
"

Oyf,",~,..j t 1,~;,,~r~:"f ,-..---,­

,j\ ... J
(j)l.\VI U \)/'-_ \

LECTU,ES

ON A

l'l~THEr'~T ICAL THEORY

OF

CO~lPUTAT JON

by

Dana S, Scott

Technical Monograph PRG-19

May 1981

Oxford University Computing laboratory,

Programming Research Group.

45, Banbury Road.

OXFORD, OX2 6PE

\~ 198· by Dana S. Scott

Uni~ersity of Oxford
MaUematical Institute
24-29 St. Gi les
Oxford OXl 3LB

Lecture Course
Michaelmas Term 1980

Preliminary Version

Completed November 1980

Revised May 1981

(i)

TABLE OF CONTENTS

INTRODUCTION (ii)

LECTURE I : Do1TO.ins given by nsighbou:t'hoods

LECTURE II Mappings between donnins 19

LECTURE III Domain constructs 33

LECTURE IV : Fixed points and recursion 51

LECTURE V : Typed A - caLculus 69

LECTURE VI In troduction to donuin equations 89

LECTURE VII : Computability in effectively given domains 113

LECTURE VII I : Retracts of tM universal dontlin 133

(i i)

INTRODUCTION

These notes were written in conjunction with the lectures

delivered by me for the Semantics of Programming Languages

sequence during Michaelmas Term 1980 at Oxford. I started

writing around the first week of October and finished at the

end of November. The purpose of the course was to provide the

foundations needed for the method of denotational semantics;

in particula~ I wanted to make the connections with recursive

function theory more definite and to show explicit, effectively

given solutions to domain equations. Roughly. these chapters

cover the first half of the book of J.E. Stay. I plan soon to

expand the notes into a book by adding additional chapters on

other theoretical topics that time did not permi t me to cover

in one eight-week term.

Khen I started writing Lecture I in October~ I did not

know what the later lectures would contain: I could see no

further ahead than part of Lecture III in the beginning.

The lectures had to be typed in advance of the class meetings)

however) so there was at the time of composition no opportunity

for second thoughts of any major proportions: I had to ...'rite

the text s~raight through. As a consequence there are many

remarks I would like to transpose and many additional points

of explanation 1 see are needed; further worked examples and

easier exercises are also required. During the spring, after

receiving many helpful comments. I was able to introduce a few

changes in the text and make some necessary corrections. Howeve~

a complete retyping was impossible. Nevertheless. this prelimin­

ary version of the book seems to provide a quite detailed

introduction and is sufficient to exhibit the scope of the

approach and several applications.

The idea of using neighbourhood systems to give set­

theoretical representations of domains had been in the back of

(iii)

my mind for some time in connection with specific examples.

But the thought that a systematic development along these

lines might be easier to follow than the more abstract

lattice-theoretic and topological approach used by myself

and others in many publications only came to me during the

IFIP Working Group 2.2 meeting in Copenhagen in mid-June 19BO.

I gave a brief public presentation at ICALP '80 in Holland in

mid-July.

One large mistake I have made is to de-emphasize partial

orderings too much, since at the right point the concepts and

the language are in fact helpful. The basic plan is that,

instead of ax iomati zing the theory using partial orderings,

the necessary facts come out as theorems. For a neighbourhood

system 0, the set of elements lVI, which consists of filters,

is naturally partially ordered. And approximable mappings

naturally preserve the ordering. And so on. The advantage

I see from the point of view of exposition is that properties

can be brought out one at a time instead of having to put them

down all in advance of any experience with the ideas. My o~n

feeling after writing these chapters is that the plan has

worked out far better than I could have dared to hope. I was

especially glad that I could generate so many exercises. and

I hope eventually to provide many more. One interesting place

at which partial orderings prove their usefulness is in

visualizing domains. As it staRds now the text does not contain

enough in the way of pictures. This will have to be remedied

in a future version. Undoubtedly toinclude enough explanation.

several of the lectures will have to be sub-divided into separate

chapters.

One major improvement is needed: to bring Exercise 2.22

into the main text. I did not know in advance how often I \wuld

need this result for giving (easy) set-theoretical characteriza­

tions of domains and structure on them. This will be an easy

repair. but it will cause quite a bit of rewriting. Clearly

(iv)

much mOTe has to be said about the interplay between elements

and neighbourhoods. In particular, the character of the elements

of a domain. like the power set of a set. has not been sufficient­

ly illustrated and quite a bit of expansion on this topic isI

also needed.

Finally I have to explain that I had no time whatsoever

to put in references and a bibliography. The ideas I have

used have occurred to many. many people who have 'Worked on

domains, and I do not wish to claim originality. I am claim­

ing some advantage to my style of representation, but I fully
realize that a published version will have to have detailed

historical references and notes at the ends of the lectures.

Needless to say I shOUld very much appreciate any advice or

criticism from readers of this preliminary version.

I would like to give a warm word of thanks to the many

people 'Who have already commented on the preliminary text both

at Oxford and in Boston, where I gave lectures. Very special

thanks are due to Steve Comer and Steve Brookes, who spent

many hours proof reading the typescripts. The biggest 'Word

of thanks, however, is reserved for Elsie Hinkes who, under

very considerable pressure. did a wonderful job of typing.

Dana S. Scott
Merton College
Oxford

May 19B1

1

LECTURE I

DOMAINS GIVEN BY NEIGHBOURHOODS

Often an object (or element) can be determined by a

selection of its properties. Often it is also the case that
it is easier (more convenient, more elementary) to think of
these properties than it is to think of the elements them­

selves. Let us term the properties under consideration

neighhoW'hoods, the family of those allowed a neighoowohLJod system.

Generally, the collection of these neighbourhoods is, for one

reason or another, somewhat restricted; that is, a completely
arbitrary property may not be allowable as a neighbourhood.

Therefore, the elements determined by selections of neighbour­

hoods may not be as separable into the discrete objects common

to the classical view of set theory. This is particularly true

in working with infinite objects: it is hard to specify an

infinite element completely. The theory of elements to be

studied here, then, is going to permit partiatelements as well

as totaZ elements, and each neighbourhood system will define a

dOmain of such elements.

Since we may wish to use a neighbourhood system to intro­

duce elements not previously investigated,the neighbourhoods do

not have to be regarded as sets of the as-yet-to-be-defined

objects. We can take a non-empty set 4 of tvkens (or "traces")

that function as "parts" of elements - or even as parts of

"descriptions" of elements. Then a neighbourhood is a subset

X E...6. containing all those tokens that provide sufficient

information when taken together to t'approximate" a possible

element up to a certain "degree". All these words in inverted

commas are vague. and in any case we shall have at the start

only a quaUtatitJe theory of ltdegree of approximation". A. token

should be considered as a very "rough" representative of an

element, and a neighbourhood should be regarded as "smoothing

out" irrelevant details by grouping together aU those repres­

mtatives sharing some common feature. One neighbourhood, then,

2

may be only a very incomplete specification of an (ideal)

element; fuller specifications can be secured by taking

"coTIvergent" sequences of neighbourhoods. Even then conver­

gence need not be to a total element.

Let us call the family of allowed neighbourhoods V; it

is a family of subsets of the set A. An obvious first

question is: when are two neighbourhoods X. ye V neighbour­

hoods of the "same" element? This question of course generalizes

to a (finite) sequence of neighbourhoods. This property we will

call the consistenc.l,f of the sequence of neighbourhoods. By

definition this Nill mean that the given neighbourhoods all contain

a common neighbourhood in V. That is, for X, Y to be consistent,

there must be a ZeV with 2=:X and Z=:Y. This is not a very in­

formative definition, but it has something of the flavour of a

notion of consistency insofar as it can be expressed within V.

When consistency holds it seems reasonable enough at first

glance to say that the intersection X n Y is also an approximation

to this COmmon element. If this is reasonable. then X n Y should

also be regarded as a neighbourhood. This assumption has many

consequences, but as a preliminary theory of approximation we

will find it quite workable with many natural instances.

Taking intersections just means taking more and more properties

of the element and putting them togetherl1conjunctively~1 It is

something we do all the time. We therefore accept the idea for

the present for giving our first principal definition.

DEFINITION 1.1. A family D of subsets of a given set A is

called a neighbourhood system (over A) iff it is a non-empty

family closed under the intersection of finite consistent

sequences of neighbourhoods. That is to say. V must fulfill

these two conditions:

(i) "EV;

(ii) whenever XJ Y) Z E V and Z s.X n YJ then X n Y E V. 0

3

We remark tha t by convention lJ. corresponds to the inter~

section of an empty sequence of neighbourhoods; in particular,

(I Xi =..6., if n = 0;

,if n > O.
i<n .((lXi)

n X
n-1

i<n-1

Of COUTse, from (ii) t we can extend the intersection property

to any finite sequence. Consequently, we can say X "'" X _O n 1
is consistent in V iff

(I Xi V.E
i<n

Some examples will help us understand the notions better.

EXAMPLE 1.2. Let a= {O,n and let

V· {(0,1), {OJ, (1) j.

In pictures we have© Q
The intention is that 0 and 1 can be completely specified and

that they can be identified with the total elements. As 'We

shall see t there is only one partial element: either we give

no info·rma tien (the neighbourhood {D.'}), or we decide between

o and 1 (by giving (OJ or In). 0

EXAMPLE 1.3. Let lJ. = {D.1,2} and let

V<{{0.1,2), {1.2}, (2l]

In pictures we have:

CCQ))

4

Instead of stepping to the total element (here represented by

2) in one big step, the passage is divided into two steps.

(Note 0 and 1 cannot be taken as representing to't.al elements.)

This example is not very interesting because the direction of

approximation in unique. We need an example with some choice. 0

EXAMPLE 1. 4 Let

t:. = {A.O , 1.00.01,10,11}

V = {t:..{O,OO.Ol}. {1.10,11},

{ool, {O1}, {10l, (11) l.

Or more understandably in pictures:

The tokens aTe fini te sequences of 0 Isand l' 5 (up to length 2)

wi th A the empty sequence; they form - in the pic ture - the

binary tree with the sequences as the nodes. The neighbourhoods

are the subtrees of all nodes above a given node. Obviously

this can be generalized to sequences of any length (and to
trees less regUlar than the binary tree). The total elements

of the example correspond to the top nodes 00. 01 J 10. 11 and

the lower nodes to the partial elements. When we are not at a

top node we have only partially determined a sequence, and the
branching indicates that we have some choice as to how the

sequence can be extended. 0

It shOUld be noted that. in these three examples, the reason

that we have a neighbourhood system is a simple consequence of a

5

very special ci rcumstance: in these systems t o neighbollrhoods

are either disjoint or one is inCluded in the other. This
arrangement of neighbourhoods is by no means necessary.

EXAMPLE 1.5. Let .6..=-{O,1,2,3} and let V be the family of all

non-empty subsets of A.

This system is a direct generalization of Example 1.2.,

which was special owing to the Small number of tokens. (The

other examples were special by virtue of the choice of neigh­
bourhoods.) The verification that the present V is a neighbour­

hood system rests on nothing more than the remark that sets are
consistent in V iff they have a non-empty intersection. Clearly
the arrangement of neighbourhoods in '0 can be as varied as a

four-element set will allow; if d were made larger, the possible
combinations of neighbourhoods could be made as complex as you

wish. 0

Having some idea now of the variety of neighbourhood systems,

we have to discuss what it is they do. As stressed before, the
tokens do not have to correspond directly to the elements; but
where. we ask, do the elements come from? One obvious suggestion
for determining an element is to produce a sequence of 'tbetter

and better" neighbourhoods:

Xo ~ X1 :? •• 2 X 2'" n

Trivially, any finite initial segment of this sequence is con­
sistent. and so each X is a partial approximation to the n
"limit". If 0 were always to be taken as finite, of course,
there would be no point in discussing limits since any such
sequence would eventually be constant. The elements in the
finite case would therefore be completely represented by neigh­
bourhoods with the ntininnl. neighbourhoods corresponding to the
total elements. But there are many reasons to go beyond the

finite (though perhaps not too far beyond).

y) ~Suppose (n n=O is another "convergent" sequence with

6

Yn+1S)'n fOT all indices: when do the two sequences of neigh­

bourhoods determine the same limit? The two sequences can

surely be different; fOT example, (Yn>;::=o could be a subsequence

of <Xn);=o' say,)'n=X Zn " Still we would want to say that the

same limit is obtained. Without being given any further structure

on the neighbourhoods, a simple answer is just to say that each

sequence goes "equally deep" as the other:

fOT each m there is an n with X SY , and
n m

fOT each n there is an m wi th Y £ X . m n

This definition obviously puts sequences into equivalence

classes, and so elements could be identified ld th these. But

such a definition is clumsy fOT two reasons: it is always

tiresome to work with equivalence classes. and there is no

reason to think that simple infinite sequences are adequate for

determining elements without some rather drastic assumptions

on V. Nevertheless, the idea is suggestive; we just have to

find some construct to represent elements in a unique way and

to phrase it in a general enough manner.

Start with (Xn);=o again, which "converges" as before.

Think of all the other sequences equivalent to this one in the

sense just defined. We can define the class of all terms of all

such sequences very easily as being the family:

x = {Z E V I XnS Z for some n}.

It is easy to prove that if we form the analogous class for

(Yn>';;.=o' then the two families are equal. if and only if the

sequences are equivalent. Thus, we seem justified in letting

x represent the limit of (X)O;>n;O' All we have to do now is n
to remark on what sort of class x is as a subfamily of Vj

what we abstract from the construction, however, will be just

a bit more general than taking those x that result from sequences.

DEFINITION 1.6. The (ideal) el.ements of a neighbourhood system

V are those subfamil ies x S V where:

(i) f),Ex;

(i i) X, ¥EX always implies XnYEx; and

(iii) whenever X E X and X So ¥ E V, then Y EX".

The domin of all such elements is written as I V I. 0

7

The idea of 1.6 is a well-known mathematical device: the

families x satisfying (i) - (iii) are usually called faters.

Most frequently the emphasis is put on the maximal filters, and

these would be our total elements; however, in general, the proof

that maximal filters exist is non-constructive, so for OUT

purposes it is better not to neglect the partial filters. When

maximal filters can be found, well and good, but we do not have

to insist on them. Note that the generality of 1.6 is acHeved

by not requiring that there is a sequence of neighbourhoods

that I1generatesll the filter x. (See Exercise 1.22.)

We have often said that neighbourhoods determine partial

elements by themselves; we now make this remark precise.

DEFINITION 1.7. For XE V. the principaZ fater determined by

X is defined by:

tX= (yEP IXs;Yl.

The principal fil ters form what Ioo'e shall call the finite

eLements of the domain I VI. 0

It is obvious that the correspondence between X and + X is

one-one and inclusion reversing, in the sense that

Xs.Y iff +YS+X

for all X, YE V. But, except in very special cases, there is

much more to I V I than just the finite elements. Much of our

investigation will be concerned with finding out how much more.

The finite elements are. in a certain sense. "dense" in

IVI. however, because it is also obvious from the definitions

that for each xE IVI

x = Ul t X I XEx).

That is, every element is a certain type of-limit'l of finite

elements. (This statement is made more precise in Exercise 1.21)

We note that we have now had several occasions to use

inclusion relationships between elements; this is an important

relationship, and we give it a special name.

8

DEFINITION. 1.8. For x. y e lVI,e say th·at x approzimates riff

x oS. y. The element that approximates all others ~ {.a.}. is called .1

(read: bottom) i it is the "least defined" element, or the

"most partial" element. Elements maximal ith respect to the

approximation relation are called total. elements. D

EXAMPLES 1.2 -1.5 (Revisited). The examples as givenere

all finite, so any explicitly given filter x is principal,

the elenent is finite. the minimal xe x tells us all e need

to know. In such simple situations there is essentially no

difference beteen elements and neighbourhoods -- except for

the reversal of the order as noted. This (necess arr) rever­

sal should not, ho.....ever. become a matter of confusion: the

smaller the neighbourhood has bec9me •. the more it has IIconverged".

and so the better defined the element has become.. In the approx­

imation relation the "poorer" elements are placed bela..... the

"better"ith the total up at the top. This will become clearer

in discussing "infinite" elements.

Example 1.3 will be generalized in Exercise 1.1. Let us

here generalize first 1.4. We let

a = I- •

where :r" {O.1} and I· means the set of all finite sequences of

O's and l' s i th A being the empty sequence. We write a 't for

the concatenation or juztapoeition of twe sequences a."'t e I· .

Define

B = {a I· Ia e I· }. where

a X' la ,I' EO Xl

for an arbitrary set Xk; I·. In otherords, a ne i ghbourhood in

B consists of all ezteneione of a given sequence a. (Refer

back to the finite version of 1.4.) We use the letter "6" to

remind us of "binary". and this is an examplee shall refer to

many times. The proof (if it is not obvious) that 6 is a

neighbourhood system should be done as an exercise.

What do we find in I BI? Of course .1 = {ale I B I.. For any

x e I B I and a e I* de £ine

a x .. {Y Ia X£" Y some XEX}.

9

Again there is an exercise here to show axEIBI. In particular

0.1 E 181 for all aE~". and these are just the finite elements.

The minimal element of 0.1 is 0.6.. Note that 0o.1S 01.1 if and

only if "0 is an initial segment of the sequence ° 1 "

If now xE lSI is any explicitly given element (that is,

if we know for any XE 8 whether or not XEx). we have but tD

work out from these definitions that

x = 0 0n.1.
n=O

where the an E:t· and each on is an initial segment of the next

"n+l0 In general, in any domain, an element is uniquely

determined by its finite approximations, and we are just making
this explicit in I BI. When we have complete knowledge of X,

then there are two cases: either the approximations 0n.1 become

constant from some point on (where n;;' nO)' or not. In the first
case x is finite and equal to 0nO J.; in the second case x is
infinite and the 0nfill out an infinite (one-way) sequence.

The generalization of 1.5 to the infinite case where

.6.= N =. {0.1.2,3, ... , n, ••• }

can be made in more than one way: for instance either we use
as neighbourhoods all non-empty subsets of 4 or just those
omitting but a finite number of integers. And, as will become

apparent, there are other choices giving domains of quite
different characters. 0

Many constructions (choices of V) lead to the II same 'l

domain; "sameness" is an important notion and it is to be
defined in terms of "isomorphism", which in turn is to be
defined in terms of approximation preserving correspondences.

DEFINITION 1.9. Two neighbourhood systems Vo and V1 determine
isomorphic dorrrzins iff there is a one-one correspondence between

I "01 and IV 1 1 which preserves inclusion between the elements of
the domains. In symbols we write Vo !!! V1" 0

10

It is certain that the property of 1.9 is necessary. but

it may not be so clear that it is sufficient. We sQ.all in fact

prove in the next lecture that an isomorphism be tween domains

always maps finite elements to finite elements, so it always
resul ts from a one-one inclusion-preserving correspondence

between neighbourhoods. This is surely 39 strong as could be

hoped. This general result is not needed to see that particular

domains are isomorphic.

In some of the examples tokens corresponded to total
elements and in some to partial elements; it is not difficult

to see (ex post facto) that every domain can be presented with

tokens exactly corresponding to partial elements.

THEOREM 1.10. Given any neighbollrhoo3 system V", define for
X E V

[Xl < (x E IVI I XE x).

The subsets [Xl £.IVI for XE'O form a neighbourhood system over

IVI which determines a domain isomorphic to IVI.

~oof: We note first that
(1) (l1]. I V I .

Next note that

(2) X, Yare consistent in '0 iff {Xl n {Yl .. '1>

and that for X, YE V

(3) (X]n[Y]=[Xny] ifXnYEV.

Inasmuch as

(4) tXE[XlforallXEV,

it easily follows that '0 and the family

{[X1IXEV}

are in a one-one, inclusion-preserving correspondence. T:has,

we can induce the desired one-one correspondence between the

elements of the two systems. 0

11

The import of 1.10 is that the original tokens in A can

be replaced by the elements of 1'01. This process replaces the
neighbourhood X :5 A by the subset [Xl £ 1'01. As the passage

is inclusion preserving. the domain has not really changed, Dnly

its presentation. Though of some theoretical charm, the

theorem is not of much use since we still have to get V from

somewhere. It does emphasize. though, that the r8le of thE

tokens is simply to keep the inclusions (and intersections) of
neighbourhoods sorted out. It is not always true that the

tokens can be identified with the total elements.

The last theorem in this lecture is a result on e~08Ul'e

properties of a domain with respect to set-theoretical opera­
tions which have interesting meanings wi th respect to approxi­

mation.

THEOREM 1.11. If V is a neighbourhood system and XnE IV! for

n'" 0,1,2, •.• , then
~

(i) nXn EIVI; and
n-O

(ii) EIVI, providedOx
n"'O n

X S Xl =x2 =: ••• !i x E x +1 £ '" •o n n

Proof: The conditions of 1.6 have to be checked. For

the case of intersection, all of 1.6(i) - (iii) are quite obvious.

For the case of union, only 1.6(ii) gives pause and it requires

the proviso. I f X and Y belong to the union, then XE x ' say,n
and YEx • But, either n<rn or m<n, and if k=max (n,m), then m
X, Y E x . Since x k E lVI, we have X n Y EX k ; thus, X n Y belongsk
to the union. This proves (ii). 0

In words, the intersection is the best element that is at

the same time an approximation to all of the elements x ; the
n

intersection is exactly what is common to all the given ele­

ments. The union on the other hand is just what the (increas­

12

ing sequence of the) x approximates; the union combinesn
contributions from all the x n into a "better" element -­

but no more than that.

In thinking about domains a rough diagram. of the partial­

ordering relation S between elements is often helpfuL The

picture of 1.4 is an example where the nodes represent the
elements. Any finite tree growing up from a root node would

also be an example. Indeed. any finite partially ordered set

with least element would be an example. (Here no distinction

between tokens and elements is necessary.) A lattice diagram

is also illustrated.

.l..I.
A TREE A LATTICE

.l.

A ROUGH PICTURE

The root node is the element 1. of 1'0 I; there need be no top

node T. Appro:rimation is represented by a passage from a lower

node to a higher node along the rising lines. The system V of

neighbourhoods is the collection of sets each of which is all

13

the nodes above a given node. For infinite examples, however,

care must be given to introduce limit nodes. The first few

exercises should he provided with pictures to illustrate the
structure.

EXERCISES

EXERCISE 1.12. Let /1=:IN .. {O,1,2, ••• ,n •••• }be the set of non­

negative integers. Use as neighbourhoods final segments;

{mEJN Im>nl

for nE:N. Veri£y that this is a neighbourhood system. What

are the total elements? What are the finite elements? Dra'Ji

a picture of the apprOXimation relation in this domain.

(Hint: there is only one limit element.)

EXERCISE 1.13. Verify all the assertions made about the
system 8 defined as the infinite generalization of Example 1.4.
Draw a picture similar to that given in the text which includes

nodes for all oE I:.. Show the neighbourhoods, how the approx­

imation relation behaves, and where the total elements lie.

(The picture is closely related to the "binary tree", but has

to have limit nodes all along the top.)

EXERCISE 1.14. Let /1 "'}l and let V be the family of finite non­

empty subsets of .li plus the set /1. Show that this is a neigh­

bourhood system. What are the total elements? What are the

fini te elements? Draw a picture.

EXERCISE 1.15. Construct non-isomorphic infinite domains where

all elements are finite but where there are no infinite chains

<x > ~=O of elements with x =x + l but x ¢x + l for all n.n n n n n

14

EXERCISE 1.16. Let.6. '" JJ and let V be the family of cOfinite

subsets of :N. Show that IV I is isomorphic to the partially

ordered set of aU subsets of :N under inclusion • Construct

some other neighbourhood systems where V is closed under finite
intersection. What happens to the total elements in such systems?

EXERCISE 1.17. Let.6.=:m. be the real line. Let V be the set of

non-empty open intervals with rational end points plus the set .6.

Show that this is a neighbourhood system. For any real t e lR, show

that

{ X E V I tE Xl

is a filter. Is it always total? What are the total elements

of IVI? (Hint: When t is rational consider all intervals with

t as a right-hand end point.)

EXERCISE 1.18. Let V be a neighbourhood system. Call a subset

C ~V consist~nt iff every finite subset of C is consistent in:V.

Give an example where C is a subset with more than two elements.

every pair of neighbourhoods in C is consistent. but C is not

consistent. Show that if C is consistent, then there is a

l.~a6t fil ter x E J V I with Cs x. Show generally tha t the inter­

section of any non-empty collectio:1 of filters is again a fil ter.

EXERCISE 1.19. Define a positive neighbozaohood system to be a

family D where (ii) of 1.1 is replaced ~y

(ii ') whenever X.YEV. then XnY-:lCfl iff .XnYEV.

Prove that a positive neighbourhood system is indeed a neighbour­

hood system in the sense of the earlier definition. Give an

example of a neighbourhood system that is not positive. (Hint:

(suggested by C.A.R. Hoare). Let.6. '" :N xlJ. in the plane. Let

V be the family of subsets XS lJ x :N where all but a finite

number of places the vertical. sections of X are the whole of lJ

but at the other places the sections are finite and nonempty.

Smaller examples are of course possible.)

15

EXERCISE 1.20. Let V be any neighbourhood system over a set A.

Let .6.' :: V and define

v ' • I +X I XED}

where

+X· {YED IYsX}.

Show that V' is a positive neighbourhood system and that 1'01 and

IV'I are isomorphic. Note that for V' finite elements and tokens

are- in a one-one correspondence.

EXERCISE 1.2·1. Work out in greater detail the proof of 1.10.

Remark that the neighbourhood system over 1'01 so constructed is
positive, thereby obtaining in a different way the same kind of
conclusion as in 1.20. Show also that the system over 1'01 is

complete in the sense that every £i1 ter is fixed by a u.nique

member of the underlying set. (A filter is fixed by a point iff it

is the filter of all neighbourhoods containing that point.)
Remark that a complete system is one where tokens and (partial)

elements can always be identified (under a suitable one-one

correspondence). Show also that consistency of a set {Xi[i<n}

of neighbourhoods in V is equivalent to saying

n[X.J*9>
i<n 1

EXERCISE 1.22. (For topologists). Show that the neighbourhoods

(Xl for Xe V make IVI into a topological space where the open

subsets U £IVI can be characterized by the following two conditions:

(i) wheneverxEUandxsyEIVI,thenyEUj and

(ii) whenever x E U, then +X E U for some XEX.

