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1. Introduction

In recent joint work with Jack Dennis, which has so tar appeared only as M.1.T.
course notes [2], we have described several methocds of formally dcfining the
semantics of a programming language, using as an e¢xample a simple language
designed for the purpose, called PL. The question naturally arose whether our
various definitions were congruent, in the sense that they defin' d the same language.
In perticular, one definition gave the denotational semanrtics, in the style of Scott aad
Strachey [12], and another defined the language using an interpreter, along lines
similar to the use of VDL [6]. In this paper we present 2 proof of the congruence of
these two definitions.

We first give the (wo definitions, with a bare minimum of explanation: th= regder is
referred to works like [2, 13, 16] for more leisurely introductions to the methods. It
will be seen that the interpreter manages the sequencing of its operations by means of
structures called continuations, while the denotational semantics has nothing cor-
responding to these. A denotational semantics based on the use of continuations (as
described by Strachey and Wadsworth [14]) would have a structure much closer to
the interpreter’s, and the proof of their congruence would be simplified. We
therefore find it convenient to split up our proof into two stages. In th: first stage we
introduce a new version of denotational semantics, using continuations, and prove
that it is congruent with the original version. This proof is a structural induction te
show that pairs of corresponding values arising in the two definitions satisfy
appropriate predicates. The existence of these predicates will itself require proof: we
shall consider this problem briefly, but defer a fuller discussion untid a simiiar
question arises again in the second stage.

Secondly, we prove the congruence of the continuation semsantics with the
interpretive definition. The interpreter is defined as an iteration, and so it is naturat te
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use fixed point induction [7] to analyse its properties; but with this technique we can
establish only that the value given for an expression by the interpreter is an
approximation of that specified by the denotational semantics. We can also try
structural induction, just 2s we did in the first stage; but here too it is necessary to
demonstrate the existence of the various predicates we use in the proof. In fact we
shall find we are unable to show the existence of the predicates which assert exact
congruence between the definitions: we must be content with predicates asserting
that the denotational value is an approximation of the interptetive one. The reasons
why we must attack the problem from both sides in this way will be discussed further
when we embark on the second stage; the final phase of the proof combines the two
results into a satisfactory stateme—* of congruence.

This prouf provides an introduction to the technicues developed Ly Milne [8, 9],
and used by him and Strachey [9] to prove th correctness of an implementation of a
much more complicated language. Similar v ork has beea carried out by Reynolds
{11], who showed the congruence of versions of dencutational semaatics with and
without continuations for a form of the A -caiculus. Our first stage closely resembles
this proof, though our expression of it is a little different: Revnohis’s use of “‘directed
complete relations” corresponds to our use 5f *‘inclusive predicates”.

2. The denotational semantic; of PL

Parts of the definition in this section and the interpreter to be defined in the next
have already appeared in | 1]. We make one or two small changes 1n convention, and
the careful reader will also be able to discern one or two changes which attest to the
debugging efiects of the construction of a congruence proof.

The definition is given in Appendix 1. For the sake of brevity we omit all references
to the data structuring facilities of PL, and the actual definitions of 3, O, and ¥.

2.1. Notational canventions

Syntactic objects are denoted by Greck capitals (£, I, ...) and are elements n{
domains denoted by short names (Exp, Com, . . .). Corresponding lower case Greek
letters (s, ¥, . . .) denote the appropriate semantic values, which come from domain..
denoted by bold capitals (E, C,...); script letters (%, €,...) are used for the
‘valuation’ functions which map syntactic objects to the values they denote.

Dy + D» denotzs the separated sum of domains D, and D,.

Fach domain inciuaes an error element, denoted by ?. L = 7= T, of course, but ?is
incomparable with all other elements. If an 2lement is projected into a subdomain
where it does not belong, it is mapped to ?; conversely, the ? element of each
subdomain is mapped to ? in the sum. We shall refer to L, ? and T as improper
elements of a domain; the predicate Proper x wiil be true provided x is neither L, ?
nor T.
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Forany domain Drand a, b € D, a = b is true if a is the same element as b, and false
otherwise. We reserve ‘=" to denote a continusus equelity predicate; thus, for
example, if I is a fiat lattice-we might define @ = b tobe L ifeitheraorbis L, Tif
neither is L but either a or b is 7, and equali to a =} otharwise.

PL. is simple enaugh for its semantics to be given solely in terms of environments,
whereas in more complicated languages the notion of a store mapping is also
required. Insuch languages commands normsally specify store transfprmations rather
than environment transformations, and some workers therefore prefer not to rzgard
the PL domnain Conx as cammands, but rather as definitions. Unfortupately, however,
it p € U is to do duty for both environment and state, I/ cannot be simpiy [Ide>E],
as usual. We need, for example, to be able to distinguish between the error
environment, arising from some invalid computation, and the environment which,
though itself valid, associates all identifiers to 7. (This latter environment, Af.?, ¥
called the arid environment), ¥ must therefore include an extra set of improper
elements. The definitions of the operations pff} and g £/ /1 must be extended to cover
these extra values: if p is Ly, v or Tws thenplf]is Lg, 2z or Tg and ple/l]=p for
all / and &.

3. The PL iwterpreter

This interpreter is defined only for a subset of PL, called the kerne! language. It is
shown in [ 1] that any PL program may be transformed into an equival~nt one in this
kernel langur ge, of which the syntax is as follows:

E::=F[L{l)|proc(l): E |rec/(/):E|res E|
B| 01y,

i:=l=F|while/doT)
;T |if | then Ielse I'.

