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( i i) 

INTRODUCTION
 

These notes were written in conjunction with the lectures 

delivered by me for the Semantics of Programming Languages 

sequence during Michaelmas Term 1980 at Oxford. I started 

writing around the first week of October and finished at the 

end of November. The purpose of the course was to provide the 

foundations needed for the method of denotational semantics; 

in particula~ I wanted to make the connections with recursive 

function theory more definite and to show explicit, effectively 

given solutions to domain equations. Roughly. these chapters 

cover the first half of the book of J.E. Stay. I plan soon to 

expand the notes into a book by adding additional chapters on 

other theoretical topics that time did not permi t me to cover 

in one eight-week term. 

Khen I started writing Lecture I in October~ I did not 

know what the later lectures would contain: I could see no 

further ahead than part of Lecture III in the beginning. 

The lectures had to be typed in advance of the class meetings) 

however) so there was at the time of composition no opportunity 

for second thoughts of any major proportions: I had to ...'rite 

the text s~raight through. As a consequence there are many 

remarks I would like to transpose and many additional points 

of explanation 1 see are needed; further worked examples and 

easier exercises are also required. During the spring, after 

receiving many helpful comments. I was able to introduce a few 

changes in the text and make some necessary corrections. Howeve~ 

a complete retyping was impossible. Nevertheless. this prelimin­

ary version of the book seems to provide a quite detailed 

introduction and is sufficient to exhibit the scope of the 

approach and several applications. 

The idea of using neighbourhood systems to give set­

theoretical representations of domains had been in the back of 



( iii) 

my mind for some time in connection with specific examples. 

But the thought that a systematic development along these 

lines might be easier to follow than the more abstract 

lattice-theoretic and topological approach used by myself 

and others in many publications only came to me during the 

IFIP Working Group 2.2 meeting in Copenhagen in mid-June 19BO. 

I gave a brief public presentation at ICALP '80 in Holland in 

mid-July. 

One large mistake I have made is to de-emphasize partial 

orderings too much, since at the right point the concepts and 

the language are in fact helpful. The basic plan is that, 

instead of ax iomati zing the theory using partial orderings, 

the necessary facts come out as theorems. For a neighbourhood 

system 0, the set of elements lVI, which consists of filters, 

is naturally partially ordered. And approximable mappings 

naturally preserve the ordering. And so on. The advantage 

I see from the point of view of exposition is that properties 

can be brought out one at a time instead of having to put them 

down all in advance of any experience with the ideas. My o~n 

feeling after writing these chapters is that the plan has 

worked out far better than I could have dared to hope. I was 

especially glad that I could generate so many exercises. and 

I hope eventually to provide many more. One interesting place 

at which partial orderings prove their usefulness is in 

visualizing domains. As it staRds now the text does not contain 

enough in the way of pictures. This will have to be remedied 

in a future version. Undoubtedly toinclude enough explanation. 

several of the lectures will have to be sub-divided into separate 

chapters. 

One major improvement is needed: to bring Exercise 2.22 

into the main text. I did not know in advance how often I \wuld 

need this result for giving (easy) set-theoretical characteriza­

tions of domains and structure on them. This will be an easy 

repair. but it will cause quite a bit of rewriting. Clearly 
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much mOTe has to be said about the interplay between elements 

and neighbourhoods. In particular, the character of the elements 

of a domain. like the power set of a set. has not been sufficient­

ly illustrated and quite a bit of expansion on this topic isI 

also needed. 

Finally I have to explain that I had no time whatsoever 

to put in references and a bibliography. The ideas I have 

used have occurred to many. many people who have 'Worked on 

domains, and I do not wish to claim originality. I am claim­

ing some advantage to my style of representation, but I fully 
realize that a published version will have to have detailed 

historical references and notes at the ends of the lectures. 

Needless to say I shOUld very much appreciate any advice or 

criticism from readers of this preliminary version. 

I would like to give a warm word of thanks to the many 

people 'Who have already commented on the preliminary text both 

at Oxford and in Boston, where I gave lectures. Very special 

thanks are due to Steve Comer and Steve Brookes, who spent 

many hours proof reading the typescripts. The biggest 'Word 

of thanks, however, is reserved for Elsie Hinkes who, under 

very considerable pressure. did a wonderful job of typing. 

Dana S. Scott 
Merton College 
Oxford 

May 19B1 



1 

LECTURE I 

DOMAINS GIVEN BY NEIGHBOURHOODS 

Often an object (or element) can be determined by a 

selection of its properties. Often it is also the case that 
it is easier (more convenient, more elementary) to think of 
these properties than it is to think of the elements them­

selves. Let us term the properties under consideration 

neighhoW'hoods, the family of those allowed a neighoowohLJod system. 

Generally, the collection of these neighbourhoods is, for one 

reason or another, somewhat restricted; that is, a completely 
arbitrary property may not be allowable as a neighbourhood. 

Therefore, the elements determined by selections of neighbour­

hoods may not be as separable into the discrete objects common 

to the classical view of set theory. This is particularly true 

in working with infinite objects: it is hard to specify an 

infinite element completely. The theory of elements to be 

studied here, then, is going to permit partiatelements as well 

as totaZ elements, and each neighbourhood system will define a 

dOmain of such elements. 

Since we may wish to use a neighbourhood system to intro­

duce elements not previously investigated,the neighbourhoods do 

not have to be regarded as sets of the as-yet-to-be-defined 

objects. We can take a non-empty set 4 of tvkens (or "traces") 

that function as "parts" of elements - or even as parts of 

"descriptions" of elements. Then a neighbourhood is a subset 

X E...6. containing all those tokens that provide sufficient 

information when taken together to t'approximate" a possible 

element up to a certain "degree". All these words in inverted 

commas are vague. and in any case we shall have at the start 

only a quaUtatitJe theory of ltdegree of approximation". A. token 

should be considered as a very "rough" representative of an 

element, and a neighbourhood should be regarded as "smoothing 

out" irrelevant details by grouping together aU those repres­

mtatives sharing some common feature. One neighbourhood, then, 
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may be only a very incomplete specification of an (ideal) 

element; fuller specifications can be secured by taking 

"coTIvergent" sequences of neighbourhoods. Even then conver­

gence need not be to a total element. 

Let us call the family of allowed neighbourhoods V; it 

is a family of subsets of the set A. An obvious first 

question is: when are two neighbourhoods X. ye V neighbour­

hoods of the "same" element? This question of course generalizes 

to a (finite) sequence of neighbourhoods. This property we will 

call the consistenc.l,f of the sequence of neighbourhoods. By 

definition this Nill mean that the given neighbourhoods all contain 

a common neighbourhood in V. That is, for X, Y to be consistent, 

there must be a ZeV with 2=:X and Z=:Y. This is not a very in­

formative definition, but it has something of the flavour of a 

notion of consistency insofar as it can be expressed within V. 

When consistency holds it seems reasonable enough at first 

glance to say that the intersection X n Y is also an approximation 

to this COmmon element. If this is reasonable. then X n Y should 

also be regarded as a neighbourhood. This assumption has many 

consequences, but as a preliminary theory of approximation we 

will find it quite workable with many natural instances. 

Taking intersections just means taking more and more properties 

of the element and putting them togetherl1conjunctively~1 It is 

something we do all the time. We therefore accept the idea for 

the present for giving our first principal definition. 

DEFINITION 1.1. A family D of subsets of a given set A is 

called a neighbourhood system (over A) iff it is a non-empty 

family closed under the intersection of finite consistent 

sequences of neighbourhoods. That is to say. V must fulfill 

these two conditions: 

(i) "EV; 

(ii) whenever XJ Y) Z E V and Z s.X n YJ then X n Y E V. 0 
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We remark tha t by convention lJ. corresponds to the inter~ 

section of an empty sequence of neighbourhoods; in particular, 

(I Xi =..6., if n = 0; 

,if n > O. 
i<n .((lXi ) 

n X 
n-1 

i<n-1 

Of COUTse, from (ii) t we can extend the intersection property 

to any finite sequence. Consequently, we can say X "'" X _O n 1 
is consistent in V iff 

(I Xi V.E 
i<n 

Some examples will help us understand the notions better. 

EXAMPLE 1.2. Let a= {O,n and let 

V· {( 0,1), {OJ, (1) j. 

In pictures we have© Q 
The intention is that 0 and 1 can be completely specified and 

that they can be identified with the total elements. As 'We 

shall see t there is only one partial element: either we give 

no info·rma tien (the neighbourhood {D.'}), or we decide between 

o and 1 (by giving (OJ or In). 0 

EXAMPLE 1.3. Let lJ. = {D.1,2} and let 

V<{{0.1,2), {1.2}, (2l] 

In pictures we have: 

CCQ))
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Instead of stepping to the total element (here represented by 

2) in one big step, the passage is divided into two steps. 

(Note 0 and 1 cannot be taken as representing to't.al elements.) 

This example is not very interesting because the direction of 

approximation in unique. We need an example with some choice. 0 

EXAMPLE 1. 4 Let 

t:. = {A.O , 1.00.01,10,11} 

V = {t:..{O,OO.Ol}. {1.10,11}, 

{ool, {O1}, {10l, (11) l. 

Or more understandably in pictures: 

The tokens aTe fini te sequences of 0 Isand l' 5 (up to length 2) 

wi th A the empty sequence; they form - in the pic ture - the 

binary tree with the sequences as the nodes. The neighbourhoods 

are the subtrees of all nodes above a given node. Obviously 

this can be generalized to sequences of any length (and to 
trees less regUlar than the binary tree). The total elements 

of the example correspond to the top nodes 00. 01 J 10. 11 and 

the lower nodes to the partial elements. When we are not at a 

top node we have only partially determined a sequence, and the 
branching indicates that we have some choice as to how the 

sequence can be extended. 0 

It shOUld be noted that. in these three examples, the reason 

that we have a neighbourhood system is a simple consequence of a 
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very special ci rcumstance: in these systems t ..... o neighbollrhoods 

are either disjoint or one is inCluded in the other. This 
arrangement of neighbourhoods is by no means necessary. 

EXAMPLE 1.5. Let .6..=-{O,1,2,3} and let V be the family of all 

non-empty subsets of A. 

This system is a direct generalization of Example 1.2., 

which was special owing to the Small number of tokens. (The 

other examples were special by virtue of the choice of neigh­
bourhoods.) The verification that the present V is a neighbour­

hood system rests on nothing more than the remark that sets are 
consistent in V iff they have a non-empty intersection. Clearly 
the arrangement of neighbourhoods in '0 can be as varied as a 

four-element set will allow; if d were made larger, the possible 
combinations of neighbourhoods could be made as complex as you 

wish. 0 

Having some idea now of the variety of neighbourhood systems, 

we have to discuss what it is they do. As stressed before, the 
tokens do not have to correspond directly to the elements; but 
where. we ask, do the elements come from? One obvious suggestion 
for determining an element is to produce a sequence of 'tbetter 

and better" neighbourhoods: 

Xo ~ X1 :? •• 2 X 2'" n 

Trivially, any finite initial segment of this sequence is con­
sistent. and so each X is a partial approximation to the n 
"limit". If 0 were always to be taken as finite, of course, 
there would be no point in discussing limits since any such 
sequence would eventually be constant. The elements in the 
finite case would therefore be completely represented by neigh­
bourhoods with the ntininnl. neighbourhoods corresponding to the 
total elements. But there are many reasons to go beyond the 

finite (though perhaps not too far beyond). 

y ) ~Suppose ( n n=O is another "convergent" sequence with 



6 

Yn+1S)'n fOT all indices: when do the two sequences of neigh­

bourhoods determine the same limit? The two sequences can 

surely be different; fOT example, (Yn>;::=o could be a subsequence 

of <Xn);=o' say, )'n=X Zn " Still we would want to say that the 

same limit is obtained. Without being given any further structure 

on the neighbourhoods, a simple answer is just to say that each 

sequence goes "equally deep" as the other: 

fOT each m there is an n with X SY , and 
n m

fOT each n there is an m wi th Y £ X . m n 

This definition obviously puts sequences into equivalence 

classes, and so elements could be identified ld th these. But 

such a definition is clumsy fOT two reasons: it is always 

tiresome to work with equivalence classes. and there is no 

reason to think that simple infinite sequences are adequate for 

determining elements without some rather drastic assumptions 

on V. Nevertheless, the idea is suggestive; we just have to 

find some construct to represent elements in a unique way and 

to phrase it in a general enough manner. 

Start with (Xn);=o again, which "converges" as before. 

Think of all the other sequences equivalent to this one in the 

sense just defined. We can define the class of all terms of all 

such sequences very easily as being the family: 

x = {Z E V I XnS Z for some n}. 

It is easy to prove that if we form the analogous class for 

(Yn>';;.=o' then the two families are equal. if and only if the 

sequences are equivalent. Thus, we seem justified in letting 

x represent the limit of (X )O;>n;O' All we have to do now is n 
to remark on what sort of class x is as a subfamily of Vj 

what we abstract from the construction, however, will be just 

a bit more general than taking those x that result from sequences. 

DEFINITION 1.6. The (ideal) el.ements of a neighbourhood system 

V are those subfamil ies x S V where: 

( i) f),Ex; 

( i i) X, ¥EX always implies XnYEx; and 

( iii) whenever X E X and X So ¥ E V, then Y EX". 

The domin of all such elements is written as I V I. 0 
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The idea of 1.6 is a well-known mathematical device: the 

families x satisfying (i) - (iii) are usually called faters. 

Most frequently the emphasis is put on the maximal filters, and 

these would be our total elements; however, in general, the proof 

that maximal filters exist is non-constructive, so for OUT 

purposes it is better not to neglect the partial filters. When 

maximal filters can be found, well and good, but we do not have 

to insist on them. Note that the generality of 1.6 is acHeved 

by not requiring that there is a sequence of neighbourhoods 

that I1generatesll the filter x. (See Exercise 1.22.) 

We have often said that neighbourhoods determine partial 

elements by themselves; we now make this remark precise. 

DEFINITION 1.7. For XE V. the principaZ fater determined by 

X is defined by: 

tX= (yEP IXs;Yl. 

The principal fil ters form what Ioo'e shall call the finite 

eLements of the domain I VI. 0 

It is obvious that the correspondence between X and + X is 

one-one and inclusion reversing, in the sense that 

Xs.Y iff +YS+X 

for all X, YE V. But, except in very special cases, there is 

much more to I V I than just the finite elements. Much of our 

investigation will be concerned with finding out how much more. 

The finite elements are. in a certain sense. "dense" in 

IVI. however, because it is also obvious from the definitions
 

that for each xE IVI
 

x = Ul t X I XEx). 

That is, every element is a certain type of-limit'l of finite 

elements. (This statement is made more precise in Exercise 1.21) 

We note that we have now had several occasions to use 

inclusion relationships between elements; this is an important 

relationship, and we give it a special name. 
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DEFINITION. 1.8. For x. y e lVI, .....e say th·at x approzimates riff 

x oS. y. The element that approximates all others ~ {.a.}. is called .1 

(read: bottom) i it is the "least defined" element, or the 

"most partial" element. Elements maximal ..... ith respect to the 

approximation relation are called total. elements. D 

EXAMPLES 1.2 -1.5 (Revisited). The examples as given .....ere 

all finite, so any explicitly given filter x is principal, 

the elenent is finite. the minimal xe x tells us all ..... e need 

to know. In such simple situations there is essentially no 

difference bet .....een elements and neighbourhoods -- except for 

the reversal of the order as noted. This (necess arr) rever­

sal should not, ho.....ever. become a matter of confusion: the 

smaller the neighbourhood has bec9me •. the more it has IIconverged". 

and so the better defined the element has become.. In the approx­

imation relation the "poorer" elements are placed bela..... the 

"better" .....ith the total up at the top. This will become clearer 

in discussing "infinite" elements. 

Example 1.3 will be generalized in Exercise 1.1. Let us 

here generalize first 1.4. We let 

a = I- • 

where :r" {O.1} and I· means the set of all finite sequences of 

O's and l' s ...... i th A being the empty sequence. We write a 't for 

the concatenation or juztapoeition of twe sequences a."'t e I· . 

Define 

B = {a I· Ia e I· }. where 

a X' la ,I' EO Xl 

for an arbitrary set Xk; I·. In other .....ords, a ne i ghbourhood in 

B consists of all ezteneione of a given sequence a. (Refer 

back to the finite version of 1.4.) We use the letter "6" to 

remind us of "binary". and this is an example .....e shall refer to 

many times. The proof (if it is not obvious) that 6 is a 

neighbourhood system should be done as an exercise. 

What do we find in I BI? Of course .1 = {ale I B I.. For any 

x e I B I and a e I* de £ine 

a x .. {Y Ia X£" Y some XEX}. 
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Again there is an exercise here to show axEIBI. In particular 

0.1 E 181 for all aE~". and these are just the finite elements. 

The minimal element of 0.1 is 0.6.. Note that 0o.1S 01.1 if and 

only if "0 is an initial segment of the sequence ° 1 " 

If now xE lSI is any explicitly given element (that is, 

if we know for any XE 8 whether or not XEx). we have but tD 

work out from these definitions that 

x = 0 0n.1. 
n=O 

where the an E:t· and each on is an initial segment of the next 

"n+l0 In general, in any domain, an element is uniquely 

determined by its finite approximations, and we are just making 
this explicit in I BI. When we have complete knowledge of X, 

then there are two cases: either the approximations 0n.1 become 

constant from some point on (where n;;' nO)' or not. In the first 
case x is finite and equal to 0nO J.; in the second case x is 
infinite and the 0nfill out an infinite (one-way) sequence. 

The generalization of 1.5 to the infinite case where 

.6.= N =. {0.1.2,3, ... , n, ••• } 

can be made in more than one way: for instance either we use 
as neighbourhoods all non-empty subsets of 4 or just those 
omitting but a finite number of integers. And, as will become 

apparent, there are other choices giving domains of quite 
different characters. 0 

Many constructions (choices of V) lead to the II same 'l 

domain; "sameness" is an important notion and it is to be 
defined in terms of "isomorphism", which in turn is to be 
defined in terms of approximation preserving correspondences. 

DEFINITION 1.9. Two neighbourhood systems Vo and V1 determine 
isomorphic dorrrzins iff there is a one-one correspondence between 

I "01 and IV 1 1 which preserves inclusion between the elements of 
the domains. In symbols we write Vo !!! V1" 0 
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It is certain that the property of 1.9 is necessary. but 

it may not be so clear that it is sufficient. We sQ.all in fact 

prove in the next lecture that an isomorphism be tween domains 

always maps finite elements to finite elements, so it always 
resul ts from a one-one inclusion-preserving correspondence 

between neighbourhoods. This is surely 39 strong as could be 

hoped. This general result is not needed to see that particular 

domains are isomorphic. 

In some of the examples tokens corresponded to total 
elements and in some to partial elements; it is not difficult 

to see (ex post facto) that every domain can be presented with 

tokens exactly corresponding to partial elements. 

THEOREM 1.10. Given any neighbollrhoo3 system V", define for 
X E V 

[Xl < (x E IVI I XE x). 

The subsets [Xl £.IVI for XE'O form a neighbourhood system over 

IVI which determines a domain isomorphic to IVI. 

~oof: We note first that 
(1) (l1]. I V I . 

Next note that 

(2) X, Yare consistent in '0 iff {Xl n {Yl .. '1> 

and that for X, YE V 

(3) (X]n[Y]=[Xny] ifXnYEV. 

Inasmuch as 

(4) tXE[XlforallXEV, 

it easily follows that '0 and the family 

{[X1IXEV} 

are in a one-one, inclusion-preserving correspondence. T:has, 

we can induce the desired one-one correspondence between the 

elements of the two systems. 0 
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The import of 1.10 is that the original tokens in A can 

be replaced by the elements of 1'01. This process replaces the 
neighbourhood X :5 A by the subset [Xl £ 1'01. As the passage 

is inclusion preserving. the domain has not really changed, Dnly 

its presentation. Though of some theoretical charm, the 

theorem is not of much use since we still have to get V from 

somewhere. It does emphasize. though, that the r8le of thE 

tokens is simply to keep the inclusions (and intersections) of 
neighbourhoods sorted out. It is not always true that the 

tokens can be identified with the total elements. 

The last theorem in this lecture is a result on e~08Ul'e 

properties of a domain with respect to set-theoretical opera­
tions which have interesting meanings wi th respect to approxi­

mation. 

THEOREM 1.11. If V is a neighbourhood system and XnE IV! for 

n'" 0,1,2, •.• , then 
~

(i) nXn EIVI; and 
n-O 

(ii) EIVI, providedOx 
n"'O n 

X S Xl =x2 =: ••• !i x E x +1 £ '" •o n n

Proof: The conditions of 1.6 have to be checked. For 

the case of intersection, all of 1.6(i) - (iii) are quite obvious. 

For the case of union, only 1.6(ii) gives pause and it requires 

the proviso. I f X and Y belong to the union, then XE x ' say,n 
and YEx • But, either n<rn or m<n, and if k=max (n,m), then m 
X, Y E x . Since x k E lVI, we have X n Y EX k ; thus, X n Y belongsk 
to the union. This proves (ii). 0 

In words, the intersection is the best element that is at 

the same time an approximation to all of the elements x ; the 
n 

intersection is exactly what is common to all the given ele­

ments. The union on the other hand is just what the (increas­
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ing sequence of the) x approximates; the union combinesn 
contributions from all the x n into a "better" element -­

but no more than that. 

In thinking about domains a rough diagram. of the partial­

ordering relation S between elements is often helpfuL The 

picture of 1.4 is an example where the nodes represent the 
elements. Any finite tree growing up from a root node would 

also be an example. Indeed. any finite partially ordered set 

with least element would be an example. (Here no distinction 

between tokens and elements is necessary.) A lattice diagram 

is also illustrated. 

.l..I. 
A TREE A LATTICE 

.l. 

A ROUGH PICTURE 

The root node is the element 1. of 1'0 I; there need be no top 

node T. Appro:rimation is represented by a passage from a lower 

node to a higher node along the rising lines. The system V of 

neighbourhoods is the collection of sets each of which is all 
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the nodes above a given node. For infinite examples, however, 

care must be given to introduce limit nodes. The first few 

exercises should he provided with pictures to illustrate the 
structure. 

EXERCISES 

EXERCISE 1.12. Let /1=:IN .. {O,1,2, ••• ,n •••• }be the set of non­

negative integers. Use as neighbourhoods final segments; 

{mEJN Im>nl 

for nE:N. Veri£y that this is a neighbourhood system. What 

are the total elements? What are the finite elements? Dra'Ji 

a picture of the apprOXimation relation in this domain. 

(Hint: there is only one limit element.) 

EXERCISE 1.13. Verify all the assertions made about the 
system 8 defined as the infinite generalization of Example 1.4. 
Draw a picture similar to that given in the text which includes 

nodes for all oE I:.. Show the neighbourhoods, how the approx­

imation relation behaves, and where the total elements lie. 

(The picture is closely related to the "binary tree", but has 

to have limit nodes all along the top.) 

EXERCISE 1.14. Let /1 "'}l and let V be the family of finite non­

empty subsets of .li plus the set /1. Show that this is a neigh­

bourhood system. What are the total elements? What are the 

fini te elements? Draw a picture. 

EXERCISE 1.15. Construct non-isomorphic infinite domains where 

all elements are finite but where there are no infinite chains 

<x > ~=O of elements with x =x + l but x ¢x + l for all n.n n n n n 



14 

EXERCISE 1.16. Let.6. '" JJ and let V be the family of cOfinite 

subsets of :N. Show that IV I is isomorphic to the partially 

ordered set of aU subsets of :N under inclusion • Construct 

some other neighbourhood systems where V is closed under finite 
intersection. What happens to the total elements in such systems? 

EXERCISE 1.17. Let.6.=:m. be the real line. Let V be the set of 

non-empty open intervals with rational end points plus the set .6. 

Show that this is a neighbourhood system. For any real t e lR, show 

that 

{ X E V I tE Xl 

is a filter. Is it always total? What are the total elements 

of IVI? (Hint: When t is rational consider all intervals with 

t as a right-hand end point.) 

EXERCISE 1.18. Let V be a neighbourhood system. Call a subset 

C ~V consist~nt iff every finite subset of C is consistent in:V. 

Give an example where C is a subset with more than two elements. 

every pair of neighbourhoods in C is consistent. but C is not 

consistent. Show that if C is consistent, then there is a 

l.~a6t fil ter x E J V I with Cs x. Show generally tha t the inter­

section of any non-empty collectio:1 of filters is again a fil ter. 

