2 cerr

A Theory of

Communicating Sequential Processes.

C.A.R. Hoare. S.D. Brookes. AW. Roscoe.

Technical Monograph PRG-16
May 1981

Oxtord University Computing Laboratory,
Programming Research Group.

45 Banbury Road,

Oxford. 0x2 6PE

Qxiord University

Computing Laboratory

Programming Research Group-Library
8-11 ¥able Road

Oxford OX1 3QD

Oxford {(1845) 54141

@

1981 by C.A.R Hoare. S.D. Brockes, AW

Oxford Untiversity Compuling Labaratory.
Programming Research Group.

45 Banbury Road.

Oxford. OXx2 6PE

Rascoe.

Abstract

A mathematical model for communicating seguential processes is
given, and a number of its interesting and usefu: properties are

stated. The possibilities of ngn-determinism are fully taken into
account.

CONTENTS

0. Introduction
1. Definition of a Pracess
2. Nondeterminism
2.1. Nondeterministic campasition
2.2. Distributivity
2.3. Limits
2.4. Continuity
2.5, Recursion
3. Qperators on Processes
3.7, Parallel Composition by Intersection
32. Conditional Compasition
33. Parallel Compasition Dy Inlerieaving
34. Sequential Campasition
35, lteration
36. Concealment
3.7, Inverse Images
4. Applicalions
4). A COUNT Register
42. Channel Naming
4.3, Buffers and Chains
5. Prospects

6. References

15
15
16
17
18
21

23
23
24
25
26
27
29
31

33
33
34
37

42

44

A THEORY OF

COMMUNICATING SEQUENTIAL PRCCESSES

0 Introduction.

In the last decade therg has been a remarkable growth i(n (eneral
understanding of the design and definition of computer programming
languages. This understanding has been based upon a recognition that
the text of each program expressed in the language should be given a
mathematically defined meaning or denotation, in the same way as any
other notational system of logic or mathematics. For a conventional
sequential programming language. the simplest mathematical gomaln
suitable for this purpose is the space of partial functions which map from
an abstract machine state before execution of a command to the state
of the machine afterwards. For a programming language with jumps, the
appropriate mathematical domain |s slightly more complex, involving
continuations. For a programming tanguage in which subprograms are
themseives assignable components of the abstract machine state. the
appropriate reflexive domain of continuous functions has been discovered
by Dana Scott [4]. His techniques have been applied 10 a varigty of
familiar and novel programming languages. The concept on which all
these develgpments rest is the familiar mathematical concept of a partial
function: and Its familiarity has undoubledly contribuled to the widespread
acceptance and success of the approach. However, there are two features
of certain new experimental programming languages Involving concurrency
which are not so simply treated as mathematical {unctions.

(1) In the parallel execution of commands of a program, the efect of
each command can no longer be modelled as a functlon from an initial
state to a final state of an abstract machine: it is also necessary also
to model the continuing interactions ©f a command with its environment,

(2) In the execution of paralte! programs, it 15 desirable 1o abstract from
the relative rates of progress of the commands being executed in parallel.
In general. this will give rise to non-determinacy in the behaviour and
outcome of the program,

Both these problems arise in acute form in the treatment of a langudage
like that of Communicating Seguential Processes [1].

It is the purpose of this monograph to construct a mathematical domain
which should play the same role in defining the semantics of
commuynicating processes as the domain of partial functions does ftor
sequential and deterministic programming languages. Every effort has
been made to keep the domain simpie, and to ensure that the necessary
operaiors over objects in the domain have elegant and intuitively valid
properilies.

The first section of the monograph contains a definition of the required
domain of processes. Foilowing the iead of [2. we flrst introduce the
concept ol a fransition which is a ternary relation between

(1) the initial state of a process

(2) a sequence describing its interactions with its environment
during its execution

(3> a possible state of the process after those interactions.
Nex1t, we note thal! the internal states of a process are not observable

from its environment. We therefore define the concept of an observation
of a process, which is a finilely describable experiment to which a process

can be subjected. We then posiulate that two processes are identical
it they cannot be distinguished by any such finite cbservation. This
reasoning leads directly 10 the construction of our proposed mathematical
space of processes.

The next section shows that this space has the usual ordering properties
required of a semantic domain. The relevant partial ordering Is simply
set inclusion in the reverse of 1he normal direction, s¢ that one procéss
is an approximation to another if it is fess deterministic. We show that
this is a chaln-compiete partial ordering over the space of all procéesses.
The important consequence of this is that every set of recursive equations
in process—valued wvariables has a least solution: and this permits the
use of recursion both in a programming language and in its formal
definition.

The third section defines a wide range of operaters over the domain of
processes; these include sequential composition. conditional composition,
two forms of paraliel composition. and (perhaps the most cruciall a
concealment ogperator, which permits abstraction from the delails of
internal communications between processes connected in a network.
These ogperators enjoy a number of elegant and useful algebraic
properties. We hope that this range of defined operators wil be a
sufficient basis In terms of which to define all other operations required
in the semantics of a parallel programming language. without any further
concern for the details of the underlying mathematical model. Thus these
operators should play the same role as the basic operators defined by
Scolt for the LAMBDA calculus. which shield the praclising user of the
calculus from the complexities of the construction of the underlying
damain.

The fourth section gives some examples of the application of the modsl,
by showing how it can be used to define some complex bul useful
programming language constructs. and to descrlbe some simple but
interesting parallel atgorithms.

The fitth section discusses the prospects for the development of formal
methods in increasing reliability of implementation and wuse of a
programming tanguage which includes parallelism.