The intespseter operates on states. Informally, its action may be given by
|

until Terminal (o) do o = Step(o), 3.1)
where o € State; more formally we may say
Interpret = fix(Ad.Aa. Terminal (o) » ¢, $(Step(a))). (3.2)

The syntax of states is as follows, where components are denoted by the same Greek
letters as are used for the corresponding entities in denotational semartics (some of
these will not e introduced until the next section):

o:=evalEinp;«|
perform 'ingp; 6|
assign ¢ to / in p; B

done ¢ |error.
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Here, x and & denote the ‘continuatiors’ of expression and command evaluations;
their syntax is as follows.

x::=done { }|assign () to /in p; &,
0::=perform I" in { ); 0|eval £ in (); «.

Note that () represents missing components, sc that
Append 'val’:e tox and Append’'env’':pto@

both produce complete states. This (very straightforward) machinery is expounded
further in [2]. Similarly, values denoted by p are data structures, with operations
defined on them as follows:

- Has (p, 1) tests whether p has a component with selector /,

- Select {p, I} gives the component of p with selector /,

- Append | ¢ to p gives a new structure containing ¢ with selector / (replacing any

componen: with selector / in p), and all other components are as in p.
We shall not bother to give the axioms for these operations: they are given in [2].

it remains to give the definitions of Terminai and Step. In these definitions, which
are given in Appendix 2, an expression such as ¢ =" eal £inp; « 'tests whether o
is of the specified syntactic form, and also introduces names for the various
components, which may be used in any arm of a conditional expression invoked by
satisfying the test.

In (A2.8) the function Rep maps basic constants in Bes to forms ~ boolean 8,
"integer » " etc.: we omit the full definition of Rep. Likewise, we omit further details
about Check1 and Check2 ((A2.9) and (A2.10}) which check th= validity of the
opr-rands for monadic and dyadic operators, and about Operl and QOper2, which
actually perform the operations.

4. Continuation semantics for PL

In this section we introduce the intermediate semantics for PL, which is a
denotational semantics using continuations. In this scheme the valuations for
expressions and commands are given an extra parameter, the continuation, which
embodies the dynamic effect of the rest ~ the program: so it maps the result of the
canstruct (the value of an expression, or the emvironment } 'f* vv a command) into an
element of a domain of final answers, A. As it happens, A is b.re ths same as E, but
this is mat necessary. The domain of function values s now glso different, in that such
a value is not given a continuat'on until it is applied {cf. a return link in an
implementation). The semantics is therefore as givenr in Appendix 3. Note the
sonvention that braces {} surround the continuation argument of a valuation
function. Note, tao, that we cow no longer requ.ire the extra impraper clements in ¥,
needed in Section 2. This is because irmproper commands now give rise at orce to

improper values imr -4, and their effects do not have to propagate by means of the
environment produced.
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5. Congruence relations between the two denotational definiticus

We next detine the predicates which a pair of values, one from each of the two
denotationat definitions, must satisty if they are to be regarded as congruent. From
now on we shall be making extensive use of a notational convention due to Robert
Milne, and known as the diacritical convention. When relating values belonging to
the two definitions, we use acute accents to decorate variables denoting values from
one of the definitions, and grave accents for the other. Thus ¢/ might denote an
expressed value in the non-continuation semantics, and ¢ an expressed value in the
continuation version. We often wish to considera pairof vatues suchas (¢, £), anditis
convenient to abbreviate this further; so we write £ to staad for {(¢. £). At each stage
we use acute accents for the version of semantics we consider more normative; so at
present the semantics of Section 2 will have acutes, and that of Section 4 graves.

We first consider values in the two E domains. The function elements of these two
domains have different functionality, so for congruence we cannot simply demand
equality. We spell our requircments out as follows:

(= LlveEl)r(c=iad= 1),
(fm2vi=N>+(f=2A8=T),
(faTveémT)a>(dmTAémT),
(FeB)> (2eBA(é|B)=(2|B)),
(FEF)>(GEF A f((£|F), (2| FY),
false (5.1)

Note here that if x € L», + - - , then x € D, is true if x is in the subdomain D, false if x
is in some other subxdomain, and L, Tor T ifxis L,2or T.

f. the congruence predicate tor functions, is satisfied if congruent results are
obtained for congruent arguments. So

16 < Ns(dé, dé)leé). (5.2

The predicate ¢ used in 5.2 acts on pairs in which the second element requires a
continuation; so it also applies to pairs such as (E[E]5, 8[E1p). It is defined as
follows.

Y@= LvgmL)s(reiag=L),

aTvgmT)s@mTagmT),
(F=?vg=2)+(=TAP=?),
(3¢&; Properé A=Ak . ké neld, £)) (8.3)

A pair of environments is congruent if each identifier denotes congruent values. So
up <> A\ (1A, s1MN/ € Ide). (5.4)
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We need, finally, a relation for pairs of the form (¥[7']4, €1I'15).
If 4 is such a pair, then ¥ € U and ¥ €[G -+ A], where G =[/ - A]. We define

cheGmLvy=1)a(F= Lay=1),
F=Tvi=T)+(G=Tay=T),
(Fm?vymn)»(Fm?aimd),

3p: ¥=A8. 65 Ault, 8)). (5.5)

Thess predicates have definitions which involve circularity and they can be
rewritten as a fixed point equation. However, the function of which this set of
predicates is the fixed point is not monotonic, and so- the existence of such a fixed
point cannot be inferred by the usual appeal to the result of Tarski[15]. We shall see
[ater that this difftenity is sometimes resolved by regarding the proposed predicates as
mapping their arguments into the domain {true, untrue}, where trueGuntrue ; but that
does nat help inthig ¢ .2,

