
Theoretical Computer Scieocc 13 (1981) 151-174
@ North-HoDalld Publishing Company

THE CONGRl:ENCE OF TWO PROGRAMMING

LANGUAGE OUFINITIONS

Joseph E. STOY

01t:/cNd University Con'puring LaboraltJry, Programming ReselJJ'ch Group.

Ch/ON, Uni,.,d Kingdl'/"

Communicated by M. Nivat
Received1anuary 1978
Revised DccelDl:~r 19"9

1. latroduetloa

In recent joint work with Jack Dennis, which has so tar appeared only as M.lT.
course notes [21 we have described se,reral methool of formally dl;fining the
semantics of a programming language, using as an f xample a simple language
desizlted for the purpose. caJled PL. The qUf:stion ll:tturally arose whether our
various definitions were congruent, in the. sense that the} defin' d the same l!lnguage.
In particular.one definition gave the denotation'll semaMics. in the style of Scott aad
Slrachey [12], and another defined the langus.ge usin;: an interpreter, along lines
wni'ar to the use of VOL [6]. In this paper we present a proof of the conyuence of
these two definitions.

We first give tb.e tWO definitions. witll a bare m'jnimum Ilf.explanation: tl:~ rell!ler is
referred to works like [2, 13, 16] for more leisw'ely introductions to tile methods. It
will be seen that the iliteIpletermanages the seqllencingof itsoperations by means of
structures called continuations, while the denor.ational semantics ha.c; nothing cor
responding to these. A denotational semantics based on the use of continuntions (as
described by Strachey and Wadsworth [14]) would have a structure much closer to
the interpreter's, and the proof of their COIIgruence would be l:implified. We
therefore find it convenient to split up our proof into two stages. In th,: first stage we
introduce a new version of denotational semantics, using continuations, and prove
that it is congruent with the original version. ntis proof is a structural induction ~o

show that pairs of corresponding. values ari£ing in tile two defi:rtitions satisfy
appropriate predicates. The existence of these predicateswill itself require proof: we
shall consider this problem brietl.Y~ but defer a fuller discussion until a simi:ar
question arises again in the second stage.

Secondly, we prove thP. congruence of tht: continuation semantics with (he
interpretive definition. The interpreter isdefined l'JS lin iteration, and dO it is natural k>

151

152 J.E. Sroy

use fixedpoint induction [71 to analyse its properties; but with this technique we can
establish only that the value given for an expression by the interpreter is an
appt'OXimaJfult of that specified by the denotatiORal semantil:5. We can also try
structural induction, just as we did in the first stage; but here too it is necessary to
lkmonstrate the existence of tile various predicates we use in the plOof. In fact we
shall find we are unable to show the existence of the predicates which assert exact
CODjl'UeDC8 between the definjtions: we must be content with predicates asserting
that the denotational value is an approximation of the interpretive olle. The reasons
w~y we-must attack the problem.from both sides in this way will be discussed further
when we embark on tbe second stage; the final phase of the proof combines the two
results into a satisfactory stateme-~ of congruence.

This proof provides an introduction to the techniques developed loy Milne [8, 91,
andused by bimandStracbey19] toJlrove th.: correctness of an implementation of a
much more complicated language. Similar \'I ork has been carried Ollt by Reynolds
[11], who showed the congruence of versions of denotati0llal semantics with and
without continuations for a form of the A-calculus. Our first stalle closely resembles
iliisproof, though.OUf expression of it is a little different: Revno!.ls's use of "directed
complete relations" corresponds to our use ;)f "inclusive predi~tes".

2. The deDotatioaal selllilDdc..; of PL

Parts of the definition in this section and t!le interpreter to be defined in the next
have already appeared in [1]. We make one or two smallchange~ ID convention, and
the careful reader will also be able to discern one or two changes \II hich attest to the
deb\Jggi~ efiects. of the con.~truction of a congruence proof.

The definition is given in Appendix 1. For the sake of brevity we omit alI references
to the data structuring facilities of PL, and the actual definitions of 91, 0, and 'JY.

2.1. Notational conventions

Syntactic objects are denoted by Greek capitals (E, r, ...) and are elements 01
domains denoted by short names (Exp, Co.......). Corresponding lower case Greek
letters (E. y, •••) denote the appropriate semantic values, which come from domain.
denoted by bold capitals (E, C, ...); script letters (~,~, ...) are used for the
'valuation' functions which map syntactic objects to the values they denote.

D 1 +D~ deno!~s the separated sum of domains D 1 and D 2•

Eachdomain illil""';c:s an erroreknumt, denoted by 1. 1. t;;" l;;; T, of course, but" is
incomparable with all other elements. If an ~lement is projected into a subdomain
wh~:re it doe~ not belon.g. it is mapped to ~'; conversely, the '1 element of each
subdomain is mapped to ., in the sum. We shall refer to 1.," and T as improper
elements of a domain; the predicate Proper x will be true provided x is nei~her 1., .,
nor T.

153 Congruence oftwo definitions

Foranycfmnain&anda.iTe D; a-iT is tnltdf a is thesame-element as iT. andjalst'
otherwise. We reserve '=' to denote a contillu:Jus equ~!lity predicate; thus. for
example,. ifB is IIflat lattice we-might define a =iT to be .L if either a or b is 1. T if
neither is 1 but eithcr a or b is I. and equal to a ... b oth~rwise.

PI..inhnple enougltfor its semantics tobe gi'Ven solelyitl terms of environments.
whereas in more complicated languages the notion of a store mapping is also
required lnsm:ldllngnages oommandsnormaUy specifystore tra.m;ormations rather
than environment transformations. and some workers therefore prefer not to Ngard
thc.PLcfmnain Conrascxmm,"".l!s, bnt(!!lheras rlefirritiom. Unfortui18tely. however.
it p e U is to do duty for both environment and state. U cannot be simply [IdeE).
aa usual. We ~ for example. to be able to distinguish bctween the error
environment. arising from some invalid computation, and the environment which.
though itsetf wtid,. associater all identifiers- to 'to mull"latter environment, }.f. 1, is
called the arid environment). U must therefore include an extra set of improper
ereme',ls The oIeo"iti'lIJlloftne-operatiunsPlItandp[c//lmust beeuendedtocovCf
these extra values: if p 1, .L u. ?u or Tu. then pilI is .LB' 1. or TB and p[E/1] I&p for
aliI and E.

This interpreter is defined only for a subset ai' PL, called the kemellanguage. It is
shownin[1.]tbataayPLpwgrana maybetaaJisformedinto an equival~;Jt one in this
kemellangurge, of which the syntax is as follows:

E::= 1~(l)[proc(L) :Elnc./(/):£lr raEl

8IOl/lnt,

r::"" 1:= EI"bUe I do rl
r; riB I thea relser.