EXERCISE 1.19. Define a positive neighbozaohood system to be a 

family D where (ii) of 1.1 is replaced ~y 

(ii ' ) whenever X.YEV. then XnY-:lCfl iff .XnYEV. 

Prove that a positive neighbourhood system is indeed a neighbour­

hood system in the sense of the earlier definition. Give an 

example of a neighbourhood system that is not positive. (Hint: 

(suggested by C.A.R. Hoare). Let.6. '" :N xlJ. in the plane. Let 

V be the family of subsets XS lJ x :N where all but a finite 

number of places the vertical. sections of X are the whole of lJ 

but at the other places the sections are finite and nonempty. 

Smaller examples are of course possible.) 
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EXERCISE 1.20. Let V be any neighbourhood system over a set A. 

Let .6.' :: V and define 

v ' • I +X I XED} 

where 

+X· {YED IYsX}. 

Show that V' is a positive neighbourhood system and that 1'01 and 

IV'I are isomorphic. Note that for V' finite elements and tokens 

are- in a one-one correspondence. 

EXERCISE 1.2·1. Work out in greater detail the proof of 1.10. 

Remark that the neighbourhood system over 1'01 so constructed is 
positive, thereby obtaining in a different way the same kind of 
conclusion as in 1.20. Show also that the system over 1'01 is 

complete in the sense that every £i1 ter is fixed by a u.nique 

member of the underlying set. (A filter is fixed by a point iff it 

is the filter of all neighbourhoods containing that point.) 
Remark that a complete system is one where tokens and (partial) 

elements can always be identified (under a suitable one-one 

correspondence). Show also that consistency of a set {Xi[i<n} 

of neighbourhoods in V is equivalent to saying 

n[X.J*9>
i<n 1 

EXERCISE 1.22. (For topologists). Show that the neighbourhoods 

(Xl for Xe V make IVI into a topological space where the open 

subsets U £IVI can be characterized by the following two conditions: 

(i) wheneverxEUandxsyEIVI,thenyEUj and 

(ii) whenever x E U, then +X E U for some XEX. 

Prove also that the inclusion relation on IV! can be defined 

topologically as: 

(iii) x5;Y iff for all open U 5; lVI, if xE U then yEU. 
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Is IVI ever a Hausdorff space? Show that if {Xn);;':::Q is a 

sequence of elements of IVI with x SX +1 for all n, then n n 

~

U xn 
n- 0 

is, not only in IVI but is a topological limit point of the 

sequence. Show that any element x is a limit point of the set 

{tX1XEx}. Are there other limit points? 

EXERCISE 1.23. Suppose that the neighbourhood system V is 

coun table, say, 

v ~ {XO' X" X,2' •••• X , ••• }an 

Suppose further that the property of consistency of finite 

sequences of neighbourhoods is decidable (or lI e ffectively 

known"). Then the following sequence is well defined: 

Yo- Xo 
• X if this set is consistent withYn+1 n +1, 

••• , YYO' Yl' n 

• y if not •n • 

Show that {yo' Y" •• " Y , ••• } is a total element of IVI. n 
(Hint: Show first that YO' Y1' ••• , Yn-1 is consistent for all n.) 
In such a system show that all filters can be determined by 

sequences. 

EXERCISE 1.24. (For set theorists). Prove, using the Axiom 

of Choice, or some equivalent principle, that in every domain 

a partial element can always be extended to a total element. 

Is this assertion equivalent to the Axiom of Choice? (Hint: 

Remember to prove that the union of every (transfinite) chain 

of filters is again a filter.) 
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EXERCISE 1.25. (For set theorists). Let Ii. be any well-ordered 
Sset (ordinal). (Even small ordinals like w.3 or w are inter­

esting.) Let V be the family of non-empty finat segments of .6." 

What is IVI? Are all elements finite? Is every approximation 
to a finite element finite? 

EXERCISE 1.26. (For algebraists). Let A be a commutative 
ring with unit. Let a be the set of finite subsets F SA. Define 

reF) '" {G e!J..1 FS the ideal generated by G}. 

Prove that the sets of the form reF) form a neighbourhood system, 

and that the corresponding domain is isomorphic to the set of 

ring-theoretic ideals of A partially ordered by inclusion. What 

would happen if we excluded from.6. all F with I(F):::: I({1}), where 

1 is the unit of A? 

EXERCISE 1.27. Further closure properties of domains can be 

proved for bounded sets. We say Xs IVI is bounded iff for 

some y E IV I we h ave x£: y for all x EX. This Y is called an 

upper bound. We let 

UX' nlyEIVilx:y all xE U. 

Prove that if X is bounded, then Ux is the teast upper bound 

for X in IV I. Prove al so: if U, VE V are neighbourhoods, then 

{U ,V} is consistent in V iff {tU ,tV} is bounded in IVI. (That 

is, boundedness is for elements what consistency is for neigh­

bourhoods.) Prove finally with the aid of 1.18 that XEIVI is 

bounded iff every finite subset of X is bounded. 
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LECTURE II 

MAPPINGS BETWEEN DOMAINS 

The elem~nts of a domain are regarded as being specified 

by approximations: the neighbourhoods. With the idea of 

approximation as the dominant notion, therefore, it is natural 
to look for a concept of mapping (transformation of domains) 

that in some suitable senSe preserves the spirit of the approx­

imations. In a 'theory of computability) where the (finite) 

approximations to the elements are all we can ever know at one 

time, the only mappings that can be computed are those that 
proceed by approximation. somehow passing from the neighbour­

hoods of one domain over to the neighbourhoods of the other. 

Suppose X E V 0 is given - it is an approximation to certain 

elements of I Vol.. (More precisely tX is the approximation in 

the domain, but it is easier to speak of the neighbourhood X.) 

What can be said about the approximations of the images of 

these elements under the mapping we will call f1 If X is not 

a very sharp approximation, then not very much can be said 

about the image in the other domain 1 V1 1. Trivially, of 

course, we can say that A is an approximation - because it
1 

approximates everything in its domain. Suppose, however, that 

we could say more. Suppose we could say that both Y and Y' 

approximate the image of X. If the mapping f is coherent, 

then it is reasonable to suppose that such a statement would 

imply that Y and y' are consistent in V But if this is so,
1

. 

then since the two neighbourhoods are meant to cluster around 

the same images, we can feel some confidence in saying that 

y n Y' approximates these images., In other words to specify f 

we do not supply a unique image of X, but we say which of the 

Y E V approximate the (ideal) image. To make this idea work ao 
m:motonicity condition is also needed since we are trying to 

express the idea that "if we give at least X as an approximate 

input to £, then we can expect at least Y as output." Thus, 
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a mapping is taken as a kind of relation beh'een neighbourhoods. 

DEFINITION 2.1. An approorinr:zble mapping f: '0 0 -+ '0 between domains
1 

is a binary relation fs.V OX '0 between neighbourhoods such that1 

(il t> Oft>1 

(ii) X f Y and X f y' always imply X f (Y n Y ') 

(iii) XfY~ X'S;X, and Y5Y' always imply X'fY'. 0 

Condition (i) we have already discussed; in a sense it 

means "ask me no questions and I shall tell you no lies." 

In other words "zero input can expect at least zero output. II 

The other conditions are compatible with having 

f:{< X ,t>1>IXEP };
O

that is, f might be the least informative relation and nothing 
more. But if it is more, then (ii) is, as we explained, ::I 

consistency condition. To explain monotonicity in (iii), 

suppose a mapping relationship is already known, X f YJ say. 

If we improve the accuracy of X to X' £. X and if we degrade the 

accuracy of Y to y'? Y, then we can still assert X IfY' since this 

relationship is laBB infonmtiva than the former relationship, 

which was already known. Thus, we see that conditions (i) ­

(iii) are all reasonably argued as necessary. 

One indication that the conditions of 2.1 are sufficient 

for a definition is that they are exactly what we need to show 

that f as a neighbourhood relation determines an equivalent 

elementllise mapping from 1001 into 1'01 1. (Owing to the 

equivalence, we use the same symbol f for both.) 

PROPOSITION 2.2. Given neighbourhood systems '0 and '0 ' an0 1 
approximable mapping f: '0 -+ '0 always determines a function

0 1 
f: I '0 0 1-+ I '0 I between domains by virtue of the formula:1 

(i) f(x) = {YEP, I 3XEx. XfYl 

for all x E I Vol. Conversely, this function uniquely determines 
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the original re 1 ation by the equivalence: 

(ii) X fy iff ye f (tX) 

for all XEVO and YE'Oto Approximable functions are always 

monotone in the following sense: 

(iii) x.s y always implies f(x) s; f (y). 

for x t YE I'0 0 I; moreover two approximable functions f : PO'" V1 

and g : DO ... D1 aTe identical as relations iff 

(iv) f(x) - g(x), for all x E IVOI. 

Proof: The argument that fomula (i) always gives us 

f (x) E 11'1 I when x E 1'00 1 can be safely left to the reader. 

Note, however, that all the conditions of 2.1 are required tc 

show this. As for (ii). the implication from left to right 
follows directly from. (i) because xe + X. In the other 

direction yef(+X) means that ZfY holds fot some ZE+X. 

But from X.s. Z it follows that X fY, as we wished. 

To prove monotonici ty. assume x ~ y. Now XE X and X f Y 

always imply XE y and X fY. This means YE f(x) always implies 
yef(y); that is, f(x),;;f(y). 

Finally, to check that (iv) means f· g as relations, all 

that has to be remarked that this follows from formulae (i) 

and (ii). 0 

Note that the right-hand side of (ii) can be written: 

tY,;;f(tX), 

which can be read as saying that the partial element determined 

by the neighbourhood Y approximates the function value at the 

element determined by X. This precise relationship of course 

fits the informal discussion of mapping given earlier. Indeed 

whenever xE [Xl and XfY hold, then f(x)E[Y] always follows. 

which is another way to construe the mapping character of f. 

Some examples of mappings are now called for. 
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EXAMPLE 2.3. Let r be the neighbourhood system of the two-token 

domain of Example 1.2. To avoid confusion with some other 

domains, we will call the two total elements of 1rl respectively 

true and false. There is only one other finite element here. namely 

.1 = undefined. We often use these elements as indicators of 

results: true indicates a positive outcome; false, a negative 
outcome; and .1 indicates that there is not enough information 

to decide the outcome totally. 

Let 8 be the system for the binary tree as in the last 

chapter. What we wish to define is an approximable mapping 
f: B ... r. The intui tive idea of the mapping we have in mind is 

that the binary sequence is being read from left to right, and 

we are counting the number of 0 I 5 seen before the first 1 is en­

countered. We then test the parity of this count; if it is 

p.ven, the output is truej if not, false. Using a suggestive 

informal notation with three dots, some resul ts of the function 

that does the counting and testing can be written as: 

f (000010'···J • true 
f (1101110 .. ·J • true 

f (011101' .. ·) = false 

f (0000000···)' .L. 

The last equation is necessary, because 0000000 as a partial 

element cannot be counted as either even or odd since it can 

have inconsistent extensions: 

OOOOOOO.Ls OOOOOOO'.L 

0000000 .L S 0000000000' .L • 

So, as far as f is concerned, a plain string of a's is 

indefinite. The same answer holds if the a's go on infinitely. 

To be more precise we want 

f (On,.L J	 true if n is evenj 

fa 1se if n is odd. 

As a binary	 relation f S. B x T we will have 

X f Y iff YE.1 or	 X.= On 1 ..6. for some n E :N and ei ther n is 

even and YE true or n is odd and Ye false. 

It should be checked that 2.I(i)-(ii) are satisfied. 0 
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EXAMPLE 2.4. Let us briefly describe an approximable mapping 

g: B+ B. Informally, g: can be said to "read a sequence from 

left to right and eliminate the first consecutive run of 1'5 

while copying all the other digits as read. 1I We will have 

g (On,k 0 x) "" On+,x 

provided k > o. (Here ,)(; means a string of 1'5 of length ]<.) 

However, if 1<» is the infinite sequences of 1 15, then 

g (1~) : J.. and
 

g(On1~)·On.
 

This example is instructive, since it shows that a non-trivial 

mapping can transform a total element into a partial element. D 

Aside from our being able to define particular functions 

outright, we can combine functions in many different ways; the 

idea of composition is probably the most basic scheme of combina­

tion, and there is a technical name for a family of structures 

with mappings that can be so combined. 

THEOREM 2.5. The class of neighbourhood systems and approximable 

mappings form a catego't'Y, where the identi'ty mzppin.g IV : V..,. V 

relates X, YE V as follows: 

(i) X IV Y iff XS;Y. 

If f: VO"" V, and g: V,"" V2 are given, then the composition 

g of:V ""V'2. relates XEV and ZEV as follows: 
o O 2 

(ii) X g • f Z iff 3 YE Vl' X f Y and Y g Z. 

Proof: (We may use MacLane [197~] as the st'andard reference 

on category theory, but we require hardly more than the basic 

definitions at this stage.) To check that we have a category, 

we need to know that the identity and composition maps really are 

maps in the category and that certain identity and associative 

laws hold. Now it is obvious that IV satisfies 2.' (i)-(iii). 

Moreover if f: Vo ..,. ° all we have to prove is:1 , 
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for = [ of·!
V V1o 

Checking one of these equations is enough. Thus~ for XE'PO 

and Z EO, we find 

Xfol Z iff 3YEV ' XS;Y and YfZ
V Oo 

iff XfZ, 

So, f and f. IV are the same mapping. 
o 

Suppose now that f: '0 0 -+ 0, and g : 0, -+ ° 2 " We have to 

verify that g .. f is an approximable mapping. First off, there 

is no trouble in seeing that ./log" £ Ii. 2 holds. Next, suppose 

that XgorZ and Xgo fZr hold. Then we have XfY and YgZ 

for some choice of YEO" Also XfY' and Y'g Z' hold for some 

choice of yIED,' By 2.1 (ii) it follows that X f (YOy'). 

Since YnY '!:Y, we conclude (Y n y"& Z by 2.1 (iii) j similarly 

(VnY')gz/. Invoking 2.1 (ii) again, we obtain (YOY')g(Znz'), 

and Xgof(ZnZ') is proved. 

Suppose finally that X' s: X go f Z s;: Z' • Now X f Y and Y g Z 

for some YEV,. But· then X'fY holds; for a similar reason 
Y g Z' holds also. Therefore, X'got Z' is established, which 

means that we have checked 2.1 (iii) for g D f and have completed 
the proof that g" f: VO .... V •1 

The verification of associativity is a purely logical 
deduction. Thus suppose that in addition to £ and g we have 

h : V .... 0)" If XE V and WE 03 we find
2 o 

Xh (g 0 f) W iff 3 Z E 1!:l' X g f Z and Z h W 0	 

iff 3 Z E 02 3 YE 

0

° X f Y and Y. g Z and Z h W 
iff 3 Y E V, 3 Z E V

1 

2 

, 

• X f Y and Y g Z and Z h W 

iff 3YEV XfY and Y(hog) W
1

, 

iff X (h 0 g) f W, 0 

So, as relations, h" (g" f) '" (h D g)" f. 0 

It may seem as though we have, in the definition of composi­

tion, written things backwards. But the reason is that when 
mappings are taken as elementwise functions, then the order is 
preserved in expressions involving the usual function value notation. 

We have, for example: 
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PROPOSITION 2.6. Given f: '0 0 +'0 and g: '0 +'02 ' the following1 1 
equations hold: 

(i)	 IV (x) :: x, and
 
0
 

(ii) (g • f) (x) " g(f (x) l. 

for all	 xE 1'001. 0 

The proof is not troublesome and is left as an exercise. 
In technical language the result shows that the category defined 
in Theorem 2.5 is equivalent to a "concrete category" of sets 

and functions, namely the domains and elementwise transformations 

of 2.2. 

Toward the end of the last lecture (see 1.9) we promised to 
show that isomorphisms of domains always come from approximable 

mappings, and this we now do. It means that the category contains 

all the isomorphisms it should have. 

THEOREM 2.7. Every isomorphism between domains results from an 
approximable mapping between the neighbourhood systems. More­

over, finite elements are always transformed into finite elements. 

Proof: Suppose that f: 1'0 0 1"'" 1'01 ' is a one-one, inclusion­

preserving function defined On elements, where the range of the 

func tion is the whole of 1'01 I. of course. Taking the hint from 

2.2, there is only one way we could define a neighbourhood 

mapping j namely, we cons ider the Tela tion YE f (t X) for XE Vo 
and YE '0 What has to be shown is that this is an approximable

1
, 

mapping	 which determines the original function via the formula 

2.2 (i). 

The first part is easy; indeed, there is a general result 

that monotone functions on finite elements of one domain to 

arbitrary elements of another domain always determine appr1>xi­

mabIe mappings (c£. Exercise 2.8). What remains, then, is to 

show that the relation re-defines the function. This comes down 

to showing that for xE 1'0 10
 
f(x) O(YEV

1 
I 3XEx. YEfCH)).
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Consider the right-hand side of this equation: it is a filter. 

(This either can be proved directly or Exercise 2.11 can be 
used.) Because f is an onto-function, we can cal1 the right­

hand side f (x') for some x'EIVal. But since XE x implies 

+ X~ x and f(t X) ~ f (x), the right-hand ?ide is included in 

the left-hand side. In other words f(x') Sf(x). But, since 

f is an isomorphism x 's x follows. 

In the other direction. if Xe x, then f(t X) s f(x') holds 

bi·definition. so +Xs-x'. This implies XEx' ; and, as X is 

arbitrary, xs-x follows. So x=x'. and f (x) '" £ex') as desired. 

Finally. consider any finite element tXE 100' where XEV ' O 
What we have to show is that f(tX) is finite in IV,I. Because 
f is an isomorphism. we can associate uniquely to every Y E f(+X) 

an element Yys+X in IVai where f(yy) =tY. (Just apply the 

inverse of the function f.) Define 

z = U{Y y lYE f ( +Xl l. 

Because Y' sY always implies yy' Syyand each YyE IVoi l it is 

easy to show z is a filter and hence is in IVai also (cf. 

Exercise 2.11). Because each YystX. then zstX. too. But each 

Yy So z, so tY = f(yy) '£ f( z) and hence Y E f(z). As this holds for 

all YEf(tX), the inclusion f(tX) Sf(z) follows~as well as 

tXsz. Therefore, z=tX and so XEz. But then XEyy for some 

YE f(tX), by definition of Z. Since tXSYy' we obtain f(tX) stY. 

but of course the opposite inclusion is also true from the choice 

of Y. This means that f(tX) = tY is finite in IV I as claimed.
1 

We can apply the same argument to the inverse function; and,thus, 

the finite elements of IVai and IV I are in a one-one inclusion­1 
preserving correspondence under the isomorphism. 0 

EXERCISES 

EXERCISE 2.8. With reference to the proof of 2.2 show that an 

approximable mapping is uniquely determined by its elementwise 

effect on finite elements. Moreover any arbitrary monotone 

function on finite elements of IVol with values in IV 1 1 comes 

from an approximable f: 00"'01' 
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EXERCISE 2.9. Prove that if f: Va ... 0, is an approximable 

mapping, then the element..... ise mapping f: IV I ... IV 1 satisfies o 1 
the equa ticn 

f(x)= U(f(tx) I XEx} 

for all XE IVaI. Conversely. sho .... that every element .... ise function 

satisfying this equation comes from an approximable mapping as 

defined in 2.2. 

EXERCISE 2.10. Carry out the proof of Proposition 2.6; and in 

addition show that, if f,g: Va +V are two approximable mappings,
1 

there exists h : V '" 01 such thatO 

hex) • f(x) n g(x) 

for all x E I Vol. 

EXERCISE 2.11. Let (1 t <) be a non-empty abstract partially 

ordered set; suppose it is diroec::ted in the sense that .... henever 

i.jEI,then iCi:k and j<k for some kEI. Suppose that a: l"'IVI 

is such that 

i '" j implies 3 i sa j 

foral1i J jEI. Prove that 

U (ai liE Il 

is always a filter in IV I. (Note the ways this lemma could be 

used in the proof of 2.7; but be careful in defining the partially 

ordered set and do not confuse sand 2.) In 'Words ..... e could say 

that the domain of filters is cl.osed undero directed unions. Prove also 

that if f: V .. V' is an approximable mapping, then for any directed 

union 

f (U{ailiE Il)' U (f(ail liE Il; 

tha t is, appro:r:inrlbLe rrnppings al.wys proeserve directed lOIions. If an 

element..... ise function preserves directed unions. must it come from 

an approximable mapping? (Hint: Invoke 2.9.) 
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EXERCISE 2.12. Suppose (I,<) is a directed, partially ordered 

set and £1: Va -+ '0 1 is a family of approximable mappings indexed 

by i E I, where we as sume 

i" j implies £1 (x) s f j (x) 

for all it j E I and all xE IVai. Prove that there is an approxi­

mable mapping g : Va -+ '0 1 where 

g(x)" Ulfi(x)1 iE I} 

for all XE IVaI. 

EXERCISE 2.13. (For topologists.) Recall Exercise 1.22 where it 

was shown that any domain 1'01 is a topological space. Prove from 

Exercise 2.9 that the functions f: IVai -+ 1'01 1 determined by 

approximable mappings are exactly the continuous functions between 

these Bp:2Ces. (Hint: To prove continuity, remark that by 2.9 

r 1 [Y]: U{[Xl I YE f(tX)}; 

hence. the inverse image of any open set is open. In the other 
direction, suppose that f; 1'0 1-+ 1'0 1 is topologically continuous.

0 1 
Argue that for all XE IVai and all open subsets Us 1'01 1 we have 

f(x) EU iff 3 XE x. f(tX) E U. 

This holds because an open subset of IVa I is always a union of 

basic open subsets of the form (X'} for XEV and because
O 

x ·UltX IXEx} 

for all x E IVai.) 

EXERCISE 2.14. Let f: 1'0 1-+ 1'0 1 be an isomorphism between0 1 
domains. Let <p: Va -+ '0 be the one-one correspondence between1 
neighbourhoods provided by Theorem 2.7 where 

f(tX) = t ,,(X) 

for all XEVO' Show that the approximable mapping determined 

by f is just the relationship <p(X) S Y. In addition prove that 

if X. :x' E Va are consistent, then 

<p(XnX' ) • ,,(X) n" (X'). 
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Remark that the isomorphisms between domains correspond exactly 
to the isomorphisms between neighbourhood systems (in the sense 
of one-one inclusion preserving correspondences). 

EXERCISE 2.15. (For topologists). Consider the one-taken system 

",i th 

~= { {OJ, 91) 

We can regard I~I as having just two finite elements .1 (bottom) 

and T (top), where 1. s:: T. For any system '0. show that the open 

subsets U of 1'01 are in a one-one correspondence with the approxi­

mable mappings f : '0 + a-', where the correspondence is given by the 

equation 

u- {xE IVI I f(x) :T). 

Wha t are the open subsets of I0"1 ? of IT I? of 181? 

EXERCISE 2.16. In the discussion of 8 in Chapter 1 we defiTled 
a mapping x ~a x for any given aE t·o Is this (elementwise) 

mapping approximable? Show in addition that the mapping 

£ : B... T of 2.3 is uniquely determined among approximable 

mappings by the equations: 

f (1x) • true. 
f (01x) • false, and 

f (OOx) • f (x) • 

EXERCISE 2.17. Establish in detail that the mapping g: B+B 

of Exercise 2.4 is approximable. Is it uniquely determined by 

these equations: 

g(Ox) • Og(x). 

g(11x) • g(1x), 

g(10x) • Ox, 

g(1) .~. 

or are some missing? 
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EXERCISE 2.18. What is the meaning in words of the approximable 

mapping r. : B + B, where 

h(Ox) = OOh(x). and 

h(1x) = 10h(x). 

for all elements xE 161? Is h an isomorphism? Does there exist 

a map k : B + B where 

koh=I S ' 

and is k one-one? 

EXERCISE 2.19. Generalize Definition 2.1 in an appropriate way 

in order to define the concept of an appro:r:imabZ-e rrapping 

f : Vox V,+ V2 

of tlXl vrrriabZ-es. (Hint: f can be taken to be a certain kind of 

ternary relation 

fS;:V O x V, xV 2 • 

where we can write 
x, Y f Z 

for the relationship among neighbourhoods.) What is the 

corresponding version of Proposition 2.2 for functions of two 

variables? 

