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ABSTRACT 

Compilers for high-level languages aTe generally constructed 

to give the complete translation of the programs into machme 

language. As machines merely juggle bit patterns, the concepts 

of the original language may be lost or at least obscured during 

this passage. The purpose of a mathematical semantics is to give 

a correct and meaningful correspondence between programs and 

mathematical entities in a way that is entirely independent of an 

implementation. This plan is illustrated in a very elementary 

way in the introduction. The first section connects the general 

method wi th the usual idea of state transformations. The next 

section shows why the mathematics of functions has to be modified 
to accommodate recursive commands. Section 3 explains the modifi

cation. Section 4 introduces the environments for handling variables 

and identifiers and shows how the semantical equations define 

equivalence of programs. Section 5 gives an exposition of the new 

type of mathematical function spaces that are required fOl the 

semantics of procedures when these are allowed in assignment state

ments. The conclusion traces some of the background of the project 

and points the way to future work. 
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TOWARD A MATHEMATICAL SEMANTICS 

FOR 

COMPUTER LANGUAGES 

O. INTRODUCTION. The idea of a mathematical. semantics fOT a 

language is perfectly well illustrated by the contrast between 

numerals on the one hand and nu.mber8 on the other. The nwnerals 

are expressions in a certain familiar language; while the numbers 

are mathematical objects (abstract objects) which provide the 

intended interpretations of the expressions. We need the ex· 

pressions to be able to communicate the results of OUT theOTizings 

about the numbers, but the symbols themselves should not be con

fused with the concepts they denote. For one thing, there are 

many differen t languages adequate for conveying the same concepts 

(e.g. binary, octal, or decimal numerals). For another. even in 

the same language many different expressions can denote the same 

concepts (e.g. 2+2, ~. 1+(1+(1+1)). etc.), The problem of ex~ 

plaining these equiva!enr!es of expressions (whether in the same 

or different languages) is one of the tasks of semantics and is 

much too important to be left to syntax alone. Besides, the 

mathematical concepts are required for the proof that the "arious 

equivalences have been correctly described. 
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In more detail .. e may consider the follo\f>'lng explicit 

syntax for binary numerals: 

NUMERALS
 
\J ::== Olllvolvl
 

Here we have used the Greek letter v as a metavG"t'iable over the 

syntactical category of numerals, and the category itself is being 

given a l'e!oursive definition in the usual way. Thus, a numeral 

is either one of the digi ts 0 or 1 or is the Tcsul t of suffixing 

one of these digits to a previously obtained numeral. Let the 

set of all numerals be called Nml for short. 

Semantically speaking each of the numerals is meant to 

denote a unique number. Let N be the set of numbers. (The 

elements of Nml are expressions; while the elements of N are 

mathematical objects conceived in austraction independently of 

not<ltion.) The obvious principle of interpretation provides a 

function, the evaluation mapping, which we might call \J', and 

which has the functional character: 

1i Nml -+ N. 

Thus for each v E Nml, the function value 

"'! vI 
7;6 the number denoted by v. 

How is the evaluation function "determined'? Inasmuch as 

it is to be defined on a recursively defined set Nml. it is reason

able that '\J should itself be g-iven a recursive definition. Indeed 

by following exactly the four clauses of the recursive definition Nml, 

we are motivated by our understanding of numerals to write: 

'tJ, 0 i o 
"111 

'tJlvo I 2'V"lvl 

1JIV11 2'1ilvi+l 

Here on the left-hand side of the equations, t.t is heing applied 

to expressions; while on the ri~ht-hand side the values arc given. 

To borro\f>' the relevant termlnolo~y flam logic, the numerical ex
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pressions belong to the obJect ~angu.age; whereas the definition 

of 1J is given in the metalaTlguage. To be able to write down ex

plicitly the definition of \.1", some metalinguistic symbolization 

is of course required. The metalinguistic expressions must at 

all cost be distinguished from those in the object language. 

(We have put the object language 0 and 1 in Roman type-face and the 

metalanguage 0.1,2 1n italics. Logicians often take further pre

cautions by enclosing the object language expressions in quotes; 

the quotation- express ions can then be regarded as part of the 

metalanguage. and thus the languages are "insulated" from one 

another. In this paper, however, our object languages are 

simple enough making the use of such devices less critical. The 

separation needs to be observed nevertheless, and in the semantic 

equations we have enclosed the object language expressions in the 

special brackets ( I merely as an aid to the eye.) 

Granted that there is a distinction between symbol and 

object, it may still seem that the above equations for l1"are 

circular or nearly vacuous in content. Such a conclusion is 

wrong, however, because there is an easily appreciated point to 

the definition: namely, the explication of the positional '7otation. 

In our metalanguage we need never have heard of decimals or binaries. 

We do require, though, the concept of 'lumber, the concepts of J3el'O 

and one, the concepts of addit'io'l and multiplication. (By defin

ition 2=1+1, say, and if we want, the whole theory of numbers 

could be conveyed in the metalanguage with the help of Roman 

'lumerals augmented wi th a few tricks from algebra such as the use 

of operation symbols and variables.) These concepts, fundamental 

as they are, cannot be strictly said to -impl)j the positional 

notation. In fact, the clever use of 0 to help form strings of 

digits was a discovery L"l language. This discovery in no way 

changed the abstract nature of number, but it was a tremendous 

help in popularizing the use of arithmetic ideas ~ and there seems 

to be a perfectly good parallel here with computer languages many 

of which contain in their syntactical structures quite as clever 

discoveries of language. 
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One point that encourages confusion in thinking about 

numbers is the possibility of having a complete and canonical 

naming system for them. ]n the illustrative syntax fOT binary 

numerals we have been considering,such strings as 001101 were 

allowed. As everyone knows the initial run of o's is unnecessary 

for we can show that 

"gOOllOl] ='\)(11011 = Xill. 

This type of straight-forward deletion gives us the only possible 

equivalences in this very simple language. The Nduced numerals 

(Le"numerals of the forms 0 and 1\.1, where \.I E Nml is arbitrary) 

are then in a one-one correspondence wi th the numbe rs. We can 

then ~ork exclusively with these normal forms. and it is so easy 

to think of these expressions as being the numbers - especially 

if one is familiar with only one notational system. The attitude 

is wrong-headed, however. But for many activi ties there may be 

no real harm, since the confused mind will give the same answers 

as the clear-headed person. The notationally bound thinker may 

often be distinguished by the way he feels that he has to specify 

all his operations by algorithmic symbol manipulations (as in 

digitwise addition of numerals). Again there may be no real 

harm in this - if the algorithms are correctly given. And in the 

case of numbers the two approaches can be brought together (the 

symbolic and the conceptual), for our system of reduced numerals 

can, by a slight amount of good will, be regarded as a model for 

number theory. Since we know that all such models are isomorphic, 

there is not much mathematical advantage in using one model over 

another. This is a sense in which numbers can be consistently con

fused with numerals. But the confusion does not really do us any 

good either. 

The reasons why the number/numeral confusion should be 

avoided are many. For one reason, we may turn the isomorphism 

argument the other way round: If all models of number theory are 

isomorphic, you may not want to single out a pu:-ticular one at all. 

Because the semantical ideas will equally well apply to all of them. 

you may want to leave open the possibility of shiFting from one to 

another. This is somewhat analogous in computer language sewant ics 
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to allo~ing different representations to be used in different 

machines to implement the same language (in hopefully isomorphic 

... ays). In the case of numbers not much advantage is bought by 

this freedom. but any attitude of restricting generality is a 

bad habi t which can be misleading in analogous but mOTe complicated 

situations. 

A mOTe important reason fOT not getting into this hahi t 

comes to the fOre when one realizes that fOT some systems of 

mathematical concepts no fully adequate notational system is 

possible: the real numbers are the prime example. Of coune it 

will be objected that this realm of mathematics is much too abstract, 

much too infinitary. much too distant from real-life computation. 