'Ibe- imerprehAr opcratea.on s&aks. lDfonnally. ita-actioo..may be. given by

uti Terminal(u) do u:=Step(u), I (3.1)

where l7 eSUte; iiiOlC formany we. may say

Interpret = fix(A~.Au. Terminal(u) cr. ~(Step(u»). (3.2)

Thesynta&:ofstatsisasfullows,wherecompon,entsaredenotedbythesame-6reck
letters as are used for the corresponding entitieil in denotational semactics (some of
these wiD DOl be. iIItrodl1l:cd until the next secti!>n):

u::=ev8lE mp; KI

perlo.. rlDp; 81
....peto/mp;tli

cIoae E Ierror.

154 I.E. Stoy

Her~ /(and 8 denote the 'continuatior-s' of expression and command evaluations;

their syntax is as follows.

K::-do.eOI_lp Oto/iDp; (J,

8::=perforDI r in (); 81eYBI E In (); K.

Note that () l'epresents missing components. sc that

Append 'val':e to It and Append 'elW':plO(J

both produce complete states. This (very straightforward) machinery is expounded
further in [2]. Similarly. values denoted by p are data structures. with operations
defined on. them. as· follows:
- Has (P, I) tests whether p has a component with selector IJ

- Select (p.f) gives the component of p with sele~-tor I.
- Append I: E to p gives a new structure containir.g e with seler;tor I (replacing any

component with selector I in p). and all other components lll'e as in p.
We shall not bother to give the axioms for these operations: thty are given in [2].

:tremains to give the definitions of Tenninai and Step. In the~ definitions. which
are given in Appendix 2, an expression such as (T '" r e','a1 E ID p; It .., tests whether (T

is of the specified syntactic form, and also introduces names for the various
components. which may be used in any arm of a conditional expression invoked by
satisfying the test.

In (A2.8) the function Rep maps basic COJ1S.tants in &s to forms ~ booleu ~ .."
r Integer II .., etc.: we omit the full definition of Rep. Likewise. we omit further details
about Checkl and Clteck2 «A2.9) and (A2.l0)) which check t\,,, validity of the
op~rands for monadic and dyadic operators, and about Oper land Oper2, wh~ch

actually perform the operations.

4. Contln.ldon semandcs for PL

In this section we i.ntrodtt« the- intermediate semantics- for PL, wbieh is a
denotational semantics using continuations. In this scheme the valuations foj'
expressions andC01l:ftIands artgiven- an eztra parameter, the coMnuatitm. which.
embodies the dynamic effect of the rest ~ the program: so it maps the result of the
COnstDlet (dzYlllut. afmexpression, or lhe-emironmentl.i· ~)~aeommand)into an
element of a domain of final answers. A. As it happens, A h. h'~re th~ same as E. t-ut
thisis DOt TIl'! essa I y.1bedomainoffunction VlI1ues IS now sls<tdiflerent. inthat such
a value is not given a contin'JaCon wltil it is applied (el. a return link in an
implementation) The semantics is thclefore as given- in Appendix 3'. Note the
-:onvention that braces {} surround tbe continuation argument of a valuation
functimL Nott. tao. that we cow no longer reqtire the extraitnp:toper elements in lI,
needed in Section 2. This is because improper commands now give rise at o:.ce to
illil''''l'el "aIues iIr ~ and. ~eir effects do not have to propagate by means of the
environment produced.

155 Collgruellce of two dei'lliliolls

5. Congruence reladons between the two denoladonal de6nJdG.JIS

We next deti.le the predicates which a pair o·f values, one from each of the two
denotatjllllal defiiljtiODS> must satisfy if they are let ~regaldedascongruent. From
now on we shall be making extensive use of a notational convention due to Robert
Milne; and knoWIi 8S ~diactitical t;mWention, When relating values belonging to
the two definitions, we use acute accents to decorate variables denoting values from
one of tht definitions, and grave accents for tilt other. Thus i might denote an
expressed value in the non-continuation semantics, and Ean expresseli value in the
., . us....oftenwish 'd . ofval cIr (' '). d"oontjnJl8' ..Ii, veISU.II. ft~ toWllSit:lapan ue-ssu as E. E ,a'l ItlS

convenient to abbreviate this further; so we write Eto stand for (E. E). At each stage
we use acute aceents for dmversionof semantics we consider more normative, so at
present the semantics of Section 2 will have acutes, and that of Section 4 graves.

We first consider values 1O the two E domains. The function elements of these two
domains have different functionality, so for congruence we cannot simply demand
equality..~ spell our requiIcment& out as. follows.:

eE~(i5 i vEs i) (i ... i I\i- i),

(, ., . .,\ , ., . ")~ e--.... v&.2.,.... \C<· .. A£= '

(ieB) (e ~B t. (ilB)-(e IB».
(E el') (i EF 1\ I«i Ii), (i IF»),

false (5.1)

Note here that if x eDI +... ,then x ED 1 is true if x is in thesubdomainDhlalse if 1

is insome other subciomain, and .t, ?'orT if :r is i, 't or T.
I, the congruence predicate tor tunctions, is satisfied if congruent results are

obtained for congt'Uel\larpmt''1•. So

(5.2,'

The predicate orused in-5:2 aetson pairs in-whidt the-second element requires a
continuation; so it also applies to pairs such as (WnE)p, tnE)p}. It is defined as
tollows-.

sJ~({;5i i vJ,. i) (J .. 1. I\"~- i).

(J-T v ~"T}-..{~.T A ,j,-T),

(,j, -?v J, 9?) (J s?I\,j, =1),

(3£: Prore' E1\ J, .. AK • KE 1\ e(J, E)} (5.3}

A pair of environments is congruent if each identifier denotes congruent values. So

(5.4)

156 I.E. SlOy

We need, finally, a relation for pairs of the form (rlIFJP, ~1l1P).
If.y is sue:h a pair, then i £ U and.y E [G -+At where G =[IT ... AI. We d~fine

c.y¢>(i- i vY-J)-+(i-.1. AyEj),

(i'" Tv y"q)-+(i EO T A +-T),

(i &1 v y-1)-+(i-1 A +-1),

,3p: +... A8 • 8p A lI(i, p», (55)

These. predicates bave definitions whielt involYe- circularity ~ they can be
rewritten as a fixed point equation. However, the function of which this set of
predicates is the fixed point is not monotonic, and set the existence of such a fixed
point cannot be inferred by the usual appeal to the result ofTarski [15]. We shall see
latta that thisctiffictdty issumetimes resolved byregarding the propost'd predicates as
mapping their arguments into the domain {/rue, un/rue}, where tTue~un/rue;but that
Itos oat help- iathis{ .:.