1 Delinition of a process

The ultimate unit in the behaviour of a process is an event, Evenis are
regarded as instantaneous: if we wish 1o represent an activity with
duration. we must introduce two events 10 represent its stast and its finish,
so that other events can occur between them. We shall not be interested
in the length ot the time interval which separates the events. but only
in the relative order in which they occur. We let A sland for the set
of all events with which we shall be concerned. The behaviour of a
process up lo some moment in time can be recorded as the sequence
of all events in which it has participated. this is known as a trace and
the set of all possible traces is denoted by A=

Let s be a trace and let P and Q be processes. A transitron is a
proposition

PS5 Q
which means that s is a possible trace of the behaviour of P up 1o some
moment in time. and that the subsequent behaviour of P may be the
sarme as that of Q. Thus if t is a possibte trace of Q. after which it

may behave like R. then clearly st (s foflowed by t) is also a possible
tfrace of P, after which it can behave like R.

This lact is formalised as a general jaw:

st

t
P> Q&0Q—R= P> R. (L1)
Conversely, if P L, R . then there must exist some intermediate process
Q. which behaves exactly like P would behave after doing s but belore
starting on t This is expressed In the law:

P R=30.pP 0805 R. (L2)

The empty trace © Is the sequence with no events. It describes the
behaviour of a process which has nat yet engaged in any externally
recordable event. We adopt the conventlon that after doing nothing a
process may remain unchanged:

<>

P — P. (L3)

it Q # P. then the possibility of the transition P =25 Q means that P
may make interngl pragress. which cannot be observed from outside. afier
which it can behave like Q rather than P. Since a process is in general
nondeterministic., its internal progress will require making of arbltrary
choices. which are wholly uncanirollable ang invisible from gutside. Such
a choice can only reduce the range ol possible future behaviours of P,
by excluding behaviours which would have remained possible i some
alternative choice had been taken. This fact Is expressed by the thecrem:

P> Q&0 -5 R=P 5 R

The /nitiels of a process P gre those events in which it can engage on
ts very first step: they are defined

initials(P) = {al3 Q. P =2 0}

where @> Is the sequence containing only "a". The choice of whick
of these evenis will actuglly occur wll depend (at least in part) on the
envirgnment in which the process Is placed. Let X be the set of events
which are possible for that environment. Then the event thal actually
occurs must be in the intersectlon (X n initials(Py). If this intarsection
is empty, then nothing further can happen: the process and its
environment remain locked forever In deadly embrace (3]. Unfortunately,
It P is ngn—deterministic, deadly embrace is stil possible even when the
Intersection is non-empty. This occurs when P can progress invisibly
to become Q. and the intersection (X N initiais(Q) is empty. In such

a case, we say that X s a possible refusal of P, and that P can refuse
x.

We want to be able to distinguish between processes by observing their
behaviour in finite environments. [t will be possible to distinguish between
P and G il and only if there 13 a finite segquence s of events possible
tor P and Q. and a finite set ot events X, such that P can refuse X
after doing s but Q cannot (or vice versg). We adopt this view of
distinguishability Decause we consider a realistic environment 10 be ane
which is at any time capable of performing only a finlte number af events.
Bearing these remarks in mind, we define the set of all P's refusals as:

refusals(P) = {X| X is finite &

BQ_PLQ&

(X n initials(@) = {})}
where {]} is lhe emply set.
Fram this definition it follows that
) {} € relusalsP)
(20 i Y € refusals(P) and X € Y then X € refusals(P).

3 il X € refusals{(P) and Y is a finite subset of (A — intials(P))
then (X U Y) € retusats(P).

(A - initiats(P)) Is the set of events that P cannot perform. The third
theorem above states that P can refuse these events, together with any
other set of events it can refuse.

A trace of a process is a sequence of evants in which it may engage
up to some moment in time. The set of all such traces is defined:

traces(pP) = {s13 0. P 5 0}.

From 1his definition it follows that
{> ¢ traces(P)
st € traces{P) = 3 ¢ traces(P).

The second theorsem staies that any prefix (ie initial subsequence) of
a trace of P js also a trace of P.

It s is a trace of P, and i, alter engaqing in the evenls ol s, P can
refuse the finite set X, we say that the pair (s. X) is a failure ol the

process P The set of all such failures is defined:

failures(P) = {(8,X)] 3 Q. P > 0 &
X € refusals(Q)}.

From this definltion it follows that the set F = failures(P) has 1he
propertles:

(P1) (s,X) e F = 53 ¢ A* § X ¢ A § X is finite
P (<>, (}) e F
(PR (st,{}) € F => (s,{1) ¢ F
(P} X c ¥ & (8,Y) ¢ F = (5,X) € F
(PR Let U = {af(s<a>,{})) ¢ F} and let Y be a
finite subset of (A -U); then
(a8, X) ¢ F = (8, (X U ¥)) ¢ F.
The failures ol a process represent possible exiernally observable aspects

of its behavigur. The tact tha! (s, X) € failures(P) means that it is possibie
for P to do s and then refuse to do any rmore. in spite of the fact thar

ils environment allows any of the events of X. Qur next postulate states
that there exists a process corregsponding 10 any possible set of fallures.

W F satisties the five properties ol the previous
paragraph then there exists a process P such that
failures(P) = F (L4)

Finally. we postulate that the failures of a process are the only externally
observable aspects of its behavigur. Thus twg processes that fail in
exactly the same c¢rreumstances are indistinquishabie by external
observation. Since we deliberately choose 10 ignore the details of the
internal construction of processes. it is reasonable 10 adopt thg principle
of identity of indiscernables:

failures(P}) = failures(Q) = P = Q. (L5)

Postulates L4 and L5 together stale that a process is uniquely deflned
by its failure seat. In future. we shall !dentify a process with Its falure
set. and define the ftransition relatlon thus:

P2 0 = (vt, X. (t,X) € Q = (at, X} € P).