Prove also that the inclusion relation on IV! can be defined

topologically as:

(iii) x5;Y iff for all open U 5; lVI, if xE U then yEU.

16

Is IVI ever a Hausdorff space? Show that if {Xn);;':::Q is a

sequence of elements of IVI with x SX +1 for all n, then n n

~

U xn
n- 0

is, not only in IVI but is a topological limit point of the

sequence. Show that any element x is a limit point of the set

{tX1XEx}. Are there other limit points?

EXERCISE 1.23. Suppose that the neighbourhood system V is

coun table, say,

v ~ {XO' X" X,2' •••• X , ••• }an

Suppose further that the property of consistency of finite

sequences of neighbourhoods is decidable (or lI e ffectively

known"). Then the following sequence is well defined:

Yo- Xo
• X if this set is consistent withYn+1 n +1,

••• , YYO' Yl' n

• y if not •n •

Show that {yo' Y" •• " Y , ••• } is a total element of IVI. n
(Hint: Show first that YO' Y1' ••• , Yn-1 is consistent for all n.)
In such a system show that all filters can be determined by

sequences.

EXERCISE 1.24. (For set theorists). Prove, using the Axiom

of Choice, or some equivalent principle, that in every domain

a partial element can always be extended to a total element.

Is this assertion equivalent to the Axiom of Choice? (Hint:

Remember to prove that the union of every (transfinite) chain

of filters is again a filter.)

17

EXERCISE 1.25. (For set theorists). Let Ii. be any well-ordered
Sset (ordinal). (Even small ordinals like w.3 or w are inter­

esting.) Let V be the family of non-empty finat segments of .6."

What is IVI? Are all elements finite? Is every approximation
to a finite element finite?

EXERCISE 1.26. (For algebraists). Let A be a commutative
ring with unit. Let a be the set of finite subsets F SA. Define

reF) '" {G e!J..1 FS the ideal generated by G}.

Prove that the sets of the form reF) form a neighbourhood system,

and that the corresponding domain is isomorphic to the set of

ring-theoretic ideals of A partially ordered by inclusion. What

would happen if we excluded from.6. all F with I(F):::: I({1}), where

1 is the unit of A?

EXERCISE 1.27. Further closure properties of domains can be

proved for bounded sets. We say Xs IVI is bounded iff for

some y E IV I we h ave x£: y for all x EX. This Y is called an

upper bound. We let

UX' nlyEIVilx:y all xE U.

Prove that if X is bounded, then Ux is the teast upper bound

for X in IV I. Prove al so: if U, VE V are neighbourhoods, then

{U ,V} is consistent in V iff {tU ,tV} is bounded in IVI. (That

is, boundedness is for elements what consistency is for neigh­

bourhoods.) Prove finally with the aid of 1.18 that XEIVI is

bounded iff every finite subset of X is bounded.

19

LECTURE II

MAPPINGS BETWEEN DOMAINS

The elem~nts of a domain are regarded as being specified

by approximations: the neighbourhoods. With the idea of

approximation as the dominant notion, therefore, it is natural
to look for a concept of mapping (transformation of domains)

that in some suitable senSe preserves the spirit of the approx­

imations. In a 'theory of computability) where the (finite)

approximations to the elements are all we can ever know at one

time, the only mappings that can be computed are those that
proceed by approximation. somehow passing from the neighbour­

hoods of one domain over to the neighbourhoods of the other.

Suppose X E V 0 is given - it is an approximation to certain

elements of I Vol.. (More precisely tX is the approximation in

the domain, but it is easier to speak of the neighbourhood X.)

What can be said about the approximations of the images of

these elements under the mapping we will call f1 If X is not

a very sharp approximation, then not very much can be said

about the image in the other domain 1 V1 1. Trivially, of

course, we can say that A is an approximation - because it
1

approximates everything in its domain. Suppose, however, that

we could say more. Suppose we could say that both Y and Y'

approximate the image of X. If the mapping f is coherent,

then it is reasonable to suppose that such a statement would

imply that Y and y' are consistent in V But if this is so,
1

.

then since the two neighbourhoods are meant to cluster around

the same images, we can feel some confidence in saying that

y n Y' approximates these images., In other words to specify f

we do not supply a unique image of X, but we say which of the

Y E V approximate the (ideal) image. To make this idea work ao
m:motonicity condition is also needed since we are trying to

express the idea that "if we give at least X as an approximate

input to £, then we can expect at least Y as output." Thus,

20

a mapping is taken as a kind of relation beh'een neighbourhoods.

DEFINITION 2.1. An approorinr:zble mapping f: '0 0 -+ '0 between domains
1

is a binary relation fs.V OX '0 between neighbourhoods such that1

(il t> Oft>1

(ii) X f Y and X f y' always imply X f (Y n Y ')

(iii) XfY~ X'S;X, and Y5Y' always imply X'fY'. 0

Condition (i) we have already discussed; in a sense it

means "ask me no questions and I shall tell you no lies."

In other words "zero input can expect at least zero output. II

The other conditions are compatible with having

f:{< X ,t>1>IXEP };
O

that is, f might be the least informative relation and nothing
more. But if it is more, then (ii) is, as we explained, ::I

consistency condition. To explain monotonicity in (iii),

suppose a mapping relationship is already known, X f YJ say.

If we improve the accuracy of X to X' £. X and if we degrade the

accuracy of Y to y'? Y, then we can still assert X IfY' since this

relationship is laBB infonmtiva than the former relationship,

which was already known. Thus, we see that conditions (i) ­

(iii) are all reasonably argued as necessary.

One indication that the conditions of 2.1 are sufficient

for a definition is that they are exactly what we need to show

that f as a neighbourhood relation determines an equivalent

elementllise mapping from 1001 into 1'01 1. (Owing to the

equivalence, we use the same symbol f for both.)

PROPOSITION 2.2. Given neighbourhood systems '0 and '0 ' an0 1
approximable mapping f: '0 -+ '0 always determines a function

0 1
f: I '0 0 1-+ I '0 I between domains by virtue of the formula:1

(i) f(x) = {YEP, I 3XEx. XfYl

for all x E I Vol. Conversely, this function uniquely determines

21

the original re 1 ation by the equivalence:

(ii) X fy iff ye f (tX)

for all XEVO and YE'Oto Approximable functions are always

monotone in the following sense:

(iii) x.s y always implies f(x) s; f (y).

for x t YE I'0 0 I; moreover two approximable functions f : PO'" V1

and g : DO ... D1 aTe identical as relations iff

(iv) f(x) - g(x), for all x E IVOI.

Proof: The argument that fomula (i) always gives us

f (x) E 11'1 I when x E 1'00 1 can be safely left to the reader.

Note, however, that all the conditions of 2.1 are required tc

show this. As for (ii). the implication from left to right
follows directly from. (i) because xe + X. In the other

direction yef(+X) means that ZfY holds fot some ZE+X.

But from X.s. Z it follows that X fY, as we wished.

To prove monotonici ty. assume x ~ y. Now XE X and X f Y

always imply XE y and X fY. This means YE f(x) always implies
yef(y); that is, f(x),;;f(y).

Finally, to check that (iv) means f· g as relations, all

that has to be remarked that this follows from formulae (i)

and (ii). 0

Note that the right-hand side of (ii) can be written:

tY,;;f(tX),

which can be read as saying that the partial element determined

by the neighbourhood Y approximates the function value at the

element determined by X. This precise relationship of course

fits the informal discussion of mapping given earlier. Indeed

whenever xE [Xl and XfY hold, then f(x)E[Y] always follows.

which is another way to construe the mapping character of f.

Some examples of mappings are now called for.

22

EXAMPLE 2.3. Let r be the neighbourhood system of the two-token

domain of Example 1.2. To avoid confusion with some other

domains, we will call the two total elements of 1rl respectively

true and false. There is only one other finite element here. namely

.1 = undefined. We often use these elements as indicators of

results: true indicates a positive outcome; false, a negative
outcome; and .1 indicates that there is not enough information

to decide the outcome totally.

Let 8 be the system for the binary tree as in the last

chapter. What we wish to define is an approximable mapping
f: B ... r. The intui tive idea of the mapping we have in mind is

that the binary sequence is being read from left to right, and

we are counting the number of 0 I 5 seen before the first 1 is en­

countered. We then test the parity of this count; if it is

p.ven, the output is truej if not, false. Using a suggestive

informal notation with three dots, some resul ts of the function

that does the counting and testing can be written as:

f (000010'···J • true
f (1101110 .. ·J • true

f (011101' .. ·) = false

f (0000000···)' .L.

The last equation is necessary, because 0000000 as a partial

element cannot be counted as either even or odd since it can

have inconsistent extensions:

OOOOOOO.Ls OOOOOOO'.L

0000000 .L S 0000000000' .L •

So, as far as f is concerned, a plain string of a's is

indefinite. The same answer holds if the a's go on infinitely.

To be more precise we want

f (On,.L J	 true if n is evenj

fa 1se if n is odd.

As a binary	 relation f S. B x T we will have

X f Y iff YE.1 or	 X.= On 1 ..6. for some n E :N and ei ther n is

even and YE true or n is odd and Ye false.

It should be checked that 2.I(i)-(ii) are satisfied. 0

23

EXAMPLE 2.4. Let us briefly describe an approximable mapping

g: B+ B. Informally, g: can be said to "read a sequence from

left to right and eliminate the first consecutive run of 1'5

while copying all the other digits as read. 1I We will have

g (On,k 0 x) "" On+,x

provided k > o. (Here ,)(; means a string of 1'5 of length]<.)

However, if 1<» is the infinite sequences of 1 15, then

g (1~) : J.. and

g(On1~)·On.

This example is instructive, since it shows that a non-trivial

mapping can transform a total element into a partial element. D

Aside from our being able to define particular functions

outright, we can combine functions in many different ways; the

idea of composition is probably the most basic scheme of combina­

tion, and there is a technical name for a family of structures

with mappings that can be so combined.

THEOREM 2.5. The class of neighbourhood systems and approximable

mappings form a catego't'Y, where the identi'ty mzppin.g IV : V..,. V

relates X, YE V as follows:

(i) X IV Y iff XS;Y.

If f: VO"" V, and g: V,"" V2 are given, then the composition

g of:V ""V'2. relates XEV and ZEV as follows:
o O 2

(ii) X g • f Z iff 3 YE Vl' X f Y and Y g Z.

Proof: (We may use MacLane [197~] as the st'andard reference

on category theory, but we require hardly more than the basic

definitions at this stage.) To check that we have a category,

we need to know that the identity and composition maps really are

maps in the category and that certain identity and associative

laws hold. Now it is obvious that IV satisfies 2.' (i)-(iii).

Moreover if f: Vo ..,. ° all we have to prove is:1 ,

24

for = [of·!
V V1o

Checking one of these equations is enough. Thus~ for XE'PO

and Z EO, we find

Xfol Z iff 3YEV ' XS;Y and YfZ
V Oo

iff XfZ,

So, f and f. IV are the same mapping.
o

Suppose now that f: '0 0 -+ 0, and g : 0, -+ ° 2 " We have to

verify that g .. f is an approximable mapping. First off, there

is no trouble in seeing that ./log" £ Ii. 2 holds. Next, suppose

that XgorZ and Xgo fZr hold. Then we have XfY and YgZ

for some choice of YEO" Also XfY' and Y'g Z' hold for some

choice of yIED,' By 2.1 (ii) it follows that X f (YOy').

Since YnY '!:Y, we conclude (Y n y"& Z by 2.1 (iii) j similarly

(VnY')gz/. Invoking 2.1 (ii) again, we obtain (YOY')g(Znz'),

and Xgof(ZnZ') is proved.

Suppose finally that X' s: X go f Z s;: Z' • Now X f Y and Y g Z

for some YEV,. But· then X'fY holds; for a similar reason
Y g Z' holds also. Therefore, X'got Z' is established, which

means that we have checked 2.1 (iii) for g D f and have completed
the proof that g" f: VO V •1

The verification of associativity is a purely logical
deduction. Thus suppose that in addition to £ and g we have

h : V 0)" If XE V and WE 03 we find
2 o

Xh (g 0 f) W iff 3 Z E 1!:l' X g f Z and Z h W 0	

iff 3 Z E 02 3 YE

0

° X f Y and Y. g Z and Z h W
iff 3 Y E V, 3 Z E V

1

2

,

• X f Y and Y g Z and Z h W

iff 3YEV XfY and Y(hog) W
1

,

iff X (h 0 g) f W, 0

So, as relations, h" (g" f) '" (h D g)" f. 0

It may seem as though we have, in the definition of composi­

tion, written things backwards. But the reason is that when
mappings are taken as elementwise functions, then the order is
preserved in expressions involving the usual function value notation.

We have, for example:

25

PROPOSITION 2.6. Given f: '0 0 +'0 and g: '0 +'02 ' the following1 1
equations hold:

(i)	 IV (x) :: x, and

0

(ii) (g • f) (x) " g(f (x) l.

for all	 xE 1'001. 0

The proof is not troublesome and is left as an exercise.
In technical language the result shows that the category defined
in Theorem 2.5 is equivalent to a "concrete category" of sets

and functions, namely the domains and elementwise transformations

of 2.2.

Toward the end of the last lecture (see 1.9) we promised to
show that isomorphisms of domains always come from approximable

mappings, and this we now do. It means that the category contains

all the isomorphisms it should have.

THEOREM 2.7. Every isomorphism between domains results from an
approximable mapping between the neighbourhood systems. More­

over, finite elements are always transformed into finite elements.

Proof: Suppose that f: 1'0 0 1"'" 1'01 ' is a one-one, inclusion­

preserving function defined On elements, where the range of the

func tion is the whole of 1'01 I. of course. Taking the hint from

2.2, there is only one way we could define a neighbourhood

mapping j namely, we cons ider the Tela tion YE f (t X) for XE Vo
and YE '0 What has to be shown is that this is an approximable

1
,

mapping	 which determines the original function via the formula

2.2 (i).

The first part is easy; indeed, there is a general result

that monotone functions on finite elements of one domain to

arbitrary elements of another domain always determine appr1>xi­

mabIe mappings (c£. Exercise 2.8). What remains, then, is to

show that the relation re-defines the function. This comes down

to showing that for xE 1'0 10

f(x) O(YEV

1
I 3XEx. YEfCH)).

26

Consider the right-hand side of this equation: it is a filter.

(This either can be proved directly or Exercise 2.11 can be
used.) Because f is an onto-function, we can cal1 the right­

hand side f (x') for some x'EIVal. But since XE x implies

+ X~ x and f(t X) ~ f (x), the right-hand ?ide is included in

the left-hand side. In other words f(x') Sf(x). But, since

f is an isomorphism x 's x follows.

In the other direction. if Xe x, then f(t X) s f(x') holds

bi·definition. so +Xs-x'. This implies XEx' ; and, as X is

arbitrary, xs-x follows. So x=x'. and f (x) '" £ex') as desired.

Finally. consider any finite element tXE 100' where XEV ' O
What we have to show is that f(tX) is finite in IV,I. Because
f is an isomorphism. we can associate uniquely to every Y E f(+X)

an element Yys+X in IVai where f(yy) =tY. (Just apply the

inverse of the function f.) Define

z = U{Y y lYE f (+Xl l.

Because Y' sY always implies yy' Syyand each YyE IVoi l it is

easy to show z is a filter and hence is in IVai also (cf.

Exercise 2.11). Because each YystX. then zstX. too. But each

Yy So z, so tY = f(yy) '£ f(z) and hence Y E f(z). As this holds for

all YEf(tX), the inclusion f(tX) Sf(z) follows~as well as

tXsz. Therefore, z=tX and so XEz. But then XEyy for some

YE f(tX), by definition of Z. Since tXSYy' we obtain f(tX) stY.

but of course the opposite inclusion is also true from the choice

of Y. This means that f(tX) = tY is finite in IV I as claimed.
1

We can apply the same argument to the inverse function; and,thus,

the finite elements of IVai and IV I are in a one-one inclusion­1
preserving correspondence under the isomorphism. 0

EXERCISES

EXERCISE 2.8. With reference to the proof of 2.2 show that an

approximable mapping is uniquely determined by its elementwise

effect on finite elements. Moreover any arbitrary monotone

function on finite elements of IVol with values in IV 1 1 comes

from an approximable f: 00"'01'

27

EXERCISE 2.9. Prove that if f: Va ... 0, is an approximable

mapping, then the element..... ise mapping f: IV I ... IV 1 satisfies o 1
the equa ticn

f(x)= U(f(tx) I XEx}

for all XE IVaI. Conversely. sho that every element ise function

satisfying this equation comes from an approximable mapping as

defined in 2.2.

EXERCISE 2.10. Carry out the proof of Proposition 2.6; and in

addition show that, if f,g: Va +V are two approximable mappings,
1

there exists h : V '" 01 such thatO

hex) • f(x) n g(x)

for all x E I Vol.

EXERCISE 2.11. Let (1 t <) be a non-empty abstract partially

ordered set; suppose it is diroec::ted in the sense that henever

i.jEI,then iCi:k and j<k for some kEI. Suppose that a: l"'IVI

is such that

i '" j implies 3 i sa j

foral1i J jEI. Prove that

U (ai liE Il

is always a filter in IV I. (Note the ways this lemma could be

used in the proof of 2.7; but be careful in defining the partially

ordered set and do not confuse sand 2.) In 'Words e could say

that the domain of filters is cl.osed undero directed unions. Prove also

that if f: V .. V' is an approximable mapping, then for any directed

union

f (U{ailiE Il)' U (f(ail liE Il;

tha t is, appro:r:inrlbLe rrnppings al.wys proeserve directed lOIions. If an

element..... ise function preserves directed unions. must it come from

an approximable mapping? (Hint: Invoke 2.9.)

28

EXERCISE 2.12. Suppose (I,<) is a directed, partially ordered

set and £1: Va -+ '0 1 is a family of approximable mappings indexed

by i E I, where we as sume

i" j implies £1 (x) s f j (x)

for all it j E I and all xE IVai. Prove that there is an approxi­

mable mapping g : Va -+ '0 1 where

g(x)" Ulfi(x)1 iE I}

for all XE IVaI.

EXERCISE 2.13. (For topologists.) Recall Exercise 1.22 where it

was shown that any domain 1'01 is a topological space. Prove from

Exercise 2.9 that the functions f: IVai -+ 1'01 1 determined by

approximable mappings are exactly the continuous functions between

these Bp:2Ces. (Hint: To prove continuity, remark that by 2.9

r 1 [Y]: U{[Xl I YE f(tX)};

hence. the inverse image of any open set is open. In the other
direction, suppose that f; 1'0 1-+ 1'0 1 is topologically continuous.

0 1
Argue that for all XE IVai and all open subsets Us 1'01 1 we have

f(x) EU iff 3 XE x. f(tX) E U.

This holds because an open subset of IVa I is always a union of

basic open subsets of the form (X'} for XEV and because
O

x ·UltX IXEx}

for all x E IVai.)

EXERCISE 2.14. Let f: 1'0 1-+ 1'0 1 be an isomorphism between0 1
domains. Let <p: Va -+ '0 be the one-one correspondence between1
neighbourhoods provided by Theorem 2.7 where

f(tX) = t ,,(X)

for all XEVO' Show that the approximable mapping determined

by f is just the relationship <p(X) S Y. In addition prove that

if X. :x' E Va are consistent, then

<p(XnX') • ,,(X) n" (X').

29

Remark that the isomorphisms between domains correspond exactly
to the isomorphisms between neighbourhood systems (in the sense
of one-one inclusion preserving correspondences).

EXERCISE 2.15. (For topologists). Consider the one-taken system

",i th

~= { {OJ, 91)

We can regard I~I as having just two finite elements .1 (bottom)

and T (top), where 1. s:: T. For any system '0. show that the open

subsets U of 1'01 are in a one-one correspondence with the approxi­

mable mappings f : '0 + a-', where the correspondence is given by the

equation

u- {xE IVI I f(x) :T).

Wha t are the open subsets of I0"1 ? of IT I? of 181?

EXERCISE 2.16. In the discussion of 8 in Chapter 1 we defiTled
a mapping x ~a x for any given aE t·o Is this (elementwise)

mapping approximable? Show in addition that the mapping

£ : B... T of 2.3 is uniquely determined among approximable

mappings by the equations:

f (1x) • true.
f (01x) • false, and

f (OOx) • f (x) •

EXERCISE 2.17. Establish in detail that the mapping g: B+B

of Exercise 2.4 is approximable. Is it uniquely determined by

these equations:

g(Ox) • Og(x).

g(11x) • g(1x),

g(10x) • Ox,

g(1) .~.

or are some missing?

30

EXERCISE 2.18. What is the meaning in words of the approximable

mapping r. : B + B, where

h(Ox) = OOh(x). and

h(1x) = 10h(x).

for all elements xE 161? Is h an isomorphism? Does there exist

a map k : B + B where

koh=I S '

and is k one-one?

EXERCISE 2.19. Generalize Definition 2.1 in an appropriate way

in order to define the concept of an appro:r:imabZ-e rrapping

f : Vox V,+ V2

of tlXl vrrriabZ-es. (Hint: f can be taken to be a certain kind of

ternary relation

fS;:V O x V, xV 2 •

where we can write
x, Y f Z

for the relationship among neighbourhoods.) What is the

corresponding version of Proposition 2.2 for functions of two

variables?

EXERCISE 2.20. Discuss again the example of Exercise 1.15

where the domain turns out to be the powerset (set of all sub­
sets) of :N. Show how the finite elements can be taken to be

the finite subsets of :N and can be identified with the tokens of

a sui table neighbourhood sys tern P. (Hint: Define t F for finite

sets F ~ ~ .) Show that both union and intersection (x U y and

x n y) are functions on IPl that are approximable in the sense of

Exercise 2.19. (The elements of IPI are being identified with

arbi trary sets xc:::N .) Show also the following transformations

approximable:

x • 1 {n + 1 1 n EX}, and

x - 1 {n 1n + 1 EX}.

31

EXERCISE 2.21. The system I:i at 2.3 has as its total elements

only the infinite sequences. Modify the construction of B to
another neighbourhood system C which has both the finite and

infinite sequences as total elements. (Hint: BSe.) Show that

there is an approximable map x y on elements naturally extending

ordinary juxtaposition of sequences. (Hint: Write 01001 for a

total finite sequence and 010011 for the corresponding finite

partial element. Remember to distinguish between A (the total

empty sequence) and.L (the undefined sequence). The definition

should work out 50 that if x is an infinite sequence (hence, total),

then xy"'x for all y. What will xy equal if x is not total?

In other words, the construction possesses a rather strong 1eft­

to-right bias.)

EXERCISE 2.22. (For set theorists). We have remarked in Exercise

1.18 and in Exercise 2.11 that any domain lVI, as a family of sets

(in factI a family of subsets of the set V itself). is closed under

the intersection of an arbitrary non-empty sub family and under

the union of any directed sub family. For those familiar with the

subject matter. the example of the (proper) ideals of a commutative

ring {with unit) is also seen to be such a family. What is the

abstract situation? Let e be any family of sets with these closure

properties. It is to be shOl....n that C is inclusion-isomorphic to

a domain. (Hint: Let 11 be the set of fini te sets included in sets

in C. For FE 11, define its "c1osure" by the equation:

"1"= n{XECIF~X).
Every FE C, and these will prove to be the "fini te" elements of C.

The neighbourhood system V over 11 can be taken tQ be the sets of

the form

C (F) • (G E '" I F "- 1;)

for Fe 11. Notice that for all X E C

X • U(I' I F £ X and F E l» .)

Check that approximable functions on these families are just those

preserving directed unions.

33

LECTURE II I

DOMAIN CONSTRUCTS

Having now seen a number of domains presented through

their neighbourhood systems, we need next to introduce general
constructs for forming new domains from old. There are an

unlimited number of such constructs (technically called func~or8),

but we have time only to single out a few of the more important

ones. Outstanding among all of them is the notion of product

of systems, which in our chosen category has all the expected

properties. For the time being in order to simplify notation

we assume of the underlying sets A and A1 of systems Va anda
V that they are disjoint. There is no loss of generality as

1
D can always be replaced by an isomorphic system disjoint from

1
DO in the required sense.

DEFINITION 3.1. Let neighbourhood systems 1'0 and 1'1 be
given over disjoint sets dO and d • The product system over1
dO U d is defined by:

1

Vo.V,' (XUYIXEV
O

andYEV,).

For elements xe IVai and ye IV l we also define:
1

<x:, y> = {X u YI X e x and Ye y}. 0

PROPOSITION 3.2. The con!;'truct 1'0 x 1'1 always gives a neigh­

bourhood system where for elements x.x' e IVai and y,y'-E IV ! we
1

have

(i1 <x,y> .b <x',y'> iff x::x'and YSY'.

Moreover, there is a one-One correspondence between the elements

of 11'0 XV1 , and pairs of elements of IVaI and '°11 since all

elements of IVa '01 1 are of the form <x,y>.l<

Proof: Owing to the disjointness of dO and d 1 , we note

that for X, x'e 1'0 and Y, Ye '0 we have1

Xu Ys: X' u y' iff XS;X' and YSY'.('l
Thus, {XuY, X'UY'} is consistent in VOxV1 iff {X, X'} is

34

consistent in V and {Y , y'} is consistent in V,_ In the con­o
sistent	 case we find

(2) (X U Y) n (X' U Y'J • (X n X') U (Y n y 'J,

and so Va x 0, is closed under consistent intersection. As

.10UA,EVO x 0" it is certainly a neighbourhood system.

It is easy to check by the previous calculations that

<x,y>e I VoxV,1 if XE IVai and ye IV,I. The proof of 3.2(i)
follows directly from the definition and (1).

Suppose	 z E IVa x 0,1. Define as a temporary notation:

10 = {XEVO I X U~1 E zl, and

',' lYE V, I !lOUYE,),

Clearly. both zOE IVai and z, E IV,I. In view of the formula

(3) (XU!l,ln(!lOUY)=XUY.

we can calculate that

z=<zo,z,>.

Moreover, if z'" <x,Y> thenf

< X I Y >0 = x and < x, y >1 = y.

The one-one correspondence required is thus established. 0

There is more going on in the proof of 3.2 than just a ane­
one correspondence between elements and pairs. The extra inform­

ation is best formalized by introducing a notation for mappings.