This objection cannot stand careful conceptual investigation, but 

a full answer would take us too far from the topic of this papeL 

A quite adequate answer concerns not the mathematically very 

pure structures such as the real numbers, but rather our theories 

of classes of similar but different structures. That is to say. 

for the semantic investigation of certain language features it 

may not be appropriate to single out one (isomorphism type of) 

structure, but for many reasons - generali ty, lack of knowledge, 

for the sake of experiment - we may want the same semantica] 

equations to be employed OVer the whole class of structures. Since 

the structures need no longer be isomorphic, different structures 

may lead to quite different normal forms for expressions. (The 

mathe_matical theory of groups. for instance. could provide us 

innumerable such examples.) Hence. no one system of "numerals" 

would any longer suffice. Even if the separate structures could 

somehow each be symbolically constructed, the effort would be 

beside the point: what we are trying to get at are the C'o~mon 

features of the structures. The various ad hoc details would 

only detract from this higher purpose. 

To bring this introductory sermon to a close: the point of 

OUT approach is to allow a proper balance between rigorous formul

ation. generality of application, and conceptual simplicity. One 

essential achievement of the method we shall wish to claim is that 
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by insisting on a suitable level of abstraction and by emphasizing 

the right details we are going to hit squarely what can be called 

the mathematical meaning of a language. In the trivial example 

of the binary numerals discussed above everyone will agree that 

the evaluation function 1J is indeed correctly defined. That much 

is obvious. Note, however, that having accepted this fact, it is 

then possible to prove that certain numerical algori thms are correct 

(digitwise addition, say). and before we had the definition this 

question did not even make sense. (Specifically, digitwise 

addi tion is an operation \)0 Q;I VI defined on numerals vo. \), . 

What one needs to prove is that 

'ttl \)0 Q;I vd = Vl \)0 I + Vl vii 

wi th symbolic addi tion on the left and conceptual addition on the 

right. It is not difficult to do this, but one needs an indnctive 

argument.) These are simple p-oirrts. but it is easy to lose sight 

of them when the languages get involved. 
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1. STATES AND COMMANDS We begin by postulating that the inter

pretation of the language depends on the states of "the system". 

That is to say. computer oriented languages differ from their math· 

ematical counterparts by virtue of their dynamic character. An 

expression doeS not generally possess one uniquely determined value 

of the expected sort, but rather the value depends upon the state 

of the system at the time of initialization of evaluation. What 

increases the dynamic character of the evaluation process is the 

fact that the act of evaluation may very well alter the initial 

state. Thus the working out of a compound expression can require 

several changes of state. and the treatment of a 5ubexpression 

generally has to wait for the moment at which the state can be 

provided appropriate to its evaluation. Therefore the "algebra" 

of equivalences of such expressions need not be as "beautiful" 

as the well-known mathematical examples. This does not mean that 

the semantics of such languages will be Zess mathematical, only 

an order more complex. 

Part of our assumption is that the states of the system 

form a set 5. and the dynamic character of the language wil1 require 

us to consider tl'ansformations of this 5 into itself: the state 

transformations. For the moment let us write (in our metalanguage) 

[5 ->- 5] 

for the set of aZZ state transformations (this set may require 

restriction later). Bya tl'ansfol'mation f E [5 ->- 5] we understand 

the ordinary concept of a mathematical function defined on S with 

values in 5. Functions in the mathematical sense are abstract 

objects - they can be defined in various linguistic forms, but 

after the definition is interpreted all that is left is the bare 

correspondenae between arguments a E 5 and values fro) E 5. In 

particular two functions which assume the same values for the same 

arguments are mathematically identical - even though they might have 

been defined in some object language in quite different ways. 

The simplest way to regard the state transformations from 

a to f(oJ is that they give the results of executing a com~lnd. 

No explicit values are required; one is merely being asked to 

"move along". Of course certain "values" may be implici t in a. 
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and they may be changed in passing to [(0) (e.g. ones position). 

The command, however, is concerned more with the overall change; 

other hnds of expressions can be used to extract from a state 

dES any relevant values. But one syntactic category in our 

language will be that of commands; let us call the set of these 

expressions Cmd, Given Y E Cmd, no matter how camp lex, the 

mathematical meaning of this expression is an associ ated state 

transformationtlYI E [5 -+ SJ, That is, the semantics of commands 

is to provide us with a mapping: 

t Cmd -+ [5 -+ SJ. 

just as the semantics of numerals gave us: 

tJ': Nml -+ N. 

What is vague here is that we have no idea what commands are, 

whereas numerals were standard. - That we have at this stage no 

idea what states 0 E S are is far less serious. because that is 

the part of the interpretation we are on purpose leaving open. 

It is not difficult to be more explicit about the syntax 

of cOITlJllands. however. because there are several qui te natural ways 

of combining them. An initial syntax might look as follows: 

COMMANDS 

y"~ (yll.ldummyl 

E: -+ Yo ,1'1 11'0 ;1'. 

Here the Greek letter y is a metavariable over the category (Cmd) 

which is being given a recursive definition. On the right-hand 

side of the definition the y.yo .y, can be regarded as pre-lJiously 

obtained commands. where the subscripts are required in a binary 

composition to allow for different commands to be chosen. If in 

one clause of the definition the same "'( appeared twice. we would 

intend that the same previously obtained expression be used in 

both positions. There is no implied connection between the y's 

in the separate clauses. The letters ¢ and E: are meant to refer 

to other syntactic categories yet to be explained. The expression 

dummy i-s a COTl8tant command (an "atomic" command expression). 

As anyone can see (assuming that the categories of ¢ and E 
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are simple) the set Cmd is going to be a context-free language. 

Also obvious is the fact that the language is ambiguous - thus 

yo ;)'1 ;y~ can be parsed in two different ways at least. Machines 

generally prefer their languages unambiguou.s; while humans enjoy 

a little uncertainty, or at least they find ways to overlook 

ambigui ties by giving each other the benefit of the doubt. Some

times ambiguities make no difference (as in Yo ;"(, ;)'1). but at 

other times they are quite tiresome (as in e: ->- )'0,"(1;"(2). \lie 

shall deal with this problem presently, but in the meantime note 

the clause (Y) in the definition. This clause allows us to form 

(e: -+ Yo ,)'1) ;Y~ or (: .... Yo ,(Y j ;)'2) which are similar to the ambiguous 

expression but which have one chance less of being ambiguom. 

With a sufficient nesting of parentheses all ambiguity can be 

eliminated; or, speaking more precisely, there is a completely 

unambiguous sublanguage of Cmd. The only trouble with us humans 

is that the majority find writing in this sublanguagc a terrific 

bore; hence the tendency to the more dangerous syntax. 

Before we can be more precise about Cmd and the inter

pretation e. we have to discuss the £. For the time being E E Exp, 

the class of BooZean ezpr'essions (we shall allow other types of 

expressions later). As a starter at a syntax we can write: 

EXPRESSIONS 

£ ::= (£)jlTltruelfalsel£o .... £1,£2 

The same remarks about ambiguity apply. The 11" are certain atomic 

expressi ons which we shall not stop to detail now. The Boolean 

expressions true and false are constants,and Eo .... £1 ,£2 is the 

well-known conditional expression (short for: if £0 then £1 else £2, 

which some rr:ay prefer). 

What of interpretation? In the first place we postUlate 

the set T of truth values which contains the elements true and false 

corresponding to true and false. But the meaning &[E] is not 

going to be simply an element of T, for in general values must 

depend on states. Besides this evaluation may cause a change of 

state. Thus the correct functional character of & is: 
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& Exp"" [5 .... [T x SJJ. 

This means that given £: E Exp and 0 E S. then 

&[£!(o) <t,O') 

where t E T is the value of E given 0, and 0' is the resultant 

state after the evaluation and may differ from a as it may have 

been changed by the evaluation. (Here T x S is the usual cartesian 

product of sets and <, ," > is the pairing function.) 

Before giving the clauses that define r: and S, it is useful 

to introduce several mathematical operations on functions. If 

f : B ->- C and 9 : A .... B, then as usual we write feg : A + C fOT 

the composition. where 

(["9)(0.) '" [(grel» 

for all cr. EA. We have further 

p A - [B + [A x BJJ 

M. A x B .... A, and 

M, A x B .... B. 

where 

P(a)(e) = <0..13>, 

Ma «cr.,B» = cr., and 

M1 «0.,13» = B 

for all (J, E A, S E B. Finally, if p : A' ->- [8 + CJ and 

q : A .... A' x B. then p *q : A ->- C. where 

(p"q) (a) p(Mo(q(a)))(MI (q(a») 

for all a Ii: A. On all of these operations and special functions 

we ought to write some kind of ABC subscripts, because strictly 

speaking they depend on the choice of the various sets; we have 

omitted these subscripts as they can easily be deduced from the 

context. The same goes for the identity function 

I A -+ A, 

where 

I(a) = C1 

forallaEA. 
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Turning now to the mapping ~ we have clause by clause: 

8.1:(£)] &id 

because parentheses add nothing to meaning. 