In order to be satisfied that these predicates do indeed exis*, ¢ consider their
arguments, which are draw from pairs of domains which-are th>mseives circutarly
defined. The construction of solutions to these recursive domain equations involves
sequences of ‘approximation’ domains, of which the required domains are, in some:
well-defined sense, the limits. We may define predicates on each of these approxi-
mation-domains: this involves no cireularity, but instead uses the predicates on-
earlier domains. Then we may define predicates for some element of the limit domain
by applying the appropriate predicates to the element’s image: inv-at} the approxi-
mation domains, and taking the conjunction of the results. Sc, for example, if
£ e[E x E) we dafine

e A {endels (5.6)

n=0

where £, is the image of £ in the approximation domain [E, x £,]. It remains to be
proved that the predicates so defined satisfy the required equations: this is true in the
present case.,

We shall consider this technique in slightly more detail later, in the srcond phase o”
our proof.

6. Congruence of the two definitions

Definition §.1. A function f is strict if f L= 1, f7=? and fT="T. (We adopt this
definition for brevity’s sak=: some workers prefer to call such a property ‘double
strictness’, and say that 7 is strict simply if f 1 = [.)
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Lemms 6.2. For the-semantics of Appendix 1, B Ey and €[I"] are strict in p for ali
EcExp, 'eCmd.

Proof. This is our first example uf structural induction . we prove the result for all
exgpressions and commands, assuming that * holds for any subexpressions and
subcommands. The proof is by cases on the possible syntactic forms of the constructs,
using the clauses of Appendix 1. Ali the cases are straightforward: for clause (A1.17)
we usc he fa . that fix F=F (fix F),

Lemma 6.3. Properp A up A eé =» Proper(plé/11) n u(plé/ 1], ple/ ).

Proof. Recalling our remarks in Section 2 about the nature of U, we see that g[£//]is
proper if 4 is. For (3{é/1], p[&/1] by (5.4) we must show
Mel(6le/ AL, (ale/ DILDI! € ide}.
Since g is praper, if /= A this is ¢¢, which is given; if 7 a /| it is
Ne(slhd, sl0DL = 1,
which follows from up.

Our main aim in this section is to prove the congruence of the two values specified
for a PL. expression (or command) when evaluated in congruent environments. The
result is proved (and holds) only for proper environments in the non-continuation
semantics. By making this restriction we do not exclude programs for which
improper environments arise in the course of the calculation; but we do insist that the
program as a wheole is evaluated in a proper environment (such as A/.7), which is not
an unreasonable constraint. Qur result is then:

Theorem 6.4.
N{s(#1E15, 81 E1p)| Properp n up}  for all EcExp
and
Nc(€LT]p, GLI'1p)| Propers nug}  for all ' € Com.
Proof. The proof is by structural induction, and is again by cases of the possible
syntuctic forms of expressions and commuands.
Cocollary 6.5
Ae(EEENA . ), BIENM . DiAe. e}

(We check from (5.1) and (5.3) that if s, then e{y), §{Ae . £}), and from (5.4) that
WAL ALY
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7. Phase two - Strategy

We have now validated the continuation s<mantics of Section 4, and can turn to the
second phase of our investigation, in which we prove the congruence of that
semantics with the interpreter. From now on we regard the denotational semantics as
the more normative, so we shall use acute accents for entities involved in that
definition, aud grave accents for those arising in the interpretive scheme.

The interpreter is a continuous function on trees, with a fairly conventional fixed
point definition: as usual for such definitions, we shall (in Section £) employ fixed
point induction for its analysis. In essence what we shall be doing in this technique is
assuming that the interpreter is ‘correct’ for progran_» which require, say, n steps of
the interpreter for their evaluation, and proving t .at the interpreter is also ‘coirect’
for programs which requize n +1 steps. In cffect we shall be doing induction on the
duration of the execution.

On the other hand, when we analyse the denotational semantics (ir. Sectlon 9 and
10), we shall use structural induction: we shall prove that the definitions ‘agree’ for a
program assuming that they do so for its syntactic subcomponen's. That is to say, our
induction will be based on the size of a program rather than its duration. More
important than this, however, is that the structural induction wil. be based, like the
(ast one, on a family of predicates defined circularly. As before, in order to verify the
sxistence of these predicates we shall have to perform induction an the sequences of
domains ariging in the construction of the various domains of the semantic definition.
For example, our domain E, which (since K =[E - E)) satisfies

E=B+[E-[[E-E]-E]],

is constructed as the limit of a sequence E;, Ei,...,E...., where E, 1=
B+[E,~{[E,~» E,]}» E,]} and E; =B + { L g} (with the extra element standing for
all the functions). In this sequence the first domain includes only the basic values, the
next includes functions on those basic values too, and in general each domain
includes the functions on values in its predecessor in the sequence. Thus we have now
introduced three possible kinds of induction on programs — hased on their size, their
duration, and the richness of their value domains - and there is no correlation
whatever between them.

