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INTRODUCTION

These notes were written in conjunction with the lectures
delivered by me for the Semantics of Pregramming Languages
sequence during Michaelmas Term 1580 at Oxford. I started
writing around the first week of October and finished at the
end of November. The purpcse of the course was to provide the
foundations needed for the method of denotational semantics;
in particular, I wanted to make the connectic¢ns with recursive
function theory more definite and to show explicit, effectively
given solutions to domain equations. Roughly, these chapters
cover the first half of the book of J.E. Stoy. I plan soon te
expand the notes into a book by adding additional chapters on
other thecretical topics that time did not permit me to cover

in one eight-week term.

When I started writing Lecture I in October, I did not
know what the later lectures would contain: I could see no
further ahead than part of Lecture III in the beginning.
The lectures had to be typed in advance of the class meetings,
however, sc there was at the time of composition no oppertunity
for second thoughts of any major proportions: I had to write
the text straight through. As a consequence there are many
remaTtks I would 1ike to transpose and many additienal points
of explanation 1 see are needed; further worked examples and
easier exercises are also required. During the spring, after
Teceiving many helpful comments, I was able to introduce a few
changes in the text and make some necessary corrections. However,
a complete retyping was impossible. Nevertheless, this prelimin-
ary version of the book seems to provide a quite detailed
introduction and is sufficient to exhibit the scope of the
approach and several applications.

The idea of using neighbourhood systems to give set-
theoretical representations of domains had been in the back of
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my mind for some time in connection with specific examples.
But the thought that a systematic development along these
lines might be easier te follow than the more abstract
Iattice-theoretic and tepological appreoach used by myself

and others in many publicaticns only came to me during the
IFIP Working Group Z.2Z meeting in Copenhagen in mid-June 1S80.
I gave a brief public presentation at ICALP '80 in Holland in
mid=-July,

‘One large mistake 1 have made is to de-emphasize partial
orderings too much, since at the right point the concepts and
the language are in fact helpful. The basic plan is that,
instead of axiomatizing the theory using partial orderings,
the necessary facts come out as theorems. For a neighbourhood
system U, the set of elements |D|, which consists of filters,
fg naturally partially ordered., And approximable mappings
naturally preserve the crdering., And so on. The advantage
I see from the point of view of exposition is that properties
can be brought cut one at a time instead of having to put them
down all in advance of any experience with the ideas. My own
feeling after writing these chapters is that the plan has
worked out far better than I could have dared to hope. I was
especially glad that I could generate so many exereises, and
I hope eventually to provide many more. One interesting place
at which partial orderings prove their usefulness is in
visualizing demains. As it stands now the text does not contain
enough in the way of pictures. This will have to be remedied
in a future version, Undoubtedly toinclude enough explanation,
several of the lectures will have to be sub-divided into separate
chapters,

One major improvement is needed: to bring Exercise 2.12
inte the main text. I did not know in advance how often I would
need this result for giving (easy) set-theoretical characteriza-
tions of domains and structure on them. This will be an easy
repair, but it will cause quite a bit of rewriting. Clearly
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much more has to be said about the interplay between elements

and neighbourhoods. In particular, the character of the elements
of a domain, like the power set of a set, has not been sufficient-
ly illustrated, and quite a bit of expansion on this topic is
also needed.

Finally 1 have to explain that I had no time whatsoever
to put in references and a bibliography. The ideas I have
used have occurred to many, many people who have worked on
domains, and I do not wish to claim originality. I am claim-
ing some advantage to my style of representation, but J fully
realize that a published version will have to have detailed
historical references and notes at the ends of the lectures,
Needless to say I should very much appreciate any advice or
criticism from readers of this preliminary version.

1 would like to give a warm word of thanks to the many
people who have already commented on the preliminary text both
at Qxford and in Boston, where I gave lectures. Very special
thanks are due to Steve Comer and Steve Brookes, who spent
many hours proof reading the typescripts. The biggest word
of thanks, however, is reserved for Elsie Hinkes who, under
very considerable pressure, did a wonderful job of typing.

Dara S. Scott
Merton College
Oxford

May 1981



LECTURE I

DOMATNS GIVEN BY NEIGHBOURHGGODS

Dften an object (or element) can be determined by a
selection of its properties, Often it is also the case that
it is easier {(more convenient, more elementary) to think of
these properties than it is to think of the elements them-
selves. Let us term the properties under consideration
netghbourhoods , the family of those allowed a neighbourhood system,
Generally, the collection of these neighbourhoods is, for one
reason or another, somewhat restricted; that is, a completely
arbitrary property may not be allowable as a neighbourhood.
Therefore, the elements determined by selections of neighbour-
hoods may not be as separable inte the discrete objects common
to the classical view of set theory, This is particularly true
in working with infinite objects: it is hard to specify an
infinite element completely. The theory of elements to be
studied here, then, is going to permit partiaielements as well
as total elements, and each neighbourhood system will define a

domain of such elements.

Since we may wish to use a neighbourhood system to intro-
duce elements not previously investigated,the neighbourhoods do
not have to be regarded as sets of the as-yet-to-be-defined
objects, We can take a non-empty set & of fokens (or "traces")
that function as "parts" of elements - cor even as parts of
"descriptions'" of elements. Then a neighbourhood is a subset
X< & containing all those tckens that provide sufficient
information when taken together to "approximate" a possible
element up to a certain "degree". All these words in inverted
commas are vague, and in any case we shall have at the start
only a qualitative theory of "degree of approximation". & token
should be considered as a very "rough" representative of an
element, and a neighbourhood should be regarded as "smoothing
out' irrelevant details by grouping together all those repres-
entatives sharing some common feature. One neighbourhood, then,



2

may be only a very incomplete specification of an (ideal)
element; fuller specifications can be secured by taking
"convergent" sequences of neighbourhoods. Even then conver-
gence need not be to a total element.

let us call the family of allowed neighbourhoods 7; it
is a family of subsets cof the set A, An obvious first
question is: when are two neighbourhoods X, Y€ D neighbour-
heoods of the "same" element? This question of course generalizes
to a (finite) sequence of neighbourhoods. This property we will
call the consistency of the sequence of neighbourhoods. By
definition this will mean that the given neighbourhoeds all contain
a common neighbourhood in 0. That is, for X, Y to be consistent,
there must be a Z€P with ZcX and Z<¥Y. This is not a very in-
formative definition, but it has something of the flavour of a
notion of consistency insofar as it can be expressed within P.
When consistency holds it seems reasonable encugh at first
glance to say that the intersection XN Y is also an approximation
to this common element. If this is reasonable, then XnY should
also be regarded as a neighbourhood, This assumption has many
consequences, but as a preliminary theory of approximation we
will {ind it quite workable with many natural instances,
Taking intersections just means taking more and more properties
of the element and putting them togetherconjunctively, It is
some thing we do all the time. We therefore accept the idea for
the present for giving our first principal definition.

DEFINITION 1.1. A family U of subsets of a given set & is
called a neighbowrhood system (over &) iff it is a non-empty
family closed under the intersection of finite consistent
sequences of neighbourhoods. That is te say, P must fulfill
these twe conditions:

(1) AETD,

(i1} whenever X, Y, Z€0 and z<XnY, then XNYEP, O



We remark that by convention A corresponds to the inter-
section of an empty sequence of neighbourhoods; in particular,

ﬂxi
i<n )
(ﬂxi)nx , ifn > 0.
n-1

i<n-1

A, if n=0;

0f course, from (ii), we can extend the intersection property

to any finite sequence. Consequently, we can say XO,..., Xn-?

is consistent in ¥ iff

N, o

i<n
Some examples will help us understand the notions better.

EXAMPLE 1.2. Let &4={0,1} and let
p=1{0,1, {0}, {111},

In pictures we hawve:

The intention is that 0 and 1 can be completely specified and
that they can be identified with the total elements. As we
shall see, there 1is only one partial element: either we give
no information (the neighbourhoed {0,111}, or we decide between
¢ and 1 (by giving {0} or {1}). D

EXAMPLE 1.3. Let A= {0,1,2} and let
Pp={{0,1,2}, (1,2}, {2} 1},

In pictures we have:
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Instead of stepping to the total element (here represented by

2) in cne big step, the passage is divided inte two steps.

(Note ¢ and 1 cannot be taken as representing total elements.)
This example is not very interesting because the direction of
approximation in unique. We need an example with some choice. O

EXAMPLE 1. 4 Let
A= {A,0,1,00,01,10,11}

D

{4,{0,00,01}, £1,10,11},

{00}, {01}, {10}, (11} 1},
Or more understandably in pictures:

00 01 0 N

The tokens are finite sequences of 0's and 1's (up to length 2)
with A the empty sequence; they form - in the picture - the
binary tree with the sequences as the nodes, The neighbourhoods
are the subtrees of all nodes above a given node. Obviously
this can be generalized to sequences of any length (and to
trees less regular than the binary tree). The total elements
of the example correspond to the top nodes 00, 01, 10, 11 and
the lower nodes to the partial elements. When we are not at a
top node we have only partially determined a sequence, and the
branching indicates that we have some choice as to how the
sequence can be extended. O

It should be noted that, in these three examples, the Teasen
that we have a neighbourhood system is a simple consequence of a



very special circumstance: in these systems two neighbourhoods
aTe either disjoint or one is included in the other. This
arrangement of neighbourhoods is by no means necessary,.

EXAMPLE 1.5. Let A ={0,1,2,3) and let 0 be the family of all
non-empty subsets of A,

This system is a direct generalization of Example 1.2.,
which was special owing to the small number of tokens. (The
other examples were special by virtue of the choice of neigh-
bourhoods.} The verification that the present P is a neighbour-
hood system rests on nothing more than the remark that sets are
consistent in P iff they have a non-empty intersection. Clearly
the arrangement of neighbourhoads in ¥ can be as varied asa
four-element set will allow; if A were made larger, the possible
combinations of neighbourhoods could be made as complex as you
wish., DO

Having some idea now of the variety of neighbourhood systems,
we have to discuss what it is they do. As stressed before, the
tokens do not have to correspond directly to the elements; but
where, we ask, do the elements come from? One obvious suggestion
for determining an element is to produce a sequence of "better
and better' neighbourhoods:

0" 272702

Trivially, any finite initial segment of this sequence is con-
sistent, and so each Xn is a partial approximation to the
"limit"”. If I werTe always to be taken as finite, of course,
there would be no point in discussing limits since any such
sequence would eventually be constant. The elements in the
finite case would therefore be completely represented by neigh-
bourhoods with the mintmzl neighbourhoods corresponding to the
total elements. But there are many reasons to go beyond the
finite (though perhaps not too far beyond).

Suppose (Y ) 2, is another "convergent” sequence with
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Yn+1‘-: Yn for all indices: when do the two sequences of neigh-
bourhoods determine the game 1limit? The twe sequences can

surely be different; for example, (Yn):=0 could be a subsequence
of (X)) 5, say, Yn=x2n' Still we would want to say that the
same linit is obtained. Without being given any further structure
on the neighbourhoods, a simple answer is just to say that each

sequence goes '""equally deep'" as the other:
for each m there is an n with XngYm, and
for each n there is an m with Ymgxn.

This definition obviously puts sequences into equivalence
classes, and so elements could be identified with these. But
such a definition is clumsy for two rTeasons: it is always
tiresome to work with equivalence classes, and there 15 no
reason to think that simple infinite sequences are adequate for
determining elements without some rather drastic assumpticns
on P. VNevertheless, the idea 1s suggestive; we just have to
find somne construct to represent elements in a unique way and
to phrase it in a general enough manner.

Start with <Xn)§=0 again, which "converges” as before.
Think of all the other sequences equivalent to this one in the
sense just defined. We can define the class of all terms of all
such sequences very easily as being the family:

x={Z€0 | X cl for some n},

1t is easy to prove that if we form the analogous class for

(Yn}:=0 , then the two families are equal if and only if the
sequences are equivalent. Thus, we seem justified in letting
x represent the limit of (X )% _,. All we have to do now is

to remark on what sort of class x is as a subfamily of T
what we abstract from the construction, however, will be just
a bit mere general than taking those x that result from sequences.

DEFINITION 1.6. The (ideal) elements of a neighbourhood system
' are those subfamilies x ¢ P where:

(i) 4€x;

(ii}) X, YeX always implies XnY €x; and

(iii) whenever X€ x and XgY€D, then YEX.

The domin of all such elements is writtem as | PI. O



The idea of 1.6 is a well-known mathematical device: the
families x satisfying (i) - (iii) are usually called filters.
Most frequently the emphasis is put on the meximl filters, and
these would be our fozal elements; however, in general, tke proof
that maximal filters exist is non-constructive, so for our
purposes it is better not to neglect the partial filters. When
maximal filters can be found, well and good, but we do not have
to insist on them. Note that the generality of 1.6 is achieved
by not requiring that there is a sequence of neighbourhoods
that "generates" the filter x., (See Exercise 1.22.)

We have often said that neighbouthoods determine partial
elements by themselves; we now make this Temark precise.

DEFINITION 1.7. For X€ 7, the prineipal filter determined by
X is defined by:

+%X= {[YED | XY},

The principal filters form what we shall call the findite
elements of the domain | P]. O

It is obvious that the correspondence between X and + Xis

one-one and inclusion reversing , in the sense that
XeY iff +Yg+tX

for all X,Ye?. But, except in very special cases, there is
ruch more to | P11 than just the finite elements. Much of our
investigation will be concerned with finding out how much more.

The finite elements are, in a certain sense, "dense'" in
|71, however, because it is also obvious from the definitions
that for each x € DI

x=U{+x{Xex}.

That is, every element is a certain type of "limit"of finite
elements. (This statement is made more precise in Exercise 1,21)

We note that we have now had several cccasions to use
inclusion relationships between elements; this is an important
relationship, and we give it a special name.
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DEFINITION 1.8, For x,y € [D|, we say that x approzimates y iff
X =y . The element that approximates all others, {A}, is called 1
(read: bottom} ; it is the "least defined" element, or the

"most partial' element. Elements maximal with respect to the
approxination relation are called total elements. O

EXAMPLES 1.2 ~ 1.5 (Revisited). The examples as given were

all finite, so any explicitly given filter x is principal,

the elesent is finite, the minimal X€x tells us all we need

to know, 1In such simple situations there is essemtially no
difference between elements and neighbourhoods -- except for

the teversal of the order as noted, This (necessary) rever-

sal should not, however, become a matter of confusion: the
smaller the neighbourhood has become, the more it has "“converged",
and so the better defined the element has become. In the approx-
imation relation the "poorer” elements are placed below the
"better" with the total up at the top. This will become clearer
in discussing "infinite” elements.

Example 1.3 will be generalized in Exercise 1.1,Let us
here generalize first 1.4. We let

A=Z+

,
where IZ={0,1} and I* means the set of all finite sequences of
0's and 1's, with A being the empty sequence. We write ot for
the concatenation or juztapoeition of twe sequences o,T€I*.
Define

B ={oI*|ge€Z*}, where
oX={oTlte X} ,

for an arbitrary set X< ZI*. In other words, a neighbourhood in
B consists of all extenstone of a given sequence o. (Refer
back to the finite version of 1.4.7 We use the letter "B8" to
remind us of "binary", and this is an example we shall refer to
many times. The proof (if it is not obvious) that B is a
neighbourhood system should be done as an exercise.

What do we find in IBl? Of course L= {A}€1Bl. For any
Xx€ |IBl and o€ I* define
ogx={Y |oXc¥Y some XEx}.



Again there is an exercise here to show ox€I1B8l. In particular
ol € |8l for all o€I*, and these are just the finite elements.
The minimal element of ol is c4. Note that o ,1lc oyl if and

¢

only if g, is an “nittal segment of the sequence o

0 1°
If now xe |B!l is any explicitly given element (that is,

if we know for any X€ B whether or not X€x), we have but tn
work out from these definitions that

oo

X = LJ o 1,

n=p P
where the onEE" and each o, is an initial segment of the next
One1t In general, in any domain, an element is uniquely
determined by its finite approximations, and we are just making
this explicit in 18l. When we have complete knowledge of x,
then there are two cases: either the approximations o, 1 become
constant from some point on (where n>n0), or not. In the first
case x is finite and equal to oy _1; in the second case x is
infinite and the cnfill out an infinite (one-way) sequence.

The generalization of 1.5 to the infinite case where
A=N= {0,1,2,3, ..., T, ..a}

can be made in more than one way: for instance either we use
as neighbourhoods gl non-empty subsets of A or just those
omitting but a finite number of integers. And, as will become
apparent, there are other choices giving domains of quite
different characters. 0O

Many constructions (choices of 7) lead to the "same"
domain; '"sameness" is an important notion and it is to be
defined in terms of "isomorphism", which in turn is to be
defined in terms of approximation preserving correspondences.

DEFINITION 1.9. Two neighbourhood systems 7, and 01 deterrine
isomorphie domatne 1ff there is a one-one correspondence between
1Dyl and |1J1| which preserves inclusion between the elements of
the domains. In symbols we write 1)0 = 01. |
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It is certain that the property of 1.9 is mecessary, but
it may not be so clear that it is sufficient. We shall in fact
prove in the next lecture that an isomorphism be tween domains
always maps finite elements to finite elements, so it always
results from a one-one inclusion-preserving correspondence
between neighbourhoods. This is surely asstrong as could be
hoped. This general result is not needed to see that particular

domains are isomorphic.

In some of the examples tokens corresponded to total
elements and in some to partial elements; it i5 not difficult
to see (ex post facto} that every domain can be presented with
tokens exactly corresponding to partial elements.

THEOREN 1.10. Given any neighbourhood system D, define for
Xevp
{X] ={x€ 1Pl | X€x}.

The subsets [X] < IP| for X€? form a neighbourhood system over
|P) which determines a domain isomorphic to iP].

Proof: We note first that
(1) (A] =101,
Next note that
(2) ¥, Yare consistent in P iff {XIn (Y] = @ ;
and that for X, YED
(3} IXIn[Y)=[XnY] if XnYeD.

Inasmuch as
(4} tX€[X] for all Xe 0D,
it easily follows that 0 and the family

{Ix)lxep}

are in a one-one, inclusion-preserving correspondence. Thus,

we can induce the desired one-one correspondence between the
elements of the two systems. 0O
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The import of 1.10 is that the original tokens in 4 can
be replaced by the elements of [?]. This process replaces the
neighbourhood X = & by the subset [X) = IPI. As the passage
is inclusion preserving, the domain has not really changed, only
its presentation. Though of some thecoretical charm, the
theorem is not of much use since we still have to get D from
somewhere. It dces emphasize, though, that the rfle of the
tokens is simply to keep the inclusions (and intersections) of
neighbourhoods sorted out., It is not always true that the
tokens can be identified with the total elements.

The last theorem in this lecture is a result on eclesure
properties of a domain with respect to set-theoretical opera-
tions which have interesting meanings with respect to approxi-
mation.

THEOREM 1.414. If P is a neighbourhood system and anH}I for
n=0,1,2,..., then

1) x_ €iP1; and
rDO n

(ii) x_ €17}, provided
nL=Jo n

X = X, © [ =S N L = = C ass
0 EXEXRE EXp E¥ =

Proof: The conditions of 1.6 have to be checked. For
the case of intersection, all of 1.6(i) - (i1i1) are quite obvious.
For the case of union, only 1.6{ii) gives pause and it requires
the provise. If X and Y belong to the union, then X€ X . say,
and YExm. But, either n<m or m<n, and if k=max (n,m), then
X, YeEx, . Since x, € |P}, we have XnY€x, thus, XnY belungs
to the unien, This proves (ii). O

In words, the intersection is the best element that is at
the same time an approximation to all of the elements x5 the
intersection is exactly what is common to all the given ele-
ments. The union on the other hand is just what the (increas-
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ing sequence of the) Xy approximates; the union combines
contributions from all the xp into a "better" element --
but no more than that.

In thinking about domains a rough diagram of the partial-
ordering relation c between elements is often helpful. The
picture of 1.4 is an example where the nodes represent the
elements. Any finite tree growing up from 2 root node would
also be an example., Indeed, any finite partially ordered set
with least element would be an example. (Here nmo distinction
between tokens and ¢lements is necessary.) A lattice diagram
is also illustrated.

L L
A TRIE A LATTICE

4,

A ROUGH PICTURE

The root node is the element L of [PI; there need be no top
node T. Approxtmation 13 Tepresented by a passage from a lower
node to a higher node along the rising lines. The system ¥ of
neighbourhoods is the collection of sets each of which is all



the nodes above & given node. For infinite examples, however,
care must be given to introduce IZmit nodes. The first few
exercises should be provided with pictures to illustrate the
structure.

EXERCISES

EXERCISE 1.12. Let A= N = {0,1,2,...,0,...1be the set of non-
negative integers. Use as neighbourhoods final segments:

fme N |{m>n}

for ne€ N. Verify that this is a neighbourhood system. What
are the total elements? What are the finite elements? Draw
a picture of the approximation relation in this domain.
(Hint: there is only one limit element.)

EXERCISE 1.13. Verify all the assertions made about the
system B defined as the infinite gereralization of Example 1.4,
Draw a picture similar to that given in the text which includes
nodes for all o€ Z*. Show the neighbourhoods, how the approx-
imation relation behaves, and where the total elements lie.
(The picture is closely related to the "binary tree", but has
to have limit nodes all along the top.)

EXERCISE 1.14. Let A= N and let § be the family of finite non-
empty subsets of A plus the set A, Show that this is a neigh-
bourhood system. What are the total elements? What are the
finite elements? Draw a picture.

EXERCISE 1.15. Construct non-isomorphic infinite domains where
all elements are finite but where there are no infinite chkains

< > " of elements with x c x

" n=0 n for all n.

*
1 but X, *x

n+ n+l

13
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EXERCISE 1.16. LetA = Nand let VP be the family of cofinite
subsets of N. Show that V| is isomorphic to the partially
ordered set of gl subsets of N under inclusion . Construct
some other neighbourhood systems where U is closed under finite
intersection. What happens to the total elements in such systems?

EXERCISE 1.17. Let A=TR be the real line. Let D be the set of
non-empty open intervals with rational end points plus the set 4,
Show thit this is a neighbourhood system. For any real t€ R, show
that

{xep|tex}

is a filter, Is it always total? What are the total elements
of IP}?7 (Hint: When t is rational consider all intervals with

t as a right-hand end point.)

EXERCISE 1.18. Let P be a neighbourhood system. (Call a subset
C <P comistent iff every finite subset of € is consistent in:?.
Give an example where C is a subset with more than two elements,
every pair of neighbourhoods in € is ¢onsistent, but € is not
consistent. Show that if C is consistent, then there is a

legst filter x€ |D| with Ccx. Show generally that the Znter-
gsection of any non-empty collection of filters is again a filter.

EXERCISE 1.19. Define a posgitive neighbourhood system to be a
family 0 where (ii) of 1.1 is replaced by

(i1*') whenever X, Y€ D, then XnY+#@ iff XnYED.

Prove that a positive neighbourhood system is indeed a neighbour-
hood system in the sense of the earlier definition. Give an
example of a neighbourhood system that is not positive. (Hint:
(suggested by C.A.R. Hoare). Let 4=NxN, in the plane. Let

U be the family of subsets XeNx N where all but a finite
number of places the vertical sections of X are the whole of N
but at the other places the sections are finite and nonempty.
Smaller examples ate pf course possible.)
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EXERCISE 1.20. Let U be any neighbourhood system over a set A,
Let A’ =P and define

D' = {+X | XeD}
where

+X= {YeD |YecX}.

Show that P’ is a positive neighbourhood system and that 0| and
IP") are isomorphic. Note that for §' finite elements and tokens
are in a one-one correspondence.

EXERCISE 1.21, Work out in greater detail the proof of 1,10,
Remark that the neighbourhood system over [Pl so constructed is
positive, thereby obtaining in a different way the same kind of
conclusion as in 1.20, Show also that the system over IDI is
complete in the sense that every filter is fixed by a unique
member of the underlying set. (A filter is fized by g point iff it
is the filter of 4ll neighbourhoods containing that point.)
Remark that a complete system is one where tokens and (partial)
elements can always be identified (under a suitable cne-one
correspondence). Show also that consistency of a set {xi|i<n}
of neighbouthoods in 0 is equivalent to saying

Nix1+0

i<n

EXERCISE 1.22. (For topologists). Show that the neighbourhoods
[X] for X€ P make |P| into a topological space where the open
subsets Y 2|0l can be characterized by the following two conditioms:

(1) whenever x €l and x cy€|?|, then YEU ; and
(ii) whenever x€ (I, then tX€U for some XE€x,

Prove also that the inclusion relaticn on 101 can be defined
topologically as:

(iii} xgy iff for all open U 1P|, if x€ ¢ then y€l,
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Is 1P| ever a Hausdorff space? Show that if (xn)gzo is a

sequence of elements of |P| with =S for all n, then

is.not only in |P| but is a topological limit point of the
sequence. Show that any element x is alimit point of the set
{tX|Xex}. Are there other limit points?