EXERCISE 2.20. Discuss again the example of Exercise 1.15 

where the domain turns out to be the powerset (set of all sub­
sets) of :N. Show how the finite elements can be taken to be 

the finite subsets of :N and can be identified with the tokens of 

a sui table neighbourhood sys tern P. (Hint: Define t F for finite 

sets F ~ ~ .) Show that both union and intersection (x U y and 

x n y) are functions on IPl that are approximable in the sense of 

Exercise 2.19. (The elements of IPI are being identified with 

arbi trary sets xc:::N .) Show also the following transformations 

approximable: 

x • 1 {n + 1 1 n EX}, and 

x - 1 {n 1n + 1 EX}. 
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EXERCISE 2.21. The system I:i at 2.3 has as its total elements 

only the infinite sequences. Modify the construction of B to 
another neighbourhood system C which has both the finite and 

infinite sequences as total elements. (Hint: BSe.) Show that 

there is an approximable map x y on elements naturally extending 

ordinary juxtaposition of sequences. (Hint: Write 01001 for a 

total finite sequence and 010011 for the corresponding finite 

partial element. Remember to distinguish between A (the total 

empty sequence) and.L (the undefined sequence). The definition 

should work out 50 that if x is an infinite sequence (hence, total), 

then xy"'x for all y. What will xy equal if x is not total? 

In other words, the construction possesses a rather strong 1eft­

to-right bias.) 

EXERCISE 2.22. (For set theorists). We have remarked in Exercise 

1.18 and in Exercise 2.11 that any domain lVI, as a family of sets 

(in factI a family of subsets of the set V itself). is closed under 

the intersection of an arbitrary non-empty sub family and under 

the union of any directed sub family. For those familiar with the 

subject matter. the example of the (proper) ideals of a commutative 

ring {with unit) is also seen to be such a family. What is the 

abstract situation? Let e be any family of sets with these closure 

properties. It is to be shOl....n that C is inclusion-isomorphic to 

a domain. (Hint: Let 11 be the set of fini te sets included in sets 

in C. For FE 11, define its "c1osure" by the equation: 

"1"= n{XECIF~X). 
Every FE C, and these will prove to be the "fini te" elements of C. 

The neighbourhood system V over 11 can be taken tQ be the sets of 

the form 

C (F) • (G E '" I F "- 1; ) 

for Fe 11. Notice that for all X E C 

X • U(I' I F £ X and F E l» . ) 

Check that approximable functions on these families are just those 

preserving directed unions. 
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LECTURE II I 

DOMAIN CONSTRUCTS 

Having now seen a number of domains presented through 

their neighbourhood systems, we need next to introduce general 
constructs for forming new domains from old. There are an 

unlimited number of such constructs (technically called func~or8), 

but we have time only to single out a few of the more important 

ones. Outstanding among all of them is the notion of product 

of systems, which in our chosen category has all the expected 

properties. For the time being in order to simplify notation 

we assume of the underlying sets A and A1 of systems Va anda 
V that they are disjoint. There is no loss of generality as

1 
D can always be replaced by an isomorphic system disjoint from

1 
DO in the required sense. 

DEFINITION 3.1. Let neighbourhood systems 1'0 and 1'1 be 
given over disjoint sets dO and d • The product system over1 
dO U d is defined by:

1 

Vo.V,' (XUYIXEV
O 

andYEV,). 

For elements xe IVai and ye IV l we also define:
1 

<x:, y> = {X u YI X e x and Ye y}. 0 

PROPOSITION 3.2. The con!;'truct 1'0 x 1'1 always gives a neigh­

bourhood system where for elements x.x' e IVai and y,y'-E IV ! we
1

have 

(i1 <x,y> .b <x',y'> iff x::x'and YSY'. 

Moreover, there is a one-One correspondence between the elements 

of 11'0 XV1 , and pairs of elements of IVaI and '°11 since all 

elements of IVa '01 1 are of the form <x,y>.l< 

Proof: Owing to the disjointness of dO and d 1 , we note 

that for X, x'e 1'0 and Y, Ye '0 we have1 

Xu Ys: X' u y' iff XS;X' and YSY'.('l 
Thus, {XuY, X'UY'} is consistent in VOxV1 iff {X, X'} is 
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consistent in V and {Y , y'} is consistent in V,_ In the con­o 
sistent	 case we find 

(2) (X U Y) n (X' U Y'J • (X n X') U (Y n y 'J, 

and so Va x 0, is closed under consistent intersection. As 

.10UA,EVO x 0" it is certainly a neighbourhood system. 

It is easy to check by the previous calculations that 

<x,y>e I VoxV,1 if XE IVai and ye IV,I. The proof of 3.2(i) 
follows directly from the definition and (1). 

Suppose	 z E IVa x 0,1. Define as a temporary notation: 

10 = {XEVO I X U~1 E zl, and 

',' lYE V, I !lOUYE,), 

Clearly. both zOE IVai and z, E IV,I. In view of the formula 

(3) (XU!l,ln(!lOUY)=XUY. 

we can calculate that 

z=<zo,z,>. 

Moreover, if z'" <x,Y> thenf 

< X I Y >0 = x and < x, y >1 = y. 

The one-one correspondence required is thus established. 0 

There is more going on in the proof of 3.2 than just a ane­
one correspondence between elements and pairs. The extra inform­

ation is best formalized by introducing a notation for mappings. 

DEFINITION 3.3. Projection mappinga 

PO: '0 0 )( '0 1 .... '0 0 and p1 : '0 )( '0 1 + '0 10 

are defined as relations where 

(XUY) Po X' iff X~X' ,and (XUY) P1 Y' iff y~y' 

hold for all X, X'EV and YJ Y'EV," Given f: '02 -'00 andO 
g ; '0 '" '0 ' the paired rrrzpping

2 1
 
< f ,g >: '0 + '0 0 x '0 1
2 

is defined as a relation where 

Z <f. g > (X U Y) iff Z f X and Z g Y 

oholds for all XEVO' YEV" and ZEV 2 • 
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PROPOSITION 3.4.. The mappings PO' P1 and < f.g)o are approx­

imable mappings. provided f and g are, and we have: 

(i) PO" < f. g > f and P1" < f) g> :: g.::I. 

Moreover, for z E 1'00 x '0 1. we have:1 

(ii) poC'): '0 and P, (,) = '" 

in the notation of the proof of 3.2. Further if h : '0 .... Vox '02 1 
is any approximable mapping, then 

(iii} h '" <PO" h, P1" h>. 

Moreover, for all wE 117 1, we have:2 

(iv) <f,g> (101') = <few), g( 101') >, 

where again on the right-hand side the notation of the proof of 
3.2 is used. 0 

The proof o£ this result is left as an exercise. Note the 

consequence that there is a one-one correspondence between pairs 

of approximable mappings f : '0 ..... Va and g : '0 2..... '01 and mappings2 
h : '0 -+'£'0 x V " It is clear that we generalize all this to products2 1 

Va x P1 x··, xVn_1 

of several systems. 

The product construct also neatly explains fllnctions of 

several variables~ In Exercise 2.n9 we used the informal notation 

f:VOxV1-t>V2 

and suggested regarding f as a ternary relation 

x, Y f Z • 

But now wi th Vo x V given an independent meaning, all we have to1 
do is to regard £ as a binary relation with 

(X U Y) f Z 

equivalent to the old relationship. We can also employ an element-

wise notation as in f «x, y » • which can more easily be written 

f ( x. y). Similar remarks apply to functions of more than two 

arguments. 
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We have discussed several times what it means for a 

function f (x) to come from an approximable mapping. It is 

interesting to asl the analogous question for functions of 

several arguments. 

THEOREM 3.5. An elementwise function 

f: IVO XV,I ~ IV 21 

~f two arguments comes from an approximable mapping iff for each 

fixed aE IVa' and each fixed bE IV,' the transformations 

x .... f (x. b) and y .... f (a, y ) 

come fTom approximable mappings of one argument. 

Proof: As this is the first time we have had to deal with 

constants in functions, a lemma is useful. 

LEMMA 3.6. Given be I'D, 1) the constant function 

b: IVol ~ IV,I 

where b (x) = b for all x E IVa I, comes from the approximable 

mapping such that 

X bY, iff Ye b, 

for all XE Va and ye '0," 0 

There is no real confusion here in using lib" both for function 

and value. Returning. then, to the proof of 3.5) we see that 

the reason that x 1-+ f (x, b) comes from an approximable mapping 

is that the mapping in question is the composition of two approx­

imable mappings) namely f <IV ,b >. Clearly we can interchange0 

the r81es of Vo and V, to get Rt y 1-+ f (a, y J. 

Conversely) assume that both these functions come from 

approximable mappings no matter the choice of a and b. Clearly 

the mapping to determine f is the relation from XU Y to 1. where 

Z E f (IX, + Y) : f (+ (X UY)) • 

To prove that this determines f we calculate by the formula of 

Exercise 2.9: 
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f ( x. y) • U If ( t X, y) I x e x} 

• UIUlf(tX,tY) \yey) I xex} 

· U(f ( t X , t Y) I x e x and Ye y } 

· UIf ( t ( X u Y)) I (X u Y) e <x.y > } • 

And, again by 2.9, this is what was needed. 0 

Said more informally, a function of several arguments is 

approximable in all the variables joi:flttll if it is approximable 

in each of the variables separately. 

The type of argument used in 3.5 in the first half of the 

proof also provides a generalization of 2.6 to functions of 
several arguments. When we form a function like 

f(g(x,z •••• ), h(y,x,. •• ), k(z,w •.•. }. ••• ) 

from given functions f,g,h,'k, ••• ; we call the process eubetitution. 

P~OPOSITIOH 3.7. The functions of several arguments between 
domains coming from approximable mappings are closed under 
substitution. 

Proof: An example will establish the method. Suppose there 

are four variables involved taking values in domains provided by 

systems Va • V1 • '0 2 • V3 • We might have a substitution like: 

f ( g ( x O' xl)' h ( Xl • x 2), ~ ( x 3' x 0 • x 2 )) . 

Here it might be that the values of the functions inside co~e 

from quite other systems; for instance. 

k : V3 x V x V2 " V4o 

might be possible. By using projections 

Pi: 'OOx 01 x V2 )( '0 3 ~Op 

where i < 4. we can assure that we have several functions all On 

the same product; thus. 

k • <P3 • PO ' P2> : V x V1 )( '0 2 )( V3 ... V4·o 

Now no matter on what domains f is defined, the following COm­

position makes sense: 
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f o<g 0 <Po' P, >,h 0 <P1' P2>' k <l <P3' PO' P2» ; 
and in fact this is the desired function. Writing it this way 

makes it clear that the function comes from an approximable 
mapping: we apply 3.3 (generalized, of course, to products with 

several terms) to construe the parts beh·een brackets < and> 

as approximable mappings, and then by this trick the composition 

is the ordinary composition of 2.6. 0 

I t has to be admitted that there is a slight point overlooked 

in forming products like v )( V wi th two identical domains. This 
is discussed in Exercise 3.14, invoking explicit isomorphisms. 

The construct that makes the whole theory of domains work so 

smoothly is the function - space construct: it is possible to 

regard functions as obJoects which form a domain. Look back at 

Definition 2.1 and compare it wi th the original de fini tion of 

element in i.6. There are obvious formal similarities. except 

that filters are sets of neighbourhoods and mappings are sets of 

pairs of neighbourhoods (relations). But as we saw in 1.10 

it is possible to turn the filters into tokens via a simple 

defini tion of neighbourhood. Ne apply the sa.me kind of defini­

tion to the mappings. 

DEFINITION 3.8. Given neighbourhood systems Va and V • the
1 

function space (Va .. ( ) is the system whose set of tokens is the1
set of approxim'lble mappings of Definition 2.1 and whose neigh­

bourhoods are finite non-empty intersections of set.s of the form 

[x, Y1= (f : V0 ~ V1 I x f Y), 

where XE Va and ¥e (/1' 0 

We have been calling our mappings "approximable" for a long 

time now without saying exactly how they can be approximated: 

Definition 3.8 supplies the missing key. because once a domain 

has been defined. then the general theory gives an explicit 

meaning to the word approximation. We still have t.o verify. 

however, that the mappings do correspond to the elements of the 

domain. 
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PROPOSITION 3.9. Let neighbourhoods Xi E Va and Yi E 01 be given 

for i<n. Then the set of [Xi,Y ] for i<o is consistent ini 
(00 ... V,) iff the £ol1owing condition holds: 

(i) whenever I=-{O,', ... ,n-1} and {Xi I ie I} is consistent 

in Va' then {Yi liE I) must be consistent in 0" 

Moreover, when consistency holds, the least approximable mapping 

fa belonging to t.he intersection of the [Xi' Y i] is defined by: 

(ii) XfaY iff XSXi)sYnfYi I 

for XEV O and ye 0,. 

Proof: Suppose the [Xi,Yil are consistent in (Va ... 0,). 

Since the function space is being defined outright as a positive 
system, consistency means 

fEn {[X. ,Y. J I i < n } 
1 1 

for some f: °0 '" °1 , Now, with f in hand, let us check condition 

(i). Suppose {Xi I ieI} is consistent. This means 

X E n {[ Xi J liE I} 

for some XE IVOI. Suppose iEI, so XE[XiJ Since XifYi 
holds) f(x}E [Y ]. This means, therefore, thati
 

f(X)En{[YiJ liE!},
 

and so {Y I iEI} is consistent.
i 

For the converse) suppose (i) is the caSe. We take (ii) as 

the definition of a mapping and remark that for an arbitrary 

XE Va' the set {Xi I Xs: Xi} is automatically consistent in VO' 

By our assumption) the set {Vi 1Xs:Xi} is therefore consistent. 

This means that 

n{Y i I X s: Yi ) e V1 • 

(Keep in mind that i is restricted to those i < n) and there are 

only finitely many neighbourhoods being considered here.) It 

is thus almost immediate that the relation fa defined by (ii) 

satisfies conditions of 2.1 and so is an approximable mapping 

fa ; Va ... V1 • By construction 

Xi faY i 
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holds trivially for all i (n; therefore, 

fOE n{[Xi'YiJ Ii <n) 

and the desired consistency is established. 

Finally suppose that f is any mapping in the neighbourhood 
under discussion; this means Xi f Yi holds for all i (n. Suppose 

X fa Y holds. We have for X£:Xi,X fY i ; 50 

Xf n{y. I XeX.) cL 
1 - 1 ­

Thus, X f Y follows; hence, 35 relations. fa s: f. In other words 

fa is the minimal element of the neighbourhood. o 

We note that. as a consequence of what we have just proved, 

~hen the neighbourhood is consistent, then 

n ([ Xi' Yi J I i < n ) !; [X. YJ 

is exactly equivalent to 

n{Y i I X s: Xi} s: Y • 

Note also that a single neighbourhood [XO,Y O] is al~ays consist­
ent since it contains the aonatant mapping k 'Where 

XkY iff YOS: Y, 

for all XE Va and YE '0 1 ' Some other simple observations about 
these neighbourhoods are just translations of the conditions of 

Definition 2.1: 

[~o ' ~1 J • I V0 ~ Vl' ; 

[ X, Yl n [X. Y' l • [X, Y nY' ] i and 

X' s:X and Ys: Y' imply (X,Y] So (X', Y'] .. 

for all X, X' E Va and Y. Y' E '0 ' We are now ready to prove
1 

the main result about the construct. 

THEOREM 3.10. Given neighbourhood systems '0 0 and '0 ' the function1 
space system (Va ~ '0 ) is complete in the sense that every filter

1
in 1'00 ~ '0 1 1 is fixed by a unique approximable mapping. 

Proof: Let f: Va ~ '0 be an approximable mapping. By the
1 

very definition of ('0 ~ '0 ) it determines a filter by the definition:
0 1 
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f.{FE(VO~V,) I fEF). 

Trivially [X,Yl E f iff fe [X,Y] iff X iY; so this filter 

uniquely determines the relation f. ~~at we have to show is 
that every filter in IVa .. v, I is of this form. 

Suppose (pE I V o .. 01[ is any filter. A relation can be de­

fined at once by 

X .. Y iff [X,Yl E",. 

In view of the remarks we made just before stating this theorem, 

there is no problem in showing that ~ is an approximable mapping. 

Since the neighbourhoods of the function space are in any case 
finite intersect.ions of sets like (X,Yl. those [X,n Eql generate 

(p. This means that ~ ""(p. By definition f '" f, so there is a one-

one correspondence between mappings and £i1 ters. (This corres­

pondence is obviously inclusion preserving, too.) D 

We now know j US! about everything about IVa" V,I as a 

domain: the elements correspond isomorphically to the approximable 

mappings; the finite elements are explained completely by 3.9i and 

we have seen how to calculate with neighbourhoods. The final 

step is to relate the function space to other domains by appro­

priate mappings. In doing this we shall freely construe elements 

of IVa" V,l as approximable mappings in view of 3.' a. 

THEOREM 3.". Given neighbourhood systems V, and P2 , there is a 

uniquely determined approximable mapping 

eval: (V, .. P
2

) xV," V2 ' 

where for all f: V, .... V and all xE IV,' we have
2 

(i) eval (f. x) • f (x). 

Proof: For FE (P, .... P ) and XE P, and YE V define eval2 2 
as a relation by: 

F u X eva 1 Y iff X f Y for all f E F. 
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Remember that neighbourhoods in the function space are sets of 
approximable mappings. It is easily checked that this defini­

tion makes eval approximable. We now calculate the function 
values by the formula of 2.2 (i): 

ev.l (f, x) = (YEV 2 I 3FE(V, ~V2)3XEx.fEFand FUXevalY 

Because, again by 2.2 (1) t we have 

f (x) (YEV 13XEx. XfYl,2 

we can see from the definition of eval that eva] (f, x )~f (x). 

Suppose that Y E f{x). Then X f Y holds for some X E x. We can 

write fe [X. y ] E ('D, ~ 02) and it is clear that 

[X, Yl uX eval Y 

holds by definition. Therefore, Ye eval (f,x). and so 

f(x) S eva' (f,x). 0 

This theorem is essential for our programme; it shows that in 

taking functions as objects the very basic operation of forming 
the function value is an approximable mapping. In other words 

we can treat the expression f( x) not just as a function of x. 

as we have done from the start, but also as a function of f as 

well. The result also indicates that there are useful maps 

defined on domains that themselves are function spaces; we shall 

meet many more of these. The next theorem prOVides further 

examples. 

THEOREM 3.'2. Given neighbourhood systems Va 'V 1 ,V2 there is 

associated with every approximable mapping g : Vo x V, ~ V2 a 

uniquely determined approximable mapping 

curry (g) : Va ~ (V, ~ V2 ) 

such that for xE 1°01 and yEIV,1 

(i) curry (g)(x)(y) = g(x,y). 

Moreover we have these functional equations: 

(ii) eval 0 ( curry (g) 0 PO' P1) '" g, and 

(iii) curry (evat (h 0 PO' p,») '" h.0 
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where the Pi; Va x '0 1 ... Vi are the projection mappings and 

h: '0 ... ('0 .. 02) is any approximable mapping. This provides0 1 
an isomorphism between the domains IV x V1 -+- '0 2 1 and 1°0 ... ('0 -+'0 ) I o 1 2
and so we can regard 

curry: (1 0 x 11 - 12) - (Do - (11 - 12)) 

as itself being an approximable mapping . 

Proof: Given g as indicated, ..... e can define curry (g) as a 

relation and as an approximable mapping by: 

X curry (g) [Y,ZI iff X u Y g Z (but see Ex. 3.21) 

fOT all xe '0 ' y E ° Z E '0 ' This is sufficient because an
1

,
0 2 

approximable mapping is intersective in the right-hand neighbour­

hood, so we know from the above exactly what X curry(g) (){O' i' 2'i] I i < n 

means for all finite intersections. The remark after 3.9 is then 

helpful in checking that by this definition curry (g) satisfies the 

monotonicity condition and so is indeed approximable. We now 

calculate: 

curry (g) (x) (y) = (Z e D I 3ye y. Y curry (g) (x) Z ) 
2 

•	 (zeI213yey3Xex. X curry(g)lY.Z)) 

(zeI213Yey3xex. XUYgZ) 

(zeI 13We<x,y>. WgZ)2 

• g «x,y» • g(x,y). 

This proves (i). We also see, that if we take the left-hand side 

of (ii) and apply it to a pair <x,y>, it reduces to g(x,y) by 

virtue of (i). ThUS, the two functions in (ii) are the same. 

Turning to (iii), call the left-hand side k. Using (i) 

again, we find 

k(x)(y) • eva1 <h PO' P1> «x,Y»0 0 

eval «h 10 PO «x,Y>}, P1 «x,Y»» 

•	 eval «h (x) ,Y» 

= h (x)(y). 

As this is true for all ye IV 1, then k(x)· hex) follows. As this1 
is true for all x e IV I, then k .. h follows, and (iii) is proved.o
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Taking (ii) and (iii) together. it is clear that the 

domains IVOxV1 ... V21 and 1°0 "(°,,,°2)1 are in a one-one cor­
respondence. But from the very defini tion of curry it is clear 

that 

curry (g) 5 curry (g') iff g 5 g'. 

Hence, curry is an isomorphism, and we can invoke 2.1 to con­

elude that it comes from an approximable mapping. o 

We close this lecture with some order-theoretic properties 
of function spaces that characterize inclusion and upper bounds 
of functions in a "pointwise" manner. 

THEOREM 3.13. For approximable functions f,g: VO ... V, we have 

(i) f =g iff f(x) =g(x) fOT all xe IVai. 

For subsets F~IVO" °11 we have 

(ii) F is bounded in IVa ~ V 1 iff (f(x) lieF}1 

is bounded in 1V 1 1 for each xe IVai; 

and in that case for all xE IVai: 

(iii) (U F)(x)· U (f(x) I fe Fl. 

Proof. The implication in (i) from left to right follows 

because evaluation is monotone in the function as well as the 

argument. The converse implication is a consequence of 2.2(ii). 

For the proof of (ii) and (iii) we see that by (i) if F 

is bounded, so is every set {f(x)lfe F}. For the converse 

direction, it is clear that (iii) defines 80me pointwise mapping; 

we have only to prove that it is approzimabl.e. The calcula­

tion that UF preserves di rected unions (see 2.9 and 2.11) is 

probably the simplest way to reach the conclusion. 0 
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EXERCISES
 

EXERCISE 3.14. For the most part we can assume that there is 

at most a countable nwmbe~ of tokens; thus, without loss of 
generality the underlying Sets oI1 of given systems J;\ could bei 
assumed to be subsets of 1:* where 1: .. {O,1}. (Any denumerable 

set would do.) Show that the product DO )( V, could be defined 

as the system over the set 0011 U 1 011 where0 1 

Vox V,. (OXulY I xeOO and YeO,). 

In other 'Words, the ass\DIlption of the disjointness of 4 and ~10 
is unnecessary. Give, therefore, the revised definition of 
<x,y> for elements, and prove that for a single system V, there 
exists an approximable mapping 

diag : D ~ V x '0 

where diag(x) c <x,x> for all xE 101. Also extend the definition 

to a product of n-factors 

'Oox'O, x· •• x D _n 1 

which will be a system over the set 

.u ,i 04il<n 

Note that. fOT a 2-termed product we simplify' 04, to '4,. 

EXERCISE 3.'5. Establish the usual isomorphisms: 

(i) 00 x V, e: 0, x ° 0 ; 

(ii) x '0 •Vo xeD, x 02) '" (00 xV,) x ° 2 " 00 x 0, 2 

How does the product of no factoTs fit in? Prove also: 

(iii) 00 .. D '0 and ° .. 0', imply 00 x 0, 2! 'O'Ox V; .1 
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EXERCISE 3.16. Let V be a given neighbourhood system over 
!i. ~ X·. Define 

!:J.CO .. 0 ,nO!i. 
n=O 

so that!i.m is split into infini tely many disjoint copies of d. 