In order to be satisfied that these predicates do indeed exis', ~'.':: consider their
arguments, which are drawn I'rom pairs of domaios wbichare th.~mselyes circularly
defined. The construetJ.on of solutions to these recursive domain equations :f1volvea

f ' approxnnatmlriil8i1iS,,. 'do ' 0t w tiC . dd " sequences 0 l'hoL-Lm;; leqmre 1)0!8ms are, ursome
well-defined sense, the limits. We may define predicates on each of these approxi
matiott d6mains: this imolvet no circularity, but instead uses the ~redicates Oft

earlier domains. Then we may define predicates for some elementof th'- limit domain
by applying: the apptoptiate PledicalCS ~ the element's-imagt.: in-aIHbe"appIan.
mation domains, and taking the conjunction of the results. 50, for example, if
i Eo[E:x EJ we.. define

""
el~ 1\ k ..i ..l, (5.6)

,,=0

where i. is the image of ein the approximation domain [Ea x.t..]. It remains to be
proved that the predicatesso defined satisfy the required equations: thiII is true in the
prell"nt case.

We shall consider this technique in slightly more detail later, i!1 the v.cond phase o~

our proof.

DefinitioII6.1. A function f is strict if f L -.1., f?-1 and IT-T. rNe adopt this
definition for brevity's sah: some workers prefer to call such a property 'double
strictness', and say that f is strict simply if f 1L.)

COllgruellce of two defillitiolls 157

(",IItilil6-'%; Forthe-«mantic,f of Appendix 1, lli'IEii .lnd <€(r) are strict in p for all
Ee Exp, r E CnuJ.

Proof. This is our first example vi structural induction: we prove the result for all
expressions arnt \;ommaod!, lIRUming tha~'~ holds for any sttbexpressions and
subcommands. The proof is bycases on the possible syntactic iorms of the conuruets.
using tbechllse& ofAppendix t. Altthe c:ase&are straightforward: for claub~ (A1.17)
we Uk .he ria .• that !ixF-F (fix F).

I.e...." 6.3. Properp /I up /I ei ~ Proper(p[el I]) /I u(p[il I], p[el I]).

Proof. Recalling our remarks in Section 2 aboutthe nature of U. we see that p[ilI] is
proper if (J. is. For <PW1], p[E/ I]) by (5.4) we must show

Siace6 i&praper-.if I-~thi&is ,i.which is &iven~ if :~, II it is

l\{e(pIM. p[M>1/1 ~ I}.

which follows from uP.

Our main aim in this section is to prove the congruence of the two values specified
for a PLexpressiou (or coDliuaod) when evaluated in conflUent environments. The
result is proved (and holds) only for proper environments in the non-continuation
semantics, By- makillg ~ restJiction we do- not exclude prr.lglalDs for which
improperenvironments arise in the coune of the calculation ~ but we do insist that the
program tiS a wlwle isevaluated itt a proper enviroR(llent (such as AI.1), which is not
an unreasonable constraint. Our result is tilen:

Theorem 6.4.

A{s(t[EJp,tiElp>IProperp /I uP} foralt EeExp

and

A{c(~[rBp, ~lrBp>IProperp /I uji} for {Ilt r e CollI.

..
Proof. The proof is by structural inducti')n, and is again by cases of the possible
symw:m: forms.gf ellpFessionsand commnnds.

Co"OUUf 6.5

A{e(tIEJ(.\I. 1), WIE)(AI .1){AE.£})}.

(We.checUrom.(S.l) and (5.3) that if ,~ll~. ~hen e(~, ,jI{Ae . ell, and from (5.4) that
.. (,\I. 1, AI. 1).)

158 I.E. SlOy

7. Phase "'0-StntelY

We have now validated the continuation ~'mantics of Section 4, and can turn to the
second phase of our investigation, in which we prove the cong:llence of that
semantics with the interpreto:r. From now on we regard the denotational semantics as
the more normative, so we shall use acute accents for entities in volved ir. that
definition, ::.ud grave accents for those arising in the interpretive scheme.

The interpreter is a continuous function on trees, with a fairly conventional lixed
point definition: as usual for such definitions, we shall (in Section t) employ fixed
point induction for its analysis. In essence what we shall be doing in tllis technique is
assuming: that the interpreter is 'correct' for progrllD_l> wmch require, say, n steps of
the interpreter for their evaluation, and proving t ..at the interpreter is also 'correct'
for programs which requke n +1steps. In effect we shall be doing induction on the
duration of the execution.

On the other hand, when we analyse the denotational semantics (il. Section 9 and
10), we shall use structural induction: we shall prove that the definitions 'agree' for a
program assuming that they do so for its syntactic suboomponen'.s. That is to say, our
induction will be based on the size of a program rather than its duration. More
imoortant than this, however, is that the structural induction wit be based, like the
lastone. ona family of predicates defined circularly. As before, in order to verify the
existence of these predicates we shallhave to performinduction on the sequences of
domains arising in the construction of the variousdomains of the semanticdefinition.
For example, our domain E, which (since K =lE -+ E}) satilifies

E= B+[E-+[(E... E] ... E]],

is constructed as the limit of a sequence Eo. Eh ••• , E".. .. "'here E,.+I =
B+[E,. ... [(E,. ... E,.] ...E.]] and Eo=B +{.iF} (with the extra element standing for
all the functions). In this sequence the first dOmain includes only the basic values. the
next includes functions on those basic values too, and in general eacll domain
includes the functions on values in its predecessor in the sequence. Thus we have now
introduced three possible kinds of induction on programs - hased on their size. their
duration, and the richness of their value domains - and there is 110 correlation
whatever between them.

One effect ofthis is that in the fixed point induction aD we shall be able to prove at a
typical point in the sequence (Where the result ofa program is undefined if it does nOI
terminate within a particular number of stC!JS). and therefore all we can prove for the
limit, is that the interpreter defines a function ",;,i"h is weaker (in the sense of the
panial ordering of the appropriate lattice) than that de6ned by the denotatiOllal
semantics. On the other hand, when we construct the family of predicates for the
structural induction. we JhiOii be concerned with a sequence of approximation
domains with limite<.' complexity of type structure, and at a typical point in the
sequence some. functiolJll will not yet be included, and so the predicate will be
unable to express any information aOO'j; them. Under these circumstances, the

159 COIIgruelJCe of two defillitions

only predicates we can construct for the limit domain assert that the de
notational semantics defines a weaker function than the interpreter. Only
when we have separately proved each definition weaker than the other will we be
able (in Section 11) to tie both proofs together and show the definitions precisely
congruent.