EXERCISE 1.23, Suppose that the neighbourhood system 7 is
countable, say,

D= {Xo, X1, XZ' ey Xn’ ..}

Suppose further that the property of consistency of finite
sequences of neighbourhoods is decidable (or "effectively
known'). Then the following sequence is well defined:

Y, = X

0 0
Yn+1 = Xn+1’ if this set is consistent with
Yoo Yyu ooy Y 3

= Yn , if not,

Show that {Yo, Y1, cray Yn, ...} is a total element of |D].
{Hint: Show first that YO' Y1, ey Yn-1 is consistent for all n.)
In such a system show that all filters can be determined by

sequences.

EXERCISE 1.24. (For set theorists). Prove, using the Axiom
of Choice, or some equivalent principle, that in every domain
a partial element can always be extended to a total element.
Is this assertion equivalent to the Axiom of Choice? (Hint:
Remember to prove that the union of every {transfinite) chain
of filters is again a filter.)
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EXERCISE 1.25. (For set theorists). Let A be any well-ordered
set (ordinal). (Even small ordinals like w.3 or w’ are inter-
esting.) Let ? be the family of non-empty fingl segments of A.
What is I71? Are all elements finite? 1Is every approximation
to a finite element finite?

EXERCISE 1.26, (For algebraists). Let A be a commutative
ring with unit. Let A be the set of finite subsets FcA. Define

I(F) ={G€ A | Fc the ideal generated by G}.

Prove that the sets of the form I(F) form a neighbourhood system,
and that the corresponding domain is isomorphic to the set of
ring-theoretic ideals of A partially ordered by inclusion. What
would happen if we excluded from A all F with I(F) = I({1}), where
1 is the unit of A?

EXERCISE 1.27. Further closure properties of domains can be
proved for bounded sets. We say X< Dl is bounded iff for
some Y€ |D| we have xcy for all x€X. This y is called an
upper bound. We let

Ux=Nyeioi]xcy all xe Xk

Prove that if X is bounded, then [JXis the least upper bound
for X in I?1. Prove alse: if U,V€D are neighbourhcods, then
(U,v} is consistent in ¥ iff {4U , +V} is bounded in IPIl. (That
is, boundedness is for elements what consistency is for neigh-
bourhoods.) Prove finally with the aid of 1.18 that X< ID| is
bounded iff every finite subset of X is bounded.
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LECTURE 1

MAPPINGS BETWEEN DOMAINS

The elements of a domain are regarded as being specified
by approximations: the neighbourhoods. With the idea of
approximation as the dominant notion, therefore, it is natural
to look for a concept of mapping (transformaticn of domains)
that in some suitable sense preserves the spirit of the approx-
imations. In a theory of computability, where the (finite)
approximations to the elements are all we can ever know at one
time, the only mappings that can be computed are those that
proceed by approximation, somehow passing from the neighbour-
hoods of one domain over to the neighbourhoods of the other.

Suppose XETD is given - it is an approximation to certain
elements of IDOI. (More precisely +X is the approximation in
the domain, but it is easier to speak of the neighbourhood X.)
What can be said about the approximations of the images of
these elements under the mapping we will call £? If X is not
a very sharp approximation, then net very much can be said
about the image in the other domain 10,1 . Trivially, of

course, we can say that A, is an approximation - because it

approximates everything i:x its domain. Suppose, however, that
we could say more. Suppose we could say that both Y and Y
approximate the image of X. If the mapping f is coherent,
then it is reasonable to suppose that such a statement would
imply that Y and Y' are coneistent in ?,. But if this is so,
then since the two neighbourhocds arte meant to cluster arournd
the same images, we can feel some confidence in saying that
YnY' approximates these images., In other words to specify f
we do not supply aunique image of X, but we say which of the
YEDO approximate the (ideal) image. To make this idea work a
monotonieity condition 1is also needed since we are trying to
express the idea that "{f'we give at least X as an approximate
input to f, then we can expect at least Y as output." Thus,
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a mapping is taken as a kind of relation between neighbourhoods.

DEFINITION 2.1. An approximable mapping f: Do-v 171 between domains
is a binary relation fgvox D1 between neighbourhoods such that

(i) AOfA1 :
(ii) XfY and XfY' always imply X£f(YnY') ;
(iii) X£fY, X' =X, and Yy’ always imply XY, D

Condition (i) we have already discussed; in a sense it
means "ask me no questions and I shall tell you no lies."”
In other words "zero input can expect at least zero output.”
The other conditions are compatible with having

f={< x,A1>|xepo};

that is, f might be the least informative relation and nothing
more. But if it 1s more, then (ii) is, as we explained, a
consistency condition. To explain monotonicity in (iii),

suppose a mapping relationship is already known, X fY, say,

If we isprove the accuracy of X to X'< Xand if we degrade the
accuracy of Y to Y'2Y, then we can still assert X'fY' since this
relationship 1s less informative  than the former relationship,
which was already known. Thus, we see that conditions (i) -
(iii) are all reascnably argued as necessary.

One indication that the conditions of 2.1 are sufficient
for a definition is that they are exactly what we need to show
that f ss 2 neighbourhood relation determines an equivalent
elementwvise mapping from IOOI into [91[. (Owing to the
equivalence, we use the same symbol f for both.)

PROPOSITION 2.2, Given neighbourhood systems DD and 191 , an

approxinable mapping f: 00+D1 always determines a function
£: 1041+ 10,1 between domains by virtue of the formula:

(1) £(x)={YeD, | 3X&Ex. X£Y}

for all x€ | DOI. Conversely, this function uniquely determines



the original relation by the equivalence:
(ii) XfY iff Yef (#4X)

for all Xe Do and YED.l. Approximable functions are always
monctone ir the following sense:

(iii) xey always implies f(x) ¢ £(y),

for x, y €1751; moreover two approximable functions f: DD- 01
and g: DD - D,I are identical as relations iff

(iv) £(x) = g{x), for all x€ I‘DDI.

Proof: The argument that formula (i) always gives us
f(x) € 10,1 when x¢€ Wol can be safely left to the reader.
Note, however, that all the conditions of 2,1 are required te
show this. As for (ii), the implication from left to right
follows directly from (i) because XE€+ X. In the other
direction Y€ f(4X) means that Z fY holds for some Z€ 4 X.
But from X =2 it follows that XfY, as we wished.

To prove monotonicity, assume X<y. Now X€x and XfY
always imply X€ y and X fY. This means Y€ f(x) always implies
Ye f(y); that is, £{x) cf(y).

Finally, to check that (iv) means f=g as relations, all
that has to be remarked that this follows from formulae (i)
and (ii). D

Note that the right-hand side of (ii) can be written:

Y ef (X)),

which can be read as saying that the partidl element determined
by the neighbourhood Y approximates the function value at the
element determined by X. This precise relationship of course
fits the informal discussion of mapping given earlier. lndeed
whenever x€ [X] and X£fY hold, then f(x)E[Y] always follows,
which is another way to construe the mapping character of f.
Some examples of mappings 2re now called for.

29
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EXAMPLE 2.3. Let T be the neighbourhood system of the two-token
domain of Example 1.2. To avoid confusion with some other
domains, we will call the twe total elements of 1Tl respectively
true and false. There is only one other finite element here, namely

1 =undefined. We often use these elements as indicators of
results: true indicates a positive outcome; false, a negative
outcome; and 1 indicates that there is not enough information
te decide the outcome totally.

Let B be the system for the binary tree as in the last
chapter. What we wish to define is an approximable mapping
f:B~T, The intuitive idea of the mapping we have in mind is
that the binary sequence is being read from left to right, and
we are counting the number of 0's seen before the first 1 is en-
countered. We then test the parity of this count; if it is
aven, the output is true; if not, false. Using a suggestive
informal notation with three dots, some results of the function
that does the counting and testing can be written as:

f (0000101.-

+) = true
£f (1101110+++} = true

)

)

f (0111011.-.) = false
f (0000000---) = L .

The last equation is necessary, because 0000000 as a partial
element eannot be counted as either even or odd since it can

have imtonaiatent extensions:

0000000 L 00000001 1
0000000 L < 00000000001 L.

So, as far as f is concerned, a plain string of 0's is
indefinite, The same answer holds if the 0's go on infinitely.
To be more precise we want

f [0“1 1) = true if n is even;
= false if n is odd.

As a binary relation f=BxT we will have

XfYiff YEL oT X50n1A for some n€ Nand either n is
even and Y€ true or n is odd and Yc false.

It should be checked that 2.1(i}-(ii) are satisfied, O
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EXAMPLE 2.4. Let us briefly describe an approximable mapping
g: B+8, Infoermally, g can be said to "read a sequence from
left to right and eliminate the first consecutive run of 1's
while copying all the other digits as read." We will have

g (On'lkOx} =0ty

provided k > 0. (Here ‘1k means a string of 1's of length k.)
However, if 1¥ is the infinite sequences of 1's, then

g (1”)=L, and
g (6™ 1%y =0,

This example is instructive, since it shows that a non-trivial
mapping can transform a total element into a partial element, O

Aside from our being able to define particular functicns
outright, we can combine functions in many different ways; the
idea of composition is probably the most basic scheme of combina-
tion, and there is a technical name for a family of structures
with mappings that can be so combined.

THEOREM 2.5. The class of neighbourhood systems and approximable
mappings form a ecategory , where the identity mapping ID 1 D7
relates X, YE€D as follows:

(1) X 1I,Y iff Xg¥.

If f: DO+D1 and g: D1+Dz are given, then the eomposition
g "f:ti'o-rll'2 relates X€ DO and ZETJ2 as follows:

(ii) Xgef 2 iff 3YeD,. X£Y and Yg2Z.

Proof : (We may use Maclane [1971] as the standard reference
on category theory, but we require hardly meore than the basic
definitions at this stage.) To check that we have a category,
we need to know that the identity and composition maps really are
maps in the category and that certain identity and associative
laws hold. Now it is obvious that ID satisfies 2.1 (i)-(iii).
Moreover if f: DD +D1, all we have to prove is:
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fal, =1, ef=1
90 D‘l
Checking one of these equations is enough. Thus, for XEDD
and 2601 we find

XfuID I iff 3YED_ ., Xc¥Y and Yf2Z
0 0
iff Xf2.

So, f znd f e ID are the same mapping.
0

Suppose now that f: DO+D1 and g :‘01 +Dz. We have to
verify that g« f is an approximable mapping. First off, there
is no trouble in seeing that Aog a fA2 holds. Next, suppose
that XgefZ and Xge £Z" hold. Then we have X£fY and Yg2Z
for some choice of YED,. Also XfY' and Y'g1* hold for some
choice of Y'ED1. By 2.1 (ii) it follows that X f (YnY').
Since YnY'cY, we conclude (YnY‘JgZ by 2.1 (iii}; similarly
Y nY’)gz' . Invoking 2.1 (ii) again, we obtain (YnY")g(znZ'),
and Xg«f(ZNn2") is proved.

Suppose finally that X'cXgefZIgZ'. Now XfY and Ygi
for some Y€ D,I. But then X'fY holds; for a similar reason
YgZ’' holds also. Therefore, X'gefZ' is established, which
means that we have checked 2.1 (iii) for ge f and have completed
the proof that ge f: DO+D1.

The verification of associativity is a purely logical
deduction. Thus suppose that in addition to f and g we have

h: 02+03. If X€ DO and W693 we find

Xho(gef) W iff 32€%. Xgofl and ZhW
iff 32602 E!YED,l. XfY and YgZ and ZhW
iff EIYED1 3Z€P,. XfY and YgZ and ZhW
iff 3Y€D. XY and Y(heg) ¥
iff X(heg)eo£fW,

S0, as relations, he(gef) = (heg)s £, O

It may seem as though we have, in the definition of composi-
tion, written things backwards. BEut the Teason is that when
mappings are taken as elementwise functions, then the order is
preserved in expressions involving the usual function value notation.

We have, for example:
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PROPOSITION 2.6, Given f: 00*01 and g : IJ,I -Dz, the following
equations hold:

(i) ID (x} =x, and
i]
{ii) (g=£) (x) = g(f (x) ),
for all x€ IDOI. (]

The proof is not troublesome and is left as an exercise,
In technical language the result shows that the category defined
in Theorem 2.5 is equivalent to a "concrete category" of sets
and functions, namely the domains and elementwise transformitions
of 2.2.

Toward the end of the last lecture (see 1.9) we promised to
show that isomorphisms of domains always come from approximable
mappings, and this we now do. It means that the category contains
all the isomorphisms it should have.

THEOREM 2.7. Every isomorphism between domains results from an
approximable mapping between the neighbourhood systems, More-
over, finite elements are always transformed into finite elements.

Proof: Suppose that f: IDOI + ID1I is a one-one, inclusion-
preserving function defined on elements, where the range of the
function is the whole of ID.II. of course. Taking the hint from
2.2, there is only one way we could define a neighbourhood
mapping; namely, we consider the relation Y€ f (+X) for X€ t?o
and YED1. What has to be shown is that this is an approximable
mapping which determines the original function via the formula
2.2 (i).

The first part is easy; indeed, there is a general result
that monotone functions on finite elements of one domain to
arbitrary elements of another domain always determine approxi-
mable mappings (cf. Exercise 2,8). What remains, then, is to
show that the relation re-defines the function. This comes down
to showing that for x€ IDOI

f{x) ={YEIJ1 ] 3Xex. YE£(+X)).
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Consider the right-hand side of this equation: it is a filter.
(This either can be proved directly or Exercise 2.11 can be
used.) Because f is an onto-function, we can call the right-
hand side f (x’ )} for some x'EIDOI. But since X€ x implies
+Xcx and £(4+X) = £ (x), the right-hand side is included in
the left-hand side. In other words f(x') €¢f (x). But, since
f is an iscmorphism x‘cx follows.

In the other direction, if X€x, then f(+ X) € f(x’') holds
by -definitien, so +Xex’., This implies X€x' ; and, as X is
arbitrary, xex"' follows. S0 x=x', and £ (x) =f£(x") as desired.

Finally, consider any finite element tX€ IDOI where XEDO.
What we have to show is that f(tX) is finite in I!J,II. Because
f is an isomerphism, we can associate uniquely to every Y€ f(+X)
an element yy < tX in IDOI where f(yY) =4Y. (Just apply the
inverse of the function £.) Define

2= |Jtyy 1 yefomy,

Because Y' €Y always implies Yy €Yy and each yy € IDOI. it is
easy to show z is a filter and hence is in IDOI also (cf.
Exercise 2.11)}. Because each yye_:+x, then zc +X, too. But each
Yy €%, 50 +Y=f(yY) € f(z) and hence YE f(z). As this holds for
all Yef(+X), the inclusion £(+X) cf(z) follows,as well as
t+Xcz. Therefore, z =+X and so X€ 2. But then XEyY for some
Ye £f(4X), by definition of 2. Since +X SYy» We obtain f£(4X) c+Y.
But of course the opposite inclusion is alsec true from the choice
of Y. This means that f(+X) = +Y is finite in ID1I as claimed.
We can apply the same argument te the inverse functian; and, thus,
the finite elements of IDOI and ID1I are in a cne-one inclusien-
preserving correspondence under the isomorphism. D

EXERCISES

EXERCISE 2.8. With reference to the precf of 2.2 show that an
approximable mapping is uniquely determined by its elementwise
effect on finite elements. Moreover any arbitrary monotone
function on finite elements of IDOI with values in |D1| comes
from an approximable £ : 00-01.
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EXERCISE 2.9, Prove that if f: o7 is an approximable
mapping, then the elementwise mapping f: ITJO | + |v1| satisfies
the equation

£(x) = U(f(m | X€&xl

for all x€ [DOI . Conversely, show that every elementwise function
satisfying this equation comes from an approximable mapping as
defined in 2.2.

EXERCISE 2.10. Carry out the proof of Proposition 2.6; and in
addition show that, if f,g: 00*01 are two approximable mappings,
there exists h: ‘DO+D1 such that

h{x) = £{x) ng(x)
for all x| Do"

EXERCISE 2.11., Let (], <) be a non-empty abstract partially
ordered set; suppose it is directed in the sense that whenever
i,jel, then i<k and j<k for some k€ l. Suppose that a: I+)D|
is such that

i<j implies ay gaj

for all i, jel. Prove that

LJ(ai lie1}

is always a filter in (P|{. (Note the ways this lemma could be
used in the proof of 2.7; but be careful in defining the partially
ordered set and do not confuse ¢ and 2.) In words we could say
that the domain of filters is closed under directed unions. Prove also
that if £f: P+0’ 1is an approximable mapping, then for any directed
union

£((Jragriem = Jtap i1y
that is, approzimable mappings aluwaye preserve directed wnions. If an

elementwise function preserves directed unions, must it come from
an approximable mapping? (Hint: Invoke 2,9.)
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EXERCISE 2.12. Suppose {I,<) is a directed, partially ordered
set and fi: Do+01 is a family of approximable mappings indexed
by i€l, where we assume

i<j implies fi(x)"—-‘fj (x)
for all i, j€I and all x€ IDOI. Prove that there is an approxi-

mable napping g : DO+D1 where
g(x) = [ JUE ()1 1€1}
for all xe€ 1001.

EXERCISE 2.13. (For topologists.) Recall Exercise 1.22 where it
was shown that any domain [Pl is a topological space. Prove from
Exercise 2.9 that the functions f: IDOI + ID1I determined by
approximable mappings are exactly the continuous funotions between
these gpaces. (Hint: To prove continuity, remark that by 2.9

£hvr= Juxa | ye £l
hence, the inverse image of any open set is open. In the other
direction, suppose that f : lDO' - |D1| is topologically continuous.
Argue that for all x€ IOOI and all open subsets Uc ID1I we have
f(x) el iff 3Xex., £(tX) el.

This holds because an open subset of IOU! is always a union of
basic open subsets of the form [ X'} for X€P, and because

x =U{+x | XEx}
for all xelvol.)

EXERCISE 2.14, Let f: [Dol + |D1I be an isomorphism between
domains. Let ¢: DO+D1 be the one-one correspendence between
neighbourhoods provided by Theorem 2.7 where

£(+X) = t (X))
for all X€7¥,;. Show that the approximable mapping determined
by f is just the relationship ¢{X)g Y. In addition prove that
if X, X'€ Oo are consistent, then

SXNX' ) = @(X) N (X').
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Remark that the isomorphisms between domains correspond exactly
to the isomorphisms between neighbourhood systems (in the sense
of one-one inclusion preserving correspondences).

EXERCISE 2.15. (For topologists). Consider the one-token system
with

&=1{ {0}, @}

We can regard I®] as having just two finite elements L (bottom)
and T (top), where Lc T . For any system D, show that the open
subsets U of |P| are in a one-one correspondence with the approxi-
mable mappings f : 0 +» ¢, where the correspondence is given by the
equation

U={xe€Ir! | £(x) =T}.

What are the open subsets of |17 of [TI? of (BI?

EXERCISE 2.16. In the discussion of B in Chapter 1 we defined
a mapping x kox for any given g€ Z*, Is this (elementwise)
mapping approximable? Show in addition that the mapping
f:B8-+T of 2.3 is uniquely determined among approximable
mappings by the equations:

f (1x} = trye,
f (D1x) = false, and
f (pox) = f(x).

EXERCISE 2.17. Establish in detail that the mapping g: B8+ 8
of Exercise 2.4 is approximable. 1Is it uniquely determined by
these equations:

g(0x) = 0g(x),
g(11x) = g(1x),
g(10x) = 0x,
g(1) =L,

or are some missing?
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EXERCISE 2.18. What is the meaning in words of the approximable
mapping L : B+ B, where

h(0x) 00h(x), and

h{1x) 10h{x),
for al] elements x€ |B|? Is h an isomorphism? Does there exist

a map k: B+ B where

keh = g,

and is k one-one?

EXERCISE 2.19. Generalize Definition 2.1 in an appropriate way
in order to define the concept of an approximable mapping

f: Pox 01* TJz
of two vertables. (Hint: f can be taken to be a certain kind of
ternary relation

£0, x D, x0,,
where we can write

X, Yf 2
for the relationship among neighbourhoods.) What is the
corresponding version of Proposition 2,2 for functiens of two

variables?

EXERCISE 2.20, Discuss again the example of Exercise 1.15

where the domain turns out to be the powerset (set of all sub-
sets) of N. Show how the finite elements can be taken to be
the finite subsets of N and can be identified with the tokens of
a suitable neighbourhood system P. (Hint: Define +F for finite
sets FcN.) Show that both union and intersection (xUy and
xNy) are functions on |P| that are approximable in the sense of
Exercise 2.19. (The elements of |P| are being identified with
arbitrary sets xcN.) Show alsc the following transformations
approximable:

=

+

-
]

{n+1]nex}, and

{nin+1€x},

]
1
—_
"
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EXERCISE 2.21. The system &8 ot 2.3 has as its total elements
only the infinite sequences. Modify the construction of B to
another neighbourhood system C which has both the finite and
infinite sequences as total elements. (Hint: 8¢C.) Show that
there is an approximable map xy on elements naturally extending
ordinary juxtaposition of sequences. (Hint: Write 01001 for a
total finite sequence and 010011 for the corresponding finite
partial element. Remember to distinguish between A (the total
empty sequence) and t {the undefined sequence). The definition
should work out so that if x is an infinite sequence (hence, total),
then xy=x for all y. What will xy equal if x is not totalr?
In other words, the construction possesses a rather strong left-
to-right bias.)

EXERCISE 2.22. (For set theorists)., We have remarked in Exercise
1.18 and in Exercise 2.11 that any domain 1?1, as a family of sets
(in fact, a family of subsets of the set U itself), is closed under
the intersection of an arbitrary nen-empty sub family and urder
the union of any directed sub family. For those familizr with the
subject matter, the example of the (proper) ideals of a commutative
ring {with unit) is also seen to be such a family. What is the
abstract situation? Let € be any family of sets with these closure
properties, It is to be shown that € is inclusion-isomerphic to
a domain., (Hint: Let A be the set of finite sets included in sets
in €. TFor Fe A, define its '"closure" by the equation:

F- (Jixecirex),
Every F€€, and these will prove to be the "finite" elements of C.
The neighbourhood system ? over A can be taken to be the sets of
the form

C(F) = {(GeA | FeT }
for FEA, Notice that fer all XE€({
X = U{‘F | FeX and FeA}.)

Check that approximable functions on these families are just those
preserving directed unions.
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LECTURE TI1

DOMAIN CONSTRUCTS

Having now seen a number of domains presented through
theitr neighbourhoed systems, we need next to introduce general
constructs for forming new domains from old. There are an
unlimited number of such constructs (technically called funetors),
but we have time only to single out a few of the more important
ones. Outstanding among all of them is the notion of product
of systems, which in our chosen category has all the expected
ptoperties. For the time being in order to simplify notation
we assume of the underlying sets AU and A1 of systems DO and

v, that they are disjoint. There is no loss of generality as
01 can always be replaced by an isomorphic system disjoint from
00 in the required sense.

DEFINITION 3.4. Let neighbourhood systems Do and D.I be
given over disjoint sets Ao and A1. The product system over

Aa u A1 is defined by:
ﬂoxﬂ.l = {XUYIXEDO and YED,I}.

For elements x€ IDUI and y€ !D1l we also define:

<x,¥> = {XUY!Xex and YEY}. O

PROPOSITION 3.2. The congtruct Do x 01 always gives a neigh-
bourhood system where for elements x,x' € IDOI and y,y’'€ ID1I we
have

(i) <x,¥y> g <xy'> iff xcx'and yev'.

Moreover, there is a one-one correspondence between the elements
of IDO xD1l and pairs of elements of IDOI and IU1| since all
elements of II?0 x D1I are of the form <x,y>.

Proof: Owing to the disjointness of AO and A1, we note
that for X, X'€D, and Y, Ye D, we have

) ¥UYec X'UY iff XeX’ and YgY'.

Thus, {XuY, X'UuY'} is consistent in DOKD1 {ff (X, %"} is
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consistent in 00 and {Y,Y'} is consistent in P« In the con-
sistent case we find

(2) (XuY) n (X'u YY) = (XnX") u(¥YnY"),

and so Dy x 01 is closed under consistent inptersection. As

AOUA1EDO x Dy, it is certainly a neighbourhood system.

It is easy to check by the previocus calculations that
<x,y> €| DoxD1| if x€ I‘DOI and y€ ID1I. The proof of 3.2(i)
follows directly from the definition and (1).

Suppose z € ITJ0 x‘D,II. Define as a temporary notation:

z,= (XED, | Xua, €z), and
z, = {Yev, | AjuY€Ez).

Clearly, both z € Iﬂol and z, € ID.‘I. In view of the formula

0 1
(3) (Xua,)n(a uY)=Xuy,
we can calculate that

Z=<24,247.
Moreover, if z = <x,y >, then
€Xy¥ 2 =x and <x,y >, =y.
The one-one correspondence required is thus established. O
There is more going on in the proof of 3.2 than just a one-

one correspondence between elements and pairs. The extra inform-
ation is best formalized by introducing a notation for mappings.