One effect of this is that in the fixed point induction all we shall be able to prove ata
typical point in the sequence (where the result of a program is undefined if it daes not
terminate within a particular number of stens), and therefore all we can prove for the
limit, is that the interpreter defines a function wiich is weaker (in the sense of the
partial ordering of the appropriate lattice) than that defined by the denotational
semantics. On the other hand, when we construct the family of predicates for the
structural induction, we :haii be concerned with a sequence of approximation
domains with limitec' complexity of type structure, and at a typical point in the
sequence some functions will not yet be included, and so the predicate will be
unable to express any information aboi: them. Under these circumstances, the
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only predicates we can construct for the limit domain assert that the de-
notational semantics defines a weaker function than the interpreter. Only
when we have separately proved each definition weaker than the other will we be
able (in Section 11) to tie both proofs together and show the definitions precisely
congruent,

This is in contrast to ihe situation in Section 5 and 6. There the two definitions
being related were much more alike, and the value domains on each side were so
similar that it was possible to deline a suitable predicate, expressing compizte
congruence, an each pair of approximation domains involved in thetr construction.
There was no need to be content with proving an inequality, and so no need to work
separately from each side. The present extra complications arise in general when one
tries to relate an infinitary abstract object, such as the function associated with some
PL procedure by the denotational definition, with its finitary representation, such as
the tree which represents the procedure in the interpreter,

This strategy was derived by Milne, who used it in his the<:s [8] to investigete mode
declarations in Algol 68. He has since used it {9], in a prouf which is similar in outline
to the present exercise but enormously more complicated, to prove the correctness of
a translation into what is in effect a machine code of a big high level language.
Gordon [3] has used somewhat different but related techniques for proving the
correctness of a LISP interpreter.

8. Analysis of the interpreter by fixed point induction

The denotational semantics is in terms of abstract objects, while the interpreter

manipulates representations. So, in order to compare values drawn from each of
these schemes, we first define a family of derepresentation functions, which map
representations into the values they represent.

Expressible Values
Ew=)é . (¢ =Cinteger v ) v
(¢ ="Doolean ) v
(¢ =Tstring s )»B(:) m E,
(¢ ="functior (/): Ein p7) - Ae. E[EY(U (G /1)) in E,
(6 =rectum /,()): Ein p )~

(fixfadra . SIEN(U (P)o in E/ LY a/ D} in E, (8.1)
?

(Note that we are here using a converntion about local names similar to that
introduced in Section 3.) This definition treats the representations of values

in E.



160 JL.E. Stoy

Basic Values {8.2)

Since the basic values and their representations are both elements of countabl: flat
lattices we may take for granted the existence of afunction B and we siiall not bother
to define it further: it is the inverse of the function Rep introduced in (A2.8).

Envi
Next we have the derepresc~tation function for environments which are
represanted by structures.
U= ApAl . Has(p, )~ E(Select(p, 1)),?. {8.3)
Continuations
The next two functions concern continuations.
K=Ak.x="done()"'+As. ¢,
% =assign () to /in p; §7+ Ae . TONUG)e: D),
8 (8.4)
T=A0 . §="perform I'in{); 67 A5.€[T3{T(y);,
= el Em(): k" »ad. E[ELSIK (D),
2. (8.5)

Answers

Finally we give a function for pozsible answers from the interpreter.
A=)o.o="emror'+2,
o ="done ¢ > E(&),

2. (8.6)

It may be verified that the only results possible from the interpreter are 1, "error™
or "deme £ Vfor some &. (The proof issimilar to that for Hoare’s [4]while-toop axiom,
givenin[35]: we veri*y that either o = 1 or Termiral(c) is true for the final state o.) So
simce-by (8.6} A€ L)= L, this defiition introduces no surprises.

We are assuming that identifiers / € Ide and their rcpresentations are identical: if
required we could eesily add a derepresentation functon F for thenr.

Note that all these derepresentation functions are continuous, so that although
they are recursively defined no-special pains need be taken to show theirexistence.
The:: inverses, however, mapping from abstract objects to their representations, are
not monotonic, or even (in general) single valued.

Lemma 8.7. U(Append | ¢ to p)=(Up)LE&/I).
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Proof. We clreck that each side gives the same resuit when applied 10 an identifier /,,
for all /, € Ide.

The main theorem of this section is the following:

Theorem 8.8. For all states of t1e appropriate form, with proper components,
(a) AlImterprer("dome £ ™)) Eé,
(b) A(Intepret("error ")) ?,
(c) Alnserpret(Teval £ in p; &))< E[ENUBNKKR],
(d) A(Interpret("periorm I' in 6; 67) = €LF(Up)( T8},
(¢) A(Interpret{"assigr.¢ to [ in p; 6 ) = (TON(UR)EE/1)).

Proof. We use fixed point induction, remembering that
Interpret = fix(H),
where

Hé = Ao . Terminalo -» o, $(Stepo).

We must therefore show:

{1} Theresults{a) to () held when Inzerpret is replaced by L . This is immediately
obvious.

(2) Results (a) to (e) hold when Interpret is replaced by He, assuming that they
hold when Interpiet is ¢.

For results ¢a) and (b) the state o-is such that Terminal(o) holds; so (FH¢)o = o for
all ¢, and therefore by (8.6) the required inequalities hold. For results (c) and (d) we
consider by cases possible values of £ and I respectively. For case (e), noting that the
left-hand side becomes

A(¢(Append 'env':(Append L : & to p) t0 6)),
we conzider both possible values of 4, namely
Fpexiorm Iy in (); 6,
and
Ceval £1(); &1

In both cases the result follows by Lemma 8.7 and the inductive hypothesis.

Corollary 8.9. For all E € Exp,
Allnterpret(Teval E in nil; "done () )= F[EKAL . NiAs . €.
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9, Predicates for the structural induction

Having completed the first arm of the congruence prooi we now embark on the
second, which involves an analysis of the denotational definitior by structural
induction. For this purpose we define a family of predicates, similar t» those used in
Section 5. )

First we relate values in E with their counterparts in the interpretive system:

eé < IsBusicé » §EB £ (é|B. = Bé,
IsFunctioné »  €F a fZ,
false 9.1)
where
I:Basicé <> (¢ ="integer v ") v (¢ = boolean 8 ) v (é ="stringo™) (9.2)
and

IsFunctions <> (¢ ="function (/}: £ m p M v (¢ = rectun (L) Enp™).
(9.3)

Next we relate answers: a compares a value ¢ arising from an expression in
denotational semantics with a final state ¢ arising from the interprete;

alé, o)Sg= | >},
o=mlCemror>:c?,
o ="done ¢ " (IsBasice ~ ¢ SBéE,
IsFunctioné - fi,
f='s3,
false, 9.4

Note the inequalities here, which we shall be discussing a little later.

