. As stated above, we do not alow blank nodes to occur in bodies or heads of
SPARQLog rules. In bodies blank nodes can be replaced by fresh universal vari-
ables, in heads with fresh existential ones.

3. We dlow only IRIs or universal variables, but no existential variables, for the
graph identifier (directly after GRAPH) in rule heads.

4. In contrast to SPARQL, we do require that all SPARQLog rules are range-
restricted: If x is an universal variable in the head of arule R than x must occur
in the body of R. If there is an existential variabley in the head of Rthat isin the
scope of an universal variable x, then x must occur in the body of R.

5. For simplicity, we only consider basic triple patterns and none of the abbreviation
syntaxesfrom SPARQL (no predicate-object or object lists, no syntactic sugar for
collectionsorr df : t ype).

Literals and IRIs are as in RDF graphs (see Section 1.2), variables are from an
infinite set digoint with IRIs, literals, and blank nodes.

(prefix-clause)* (dataset-clause) (rule)+

‘FROM (iri) (‘FROM ‘NAMVED' (iri))*

‘PREFI X' (identifier)?*: " (iri)

(quantifier-clause)* (construct-clause) (where-clause)?
‘ALL’ (variable)+ | ‘EX (variable)+

‘CONSTRUCT’ ‘{’ (triple-pattern) ‘} ' ? (construct-template)*
‘GRAPH ((iri) | (variable)) ‘{" (triple-pattern) ‘}’

‘WHERE' ‘{" (graph-pattern) ‘}’

(‘GRAPH ((iri) | (variable)))?‘{" (graph-pattern) ‘}’

{" (graph-pattern)* }’ ‘“UNI ON' ‘{’ (graph-pattern)‘}’

(program)
(dataset-clause)
(prefix-clause)
(rule)
(quantifier-clause)
(construct-clause)
(construct-templ ate)
(where-clause)
(graph-pattern)

| (graph-pattern) (‘. ' (graph-pattern))?
(basic-graph-pattern) ::= (triple-pattern) (.’ (basic-graph-pattern))?
(triple-pattern) := (resource) (predicate) (resource)
(resource) = (iriy | (variable) | (literal)
(predicate) = (rl) | (variable)
(variable) = ‘2’ (identifier)

Fig. 1.1 Syntax of SPARQLog

With the above restrictions, Figure 1.1 gives the syntax of SPARQL og. For sim-
plicity, we ignore namespace prefixes and all associated issues in the following.
Prefix resolution can be added easily, but only distracts from the salient points of
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this chapter. We allow WHERE clauses to be omitted entirely. In this case the rule
head is always true (afact).

1.4.2 Denotational Semanticsfor SPARQLog

SPARQL'’s semantic is defined with a rather ad-hoc algebrain [18]. A more com-
plete algebraic semantics of SPARQL is given in Chapter 9 of this volume. For
SPARQL og a semantics based on (simple) RDF entailment seems the most natural,
in particular since RDF entailment coincides with FO entailment of the canonical
formulas of RDF datasets.

To this end, we first define a canonical formula also for SPARQL og programs.
This can be seen as atrandation of SPARQL og to first-order logic.

Definition 1.7 (Canonical Formulafor SPARQL og Program). Let P be a SPAR-
QLog program and ug,...,U, the identifiers for RDF graphs Gy, ...,Gy. Then the
canonical formula ¢ (P) of P is defined as follows:

¢ (FROMu; Q) = /\(s,p,o)eGi (S,p,0,0) A $(Q)
¢ (FROMNAMED u; Q) = Aspoea (s,p,0,ui) A §(Q)
¢(ALL vars Q) =Vvars: ¢(Q)
¢(EX varsQ) =3Jvars: ¢(Q)
¢ (CONSTRUCT template Q) = ¢q(template, o) ¢ (Q)

¢ (WHERE pattern) = — ¢gy(pattern, o)

¢g(pattern UNI ONQ, c) = ¢g(pattern,c) v ¢q(Q,c)
¢g(GRAPHVvar Q,c) = ¢g(Q,var)

¢g(GRAPHIri Q,c) = ¢g(Q,iri)

¢g(pattern. Q,c) = ¢g(pattern,c) A ¢g(Q,c)
¢g({ pattern},c) = ¢g((pattern),c)

¢g(sub pred obj, c) = R(¢(sub), ¢ (pred), ¢(obj),c)

The canonical formulais pretty straightforward: the head of a SPARQLog rule,
i.e., the CONSTRUCT clausg, is translated into a conjunction that forms the conse-
guence of an implication. The WHERE clause is translated into the condition of the
implication. It may contain both disjunctions and conjunctions. Noteworthy is the
propagation of the identifier of the current query graph in the dataset by means of
the second parameter of ¢g.

For instance, rule Bz from Section 1.4 has the following canonical formula
(brackets are normalized):

vx3yvz: R(x,eswc:heldBy,y, o) A R(z foaf:knows,y, <)
— R(x, rdf:type, eswc:TalkEvent, o) A R(z eswc : attendeeAt, X, o).

Hereall triples occur in the default graph. In contrast, the canonical formulafor rule
R highlights that the default graph is queried, but that the consequences are triples
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in anamed graph:

VX : R(x, rdf:type, :bavarian,<ht t p: / / exanpl e. or g/ bavari ans>)
— R(x,rdf:type, :european, ¢) A R(z, foaf:knows,” Edmund”, ).