This is in contrast to the situation in Section 5 and 6. There the two definitions
beiD& related were much more alike, and the value domains on each side were so
similar that it 11 as possible to del1nt: a suitable predicate, expressing comp,~te

~on each pair of approxim.ltion domains involved in their construction.
There was no need to be content with proving an inequality, and so no need to work
sqwatelyfnmLeachside.1be preaentextra compIicatiom arise in generalwhen one
tries to relate an infinitary abstract object, such as the function associated with some
PLproaahu:e by the denotationaldefiuition, with its finitary representation, such as
the tree which represents the procedure in the interpreter.
This.sttategywasderivedbyMitne,whctU5editinhisthM:Sf8]~investiptemode

declarations in Algol 68. He has since used it [9], in a prouf which is similar in outline
to the present exercise butenormously IDOre complicated, to prove-the correctness of
a translation into what is in effect a machine code of a big high level language.
Gordon [3I has used: somewhat diffetent but related techniques for proving the
correctness of a LISP interpreter.

a. ADaIyIIs of the interpreter by bed point indlIctIo.

The denotational semantics is in terms of abstract objects, while the interpreter
manipulates representations. So, In order tit compare values draw1t from each of
these schemes, we first define a family of derepresentation functions, which map
representations into the values they represent.

Expressible Values

E-Ai. (i -=rlateaer 11') V

(i = fltooleu fn v

(i -=r......u'i..B(i) 1aE..

(i -=rfuDdioa (I): Ein ,n.... Aa.tIEll«U(p»[all])JDE,

(6 =rr~/I(l2):Elnp'}""

(jix{At/>Aa . t(E)«U(p))It/> ia Eililall~)}ill.t, (8.1)

?

(Note that we are here using a conven'tion about local names similar to that
introduced in Section 3.) This definition treats the representations of values
in E.

160 J.E. SlOy

(8.2)&sic Val."s

Since the basic values and their representations are both elementsof countabl:' flat
lattkes-wemay takefor granted theexistence-ofafunction B andwesi:tallnotbother
to define it further: it is the inverse of the function Rep introduced111 (A2.8).

Next we have the dereprese"tation function for environments which are
repres..~nted by structures.

U-ApA!. Has(A I).-.E(Select(p, I),? (8.3)

The next two functions concern continuations.

K=At<.,O< = rdoae 0'-+ AE . E,

K=rllllllip 0 to I ia p; 8'.-.AE . T(8)(U(P)[E/I]),
.,
., (8.4)

T-A9. 8=rperlorm r ill <); 91',-, Ap.~[llp{T(81)'.

6= r e"JlIlE iaO~ ,,' .-...Ap. tlEBPlK<Hn.
1. (8.5)

Answers

Finally we give a function for po&Sible answers from the interpreter.

.,
.. (8.6)

Itmay be verified thatthe only results possible from the interpreter are .1., ~error-'
or 'done E' toIsome E. (Tbeproofissimilar to that forHo8le's[4JwIdfe~toovaxic,m,

given in [5]: we veri~ thateitheru'" .1. or Termina/(u) is true for the finallitate u.) So
since-by (8.6) At...t.}- ..t. this definition intloduces nasmpdses.

We are assuming that identifiers I E Ide and their representations are identical: if
require~we-~easilyadct'~delepresentation-fanet!OIt I for- tbenL

Note that all these detepresentation functions are continuous, 80 that although
they are recuuively defined no special paina neecibet3kettto-sbowtheir existence.
The:~ inverses, however, mapping from abstract objects to their representations, are
not monotonic, or even (in general) single valued.

LeBIIIJa 8.7. U(Append I: Eto p)s(Up)[Ei/f].

Omgrue/ICe of two de/i"ilio,.s 16\

l'rooEWeched tbllteach "ide gives the same result when applied to an identifier I"
for all/I E Ide.

The main theorem of this SfJCtion is the following:

Deonm 8.8. For all states of (:Ie appropriate form, with proper components,

(a) A(Interpret(rdone i'»~Ei.

(b) A (lntepreW error'» !; ?,

(e) A (Inte'P"et(rem E in p; ,('»l;;tdE)(Up){K,(1.
(d) A (Interpret(rperfonn r In p; 8'»~ ct(r)(Up){T8},

(e) A(Interpret(rlllSlv. E to / in p; 8'» I;; (T8)«Up)[Ei/Il>.

Proof. We use fixed point induction, remembering that

llIlerpret =fix (H),

where

~ = ACT • Terminalu ..• CT, 4J (Srepu).

We must therefore show:
(l) Theresults (a) to ,<:) hdd when Interpret is replaced by .L. This is immediately

obvious.
(2) Results (3) to (e) hold when Interpret is relllaced by H4J. assuming that they

hold when Interpret is 4J.
Fortesults(a)-and(b~thtstate crissuchthat Terminal(cr} holdt;m(Ht/1 }cr= tT for

all4J, and therefore by (8.6) the required inequalities hold. For results (e) and (d) we
consider by cases possible valUellof E and r respectively. For caae (e), noting that the
left-hand side becomes

A(4J(Append 'env' :(Append bi top) to 8»,

we con3ider both possible values of 8, namely

rperfO/l'Dl r l In (); 81'

and

In both caaes the result follows by Lemma 8.7 and the inductive hypothesis.

CorolJarJ 8.9~FOl' all E E &p,.

A(Intelpret(reval E 10 oil; rOOne {)""»I; tIEII(AI .?)iAF . f'}.

162 I.E. Stoy

9. Predieatellior til! stradllnl iDdIIctioD

Having comple~d the lint arm of the congruence proof we now embark on the
second. which involves an analysis of the denotationaJ definitior. by structural
induction. For this purpose we define a family of predicates, similar to those used in

Section s.
First we relate values in i with their counterparts in the interprefvt. system:

d¢:>Is&.ski -+BEB II (sIBj-Bi,

IsFunctions -+ i EF IIli,

false (9.1)

\"lhere

and

1sFwu:Iioni¢:o(i .rfunction (I):E Inp~v (Ii "',!dun , 1(/2): Elup~.

(9.3)

Next. we relate answers: a compares a value f iUising' from an ~ssion in
denotational semantics with a final state IT arising from the interprete.