DEFINITION 3.3. Projection mappinga

PO: '0 0)('0 1 '0 0 and p1 : '0)('0 1 + '0 10

are defined as relations where

(XUY) Po X' iff X~X' ,and (XUY) P1 Y' iff y~y'

hold for all X, X'EV and YJ Y'EV," Given f: '02 -'00 andO
g ; '0 '" '0 ' the paired rrrzpping

2 1

< f ,g >: '0 + '0 0 x '0 1
2

is defined as a relation where

Z <f. g > (X U Y) iff Z f X and Z g Y

oholds for all XEVO' YEV" and ZEV 2 •

35

PROPOSITION 3.4.. The mappings PO' P1 and < f.g)o are approx­

imable mappings. provided f and g are, and we have:

(i) PO" < f. g > f and P1" < f) g> :: g.::I.

Moreover, for z E 1'00 x '0 1. we have:1

(ii) poC'): '0 and P, (,) = '"

in the notation of the proof of 3.2. Further if h : '0 Vox '02 1
is any approximable mapping, then

(iii} h '" <PO" h, P1" h>.

Moreover, for all wE 117 1, we have:2

(iv) <f,g> (101') = <few), g(101') >,

where again on the right-hand side the notation of the proof of
3.2 is used. 0

The proof o£ this result is left as an exercise. Note the

consequence that there is a one-one correspondence between pairs

of approximable mappings f : '0 Va and g : '0 2..... '01 and mappings2
h : '0 -+'£'0 x V " It is clear that we generalize all this to products2 1

Va x P1 x··, xVn_1

of several systems.

The product construct also neatly explains fllnctions of

several variables~ In Exercise 2.n9 we used the informal notation

f:VOxV1-t>V2

and suggested regarding f as a ternary relation

x, Y f Z •

But now wi th Vo x V given an independent meaning, all we have to1
do is to regard £ as a binary relation with

(X U Y) f Z

equivalent to the old relationship. We can also employ an element-

wise notation as in f «x, y » • which can more easily be written

f (x. y). Similar remarks apply to functions of more than two

arguments.

36

We have discussed several times what it means for a

function f (x) to come from an approximable mapping. It is

interesting to asl the analogous question for functions of

several arguments.

THEOREM 3.5. An elementwise function

f: IVO XV,I ~ IV 21

~f two arguments comes from an approximable mapping iff for each

fixed aE IVa' and each fixed bE IV,' the transformations

x f (x. b) and y f (a, y)

come fTom approximable mappings of one argument.

Proof: As this is the first time we have had to deal with

constants in functions, a lemma is useful.

LEMMA 3.6. Given be I'D, 1) the constant function

b: IVol ~ IV,I

where b (x) = b for all x E IVa I, comes from the approximable

mapping such that

X bY, iff Ye b,

for all XE Va and ye '0," 0

There is no real confusion here in using lib" both for function

and value. Returning. then, to the proof of 3.5) we see that

the reason that x 1-+ f (x, b) comes from an approximable mapping

is that the mapping in question is the composition of two approx­

imable mappings) namely f <IV ,b >. Clearly we can interchange0

the r81es of Vo and V, to get Rt y 1-+ f (a, y J.

Conversely) assume that both these functions come from

approximable mappings no matter the choice of a and b. Clearly

the mapping to determine f is the relation from XU Y to 1. where

Z E f (IX, + Y) : f (+ (X UY)) •

To prove that this determines f we calculate by the formula of

Exercise 2.9:

37

f (x. y) • U If (t X, y) I x e x}

• UIUlf(tX,tY) \yey) I xex}

· U(f (t X , t Y) I x e x and Ye y }

· UIf (t (X u Y)) I (X u Y) e <x.y > } •

And, again by 2.9, this is what was needed. 0

Said more informally, a function of several arguments is

approximable in all the variables joi:flttll if it is approximable

in each of the variables separately.

The type of argument used in 3.5 in the first half of the

proof also provides a generalization of 2.6 to functions of
several arguments. When we form a function like

f(g(x,z ••••), h(y,x,. ••), k(z,w •.•. }. •••)

from given functions f,g,h,'k, ••• ; we call the process eubetitution.

P~OPOSITIOH 3.7. The functions of several arguments between
domains coming from approximable mappings are closed under
substitution.

Proof: An example will establish the method. Suppose there

are four variables involved taking values in domains provided by

systems Va • V1 • '0 2 • V3 • We might have a substitution like:

f (g (x O' xl)' h (Xl • x 2), ~ (x 3' x 0 • x 2)) .

Here it might be that the values of the functions inside co~e

from quite other systems; for instance.

k : V3 x V x V2 " V4o

might be possible. By using projections

Pi: 'OOx 01 x V2)('0 3 ~Op

where i < 4. we can assure that we have several functions all On

the same product; thus.

k • <P3 • PO ' P2> : V x V1)('0 2)(V3 ... V4·o

Now no matter on what domains f is defined, the following COm­

position makes sense:

38

f o<g 0 <Po' P, >,h 0 <P1' P2>' k <l <P3' PO' P2» ;
and in fact this is the desired function. Writing it this way

makes it clear that the function comes from an approximable
mapping: we apply 3.3 (generalized, of course, to products with

several terms) to construe the parts beh·een brackets < and>

as approximable mappings, and then by this trick the composition

is the ordinary composition of 2.6. 0

I t has to be admitted that there is a slight point overlooked

in forming products like v)(V wi th two identical domains. This
is discussed in Exercise 3.14, invoking explicit isomorphisms.

The construct that makes the whole theory of domains work so

smoothly is the function - space construct: it is possible to

regard functions as obJoects which form a domain. Look back at

Definition 2.1 and compare it wi th the original de fini tion of

element in i.6. There are obvious formal similarities. except

that filters are sets of neighbourhoods and mappings are sets of

pairs of neighbourhoods (relations). But as we saw in 1.10

it is possible to turn the filters into tokens via a simple

defini tion of neighbourhood. Ne apply the sa.me kind of defini­

tion to the mappings.

DEFINITION 3.8. Given neighbourhood systems Va and V • the
1

function space (Va .. () is the system whose set of tokens is the1
set of approxim'lble mappings of Definition 2.1 and whose neigh­

bourhoods are finite non-empty intersections of set.s of the form

[x, Y1= (f : V0 ~ V1 I x f Y),

where XE Va and ¥e (/1' 0

We have been calling our mappings "approximable" for a long

time now without saying exactly how they can be approximated:

Definition 3.8 supplies the missing key. because once a domain

has been defined. then the general theory gives an explicit

meaning to the word approximation. We still have t.o verify.

however, that the mappings do correspond to the elements of the

domain.

39

PROPOSITION 3.9. Let neighbourhoods Xi E Va and Yi E 01 be given

for i<n. Then the set of [Xi,Y] for i<o is consistent ini
(00 ... V,) iff the £ol1owing condition holds:

(i) whenever I=-{O,', ... ,n-1} and {Xi I ie I} is consistent

in Va' then {Yi liE I) must be consistent in 0"

Moreover, when consistency holds, the least approximable mapping

fa belonging to t.he intersection of the [Xi' Y i] is defined by:

(ii) XfaY iff XSXi)sYnfYi I

for XEV O and ye 0,.

Proof: Suppose the [Xi,Yil are consistent in (Va ... 0,).

Since the function space is being defined outright as a positive
system, consistency means

fEn {[X. ,Y. J I i < n }
1 1

for some f: °0 '" °1 , Now, with f in hand, let us check condition

(i). Suppose {Xi I ieI} is consistent. This means

X E n {[Xi J liE I}

for some XE IVOI. Suppose iEI, so XE[XiJ Since XifYi
holds) f(x}E [Y]. This means, therefore, thati

f(X)En{[YiJ liE!},

and so {Y I iEI} is consistent.
i

For the converse) suppose (i) is the caSe. We take (ii) as

the definition of a mapping and remark that for an arbitrary

XE Va' the set {Xi I Xs: Xi} is automatically consistent in VO'

By our assumption) the set {Vi 1Xs:Xi} is therefore consistent.

This means that

n{Y i I X s: Yi) e V1 •

(Keep in mind that i is restricted to those i < n) and there are

only finitely many neighbourhoods being considered here.) It

is thus almost immediate that the relation fa defined by (ii)

satisfies conditions of 2.1 and so is an approximable mapping

fa ; Va ... V1 • By construction

Xi faY i

40

holds trivially for all i (n; therefore,

fOE n{[Xi'YiJ Ii <n)

and the desired consistency is established.

Finally suppose that f is any mapping in the neighbourhood
under discussion; this means Xi f Yi holds for all i (n. Suppose

X fa Y holds. We have for X£:Xi,X fY i ; 50

Xf n{y. I XeX.) cL
1 - 1 ­

Thus, X f Y follows; hence, 35 relations. fa s: f. In other words

fa is the minimal element of the neighbourhood. o

We note that. as a consequence of what we have just proved,

~hen the neighbourhood is consistent, then

n ([Xi' Yi J I i < n) !; [X. YJ

is exactly equivalent to

n{Y i I X s: Xi} s: Y •

Note also that a single neighbourhood [XO,Y O] is al~ays consist­
ent since it contains the aonatant mapping k 'Where

XkY iff YOS: Y,

for all XE Va and YE '0 1 ' Some other simple observations about
these neighbourhoods are just translations of the conditions of

Definition 2.1:

[~o ' ~1 J • I V0 ~ Vl' ;

[X, Yl n [X. Y' l • [X, Y nY'] i and

X' s:X and Ys: Y' imply (X,Y] So (X', Y'] ..

for all X, X' E Va and Y. Y' E '0 ' We are now ready to prove
1

the main result about the construct.

THEOREM 3.10. Given neighbourhood systems '0 0 and '0 ' the function1
space system (Va ~ '0) is complete in the sense that every filter

1
in 1'00 ~ '0 1 1 is fixed by a unique approximable mapping.

Proof: Let f: Va ~ '0 be an approximable mapping. By the
1

very definition of ('0 ~ '0) it determines a filter by the definition:
0 1

41

f.{FE(VO~V,) I fEF).

Trivially [X,Yl E f iff fe [X,Y] iff X iY; so this filter

uniquely determines the relation f. ~~at we have to show is
that every filter in IVa .. v, I is of this form.

Suppose (pE I V o .. 01[is any filter. A relation can be de­

fined at once by

X .. Y iff [X,Yl E",.

In view of the remarks we made just before stating this theorem,

there is no problem in showing that ~ is an approximable mapping.

Since the neighbourhoods of the function space are in any case
finite intersect.ions of sets like (X,Yl. those [X,n Eql generate

(p. This means that ~ ""(p. By definition f '" f, so there is a one-

one correspondence between mappings and £i1 ters. (This corres­

pondence is obviously inclusion preserving, too.) D

We now know j US! about everything about IVa" V,I as a

domain: the elements correspond isomorphically to the approximable

mappings; the finite elements are explained completely by 3.9i and

we have seen how to calculate with neighbourhoods. The final

step is to relate the function space to other domains by appro­

priate mappings. In doing this we shall freely construe elements

of IVa" V,l as approximable mappings in view of 3.' a.

THEOREM 3.". Given neighbourhood systems V, and P2 , there is a

uniquely determined approximable mapping

eval: (V, .. P
2

) xV," V2 '

where for all f: V, V and all xE IV,' we have
2

(i) eval (f. x) • f (x).

Proof: For FE (P, P) and XE P, and YE V define eval2 2
as a relation by:

F u X eva 1 Y iff X f Y for all f E F.

42

Remember that neighbourhoods in the function space are sets of
approximable mappings. It is easily checked that this defini­

tion makes eval approximable. We now calculate the function
values by the formula of 2.2 (i):

ev.l (f, x) = (YEV 2 I 3FE(V, ~V2)3XEx.fEFand FUXevalY

Because, again by 2.2 (1) t we have

f (x) (YEV 13XEx. XfYl,2

we can see from the definition of eval that eva] (f, x)~f (x).

Suppose that Y E f{x). Then X f Y holds for some X E x. We can

write fe [X. y] E ('D, ~ 02) and it is clear that

[X, Yl uX eval Y

holds by definition. Therefore, Ye eval (f,x). and so

f(x) S eva' (f,x). 0

This theorem is essential for our programme; it shows that in

taking functions as objects the very basic operation of forming
the function value is an approximable mapping. In other words

we can treat the expression f(x) not just as a function of x.

as we have done from the start, but also as a function of f as

well. The result also indicates that there are useful maps

defined on domains that themselves are function spaces; we shall

meet many more of these. The next theorem prOVides further

examples.

THEOREM 3.'2. Given neighbourhood systems Va 'V 1 ,V2 there is

associated with every approximable mapping g : Vo x V, ~ V2 a

uniquely determined approximable mapping

curry (g) : Va ~ (V, ~ V2)

such that for xE 1°01 and yEIV,1

(i) curry (g)(x)(y) = g(x,y).

Moreover we have these functional equations:

(ii) eval 0 (curry (g) 0 PO' P1) '" g, and

(iii) curry (evat (h 0 PO' p,») '" h.0

43

where the Pi; Va x '0 1 ... Vi are the projection mappings and

h: '0 ... ('0 .. 02) is any approximable mapping. This provides0 1
an isomorphism between the domains IV x V1 -+- '0 2 1 and 1°0 ... ('0 -+'0) I o 1 2
and so we can regard

curry: (1 0 x 11 - 12) - (Do - (11 - 12))

as itself being an approximable mapping .

Proof: Given g as indicated, e can define curry (g) as a

relation and as an approximable mapping by:

X curry (g) [Y,ZI iff X u Y g Z (but see Ex. 3.21)

fOT all xe '0 ' y E ° Z E '0 ' This is sufficient because an
1

,
0 2

approximable mapping is intersective in the right-hand neighbour­

hood, so we know from the above exactly what X curry(g) (){O' i' 2'i] I i < n

means for all finite intersections. The remark after 3.9 is then

helpful in checking that by this definition curry (g) satisfies the

monotonicity condition and so is indeed approximable. We now

calculate:

curry (g) (x) (y) = (Z e D I 3ye y. Y curry (g) (x) Z)
2

•	 (zeI213yey3Xex. X curry(g)lY.Z))

(zeI213Yey3xex. XUYgZ)

(zeI 13We<x,y>. WgZ)2

• g «x,y» • g(x,y).

This proves (i). We also see, that if we take the left-hand side

of (ii) and apply it to a pair <x,y>, it reduces to g(x,y) by

virtue of (i). ThUS, the two functions in (ii) are the same.

Turning to (iii), call the left-hand side k. Using (i)

again, we find

k(x)(y) • eva1 <h PO' P1> «x,Y»0 0

eval «h 10 PO «x,Y>}, P1 «x,Y»»

•	 eval «h (x) ,Y»

= h (x)(y).

As this is true for all ye IV 1, then k(x)· hex) follows. As this1
is true for all x e IV I, then k .. h follows, and (iii) is proved.o

44

Taking (ii) and (iii) together. it is clear that the

domains IVOxV1 ... V21 and 1°0 "(°,,,°2)1 are in a one-one cor­
respondence. But from the very defini tion of curry it is clear

that

curry (g) 5 curry (g') iff g 5 g'.

Hence, curry is an isomorphism, and we can invoke 2.1 to con­

elude that it comes from an approximable mapping. o

We close this lecture with some order-theoretic properties
of function spaces that characterize inclusion and upper bounds
of functions in a "pointwise" manner.

THEOREM 3.13. For approximable functions f,g: VO ... V, we have

(i) f =g iff f(x) =g(x) fOT all xe IVai.

For subsets F~IVO" °11 we have

(ii) F is bounded in IVa ~ V 1 iff (f(x) lieF}1

is bounded in 1V 1 1 for each xe IVai;

and in that case for all xE IVai:

(iii) (U F)(x)· U (f(x) I fe Fl.

Proof. The implication in (i) from left to right follows

because evaluation is monotone in the function as well as the

argument. The converse implication is a consequence of 2.2(ii).

For the proof of (ii) and (iii) we see that by (i) if F

is bounded, so is every set {f(x)lfe F}. For the converse

direction, it is clear that (iii) defines 80me pointwise mapping;

we have only to prove that it is approzimabl.e. The calcula­

tion that UF preserves di rected unions (see 2.9 and 2.11) is

probably the simplest way to reach the conclusion. 0

45

EXERCISES

EXERCISE 3.14. For the most part we can assume that there is

at most a countable nwmbe~ of tokens; thus, without loss of
generality the underlying Sets oI1 of given systems J;\ could bei
assumed to be subsets of 1:* where 1: .. {O,1}. (Any denumerable

set would do.) Show that the product DO)(V, could be defined

as the system over the set 0011 U 1 011 where0 1

Vox V,. (OXulY I xeOO and YeO,).

In other 'Words, the ass\DIlption of the disjointness of 4 and ~10
is unnecessary. Give, therefore, the revised definition of
<x,y> for elements, and prove that for a single system V, there
exists an approximable mapping

diag : D ~ V x '0

where diag(x) c <x,x> for all xE 101. Also extend the definition

to a product of n-factors

'Oox'O, x· •• x D _n 1

which will be a system over the set

.u ,i 04il<n

Note that. fOT a 2-termed product we simplify' 04, to '4,.

EXERCISE 3.'5. Establish the usual isomorphisms:

(i) 00 x V, e: 0, x ° 0 ;

(ii) x '0 •Vo xeD, x 02) '" (00 xV,) x ° 2 " 00 x 0, 2

How does the product of no factoTs fit in? Prove also:

(iii) 00 .. D '0 and ° .. 0', imply 00 x 0, 2! 'O'Ox V; .1

46

EXERCISE 3.16. Let V be a given neighbourhood system over
!i. ~ X·. Define

!:J.CO .. 0 ,nO!i.
n=O

so that!i.m is split into infini tely many disjoint copies of d.

Let V.., be the least family of subsets of 1:* where

(1) It' e V"'. and

(2) whenever XED and YEV.... then OXU1yev<l>

Show that V"" is a neighbourhood system over /i..... Prove the

isomorphism

p"" S!! D)(0'"

Show, mereover, that the elements of I V"'I are in a one-one

correspondence with arbitrary infinite sequences <xn>n=O
of elements x E IVI by using combinations of neighbourhoods

n
OX u, OX u •• · u ,n OX u ...0' n

where from some point on all the X are equal to tJ.. m

EXERCISE 3.17. Using the 6 and T of Example 2.3 show there is a
one-one approximable mapping

f: B -+ r'"

and another approximable mapping

g: ra> -+ B

such that

g 0 f = I B and fog ~ I
y

•

Are B and roo isomorphic? Are 8 and T)(B isomorphic?

47

EXERCISE 3.18. Let Va and '01 be neighbourhood systems over
and 6 • where we again assume that these are subsets of 2:*.6 0 1

We as sume that in addi tion no n12ighbourhood is empty. Why is

this possible without loss of generality? Define the Bum

system by:

V + V,. {{A}U06 U,6,}U{OXIXEV }U{1YIYEV,}.o 0 O

Prove that this is a neighbourhood system over {A}U060U161,

(Throwing in {A} was not all that necessary, but note that

8 = B + B

and this is an equality of sets not just an isomorphism of

systems.) Prove that in general there are mappings

in i :'Di - V + '0 1 and outi : 'Do + '01 " Vio

where out. in . ., IV. Where does the assumption ~ f1 V. come in0
IIi 1

here? How can these sums be generalized to n-tenns? (Hint:

As for products use sets 1106io) Draw some pictures.

EXERCISE 3.19. Suppose we are given systems and approximable

mappings

f : 1)0 ... Va and g : V1 ... V~ •

Prove there are approximable mappings

fxg:O O x V, VO 'Il; V; and f+g:Vo+V,'" V~ + V1
such that

(i) (fXg) (x,r) = <f(x), g{r) >

for all xE IVaI and yE IV, I , and rewrite this as:

(ii) f X g = <f' PO' g' P, >.

In addition prove that

(iii) outo' (f+g) andina f,

(iv) out (f+g)
1

, in, g.

Do equations (iii) and (iv) uniquely determine f + g?

48

EXERCISE 3.20. (For category theorists). Show that the result

of 3.19 can be used to prove that + and X on the category of

domains and approximable maps are indeed functors. Show further

that X is the categorical product for this category.

EXERCISE 3.21. In the proofs of 3.12 in the definition of

curry (g) it is rather cavalierly assumed that the neighbourhood
[Y',Zl uniquely determines Y and 1.. Show that this is true II
Z*n. ' (Hint: Find explicitly the least of fE [Y,Zl.) ShowZ
that if z., ~2 the biconditional stated at the start of the proof

is still valid even though Y is not uniquely determined. (Hint:

Remember that 41 g 4 2 must hold.) For arbitrary pairs of neigh­

bourhoods of ('0 " 02) is there a simple criterion for identity?1

EXERCISE 3.22. Prove that there is an approximable mapping

comp: (V, ~ ~). (Va ~ V1)~ (Va ~ ~)

where for all g : D1 .. 02 and f : Do ... 01 we have

0comp (g. f) • g f.

Show this directly by writing down the neighbourhood relation

and by building the mapping up from eval and curry (on suitable

domains) using and <. >. (Hint: Fill in maps in the following0

sequence of domains:

(Va ~ Vi x va ~ v1

(V 1 ~ V) • «Va ~ V) • Va) ~ (V ~ V) • v2 1 1 2 1

(V ~ V) x (Va ~ V)) • va ~ (V ~ V) xV
1 2 1 1 2 1

((V ~ V) x (Va ~ V1)) x va ~ V21 2

(V ~ V) x (Va ~ V) ~ (Va~ ~).1 2 1
The maps are of course not uniquely determined, but the

shifting of brackets ought to suggest the right choice.)

49

EXERCISE 3.23. (For category theorists.) Show that the results

of 3.11 and 3.12 prove that the category of domains and approx­

imable mappings is a cartesian dosed catego11l. (Mac Lane [1971] pp.

95-96 may be consulted for a very brief introduction.) What
is the terminal domin in this category? What sort of functor

is (V -+1')?
O 1

EXERCISE 3.24. Establish some mOTe isomorphisms:

(i) (V o ~ (V, xV2)) " (VO~Vl) x (VO~V2)

(ii) (VO~Ol·)" (VO~Vl)m

(iii) V x (0 + V) "(V x V) + (V x V)o 1 2 O 1 O 2

(iv) (V + V) ~ V " (V ~ V) x (V, ~ V) ••
O 1 2 O 2 2

If some of the above are not true, perhaps at least some mapping

relationships can be established.

EXERCISE 3.25. (For topologists.) Recall from Exercises
1.21 and 2.13 on how to regard a domain IVI as a topological
space. Using 3.10 Show that the family of open subsets of IV I

is isomorphic to a domain.

EXERCISE 3.26. Show that for every domain V there is an approx­

imable mapping

cand : T x D x D -+ V,

called the condit;-ior.al opemtol' J satisfying

(i) cand (true,x,y)=x

(i i) cand (false, x, y) "' y

(iii) cand (~, x, y) :: 1. •

(Hint: Recalling that T={{O), {n, {O,n}, define tand as a

relation by

OC U 1OX U 11 OY cond Z iff 0 E C and X~ Z or

1EC and Y~Z or

0,1 E C and .6. s: Z

50

where CE T and XE V and Y E V and where we are using the constructior.

of Exercise 3.14.) Find a similar operator in the domain

T)(Va)('0 1 -+ VA + '0 1 •

Show also there is an approximable mapping

which: '0 + '0 -+T
0 1

such that for all x ElVa + V1 1

cond (which(x). ino(outo(x)). in 1 (out 1 (x))) = x.

EXERCISE 3.27. (For set theorists.) Give another proof that

the family of approximable mappings f : Va ... '0 1 is isomorphic

to a domain by employing the general argument of Exercise 2.22.
How does this compare with the proof method of 3.9 and 3.101

Can the general remarks also be employed to show that

eval : ('0 -+'0))('0 ... '0
1 2 1 2

is approximable without bringing in the neighbourhoods in such
an explicit way? (Hint: Use 3.5 and the idea of Exercise

2.12.)

EXERCISE 3.28. In the function space (Vo~ V) let
1

n{[Xi • Yi]1 i<nl

be a (non-empty) neighbourhood. In 3.9 the minimal element of

this neighbourhood is characterized as a relation fa. Show that

as an elementwise mapping it can be defined by the formula

fO(x) • U {tYi I xE [\]l.

forxEIVOI. Try to draw a picture of IVaI with neighbourhoods

[X.] and the corresponding values of the function £0'
1

51

LECTURE IV

FIXED POINTS AND RECURSION

Having at this point a large supply of examples of domains

(and further constructs of new domains), we now have to consider

some other ways of defining functions - other than by explicit

compositions of the very basic functions already mentioned. One

of the most frui tful techniques is an infinitely iterated compos­

i ticn that is at the back of the idea of recursion. We will use

the process over and over again in these lectures J not only to

define new functions but also to define new domains. The heart

of the matter lies in the so-called "Fixed-point Theorem":

THEOREM 4.1. For any approximable mapping f: V ... V on any domain,

there exists a teast element x E IV I where

f(x) • x.

Proof: Let £n for n E :N stand for the n - fold composition of

f with itself. That ~s.

o
f '" IV' and

fn+l"'fofn •

Define

x = IX E V !:J.fnX, for some nE:N}.

We see XE x iff there is a finite sequence !:J. '" XO' X1 ' •.• , X "'x ""here n
Xi f X holds for all i < n. Now since !:J. f!:J. automaticallyi +l
holds, a sequence for an XE X can always be extended to a longer

sequence just by adding more !:J.'s on the front.

We want to prove x E IV I. Clearly !:J.Ex;and if X£.Y and XEx.

then YEx. All that remains to be shoW'll is the closure of x under

intersection. Note that if

U f V and U' f V •

hold and U, U' are consistent in V, then V and V' are consistent and

52

(U 0 U • 1 f (V 0 V' 1

must hold. Generalizing this to sequences, if

A· X f X1 f f X = X, ando n

A· Yo f Y1 f f Y
n

• Y

both hold (and note we have arranged the lengths o£ the two
sequences to be equal). then each pair Xi'Yi is consistent and we have

A= (X 0 Yo) f (X1 0 Yi) f··· f(X 0 Y) = XOY. o n n

This establishes the desired closure.