S,[nB = (some given S ->- IT SJ).X 

because each atomic expression 11 must"have a given meaning. (Which 

meaning this is. need not concern us here, since at the moment all 

...·e consider is the fopm of the semantic definition.) 

Sf true] = PC true), and 

qfalse) = P(falsel, 

blO'cause true and false are constants which can be evaluated "instan

taneously" wi thou! change of state. This means that fOT all o. 

&H true] (rJ) = < t1'l.I.e ,0> and 

&ifalse~(o) = <falae,a>, 

8.[£0 -+ [I,Ed = Cond(&[Ed.&IE,))*&[Eo], 

where the function 

eond: [5 .... T x S] x [S .... T x SJ -+ [l -;.- [S .... T )( S JJ 

is such that 

CandCe, ,e2) (t) t .... 8. ,e2 

so that 

,,(0) if t true I 

Cond(el.e~)(t)(cr) = 
{ 

eda) itt false, 

for all el ,el .t,o in appropriate sets. 

It is now possible to give the clauses of the definition 

oft; , 

t: I (Y)I ~ <:[Yi.
 

elrjlJ = (some given 5 .... $),
 

~[dummy) '" I.
 

t::1£ .... Yo ,rd = CondCC[YoLQ:yd)*&IEL
 

ei Yll ; YI I = e hi ~ ot'[Yo] •
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These functional equations can all be read in words: t"[ (y)] is 

of course the same as t'~yl. Nextt'iH is a given state .trans

formation, since ¢I is taken for the moment as a primitive (or 

atomic) command. (Later we could introduce some syntax for 

the category of iP if 'We wished, and this would requi re further 

semantic equations of a similar sort.) The dummy·comman.d is 

next being interpreted as the "do nothing" transformation. The 

conditional- command on the other hand requi res a cond it ional 

operator similar to the one used for expressions, except that the 

domain of definition is altered to make it appropriate to commands. 

Specifically we have: 

Cond [S ~ SJ x [S + 5] + [T + [S + SJ]. 

Some subscripts ought to be introduced to indicate the difference 

between the t",o kinds of Cond-functions, but "'e are relying on 

the context to make this clear. Finally Yo ;Y, is be ing interpreted 

as the sequencing operation on commands, "'hich in terms of state 

transformations is simply the composition of functions. Note, 

however, the order of application. The "positional notation" 

of the command language conventionally places the first command to 

be executed on the left and the follo'Wing one on the right. The 

convention "'ith mathematical composition of functions is just the 

opposite. (The reason being the common use of f{x) rather than xf 

for the function-value notation.) 

In format these equations forl:'and8. are not much different 

from those for 11 as app lied to the numerals. Ir. all cases there 

is a syntactical defini tioo in several clauses. The semantical 

definition is "syntax-directed" in that it follows the same order 

of clauses and transforms each language construct into the in

tended operation on the meanings of the parts. In the case of 

numerals the meanings were familiar mathematical objects on which 

many familiar operations (addition, mUltiplication, etc.) were 

already defined. In the case of commands and Boolean expressions, 

the values ",ere not so well known, nor were the operations (such 

as Cond) very common. Nevertheless. the domains [S ... SJ and 

[S ... T )( S] are quite appropriate to the ideas that are being 
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explained, and the various operations (Q,*,P,M•• M,) are natural 

ones for these domains. 

That it is necessary to construct meanings out of fuwtions 

([5'" S]) may seem bothersome, but it should not be deplored. 

After all the idea of function is one of the greatest of OUT 

mathematical discoveries. The Calculus would be impossible with

out functions. and the development of the subject would be un

thinkable without the use of various operators (derivative, in

tegral, etc.) and consideration of the equations involving them. 

Though formal languages are not generally made explicit, still 

there is constant translation from intuitive ideas to mathematical 

concepts (veloC!ity means derivative, area means integral, super

position means addition of functions. and so on). In the case of 

computer languages we cannot say yet that we have introduced con

cepts anywhere near as important as those of the Calculus, but 

the spirit of mathematizing ideas can and ought to be carriM 

over. That the project is a useful activity remains to be 

demonstrated, but the treatment of r'eeul'sion in the next section 

ought to indicate some of the advantages of the mathematical 

approach. 

Before turning to more important concepts. the question 

of ambiguity must be faced again. We have allowed our grammars 

to be ambiguous, and so strictly speaking the semantical mappings 

t: and 6. are not well defined. (,,"on Nml was well defined because 

that graIllJnar was not a-mbi-guous.) Is there a mistake here? We_ 

think not. Our attitude is that the meaning of an expression 

depends on the way it is parsed. From this point of view the 

mappings e and 6. are defined not on expressions simpLieite-r but 

rather on the annotated deduetion trees for expressions based on 

rules of the grammar. (If one wishes a linear notation, a fUlly 

bracketed language could be introduced in the usual way, alld then 

the expressions we have written above would result by deletion 

of the brackets and subscripts.) As emphasized above these 

brackets (or trees) are intolerable to wri te; hence. as long as 

we keep our semantic equations "in step" with the syntactical defini
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tions and warn the reader of the oYeTsimplification~ it will be 

clear Io'hat is intended without the burden of any more notation. 

(In the terminology of Knuth {2. 3] we are still using only 

synthesized attributes in assigning meanings to expressions. 

Whether the inhel'ited-attr-ibute approach is convenient is some

thing we must consider further, and there is no doubt that Knuth's 

way of introducing both bottom-up and top-down dependencies between 

semantic equations is an interesting notion. Be that as it may. 

the point of OUT paper is the study of liIhat it is that semantic 

equations assign to expressions. The path by which the assignment 

is made is at the moment a secondary issue.) 
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2. RECURSION. The language of commands and expressions as intro

duced in the last section is at best of illustrative value. It 

was useful to see in not too horrible detail the connections 

between the syntactical and semantical equations. But the actual 

language used was of very limited expressive power. The command 

structure ,,"as of a very direct sort: the execution of such a cOl'lmand 

would procede along a "branch" of a tl'ee, the commands being 

composed in sequence and the choice of path at a branch paint 

being decided by evaluation of a conditional expression. In Scott 

[6] the expressive power of such a language was exprrnded by the 

introduction of a certain kind of ilifiY!ite tree, I:!ut the mathematics 

of this approach loIould take us too far afield here. And in any 

case. it is rather fully explained in that paper. Our interest 

here lies in more conventional language features; in particular 

those that can be written down in finite space. This doe$ not 

mean that thinking of finite expressions as being "unrolled" into 

infinite trees might not be mathematically illuminating, rather we 

do not have the time to discuss it in this paper. 

The question that leads to infinite trees is of COurse that 

of recursive ly defirted commands. By loIay of example suppose that 

exit is a primitive command. as is fudge. Moreover, suppose that 

test is a primitive Boolean expression. One would wish then to 

introduce a command loop by the equation: 

loop ~ (test ~ fudge; loop. exit) 

In other words. to loop means to alternate testing and fudging 

until a negative test is produced. At that moment a hasty exit 

is then required without further fudging. This is one of the 

simplest and most familiar examples. More generally it ""ill be 

desired to introduce a whole sequertce of interrelated cOTMands 

~OI~l""'~n-l by a system of eqnations: 

~o = Yo' ~1 Y1 •·•·• ~rt-l = Yrt-l ' 
where we may think of ~o as the principal command to be executed 

and the remaining ~i as auxiliary commands introduced to aid the 

definition. Now the Y . command exprE'ssions loIill involve reference 
J 
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to the ~i commands, just as in the loop example. Sometimes it is 

possible to eliminate the auxiliary commands at the expense of 

perspicuity by substitution of one equation in another. But at 

other times the elimination is not possible or not at all obvious. 

In any case it is a language feature of well-known convenience to 

allow simultaneous equations. All of this is very familiar ground. 