When comparing functions, all we can demand is that congruent answers are
obtained whenever they are applied to congruent vatues. More precisely, if & pair of
expression values ¢ correspond to run-tions, they are congruent if the result of
applying ¢ to any argument a with any continuation & agrees with the result of
interpreting an application expression "/,(/2)" with a continuation & congruent with
K, in an environment ia2 which /, denotes ¢ and /; denotes a value & congruent with a.
So we have:

FE@Na (& | F)dx, Interpret(Teval 1,(12) i p; &7)|

kit A ea A contains(p, &, &)}, 9.5)
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where
contains(p, &, a)<> Has(.., I)) A Select(p, [.} = ¢
A Has(p, 1) A Seleci(p, )= a. (9.6)
The next two definitions are about continuations.
ki¢ &> A\la(ié, Interpret(Append'val’: é to &))| €8}, (9.7)
1 &5 Na (0, Inierpret(Append'env’ : § 10 0)) | up). (9.8)

Finally, a pair of environments is congruent if the pair of values denoted by any
identifier is congruent.

ug <> MNHas (9, 1)~ e(gl1}, Select(p, 1)), plI] =2 |! € Ide}. (9.9)

9.2. The existence of these predicates

The reader will have noticed that if oy the- two mequalities i (9.4) were
¢qualities instead, we would have defined conditions for precise congruence between
the two semantic definitions; we would have avoided the meed to prove the opposi:e
inequality, and Section 8 and 11 could have been omitied. W¢ claim, however, that to
eliminate these inequalities would invalidate our techmique for constructing the
required predicates. Note that we are not thereby claiming that no such predicates
exist (that is still an open question), but merely that we do not know how to
demonstrate their existence, and therefore that we bave no right to use them in our
argument.

The reason for this difficulty has already been outlined above {Section 7), namely
that the existence proof is based on an induction on the series of approximation
domains E, whose limit is the reflexive domain E, For each n, sorne of the functions
in E have to be represenfed by approximations in E,, so the series of predicates e,
cannot lead in the limit to an e asserting precise congruence for elements of E.
Formatlly, it is the basis of the induction which fails. In E; there is but one element,
1 g, doing duty for all the functions; s0 eq would have to assert that the interpreter’s
behaviour for every function is congruent to 1 5 which is pleinly ridiculous. To
achieve the weaker predicates we have actuslly specified, however, all we require is
that e, asserts that 1y approximates every function modelled by the interpreter,
which is plainly obvious.

The approximate predicates themselves are defined in Section 11 below; the
details of the proof for a slightly simpler case may be seen in [13]}.

Natice that our ‘approximate’ predicates litve been comparing elements from the
‘approximate’ denotatioaal doi..ins with the ‘perfect’ values on the interpreter side.
If we wished wecould use approximations to these other values too: But this would
be no help, since the approximate values man:pulated by the interpreter are trees of
limited depth, and the approximate values on the other side have limited-complexity
of functionality. The lack of correlaticn between these concept= means that, thouzh
matters would be much more confusing, they would fail in a similar way.
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10. Analysis of the denotational semantics by structural induction
Lemma 10.1. If up and e¢, then u{p{é/I], Append |:¢ to p).

Proof. Check that the requirements of (9.9) are satisfied for all /' < {de, because e
(for I'=1) and up (for I'# ).

The main result of this section, which leads to the opposite inequal:ty to Corollary
8.9, is as follows.
Theorem 10.2.
N a(E1ENSK, InterpretTeval Ein p; k| up A kit}
for all E € Exp, and

M a{6LF1g6.Interpre: perform I" in 5 ; 67)|ug A 16}
for all T € Com.

Prootf. As usual, the proof is a structural induction, by analvsis of the various cases of
possible forms for £ and I,

11. The relationship between these results

Strategy

To combine Theorem 10.2 with Coroliary 6.5 and 8.9, we wish to show that it
inplies the following particular result:

a({BIENA! . D{Ae . €}, Interpret("eval E in nil;" done() ).
To do this we must show that

u((af . ?), nil)
which is'immediately obvious from (9.9), and also that

k(re . e, "done () )

which is more difficult. Indeed, we demonstrate this only as a corollary of the
following much more general result.

Thearem 11.1. (a)A {e(E5, £}| Propers),
(b) A{uUp, p}| Properp},
(c} A{e(T6, 6){ Properé},
(d) A {k(KR, &)| Properx}.
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Proof,. The proof is by induction. The proof of Theorem .8 was essentially by
induction on the number of execution steps performed by the interpretes, and the
proof of Theorem 10.2 by structural induction on the structvre of the program. For
the present proof we use the third of the possible schemes for induction discussed in
Section 7: we consider the sequence of approximations.to the predicates e, u, f and k.
So to prove (a), for example, we show that for all »,

Men(Ez, £ )| Propers)}

fr : then, since e£ = A ,e,é, the required result follows,
We first give the definitions of these approximations of e, 4, ¢, kX and a, and the
domains on which they operate.