It is not generally agreed upon what the semantics of a rule based RDF query
language should be if existentia variables are allowed in the head. In contrast, it
is agreed that the semantics of a logic program with only universally quantified
variablesis its minimal Herbrand model.

We deal with this problem by defining the semantics of SPARQLog in terms of
entailment. More precisely we define the semantics of an SPARQLog program P
to be the set of all RDF datasets D whose canonical formulas entail the same RDF
datasets as the canonical formulaof P.

Definition 1.8 (Denotational Semantics of SPARQL og). Let P be an SPARQLog
program. The denotational semantics [[P]] of P isthe set of all RDF datasets D, such
that for all RDF datasets E it holdsthat ¢ (D) entails ¢ (E) if and only if ¢ (P) entails

¢(E).

Observethat the semantics of an SPARQL og program isan infinite set of possibly
infinite RDF datasets. However, we choose the above semantics (and not, e.g., the
set of al datasets whose canonical formulas follow logically from ¢ (P)) to ensure
that [[P]] forms an equivalence class under (RDF) entailment. Therefore any element
(in particular, any finite element if such exists) of [[P]] characterizes the entire set.
We consider an implementation of SPARQL og sound and completeif it returns any
element of [P] for agiven SPARQLog program P.

This semantics is not RDFS aware. However, as stated above [15] gives a set of
first-order formulas that characterize the logical core of RDFS (there called p fs).
These formulas can be expressed by SPARQL og rules and added to a program, if an
RDFS aware semanticsis desired.

1.4.3 Relational Operational Semanticsfor SPARLog

The goal of this section isto give an evaluation of an SPARQL og program P by first
translating P into a logic program s(P), using the well-studied notion of Skolemi-
sation [5], and then evaluating this program s(P) using standard logic programming
or relational technology. Two post processing steps (Unskolemisation and RDF nor-
malization) make sure that the result is an RDF graph in the denotational semantics
of P.

We use the well studied notion of Skolemisation [5] to translate an SPARQLog
program into alogic program:

Definition 1.9 (Skolemisation [5]). Let X and I" bedigjoint a phabets, ¢ = Vx3y(y
aformulaover XU and f € I'. A I'-Skolemisation step st maps ¢ to si (@) :=
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Vxy{y « f(X)}. (We denote with ¢ {t < t’} the formula ¢ where al occurrences
of the term t are replaced by the term t’). A I'-Skolemisation s is a composition
St, 0...08s, of I'-Skolemisation steps such that f; doesnot occurinsy, , o...osf, (@)
and s(¢) contains no existential variables. The definition of a Skolemisation is ex-
tended to sets in the usual way.

The Skolemisation of (the canonical formula of) an SPARQLog program P is
equivalent to arange restricted logic program, which we denote by s(¢(P)). If nec-
essary, disjunction in rule bodies and conjunction in rule heads is expanded into
multiple rules as usual. Any logic programming engine can compute the minimal
Herbrand model Mgy p)) Of S(¢(P)).

For instance, the following logic program is the Skolemisation s(¢(P)) of the
SPARQL og rule Bz from Section 1.4 where s replaces the existential variabley in P
by the term s,(x):

{vxz: R(x,eswc:heldBy, s,(x), o)
— R(x, rdf:type, eswc:TalkEvent, o) A R(z eswc : attendeeAt, X, ).
Vxz: R(z,foaf:knows, s,(x), )
— R(x, rdf:type, eswc:TalkEvent, o) A R(z eswc : attendeeAt, x, o). }

We define ¢ (Mg4(p))) to be the conjunction of all ground atoms that are true in
Ms(¢(p))- However, ¢ (Mgp)) might not be the canonical formula of an element of
[P] for two reasons. First, the example shows that ¢(Mgp)) might contain atoms
with skolem terms, which are not entailed by ¢(P). Second, ¢(Mgp)) can contain
atoms with literals in subject or predicate position or blank nodes in predicate po-
sition. Such atoms are not allowed in an RDF graph and therefore never part of an
element of [P].

We can avoid the first problem by “undoing” the Skolemisation: replacing each
Skolemtermin ¢ (Mgp) ) by afresh, distinct blank node. We formalise this operation
astheinverse of a Skolemisation called Unskolemisation.

Definition 1.10 (Unskolemisation). Let ¥ and I' be digoint aphabets and ¢ a
ground, possibly infinite, and quantifier free formulaover X UT . Let t be the se-
quence of all ground terms f (u) where f isin I and u'is a sequence of terms over
S UT. Then the I'-Unskolemisation u maps ¢ to u(¢) := 3x(@{t + x}). wherex’
isasequence of fresh variables.

To address the second issue, we remove all atoms with literals or blank nodesin
predicate position (no RDF graph may contain such atriple or any triple entailed by
it). In addition we remove each triplet in graph u that contains aliteral | in subject
position and add two triplest; andt, to u wheret; isobtained fromt by replacing an
occurrenceof aliteral | insubject position by afresh blank node b, andt; is obtained
fromt by replacing all occurrencesof | by b,. Dropping these atoms does not affect
the soundness or completeness (see below) as these atoms can by definition not be
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part of an RDF dataset. Nevertheless, allowing them during the evaluation is useful
and even necessary for certain programs (for details see [15]).