Syntactically, to accommodate this recursive style of 

conunand definition. we must expand the language to allow for (temp

orary) identifiers which will refer to these auxiliary commands, 

the precise reference being controlled by a scheme of dli.~Z.al'ation. 

The exact style of identifiers need not concern us here: all we 

require is a syntactical category Id of expressions distinct from 

the other kinds of expressions mentioned so far. Besides this Id 

should be infinite to allow for as many auxiliaries as we please. 

We use the Greek r, to range ;ver Id. 

Having provided identifiers, we then need to combine them 

wi th other command express ions. Of course an iden t i fier standing 

alone will be allowed in the expanded Cmd. In this way identifiers 

can be included in the interiors of commands. Further the system 

of equations indicated above can be recorded in the following 

declaration scheme: 

§ l';o·t 1 '···'';n-1 : YOJY1····'Yn~1 

where we have Slightly torn apart the equations. The initial list 

of identifiers tells uS to "watch out" because some auxiliaries are 

being introduced - in the order given. The following sequence of 

commands tells us how to use these auxiliaries with si = Yi intended 

- in the order as written. Recursion is permitted because the 

various ';i may occur wi thin the YJ' Having gone to the trouble 

of writing 1';0 first, we may not only regard this expression as a 

scheme of declaration but also as an instruction to carry out So 
first, thereby activating the other I';i as necessary under the 

control of the Y (The pretty brackets § and t are not strictly
J

. 
necessary. since we could regard: as the declaration operation and 

employ the colourless ( and) to block ambigui ty - but one can carry 
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linguistic stinginess too faL) 

This expansion of expression now requires a revisioTl of 

the synta~ for conunands whereby the principal syntactical equation 

(for y) is accompanied by some auxiliary equations for sequences 

(namely ~I'l and yl'l): 

rOMMAN OS 

y ::= (y)I~ldummyl(1 

E -> Yo ,1'111'0 ;y, 
E;/'l ~y" t 

E;n ::= !;o.f.: 1 ••••• F.: n _1 (n>o. the f.{ distinct) 

yn ::= YC.-y1 ......yn-1 (n>o. the y';i arbitrary) 

II word of explanation is in order here. Greek E; is a metavariable 

over identif:iers, while I;;n by definition is a metavariable over 

n-tuples of di~tinct identifiers. (We keep n>O, so the tl-tuples 

are nonempty.) The metavariable yn ranges over n-tuples cf 

commands (again, n>O). In the last clause of the definition fOT 

y note that the E,n and yn have the same n. Our language therefOre 

is no longer context-free. But, if we may say so, who caTes? 

Context-free languages have limited usefulness. Note, too, that 

we have not tried to torture ourselves wi th too rigorous a style 

of BNF syntactical defini tion. h'e deny that our syntax is un

rigorous or even unaesthetic. On the other hand if someone has 

a really neat language definition system that is as easy to com

prehend at th is level- ot discussion, we shall be- glad to consider 

it. The last thing we want to be is dogmatic about langullge: it 

is in the TJl(\thel'latization of concepts that we have a certain amount 

of dogma to sell. 

For the time being we introduce no revision in the definition 

of Boolean expressions E. Note that the command construction 

r;TI yn t 
is, logically speaking, a var·iable-binding operator. The iden

tifiers ~n are the bound variables (and, since a matching with 

the yn is intended, they lI'.ust be kept distinct); whereas other 

identifiers which occur may occur as fr·ee variabl.es becau5e the con

strnction can be iterated. A certain semantical device "'ill have 
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to be introduced to handle this problem of scope of identifiers. 

There arc other problems, however. and the loop-example
 

will suffice for illustration. In the official notation there
 

are no equations for commands as such; rather OUT example above
 

becomes
 

§ loop (test .... fudge; loop. exit) • 

\oo'hich is a command with tbe understanJing that loop E Id. What 

is the exact meaning of this command? Whatever it is our dogma 

says it must be a state transformation in [5 .. SJ. Let the command 

be called 1. for short. We are asking whattU).] should be. In

tuitively we want 

CIAI	 ~~test .... fudge; A. exit] 
"0>: d (tfi ). 1: ot'~ fu dge I 1 t:I ex it] ) .&1[ tes tl 

To simplify our thinking here Ie t: 

£=t'[AD, 

f = t'~ fudge) • 

Ii< = t::'[ex;t!. and 

t=l;[ll.est., 

where	 ,~.f',e E rS -~ SJ and 

tE[S·.. TxSJ. 

Of these r,.;;, and t are known, ....·hi le i is t~ ~known w.e seek. 

The functional equation for i reads: 

i Cond(lof,e)*t. 

Some solution or other to this equation - if any exists - has 

the right to be called C[ ),J, the meaning mf th.e loO[p- co~and as 

a state transformation. 

!\ow comes the rub. So far we haYe not anal yz.ed the 

nature of the set S at all, because \;'e opted for extreme generality. 

If we ~tick to this generality and allow the functions r,e. and 

t to be Ql'bi tJOal'y functions, then it is easy to construct an 

example where no solution for Jl. exists in the above equation at all. 

The reason is simple: f ,.;;, and t are total functions so interrelated 

that any attempt to define ~, as required sets up an infinite loop: 

so that 710 choice of values can be made to satisfy the equation 
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as a functional equation between total functions. 

The solution to this problem is easy enough and is ..' ell 

knmm: ... e modify our idea about the function space [S -+ SJ, We 

no longer demand that functions be total but understand the 

functions in [S ... 5] to be partial functions. Thus for certain 

cr E S and certain g E [S -+ 5] we allow g(o) to be undefined. With 

this convention it can then be shown that the E'quation for i, does 

indeed have a solution in the partial function sense. and in fact 

it has a leas t solution. (By least we mean that the "graph" 

of the function is included in every other solution.) This 

approach is that of Park [4] and many others. (See reInenees 

in Engeler [1].) Sui table as it is for man)' purposes .and 

simple as it is, it is not quite the method Wf> wish to ado~t. 

OUT method is Telated, but it is made a little mOTe sophisticated 

in oTdeT to supply a closeT analysis of the nature of the elements 

of 5 which is TequiTed faT the explanation of otheT languaEe featuTes. 
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3. LATTICES AND FIXED POINTS. In the lelst section we found it 

necessary to expand [5 ~ SJ to allow for partial functions. The 

set of all partial functions is partially ol'dered by the relation-

s:.ip of one function's being ~noluded in the other. Under this 

partial ordering the set [5 ... S] takes on a structure which has 

quite pleasant properties. These properties can be formulated 

in an ~stract way. so that the proof of the existence of solutions 

to fixed-point equations can easily be given. In order to regular

ize and generalize this argument, it turns out to be natural to 

derive the structure on [5 ... 5] from structure on S. This is 

accompli.shed by expanding 5 until it becomes a partially ordered 

set itself - in fact, S will be made into a complete lattice. 

Just how this construction of an expanded 5 is to be done requires 

a closer examination of the kind of elements 5 should have. We 

will have to return to this question in more detail in §S. For 

the time being suppose that the expansion has been made. 

Speaking a bit more generally for the moment, the structure 

of a complete lattice on a particular domain (set) D requires first 

a partial ordering which we wri te as 

x I; y 

for x,!I E D. This relationship is reflexive, transitive, and 

anti-8!/mmetric. Next. if x.s 0 is a subset of 0, we assume the 

existence of an element of 0, called the least upper' bound (Zub) 

of the subset X, which we write as: 

Ux. 
We have for ally E 0 

Ux ~ y iff x ~ y. for all x E X' 

and this condition uniquely characterizes Ux E D. A complete 

lattice is a partially ordered set in which lub's always exist. 

Among the lub's in a complete lattice there are two extreme 

ones: . the lub of nothing and the lub of everything. That is to 

say, the empty subset ~ and the full subset D will both have lub's 

to which we give special names: 
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.1 = U¢ and T = UD. 

Note that for all zED it is the case that 

.li;~l;T. 

We can think o£ .1 as the weakest element and T as the strongest 

element of D. The ordinary elements are somewhere in between, 

and.l and T should be considered rather extraordinary. (We can 

call them bottom and top.) 