From this delinition we deduce (using conditions P1 - P5):

P24 g=3Rr (P 5 R&R D Q)

P2, 0=p0ceP

traces{P) = {s](a,{}) € P}

initials(P) {fal(<a>,{}) € P}

refusals(P) {X1{<>:%) € P}

failures(P) P.

10

Since fransitions can be defined in terms aof failure sets and failure sets
in terms of transitions. it 1= permissible 1o use either method in the
definnion of any particular process. It wiil be found convenient to give
an ontuitve explanation of 1he intended behaviour of a process by giving
the ilaws governing its fransitians. followed by a formal Odefinition in terms
of refusali sets. Usually, the laws wiil give anly sufficient conditions for
the transitions ot the process being delined Then the farmal detinition
will specify the smallest refusal set which satisfies the laws: i.e.. the one
with the least failures.

(1Y The simplest orocess is STOP. a process that never does anything
The only law which it abeys is

aTop 2, sTOP.

The process thal obeys only this law is defined:

STOP = [((<>, X)X € A & ¥ 18 finite}.

Clearly. it refuses to do whatever the environmeant may offer.

2y 1 @@ Is a process and "a" is an event. then the oprocess
a — Q) is a process which first does "a® and then behaves like
G

05 R = (a — Q) 2%, R.

We also permit Q to make internal progress whiie waiting for "a“

0 Q' = (a - Q) 2 (a 0.

11

The smallest process which satisfies these laws is:

(a — Q) = {(,X)I X ¢ (A-{a}) &
X is finite)
u {(<a>s, X)i(s,X) € Q}.

Clearly. it cannot refuse 10 do "a” if offered: but may (ndeed must)
refuse sverything else.

I}

Examples: J?a {fa — STOP)

[

P

b (b — STOP).

(3) Let B be a subset of A, and let F{x) be & process for each x
in B. Then :B — F0)) is a process which first does any event
x in B and then behaves like F(x0).
8 s
F(b) — R = (x:B — F(x)) —— R}
for all b in B.
(vx. x € B = (F(x) — F'(x))) =

(x:B — F(x)) —» (x:B — F'(X)).

The smallest definition satistying these laws is
(x:B — F(x)) = {({(>,X)I X € A-B &
X is finite)
U {((x>s8,X)t x € B &
(s,X) e F(x)}.

Nolg that x 15 a bound varlabie ol this construction, so0 that

(x:B — F(X)) = (y:B — F(y)).

12

Example: P ==

x:{a, b} — STOP).
(4) Let Qa

g = Qab U STOP.

Figure 1 shows the transitions belween these processes (other than
those deducible by transitivity).

Figure 1

(5}

It A = {a.b}. figure 2 shows the initials and refusals of each ol

these processes. proving that they are distinct.

process

Q

Qab

RUN is a process which will always do anything offered by the
envirgnment. Thus it satisfies the laws:

RUN -+ RUN

initials
fa.b}
{a.b}
{a.b}
{a.b}
{a.b}
{a}
{b}

{1

Figure 2.

refusals

{}.{a).{b}.{a.b}

{}.{a}.(b}

{).{o}

{}.{a)

0

{}.{b]

{}.{a)

{}.{a}.{p}.{a.b}

for all s in A*.

13

1y

The required definition is
RUN = {(s.{})|s € A¥*)
Clearly, RUN can never refuse anylhing.

(6) CHAOS is a process that can do anything at all. but in contrast
to RUN, it can also at any time refuse to do anything at all

CHAOS -5 STOP for all s in A*.

The required delinition is

CHAOS = {(s,X)|s € A* § X C A & X is finite}.

2 Nondelerminism.

This section investigates the properties of nondeterminism. 11 uses the
methods of lattice theory t0 show how every recursive eguation umguely
defines a process: the mathematics required is not difficult. and Is tully
explained.

21 Nondeterministic composilion.
I P and Q are processes, the combination (P n Q) is a process which
behaves exactly like P or like Q: bul the choice between them is wholly
nondeterministic; it is made autonomously by the process (or by its
implementory, and cannat be inflluenced or even observed by the
environment Thus (P n Q) can do (or refuse 10 do) everything that P or
Q can.
£ & 5

P — Rv () — R = (PnQ) — R.

The smallest process which satisfies this law is simply:

PR = P u Q.

This operalion is clearly associative, commutative, and idempotent. and
has CHADS as its zero

(P Q)nR = Pn (N R) tassocialive)
(P Q) = (QnB) (commutative)
(P P) = P (idempateni
CHAOS n P = CHAOS (zerq)

18

2.2 Distributivity.

Cne of the main reasons 1or specilying a nondeterministic process such
as (Pn Q) is to aWgw an implementor the freedom to select and
implement either P or Q. whichever of them is cheaper. or aives better
performance. Suppose F is some function from processes to processes.
"F() may be regarded as an assembly with a vacani slol into which
an arbitrary componen! may be plugged. e.a. F(P) or F(C)). The behaviour
0f the assembly is then a function of the behaviour of this component.
Suppose that an implementor has 10 implement (F(P) m F(QN. The
straightforward way of dolng this is to implement F(PY and F(Q) and then
select betwean them. An allernative way 15 first t0 select the component,
and plug in just that one. This alternativg is the same as the standard
way of implementing F(P n () We would like to ensure that both
implamentations qive the same result. ie.