We also note that if XEX and XfY then VEx. Therefore. f(x)s:x and

indeed by its very construction x is the least element of 101 with

this property. (Why?) But f is monotone, so f(f(x)) 5: f(x);

hence. x"'f(x). By what we have already said it must be the

least such element. 0

Because the element we have shown to exist in 4.1 is a

least element, it is unique. That is, we have associated with

each f: '0 .. '0 a special element XfE 1'01 determined by the choice

of f. A function has therefore been defined mapping the set

I V VI into I.VI. The next result shows that this function,

or operator on functions, is in fact approximable.

THEOREM 4.2. For any domain V, there is an approximable mapping

fi. : (V ~ V) ~ V

such that if f: V ... V is any approximable mapping~ then

(il fh (fl' f (fl. (f)).

Furthermore, ifxEIVI, then

(iii f(x) s; x implies fh(f) s; x.

And this last property implies that fix is unique. Explicitlye
can characterize f1x by the equation:

(iii) fh (f)' 0 fn(J.) •
n"'O

for all f:V ... V.

53

Proof: Formula (iii) can be put in a more elementary form:

fix (f) '" {X I tt.fnX, for some nE ~}.

To show an elementwise mapping approximable we can use the formula

of Exercise 2.9" applied to the above as the defini ticD of fi x:

(.) fix (f) = UlfiX (tF) I fE [F]).

where F ranges over the neighbourhoods of (V ~ P). and where
tF can be considered to be the least element of F as calculated

in 3.9.

Now from the definition of fix, it is clear that whenever

fs;:g, then fix (f);: fix (gl. because f"Sgn, (That is, fix is

obViously monotone.) Next. if f e F J then tF is a (finite)

approximation to fj so tF;: f and fix (tF)S fix (f). This

means that half of equation (III) already holds by monotonicity.

All that is left is to prove the other half.

50 suppose xe fix (f) • Then, as we have already remarked,

there is a finite sequence of neighbourhoods where

tl. ~ X f X, ••• X _, f X • X.
o n n

Let the function-space neighbourhood be defined as

F ~ nUXi' Xi +,] I i< n).

and note that since f E[F]we have at once consistency. But, by

3.9, tFE[F), so the 8ame sequence of Xi is sufficient to show that

XEfix (+F).

In other words, if X belongs to the left-hand side of (-), it also

belongs to the right-hand side. This completes the proof of (-).

Formula (i) is just a restatement of what we proved in 4.1.

And (ii) follows easily, because f(x) s x implies that .6.E x and

whenever XEx and XfY, then YEx. Thus, by induction, if

.t.. f n X, then Xex. So fix (f) s: x.

Finally, if 'fax: (V ... V) ... V were any other operator satisfying

(i) and (ii), we 'Would prove at once that

f 1 x (f) S; fax (f) and
f ax (f) S; fix (f).

That is to say. the two operators are identical. 0

54

The reader may have noticed that we used recursion in the

proof of 4.1 (we had to define fn for all n E }i) • But 4.' and

4.2 can be used to justify definitions by recursion on a large
number of domains - definitions where the process of iteration

is far from being as straightforward. In discussing this point,

let us start with some basic examples.

EXAMPLE 4.3. The infinite generalization of our original example

1.2 is the system

N = {{n}1 nE rn U {IN}.

The total elements are clearly in a one-one correspondence with
the integers in }oJ. We can apply the construction of Exercise

3.16	 to obtain a domain

F ;:: NOD

So we already know quite a bit about this domain - but it has a

much more familiar presentation.

Let 4J be the set of all finite partial functions <P s: }J x }J

(that is, finite sets of ordered pairs of integers where, if

(n. m) E'll and (n J m') E <P, then m:::: m'). Define

t<p= {w E 4> !<PSiW}.

Consider the neighbourhood system

F' =(t<p I <pE4>).

It is an easy exercise to show that F and f' are isomorphic

and that the elements of these domains correspond exactly to

the (possibly infinite) partial fWICtions n S}J x}J. Moreover,

the totaZ elements just correspond to the total functions

""t: }J ..,N ("function" in the ordinary, set-theoretical sense of

the word).

Another easy exercise is to show that the domains

Fand(N~N)

by our definitions are NOT isomorphic; though the two domains

are closely related. We can define a mapping

55

val FxN-+N

by the relationship

t",U{n} val {m} iff (n,m)E",.

(Of course val has to relate other neighbourhoods such as:

te,pu·)lJval lN,

but these are a11.) It is then simple to prove that if nE IFI

is regarded as a partial function n: :IN -+ IN and if for n E::N we

define fie INI by

!l ={ {n}, IN},

then we have

.-....
val (n, til	 n(n). if n is defined at n;

ON}, otherwise.

(Remember that ON} E INI is the "undefined" element.)

This means that

curry (val): F -+ (N-+N)

is a one-one function on elements. (The rather slight trouble with

(N-+N) is that it hasmol'eelements than F.)

So much for the construction of F, we now wish to consider
mappings

f:F ... F

and their uses. Consider the possibility

f	 (n) (n) 0, if n = 0 ;

n(n-1) +n-1, if n>O.

If n were a total function, then f (n) would be total. But if n

is partial, and if it is, say, undefined at k, then fen) becomes

undefined at k + 1. Note that fen) is always defined at O. Note,

too, that f is an approximable mapping because it is completely

determined by what it does to finite (partial) functions. Indeed,

fen) = UU(",) I ",s;n },

56

where ~ ranges over ~.

Well, we have proved that every approximable map of a domain

into itself has a (least) fixed point. What is the least fixed
point of this f? Suppose a '" f(o). Then 0(0) = O. and

0(n+1) f(o)(n+l)

o(n) +n.

By induction, then

o(n) = L i
i<n

and 0" is a total function. (Therefore. f has a un-ique fixed point.)

Actually, we can make the procedure mOTe systematic by defining

as fixed points elements of (N -.14) rather than F. In the first

place we have 6 E 1141, and from now on we will not distinguish

between nand n. Next we have two mappings:

succ, pred : f,j ... N

where, as approximable mappings we have

x suec Y iff 3 n e :N. n e X and n + 1 E Y.

X pred Y iff 3nE:N. n+1EX and nEY.

fOT all X, ye N. This is correct • but what we mean in more under­

standable terms is:

suee (n) :: n + 1;

pred (n) :: n - 1, if n > 0;

.1. • if n:: O.

Here, n has been identified with fie INI and .1.:: ON } e IN!. More­

over, we have a mapping

zero: N-+T

which is such that

zero(n) true, if n:: 0 ;

false, if n > O.

The stl'uctured dom:z:in

(N. O. suec. pred. zero>

57

can be called liTHE domain of integers" for our present theorye

We shall meet many other structured domains in the sequel.

Now the iterated summation function a can be completely
characterized - as a map a: loS ... f.J rather than as an element

a elF I - by the following equation:

o(n) = cond (2Oro(n). 0.0 (pred(n)) + pred(n)).

The only problem is that we have not defined + : Ii x Ii + N. (A

direct definition is left to the readerj general remarks are given
later.) But + could be any function of two variables in order to
make the point about the form of the definition of a. Remember

cond : T x loS x f.J -+ foJ,

as defined in Exercise 3.26. We do not put cond in as part of

the structure of Ii because (as should be clear from 3.26) it is

part of the structure of T.

The above equation for a is properly called a fwtctional

equation; it will be written as a fixed-point equation in Lecture V

when we have the notation for the>.. - calculus. 0

EXAMPLE 4.4. The domain C of finite or infinite binary sequences

mentioned in Exercise 2.21 may be regarded as a generalization of

N. This can be made plain by saying how we wish to regard C as a

structured domain. To do this we should recall what C is as a

neighbourhood syst.em. In the first place

B • {a I 'It laEI'It}

wheTe I = {O.1}. To form the system C we have

C-BU ((a)loEl:·j.

The total elements of B correspond to infinite binary sequences;

while the total elements of C to finite or infinite sequences.

To simplify notation let us write for oE I'lt

0= Hal (a total element);

a .l = to I'lt (a partial element).

58

In other words we identify c with the corresponding total element

in I CI.

We wish now to think of C as a structured domain seen as

a kind of generalization of W. The empty sequence A will play

the rOle of De INI; the map succ has two different analogues

for C J however. Just as for 8 we define for x E I C I and a E 1:" :

a x :: {Y , 0' X .s i' some XEx} ,

where of course now X and Y range over C. It should be checked

tha t O't' has the right meaning whether we think of 'te1:* or

't E I C I. The two "successoru mappings we are looking for are

x I-+Ox and x 1-+ 1 x.

All the maps x I-+ax can be obtained as compositions of these

iterated as many times as needed.

Here are two questions which we now shOUld ask:

What plays the role of pred? The mapping wil1 be called
tail, and it is characterized by:.

tan (Ox) • x,
tan (1x) • x, and

tan (A) - .L.

It is left to the reader to show that tail exists as an approxi­
mable mapping.

What plays the role of zero? The answer is not unique. because
in C there are several distinctions that have to be made; in fact
we will define three maps:

empty. zero, one:C .. r

where the three maps take on truth-values to distinguish various
kinds of elements in ICI as follows:

59

~mpty (A) = true 1

empty (Ox) '" fa 15 e,

empty (1 x) = false,

ze ro (A) = false

zero (Ox) :: true

ze ro (' x) = fa 1se

one (A) = false

one (Ox) = false

one (1 x) '" true.

Again, it is an exercise to show these are approximable. The

structured domain is therefore

(e,A,o. 1, tail. empty. zero, one).

Note that we have changed the meaning of some of the symbols in

passing from N to C. Note too that there is a confusion between

o as an element and 0 as the map x j-+ 0 x. There are just too few

symbols: In any case this is only an example and not a philosophy

of life. so the reader can be expected not to suffer too much.

An example of a definition of an element of lei by a fixed­

point equation is:

a '" 0 1 a.

This equation has one and only one solution in ICI. the infinite

sequence that alt:.ernates 0'5 and 1'5. Note that a is also

characterized by:

a '" 0101a.

Another element is

b=010b.

which is quite different from a.

An example of amap in IC ... C I has the characterization

d(A) A

d(Ox) OOd(x) I and

de1 x) 11d(x).

We can write:

60

d(x) :	 cond (empty (x), A,

cond (zero(x), OOd(tail (x)) , 11d(tail(x)))).

As we shall see in due course. this can be regarded as a fixed­

point definition of d.

An example of a map in ICxC ... CI was suggested in 2.21.

We can wTi te:

x y::	 cond (empty (x). Y.

cond (zero (x), O(tail(x) y), 1 (tail (x) y))).

It should be checked that this equation exactly characterizes

the intended mapping. 0

The examples we have given wi th Nand C are examples of de­

finitions of functions by recursion. The literal meaning of

"recursion" is "running backwards" J and a look at the equations

for our examples will show that the functions are characterized

by giving their values either outright (e.g. at 0 OT at A) or at

earlier arguments (e.g. at pred(x) or at tail (x)). The reader

should keep in mind that a recursive "definition" is not really

a definition in the sense of explicit definition but rather is a

characterization; a theorem has to be proved to show that such

functions exist. Now we have a general definition of domain and

a general theorem on fixed points and a general construction of

function-space domainj THEREFORE. we know that there are solutions

to our equations PROVIDED THAT the variables range over elements

of a domain and that the other, given functions that appear in

the equations are already known to be approximable (continuous).

This proviso is very important. and we shall remark on it time

after time.

But. as is well known. recursion also can be done over eete

like ll. and we shOUld examine now the connection between the

familiar kind of recursion and what we are doing over domains.

Of course. one simple connection is already provided by the

way we regard :N as a subset of N. But there are other useful

connections that can be employed in a way that may seem more direct.

61

DEFIIUTION 4.5. A structured set <l'J,O) + > where De:N andJ

+::N ... lN is a unary function. is said to be a mode1.fOl'Pea:no's

Axioms if the following conditions are satisfied:

(i) 0 '* nolo. for all n E :N ;

(ii) n+ ::m+ implies n "'m, for all n, mE :N i

(iii) whenever xs::N and Qe x and x+ ~x. then x = tJ.

Here x+"'{n+lnExL 0

Clause (iii) is recognized as the principle of ~

~ stated in terms of sets. We usually think of :N as

being "God given", and (i) - (iii) as known without question.

Suppose God, however. decides to withdraw His set of integers
and substitute another. We can ask: "Oh: Why did You take from

us our beloved numbers? Why must we now live with these- strange

new beasts?" God will probably reply "Trust Me:" Perhaps 'We

should in view of the theorem:

THEOREM 4.6. All models of Peano's Axioms are isomorphic.

Proof: There are several ways to give the proof. but, for

the sake of illustration, an application of the fixed-point theorem

is appropriate here. Let <IN. 0, + > be one model. and let df, 0.# >

be another. Let ~)(M be the ordinary cartesian product of the

two sets and let

P(NxM)

be the powerset (s et of all subsets) of ~ x }.f. As in Exercises

1.15 and 2.20, we regard this set of elements as a domain, whose

finite elements are just the finite subsets of the given set

~)(}of. The following mapping on us: 1N x Ill: is easily proved

approximable

Iu f-o«(O. O)} U ((n • ,Dl)# (n, rn) E U 1.

(This assertion shOUld be checked as an exercise.) We thus let

r be the (least) fixed pOint:

r={(O, O)} u ((n·,m#) I (n,m)Er).

62

This r~lN')(:M as a binary relation will tUTn out to be a one-one

correspondence giving the required isomorphism.

First of all we see by construction that

(i) OrO;

(ii) nrm implies n+rm#.

So, if r proves to be a one-one correspondence. it will then be

the desired isomorphism. Now, the two sets shown in the equation

((0,0)) n ((n
+

,m

) I (n,m) Er} : ~

are disjoint by virtue of axiom 4.5(i). Therefore. 0 in m

corresponds by r to one and only one element of }.f • namely the

element O. Let x S :N be the set of all elements of :N corres­

ponding by r to a unique element of)1. We have just shown

oEx. Suppose n E x, and let mE:M be the unique element with
+ # + nrm. Now n rm holds, so n corresponds to at least one

element of :M. If n+rl< also holds. then since (n+, k) *- (0,0),

the fixed-point equation implies

n + = n + and k = m:# a a
for some (nO,m) E r. By axiom 4.5{ii) I n = nO' and, by uniquenessO

(remember n EX), m = m j thus, m# is the unique correspondent fo

O
n+. We have proved n+E:.. Therefore, x+o;; x; so by 4.5(iii),

x =:}oJ holds. Otherwise said, every element in:N corresponds to

a unique element of }.f.

Note that the roles of :N and M are completely symmetric,

and they satisfy the same axioms as structured sets. It follows,

then, that every element of :M corresponds to a unique element of

:tJ. The proof that r is a one-one correspondent~ is now complete. 0

EXERCISES

EXERCISE 4.7. Formula 4.2(iii) shows how to find the Least

fixed point of f : V ... V. Suppose on the other hand that a e IV I

is such that asf(a). Will there be a fixed point x==f(x) with

as x1

63

(Hint: How do we know 0 fnCa) E IV I 1)
n=O

EXERCISE 4.8. Suppose f: V ... V and S<;: IVI are such that

(i) 1 E S

(ii) xE S always implies f(x) E S;

(iii) whenever {xn}n:O S Sand x S x + 1 n n

fOT all n, then I ""I xES.
}In n

Conclude that fi x (f) E S. (This could he called the principle of

fi:J:ed-poi'Ylt inductio11.) Apply the method to a set of the form

s • (x E I V I a(x) : h(x)),

where a, b :0 ... 0 are approximable, and where we know a(l) = bel).

and f" a = a .. f and fob:. b " f.

EXERCISE 4.9. Show that there is an approximable operator

'" : ((V _ Vj_ V) - ((V - V) _ V)

such that for El: (0 ... V) ... V and f: V ... V we have

'" (8) (f) : f (8 (f)) .

Prove further that fix: (D ... 0) -+ V is the least fixed point of '1'.
~

EXERCISE 4.10. Given a domain V and an element aE lVI, construct

a domain Va where

IVai: (XE IVII x sa).

Show that if f: V -0 is approximable, then f can be restri~ted

to an approximable map ft : Vfix (f) ... V (f) where f' (x) =f(x)fix

for all xE IV fix (f)1.

How many fixed points does ft have in IDfix (f) \1

64

EXERCISE	 4.11. (Suggested by G. Plotkin). We can regard

fix as assigning a fixed-point operator to each domain V.

Show that fix is uniquely determined by the following general

condi hons on an assignment V I~ F :V

(il FV : (V~V) ~v ;

(E) FV(f)=f(FV(f)) foral1f:V~V;

(iii) whenever fa: DO'" DO and £, : D, -+ 0, aTe given and

h : DO -+D, is such that h(l) '" 1. and h .. fa = £," h, then

h(FV (foll=FV (f,l.
o 1

(Hint: Apply 4.7 to prove fix satisfies (iii). In the other

direction use 4.10.)

EXERCISE	 4.12. Need an approximable f: V-+D have a rTnrimum fixed

point? Give an example where there are many fixed points.

EXERCiSE	 4.13. The proof of 4.1 uses the integers, whereas the

proof of	 4.6 uses 4.1. There is a hint of cirCUlarity here! It

can be eliminated by the following steps:

(1) ,!.! a domain V has an element a where, for f: V V the

relation £(a) sa holds, ~ the least fixed point can be defined by

fix(f)=	 nlxEIVI I f(x),;x).

Note that fix(f) =:a. (Hint: Remark that by 1.17 the formula

gives a well-defined element. Call the element b. Prove that

feb) sb by showing that feb) c:x whenever f(x) c;:x. Then note

that f(f(b)),; feb) so that b,; f(b) also. Conclude b = fix(f)

as least	 fixed point.)

(2) Remark that this proof uses only the mono tonIcIty property

off: IV I I VI. Remark. too J that (1) can always be appl ied to power­

set domains P A for any set A.

0) Review the proof of 4.6 and establish by a fixed-point

method that for any structured set (Z, z.-) there is a unique function

s	 : :N ... Z such that

(i] 5(0) = 2;

(ii) s(n+) '" s(n)-. for nE}l.

(4) Employ (3) for the proof of 4.1 by identifying (Z,z, 0).

65

EXERCISE 4.14. Need amonotone function f P-,\ ... PAalways have

a maximum fixed point?

EXERCISE 4.15. (For set theorists.) Let f: I V 1 ... 1 VI be a

monotone function on (the elements of) a domain. Shaw that f

has a maximal. fixed point (i. e. a fixed point that cannot be ex­

tended

ctlnsider

to

a

a

m

larger

aximal

fixed point).

chain

(Hint: By Zorn's Lemma

Cs{x E IVII xsf(x)}

and use

least f
~

2.11

ixed point.

to remark that UCE IVI.) No\<,' argue that f has a

EXERClS:: 4.16. (For fixed-point nuts). Show that a monotone

function as in 4.15 has an "optimal" fixed po-int in the sense that it

is the greatest fixed point below all the maximal fixed points and

at the same time it is the largest fixed point consistent with all
other fixed poin 'ts. Consistency for sets of eZements means having a
common upper bound. (Hint: Follow these steps:

(1) Show t.hat any non-empty set 5 of fixed points has a

largest fixed point ~~ by using the formula

fCnS) n ss

and finding the least fixed point over ns.
(2) Letting a be the fixed point, of (1) constructed from the

set of maximal fixed points, remark that a is consistent with any

other fixed point. x=. f(x), since x can be extended to a maximal one.

Suppose b is consistent with all fixed points, then bSY if Y

is maximal. (Why?).)

EXERCISE 4.17. (For algebraists). Suppose <5,1,,> is a semi­

group with unit (sometimes called amonoid). Remark that PS is

a domain. For a b E 5, what is the least x E P S such that

x={1} u {a.b}Ux.x.

where in general for x. Y.5. 5

x • y =. (t . II \ t E X and u E y }?

Need the fixed point be unique?

66

EXERCISE 4.16. In Example 4.3 there are many unproved assertions

about Nand F. These should be checked. In part icular, the isomor­

phism theorem of 4.6 could be proved by constructing a simple domain

M from ~f in the way N is constructed from :IN •

EXERCISE 4.19. There are many unproved assertions in Example 4.4 I

In particular discuss "Peano's Axioms" for {D.n Show, moreover,

that one: C ~ T can be defined from the rest of the structure by a

fixed-point equation.

EXERCISE 4.20. For approximable £, g :D-+V prove that

fi, (f.g) = f(fi«g.f)).

EXERCISE 4.21. Show that the less-than-or-equal-to relation
t S:N x:tJ is uniquely determined by the fixed point equation

t={(n,n) I nElN) U ((n,m+) l(n,m)Et).

Consider the structured set <PlN, IN J + > where, as before,

x+={n+lnExL

What is the unique function [oJ::N ... PlNgiven by 4.13(3)7 Prove

that tile structures < N.O,+> and <[mJ,m,+> are uniquely isomorphic

for each mE i'l. and connect the isomorphism with ordinary addition

of integers. Can the same be done for multiplication? (Hint:

Consider the fixed-point equation:

n·:N:: CO} U {n+m!mEn.:N}.

where n E:N is fixed.)

•EXERCISE 4.22. Suppose:N is a structured set satisfying only
•axioms (i) and (li) of 4.5. Must there be a subset :N S:N that

satisfies (i), (li), and (iii)? (Hint: Use a least fixed point

in P ~ ••) (For set theorists): How do we know from the axioms
•of set theory that there exists such a set :N 7

67

EXERCISE 4.23. (Suggested by S. Eilenberg). Suppose f : V .. V

is approximable on a given domain V. Suppose a : V -+ V is a
n

sequence of approximable maps where

(i) aO(x) =.1:, for all xE 'VI;

(ii) ansan+1 in '0"'0, for all nE:N

(iii) oa .. 1V in V -+ V
n

TI"'Q

(iv) a +1o f = a + 1 cfoan' for all n E:N • n n

Prove that f has aunique fixed point. (Hint: Show that if x = f(x).

then an(x) s;an(fix(f)) fer all nE :Nby induction on n.)

EXERCISE 4.24. (For set theorists). Let f: A ... B and g: S .. A

be one-one functions (into) not necessarily onto:) Prove the

Schroeder - Bernstein theorem to the effect that there exists a one­

one correspondence h : A-B. (Hint: (Suggested by A. Tarski).

By the fixed-pain t theorem find X £ A where

X= (A- geE)} u g(f(X))

where f(X) '" the image of the set f under the function f. Define

h !: A x B as a union of two restrictions:

h = fIX u g - 11 (A - X) .

A picture helps.)

EXERCISE 4.25. Perhaps the domains Nand C are not exactly

analogous? C was based on {O.1} as the underlying set of tokens.

Construct a system C based on {1}* ('" finite strings of 1 1 s)1
wi th neighbourhoods:

C
1

= {(1 m I m;'n) I nE N} U {{1 n } I nE N}.

What st~ucture should be put on C strictly analogous to that on
1

C (=C
2
)? What kinds of approximable maps relate N.C 1• and C2?

Draw some pictures.

69

LECTURE V

TYPED >. - CALCULUS

In Examples 4.3 and 4.4. after suitable domains have been

constructed, functions are characterized by recursion equations
whose form of expression is - basically - a composition or substi­

tution of known functions together ith the function to be defined.

This method can be made mOTe precise and more easily usable by ex­

panding our nota tion for functions - particularly by inventing a

"temporary" notation for a function as a thing in itself ithout

having to have special letters for functions. The device is called

). - abstraotion. It is related to ordinary set abstraction (the

{x I···} - notation already much used in these lectures), but we

gear the approach to domains and their elements, and especially

to function spaces.

At this stage it would not be so helpful to produce a rigor­

ously formal defini tion of the SYntax of the typed>' - calculus;

we shall try to suggest what is needed by example. There are so

many examples at hand. the less formal discussion ought to be

sufficient.

In the first place we should set aside. in the notational

store room as it were. a stock of variables

x, y, z. WI' ••

These variables will be required in different "sizes" or "types".

Roughly speaking there should be an infinite number of variables

to range over the elements of ~ domain O. We could perhaps write

v c V ... ,X-o ' x 1 ' x 2 •

but the subscrip ts to insure an ir..finity of variables and the super_

scripts to record the typing of the variables lead to a notation as

70

tiresome to write as it is to read. We simply agree that we can

have as many variables as we need and that they come in all the types.

Strictly speaking we should also introduce type symbols and

not confuse types with domains. But if the reader ~ill simply keep

in mind that fOr'm in language has always to be kept distinct from

content, the confusion at the type level will not matter so very

much. A point at which the confusion might cause a Teal confusion

concerns compound types. Given Va and V, we can form such com­

pounds as

va + V" va x v" va.... v,.

What has to be remembered is that a compound domain (neighbourhood

system), Va x V, say, does not uniquely determine the "parts"

Va and V1 ' (We could make it do 50. but it would cost some effort.)

Of course, thesymbot "Va)(V
1

1! has well defined parts. The point

is thatdifferent ways of forming a compound domain could lead to

the same result, meaning that a domain does not let us retrace its

exact history of construction. Compound symbols, ho~ever, always

carry their histories around with them, since otherwise they would

not be readable. What we want, of course, are both domain symbols

and domains. the latter being the meanings of the former. Most of

the time we can happily pretend that it is only the domains them­

selves we have to think about.

Besides variables, we will also need certain constants. For

instance, the symbol 0 (perhaps, better ON) denotes a certain

element of INI. Similarly, in view of Theorem 4.2, for each domain

V there is a well-determined eleme~t fix V of the compound type

((V ... O) ... 0) denoting the least fixed-point operator. We have con­

sidered any number of similar constants of a great variety of types

already (cf. 4.3 and 4.4; cond is an especially good one). l\"e can

say that the variables and constants are atomic terms, where

"a tomic" here means non-compound.

To form compound terms, there are several means: for example,

if T, .. ,,0 is a list of already obtained terms (including variables

or constants), then we can form an ordered tupl.e

71

We have already done so in 3.'. If the types of "to •••• a are

V •••• ,V' I respectively, then the type of the tuple is the product

domain

v x ••• x V '

because we intend that the tuple denote an element of this domain.

(The tuple notat ion for functions as in 3.3 is being forgotten for

the time being.)

Next suppose that," has type (V O '" 01) and a has type V o' then

the usual function-value notation

"[(0)

is a compound term of type ° VJe also use1 ,

, (00' °n-1)

as an abbreviation of

"" «°0' ... ,on_1>).

where, if the types of 00' ...• 0n_1 aTe Vo' •..• V _1 ' then the typen
of , has to be of the form

((V o)(... x 0n_1) -t On)

where On is the type of the compound. In this manner, ...;ith functions

applied to tuples, we have the full facility of substitution into

functions of many variables just by iterating the notation.