IsFunctione -+ fE.

f ..-'· .\
.~ oJ I,.

lalse. (9.4)

Notttbeineqnalities~, which we shall bc-discussing a-Httle later.
When comparing functions. alI we can demand is that congruent answers are

obtained whene.el they are appHed to conaruent values. More precisely. if llpairof
expression values .~ correspond to tunt:tions, they are congruent if the result of
applying i to- any argument Ii with any continuation ,c. agrees with ttr result of
interpreting an l'.pplication expression r /t(l2P with a continuation it congruent with
K. in anenviromnenti~which /1 denotes i and /2 denotes a value acongruent with Ii.
So we have:

kR II ea II contains<P. i, it.)}, (9.5)

163 C-OlIg'Wllce of llfIo de/illiliollS

where
cOlltaills(p, E, a)~Has~:, II) II Select<p.I,). E

.\Ha!(p./~f\Se/ec;(/J,/2).a. (9.6)

The next two definitions are about continuations.

k,(~A{Q<'(i.Int£rpr~t(Append'oaI':£to i»/eil,

ti~A{a(8p, ll11erpret(Appelld'ellv':p to 8»1uPl.
(9.7)

(9.8)

Finally. a pairaf environments is congruent if the pair of values denoted by an)
identifier is congruent.

uP~AtHas(P./)... e(pm, Select(p,/», p[/B ... 1 lIe Ide}. (9.9)

9.2. The e1CisteM~ of thesepredkates

The reader will have noticed that ifonty ~ two inequalities in (9;4} were
l:qualities instead, we would have defined conditions for preci.~ congruence betweell
the two semantkdefinitions; we would have avoided lheneed to prove-the-6ppOI;!~

inequality, and Section 8 and 11 could have been omitted. W" claim, however, that to
eliminate tbe2 inequalities would invalidate our technique-- for corlsh licti~ the
required predicates. Note that we are not thereby claiming that no such predicates
exist (that i$ still an open question), but merely that we do not know how to
demonstrate the;r existence, and therefore that we have no right to use them in our
argnmeDt

The reason for this diffiClalty has already been outlined above {Section 7), namely
that the existence proof is based on an induction on the series of approximation
domains En whose limit is the reOexive domain E. Por each n, some of the functions
in E baute. to be. represented by approximations in B.., so the series of predicates en
cannot lead in the limit to an e asserting precise congruence for elements of E.
Formally, it is the basis of the in.:luction which fails. In Eo there is but one element,
.i" doing duty for all the functions; so eo would have to assert the,t the interpreter's
behaviour for eoery function is congruent to .i" which is plainly ridiculous. TO"
achieve the weuer predicates we have actually specified, however, all we require is
that 4 asserts that .L., approximates every function modelled by the iroterpreter.
which is plainly obvioUli.

The approximate predicates themselves are defined in Sedion 11 below; the
details of the proof for a slightly simpler CIlSI! may be seen in [13].
N~tbatour'apPioximate' predicates Ir.~ beefteomparlrtgelements fnom tile

'approximate' denotatiO'olal d01....il1s with the 'perfect' values on the interpreter side.
Ifwa wished we-could 'JRapproximations to thes~other\'&lues too; But this would
be no help, since the approximllte values man;.pulated by the interpreter are trees of
limited depttr. and ~4Pploximate Vlilues on theother side ha"e limited compleXity
of functionality. The lack of correlatiCin between these concept" "'"ans that, thou,?h
matters would be much more oonfusing, they would fail in a similar way.

164 I.E. Stoy

10. AIIlII)'IIs 01 the deaotadoual ...atlcsby strDduraIladaetioa

LemDla UJ.1. If up and ei, then u<pWI]. Append f: Eto p).

Proof. Check that the- requiremeltts of (9.9) are satisfied for all f' E I ile, because ei
(for f' = I) and uP (for f' ;Ii f).

lbemainresuhof t:hi,s section, which leads to the opposite inequal:ty to Corollary
8.9, is as follows.

1'Ile8Nlllltu.

!\{a(iIEBP,c, Interpretreval E inp; ,nluP" kK}

for all EE Ex" and

!\{a(lflJ1,,8,Interpretrperform r iD p; ii')1 uP" tti'}
for all r E Com.

Proof. As usual, the proof is a structural induction, by aDa'ysj~ of the various cases of
possible forms for E and r.

11. The relationship between these resaIts

Strategy

To combine Theorem 10.2 with Corollary 6.S and 8.9, we wish to show that it
i.nplies the followg particuIaJ result:

a(rIEl(At. ?){Ae . e}, Interpret{ evil E ill .ordoae()""».
To do thi&.we IIUISlshow that

u{(At . 1), aI)

which is'immediately obvious from (9.9), and also that

k(Ae. e, rdoneO")

which. is more di1IiculL Indeed, we demonstrate this only as a corollary of the
following much more general result.

Tbeorem l1.L (a)A{e(Es. E>I Propers},
(b) A{u(Up,p)IProperp},
(e) A{t(Ti. ti)/ProperM.
(d) A {k(KK. K>I ProperK}.

165 CongruellCe 01 two definitio,u

Proof.. 1'&e proof is by induction. The proof of Theorem J.8 was essentially by
induction on the number of execution steps performed by t})e interpretel, and ttit
proof of Theorem 10.2 by structural induction on the structl'Ce of the program. For
the .,resent proof we use the third of the possible schemes for induction discussed in
Section 7~ we consider thesequence of appIoJtimatioR&to the predicates e, U, t and k.
So to prove (a), for example, we show that for aU.IJ,

1\ {ell (EE, E) IPropere I

f, : then, since ee • A"e"e, the required result follows.
We fiIst give the. cJefinrtions of these. approximations of e. u, t, k and a, and the

domains on which they operate.

E" = B +!F", (11.2)

Fo={1.1, f""+1 =[E" -40 [K" -+ E,,]], (1 \.3)

K" ,. [E" ...E,,], (11.4·',

ao(e, u)~u. 1. ... eoIE 1.,

u.rdone e'-+ (lsBasicE (£oIB)I;;.8i,

IsFwu:tiolJE foE,

false).

false, (11.5)

uiErdoue e'-+ (IsBasicE (i" IB)l;;BE,

IsFunctiOIJE -+fIli,

false),

false, (11.6)

e"i~IsBdSice ..ifB 1\ (i IB)-BE,

IsFunctiolJe e"EF" Al"e.
false. (11.7)

fo;~t1Ue,

h+lt~A{a,,«iIF)ti..c. lnurpret(rel'lll r/1(1.2)' flr-q ; ,(:»1
k"K 1\ e,,& f\ cOIJUlins(iJ, e, aH, (11.8)

11\6 I.E. Stoy

k.K~A{an(Ki, Intefpret(Append'val': e~K)}fen6}, (11.9)

tn8¢:>A{an(ap, Interpret(Append'env':p to 9»/ u"p}, (11.10)

u"p~A{(Has (o,l)~en(PIIJ,Select(p, /)), 151/) -7) lIE Ide}. (11.11)

ReDIlIl'k 11.11. The results wbich we have proved for the limit predicates hold also in
versions: invoLviog their approximations. Thus, for example, Theorem 10.2 implies
that for all Ee EKp

!\{a,,(lflijpiJnterpretfeV8l E lap; ,n)Iu.,p "kIlK}.