F(PnQ) = F(PYPF(Q).
A function F which satisfies this conditlon for all grocesses P and Q is
said to be distributive. Another reason 1or preferring distributive functions
is that they simplify proofs of the properties of processes. Dy case analysis
of the allernative behavigurs
As an exampie, the construction {a — P} is distributive in P. since:
(a — {(PnQ)) = (a4 - P)n{a — Q).
This means thal there is no discernible diflterence whether the choice

beiween P and Q is made before or after the accurrence of "a". A
function of two or more arguments is disrributive if it is distributive in

17

each argument separately. Thus nondeterministic compasition is itself
distributive. because

Pr(RQr R} = (PnQ)n {(PnR)
and (QnR) NP = (QnP)n (RnP).

Further, the construction (x:B — F()} is distributive In F(x) {or ail x in
B:

(x:B — (F(x) nG(x))) =
(2:B — F(x))n (x:B — G(x)).

Thus all operatars introduced so far are distributive, and we shall make
this a requirement for all operators iniroduced hereafter.

2.3 Limits.

The relation P =2, Q means that the process P may, as a result of
internal progress. transform itself automaticaily to the process Q. A chain
of processes Is an infinite sequence {P;lI20}. each of which may
transform itself into its successor: thus It satisfles the laws:

P =2 p for all 1.

1 i+1
For each such chain there exists a limit process (| P). which can do
(or refusel anything that every member of the chaln can do (or refuse):

<>

(vi. P, = P & B, -5 Q) = (UP) =+ Q.

18

The definition of the smallaest process which satislies these laws is:

(Up) = MNP, provided that vi . P == P

1+

This operator 1s distributive:
g, (FmQ) = We)» (ue)
provided that {P||i>0} and [Qlii>0} are chains.

Furthermore:

P, = (LpP,) for all i.

and for all processes Q

(vi, P, “5 Q) = (LP) —= 0.

The relation P =25 Q means simply that the set Q is contamed in the
set P. Thus everything that Q can do so can P

traces(Q) < traces(?),
and everything that Q can refuse so can P
refusals(g) c refusals(P).

In other words P differs from Q only in that it ts less deterministic, and
that Q can result from P by resotution of some of P's inherent
nondeterminism. Thus d ¥, F"l =2, P, this can mean thal there s
a potental infinity of nondeterministic decisions to be takeri. but perhaps
none of them will actually reach the limit (JP). Thus (JP) can be
regarded as an ‘ideal” element, of which the P' areg dan ever improving
sequence of approximations. getling as close as we may wish to the ideal.

but never actually reaching it. tlowever. in implementing (L P) we wish

19

to allow an implemenitor (f he wshes) to take al/l the non-deterministic
choices in advance of delivering his product.

2.4 Continuity.

Let £ be a distributive function from processes to processes, and
let {P||i>0} be a chain, Then [is monotonic in the sense that

P25 Q = F(P) = F(Q)

for all P and Q. Suppose now that an implementor is faced with the
task of implementing F({JP). The straightforward method would be to
obtain the {imit (Ule) and then "plug” it Into the assembly F(). But
suppose that the limit (|P) Is in some sense unattainable. Then weg can
apply I w0 wsach of the approximations Pr obtaining the& chatn
(F(Pi)IiDO}. and then take the limit of thai. We would llke {0 be sure
that both implementations are the same:

U F(P,) = F(UE,).

Then, even it the limit || F(P) is unatainable. we can be sure of geiting
as <close to it as we need by the sequence of approximations
FP). if this condition holds for ail chains, then F is said ¢ be
continuous. Another good reason for preferring conilnuous functions is
that they simplity proofs of the properties of processes. A third reason
will be explained in the next section.

As an example, the construction (@ — P} Is cominuous in P. since

(a = (UP)) = Uta — P).

20

A function of two or more arguments is continuous if it is continuous
in each argument separately. Thus nondeterministic composition s
continvous, because

i

(UP) nQ = U(P Q)

and Qo (UP) UQnp)
provided that {Pi#0} is a chain.

Furthermore, the construction (B — F(x)) is cantlnugus In FO) for all
x in B:

(x:B — (U.Fl(x))) = U(x:B — F(x)).
Finally. the himit construction is itself continuous:
UUER) = U2

provided that for all i, {P"Ij)O} is a chaln, and for ali j, {Puli)O}
is a chain.

Thus all operators introduced so0 far are continuous, and we shall make
this a requirement for all operators introduced hereafter. This will ensure
that ary expression composed from named components by applying
continuous operators will also be continuous in each of its named
campaonents.

21

2.5 Recursion.

Let F be a continuous function from processes to processes. We deline
the n~fold composition of F by induction on n:

F(p) =~ p
F"'(p) = F(F"(p)).
Since F 1s coniinuous, it is also monotonic, so the set
{F"(CHAOS) |n30}
constitutes a chain; an‘d its limit Is defined
ep. F(p) = UnF"(CHAOS).

Notg that in this construction. "p* plays the role of a bound variable,
50 that:

up. F(p) = ug. F(q).

Let p be a variabte standing for an "unknown' process. which is known
only to satisty the equation:

p = F(p).
Provided that F 1is continuous, it is clear that pup.F{(p) Is a solution for

p in this equation. Furthermore. it is the most general solution. in the
sense that it ¢an progress autonamously to every other solution:

Q = F(Q) = up.F(p) — Q.

22

Thus the equatian

p = F(p)

can pe regarded as a recursive definition of the process up.i(p): for
example., we could have defined

RUN = (up.(x:A — p))
RUN, = (up.(x:B — p)) for any B c A.

A similar construction can be used to find the sotution of mutually
recursive equations such as

F(p.q)
G(p/g)

P
q

[

even when the number of equations is infinite.

The desire to deflne processes freely by recursion is one of the major
motives for requiring all operators to be continuous.