Let V.., be the least family of subsets of 1:* where 

(1) It' e V"'. and 

(2) whenever XED and YEV.... then OXU1yev<l>
 

Show that V"" is a neighbourhood system over /i..... Prove the
 

isomorphism 

p"" S!! D)( 0'" 

Show, mereover, that the elements of I V"'I are in a one-one 

correspondence with arbitrary infinite sequences <xn>n=O 
of elements x E IVI by using combinations of neighbourhoods

n 
OX u, OX u •• · u ,n OX u ...0' n 

where from some point on all the X are equal to tJ.. m 

EXERCISE 3.17. Using the 6 and T of Example 2.3 show there is a 
one-one approximable mapping 

f: B -+ r'" 

and another approximable mapping 

g: ra> -+ B 

such that 

g 0 f = I B and fog ~ I 
y

• 

Are B and roo isomorphic? Are 8 and T)( B isomorphic? 
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EXERCISE 3.18. Let Va and '01 be neighbourhood systems over 
and 6 • where we again assume that these are subsets of 2:*.6 0 1 

We as sume that in addi tion no n12ighbourhood is empty. Why is 

this possible without loss of generality? Define the Bum 

system by: 

V + V,. {{A}U06 U,6,}U{OXIXEV }U{1YIYEV,}.o 0 O

Prove that this is a neighbourhood system over {A}U060U161, 

(Throwing in {A} was not all that necessary, but note that 

8 = B + B 

and this is an equality of sets not just an isomorphism of 

systems.) Prove that in general there are mappings 

in i :'Di - V + '0 1 and outi : 'Do + '01 " Vio 

where out. in . ., IV. Where does the assumption ~ f1 V. come in0 
IIi 1 

here? How can these sums be generalized to n-tenns? (Hint: 

As for products use sets 1106io) Draw some pictures. 

EXERCISE 3.19. Suppose we are given systems and approximable 

mappings 

f : 1)0 ... Va and g : V1 ... V~ • 

Prove there are approximable mappings 

fxg:O O x V, .... VO 'Il; V; and f+g:Vo+V,'" V~ + V1 
such that 

(i) (fXg) (x,r) = <f(x), g{r) > 

for all xE IVaI and yE IV, I , and rewrite this as: 

(ii) f X g = <f' PO' g' P, >. 

In addition prove that 

(iii) outo' (f+g) andina f, 

(iv) out (f+g)
1 

, in, g. 

Do equations (iii) and (iv) uniquely determine f + g? 
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EXERCISE 3.20. (For category theorists). Show that the result 

of 3.19 can be used to prove that + and X on the category of 

domains and approximable maps are indeed functors. Show further 

that X is the categorical product for this category. 

EXERCISE 3.21. In the proofs of 3.12 in the definition of 

curry (g) it is rather cavalierly assumed that the neighbourhood 
[Y',Zl uniquely determines Y and 1.. Show that this is true II 
Z*n. ' (Hint: Find explicitly the least of fE [Y,Zl.) ShowZ 
that if z., ~2 the biconditional stated at the start of the proof 

is still valid even though Y is not uniquely determined. (Hint: 

Remember that 41 g 4 2 must hold.) For arbitrary pairs of neigh­

bourhoods of ('0 " 02) is there a simple criterion for identity?1 

EXERCISE 3.22. Prove that there is an approximable mapping 

comp: (V, ~ ~). (Va ~ V1)~ (Va ~ ~) 

where for all g : D1 .. 02 and f : Do ... 01 we have 

0comp (g. f) • g f. 

Show this directly by writing down the neighbourhood relation 

and by building the mapping up from eval and curry (on suitable 

domains) using and <. >. (Hint: Fill in maps in the following0 

sequence of domains: 

(Va ~ Vi x va ~ v1 

(V 1 ~ V ) • «Va ~ V ) • Va) ~ (V ~ V ) • v2 1 1 2 1 

(V ~ V ) x (Va ~ V )) • va ~ (V ~ V ) xV
1 2 1 1 2 1 

((V ~ V ) x (Va ~ V1 )) x va ~ V21 2

(V ~ V ) x (Va ~ V ) ~ (Va~ ~).1 2 1 
The maps are of course not uniquely determined, but the 

shifting of brackets ought to suggest the right choice.) 
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EXERCISE 3.23. (For category theorists.) Show that the results 

of 3.11 and 3.12 prove that the category of domains and approx­

imable mappings is a cartesian dosed catego11l. (Mac Lane [1971] pp. 

95-96 may be consulted for a very brief introduction.) What 
is the terminal domin in this category? What sort of functor 

is (V -+1' )?
O 1

EXERCISE 3.24. Establish some mOTe isomorphisms: 

(i) (V o ~ (V, xV2)) " (VO~Vl) x (VO~V2) 

(ii) (VO~Ol·)" (VO~Vl)m 

(iii) V x (0 + V ) "(V x V ) + (V x V )o 1 2 O 1 O 2 

(iv) (V + V ) ~ V " (V ~ V ) x (V, ~ V ) ••
O 1 2 O 2 2

If some of the above are not true, perhaps at least some mapping 

relationships can be established. 

EXERCISE 3.25. (For topologists.) Recall from Exercises 
1.21 and 2.13 on how to regard a domain IVI as a topological 
space. Using 3.10 Show that the family of open subsets of IV I 

is isomorphic to a domain. 

EXERCISE 3.26. Show that for every domain V there is an approx­

imable mapping 

cand : T x D x D -+ V, 

called the condit;-ior.al opemtol' J satisfying 

(i) cand (true,x,y)=x 

(i i) cand (false, x, y) "' y 

( iii) cand (~, x, y) :: 1. • 

(Hint: Recalling that T={{O), {n, {O,n}, define tand as a 

relation by 

OC U 1OX U 11 OY cond Z iff 0 E C and X~ Z or
 

1EC and Y~Z or
 

0,1 E C and .6. s: Z
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where CE T and XE V and Y E V and where we are using the constructior. 

of Exercise 3.14.) Find a similar operator in the domain 

T )( Va )( '0 1 -+ VA + '0 1 • 

Show also there is an approximable mapping 

which: '0 + '0 -+T
0 1 

such that for all x ElVa + V1 1 

cond (which(x). ino(outo(x)). in 1 (out 1 (x))) = x. 

EXERCISE 3.27. (For set theorists.) Give another proof that 

the family of approximable mappings f : Va ... '0 1 is isomorphic 

to a domain by employing the general argument of Exercise 2.22. 
How does this compare with the proof method of 3.9 and 3.101 

Can the general remarks also be employed to show that 

eval : ('0 -+'0 ) )( '0 ... '0
1 2 1 2 

is approximable without bringing in the neighbourhoods in such 
an explicit way? (Hint: Use 3.5 and the idea of Exercise 

2.12.) 

EXERCISE 3.28. In the function space (Vo~ V ) let
1 

n{[Xi • Yi]1 i<nl 

be a (non-empty) neighbourhood. In 3.9 the minimal element of 

this neighbourhood is characterized as a relation fa. Show that 

as an elementwise mapping it can be defined by the formula 

fO(x) • U {tYi I xE [\]l. 

forxEIVOI. Try to draw a picture of IVaI with neighbourhoods 

[X.] and the corresponding values of the function £0' 
1 
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LECTURE IV 

FIXED POINTS AND RECURSION 

Having at this point a large supply of examples of domains 

(and further constructs of new domains), we now have to consider 

some other ways of defining functions - other than by explicit 

compositions of the very basic functions already mentioned. One 

of the most frui tful techniques is an infinitely iterated compos­

i ticn that is at the back of the idea of recursion. We will use 

the process over and over again in these lectures J not only to 

define new functions but also to define new domains. The heart 

of the matter lies in the so-called "Fixed-point Theorem": 

THEOREM 4.1. For any approximable mapping f: V ... V on any domain, 

there exists a teast element x E IV I where 

f(x) • x. 

Proof: Let £n for n E :N stand for the n - fold composition of 

f with itself. That ~s. 

o
f '" IV' and 

fn+l"'fofn • 

Define 

x = IX E V !:J.fnX, for some nE:N}. 

We see XE x iff there is a finite sequence !:J. '" XO' X1 ' •.• , X "'x ""here n 
Xi f X holds for all i < n. Now since !:J. f!:J. automaticallyi +l 
holds, a sequence for an XE X can always be extended to a longer 

sequence just by adding more !:J.'s on the front. 

We want to prove x E IV I. Clearly !:J.Ex;and if X£.Y and XEx. 

then YEx. All that remains to be shoW'll is the closure of x under 

intersection. Note that if 

U f V and U' f V • 

hold and U, U' are consistent in V, then V and V' are consistent and 



52 

(U 0 U • 1 f (V 0 V' 1 

must hold. Generalizing this to sequences, if 

A· X f X1 f f X = X, ando n 

A· Yo f Y1 f f Y
n

• Y 

both hold (and note we have arranged the lengths o£ the two 
sequences to be equal). then each pair Xi'Yi is consistent and we have 

A= (X 0 Yo) f (X1 0 Yi) f··· f(X 0 Y ) = XOY. o n n 

This establishes the desired closure. 

We also note that if XEX and XfY then VEx. Therefore. f(x)s:x and 

indeed by its very construction x is the least element of 101 with 

this property. (Why?) But f is monotone, so f(f(x)) 5: f(x); 

hence. x"'f(x). By what we have already said it must be the 

least such element. 0 

Because the element we have shown to exist in 4.1 is a 

least element, it is unique. That is, we have associated with 

each f: '0 .. '0 a special element XfE 1'01 determined by the choice 

of f. A function has therefore been defined mapping the set 

I V .... VI into I.VI. The next result shows that this function, 

or operator on functions, is in fact approximable. 

THEOREM 4.2. For any domain V, there is an approximable mapping 

fi. : (V ~ V) ~ V 

such that if f: V ... V is any approximable mapping~ then 

(il fh (fl' f (fl. (f)). 

Furthermore, ifxEIVI, then 

(iii f(x) s; x implies fh(f) s; x. 

And this last property implies that fix is unique. Explicitly .....e 
can characterize f1x by the equation: 

(iii) fh (f)' 0 fn(J.) • 
n"'O 

for all f:V ... V. 
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Proof: Formula (iii) can be put in a more elementary form: 

fix (f) '" {X I tt.fnX, for some nE ~}. 

To show an elementwise mapping approximable we can use the formula 

of Exercise 2.9" applied to the above as the defini ticD of fi x: 

(.) fix (f) = UlfiX (tF) I fE [F]). 

where F ranges over the neighbourhoods of (V ~ P). and where 
tF can be considered to be the least element of F as calculated 

in 3.9. 

Now from the definition of fix, it is clear that whenever 

fs;:g, then fix (f);: fix (gl. because f"Sgn, (That is, fix is 

obViously monotone.) Next. if f e F J then tF is a (finite) 

approximation to fj so tF;: f and fix (tF)S fix (f). This 

means that half of equation (III) already holds by monotonicity. 

All that is left is to prove the other half. 

50 suppose xe fix (f) • Then, as we have already remarked, 

there is a finite sequence of neighbourhoods where 

tl. ~ X f X, ••• X _, f X • X. 
o n n 

Let the function-space neighbourhood be defined as 

F ~ nUXi' Xi +,] I i< n). 

and note that since f E[F]we have at once consistency. But, by 

3.9, tFE[F), so the 8ame sequence of Xi is sufficient to show that 

XEfix (+F). 

In other words, if X belongs to the left-hand side of (-), it also 

belongs to the right-hand side. This completes the proof of (-). 

Formula (i) is just a restatement of what we proved in 4.1. 

And (ii) follows easily, because f(x) s x implies that .6.E x and 

whenever XEx and XfY, then YEx. Thus, by induction, if 

.t.. f n X, then Xex. So fix (f) s: x. 

Finally, if 'fax: (V ... V) ... V were any other operator satisfying 

(i) and (ii), we 'Would prove at once that 

f 1 x (f) S; fax (f) and 
f ax (f) S; fix (f). 

That is to say. the two operators are identical. 0 
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The reader may have noticed that we used recursion in the 

proof of 4.1 (we had to define fn for all n E }i ) • But 4.' and 

4.2 can be used to justify definitions by recursion on a large 
number of domains - definitions where the process of iteration 

is far from being as straightforward. In discussing this point, 

let us start with some basic examples. 

EXAMPLE 4.3. The infinite generalization of our original example 

1.2 is the system 

N = {{n}1 nE rn U {IN}. 

The total elements are clearly in a one-one correspondence with 
the integers in }oJ. We can apply the construction of Exercise 

3.16	 to obtain a domain
 

F ;:: NOD
 

So we already know quite a bit about this domain - but it has a 

much more familiar presentation. 

Let 4J be the set of all finite partial functions <P s: }J x }J
 

(that is, finite sets of ordered pairs of integers where, if
 

(n. m) E'll and (n J m' ) E <P, then m:::: m' ). Define
 

t<p= {w E 4> !<PSiW}.
 

Consider the neighbourhood system 

F' =(t<p I <pE4>). 

It is an easy exercise to show that F and f' are isomorphic 

and that the elements of these domains correspond exactly to 

the (possibly infinite) partial fWICtions n S}J x}J. Moreover, 

the totaZ elements just correspond to the total functions 

""t: }J ..,N ("function" in the ordinary, set-theoretical sense of 

the word). 

Another easy exercise is to show that the domains 

Fand(N~N) 

by our definitions are NOT isomorphic; though the two domains
 

are closely related. We can define a mapping
 



55 

val FxN-+N 

by the relationship 

t",U{n} val {m} iff (n,m)E",. 

(Of course val has to relate other neighbourhoods such as: 

te,pu·)lJval lN, 

but these are a11.) It is then simple to prove that if nE IFI 

is regarded as a partial function n: :IN -+ IN and if for n E::N we 

define fie INI by 

!l ={ {n}, IN}, 

then we have 

.-.... 
val (n, til	 n(n). if n is defined at n; 

ON}, otherwise. 

(Remember that ON} E INI is the "undefined" element.) 

This means that 

curry (val): F -+ (N-+N) 

is a one-one function on elements. (The rather slight trouble with 

(N-+N) is that it hasmol'eelements than F.) 

So much for the construction of F, we now wish to consider 
mappings 

f:F ... F 

and their uses. Consider the possibility 

f	 (n) (n) 0, if n = 0 ;
 

n(n-1) +n-1, if n>O.
 

If n were a total function, then f (n) would be total. But if n 

is partial, and if it is, say, undefined at k, then fen) becomes 

undefined at k + 1. Note that fen) is always defined at O. Note, 

too, that f is an approximable mapping because it is completely 

determined by what it does to finite (partial) functions. Indeed, 

fen) = UU(",) I ",s;n }, 



56 

where ~ ranges over ~. 

Well, we have proved that every approximable map of a domain 

into itself has a (least) fixed point. What is the least fixed 
point of this f? Suppose a '" f(o). Then 0(0) = O. and 

0(n+1) f(o)(n+l) 

o(n) +n. 

By induction, then 

o(n) = L i 
i<n 

and 0" is a total function. (Therefore. f has a un-ique fixed point.) 

Actually, we can make the procedure mOTe systematic by defining 

as fixed points elements of (N -.14) rather than F. In the first 

place we have 6 E 1141, and from now on we will not distinguish 

between nand n. Next we have two mappings: 

succ, pred : f,j ... N 

where, as approximable mappings we have 

x suec Y iff 3 n e :N. n e X and n + 1 E Y. 

X pred Y iff 3nE:N. n+1EX and nEY. 

fOT all X, ye N. This is correct • but what we mean in more under­

standable terms is: 

suee (n) :: n + 1; 

pred (n) :: n - 1, if n > 0; 

.1. • if n:: O. 

Here, n has been identified with fie INI and .1.:: ON } e IN!. More­

over, we have a mapping 

zero: N-+T 

which is such that 

zero(n) true, if n:: 0 ; 

false, if n > O. 

The stl'uctured dom:z:in 

(N. O. suec. pred. zero> 
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can be called liTHE domain of integers" for our present theorye 

We shall meet many other structured domains in the sequel. 

Now the iterated summation function a can be completely 
characterized - as a map a: loS ... f.J rather than as an element 

a elF I - by the following equation: 

o(n) = cond (2Oro(n). 0.0 (pred(n)) + pred(n)). 

The only problem is that we have not defined + : Ii x Ii + N. (A 

direct definition is left to the readerj general remarks are given 
later.) But + could be any function of two variables in order to 
make the point about the form of the definition of a. Remember 

cond : T x loS x f.J -+ foJ, 

as defined in Exercise 3.26. We do not put cond in as part of 

the structure of Ii because (as should be clear from 3.26) it is 

part of the structure of T. 

The above equation for a is properly called a fwtctional 

equation; it will be written as a fixed-point equation in Lecture V 

when we have the notation for the>.. - calculus. 0 

EXAMPLE 4.4. The domain C of finite or infinite binary sequences 

mentioned in Exercise 2.21 may be regarded as a generalization of 

N. This can be made plain by saying how we wish to regard C as a 

structured domain. To do this we should recall what C is as a 

neighbourhood syst.em. In the first place 

B • {a I 'It laEI'It} 

wheTe I = {O.1}. To form the system C we have 

C-BU ((a)loEl:·j. 

The total elements of B correspond to infinite binary sequences; 

while the total elements of C to finite or infinite sequences. 

To simplify notation let us write for oE I'lt 

0= Hal (a total element); 

a .l = to I'lt (a partial element). 
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In other words we identify c with the corresponding total element 

in I CI. 

We wish now to think of C as a structured domain seen as
 
a kind of generalization of W. The empty sequence A will play
 

the rOle of De INI; the map succ has two different analogues
 

for C J however. Just as for 8 we define for x E I C I and a E 1:" :
 

a x :: {Y , 0' X .s i' some XEx} , 

where of course now X and Y range over C. It should be checked
 
tha t O't' has the right meaning whether we think of 'te1:* or
 

't E I C I. The two "successoru mappings we are looking for are
 

x I-+Ox and x 1-+ 1 x. 

All the maps x I-+ax can be obtained as compositions of these
 

iterated as many times as needed.
 

Here are two questions which we now shOUld ask: 

What plays the role of pred? The mapping wil1 be called 
tail, and it is characterized by:. 

tan (Ox) • x, 
tan (1x) • x, and 

tan (A) - .L. 

It is left to the reader to show that tail exists as an approxi­
mable mapping. 

What plays the role of zero? The answer is not unique. because 
in C there are several distinctions that have to be made; in fact 
we will define three maps: 

empty. zero, one:C .. r 

where the three maps take on truth-values to distinguish various 
kinds of elements in ICI as follows: 
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~mpty (A) = true 1 

empty (Ox) '" fa 15 e, 

empty (1 x) = false, 

ze ro (A) = false 

zero (Ox) :: true 

ze ro (' x) = fa 1se 

one ( A ) = false 

one (Ox) = false 

one (1 x) '" true. 

Again, it is an exercise to show these are approximable. The 

structured domain is therefore 

(e,A,o. 1, tail. empty. zero, one). 

Note that we have changed the meaning of some of the symbols in 

passing from N to C. Note too that there is a confusion between 

o as an element and 0 as the map x j-+ 0 x. There are just too few 

symbols: In any case this is only an example and not a philosophy 

of life. so the reader can be expected not to suffer too much. 

An example of a definition of an element of lei by a fixed­

point equation is: 

a '" 0 1 a. 

This equation has one and only one solution in ICI. the infinite 

sequence that alt:.ernates 0'5 and 1'5. Note that a is also 

characterized by: 

a '" 0101a. 

Another element is 

b=010b. 

which is quite different from a. 

An example of amap in IC ... C I has the characterization 

d( A) A 

d(Ox) OOd(x) I and 

de1 x) 11d(x). 

We can write: 
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d(x) :	 cond (empty (x), A, 

cond (zero(x), OOd(tail (x)) , 11d(tail(x)))). 

As we shall see in due course. this can be regarded as a fixed­


point definition of d.
 

An example of a map in ICxC ... CI was suggested in 2.21.
 

We can wTi te:
 

x y::	 cond (empty (x). Y. 

cond (zero (x), O(tail(x) y), 1 (tail (x) y))). 

It should be checked that this equation exactly characterizes
 
the intended mapping. 0
 

The examples we have given wi th Nand C are examples of de­

finitions of functions by recursion. The literal meaning of 

"recursion" is "running backwards" J and a look at the equations 

for our examples will show that the functions are characterized 

by giving their values either outright (e.g. at 0 OT at A) or at 

earlier arguments (e.g. at pred(x) or at tail (x)). The reader 

should keep in mind that a recursive "definition" is not really 

a definition in the sense of explicit definition but rather is a 

characterization; a theorem has to be proved to show that such 

functions exist. Now we have a general definition of domain and 

a general theorem on fixed points and a general construction of 

function-space domainj THEREFORE. we know that there are solutions 

to our equations PROVIDED THAT the variables range over elements 

of a domain and that the other, given functions that appear in 

the equations are already known to be approximable (continuous). 

This proviso is very important. and we shall remark on it time 

after time. 

But. as is well known. recursion also can be done over eete 

like ll. and we shOUld examine now the connection between the 

familiar kind of recursion and what we are doing over domains. 

Of course. one simple connection is already provided by the 

way we regard :N as a subset of N. But there are other useful 

connections that can be employed in a way that may seem more direct. 
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DEFIIUTION 4.5. A structured set <l'J,O) + > where De:N andJ 

+::N ... lN is a unary function. is said to be a mode1.fOl'Pea:no's 

Axioms if the following conditions are satisfied: 

(i) 0 '* nolo. for all n E :N ; 

(ii) n+ ::m+ implies n "'m, for all n, mE :N i 

(iii) whenever xs::N and Qe x and x+ ~x. then x = tJ. 

Here x+"'{n+lnExL 0 

Clause (iii) is recognized as the principle of ~ 

~ stated in terms of sets. We usually think of :N as 

being "God given", and (i) - (iii) as known without question. 

Suppose God, however. decides to withdraw His set of integers 
and substitute another. We can ask: "Oh: Why did You take from 

us our beloved numbers? Why must we now live with these- strange 

new beasts?" God will probably reply "Trust Me:" Perhaps 'We 

should in view of the theorem: 

THEOREM 4.6. All models of Peano's Axioms are isomorphic. 

Proof: There are several ways to give the proof. but, for 

the sake of illustration, an application of the fixed-point theorem 

is appropriate here. Let <IN. 0, + > be one model. and let df, 0.# > 

be another. Let ~ )( M be the ordinary cartesian product of the 

two sets and let 

P(NxM) 

be the powerset (s et of all subsets) of ~ x }.f. As in Exercises 

1.15 and 2.20, we regard this set of elements as a domain, whose 

finite elements are just the finite subsets of the given set 

~ )( }of. The following mapping on us: 1N x Ill: is easily proved 

approximable 

Iu f-o«(O. O)} U ((n • ,Dl)# (n, rn) E U 1. 

(This assertion shOUld be checked as an exercise.) We thus let 

r be the (least) fixed pOint: 

r={(O, O)} u ((n·,m#) I (n,m)Er). 
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This r~lN' )(:M as a binary relation will tUTn out to be a one-one 

correspondence giving the required isomorphism. 

First of all we see by construction that 

( i) OrO; 

( ii) nrm implies n+rm#. 

So, if r proves to be a one-one correspondence. it will then be 

the desired isomorphism. Now, the two sets shown in the equation 

((0,0)) n ((n
+ 

,m 
# 

) I (n,m) Er} : ~ 

are disjoint by virtue of axiom 4.5(i). Therefore. 0 in m 

corresponds by r to one and only one element of }.f • namely the 

element O. Let x S :N be the set of all elements of :N corres­

ponding by r to a unique element of )1. We have just shown 

oEx. Suppose n E x, and let mE:M be the unique element with 
+ # + nrm. Now n rm holds, so n corresponds to at least one 

element of :M. If n+rl< also holds. then since (n+, k) *- (0,0), 

the fixed-point equation implies 

n + = n + and k = m:# a a 
for some (nO,m ) E r. By axiom 4.5{ii) I n = nO' and, by uniquenessO

(remember n EX), m = m j thus, m# is the unique correspondent fo .....


O
n+. We have proved n+E:.. Therefore, x+o;; x; so by 4.5(iii), 

x =:}oJ holds. Otherwise said, every element in:N corresponds to 

a unique element of }.f. 

Note that the roles of :N and M are completely symmetric, 

and they satisfy the same axioms as structured sets. It follows, 

then, that every element of :M corresponds to a unique element of 

:tJ. The proof that r is a one-one correspondent~ is now complete. 0 

EXERCISES 

EXERCISE 4.7. Formula 4.2(iii) shows how to find the Least 

fixed point of f : V ... V. Suppose on the other hand that a e IV I 

is such that asf(a). Will there be a fixed point x==f(x) with 

as x1 
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(Hint: How do we know 0 fnCa) E IV I 1)
n=O 

EXERCISE 4.8. Suppose f: V ... V and S<;: IVI are such that 

(i) 1 E S 

(ii) xE S always implies f(x) E S; 

(iii) whenever {xn}n:O S Sand x S x + 1 n n 

fOT all n, then I ""I xES.
}In n 

Conclude that fi x (f) E S. (This could he called the principle of 

fi:J:ed-poi'Ylt inductio11.) Apply the method to a set of the form 

s • (x E I V I a(x) : h(x)), 

where a, b :0 ... 0 are approximable, and where we know a(l) = bel). 

and f" a = a .. f and fob:. b " f. 