Having taken into account function value J it remains to

provide for func tion definition. Suppose that x •...• xn_,is a o
list of distinct variables of types Do' ••• , 0n_1' Suppose further

that" is a term no matter how complicated - of type On' Then

we can regard" as defining a function of n - variables of type

((DO < ••• < D _) ~Vn)'
n 1

What we have not done is to reward our regard by. as yet, providing

a quick-to-write "name" for that function. This we now do; it is

called

AX o,····Xn_1·" •

where we stress that the Xi must be distinct variables and that this

72

expression deflotes the whoLe function. That is why we provide it

with a special symbol.

Here is an example of the J.. - notation

A x. y. x)

which is read "lambda ex wye •.. (pause) ... ex". If the types

of x and yare V 0 and 11 1 , then the type of the above is

((Vox V,) ~ Vo)·

Indeed, we know this function very well: it is the first projection

function Po of 3.3 and the equation

Po = A x • y. x

is true, as is the equation

P, = AX.Y· y.

In the notation of 3.3, we also find the true equation

< f, g> = AW. <f(w), g(w) >,

where on the right-hand side we are using "official" A - notation

for a function of type

(V ~ (V x V,)).
2 o

The notation on the left is just an abbreviation and it should not

be confused wi th the pair (2-tuple) of type

((V ~ Vo)x (V ~ V,)).
2 2

(Since the two domains just mentioned are isomorphic, the possible

confusion is not all that serious. On the other hand, one con­

fusion we will completely overlook is that between 1-tuples <x>

and elements x. Strictly speaking they are different. but we shall

not bother to make the distinction.)

Here are some other examples of true equations:

eval = >.. f, x. f(x) (ef. 3.")

curry = >..g>..x>..y. g(x,y) (cf. 3.12)

The first should be immediately clear; while the second is particularly

instructive. What is being illustrated is that the A - notation can

73

be iterated. The distinction being drawn is between

A x 0" x •••• J x _ .. T and A X A x 1 ••• A x _r 'to
1 n 1 o n

The fiTst has type

(CVo x 01 x ••• x V _) -+ On)
n 1

while the second has type

(V - (V, ~ (•.• (V _, ~Vn) "'))).o n

This is related also to the true equation

curry (AX,y."t) =: AX>..y.1".

which shows that there aTe operators relating to the two notations.

The first is the mJ.ltival'iate form; the second is the curried form.

Here is another true equation

fix = fix (>.F >. f. f (F (f))),

where the fix on the left has type « V -+ 0) -+ 0) and that on the

right type

((((V- V) ~ V) ~ ((V~V) ~ V)) ~((V~V) ~V)).

This is the content of Exercise 4.9. (This also shows why type

superscripts aTe tiresome.)

The combina tion

fix (A x."t)

occurs so often. that from time to time we abbreviate it as

! x . T,

but remember it only makes sense if x and 't have the 8ame type.

For example in 4.3 we could have written

0= I fAn. cond (zero (n). O. f (pred (n)) + pred (n))

and read this as

"0 is the 1east (recursively defined) function f whose

value at n is cond (...)."

We note that in the so-called \od/ of the expression inside the

74

cand-part the variable f occurs again. That is j us! the point!

This is a recursive definition; it is made into an expZicit defin­

ition by invoking the least fixed-point operator.

In a A-expression, AX,Y, z.t, say, the variables x,y, z

are being bound in -c; but"t may have other variables that are no­

where bound in "t and these remain free variables of the whole

expression. Bound variables aTe dummy variables and may be re­

written by other variables; thus

A x ."t >'y."t[y!x]

is a true equation PROVIDED the variable y does not occur in t.

In the equation the notation t[y / x] means the result of substituting

(rewriting) the variable y fOT the variable x throughout the term T.

We can also write "t [0 I xl for substituting a whole term 0 for a

variable in the other term.

We have 0.1 ready spoken of "true equations" ~ but how do we

know that these curious equations are meaningful at all? They are,

but this is something that has to be proved.

THEOREM 5.'. Every typed), - term t defines an approximable function

of its free variables.

Proof: We argue by an induction on the complexity of "; there

will only be a few cases to consider since the "syntax" of). - terms

is limited even though terms can be of any length.

If " is a variable or a constant there is nothing to prove.

We already know that

x I_X and x I-k

are approximable functions.

Suppose " has the form

<00 , ••• , on -1 > •

Then the o. a re less complex terms. and so we can assume - as our
1

induction hypothesis that they define approximable functions of

the free variables. Having said this, we just apply the already

75

proved 3.4 to conclude (after a suitable generalization to the

multivariate case) that T, which takes on tuples as values, also

defines an approximable function.

Next. suppose T has the form

00 (01 J,

where we are sure that the types of all the terms match properly.

Again we can assume the 0i to be well behaved. But the values we

seek can also be written as

eva' (00 , ° 1),

Since eval is approximable by 3.11, we just have to invoke an

instance of 3.7 to gain the desired conclusion.

Finally, suppose that T has the form

A x . cr.

By a judicious choice of the order of the variables in 0 (including

x), we can assume that 0 defines an approximable function

g:V x···)(O x V -+0'o n-1 n

where V' is the type 6£ 0, P is the type of x. and Va • •••• 0n_1n

are the types of the remaining free variables of o. Ke apply 3.12

and obtain an approximable function

curry (g) : V x •• • x V _ -+ (V -+ V ')~o n 1 n

But. this is just exactly the function defined by T.

We leave as an exercise the more general case of a term T of

the form

AX ' •••• xk _,. 0
O

which has a string of bound variables. 0

We can now say more precisely what it means to call 0 ="[a

"true equation". This means that. if we employ the method of the

proof of 5.', the two terms define the same f'u.nation of the free

variables. For example,

76

AX.,"Ay., [y/xl

is true, provided y does not occur free in the term "

since the systematic generation of the function defined by

>.. X. "t does not depend on what the variable x ~ooks Uke but only

on its position in the term.. Some other obviously desirable rules

for generating true equations are stated in the exercises. But one

rule is so basic that we state it here in full generality.

THEOREM 5.2. For sui tably typed A - terms the folloft'ing equation is

true:

(;'\X O J •••• x n _ 1 ' ..) (00' ••.• 0n_1) ::: .. (0-0/ x o •... , 0n_1 / x n _ 1 1.

Proof: It will be sufficient to carry out the proof fOT n = 1.

The proof proceeds by induction on the complexity 0 £ the term". In

case "t is a constant k. the result reads

(Ax.k)(a):k.

and this is a true equation.

In case .. is a variabLe (in particular, the variable x).

the result reads

(A x . x) (a) : a.

and again this is a true equation.

In case. is a tupLe (say, <·0 '.1 > the result reads

(;'\x. <.0 ,., » (0) = <.0 [a/xl '.1 [a/x]> .

This is true, because the left-hand side can be transformed by the

true equation

(>..x:.<.0'.1» (o)=«Ax·.o)(a), (Ax·.1) (O»i

and then we apply the inductive assumption for .0 and for .1.

In case. is an appLication. we want (supposing the term is

'0 ('1)),

(A'. '0 ('1)) (a) : '0 [a / xl ('1 [a / xl)

We can proceed as in the last case, noting that the left-hand side

equal s

77

eval (()"X.<'t"O"1»(0))

In case '[is anabst't'Qct (say, >..y. "["a). we want

("x. "-y .'0)(0) ~"y.,o [o/xl

PROVIDED the variable y is not free in c. For this we require

the true equation

(>.x."y.,) (0) ~"y. (I. x. ,) (0).

We argue for this by letting g be the function of n + 2 free

variables defined by •• Then, by 5.1. the ,),,-term).x . .>..y .•

defines the fonction curry (curry (g)) of n arguments. We can

call this function h for the moment. We can write

h (Y)(o)(y) • g(v, 0, y),

where v is a ~ist of arguments. But, with an appropriate com­

binator inv, which applied to g inverts the order of the last

two arguments, we can write

h (Y)(a) (y) = curry (in. (g))(y,y)(o).

But, curry (inv (g)) is just the function defined by p.. x .TJ. SO

what we have proved as' true is

(l.x.l.y.,) (o)(y)-(I.x.,) (0),

But if Y is not free in a. and

a(y)=a

is true, then so is

a=l.y.a

This completes the proof. 0

We note that if 't' is the term Ax,y.'t. then 't' (x.y) means

the same as 'to This gives a convenient way of indicating free

variables: we just write a (x,y) - where x, yare not free in

o - and this will have the same values as any term .. which does

involve the extra free variables x and y. We use this notational

device in the next theorem.

78

PROPOSITION 5.3. The least fixed point of

Ax,y. ,qex,Y), o(x,Y»

is the pair with coordinates

x . "t (x • ! Y .0 ex, y)) and

y . a (! x. "t ex. y) , y) .

Proof; (We are assuming that x and yare not free in "t and

0.) The purpose of the fixed-point search is to find the least

solution of the pair of equations

X="t{x,Y) andy=o(x,Y)·

In other words, we are generalizing the fixed-point equation fro~

Que to two variables - and, of course, we could go much further

to any number of variables. To this end, let

Y. = ! Y • a (! X. 't (x • y) , y), and

x. = !x."t(x,y.).

Then

x.="t(x.,y.),

and

r.;: Oe!L. (X,y".), y.)

o(x.,y.).

This proves that <x.' y. > is one fixed-point pair.

Suppose, then. that <x • YO> is the least solution. (Why does o
a least solution have to exist? Hint: Consider a suitable mapping

of type

00 x 0, 1 00 x 0, ,

where 00 is the type of x and 0 the type of y.) Then we know
1

X = "t(xO' YO) and yo = o(xo'yo),
o

and also xO~x.. and YOs:y ... But from

"t (x ' yo) s;:x O' o

it follows that

x."t (x'Yo) s;: xO'

79

Consequently

o(!x. -r (x. Yo), yo) ~o(;X:a'Yo) SY ' o

By the fixed-point definition of YotE • we have Y.5O YO' so Y. = yo;

whence,

x.=!Xo.(x,y.J = !Xo"t(x,yo) S;:XO•

So also x. = x . We have the right fo:rnrula for YO' and a similar argunent gi,ves
o x ' 0O

The purpose of giving the above proof was to illustrate the

USe of the least- fixed-point operator in pI'oofs We have such true

principles as:

! x. ,(x) '" "te! x. "!(x));

and

"t(Y) r.=yimplies ! x •• (x) s;: Y.

provided. of course, that x is not free in"t. These, together with

the monotonicity of all the functions. were just the methods used in

the above proof. Here is another example.

PROPOSITION 5.4. Let x. YJ and T(X, y) be of the same type V

and let g be of type (V -+ 0). then the equation

AX! y. -r(x, y) =1g>..x."t ex, g (x))

is true.

Proof Let f be the function on the left-hand side. We

can write

f (x) ! y .• (x, y) .(x,f(x)).

Therefore

f, AX •• (x,f(x)),

and it follows that

go:= 19.).X•• (x,g(x)) Sf.

Then we have at once, by definition of go'

go (x) , • (x ,gO(x)),

for any given x. But by definition of f'e find

f(x)' !y.• (x,y) Sgo(x).

80

As this holds for all x. then f~go follows. So the equation

is true. 0

The last proof is instructive as it uses equations and in­

clusions between functions In particular we have just made use

of the principle:

if "[so holds for all values of x.

then AX. "[SAX. 0 holds.

This is another form of Theorem 3.13(i).

TABLE 5.5. In the displayed table we give a summary of uses of the
). - notation to define various combinators. We have mentioned some

of these equations before. and there are some combinators here we

have not mentioned before - their meanings, however, should be clear.

Po=>..x.y.x

P,).x,y. Y
:II<

pair). x). y. <x. y>

n-tuple ""). x). x, ...). x _1 • <xO' x, •••.• x _,>o n n

diag >.. x. <X.X>

funpair AfAgAX. <f(x), g(x) >

prOji >.. Xo ')(1' ... J x n_1 . xi

n
i nv i. j AX Q• "0, Xi' •••• x j ' "0' xn _ 1 .<xo" .. ,x j •...•

x i ····,x _1 >n

eval A f, x. f (x)

curry >..g>"XAy. g(x.y)

cemp Ag, fAx. g[f(x))

canst >.. k >.. x. k

fix Af! x. f(x)

A TABLE OF COMBINATORS

81

It is important to note that since we have not typed the

variables. these equations aTe ambiguous: they only become pre­

cise when the types aTe specified. It follows, therefore, that
what we find in the table are acheme8 for combinators; there

are actually infinitely many distinct combinatOTS corresponding

to anyone equation depending on how the variables have types

chosen fOT them. Clearly it is better to imagine this variety

of combinators than it is to try to notate them with type super­

scripts.

One interest of combinators is that it is often possible to
write expressions without variables - if enough combinators are

used. This is sometimes useful. but it can become clumsy. On the

other hand. if the same combination occurs over and over, it is

sometimes useful to give it a name. This is what we do with, say,

composition where

comp (g. f) : g 0 f.

On the one side we have the prefix notation, and on the other,

the more common infix notation. With either notation the variable

seen in AX. g(f(x)) has been got rid of. The choice between

equivalent notations ought to be based on a desire for readability. 0

The reader will have noted that there are Some combinators

not appearing in Table 5.5. The reason is that combinators like

cond, succ, pred ~ zero, 0 cannot be defined in the pure A-notation

but are specific to domains like T and N; we. thus, have to regard

them as primitive. But once they are in hand, a very large number

of other functions can be defined from these combined with A­

expressions. The next theorem gives an indication of the possibil­

ities.

THEOREM 5.6. For every partial recursive function h: }J tJ, there

is a A - term 't of type (N N) such that the only constants occurr­

ing in 't are

condo succ, pred, zero, 0

and where if hen) = m. then

't (n) = m

82

is true; and if h (n) is undefined, then

"t (n) =.1

is true, The equation "t (.1) =.1 is also true.

Proof: We have only formulated the theorem for functions of

one vanable - but to give the proof, it is convenient to pass

through functions of any number of (integer) variables. We shall

also have to recall the precise definition of the notion of

partial recursive function.

It is also convenient to work with(very)stri<:Jt functions

f:Nk-+N.

These are functions such that if nO' ...• TI k_1
E INI and TI =.1 fori

at least one i < k. then

f(n ' ... , n k_1) =.1.o
It is easy to check that compositions of strict functions are

strict. It is also easy to see that any partial, function

g:lNk-+JJ

extends to a strict (approximable) function

- kg: N ~N

which takes the same values as g as long as g is defined; other­

wise g takes the value.l. What we want to show for partial, recursive

g is that the corresponding g is defined by a A - expression.

In the first place we have to check that primi.t;ive recursive

functions have A- definitions in this sense. We recall that

primitive recursive functions are generated from certain elementary

starting functions by multi-variate composition and the scheme of

primitive recrusion. The starting functions are the constant

function with value zero and the "identity" or "projection't

functions. For example, gena, n" n 2) =n 1 for all nO' n" n 2
E lJ

is one of the starting functions. Now we cannot just use the A-term

AX O 'X1 ,X 2 ·X,

to represent g, because the function so defined is not strict.

But any function in INk -+ N I can be cut down to a strict function

by a simple device. Consider

83

}.. x. cand (zero (x),.x, x)

with x of type /IJ. This is the strict version of the identity

function of one argument. The strict projection function of two

arguments can be defined by

A X ,x," cand (zero(x1), X ,x).o o o

The one of three arguments by:

A x O• x, • x 2 • cond (zero(.x) ' cand (zero(x2). x • x). cand (zeroo 1 1
ex

2). x,. x1)).

This is not done very elegantly, and the reader can find for him­

self a general solution based on perhaps a better notation for the

required compositions of functions.

As we remarked, strict functions are closed under substitution,

and any substitution of a batch of functions into another function

can be given by a >..- term, if the various functions can themselves

be so defined. It only remains to),,- define functions obtained by

primitive recursion. Thus, suppose, for the sake of argument, that

f : :N ... :N and g : ~ ... :N

are given as total functions with f and g being A - definable.

From them, we obtain by primitive recursion h: :N ... :N where

h(O,m) • fern),

h(n+1, m) '= g(n,ID.h(n,m))

for all n, mE ~. The A- term defining fi is

!kAX,y. cond (zero(x),f(y),g(pred{x),y.k(pred(x),y))).

Here we have had to use the fixed-point operator on a variable k
2of type (N ... N). The variables x, yare of type N and the cond ­

construction puts the two traditional equations into two clauses

of one expression. It is easy to see that the fixed-point function

i8 strict and is nothing more than h.

That completes the representation of ~ recursive

functions. To obtain the ~ recursive functions, the idea

is to use the so-called lJ.-scheme (least number operator) and,

further, to close up under substitution. We need only treat the

lJ.-scheme. Suppose, by way of example, f(n,m) is given as a

84

primitive recursive function. We then define h (generally, a

partial function) by

hem) '" the least n where f(n.m) = O.

This is often wri tten

hem) '" '\.In. f(n,m) :: O.

Supposing, as we may, tis),,- definable, we introduce first

g~! gAX, y. cand (zera (f(x,y)), x, g (succ(x), y)).

Then h=>..y. g(O,y). This is easily seen to be strict. Also easy

to see is that if hem) is defined, then g(O.m) = h(m). But, if hem)

is not defined, it takes some argument to make sure that the least

fixed-point construction forces g(O,m) = 1. However, the argument

is not very difficult. 0

What is not said in 5.6 is that every)" - term defines a

partial recursive function. This is true (with suitable control

over the constants and types in the expression). but the proof
requires a full analys,is of computability properties of domain
constructions. This is the topic of Lecture VII.

It should be remarked that the types of variables needed for
the proof of 5.6 never get very high. In fact, types like N, NkJand

(Nk N) were the only ones needed (with perhaps T thrown in also).

Recurs ion on N was the topic of 5.6; further examples of
recursion on other domains are included in the exercises.

EXERCISES

EXERCISE 5.7. Find definitions of

)" x,y •• and a (x,y)

which use only)" v with one variable and applications only to
one argument at a time. Note that use must be made of the com­

binators PO' Pl' pair. Generalize the result to functions of
many variables.

85

EXERCISE 5.8. (For combinator nuts.) Table 5.5 was meant

to show how comb inators could be defined in terms of A. - expres­

sions. Can the tables be turned to show that with enough

combinatoTs avai lable, every A. - expression can be defined by

combining combinatoTsJusing 0(.) as the ~nll mode of combination?

EXERCISE 5.9. Suppose that i, g : V... V aTe approximable and f., g '"

go f. Show that f and g have a le.astcommon fixed point x=f(x)"'g(x).

(Hint: Refer back to Exercise 4.20) If in addition f(l.) = g(.1).

sho that fix (f) = fix (g). In particular will fix ef) = fix(f 2)?

What if we only assume f., g = &2., f?

EXERCISE 5.10. Suppose Va and 0, are neighbourhood systems

over disjoint Sets AO and A" Define the 81Ttlsh product V 0 @ V1

..... ith neighbourhoods

{~o u ~,} u {X U Y I X E VOl {AO} and ye V" {"',}).

Show that this is a neighbourhood system. Define (VOL V) so
1

that IVOi °11 consists exactly of the strict functions. By intro­

ducing appropriate combinators, show that

(Vo~~ (V,~~ V2)) and ((VO@V,)~~V2)

are isomorphic.

EXERCISE 5.11. For any domain 0 we may regard v<O as consisting

of (bottomless) s'tacks of elements of V. With this image in

mind. define appropriate comb ina tors wi th the obvious meanings:

head v<O ... 0 ,

ta il : v<O ... v<O;

push : o x 0"" ... 0<0.

Using the fixed-point theorem argue that there is a combinator

diag: 0.0""

where for all x E I V I we have

didg(X) "'" <x>n:o'

86

(Hint: Try a recursive definition. say

diag(x) = push (x, diag(x)),

but be sure to proveatt terms of diag(x) equal x.) Also intro­

duce by an appropriate recursion a combinator

map: (D -+ V)""')(V -+ p""

where for elements of the suitable types:

map «£n>n:O' xl '" <fn(x»n:O'

EXERCISE 5.12. On any domain V introduce(as a least fixed point)

a combinator

wh il e (V ~ T) x (V ~ V) ~ (V ~ V)

by the recursion

wh i I e (p, f) (x) = con d (p (x), whil e (p, f) (f (x)) , x) •

Prove that

while (p, while (p,f)) = while (p,f).

Show how while could have been used to obtain the least number

operator mentioned in the proof of 5.6. Generalize the idea to

define a combinator

find V- x (V ~ T) ~ V

wi th the meaning "find the fiTS t term of the sequence (if any)

which satisfies the given precicate."

EXERCIS£ 5.13. Prove the existence of a one-one function

num : :IN x :IN :IN such that

num (0,0) '" °
num (n,m+1) num(n-+1,m) + 1 ~

num (n+1.0) num(O,n) + 1.

Draw a picture (i.e. an infinite matrix) for the function and

find a closed form for its values. if possible. Use the function

to prove the isomorphism of the domains

P 1'1 ,P(JN x IN), P :Nx P :N.

•• •

• •

EXERCISE 5.14. Show that there are approximable mappings

graph (P:N -+ P:N) -+ P]Ii and

fun PIN ~ (PIN ~ PJNl.

where we have

fun graph'" A f. £, and0

graph fun? AX. x.0

(~int: Using the notation

[no' 0" ok] = num(no,[n" ilk])

two such combinators can be given by formulae

fun(u)(x):::: {mI3n ,o ••• nk _,Ex.fn +1, •.• ,n _,.1,O,rn]Eu}o o k

graph(f) = {[no+1,••. ,nk_'+',O,mJ[mEf({no •••• ,nk_1}) J,

where k is variable - meaning all finite sequences are to be

considered.)

•EXERCISE 5.15. (For algebraists.) We can regard < {O , 1} , A, • >

as the free semigroup on two generators 0 and 1. The powerset

P{O,1}- is taken as a domain as in Exercise 4.17. For "words"
•eE {O,n define

• 2 3 n
e {A, e, e , e , ... , e , ... }.

Show that the leas! fixed point of

z:{e).ZUCe')

in p{O,n • is z: e •. {e'l. Show further (as suggested by David

Park) that the least solution of

X :a·xU b·yu c

y"'b·xua·yud

has

x"'(aub-a·b) (cub·a·dL

where the {.} has been dropped off {a}. {b} etc., and where
•the -notation has been extended to the whole domain, so that

z:Auz·z.

(Hint: Apply 5.3.)

88

EXERCISE 5.16. Return to the discussion of Example 4.4 and

the construction of the domain of finite and infinite binary
sequences. Give a fixed-point definition of neg: C -+C. where

neg (Ox) 1 neg (x);

neg (1x) Oneg (x).

Prove that neg (neg (x)) '" x for all x E Ie I. Also define

merge: C xC C. where for E. 6 E {O, 1} we have:

merge (E X, 5 y) = E 5 merge (x,y).

(Note: There may be a little trouble 'With merge (x,Y) when x

is finite and total and y is infinite - you have to decide what

yo~ want in e.g. merge (A,Y).) Prove that

merge (x,x) '" d (x) ,

in the notation of 4.4. Consider also the infinite non-periodic

sequence

t·O merge (neg(t), tail (t)).

Prove that the nth digit of t is the sum mod 2 of the digits

of the number n written in the binary scale (a suggestion of

J. Lambek). Show also that t -+ u a a a v where a is any fini te

sequence *" A, and where u is fini te.

89

LECTURE VI

INTRODUCTION TO DOMAIN EQUATIONS

The maj or reason for introducing the theory of domains is

to have a notion of computabi1.ity incorporating both finite and

infinite elements. In our many examples already explored 'fie

have seen how functions (functionals, operators, combinatoTs)

ca~ be defined on domainsj owing to the property of approximab­

ility (continuity) of these functions, we have also seen how they

can be "calculated" by finite approximation. In this lecture

further examples of domains will be constructed -- especially

domains having infinite elements, which can be introduced in a

variety of ways giving rise to interesting structural possibil­

ities. The next lecture then treats a precise notion of compu­

tability appropriate to these domains; while the last lecture

opens up new methods of domain construction.

EXAMPLE 6.1. Let V be fixed as a given domain. We are now

familiar wi th a useful construct like V x V whose elements are

ordered pairs <x.y> of elements x, yof V. The question is:

can this construct be iterated? The answer is obviously yes,

since V x (V xV) and (V x V) x (V x V) and so on can be formed with

elements <x,<y.z» and «u,v>. <x,y» and the like. But the

real question is: can the construct be iterated indefinitely?

AND can the resul ts be collected together into a eingle domain?

The answer is yes~ but it requires a bit of work to get it right.

The method to be introduced will be open to many variations, so

more than one answer is possible, giving non-isomorphic domains.

In order to collect all the iterates into one large domain

we give ourselves first a very big domain inside of which the

desired family of neighbourhoods will be found. There are many

ways to make this choice, and we are fixing on one that will

keep the notation simple. We have often used binary sequences

for examples and constructions, but for this example let us use

90

ternary sequences. Let 1:= {O,1.2} and let r'" be all finite

sequences from this three-letter alphabet. We will select

subsets of ';. for our neighbourhoods. As 1:. is countably

infinite, it is without much loss of generality to assume

that V is a neighbourhood system over f::,. where we take 6::: r"'.
Also without loss of generali ty we can assume 0lf l? (Why?)

We wi sh to find another set r =r'" to be the set of tokens for

the nell domain. After we find it, we will still have to say

just which XSr are appropriate for the structure we want.

The totality {X 1 X =:1:"'} is, as a powerset. isomorphic

to the set of elements of a domain: a point we have remarked

several times. So, by the Fixed-Point Theorem we know there

is a set rSI:· where

r=Ol>U1rU2r.

In fact r", U,2}· 06, because we can say:

{1.2}"={A} U 1l1,2J" U 2{1.2}"

The domain we are looking for will be found as a domain V§

over r. The reason for spli tting r up, as shown in the equa­

tion above, is to ensure that if X,YEV§ are two neighbourhoods

in the system V§, then 1 X U 2 Y has a chance of be ing also in

V§ because

1 X u 2Y Sr.

This will make V§)(V§ isomorphic to a part of V§. If we make

V also isomorphic to a part of V§, then all the iterated products

will be contained in V§.