23

3 Operators on processes

In 1his section we deline the most important primilive operators on
processes. and state their chief properties The section is sadly devoid
of examples. these will be found in the next sechon.

i Paraltel composition by intersection.
The combination (P||(} is intended to behave like both P and Q.
progressing in parallel Thus an event can occur only when both P and

Q are able 1o participate in it simultaneously. The same is therefore
frue of sequences of events

PSP 2050 = (PHo) 5 (PO
The smailest process which satisfies 1his law is defined:

(PIHQ) = {(s,XuY)|(5,X) € P & (5,Y) ¢ D}.

Thus (P[IQY can refuse a set if P can refuse some of it and Q can
refuse the rest

The operator || s distributive. continuvous. assOciative and commutative.
It has STOP as its zerp and RBUN as ils unift. ie..

(P])3STOP) = S5TOP and (PJJRUN) = P.
Furthermaore

(x:B — F(x))I(y:0 — G(y)) =
(z:(BNCY) — (F(2)1G(2}))-

24

32 Conditional compostign.

The process (P {1 Q) behaves either like P or like Q: but it giffers from
(P n@ in that the ¢hoice between them can be influenced by the
environment an the very first step. If 1the environment offers an event
"a® which s possible for P but not for Q. then P is selected: and
conversely for Q. but if "a" is possible for both P and Q. the selection
between them is nondeterminale. and the environment does nat get a
second chance to nfluence k. Thus

P <ar»s R v O <ad>s R — (P D Q) <a>s R

Before occurrence of the first event, P and Q may progress independently:

<> L

PP 2050 = (pOor =% (' Do"y

The least process which satisties these laws is defined:

(PDO) = {{(O,X)I(<>, %) ¢ P& ((>,X) € Q)
U {(s,X) | 8 & (O &
((s,X) ¢ P v (8,X) € Q)}.

(P [} O refuses a setl il and only if it is refused by both P and Q.

The aperator (] Is distributlve, ¢ontinuous, assQcCiative, commutative, and
idempolent. 11 has unit STOP. Furthermore it admits distribution thus

Po(QODR) = (PrQ)) (PrR)

(z:(B U C) — H(z)} =
(x:B — F(x)) [} (y:C — G(¥))
where H(z} = if 7z ¢ (B-C) then F(z)
else {f z ¢ (C-B) then G(7)
elae F(z)nG(z).

25

When £ = G, this last theorem is much more simply expressed:

(x:BUuC — F(x)) =
(x=B — F(x)) {] (x:C — F(x)).

3.3 Parafiei composition by interieaving.

The process (P {ll Q) behaves like P and Q operating in parailel, but it
differs radically from {(P{|Q in that each event requires participation of
only one of the processes rather than both. Thus each trace of P [|i Q)
is an interleaving of a trace of P and a trace of Q. as stated in the
law

' L 1
PSP aQ—Q = (PHQ D (2 UIQ")
where r is an interleaving of s and t

The srnallest process which satisties this iaw is

(PIIQY = ((r, %) 3s,£. (3,X) ¢ P & (t,X) € Q0 &
r isa an interleaving of s and t}

(P {]] @ can refuse a sel oniy if both P and Q refuse it

The operator {il is distributive, continuous., associative, and commutative.
It has unit STOP and zero RUN.

Furthermore, if P = B — FW) and Q = (y:C — Gy then

(PHIQ) = ((x:B — (F(x) 11Q))
0 (y:¢ — (PHG(¥))))-

Thus it an event can be performed by both processes. it s
nondeterministic which of them actualty performs it

26

34 Sequennial Cgmposition.

Ltel *y" denote an event which we nterpret as successful termination of
a process. Then SKIP is defined as a process which does nothing but
termnate successfully:

SKIP = (4 — STOP).

The process (P:Q) behaves like P until P terminates successfully. after
which it behaves iike Q. However, the occurrence of the "+ al the end
of P does not appear in any trace of (P:Q). “+' occurs autornaticaily
without the knowledge or participation of the environment. Thus., if s
does not contain "tick”., we formulate the laws:

1 5

PS5 p' & Q=5 Q' = (PiQ) = (P';Q")

sCA> ' t st

P P' & Q-5 R = (P;:Q) =5 R.

The gefinition which satisfies these laws 1s

{PF;0) = {(8,%X)t s does not contain v &
(s, XU{+v}) e P}
U {(st,X)| s does not contain + &
(s¢v¥>, {}) e P & (t,X) € Q}.

This definihon shows that while P is still running. (P:Q) cannot refuse
X unless P can also refuse g terminate successfuily.

In general, it is a usefui convenlion that “y" shouid be used only n the
process SKIP. in particular. in the construclion B — F()). the set
B should never contain "' and in fulure we shaill assume that this
conventon 1S observed.

27

Sequential composition is distributive. continuous. and assqciative.
furthermore:

(SKIP;P)

]
o]

(STOP; P)

STOP

(x:B — F(x));P = (x:B — (F(x);P))
(since £ B)

(SKIP [0 Q);P = Prn (P [(Q;P)).

3.5 Iteration.

The process *P behaves like an infinite sequential composition of the
process P.

P;P;P; . .

It can be simply defined by recursion:
*P = uq. P;g

lteration has the following properties:
(P; *P) = *P

(“(x:B — F(x)));P = *{x:B — F(x))
(since « £ B)

28

*STOP = STOP

*SKIP = CHAOS.
This iast result 1s the most surprising: 1t would seem more intuitive that
*SKIP shouild equal STOP indeed, it is permitted ta implement i1 as

STOP But in general it is very important to distinguish *SKIP from STOP.
For example, an implementation of STOP uses no eiectricity, whereas an
implementation of *SKIP may use an unlimited amount. Since it never
interacts with its environment, there is no way of switching it offt Such
a process must never be switched on. in any environment. CHAOS is
another process that must never be used in any envirgnment It is not
unreasonable 10 equate such equally useless processes,

It can be argued that the process CHAOS might actually do something,
whereas intuitively *SKIP cannot. But consider the analogy of an
elecironic cirguit with a race condition. Such a circuit must never be
used, but il it is used it may break: and a broken device may behave
in any way whatsoever. We allow the same possibility for *SKIP.