Definition 1.11 (Normalisation Operator). Let ¢ be a formula of the form
Ix(ar(X) A... Aan(X)) where each aj(X) = T (t1,t2,t3) for somety,to,t3 € (UUBU
L). Let L’ C L be the set of literals that occur in the first argument of an atom in
@. We define u : UUBUL — UUBUL to be the injection such that u(t) =b
for some fresh blank node b (not in ¢) if t € L’ and u(t) =t otherwise. Then

11(g) = {I1(ay(X)).... [T(an(¥)) } and

T iftoe BUL
IO(T(ty,t,t3)) = {(M(tl),tz,t3)/\ (u(ty),t2,u(tz)) otherwise

The normalisation operator ensures that, though intermediary atoms may contain
blank nodes in predicate position (see [23] for examples where this is useful), the
final answer of an SPARQL og program never contains such atoms.

Armed with these notions of Skolemisation, Unskolemisation and Normalisation,
we finally define the operational semantics of SPARQL og as follows:

Definition 1.12 (Operational Semantics of SPARQL 0g). Let P be an SPARQLog
program over X, saI'-Skolemisation for P, and u an I'-Unskolemisation. Then the
operational semantics [P] of P is [P] := IT (u(¢(Ms4(p))))) Where ¢(Mgyp))) is
as defined above: the conjunction of all ground atoms that are true in the minimal

Herbrand model of s(¢(P)).

1.4.3.1 Soundness and Completeness

Even though we do not require that elements of the denotational semantics [[P]] of an
SPARQL og program P are models of P it holdsthat u(¢ (Mg (p)))) has acanonical
structure that is not only a model of P but even a universal model (or universal
solution in the sense of [7]). Thusif we alow literalsin subject position and blank
nodesin subject or predicate position, we can omit IT from the operational semantics
and compute a model of P.

To formulate this more precisely, we define an extended Herbrand structure A
over alphabet X and variables Var as a structure (D, Rel, Fun) where D is the set
of (possibly non-ground) terms over = and Var, and every function f A is defined
by fA(ty,...,tn) = f(ts,...,t,). We extend the definition of Unskolemisation from
formulas to extended Herbrand structures: if u is an Unskolemisation that replaces
t by xthen u(M) is the extended Herbrand structure obtained from M by renaming
the domain elementst by x.

Lemma 1.2. Let P be an SPARQLog program. Then Ap = U(Mg(4(py)) = ¢(P) and
¢(P) = u(¢(Msy(p))) = Y-

Intuitively, Ap = ¢(P) means that yp captures all the information in P and
¢(P) = yp means that it does not assert anything that is not asserted by P. From
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these two key observations, we can prove that the operational semantics of SPAR-
QLog is both sound and complete with respect to the denotational semantics.

Theorem 1.1. Let P be an SPARQLog program. Then [P] € [[P].

1.4.3.2 Proof of Lemma 1.2 and Theorem 1.1

In the proof of Lemma 1.2 we often make use of the Substitution lemma, which we
state here without proof.

Lemma 1.3 (Substitution Lemma). Let ¢ be a sentence and M an inter pretation.
Then

MEg iff MdEwpX
if = @{t — x} and M interpretest asd.

We now recall some well known results about Skolemisation. Symmetric proofs
show the following properties of Unskolemisation.

Lemma 1.4 (Skolemisation Lemma). Let X, I" and IT be disjoint alphabetsand ¢
afiniteformulaover XUT . Let shea IT-Skolemisation for ¢, uan I'-Unskolemisation
for @. Then

¢ E=u(e)
s(¢) = ¢.
u(p) issatisfiableiff ¢ is satisfiable.
@ is satisfiableiff s(¢) is satisfiable.

Corollary 1.1 (of the Skolemisation Lemma). Let ¢ beafiniteformulaover Zur
and u an I'-Unskolemisation for ¢. If Sisamodel of u(g) over X then there exists
anextension T of Son I which isa model of ¢.

Before we can turn to the actual proofs of the soundness and completeness of the
operational semantics, we have to establish some further properties of Unskolem-
ization. These are the central observations to show that every RDF dataset which
is entailed by the operational semantics of an SPARQLog program P is entailed by

¢ (P).

Lemma 1.5. Let ¢ and y beformulasover XU I where ¢ isfiniteand y ispossibly
infinite and ground. Let u be an I'-Unskolemisation for ¢. Then

@ vy impliesthat u(g) = u(y).

Proof. Let Sbeamodel over X of u(p). As g isfinite, by Corallary 1.1 thereisan
extension T of Son I which is amodel of ¢. By the assumption T is aso a model
of y. Then it follows from Lemma 1.4 that T isamodel of u(y). Asu(y) contains
no symbol fromI" and T is an extension of Son I', Sisamodel of u(y).
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Lemma 1.6. Let ¢ be aformula over X, M an extended Herbrand structure over ~
and Var, and u an I'-Unskolemisation for ¢. Then

Mg impliesthat u(M) = u(g)

Proof. Assume that M |= ¢. Let VX(y) = ¢. Then for all sequences of terms t it
holds that M = vy (t). As M is an extended Herbrand structure, it interprets every
constant ¢ by c. Thereforeit follows from the substitution Lemmathat M |= (y{C «
M,

barc). Observe that u(M) be the extended Herbrand structure obtained from M by

renaming the domain elements c by y. Thusu(M) = (y{C < y})(t). Finally by the
definition of entailment and Unskolemisation it holds that u(M) |= u(e).