DEFINITION 3.3. Projection mappings
Pyl x Py~Dy and p,: 04 x D, 7,
are defined as relations where
(xXvy) Py X' iff YXeX' , and (XuY) Py Y'"iff YeY’
hold for all X, X'EDO and Y, Y'E o, Given f : 02 -0, and
g Dz *D,l , the paired rapping
<f,g>: 0, 0, x 0,
is defined as a relation where

Z<f,g> (XuY) iff ZfX and Z 7Y

holds for all XEDO, YED,I, and 7.602. o
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PROPOSITION 3.4. The mappings Pgs Py 2nd <f,g> are approx-
imable mappings, provided f and g are, and we have:

(i) pon(f,g>=fandp1o<f,g>=g_

Moreover, for z € ITJ0 XD1I. we have:
(ii) pglz) =245 and py(2) = z,,

in the notation of the proof of 3.2. Further if h :TJ'2 - ﬂox D1
is any approximable mapping, then

(iii) h = <Pg ° h, pye h>.
Moreover, for all we lDzl, we have:
(iv) <f,g> (W) = <f(¥), g(w) >,
where again on the right-hand side the notation of the proof of

3.2 is used. O

The procof of this result is left as an exercise. Note the
consequence that there is a one-one correspondence between pairs
of approximable mappings f : 92 - vo and g :172—+ 1‘)1 and mappings
h: Dz +Do x91. It is clear that we generalize all this to products
R T P

of several systems.

The product construct also neatly explains functions of
several variables. In Exercise 2.19 we used the informal notation

£:PyxDy+ o,
and suggested regarding f as a ternary relation
X, YfZ.

But now with DO * 01 given an independent meaning, all we have to
do is to regard £ as a binary relation with

(XuY) f 2
equivalent to the old relationship. We can also employ an element-
wise neotation as in f (<x,y>), which can more easily be written

f(x,¥y). Similar remarks apply to functions of more than two
arguments.,
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We have discussed several times what it means feor a
function £ (x)} to come from an approximable mapping. It is
interesting to ask the analogous question for functions of
several arguments,

THEOREK 2.5. An elementwise function
f: |DDXD1I * IDZ\
of two arguments comes from an approximable mapping iff for each
fixed ae IDOI and each fixed b€ ID,II the transformations
XxXkf (x,b) and y = £f(a,vy)
come from approximable mappings of one argument.

Proof: As this is the first time we have had to deal with
constants in functions, a lemma is useful.

LEMMA 2.6, Given b€ ID.lI, the constant function
b: IDOI - ID.Il
where b(x) = b for all x€ IDOI , comes from the approximable
mapping such that
XbY, iff Y€b,
for all XEDO and Y€D1. ]

There i5 no real confusion here in using "b"™ both for function
and value. Returning, then, to the proof of 3.5, we see that
the teason that x M f{x, b) comes from an approximable mapping
is that the mapping in question is the composition of two approx-
imable nappings, namely f » <ID , b». Clearly we can interchange
the réles of D‘,J and D, to get 8t y £f(a,y].

Conversely, assume that both these functions come from
approximable mappings no matter the choice of a and b. Clearly
the mapping to determine f is the relation from XU Y to I where

TEF (+X,+Y) =£f(4(XUY)).

To prove that this determines f we calculate by the formula of
Exercise 2.9:
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£0x, y) = JUEC+,y | Xex)
- JtJsex 1) Lyeyd | xex)
- U{f(nt,nf) | Xex and Yey)
= JEcrxvm) | (xuvye<x,y ).
And, again by 2.9, this is what was needed. O
Said more informally, a function of several arguments is

approximable in all the variables jeimtly if it is approximeble
in each of the variables separately.

The type of argument used in 3.5 in the first half of the
proof also provides a generalization of 2.6 to functions of
several arguments. When we form a function like

flg(x,z,--.2), h(¥Ys%,e.), k(Z,w,.0.-},0.4)

from given functions f, g,h, X,...} we call the process sudetitution,

PROPOSITION 3.7. The functions of several arguments between
domains coming from approximable mappings are closed under
substitution.

Proof: An example will establish the method. Suppose there
are four variables involved taking values in domains provided by
systems DD . 01 R 02 , 03 . We might have a substitution like:

Here it might be that the values of the functions inside come
from quite other systems; for instance,
k:Py, x0,x0,+ 7,
might be possible. By using projections
Py i Dgx Dyx Dy Dy=0y,
where i <4, we can assure that we have several functions all on
the same product; thus,
k*<pysPgs Pp>:0gxDynDyx0y+ Dy

Now no matter on what domains £ is defined, the following com-
position makes sense:
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fo(gn(po, P, >.hu<p1,p2>, kn(pa,po,P2>> ;
and in fact this is the desired function. Writing it this way
makes it clear that the function comes from an approximable
mapping: we apply 3.3 {generalized, of course, to products with
several terms) to construe the parts between brackets < and >
as approximable mappings, and then by this trick the compositicn
o is the ordinary composition of 2.6. O

It has to be admitted that there is a slight point overlooked
in forning products like #x P with two identical domains. This
is discussed in Exercise 3.14,invoking explicit isomorphisms.

The construct that makes the whole theory of domains work so
smoothly is the functioh - space construct: it is possible to
regard functicns as objects which form a domain. Look back at
Definition 2.1 and compare it with the original definition of
element in 1.6. There are obvious formal similarities, except
that filters are sets of neighbourhoods and mappings are sets of
pairs of neighbourhoods (relations). But as we saw in 1.10
it is possible to turn the filters into tokens via a simple
definition of neighbourhood. We apply the same kind of defini-
ticn to the mappings.

OEFINITION 3.8. Given neighbourhood systems 0 and D‘l’ the
fumetion space (DD- D.I)is the system whose set of tokens is the
set Of zpproximable mappings of Definition 2.1 and whose neigh-
bourhoods are finite non-empty intersections of sets of the form

[X,Y)={£:0,- 0, | X£Y},

where X€ DD and Y€ 01. G

We have been calling our mappings "approximable'' for a long
time now without saying exactly how they can be approximated!
Definition 3.8 supplies the missing key, because cnce a demain
has been defined, then the general theory gives an explicit
meaning to the word approximation. We still have to verify,
however, that the mappings do correspond to the elements of the

domain.
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PROPOSITION 3.9. Let neighbourhoods XiEDO and YiE 91 be given
for i <n. Then the set of [Xi,Yi] for i<n is consistent in
(DO ~D1] iff the following condition holds:

(i} whenever 1< {0, 1, ...,n-1} and {Xil i€ 1} is consistent

in DO, then {Yi ] i€1} must be consistent in 191.
Moreover, when consistency holds, the least approximable mapping

f, belonging to the intersection of the [X,, YiJ is defined by:

(i1) X£,Y iff aniIXgXi}gY

for XEﬂO and YED1.

Proof : Suppose the [Xi,Yi] are consistent in (DO—.D,I).
Since the function space is being defined outright as a positive

System, COnSiStBnC):‘ means
€ I I - . 1«
f {[X ,Y ] I i n }

for some £ : UO - 171. Now, with £ in hand, let us check condition
(i), Suppose {X; | ie1} is consistent. This means

xe (Jitx;1 1i€D

for some x € 1001. Suppose 1 €1, so xE[Xi] . Since Xiin
holds, f(x}€ [Yi]. This means, therefore, that

f(x)e n{[‘ri] li€I},

and so {Yi |1i€I) is consistent.

For the converse, suppose (i) is the case., We take (ii) as
the definition of a mapping and remark that for an arbitrary
Xe DO' the set {Xi | Xc Xi] is automatically consistent in TJU.
By our assumption, the set {YiIXgXi} is therefore consistent.
This means that

n{\ri | XeY, e, .

(Keep in mind that i is restricted to those i <n, and there are
only finitely many neighbourhoods being considered here.) It
is thus almost immediate that the relation fo defined by (1ii)
satisfies conditions of 2.1 and so is an approximable mapping

fo : DO - 91 . By comstruction

xifGYi
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holds trivially for all i <n; therefore,

£, (11X, Y111 <n)
and the desired consistency is established.

Finally suppose that f is any mapping in the neighbourhood
under discussion; this means X in holds for all i <n. Suppose
X fOY holds. We have for x;xi,x in; 50

x£ [y, 1xex b ey,

Thus, XfY follows; hence, as relations, fot_:f. In other words

fD is the minimal element of the neighbourhood. 0O

We note that, as a consequence of what we have just proved,
when the neighbourhood is consistent, then
()(1x;,30 Vi<nde [X,Y]
is exactly equivalent to

ﬂ{yi | XX} Y.

Note also that a single neighbourhood [XD,YDI is always consist-
ent since it contains the eonstant mapping k where

XkY iff Yo Y,

for all X€D, and YED,. Some other simple observations about
these neighbourhoods are just translations of the conditions of

Definition 2.1:
(a3, .‘51] = IBO-D.lf;
[X,YIn (X, Y') = [X,YynY"]); and
X" eX and Y& Y' imply [X,Y] g [X', Y],
for all X, X' EDO and Y,Y' € 01 . We are now ready to prove
the main result about the construct,

THEOREK 3.10. Given neighbourhood systems UB and 01, the function
space system (00 - 01) is complete in the sense that every filter
in Iﬂo - D1I is fixed by a unique approximable mapping.

Procf : Let f: DO -+ D1 be an approximable mapping. By the
very definition of (Do - D.‘) it determines a filter by the definition:
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f={Fe(0,+0,) | feF).

Trivially [X,Y) €f iff fe[X,Y) iff XfY; so this filter
uniquely determines the relation f. What we have to show is
that every filter in ID0 - !J.Il is of this form.

Suppese € 1D, = 0,1 is any filter. A relation can be de-
fined at once by

XoY iff [X,Y]leeo.

In view of the remarks we made just before stating this theorem,
there is no problem in showing that & is an approximable mipping.
Since the neighbourhoods of the function space are in any case
finite intersectionshof sets like (X,Y], those [X,Yl € o generate
¢. This means that 6=¢p. By definition §= f, so there is a2 one-
one correspondence between mappings and filters. (This corres-
pondence is obviously inclusion preserving, too,) O

We now know just about everything about IDD - D1I as a
domain: the elements correspond isomorphically to the approximable
mappings; the finite elements are explained completely by 3.%; and
we have seen how to calculate with neighbourhoods. The final
step is to relate the function space to other demains by appro-
priate mappings. In doing this we shall freely construe elements
of |DD - 01! as approximable mappings in view of 3.10.

THEQREM 3.11. Given neighbourhood systems D
uniquely determined approximable mapping

1 and 92, there is a

eval : (01» 02) xD,I - 02 »

where for all f: 01 - D, and all x€ 1011 we have

2
(i) eval (f, x) = £ (x).

Proof: For F€ (9, D,) and X€P, and YED, define eval
as a relation by:

FuX evalyY iff XfY for all £f€F.
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Remember that neighbourhocods in the function space are sets of
approximable mappings. 1t is easily checked that this defini-
tion makes eval approximable. We now calculate the function
values by the formula of 2.2 (i}:

eval (f, x) = {Yeﬂz | 3F € (01 - Dz) IXex. f€F and FuXevalY
Because, again by 2.2 (i), we have
f (x) = {YEDZ |axex., XfY},

we can see from the definition of eval that eval (f, x)cef (x).
Suppase that YE £{x). Then XfY holds for some X € x. We can
write fE€[X, Y] € (01 - 02) and it is clear that

[X, Y] uX eval Y

holds by definition. Therefore, Y€ eval (f,x), and so
f(x) ceval (£,x). O

This theorem is essential for our programme:; it shows that in
taking functions as objects the very basic operation of forming
the function value is an approximable mapping. In other words
we can treat the expressien f{ x} not just as a function of x,
as we have done from the start, but also as a function of £ as
well. The result also indicates that there are useful maps
defined on domains that themselves are function spaces; we shall
meet many more of these. The next theorem provides further
examples.

THEOREM 3.12. Given neighbourhood systems DD , 01 R 02 there is

associated with every approximable mapping g : DO <P, - 02 a
uniquely determined approximable mapping

curry (g) :Do - (01 - 92)

such that for x€ 10,1 and }'EIU1I

a!
(1) curry (2)(x)(y) = g{x,y).

Moreover we have these functional equations:
(1i) eval o Ccurry (g) °pgs Py =8, and

(iii) curry (eval -thopﬂ, p,l)) =h,
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where the P; Py % v, - Di are the projection mappings and

h: Do -+ (91 - 02) is any approximable mapping. This provides

an isomorphism between the domains l90¥91 + Dl and ‘00"(01 -DZ)J
and so we can regard

2

Curry = (DO x 91 - Dz) - (!J0 - [91 - Dz))

as itself being an approximable mapping.

Proof @ Given g as indicated, we can defipe curry (g) 2s a
relation and as an approximable mapping by:

X curry (g) [Y,2] iff Xuvgl {but see Ex. 3.21)

for all Xe€ DO' Y ED1, ZEDZ' This is sufficient because an
approximable mapping is intersective in the right-hand neighbour-
hood, so we know from the above exactly what X curry(g) n{[Yi, Zi]I i<n
means for all finite intersections. The remark after 3.9 is then
helpful in checking that by this definition curry (g) satisfies the
monotonicity condition and so is indeed approximable. We now
calculate :

curry (g} (x} (y) (ze 0, IYeEy ., Y curry (g) (x}21

= {2602 1 3YEyaXeEx. X curry(g)(Y,Z]1}
= (€D, 13YeyaxXex. XuYg2z}
= {Z€D,13INE<x,y>. WglI)

g (<x,y>) = g(x,¥}.

This proves (i)}. We alsc see, that if we take the left-hand side
of (ii) and apply it ta a pair <x,y>, it reduces to g(x,y} by
virtue of (i}). Thus, the two functions in (ii) are the same.

Turning to (iii}, call the left-hand side k. Using (i)
again, we find

k(x) (¥)

eval » <h Py Py (<x,y>}

It

eval (<hep, (<x,¥>), py(ex,¥>}>}

eval (<h (x),y>}
= h (x)(y).

As this is true for all y€ ID1|, then k{x} = h{x) follows. As this
is true for all x€ IDOI, then k=h follows, and (iii) is proved.
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Taking (ii) and (iii} together, it is clear that the
domains |Dox01 -02! and IDO- (01 -02)I are in a one-one cor-
respondence. But from the very definition of curry it is clear
that

curry (g) = curry (g') iff g ¢ g’.

Hence, curry is an isomorphism, and we can invoke 2.7 to con-
clude that it comes from an approximable mapping. O

We close this lecture with some order-theoretic properties
of function spaces that characterize inclusion and upper bounds
of functions in a "pointwise" manner.

THEOREM 3.13. For approximable functions f,g: 0, -+ D, we have
(1) gcg iff £(x) cg(x) for all x€ID,1 .

For subsets Fc IUO- 01 | we have

(ii} F is bounded in IDO - 0,1 iff {f(x)|£f€F}

1
is bounded in ID.‘I for each x€ IDOI;

and in that case for all x€ IDOI:

(i) (UFx) = Yifx) | £€F}.

Proof. The implication in (i) from left to right fellows
because evaluation is monotone in the function as well as the
argument, The converse implication is a consequence of 2.2(ii).

For the proof of (ii) and (iii) we see that by (i) if F
is bounded, so is every set {f(x)If€F}., For the converse
direction, it is clear that (iii) defines some pointwise mapping;
we have only to prove that it is approzimable. The calcula-
tion that UF preserves directed unions (see 2.5 and 2.11) is
probably the simplest way to reach the conclusion, O



EXERCISES

EXERCISE 3.14, For the most paTt we can assume that there is
at most a countable number of tokens; thus, without loss of
generality the underlying sets Ai of given systems Pi could be
assumed to be subsets of I* where Z={0,1}. (Ary denumersble
set would do.) Show that the product DO x 91 could be defined
as the system over the set OAOLH A1 where

D, x 01- {0Xv1Y I XEDO and YED“}‘

0

In other words, the assumption of the disjointness of AO and A1
is unnecessary. Give, therefore, the revised definition of

<x,y> for elements, and prove that for a single system P, there

exists an approximable mapping

diag : D-0x7D
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where diag(x) = <x,x> for all x€ |Pl. Also extend the definition

to a product of n-factors
voxv1 X e an_1

which will be a system over the set

U ros, .

i<n

Note that for a 2-termed product we simplify 10:31 to 1A1.

EXERCISE 3.15. Establish the usual isomorphisms:

(1) 0y xD; =0, x0,;

(ii) Do 1(01 xvz] e (DDxI‘J.‘) x02 o DO xDT x 92 .
How does the product of no factors fit in? Prove also:

T ) r o r = r L
(iii) 00500 and 01 —01 imply DoxD.' = vox 171.
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EXERCISE 3.16. Let U be a given neighbourhood system aver
AcI*, Define

® n
A = 10 A
n=0

so that & is split into infinitely many disjoint copies of 4.
Let ?” be the least family of subsets of I* where

(1) 8°€ 9", and

(2) yhenever X€D and YED", then 0Xu1YeD® .

Show that D is a neighbourhood system over A”, Prove the
isomorphism

7= 0xD”
Show, mereover, that the elements of | D71 are in a one-one

correspondence with arbitrary infinite sequences <xn>n:0
of elements an 101 by using combinations of neighbourhoods

n
0X0U10X1U-o U1 OXnU---

where from some point on all the Xm are equal to A,

EXERCISE 3.17. Using the B and T of Example 2.3 show there is a
one-one approximable mapping

£:8 + T
and another approximable mapping

E: T + B
such that

gnf=IB and fegc I .

Y
Ate B and T  isomorphic? Are B and Tx B isomorphic?
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EXERCISE 3.18. Let DO and 01 be neighbourhood systems over
AD and A,l, where we again assume that these are subsets of T*.
We assume that in addition re netghbourhcod e empty. Why is
this pessible without loss of generality? Define the sum

system by:

P. + D, = {{A}UOAOU1A1}U{0X]XEDO}U{1Y|YED1}.

0 1

Prove that this is a neighbourhood system over {A}UOAOU1A1.

(Throwing in {A)} was not all that necessary, but note that
B=B8+8B ,

and this is an equality of sets not just an isomorphism of

systems.) Prove that in general there are mappings

1ni,:Di-+vo+D1 and outi: DO+D1-.Di

where out; o ini= Ip . Where does the assumption @ 1J.1 come in
i

here? How can these sums be generalized tec n-terms? (Hint:
As for products use sets 11061.) Draw some pictures.

EXERCISE 3.19. Suppose we are given systems and approximable
mappings

f:0p Do
Prove there are approximable mappings

andg:ﬂ,l-ﬂ;.

fXg:0y x Dy»05 x D) and £+g:0+0, D) + 0
such that
(1) (Exg) (xy) = <€), gly)>
for all x€ IDOI and y€ 1D1I, and rewrite this as:
(ii) fxg = <fap0.g°p1 >.

In addition prove that

(iii) out, - (£+g) - ino = f, and

(i\') 0Ut1 ° (f+g) ° 1111 g€.

n

Do equations (iii) and (iv) uniquely determine f+g?
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EXERCISE 3.20. (For category theorists). Show that the result
of 3,19 can be used to prove that + and x on the category of
domains and approximable maps are indeed functors. Show further
that x {s the categorical product for this category.

EXERCISE 3.21. In the proofs of 3.12 in the definition of
curry (g) it is rather cavalierly assumed that the neighbourhood
[Y._Z] uniquely determines Y and Z. 5Show that this is true if
Z#* AZ . (Hint: Find explicitly the least of f€ [Y,Z].} Show
that if ZzAz the biconditional stated at the start of the proof
is still valid even though Y is not uniquely determined. (Hint:
Remember that A1 g Az must hold.) For arbitrary pairs of neigh-
bourhoads of (01 - 02) is there a simple criterion for identity?

EXERCISE 3.22. Prove that there is an approximable mapping
comp: (¥, - BIx (P, » 91)-' 0y » B)

where for all g: 01 - 02 and f: Do ~ 01 we have
comp (g, f) = ge-f.

Show this directly by writing down the neighbourhood relation
and by building the mapping up from eval and curry [(on suitable
domains) using s and <,>. (Hint: Fill in maps in the following
sequence of domains:

(0 = D9 * Dg= D
(Dy = D) x (B = Dy) = Dy} = (Dg =+ ) xDy
(04 = 9,) % (Dy = 0,)) x Dy = (2, = 0,) *0,
((0y = D) x(Dg = D)) x Dy = 0y

Py +0) x 0y =+ 0y) = (P> ).
The maps are of course not uniquely determined, but the
shifting of brackets ought to suggest the right choice.}



EXERCISE 3.23. (For category theorists.) Show that the results
of 3,11 and 3.12 prove that the category of domains and approx-
imable mappings is a cartesian closed category. (Mac Lane [1971] pp.
95-96 may be consulted for a very brief introduction.) What

is the terminal domzin in this category? What sort of functor

is (00-001) ?

EXERCISE 3.24., Establish some more isomorphisms :
(i1) (DO--D.I ) = (00*01)
(1ii) Do x (D1+ 02] E(DO x 0,) + (D, » 02)
(V) Dy + D=0, = (Dy=0,) x (D= D)), ,

If some of the above are not true, perhaps at least some mapping
relaticonships can be established.

EXERCISE 3.25. (For topologists.) Recall from Exercises
1.21 and 2.13 on how to regard a domain 1P| as a topelogical
space. Using 2.10 show that the family of open subsets of 1D|
is isomorphic to a domain.

EXERCISE 3.26, Show that for every domain P there is an approx-
imable mapping

cond : T x 0 x 0 -+ D,
called the conditifonal operator, satisfying
(1) cond (true, x,¥) = x

(ii) cond (false, x,¥) = ¥

(iii) cond (L, x,¥y) = L .
(Hint: Recalling that T ={{0}, {1}, {0,1}}, define cond as a
relation by

OCu10XU110Y cond Z iff 0€C and Xgl or
1€C and Yel or
0,7€Cand 4l ,

49
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where CET and X€EP and ¥ €0 and where we are using the constructior
of Exercise 3.14.) Find a similar operator in the domain
TxDOxD.l-’DO*-'D.l .
Show also there is an approximable mapping
which : Do+ D.I =T
such that for all x€ ID0 +D1[

cond (which(x), inglout,(x)), in, (out,(x))) =x.

EXERCISE 3.27. (For set theorists.) Give another proof that
the family of appreximable mappings f: 0, - 01 is isomorphic
to a domain by employing the general argument of Exercise 2.22.
How does this compare with the proof method of 3.9 and 3.107
Can the general remarks also be employed to show that

eval : (D.I-oﬂz) x 01 - 92
is approximable without bringing in the neighbourhoeds in such

an explicit way? (Hint: Use 3.5 and the idea of Exercise
2.12.)

EXERCISE 3.28. In the function space (DO-’ 01) let

MVerx;, Y1 1i<n)

be a (non-empty) neighbourhood. In 3.9 the minimal element of
this neighbourhood is characterized as a relation f,. Show that
as an elementwise mapping it can be defined by the formula

£,(x) = U (Y1 xe [, 1),

for x€ IDOI. Try to draw a picture of IDDI with neighbourhoods
[Xi] and the correspending values of the function f£,.
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LECTURE 1V
FIXED POINTS AND RECURSION

Having at this point a large supply of examples of domains
{and further constructs of new domains), we now have to consider
some other ways of defining functions - other than by explicit
compositions of the very basic functions already mentioned. One
of the most fruitful techniques is an infinitely {terated compos-
ition that is at the back of the idea of recursion . We will use
the process over and over again in these lectures, not only to
define new functions but alsc to define new domains, The heart
of the matter lies in the so-called "Fixed-point Theorem":

THEOREM 4.1. For any approximable mapping f: P-D on any domain,
there exists a least element x€ IP| where

f(x) = x.
Proof : Let £f" for ne N stand for the n - fold compesition of
f with itself. That is,
£0 = ID' and
fn'rl = fofl

Define
x={Xe? | Af"X, for some ne€N}.

We see X€x iff there is a finite sequence A-'—Xo, X.l,...
X in+1 holds for all i<n. Now since AfA automatically
holds, a sequence for an X€x can always be extended to a longer

y Xn =X where

sequence just by adding more A's on the fromt.

We want to prove x€ |Pl. Clearly A€x;and if XcY and X€x,
then Y€ x. All that remains to be shown is the closure of x under
intersection. Note that if

UfV and U' £V’
hold and U, U’ are consistent in U, then V and V' are consistent and
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(UnU') £ (VnVv')

must held. Generalizing this to sequences, if

ﬁ=}(0 £f X, £ .-+ £ Xn=}(, and

1
A=Y, fY1 f.en f Yn=Y
both held (and note we have arranged the lengths of the two
sequences to be equal)}, then each pair Xi,Yi is consistent and we have
A=(X0 nYy £ (}(A1 n \:l)f f(xnn Yn) =XnY.

This establishes the desired closure.