E,=B+F,, (11.2)
F0={-|-}: hn+l’=[Eu"[Ku"En]]a (11.3)
Kn ’[Eu"En]u (11.4-'1

aoglé, o)dom | »gge= 1,
oc=emor ‘> i ?,
o m"done & V- (IsBasicé - (5| B)= 3é,
IsFunctioné -+ fof,
false),
false, (11.5)
anlé, o)Hom L >é, m |,
c=Temror ' £, &2,
o ="done ¢ - (IsBasicé » (£, | B = Bs,
IsFunctiong - f,é,
false),
false, (11.6)
e.¢ &> IsBasiceé » éeB A (¢ | B)= Be,
IsFunctione - €,EF, A fof,
[false, (11.7)
fof & true,
furf @M an{(é | F)dk, Inicrprei("eval T(h) ie-é . M)

ki A €x8 n cORtains(p, &, a\}, (11.8)
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kR es\{a,(ké, Interpret{Append'val': & to &)} eaé ), (11.9)
1.0 > \a. s, Interpret(rippend’env':p io 8))| ud}, (11.10)
up SN Has (3, 1)~ e (5]/],Select(p, 1)), 6111 =) |1  Ide}. (11.11)

Remark 11.12. The results which we have proved for the limit predicates hold alsn in
versions involving their approximations. Thus, for example, Theorem 10.2 implies
that for all £ Exp

Ao (EIE)K Interpret(Teval £ in p; k) uep A kait).

To see that this is 50, we note first that if k,&, for example, then also &, {x(n), £) for all
m, where K, is the element of K, corresponding to & in ¥, and hence & (¥, £); that,
by definition of a, if aB, then also a8 for all n; and finally that

an(g[E]ﬁ(uié(n]’ 0") = a,,(ﬁ[E]ﬁré, &)

Proof of Theorem 11.1. We prove that for all n

ta) Afen(EZ, £)| Propere},

(b) Aunl Up, p)| Properp},

(c) A{ta(T8, 6)|Properé},

(d) Adkn(KR, k)| Properi}.
The proof is by induction on #. The arguments for the basis and for the inductive step
are similar: for the basis in case (a) we use the fact that fof ¢ true, where in the other
argument we use the inductive hypothesis. T and X are defined mutuatty recursively,
so for cases (c) and (d) it is also necessary to use fixed point induction. Otherwise, the
proof consists of considering the pessible forms of £, 6 and &: The subcase &=
“done ()™is the only one which uses the definition of a. This is only to be expected, as
it is only when the contimation Fdome ()™ 15 reached that actual answers are
produced by the interpreter; so only here must we check that such answers meet our
requirements.

Corollary 11.13.
a(€IEVAI . 2NAe . e}, Interprer("eval E in nil; "done () ™).

Now without further complication we can show the following result.

Theorem 11.14. For any E € Exp, let

ay = SEENAL . DHae . &},

az = A(Interpret(“eval £ innil; "done {))).
Then

(a1 EF A a2 F)V (ay =a;).
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Prool. The result follows immediately irom Corollary 8.9 and 11.13, with their
associated definitions (8.6) and (9.4).

The usefulness of Theorem 11.14

For most purposes Theorem 11.14 is a sufficient statement cf the couy.zence
between the denotational semantics and the interpreter. Moreover, Corollary 6.5
allows a similar congruence to be established with the origiial (non-continuation)
semantics. These results may readily be extended for situations where th< initial
environnents are non-empty (for example, to accommodate library functicas).

For expressions whose vahres are functions, however, Theorem 11.14 obligesus to
accept from the interpreter any representation of a function, without worrying about
whether it represents the right one. This corresponds with nur nermal practice: when
a computer spews out at us its own representation of a function we rarely subject the
binary code to careful mathematical analysis - indeed, in many cases what function is
represented depends on the contents of the compuicr store, so such analysic may be
impossible, In the present simpler case, however, functions are represented by
closures, and we do have a function, E, to tell us what function such a closure
represents. So it is reasonabie to ask whether it represents the right one.

Two functions are equal if equal results are obtained whe: each is applied to any
possible argument. However, we shall not prove here that any function is equal to the
correct one, as we shall be confining our attention to argument values which can be
represented in a form suitable for the interpreter (that is to say, arguments of the
form E¢ for some £). Instead of equality, therefore, we have another equivalence
relation: two functions are cquivalent if they give eguivaleut results when each is
applied to the same argumeat drawn from the class of acceptable arguments. This
notion will be formalised below, where we define the eguivalence by means of a
quasi-ordering. Equality, of course, iiiplies equivalence; whether the reverse is true
depends on the structure of the domains involved.

Definition 11.15. For a1, a; ¢ E,
1S @76 (a2 e F) = true > N(aa | FUEB)Ae . e} < (a2 | FYEBNAc . €}
I8 € B},

o) &=as.

This definition, like many previous ones, is a circular definition of an inclusive
predicate. A predicate satisfying this definition would be a fixed point of the furction
¥ where

v=ad.A(a,al). (a:!t Aa S az)v
(2 F A Ald((ar | F)EBMAe . €}, (2| FIEBYAe . €})
|8 € E)). (11.16)
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Remembering that we regard inclugive predicates as mapping their operands into the
domain {true, ur true} where true < untrue, we may easily see that ¢ is monotonic; so,
since inclusive predicares form a complete lattice, such ¢ fixed point certainly exists.
This is in contrast to earlier predicates (su.ch as those of Section 5) whic h wer. defined
as the fixed points of non-monotnaic functions, and which therefore require a more
elaborate existence proof. The essential difference is that the earlier definitions used
a recursive invocation to qualify the set of permissible argumentr to a function
application (and hence to reduce a universe of quantification), whereas here all ¢ are
allowed.