An intuitive way of reading the relationship :.r ~ y is to 

say that x approx-imates y. Thus x is worse and y is better. But 

take care, the sense of approximation being used here is a qualitative 

one of what we might style diroect appro:zi.mation. The statement 

x ~ if does not mean that x is very neal' y. but rather that x is a 

poor>el' version of Y. that x is only partially specified and that it 

can be improved to if without changing any of the definite features 

of z. For example in the case of partial functions. ~ means 

inclusion of graphs (the graph of a function is just the set of 

ordered pairs of arguments and function values); hence. impz'ovement 

means adding new ordered pairs. The smaller set of ordered pai rs 

can indeed be s aid to be an apprOXimation to the larger one. (In 

the case of partial functions treated by graphs in the ordinary 

way. the structure becomes a lattice only when T is added in a 

somewhat artificial way as a top element which is not represented 

as a set of ordered pairs. We shall discuss partial functions in 

a slightly different way below.) Additional examples of approx

imations treated in this way can be found in Scott [5] and [6]. 

If we take the notion of approximation seriously, then we 

have to rethink what we mean by function. Thus if 

f 0 ... 0 

and 

x ~ Y. 

then f should not juggle x and y around in too arbitrary a fashion. 

Indeed it ough t to follow that 

f(;c) ~ fey); 
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became 1:f we improve :r to y, then in "calculating" fry) the cal

culatlOn should be just an improvement over that fOT f'(x). 

Mathenatically speaking the reasonable functions ought to be 

monotonic (i.e •• ~ preserving). 

Besides the intuitive motivation for monotonic functions, 

we have the well-known mathematical fact that monoton-ie functions 

on c(}·r;p~ete ~attice6 alway'J have fixed pOJ:nts. They even have 

least fixed points. This makes their use most convenient fOT 

OUT ?urposes.'" Actually the functions we use - and which are 

appropriate to computation theory - have an even stronger property; 

they are cont-inuous. (See the discussion in Scot t [5] anJ [6].) 

We shall assume this stronger property but shall not go into the 

technical details in this paper. The reader should only be assured 

that normal functions are automatically continuous. 

What does all this theorY have -to do wi th the subject of 

semantics'? Step hy step the relevance .is this: Commands (programs) 

are naturally thought of as defining state transformations. Re

cursive commands require partial functions. Solving for these 

partial functions is just finding (minimal) fixed points in certain 

functional equations. In general the existence of fixed points 

is justified by a lattice-theoretic argument. Therefore, if we 

can ~ee the connection between lattices and partial functions, the 

relevance of the theory will be estahlished. 

Returning to 5. we promised to expand it to a lattice. This 

can be done in many ways, but for simplicity suppose that the initial 

version of S was just an abstract set, 50, say. In 50 we assume 

no particular connection~ between the elements for the sake of 

argument. The expanded 5 results merely by the adjunction of the 

two, new "ficticious" elements 1 and T. The partial ordering ~ 

",	 The argument for fixed points is as follows. Le t [ : [I -+ D 
be monotonic. Let y .s. D be the subset of all y E D such that 
b'~ a whenever [(a)!; a ED. Let x == UY. To show that x ~ [(x), 
note first that x E Y; because if f(a) ~ 2, then y ~ a for all 
y E y. so x!; 2. Next note that f(x) E Y; because if fez) !; z, 
then x~ a, and so [(xl!; f(2) i; a by monotonicity. Therefore 
{x)!; Uy == x. But then f(f(x])!; [(r), again by monotonicity, 
S~ oX!; f(x) because x E Y. Thus x = [(x). 



23 

aside from satisfying the usual axioms, provides in addition only 

the relationshi.ps: 

1. ~_ .:r ~ T. 

(For pictures of these and other partial orderings consult Scott 

[5] and [6J.) This expanded S becomes a complete lattice 

in a rather trivial way, and the construction should not be taken 

as being typical. 

The function space (5 .... SJ is now regarded as being the 

set of all mono~onic functions from S into S. (In more interest

ing lattices we shall restrlct our function spaces to the continuous 

functions; in this example the restriction makes no difference.) 

For a E Sand g E [5 + S] when we formerly wrote that 

g(O) is undefined 

we shall now wri te simply 

g(o) = 1.. 

The new element 1. can be regarded as an "embodiment" of the un

defined. (The companion equation g-(o) = T could be read "g(rJ) 

is overde[ined" ~ but the utility of this concept is not as obvious.) 

Now if [,g E [5 ~ 5] are any two functions. we can write 

[ !; g 

to mean that 

[(~) S- g(~) 

for all 0 E 5. This definition at once structures [5 ~ 5] as a 

partially ordered set and indeed as a complete lattice. This is 

a natural definition for g's being an improvement over f. if one 

reads it in words, and it corresponds to our previous ideas about 

funct:ions. Thus if [(0) = 1 (is undefined). then g(Oj is un_ 

refrtJ'ic:ted and can be any element of 5. If [(0) is better defined 

(say, [(0) = a' E 5 ), then g(o) can only be 0' or T if the relation

ship [ ~ g is going to hold. Hence [~ g means just about what we 

intended when we said that the ordinary graph of f is included in 

that of g. 



Z4 

Note that by the embodiment of L. what used to be partial 

functions are now total functions in the expanded sense. because 

g(eJ) = .L is an allowed "value". This may seem like a silly thing 

to do, but the main mathematical point is that the lattice structure 

on [S -+ S] is now del'ilJed, by means of a simple definition, from 

the lattice structure on S. And by the very same regular process 

we can provide lattice structure on [$ -+ 5] -+ [5 -+ 5]. and in 

general on any [0 -+ 0'] - always remembering to use the set of 

continuous functions for this construction. 

We can now make more precise that we mean by T as a 

lattice; namely T = (.l,faZse.true,T}, where .L I; t ~ T holds for 

t E TJ but false q true and true [ false. We have used T in the 

context T x S. and in general any 0 x 0' can he construed as a 

lattice if 0 and 0' are. One has only to define: 

<;x,;x'> ~ <y.y'> iff;x l; y and;x' l; y'. 

for all ;x,y E 0 and x'.y' ED'. In this way all of the domains 

[T ... [S ... T x SJJ. etc. can be regarded as lattices. and by the 

general method fixed points can be obtained when necessary. In 

particular in the equation 

~ = Co~J(tof.e)*t 

f,e,t were certain oon8ta~ts in their intended domains. and Cond, 

"," were certain functions (operators) on these domains. Under 

the present interpretation all these domains are lattices, and 

it can be checked that all these functions are indeed continuous. 

Therefore, the function 

F [S ~ SJ ... [S ... S]. 

where 

F(t) = CondCi.,0f.e)*t 

is itself a continuous functionj and we know that such functions 

have fixed points. The price of generality is high, but eventually 

there are some returns on your investment. 

Another kind of pay-off was discussed in some detail in 

Scott [6]. In that paper the syntaaticaZ domains were taken 

to be lattices also, and it was found that the mapping 
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was not only continuous but its exi6tence could be proved by the 

very same lattice-theoretical argument via fixed points. That 

is a rather fundamental point and unifies the theory considerably. 

The whole process of forming fixed points can be given a 

functional formulation. Let 0 be any complete lattice and l~t 

[0 -+ [lJ be the lattice of continuous functions. Then there is a 

mapping 

y [D -.. DJ -+ I) 

such that for each f E ro DJ the element YCf) E D i6 the least 

fixed point o£ f. Hence 

[(y(fJ) = Y(fJ 

will be satisfied. What is remark~ble and particularly useful 

is that .Y itself is (!ontinuous. Thus if we employ Y in various 

equations along with other continuous functions we can rest 

assured that the compound functions obtained are also continuous. 

This makes the theory very smooth, if the reader will forgive the 

pun. 

In mak ing up the-se lattices it is sometimes useful to 

join two lattices together into one. We write D + D' to mean 

the result of taking a copy of D and a disjoint copy of D' and 

forming the union. To make this union a lattice we identij'y 

the 1 E 0 with the l' E 0' and similarly for TEO and T' E I)' 

(.1 = l' and T = T'.) Thus, for "ordinary" elements of I) + I)' we 

can say. roughly, that either they are elements of 0 or of 0' but 

not both. The!; relations are carried over directly with no 

connections imposed between the elements of the disjoint parts. 