\ll'hat is a neighbourhood system? Just a set of sets. But
p p ~" is a domain (as a power set) and because r ==!:., we find

v§eppr·

as an element. But elements of domains can often be defined by

fixed-point equations. Indeed we will introduce V§ this way:

V§ = {f} U {OX I XEV} U {1X U 2Y I X,Y E VI}.

The reader should stop to think why V§ can be immediately seen

to exist by writing such an equation. Of course another way

to describe V§ is to say it is the least family of sets containing

(i) the set r, (ii) the sets OX for X in the given system V, and

(iii) sets 1 Xu 2Y whenever it already contains X and Y (closure

91

•under a set-forming operation). By saying "least ll we mean

(iv) nothing else belongs to V§ except as allowed by (i)-CliiJ;

this mak.es the truth of the ,equation for V§ clear. So V§exists

as a family of sets, but what good is it?

By our construction of r. all the sets W'e put into V§

are subsets of r (why?) J so Vi has a chance of being a system

over r if we can check the closure under intersection. So

suppose Z~ XnY where Z.X,YEV§; we want to show XnYEV§. We

argue by induction on the number of steps required to put X and

Y into V§ by (1) - (iii). There are several cases.

If X '" r or Y = r, there is nothing to prove, because both

sets are subsets of r. We note that 0EfV§, because (i)-(iii)

cannot introduce Si' as a member of vi. So, if X~OA for AEV,

then Y must have this form also (if it is not r). because

OAn(1 BU2C) • 0

(That is, if Y had the form (iii). then Z II< 0 would be a consequence,

which is impossible.) Thus, if X'" OA for Ae V, then Y = OB for sane

BE V. But by the same reasoning Z "" OC for some CE V also. But

the relationship OC.sOAOOBis equivalent to C=.AnB. We see,

therefore. that A n BE V. and so

xnY- OAnOB- D(AnB)

must belong to V§.

The final case has X,Y.Z all of the form (iii):

x- 'A U 2A1 2

Y ;; 1B U 2B . and
1 2

Z:1C U2C
1 2

We can think of the Ai and B put into V§ earlier and the inter­i
section result as being already established for them. But the

relationship Z c X n Y is equivalent to C. cA. n B. for i;; 1,2.

Therefore Ai n ;i e V§. and so does 1. - 1. 1.

XnY-(1A UZA) n (1B1U2Bzl-1(A1n B,l U Z(A2 n Bzl1 z

92

We have now seen that V§ is a neighbourhood system~ but
why was it constructed that wa;? The reason is simply this
isomorphism (or domain equation):

V§~V+(V§xV§)

as can be seen by reference to the equation for V§ and the

definitions of + and)(. What are the elements of V§? There
is always

l' {f).

Next if xE IVI we define

x § • {f} U {a x Ix EX} •

That gives an isomorphic injection

Ax.x§: V~V§.

Then for x. y E I V § I we can define

<x. y> • {f} U {1X U 2 Y I X E X and Y E y).

We have another isomorphic injection

. I § §AX,y.<X.y> . V x V ... V •

Indeed by looking at the neighbourhood definition of V§ we con­

clude that the finite elements of V§ are exactly those that are

either of the form (i) 1, or (ii) a§, where a is finite in /Vl

or (iii) <a,b>, where a and b are previously obtained finite

elements of IV§ I.

Suppose a""J f are finite in lVI. We can picture the

elemer.t
§ I § § § §

u = «a , «b , c >, d ». <e J f »

in IP§I as a tree:

u

a e f

d

b c

93

Note that the tree has binary branching with the elements of

101 at the ends of the branches. Any such tree could be given

a notation as an element of IV§ I. The finite elements of

IV§I correspond exactly to such finite trees.

What of the infinite elements of IV§I? Are there infin­

He trees? Let a, be rV§j be any elements of IV§1. Since

palTlng is an approximable mapping, we can solve the fixed­

point equation

v;:: <a,<b. v».

In pictures we can diagram v roughly as:

v

a

a

etc.

The word is " roughlyll here. since if a or b were not in the IVI

part of IV§ I. then in the diagram the letters tra"and "bIT should

be replaced by the corresponding tree diagrams for a and b.

Suppose that a and b are finite. Then we can easily see

that the infinite tree v is the limit of the following sequence

of finite trees:

V = .i.o
v + 1 =<a.<b,v », and n n

00

V = v 'U

n=D n

94

The reader should think how to explain from tree diagrams the

approximation relation vn=v and more general such relationships.

We could call P§ a tree algebra over V. There may be

others. A general one is a structure of the fOTm

< E. ; n, pa ; r>

where

in:V ... E,and

pa;r:cxE ... E.

The algebra

<v §
J AX.X

§
, AX.y. <x,y» ,

however, is a very special one: it is "minimal" among all tree

algebras over V in a sense we shall have to make precise.

To do this think of how E and V§ can differ. In view of

the isomorphism ~hat V§ satisfies the injection of V and the

pairing are one-one, so no "information" is lost by these

mappings. The same may not at all be true of E. but it is

reasonable to think that at least we can define an approximable

mapping g : P§ -+ E where

(1) gU)-lE'

(2) g (x§)· in(x), fOT XE lVI, and

(3) g «x,y» = pa1r(g(x), g(y)), fOT x,yE IV§ I.

By what we said earlier, g will be uniquely determined by (1)-(3).

because these equations tell us exactly how to calculate g on all

finite elements of IP§I. An approximable mapping is a,lways

determined by its action on the finite elements. But why does

g exist?

It would not be too hard to give an inductive construction

of g as a neighbourhood relation, but a fixed-point equation is

easier to write down for the same purpose. We need, though,

to have the inverse ("predecessor") functions:

95

out: v§ .. 'o

proji: V§ V§, for i"'O,1,

where

outCx§) "" x J

projO«x,y» =x, and

proj,«x,y» =y.

We also need

atom:V§ .. r.

where
atom(x§) = true, and

atom«x,y» '" false.

We can then write

g (x) = can d (a t am (x) • in (out (x)) , pair (g (p r ojo (x)). g (pro j 1 (x)))) •

This g exists by fixed-point theory. and it satisfies (1)-(3)

by what we know about the structure of IV§ I. As we said, g is

unique because the values on finite elements are fixed.

In algebraic language g is a homomorphism of tree alge~

bras; and V§ is called an initial algebra, because for any tree

algebra E there is a unique homomorphism g : V§ -+ E We note at

once that any two initial algebras are isomorphic. For if 0* were

another, there would exist homomorphisms in both directions
between V§ anc V·. But the compositions of homomorphisms are

again homomorphisms, and in the case of V§ if we go from V§

V* and back to V§, the result must be the identity. The reason

is that the identity can be the only homomorphism of an initial

algebra into itself. We thus have a precise meaning of the

minimal character of V§. But note it still took a construction

to show that the domain V§ e:d8ts. 0

96

EXAMPLE 6,2. OUT staple examples Band C satisfy "domain equa­

tions" in the form of isomorphisms as we have previously seen.

Indeed

B~ B ... B. and

c '" {{A}} + C + C

where if we liked we could construct beth systems over {O,11*

and have

B={{O.1l"jU{OXIXEB}U {1XIXEB}. and

C= {(0 • 1l") U {{A}} U {O X I X E C } U {1 X I X E C } •

We leave to the exercises the explanations of what kinds of

algebras Band C are and why they are initial. Here we want to

propose a simple, yet interesting generalization of B.

Consider this domain equation

A::!! An + An

where An atands for the n-fold cartesian power of A. We can,
wi th the aid of some encoding solve this equation as a neigh­

bourhood system over {O,1}* as follows:

jA· {{O,1l"} U U { iU1 OX I XjEA all j<n} .
j

i=0,1 j<n

For instance, if n =. 3, then a typical neighbourhood in A is

something like

00X U010X U0110X ' O 1 2

where X ,X ,X E A. The first '0' could also be a '1' in frontO 1 2
of each of the terms.

In words. an element of A (other than 1) is an n-tuple of

elements of A: but there are two separate copies of these, the

left one and the right one. We can write for aE IAI

a'" :t<a ,a J." .a _ >.O 1 n 1

where + is chosen if a is on the right, and - if on the left.

As a tree diagram a might look like this for n'" :5 :

97

a +

~1 +

That is, a is an infinite ternary tree with + or - labels at
each node. If each node (subtree) is truly infinite, the eement

is total; if 1. is ever encountered, it is only partiaL; if every

branch ends with 1., the tree is a finite element of IAI.

What can be done with such trees'? Let aE {OJ1 •••• ,n-1}*

be a finite sequence of "digits" each less than n. We let
I={O,1 ••..• n-1}. We can define for aE IAI the operation o~aa

by recursion on 0:

a A '" a , and

aio;(3)0.
i

The 30 are just. the Bubtrees of a with 0" as a sel-ector. We also

have a map

pas: A ... T

where

pos(+<aO,a1, •• "an_1» "'true, and

pos(-<aO,a1 , •.•• an_ 1» '" false.

We say that a (total) tree a is eventually pepiodic iff the set
{ao ICE I·} is finite. The result is that the "language"

La ={crE 2:*1 pos (acr) =true}

corresponding to an eventually periodic tree is always a reguZar

event of automata theory, and every such language has this form.

In fact, a just represents the initial state of an automaton,

and acr represents the state after "reading" a tape cr. a

98

In order to formulate more generally the idea of a domain
equation and initial algebra, we must introduce a small amount of

the terminology of category theory. To be as specific as possible.
think of systems V over sets .6.~~. with E= {OJ1}, say. They form

quite an interesting category with respect to the approximable

maps f: V D'. Recall that to be a category of "domains" and

"maps" all that is required is an associative composition g" £

of maps with identity maps I: V V for each domain of the category.

And this we certainly have for the systems indicated. And
there are many other categories waiting around: for instanc~

restrict systems to those where ~ If V. This is not much of a

restriction, as every system is isomorphic to one like this.

Or restrict the maps to being the strict maps f : V V' where

f(1.V) =lV" This is an essentially different, though related

category. We shall find many others.

What examples 6.1 and 6.2 suggest is the notion of a

construct which makes new domains out of old. For example,

with V fixed, 6.1 suggests for any domain X over r=.r* a domain

T(X) • V + (X x X).

More specifically (converting from:E= {O,1,2) to ~ ~ {O,1»we

could write

T(X)' (r')" (OXIXEV) u (10Xu 1nIX,YEX),

where we have f' =O.6.U10fU11f. (By the way. here we definitely

want to assume Ii' Ef:V and ~ Ef:X and to get Ii' Ef: T(X) .) This construct

is an example of a functor, a notion that can be defined ab­

stractly on any category.

DEFINITION 6.3. A functor on a category (into itself) associates

with every domain X in the category another domain T(X)and to

every map

f: X Y

another map

T(f) : T(X) 1 T(Y)

99

in such a way that identity maps and compositions are preserved:

T(I X) • 'T(X)' and

T(g. f) • T(g) • l(f).

whenever f : X .. V and g : Y .. Z. 0

In the example from 6.1 we have not checked how the special
T is a functor. The hint is that whenever f : X .. Y. then there

is a map

fxf:XxX VXV.

But there is also a map

1 + f)(f :V + (X)(X) .. V + (Y x Y)
0

and this suggests the definition of Tef). The details are left

to the exercises~ Note that the map Tef) just suggested is al­

ways strict. so T is a functor also for the category of strict

maps.

One good reason for a little of the category-theoretic

language is that the next definition becomes very neat indeed.

DEFINITION 6.4. A T-tItgebra is a domain E in the category to­

gether with a map

k: T(E) ~E.

If m: TeF) .. F is another T-algebra. then a h()m()m()~phism is a map

h : E .. F in the ca tegory such that the diagram

k
T(E) _ E

T(h) h1 1
m

T(F) _ F

commutes; that is. the equation

h • k • m • T(h)

holds. 0

100

In our example from 6.1 a T-algebra is astrict map

k: V + (E x E) ~ E •

But such strict maps are in a one-one correspondence with pairs

of (not necessarily strict) maps

n : V -+ E and p: E x E ... E

And the structure <E,n,p> is what we called a tree algebra.

Definition 6.4 just makes this abstract. The reader should also

work out the details showing that 6.4 I 5 definition of homomor­

phism is just what we ought to expect.

Note that the T-algebras and homomorphisms form a cate­

gory. (Why?) The following definition is so abstract that it

could be given for any category.

DEFINITION 6.5. A T-algebra is initiaZ if and only if there is

a unique homomorphism from it into any other T-algebra. 0

The word l1 o ther" here is not meant to imply "distinct".

For an initial algebra there is one and only one homomorphism

into itself: the identity map. As we already indicated in 6.1

it is a general fact that the next proposition holds.

PROPOSITION 6.6. Any two initial T-algebras are uniquely iso­

morphic. 0

Slightly more interesting is the behaviour of T on initial

algebras.

PROPOSITIDN 6.7. If i: T(V) -+V is an initial T-algebra. then so
2

is T(i): r (V) -+T(V) and i is the isomorphism from T(V) to V.

Proof: Clearly since T is a functor. the map T(i) has

the right mapping character to make T(V) a T-algebra. Since

V is initial, we have a commuting diagram:

101

i > vT(V) -1T(j) I
v T(i)

T2(V) -->T(V)

But we also have the trivial diagram:

T(i)
T2 (V) -->T(V)

T(i) I I i
v i v

T(V) --> V

It follows that i ~ j is a homomorphism, so

ioj=I V'

But then because T is a functor we find:

T(i) T(j) '!T(V).0

and, since j is a homomorphism, we have

joi·!T(V).

This shows that i is an isomorphism. 0

From 6.7 we see that if we are going to have initial alge­

bras at all we have to satisfy the domain equation

V~T(V).

But generally that is not enough to assure that V is initial.

There is a condition that our functors satisfy. however, which

guarantees the existence of homomorphisms.

DEFINITION 6.B. On the category of domains and strict approxi­

mable maps a functor T is continuous on maps if for any systems
V and E the induced mapping

Ai. T(f): (V~.l E) ~ (T(V) ~.l T(E))

is approximable.

102

THEOREM 6.9. If the functor T is continuous on maps and if

V:!! TeV), so in particular V is a T-algebra, then for any T­

algebra k: TeE) .. E there is a homomorphism h : V -to E.

Proof: Let i: T(V) V make VaT-algebra, where

j : V ... T(V) is the inverse so that i is an isomorphism of domains.

Suppose that k : TeE) E is any T-algebra. A homomorphism

h : V E would satisfy

hoi = k 0 T(h) •

Rewrite this equation as

h=koT(h)oj.

In the domain of strict maps (D E) this is a fixed-point

equation for an approximable map

Xh.koT(h)oj

by our assumption on T. Thus, the desired homomorphism exists. 0

The final question we have to answer is why in our cate­

gory the minimal V exist. The reason is that the functors T

that we have in mind possess further continuity properties on

domains. This is conveniently expressed in terms of a notion

of "subdomain tl

•

DEFINITION 6.10. For two neighbourhood systems V and Ewe

write

V<lE

to mean that these are neighbourhood systems over the same set

of tokens ..6. and not only is V £ E but whenever X2 y E V and

X n Y E f) then X n Y E V. 0

For the subdomain relation V <I E to hold, V has to be a

smaller family of neighbourhoods, but the notion of consistency

in V also has to be the same as in E. Note that if V <J E
o
and V <J E then1

103

V q V iff V	 S Vo 1 o 1

It is also easy to prove that the union of a directed family

of subdornains of E is again a subdomain. As a consequence of

this remark 'We have:

PROPOSITION 6.11 For a given neighbourhood system E. the set

of subsystems

(VIV<JE)

forms a domain in its own right. 0

The subdomain relationship implies a mapping relationship

between the doma ins.

PROPOSITION 6.'2. If V<JE. then there exists a projection pair

of approximable mappings:

i : V ... E and j : E ... V

where j " i::: IV and i "j S IE' which are determined as elernent­

wise	 functions by these equations:

i(X)={YEEI3XEX.X~Y}, and

j (y) = y n V.

for all xE IVI and yE lEI. 0

The proof is left for the exercises.

DEFINITION 6.13. A functor T is monotone on domains iff whenever
V<J~.then not only do we have T(V) <JT(E) but the projection pair

i, j of 6.12 is mapped to the same kind of projection pair T(i),

TCj). A monotone functor is continuous on domains iff whenever

E is a domain, then the mapping

,V. T CV) : lV I VoolE) ~ lV' 'V' <JT(E)}

is approximable. 0

104

~e can now state an existence theorem that covers in

fairly wide generality the examples of this lecture.

THEOREM 6.14, If the functor T is continuous on maps and

monotone and continuous on domains, and if there is a set r
such that

{r} <l T {{rl},

then there exis ts an ini t ial T-algebra.

Froof: We proceed as in the proof of the fixed-point
theorem by iterating the functor. The assumption about r

means that, as a neighbourhood system, T({r}) is a system oyer
the sal1!e set r. Thus, if we iterate T to form TnC {I'}). all

these systems are over r and indeed

T"{{r)} <lTn +1 ({rl}

for all n. We can thus introduce

00

V = UTn {{r l} ,
n=O

and it is easy to check that V is a system over rand

T" ({rl) <lV

holds for all n. But then we have for all n:

T"{{r}) <IT''+I({r}} <l T(V},

which imp! ies V <I T CO) • But T is continuous on domains. so

T(V} = T(oT"({r}}}
n"'O

00

U T"+1 ({r))
n=O

V •

105

Thus, not only is VaT-algebra. but the isomorphism we get

for D and T(V) is just the identity mapping. We know by 6.9

that homomorphisms exist; what remains to show is that homomor­
phism from '0 are unique. As in the examples, we will show in

effect they are determined uniquely on the finite elements of V.

Since each Tn((r}) <iV, there are projection mappings

i : Tn ((r)) ~ D and j ; D ~ Tn ((n) .
n n

Define P : V ... 'O by P '" in I> in' Projection pairs are alwaysn n
pairs of strict mappings (Why?). and so are in the category.

By assumption and 6.13, the functor T preserves these maps, so

we have

T(Pn) :: Te i n) I> TUn) '" i n + l I> i n+! = Pn+l

As a neighbourhood relation Pn can be characterized by

XP Y iff 3zeTn((r}). XSZSY.
n

We thus see that Pn~Pn+l and

U On = IV'
noD

Now suppos e k: T(E) -+ E is any T-algebra and h : '0-+ E

is a homomorphism. The mapping will satisfy the fixed-point

equation

h = k T(h).0

where no other mappings need be written in because '0= T(O) and so

T(h) ; D ~ T (E) •

We wish to show that h really is the least fixed point of this

equation.

Define h = h " On : V -+ E. For n = 0, the map Po is the n
trivial map where 0o(x) =.i for all xE 1'01. But h must beV
strict, so hO(x) =.i for all xE IV!; that is, h is the least

E o
element of IV-+l.E I. Now calculate:

106

k T(hnJ k 0 T(h) 0 T(P)0 n

h " 0n+l

hn + 1 .

This shows that the union of the h is the least fixed point of n
I.h.koT(hJ. But

00 00

Uv Uh" On
n=O n=O

00

h" UIOn
n=O

hoIV=h,

so the given h is in fact the least fixed point. The homomor­
phism is uniquely determined, and V is the initial T-algebra. 0

Having the existence of initial T-algebras. we can prove

one more result that shows just how minimal they are. We need

a lemma about projection pairs. first. that shows where 5uh­

domains fit it. We write V:;gE as ShOTt for '0 2!! '0' for some

'O'<JE in the following. The lemma gives a converse to 6.12.

LEMMA 6.15. For two neighbourhood systems f) and E. if there

exist a projection pair

i : V .. E and j : E .. V

with j oi=I V and ioj£IE. then V';lE

Proof. What we want to show is that i maps £inite ele­

ments to finite elements, and that the desired V' is the image

of V in E.

Suppose Xe V. We can write:

i(tX) = UltYIYE i (tX)}.

Applying j to both sides we have:

107

tX=joi ('X) = U{j(,y) lYe i('Xl)·

But then, since XE t X, we find Xe j (+ Y) for some ye i (+ X).

This implies

t X ~ j (+ Y) ; and 50 i (t X) ~ i CI j (+ Y) stY.

Since t Y s:: i (+ X) in any case, we conclude i (+ X) '" +Y. This

proves finite e1ements are mapped to finite elements.

What of..6.; that is, what is i (+ ..6.)? We find, supposing

E to be a neighbourhood system over a set ..6.'. that since

+A sj (tA'), then i (tA)stA' and so i (tA) =tA'. This means

that A corresponds to A'. So we have established that V is in an

inclusion preserving one-one correspondence with a subset V' of E

'Where A' E V'. But it remains to show that V'is a neighbourhood

system and that V' <J E holds. All we really have to show is that

V'is closed under intersection whenever the intersection belongs
to E.

Suppose Y', Z'ED' andY'nZ'EE. Let X'",Y'nz'. We have,

for suitable Y, Z EV,

i(+Y) =+Y', and so +Y==j(+Y'); and

i{+Z)==+Z', and so tZ=j(+Z').

ButtY' s; +X' and j (+ Y') =: j (+ X'); thus Y E j (t X'). For

similar reasons ZEj (+X'). But then X=YnZEj(+X'), and

therefore Y n Z E V. (The element j (+ X') must be a filter.)

Notice, however. that

t Y s; + X, and so + Y' £ i (+ X) ; and

tZstX, and so +Z'£i (+X)

It follows that 'Y'n Z' == X' E i(+ X). On the other hand we already

knew XE j (+ X'), which implies i(+ X)::. + X'. We may thus con­

clude that i(+ X) = + X' In other words X' E V'. 0

108

THEOREM 6.16. If on the category of domains and strict approxi­

mable maps the functor T is continuous on maps, and if V is an

initial T-algebra, then for any system E~T(E) we have V'$IE.

Proof: There is a homomorphism h: V ... E. By 6.9 there is

a homomorphism g : E V. Now g "h : V -+ V is also a homomorphism,

so g" h:: IV because V is initial. In view of 6.15, all we have

to prove now is that h " g S IE'

Let the maps i : TeO) -+ V and j : V ... TeO) give the isomor­

phism for V, and let u: T(E) ... E and v: E ... TeE) do the same for

E. By the proof of 6.9 we know

g = i " T(g) "v and h = u " T(h) " j

and each of these maps is the least fixed point of its

respective equation. Let

go= ",~v and hO="v ~ E

and define by recursion

E ... != i" T (En) "v and h +1 = u" T (hnJ "j.n n

By the fixed-point calculation

g = 0 gn and h '" 0 hn ·

n"'O n"'O

Now we see that

h O 0 go lE ... E'

and for each n that

h +l " gn+l "'U" T(h) .. j .. i c T(gn) .. vn n

'" U (I T(h) (I T(gn) .. v n

'" U .. T(h c gn) .. v. n

But this means that
~

h .. g '" U(h 0 g)
n n

n"'O

is the least fixed point for the equation

k=uoT(k)ov.

But IE is one of the fixed points; whence he g.::: IE must follow. 0

109

EXERCISES

EXERCISE 6.17. What are the algebras for which C is initial?

If A of 6.2 is a generalization of a, what is the corresponding

generalization of C? Prove that it exists and explain what aTe
the algebras involved.

EXERCISE 6.18. With reference back to Exercise 3.16 discuss the

construction of V'" as an initial algebra and as a solution to

the domain equation

vOl> <!! V X V"" •

(I do not know whether all solutions must be of the form V'" x E.)

EXERCISE 6.19. For the sake of uniformity restrict attention to

systems Von sets a={O.n*, where Ae1::J.. and ~lfV. and to the

category of strict maps. Define sum and product by:

Vo + V1 ((A}UO"OUO"1) U (OXIXEVo }U{1YIYEV1 1.

V x V { (A) U 0 X U 1Y I X E V0 and Y E V1 }.o 1
Are these correct up to isomorphism? Now generate all con­

structs T(X) formed by the constants (that is, 1'(X) = V for a

fixed V), by the identity (T (X) = X), and by sums and products

(TO(X) +T (XL etc.) Show that these are all functors, contin­
1

uous on maps, and monotone and continuous on domains.

EXERCISE 6.20. For any system V let tok(V) be the underlying

set of tokens, so that V is a system over tok (0). For the

category of Exercise 6.19 show that the function

"f. tok{T ((O))

is continuous on the domain {rS {O,1}·!AEr}, where T is any

of the functors generated in 6.19. Conclude that there must

exist a set

f: tok(T ({f})) •

so that {r} <l T({rn J and so 6.14 applies.

110

EXERCISE 6.21. Do the same as 6.19 and 6.20 when the functors

are also allowed to be generated by the operations:

Vo" V • ({A)uoa uta) u (OXI XEV ' (a)) u (1YIYEV ' {~1))
1 o 1 O O 1

V 0 '" V1 • ({A)UOaOU 1a
1) U ({A}UOXU1Y I XEV 0' laO) and YEVl' {a)) •

1

Generalize all of +, x. EEl, Q to combinations of several terms,

not just the binary sums and products.

EXERCISE 6.22. Comment on these domain equations:

N"'{(O).{O.A)) .. N.

M'" ({A)) + M.

N+"'N III (N",N+).

EXERCISE 6.23. Construe the initial solution to

Exp ~ N .. «(E,p x E,p) + (E,p x E'p))

as a "syntactical domain" of e.rpreSSi01'lB generated from infin­

itely many "variables" by means of two binary "operation symbols".

Given an algebra V with two operations

u : V)(V ... V and v : V x V ... V

show how any strict map 5 : IJ V determines a unique map

vales} : Exp O

that can be regarded as the "evaluation of an expression".

EXERCISE 6.24. Show that there must exist domains satisfying:

V:!! V + (V x El. and

E:!! V + E.

by using a double fixed-point method. First decide what the

underlying set of tokens should be, and then define V and E

by simultaneous fixed points. (Syntactical domains as in 6.23

may very well require several simultaneous equations.}

111

EXERCISE 6.25. For a projection pair g: D E and h: E... V

show that for xE 1'01 and ye lEI we have:

g(x)SY iff xSh(y).