Since ¢ may also be shown to be continuous we may investigate appropriate
praperties of its minimal fixed point (fix ) by fixed point induction, remembering
that the minimal element in the lattice of inclusive predicates is (A (x4, a3) . true).

Examples of this are given by the proofs of the following lemmas.

Lemma 11.17. For a, GQEE, aEapa; < as.

Caorollary 11.18.
A(Interpret(Teval £ innil;” done () T)) < E[EY(A/. N){Ae . ).

Lemma 11.19, < is transitive; that is to say, forall x, y and z,
XESyAy€ZIDx < .

Lemma 11.20. a{qa, 0)=> a < Ag.

Proof. We use fixed point induction to prove a more powerful result (actually the
conjunction of Lemma 11.17, 11.19 and 11.20). Specifically, we prove P(fixy),
where

Pe(Ad . (Vay, aziaiLa; > dlag, ad) A
(Va,, az, a3 diay, az) Adlaz, az) P $ic, az)) A
Va, 7 :ald, )= ¢{d, Ad))).
Corollary 11.21.
BLEN(AL . 2M{Ae . c}=< A(Interpret(Teval £ in nil; "done ()7)).

Definition 11.22. oy ~a2&> a1 € ap r o < o).
Notice that this defines an equivalence relation.
Corollary 11.23,
ar=ar>a EF » a6 K AA[(a) |FYESMAc . €} = (a2|F)YEBNAc. ¢}
|8<EY,

o 8oy,
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Theorem 11.24.
EIENA . 2Ae . +}=A(Interpret("eval £ in nil; “done ()77)).

Proof. Immediate, from Corollary 11.18 and 11.21,

12. Conclusion

Theorem 11.24 is the extension of Theorem 11.14 that we sought. It says that the
denotational semantics of Section 4 and the interpretive semantics are cangruent in
the following way: unless the answer is a function they give identical values; if the
answer is a fuw.ction they give equivalent values, in the sense that equivalent results
are obtained when the values are applied to any representable argument. Corollary
6.5 state 3 1 - 'milar congruence between the two forms of denotational semantics.

Agair -~ .+ - definitions specify identical results uniess the answer is a function; if
the - aswe - . funciinpo the two values given cannot be equal (indeed, they are
1ag; e .crent domains), but they are again equivalent, this time in the sense

wrfied » _2) Together, these results imply the congruence of the two original
defimuons: for any expression, identical values are given if the answer 15 not 2
function, and equivalent values if it is.

The proof of this congruence has been long. Some of the length is unavoidable: for
example, tedious case-analyses (omitted from the present text) are ap essential
comparison of the small print of the two definitions. We can expect, however, that
ircreased use of mechanical aids, such =« {hose developed by Milnerand others {10],
will relieve this situation. Cther factors affe :ling the length of the proof include the
need (in Sections 8 and 10) to cover similar groundin two different ways, amd also the
elaborate existence proofs required for tlie various predicates (here, too, our
exposition omits many of the details). This is an area where workers in the field
develop a ‘feel’ for what is likely to be true: tuch a feeling is, of course, no substitute
for actually carrying out the checks, but we¢ may reasonably hope for some more
mathematics to simplify the work.

Apperdix 1. Standard semantics for PL
wyntacic domains

8cBas (Basic constants)

{ elde (Identifiers)

O eMon (Monadic operators)

N eDya (Dyadic operators)
EzExp (Expressions)
I’ e Com {Commands)
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Syntax

E:=1|E(E)|procil): E |rec /(l): E|T res E|
BlOE|EQE|Hl £ then E else E|let /= £ in E|
iterate / to E from E while £

I:=1=E|while Edol|
I';FliEtheal" else I'|()

A complete program in PL is an expression.

Auxiliary definitions

For b e T (the domain of truth values), and x, y € D,

box,y=x ifbmtrue
y ifb=false
1o To?2p b= LgnTr?r

For x, y e D and b in some domain including T

cand(x, yYb =(b| T)=true » x,
(b|T)=false—y,

D

strict fx= 1, 7,7 ifxwm] T,?
f(x) otherwise,

0:[Mon-[E-E]]
W:[Dya-[[ExE]-E])
€. [Exp~+[U->E]}

&/l =pl/
BlEo(E1)]p = strict (B Eolp |[E - E]N(E[E1]p)
S'IPNt(I):E]]p.Esm'ct(Ap . Ae . E[Ep[e/ 1) in E)

(Al.1)

(A1.2)

(A1.3)
(Al.4)

fixf= L:Iof' tL).
Note that fix f is the minimal fixed point of f; so fix f==f(fix f;, and if a = f(a), then
asfir f.
Semantic domains
peRB (Basic values, including fruz and faise)
dcF =[E-E] (Function values)
ccE=-B+F (Expressed values)
pelU =[lde-» E]+{?} (Environments)
6eC=[U-U] (Commands)
Semantic Valuations
R :[Bas» B]

(Al1.5)
(A1.6)
(A1.7)
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Elrecly(ly): E]=
strizi(Ap jix[Ad . Ae . E[E)(p[o in E/ ) e/1]]in E)
ELI res Elp = £ E](€I]p)
BLB] = strict(Ap . Bl(B] in E)
ELOE]p = O O} 2f E]p)
EIENE Jp = WIQKZ[Eolp, ZLE ]p)
i £, then E, else E;]p =
cond(E[E\]p, E[E2Np X ELE o)
Eflet /= Esm & ]p =
strict(Ae . BLE\J(ple/ IDNELEo]p)
Eliterate / to E; from E, while £,]p =
strict{fix(A@ . Ae . cond{¢(EJE](p[e/ 1), ¢}
(B0 (ple/MNKELEDP)