We shall in § 5 discuss considerahly more complex constructions of 

lattices of a "recursive" nature, but first it is necessary to 

explain the semantical treatment of identifiers. 



26 

4. IDENTIFIERS AND ENVIRONMENTS. In §Z we introduced into our 

syntax for commands the identifiers (t; E Id). An identifier 

:=;tanding alone is an "unknolo'n" having no predetermined meaning 

of its own - in contrast to tile constants. The way one wishes 

to use identifiers, ho,,"'ever, is to give them te1';po:r'ary meanings 

which can be altered within the differing scopes of different 

operators. The way to indicate a temporary assignment of meanings 

is by a function 

p rd ... rs	 .... SJ 

which we call (the current) environment of the identifiers. We 

use lS + SJ here because in the elementary command language the 

values of the variables are to be command values. In other 

languages with other types of variables other types of values 

would have to be used. 

Let	 us write for short:
 

Env'" [Id + [5 + SJJ.
 

Now 1t will no 10I'.ger be true that a command has a "fixed" value, 

bec~se our syntax allows y E Cmd to contain variables. What we 

have to do is to redefine e so that 

~: Cmd + [Env + [S + 5)). 

That is to say, given y E Cmd, we do not evaluate at once e[ yn 

but rather have to provide the current 0 E Env to finde~y~ (p) as 

a state transformation. 

The details of this redefinition of e will require alt~ 

erations of the environments. Our notation for this is the 

following. Suppose r. E ld, 8 E [5 + 5J. and 0 E Env. Then 

p[8/0 E Env 

is that environment p' which is just like p except for the one 

i dentifier ~ where we define 

p 'Hf = e 

(Thus p' '" PI:8/0 is the modl~f{cation of the function 0 just at 

the argument r, to have the prescribed value 8.) Generalizing 

this idea we can also .;rite 

p[8 n /r,n J 
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where en E [5 -+ SJ". the set of n-tuples of sta.te transformations. 

IleTe E;:n is a group of n distinct identifiers and the alteration 

changes all the ~I values of the original P. (These defInitions 

require just a bit more rigor when Id is taken as a lattice in the 

more abstract version of syntax of Scott [6J.) 

We can now state the revised clauses of the semantical 

definition for t'. (The function Eo retains its former definition, 

because in this simple language Boolean expressions contain no 

identifiers. ) 

t'!(y)](p) ~tlYncp), 

t:~¢>~(P) -'= (some given S + S). 

tldummyD(p) = I, 

e"n (p) ~ pHI, 

tiE· Yo .YI)lp) -'= CondCCIYo](p),efYI l(p»·&[£I, 
t:'[Yo ;YI](P) = eiYI~(p)o~iyo](p). 

l:'1§E;:n:ynUIPJ: M~(Jo.en.~[ynl(p[8'I!I;;TI]»). 

These clauses are quite similar to the previous ones. except that 

the environment is dragged along into the interpretation of each 

compound command. It is invoked whenever an identifier stands 

in the place of a command (giving p[f.;) in the fourth claust!). It 

is altered whenever identifiers are bound as formal parameters. 

This last clause requires a gloss. 

First off if pr E Env, then 

t:rRynHp'l :_-<egYll-l(DI}-J"'~Yn_li(p'» 

where yn = Y 'Y1'" "Yn-l is an n~tuple of commands. Therefore
O

the metaexpre ssion 

t'nyn] (p[tJn(f.;n J ) 

can be regarded as a funotion of the n-tuple en E [5 + S]n whose 

values are also in [5 + 5]n. The ),,-expression 

)"sn.tlyn) (p[Sn(/;;TI J ) 

is just the name of that function in the domain 

[S + 5J n + [5 + 5]n. 

The i-operator used in the equation above is then to have the 
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logical type 

[[5 ~ 5]n ~ [S ~ SJnJ + [S s )n. 

(Cf. t~e end of the last section taking 0 '" ["5 .... SJn.J The value 

of this Y-operator is an n-tuple, and /.fn is the selector function 
o 

such that 

M~«eo.e~,...• en_~» = 8 0 , 

What we are doing here, then, is finding the least solution to the 

equation (really: a system of n equations) 

<eoJe~ •••• ,en_1> '" t[ynj(p[Sn/.;n)) 

and setting 

t I ~ F,n : ...t ,~ (p) = eo' 

Our mathematical equations describe this process rather succinctly 

with the aid of the vari~us functfonal-op-erators. At first- 5-ight 

these operators seem horrendous. but actually they are not hard 

to read. Furthermore they hide just the right things leaving the 

structure and sequencing of the operations quite apparent. It 

would also seem to be an advantage to condense the various clauses 

to one or two lines: if one can actually write equations in detail, 

he may have a chance of proving a theorem. And his chances are 

improved if the equations are not too long. It remains to be 

seen, admittedly. whether the method is going to be really practical 

for more complex languages. 

In the introduction we spoke of models for a theory, and it 

will be useful now to return to this discussion in the present 

context. The concepts of our language are separated into two 

kinds: the pI'imitive notions and the logical cons tructs which are 

built on these. In the simple command language the primitive 

notions are the set of states S and the objects denoted by the '!T'S 

and ~'s. Let us introduce explicitly syntactical categories for 

these: 

w E Pred and ¢ E Op 

for the atomic predicates and operations. All the other concepts 

like the Boolean values, the conditional expressions, the sequencing 

and looping of commands are treated as logical notions with fixed 
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meanings. The only chance fOT variation then lies in the primitive 

concepts. The interpretation of them would be established by 

gi ving mappings 

IP : Pre d -+ [S -+ T x 5 ] 

and 

~ Op -+ [5 -+ 5] 

once 5 has been determined. We could then say that in broad out

line models aTe given as: 

JM. = (5 ,'J\O> 

because once these features aTe specified the meanings of all ex

pressions in the language aTe fixed. Of course all we have explained 

here is the log7:cal types of tp and 1:'. but that is all one needs to 

give the semantical definitions for 

'eJ1,: Cmd -+ [5 ... 5) 

and 

~I\: Exp -+ [5 ... T x SJ. 

(That is. in the semantical defini tions we should replace e by C.. 
and 8, by ~b1 and modify the atomic clauses to read: 

StUD (~) o~O'H>] and &J1.ITTU ='lPUnD. 

By the way. in Scott [6] the 0' and the 1> were treated as para

meters and it was noted that with S fixed both ~and~are 

continuous in these paTameters.) 

With this point of view we can specialize and vary.t1 in 

restricted classes that actually are models for some reasonable 

concept of computational structure ~ as we contemplated for various 

models of the theory of integers. Besides this we can compare 

two models. Thus if Yo and Yl are two commands, we say that they 

are equivalent. in 11 iff 

~(yo I = ~[Yd. 

It may very well be that '(g and '(I are equivalent in 1M but not in 

ti'. That may be an interesting fact. Whether it is or not. we 

can at least say what we mean with the aid of our semantical 

definitions. 
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5. PROCEDURES. The language features discussed up to this point 

have been of the most elementary sort and were kept simple just fOT 

the sake of illustration. Even so the mathematical entities 

associated with the commands and expressions ,",'erc involved enough. 

Fortunately the level of complication that we have reached is a 

plateau on which a variety of other features can be accommodated 

without too much additional effort. Among the features pressing 

for recognition is of course the assignment 8tatement. No pro

grarruning language c~n be called practical if it does not include 

the assignment statement in some form. The issues surrounding 

the proper interpretation of the assignment statement, however, 

require a rather full treatment of their own, and this will have 

to be reserved for another publication (Strachey [ll]J. In 

this section we select only one concept ~ that of a procedure 

to discuss in any detailj IIt8inly because it .fits in well with our 

previous discussion of identifiers and function spaces. Even with 

this addition the language remains fragmentary. (In the syntax we 

shall make provision for an assignment statement. but the semantics 

of it and some other related ideas will only be briefly sketched. 

These inclusions are made so that the reader can grasp something 

of the style of the languages we are considering.) 