A terminating form of iteration can be defined

P until @ = wp.(Q 0 (P; p))-

This repeats P any number of times. possibly ending with a single
execution of Q. It has properties:

*P = P until (*P) = P until STOP

((x:B — F(x)) until (y:C — G(¥)));P =
(¥:B — F{x)) until (y:C — (G{y):P)}

SKIP until @ = (CHAOS (] Q).

29

The 1hirg result is again surprising. it could be argued that in the
implementation of (SKIP until Q). the opportunity ta behave like Q occurs
mfinitely often: and it is "unfair® to neglect such an opportunity forever.
But it seems impossible to define a notion of "fairness” such that a “fair”
process can be distinguished from an “unfair" one by any finite
observation That is why our theory makes no stipulation of fairness,
and treails every race condition as a possible cause of breakage.

Some of these probiems can be avoided i we insist that = and until
are used only on processes whose first event cannotl be "v°

+(x:B — F(x)) = up.(x:B — F(x): p)

(x:B — F(x)) until (y:C — G(y)) =
pP-.{((y:C — G(y}) 0 (x:B — (F(x);p))),

The.same technique can be used to define a paralie! iteration, in which
each activation of the body of the loop progresses in paralle]l with all
previous activalions:

M {x:B — F(x)) = wp.(x:B — (F(x)Ilip)).

Unfortunately, this technique cannot be applied when the same problem
arises in the next section.

3.6 Conceaiment.

Let “b" denote an event (other than "} which is to be regarded as an
internal operation of the process P; lor example. it may be an interaction
between spome component processes from which P has been constructed.
We wish such ewvenits to occur automatically whenever they can, without
the participation or even the knowiedge of the environment of P. We
theretore detine (P\b) as the process which behaves like P, except that

[#3]
o

every occurrence of "b” is removed from its traces: It therefore satisfies
the law:

P R = (P\b) =% (R\b)

"

where s\b is formed fram s by remgving all occurrences of "b"

For reasons explained in the previgus section. if P can engage in an
infinile sequence of occurrences of "b", without ever interacting with Its
envirgnment. then (P\b) equals CHAQS.

 <
(Vn. Pn — Pnﬂ) = Po\b —— CHAOS.

The required definition is:
P\b = {(s\b, X)}(s, Xu{b}) € F}
U {((s\b)t, X)| ¥n, (sb", (}) ¢ P &
{(t, ¥) € CHAOS}
where sb” is s foliowed by n occurrences of b.

This operation is distributive and continuous. and

(P\b)\c = (P\c)\b
{(P\b)\b = P\b.

Therefore It B is any finlte set of symbols. {b1,b2. -+ b} we can
detine

PAB = (. . . ((P\D,J\DB)\ . . .\b).

31

Other theorems are

STOP\b = STOQOP
RUN\D = CHAOS
CHAOS\b = CHAOS

(b = P)\b = P\b.
(x:B —» F(x))\b = (x:B — (F(x)\b)) if b g B.

((b - P) 0 (x:B — F(x)))\b =
(P\b) n ((P\b) [(x:B — (F(x)\b))) if b £ B

3.7 tnverse images.

Let f be any function from events to events. Then 1P is a
process which can do "a" whenever P could have done 1(a)

P g o= £7l(r) 5 £71(Q)
where f(s) Is formed by applying f t0 each symbol of s.
The required definition is:

£74(P) = ((s, X)I(f(s), £(X)) € P & X is finite}

where f(X) = {f(x)|lx ¢ X & x is the domain of f}

32
t~1 s gistributive and continuous: furthermore
£ (g (P)) = (g o £)7H(P)

STOP

£~ l(sSTOP)

£-L(RUN}Y = RUN; -1 2,

£ 1 (x:B > F(x)) = (y:f71(B) - £7H(F(f(y))))
i~ distributes thraugh 0. il. [ll. ana : {provided 1~ 1(y = {4} ang

£ 1(P\B) = £ 1(P)\f ! (B)
where f™1(X) = {ylf(y) € X)

provided each element of X Is in the range of f

33

4 Applications.

In this section we give a number of examples ol the use of the operalors
defined above In the description of simpie processes. In each case,
we use taws about transitions to speclfy the required behaviour of a
process belore constructing it

4.1 A COUNT register.

A COUNT is a process which behaves like an unbounded non-negative
integer register, with initial value zero. It engages in three kinds of event:

-

up” denotes incrementation of the register and can occur at any
time,

"down" denotes decrementaiion of the register and cannot occur
when its value is zero.

"iszero” can occur only when the vatue is zero.
Thus the behaviour of COUNT is specified by the law

COUNT = Qg = EQ & initials (Q) = {up,iszero} v
LESS & initlalis (Q) = (up,down}

where EQ means the number of "up’s and "down’s in s are equal and
LESS means there are less "down"s than “up"s in s.

A simple delinition of a process COUNT,. wnich satisties tnese laws,
can bpe given by infinite mutual recursion. The process
COUNT ~ defines the behaviour of a count register holding the vaiue n.

COUNT, = (iszero — COUNT)) [(up — COUNT,)

COUNT, , = (down — COUNT } {I (up — COUNT,).