€:[Cmd->[U->Ul]]
€L :=EJp = strict(Ae . p[/ N E[E]p)
€Elwhile £E do I'] =

fix(A@ . Ap . cond(6(€[I"'lp), p X E[ETp))
€ ro; Nip=€IN(€[Iolp) -
€[it £ then ['yelse o=

cond{€[I'olp, BII -l NEE]p)
€i0lo =0

Appendix 2. The PL interpreter
Terminal ()= (o ="dene < 7) v (o ="error")

Step(a) =
omeval Emp; x>
Em 1>
(Has(p. !}~ Append "val': Select{p, 1) io &,
Terror™),

E=[o(h) >
Has{p, lo)~ Has(p, I}~
Select(p, lo)mfunction(/y) : E2 in p2 7~
Teval E, in (Apperd I,: Select(p, 1) 10 p,); x 7,
Selectip, lo)="recfom />(/3): E;im p;7
reval £, im (Append I5: Select (p, ) to
(Append I, : Select(p, lo) to p2)); x 7,
exror-,
Merror ', Terror™,

E="proc(/): Ex"~»
Append 'val’:"fanction (/;: Eoin p™ to «,

7

(A1.8)
(A1.9)
{A1.10)
(Al.11)
{A1.12)
(A1.13)

(Al.14)

(A1.15)

(Al.16)

(A1.17)
(A1.,18)

(A1.19)
(A1.20)

(A2.1)
(A2.2)

(A2.3)

(A2.4)

(A2.5}
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E=Trectyh) E >
Append 'val’:“rechun lo(h): Egipp 1o &,

E="Tres Eo'~>
Cperform I in p; "eval Eoin (}; k™7,

Eargs
Append 'val': Rep(B) to x,

E=r0n->»
Has(p, )~
Check 1(Q, Select{p, 1))
Append 'val' : Oper1(0, Select(p, 1) to x,
Ferror”, "error”,

E=rf 1.0’21 -»>
Has{p, h)-» Has{p, I2,~>
Check 2(£2, Select{p, 1), Select(p, 15)) >
Append "val’ : Oper2((, Select(p, 1.}, Select(p, 1))
oK,
Terror™, "emor ), Terror ),

Cerror™,
g="perform Finp; 67>

Fr="}=g=
“eval Einp; Tassign () to /in p; 677,

I'="while /do [,V >
Has(p, ) -» Select(p, [) = "boolean 87—
8= true™>"perform [yinp;
"perform "while /do /Min(); 8™,
Append ‘env':p to 8,
Terror ', Terror™,

I‘a"l"o; -
' periorm [ in p; "perform 'y in () 677,
l’sritltbenf’o+-ise1"1"~'
Has(p, )= 8. lect(p, ) = "boolean 87>
B="true"~»"perform o Inp; 97,
pecform I'y inp; 67,
Terror™, Terror’,
Fsl"t )1._’
Append ‘ens':p 1o 8,

(A2.6)

(A2

(A2.8)

(A2.9)

(A2.10)

(A2.11)

(A21

(A2.13)

{A2.13)

(A2.15)
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Cervor™,

o="assignc to/inp; 67>
Append ‘env’: (Append | :etop) 10 8, (A2.16)

Ferror™

Appendix 3. Continustion semantics for PL

Semantic Domains
BeB (Basic values)
deF=[E>[K->A]] (Function values)
ccE=B+F (Expressed values)
peU=[Ide->E] (Environments)
GeG=[U->Aj (Command continuations)
keK=[E-»A] (Expression conanuations)

A=F (Answers}

Semantic Vailuations

2 :[Bas—» B}

0:[Mon-[E- E]]
¥ :(Dya[[Ex E]»E]]
€:[Exp-»[U-+[K-+A]l]

€1/ Mox = (strice ) (p 1) (A3.1)
Bl Eo(E)]px = E[E Jp{Aes . ElEolp{Aco . (eo[Flex}} (A3.2)
Elproc(l): Epx mr(Ac . ELEN(p[e//])in E) (A3.3)
&lrec Is(}y): E]px =

x(fix(ApAe . EIEplo im E/ k) c/}1])) in E) (A3.4)
ELI res Ejpx = €[rpirp’ . E1ELD '} (A3.5)
ELOE]px = ELEJpire . (strict «)((OTOD =)} (A3.6)
ELELNE lpx =

ElEdp{Aea - BiEfp{rey . (strict )((WTNR2T)eo, £ )} (A3.7)
E[it £, then E. else E;]px = €] Ec)o{cond{Z[E1lox, ELEJox )} (A3.8)
et/ = Eoin E Jox = B[Edplre . BLE:J(ple/ Nk} (A3.9}

Zfiterate / to E; from E, while E:jpx =
EIE Jo{fix(A’As - E[EN(p[e/1]

{cond(B[Eol{pe//Dx', xe)})} (A3.10)
€:[Com-»[U~[G > AT} | |
€1/ =EJpo = BLENp{re . 0(p[e/ M} (A3.11)
¢lwhile £ do F}pb = |

[fix(A0'Ap’ . E[Ep'{cend(€fIlo’'d’, 8p")})]p (’A3.12)
%”EFg;Pllpaa ‘fﬁfg]p{‘@lﬂ]pﬂ} {A3.13)

€[ E then [ else ' ]p6 = E[Elplcond{E[s)eb, €1 1]p6)} §A3-14}
€l0Yoo = ép A315)
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