Proof of Lemma 1.2. Let P be an SPARQL og program over alphabet X. We need
to show that Ap = U(Ms(4(p))) = ¢(P) and ¢(P) = u (¢ (Msg(p)))) = P

To show that Ap = ¢(P), observe that by definition Mg p)) is a model of
s(¢(P)). It therefore follows from Lemma 1.6 that u(Mg4(p))) isamodel of P.

For the second part observe that as s(¢(P)) is a logic program it follows that
s(¢(P)) entails each atom that is true in Mg ,(p)). Thus s(¢(P)) also entails the
canonical formula ¢ (Mg p))) Of Mg4(p))- Lt ubetheinverseof s. Ass(¢(P)) isa
finite set of finite formulas and yp is aground formulait follows from Lemma 1.5
that uos(¢(P)) = ¢ (P) entailsu (¢ (Mgy(p))))-

Proof of Theorem 1.1. Theaim isto show that every RDF dataset that is entailed by
an SPARQL og program is also entailed by the operational semantics. First we need
to establish afew more properties of canonical formulas of SPARQL og programs:

Lemmal1.7. Let P be a logic program over alphabet ¥ and Mp its minimal Her-
brand model. Let g be an RDF dataset and ¢ (g) = 3x( A ) its canonical formula.
Then the following statements are equivalent

(@) P = Ay{x« t} for some sequence of variables x and ground terms t
(b) PE=¢(g)
(©) Mp = ¢(g)

Proof. Itistrivial that (a) implies(b). To seethat (b) implies (c) observethat Mp isa
model of P. To show that (c) implies (a) assumethat (c) istrue. AsMp isaHerbrand
model thereisasequence of termst such that Mp, t isamodel of A @(x). Inaddition,
Mp interprets all terms by themselves. Thusit follows from the substitution lemma
that Mp isamodel of A @{x « t }. Therefore Mp isamodel of a{x« t } for every
ac @.Asa{x« t} isaground atom it followsthat P = a{x « t }. Asthisistrue
for every ac @ it holdsthat P = A\ @{X «+ t } for some sequence of termst.

With these propertieswe can now show the Theorem 1.1: Let P bean SPARQLog
program and yp = U(¢ (Mg(¢(p)))). We first show that that for any RDF graph g

¢(P)=o(e) iff vrl=o(e)
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The direction from right to left follows from the second part of Theorem 1.2. For
the direction from left toright let ¢ (g) = Ix( A &) where & isaset of atom. Assume
that ¢ (P) = ¢(g). By Lemmal.4s(¢(P)) = ¢(g) for any Skolemisation s of ¢ (P).
Ass(¢(P)) isalogic program it follows from Lemma 1.7 that there is a sequence
t of terms such that s(¢(P)) = AE{X« t}. Thus for al atomsac E{x« t} it
holds that S( ( )) Fa ASM s((P)) isamodel of S((i)( )) it follows that M s(¢(P)) is
amodel of a. Let A Mg,(p)) be the conjunction of all ground atoms which are true
inMs(g(p))- Thenarsaconjunct in Mg(¢(p)) and thus A\ Mg 4(p)) = @ Asthisistrue
foranyae ‘.;‘{x<— t} it holdsthat AMs(4(p) ) &{x<—t}

Thus AMg(p)) = ¢(9) and there is a homomorphism w from Mgy p) to

g. Observe that there is a mapping v from DMs#®) to D"Msw®)) such that (i)
v(cMse®)) = cMMswP)) if cis aIRI or literd, (ii) |f f is a skolem symbol then

v(f(t)) = 0] Wherexf() is anon-constant domain element in D"Ms(®)) | and (iii)
RMso®) (d) iff R"Ms0®) (v (1)) for every relation symbol R. Observethat pov isa
homomorphrsmfrom G to U(Mg(y(py))- Thus the operational semantics u(Mg(y(p)))

of P entails g8.

It remains to show that 6 = ¢(g) iff I1(0) = ¢(g) where 6 isaformulaasin
the definition of the normalisation operator I1. The direction from right to left is
immediate since I1(6) |= 6. The other direction follows from the definition of IT
and the structure of RDF triples.

1.5 Properties of SPARQLog

1.5.1 Designing Tractable Fragments of SPARQL og

Since the full SPARQLog captures some classes of expressive formulas (such as
the V3-rules) it is easy to adapt some standard proofs of Turing completeness (see,
e.g.,[4]) to show the following.

Proposition 1.1. SPARQLog is Turing complete.

This section focuses on the description of fragments of SPARQL og, recognizable
in PTIME, that ensure polynomia complexity when given a fixed (or fairly small)
program P and a potentially very large RDF dataset (playing the role of a database).
We can formalize the desired notion of tractability as follows:

Definition 1.13 (Tractability). We say that an SPARQLog program P containing
the RDF graphidentifiersus, ..., up initsdataset clauseistractableiff the following
holds: For all RDF graphs Gy, ..., Gp associated with ug, ..., up of total size n, the
RDF dataset [P)] is finite and can be computed in time O(n*) for some k depending
only on P.