To see that this is so, we note first that if kllK, for example, then also k", (.i In)o it.) for all
m. whereilnfistheeJemeutofL corresponding to KbtK,andhem:e i.. ("In), ,c); that,

A A

by definition of a, if a{J, then also a"j3 for all n; and finally that

all(flE]Plnl,(lnh u) - an(~IE]PK, u).

Proof of TlleoreDl11.I. We prove that for all n
(a) A{e..(Ee,e)!Properi},
(b) !\{un(Up, p)!Properp},
(c) A{t,,(n. 0) [Proper;},
(d) A{kn(Kit., it.)IProper.c}.

The proof is by induction on n. The arguments for the basis and for the inductive step
are similar: for the basis in case (a) we use the fact that foe ~ true, wher.. in the other
argument weuse the induetive hypothesis. T andK aredefinedmutuaHyrecutsi\lel"
so for cases (c) and (d) it is also necessary to use fixed point induction. Otherwise, the
proof consists of considerin~ the possible forms of i, if and k 'I'ht sabcase c
rdone ()' is the only one which uses the definition of a. This is only to be expected, as
it is only when tbt continnation rdolle(>.... is reached that actual answenr are
produced by the interpreter; 50 only here must we check that such answers meet our
requirements.

Corolbry 1Ll.3.

a(lfIE)(A/. !)(AE . E},Interpretfe,," E III DB; rdone 0"».
Now without further complication we can show the following result.

Theorem 11.14. For any E e Ell)), let

at = lflEj(A1 . ?)(Ae . E i,

az "'A(InterpreW'evai E In nil; rdone 0"'».
Then

161 Congnunu of two definitions

Proof. The result follows immediately iram Corollary 8.9 and 11.13, with tlieir
associated definitions (8.6) Pond (9.4).

The usefulness of Theorem 11.14

For most purposes Theorem 11.14 is a sufficient statement c,f the COlll;a'uence
between the denotational semantics and the inteip.teter. Moreover, Corollary 65
allows a similar congruence to be established with the origil1i.ll (non-continuation)
semantics. These results may readily be extended for situations where- tit'..; initial
environments are non-empty (for example, to accommodate library functicns).

Forexpressiunswbose vatues arefunctions,however, Theorem It.14 obliges us to
accept from the interpreter any representation ofa function, wi\hout worrying about
whether it represents the right one. This corresponds with nur normal practice: when
a computer spews out at us its own representation of a function we rarely subject the
biaarycndetocarefulmathematicalanalysis-indeed,inmanycaseswhatfunctionis
represented depends on the rontents of the Cftmput~rstore, 50 such analysi!' may be
impossible In. the. present simpler case, howev{'~, functions are represented by
closures, and we do have a function, E, to tell us what funl"tion such a closure
represerJs. So it is reasonable to ask whether it represents the right one.

Two functions are equal if equal results are obtained whe"J each is applied to any
possible argumenL However, we shall not prove here that any function is eqUJlI to the
correct one, as we shall be confining our attention to argument values which can be
represented in a. form. suitable for the interpreter (that is to say, arguments of the
form Ei (or some i). Instead of equality, therefore, v. e have another equivalence
relation:: two fnnctioD& are equivalent if they give- equivalent results wheIt each is
applied to the same argumeilt drawn from the cl&5S of acceptable arguments. This
notion will be formalised below, where we define the equivatence by means of a
quasi-ordering. Equality, of cour&e, hapties equivalence; whether the reverse is true
depends on the structure of the domains involved.

DeftDltioD 11.15. For a 10 a2 E E,
at ~ a2¢>(a2EF)-true -+ l\{(atIF)(E~){AE.E}~ (a2IF)(E{3){Ac . E}

IdeE},

This definition, like many previous ones, is a circular definition of an indusi\'e
predicate, A predicate satisfying this definition would be a fixed point of the (unction

'" where

", ... \t/1. A(aha~. (a.2IF ha.t ~a.2)"

(a2eF" 1\{t/1«atIF)(E~){AE.El. (;A211)(E~){AE. E})

l{3eE}). (11.1b)

168 J.E.5Ioy

Remembering thatwe regard inclusive predicates as mapping their operands into the
domain {true, "'.true} where "ue j;; untrue. we may easily see that", is monotonic; so,
since inclusive predicates form a complete lattice, sucb r. fixed point cenainly exists.
This is in oontcast to earlier predicates (sti.ch as th')se ofSection S) whi. hwer", defined
as. thefixedpoints.of non-monotonic functions. and which therefore requirert a more
elaborate existence proof. The essential difference is that tbe earlier definitions used
a recursive invocation to qualify the set of permissible argumentt to a function
application (and h,.nce to reduce a universe of quantification), whereas here all eare
a1Iowe(L

Since '" may also be shown to be continuous we may investigate appropriate
properties of itt minimal fixed point (fix",) by fixed point induction., remembering
that the minimal element in the lattice af inclusive predicates is (A (<<10 a2) . true).

Examples of this are given by the proofs of the following lemmas.

('~ro"" 11.18.
A (lntetpret(reval E In oD;r done (}Tl»"'; WlE)(AI . ?J{AE . e}.

Lemma 11.1'• .,,:; is t1QnsWve; that is to say, for all .t, y and z,

.t~y lIy".;z~.t';;z.

Lemma 11.20. a(a. u}~ a"'; Au.

Proof. We use fixed point induction to prove a more powerful result (actually the
conjunction of Lemma 11.17. 11.19 and 11.20). Specifically, we prove P(/ix",),
where

P-(A.p . (Val. az:al~a2.~.p(altau)"
(Vah az. a3: r/J{alt a2) A1/J{U2. (3)~1/J{("1, a3» II

(Va, u :a(a. u}~.p{a. Au})).

CoroUary 11.21.

if[E]J(A1. ?){Af. d.,,:;A(lntetpretfevaiElnoD;rdone(p"».

Notice that this defines an equivalence relation.

CoroUary 11.23.

ar""a2¢>aIEF ~a2EF AI\{(adF)(E,9){Ae . e} ==(a2!F)(Ep){Ae. e}

IPeEl,

169 Congfu~nc~ of two d~finitio/l.S

Theorem.lU4.

tUEHAI, ?){Ae. d==A(Interpret(revai EIn nO; rdoue 0',..1)).

Proof. Immediate, from Corollary 11.18 and 11.21.