EXERCISE 4.9. Show that there is an approximable operator 

'" : ((V _ Vj_ V) - ((V - V) _ V) 

such that for El: (0 ... V) ... V and f: V ... V we have 

'" (8) (f) : f (8 ( f)) . 

Prove further that fix: (D ... 0) -+ V is the least fixed point of '1'. 
~ 

EXERCISE 4.10. Given a domain V and an element aE lVI, construct 

a domain Va where 

IVai: (XE IVII x sa). 

Show that if f: V -0 is approximable, then f can be restri~ted 

to an approximable map ft : Vfix (f) ... V (f) where f' (x) =f(x)fix 

for all xE IV fix (f)1. 

How many fixed points does ft have in IDfix (f) \1 
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EXERCISE	 4.11. (Suggested by G. Plotkin). We can regard 

fix as assigning a fixed-point operator to each domain V. 

Show that fix is uniquely determined by the following general 

condi hons on an assignment V I~ F :V
 

(il FV : (V~V) ~v ;
 
(E) FV(f)=f(FV(f)) foral1f:V~V; 

(iii) whenever fa: DO'" DO and £, : D, -+ 0, aTe given and 

h : DO -+D, is such that h(l) '" 1. and h .. fa = £," h, then 

h(FV (foll=FV (f,l. 
o 1 

(Hint: Apply 4.7 to prove fix satisfies (iii). In the other 

direction use 4.10.) 

EXERCISE	 4.12. Need an approximable f: V-+D have a rTnrimum fixed 

point? Give an example where there are many fixed points. 

EXERCiSE	 4.13. The proof of 4.1 uses the integers, whereas the 

proof of	 4.6 uses 4.1. There is a hint of cirCUlarity here! It 

can be eliminated by the following steps: 

(1) ,!.! a domain V has an element a where, for f: V .... V the 

relation £(a) sa holds, ~ the least fixed point can be defined by 

fix(f)=	 nlxEIVI I f(x),;x). 

Note that fix(f) =:a. (Hint: Remark that by 1.17 the formula 

gives a well-defined element. Call the element b. Prove that 

feb) sb by showing that feb) c:x whenever f(x) c;:x. Then note 

that f(f(b)),; feb) so that b,; f(b) also. Conclude b = fix(f) 

as least	 fixed point.) 

(2) Remark that this proof uses only the mono tonIcIty property 

off: IV I .... I VI. Remark. too J that (1) can always be appl ied to power­

set domains P A for any set A. 

0) Review the proof of 4.6 and establish by a fixed-point 

method that for any structured set (Z, z.-) there is a unique function 

s	 : :N ... Z such that 

(i] 5(0) = 2; 

(ii) s(n+) '" s(n)-. for nE}l. 

(4) Employ (3) for the proof of 4.1 by identifying (Z,z, 0). 
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EXERCISE 4.14. Need amonotone function f P-,\ ... PAalways have 

a maximum fixed point? 

EXERCISE 4.15. (For set theorists.) Let f: I V 1 ... 1 VI be a 

monotone function on (the elements of) a domain. Shaw that f 

has a maximal. fixed point (i. e. a fixed point that cannot be ex­

tended 

ctlnsider 

to 

a 

a 

m

larger 

aximal 

fixed point). 

chain 

(Hint: By Zorn's Lemma 

Cs{x E IVII xsf(x)} 

and use 

least f
~ 

2.11 

ixed point. 

to remark that UCE IVI.) No\<,' argue that f has a 

EXERClS:: 4.16. (For fixed-point nuts). Show that a monotone 

function as in 4.15 has an "optimal" fixed po-int in the sense that it 

is the greatest fixed point below all the maximal fixed points and 

at the same time it is the largest fixed point consistent with all 
other fixed poin 'ts. Consistency for sets of eZements means having a 
common upper bound. (Hint: Follow these steps: 

(1) Show t.hat any non-empty set 5 of fixed points has a 

largest fixed point ~~ by using the formula

fCnS) n ss 

and finding the least fixed point over ns. 
(2) Letting a be the fixed point, of (1) constructed from the 

set of maximal fixed points, remark that a is consistent with any 

other fixed point. x=. f(x), since x can be extended to a maximal one. 

Suppose b is consistent with all fixed points, then bSY if Y 

is maximal. (Why?).) 

EXERCISE 4.17. (For algebraists). Suppose <5,1,,> is a semi­

group with unit (sometimes called amonoid). Remark that PS is 

a domain. For a .... b E 5, what is the least x E P S such that 

x={1} u {a.b}Ux.x. 

where in general for x. Y.5. 5 

x • y =. (t . II \ t E X and u E y }? 

Need the fixed point be unique? 
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EXERCISE 4.16. In Example 4.3 there are many unproved assertions 

about Nand F. These should be checked. In part icular, the isomor­

phism theorem of 4.6 could be proved by constructing a simple domain 

M from ~f in the way N is constructed from :IN • 

EXERCISE 4.19. There are many unproved assertions in Example 4.4 I 

In particular discuss "Peano's Axioms" for {D.n .... Show, moreover, 

that one: C ~ T can be defined from the rest of the structure by a 

fixed-point equation. 

EXERCISE 4.20. For approximable £, g :D-+V prove that 

fi, (f.g) = f(fi«g.f)). 

EXERCISE 4.21. Show that the less-than-or-equal-to relation 
t S:N x:tJ is uniquely determined by the fixed point equation 

t={(n,n) I nElN) U ((n,m+) l(n,m)Et). 

Consider the structured set <PlN, IN J + > where, as before, 

x+={n+lnExL 

What is the unique function [oJ::N ... PlNgiven by 4.13(3)7 Prove 

that tile structures < N.O,+> and <[mJ,m,+> are uniquely isomorphic 

for each mE i'l. and connect the isomorphism with ordinary addition 

of integers. Can the same be done for multiplication? (Hint: 

Consider the fixed-point equation: 

n·:N:: CO} U {n+m!mEn.:N}. 

where n E:N is fixed.) 

•EXERCISE 4.22. Suppose:N is a structured set satisfying only
•axioms (i) and (li) of 4.5. Must there be a subset :N S:N that 

satisfies (i), (li), and (iii)? (Hint: Use a least fixed point 

in P ~ •• ) (For set theorists): How do we know from the axioms 
•of set theory that there exists such a set :N 7 
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EXERCISE 4.23. (Suggested by S. Eilenberg). Suppose f : V .. V 

is approximable on a given domain V. Suppose a : V -+ V is a 
n 

sequence of approximable maps where 

(i) aO(x) =.1:, for all xE 'VI; 

(ii) ansan+1 in '0"'0, for all nE:N 

(iii) oa .. 1V in V -+ V 
n

TI"'Q 

(iv) a +1o f = a + 1 cfoan' for all n E:N • n n 

Prove that f has aunique fixed point. (Hint: Show that if x = f(x). 

then an(x) s;an(fix(f)) fer all nE :Nby induction on n.) 

EXERCISE 4.24. (For set theorists). Let f: A ... B and g: S .. A 

be one-one functions (into) not necessarily onto:) Prove the 

Schroeder - Bernstein theorem to the effect that there exists a one­

one correspondence h : A-B. (Hint: (Suggested by A. Tarski). 

By the fixed-pain t theorem find X £ A where 

X= (A- geE)} u g(f(X)) 

where f(X) '" the image of the set f under the function f. Define 

h !: A x B as a union of two restrictions: 

h = fIX u g - 11 (A - X) . 

A picture helps.) 

EXERCISE 4.25. Perhaps the domains Nand C are not exactly 

analogous? C was based on {O.1} as the underlying set of tokens. 

Construct a system C based on {1}* ('" finite strings of 1 1 s)1 
wi th neighbourhoods: 

C
1

= {(1 m I m;'n) I nE N} U {{1 n } I nE N}. 

What st~ucture should be put on C strictly analogous to that on
1 

C (=C 
2
)? What kinds of approximable maps relate N.C 1• and C2? 

Draw some pictures. 
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LECTURE V 

TYPED >. - CALCULUS 

In Examples 4.3 and 4.4. after suitable domains have been 

constructed, functions are characterized by recursion equations 
whose form of expression is - basically - a composition or substi­

tution of known functions together .... ith the function to be defined. 

This method can be made mOTe precise and more easily usable by ex­

panding our nota tion for functions - particularly by inventing a 

"temporary" notation for a function as a thing in itself .... ithout 

having to have special letters for functions. The device is called 

). - abstraotion. It is related to ordinary set abstraction (the 

{x I···} - notation already much used in these lectures), but we 

gear the approach to domains and their elements, and especially 

to function spaces. 

At this stage it would not be so helpful to produce a rigor­

ously formal defini tion of the SYntax of the typed>' - calculus; 

we shall try to suggest what is needed by example. There are so 

many examples at hand. the less formal discussion ought to be 

sufficient. 

In the first place we should set aside. in the notational 

store room as it were. a stock of variables 

x, y, z. WI' •• 

These variables will be required in different "sizes" or "types". 

Roughly speaking there should be an infinite number of variables 

to range over the elements of ~ domain O. We could perhaps write 

v c V ... ,X-o ' x 1 ' x 2 • 

but the subscrip ts to insure an ir..finity of variables and the super_ 

scripts to record the typing of the variables lead to a notation as 
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tiresome to write as it is to read. We simply agree that we can 

have as many variables as we need and that they come in all the types. 

Strictly speaking we should also introduce type symbols and 

not confuse types with domains. But if the reader ~ill simply keep 

in mind that fOr'm in language has always to be kept distinct from 

content, the confusion at the type level will not matter so very 

much. A point at which the confusion might cause a Teal confusion 

concerns compound types. Given Va and V, we can form such com­

pounds as 

va + V" va x v" va.... v,. 

What has to be remembered is that a compound domain (neighbourhood 

system), Va x V, say, does not uniquely determine the "parts" 

Va and V1 ' (We could make it do 50. but it would cost some effort.) 

Of course, thesymbot "Va )( V
1

1! has well defined parts. The point 

is thatdifferent ways of forming a compound domain could lead to 

the same result, meaning that a domain does not let us retrace its 

exact history of construction. Compound symbols, ho~ever, always 

carry their histories around with them, since otherwise they would 

not be readable. What we want, of course, are both domain symbols 

and domains. the latter being the meanings of the former. Most of 

the time we can happily pretend that it is only the domains them­

selves we have to think about. 

Besides variables, we will also need certain constants. For 

instance, the symbol 0 (perhaps, better ON) denotes a certain 

element of INI. Similarly, in view of Theorem 4.2, for each domain 

V there is a well-determined eleme~t fix V of the compound type 

((V ... O) ... 0) denoting the least fixed-point operator. We have con­

sidered any number of similar constants of a great variety of types 

already (cf. 4.3 and 4.4; cond is an especially good one). l\"e can 

say that the variables and constants are atomic terms, where 

"a tomic" here means non-compound. 

To form compound terms, there are several means: for example, 

if T, .. ,,0 is a list of already obtained terms (including variables 

or constants), then we can form an ordered tupl.e 
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We have already done so in 3.'. If the types of "to •••• a are 

V •••• ,V' I respectively, then the type of the tuple is the product 

domain 

v x ••• x V ' 

because we intend that the tuple denote an element of this domain. 

(The tuple notat ion for functions as in 3.3 is being forgotten for 

the time being.) 

Next suppose that," has type (V O '" 01) and a has type V o' then 

the usual function-value notation 

"[ (0 ) 

is a compound term of type ° VJe also use1 , 

, (00' .... °n-1) 

as an abbreviation of 

"" «°0' ... ,on_1>). 

where, if the types of 00' ...• 0n_1 aTe Vo' •..• V _1 ' then the typen 
of , has to be of the form 

((V o )( ... x 0n_1) -t On) 

where On is the type of the compound. In this manner, ...;ith functions 

applied to tuples, we have the full facility of substitution into 

functions of many variables just by iterating the notation. 

Having taken into account function value J it remains to 

provide for func tion definition. Suppose that x •...• xn_,is a o 
list of distinct variables of types Do' ••• , 0n_1' Suppose further 

that" is a term no matter how complicated - of type On' Then 

we can regard" as defining a function of n - variables of type 

((DO < ••• < D _ ) ~Vn)' 
n 1

What we have not done is to reward our regard by. as yet, providing 

a quick-to-write "name" for that function. This we now do; it is 

called 

AX o,····Xn_1·" • 

where we stress that the Xi must be distinct variables and that this 
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expression deflotes the whoLe function. That is why we provide it
 

with a special symbol.
 

Here is an example of the J.. - notation
 

A x. y. x)
 

which is read "lambda ex wye •.. (pause) ... ex". If the types
 

of x and yare V 0 and 11 1 , then the type of the above is
 

((Vox V,) ~ Vo)· 

Indeed, we know this function very well: it is the first projection 

function Po of 3.3 and the equation 

Po = A x • y. x 

is true, as is the equation 

P, = AX.Y· y. 

In the notation of 3.3, we also find the true equation 

< f, g> = AW. <f(w), g(w) >, 

where on the right-hand side we are using "official" A - notation 

for a function of type 

(V ~ (V x V, )).
2 o 

The notation on the left is just an abbreviation and it should not 

be confused wi th the pair (2-tuple) of type 

((V ~ Vo)x (V ~ V,)).
2 2 

(Since the two domains just mentioned are isomorphic, the possible 

confusion is not all that serious. On the other hand, one con­

fusion we will completely overlook is that between 1-tuples <x> 

and elements x. Strictly speaking they are different. but we shall 

not bother to make the distinction.) 

Here are some other examples of true equations: 

eval = >.. f, x. f(x) (ef. 3.") 

curry = >..g>..x>..y. g(x,y) (cf. 3.12) 

The first should be immediately clear; while the second is particularly 

instructive. What is being illustrated is that the A - notation can 
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be iterated. The distinction being drawn is between 

A x 0" x •••• J x _ .. T and A X A x 1 ••• A x _r 'to
1 n 1 o n 

The fiTst has type 

(CVo x 01 x ••• x V _ ) -+ On)
n 1 

while the second has type 

(V - (V, ~ ( •.• (V _, ~Vn) "'))).o n

This is related also to the true equation 

curry (AX,y."t) =: AX>..y.1". 

which shows that there aTe operators relating to the two notations. 

The first is the mJ.ltival'iate form; the second is the curried form. 

Here is another true equation 

fix = fix (>.F >. f. f (F (f))), 

where the fix on the left has type « V -+ 0) -+ 0) and that on the 

right type 

((((V- V) ~ V) ~ ((V~V) ~ V)) ~((V~V) ~V)). 

This is the content of Exercise 4.9. (This also shows why type 

superscripts aTe tiresome.) 

The combina tion 

fix ( A x."t) 

occurs so often. that from time to time we abbreviate it as 

! x . T, 

but remember it only makes sense if x and 't have the 8ame type. 

For example in 4.3 we could have written 

0= I fAn. cond (zero (n). O. f (pred (n)) + pred (n)) 

and read this as 

"0 is the 1east (recursively defined) function f whose 

value at n is cond ( ... )." 

We note that in the so-called \od/ of the expression inside the 
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cand-part the variable f occurs again. That is j us! the point! 

This is a recursive definition; it is made into an expZicit defin­

ition by invoking the least fixed-point operator. 

In a A-expression, AX,Y, z.t, say, the variables x,y, z 

are being bound in -c; but"t may have other variables that are no­

where bound in "t and these remain free variables of the whole 

expression. Bound variables aTe dummy variables and may be re­

written by other variables; thus 

A x ."t >'y."t[y!x] 

is a true equation PROVIDED the variable y does not occur in t. 

In the equation the notation t[ y / x] means the result of substituting 

(rewriting) the variable y fOT the variable x throughout the term T. 

We can also write "t [0 I xl for substituting a whole term 0 for a 

variable in the other term. 

We have 0.1 ready spoken of "true equations" ~ but how do we 

know that these curious equations are meaningful at all? They are, 

but this is something that has to be proved. 

THEOREM 5.'. Every typed), - term t defines an approximable function 

of its free variables. 

Proof: We argue by an induction on the complexity of "; there 

will only be a few cases to consider since the "syntax" of ). - terms 

is limited even though terms can be of any length. 

If " is a variable or a constant there is nothing to prove. 

We already know that 

x I_X and x I-k 

are approximable functions. 

Suppose " has the form 

<00 , ••• , on -1 > • 

Then the o. a re less complex terms. and so we can assume - as our 
1 

induction hypothesis that they define approximable functions of 

the free variables. Having said this, we just apply the already 
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proved 3.4 to conclude (after a suitable generalization to the 

multivariate case) that T, which takes on tuples as values, also 

defines an approximable function. 

Next. suppose T has the form 

00 ( 01 J, 

where we are sure that the types of all the terms match properly. 

Again we can assume the 0i to be well behaved. But the values we 

seek can also be written as 

eva' (00 , ° 1), 

Since eval is approximable by 3.11, we just have to invoke an 

instance of 3.7 to gain the desired conclusion. 

Finally, suppose that T has the form 

A x . cr. 

By a judicious choice of the order of the variables in 0 (including 

x), we can assume that 0 defines an approximable function 

g:V x···)(O x V -+0'o n-1 n 

where V' is the type 6£ 0, P is the type of x. and Va • •••• 0n_1n 

are the types of the remaining free variables of o. Ke apply 3.12 

and obtain an approximable function 

curry (g) : V x •• • x V _ -+ (V -+ V ')~o n 1 n 

But. this is just exactly the function defined by T. 

We leave as an exercise the more general case of a term T of 

the form 

AX ' •••• xk _,. 0
O 

which has a string of bound variables. 0 

We can now say more precisely what it means to call 0 ="[ a 

"true equation". This means that. if we employ the method of the 

proof of 5.', the two terms define the same f'u.nation of the free 

variables. For example, 
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AX.,"Ay., [y/xl 

is true, provided y does not occur free in the term " 

since the systematic generation of the function defined by 

>.. X. "t does not depend on what the variable x ~ooks Uke but only 

on its position in the term.. Some other obviously desirable rules 

for generating true equations are stated in the exercises. But one 

rule is so basic that we state it here in full generality. 

THEOREM 5.2. For sui tably typed A - terms the folloft'ing equation is 

true: 

(;'\X O J •••• x n _ 1 ' .. ) (00' ••.• 0n_1) ::: .. (0-0/ x o •... , 0n_1 / x n _ 1 1. 

Proof: It will be sufficient to carry out the proof fOT n = 1. 

The proof proceeds by induction on the complexity 0 £ the term". In 

case "t is a constant k. the result reads 

(Ax.k)(a):k. 

and this is a true equation. 

In case .. is a variabLe (in particular, the variable x). 

the result reads 

(A x . x) ( a ) : a. 

and again this is a true equation. 

In case. is a tupLe (say, <·0 '.1 > the result reads 

(;'\x. <.0 ,., » (0) = <.0 [a/xl '.1 [a/x]> . 

This is true, because the left-hand side can be transformed by the 

true equation 

(>..x:.<.0'.1» (o)=«Ax·.o)(a), (Ax·.1) (O»i 

and then we apply the inductive assumption for .0 and for .1. 

In case. is an appLication. we want (supposing the term is 

'0 ('1)), 

(A'. '0 ('1) ) (a) : '0 [a / xl ('1 [a / xl) 

We can proceed as in the last case, noting that the left-hand side 

equal s 
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eval (()"X.<'t"O"1»(0)) 

In case '[ is anabst't'Qct (say, >..y. "["a). we want 

("x. "-y .'0)(0) ~"y.,o [o/xl 

PROVIDED the variable y is not free in c. For this we require 

the true equation 

(>.x."y.,) (0) ~"y. (I. x. ,) (0). 

We argue for this by letting g be the function of n + 2 free 

variables defined by •• Then, by 5.1. the ,),,-term ).x . .>..y .• 

defines the fonction curry (curry (g)) of n arguments. We can 

call this function h for the moment. We can write 

h (Y)( o)(y) • g(v, 0, y), 

where v is a ~ist of arguments. But, with an appropriate com­

binator inv, which applied to g inverts the order of the last 

two arguments, we can write 

h (Y)( a) (y) = curry (in. (g))(y,y)(o). 

But, curry (inv (g)) is just the function defined by p.. x .TJ. SO 

what we have proved as' true is 

(l.x.l.y.,) (o)(y)-(I.x.,) (0), 

But if Y is not free in a. and 

a(y)=a 

is true, then so is 

a=l.y.a 

This completes the proof. 0 

We note that if 't' is the term Ax,y.'t. then 't' (x.y) means 

the same as 'to This gives a convenient way of indicating free 

variables: we just write a (x,y) - where x, yare not free in 

o - and this will have the same values as any term .. which does 

involve the extra free variables x and y. We use this notational 

device in the next theorem. 
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PROPOSITION 5.3. The least fixed point of 

Ax,y. ,qex,Y), o(x,Y» 

is the pair with coordinates 

x . "t (x • ! Y .0 ex, y)) and 

y . a ( ! x. "t ex. y ) , y ) . 

Proof; (We are assuming that x and yare not free in "t and 

0.) The purpose of the fixed-point search is to find the least 

solution of the pair of equations 

X="t{x,Y) andy=o(x,Y)· 

In other words, we are generalizing the fixed-point equation fro~ 

Que to two variables - and, of course, we could go much further 

to any number of variables. To this end, let 

Y. = ! Y • a ( ! X. 't (x • y) , y), and 

x. = !x."t(x,y.). 

Then 

x.="t(x.,y.), 

and 

r.;: Oe!L. (X,y".), y.) 

o(x.,y.). 

This proves that <x.' y. > is one fixed-point pair. 

Suppose, then. that <x • YO> is the least solution. (Why does o 
a least solution have to exist? Hint: Consider a suitable mapping 

of type 

00 x 0, 1 00 x 0, , 

where 00 is the type of x and 0 the type of y.) Then we know
1
 

X = "t(xO' YO) and yo = o(xo'yo),
o 

and also xO~x.. and YOs:y ... But from 

"t (x ' yo) s;:x O' o 

it follows that 

x."t (x'Yo) s;: xO' 
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Consequently 

o(!x. -r (x. Yo), yo) ~o(;X:a'Yo) SY ' o 

By the fixed-point definition of YotE • we have Y.5O YO' so Y. = yo; 

whence, 

x.=!Xo.(x,y.J = !Xo"t(x,yo) S;:XO• 

So also x. = x . We have the right fo:rnrula for YO' and a similar argunent gi,ves 
o x ' 0O 

The purpose of giving the above proof was to illustrate the 

USe of the least- fixed-point operator in pI'oofs We have such true 

principles as: 

! x. ,(x) '" "te! x. "!(x)); 

and 

"t(Y) r.=yimplies ! x •• (x) s;: Y. 

provided. of course, that x is not free in"t. These, together with 

the monotonicity of all the functions. were just the methods used in 

the above proof. Here is another example. 

PROPOSITION 5.4. Let x. YJ and T(X, y) be of the same type V 

and let g be of type (V -+ 0). then the equation 

AX! y. -r(x, y) =1g>..x."t ex, g (x)) 

is true. 

Proof Let f be the function on the left-hand side. We 

can write 

f (x) ! y .• (x, y) .(x,f(x)). 

Therefore 

f, AX •• (x,f(x)), 

and it follows that 

go:= 19.).X•• (x,g(x)) Sf. 

Then we have at once, by definition of go' 

go (x) , • (x ,gO(x)), 

for any given x. But by definition of f ....'e find 

f(x)' !y.• (x,y) Sgo(x). 
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As this holds for all x. then f~go follows. So the equation 

is true. 0 

The last proof is instructive as it uses equations and in­

clusions between functions In particular we have just made use 

of the principle: 

if "[so holds for all values of x.
 

then AX. "[SAX. 0 holds.
 

This is another form of Theorem 3.13(i). 

TABLE 5.5. In the displayed table we give a summary of uses of the 
). - notation to define various combinators. We have mentioned some 

of these equations before. and there are some combinators here we 

have not mentioned before - their meanings, however, should be clear. 