It follows from Theorem 2 in [13] that the finiteness of [P] (for al G1,...,Gp) is
actually a sufficient condition for polynomial data-complexity. By using a standard
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encoding of general relational constraints into RDF constraints, we can adapt the
proof of Theorem 4 in [13] to show that the finiteness of [P] is undecidable.

Proposition 1.2. The following problemis undecidable: given an SPARQLog pro-
gramP, is P tractable?

Note that the union P, U P, of two tractable SPARQLog programs P; and P; is
not necessarily tractable. Consider for instance the two following rules, where : a
and : b denotestwo distinct IRIs:

1 Ry= ALL ?x ?y EX ?z

CONSTRUCT { ?y <b> ?z } FROM{ ?x <a> ?y }
3 Ry= ALL ?x ?y EX ?z

CONSTRUCT { ?y <a> ?z } FROM{ ?x <b> ?y }
Even though P, = {R;} and P, = {Ry} are tractable, we can check that the SPAR-
QLog program P> = {Ry, Ry} is not tractable. In particular, in the case of an RDF
graph G containing atriple (<c>,<a>, < d >) we can observe that [P] isinfinite as
it must contain an infinite path of the form

{(<c>,<a><d>);(<d><b>, _:1);(_:1,<a>, _:2);(_:2,<b> _:3);...}

where :iisablank node.

As also illustrated by this example, there is very little hope of identifying an
interesting local criterion (testing each ruleindependently) ensuring the right notion
of tractability. In particular, the notion of guarded Datalog® from Chapter 11 of
this volume, designed to ensure (only) the tractability of query answering, does
not ensure the tractably of the data-exchange problem (i.e., the materialization of
[P]). We can indeed observe that P12 is not tractable in the sense of Definition 1.13
even though it is guarded (each rule contains an atom in its body that contains all
universally quantified variables of that rule).

A more relevant approach would consist in relying on the notion of weak-
acylicity (WA), introduced in [6], and based on the study of two different processes:
the creation of new terms in some positions and the migration of newly-created
terms from initial positions to new positions. A criteria of acyclicity then ensures
that there is no infinite loop in this process of creation and migration of new terms,
and that the evaluation of [P] terminatesin polynomial time.

Even though WA is afairly simple way of ensuring tractability, we arguein this
section that the more technical notion of Super-weak Acyclicity (SwA) introducedin
[13] turns out to be a very significant and useful generalization of WA in the context
of RDF.

First, SWA alowsto take in account the numerous constants that usually occur in
a SPARQL og program while relying on efficient unification technics to distinguish
distinct constants. This contrasts with WA which was only defined for constraints
without constants.

Second, SwA relies on a richer notion of positions (called places). A standard
approach in the context of relational databases is indeed to define a position as a
par (R,A) where Risarelational symbol, and A isasingle attribute (or column) of
R. Inthe context of RDF, since we have only asingle predicate symbol of small arity
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we would only consider afixed and very small number (typically 3) of positionsand
large programs are almost never acyclic in the sense of WA. In contrast, the SwA
relies on places of the form (a,i) where a is an atom of the logic program s(¢ (P))
and i € {1,2,3}. SWA distinguishes therefore a polynomial number O(||P||3) of
placesinstead of distinguishing only 3 positions.

Third, SWA enjoys some natural closure properties (missing in WA) which make
the design of SwA programs easier (see Theorem 5 in [13]). In particular, adding
more atomsin the body of somerulein P never hurts: if P is SwA then theresulting
set of rulesisalso SwWA.

Note that other generalizations of WA (incomparable with SwA) have been pro-
posed in the literature, in particular, the notion of Stratification [4], the notion of
Safe Restriction [21], and the notion of Inductive Restriction [14]. However, none of
these notions solvesthe problems of WA discussed above. In particular, the tractable
program

ALL ?x ?y EX ?z

2 CONSTRUCT { ?y <b> ?z } FROM{ ?x <a> ?y }

belongs to none of these classes because none of them take into account the fact
that the two IRI's (constants) a and b are distinct. Moreover, these three classes only
ensure the termination of the so-called restricted chase, and — unlike SwA —they do
not ensure the termination of the logic program s(¢ (P)) (i.e. [P] could be infinite).

15.1.1 SWARQLog

We definein this section a tractable fragment called SWARQL og (for super-weakly
acyclic SPARQLog) relying on the notion of super-weak acyclicity (SwA) intro-
duced in [13] in the context of data-exchange with V3-rules only, and adapted here
to the case of ruleswith quantifier aternation.

Given an SPARQLog program P we let P* be the logic program P* = s(¢(P))
and define a place as a pair (a,i) where a is a atom of P* and i < 3. We write
(a,i) ~ (a,i’) wheni =i’ and the atoms a and &' are unifiable. Given two sets of
places Q and Q" we write Q C Q' iff for all p € Q there exists p’ € Q' such that
p~ p.Givenaruler : By — H; and a variable x we let p(x,B;) and p(x,H;) be
the set of places (R(ts,t2,t3,u),i) in the body B, and the head H, such that tj = x.
Given a function symbol f, we let p(f,H,) be the set of places (R(t1,t2,t3,u),i)
in the head H, such that t; is of the form f(...). Given a set of places Q we define
Fix*(Q) asthe smallest set of places Q' such that Q C Q' and for all rulesr : By — H,
and all variablesx we have (p(x,Br) C Q') = (p(x,Hr) C Q). Let F* be the set of
function symbols occurring in P*, then we can observe that each f € F* occursin
exactly one rule denoted r ¢ : Bf — H; and that each occurrence of f in thisrule
uses the same vector of arguments denoted arg(f). Given two function symbols
f e F*andg e F* wesay that f feeds g iff there exists some x € arg(g) such that
p(X,Bg) C Fix*(p(f,H¢)) and we define the feeding graph ¢ (P) of P as the graph
(F*,~~) containing an edge (f ~~ g) iff f feedsg.
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vlec3ersvstu ( R(lec, rdf:type, uni:lecture, o) A R(stu, uni:attends, lec, o)
o(P) — — R(crs, uni:practices, lec, o) A R(stu, uni:attends, crs, o) )
) vdprfvstu  ( R(stu,uni:attends, x)
— R(x,uni:taught-by, prf, ) AR(prf, people:knows, stu, ¢) )