12. Coaduloa

Theorem 11.~:4 is the extension of Theorem 11.14 that we sought. It says that the
denotational semantics of Section 4 and the interpretive semantics are congruent in
the following way: unless the answer is a function they give identical values; if the
answer is a fuhetion they give equivalent values, in the sense that equivalent results
are obtained when the values are applied to any representable argument. Corollary
6.5 stlltl j :! . imiIar congruence between the two forms of denotational semantics.
Ag81;"~ ." definitions specify identical results unless tlae answer is a function; if
thr . 1S.wr ··l func::''ln the two values given cannot be equal (indeed. they are
mel .h ,crc:nt domains), but they are again equivalent, this time in the sense
~li.lI""" _.1.). Together. these results imply the congruence of the two original
defin1i.lon~; for any expression, identical values are given if the answer IS not a
function, and equivalent values if it is.

The proof of this congruence has been long. Some of the length is unavoidable: for
example, tedious: case-ana1}ses (omitted from t:bt present text) are an essential
comparison of the small print of the two definitions. We can expect, however, that
iccreaseduseofmecltanical aids,sudt~·thosede\lcloped.by Milnerandothersfl0J,
wilJ r~lieve this situation. Other factors affe':ling the length of the proof include the
aeed(inSections 8 and 10) to coversimi1argroWIdin two differentways.and also the
elaborate existence proofs required for tile various predicates (here, too, our
cap"sili"n amita many of the details). This is' an area where wOJkersin the field
develop a 'feel' for what is likely to be true: (Deh a feeling is, of course, no substitule
for actually carrying out the checb, but Wt may reasonably hope for some morc:
mathematics to simplify the work.

AppIlh.'hLS"-d"d IIemaatics for PL

':-'yntal..'i{; domains

BE 8lIa (~constants)

! e Ide (Identifiers)

OeMGA (Monadic operators)

Q e Dy. (Dyadic operators)

EeEqt (Expressions)

reCom (Commands)

I.E. SlDy

E::=I/E(E)/proe(/) :E/ree 1(/): ElF res!: I

BIOEIEOEIU EtileaE else Ellet 1= EID EI

Iterate I to E from E wWle E

r::=/:=E/whle E dorl
r; rlu E tIleBF elseFIO

A complete program in PL is an expression.

IAuxiliaIy definitions
For 6 e T (the domain of truth values). and x. JI e D.

b -+ X. JI a X if 6 - true
Y if6;;;;;,fafu

.Lo.T0.113 if b- .Lf. Tr.!r (ALl)

For x, y eD and 6 in some domain including T.

cond(x. JI)6 ... (b IT) E true -+ x.

(6 tT)-false .. Y.

10. (AU)

strict fx • .L.T •? ifx-.L,T.?
f(x) otherwise. (AU)

co
fixf& U r{J.). (A1.4)

"-0

Note thatfixfis the minimal 6xed point off; so fix fn f(fix n. and if a - !(a). then
a r;;;fir f.

Semantic domains

(:JeB
t/leF'=[E..E]
$EE"-B+F
jle U = [Ide-+E]+{?}
6eC'=[U.. U]

Semantic VallUJlions

Lt :[8... -+B]
(J:[MOB" [E ..E]]

(Basic values. including true and false)

(Function values)

(ExprelSed values)

(Environments)

(Commands)

'W':[Dya.. [[E xE]..E)]
~:[EJ:p"[U"E]l

q/lp ... pl/l
@'[Eo(E\»)p"'smct(@'[Eo)p I[E -+ ED(if(E\Jp)
@'(proc(/):EJlpi!lstrict(Ap • Ae • @'IEJ(P[el1]HoE)

(AU)
(A1.6)
(A1.7)

171 Congrueru:e of two definitions

qrecfo(lll ~ElIS!

strkt(Ap fix[Aq,. Ae . ~[EB(P[q, in EIlo][el II])] in E)
qrres EJp - ~[EB(~rrBp)
1J(8).strict(Ap .91(8) in E)

fIOEJp. orOJ(Z'fEJp)
'IEoDEI)p - 'Jr(nJ(J[EoBp, f(Elllp)
QIl4tr.en.EI eIaeE2)pB.

cond(f[EIDp, J[Ez)P)(qE..J/p)
qlett= &raE,Jp

strict(Ae . J(EIB(p[el Il»('[Eo]p)
qftente t to ~ froDl E1 "Idle Ezlp ...

strict{jix(Aq,. At. cond(q,(f(EoD(P[ell])), e)
(f[EzJ(P[E11])))}(f[EIDp)

~:[Cmd ... [U ... U]]
flIl:=EJp-stria(Ae. p(r.II)(f[EJp)
~lwhUe Edo n ...

/ix(AB. Ap _cond(8(If[rJp), p)(J[EJp»
~[Fo; FlIp - ~lrID(If[roDp) .
~E dtear~..rIJp.

cond(lf[ro~p, ~[r:Bp)(if~E]p)

~1()Jp!!!!!p

Appendix 2. The PL Interpreter

Terminal (a)- (a _rdone·") v (a_rerror")

Step(a)EE

O'.reftl Emp; K"'"
E_r,., ...

(Has(p./} -+ Append'V,rll' : Se~ct(p, () to Ie,

rerror"1),

E.,r/o(h)"'"
1-Ias(P,lo) -+ Has(P,/I)-+

SeIect(P. to)· rfuDctlon(lz) : E21u I'z"'"
re~ Ezln (Append Iz:Sekct(p, I,) roP2); K",

SelectfA 4)- r recfIDI/2(13) :Ezln pz" -+

renl Ezm (Append '3 : Select (p, 11) to
(Append Iz:Sekct(p, ' 0) to pz»; K ."

;'error",

rerrar'. rerror',

E-rproe(/): Eo"'"
Append'vill' :rlllDcdon (I) : Eo in p' to K,

(Al.8)
(Al.~)

(AUO)
(AUt)
(Al.12)

(AU3)

(Al.14)

(A1.15)

(A1.16)

(Al.17l
(AU8)

(AU9)
(A1.201

(A2.t)

(A2.2)

(A2.3)

\A2.4 1

(A2.51

P2 J.E. $lOy

E..rrec.!,~I\}~Eo'''''
Append 'val':rred.m loUt}: Eu iD /1' to K,

Earr res Eo'''''
rperfonn r Inp; reval Eo in (); K-n ,

Ears,
Append 'val': Rep(B} to K,

E.ro"....
Has(P,/}

('heek1(O,Select(P.t}}
Append 'val': Operl(O, Select(p,1)} to K,

rerror', rerror',

E-r/\nlz'''''
Has(p.lt} Has(p, 12)""

Check2(n, Select(P,/\}, Select(p,/z}}""
Append 'val': Oper2(n, Select(p./\l. Sele< r(p,/z»
tOK,

r~',rerror',rerror'.