Thus, conclude that:

hey) = U{x E IVllg(x) Sy}. and

g(x) = n{yE IEllxSh(y)}.

for all xE 1'01 and ye lEI. So each of the functions determines

the other. In the first equation check that the set on the
right is directed, and in the second equation that the set on
the right is non empty. Prove also that g maps consistent sets
to consistent sets and preserves U (not just directed unions).

EXERCISE 6.26. For systems D as in 6.19 define

V~ = {{A} U Oll} U (OXIXEV).

Describe the construct in terms of elements. Is this a suitable

functor? Prove that

Dl.EElEl.::!!D+E.

What is

Dl.@ fl.!:!"?1

EXERCISE 6.27. Which of the following relationships are true:

(V.H) ;J (Vx E) D:9VxE

(V EB E) ;J (V + E) V;JVEBE

(V ~~ E) ;J (V~ E); O;JVllH ?

EXERCISE 6.28. (Suggested by G. Plotkin). Show that if V and E

are finite systems and

V:jE;JV

then V2! E. Need the same be true of infinite systems?

112

EXERCISE 6.29. Generalize + and x to infinitary operations on
domains:

= =
L Dn

and IT Dn
n"'O n ;0

Would a similar generalization be possible for Etl and e ?

113

LECTURE VII

COMPUTABILITY IN EFFECTIVELY GIVEN DOMAINS

For the domain N the strict functions from N into N, the

strict maps f: N ... N ,correspond exactly to the partial functions

g: W lN (as we wrote in 5.6 we had f = g). For such functions

there is a standard theory of computability: g is called comput­

able if it can be defined as a partial recursive function with

its "program" written down in a certain standard form. The

non-strict maps h: /oJ ... N are all constant, and so are intuitively

computable; so we know all about computable maps in IN N I in

general. The question is: what are the computable maps on

(elements of) other domains?

The answer will of course depend on how the domain is presented

to us. Even with N. there are continuum many isomorphisms n:,IJ ... ~

of N onto itself, not all of which can be computable. That is, if

we permute N and, so to speak, present t-he integers in a different

order, then a well-behaved computable function f : N N may "'ell

be trans formed in to a non-computable func t ion,

n 0 f 0 n -1 : N N.

(Hint: Consider the characteristic function e of the even numbers.

Take f "'" e and let n be very horrid.) The reason we imagined we

knew which were the computable f: N .. N is that 1J is always thought

of in a standard presentation. We must thus define "in general"

a concept of an effeotivel.y given dol1t1in. that is to say. one with a

sufficiently computable presentation to represent the additional

knowledge about the domain.

The main idea will be that the finite elements of IDlshould

be regarded as the ones initially known. Abstractly, to know a

finite element is to know how it is rel.ated to other finite elements.

114

Of course, this will mean that we will allow at most a countable

infinity of finite elements - but this restriction well accords

with intuition. To make precise the terminology "related to"

it proves most convenient to go back to the neighbourhoods (in

any case they are in a one-one correspondence with the finite

elements) •

DEFINITION 7.', A neighbourhood system V has a r:omputabLe

presentation provided we can wIi te

V' {XnlnEJNJ,

where the following two relations

(i) x n X X ; and n m k

(ii) 3kE}l. Xk~Xn and Xk!;Xm

are recursively decidable (in integer indices fl. m, k and in

n, m. respectively). 0

More strictly the sequence,

<X > m
n n==O'

is the presentation. Even more strictly. when it is required to

cope with infinitely many domains at a time, it would be neces­

sary to gi,ve the actual GBdel numbers of the recursive relations

(i) and (ii) (rather than just saying there exists some way of

showing them to be recursively decidable).

The intuitive idea of 7.1 is that the system is effectively

given if you know how to do elementary "calculations" with neigh­

bourhoods. The basic calculations are the forming of inter­

sections. The neighbourhoods have to be laid out in a systematic

way; and, if we are asked for an intersection of two given

neighbourhoods, we have to be able to locate it in the standard

sequence. Relation (ii) is the consiste~y conaition ,which is the

necessary and sufficient condition for the intersection to exist

in V. When (ii) is true. therefore. we have only to try k=O,1,2 •

.•• until we discover that we have found the intersection. We are

115

assuming that these basic decisions can be carried out in

"finite time". Note that the obvious biconditional,

X SX iff X n X :: X ,
n m n m n

assures us that the inclusion relation between neighbourhoods is

itself decidable in terms of the indices. So in (ii) if k exists,

then it {or the first one) can indeed be found in finite time.

The rub is that if it does not exist, no finite number of inclusion

checks will determine that fact. That is why we have to assume

that (ii) is always decidable. The information contained in

(ii) is a fundamental part of the neighbourhood structure. (An

axiomatic characterization of neighbourhood structures is

given in Exercise 7.13.which may make clearer what we are

assuming and what a presentation is.)

DEFINITION 7.2. Given two recursively presented domains,

v = IX InE IN) and E = Om I mE IN) , n

an approximable mapping f : V E is said to be compu.table iff the

relation

x fYn m
is recursively enumerable in nand m. 0

The question to ask first is why .trecursively enumerable"

rather than "recursive tl ('=' tlrecursively decidable tl)? The answer

will become clear when we let V degenerate to the one - element

domain, V'=' {tt..}. Then what we are considering is merely a single

element

y = f (I "}) E I EI •

Therefore, 7.2 incorporates the notion of acomputabte eZement of a

domain. And the condition reduces to the statement that the

filtel' yE lEI is such that the set

ImElNlYmEy}

is a recursively enumerable set of integers. The point is that

the elements of I E I are finite or infinite. If y were finite,

the set of indices above would indeed be recursive in view of

116

OUT assllmptions on E. But an infinite element can in general

only be approximated "a little at a time". We cannot expect to

know the whole story of its approximations in a flash. What it

means to be recursively enumerable is that there is a primitive

recursive function (hence, a totaL function) J r: N -+:N. such

that

y=IYr(i)1 iEN}.

That is to say, aU the approximations to y can e'lJen-tuaUy be

listed. In the case of the mapping f we could write

f=((Xs(i)' Yr(i) lliEN),

for a suitable pair of primitive recursive functions 5 and r.

Definitions 7.1 and 7.2 may very well irritate the person

hearing them for the first time: instead of explaining com­

putability in direct terms, the whole question is thrown into

the lap of reCursion theory: There are several answers. "You

have to start somewhere" is one thing I always say. Recursion

on the integers is a well-understood theory. and we shall not

need the refined parts of the development. fortunately. In any

case, our definitions apply to rrany domains of qui te different

structure, not just to the domain N. And the next step we shall

take is to show how to build up computable functions (and also

effectively given domains) from simpler ones. Thus. often it

will not be necessary to go"back to the seemingly over-precise

definitions involving the indices but to appeal to some broad

general principles.

PROPOSITION 7.3. The identity map on an effectively given domain

is computable; the composition of computable mappings on effect­

ively given domains is again computable. 0

The proofs for 7.3 are so trivial they are hardly worth an

exercise. Note the immediate and useful consequence: if

f: V E is computable and xE IV! is computable. then f(x) E lEI

is also computable. The next result is, however. worth working

out eVen though it is quite easy.

117

THEOREM 7.4. 1£ VA and '0 are effectively given, then so are
1

(V + V,) and (V xV).o O 1

Moreover the combinators in and out and prOj~ are all CO~­i i
putable; further if f and g are computable maps. then so are

f + g and f x g.

Proof: Let the computable presentations be given as:

Vi={X~lnEW}.

We can assume that the sets of tokens dO and d1 are disjoint

and (/J(f Vi' Then the construction of the sum is just

V 0 + V,= {"o u",) U V0 u V, •

As an enumeration we define for nEW

Z - XO 1
Zo = "0 U ", ; 2n+1 - n Z2n+2 '" Xn

We leave as an exercise the check of 7.1(i)-(ii).

For the product we want:

Vox V1 '" {Xu
o

U X
, In. m E :N}m

What e then need are recursive functions p: :IN ... :N, q: W .. :N ,

and r:]'oJ x W ... }II where for m, n, ke :Nwe have:

p(r(n, m)) • nand q(r(n, m)) = m, and r(p(k), q(k)) = k.

Thus r is a "one-one pa1Tlng function"; there are many ways

to find such functions (see Exercise 5.13). We can then define
for k E :N :

o ,
Wk = Xp(k) U Xq(k)

Again we leave as an exercise the check that this provides a com­

putable presentati.on of Va x V1 ­

As for the combinators. the neighbourhood relations have
to be worked out in terms of the indices. For example

XO ina Z iff either m = a or for some k n m
o 0

m= 2k + 1 and X =Xkn

Wk proji X~ iff X~(k) £ X~

The reader needs to check that these are recursively enumerable

118

relations in the indices. For this purpose it may be conveni­

ent to recall some closure properties of these relations:
taking conjunctions, disjunctions, substituting recursive

functions, applying an existential quantifier to the front. 0

Products give us a way of providing an immediate meaning

to the notion of a computable function of several variables.

Note that the proof of 3.7 is "effective" and shows that

substitution of computable functions of several variables

into each other always gives computable functions. We turn

next to the function spaces.

THEOREM 7.5. If Va and '0 are effectively given, then so is
1

(V ~ P1)' The combinators eva' and curry are computable.

O

provided all the domains involved are effectively given. The

computable elements fE 1'0 -+'0 1 are exactly the computable maps
0 1

£:OQ<V"

Proof: The proofs of 3.9. 3.11, and 3.12 were set up with

this theorem in mind. If

Va' {Xn!n E N} and V1 = (YmlmE N)

are two effectively given neighbourhood systems, then the

neighbourhoods of (Va -+ '0), by Definition 3.B. are non-empty
1

in tersections like

n [X , y l ,n mi ii<q

where <nO' n •..• n and <rna, m ...• m _ are two finite1 , q_1 > 1 , q 1 >

sequences of integers determining the choice of the function-space

neighbourhood. In 3.9(i) the test for nonemptiness is given.

Assuming the decidability of relations in Va and '0 1 ' one remarks

that the consistency of finite sequences of neighbourhoods is also

decidable. (Hint: Test the first two, then form their inter­

section. Next test the third given neighbourhood against this

one set; if consistent. form the intersection. and carryon.)

By 3.9(i) at most 2.2 q such sequential checks must be carried out

to determine whether the function-space neighbourhood is non empty.

•••

119

It may not be fun. but the checks can be carried out in finite

time. Owing to this decidability. we can therefore enumerate in

a systematic way aLL the pairs of finite sequences <nO""> and

<rnO J > that de termine neighbourhoods: tha t is the way tna t

(DO V,) obtains its enumeration.

Concerning the decidability of the required relations on

(Va ... °), we remark first off that consistency is more of the
1

same: to test two finite intersections against each other, just

form one big intersection and test it for non-emptiness as

before. Secondly, the testing for intersection comes down in

the end to testing one typical intersection of [X. Y] - neigh­

bourhoods for equality with another. But equality amounts to

two inclusions; inclusion in an intersection amounts to inclusion

in each term. Therefore. what we need to do is to check a finite

number of statements of the form:

n[X .• Y] S [Xk , Ye].n m
1<q 1 1

As we pointed out after the proof of 3.9. this inclusion is

equivalent to

nrYm.IXk S Xn . } S Ye·
1 1

By decidability in VO" we can effectively find the that aren i
needed. Then in V we form the intersection of the correspond­

1
ing Y • Finally ~ we check the inclusion. Again. one check in mi
(V V,) requires a whole sequence of checks in Voand in V" buto
the process is fini teo So we have argued that (V o V) is1
effectively given.

In showing that the combinators are computable, we refer

first to the proof of 3.11. The typical pair of neighbourhoods

possibly belonging to eval is

.n[X .• Y .] UXk eval Y{.
n m

1<q 1 1

As we needed not to be so specific. we expressed the holding of

this relationship in terms of aU the functions in the function­

120

space neighbourhood. But we know that the neighbourhood, by

3.9(ii), has a minimal element; it is then sufficient to test

for the holding of X f 0 Y! at this minimal function f O' Butk

this test, we have already seen, is decidable. So the pairs in

eval actually form a recursive set, not juS! a recursively enum­

erable set; thus, eval is a computable function.

The case of curry involves three domains and is a bit more

messy. But again, if the required neighbourhoods are written out

in full, it will be seen that currY,tOa,is computable. We leave

this minor struggle to the exercises.

The final statement is an easy consequence of the fundamental

connection between approximable f : V ~ V as relations and aso 1
elements. Recall, as in the proof of 3.10, that we have

fE [X, YJ iff X f Y.

for all XE V and YE V • Therefore,o 1

Y 1 iffvi<q.X fYfE n [Xn .' m· n i ml<q 1 1 i

It follows that if f is recursively enumerable as a set of pairs,

then, by forming all the non-empty intersections (as shown), we

get an enumeration of all the neighbourhoods to which f belongs;

and this is the same as the filter corresponding to f as an

element of the function space. The converse direction is clear. 0

We have nearly all our favourite combinators computable,

but perhaps the most important one - since it is the key to

recursive definitions - is the fixed-point combinator. It is

not left out.

THEOREM 7.6. For any effectively given domain 0, the combinator

fi x : (D ~ V) V is computable.

Proof: Referring back to the proof of Theorem 4.2 and

thinking of

V={Xn[nE!'i}

as effectively given. fix as a relation Comes down to

121

nIXn.'Xm] fix X.e. iff for some finite sequence
l<q 1 1 .6,;Xk J ••• ,X);: =-X!

a p
we have, for each j<p,

n (Xm.IXx . '" XnJ'" Xx. 1
1 J 1 J +

Inside the "for some finite sequence" all the checks are decidable

by assumption on D. But the existential quantification of a

decidable predicate always gives a recursively enumerable predicate.
(And, as there is no implied bound on the she of the finite sequence

'We are looking fOT. this really is an enumerable set and not

generally a recursive set.) 0

The major consequence of what we have done up to this point

concerns typed h - calculus. Any expression involving onlY~ffect­

ivel.y given types and, perhaps, some basic computabl.e constants using

only the A. : -notation defines a computable function of its free

variables. And such functions applied to computable arguments

give computable values. And such functions have computable least

fixed points. Et:c .• etc. In a definite sense then we have in the

"metalanguage", as people say, a quite precise and fully nnthennt­

ical. progranrning language for defining computable operators. It is

not a machine implemented language,but it is a mathematically

well-defined and easy-to-use language. And when we combine the

usual type-de fin i t:ion faci Ii ty together with domin equations J we

have an especially powerful language.

PROPOSITION 7.7. For any effectively given domain V, the domain

V§ is also effectively given, and all the combinators of

Example 6.1 prove to be computable.

Proof: This proof is essentially an exercise. but it is use­

ful to have an easy-to-grasp example. Indeed, to make things

easy to reason about, we can assume that V is a system over !J.:::::N

and that in the presentation where

V={Xn!nEll),

the relation k E X is recursive in lc and n. (It is worth .thinking
n

why this is so.) Of course, a lot of other things are recursive

also.

122

Now what kind of a system is V§? The cons t ruction of

6.1 made it a system over a certain set of strings r. FOT

the sake of checking various assertions about computability,

we are transposing everything back to :IN. (These are all denum­

erable sets in any case.) The set r is divided into three equally

big parts, and "':e can do the same for~. Let us write for any

m, kE}J and subset Xs:!N: mX+k; {m.n+k I nEX}.

Then by splitting the integers modulo 3 we have:

IN =3I'1u (3lN+ 1) U (3lN+2),

and this equation is quite analogous to that for r. We then

propose this definition for V§

VI=llN}U 13XIXEVlu{(3X+l) U (3Y+2)IX,YEV§),

but this does not make the enumeration of V§ all that obvious.

This is one way to do it:

V = IN V 2n+1 = 3Xn V2n + 2 = (3V (n) + 1) U (3V (n) + 2).o p q

Here p and q are the inverse of the pairing functions mentioned

in 7.4 They must be chosen so that p(n)"'n and q(n)"'n for

all n E l'i. Thus, in calculating V where k = Zn+Z we will bek
uSlng \p(n) and Vq(n) where both subscripts are strictly less
than k, This observation is required so that mE V is going tok
be a recursive relation. What we claim is that

V§ = IV I kElN).
k

It should be clear that everything on the right belongs to V§
What needs an inductive argument is that everything in V§ is

eventually of the form Vk • But this should be fairly obvious

OWing to the properties of r: :IN x:IN ++:IN.

The reader also has to check that 7.1(i)-(ii) hold for

the Vk, The idea is that any such check is either (1) trivial, or

(2) something already assumed about V and the X , or (3) can n
be thrown back to some sets V with strictly smaller subscripts.m
Therefore, the checks will give an answer in finite time accord­

ing to an effective reduction.

Next for the combinators. we have to translate neighbour­

hood relations into relations among integer indices. A selec tion

of examples must suffice.

Xn(AX.X§) Vk iff VZn +1 =Vk

123

V proj V iff k =: 0 or 3nE:N. m=2n+2 and V () c Vkomopk n -

The reader should write out other cases. 0

EXAMPLE 7.9. We have often made reference to the powerset PlN

as a domain and we should check here that it is effectively

given. One easy way to see this is to note

p N ~ IT"",.

The (slight) trouble with P:IN is that we usually think of it
in terms of el.ements rather than neighbourhoods. Going back to
Exercise 1.16, we can argue that the neighbourhoods of PW are

ordered not like the finite sets of integers but in the partial

ordering eonvel'se to that. But this is of no trouble, since

all will be decidable. What we need first is an enumeration

of all finite sets of integers. We can do this by:
k . k . k+l

En = {k I 3 i. j . i < Z and n =: 1 + 2 + J • Z } •

The idea is tha t kEEn means that the exponent k does occur in

the binary expans ion of n as a sum of powers of 2. All finite

subsets of :N are of the form E • We then find that as a

n

neighbourhood sys tem

(P:I') • (N \ En I n EN) .

As the relationship En U Em = E is recursive, there is no troublek
in proving that this is a computable presentation. In this

system, of course. any tloiO neighbourhoods are consistent. Various

combinators on PlN are suggested in Exercise 7.23. 0

We end this chapt er wi th an example of another kind of domain

construct. This construct is known as the smyth Power Domain. It is defined

for any neighbourhood system V and resul ts in a new system we

shall call here lP V. The elements of IP V behave rather like

sets Of elements of V, but since our elements can be either partial

or total, there are certain dangers to pushing the analogy too

far. For some purposes a rival construct called the PZ.otkin Power

Donuin is better, but it leads outside the category of neighbourhood

systems as defined in these lectures. Do not confuse PW with
JP V.

124

DEFINITION 7.!. Let V be any neighbourhood system and define

If' V = {U (+ X.) I ~ i < n. X. E V} •

i<n 1 1

We recall that for any XE V

+X = {Y E V I Y S; X} •

The finite unions in PD can be empty (i.e. if 0=0). 0

Formally, the system lP V is just more or less the closure of

V under £ini te unions; however. this would not be an isomorphism­

invariant construct unless V is "prepared". The preparation

consists of replacing V by the isomorphic domain

V+={+ xlxEV}.

(In this connection refer back to Exercise 1.20.) We remark that

.. X n. Y:I= rp iff (X, Y} is consistent in V,

and in that case

+X n .j. Y +(xnY).

PROPOSITION 7.10.The power domain lP V is a neighbourhood system

if V is, and it is effectively given if V is.

~oof: The system V+ is a neighbourhood system as we just

remarked; indeed it is a positive neighbourhood system. It is

easy to prove that the closure of any positive system under finite

unions is a neighbourhood system, because the resulting family of

sets is closed under an finite intersections. (If we left out

the empty union, the result would be a positive system.) The

proof is obvious since intersection of sets distributes over

finite union. So P V is a neighbourhood system.

For the second half of the proposition, we just have to

constructivi2ethe preVious argument. Thus, if

V = (XnlnEN),

then the elements of 1P V can be written as:

U (Un.),
l<q 1

125

and hence aTe indexed by the finite sequences <nO' •. '. n _ >
q 1

of integers. Now one of the standard devices of recursion theory

is to put the finite sequences of integers into a recursive ane­

one correspondence wi th the integers themselves. This is the

start of the recursive presentation of 1P V, since it means we

can list effectively all the required neighbourhoods.

Next consider an intersection

I I UX) n U (+X)	 U<e Xn . n Xm.l
~q n

1 j<T mJ	 l<q 1 J

j <r

Some of the terms which are ¢ have to be thrown out - but this

requires only a finite number of decisions all computable by

assumption. Now we have to rewrite

Xn. n X . = Xk ..•
1

m
J 1 J

but the finding 0 £ is also computable. FinaUy. we have tokij
re-order the doubly indexed sequence into a singly indexed sequence

of length q.r. but this is easily seen to be computable also.

Therefore, intersections can be "calculated".

It remains to be shown that equality between neighbourhoods

in lP V is decidable. The question really comes down to deciding

something 1 i ke:

i- Xk S U+X ..n
i<q ~

Now since X e +X • we find that the above is just equivalent to:
k k

3 i < q. Xk £ X .
 n
1

By our assumptions on V, this is decidable. (It is this part of

the argument that required the passage to V+. It does not seem

to be generally true that the closure under finite unions of

an effectively given system is again effectively given.)

One of the main reasons that lP V is like a power domain is

the possibility of forming "finite sets".

0

126

DEFINITION 7.11. For elements x ' .•.• x _1 E IV' we defineO n

{x O' ... ,xn_1)=(ZEIPVI3XoEXo···3Xn_1Exn_1	 .UCHi)SZ}.
l<n

(Note, we could also wyite vi < n,X E Z). 0
i

PROPOSITION	 7.12. The mapping

)., x O' ••• J x	 _ {x •..•• x _ }: Vn .. lP V1 ,n o n 1

is approximable and is computable if V is effectively given.

Moreover. the map)., x. (x} shows that V:;jlP V, and we also have

the law:

{x O' "', x _1} = {xO) n··· n (x _ }n n 1

as an intersection of filters.

Proof: The second part shows that everything reduces to

>..x.{x}. We see that

X (Ax. {x»)U (' X .) iff 3 i<q. XksX .•k n	 n
l<q 1	 1

Thus J >.. x. (x) is an approximable mapping and is computable in the

effectively given case.

The proof of the law can be reduced to the special case

{x) n {y} = {x,y)

for the sake of illustration. In terms of finite elements of the

two domains V and lP V we find

{+X) ~ HX ,

and so.

{+X) n {tY)	 - HX n HY

~ t (H U • Y)

-{tX,tY}.

An equation between approximable functions that checks for finite

elements also holds for all elements.

Finally, we	 note that

V'" V' <l ll' V

127

and that the isomorphism involved is just AX. {x} by what 'We

saw on the finite elements. 0

Further combinators on the power domain are given in the

exercises.

EXERCISES

EXERCISE 7.13. Show that an effectively given domain can always

be identified with a relation

INC L (n, m)

on integers. where the two derived relations

CONS(n,m) iff 3k. INCL(k,n) and INCL(k,m);

MEET (n,m,k) i££ Vj [INCL (j,k) iff INCL (j,n) and INCL(j,m)]

are both recursively decidable. and where the following axioms

hold:

(il vn.INCL(n,n);

(ii) Vn,ro.k. INC L (n,m) and 1 N C L (m,k) imply INC L (n,k)

(iii) 3m \In. INC L (n,m)

(iv) viJ.,m. CON S (n.m) implies 3k. ME E T (n,m,k).

(Hint: Consider the neighbourhood system

v = ({rn E IN I INC L (m,n) J I n E IN).

Is this essentially any effectively given system?)

EXERCISE 7.14. (For recursive-function theorists.) Prove the

statements after definition 7.2 about the existence of primitive

recursive functions for showing things recursively enumerable.

(Recall that a non-empty set is r.e. iff it is the range of a

primitive recursive function.) Show also that every computable

element yE lEI can be written

y' U(tYt(i)liE~J,

where t: :N :N is primitive recursive and where we may assume

128

)'t(i+1) S)'t(i)

for all i E }l' •

EXERCISE 7.15. Finish the proof of 1.4 and establish similar

reSults for the constructs (V0 0V,), (Vo@'O,) and 0"". Take

into account the various appropriate combinators.

EXERCISE 7.'6. Let Vo={XnlnEN}, V,={Ym!mEJ>ll and

° '" {Z,,!kEN} be three effectively given domains. Complete2
the proof of 7.5 by writing out curry as a relation between

neighbourhoods. Is it a recursive set or only a recursively

enumerable set?

EXERCISE 7.17. Complete the proof of 7.7 for showing

that V§ is effectively given 1£ V is. Include all the comb ina­

tors of 6.2. Prove also that if E is effectively given and

u : V E and v : E x E E

are computable, then the unique strict mapping

V§ -+ Eg : ,
where, for xE 1'01 and Y. zE lEI

g (in (x)) = u (g (x)) . and

g (pair (Y,,)) v (g(y), g (z)),

is a computable mapping.

EXERCISE 7.18. Two effectively given systems V and E are

effectiL'el,y wOI1II::rpphic iff ... (complete the sentence: J. Show

that if V is effectively given then the isomorphism

vO:>~(vQ»O:>

is effective.

129

HERCISE 7.19. Prove that'D f- il V is a functor by defining fOr

each f : V -+ E a mapping

IPf:IPV~IPE

by the formula

Un. IPf U+Y. iff vi<n3j<rn. X.fY.
i<n 1 j<m J 1 J

Be sure to check that lP f is approximable and that lP preserves

identity maps and composition. If f is computable is P f? Is

there a combinator A£.F f? What is

II' f({x,y» = ??

EXERCISE 7.20. Show that there is a combinator

union lP(IPV)-+lPV

......here fOr suitab1e neighbourhoods

u +(U iX ..) union U iYk iff Vi<nVj<rni3k<q'XijSYk'
i<n j <ro 1) k<qi

Is union computable if V is effectively given? What is

union ({{xl, {Y,z}}) = ??

Are IP (IP V) and lP V generally isomorphic??

EXERCISE 7.21. Is there a non-trivial combinator of type

II' (V ~ E) ~ (lP V ~ lP E) ?

Are there in general any isomorphismsbet......een the systems

(V + II' E), II' (V x E), lP V x lP E ??

Is there a non-trivial combinator of type

lP (V x E) x lP (E x f) + lP (V x f) ???

Is there any connection between

lP Nand P ~ ????

130

•EXERCISE 7.22. (For algebraists.) Let E", {O,n be the free

semigroup. A ne...... domain is constructed by defining a family

of sets by the least fixed point theorem as follows

S=(E}C{{o} 10E E}u{XYIX,YE SJu

{XnYIX,YES andXnY"Ii'J.