R(lec, rdf:type, uni:lecture, o) A R(stu, uni:attends, lec, o)
1 2 3
— R(f(lec), uni:practices, lec, ) A R(stu, uni:attends, f (lec), o)
4 5 6 7

s(¢(P)= R(stu, uni:attends, x,¢)
8 9

— R( X, unitaught-by, g(x),¢) AR(g(x), people:knows, stu, o)

10 11 12 13

Fig. 1.2 Super-weakly acyclic program P

Definition 1.14 (SWARQL og). An SPARQL og program P is super-weakly acyclic
(SwA) and is called an SWARQL og program iff the feeding graph ¢ (P) is acyclic.

Consider, for instance, the following SWARQL og program P:

PREFI X uni: <http://exanple.org/uni>
2 FROM <htt p: // exanpl e. or g/ oxf or d>

4 ALL ?lec EX ?crs ALL ?stu

CONSTRUCT { ?crs uni:practices ?lec . ?stu uni:attends ?crs }
6 WHERE { ?lec rdf:type uni:lecture . ?stu uni:attends ?lec }
8 ALL ?lec EX ?prf ALL ?stu

CONSTRUCT { ?l ec uni:taught-by ?prf . ?prf foaf:knows ?stu }
10  WHERE { ?stu uni:attends ?lec }

Figure 1.2 illustrates the places in P: p1 = (R(Iec, rdf:type,uni:lecture,o),l);
p2 = (R(stu,uni:attends, lec,o),1) ; ps = (R(stu,uni:attends, lec,o),3) ; ... ;
P13 = (R(prf,people:knows,stu,o),B). With that we can check that P is indeed
super-weakly acyclic since (f and g are the skolem functions used in s(¢ (P)))

o ffeedsg: Wehaveindeedp(f,Ht)={ps, p7} and Fix" ({ps, p7}) = { P4, P7, P10}
whilearg(g) = {x} and p(x, Bg) = { pa}. Since pg unifieswith p11 we havethere-
fore p(x,Bg) C Fix"(p(f,Ht))

e f does not feed f: We have indeedp(f,H¢) = {ps, p7} and Fix*({pas, p7}) =
{Pa, p7, P10} While arg(f) = {lec} and p(lec,B;) = {p1, p3}. Since none of the
placesin {pa, p7, p1o} unifieswith p; we have p(lec,B¢) IZ Fix*(p(f,H¢)).

e we can check similarly that g does not feed f and g does not feed g.

The definition above coincides precisely with the definition of SwA givenin [13]
for the case of V3-rules and we can easily adapt the proofs given in [13] to aso
cover quantifier alternation and thus show the following.

Theorem 1.2 (Tractability of SWARQL og).
(1) We can decide whether an SPARQLog programis SVA in PTIME.
(2) Every SWVARQLOg programis tractable.
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1.5.2 Expressiveness of Quantifier Alternation in SPARQL og

SPARQL og alows existential variables in any position of the quantifier of a rule.
This contrasts to other RDF query languages that are either limited to rules in V3
or to 3V form: In V3 approaches such as [20] existential quantifiers occur in the
scope of all universal variables of arule. In 3V approaches such as [24], existential
variables occur in the scope of no universal variables.

In this section, we show that an SPARQL og program P can be translated into an
SPARQLog program Fy3(P) such that the two programs are default-graph equiva-
lent and Fy3(P) contains only rulesin V3 form. Such an equivalence does not hold
for the 3V form.

Default-graph equivalence captures the notion that they both construct the same
default graph, but may differ on the named graphs they query and construct in inter-
mediary rules:

Definition 1.15 (Default-graph Equivalence). Let P and P’ be two SPARQLog
programs. Then P is default-graph equivalent to P’ if for all datasets D € [[P]],D’ €
[P'] it holdsthat D[¢] H D’[].

Thustwo SPARQL og programs that are default-graph equivalent can be consid-
ered equivalent up to results in intermediary named graphs.

First, we define 5. For convenience, we abbreviate for any IRl H and sequence
of variablesX = Xy, ..., Xn, the conjunction of triple patterns

(H rdf:_1 ?x5) . \ldots . (H rdf:_n x,)

by H(x) and, for any graph IRI I,

H(x1)=R(H,rdf: _1,x3,1)A...ARH,rdf: _n,x,I).