We 3lso note that if X€x and XfY then Y€x. Therefore, f(x)cx and
indeed by its very construction x is the least element of |0l with
this property. (Why?) But f is monotone, so f(f(x}) g £(x};
hence, x= £(x). By what we have already said it must be the
least such element. O

Beciuse the element we have shown to exist in 4.1 is a
least element, it is unique . That is, we have associated with
each f:7 P a special element X € I?| determined by the choice
of £f. 4 function has therefore been defined mapping the set
I D -7l into |P). The next result shows that this function,
or operator on functions, is in fact approximable,

THECREK 4.2, For any domain ¥, there is an approximable mapping
fix: (D +D) -7
such that if £f:?-+7 is any approximable mapping, then
(i) fix (f) = £ (fix (£)).
Furthemmore, if x€ |P|, then
(ii) f(x) € x implies fix(f) cx.

And this last property implies that fix is unique. Explicitly we
can characterize Tix by the equation:
=
aii) fix (0~ |J Pw ,
n=0

for all £:7-+7,



Proof: Formula (iii} can be put in a more elementary form:

fix (£} ={X 1 &f X, for some n€ N ).
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To show an elementwise mapping approximable we can use the formula

of Exercise 2.9, applied to the above as the definition of fix:
) fix (0 = | JtFix 0R) | £ [FD),
where F ranges over the neighbourhocds of (P - P}, and where

*F can be considered to be the least element of F as calculated
in 3.9,

Kow from the definition of fix, it is clear that whenever
fcg, then fix (£) c fix (g), because f"cg". (That is, fix is
obviously monotone.} Next, if f€F, then ¢F is a (finite}
approximation to f; so tFeg f and fix (tF} g fix (£}. This
means that half of equation (*} already holds by monotonicity.
All that is left is to prove the other half.

So suppose X€ fix (£) . Then, as we have already remarked,
there is a finite sequence of neighbourhoods where

AmXy £Xg =00 X 4 £X =X,

Let the function-space neighbourhood be defined as
Fo (X X3,q0 [ i<n),

and note that since f€[Flwe have at once consistency. But, by

3.9, tF EI'.FJ’ so the same sequence of X; is sufficient to show that

Xefix (4F).

In other words, if X belongs to the left-hand side of (+), it also
belongs to the right-hand side. This completes the proof of (+}.

Formula (i) is just a restatement of what we proved in 4.1.
And (ii) follows easily, because f(x} cx implies that A€ x and
whenever X€ x and XfY, then Yex. Thus, by induction, if
Af"X, then X€x. So fix (f}cx.

Finally, if fax: (P - D) - D were any other operator satisfying

(i) and (ii}), we would prove at once that

fix (£} < fax (f} and
fax (£ = fix (f}.

n

That is to say, the two operators are identical., O
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The reader may have noticed that we used recursion in the
proof of 4.7 (we had to define fP for all n€ K). But 4.9 and
4.2 can be used to justify definitions by recursion on a large
number of domains - definitions where the process of iteration
is far from bheing as straightforward. In discussing this point,
let us start with some basic examples.

EXAMPLE 4.3. The infinite generalization of our original example
1.2 is the system

N=1{{n}lneXN} v {NI},

The total elements are clearly in a one-one correspondence with
the integers in N . We can apply the construction of Exercise
3.16 to obtain a domain

S0 we already know quite a bit about this domain - but it has a
much mere familiar presentation.

Let ¢ be the set of all finite partial functions @< Nx N
(that is, finite sets of ordered pairs of integers where, if
(n,m)€p and (n,m" )€y, then m=m’' ). Define

te={ved |y }.

Consider the neighbourhood system
F'={(to | g€ d}.

It is an easy exercise to show that F and F' are isomerphic
and that the elements of these domains correspond exactly to
the (possibly infinite) partial finctionsnec N x N, Moreover,
the totel elements just correspond to the total functions

T: N N {("function" in the ordinary, set-theoretical sense of
the word).

Another easy exercise is to show that the domains
F and (N-N)

by our definitions are NOT isomorphic; though the two domains
are closely related. We can define a mapping
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val:FxN+N
by the relationship
to U {n} val {m} iff (n,m) € @.
{Of course val has to relate other neighbourhoods such as:
tepu Nval N,

but these are all.) It is then simple to prove that if mEIF}
is regarded as a partial function m: N - N and if for ne N we
define fie INI by

fi ={ {n), N)J,
then we have
val (m, ﬁ) = Tt/al), if m is defined at n

{IN}, otherwise.

{Remember that {IN} € |N| is the "undefined" element.}
This means that
curry ([ val): F - (NoN)

is a one-one function on elements. (The rather slight trouble with
(N=N) is that it has more elements than F,)

So much for the construction of F, we now wish to consider ~
mappings
f:FaF
and their uses. Consider the possibility
f(n)(n) = 0, if n=0;
= n(n-1) +n-1, if n>0.
If n were a total function, then f (m) would be total. But if n
is partial, and if it is, say, undefined at k, then f(m} becomes
undefined at k+1. Note that f(n) is always defined at Q. Kote,

too, that f is an approximable mapping because it is completely
determined by what it does to finite (partial) functions. Indeed,

f(r) =U{f(to) leocn ],



56
where ¢ ranges over ¢,

Well, we have proved that every approximable map of a domain
into itself has a (least) fixed point. What is the least fixed
point of this f7? Suppose o = f(o). Then g(0} =0, and

agn+1) = f(o)(n+1)
= o(n) +n.

By induction, then

o(n) =_I i

i<n
and ¢ is a total function. (Therefore, f has a untque fixed point.)
Actually, we can make the procedure more systematic by defining
as fixed points elements of (N -N) rather than F. In the first

place we have Oe IN], and from now on we will not distinguish
between n and . Next we have two mappings:

succ, pred : NN
where, as approximable mappings we have

X suce Y iff 3n€ N, n€EX and n+1€Y,

Xpred Y iff In€ N. n+1€X and neY,
for all X, YEN. This isecorrect, but what we mean in more under-
standable terms is:

succ {n) = n + 1;

pred (n} = n - 1, if n>0;

=1, if n=0,

Here, n has been identified with i€ |N| and t={IN} € IN{. More-
over, we have a mapping

zero : N-T

which is such that

zero (n) true, if n=0;

false, if n > 0.

The etuctured domain

{N, O, succ, pred, zero}
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can be called "THE domain of integers" for our present theory.
We shall meet many other structured domains in the sequel.

Now the iterated summation function o can be completely
characterized - as a map o: N+ N rather than as an element
o€ |Fl - by the following equation:

o{n) = cond (2ero(m), O, o(pred(n)) + pred(n)).

The only problem is that we have not defined + : Nx N+ N. (A
direct definition is left to the reader; general remarks are given
latér.) But + could be any function of two variables in order to
make the point about the form of the definition of o. Remember

cond : TxNxN-+N,
as defined in Exercise 3.26, We do not put cond in as part of

the structure of N because (as should be clear from 3.26) it is
part of the structure of 7.

The above equation for o is properly called a fwictional
equation; it will be written as a fixed-point equation in Lecture V
when we have the notation for the A - calculus, DO

EXAMPLE 4.4, The domain C of finite or infinite binary sequences
mentioned in Exercise 2.21 may be regarded as a generalization of
N. This can be made plain by saying how we wish to regard ( as a
structured domain. To do this we should recall what C is as a
neighbourhood system. In the first place

B = {0Z* |[g€ I*}
where £={0,1}. To form the system C we have

C=Bvy {{c}ta€Z"}.

The total elements of B correspond to infin{te binary sequences;
while the total elements of  to finite or infinite sequences.
To simplify notation let us write for o€ Lt

o= t{a} (a total element);

gl=+tck* (a partial element).
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In other words we identify o with the corresponding total element
in ICI.

We wish now to think of € as a structured domain seen as
a kind of generalization of N. The empty sequence A will play
the rfle of O€ |N|; the map succ has two different analogues
for €, however. Just as for B we define for x€1C| and o€ Z* :

ox={Y | oXcY some X€x},

where of course now X and Y range over C. It should be checked
that ot has the right meaning whether we think of t€I* or
TE€ |Cl. The two "successor" mappings we are looking for are

x bOx and X - 1x.

All the maps x l+ox can be obtained as compositions of these

iterated as many times as needed.

Here are two questions which we now should ask:

What plays the role of pred? The mapping will be called
tail, and it is characterized by:,
tail (Ox} = x,
tall (1x} = x, and
tatl (A) = L.
It is left to the reader to show that tall exists as an approxi-
mable mapping.

What plays the role of zero? The answer is not unique, because
in C there are several distinctions that have to be made; in fact
we will define three maps:

empty, zero, one : C=T

where the three maps take on truth-values to distinguish various
kinds of elements in IC| as follows:
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empty (A) = true,
empty (0Ox) = false,
empty (1x) = false,
zers (A} = false
zero (Ox) = true

zero (1x) = false
one (A)Y = false
one {(0x) = false
one {(1x) = true,

Again, it is an exercise to show these are approximable. The
structured domain is therefore

(¢, A,0, 1, tail, empty, zero, one),

Note that we have changed the meaning of some of the symbols in
passing from N to (. Note too that there is a confusion between

0 as an element and O as the map x ++ 0 x. There are just too few
symbols! In any case this is only an example and not a philosophy
of life, so the Teader can be expected nct to suffer too much.

An example of a definition of anelement of [(C| by a fixed-
point equation is:
a=01a.

This equation has one and only one sclution in |C1, the infinite
sequence that alternates 0's and 1's. Note that a is alsc
characterized by:

0101a.

w
n

Another element is
b

010b ,

which is quite different from a.

An example of amap in |C=-C | has the characterization

d(A) = A
d(0x) = 0Cd(x), and
d(1x) = 11d(x).

We can write:
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d(x} = cond (empty (x), A,
cond (zero(x), CCd(tail(x)), 11d(tail(x)))),

As we shall see in due course, this can be regarded as a fixed-
point definition of d.

An example of a map in |CxC-{| was suggested in 2.21.

We can write:

xy= cond (empty (x), vy,
cond (zero (x), O(taid(x) ¥}, 1 (tail (x)y))).

It should be checked that this equation exactly characterizes
the intended mapping. O

The examples we have given with N and C are examples of de-
finitions of functions by recursion . The literal meaning of
"recursion" is '"running backwards", and a look at the equations
for our examples will show that the functions are characterized
by giving their values either cutright (e.g. at O or at A) or at
earlier arguments (e.g. at pred(x) or at tail(x)). The reader
should keep in mind that a recursive "definition'" is not really
a definition in the sense of erplieit definition but rather is a
characterization; a theorem has to be proved to show that such
functions exist. Now we have a general definition of domain and
2 general theorem on fixed points and a general construction of
functicn-space domain; THEREFORE, we know that there are solutions
to our equations PROVIDED THAT the variables range over elements
of a domain and that the other, given functions that appear in
the equations are already known to be approximable (continuocus).
This proviso is very important, and we shall remark on it time
after time.

But, as is well known, Tecursion also can be done over eets
like N, and we should examine now the connection between the
familiar kind of recursion and what we are doing over domains.
0f course, one simple comnection is already provided by the
way we regard N as a subset of N, But there are other useful
connections that can be employed in a way that may Seem more direct.
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DEFINITION 4.5. A structured set <N,0, >, where 0€ N and
*N ~N is a unary function, is said to be a model for Peano’s
Aziome if the following conditions are satisfied:

N + .

(1) 0+#n , for all neN;

(ii) n*=m* inplies n=m, for all n, me N;

(iii) whenever xc N and 0€x and x+gx, then x=WN.

Here x* = {n*Inex}, D

Clause (iii) is recognized as the principle of mathematical
MM stated in terms of sets. We usually think of N as
being "God given', and (i)} - (iii) as known without question.
Suppose God, however, decides to withdraw His set of integers
and substitute another. We can ask: "Oh! Why did You take from
us our beloved numbers? Why must we now live with these strange
new beasts?" Gaod will probably reply “"Trust Me!™ Perhaps we
should in view of the theorem:

THEOREM 4.6. All models of Peano's Axioms are isomorphic.

Proof: There are several ways to give the proof, but, for
the sake of illustration, an application of the fixed-point theorem
is appropriate here. Let <IN, 0,+> be cone model, and let <H,|:],#>
be another. Let IN *x M be the ordinary cartesian product of the
two sets and let

P (N xM)

be the powerset (set of all subsets) of N x M, As in Exercises
1.15 and 2,20, we regard this set of elements as a domain, whose
finite elements are just the finite subsets of the given set

N x M. The following mapping on uc N xM is easily proved
approximable :

u {0, 0)tul", ™ | (n,m)eul.

(This assertion should be checked as an exercise.) We thus let
T be the {least) fixed point:

r={(0, v (m*,n" | (n,m)ert.
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This r¢lN x M as a binary relation will turn out to be a one-one
correspondence giving the required isomorphism.

First of all we see by construction that

(i) 0rQ;

(ii) nrm implies n+ rm#.

S0, if r proves to be a one-one correspondence, it will then be
the desired isomorphism. Now, the two sets shown in the equation

(o,m1 n {n*n¥y | (a,myery = 9

are disjoint by virtue of axiom 4.5(i). Therefore, 0 in N
corTtesponds by r to one and only one element of M, namely the
element [J. Let x €« N be the set of all elements of N corres-
pending by r to a unique element of M. We have just shown

0€ x. Suppese n€x, and let m€ M be the unique element with
nrm. Nown' rm# holds, sa n’ corresponds to at least one
element of M. If n'rk also helds, then since (n’, k)#+ (c,m,
the fixed-point equation implies

¥
0

O.mOJ €r. By axiom 4.5(ii), n=ng, and,by uniqueness

+ +
no=ny and k=m

for some {n
(remember nEx),m=m0; thus, m" is the unique correspondent for
n+. We have proved n+E:.. Therefore, x+g x; so by 4.5(iii),

x =N holds, Otherwise said, every element in N corresponds to
4 unique element of M.

Note that the roles of Nand M are completely symmetric,
and they satisfy the same axioms as structured sets., It follows,
then, that every element of M corresponds to a unique element of
IN . The proof that r is a cne-one correspondente is now complete.

EXERCISES

EXERCISE 4.7. Formula 4.2(iii) shows how to find the least
fixed point of f: P -0. Suppose on the other hand that a€ D]
is such that acf(a). Will there be a fixed point x=f(x) with
acx?
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(Hint: How do we know | J £"(a) €101 72)
n=0

EXERCISE 4.8, Suppose £f:0- 0 and Sc (Pl are such that
(1) LES
(ii) x€ S always implies f(x) €S ;

{iii)} whenever {xn}n=0 € § and X € X,

for all n, then Iuo anS.
Conclude that fix(f)€S. (This could be called the principle of
fized—point induection.) Apply the method to a set of the form

S={xe 1P| | a(x) =b(x)},

where a, b :? +7 are approximable,and where we know a(i) =b(1),
and foa=asf and feb=0b+ 1.

EXERCISE 4.9. Show thar there is an approximable operator
Y:((0+0)> D) » ({(P-D) 1)

such that for ©®: (D7) -0 and f: 2?7 we have
¥ (@) (f) = £(0(£).

Prove further that fix: (P-»0)-+7 is the least fixed point of V.
e at

EXERCISE 4.10., Given a domain ¥ and an element a€ [P|, construct

a domain Da where
o1 ={xe10l| x ga}.

Show that if f:D ~P? is approximable, then f can be restricted
to an approximable map £' : U .y £ Desy f) where ' (x)=£(x)

for all x€ Ivfix(f)]‘

How many fixed points does f£' have in Infix (f}l?
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EXERCISE 4.11. (Suggested by G. Plotkin). We can regard
fix as assigning a fixed-point operator to each domain P.
Show that fix is uniquely determined by the following pgeneral
conditions on an assignment P~ Fp

(1) FD 1 (DD} -0 ;

(i1) Fy(£) = £(Fy(£)) for all f:DP=0;

(ii1) whenever gt Do-c DO and fT : D1 -+ 01 are given and

h: DO -0, is such that h{(L) =1 and h» f0 = f1uh, then

h (Fy (£)) =Fp (£;).

1

(Hint: Apply 4.7 to prove fix satisfies (iii). In the other
direction use 4.10.)

EXERCISE 4.12. Need an approximable f : 0-D have a marimm fixed
point? Give an example where there are mamy fixed points.

EXERCISE 4.13. The proof of 4.1 uses the integers, whereas the
proof of 4.6 uses 4.1. There is a hint of circularity here! It

can be eliminated by the following steps:

(n Al.:f-\ a domain D has an element a where, for f: 0+ 0 the
relation f{a) ca holds, then the least fixed peint can be defined by

fix(£) = n{x6|v| | £(x) g x}.

Note that fix(f)ca. (Hint: Remark that by 1.17 the formula
gives a well-defined element. Call the element b. Prove that
f(b) ¢b by showing that £(b) cx whenever f(x)gx. Then note
that f(£f(b)) € f(b) so that bef(b) alsc. Conclude b= fix(£f)
as least fixed point.)

(Z) Remark that this proof uses only the monotonicity property
of £:4D] - 1P). Remark, too, that (1) can always be applied to power:
set domains PA for any set A.

(3} Review the proof of 4.6 and establish by a fixed-point
method that for any structured set (Z, z,') there is aunmigue function
s : N +Z such that

{1) s(0) =z}
(ii) s{n*) =s(n)*, for ne N.
(4) Employ (3) for the proof of 4.1 by identifying ¢(Z,z,".
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EXERCISE 4.14. Need amonotone function f : P4 -+PAalways have
a mazimum fixed point?

EXERCISE 4.15, (For set theorists.) Let £: | P!> | Plbe a
monotone function on (the elements of) a domain. Show that f
has a maztmal fixed point (i.e, a fixed point that cannot be ex-
tended to a larger fixed point). (Hint: By Zorn's Lemma

cunsider a maximal chain
Ccixel?l | xesf(x) 1,

and use 2.11 to remark that |JC€ IDI.) Now argue that f has a
least fixed point.
A

EXERCISE 4.16, (For fixed-point nuts). Show that a monotone
function as in 4.15 has an "optimal" fixed point in the sense that it
is the greatest fixed point below all the maximal fixed points and
at the same time it is the largest fixed point consistent with all

other fixed points. Conststency for sets of elements means having a
common upper bound. (Hint: Follow these steps:

(1) Show that any non-empty set S of fixed points has a
largest fixed point below by using the formula

£([s) < ﬂs

and finding the least fixed point over nS.

(2} Letting 2 be the fixed point of (1)} constructed from the
set of maximal fixed points, rematrk that a is consistent with any
other fixed point x=f(x), since x can be extended to a maximal one.
Suppose b is consistent with all fixed points, then bcy ify
is maximal. (Why?).)

EXERCISE 4.17. (For algebraists). Suppose <5,1, -> is a semi-
group with unit (sometimes called a monoid ). Remark that PS5 is
a domain. For a, b €35, what is the least x©€P 5 such that

x={1} v {a,blux.x,
where in general for x,yc$§

x-y={t-u| t€x and u€y}?
Need the fixed point be unique?
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EXERCISE 4.178. In Example 4.3 there are many unproved assertions
about N and F. These should be checked., In particular, the isomor-
phism theorem of 4.6 could be proved by constructing a simple domain
M from M in the way N is constructed from N.

EXERCISE 4.19. There are many unproved assertions in Example 4.4)
In particular discuss "Peano's Axioms" for {0,1}%. Show, moreover,
that one : C -7 can be defined from the rest of the structure by a
fixed-point equation.

EXERCISE 4.20. For approximable f, g :0-7 prove that
fix (feg) = £(fix (g=£)).

EXERCISE 4.21. Show that the less-than-or-equal-to relation
LN «N is uniquely determined by the fixed point equation

={(n,n) |neEN} U {(n,m") I{n,m) € £},
Consider the structured set «PN, N, T where, as before,
x" = {n"l nex}.
What is the unique function [:] : N -+ PNgiven by 4.13(3)7 Prove
that the structures < N,0,"> and <{m],m,+> are uniquely isomorphic
for each m€ N, and connect the isomorphism with ordinary additian

of integers. Can the same be done for multiplication? (Hint:
Consider the fixed-point equation:

n-N={0} u {n+mime€n'N1,

where n€ N is fixed.)}

EXERCISE 4.22, Suppose N. is a structured set satisfying only
axioms (i} and (ii) of 4.5. Must there be a subset N g]\" that
satisfies (i), (ii), and (iii)? (Hint: 1Use a least fixed point
in P N*.) (For set theorists): How do we know from the axioms
of set theory that there exists such a set N ?
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EXERCISE 4.23, (Suggested by S. Eilenberg). Suppose f:DsD
is approximable on a given domain P. Suppose a: DD is a

sequence of approximable maps where
(1)  ag{x) =1, for all x€ 101,

(ii) a, €3, in PP, for all n€ N;

(iii) nLJD a_=1,in DD ;

(iv) a_,4,of=a +1ufnan, for all n€ N,

n+1 n

Prove that f has aunigue fixed point. (Hint: Show that if x= f(x),
then an(x) gan(fix(f]] for all n€ Nby induction on n.)

EXERCISE 4.24. (For set theorists). Let f:A-B and g:B-A

be one-one functions {(fmto,nat necessarily ontos !) Prove the
Schreoeder - Bernstein thecrem to the effect that there exists a one-
one correspendence k : A«~B. (Hint: (Suggested by A. Tarski).

By the fixed-peint theorem find X c A where

X=(A-g(B)) v g(£f(X))

where f(X) = the image of the set f under the function f. Define
hcAx3B as a union of two restrictions:

h=fi1Xug 'J(A-X).
A picture helps.)

EXERCISE 4.25. Perhaps the domains N and C are not exactly
analogous? C was based on {0,1} as the underlying set of tokens.
Censtruct a system C, based on {1}* (= finite strings of 1's)
with neighbourhoods:

C,={€1"im>n} IneN}U{1"} InEND.
What structure should be put aon C.l strictly analogous to that on

¢ (=C2)? What kinds of approximable maps relate N,C,I, and Cz?

Draw scme pictures.



69

LECTURE V

TYPED X - CALCULUS

In Examples 4.3 and 4.4, after suitable domains have been
constructed, functions are characterized by recursion eguations
whose form of expression is - basically - a composition or substi-
tution of known functions together with the function to be defined.
This method can be made more precise and more easily usable by ex-
panding our notation for functions - particularly by inventing a
"temporary'" notaticn for a function as a thing in itself without
having to have special letters for functions. The device is called
i - abstraction, It is related to ordinary set abstraction (the
{x|+-+} -notation already much used in these lectures), but we
gear the approach to domains and their elements, and especially
to function spaces,

At this stage it would not be so0 helpful to produce a rigor-
ously formal definition of the syntax of the typed A -calculus;
we shall try to suggest what is needed by example. There are so
many examples at hand, the less feormal discussion ought to be
sufficient.

In the first place we should set aside, in the notational
store room as it were, a stock of variables

Xy Y2l Wiyooo .

These variables will be required in different ''sizes' or 'types",
Roughly speaking there should be an infinite number of variables
to range over the elements of each domain #. We could perha2ps write

v
Xo' v Xy oy Ko s auny
but the subscripts to insure an irnfinity of variables and the super-
scripts to record the typing of the variables lead to a notation as
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tiresome to write as it is to read. We simply agree that we can
have as many variables as we need and that they come in all the types.

Strictly speaking we sheuld also introduce type symbols and
not conrfuse types with domains. But if the reader will simply keep
in mind that form in language has always to be kept distinct from
content, the confusicon at the type level will not matter 50 veTry
much. A point at which the confusion might cause a real confusion
concerns compound types . Given DO and D.I we can form such com-

pounds as

What has to be remembered is that a compound domain (neighbourhecod
system), DD x 171 say, does not uniquely determine the "parts"

DO and D1. (We could make it do so0, but it would cost some effort.)
0f ccurse, the aymbol "UO x 01" has well defined parts. The point
is thatdifferent ways of forming a compound domain could lead to
the same¢ Tesult, meaning that a domain does not let us retrace its
exact history of construction. Compound symbols, however, always
carry their histories around with them, since otherwise they would
not be readable. What we want, of course, are both domain symbels
and domains, the latter being the meanings of the former. Most of
the time we can happily pretend that it is only the domains them-
selves we have to think about.

Besides variables, we will also need certain comstants . For
instance, the symbol O (perhaps, better ON) denotes a certain
element of IN[. Similarly, in view of Theorem 4,2, for each demain
U there is a well-determined elemernt f‘ixv of the compeound type
({(D-P)» D) denoting the least fixed-point operator. We have con-
sidered any number of similar constants of a great variety of types
already (cf. 4.3 and 4.4; cond is an especially good one}. We can
say that the variables and constants are atomie terms, where

"atomic" here means nen-compound.

To form compound terms, there are several means: for example,
if T,...,0 is a list of already obtained terms {including variables
or constants), then we can form an ordered tuple
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We have already done so in 3.1. 1If the types of 1, ..., 0 are
?,...,0" , respectively, then the type of the tuple is the product
domain

Ux.eoxDP',

because we intend that the tuple denote an element of this domain.
(The tuple notation for functions as in 3.3 is being forgotten for
the time being.)}

Next suppose that T has type [ﬂo - 91) and ¢ has type DD’ then
the usual function-value notation
T (6]
is a compound terTm of type 01. We also use
T (oo,..., 0n—1)
as an abbreviation of

T ((co,...,on_1>);

where, if the types of Ogs »»e2 0,4 2are DO’ ""Dn-1’ then the type

of Tt has to be of the form
((Pgx - xD ) = D)

where vn is the type of the compound. In this manner, with functions
applied to tuples, we have the full facility of substituticn into
functions of many variables just by iterating the notaticn.