1 n+2

Anather process which satisfies these laws is ZCRQ, wbhere

ZERO

(iszero — ZERO) [] (up — (POS;ZERO)})

and POS

(down — SKIP) [(up — (POS;P0OS)).

Note that POS terminates successfully when it first performs one more
*down® than “up". In order to compensate for an initial “up”, it needs
to perform two more "down's than "up’s. This is achieved by firsl
performing one more. and then one more again. A third gdefinition of

the same process is Ca' where

2
L]

(iszero — Co) A (up — c)

(]
]

POS;C .
n

4.2 Channel naming.

In this and later sections. we shail assume that the only events are
communicatlons between processes. Thus each event conslists of wo
parts 'm.t". where "'m" is the name of a channel along which the
communicatron takes place. and "t" is the content of the message which
passes. We define:

chan(m.t) = m , contm(m.t) = t.

35

i P is a process which engages in events without a channel named.
then (m.P} is the process which engages in m.t whenever P would have
engaged in t

(m.P) = contm'l(P).
For example.

m.COUNT, = (m.down —» (m.COUNTz)) {
(m.up — (m.COUNTq)).

We can now construct two separate COUNTs., commeuenicating along
differently named channels:

(n.COUNT,) (Il (m.COUNT,).

Suppose now that a process MASTER requires 10 use a count register,
com}'nunicating with it along channel named "m°. To use the register.
it engages in the events ‘mup", "m.down”. and "m.iszero”. By using |i.
we can ensure that the process (mCOUNT) engages in these events at
the same time as the MASTER. But first we need fo ensure that
(m.COUNT) wili ignore all communications of the MASTER. except those
which are directed along channel "m". This is done by using the |||
paralle! operator.

Let M = (m.up, m.down, m.iszerao}.
P ignoring X = (PIHRUNX).
Then we define:

{m: COUNT, {{MASTER]} =
(((m.COUNT,) ignoring (A - M))|IMASTER)\M.

36

It the MASTER requires 1o use two differently named counts. we can
similarly define:

[rn:COUNT, Il [m: COUNT, [{ MASTER]] .

For example, the MASTER may contain the following process code, which
termnates successfully when it has added the current value of m to the
current value of n, leaving the former unchanged:

ADD = upup((m.iszero — SKIP) [}
(m.down —
(n.up — (p:(m.up — SKIP)))))

ADD has the property that

[n:COUNT,Il [m: COUNTl I'ADD; RESTOFMASTER]] =
[n:COUNT , , H[m: COUNT] [IRESTOFMASTER]] .

This exampie shows how simultanegus participation in events by parallel
processes can achieve the effect of communication between them.

It is possible (with care) to use the master/slave relation recursively, as
shiown by yet another gdefinition of the COUNT reqister.

up.((iszero — p) b
(up — ([(m:plILOCFP];p)))

COUNT

where LOOP = pqg.((up — (m.up — q)) [
(down — ((m.iszero — SKIP) [}

(m.down — g}})).

The LGOP passes on to its subordinate process (m.p)» all incoming “up’s
and “"down's, untii a "down" happens when the subordinate process is
zero. The LOOP then terminates successfully. Thus [m:p il LOOP] behaves
like PGS, provided that p behaves hke ZERO.

a7

4.3 Buffers and chains.

We define a BUFFER (of type T) as a process which inputs any seguence
of values (of type T) from a channet named "in". and outputs the same
sequence of values along a channel named ‘"out™. Let m be a channel
name. and

m.T = {m.t|t € T}
(alm) = contm(s\(A-—m.T)).

Less lormally. -(s P m) is the sequence of values whose communication
along the channel "'m” is recorded in s. Now a BUFFER is a process
which for all Q satisfies the laws:

BUFFER -5 ==
s € (in.T u out.T)t &
(sPout) is an initial subsequence of (altin) &
{(stout = sPin = initials (Q}) = in.T) &
(sfout #8lin = initials (Q) N (out.T) # {}).

The third tine states that an empty buffer must input any value of type
T. and the fourth line states that a nonempty bufler must always be
prepared to output some value of type T. It is left undetermined whether
a neonempty butfer may refuse to input.

A simple example that meets this specification Is the single—portion bufier
B1:

Bl = *(x:(in.T) — (out.(contm(x)) — SKIP}Y)

38

In future we shall use abbrewations:
(?x:T — F(x)) for (y:(in.T) — F(cont,m(y.)))
and !x for (out.x — S5KIP).
Thus the example B1 could be rewritten:
Bl = *{?%x:T — !x).

An unbounded buffer can be defined by an infinite set of mutually
recursive equations. indexed on the current content of the buffer. which
starls empty:

BUFF _, = (?X:T — BUFFq))

BUF‘F(M“1 = (?y:T — BUFF Yy D ('x; BUFFS).

<x>5Ly>
The process (P>»>Q) is one in which everthing output by P on channel
“aut” 1s simulaneously input by process Q on channet "in". and all such
communications are concealed from their common environment, Thus
all external communication on channel “in" js received by P ang ignored
by Q. and all external communication an channel "out” Is sent by Q and
ignored by P. Communication bpetween P and Q is established by
transforming each event "out.x” of P and each event "in.x" of Q into the
same event "x". This is achieved by the inverse of the function

m.x if x € T
= X otherwiae

1nsertm(x)

(P>>Q) = ((insertoul'l(P)) ignoring ocut.T)
Il ((insert ~*(P}) ignoring in.T))\T

(here we have assumed that T Is finite).