Definition 1.16 (V3 Rewriting). Let P be an SPARQL og program and
1 ALL X EX y Q7

CONSTRUCT { &(XY,2) } WHERE { y(Xy.2) }
arule R in P with Qz some sequence of quantifier clauses over the variables z,
£(X,y, 2) aconstruct template over the given variablesand v (X, Y, ) a graph pattern
over the given variables.

Then we define the V3-rewriting Fy5(¢) as

R if RisinV3 form
RiRoR3 otherwise

Fva(¢) Z{

where

Ri= ALL X ALL y ALL Z
2 CONSTRUCT GRAPH <I> { Projgr(X) } WHERE { y(XY.2) }

4R= ALL X EX ¥
CONSTRUCT GRAPH <I> { Gengr(xy) } WHERE GRAPH <I> { Projz(X) }
6
Ri= Fys(ALL X ALL ¥ Q7
8 CONSTRUCT { &(xY,Z) } WHERE { w(XV.2) . GRAPH <I> { Geng(Xy) } } )
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and Geng, Projg, | are new IRIs that do not occur in P.

Theidea of the rewriting is to extract all existential variablesy that depend only
on the universal variables x from ¢. A specific generator rule Rgen states their ex-
istential dependence on x separately. To allow Rgen in V3 form, we first project all
variablesin i on only the relevant variables X in Ry, the projection rule. Finally,
we query both the original body and the generator rulein Rjqin. Since Gen is anew
IRI (and thus there can be no further ruleswith Gen in the head) it suffices together
with X to identify the corresponding y.

To illustrate the rewriting consider again rule B3 from Section 1.4:

ALL ?x EX ?y ALL ?z Bs
2 CONSTRUCT { ?x eswc: hel dBy ?y . ?z foaf:knows ?y }
VWHERE { ?x rdf:type eswc: Tal kEvent. ?z eswc: attendeeAt ?x }

For this rule we obtain the following rewriting Fy5(Bs) usinght t p. . / | asIRI for
theintermediary graph, htt p. . / Genl aslIRI forRyandhttp. ./ Proj 1 asIRI
for Ry:

1 ALL ?x ALL ?y ALL ?z
CONSTRUCT { ?x eswc: heldBy ?y . ?z foaf:knows ?y }
3 WHERE GRAPH <http../1> { ?x rdf:type eswc: Tal kEvent. ?z eswc: attendeeAt ?x.
<http../Genl> rdf:_1 ?x . <http../Genl> rdf:_2 ?y }
5
ALL ?x EX ?y
7 CONSTRUCT GRAPH <http../1> {<http../Genl> rdf:_1 ?x. <http../Genl> rdf:_2 ?y}
WHERE GRAPH <http../1> { <http../Proj1> rdf:_1 ?x }
9
ALL ?x, ?y, ?z
11 CONSTRUCT GRAPH <http../I> { (<http../Proj1> rdf:_1 ?x }
VWHERE { ?x rdf:type eswc: Tal kEvent. ?z eswc: attendeeAt ?x }

Observethat the rewriting essentia splits the prefix of the original rule at any V after
an 3 and distributes the prefix parts over several rules. The triples with fresh IRIs
alow usto link the bindings for parts of the prefix between different rules.

The V3 rewriting of an SPARQLog program is, if restricted to the default graph,
equivalent to the original program.

Theorem 1.3. Let P bean SPARQLog program. Then Fy3(P) isdefault-graph equiv-
alent to P.

In other words, SPARQL og restricted to V3 rulesis as expressive as full SPAR-
QLog if we consider default-graph semantics.

Proof. Let R be an SPARQLog rule as in the definition of Fy3. We show that (1)
¢ (Fa(R)) FO-entails ¢ (R) and (2) if A= (D,Rel,Fun) is afirst-order model of R
then there is an extension B of A with only triples from the auxiliary relationsin the
auxiliary graph | that isamodel of ¢ (Fy3(R)). We omit sub- and superscriptsif they
are clear from the context. Finally, let Rz = Fy3(Rj).

We first show that ¢ (Fy3(R)) FO-entails ¢ (R). The proof is by induction on the
number of quantifier alternations in R. The base case is trivial. For the induction
step let A= (D, Rel, Fun) be a FO-model of ¢ (Fy3(R)). To show that A |= ¢ (R), let
d € D* be asequence of domain elements with the same length asx. If for al e D
and f € D* with |f| =|Z] it holdsthat A |~ y(d, e, f) then we are done. Otherwise
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Fig. 1.3 Performance of SPARQLog onrules1, 2 and 3

thereareec D and f € D* suchthat A=y (d, e, f). Asby hypothesisA = ¢ (Ry) if
follows that A = Projg(d, ). Thereforeas A = ¢(Ry) thereis an € € D, such that
A= Geng(d,€,1). Finally as A = ¢(Rs) if follows from the induction hypothesis
that A= ¢ (R;) and thus A |= ¢ (R).

We no show that if A= (D,Rel,Fun) is amodel of ¢(R) then there are triples
T1 = {Proj(x,1)...Proj(x,y,z 1)} and T, = {Gen(x1)...Gen(X,y,z 1)} such that
the extension B = (D, Rel UT; U T, Fun) of Aisamodel for ¢ (Fy3(R)).