Having taken into account functionwvalue , it Temains to
provide for functiondefinition. Suppose that x is a

vees D .
¢r T Yo
that T is a term - no matter how complicated - of type Dn. Then

0r " r ¥n

list of distinct variables of types U Suppose further

we can regard T as defining a function of n - variables of type
((Pg%--%xD_ ) =D ).
What we have not done is to reward our regard by, as yet, providing

a quick-to-write ''name” for that function. This we now do; it is
called

A Xy sens X T,

n-1°
where we stress that the x; must be distinet variables and that this
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expression denotes the whole funetion. That is why we provide it
with a special symbol.
Here is an example of the A -mnatation
AXx,y.x,

which is read "lambda ex wye ... (pause) ... ex". If the types
of x and y are DD and 01, then the type of the above is

((DOXD,I) - DO).
Indeed, we know this function very well: 1t is the firet projection
Funetion Py of 3.3 and the equation

Pp AX,y. X
is true, as is the equation
Py - AxX,¥y. V¥,
In the notation of 3.3, we also find the true equation
<f,g> = Aw.<f(w), g(w) >,

where on the right-hand side we are using "official™ A - notation
for a function of type

(0, = (95 2, 0).

The notation on the left is just an abbreviation and it should not
be confused with the pair (2-tuple) of type

(0, » D5 ) (D, = D).

{(Since the two domains just mentioned are isomorphic, the possible
confusion is nat all that seriocus. On the other hand, one con-
fusion we will completely overlook is that between 1-tuples <x>
and elements x. Strictly speaking they are different, but we shall
not bother 1o make the distinction.)

Here are some other examples of true equations:
eval = A f, x. {{x) {(cf. 3.11)

curry = AgAxAy . glx,y) (cf. 3.12)

The first should be immediately clear; while the second is particularly
instructive, What is being illustrated is that the A -notation can
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be iterated . The distinction being drawn 1s between

AXpgs Xys -ees X T and J\xolx J\xn LT,

n-1°¢ 1 -1
The first has type

((Dg = Dy x-ewxD ) = 0 )
while the second has type

(D = (By = (oo (D, =D} ---))).
This is related also to the true equation

curry (AXx,y.t) = AxAy.T ,

which shows that there are operators relating to the two notations,
The first is the mittvariate form; the second is the curried form.

Here is another true equation
fix = fix (AF Af. £(F (£))),

where the fix on the left has type ((P -+0) - D) and that on the
right type

((((D=D) » D) » ((D=D0) = ?)) =((D-D) D)),
This is the content of Exercise 4.9. (This also shows why type
superscripts are tiresome.)
The combination
fix (A x.1)
occurs 50 often, that from time to time we abbreviate it as
lx. T,

but remember it only makes sense if x and v have the same type.
For example in 4.3 we could have written

o=1fin. cond (zero(n), O, f {pred(n)) + pred (n))
and read this as

"o is the least (recursively defined) function f whose
value at n is cond { ---)."

We note that in the so-called"body"of the expression inside the
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¢ond-part the variable f occurs again. That is just the point!
This is a recursive definition; it is made into an explicit defin-

ition by invoking the least fixed-point operator.

In a A -expression, A x,y,z.t, say, the variables x,y, z
are being bound in 1; but T may have other variables that are no-
where bound in tv and these remain free varigbles of the whole
expression. Bound variables are dummy variables and may be re-

written by other variables; thus
Ax .t = Ay.t [y/x]

is a true equation PROVIDED the variable y does not occur in 7.

In the equation the notation Tl y/ x ] means the result of substituting
{rewriting) the variable y for the variable x throughout the term 7.
We can also write t[ o/ x) for substituting a whole term @ for a

variable in the other term.

We have already spoken of “true equations', but how do we
know that these curious equations are meaningful at all? They are,
but this is scmething that has to be proved.

THEOREK 5.1. Every typed A =-term T defines an appreoximable function

of its free variables.

Proof : We argue by an induction on the complexity of t; there
will only be a few cases to consider since the '"syntax" of A-terms
is limited — even though terms can be of any length.

If T is a variable or a constant there is nothing to prove.
We alrteady know that
X —x and x bk

are approximable functions.

Suppose T has the form
< s e
%> * %17
Then the o, are less complex terms, and so we can assume - as our

induction hypothesis — that they define approximable functions of
the free variables. Having said this, we just apply the already
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proved 3.4 toc conclude (after a suitable generalization to the
multivariate case) that v, which takes on tuples as values, also
defines an approximable function.

Next, suppose T has the form
where we are sure that the types of all the terms match properly.

Again we can assume the oy to be well behaved. But the values we
seek can also be written as

eval (co, 01).

Since eval is approximable by 3.11, we just have to invoke an
instance of 3.7 to gain the desired conclusion.

Finally, suppese that v has the form
A x.0.

By a judicious choice of the order of the variables in o (including

x), we can assume that o defines an approximable function

g:Do x..-an_1x ‘Dn - D

where #' is the type of g, D is the type of x, and DD’ cee Dn-1

are the types of the remaining free variables of o. W¥e apply 3.12
and obtain an approximable function

curry (g) :DOX--- xvn_1—-(ﬂn—-9 ).

But, this is just exactly the function defined by Tt.

We leave as an exercise the more general case of a term t of
the form

4\.}(0, reuy Xk_.l-ﬂ »

which has a string of bound variazbles. O

We can now say more precisely what it means to call o=71 a
"“true equation. This means that, if we employ the method of the
proof of 5.1, the two terms define the same function of the free
variables. For example,
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Ax.t=Ay.t [¥v/x]
is true, provided y does not occur free in the term 1,
since the systematic generation of the function defined by
A x . T does not depend on what the variable x looks I7ke but only
on its position in the term t. Some other obviously desirable rules
for generating true equations are stated in the exercises. But one
rule is so basic that we state it here in full genevrality,

THEOREM 5.2. For suitably typed A- terms the following equation is

true:

/ x 11.

(Axg s -ves xn_1.r)(co, cens cn_1)=1:[0'0/x0, see Oy n-

Proof : It will be sufficient to carry out the proof for n=1.
The proof proceeds by induction on the complexity of the term t. In
case T is aconstant Kk, the result reads

(Ax.K)(o) =k,
and this is a true equation.
1n case Tt is avarigble (in particular, the wvariable x),
the result reads
(Ax.x)(g) =a,

and again this is a true equation.

In case T is atuple (say., <71, , AT ) the rTesult reads

(lx.<10,11>)(0) = <1, [o /x] Ty [o/ x]1>

This is true, because the left-hand side can be transformed by the

true equition

(Ax. <7 T, ») (0) = «(Ax. 1:0)(0), (Ax .t,) (o) >;

0’

and then we apply the inductive assumption for Ty and for T,

In case T is an application, we want (supposing the term is
Tg (193,
(Ax. Ty (11)) (c)=1:0[c/x] (1:,| {o/x]).

We can proceed as in the last case, noting that the left-hand side
equals
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eval ((J«.x.<r0,11>) (o)) .

In case t is anabstract (say, Ay. ro), we want

(Ax. A vy .TO][U) =}\.y.1'0 [o/ x]

PROVIDED the variable y is not free in o. For this we require
the true equation

(Ax.Ay. 1) (o)y=Ay.(Ax. 1) (o),

We argue for this by letting g be the function of n+ 2 free
variables defined by 1. Then, by 5.1, the A-term Ax.AYy.T
defines the function curry (curry (g)) of n arguments. W%e can
call this function h for the moment. We can write

h (v)( o)(y) = g{v, o, ¥),
where v is a l1Zst of arguments, But, with an appropriate com-
binater inv, which applied to g inverts the order of the last
two arguments, we can write

h(v)( o) (y}r = curry (inv (g))(v,y)(o}.
But, curry {(inv(g)) is just the function defined by (Ax.T7]. So
what we have proved as true is

(Axay W) (a)(y)=(Ax.1) (0],
But if y is not free in a and

a (y) =8

is true, then so is

This completes the proof, 0

We note that if t' is the term Ax,y.t, then t’ (x,y) means
the same as t. This gives a convenient way of indicating free
variables: we just write o (x,y) - where x,y are net free in
G - and this will have the same values as any term T which does
involve the extra free variables x and y. We use this notational
device in the next theorem,
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PROPOSITION 5.3. The least fixed point of
Ax,y. <t (2,¥), o(x,y)>
is the pair with coordinates
tx.T(x,ty.a (x,¥)) and
'y.o{!tx.t(x,¥),¥}.
Prosf : (We are assuming that x and y are not free in T and

<.) The purpose of the fixed-point search is to find the least
salution of the pair of equations

x= t{x,y) and y= o (x,y).

In other words, we are generalizing the fixed-point equaticn from
oue to two variables - and, of course, we could go much further

to any number of variables. To this end, let

Ye = 'yY.o(Ix.T({x,y}, ¥}, and
Xe = PX.T{x,¥,)-
Then
Xe = T(X y ¥Yals
and
Ye = 0 (1% T (6074, V)

= 0[Xys Y-
This preves that <x,, y, > is one fixed-point pair.
Suppose, then, that <Xy, Yg? is the least solution. (Why does

a least solution have to exist? Hint: Consider a suitable mapping

of type

where DO is the type cof x and 01 the type of y.) Then we know
and alse X5 X and Yo EYs- But from

T (X5, Yy ) E%ps
it follows that

!x.t(x,yo) € Xp-
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Consequently

o(!x. T(x,yads¥g) €0(x,,¥,) €v¥,.

By the fixed-point definition of y,, we have y, & Yo 80 Ya=Ygi

whence,
Xy =!I xX.T(x,% ) = Ix.r(x,yo) € X4
So alse X, =xg. We have the right formula for y,, and a similar argument gives
x,. 0O
0

The purpose of giving the above proof was to illustrate the
use of the least- fixed-point operator in proefs. We have such true
principles as:

Pxet(x) = (! x. T(x));
and

t(y) cyimplies ! x. t(x) g ¥y,

provided, of course, that x is not free in t. These, together with
the monotonicity of all the functions, were just the methods used in
the above proof. Here is another example.

PROPOSITION 5.4. Let x,y, and t(x,y) be of the same type D
and let g be of type {0 -+DP), then the equation

Axtly. T(x,¥) =lgAx. Tt (x,2(x))

is true.

Proof : Let f be the functicn on the left-hand side. We

can write

fi{x) = ty,.t(x,y) = ©(x, £f(x)).
Therefore

f=2ix. 1t(x,f(x)),
and it follows that

gy = lg.Ax. 1(x,g(x)) « £ .
Then we have at once, by definition of Bp»

go(0) = v{x,gy(x)),

for any given x. But by definition of f we find

£(x) = ty.x(x,y] g g,(x).
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As this holds for all x, then fr_:g0 follows. 8o the equation
is true, O

The last proof is instructive as it uses equations and in-
clusions between functions . In particular we have just made use
of the principle:

if tco holds for all values of x,
then A x.TtcAx. o holds.

This is another form of Theorem 3.13(i}.

TABLE 5.5. In the displayed table we give a summary of uses of the
A - notation to define various combinetors . We have mentioned some
of these equations before, and there are some combinators here we
have not menticoned before - their meanings, however, should be clear.

Py T AX,y.x

Py = AX,y.¥
pair = AXAy. <x,y>
n-tup1e=kxolx1...Axn_1.<x0,x1, veey X >
diag = A x. <x,x>

funpair = AfAgix. <f(x), g(x) >

M

Prod; =Ax0,x1,...,xn_1.xi

- n -

1n\.r1.‘:j Axﬂ,...,xi,...,xj,...,xn_1.<x0,...,xj,. ,
xi,...,xn_1>

eval = 2 f,x. f(x)
CUrTY = AgAixiy. g{x,y)
comp = Ag,fAax. glf(x))

const = AkAix.k
fix = Af ! x. £(x)

A TABLE OF COMBINATORS
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It is important to note that since we have not typed the
variables, these equations are ambiguous: they only become pre-
cise when the types are specified, It follows, therefore, that
what we find in the table are schemes for combinators; there
are actually infinitely many distinct combinators corresponding
to any one equation depending on how the variables have types
chosen for them. Clearly it is better to imagine this variety
of combinators than it is to try to notate them with type super-
sCTipts.

One interest of combinators is that it is often possible to
write expressions without variables - if enocugh combinators are
used. This is sometimes useful, but it can become clumsy. On the
other hand , if the same combination occurs over and over, it is
sometimes useful to give it a name. This is what we do with, say,

composition where
comp (g, £) = gof.

On the one side we have the prefix notation, and on the other,

the more common infix notation, With either notation the variable
seen in A x.g(f(x)) has been got rid of. The choice between
equivalent notations ought to be based on a desire for readability.

The reader will have noted that there are some combinators
not appearing in Table 5.5. The reason is that combinators like
cond, succ, pred, zero, O cannot be defined in the pure A-notation
but are specific to domains like T and N; we, thus, have to regard
them as primitive. But once they are in hand, a very large number
of other functions can be defined from these combined with X -
expressions. The next theorem gives an indication of the possibil-
ities.

THEQOREM 5.6. For every partial recursive function h: N - N, there
is a A-term T of type (N-¥N) such that the only constants occurr-

ing in Tt are
cond, succ, pred, zero, O
and where if h{(n) = m, then

tT(n) =m
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is true; and if h (n) is undefined, then
T(n) =1

is true. The equation T (i) =1 1is also true.

Procf: We have only formulated the theorem for functions of
one variable - but to give the proof, it is convenient to pass
through functions of any number of (integer) variables. We shall
also have to recall the precise definition of the notion of

partial recursive function.

It is also convenient to work with{very)sirict functions
£onEL w,
These are functions such that if My vees nk_1ElNI. and n; =1 for
at least one 1<k, then
f(no, ceay nk-1) =1.

It is easy to check that compositions of strict functions are
strict. It is also easy to see that any partial function

g: ]Nk -+ N
extends to a strict (approximable) function
£: Nk -N,

which takes the same values as g as long as g is defined; other-
wise g takes the value L. What we want to show for partial recursive
g is that the corresponding g is defined by a A - expression.

In the first place we have to check that primitive recursive
functions have A - definitions in this sense. We Tecall that
primitive recursive functions are generated from certain elementary
starting functions by multi-variate composition and the scheme of
primitive recrusion. The starting functions are the constant
function with value zero and the "identity” or "projection”

functions. For example, g(nu, n,, nz) =n, for all Ny, Ny, n2e N

1 1

is one of the starting functions. Now we cannot just use the A-term
Axo,x,l, x2. X,

to represent g, because the function so defined 15 not strict.

But any function in INk -+ N| can be cut down to a strict function

by a simple device. Consider
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Ax.ctond (zero(x), x, x)

with x of type N. This is the strict version of the identity
function of one argument. The strict projection function of two
arguments can be defined by

lxo,x cond (zero(x1),x0 ,xo),

.
The one of three arguments by:

lxo,x.l,xz. coend (zero(xo), cond (z.em(:cz),x,I ,x1), cond (zerp

(x5), %45 x4 ).

This is not done very elegantly, and the reader can find for him-

self a general solutien based on perhaps a better notation for the
required compositions of functions,

As we temarked, strict functions are closed under substitution,
and any substitution of a batch of functions into another function
can be given by a A-term, if the various functions can themselves
be so defined. It only remains to A-define functions obtained by
primitive recursion. Thus, suppose, for the sake of argument, that

f:N->N and g: N + N

arg given as total functions with f and g being A - definabls.
From them, we obtain by primitive recursion h: N - N where

h(O,m)

13

f(m),

h(n+1, m) g(n:mxh{nrm)J

for all n,m€ N . The A- term defining h is

'kAix,y. cond (zero(x), T(y), g (pred(x),y, k(pred(x),¥))).

Here we have had to use the fixed-point operator on a variable k
of type (N2 -+ N). The variables x, yare of type N and the cond -
construction puts the two traditional equaticns inte two clauses
of one expression. It is easy to see¢ that the fixed-point function
ig strict and is nothing more than h.

That completes the representation of primitive recursive
L
functions. To obtain the partial recursive functions, the idea
Y
is to use the so-called u-scheme (least number operator) and,
further,to close up under substitution., We need only treat the
u-scheme. Suppose, by way of example, f(n,m) is given as a
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primitive recursive function. We then define h (generally, a
partial function) by

h(m} = the least n where f(n,m) =0.

This is often written

[l

h(m) un. f(n,m) = 0.

Supposing, as we may, T is i - definable, we introduce first

g=tgix,y. cond {zero{ ¥(x,¥)),x, g (succ(x),y)).

Then h=Ay. g(0,y). This is easily seen to be strict. Also easy
to see is that if h(m) is defined, then g(O,m} =h(m). But, if h(m)
is not defined, it takes some argument to make sure that the least
fixed-peint construction forces g(0,m) =L. However, the argument
is not very difficult. O

What isnet said in 5.6 is that every A - term defines a
partial recursive function. This is true (with suitable control
over the constants and types in the expression), but the proof
Tequires a full analysis of computability properties of domain
constructions. This is the topic of Lecture VII.

It should be remarked that the types of variables needed for
the proof of 5.6 never get very high. 1In fact, types like N, Nk,and
(Nk -+ N) were the only ones needed (with perhaps T thrown in also).

Recursion on N was the topic of 5.6; further examples of
recursion on other domains are included in the exercises.

EXERCISES

EXERCISE 5.7. Find definitions of
Ax,y.t and o (x,y)

which use only Av with one variable and applications only to
one argument at a time. Note that use must be made of the com-
binators Pgr Pqs pair. Generalize the result to functions of
many variables.
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EXERCISE 5.8. (For combinator nuts.) Table 5.5 was meant

to show how combinators could be defined in terms of A - eXpres-
sions. Can the tables be turned to show that with enough
combinaters available, every A - expression can be defined by
combining combinators,using a(t) as the w mode of combination?

EXERCISE 5.9. Suppose that f, g: 9?=D are approximable and f - g =

geo f, Show that f and g have a least commen fixed point x=f(x)=g(x).
(Hint: Refer back to Exercise 4.20 ) If in addition f(l)=g(l},

show that fix (f) =fix (g). 1n particular will fix (£) = fix(£2)?

What if we only assume feg=géeo f7?

EXERCISE 5.10. Suppose 00 and D1 are neighbourhcod systems
over disjoint sets Ao and 4,. Define the amash product Py @7,
with neighbourhoods

{Aou %}u{x uYJXEv&{AO}andYev1\{AH}.

Show that this <s aneighbourhood system. Define (DO-.J. 01) so
that II)O—»_L D1| consists exactly of the strict functions. By intro-
ducing appropriate combinators, show that

(0 (D, 0,)) and ((0,@D,) + D))

0”1

are isomorphic.

EXERCISE 5.11. For any domain P we may regard ?° as consisting
of (bottomless) stacks of elements of U, With this image in
mind, define appropriate combinators with the obvious meanings:

head : 0”7 - D ;
tail : 07 ~07;
push : ox9" = 77,

Using the fixed-point theorem argue that there is a combinator
diag : pDap”

where for all x€ |D| we have

diag(x) = <x>

0"
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(Hint: Try a recursive definition, say

diag({x) = push (x, diag(x)),

but be sure to prove¢ll terms of diag(x) eaual x.) Also intro-

duce by an appropriate recursion a combinator
map : (P - )" xD -+ 2
where for elements of the suitable types:

@

map (<fn>n=0' x)] = <fn(x)>n_0.

EXERCISE 5.12. On any domain 0 introducef{as a least fixed point)
a combinator

while : (DT} x (D=0) = (D-D)
by the recursion
while (p,£)(x) = cond (p (x), while (p,f) {(£f(x)), x).
Prove that
while (p, while (p,f)) = while (p,f).

Show hov while could have been used to obtain the least number
operatoer mentioned in the proof of 5.6. Generalize the idea to
define 3 combinator

find : D7 x (DaT) =D

with the meaning "find the first term of the sequence (if any)
which satisfies the given precicate.”

EXERCISt 5.43. Prove the existence of a one-one function
pum : INx N « N such that

num (0,0) = 0 ;
pum (n,m+1) = num(n+1,m) +1
pum (n+1,0) = num{Q,n) +1.

Draw a picture (i.e. an infinite matrix) for the function and
find a closed form for its values, if possible. Use the function
to prove the isomorphism of the domains

P N,P(N xN),P Nx 7 N.



EXERCISE 5.14. Show that there are approximable mappings
graph : (PN -+ PN) » PN and
fun : PN » (PN + PN),
where we have
fun - graph = A f. £, and
graph e fun 2 Ax. x.
(Hint: Using the notatien

[Rgs Mys venany 1= num(no,[n1, ...,nk]]

two such combinators can be given by formulae

fun (u) (x) ={m|3n0,...,nk_1Ex.[n0+1,...,nk_141,0.m]e ul

graph(f) = {[n0+1,...,nk_1+1,0,1n]|mEf[{n0,...,nkq})},

where k is variable - meaning all finite sequences are to be
considered.)

EXERCISE 5.15, (For algebraists,) We can regard <{D,1}', A, v >
as the free semigroup on two generators 0 and 1. The powerset
P{0,1}t is taken as a domain as in Exercise 4.17. For "words"
*
e€ {0,1} define
*
e = {A, e,ez, eS, AL
Show that the least fixed point of
z = {e})-zU {e"}
*

*
in P{0,1} is z=e -{€}. Show further {as suggested by David
Park) that the least solution of

x=a-xUb+ylUc

y =b.xUa-yud
has

* * *

x=(aUb-a «b) - (cuUb-a -d),
where the {-} has been dropped off {a}, {b) etc., and where
the t-notation has been extended to the whole domain, se¢ that

* *

z =AU 2z -2z,

(Hint: Apply 5.3.)
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EXERCISE 5.16, Return to the discussion of Example 4.4 and
the construction of the domain of finite and infinite binary
sequences. Give a fixed-point definition of neg: C -+ C, where

neg (0x) = 1neg (x);
neg (1x) = Oneg (x).
Prove that neg (neg (x)} ) =x for all x€ (C|. Alsoc define
merge :C x £+, where for ¢, &€ {0,171 we have:
merge (ex,8y) =c &merge (x,¥).

(Note: There may be a little trouble with merge (x,y) when x
is finite and total and y is infinite - you have to decide what
you want in e.g. merge (A,y).) Prove that

merge (x,x) =d (x),
in the notation of 4,4. Consider also the infinite non-periodic
sequence

t =0 merge {neg(t), tail(t)).

Prove that the nth digit of t is the sum mod 2 of the digits
of the number n written in the binary scale {a suggestion of
J. Lambek). Show also that t *# vaaav where a is any finite
sequence # A, and where u is finite.
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LECTURE VI

INTRODUCTION TO DOMAIN EQUATIONS

The major Teasen for intreducing the theory of domains is
to have a notion of computaebility incorporating both finite and
infinite elements. 1ln cur many examples already expleored we
have seen hew functions (functionals, cperators, combinators)
can be defined on domains; owing te the preoperty of approximab-
ility (centinuity) of these functions, we have also seen how they
can be "calculated" by finite approximation. 1In this lecture
further examples of domains will be constructed -- especially
domains having infinite elements, which can be introduced in a
variety of ways giving rise to interesting structural possibil-
ities. The next lecture then treats a precise notion of compu-
tability appropriate to these domains; while the last lecture
opens up new methods of domain construction.

EXAMPLE 6.1, Let D be fixed as a given domain. We are now
familiar with a useful construct like D x D whose elements are
ordered pairs <x,y> of elements x, yof D. The question is:
can this construct be iterated? The answer is obviously yes,
since Ux(0xP) and (P xD) x (?xD) and so on can be formed with
elements <x,<y,z>> and <<u,v>, <x,y>> and the like. But the
real question is: can the construct be iterated indefinitely?
AND can the Tesults be collected together into a eitngle domain?
The answer is yes, but it requires a bit of work to get it right.
The method to be introduced will be open to many variations, so
more than one answer is possible, giving non-isomorphic domains.

In order to collect all the iterates into one large domain
we give ourselves first a very big domain inside of which the
desired family of neighbourhoods will be found. There are many
ways to make this choice, and we are fixing on one that will
keep the notatien simple. We have often used binary sequences
for examples and constructions, but for this example let us use
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ternary sequences., Let Z=1{0,1,2} and let I* be all finite
sequences from this three-letter alphabet. We will select
subsets of Z* for our neighbourhocods. As I* is countably
infinite, it is without much loss of gemerality to assume
that P is a neighbourhood system over & where we take &4cZ'.
Also without loss of generality we can assume @€ D. (Why?)

We wish to find another set "cZ* to be the set of tokens for
the nev domain. After we find it, we will still have to say
just which XT are appropriate for the structure we want.