He re we !iTi te:

Xy= {o-rloEX and "tEY}.

Prove that S is an effectively given. positive neighbourhood

system. (Hint: The sets in S are each "regular events" in the

terminology of automata theory, and we have a decision method

for the set algebra of regular events.) Define mUltiplication

on IS) by

Xy"'{ZES13XEx3YEy. XY,=Z}.

and show lSI becomes a semi group with t embedded into lSI by

the homomorphism 0 1_ {XE sloE X}. Investigate some infinite

words in S, say those defined by least fixed points such as:

(; '" 0 (; and (5 '" 00.

Are these equations true:

00=0,000=0,0101=01,

and 01 D1 OT 51 = t1 01 ?

EXERCISE 7.23. Complete the discussion of PlN of

Exampl~ 7.fl. Show that the combinators fun and graph of

Exercise 5.14 are computable. Also do the same for

,l. x. y. x n Y. A x, y. x U y, and,l. x, y. x + y ,

whe re for x. yEP IN we define

x + y = {n +m I n E x and mE y} .

What are the computable elements of PN ?

131

EXERCISE 7.24. (Suggested by the LUCID language of Ashcroft
and Wadge: SIA.M Jour. Comp. yolo 5 (1976).) Define a set r by

r· UC!i}XrJU(*J.
i=O

Define a system

L = (r} U{(i} x X liE N and X E L).

Show that L is effectively given. Show that the elements of I L f

can be iden!i fied with the finite and intioi te sequences of

natural numbers. What is the connection between Band L?

Show that the combinators of LUCID can be construed as computable

mappings of type

(L~TJ ~ (L~T)

or of type

(L~T) x (L~T) ~ (L~T)

Conclude that programs in LUCID define computable maps.

133

LECTURE VI II

RETRACTS OF THE UNIVERSAL DOMAIN

In order to be able to have a fully flexible Illethod of solving

domain equations and to be able to see why the domains obtained
are effectively given, we shall embed all the desired domains in

one "largest" domain. This universal domain will be easily shown

to be effectively given. and the mappings needed to extract the
other domains wi 11 be found to be computable. In order to be

able to carry out this programme, we investigate first how certain

subdomains correspond to mappings - the so-called retracts. An

advantage of this analysis is that all t'he necessary definitions

can be written out in A - calculus notation, thus demonstrating the

'power of our mathematical programming language.

DEFINITION 8.1. A ret:ruction of a given domain E is an approximable

mapping a: E ... E such that a 0 a '" a. CJ

PROPOSITION 8.1. If V<1 E and if a : E ... E is defined by

X a Z iff 3 Y EV. XSYS-Z

for all X,ZE E, then a is 8 retraction and IV I is isomorphic to the

fixed-point set of 8) the set {yE lEI! a (y):::: y}, under inclusion.

Proof: Tha t a is an approximable mapping is a direct consequence
afDefinition 6.10. Indeed, in the notation of Proposition 6.12,we
have

a:::: i .. j.

and this is another proof that a is approximable. This remark is

also convenient, since we know from 6.10

j i:::: Iv •0

Therefore, we find:

aoa-i .. i .. j i .. j "" a

and so a is a retraction.

We can also employ i and j to give the isomorphism on IVI.

If xE lVI, then i (x)E If I and we calculate:

134

a (i (x)) • i j i (x) • i (x).0 0

Thus> i{x) belongs to the fixed-point set of a. In the other

direction, if a(y) "'" y, then i(j (y)) = y. But j (y) E I V I. so i

maps I VI one-one and onto the fixed-point set of 3. As i and

j are monotone. the map is an isomorphism with respect to S. o

Not every retraction comes from a relationship like V <I E;

in fact, we can see from the definition of a above that a!: IE"

But. as is indicated in Exercise 8.11 • even this condition is

not sufficient to characterize the kind of retractions provided

by 8.2. The characterization is as follows.

DEFINITION 8.3. A retraction a E ... E is called a pl'ojection

provided

asI E ;

it is ~ni~y iff its fixed-point set is isomorphic to a domain.C

EXAMPLES 8.4. If a system V over li. is not trivial. then the

two element system 0 = {{OJ, {o.H) comes from a retraction

on V. Specifically, define a combinator

check: V ... O

by the relation

X check Y iff either Y= {O,n or X*.6..

We see check(x) ::::.1 iff x = .lV. We leave to the reader the0
definition of a combinator:

fade:OxV ... V

where we have for tE 101 and xE IVI:

fade (t,x) = .lV' if t "'.10

=x, if not.

Now, take any uE IVI with u¢.l, and define

a(x) • fade (check(x). u).

Then a is a retraction (not a projection in general) and the

range of a is isomorphic to O.

135

Another way of using these combinators is to find

(0 £) as a retraction of (0 £). Specifically. define a

1

combinator

str;ct: (V~E) ~ (V~E)

by the equation

strict(f) :;'x. rade (ched(xJ, f(x)),

where this time

fade 0 x E-f E •

The range of strict consists exactly of the strict functions

and this time strict is a projection whose range is indeed

a domain.

Similarly, we can find a projection on V x E with a range

isomorphic to V ~ E by the combinator such that:

smash(x,y):: fade (check.(xJ,fade (check.(y),<x,y»),

fOT X E I V I and y E IE\. 0

THEOREM 8.5. For an approximable mapping a : E E the following

are equivalent:

(i) a is a finitary projection;

(ii) a(x) = {YE E 13 XE x. XaX~Y}. for all xE lEI.

Proof: Suppose a satisfies (ii) first. Inasmuch as

XEX and X~Y always imply YEx.

for all xE lEI, we see a(x)s:x must always hold. Moreover, it

is obvious that

X E x and X a X always imply X E a(x);

therefore, a(x) s: a (a (x)) for all x E IEl. This shows that a

136

is indeed a projection.

Let V'" {xe E 1 Xa X} J then it is easy to check that V '<:1 E

and that a is determined from V exactly as in 8.2; thus, the

fixed-point set of a is isomorphic to a domain, by what we have

already proved. So we have shown (ii) implies (i).

In the converse direction. assume that a is a finitary

proj ection. And let the system V be isomorphic to the fixed

point set of a. We have the situation of Theorem 6.15. There

is a projection pair.

i ; V -f E and j : E -f V,

where the connection with a gives:

j i = I V and i 0 j .. a s: IE'0

By 6.1.5 Vii!! V' <l E and we want to identify V I in terms of a as

follows:

V' = (X EEl X a Xl •

~ow from a reading of the proof of 6.15 the neighbourhoods of

V' are just those corresponding to the finite elements of V.

But any such element is a fixed point of a. We have

XE V' implies aCt X) .. t X implies X a X.

Conversely, if XaX holds, then tX5a(tX). But a is a projec­

tion, so t X is a fixed point. But i(j (t X)) .. t X lI1eans j (+ X)

is a finite element of IVI. So XE V'. and we have '0' identified

as desired.

Finally, if we calculate a'" i • j by the formulae of 6.12

(with V' for '0, of course), we obtain our formula (ii). 0

The criterion for being a finitary projection just obtained

provides us with a very interesting new combinator.

THEOREM 8.6. For any domain f define

sub; (E~El ~ (E~El

by the formula

X sub (fl Z iff 3YEE. XSYfYSZ,

137

for all X. Z E E and all f: E ... E. Then the range of sub consists

exactly of the finitary projections on E, and mOreover sub itself

is a finitary projection on (E ... E). If E is effectively given,

then sub is computable.

Proof: It is trivial to check that subef) is always approx­

imable. Also, it is obvious from the definition that the corre­
spondence

f I- ,"b(f)

preserves directed unions of f's. Thus, sub is itself approximable.

We note that

X,=Y £ YSZ always implies X fZ;

hence, sub(f):= £ holds. Also

Y fy always implies Y sub (f) Y,

hence, sub(f) ~ sub (subef}) hold~This shows sub to be a proJec­
tion on (E ... E). The effectiveness of the definition makes it

also clear that sub is cO'/ll[!utable "'hen E has a computable present­

ation.

Since, sub is a projection. its range is the same as its

fixed-point set.. If

sub (a) '" a,

then there is no problem in checking that a satisfies 8.S(ii)

and COnVel'Be"ly. So the range of sub picks out exactly the finitary

projections in view of B.S.

Finally. to prove that sub is a finitary projection of

(E .. E), we invoke 6.1' and remark that, in view of 8.2, the fixed

point set (range) of sub is in a one-one inclusion-preserving

correspondence wi th the domain {V I V <t E}. 0

These resul ts have almost completely translated the theory of

<l- subdomains into).,- calculus via the sub-combinator. One last

step will comple te the passage, and then we shall be able to

return to solving domain equations.

138

0

DEFINITION 8.1. Let <l! be the set of rational numbers, and let

[0,1) = {qE~ I O<;Q<1l,

and similarly for [r, 5) for any r < 5 in <11.. The neighbourhood

system U o....er [0,1) is the set of all non-empty finite unions of inter­

vals of rational intervals [T. 5) with 0< r< 5 <1.

A picture of a typical element of U could be drawn like this:

To TO T, T T. T52 3

Note that any union can be taken as a diajoint union of the form

U [T2i , T2i • 1)

i<n

where O(TO < T <T < ••• + < 1. (Hint: Any overlapping1 2
< T 2n < T

2n 1

intervals or abutting intervals can always be combined into one

long interval.) It is a most elementary exercise to show that, by

virtue of this representation, the system U has a computable

presentation. (Some isomorphic versions of U - equally effective

- are recorded in the exercises.) Note that U has no minimal

neighbourhoods: every set in U can be wri tten as the union of two

disj oint sets in U. (Hint: Use the densi ty of the ordering of

<I!.) The significance of U can now be explained.

THEOREM 8.8. The system U is universal in the sense that, for

every countable neighbourhood system V, we have

v j U.

Moreover, if V is effectively given, then the projection pair

making the embedding can be taken as computable. Indeed there is

a correspondence between effectively presented domains and the

computable, finitary projections of U.

~of: As V is countable, we can assume that

V={XnlnE:N},

139

where V is a system over a set d (say, X " A). We shall do the o
effective and general cases together, where for the latter all

remarks on recursiveness are just left out. So, if we want V

effectively given. the above enumeration should be taken as the

computable presentation.

Without loss of generality we can assume 05""0"', since other­

wise we would just replace V by V+ The advantage of this pre­

paration is tha t unions in V· keep things rather sepa1"ate (as we

noticed in cons tructing lP 0). In particular, we can be sure of

this equi valenc e:

Ct) X s I I X iff 3 id. XmS Xn .
m i":rlc n i ,

This property, £or example, fails for the system U as presented

in Definition 8.7. However, that observation is of no moment.

because we are employing the assumption with respect to V not U.

The reasOn for the assumption is this: for 6E {+.-} define

forXEV:

6X=X if6"'+

=d\Xif6=­

(A similar notat ion will be used for yE U.) Then for 6E {+ ,_}n

the sets of the form

n 6 i Xi (= X6 • for short)

i<n

form a partition of ~ into (at most) Zn parts. The reason for

assumption (t) is that we can effectively decide for each

6E {+,_}n whether one of these intersections is empty or not.

(Why? - assuming that V is effectively given, of course). If

for some reason we had not wanted to pass to Vi, we could have

made this stronger assumption of decidability on the (positive)

system V. (U, for example, satisfies ito)

Suppose. co r responding to Xo' X1 , '" , Xn_1 • we have selected

Y1' •.•• Y - ~ E U so that. for all 6E {+,-)D,YO' n 1

CO) no. X. : '/' iff Y••, , no; , '/'.
l<n i<n

140

We wish to show - effectively - how to choose Y correspondingn
to X • so that (.) holds with n-t1 replacing n. Proceeding in­n
ductively, we obtain a recursive enumeration of sets Y E U so

n
that

P",(Y InEIl}.q u.
n

Clearly the isomorphism (matching X. to Y.) will be computable
1 1

and the projection is computable. (It will then remain only to

consider the arbitrary finitary computable projection to complete

the 'proof of the theorem.)

So, consider Xn; for each oE {+,-:fthere are four cases:

X n X I{J X n-X I{Jo n o n
X n X X n-x., I{J
o n o n '" I{J

Corresponding to X is a similar intersection Yo" If Xc were rp,o
then Yo would be also. If not, YeS [0,1) is a union of rational

intervals that can be written do.... n explicitly. (Why?) In our

four cases on X , the first implies the fourth. (Why?) Thus, we
n

need only make some choices in these circumstances:

X.I: n X "" rp : choose I.I: = rp ;u n u,n

X n- X '" ¢ : choose Io,n'" Yo;o n

otherwise : choose Io,n~Yo' with rp+J 6 ,n*'Y · o

All these cases are decidable by assumption on V, and the effective

choice of (unions of) intervals is effective by construction of U.

Now set

Y U n Io,n l ¢n OE {+,-}

The set Y E U. it can be found effectively, and (-) is obViouslyn
satisfied for n+1

Finally, suppose that a is a computable, finitary projection

of U. As we have seen in the proof of 6.5, the domain correspond­

ing to the range of a is isomorphic to the neighbourhood system

{Y E U I YaY} <l U.•

141

Clearly. if a as a set of ordered pairs of neighbourhoods is

recursively enumerable, then the above set is also recursively

enumerable (because equality between neighbourhoods is deddable).

It follows eas ily that the subsystem is effectively given as a

neighbourhood system in its o.....n right. 0

We have now proved that U is a nice and big domain that is
nicely behaved with respect to computable mappings. It has some

very interesting subdomains; to name a few:

u+u, U~U. UxU. U 0 U

UU~ U§ WU U U.1) • • • 0+

That all of these are :j U follows from knowing that they are all

effectively presented. What we wish to check next is that they

all combine well with respect to projections. To this end the

explicit definitions are given for the constructs +, x, and and

the details of the others are left for the exercises.

DEFINITION 8.9. Let the computable projection pairs

i + : U + U... U and j + U ... U+ U

be fixed. Simi1arly choose ix' jx and i ... , j for U x U and U.... U.

Define:

a+b = cond <which, i+ 0 1n a 0 out .' i+ 1n 0 b out, > 0 j+0 0 0 0 o o 1

axb=ixo<a o projo.b o pro 9 1 > ojx;

a ...b = i (>.. f. b 0 f a) 0 j ... '
0 0

for all a. b :U_ U. 0

These interesting(computable:)combinators on elements of

U.... U have many,many properties. We shall, however, only see what

they do to projections.

PROPOSITION 8.10· If a, b: U.... U are projections, then so are a+b.

axb, and a....b. If a and b are finitary, then so are the others;

for the fixed-po i nt set of each of them is isomorphic to the

corresponding construct applied to the domains determined by a

and b.

142

Proof: Suppose that a, b S I (= I for short). ThenU

a+b S I + I = i+ " j+ OS I.

The other cases are similar.

Suppose a == a a and b:::: bob, then, for example,0

(axbJ (axb) = i x <3" projo' b" proj1>" <3" projo' b oproj1>" jx0 0

== i x " <3 " a" projO' b " b <> proj1 > " j X

::: a x b.

The other cases are similar.

Now in case the fixed-point sets of a and b are domains. they

are respectively isomorphic to

Va = {X E U I X a X} and

Vb = {Y E U I Y b Yl •

We have to show, for example. that

Va.... VbS!!Da ...b •

Now to simplify matters, remark. that the fixed-point set of a b

on U is isomorphic to the fixed-point set of ~ f. b " f" a on (U -+ U) •

(Hint: use iand j to set up the isomorphism.) So we have to

think what it is fOT an f: U U to satisfy

f=b=f=a.

Notice that we might as well say that a: U --Va and that this map

is the other half of an obvious projection pair Where

ia:Va-+U.

and i a =a and a" i =i So if g :Va-+V leta a a b ,

f = i b G g " a.

then b" f" a = f. Conversely, if f is like this, then let

g '" b " f "ia .

Thus. i b " g " a '" b f" a'" f; so there is an order-preserving isomor­

ph ism be tWeen the g : Va'" Vb and the f '" b " f " a.

143

The isomorphism proofs for + and ~ are similar. 0

iI.'ell, this was a lot of work, but the pay-off is rather

handsome. Whate have done is transpose all the

V <! U
a

over to finitary projections a: U U. This transposition is an

isomorphism, because

V <1V iff as:b.
a b

Moreover. by the method of 8.9 and 8.10 .. atl. our favourite con­

structs have bean made into combinators. that is, approximable ­

even computable - maps on the domain of fini tary projections.

ALL APPROXIMABLE (COMPUTABLE) MAPS HAVE (COMPfRABLE) FIXED POINTS. And there

you are~ Tjle standard fixed-point method is available to obtain

computable (i.e. effectively given) solutions to aU domain equations

(even sets of equations) where the constructs can be reworked in
this way to be defined on projections. Examples are suggested in

the exercises.

Another pay-off concerns the}" - calculus itself. Inasmuch

as
u+u, U><U, U ... Us, U.

we might just as well forget the outside world and regard all these

useful domains as being part of U. For example. on the left we

have the new notation and on the right the old notation:

which (z) = which(j.(z))

in i (x) ~ i+(ini(x)), i ;; 0,

out (x) ~ out i (j +(x)). i;; 0.1
i

~< x. y> i >«<x.Y» j

proj i (z) = proji (j x(z)),i 0 0,

u (x) - j.(u) (x);

}" x. "t = i (:Xx. "t).

And. there is no reason to stop here. The system

T'" ([0,1/2),[1/2,1),[0,1)) <1 U ,

so we might as we 11 think of

144

true, falseE lUI

and think of cond: UxUxU ... U. No! that is wrong: under the new

regime EVERYTHING IS AN ELEMENT OPU. With the new meaning of A, all

functions, all pairs, all combinators, all constructs become

e7,ements of U.

It takes a little time to get used to "universal conscription"

with all elements doing (at least) double duty in the same domain,

but there are many advantages, both notational and conceptual.

EXERCISES

EXERCISE 8.1'. Let ~ be the set of rational. numbers and define a

neighbourhood system by the equation

R • ([O. r) IrE ~ and a < r " 1).

Show that the following defines an approximable map a: R ... R

[O,r)a[O,s) iff r<s or r::s=1.

Show in addition that a is a projection where the fixed-point set

of a is in a one-one correspondence with the real. numbers between

o and 1 inclusive. (Hint: Recall Dedekind cuts and show 5" matches

<.) Conclude that a is NOT finitary. (Hint: Aside from 1. there

areno finite elements for {xIx'" a(x)}.)

EXERCISE 8.12. Gener:llize the notation 2X+1 for subsets XSJll'

to sets of the form

2k X +l, where l < 2k •
k

Let V be the non-empty fini te unions of sets 2 :N -+i. Show that

U~ V and that the isomorphism is effective, thus obtaining another

presentation of U.

EXERCISE 8.13. (For logicians.) Prove that the universal domain

U is isomorphic to the domain of all proper filters of the free

Boolean algebra on ~o-generators (= the Lindenbaum algebra of

propositional calculus). (For topologists.) Connect this

145

representation of U wi th the collection of non-empty open subsets

of the product space Z:N (= Cantor space).

EXERCISE 8.14. A retraction a :-0 0 is called a closure opel"atoZ'

iff Ipsa. On a domain like P:N. give some examples of closure

operators. (Hint: Close up a set of integers under addition. Is

this continuous on P:N 1) Prove in general for any closure

a: V O that the fixed-point set of a is ah.ays a finitary domain.

(Hint: Show that the fixed-point set is closed under intersec­

tions and directed unions.) What are the finite elements of the
fixed-point set?

EXERCISE 8.15. Give a direct proof that the domain {X I X <IV}

is effectively presented if V is. (Hint: The finite elements of

the domain correspond exactly to the finite systems X<] V.) In

the case of V::: U, show that the computable elements of the domain

correspond exactly to the effectively presented domains (up to

effective isomorphism).

EXERCISE B.16. For finitary projections a E .. E. write

V.=(XEE I X.X}

(cL B.5.). Show that for any two such projections a, b :E .. E

we have

asb iff Va <I Vb'

(This fills in the gap at the end of the proof of B.6.) Also

finish off the proof of 8.8 by shOWing that if E is effectively

given and a: E .. E is computable, then Va is effectively given.

EXERCISE 8.17. Find explici tly (if possible) the projection pairs

for U + U, U x U, and U -+ U needed for 8.9. Are any of these domains

isomorphic with U? (The author does not know a really good con­

struction for U -+ U.) Find a universal domain V~ U.

146

EXERCISE 8.1 e. Many of the cases of 8.10 were left unproved.

Please establish these assertions explicitly.

EXERCISE 8.19. Suppose we know both

T and E ~ E :8 E •

Does it follow that E + E and E)(f S E?

EXERCISE 8.20. For any system we know V "1 V + V, but,hat about

V :s V)(V and V ;S V V ?

Would these projections be computable if V is effectively given?

Are there more than one projection pair in each case?

EXERCISE 8.21. Using the fixed-point construction, show that

there is a continuous and computable operator A a. a§, such that

if a is a finitary projection of U, then

~ (V) §v § aa

EXERCISE 8.22. Which of the two relations hold;

B S C or C :8 B ?

Or do they both hold? In general if we use domain equations

V' T(V) + S(V). and

E = T(E)

will f ~ V hold? What projections do you see in the examples in

6.2?

EXERCISE 6.23. Suppose a construct T on domains can be made into

a computable operator t : [U U) -(U U) so that whenever a : U U

is a finitary projection, then so is tea) and

Vt(a) " T(Va)·

Does it follow that II til = fix.(t) is such that

V S T (V)
lltll lltl1

really is the initial solution of the domain equation with respect

to projections? Since t is computable,;ill this solution be

effectively g~ven?

EXERCISE 8.24. Suppose Sand T are two (binary-argument) con­

structs on domains that can be made into computable operators on

projections of the universal domain. Sho~' that we can therefore

find a pair of effectively presented domains such that

v " S(V,E) and EaT (V,E) •

EXERCISE 8.25. The problem is to find non-trivial solutions to

the domain equa t ion

(') V=:-V-+V.

8how that the "obvious" solution by retracts is of no use because

1-+1"'1

for projections. Change the method as follows. Show first

uO> x uO> ~ uC:O

Next solve
v ~ V -+ U""

and remark that U .q V ; so V is universal and non-trivial. Finally

prove (') for this V. (Hint: First show

VxV~V,

and then show V satisfies (').) Is this V effectively given?

EXERCISE 8.26. Discuss in more detail the "pay_offl! for U, name­

ly the translation of t'untyped" A - calculus into U as shown by

the equations at the end of the lecture after the proof of 8.9.

In particular show how the whole of the typed A - calculus can

beretranslated back into U with the aid of projections. (Hint:

1';'henever you want to write

f:Va-+Vb •

148

wri te instead
£=bofoa.

where 3, b are finitary projections. Whenever you want to form

a A. - abstrac tion
Va

AX 0,

where (1 is of type Vb' instead form

AX. b(o·[a(x)/x)).

where 0' is the further translation of 0 into untyped).,- calculus.

Be sure to show that this result Tlhas the right type" in the sense

defined above.)

EXERCISE 8.27. (Suggested by James Donahue.) Finite cartesian

products of domains are formed by the 17 x 17 1- construct we have0
used so often. The problem is to define - computably - some
infinite cartesian products. In particular, as applied to the

universal domain U. the combinator sub is to be regarded as a

finitary projection of U whose fixed points are exactlya~~

the finitary projections. A map

d=subodosub

can be regarded as a polymorphic type (because, whenever t is a

finitary projection (::: type), then so is d(t)). The continuous

pro~tof all these types would be the domain of all approximable

functions x such that

x(t) = d(t)(x(t))

for all types t. (Why does this equation mean that x is in the

product?) Define IT as a combinator by

II • A d A X At. sub (d (s ub (t))) (x (sub (t) Jl .

Show that for d a polymorphic type, ned) is a type. (Hint:

It is easy to check that ned) is a projection; the problem is to

show it is finitary.)

PROGRAMMING RESEARCH GROUP TECHNICAL MONOORAPHS

JUNE 1961

This IS a series of technical monographs on tOPiCS in the field of computation.
copies may be obtained from the Programming Research Group. <Technical
Monographs), 45 Banbury Road. Oxford. OX2 6PE. England.

PRG-1 (out of prtnt)

PRG-2 Dana Scali
Outline of a Mathematical Theory of Computation

PRG-3 Dana Scott
The Lattice of Flow Diagrams

PRG-4 (cancelled)

PRG-5 Dana Scali
Data Types as Lattices

PRG-6 Dana Scott and Christopher Strachey
Toward 11 Mathematical Semantics for Computer Languages

PAG-7 Dana Scott
Continuous Larllces

PAG-B Joseph Slay and Christopher Strachey
OS6 - an Experimental Operaring System for a Small Computer

PRG-9 Christopher Strachey and Joseph Stoy
The Teltt of OSPub

PRG-10 Christopher Strachey
The Vaneties 01 Programming Language

PAG-l1 Christopher Strachey and Christopher P. Wadsworth
ContinuatIons: A Mathematical Semantics for Handflng Full Jumps

PRG-12 Peter Mosses
The Mathematical Semantics 01 Algol 60

PRG-13 Robert Milne
The Formel Semantics of Computer Languages
and their Implementations

PRG-14 Shan S Kuo, Michael H. Linck and Sohrab Saadat
A Guide to Communicaling Sequential Processes

PRG- 15 Joseph Stoy
The Congruanca of Two Programming Language Definitions

PRG-16 C. A. R. Hoare. S. D. Brookes and A. W. Roscoe
A Theory of Communicating Sequential Processes

PRG-17

PRG-18

PRG-19

PRG-20

PRG-21

PRG-22

PRG-23

PRG-2<:l

Andrew P Black
Report on the Programming Notation 3R

Elizabeth Fielding
The Specification of Absfract Mappm(}s
and thelf Implementation as a-+-rrees

Dana Scott
Lectures on a Mathematical Theory of Computation

ZhOU Chao Chen and C A. A. Hoare
Pan/al Correctness of Communicating Processes 8.nd Protocols

Bernard Sulfln
Formal Specification of a Display Editor

C A. R I-loare
A Model lor Communlcatin(} Sequential Processes

CAR Hoare
A Calculus for Total Correctness of Communicating Processes

Bernard Sufrin
Readm(} Formal Speclfica(ions