The proof is by induction on the number of quantifier aternationsin R. Again
the base case is trivial. For theinduction step let A be amodel of ¢ (R). We define

Ty = {Proj(x 1) : Iy.Z: p(w(XY,2))}
T, = {Gen(xy,1) : ¢(Qz: CONSTRUCT &(XY,Z\MHERE (X Y,2))}

andC = (D,Rel UT; U Ty, Fun). With thisdefinitionit is atautology that C = ¢ (Ry).
ToshowthatC =Ry letd € D*. AsA= ¢ (R) it holdsthat thereisan e € D such that
AE ¢(Qz: CONSTRUCT E&(x,y,2) WHERE v (X,Y,2)). ThusC = ¢(R»). Finaly
we observethat ¢ (R) = ¢(6) where

6= ALL X ALL y Q7
2 CONSTRUCT { E(X¥2) } WHERE { y(X¥%2) . GRAPH <I> { Genr(Xy) } }

As Cisamodel of ¢(R) itisalsoamodel of ¢(0). By the induction hypothesis
thereis an extension B of C that is model of Rz = Fy5(6).

1.5.3 Experimental Comparison with SPARQL Engines

The reduction of SPARQL og to standard logic programs (Section 1.4.3) allowsfor a
direct implementation of SPARQLog on top of any logic programming or database
enginethat supportsvalueinvention and recursion. In the following, we we compare
experimentally the performance of a very simple prototype based on that princi-
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ple with two of the more common SPARQL implementations. Our implementation
of SPARQLog uses a combination of Perl pre- and post-filters for Skolemisation,
Unskolemisation, and normalisation of SPARQLog programs and XSB Prolog to
evaluate the Skolemised programs.

We compare our implementation with the ARQ SPARQL processor of Jena (Ver-
sion 2.1) and the SPARQL engine provided by the Sesame RDF Framework. For
Sesame, we choose the main-memory store asit is by far the fastest type of repos-
itory that can be used” according to Sesame’s authors. With this store, Sesame be-
comes a main-memory, ad-hoc query engine just like SPARQLog and ARQ. As
common for ad-hoc queries we measure overall execution time including both load-
ing of the RDF data and execution of the SPARQL or SPARQLog query. For the
comparison, we only consider rules without existential quantification (rule 1 be-
low) or with V3 quantification (rule 2 below, expressible by blank nodes in the
CONSTRUCT graph pattern in SPARQL). Rules with arbitrary quantifier aterna-
tion are not considered as they are not expressible in SPARQL (the rewriting from
Section 1.5.2 does not apply as SPARQL is single-rule and provides no projection).

In the experimentswe evaluate three different queries against an RDF graph con-
sisting of Wikipediadata. The experiments have been carried out on a Intel Pentium
M Dual-Core with 1.86 GHz, 1 MB cache and 2 GB main memory. For each set-
ting, the running time is averaged over 25 runs. We compare the following rules
(with appropriate prefix definitions and dataset clauses).

Rule 1. ALL ?x ALL ?y

2 CONSTRUCT { ?x test:connected ?y } WHERE {?x wi ki:internal Link ?y }
Rule 20 ALL ?x ALL ?z EX ?z

4  CONSTRUCT { ?x test:connected ?z } WHERE {?x wi Kki:internal Link ?y }
Rule 3: EX ?z ALL ?x ALL ?y

6 CONSTRUCT { ?x test:connected ?z } WHERE {?x wi ki:internal Link ?y }

Figure 1.3 shows the performance of SPARQL og for each of the rules. Note that
the running time increases from rule 1 to rule 3 and from rule 3 to rule 2. The
difference between rule 1 and rule 3 might be due to overhead of Skolemisation,
Unskolemisation and normalization. The running time difference between rule 3
and rule 2 may be attributed to the lower amount of blank nodes generatedin rule 3,
asthe existential quantifier is outside of the scope of all universal quantifiers.

Figure 1.4 compares the performance of SPARQLog with that of ARQ and
Sesame for rule 1 and rule 2 (we omit rule 3 as it is not expressible in SPARQL).
Despiteits light-weight, ad-hoc implementation, SPARQL og outperforms ARQ and
Sesame in this setting. The figures show moreover that also for ARQ and Sesame,
blank node construction does not bear any significant additional computational ef-
fort.

1.6 Conclusion

Blank nodes are one of RDF's distinguishing features. Yet they have been entirely
neglected or treated only in alimit fashion in previous approachesto RDF querying.
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Fig. 1.4 Performance comparison on rule 1 (left) and on rule 2 (right)

With SPARQL og we advance the knowledge about the combination of blank nodes
and rules (and thus RDF and rules) in three directions: (1) We show that restrictions
of RDF wrt. blank nodes occurrence can be treated in a semantics based purely on
entailment. (2) Though unrestricted combinationsof recursive rules and blank nodes
in rule heads lead, unsurprisingly, to a undecidable, Turing-complete language, we
identify alarge fragment of such rulesthat isstill decidable. Thisfragmentisstrictly
larger than previous decidable languages with recursive rules and blank nodesin the
head. (3) Finally, we show that quantifier alternation does not add to the expres-
siveness or complexity of alanguage with V3 rules and projection. The latter form
of rulesis commonly found in data exchange or SPARQL rule extensions. In other
words, quantifier alternation comes for free for such languages.

Though we present the results here in the context of RDF querying, they apply to
awide range of logic languages with horn rules extended by existential quantifica-
tion. In particular, in data exchange such languages are common but mostly limited
to V3 rules.
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