The totality {X|X cX*} is, as a powerset, iscmorphic
to the set of elements of a domain: a point we have remarked
several times. So, by the Fixed-Point Theorem we know there
is a set 'cL* where

o0& g 1T u 2r,
In fact '={1,2}* 04, because we can say:
{1,2}*={A} v 1{1,21* v 2{1,2}* .

The domain we are looking feor will be found as a domain p}
over I' The reason for splitting I' up, as shown in the equa-
tion above, is to ensure that if X,Y€ 0’ are two neighbourhcods
in the system Dg, then 1 X U 2Y has a chance of being also in
D§ because

1X u2Y T,

§ isomorphic to a part of Dg. If we make

This will make 05 x D
? also isomorphic to a part of D§, then all the iterated products

will be contained in D§.

¥hat is a neighbourhood system? Just a set of sets. But
PPZI* is a domain (as a powerset) and because ' E*, we find

pfe ppze

as an ¢lement, But elements of domains can often be defined by
fixed-point equations. Indeed we will introduce ‘D§ this way:

9% - (T} u {OX IX€D} v {1Xu2YIX,YeD3}.

The teader should stop to think why Ds can be immediately seen

to exist by writing such an equation. Of course another way

to describe D§ is to say it is the least family of sets containing
(i) the set T', (ii) the sets 0X for X in the given system U, and
(iii) sets 1 Xu 2Y whenever it already contazins X and Y (closure
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under a set-forming operation). By saying "least', we mean
(iv) nothing else belongs to P° except asallowed by (i)-(iii);
this makes the truth of the equation for U§ clear. So Ugexists
as a family of sets, but what good is it?

By our construction of I', all the sets we put into 05
are subsets of ' (why7), so DE has a chance of being a system
over I' if we can check the closure under intersection. So
suppose Zc XNnY where Z,X,YEDE; we want to show XnYeE 05. We
argue by induction on the number of steps required to put X and

Y into D§ by (i)~ (iii). There are several cases.

If X=T or Y=T, there is nothing to prove, because hoth
sets are subsets of ', We note that @¢D§, because (i)-(iii)
cannot introduce @ as a member of Dg. So, if X=0A for A€D,

then Y must have this form also (if it is not I'), because
OAN(1BU2C) = ¢

(That is, if Y had the form (iii), then Z =@ would be a consequence,
which is impossible.) Thus, if X=0A for A€?, then Y =0B for some
BE€P., But by the same reasoning I =0C for some CEUV also. But

the relationship OC=0ANOBis equivalent © CcANnB., We see,
therefore, that AnBe€D, and so

XNY=0ANOB=D(ANB)
must belong to Ug.
The final case has X,Y,Z all of the form (iii):

X=1A_U2ZA

1 2’
\(=1B“UZB2 , and
2=1C1U2C2 .

We can think of the Ai and Bi put into s earlier and the inter-
section result as being already established for them. But the
relationship Ze X NY is equivalent to CiEAinBi for 1=1,2.
Therefore Ai n BiG D§, and so does

XAY= {1,V 2A,) N (1B, U2B,) =1(A, N B,) U 2(A, 0 B,) .
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He have now seen that D§ is a neighbourhood system, but
why was it constructed that wa;? The reason is simply this
isomorphism (or domain equation}:

pl=o+0¥ x0%)
as can be seen by reference to the eguation for ¥ and the
definitions of + and x. What are the elements of DE? There
is always

L=({T}.
Next if x€ IDI we define
x* = (T} U {0X IX€ x}.

That gives an isomorphic injection

J\.x.x§: D—cDg.
Then for x,y€ |D§I we can define

<x,y> = {TYv{1XUu2Y|X€Ex and YEy}.
We have another iscomorphic injection
AX,Y . <X,¥> ¢ 0% % L pt.

Indeed by locking at the neighbourhood definition of b we con-
¢lude that the finite elements of p% are exactly those that are
either of the form (i) L, or (ii) a§, where a is finite in DI

or (iii) <a,b>, where a and b are previously obtained finite
elements of ID§I.

Suppose a,..., £ are finite in |P|]. We can picture the

elemert

, <<b®, B>, ate>, <ef, £

u = <<a§

in IDEF as a tree:
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Note that the tree has binary branching with the elements of
iPl at the ends of the branches. Any such tree could be given
a notation as an element of !Dgl. The finite elements of

0% correspond exactly to such finite trees.

wWhat of the infinite elements of 1D§I? Are there infin-
ite trees? Let a,be IP§I be any elements of IU§I. Since
pairing is an approximable mapping, we can solve the fixed-
point equaticn

v =<a,<b,v>>,

In pictures we can diagram v roughly as:

etc.

The word is "roughly'" here, since if a or b were not in the 7|
part of |D§I, then in the diagram the letters "a'" and "b" should
be replaced by the correspoending tree diagrams for a and b.

Suppose that a and b are finite. Then we can easily see
that the infinite tree v is the limit of the following sequence
of finite trees:

=<a,<b, vn>> , and
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The reader should think how to explain from tree diagrams the
approximation relation v gv and more general such relaticnships.

We could call D§ a tree algebra over U. There may be
others, A general one is a structure of the form

<E 1in, pair> ,

where
in:?-+ E, and
pair : E xE 24E,

The algebra

<D§, lx.xg, Ax,y. <x,y>> ,

however, is a very special one: it i5s "minimal™ among all tree
algebras over P in a sense we shall have to make precise,

To do this think of how € and ?° can differ. In view of
the isomorphism that p® satisfies the injection of 7 and the
pairing are one-c;ne, so ne “informaticen" is lost by these
mappings. The same may not at all be true of E, but it is
Teasonable to think that at least we can define an approximable
mapping g : p% 4+ E where

(1) g (Ly=1Lg,
(2) g (x*) =in(x), for xe |0I, and
(3) g (<x,y>) =patr(g(x), g(¥)), for x,ye 0%,

By what we said earlier, g will be uniquely determined by (1)-(3),
because these equations tell us exactly how to calculate g on all
finite elements of ID§1. An approximable mapping is a}ways
determined by its actien on the finite elements. But why does

g exist?

It would not be too hard to give an inductive construction
of g as a neighbouthood relation, but a fixed-point equation is
easier to write down for the same purpose, We need, though,
to have the inverse ("predecessor"} functions:
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§

out : D7 a7

5

proj,: pf .o , for i=0,1,

where
out{xg) =X ,
proj0(<x,y>)=x, and
proj, (<x,y>) =vy.

We also need
atom: IJ§ -T,

where
atom(xg) =true, and

atom(<x,y>) = false

We can then write

g(x]) =cond (atom(x), in (out(x)), pair(g(prod, (x)), glproj, (x)))).

This g exists by fixed-point theory, and it satisfies [1)-(3)
by what we know about the structure of |D§|. As we said, g is
unique because the values on finite elements are fixed.

In algebraic¢ language g is a homomorphism of tree alge-
bras; and p¥ is called an tnitial algebra, because for any tree
algebra £ there is a unique homeomorphism g : ps ~E, We noteat
once that any two initial algebras are isomorphic. For if ™ were
ancther, there would exist homomorphisms in both directions
between pf and D™. But the compositions of homomerphisms are
again homomorphisms, and in the case of D§ if we go from D§
9* and back to D§, the result rmust be the identity. The reascon
is that the identity can be the only homomorphism of an initial
algebra into itself. We thus have a precise meaning of the
minimal character of 05. But note it still took a construction
to show that the domain ﬁs extgts, O
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EXAMPLE 6.2. Our staple examples 8 and C satisfy "domain equa-
tions" in the form of isomorphisms as we have previously seen.
Indeed
BE=E8 + B, and
C={{A}}+C+C ,
where if we liked we could construct both systems over {0,1}*
and have :
B= {{0,1}*}u{0XIX€EB}U {1XIXEE)}, and
C= {{0,1}*}u {{Aa}}u{oXIXeCcul1XIXEC]},

We leave to the exercises the explanations of what kinds of
algebras B and C are and why they are initial. Here we want to
propose a simple, yet interesting generalization of B.

(onsider this domain equation :
A AT Al

where 4! atands for the n-fold cartesian power of A. We can,
with the aid of some enceding solve this equation as a neigh-
bourhood system over {0,1]}* as follows:

A= {{0,1}* il J1Jox. 1 x. €4 a11 j<
{{,}}u.UnU j 1% €A all j<n)

i=0,1 j<n
For instance, if n=3, then a typical neiphbourhood in A is
scmething like

OOXO v 010)(1 u 0110)(2

»

where XO,X1,X2EA. The first '0' could also be a '1' in front

of each of the terms.

In words, an element of A (other than 1) is an n-tuple of
elements of A: but there are two separate copies of these, the
left one and the right one. We can write for a€ |A|

a= =<a0,a1,...,an_1>,

where + is chosen if a is on the right, and — if on the left.
As a tree diagram a might look like this for n=3:
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ete. ete. etc.

That is, a is an infinite ternary tree with + or - labels at
each node. If each node (subtree) is truly infinite, the dement
is teotal; if L is ever encountered, it is eonly partial; if every
branch ends with 4, the tree is a finite element of |A}.

What can be done with such trees? Let o€ {0,1,...,n-1}*
be a finite sequence of "digits"” each less than n. We let
Z={0,1,...,n~1}. We can define for a€ |A| the operation 7 +> ao
by recursion on o

aA=a, and
a10={ai)c.

The ao are just the subtrees of a with o as a selector. We also
hkave a map

pos : A=T
where

pos{+<ag,a,,...,3, 4>) = true, and
pos(-<au,a1,...,an_1>) = false.

We say that a (total) tree a is eventually periodiec iff the set
{aclo€Z*} is finite. The result is that the "language®

L, = {c€Z*| pos {ao) = true}

corresponding to an eventually periodic tree is always a regular
event of automata theory, and every such language has this form.
In fact, a just rTepresents the initial state of an automaton,
and au Tepresents the state after 'reading' a tape 0. O
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In order to formulate more generally the idea of a domain
equation and initial algebra, we must intreduce a small amount of
the terninology of category theory. To be as specific as possible,
think of systems ¥ over sets AcZ* with X={0,1}, say. They form
quite an interesting category with respect to the approximable
maps £f:0-+0". Recall that to be a category of "domains' and
"maps' all that is required is an associative composition ga f
of maps with identity maps I: 0P -7 for each domain of the category.
And this we certainly have for the systems indicated. And
there are many other categories waiting around: for instance,
Testrict systems to those where g ?. This is not much of a
Testriction, as every system is isomorphic to one like this,

Or restrict the maps to being the strict maps f: 0 -7’ where
f(‘LB) =J.v,. This is an essentially different, though related
category, We shall find many others,

What examples 6.1 and 6.2 suggest is the mnotion of a
construct which makes new domains out of old. For example,
with ¥ fixed, 6.1 suggests for any domain X over ' = E* a domain

T(X}=7+(Xx X).
More specifically (converting from Z={0,1,2) to T ={0,1))we
could write
T(X) = {C"}y {OXIXET}u {10XUIIYIX,YEX],

where we have " =0Au10l'VU11l. (By the way, here we definitely
want to assume P@%0 and $&X and to get #¢ T(X).) This construct
is an example of a funecter, a notior that can be defined ab-

stractly on any category.

DEFINITION 6.3. A funetor on a category (into itself} associates
with every domain X in the category another domain T(X}and to

every mp
f:Xay
another map
T{f) : T(X} »T(V)
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in such a way that identity maps and compositions are preserved:

T(1I and

x) = IT(X),
T(g» £) =T(g) » T(£),

whenever f: X=+Y¥ and g: ¥-2. 0O

In the example from 6.1 we have not checked how the special
T is a functor. The hint is that whenever f : X+ ¥, then there

is a map
Exf:XxXayxy,
But there is also a map

T +Exf:D+ (XxK)=D+{¥xV)

D
and this suggests the definition of T(f}. The details are left
to the exercises. Note that the map T(f) just suggested is al-
ways strict, so T is a functor also for the category of strict
maps.

One good reason for a little of the category-theoretic
language is that the next definition becomes very neat indeed.

DEFINITION 6.4. A T-algebra is a domain E in the category to-
gether with a map

k:T(E)~E.

If m: T(F)+F is another T-algebra, then a hemomorphiam is 2 map
h:E=+F in the category such that the diagram

k

T(E) —— E
T(h) l 1 h
m
T(F) ——> F
commutes; that is, the equation
hek = msT(h)

helds. O
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In our example from 6.1 a T-algebra is astriet map
k1 D+ (ExE)~E
But such strict maps are in a one-one correspondence with pairs

of (not necessaTily strict) maps
n:P-E and p: ExE=L .,

And the structure <E,n,p> is what we called a tree algebra.
Definition 6.4 just makes this abstract. The reader should also
work out the details showing that 6.4's definition of homomor-

phism is just what we ought to expect.

Note that the T-algebras and homomorphisms form a cate-
gory. (Why?) The following definition is se¢ abstyract that it
could be given for any category.

DEFINITION 6.5, A T-algebra is inZt<al if and only if there is

a unique homomorphism frem it into any other T-algebra. O

The word "other" here is not meant to imply "'distinct”.
For an initial algebra there is one and only one homomorphism
into itself: the identity map. As we already indicated in 6,1
it is a general fact that the next proposition helds.,

PROPOSITION 6.6. Any two initial T-algebras are uniquely iso-
morphic, O

Slightly more interesting is the behaviour of T on initial
algebras.

PROPOSITIDON 6.7, If i: T(P)-0P is an initial T-algebra, then so
is T(i):T?(P) ~T(P) and i is the isomorphism from T(P) to .

Progf: Clearly since T is a functor, the map T(i)} has
the right mapping character to make T(P) a T-algebra. Since
D is initial, we have a commuting diagram :
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(D) —1 5 p

T(i)

i

v T 1 ¥
12(p >T (D)

But we also have the trivial diagram:

5 T(i)
T (D) >T (D)
T(i) |l i
¥ i v
T(D) > D

It follows that i+ j is a homomorphism, so

But then because T is a functor we find:
T(i) « T(j)} =
(i) (3 IT[‘D),
and, since j is a homomorphism, we have
Jei= Iy,
This shows that i1 is an isomorphism. 0O
From 6.7 we see that if we are going to have initial zlge-
bras at all we have to satisfy the domain equaticn
D=T(0).

But generally that is not enough to assure that P is initial.
There is a condition that our functors satisfy, however, which
guarantees the existence of homomorphisms.

DEFINITION 6.8. On the category of demains and strict approxi-
mable maps a functer T is continuous on maps if fer any systems
? and E the induced mapping

Af. T(£): (0~ E) = (T(D) », T(E})

is approximable.
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THECRENM 6.9, If the functor T is continuous on maps and if
P =T(0}, so in particular U is a T-algebra, then for any T-
@algebra k: T(E) = E there is a homomorphism h: D=~ E.

Froof: Let 1i: T(P) >0 make U a T-algebra, where
j: 0 «T(D) is the inverse so that i is an isomorphism of domains.
Suppcse that Xk : T(E) - E is any T-algebra. A homomorphism
h: D-FEwould satisfy

hei=koT(h),
Rewrite this equation as

h=keT(h) s j.

In the domain of strict maps (P—~E) this is a fixed-point
equation for an approximable map

Ah. ko T(h) «j

by our assumption on T. Thus, the desired homomorphism exists. O

The final question we have to answer is why in our cate-
gory the minimal U exist, The reason is that the functors T
that we have in mind possess further continuity properties on
demains. This is conveniently expressed in terms of a notion
of "subdomain'.

DEFINITION 6.10. For two neighbourhood systems U and E we
write

DdAE

to mean that these are neighbourhood systems over the same set
of tokens 4 and not only is PcE but whenever X, YE€D and
XnY€E then XNYED, O

For the subdomain relation DdE to hold, P has to be a
smaller family of neighbourhoods, but the notion of consistency
in D also has to be the same as in £. Note that if Do a4t
and 01 <4 E then



103

0, <40, iff 0,0, .

It is also easy to prove that the union of a directed family

of subdomains of E is again a subdomain. As a consequence of
this remark we have:

PROPOSITION €.11. For a given neighbourhcod system E, the set
of subsystems

(1 DaE}

forms a domain in its own right. O

The subdomain relationship implies a mapping relationship
between the domains.

PROPOSITION 6.92. If D<E, then there exists a projection pair
of approximable mappings:

i:P+E and j:E-7

where j o i= ID and i o_j cl which are determined as element-

El

wise functions by these equations:
i(x)={Ye€E|3Xex.XcY}, and
ilyl=yno,

for all x€ 1Pl and ye IEI. O

The procf is left for the exercises.

DEFINITION 6.13. A functor T is monotone on domaine iff whenever
P <E,then not only do we have T(P) <T(E) but the prejection pair
i, jof 6.12 is mapped to the same kind of projection pair T(i},
T(i). A monotone functor is eontinuous eon domaine iff whenever

€ is a domain, then the mapping

AD, T (D) : {D | DQE} = {D’ I D' AT(E)}

is approximable. O
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ke can now state an existence theorem that covers in
fairly wide generality the examples of this lecture.

THEQRENM 6.14. If the functor T is continuous on maps and
monotone and continucus on domains, and if there is a set T
such that

{ry 4T ({I't},
then there exists an initial T-algebra.
Froof: We proceed as in the proof of the fixed-point
theoren by iterating the functor. The assumption about T
means that, as a neighbourhood system, T({l'})} is a system over

the sagme set ', Thus, if we iterate T to form 'l‘n({l"}), all
these systems are over ' and indeed

™(ry aT™

for all n. We can thus introduce

o= Jmury,
n=0

and it is easy to check that U is a system over ' and
T ({T}) €p
holds for all n. But then we have for all n:
™y a™lory < 10y,

which implies < T (D). But T is continuous on domains, so

T( U ™Ur
n=0

T(?)

- U ™y
n=0

(]
p=]
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Thus, not only is ? a T-algebra, but the isomorphism we get

for 0 and T(?P) is just the identity mapping. We know by 6.9
that homemorphisms exist; what temains to show is that homomor-
phism frem ¥ are unique. As in the examples, we will show in
effect they are determined uniquely on the finite elements of D.

Since each TM({(I'}) <V, there are projection mappings

i r TR » 0and j_:0 » T(ID).

Define p : 7 =7 by C :1n ° jn' Projection pairs are always
pairs of strict mappings (Why?), and so are in the category.
By assumption and 6.13, the functor T preserves these maps, s0
we have

Tley) = T(i) o TG) = iney dneg = Ppay -

As a neighbourhoed relation P, can be characterized by :

Xp, Y iff 3ZeTR{{I}), XcleV.

We thus see that PnSPnal and

U e, = 1.
n=g O L4
Now suppose k: T(E) - E is any T-algebra and h: D =E

is a homomorphism. The mapping will satisfy the fixed-point

equation
h = ke T(h),

where no other mappingsneed be written in because D = T(P) and so
T(h) : 0= T (E) ,

We wish to shew that h teally is the least fixed point of this
equation.,

Define hn= hnon :P=E. For n=0, the map Ch is the
trivial map where pn[x) =ly for all x€ |Pl, But h must be
strict, so hU(x) =J.E for all x€ I101; that is, h[J is the least
element cof ID-J_E |. Now calculate :
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ko T(hn) ke T(h) » T(pn)

h *Ph+el

= hn+1

This shows that the union of the h is the least fixed point of
Ah.keT(h). But

n
-
=
F}
0

:LJO "

n
=
L]
Cs
je]
=)

=hely=h,

so the given h is in fact the least fixed point. The homomor-
phism is uniquely determined, and P is the initial T-algebra. DO

Having the existence of initial T-algebras, we can prove
one more result that shows just how minimal they are. We need
a lemma about projection pairs, first, that shows where sub-
domains fit it. We write D<QE as short for D=0’ for some
D’ <9E in the following. The lemma gives a converse to 6.12.

LEMMA 6.15. For two neighbourhood systems ¢ and E, if there

exist a projection pair
i:DP=Eand j:E=D
with j ui=lp and iojg_IE, then P4E ,

Proof, What we want to show is that i maps finite ele-
ments to finite elements, and that the desired P’ is the image
of P in E.

Suppose XED. We can write:

i(4X) = U{nrnrei (4X)}.
Applying j to both sides we have:
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tX=3ei 00 = | U 1 Yeipn 1

But then, since X€+ X, we find X€3j (+Y) for some YEi (+X).
This implies

4+ Xcj (+Y); and so i(+X)ciej (+Y)ct Y.

Since +Y<i (+ X )in any case, we conclude i (+X)=+Y. This
proves finite elements are mapped to finite elements,

What of A; that is, what is i (+A)? Ne find, suppesing
E to be a neighbourhood system over a set A', that since
+A cj(+4'), then i {#A)ctA' and so i (+A) =+4’, This means
that A corresponds to A', So we have established that D is in an
irclusion preserving one-one correspondence with a subset 0 of E
where A’ €P’. But it remains to show that ?* is a neighbourhood
system and that P'< E holds. All we really have to show is that
D’ is closed under intersection whenever the intersection belongs
to E.

Suppose Y’ , Z'€0’ and Y'NZ'€E. Let X' =Y'nZ’. We have,

for suitable Y, 2 €7D,

i(4Y)=+Y’, and so +Y=3({¢+Y"); and

i{(+Z)=417', and so +Z=3(+1").
But +Y' g+ X' and j(4Y'" )ci(¢tX*); thus YE€j(+X"). For
similar reasons Ze€j (+X')., But then X=YnzZe€j(+X'), and
therefore YO ZE D, (The element j(+ X'} must be a filter.)
Notice, however, that

+Yg+X, and so +Y' i (+X); and

+Zct+X, and so 427 i (+X}.,
It follows that Y'nZ’'= X'€i(+X). On the other hand we already
knew X€j (4+X'), which implies i(#+X)< +X’. We may thus con-
clude that i(+X) = +X' . In other words X'€?’. O
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THEOREM 6.16. If on the category of domains and strict approxi-
mable maps the functor T is continuous on maps, and if D is an
initial T-algebra, then for any system £=T(E) we have PE.

Proof: There is a homomorphism h: P-E. By 6.9 there is
a homomorphism g: E-+?. Now geh:0-0 is also a homomorphism,
S0 g hs= ]D because 9 is initial. In view of 6.15, all we have
te prove now is that hegel,,

Let the maps i: T(DP) -0 and j: D-T(DP) give the isomor-
phism for 0, and let u: T(E) »E and v: E~+T(E) do the same for
E. By the proof of 6.9 we know

g=1oT(g) »v and h=ueT(h) o j

and each of these maps is the least fixed point of its

respective equation. Let

8o~ teap 3nd Mot lp g

and define by recursion

ieT(g)evand h . =ueT(h )s«j.

Ene1” +1

By the fixed-point calculation
o

=wg and h= h_.
U U

Now we see that

hy v 8 E-E’

and for each n that
=uoT(hn) ° ] ulnT(gn) o VvV

weTCh ) o T(g ) o v

hn+1 ®Bhel

|

=uoT(hnugn)ev.

But this means that
[
heg= |, -g)
n=0

is the least fixed point for the equation
k = uaT(k) ev.

But I. is ome of the fixed points; whence he gEIE must follow.
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EXERCISES

EXERCISE 6.17. What are the algebras for which C is initial?
If A of 6.2 is a generalization of 8, what is the corresponding
generalization of €? Prove that it exists and explain what arte
the algebras involved.

EXERCISE 6.1B. With reference back to Exercise 3.16 discuss the
construction of D° as an initial algebra and as a solution to
the domain equation

R

(I do not know whether all solutions must be of the form 0 x E,)

EXERCISE 6.19. For the sake of uniformity restrict attention to
systems 0§ on sets Ac{0,1}*, where A€ A and 4P, and to the
category of strict maps. Define sum and product by:

Do+ 0, {{Alvoa ju0a} U {OXIXED UMY IYeED ],

DOX‘D,l {{A}UOXU‘IYIXEPD and YEU1}.

Are these correct up to isomorphism? Now generate all con-
structs T(X) formed by the constants (that is, T(X) =0 for a
fixed P), by the identity (T (X)=X), and by sums and products
(TO(X) +T1 {(X), etc.) Show that these are all functors, contin-

uous on maps, and monotcne and continuous on domains.

EXERCISE 6.20. For any system D let tok(P) be the underlying
set of tokens, so that P is a system over tok { D). For the
category of Exercise 6.19 show that the function

AT, tok(T { {T}) )

is continuous on the domain [I'g {G,1}*]A€T}, where T is any
of the functors generated in 6.19. Conclude that there must
exist a set

= tok(T{{I'}) ),
so that {IF'}<2T({T"})}, and so 6,14 applies.
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EXERCISE 6.21. Do the same as 6.19 and 6.20 when the functors
are alsc allowed to be generated by the operatiens:

0,® 7, ={{A}U0AOU1A1} v {0x|xevo\ {3,311 v {1Y|YED1\ a1},

D,® 0, ={{A}u0A0u1A1} u {{A}uoxu1‘f|xeoo\ {8,} and YED\ {4 }}.