Po=>..x.y.x
 

P, ).x,y. Y
:II< 

pair ). x ). y. <x. y> 

n-tuple "" ). x ). x, ... ). x _1 • <xO' x, •••.• x _,>o n n

diag >.. x. <X.X>
 

funpair AfAgAX. <f(x), g(x) >
 

prOji >.. Xo ')(1' ... J x n_1 . xi 

n 
i nv i. j AX Q• "0, Xi' •••• x j ' "0' xn _ 1 .<xo" .. ,x j •...• 

x i ····,x _1 >n

eval A f, x. f (x) 

curry >..g>"XAy. g(x.y) 

cemp Ag, fAx. g[f(x)) 

canst >.. k >.. x. k 

fix Af! x. f(x) 

A TABLE OF COMBINATORS 
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It is important to note that since we have not typed the 

variables. these equations aTe ambiguous: they only become pre­

cise when the types aTe specified. It follows, therefore, that 
what we find in the table are acheme8 for combinators; there 

are actually infinitely many distinct combinatOTS corresponding 

to anyone equation depending on how the variables have types 

chosen fOT them. Clearly it is better to imagine this variety 

of combinators than it is to try to notate them with type super­

scripts. 

One interest of combinators is that it is often possible to 
write expressions without variables - if enough combinators are 

used. This is sometimes useful. but it can become clumsy. On the 

other hand. if the same combination occurs over and over, it is 

sometimes useful to give it a name. This is what we do with, say, 

composition where 

comp (g. f) : g 0 f. 

On the one side we have the prefix notation, and on the other, 

the more common infix notation. With either notation the variable 

seen in AX. g(f(x)) has been got rid of. The choice between 

equivalent notations ought to be based on a desire for readability. 0 

The reader will have noted that there are Some combinators 

not appearing in Table 5.5. The reason is that combinators like 

cond, succ, pred ~ zero, 0 cannot be defined in the pure A-notation 

but are specific to domains like T and N; we. thus, have to regard 

them as primitive. But once they are in hand, a very large number 

of other functions can be defined from these combined with A­

expressions. The next theorem gives an indication of the possibil­

ities. 

THEOREM 5.6. For every partial recursive function h: }J .... tJ, there 

is a A - term 't of type (N .... N) such that the only constants occurr­

ing in 't are 

condo succ, pred, zero, 0 

and where if hen) = m. then 

't (n) = m 
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is true; and if h (n) is undefined, then 

"t (n) =.1 

is true, The equation "t (.1) =.1 is also true. 

Proof: We have only formulated the theorem for functions of 

one vanable - but to give the proof, it is convenient to pass 

through functions of any number of (integer) variables. We shall 

also have to recall the precise definition of the notion of 

partial recursive function. 

It is also convenient to work with(very)stri<:Jt functions 

f:Nk-+N. 

These are functions such that if nO' ...• TI k_1
E INI and TI =.1 fori 

at least one i < k. then 

f(n ' ... , n k_1) =.1.o 
It is easy to check that compositions of strict functions are 

strict. It is also easy to see that any partial, function 

g:lNk-+JJ 

extends to a strict (approximable) function 

- kg: N ~N 

which takes the same values as g as long as g is defined; other­

wise g takes the value.l. What we want to show for partial, recursive 

g is that the corresponding g is defined by a A - expression. 

In the first place we have to check that primi.t;ive recursive 

functions have A- definitions in this sense. We recall that 

primitive recursive functions are generated from certain elementary 

starting functions by multi-variate composition and the scheme of 

primitive recrusion. The starting functions are the constant 

function with value zero and the "identity" or "projection't 

functions. For example, gena, n" n 2 ) =n 1 for all nO' n" n 2 
E lJ 

is one of the starting functions. Now we cannot just use the A-term 

AX O 'X1 ,X 2 ·X, 

to represent g, because the function so defined is not strict. 

But any function in INk -+ N I can be cut down to a strict function 

by a simple device. Consider 
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}.. x. cand (zero (x),.x, x) 

with x of type /IJ. This is the strict version of the identity 

function of one argument. The strict projection function of two 

arguments can be defined by 

A X ,x," cand (zero(x1), X ,x ).o o o 

The one of three arguments by: 

A x O• x, • x 2 • cond (zero(.x ) ' cand (zero(x2 ). x • x ). cand (zeroo 1 1
ex

2). x,. x1 )). 

This is not done very elegantly, and the reader can find for him­

self a general solution based on perhaps a better notation for the 

required compositions of functions. 

As we remarked, strict functions are closed under substitution, 

and any substitution of a batch of functions into another function 

can be given by a >..- term, if the various functions can themselves 

be so defined. It only remains to ),,- define functions obtained by 

primitive recursion. Thus, suppose, for the sake of argument, that 

f : :N ... :N and g : ~ ... :N 

are given as total functions with f and g being A - definable. 

From them, we obtain by primitive recursion h: :N ... :N where 

h(O,m) • fern), 

h(n+1, m) '= g(n,ID.h(n,m)) 

for all n, mE ~. The A- term defining fi is 

!kAX,y. cond (zero(x),f(y),g(pred{x),y.k(pred(x),y))). 

Here we have had to use the fixed-point operator on a variable k 
2of type (N ... N). The variables x, yare of type N and the cond ­

construction puts the two traditional equations into two clauses 

of one expression. It is easy to see that the fixed-point function 

i8 strict and is nothing more than h. 

That completes the representation of ~ recursive 

functions. To obtain the ~ recursive functions, the idea 

is to use the so-called lJ.-scheme (least number operator) and, 

further, to close up under substitution. We need only treat the 

lJ.-scheme. Suppose, by way of example, f(n,m) is given as a 
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primitive recursive function. We then define h (generally, a 

partial function) by 

hem) '" the least n where f(n.m) = O. 

This is often wri tten 

hem) '" '\.In. f(n,m) :: O. 

Supposing, as we may, tis ),,- definable, we introduce first 

g~! gAX, y. cand (zera (f(x,y)), x, g (succ(x), y)). 

Then h=>..y. g(O,y). This is easily seen to be strict. Also easy 

to see is that if hem) is defined, then g(O.m) = h(m). But, if hem) 

is not defined, it takes some argument to make sure that the least 

fixed-point construction forces g(O,m) = 1. However, the argument 

is not very difficult. 0 

What is not said in 5.6 is that every)" - term defines a 

partial recursive function. This is true (with suitable control 

over the constants and types in the expression). but the proof 
requires a full analys,is of computability properties of domain 
constructions. This is the topic of Lecture VII. 

It should be remarked that the types of variables needed for 
the proof of 5.6 never get very high. In fact, types like N, NkJand 

(Nk .... N) were the only ones needed (with perhaps T thrown in also). 

Recurs ion on N was the topic of 5.6; further examples of 
recursion on other domains are included in the exercises. 

EXERCISES 

EXERCISE 5.7. Find definitions of 

)" x,y •• and a (x,y) 

which use only)" v with one variable and applications only to 
one argument at a time. Note that use must be made of the com­

binators PO' Pl' pair. Generalize the result to functions of 
many variables. 
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EXERCISE 5.8. (For combinator nuts.) Table 5.5 was meant 

to show how comb inators could be defined in terms of A. - expres­

sions. Can the tables be turned to show that with enough 

combinatoTs avai lable, every A. - expression can be defined by 

combining combinatoTsJusing 0(.) as the ~nll mode of combination? 

EXERCISE 5.9. Suppose that i, g : V... V aTe approximable and f., g '"
 

go f. Show that f and g have a le.astcommon fixed point x=f(x)"'g(x).
 

(Hint: Refer back to Exercise 4.20) If in addition f(l.) = g(.1).
 

sho ..... that fix (f) = fix (g). In particular will fix ef) = fix(f 2)?
 

What if we only assume f., g = &2., f?
 

EXERCISE 5.10. Suppose Va and 0, are neighbourhood systems 

over disjoint Sets AO and A" Define the 81Ttlsh product V 0 @ V1 

..... ith neighbourhoods 

{~o u ~,} u {X U Y I X E VOl {AO} and ye V" {"',}). 

Show that this is a neighbourhood system. Define (VO ... .L V ) so
1

that IVO ... .i °11 consists exactly of the strict functions. By intro­

ducing appropriate combinators, show that 

(Vo~~ (V,~~ V2)) and ((VO@V,)~~V2) 

are isomorphic. 

EXERCISE 5.11. For any domain 0 we may regard v<O as consisting 

of (bottomless) s'tacks of elements of V. With this image in 

mind. define appropriate comb ina tors wi th the obvious meanings: 

head v<O ... 0 , 

ta il : v<O ... v<O; 

push : o x 0"" ... 0<0. 

Using the fixed-point theorem argue that there is a combinator 

diag: 0.0"" 

where for all x E I V I we have 

didg(X) "'" <x>n:o' 
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(Hint: Try a recursive definition. say 

diag(x) = push (x, diag(x)), 

but be sure to proveatt terms of diag(x) equal x.) Also intro­

duce by an appropriate recursion a combinator 

map: (D -+ V)""')(V -+ p"" 

where for elements of the suitable types: 

map «£n>n:O' xl '" <fn(x»n:O' 

EXERCISE 5.12. On any domain V introduce(as a least fixed point) 

a combinator 

wh il e (V ~ T) x (V ~ V) ~ (V ~ V) 

by the recursion 

wh i I e (p, f) (x) = con d (p (x), whil e (p, f) (f (x)) , x ) • 

Prove that 

while (p, while (p,f)) = while (p,f). 

Show how while could have been used to obtain the least number 

operator mentioned in the proof of 5.6. Generalize the idea to 

define a combinator 

find V- x (V ~ T) ~ V 

wi th the meaning "find the fiTS t term of the sequence (if any) 

which satisfies the given precicate." 

EXERCIS£ 5.13. Prove the existence of a one-one function 

num : :IN x :IN .... :IN such that 

num (0,0) '" ° 
num (n,m+1) num(n-+1,m) + 1 ~ 

num (n+1.0) num(O,n) + 1. 

Draw a picture (i.e. an infinite matrix) for the function and 

find a closed form for its values. if possible. Use the function 

to prove the isomorphism of the domains 

P 1'1 ,P(JN x IN), P :Nx P :N. 
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EXERCISE 5.14. Show that there are approximable mappings 

graph ( P:N -+ P:N) -+ P]Ii and 

fun PIN ~ (PIN ~ PJNl. 

where we have 

fun graph'" A f. £, and0 

graph fun? AX. x.0 

(~int: Using the notation 

[no' 0" .... ok] = num(no,[n" .... ilk]) 

two such combinators can be given by formulae 

fun(u)(x):::: {mI3n ,o ••• nk _,Ex.fn +1, •.• ,n _,.1,O,rn]Eu}o o k 

graph(f) = {[no+1,••. ,nk_'+',O,mJ[mEf({no •••• ,nk_1}) J, 

where k is variable - meaning all finite sequences are to be 

considered.) 

•EXERCISE 5.15. (For algebraists.) We can regard < {O , 1} , A, • > 

as the free semigroup on two generators 0 and 1. The powerset 

P{O,1}- is taken as a domain as in Exercise 4.17. For "words"
•eE {O,n define 

• 2 3 n 
e {A, e, e , e , ... , e , ... }. 

Show that the leas! fixed point of 

z:{e).ZUCe') 

in p{O,n • is z: e •. {e'l. Show further (as suggested by David 

Park) that the least solution of 

X :a·xU b·yu c 

y"'b·xua·yud 

has 

x"'(aub-a·b) (cub·a·dL 

where the {.} has been dropped off {a}. {b} etc., and where
•the -notation has been extended to the whole domain, so that 

z:Auz·z. 

(Hint: Apply 5.3.) 
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EXERCISE 5.16. Return to the discussion of Example 4.4 and 

the construction of the domain of finite and infinite binary 
sequences. Give a fixed-point definition of neg: C -+C. where 

neg (Ox) 1 neg (x); 

neg (1x) Oneg (x). 

Prove that neg (neg (x) ) '" x for all x E Ie I. Also define 

merge: C xC .... C. where for E. 6 E {O, 1} we have: 

merge (E X, 5 y) = E 5 merge (x,y). 

(Note: There may be a little trouble 'With merge (x,Y) when x 

is finite and total and y is infinite - you have to decide what 

yo~ want in e.g. merge (A,Y).) Prove that 

merge (x,x) '" d (x) , 

in the notation of 4.4. Consider also the infinite non-periodic 

sequence 

t·O merge (neg(t), tail (t)). 

Prove that the nth digit of t is the sum mod 2 of the digits 

of the number n written in the binary scale (a suggestion of 

J. Lambek). Show also that t -+ u a a a v where a is any fini te 

sequence *" A, and where u is fini te. 
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LECTURE VI 

INTRODUCTION TO DOMAIN EQUATIONS 

The maj or reason for introducing the theory of domains is 

to have a notion of computabi1.ity incorporating both finite and 

infinite elements. In our many examples already explored 'fie 

have seen how functions (functionals, operators, combinatoTs) 

ca~ be defined on domainsj owing to the property of approximab­

ility (continuity) of these functions, we have also seen how they 

can be "calculated" by finite approximation. In this lecture 

further examples of domains will be constructed -- especially 

domains having infinite elements, which can be introduced in a 

variety of ways giving rise to interesting structural possibil­

ities. The next lecture then treats a precise notion of compu­

tability appropriate to these domains; while the last lecture 

opens up new methods of domain construction. 

EXAMPLE 6.1. Let V be fixed as a given domain. We are now 

familiar wi th a useful construct like V x V whose elements are 

ordered pairs <x.y> of elements x, yof V. The question is: 

can this construct be iterated? The answer is obviously yes, 

since V x (V xV) and (V x V) x (V x V) and so on can be formed with 

elements <x,<y.z» and «u,v>. <x,y» and the like. But the 

real question is: can the construct be iterated indefinitely? 

AND can the resul ts be collected together into a eingle domain? 

The answer is yes~ but it requires a bit of work to get it right. 

The method to be introduced will be open to many variations, so 

more than one answer is possible, giving non-isomorphic domains. 

In order to collect all the iterates into one large domain 

we give ourselves first a very big domain inside of which the 

desired family of neighbourhoods will be found. There are many 

ways to make this choice, and we are fixing on one that will 

keep the notation simple. We have often used binary sequences 

for examples and constructions, but for this example let us use 
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ternary sequences. Let 1:= {O,1.2} and let r'" be all finite 

sequences from this three-letter alphabet. We will select 

subsets of ';. for our neighbourhoods. As 1:. is countably 

infinite, it is without much loss of generality to assume 

that V is a neighbourhood system over f::,. where we take 6::: r"'. 
Also without loss of generali ty we can assume 0lf l? (Why?) 

We wi sh to find another set r =r'" to be the set of tokens for 

the nell domain. After we find it, we will still have to say 

just which XSr are appropriate for the structure we want. 

The totality {X 1 X =:1:"'} is, as a powerset. isomorphic 

to the set of elements of a domain: a point we have remarked 

several times. So, by the Fixed-Point Theorem we know there 

is a set rSI:· where 

r=Ol>U1rU2r. 

In fact r", U,2}· 06, because we can say: 

{1.2}"={A} U 1l1,2J" U 2{1.2}" 

The domain we are looking for will be found as a domain V§ 

over r. The reason for spli tting r up, as shown in the equa­

tion above, is to ensure that if X,YEV§ are two neighbourhoods 

in the system V§, then 1 X U 2 Y has a chance of be ing also in 

V§ because 

1 X u 2Y Sr. 

This will make V§ )( V§ isomorphic to a part of V§. If we make 

V also isomorphic to a part of V§, then all the iterated products 

will be contained in V§. 

\ll'hat is a neighbourhood system? Just a set of sets. But 
p p ~" is a domain (as a power set) and because r ==!:., we find 

v§eppr· 

as an element. But elements of domains can often be defined by 

fixed-point equations. Indeed we will introduce V§ this way: 

V§ = {f} U {OX I XEV} U {1X U 2Y I X,Y E VI}. 

The reader should stop to think why V§ can be immediately seen 

to exist by writing such an equation. Of course another way 

to describe V§ is to say it is the least family of sets containing 

(i) the set r, (ii) the sets OX for X in the given system V, and 

(iii) sets 1 Xu 2Y whenever it already contains X and Y (closure 
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•under a set-forming operation). By saying "least ll we mean 

(iv) nothing else belongs to V§ except as allowed by (i)-CliiJ; 

this mak.es the truth of the ,equation for V§ clear. So V§exists 

as a family of sets, but what good is it? 

By our construction of r. all the sets W'e put into V§ 

are subsets of r (why?) J so Vi has a chance of being a system 

over r if we can check the closure under intersection. So 

suppose Z~ XnY where Z.X,YEV§; we want to show XnYEV§. We 

argue by induction on the number of steps required to put X and 

Y into V§ by (1) - (iii). There are several cases. 

If X '" r or Y = r, there is nothing to prove, because both 

sets are subsets of r. We note that 0EfV§, because (i)-(iii) 

cannot introduce Si' as a member of vi. So, if X~OA for AEV, 

then Y must have this form also (if it is not r). because 

OAn(1 BU2C) • 0 

(That is, if Y had the form (iii). then Z II< 0 would be a consequence, 

which is impossible.) Thus, if X'" OA for Ae V, then Y = OB for sane 

BE V. But by the same reasoning Z "" OC for some CE V also. But 

the relationship OC.sOAOOBis equivalent to C=.AnB. We see, 

therefore. that A n BE V. and so 

xnY- OAnOB- D(AnB) 

must belong to V§. 

The final case has X,Y.Z all of the form (iii): 

x- 'A U 2A1 2 

Y ;; 1B U 2B . and
1 2 

Z:1C U2C
1 2 

We can think of the Ai and B put into V§ earlier and the inter­i 
section result as being already established for them. But the 

relationship Z c X n Y is equivalent to C. cA. n B. for i;; 1,2. 

Therefore Ai n ;i e V§. and so does 1. - 1. 1. 

XnY-(1A UZA ) n (1B1U2Bzl-1(A1n B,l U Z(A2 n Bzl1 z
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We have now seen that V§ is a neighbourhood system~ but 
why was it constructed that wa;? The reason is simply this 
isomorphism (or domain equation): 

V§~V+(V§xV§) 

as can be seen by reference to the equation for V§ and the 

definitions of + and)(. What are the elements of V§? There 
is always 

l' {f). 

Next if xE IVI we define 

x § • {f} U {a x Ix EX} • 

That gives an isomorphic injection 

Ax.x§: V~V§. 

Then for x. y E I V § I we can define 

<x. y> • {f} U {1X U 2 Y I X E X and Y E y). 

We have another isomorphic injection 

. I § §AX,y.<X.y> . V x V ... V • 

Indeed by looking at the neighbourhood definition of V§ we con­

clude that the finite elements of V§ are exactly those that are 

either of the form (i) 1, or (ii) a§, where a is finite in /Vl 

or (iii) <a,b>, where a and b are previously obtained finite 

elements of IV§ I. 

Suppose a""J f are finite in lVI. We can picture the 

elemer.t 
§ I § § § §

u = «a , «b , c >, d ». <e J f » 

in IP§I as a tree: 

u 

a e f 

d 

b c 
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Note that the tree has binary branching with the elements of 

101 at the ends of the branches. Any such tree could be given 

a notation as an element of IV§ I. The finite elements of 

IV§I correspond exactly to such finite trees. 

What of the infinite elements of IV§I? Are there infin­

He trees? Let a, be rV§j be any elements of IV§1. Since 

palTlng is an approximable mapping, we can solve the fixed­

point equation 

v;:: <a,<b. v». 

In pictures we can diagram v roughly as: 

v 

a 

a 

etc. 

The word is " roughlyll here. since if a or b were not in the IVI 

part of IV§ I. then in the diagram the letters tra"and "bIT should 

be replaced by the corresponding tree diagrams for a and b. 

Suppose that a and b are finite. Then we can easily see 

that the infinite tree v is the limit of the following sequence 

of finite trees: 

V = .i.o 
v + 1 =<a.<b,v », and n n 

00 

V = v 'U
 
n=D n 
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The reader should think how to explain from tree diagrams the 

approximation relation vn=v and more general such relationships. 

We could call P§ a tree algebra over V. There may be 

others. A general one is a structure of the fOTm 

< E. ; n, pa ; r> 

where 

in:V ... E,and 

pa;r:cxE ... E. 

The algebra 

<v § 
J AX.X 

§ 
, AX.y. <x,y» , 

however, is a very special one: it is "minimal" among all tree 

algebras over V in a sense we shall have to make precise. 

To do this think of how E and V§ can differ. In view of 

the isomorphism ~hat V§ satisfies the injection of V and the 

pairing are one-one, so no "information" is lost by these 

mappings. The same may not at all be true of E. but it is 

reasonable to think that at least we can define an approximable 

mapping g : P§ -+ E where 

(1) gU)-lE' 

(2) g (x§)· in(x), fOT XE lVI, and 

(3) g «x,y» = pa1r(g(x), g(y)), fOT x,yE IV§ I. 

By what we said earlier, g will be uniquely determined by (1)-(3). 

because these equations tell us exactly how to calculate g on all 

finite elements of IP§I. An approximable mapping is a,lways 

determined by its action on the finite elements. But why does 

g exist? 

It would not be too hard to give an inductive construction 

of g as a neighbourhood relation, but a fixed-point equation is 

easier to write down for the same purpose. We need, though, 

to have the inverse ("predecessor") functions: 
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out: v§ .. 'o 

proji: V§ .... V§, for i"'O,1, 

where 

outCx§) "" x J 

projO«x,y» =x, and 

proj,«x,y» =y. 

We also need 

atom:V§ .. r. 

where 
atom(x§) = true, and 

atom«x,y» '" false. 

We can then write 

g (x) = can d ( a t am (x) • in ( out (x)) , pair (g (p r ojo (x)). g ( pro j 1 (x)))) • 

This g exists by fixed-point theory. and it satisfies (1)-(3) 

by what we know about the structure of IV§ I. As we said, g is 

unique because the values on finite elements are fixed. 

In algebraic language g is a homomorphism of tree alge~ 

bras; and V§ is called an initial algebra, because for any tree 

algebra E there is a unique homomorphism g : V§ -+ E We note at 

once that any two initial algebras are isomorphic. For if 0* were 

another, there would exist homomorphisms in both directions 
between V§ anc V·. But the compositions of homomorphisms are 

again homomorphisms, and in the case of V§ if we go from V§ 

V* and back to V§, the result must be the identity. The reason 

is that the identity can be the only homomorphism of an initial 

algebra into itself. We thus have a precise meaning of the 

minimal character of V§. But note it still took a construction 

to show that the domain V§ e:d8ts. 0 
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EXAMPLE 6,2. OUT staple examples Band C satisfy "domain equa­

tions" in the form of isomorphisms as we have previously seen. 

Indeed 

B~ B ... B. and 

c '" {{A}} + C + C 

where if we liked we could construct beth systems over {O,11* 

and have 

B={{O.1l"jU{OXIXEB}U {1XIXEB}. and 

C= {( 0 • 1l") U {{A}} U {O X I X E C } U {1 X I X E C } • 

We leave to the exercises the explanations of what kinds of 

algebras Band C are and why they are initial. Here we want to 

propose a simple, yet interesting generalization of B. 

Consider this domain equation 

A::!! An + An 

where An atands for the n-fold cartesian power of A. We can, 
wi th the aid of some encoding solve this equation as a neigh­

bourhood system over {O,1}* as follows: 

jA· {{O,1l"} U U { iU1 OX I XjEA all j<n} .
j 

i=0,1 j<n 

For instance, if n =. 3, then a typical neighbourhood in A is 

something like 

00X U010X U0110X ' O 1 2 

where X ,X ,X E A. The first '0' could also be a '1' in frontO 1 2 
of each of the terms. 

In words. an element of A (other than 1) is an n-tuple of 

elements of A: but there are two separate copies of these, the 

left one and the right one. We can write for aE IAI 

a'" :t<a ,a J." .a _ >.O 1 n 1

where + is chosen if a is on the right, and - if on the left. 

As a tree diagram a might look like this for n'" :5 : 
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a + 

~1 + 

That is, a is an infinite ternary tree with + or - labels at 
each node. If each node (subtree) is truly infinite, the eement 

is total; if 1. is ever encountered, it is only partiaL; if every 

branch ends with 1., the tree is a finite element of IAI. 

What can be done with such trees'? Let aE {OJ1 •••• ,n-1}* 

be a finite sequence of "digits" each less than n. We let 
I={O,1 ••..• n-1}. We can define for aE IAI the operation o~aa 

by recursion on 0: 

a A '" a , and 

aio;(3 )0.
i 

The 30 are just. the Bubtrees of a with 0" as a sel-ector. We also 

have a map 

pas: A ... T 

where 

pos(+<aO,a1, •• "an_1» "'true, and 

pos(-<aO,a1 , •.•• an_ 1» '" false. 