39

A buffer which stores two portions before refusing lurther input can be
delined:

B2 = B1>)»B1.
in general. a butfer with n portions is defined by induction:

B, = Bl
B = B1)>)B_.
n+1 n

An unbounded buffer can be defined:

B_ = up. (?2x:T — (p > (!x ; Bl))).

o

A butier which may have any bound or none is

B, = #p. (Bln (2x:T -» (p > (tx ; B1l)))).
Note that it is not possible in our model to define a buffer with a
nondeterministically chosen finite bound. without also ailowing an
unbounded buffer as an implementation. This is because there is no
finite test which could detect that the bulfer is unbounded.

L3 =
Let 1 : T — T be an arbitrary monctonic funclion on strings. l.e. f(s)
is always an initial subsequence of f(sth, A process P is said W be
a pipe for f if it salisfies the foliowinQ laws:

P = Q =

s € (in.T U out.T)* &

(sPout) is an initial subseguence of f{(s'in) &
((sPlout) = f(slin) = initials(Q} = in.T) &
((sPout)#f(slfin) = initials(Q) nout.T # {}).

40

Thus a bufter is just a pipe for the identity function. If P is a pipe
for fand Q is a prpe for g. then (P>»>Q) is a pipe lor (g o0 P. A simple
example is a pipe for the sine function:

SIN = *(?x:REAL — ! sine (X))
and so are (SIN »» Ba)‘ (Bs »» SIN), etc.

Suppose now a MASTER process requires to use the SIN process 10
compute sines, using a channel name "sin". It sends the argument x
by sinlx (an abbreviation for (sin.inx — SKIP)), and it inputs the result
by Gin?y:REAL — F(y)), which is alsg an abbreviation for something
similar. (Note the coding trick that assimilates output by the master with
input by the slave.) The required effect can be achieved by the
combination

[8in:SIN|IMASTER] .
A pipe lor the tangent fupction can be defined:
[8in:SIN|[I[cos:COS|ITAN]]

where TAN = *((?x:REAL — s1in! x;cos!x);
(5in?y:REAL. — (cos?z:REAL. — !(y/2))))

A process P is said 10 be a variable (Of type ‘I") if it is always prepared
to output the value it has most recenlly input; ie. for all Q:
P35 Q0 = (sPlin = <) = initials(Q) = in.T)
& (gfin # (> =
initials(Q) =
(in.T U {out. last (slMin)})).

41

A process definitlon satisfying these laws is:
VAR, = (2x:T — V;)
where V’l = (2y:T — Vy) 0 (!x;Vz) for all x in T.

Vx is the behaviour of a variable with value x. A fresh local instance
of such a varianle can be deciared thus:

[m:VARTII MASTER].

A stack (for type T) is a process P which outputs everything that it has
input, on a last—in/first-out principle: and outpuils the signal “isempty”
when empty. For all Q it obeys the laws:

P-5H Q=
(length(stin) = length(slout) =
initials(Q) = (in.T U {out.isempty}))
& (length(s!in) » length(sfout) ==
in.T € initials (Q) &
initials(Q) mrout.T= (})

stcoute >

P 2 @ & length(tlin}) = length(tlout) =

X = last(slin).

Three different rmplemeniations of a stack can be modeiled on three
different implementations of the COUNT. We hope the reader will enjoy
constructing them,

42

5 Prgspects.

The griginal objective of denotational semantics was to provide a clear,
cansistent, and unamoiguous definition of a programming language which
is likely to have more than one implementation. Such a delinition could
serve usefully as a national or inlernatignal standard: 1t would give a
precise specification which must be mert by each implementor: and il would
tell each programmer exactly what he can rely an in all implementations.
Thus 1t would achieve the primary objective of swandardisation, namely
the reliable conjunction of programs and implementations from widely
difiering sources. The deficiencies of existing language standards can be
direciy atiriputed to their failure to take advantage of this known
technelogy - a tailure which 1o future generations will seem amazing.
In the area of parallel programming languages. we hope that the
development of a suitabie semantic model at an early stage will forestall
a repetition of the problems that have besel the developmeant and
standardisation of sequential programming languages.

Apart [rom the improved quality of programming language standards. the
techniques of mathemaiicai semantics have much 1o offer in improving
the rellability of compuler programs. in the tirst place. they offer the
possibility that an implementor can prove with mathemaltical rigour that
his implementation meets the standard specification of the language.
Clearly, no program can de more reliable than the implementation of the
language in which it is expressed for input 0 a computer.

A second advantage of a mathematical descriptton of a programming
language is that it offers the individual programmer the opportunity 1o
prove the correciness of his program with respect to some description
of its mntended behaviour. For this, he would need o identify the
mathematical object denoted by his program, and then provg that this
cbject exhigils the required mathematical properties. Unforiunately, this
merthod of program proving is impractically laboricus: it is like trying 0

L3

solve ditferential equations using only the orniginal definitions of derivatives
in the epsilon-della terminology of analysis. What is required {or praciical
program development and proof is a formal calculus. similar to the
assertional cailculus for sequeniial programs, which will permit a
reasonably direct expression of the purpose of each command. and a
method of proving that it meets ils purpose Such a calculus must be
firmiy based on a proof of its conformity with the mathematical model,
just as the differential calculus is ultimately based on the Dedekind madel
of real numbers. But these are topics for future research.

Wy

[

[2]

(3]

(4]

Aelerences

C. A. R. Hoare Communicating Sequential Processes
Commun, A.C. M 21 8, Aug 1978

Robin Mitner Calculus of Communicating Systems
Sprninger Lecture Notes in Computer Science 92
Springer Veriag 1980.

E. W. Dijkstra Cooperating Seguential Prgcesses
in Programming Languages. ed. [. Genuys
Academic Press.

D. S. Scol Data Types as Laltices
SIAM Journal gn Computing 5 1876, pp. 522-587