In order to be able to include other concepts in our 

langlJage a substantial extension of the repertoire of expressions 

bey(){ld the Boolean level will be necessary. In some languages 

this is done through the introduction of a host of syntactical 

categories. This may be a practical idea to aid automatic syntax 

checking and error detection, but for understanding the language as 

a whole it is sometimes a formidable hurdle. For the sake of ex

position we pretend that all the type checking is going to be done 

at :run time. Thus all the expressions that have values will be 

massed together into one category. Before we start to define the 

category we should stop to consider what the values are going to be. 

We always need BooZean vaZues (TJ. and we may as we 11 throw 

in at this point (integerJ al'ithmetio values (N). If we will 
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be getting into assignments, then some expressions will have 

Locations (addresses) for values (L). Tn this paper we will not 

say too much about them. but we want to leave room for them. 

Next we bring up the suggestion that at some point one may \oIan t 

to store - or maybe pass as a parameter - a command. Hence we 

are going to allow elements of C = [S -+ 5] as values of express

ions also. Finally we come to procedures (P). 

A procedure is very much like a mathematical function. 

Now some functions have restricted domains, while others are more 

widely defined. We do not ",·ish to consider here typed fUl1ctions. 

so we shall attempt to permit OUT funcbollS ,i free range of 

arguments and values. The different sorts of values were just 

described in the last paragraph. Let \..IS put them together into 

one space. the va~ue srace~ 

v ~ T + N + L + C + P. 

Again for simplicity we restrict attention to one_parameter pro

cedures; that is, the domain of a function will be V itseH. The 

values will also turn up in V but the path cannot be so direct. 

Remember that every evaluation has to depend on the state of the 

system. and that any action generally has to effect a change of 

state. It will be just the same for procedures: evaluating a 

procedure at an argument may produce along with a value a change 

of state. This argument suggests that 

p = [V -> [5_-> V x 5J]. 

Thus if rEP and x E V. then we cannot find a value from p(x) until 

we look at 0 E 5. Then we get 

p(.T:)(O) ,., <y.o'> 

where y is the value and 0' is the (possibly) altered state. That 

seems just fine. 

Or does it? Suppose the state space were a one-dement 

space which could be dropped from consideration. Suppose that we 

are in a dropping mood and that we forget about N.L, and C as well. 

Then the equation for V comes down to: 
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V=T+P, 

which after substitution reads: 

v = T + [V -0- V]. 

In words we can say that under the reduction every element of V is 

eithu' a Boolean value Or' a function. It still sounds good, but 

there is trouble: in ordinary set theory there are no such spaces! 

Why? Because there is a cardinality question. V must have at 

least two elements; but if so, then by Cantor's Theorem the space 

of a;~ functions [V .... VJ always has more elements than V. Hence, 

the equation is impossible. 

Here is the place where the lattice-theoretic pay-off is 

especially generous. By restricting [V + VJ to continu.ous functions 

the cardinality of the function space is considerably reduced. That 

is a help. but it is oot- enou-gh-just to have V and T + EV .. VJ in 

anyone-one correspondence. The correspondence must be continuous; 

then everything is fine, because we can rest assured that all our 

functional equations involve only continuous functions. (Remember. 

to be able to use a function as an argument of other operators, we 

must keep it -inside the proper spaces.) The way to achieve a con

tinllous isomorphism is not quite obvious and demands 8n inductive con

struction. Some rem8rks are given in Scott [S] and further hints 

arc found in Scott [6]. The full details will be presented in 

papers under preparation (see references in the bibliography). In 

any case the outcome is that the construction of such self-referential 

spaces is not only possible, but they can be made to suit a variety 

of purposes - as long as one can be happy "ith continuous fur,ctions. 

Since we can argue that computability theory is happy with continuous 

functions, all is well, and the existence of the big value space V 

can be taken for granted. 

All right. what then is the (a) language that might go along 

"ita V? {The authors have the peculiar idea that the domains of our 

concepts can be quite rigorously laid out before we make final the 

choice of the language in which we are going to describe these concepts. 

And it may turn out that the same domain is suitable for several 

languages. This is not to deny tha t there may be some vague ideas 
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of language which influence our choice of domains. What we suggest 

is that, in order to sort out your ideas, you put your domains out 

on the table first. Then we can all start talking about them.) A 

possible format of the language would retain the distinction in 

category between Cmd and Exp. (This is a point one might liish to 

debate - but we do not have the space to do it here.) It is Exp that 

will undergo the major expansion over the earlier language, 50 we give 

Cmd first: 

COMMANDS 

y'~ (y)I.ldummy!,1 
(; -... "Yo. Y1 I Yo ; Y. 

§ ~1J:yntl 

£.! i £0 : =; E I 

This looks almost the same as before except for the last two clauses. 

Since we will convert commands into expressions. the E! is needed for 

the reverse process. rhe Eo :=£1 is the assignment statement 

taken as a cornman d to make the required assignment. 

Turning now to expressions we must take note of the five 

parts of V: 

EXPRESSIONS 

.. ~ (,) I" I, I 
cTltrue!false]Eo+EI.El!Eo=CII 

E:NlvIEoWEI 

E:lltEI+EI 

"C I ,y I 
E:pIACEIEoEII 

"y resultis E 

Note that identifiers occur in both Cmd and Exp. Some may wish to 

avoid the overlap, but it actually does not cause any difficulty, 

because we will separate values in a moment. 

Before trying to understand the features of this language. 

it will be well to state the exact logical types of the sernantical 

functions. An identifier will be assigned an element either from C 

01" from V depending on how it is to be used. This means that nOl.' 

we shall have to set: 
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Env [Id + C + II]. 

Strictly speaking C. II and C + II are all different domains even 

though the first two are matched with parts of C + V. We shall 

requin a more precise notation to indicate this matching. A 

completely precise symbolism would be cumbersome, so ...'e write 

(8 in [C + II]) and (,6 in [C + II]) 

where 5 E C and .B E II to indi cate the eorr'e8ponding clements of 

C + II. For is E C + V we wTi te 

ale and ~IV 

to indicate the "projection" from C + V onto its two parts. (In 

case ~ corresponds to an element of C, then 61 II = .L; and if 8 comes 

from V. then 0 I C =.L. The lack of precision becomes clear for 

spaces such as C + C where one would havE' to distinguish between 

left- and right-hand paTts-.)

The logical types of the functions e' and fr. now will be these; 

E': Cmd + [Env .... [S ... SJJ 

and 

& Exp + [Env .... (S ... V x SJJ 

We shall not state all the semantical equations, since either they 

have already been discussed enough for thE' ~impler languagE', or thE'y 

require too much additional development. But a few can be shown. 

For the case of identifiers, we use: 

l:[(l(p) ~ plU Ie 
and 

&[f.;i(p) Au.<pH~ IV,D>, 

which keep the types straight. Note that in the latter equation 

we had to make the right hand side a function of IT E S with values 

in V x S. The point is that if we ask for the value of ~ as an 

expnsslon relative to the environment and the state of the system, 

then the answer is to be just P(E.;) IV without any change of state. 

Wi th the two new kinds of commands, we have in the first 

instance: 
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tnc!Dtp) = Do_&[e:!(p). 

where Do is a special operator defined as follows. 

Do V ->- [5 -+ 5 J , 

and 

Do(6)(0') = (S!C)(rJ'). 

By this we mean to indicate that C [S -+ SJ is itself a part of 

IJ. Thus if 

&[e:E(p)(I1) = <13.0'>, 

then we project B into siC and apply that to 0' obtaining 

0" = (eIC)(o'). 

That is the resultant Change of state in executing e:! so that 

t'nc!)ep)(a) = 0" 

In the second instance, the assignment command, the sequence of 

events is more complicated. 

In this paper we shall not try to wri te the equation for 

eKEo :=£11 (p)(a), 

but we can say in words more or less what happens. We first 

evaluate 

&[£o](p)(O) = <13,0'>. 

and project t3 to a. SIL. aJDcation. Next we evaluate: 

&(cdCp)(a') = <13'.0">. 

Now comes the scuffle, If t3' is not in the part of V which comes 

from l, we set 13" = 13' However, if 13 does correspond to a' 
location, then we consider (I' '" S'lL. At this point we reveal that 

these mysterious "states of the system" are the internal states of 

our hypothetical machine. That is to say, 0" represents (among 

other things) the current st~te of the memory of the machine - a 

memory which provides contents for locations. Thus there is a 

function to be applied to extract the desired contents. and we can 

wri te: 
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err = Contents(o.')(a"). 