r "" r I:",E' -,
reval E iDp; rasslp () to liD 1'; 9",

r_rwhile I do rp'''''

lbu(P. () .. Select(p. /) - rbooleaR S'
B II! rtrue''''' rperform ro iD 1';

rperfonn rwhile I do r' iD <); 8",
Append 'env': p to 8,

rerror', rerror',

r_rro;r.'""
I perform. ro lit p; rperfCll'lll £'\ in (). 8",

r '"' rif , then ro ~Ise r, ' ..
Has(p, I) ..S. Ject(p./) • rboole&a B'""

B iii rtrue' ... r perform ro 'II p; 8',
rperfOl'lll r\ 'II P; e',

r error', rerror',

F 5SrO'
A".'7end I en~' :p to 8,

(A2.6)

(A2.7)

(A2.8)

(A2.9)

(A2.10)

(A2.11)

(A2.121

(A2.J:')

(A2.14)

(A2.1S)

173 OJngt!lellce oftwo definitions

o,.r...... s to Imp; 8.,

Appmd 'mv': (Append I: s top) to 8, (A2.16)

Appe.... 3. ContiBuUloa _ada for PL

Semantic Domainf
{leB
q,EF=[E [XA]]
seE=B+F
p E U = [I E]
8EG=[U Aj
I(EX=[E A]

A...=E

Semantic Valuation.r

LI-~[Bu B}
0: [Mo [E E]]

(Basic values)

(Function values)

(Expressed values)

(Environments)

(Command continuations)

(Expression conanuations)

(Answers}

'W ~[0Ja- [E x E] Ell
i:[bp [U [X A]]]

i(/BpK" (strictK)(P(fB)

i[Eo(EI»)P1C - i[EIDp{As, . i[EoDp{Aeo . (eo Inell(}}

ilprec(I):E)pK-K(As. i[E)(P[s/I])iaE)

i(rec lo<lt) :EjplC

K(ftx(At/JAs . i(E){P[q, In E/loIs/II]» ill E)
ilr res EjplC .. 'i'[rDp{Ap' . i[E]p'IC}
I(OE)pK -IIEJp{Ae . (strict 1C)«OIO)e)}
ilEoOEIDplC ,.

Z'r~{AEo' i'iE1Jp{Ael . (strictK)«1fInI)(eo.l'l»}J
il" Eo thea E~ else E2DplC. i[Eo)p{cond(i[EIDplC, lfIEJlplC»
if(Iet/"" EoIaE,JpIC - Z'IEo)p{As . iIEI)(P[s/I])IC}
i(itente I to Eo from E1 wIdIe E2.IIPIC is

ilEl)P{fi,x(AK'As • i(E2J(P[s/I])

{cond(i'IEIlD(P[s/I])IC', ICS)})}

'f:[CoaL.... [U [G A ill
'i'1/;".EJp8 - i'IElp{As • 6(P[s/l])}
'i'1wIdIe E do rJp6

[jiX(A6'Ap' . i'[EDp'{coild('i'(rJlp'6', 8p')})]P
~Ir~ r l)P8!!1t 'f[roJp{'flr,)p6}
illlE tho ro else r l)p6 s iJ[E)p{cand('i'[roDp6, 'i'!r1MP8)}
'fWJp6 lEI 0"

(A3.t)
(A3.2)
(A3.3)

(A3.4)
(A3.S)
(A3.6)

(A3.7)
(A3.8)
(A3.9)

(A3.tO)

(A3.11')

(A3.t2)
(A3.13)
(A~.14)

:AHS)

174	 J.E. Stoy

RefereDtel

(1]	 J.B. Dennis, On storage management hr advanced programming Innguages. MIT Computation
Slructures Group Memo l~-l (1974).

[2]	 J.B. Dennis, Semantic lheory for computer systems (Coune Notes for 6.841), Massachusens
IIIItituIe of TeeImokJ:y{1976).

[3]	 MJ.C. Gordon, Models of pure !h' Experimental Programming Report 31, Department of
Machine 1nte1\iaem:e,"University of &tinbwgll (1973).

[4]	 C.A.1l.. Hoare, An axiomatic basis for computer progrtIlIIIIIin Com/"- ACM 12 (1969) 576.
[5J G:T.Ligter,Sadm:e'ptOjlllJ ties ofpro:;liilnwin,languageconSlnk:b, iu:G. Hueland-G. KaIm Eels.,

Actndu Col/oque Ct1Mmtaion, Amiliorruioll et VirificatilNl du Progra_ (lnstitul de RecherclIes
d'lnlotuiBlique «ifAUlVUiBlique, ~ocqueilCOurt. France, 1975) 299.

(6]	 P. Lucas and K. Walt, 00 the formal description of PL/I, AMWIl R4view ill 4.UlOmaIic Program
milll6 (Petgamou, 1969t 3.

[7]	 Z. Manna and J. Vuillemin, F'apoinl approach 10 !be theory of compul8ti(''I, Comm. ACM 15
(1l}72)~28. (Note: 'cowpubttional induction' is Ihe name used in Ihia reference for whal we have
called 'fixed poinl induction'.)

[Il]	 RoE. Milne, The funmd muautics of computer languages and lheir imr lemeulations, Ph.D. tbcsis,
Cambridge Univenily (1974-·75).

[9] R.E. MillIe andC Stradley, A TIieory ofProgramming LAliguage $em, 'flies (Chapman and Hall,
London, and Wiley, New Yort, 1976).

[Itt] A.J.~.':. MilT_T, Implemeutatioll and applications of Scott's togic: for camputable functions,
SIGPIANNotkn 1 (1972) 1.

(11} I.C. Reynolds; Ontlie .elation between direct BUd continuation semantics, Proc. 211dColloquiw,uJIl
AU/llmal4,LAliguages and Programming (Saarbructen, 1974).

[12}	 D.S. Scolt and C. Stracbey, Toward a IiJ8lbematical _tics lor c:ompuler languaacs, .Prr1c.
SYlii(JOsium 011 Computers and AUlomat<1, Microwave Researcb Ill11ilule Synlposi~ Series 11
(Polytechnic Instilute of Brooklyn, 1971).

(13] J.E. SlOy, DelioraJiolUl1 Semalltics: 77u Scot/-S#ru:hey ApptrHJeh III Programmi"g lAng~ge 17uory
(MIT Preas, C8illbrid,e, MA. 1977).

[14]	 C. Slrachey and C.P Wadsworth, Coutim.ations; i& mathematical semantics for nandling full jumps,
TeclmiadMIlIIOglaphPRG-ll (OsfonlUni~ersityComputingLaboratory,ProgramminaR.esearc:b

Group (1974».
[IS} A. Tarski, A Iattice·tbeorelit:al fixpointtheorem and its application, Pacific J. Matlt. 5 (1955) 285.
i1o; 10. :-). Tennent, The denotational semanticsofprogramming languages, Comm. ACM 19 (1976)437.