Generalize all of +, x, &, @ to combinations of several terms,
not just the binary sums and products.

EXERCISE 6.22, Comment on these domain equations:
Ne={{0},{0,A}} ® N,
M= {{A}} + M,
N*=N @ (N@eN*).

EXERCISE 6,23, Construe the initial sclution to
Exp=N &((Exp x Exp) + (Exp x Exp))

as a "syntactical domain'" of ezpressions generated from infin-
itely many '"variables' by means of two binary "operation symbols'.
Given an algebra D with two operations

u:DxP=?D and v:0x0-7 ,
show how any strict map s : N+ 0 determines a unique map
val(s} : Exp-7D

that can be regarded as the "evaluation of an expression".

EXERCISE 6.24. Show that there must exist domains satisfying:
P=p + (DxE}, and
E=D+E,
by using a double fixed-point method, First decide what the
underlying set of tokens should be, and then define D and E

by simultaneous fixed points. (Syntactical domains as in 6.23
may very well require several simultaneous equations.}
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EXERCISE 6.25. For a projection pair g: 0—»E and h: E~7
show that for x € || and y € |E| we have:
g{xjcy iff xch(y).
Thus, conclude that:

hiy) = U[xe I1?1|g(x)<y}, and

g(x) = [y 1El[xsh(m},

for all x€ 101 and y€ |El. So each of the functions determines
the other. 1In the first equation check that the set on the
right is directed, and in the second equation that the set on
the right is non empty. Prove also that g maps consistent sets
to consistent sets and preserves LJ (not just directed unions}.

EXERCISE 6.26. For systems U as in 6.19 define
D, = {{alv 04} v {0XIXeD}.

Describe the construct in terms of elements. Is this a suitable
functor? Prove that

What is

EXERCISE 6.27. Which of the following relationships are true:
(PRE) 9 (DxE) ; DA = E
(DO®E) Q (D+E) ; DADSE
(0+ E) 9 (D=E); PID@E ?

EXERCISE 6.28. (Suggested by G. Plotkin). Show that if Pand ¢
are finite systems and

PAEQD ,

then D=E. Need the same be true of infinite systems?
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EXERCISE 6.29. Generalize + and x to infinitary operations on
doma ins:

(-]

and 7
n
0 n=0

n e~8
(=]
=

Would a similar generalization be possible for @ and @ ?
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LECTURE VII

COMPUTABILITY IN EFFECTIVELY GIVEN DOMAINS

For the ¢omain N the strict functions from N into N, the
strict maps f: N - N,correspond exactly to the partial functions
g: N N (as we wrote in 5.6 we had f=g ). For such functions
there is a standard theory of computability: g is called comput-
able if it can be defined as a partial recursive function with
its "program" written down in a certain standard form. The
non-strict maps h : No N are all constant, and so are intuitively
computable; sc¢ we know all about computable maps in IN-N|in
general. The question 1s: what are the computable maps on
(elements of) other domains?

The answer will of course depend on how the domain is presented
to us. Even with N, there are continuummany isomorphisms N -~ N
of N aonto itself, not all of which can be computable., That is, if
we permute N and, so to speak, present the integers in a different
order, then a well-behaved computable function £ : N - N may well
be transformed into a non-computable function,

nofon_1:N-'N-

(Hint: Consider the characteristic function e of the even numbers.
Take f=¢ and let m be very herrid.) The reason we imagined we
knew which were the computable f: N+ N is that N is always thought
of in a standard presentation. We must thus define "in general™
a concept of an effectively given domvn , that is to say, one with a
sufficiently computable presentation to represent the additional
knowledge about the domain.

The main idea will be that the finite elements of (0[should
be regarded as the ones initially known. Abstractly, to knaw a
finite element is to know how it is related to other finite elements.
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QOf ceourse, this will mean that we will allow at most a countable
infinity of finite elements - but this restriction well accords
with intuition. To make precise the terminology "related to"
it proves most corvenient to go back to the neighbourhoods (in
any c<ase they are in a one-ecne correspondence with the finite
elements),

DEFINITION 7.1. A neighbourhood system T has a computable
presentarion provided we can write

= {X, [Ine N1},
where the following two relations

(i) xn n Xm = Xk ' and

(ii) 2 kEeN. }(kg)(n and ng)(m
are recursively decidable (in integer indices n, m, k and in

n, m, respectively). O

More strictly the sequence,

<Xn>n=0’

is the presentation, Even more strictly, when it is required to
cope with infinitely many domains at a time, it would be neces-
sary to give the actual GBdel numbers of the recursive Telations
(1) and (ii) (rather than just saying there exists some way of

showing them to be recursively decidable).

The intuitive idea of 7.1 is that the system 1is effectively
given if you know hew to do elementary '"calculations" with neigh-
bourhoods., The basic calculations are the forming of inter-
sections., The neighbourhoods have to be laid out in a systematic
way; and, if we are asked for an intersection of two given
neighbourhoods, we have to be able to locate it in the standard
sequence. Relation (ii} is the consistency condition ,which is the
necessary and sufficient condition for the intersection to exist
in P. When (iil) is true, therefore, we have only to try k=0,1,2,
.». until we discover that we have found the intersection. We are
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assuming that these basic decisions can be carried out in
"finite time'". Note that the obvious biconditional,
an_:_:){m iff xnnxm = X
assures us that the inclusion relation between neighbourhoods is
itself decidable in terms of the indices. So in {(ii} if k exists,
then it {or the first one) can indeed be found in finite time.
The rub is that if it does not erist, no finite number of inc¢lusion
checks will determine that fact. That is why we have to assume
that (ii) is always decidable. The information contained in
(ii} is a fundamental part of the neighbourhood structure. (An
axiomatic characterization of neighbourhood structures is
given in Exercise 7.13,which may make clearer what we are
assuming and what a presentation is.)

DEFINITION 7.2. Given two recursively presented domains,
D= {X, ine N} and E={Ym|mE N},

an approximable mapping f: 0 -E is said to be computable iff the
relation

Xn f Ym

is recursively enumerable in n and m. O

The question to ask first is why 'recursively enumerable”
rather than "recursive' ( ='recursively decidable')? The answer
will become clear when we let D degenerate ta the one - element
domain, ©¥={A}. Then what we are considering is merely a single
element

y = £ ({&}) € 1El.

Therefore, 7.2 incorporates the notion of acomputable element of a
domain, And the condition reduces to the statement that the
filter y€ IEl is such that the set

{mE]NlYmEy]

is a recursively enumerable set of integers. The point is that
the elements of | E| are finite or infinite. If y were finite,
the set of indices above would indeed be recursive in view of
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our assumptions on E. But an infinite element can in general
only be approximated "a little at a time". We cannot expect to
know the whole story of its approximations in a flash. What it
means to be recursively enumerable is that there 1s a primitive
recursive function (hence, atotal function), r: N = N, such
that

y = {Yr(i)l i€N}.

That is to say, «ll the approximations to y can eventually be
listed, In the case of the mapping f we could write

E={(X5{i}' Yr(i) )liEN},

for a suitable pair of primitive recursive functions s and r.

Definitions 7.1 and 7.2 may very well irritate the person
hearing them for the first time: instead of explaining com-
putability in direct terms, the whole question is thrown into
the lap of recursion thecory! There are several answers. "You
have to start somewhere" is one thing I always say. Recursion
on the integers is a well-understood theory, and we shall not
need the refined parts of the development, fortunately. In any
case, our definitions apply to many domains of quite different
structure, not just to the domain N. And the next step we shall
take is to show how to build up computable functicns (and also
effectively given domains) from simpler ones. Thus, often it
will net be necessary to go-back to the seemingly over-precise
definitions involving the indices but to appeal to some broad
general principles.

PROPOSITION 7.3. The identity map on an effectively given domain
is computable; the composition of computable mappings on effect-
ively given domains is again computable. D

The proofs for 7.3 are so trivial they are hardly worth an
exercise. Note the immediate and useful consequence: 1if
f:0P-+t is computable and x€ IP! is computable, then f(x) € {E|
is alse computable. The next result is, however, worth working
out even though it is quite easy.
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THEQREM 7.4, If Do and 01 are effectively given, then so are
(DD+D1} and (0,x7,).

Moreover the combinators i"i and outi and proji are all com-
putable; further if f and g are computable maps, then so are
f+g and £xg.
Proof: Let the computable presentations be given as:
S |
Di—{xnlnEN}.

We can assume that the sets of tokens AD and A,I are disjoint
and aﬁevi. Then the construction of the sum is just

po+v1= {AOUA1} o, UU_'.
As an enumeration we define for ne N

= . - y0 .
lg = AOUA‘I ’ zZn+1 o z2n+2 " Xn

We leave as an exercise the check of 7.1(i)-(ii).

For the product we want:

_ 0 1
DyxP, = {XnUXm | n,me N}

What we then need are recursive functions p: NN, q: N=+N,

and r: N x N + N where for m, n, k€ Nwe have:
p(r(n,m)) =n and q(r(n, m)) =m, and r{p{k), q(k)) =k.

Thus r is a '"one-one pairing function"; there are many ways
to find such functions (see Exercise 5.13). We can then define
for ke N:

4] 1
=X X .
Wi T o0 Y Faew
Again we leave as an exercise the check that this provides a com-
putable presentation of IJ0 xD1.
As for the combinators, the neighbourhood relations have
to be worked out in terms of the indices. For example

XY in_, Z_ iff either m=0 or for some k
n 0 m
_ 0 0
m=2k+1 and X = X, .
.2 .1 . 1 1
wk Proj; Xm iff Xq(k) X, -

The reader needs to check that these are recursively enumerable
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relations in the indices. For this purpose it may be conveni-
ent to recall some closure properties of these relations:
taking conjunctions, disjunctions, substituting recursive
functions, applying an existential quantifier to the front. O

Products give us a way of providing an immediate meaning
to the notion of a computable function of several variables.
Note that the proof of 3.7 is "effective" and shows that
substitution of computable functions of several variables
into each other always gives computable functions. We turn
next to the function spaces.

THEQOREM 7.5, [f 00 and v, are effectively given, then so is
Py - P The combinators eval and curry are computable,
provided all the domains involved are effectively given. The
computzble elements f€ IDO—-D1I are exactly the computable maps
f: DO - U1.

Proof : The proofs of 3.9, 3.11, and 3.12 were set up with
this theorem in mind. If

o, = {X,ine N} and D, - {Ym|mE N}

are two effectively given neighbourhood systems, then the
neighbourhoods of (vo - TJ.'), by Definition 3.8, are nen-empty
intersections like

n [xn.’ Ym. 1,

i<q i i

where Mg, 0y, ...,nq_1> and <m > are two finite

gr Mqs ...,mq_1
sequences of integers determining the choice of the function-space
neighbourhood. In 3.9{i) the test for nonemptiness is given.
Assuming the decidability of relations in ¥, and 01, one remarks
that the consistency of finite sequencea of neighbourhoods is also
decidable. (Hint: Test the first two, then form their inter-
section. Next test the third given neighbourhood against this

one set; if consistent, form the intersection,and carry on.)

By 3.%(i) at most 2.29 such sequential checks must be carried out
to determine whether the function-space neighbourhood is non empty.
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1t may not be fun, but the checks can be carried out in finite
time. Owing to this decidability, we can therefore enumerate in

a systematic way all the pairs of finite sequences <n .» and

0’ "

<m » that determine neighbourhoods: that is the way that

07 te e
(90-+D1] obtains its enumeration.

Concerning the decidability of the required relations on
(DO-oD1), we temark first off that consistency is more of the
same: to test two finite intersections against each other, just
form one big intersection and test it for non-emptiness as
before. Secondly, the testing for intersection comes down in
the end to testing one typical intersection of [ X, Y] - neigh-
bouthoods for equality with another. But equality amounts te¢
twe inclusiens; imclusion in an intersection amounts to inclusion
in each term. Therefore, what we need to do is to check a [inite
number of statements of the form:

n[X s Y lelx,, Yel.

i<q n; my k
As we pointed out after the proof of 3.9, this inclusion is
equivalent to

n{Ym_|xkgxn_}gY;_.
i i

By decidability in DD' we can effectively find the n; that are
needed. Then in D, we form the intersection of the cerrespond-
ing Ym . Finally, we check the inclusion, Again, one check in

i
(DU-vD1) Tequires a whole sequence of checks in Doand in 01, but
the process is finite. 5o we have argued that (DO-+D1) is

effectively given.

In showing that the combinators are computable, we refer
first to the proof of 3.11. The typical pair of neighbourhoods
possibly belonging to eval is

r]Ex , Y JUuX, eval Yg.

i<q n; m. k
As we needed not to be so specific, we expressed the holding of
this relationship in terms of ail the functions in the function-



120

space neighbourhood. But we know that the neighbourhood, by
3.9(11), has a minimal element; it is then sufficient to test
for the holding of xkaYf_ at this minimal function fo. But
this test, we have already seen, is decidable. So the pairs in
eval actually form a recursive set, not just a recursively enum-

erable set; thus, eval is a computable function.

The case of curry involves three domains and is a bit more
messy. But again, if the required neighbourhoods are written out
in full, it will be seen that curry, tvo,is computable. We leave
this minor struggle to the exercises.

The final statement is an easy consequence of the fundamental
connection between approximable f: 00 =+ D, as relations and as
elements . Recall, as in the proof of 3.10, that we have

fe[x,Y] iff XfY,
for all X€ Do and ‘(ED1. Therefore,

fEn (X , ¥ 1 iff vi<q.X_ £f£Y_ .,
i<q ni my ny ms

It follows that if f is recursively enumerable as a set of pairs,
then, by forming all the non-empty intersections (as shown}, we
get an enumeration of all the neighbourhoeds to which f belongs;

and this is the same as the filter corresponding to f as an
element of the function space. The converse direction is clear. O

¥We have nearly all our favourite combinators computable,
but perhaps the most important one - since it is the key to
recursive definitions - is the fixed-point cembinator. It is
not left out.

THEOREM 7.6. For any effectively given domain D, the combinator
fix: (P~+P) = P is computable.

Proof : Referring back to the proof of Theorem 4.2 and
thinking of
D= X Ine N}

as effectively given, fix as a relation comes dowm to
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n[)(n ’xm 1 fix XL iff for some finite sequence
1<q i 1 A=Xk,--.,xk =X’
0 P

we have, for each j«<p,

n {Xmilxkj c Xni}g ij+1.
Inside the "for some finite sequence” all the checks are decidable
by assumption on U. But the existential quantification of a
decidable predicate always gives a recursively enumerable predicate.
(And, as there is no implied bound on the size of the finite sequence
we are looking for, this really 7 an enumerable set and not
generally a recursive set.) O

The major consequence of what we have done up to this point
concerns typed A — calculus. Any expression invelving only effect-
ively given typee and, perhaps, some basic computable comstants using
only the A, ! -notation defines a computable function of its free
variables, And such functions applied to computable arguments
give computable wvalues. And such functions have computable least
fixed points, Etc., etc. Inadefinite sense then we have in the
"metalanguage', as people say, a quite precise and fully mathemat-
{eal programming language for defining computable operators. It is
not a machine implemented language,but it is a mathematically
well-defined and easy-to-use language. And when we combhine the
usual type-definition facility together with domain equations, we
have an especially powerful language.

PROPOSITION 7.7. For any effectively given domain ¥, the domain
pi is also effectively given, and g2ll the combinators of
Example 6.1 prove to be computable.

Proof: This proof is essentially an exercise, but it is use-
ful to have an easy-to-grasp example. Ilndeed, to make things
easy to reason about, we can assume that P is a system over 4= N,
and that in the presentation where

P={X |neEN},
the relation kExn is recursive in k and n. (It is worth thinking
why this is so.) Of course, a lot of other things are recursive
also.
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Now what kind of a system is PE? The construction of
6.1 made it a system over a certain set of strings I'. For
the sake of checking various assertions about computability,
we aTe transposing everything back to N. (These are all denum-
erable sets in any case.) The set I' is divided into three equally
big parts, and we can do the same for M. Let us write for any
m, kEN and subset XeN: mX+k={m.n+klneXx}.

Then by splitting the integers modulo 3 we have:
N =3Nu(3H+ 1) u (3N+2),

and this equaticn is quite analogous to that fer T, We then
propose this defirition for D§

95 = [N}U (3X1X€DIU{(3X+1) U (3Y+2)1X,YeD ),

5

but this does not make the enumeration of P° all that obvious.

This is one way to do it:

v

Vo= N o5 Voouq T3 5 Yonez = (3V_, o+ 1)U (3V

p(n) a(n) ¥ 3
Here p and q are the inverse of the pairing functions menticned
in 7.4 They must be chosen seo that p(n)<n and q(n)<n for

all neN. Thus, in calculating vk where k=2n+2 we will be
using \-‘p(n) and Vq(n) where both subscripts are strictly less
than k, This observation is required so that m€ Vk is going to
be a Tecursive relation. What we claim is that

§

D = v | keN).

It should be clear that everything on the right belongs to Dg.
What needs an inductive argument is that everything in U§ is
eventually of the form Vi . But this should be fairly obvious
owing to the properties of r: N x N +> N,

The reader alsc has to check that 7.1{i)-(ii) hold for
the Vk' The idea is that any such check is either (1) trivial, or
(2) something already assumed about 0 and the }(n, or (3) can
be thrown back to some sets v with strictly smaller subscripts.
Therefore, the checks will give an answer in finite time accord-
ing to an effective reduction.

Next for the combinators, we have to translate neighbour-
hood relations into relations among integer indices. A selection
of examples must suffice.

§ .
X, (x.x™) vV iff Voe1 € Y%

+1 =
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Vi Prodg Vo iff k=0 or 3InEN. m=2n+2 and vp(n) g V-

The reader should write out other cases. 0O

EXAMPLE 7.8. We have often made reference to the powerset PN
as a domain and we should check here that it is effectively
given. One easy way to see this is to note

P N= [T,

The (slight) trouble with PN is that we usually think of it
in terms of elements rather than neighbourhoods. Going back to
Exercise 1.16, we can argue that the neighbourhoods of PN are
crdered not like the finite sets of integers but in the partial
ordering econverse to that, But this is of no trouble, since
all will be decidable. What we need first is an enumeration

of all finite sets of integers. We can do this by:

E = {k13i,j.i< 2X and n=1+2K45.2% 0 g,

The idea is that kEEn means that the exponent k does occur in
the binary expansion of n as a sum of powers of 2. All finite
subsets of N are of the form En' We then find that as a

neighbourhood system
(PHN) = {N\En Ine N3,

As the relationship EnUEm=Ek is recursive, there is no trouble
in proving that this is a computable presentation, In this
system, of course, any two neighbourhoods are consistent. Various
combinators on PIN are suggested in Exercise 7.23. O

We end this chapter with an example of another kind of domain
construct. This construct is known as the Smyth Powsar Domgin. It is defined
for any neighbourliood system ? and results in a New system we

shall call here P U. The elements of IPD behave rather 1ike

sats of elements of T, but since our elements cah be eéither partial
or total, there are certain dangers to pushing the analogy too

far. For some purposes a rival construct called the Plotkin Power
Domain 1s better, but it leads outside the category of neighbourhood

systems as defined in these lectures. Do not confuse PN with
Py,
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DEFINITION 7.9.. Let I be any neighbourhcod system and define

Po={{J(+ X))l v i<n. X, €0}
1<n

We recsll that for any X€0D
+X= {YED|Y gX}.
The finite unions in P ¥ can be empty (i.e. if R=0). O
Formally, the system IPT is just more or less the closure of

D under finite unions; however, this would not be an isomerphism-
invariant construct unless D is "prepared”. The preparation
consists of replacing P by the isomorphic domain

¥

T =1{+ X|X€P}.
(In this connection refer back to Exercise 1.20.) We remark that

+¥Xn+Y* P iff {X,Y} is consistent in ¥,

and in that case

£X04+Y = + (X NY),

PROPOSITION 7.10.The power domain P P is a neighbourhood system
if D is, and it is effectively given 1f D is.

Pragf : The system o¥ is a neighbourhood system as we just
remarked; indeed it is a positive neighbourhood system. It is
easy to prove that the closure of any positive system under finite
unions 15 a neighbourhood system, because the resulting family of
sets is closed under all finite intersections. ({If we left out
the empty union, the result would be a positive system.) The
proof is obvious since intersection of sets distributes over
finite union. Sc P U is a neighbouthood system.

For the second half of the propoesition, we just have to
constructivizethe previous argument. Thus, if

D = [Xn|nEN},

then the elements of P D can be written as:

U ox s,

i<q i
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and hence are indexed by the finite sequences Mgy vy Bg y>

of integers. Now one of the standard devices of recursion theory
is to put the finite sequences of integers intoc a recursive one-
one correspondence with the integers themselves, This is the
start of the recursive presentation of PP, since it means we

can list effectiwvely all the required neighbourhoods.

Next consider an intersection

¢xon Jox - U ax .
j_Uq Dy j<r ny ij<q ™M 1'nj
j<r
Some of the terms which are @ have to be thrown out - but this
requires only a finite number of decisions all computable by

assumption. Now we have to rewrite

but the finding of kij is also computable. Finally, we have to
re-arder the doubly indexed sequence into a singly indexed sequence
of length q.r, but this is easily seen to be computzble also.
Therefore, intersections can be '"calculated".

It remains to be shown that equality between neighbourhoods
in PPV is decidable. The question really comes down tec deciding
something like:

i<q i

Now since X, € H(k , we find that the above is just equivalent to:

k
1i<q. X, € X_ .
k n

By our assumptions on P, this is decidable. {1t is this part of
the argument that required the passage to D+. 1t does not seem
ta be gemerally true that the closure under finite unions of
an effectively given system is again effectively given.) DO

One of the main reasons that P ¥ is like a power domain is

the possibility of forming "finite sets".
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DEFINITION 7.11. For elements Xg ...,xn_1E I?! we define
Lxp ooy (¥=(ZEPD[AXgExy ... 3X _(Ex ign(nci) cz}.

{(Note, we could also write Vi« n.XiE Z)y. 0O

PROPOSITION 7.12. The mapping
- n_.
AX gy eney Xp g0 {xo,...,xn_.]]. 2 ro

is approximable and is computable if D is effectively giwven.
Moreover, the map A x. {x} shows that PP P, and we also have
the law:

{xgr ooy x4y ={x} n--en x4}
as an intersection of filters.
Proof : The second part shows that everything reduces to
Ax. {x}. We see that

X {Ax.{x])U (+% ) iff 3i<q. X, X .
k g ng k ny

Thus, A x. {x} is an approximable mapping and is computable in the
effectively given case.
The proof of the law can be reduced to the special case
{x}n {y} - {x.y}

for the sake of illustration. In terms of finite elements of the
two domains U and PP D we find

£+X} = t4X,
and so,
{11} n {+YY = ++4X 0 H4Y
= +(+XU+Y)
=f+X,tY}.

An equation between approximable functions that checksfor finite
elements also holds for all elements.

Finally, we note that

p=pt qa PP
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and that the isomorphism involved is just Ax. {x} by what we
saw on the finite elements. DO

Further combinators on the power domain are given in the

exercises.

EXERCISES

EXERCISE 7.13. Show that ar effectively given domain can always
be identified with a relation

INCL{n,m)
on integers, where the two derived relatiens
CONS(n,m) iff 3k. INCL (k,n) and INCL (k,m)};
MEET (n,m,k) iff vj [INCL (j,k) iff INCL (j,n) and INCL (j,m)]

are both recursively decidable, and where the following axiems
hold:

(1} vi. INCL {n,n) ;
(ii) vn,m,k. INCL(n,m) and INCL (m,k) imply INCL (n,k) ;
(iii} 3m vn. INCL (n,m)
(iv}; va,m., CONS {n,m) implies 3k. MEET (n,m,k).
(Hint: Consider the neighbourhood system
P={{mE€N|INCL (m,n)} |nEN}.

Is this essentially any effectively given system?)

EXERCISE 7.14. (For recursive-function theorists.) Prove the
statements after definition 7.2 about the existence of primitive
recursive functions for showing things recursively enumerable.
{Recall that a non-empty set is r.e, iff it is the range of a
primitive recursive function.) Show also that every computable
element y€ If|l can be written

y= Uty glien,

where t : N - N is primitive recursive and where we may assume
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Yegieny € Yen)

for allie N.

EXERCISE 7,15, Finish the proof of 7.4 and establish similar
results for the constructs {DO®D1], (2706131) and 0%, Take

into account the various appropriate combinators.

EXERCISE 7.76, Let Py ={X |[neN], ?,={Y |m€ N} and

v, =1 ZkkaN} be three effectively given domains. Complete
the proof of 7.5 by writing out curry as a relation between
neighhouthgods. Is it a recursive set or conly a recursively

enumerable set?

EXERCISE 7.17. Complete the proof of 7,7 for showing

that p* is effectively given 1f 0 is. Include all the combina-
tors of 6.2. Prove also that if £ is effectively given and

u:P+EF and v: ExE~+E
are computable, then the unigue strict mapping
g: D§+E ,
where, for x€ (D) and y,z€ |E},
g (in (x}) = u {g(x)}, and
g (pair (y,z)) = v (g(¥), g (2],

is a computable mapping.