We say that a (total) tree a is eventually pepiodic iff the set 
{ao ICE I·} is finite. The result is that the "language" 

La ={crE 2:*1 pos (acr) =true} 

corresponding to an eventually periodic tree is always a reguZar 

event of automata theory, and every such language has this form. 

In fact, a just represents the initial state of an automaton, 

and acr represents the state after "reading" a tape cr. a 
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In order to formulate more generally the idea of a domain 
equation and initial algebra, we must introduce a small amount of 

the terminology of category theory. To be as specific as possible. 
think of systems V over sets .6.~~. with E= {OJ1}, say. They form 

quite an interesting category with respect to the approximable 

maps f: V .... D'. Recall that to be a category of "domains" and 

"maps" all that is required is an associative composition g" £ 

of maps with identity maps I: V .... V for each domain of the category. 

And this we certainly have for the systems indicated. And 
there are many other categories waiting around: for instanc~ 

restrict systems to those where ~ If V. This is not much of a 

restriction, as every system is isomorphic to one like this. 

Or restrict the maps to being the strict maps f : V .... V' where 

f(1.V ) =lV" This is an essentially different, though related 

category. We shall find many others. 

What examples 6.1 and 6.2 suggest is the notion of a 

construct which makes new domains out of old. For example, 

with V fixed, 6.1 suggests for any domain X over r=.r* a domain 

T( X) • V + (X x X). 

More specifically (converting from:E= {O,1,2) to ~ ~ {O,1»we 

could write 

T(X)' (r')" (OXIXEV) u (10Xu 1nIX,YEX), 

where we have f' =O.6.U10fU11f. (By the way. here we definitely 

want to assume Ii' Ef:V and ~ Ef:X and to get Ii' Ef: T(X) .) This construct 

is an example of a functor, a notion that can be defined ab­

stractly on any category. 

DEFINITION 6.3. A functor on a category (into itself) associates 

with every domain X in the category another domain T(X)and to 

every map 

f: X .... Y 

another map 

T(f) : T(X) 1 T(Y) 
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in such a way that identity maps and compositions are preserved: 

T(I X) • 'T(X)' and 

T(g. f) • T(g) • l(f). 

whenever f : X .. V and g : Y .. Z. 0 

In the example from 6.1 we have not checked how the special 
T is a functor. The hint is that whenever f : X .. Y. then there 

is a map 

fxf:XxX ..... VXV. 

But there is also a map 

1 + f)( f :V + (X)( X) .. V + (Y x Y)
0

and this suggests the definition of Tef). The details are left 

to the exercises~ Note that the map Tef) just suggested is al­

ways strict. so T is a functor also for the category of strict 

maps. 

One good reason for a little of the category-theoretic 

language is that the next definition becomes very neat indeed. 

DEFINITION 6.4. A T-tItgebra is a domain E in the category to­

gether with a map 

k: T(E) ~E. 

If m: TeF) .. F is another T-algebra. then a h()m()m()~phism is a map 

h : E .. F in the ca tegory such that the diagram 

k 
T(E) _ E 

T(h) h1 1
m 

T(F) _ F 

commutes; that is. the equation 

h • k • m • T(h) 

holds. 0 
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In our example from 6.1 a T-algebra is astrict map 

k: V + (E x E) ~ E • 

But such strict maps are in a one-one correspondence with pairs 

of (not necessarily strict) maps 

n : V -+ E and p: E x E ... E 

And the structure <E,n,p> is what we called a tree algebra. 

Definition 6.4 just makes this abstract. The reader should also 

work out the details showing that 6.4 I 5 definition of homomor­

phism is just what we ought to expect. 

Note that the T-algebras and homomorphisms form a cate­

gory. (Why?) The following definition is so abstract that it 

could be given for any category. 

DEFINITION 6.5. A T-algebra is initiaZ if and only if there is 

a unique homomorphism from it into any other T-algebra. 0 

The word l1 o ther" here is not meant to imply "distinct". 

For an initial algebra there is one and only one homomorphism 

into itself: the identity map. As we already indicated in 6.1 

it is a general fact that the next proposition holds. 

PROPOSITION 6.6. Any two initial T-algebras are uniquely iso­

morphic. 0 

Slightly more interesting is the behaviour of T on initial 

algebras. 

PROPOSITIDN 6.7. If i: T(V) -+V is an initial T-algebra. then so 
2

is T(i): r (V) -+T(V) and i is the isomorphism from T(V) to V. 

Proof: Clearly since T is a functor. the map T(i) has 

the right mapping character to make T(V) a T-algebra. Since 

V is initial, we have a commuting diagram: 
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i > vT(V) -1T(j) I 
v T( i) 

T2(V) -->T(V) 

But we also have the trivial diagram: 

T( i) 
T2 (V) -->T(V) 

T(i) I I i 
v i v 

T(V) --> V 

It follows that i ~ j is a homomorphism, so 

ioj=I V' 

But then because T is a functor we find: 

T(i) T(j) '!T(V).0 

and, since j is a homomorphism, we have 

joi·!T(V). 

This shows that i is an isomorphism. 0 

From 6.7 we see that if we are going to have initial alge­

bras at all we have to satisfy the domain equation 

V~T(V). 

But generally that is not enough to assure that V is initial. 

There is a condition that our functors satisfy. however, which 

guarantees the existence of homomorphisms. 

DEFINITION 6.B. On the category of domains and strict approxi­

mable maps a functor T is continuous on maps if for any systems 
V and E the induced mapping 

Ai. T(f): (V~.l E) ~ (T(V) ~.l T(E)) 

is approximable. 
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THEOREM 6.9. If the functor T is continuous on maps and if 

V:!! TeV), so in particular V is a T-algebra, then for any T­

algebra k: TeE) .. E there is a homomorphism h : V -to E. 

Proof: Let i: T(V) .... V make VaT-algebra, where 

j : V ... T(V) is the inverse so that i is an isomorphism of domains. 

Suppose that k : TeE) .... E is any T-algebra. A homomorphism 

h : V .... E would satisfy 

hoi = k 0 T(h) • 

Rewrite this equation as 

h=koT(h)oj. 

In the domain of strict maps (D .... E) this is a fixed-point 

equation for an approximable map 

Xh.koT(h)oj 

by our assumption on T. Thus, the desired homomorphism exists. 0 

The final question we have to answer is why in our cate­


gory the minimal V exist. The reason is that the functors T
 

that we have in mind possess further continuity properties on
 

domains. This is conveniently expressed in terms of a notion
 

of "subdomain tl
 
• 

DEFINITION 6.10. For two neighbourhood systems V and Ewe 

write 

V<lE 

to mean that these are neighbourhood systems over the same set
 

of tokens ..6. and not only is V £ E but whenever X2 y E V and
 

X n Y E f) then X n Y E V. 0
 

For the subdomain relation V <I E to hold, V has to be a
 

smaller family of neighbourhoods, but the notion of consistency
 

in V also has to be the same as in E. Note that if V <J E
o 
and V <J E then1 
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V q V iff V	 S Vo 1 o 1 

It is also easy to prove that the union of a directed family 

of subdornains of E is again a subdomain. As a consequence of 

this remark 'We have: 

PROPOSITION 6.11 For a given neighbourhood system E. the set 

of subsystems 

(VIV<JE) 

forms a domain in its own right. 0 

The subdomain relationship implies a mapping relationship 

between the doma ins. 

PROPOSITION 6.'2. If V<JE. then there exists a projection pair 

of approximable mappings: 

i : V ... E and j : E ... V 

where j " i::: IV and i "j S IE' which are determined as elernent­

wise	 functions by these equations: 

i(X)={YEEI3XEX.X~Y}, and 

j (y) = y n V. 

for all xE IVI and yE lEI. 0 

The proof is left for the exercises. 

DEFINITION 6.13. A functor T is monotone on domains iff whenever 
V<J~.then not only do we have T(V) <JT(E) but the projection pair 

i, j of 6.12 is mapped to the same kind of projection pair T(i), 

TCj). A monotone functor is continuous on domains iff whenever 

E is a domain, then the mapping 

,V. T CV) : lV I VoolE) ~ lV' 'V' <JT(E)} 

is approximable. 0 
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~e can now state an existence theorem that covers in 

fairly wide generality the examples of this lecture. 

THEOREM 6.14, If the functor T is continuous on maps and 

monotone and continuous on domains, and if there is a set r 
such that 

{r} <l T {{rl}, 

then there exis ts an ini t ial T-algebra. 

Froof: We proceed as in the proof of the fixed-point 
theorem by iterating the functor. The assumption about r 

means that, as a neighbourhood system, T({r}) is a system oyer 
the sal1!e set r. Thus, if we iterate T to form TnC {I'}). all 

these systems are over r and indeed 

T"{{r)} <lTn +1 ({rl} 

for all n. We can thus introduce 

00 

V = UTn {{r l} , 
n=O 

and it is easy to check that V is a system over rand 

T" ({rl) <lV 

holds for all n. But then we have for all n: 

T"{{r}) <IT''+I({r}} <l T(V}, 

which imp! ies V <I T CO) • But T is continuous on domains. so 

T(V} = T( oT"({r}}} 
n"'O 

00

U T"+1 ({r)) 
n=O 

V • 
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Thus, not only is VaT-algebra. but the isomorphism we get 

for D and T(V) is just the identity mapping. We know by 6.9 

that homomorphisms exist; what remains to show is that homomor­
phism from '0 are unique. As in the examples, we will show in 

effect they are determined uniquely on the finite elements of V. 

Since each Tn((r}) <iV, there are projection mappings 

i : Tn ((r)) ~ D and j ; D ~ Tn ((n) . 
n n 

Define P : V ... 'O by P '" in I> in' Projection pairs are alwaysn n 
pairs of strict mappings (Why?). and so are in the category. 

By assumption and 6.13, the functor T preserves these maps, so 

we have 

T(Pn ) :: Te i n ) I> TUn) '" i n + l I> i n+! = Pn+l 

As a neighbourhood relation Pn can be characterized by 

XP Y iff 3zeTn((r}). XSZSY. 
n 

We thus see that Pn~Pn+l and 

U On = IV' 
noD 

Now suppos e k: T(E) -+ E is any T-algebra and h : '0-+ E 

is a homomorphism. The mapping will satisfy the fixed-point 

equation 

h = k T(h).0 

where no other mappings need be written in because '0= T(O) and so 

T(h) ; D ~ T (E) • 

We wish to show that h really is the least fixed point of this 

equation. 

Define h = h " On : V -+ E. For n = 0, the map Po is the n 
trivial map where 0o(x) =.i for all xE 1'01. But h must beV 
strict, so hO(x) =.i for all xE IV!; that is, h is the least

E o 
element of IV-+l.E I. Now calculate: 
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k T(hnJ k 0 T(h) 0 T(P )0 n 

h " 0n+l 

hn + 1 . 

This shows that the union of the h is the least fixed point of n 
I.h.koT(hJ. But 

00 00 

Uv Uh" On 
n=O n=O 

00 

h" UIOn
n=O 

hoIV=h, 

so the given h is in fact the least fixed point. The homomor­
phism is uniquely determined, and V is the initial T-algebra. 0 

Having the existence of initial T-algebras. we can prove 

one more result that shows just how minimal they are. We need 

a lemma about projection pairs. first. that shows where 5uh­

domains fit it. We write V:;gE as ShOTt for '0 2!! '0' for some 

'O'<JE in the following. The lemma gives a converse to 6.12. 

LEMMA 6.15. For two neighbourhood systems f) and E. if there 

exist a projection pair 

i : V .. E and j : E .. V 

with j oi=I V and ioj£IE. then V';lE 

Proof. What we want to show is that i maps £inite ele­

ments to finite elements, and that the desired V' is the image 

of V in E. 

Suppose Xe V. We can write: 

i(tX) = UltYIYE i (tX)}. 

Applying j to both sides we have: 
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tX=joi ('X) = U{j(,y) lYe i('Xl)· 

But then, since XE t X, we find Xe j (+ Y) for some ye i (+ X). 

This implies 

t X ~ j (+ Y) ; and 50 i (t X) ~ i CI j (+ Y) stY. 

Since t Y s:: i (+ X) in any case, we conclude i (+ X) '" +Y. This 

proves finite e1ements are mapped to finite elements. 

What of..6.; that is, what is i (+ ..6.)? We find, supposing 

E to be a neighbourhood system over a set ..6.'. that since 

+A sj (tA'), then i (tA)stA' and so i (tA) =tA'. This means 

that A corresponds to A'. So we have established that V is in an 

inclusion preserving one-one correspondence with a subset V' of E 

'Where A' E V'. But it remains to show that V'is a neighbourhood 

system and that V' <J E holds. All we really have to show is that 

V'is closed under intersection whenever the intersection belongs 
to E. 

Suppose Y', Z'ED' andY'nZ'EE. Let X'",Y'nz'. We have, 

for suitable Y, Z EV, 

i(+Y) =+Y', and so +Y==j(+Y'); and 

i{+Z)==+Z', and so tZ=j(+Z'). 

ButtY' s; +X' and j (+ Y' ) =: j (+ X' ); thus Y E j (t X' ). For 

similar reasons ZEj (+X'). But then X=YnZEj(+X'), and 

therefore Y n Z E V. (The element j (+ X') must be a filter.) 

Notice, however. that 

t Y s; + X, and so + Y' £ i (+ X) ; and 

tZstX, and so +Z'£i (+X) 

It follows that 'Y'n Z' == X' E i(+ X). On the other hand we already 

knew XE j (+ X'), which implies i(+ X)::. + X'. We may thus con­

clude that i(+ X) = + X' In other words X' E V'. 0 
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THEOREM 6.16. If on the category of domains and strict approxi­

mable maps the functor T is continuous on maps, and if V is an 

initial T-algebra, then for any system E~T(E) we have V'$IE. 

Proof: There is a homomorphism h: V ... E. By 6.9 there is 

a homomorphism g : E ...... V. Now g "h : V -+ V is also a homomorphism, 

so g" h:: IV because V is initial. In view of 6.15, all we have 

to prove now is that h " g S IE' 

Let the maps i : TeO) -+ V and j : V ... TeO) give the isomor­

phism for V, and let u: T(E) ... E and v: E ... TeE) do the same for 

E. By the proof of 6.9 we know 

g = i " T(g) "v and h = u " T(h) " j 

and each of these maps is the least fixed point of its 

respective equation. Let 

go= ",~v and hO="v ~ E 

and define by recursion 

E ... != i" T (En) "v and h +1 = u" T (hnJ "j.n n 

By the fixed-point calculation 

g = 0 gn and h '" 0 hn · 

n"'O n"'O 

Now we see that 

h O 0 go lE ... E' 

and for each n that 

h +l " gn+l "'U" T(h ) .. j .. i c T(gn) .. vn n

'" U (I T(h ) (I T(gn) .. v n

'" U .. T(h c gn) .. v. n 

But this means that 
~ 

h .. g '" U(h 0 g )
n n 

n"'O 

is the least fixed point for the equation 

k=uoT(k)ov. 

But IE is one of the fixed points; whence he g.::: IE must follow. 0 
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EXERCISES 

EXERCISE 6.17. What are the algebras for which C is initial? 

If A of 6.2 is a generalization of a, what is the corresponding 

generalization of C? Prove that it exists and explain what aTe 
the algebras involved. 

EXERCISE 6.18. With reference back to Exercise 3.16 discuss the 

construction of V'" as an initial algebra and as a solution to 

the domain equation 

vOl> <!! V X V"" • 

(I do not know whether all solutions must be of the form V'" x E.) 

EXERCISE 6.19. For the sake of uniformity restrict attention to 

systems Von sets a={O.n*, where Ae1::J.. and ~lfV. and to the 

category of strict maps. Define sum and product by: 

Vo + V1 ((A}UO"OUO"1) U (OXIXEVo }U{1YIYEV1 1. 

V x V { (A) U 0 X U 1Y I X E V0 and Y E V1 }.o 1 
Are these correct up to isomorphism? Now generate all con­

structs T(X) formed by the constants (that is, 1'(X) = V for a 

fixed V), by the identity (T (X) = X), and by sums and products 

(TO(X) +T (XL etc.) Show that these are all functors, contin­
1 

uous on maps, and monotone and continuous on domains. 

EXERCISE 6.20. For any system V let tok(V) be the underlying 

set of tokens, so that V is a system over tok (0). For the 

category of Exercise 6.19 show that the function 

"f. tok{T ( (O) ) 

is continuous on the domain {rS {O,1}·!AEr}, where T is any 

of the functors generated in 6.19. Conclude that there must 

exist a set 

f: tok(T ({f})) • 

so that {r} <l T({rn J and so 6.14 applies. 
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EXERCISE 6.21. Do the same as 6.19 and 6.20 when the functors 

are also allowed to be generated by the operations: 

Vo" V • ({A)uoa uta ) u (OXI XEV ' (a )) u (1YIYEV ' {~1))
1 o 1 O O 1
 

V 0 '" V1 • ({A)UOaOU 1a 
1 ) U ({A}UOXU1Y I XEV 0' laO) and YEVl' {a )) •


1

Generalize all of +, x. EEl, Q to combinations of several terms, 

not just the binary sums and products. 

EXERCISE 6.22. Comment on these domain equations: 

N"'{(O).{O.A)) .. N. 

M'" ({A)) + M. 

N+"'N III (N",N+). 

EXERCISE 6.23. Construe the initial solution to 

Exp ~ N .. «(E,p x E,p) + (E,p x E'p)) 

as a "syntactical domain" of e.rpreSSi01'lB generated from infin­

itely many "variables" by means of two binary "operation symbols". 

Given an algebra V with two operations 

u : V )( V ... V and v : V x V ... V 

show how any strict map 5 : IJ .... V determines a unique map 

vales} : Exp .... O 

that can be regarded as the "evaluation of an expression". 

EXERCISE 6.24. Show that there must exist domains satisfying: 

V:!! V + (V x El. and 

E:!! V + E. 

by using a double fixed-point method. First decide what the 

underlying set of tokens should be, and then define V and E 

by simultaneous fixed points. (Syntactical domains as in 6.23 

may very well require several simultaneous equations.} 
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EXERCISE 6.25. For a projection pair g: D ..... E and h: E... V 

show that for xE 1'01 and ye lEI we have: 

g(x)SY iff xSh(y). 

Thus, conclude that: 

hey) = U{x E IVllg(x) Sy}. and 

g(x) = n{yE IEllxSh(y)}. 

for all xE 1'01 and ye lEI. So each of the functions determines 

the other. In the first equation check that the set on the 
right is directed, and in the second equation that the set on 
the right is non empty. Prove also that g maps consistent sets 
to consistent sets and preserves U (not just directed unions). 

EXERCISE 6.26. For systems D as in 6.19 define 

V~ = {{A} U Oll} U (OXIXEV). 

Describe the construct in terms of elements. Is this a suitable 

functor? Prove that 

Dl.EElEl.::!!D+E. 

What is 

Dl.@ fl.!:!"?1 

EXERCISE 6.27. Which of the following relationships are true: 

(V.H) ;J (Vx E) D:9VxE 

(V EB E) ;J (V + E) V;JVEBE 

(V ~~ E) ;J (V~ E); O;JVllH ? 

EXERCISE 6.28. (Suggested by G. Plotkin). Show that if V and E 

are finite systems and 

V:jE;JV 

then V2! E. Need the same be true of infinite systems? 
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EXERCISE 6.29. Generalize + and x to infinitary operations on 
domains: 

= = 
L Dn 

and IT Dn 
n"'O n ;0 

Would a similar generalization be possible for Etl and e ? 
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LECTURE VII 

COMPUTABILITY IN EFFECTIVELY GIVEN DOMAINS 

For the domain N the strict functions from N into N, the 

strict maps f: N ... N ,correspond exactly to the partial functions 

g: W .... lN (as we wrote in 5.6 we had f = g). For such functions 

there is a standard theory of computability: g is called comput­

able if it can be defined as a partial recursive function with 

its "program" written down in a certain standard form. The 

non-strict maps h: /oJ ... N are all constant, and so are intuitively 

computable; so we know all about computable maps in IN .... N I in 

general. The question is: what are the computable maps on 

(elements of) other domains? 

The answer will of course depend on how the domain is presented 

to us. Even with N. there are continuum many isomorphisms n:,IJ ... ~ 

of N onto itself, not all of which can be computable. That is, if 

we permute N and, so to speak, present t-he integers in a different 

order, then a well-behaved computable function f : N .... N may "'ell 

be trans formed in to a non-computable func t ion, 

n 0 f 0 n -1 : N .... N. 

(Hint: Consider the characteristic function e of the even numbers. 

Take f "'" e and let n be very horrid.) The reason we imagined we 

knew which were the computable f: N .. N is that 1J is always thought 

of in a standard presentation. We must thus define "in general" 

a concept of an effeotivel.y given dol1t1in. that is to say. one with a 

sufficiently computable presentation to represent the additional 

knowledge about the domain. 

The main idea will be that the finite elements of IDlshould 

be regarded as the ones initially known. Abstractly, to know a 

finite element is to know how it is rel.ated to other finite elements. 
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Of course, this will mean that we will allow at most a countable 

infinity of finite elements - but this restriction well accords 

with intuition. To make precise the terminology "related to" 

it proves most convenient to go back to the neighbourhoods (in 

any case they are in a one-one correspondence with the finite 

elements) • 

DEFINITION 7.', A neighbourhood system V has a r:omputabLe 

presentation provided we can wIi te 

V' {XnlnEJNJ, 

where the following two relations 

( i) x n X X ; and n m k 

(ii) 3kE}l. Xk~Xn and Xk!;Xm 

are recursively decidable (in integer indices fl. m, k and in 

n, m. respectively). 0 

More strictly the sequence, 

<X > m 
n n==O' 

is the presentation. Even more strictly. when it is required to 

cope with infinitely many domains at a time, it would be neces­

sary to gi,ve the actual GBdel numbers of the recursive relations 

(i) and (ii) (rather than just saying there exists some way of 

showing them to be recursively decidable). 

The intuitive idea of 7.1 is that the system is effectively 

given if you know how to do elementary "calculations" with neigh­

bourhoods. The basic calculations are the forming of inter­

sections. The neighbourhoods have to be laid out in a systematic 

way; and, if we are asked for an intersection of two given 

neighbourhoods, we have to be able to locate it in the standard 

sequence. Relation (ii) is the consiste~y conaition ,which is the 

necessary and sufficient condition for the intersection to exist 

in V. When (ii) is true. therefore. we have only to try k=O,1,2 • 

.•• until we discover that we have found the intersection. We are 
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assuming that these basic decisions can be carried out in 

"finite time". Note that the obvious biconditional, 

X SX iff X n X :: X , 
n m n m n 

assures us that the inclusion relation between neighbourhoods is 

itself decidable in terms of the indices. So in (ii) if k exists, 

then it {or the first one) can indeed be found in finite time. 

The rub is that if it does not exist, no finite number of inclusion 

checks will determine that fact. That is why we have to assume 

that (ii) is always decidable. The information contained in 

(ii) is a fundamental part of the neighbourhood structure. (An 

axiomatic characterization of neighbourhood structures is 

given in Exercise 7.13.which may make clearer what we are 

assuming and what a presentation is.) 

DEFINITION 7.2. Given two recursively presented domains, 

v = IX InE IN) and E = Om I mE IN ) , n 

an approximable mapping f : V .... E is said to be compu.table iff the 

relation 

x fYn m 
is recursively enumerable in nand m. 0 

The question to ask first is why .trecursively enumerable" 

rather than "recursive tl ('=' tlrecursively decidable tl )? The answer 

will become clear when we let V degenerate to the one - element 

domain, V'=' {tt..}. Then what we are considering is merely a single 

element 

y = f (I "}) E I EI • 

Therefore, 7.2 incorporates the notion of acomputabte eZement of a 

domain. And the condition reduces to the statement that the 

filtel' yE lEI is such that the set 

ImElNlYmEy} 

is a recursively enumerable set of integers. The point is that 

the elements of I E I are finite or infinite. If y were finite, 

the set of indices above would indeed be recursive in view of 
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OUT assllmptions on E. But an infinite element can in general 

only be approximated "a little at a time". We cannot expect to 

know the whole story of its approximations in a flash. What it 

means to be recursively enumerable is that there is a primitive 

recursive function (hence, a totaL function) J r: N -+:N. such 

that 

y=IYr(i)1 iEN}. 

That is to say, aU the approximations to y can e'lJen-tuaUy be 

listed. In the case of the mapping f we could write 

f=((Xs(i)' Yr(i) lliEN), 

for a suitable pair of primitive recursive functions 5 and r. 