In any case we have e" E V. Finally there is one last transformation 

to be made: we have a location (l and a value e" and the current 5 tate 

Oil All that remains is to assign e" to 0. in air obtaining: 

0'" =As8ign(a,6")(o"). 

We then assert that the equation: 

eh:o ;=E1 ll(p)(a) = 0'" 

makes the interpretation of the command what is usually intended. 

Well, that is reasonably precise, but it only becomes completely 

rigorous when we give an explicit oonstrL<otion of S as a domain of 

internal states along with the concomitant functions Conte'lts and 

Assign. The exposition of these ideas is the task of Strachey 

[ 11], 

Shifting now to the semantics of expressions, the compounds 

of the sort E:D are meant as Boolean valued predicates which dis

tingu~h between the various parts of V; namely, 0 = T,N,l,e or P 
Take note of the fact that T has been made a part of V so that 

after a Boolean value t E T has been found. it will havE' to be 

injected into V. For example. to find the value of 

r.crI:O=I:I~(P)(O) 

we have to evaluate Eo. then E., then see if they belong to the samE' 

part of V. If they do and the part is T ,N, or l, then a test for 

equality is meaningful. We carry the test out, get a truth value. 

and then wrap it up into V. Remember too that the state of the 

systel'l will have been changing. 

We need not discuss here the evaluation of numerals (v) or 

ari thllJetic operations (w). The mysterious operators t and + are 

for J',>fel'en~ing and deroeferoencing - operations involving locations. 

Thus to evaluate: 

&HE](p)(o), 

we have to find first: 

fo[ E I ( p) (0 ) <6,0';' . 



Then we have to find a new (unused) location a in a and take 

a" = Assigrda,6)(LT'), 

making 

8ItE](p)(O)=<Ci,O">. 

In other .... ords tE gives a reference to the value of c. Obviously 

we want +E to be the opposite: E is evaluated as having a value 

in L and then the conter.t-s of the current state of the system pro

vide the value for +£. 

In the case of commands as expressions we take 

&[:y](p){O) = <C:lyE(p) i!'1 V,o>. 

Note especially that no change of state has taken place and that 

tnI') (p) has not been activated. The command has been "read", so 

to speak, but it has not been executed. Why do we do this? Because 

one may .... ish to store a command or to pass it as a parameter without 

executing it. In that way it can be set up and then set aside fnr 

later use. 

Before we finish our survey of the semantics with a look 

at procedures, the res.ult;s-construct can be given a quick 

explanation: 

&Ry resultis eJ(p) = &[E:](p)oE'[yB(p) 

That is to say, do I' first, then evaluate c. This combination is 

very similar to Yo ;y. but is of a different syntactical category. 

Finally, we come to procedures where the notation llsed in 

the languagE:' is just that of the functional abstraction/functional 

application sort. Abstraction is easy: 

&[)"CE:j(p)(O) = <f in V,o>, 

where f E Pis de fined by 

f = A6.&ld\p[B in C+V/O). 

Here 13 E V an d 

f : V ~ [S + V x SJ 
comes out correctly by reference to the logical type of &. Note 
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that tile evaluation of a functional abstraction requires no change 

of statr, This is reasonable because none of the state trans

formations that may be lurking in £: can come out in the open until 

we knO'!.. the value of ('j. This cannot be known at the time the 

function is defined; we have to wait until it is applied to an 

argument. 

Application can be interpreted in at least two ways. We 

take a more di reet path - which might not be the most flexible. 

Thus to evaluate: 

&;Jl Eo Ed (p) (0). 

first find 

&[EU] (p)(a) 0( 8,0') , 

and set f 61 P. Then find 

&KEI] (p)(o') 0( S' ,0 ">, 

and set 

&[£oEd(p)(o) = 1(6')(0"). 

(The "indirect" route ""Quld test S to see if it were an L, if so 

all it would require is to look up the contents of thnt location 

and try to use that value. If B were not in the L part of V, 

then ",c would proceed as above.) 

By the time we got around to the procedures there was not 

so very much to say. The point is of course that 

ACE 

is but one clause of a highly recursive definition. The £: can 

be any compound expres~ion. Thus the value of Ai;.. E is a complicatE'd 

function. The construction of our value space allows us to treat 

this function (a m~thcmatical object) just like any other value. 

It can be used as an nrgument of another function. it can be stored, 

it can be thought about in a nlathematical way. 
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6. CONCLUSION There are many features l"issinF fTOI!' the lan~u£ige 

at the last section; to name a few: lists, structured values, 

initiali2.ation of parameters, mOTC flexible parameter passing, 

recursive procedure definitions. This last is very iJllportant. 

Even though the space 

[v-..[s .... v"SJJ 

contains all the values of procedures • ...:c gave no notation faT re

cursively defined procedures the way we did for recursively defined 

commands. The reason for passing oyer that topic is the difficulty 

in keeping track of the state transformations involved in such 

definitions. This will have to be a topic faT another essay. 

Despite the shortcomings of the present exposition, we do 

feel, however, that we have demonstrated the possibility of a math

ematical semantics for sophisticated languapes. And we hope by 

now the reader understands what we mean by "mathematical semantics". 

In this approach the semantical functions give mathematical values 

to expressions values related to some given model. The values 

of expressions are determined in such a way that the value of a 

whole expression depends functionally on the values of its parts 

the exact connection being found throup,h the clauses of the syn

tactical definition of the language. In this way the syntax is 

kept to a minimum so one can concentrate on the semantical inter

pretation. 

The advantages of the method arc many. In the first place 

we feel that it gets at the essence of meaning: without having to 

formalize any bookkeeping, symbol tahles, identifier lists, road 

maps or what have you - as is necessary in some lang:uage definitions. 

Furthermore, the method is conceptual and is not just a formal trans

lation from one language into another. Sometimes the translation 

scheme is useful, but usually a full translation, say into the 

lang:uage of an "abstract" machine, makes it hard to discuss the 

features of the o"riginal language in isolation. As we have shown 

above we can move through the lanpuage one clause at a time, stopping 

to get a clear understanding o-f each construct by itself. 
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The present paper is on~ of a series that is the outcome of 

a collaboration which the authors started in the fall of 1969; 

further papers are mentioned in the references. As it no~ stands 

this t~eory falls into two rather distinct parts: th~ development 

of tht appropriate mathematical apparatus, and its application to 

the application of programming languages. From a logical point 

of view the development of the mathematical foundations should 

obviously precede their application, but as often happens it is 

difficult'to kna ... exactly what mathematical apparatus is needed 

until some applications have been attempted. 

The genesis of this approach is a paper given at a Working 

Conference on Formal Language Description Languages sponsored by 

]FIP in September 1964 (Strachey [10]). Although that paper 

contained the beginnings of the semantical ideas described here'. it 

was quite unsatisfactory "from a- mathematical point of vie....'. Not 

only lias there no attempt at mathematical rigor, but the very 

existence of some of the objects used was not certain. For example, 

referring again to the domain mentioned in §5 which is quite naturally 

associated with interpretations of reasonable languages; 

v ~ T + N + L + [S • S] + [V. [S • V x 5]], 

it is particularly important to note that such a domain cannot be 

constructed by ordinary set-theoretical means. Hence, the need 

for some such mathematical apparatus as we have presented here was 

forc~d on us. The present paper co\'ers much the same ground as 

Strachey {lOLbut this time the mathematical foundations are secure. 

It is also intended to act as a bridge between the formal mathematical 

foundations and their applications to programming languages by 

explaining in Some detail the notation and techniques we have found 

to be most useful. 

Very much work remains to be done. An essential topic will 

be the discussion of the relation between tlle mathematical semantics 

for a language and the implementation of the language. What we 

claim the mathematics will have provided is the standard against 

which to judge an implementation. Thus if >'CE is a function 

definition, then our semantics tells us which function - as a math
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ematical object - ""as inter,,~ed. Any implementation must provide 

us with answers that are in complete harmony with this function in 

the same way we expect even the simplest desk calculator to be able 

to add. An interesting question here is ""hether the function 

defined by '\/;.(: is calculable at all - in any sense. All of these 

questions are basic and do not even make sense without the proper 

mathematical foundation, which is just what we think our theory 

provides. 
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