EXERCISE 7.18. Two effectively given systems D and E are
effectively {comrphie iff ... (complete the sentence!). Show
that if P is effectively given then the isomorphism

«© @, ;m

D= (D)

is effective,
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EXERCISE 7.19. Prove that P |— P D is a functor by defining for
each f: 0 ~+E a mapping

Pf: PP ~TPE

by the formula

Uix, rs Uw

. iff vi<n3j<m. X,fY. ,
jen T j<m 1]

J
Be sure to check that IPf is approximable and that TP preserves

identity maps and compesition. If f is computable is P f? Is
there a combinator Af.FP f? What is

PE({x,yD= 122

EXERCISE 7.20. Show that there is a combinater
union : P (PO} ~TPP

where for suitable neighbourhoods

U +(U +}(i.) union U A iff Vi<nvj<mi3k<q.x..ng.
in  jemy M k<q H

Is union computable if P is effectively given? What is

union (L&x}, {v,z3}) = 22
Are P (P7) and P D generally isomorphic??

EXERCISE 7.21. 1Is there a non-trivial combinator of type
P{(P+-E)Y - (PDP~+PE)?

Are there in general any isomorphismsbetween the systems
(D » PE), P(DxE), PDx P E ??

Is there a non-trivial combinator of type
P(0 x E) x P(E x F) ~P(Dx F) ?2?2?

Is there any connection between

PN and PN 7727
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EXERCISE 7.22. {For algebraists.) Let I-= {0,1}* be the free
semigroup. A new domain is constructed by defining a family
of sets by the least fixed point theorem as follows

S={t}u{{cl|o€e Eu{XY|X,Ye S}u
{XnY| X, YES and XnY=¢L,
HeTe we write:

XY= {ot|c€X and teY}.
Prove that § is an effectively given, positive neighbourhood
system. (Hint: The sets in § are each "regular events" in the
terminology of autcmata thecry, and we have a decision method
for the set algebra of regular events.) Define multiplication
on |S] by

xy={ZIES8|IXEx3YEy. XYgl},

and show |S| becomes a semigroup with I embedded into 18| by
the homemorphism o + {X€S|c€X}. Investigate some infinite

words in §, say those defined by least fixed points such as:

-

-+ -+
og=0c¢ and © = OOC.

Are these equations true:

§3 -0, 0683=0, 6787=0T1,
and §7 01 0107 =B101 ¢

EXERCISE 7.23. Complete the discussion of PN of
Example 7,.R, Show that the combinators fun and graph of
Exercise 5.14 are computable. Also do the same for

AX,¥.x0y, Ax,y.xVy, and Ax,y. x+y,
where for x, y€ PN we define
x+y={n+m| n€x and mey}.

What are the computable elements of PN ?
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EXERCISE 7.24. (Suggested by the LUCID language of Ashcroft
and Wadge: SIAM Jour. Comp. vel. 5 (1976).) Define a set I' by

r= |Jdir=mue.
i=0
Define a system
L={r}u{{i} x X | i€ X and Xe€l}.
Show that L is effectively given. Show that the elements of |L|
can be identified with the finite and infinite sequences of
natural numbers. What is the connection between B and L?
Show that the combinators of LUCID can be construed as computable
mappings of type

(L-T) = (L=T)
or of type
(LaT) x (L2T) = (L-T)

Conclude that programs in LUCID define computable maps.
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LECTURE VIIi

RETRACTS OF THE UNIVERSAL DOMAIN

In order to be able to have a fully flexible method of solving
domain equations and to be able to see why the domains obtained
are effectively given, we shall embed all the desired domains in
one "largest" domain. Tkis universal domain will be easily shown
to be effectively given, and the mappings needed to extract the
other domains will be found to be computable. In erder to be
able to carry out this programme, we investigate first how certain
subdomains correspond to mappings - the so-called retraetes . An
advantage of this analysis is that all the necessary definitions
can be written out in A ~calculus notation, thus demonstrating the
‘power of our mathematical programming language.

DEFINITION 8.1. A retraction of a given domain E is an approximable
mapping a : E+E such that ac¢a=a. 00
PROPOSITION 8.2, If 09 E and if a: E~E is defined by
' XazZ iff 3IYED. XcYel
for all XLZ€E, then a is a retraction and [P| is isomorphic to the

fixed-point set of a, the set {y€ IEl} a(y) =y}, under inclusion.

Proof: That a is an approximable mapping is a direct consequence
of Definition 6.10. Indeed, in the notation of Proposition 6.12, we

have
a=i-j,

and this is another proof that a is approximable. This remark is
also convenient, since we know from 6.10
jels= ID .
Therefore, we find:
aea = isjeiej =ioj = a;
and so a is a retraction.

We can also emplay i and j to give the iscmorphism on |0,
If x€ Py, then & (x}€ |E| and we calculate:
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a(i(x})=14eje1i(x)=1(x)
Thus, i{x} belongs to the fixed-point set of a. In the other
direction, if a(y) =y, then i(j (y) ) =y. But j(y) € DI, so i
maps |0U] one-one and onto the fixed-point set of a. As i and
j are monotone, the map is an isomorphism with respect to c. 0O

Not every retraction comes from a relationship like D' E;
in fact, we can see from the definition of a above that acl..
But, as is indicated in Exercise 8.11 , even this condition is
net sufficient to characterize the kind of retractions provided
by B.2. The characterization is as follows.

DEFINITIGN B8.3. A retraction a:&-% is called a projection
provided
ac ]E o

it is fpinitary iff its fixed-point set is isomorphic to a domain.O

EXAMPLES 8.4. If a system D over & is not trivial, then the
two element system 0 = {{0}, {D,1})} comes from a retraction
on P, Specifically, define a combinator

check : D=0

by the relation

X check Y iff either Y=1{0,1} or X# 4.

We see check(x} =1, iff x=J.D. We leave to the reader the
definition of a combinator:
fade : 0xD-D ,
where we have for t€ (0] and x€ |P]:
fade(t,x) =lps if t=L,;
=x, if not.
Now, take any u€ [P] with u# L, and define

a(x) = fade (check(x), u).

Then a is a retraction (net a projection in general) and the

range of a is isomorphic to 0.



Another way of using these combinators is to find
(D_'J. E) as a retraction of (D-+E). Specifically, define a

combinator

strict : (P-E) -+ {P-E)
by the equation

strict(f) = ax. fade (check(x), f(x)),
where this time

fade : 0 xE~E ,

The range of strict consists exactly of the strict functions
and this time s trict is a projection whose range is indeed

a domain.

Similarly, we can find a projection on P x E with a range
isomorphic to P ® E by the combinator such that:

smash(x,y) = fade (check[x),fade (check(y),<x,y>)),

for xe IP| and y€ |El. D
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THEOREM 8.5. For an approximable mapping a : £+ & the following

are equivalent:
(i) a is a finitary projection;

(ii) a(x)={YEE]3XEx. XaXcY}, for all x€ |E|.

Procf : Suppose a satisfies (ii) first. Inasmuch as
X€x and XcY always imply Y€x,

for all x€ IL|, we see a(x)<x must always hold. Moreover, it
is obvipus that

X€x and XaX always imply X€E a(x);

therefore, a(x) = a(a(x)) for all x€ |El. This shows that a
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is indeed a projection.

Let ?={X€ E| XaX}, then it is easy to check that ? 4 E
and that a is determined from P exactly as in 8,2; thus, the
fixed-point set of a is isomorphic to a domain, by what we have
already proved. So we have shown (ii) implies (i).

In the converse direction, assume that a is a finitary
projection. And let the system P be isomorphic to the fixed
point set of a. We have the situation of Theorem 6.15 There
is a projection pair,

i:0-E and j: E-7,
where the connection with a gives:
jei= [D and iejﬂa_c_IE.
By 6.150=0" 4E and we want to identify 0' in terms of a as
feollows:
P' = {X€E|X aXx}.

Now from a reading of the proof of 6.15 the neighbourhoods of
?" are just those corresponding to the finite elements of D.
But any such element is a fixed point of a. We have

XeP' implies a(+X) =+ Ximplies XaX.

Conversely, if Xa X holds, then +Xca (+X). But a is a projec-
tion, so +Xis a fixed peint, But i(j (+ X)) =+X means j{+ X)

is a firite element of |P]. So XE€DP', and we have D' identified
as desired.

Finally, if we calculate a=1isj by the formulae of 6.12
(with ¢’ for ¥, of course), we obtain our foermula (ii). O

The criterion for being a finitary projection just obtained
Provides us with a very interesting new combinator.

THEQOREM §.6. For any domain £ define
sub: (E=E) = (E~E)
by the formula
Y sub (f) Z iff 3YEE. XcYfYcZ,
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for all X,Z€ € and all £f: E~E. Then the range of sub consists
exactly of the finitary projections on £, and moreover sub itself
is a finitary projection on {(E~E). If E is effectively given,
then sub is computable.

Proof : 1t is trivial to check that sub(f) is always approx-
imable. Also, it is obvious from the definition that the corre-
spondence

f = sub(f)

preserves directed unions of f's. Thus, sub is itself approximable,
We note that

XecY £ Ycl always implies XfZ;
hence, sub{f) £ £ holds, Also
Y fY always implies Y sub (£) 7Y,

hence, sub(f) & sub (sub(f}) holdsThis shows sub to be a projec-
tion on (E~-+E). The effectiveness of the definition makes it
also clear that sub is computable when E has a computable present-
ation.

Since, sub is a projection, its range is the same as its
fixed-point set. If

sub(a) = a,

then there is no problem in checking that a satisfies 8.5(ii)
and convereely . So the range of sub picks out exactly the finitary
projections in wview of 8.5.

Finally, to prove that sub is a finitary projection of
(E-»E), we invoke 6.11and remark that, in view of 8.2, the fixed
point set {range) of sub is in a one-cone inclusion-preserving
correspondence with the domain (P | ? 4 E}. D

These results have almost completely translated the theory of
94 - subdomains into A- calculusvia the sub-combinater. One last
step will complete the passage, and then we shall be able to
return to solving domain equations.
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DEFINITION 8.7. Let Q be the set of rational numbers, and let
(0,1) = {qe® | 0<g<1},

and similarly for [r, s} for any r<s in Q. The neighbourhood
system U over [0,1) is the set of all non-empty finite unions of inter-

vals of rational intervals [r, s) with 0< r<s <1, O

A picture of a typical element of U could be drawn like this:
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Note that any union can be taken asa disjoint union of the form

U Crase ra2ien)

i<n

h <
where 0 TD <r1 <r2< <'r2n4:r2n+,I

intervals or abutting intervals can always be combined into one

<1, (Hint: Any overlapping

long interval.) 1t is a most elementary exercise to show that, by
virtue of this representation, the system d has a computable
presentation. {Some isomorphic versions of U - equally effective
- are recorded in the exercises.) Note that ( has no minimal
neighbourhoods: every set in U can be written as the union of two
disjoint sets in 4. (Hint: Use the density of the ordering of
Q.) The significance of U can now be explained.

THEOREM 8.8, The system U is universal in the sense that, for
every countable neighbourhood system P, we have

Pgu.

Moreover, if U is effectively given, then the projection pair
making the embedding can be taken as computable. 1ndeed there is
a correspondence between effectively presented domains and the
computable, finitary projections of U.

Preof: As U is countable, we can assume that

D={Xn| neN},
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where P 15 a system over a set A (say, X0= A}, We shall do the
effective and general cases together, where for the latter all
remarks on recursiveness are just left out. So, if we want ¥
effectively giwven, the above enumeration should be taken as the
computable presentation.

Without loss of generality we can assume DzD+. since other-
wise we would just replace D by 2%, The advantage of this pre-
paration 1s that unions in M keep things rather separcte (as we
noticed in cons tructing PP). 1ln particular, we can be sure of
this equivalence:

(*) X < L‘Lx iff  3i<k. X gX .

m iT ni m ni
This property, for example, fails for the system U as presented
in Definition 8.7. However, that observation is of no moment,
because we are employing the assumption with respect to D not U.

The reason for the assumption is this: for 6€ {+,-} define
for Xev:

85X =X if &=+ ;
=A\X if &§=- .
(4 similar notation will be used for Y€ U,) Then for &€ {+,-}"

the sets of the form

n ai Xi (=X6, for short)

i<n
form a partitien of 4 into (at most) 2" parts. The reason for
assumption (¢) is that we can effectively decide for each
6E{+,~}n whether one of these intersections is empty or not,
(Why? - assuming that P is effectively given, of course}. If
for some reason we had not wanted to pass to D+, we could have
made this stronger assumption of decidability on the (positive)
system P. (U, for example, satisfies 1it.)

Suppose, corresponding to Xq» X1, cea Xn—1’ we have selected
Yo, Yoo ooes Yn__I,EU so that, for all &€ {+,-1,
(=) 6;X; = @ iff nsiyi.g)_

Y<n i<n
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We wish to show - effectively - how to choose Yn corresponding
to Xn’ so that (%) holds with n+1 replacing n. Proceeding in-
ductively, we obtain a recursive enumeration of sets YnEU 50
that

D= {Yn tneENIQ (.

Clearly the isomorphism (matching Xi to Yi) will be computable
and the projection is computable. (It will then temain only to
consider the arbitrary finitary computable projection to complete
the 'proof of the theorem.)}

So, consider X ; for each &€ {+,-P there are four cases:
XNX = @, X.n-X = ¢,
XgNX, # @, X, n-X_ # 9.

Corresponding to X6 is a similar intersection YG' If XE were 9,
then Yé would be also. If not, Y65[0,1) is a union of ratiomnal
intervals that can be written down explicitly. (Why?) In our
four cases on Xn, the first implies the fourth. (Why?) Thus, we
need only make some choices in these circumstances:

Xaﬂ Xn=52) : choose Ié,n=¢ R

xan-xn=¢ : choose 16,n=Y6;

otherwise : choose Iﬁ’ng‘rﬁ, with @*la'nvEYﬁ.

All these cases are decidable by assumption on P, and the effective
choice of (unions of) intervals is effective by construction of U.
Now set

Y=U 1, 19

n 68 (+,-1" &,n .

The set YnEU, it can be found effectively, and (™) is obviously

satisfied for n+1 .

Finally, suppose that a is a computable, finitary projection
of U, As we have seen in the proof of 8.5, the domain correspond-
ing to the range of a is isomorphic to the neighbourhood system

{Yel|vavy} qu.
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Clearly, if a as a set of ordered pairs of neighbourhoods is
recursively enumerable, then the above set is alsc recursively
enumerable (because equality between neighbourhoods is decidable).
It follows eas ily that the subsystem is effectively given as a
neighbourhoed system in its own right. 0

We have now proved that U is a nice and big domain that is
nicely behaved with respect te computable mappings. It has some
very interesting subdomains; tc name a few:

L'+U’ UieU Uxu, Ugl

13

e §
UJ_’ (b | . u' ]PU’ U+U.

That all of these are g U follows from knowing that they are all
effectively presented. What we wish to check next is that they
all combine well with respect to projections. To this end the
explicit defini tions are given for the constructs +, %, and -, and
the details of the others are left for the exercises.

DEFINITION 8.9. Let the computable projection pairs
i, +U+U-uand j :U-U+U

be fixed. Similarly choose i_,j, and i_, j, for Ux U and U~ U,
Define:

a+b = cond » <which, i+ninooaoout0, i, 1‘n1abogut1>oj+ ;
axb =1 o<aopr‘0j0,bnprug1>oj

x x !

asb=1i e (Af. befoea)ej_ ,

foer all a,b:lU- 4. O

These interesting(computable!) combinators on elements of
U4-+U have many,many properties. We shall, however, only see what
they do to prejections,

PROPOSITION 8.10« If a,b: U+l are projections, then so are a+b,
axb, and a»b. If a and b are finitary, then so are the others;
for the fixed-point set of each of them is isomerphic to the
corTresponding construct applied to the domains determined by a
and b.



142

Proof: Suppose that a, bc Iu (= I for short). Then
atbe I+I1 =1 ,¢j, 1.

The other cases are similar.

Suppose a=a+a and b=be-b, then, for example,

(axb) < (axb) =1 o <aoprojy, beproj,>e<acprojq, beproj>cj,

=ixn<auain0j0,b°b°P"‘°J1>°jx
=axb.

The other cases are similar.

Now in case the fixed-point sets of a and b are domains, they
are rtespectively isomorphic to
D ,={Xet|XxaX} and
Db={YEU | YbY}.

We have to show, for example, that

Da-' Ub = 03 -b *

Now to simplify matters, remark that the fixed-point set of a=b
on U is isomorphic to the fixed-point set of Af.be fea on (U-1U).
(Hint: use i,and j, to set up the isomorphism.,) So we have to

think what it is for an f: U=-U to satisfy

f=befoa.
Notice that we might as well say that a: U+? and that this map
is the other half of an obvious projection pair where

ia : Da - u,

and 1aoa=aand aci =4i. So lfg:ﬂa—-ﬂ let

bl
f=ib°g°a’

then befea=f, Conversely, if f is like this, then let
g=bufuia.

Thus, ib ogoa=befea=f, so there is an order~preserving isomor-
phism between the g : Da-b‘Db and the f=boefoa.
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The isomorphism proofs for + and x are similar. D

well, this was a lot of work, but the pay-off is rather
handsome. What we have done 1s transpose all the

r.oAt

a
over to finitary projections a: U-U. This transposition is an
isomorphism, because

r. 47 iff achbh.
a b =

Moreover, by the method of 8.9 and 8.10,all our favourite con-
structs have bern made into combinators, that is, approximable -

even computable - maps on the domain of finitary projections,

ALL APPROXIMABLE (CUOMPUTABLE) MAPS HAVE (COMPUTABLE) FIXED POINTS. And there
you are! The standard fixed-point method is available to obtain
computable (i.e. effectively given) solutions to all domain equations
(even sets of equations) where the constructs can be reworked in
this way to be defined on projections. Examples are suggested in
the exercises.

Another pay-off concerns the A - calculus itself. Inasmuch

as

U+l, Uxu, U-ULQ U,

we might just as well forget the cutside world and regard 2zll these
useful domains as being part of U. For example, on the left we
have the new notation and on the right the ¢ld notation:

which (z) = which(j,(z)) ;

ing (x) = 4,0in;{x}), 1=0,7;
out, (x) = out;(j,(x)), i~0,1
<x,y>» = i, (<x,¥»];

proj; (z) = proJ;(J,{(z)),1=0, 13

u (x) = j _(u) (x};
Ax.r o= i, (Ax.T1).
And, there is no reason to stop here. The system
T={l0o,1/2),(1/2,1),10,1) }Q & ,

sp we might as well think of
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true, false € (U]

and think of cond: UxUxU-U. No! that is wrong: wunder the new
regime EVERYTHING IS AN ELEMENT OFU. With the new meaning of A, all
functions, all pairs, all combinators, all constructs become

elements of U.

It takes a little time to get used to "universal conscription”
with all elements doing (at least) double duty in the same domain,
but there are many advantages, both notational and conceptual.

EXERCISES

EXERCISE 8.11. Llet @ be the set of rational numbers and define a
neighbourhood system by the equation

R={[0,r)|reQ and 0 <1 < 1}.
Show that the following defines an approximable map a:R-R:
[0,7)al[0,s) iff r<s or r=s5=1.

Show in addition that a is a projection where the fixed-point set
of a is in a one-one correspondence with the redl numbers between
0 and 1 inclusive. (Hint: Recall Dedekind cuts and show ¢ matches
<.} Conclude that a is ¥OT finitary. (Hint: Aside from L there
areno finite elements for {x|x=a(x)}}.)

EXERCISE 8.12. Generalize the notation 2 X +1 far subsets Xc N
to sets of the form

2k X+£, where £ <« Zk.

k
Let V be the non-empty finite unions of sets 2~ N +f£.  Show that
U=V apd that the isomorphism is effective, thus obtaining another
presentation of U.

EXERCISE 8.13. (For logicians.) Prove that the universal domain
U is isomorphic to the domain of all proper filters of the free
Boolean algebra on ®,-generators ( = the Lindenbaum algebra of
propositional calculus). (For topologists.) Connect this
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Tepresentation of U with the collection of non-empty open subsets
of the product space 2N ( = Cantor space).

EXERCISE 8.14. A Tetraction a D=0 is called a eloswre cperaton

iff IDf_:a. On a domain like PN, give some examples of closure
operators. (Hint: Close up a set of integers under addition. Is
this continucus on PN ?) Prove in general for any closure

a:0-0 that the fixed-point set of a is always a finitary domain.
(Hint: Show that the fixed-point set is closed under intersec-
tions and directed unions.) What are the finite elements of the
fixed-point set?

EXERCISE B.15. Give a direct proof that the domain {X | XD}

is effectively presented if P is. (Hint: The finite elements of
the domain correspond exactly to the finite systems X0 .) 1In
the case of 0 =U, show that the ‘computable elements of the domain
correspond exactly to the effectively presented domains (up to
effective isomorphism).

EXERCISE 8.16. For finitary projections a : E=-E, write
D, ={XeE | Xax}
(cf. 8.5.). Show that for any two such projections a, b :E-~f
we have
ach iff 0 <9 D,..
a b

(This fills in the gap at the end of the proof of 8.6.) Also
finish off the proof of B.8 by showing that if F is effectively
given and a: E- E is computable, then v, is effectively given.

EXERCISE B8.17. Find explicitly (if possible) the projection pairs
for 4+ U, UxU, and -+ U needed for 8.9. Are any of these domains
isomorphic with U7 (The auther does not know a really good con-
struction for U-U.) Find a universal domain V#U.
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EXERCISE 8.18. Many of the cases of 8.10 were left unproved.
Please establish these assertions explicitly,

EXERCISE 8.18. Suppose we know both
T and E-EQE .

Does it follow that E+E and ExE g E?

EXERCISE 8.20. For any system we know U ¢ ¥+ 0, but what about
PgUVxD and P g 0+0 7

Would these projections be computable if 7 is effectively given?
Are there more than one projection pair in each case?

EXERCISE B8.21. Using the fixed-point construction, show that

there is a continuous and computable operator A a. a§, such that

if a is a finitary projection of U, then
§
P . o=(D)
a§ a

EXERCISE 8.22, Which of the two relations hold:

BgCor g8 *
Or do they both hold? In general if we use domain equations

P =T{D) + 5(¥), and

E=T(E) »
will € 9 7 held? What projections do you see in the examples in
6.27

EXERCISE 8.23. Suppose a construct T on domains can be made into
a computable operator t : (U -U} —{U-U) so that whenever a: U-U
is a finitary projection, then so is t{a) and

Dera) = TP,
Does it follow that It |l = fix(t) is such that
Diign = T Oy ?



really is the initial solution of the domain equation with respect
to projections? Since t is computable, will this solution be
effectively given?

EXERCISE 8.24. Suppose S and T are two (binary-argument) con-
structs on domains that can be made into computable operators on
projections of the universal domain. Show that we can therefore
find a pair of effectively presented domains such that

D = S{P,E)endE=T(P,E}.

EXERCISE 8.25. The problem is to find ron-trivial solutioens to
the domain equation

(&) D=D-D.

Show that the "obvious'" sclution by retracts is of no use because

1-»1=1

for projections. Change the method as follows., Show first
TR TR

Next solve
DD i

and remark that U 9P ; sc P is universal and non-trivial. Finally
prove (#) for this P. (Hint: First show

Dxp=D,

and then show P satisfies (#).)} Is this D effectively given?

EXERCISE 8.26. Discuss in more detail the "pay-off" for U, name-
ly the translation of "untyped" A - calculus into U as shown by
the equations at the end of the lecture after the proof of 8.9.
In particular show how the whole of the typed X - calculus can
beretranslated back into U with the aid of projections. (Hint:

Whenever you want to write

f: 'Da-o Db'
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write instead
f=hefoa,
where a,b are finitary projections. Whenever you want to form
a A~ abstraction
D

a
Ax Lo,

vhere o is of type vb, instead form
Ax.blo'la(x)/x]),

where o' is the further translation of o into untyped A - calculus.
Be sure to show that this result "has the right type' in the sense
defined above.)

EXERCISE 8.27. (Suggested by James Donahue.) Finite cartesian
products of domains are formed by the DO x 1)1- construct we have
used so often. The problem is to define -~ computably - some
infinite cartesian products. In particular, as applied to the
universal domain U, the combinator sub is to be regarded as a
finitary projection of U whose fixed points are exactlyall

the finitary projections. A map

d=sub<desub
can be regarded as apolymwrphic type (because, whenever t is a
finitary projection (= type), then so is d{t}). The econtinuous
product of all these types would be the domain of all approximable
functions x such that

x(t) =d(t)(x(t))
for all types t. (Why does this equation mean that x is in the
product?) Defire I as a combinator by
O=AdAxAt.sub (d(sub (t))) {(x(sub(t))).
Show that for d a polymorphic type, I(d} is a type. (Hint:
It is easy to check that II(d) is a projection; the problem is to
show it is finitary.)
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