Definitions 7.1 and 7.2 may very well irritate the person 

hearing them for the first time: instead of explaining com­

putability in direct terms, the whole question is thrown into 

the lap of reCursion theory: There are several answers. "You 

have to start somewhere" is one thing I always say. Recursion 

on the integers is a well-understood theory. and we shall not 

need the refined parts of the development. fortunately. In any 

case, our definitions apply to rrany domains of qui te different 

structure, not just to the domain N. And the next step we shall 

take is to show how to build up computable functions (and also 

effectively given domains) from simpler ones. Thus. often it 

will not be necessary to go"back to the seemingly over-precise 

definitions involving the indices but to appeal to some broad 

general principles. 

PROPOSITION 7.3. The identity map on an effectively given domain 

is computable; the composition of computable mappings on effect­

ively given domains is again computable. 0 

The proofs for 7.3 are so trivial they are hardly worth an 

exercise. Note the immediate and useful consequence: if 

f: V .... E is computable and xE IV! is computable. then f(x) E lEI 

is also computable. The next result is, however. worth working 

out eVen though it is quite easy. 
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THEOREM 7.4. 1£ VA and '0 are effectively given, then so are
1 

(V + V,) and (V xV ).o O 1 

Moreover the combinators in and out and prOj~ are all CO~­i i 
putable; further if f and g are computable maps. then so are 

f + g and f x g. 

Proof: Let the computable presentations be given as: 

Vi={X~lnEW}. 

We can assume that the sets of tokens dO and d1 are disjoint 

and (/J(f Vi' Then the construction of the sum is just 

V 0 + V,= {"o u",) U V0 u V, • 

As an enumeration we define for nEW 

Z - XO 1
Zo = "0 U ", ; 2n+1 - n Z2n+2 '" Xn 

We leave as an exercise the check of 7.1(i)-(ii). 

For the product we want: 

Vox V1 '" {Xu
o

U X 
, In. m E :N}m 

What ..... e then need are recursive functions p: :IN ... :N, q: W .. :N , 

and r: ]'oJ x W ... }II where for m, n, ke :Nwe have: 

p(r(n, m)) • nand q(r(n, m)) = m, and r(p(k), q(k)) = k. 

Thus r is a "one-one pa1Tlng function"; there are many ways 

to find such functions (see Exercise 5.13). We can then define 
for k E :N : 

o , 
Wk = Xp(k) U Xq(k) 

Again we leave as an exercise the check that this provides a com­

putable presentati.on of Va x V1 ­

As for the combinators. the neighbourhood relations have 
to be worked out in terms of the indices. For example 

XO ina Z iff either m = a or for some k n m 
o 0 

m= 2k + 1 and X =Xkn 

Wk proji X~ iff X~(k) £ X~
 
The reader needs to check that these are recursively enumerable
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relations in the indices. For this purpose it may be conveni­

ent to recall some closure properties of these relations: 
taking conjunctions, disjunctions, substituting recursive 

functions, applying an existential quantifier to the front. 0 

Products give us a way of providing an immediate meaning 

to the notion of a computable function of several variables. 

Note that the proof of 3.7 is "effective" and shows that 

substitution of computable functions of several variables 

into each other always gives computable functions. We turn 

next to the function spaces. 

THEOREM 7.5. If Va and '0 are effectively given, then so is
1
 

(V ~ P1)' The combinators eva' and curry are computable.

O 

provided all the domains involved are effectively given. The 

computable elements fE 1'0 -+'0 1 are exactly the computable maps
0 1 

£:OQ<V" 

Proof: The proofs of 3.9. 3.11, and 3.12 were set up with
 

this theorem in mind. If
 

Va' {Xn!n E N} and V1 = (YmlmE N) 

are two effectively given neighbourhood systems, then the 

neighbourhoods of (Va -+ '0 ), by Definition 3.B. are non-empty
1 

in tersections like 

n [X , y l ,n mi ii<q 

where <nO' n •..• n and <rna, m ...• m _ are two finite1 , q_1 > 1 , q 1 > 

sequences of integers determining the choice of the function-space 

neighbourhood. In 3.9(i) the test for nonemptiness is given. 

Assuming the decidability of relations in Va and '0 1 ' one remarks 

that the consistency of finite sequences of neighbourhoods is also 

decidable. (Hint: Test the first two, then form their inter­

section. Next test the third given neighbourhood against this 

one set; if consistent. form the intersection. and carryon.) 

By 3.9(i) at most 2.2 q such sequential checks must be carried out 

to determine whether the function-space neighbourhood is non empty. 
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It may not be fun. but the checks can be carried out in finite 

time. Owing to this decidability. we can therefore enumerate in 

a systematic way aLL the pairs of finite sequences <nO""> and 

<rnO J > that de termine neighbourhoods: tha t is the way tna t 

(DO .... V,) obtains its enumeration. 

Concerning the decidability of the required relations on 

(Va ... ° ), we remark first off that consistency is more of the
1

same: to test two finite intersections against each other, just 

form one big intersection and test it for non-emptiness as 

before. Secondly, the testing for intersection comes down in 

the end to testing one typical intersection of [X. Y] - neigh­

bourhoods for equality with another. But equality amounts to 

two inclusions; inclusion in an intersection amounts to inclusion 

in each term. Therefore. what we need to do is to check a finite 

number of statements of the form: 

n[X .• Y ] S [Xk , Ye].n m
1<q 1 1 

As we pointed out after the proof of 3.9. this inclusion is 

equivalent to 

nrYm.IXk S Xn . } S Ye· 
1 1 

By decidability in VO" we can effectively find the that aren i 
needed. Then in V we form the intersection of the correspond­

1 
ing Y • Finally ~ we check the inclusion. Again. one check in mi 
(V .... V,) requires a whole sequence of checks in Voand in V" buto 
the process is fini teo So we have argued that (V o .... V ) is1 
effectively given. 

In showing that the combinators are computable, we refer 

first to the proof of 3.11. The typical pair of neighbourhoods 

possibly belonging to eval is 

.n[X .• Y .] UXk eval Y{.
n m

1<q 1 1 

As we needed not to be so specific. we expressed the holding of 

this relationship in terms of aU the functions in the function­
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space neighbourhood. But we know that the neighbourhood, by 

3.9(ii), has a minimal element; it is then sufficient to test 

for the holding of X f 0 Y! at this minimal function f O' Butk
 
this test, we have already seen, is decidable. So the pairs in
 

eval actually form a recursive set, not juS! a recursively enum­


erable set; thus, eval is a computable function.
 

The case of curry involves three domains and is a bit more 

messy. But again, if the required neighbourhoods are written out 

in full, it will be seen that currY,tOa,is computable. We leave 

this minor struggle to the exercises. 

The final statement is an easy consequence of the fundamental 

connection between approximable f : V ~ V as relations and aso 1 
elements. Recall, as in the proof of 3.10, that we have 

fE [ X, YJ iff X f Y. 

for all XE V and YE V • Therefore,o 1 

Y 1 iffvi<q.X fYfE n [Xn .' m· n i ml<q 1 1 i 

It follows that if f is recursively enumerable as a set of pairs, 

then, by forming all the non-empty intersections (as shown), we 

get an enumeration of all the neighbourhoods to which f belongs; 

and this is the same as the filter corresponding to f as an 

element of the function space. The converse direction is clear. 0 

We have nearly all our favourite combinators computable, 

but perhaps the most important one - since it is the key to 

recursive definitions - is the fixed-point combinator. It is 

not left out. 

THEOREM 7.6. For any effectively given domain 0, the combinator 

fi x : (D ~ V) V is computable. 

Proof: Referring back to the proof of Theorem 4.2 and 

thinking of 

V={Xn[nE!'i} 

as effectively given. fix as a relation Comes down to 
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nIXn.'Xm] fix X.e. iff for some finite sequence 
l<q 1 1 .6,;Xk J ••• ,X);: =-X! 

a p 
we have, for each j<p, 

n (Xm.IXx . '" XnJ'" Xx. 1 
1 J 1 J + 

Inside the "for some finite sequence" all the checks are decidable 

by assumption on D. But the existential quantification of a 

decidable predicate always gives a recursively enumerable predicate. 
(And, as there is no implied bound on the she of the finite sequence 

'We are looking fOT. this really is an enumerable set and not 

generally a recursive set.) 0 

The major consequence of what we have done up to this point 

concerns typed h - calculus. Any expression involving onlY~ffect­

ivel.y given types and, perhaps, some basic computabl.e constants using 

only the A. : -notation defines a computable function of its free 

variables. And such functions applied to computable arguments 

give computable values. And such functions have computable least 

fixed points. Et:c .• etc. In a definite sense then we have in the 

"metalanguage", as people say, a quite precise and fully nnthennt­

ical. progranrning language for defining computable operators. It is 

not a machine implemented language,but it is a mathematically 

well-defined and easy-to-use language. And when we combine the 

usual type-de fin i t:ion faci Ii ty together with domin equations J we 

have an especially powerful language. 

PROPOSITION 7.7. For any effectively given domain V, the domain 

V§ is also effectively given, and all the combinators of 

Example 6.1 prove to be computable. 

Proof: This proof is essentially an exercise. but it is use­

ful to have an easy-to-grasp example. Indeed, to make things 

easy to reason about, we can assume that V is a system over !J.:::::N 

and that in the presentation where 

V={Xn!nEll), 

the relation k E X is recursive in lc and n. (It is worth .thinking
n 

why this is so.) Of course, a lot of other things are recursive 

also. 
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Now what kind of a system is V§? The cons t ruction of 

6.1 made it a system over a certain set of strings r. FOT 

the sake of checking various assertions about computability, 

we are transposing everything back to :IN. (These are all denum­

erable sets in any case.) The set r is divided into three equally 

big parts, and "':e can do the same for~. Let us write for any 

m, kE}J and subset Xs:!N: mX+k; {m.n+k I nEX}. 

Then by splitting the integers modulo 3 we have: 

IN =3I'1u (3lN+ 1) U (3lN+2), 

and this equation is quite analogous to that for r. We then 

propose this definition for V§ 

VI=llN}U 13XIXEVlu{(3X+l) U (3Y+2)IX,YEV§), 

but this does not make the enumeration of V§ all that obvious. 

This is one way to do it: 

V = IN V 2n+1 = 3Xn V2n + 2 = (3V (n) + 1 ) U (3V (n) + 2).o p q 

Here p and q are the inverse of the pairing functions mentioned 

in 7.4 They must be chosen so that p(n)"'n and q(n)"'n for 

all n E l'i. Thus, in calculating V where k = Zn+Z we will bek 
uSlng \p(n) and Vq(n) where both subscripts are strictly less 
than k, This observation is required so that mE V is going tok 
be a recursive relation. What we claim is that 

V§ = IV I kElN).
k 

It should be clear that everything on the right belongs to V§ 
What needs an inductive argument is that everything in V§ is 

eventually of the form Vk • But this should be fairly obvious 

OWing to the properties of r: :IN x:IN ++:IN. 

The reader also has to check that 7.1(i)-(ii) hold for 

the Vk, The idea is that any such check is either (1) trivial, or 

(2) something already assumed about V and the X , or (3) can n 
be thrown back to some sets V with strictly smaller subscripts.m 
Therefore, the checks will give an answer in finite time accord­

ing to an effective reduction. 

Next for the combinators. we have to translate neighbour­

hood relations into relations among integer indices. A selec tion 

of examples must suffice. 

Xn(AX.X§) Vk iff VZn +1 =Vk 
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V proj V iff k =: 0 or 3nE:N. m=2n+2 and V ( ) c Vkomopk n -

The reader should write out other cases. 0 

EXAMPLE 7.9. We have often made reference to the powerset PlN 

as a domain and we should check here that it is effectively 

given. One easy way to see this is to note 

p N ~ IT"",. 

The (slight) trouble with P:IN is that we usually think of it 
in terms of el.ements rather than neighbourhoods. Going back to 
Exercise 1.16, we can argue that the neighbourhoods of PW are 

ordered not like the finite sets of integers but in the partial 

ordering eonvel'se to that. But this is of no trouble, since 

all will be decidable. What we need first is an enumeration 

of all finite sets of integers. We can do this by: 
k . k . k+l

En = {k I 3 i. j . i < Z and n =: 1 + 2 + J • Z } • 

The idea is tha t kEEn means that the exponent k does occur in
 

the binary expans ion of n as a sum of powers of 2. All finite
 

subsets of :N are of the form E • We then find that as a
 
n 

neighbourhood sys tem 

(P:I') • (N \ En I n EN) . 

As the relationship En U Em = E is recursive, there is no troublek 
in proving that this is a computable presentation. In this 

system, of course. any tloiO neighbourhoods are consistent. Various 

combinators on PlN are suggested in Exercise 7.23. 0 

We end this chapt er wi th an example of another kind of domain 

construct. This construct is known as the smyth Power Domain. It is defined 

for any neighbourhood system V and resul ts in a new system we 

shall call here lP V. The elements of IP V behave rather like 

sets Of elements of V, but since our elements can be either partial 

or total, there are certain dangers to pushing the analogy too 

far. For some purposes a rival construct called the PZ.otkin Power 

Donuin is better, but it leads outside the category of neighbourhood 

systems as defined in these lectures. Do not confuse PW with 
JP V. 
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DEFINITION 7.!. Let V be any neighbourhood system and define
 

If' V = {U (+ X.) I ~ i < n. X. E V} •
 
i<n 1 1 

We recall that for any XE V 

+X = {Y E V I Y S; X} • 

The finite unions in PD can be empty (i.e. if 0=0). 0 

Formally, the system lP V is just more or less the closure of 

V under £ini te unions; however. this would not be an isomorphism­

invariant construct unless V is "prepared". The preparation 

consists of replacing V by the isomorphic domain 

V+={+ xlxEV}. 

(In this connection refer back to Exercise 1.20.) We remark that 

.. X n. Y:I= rp iff (X, Y} is consistent in V, 

and in that case 

+X n .j. Y +(xnY). 

PROPOSITION 7.10.The power domain lP V is a neighbourhood system 

if V is, and it is effectively given if V is. 

~oof: The system V+ is a neighbourhood system as we just 

remarked; indeed it is a positive neighbourhood system. It is 

easy to prove that the closure of any positive system under finite 

unions is a neighbourhood system, because the resulting family of 

sets is closed under an finite intersections. (If we left out 

the empty union, the result would be a positive system.) The 

proof is obvious since intersection of sets distributes over 

finite union. So P V is a neighbourhood system. 

For the second half of the proposition, we just have to 

constructivi2ethe preVious argument. Thus, if 

V = (XnlnEN), 

then the elements of 1P V can be written as: 

U (Un.), 
l<q 1 
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and hence aTe indexed by the finite sequences <nO' •. '. n _ > 
q 1

of integers. Now one of the standard devices of recursion theory 

is to put the finite sequences of integers into a recursive ane­

one correspondence wi th the integers themselves. This is the 

start of the recursive presentation of 1P V, since it means we 

can list effectively all the required neighbourhoods. 

Next consider an intersection 

I I UX ) n U (+X )	 U<e Xn . n Xm.l 
~q n 

1 j<T mJ	 l<q 1 J
 
j <r
 

Some of the terms which are ¢ have to be thrown out - but this 

requires only a finite number of decisions all computable by 

assumption. Now we have to rewrite 

Xn. n X . = Xk ..• 
1 

m
J 1 J 

but the finding 0 £ is also computable. FinaUy. we have tokij 
re-order the doubly indexed sequence into a singly indexed sequence 

of length q.r. but this is easily seen to be computable also. 

Therefore, intersections can be "calculated". 

It remains to be shown that equality between neighbourhoods
 

in lP V is decidable. The question really comes down to deciding
 

something 1 i ke:
 

i- Xk S U+X ..n
i<q ~ 

Now since X e +X • we find that the above is just equivalent to:
k k
 

3 i < q. Xk £ X .
 n 
1 

By our assumptions on V, this is decidable. (It is this part of 

the argument that required the passage to V+. It does not seem 

to be generally true that the closure under finite unions of 

an effectively given system is again effectively given.) 

One of the main reasons that lP V is like a power domain is 

the possibility of forming "finite sets". 

0 



126 

DEFINITION 7.11. For elements x ' .•.• x _1 E IV' we defineO n

{x O' ... ,xn_1)=(ZEIPVI3XoEXo···3Xn_1Exn_1	 .UCHi)SZ}. 
l<n 

(Note, we could also wyite vi < n,X E Z). 0
i 

PROPOSITION	 7.12. The mapping 

)., x O' ••• J x	 _ {x •..•• x _ }: Vn .. lP V1 ,n o n 1

is approximable and is computable if V is effectively given. 

Moreover. the map)., x. (x} shows that V:;jlP V, and we also have 

the law: 

{x O' "', x _1} = {xO) n··· n (x _ }n n 1

as an intersection of filters. 

Proof: The second part shows that everything reduces to 

>..x.{x}. We see that 

X (Ax. {x»)U (' X . ) iff 3 i<q. XksX .•k n	 n
l<q 1	 1 

Thus J >.. x. (x) is an approximable mapping and is computable in the 

effectively given case. 

The proof of the law can be reduced to the special case 

{x) n {y} = {x,y) 

for the sake of illustration. In terms of finite elements of the 

two domains V and lP V we find 

{+X) ~ HX , 

and so. 

{+X) n {tY)	 - HX n HY
 

~ t (H U • Y)
 

-{tX,tY}. 

An equation between approximable functions that checks for finite 

elements also holds for all elements. 

Finally, we	 note that 

V'" V' <l ll' V 
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and that the isomorphism involved is just AX. {x} by what 'We 

saw on the finite elements. 0 

Further combinators on the power domain are given in the 

exercises. 

EXERCISES 

EXERCISE 7.13. Show that an effectively given domain can always 

be identified with a relation 

INC L (n, m ) 

on integers. where the two derived relations 

CONS(n,m) iff 3k. INCL(k,n) and INCL(k,m); 

MEET (n,m,k) i££ Vj [INCL (j,k) iff INCL (j,n) and INCL(j,m)] 

are both recursively decidable. and where the following axioms 

hold: 

(il vn.INCL(n,n); 

(ii) Vn,ro.k. INC L (n,m) and 1 N C L (m,k) imply INC L (n,k) 

(iii) 3m \In. INC L (n,m) 

(iv) viJ.,m. CON S (n.m) implies 3k. ME E T (n,m,k). 

(Hint: Consider the neighbourhood system 

v = ({rn E IN I INC L (m,n) J I n E IN ). 

Is this essentially any effectively given system?) 

EXERCISE 7.14. (For recursive-function theorists.) Prove the 

statements after definition 7.2 about the existence of primitive 

recursive functions for showing things recursively enumerable. 

(Recall that a non-empty set is r.e. iff it is the range of a 

primitive recursive function.) Show also that every computable 

element yE lEI can be written 

y' U(tYt(i)liE~J, 

where t: :N .... :N is primitive recursive and where we may assume 
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)'t(i+1) S )'t(i) 

for all i E }l' • 

EXERCISE 7.15. Finish the proof of 1.4 and establish similar 

reSults for the constructs (V0 0V,), (Vo@'O,) and 0"". Take 

into account the various appropriate combinators. 

EXERCISE 7.'6. Let Vo={XnlnEN}, V,={Ym!mEJ>ll and

° '" {Z,,!kEN} be three effectively given domains. Complete2 
the proof of 7.5 by writing out curry as a relation between 

neighbourhoods. Is it a recursive set or only a recursively 

enumerable set? 

EXERCISE 7.17. Complete the proof of 7.7 for showing 

that V§ is effectively given 1£ V is. Include all the comb ina­

tors of 6.2. Prove also that if E is effectively given and 

u : V .... E and v : E x E .... E 

are computable, then the unique strict mapping 

V§ -+ Eg : , 
where, for xE 1'01 and Y. zE lEI 

g (in (x)) = u (g (x)) . and 

g (pair (Y,,)) v (g(y), g (z)), 

is a computable mapping. 

EXERCISE 7.18. Two effectively given systems V and E are 

effectiL'el,y wOI1II::rpphic iff ... (complete the sentence: J. Show 

that if V is effectively given then the isomorphism 

vO:>~(vQ»O:> 

is effective. 
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HERCISE 7.19. Prove that'D f- il V is a functor by defining fOr 

each f : V -+ E a mapping 

IPf:IPV~IPE 

by the formula 

Un. IPf U+Y. iff vi<n3j<rn. X.fY. 
i<n 1 j<m J 1 J 

Be sure to check that lP f is approximable and that lP preserves 

identity maps and composition. If f is computable is P f? Is 

there a combinator A£.F f? What is 

II' f({x,y» = ?? 

EXERCISE 7.20. Show that there is a combinator 

union lP(IPV)-+lPV 

......here fOr suitab1e neighbourhoods 

u +(U iX .. ) union U iYk iff Vi<nVj<rni3k<q'XijSYk'
i<n j <ro 1) k<qi 

Is union computable if V is effectively given? What is 

union ({{xl, {Y,z}}) = ?? 

Are IP (IP V) and lP V generally isomorphic?? 

EXERCISE 7.21. Is there a non-trivial combinator of type 

II' (V ~ E) ~ (lP V ~ lP E) ? 

Are there in general any isomorphismsbet......een the systems 

(V + II' E), II' (V x E), lP V x lP E ?? 

Is there a non-trivial combinator of type 

lP (V x E) x lP (E x f) + lP (V x f) ??? 

Is there any connection between 

lP Nand P ~ ???? 
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•EXERCISE 7.22. (For algebraists.) Let E", {O,n be the free 

semigroup. A ne...... domain is constructed by defining a family 

of sets by the least fixed point theorem as follows 

S=(E}C{{o} 10E E}u{XYIX,YE SJu 

{XnYIX,YES andXnY"Ii'J. 

He re we !iTi te: 

Xy= {o-rloEX and "tEY}. 

Prove that S is an effectively given. positive neighbourhood 

system. (Hint: The sets in S are each "regular events" in the 

terminology of automata theory, and we have a decision method 

for the set algebra of regular events.) Define mUltiplication 

on IS) by 

Xy"'{ZES13XEx3YEy. XY,=Z}. 

and show lSI becomes a semi group with t embedded into lSI by 

the homomorphism 0 1_ {XE sloE X}. Investigate some infinite 

words in S, say those defined by least fixed points such as: 

(; '" 0 (; and (5 '" 00. 

Are these equations true: 

00=0,000=0,0101=01, 

and 01 D1 OT 51 = t1 01 ? 

EXERCISE 7.23. Complete the discussion of PlN of 

Exampl~ 7.fl. Show that the combinators fun and graph of 

Exercise 5.14 are computable. Also do the same for 

,l. x. y. x n Y. A x, y. x U y, and,l. x, y. x + y , 

whe re for x. yEP IN we define 

x + y = {n +m I n E x and mE y} . 

What are the computable elements of PN ? 
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EXERCISE 7.24. (Suggested by the LUCID language of Ashcroft 
and Wadge: SIA.M Jour. Comp. yolo 5 (1976).) Define a set r by 

r· UC!i}XrJU(*J. 
i=O 

Define a system 

L = (r} U{(i} x X liE N and X E L). 

Show that L is effectively given. Show that the elements of I L f 

can be iden!i fied with the finite and intioi te sequences of 

natural numbers. What is the connection between Band L? 

Show that the combinators of LUCID can be construed as computable 

mappings of type 

(L~TJ ~ (L~T) 

or of type 

(L~T) x (L~T) ~ (L~T) 

Conclude that programs in LUCID define computable maps. 
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LECTURE VI II 

RETRACTS OF THE UNIVERSAL DOMAIN 

In order to be able to have a fully flexible Illethod of solving 

domain equations and to be able to see why the domains obtained 
are effectively given, we shall embed all the desired domains in 

one "largest" domain. This universal domain will be easily shown 

to be effectively given. and the mappings needed to extract the 
other domains wi 11 be found to be computable. In order to be 

able to carry out this programme, we investigate first how certain 

subdomains correspond to mappings - the so-called retracts. An 

advantage of this analysis is that all t'he necessary definitions 

can be written out in A - calculus notation, thus demonstrating the 

'power of our mathematical programming language. 

DEFINITION 8.1. A ret:ruction of a given domain E is an approximable 

mapping a: E ... E such that a 0 a '" a. CJ 

PROPOSITION 8.1. If V<1 E and if a : E ... E is defined by 

X a Z iff 3 Y EV. XSYS-Z 

for all X,ZE E, then a is 8 retraction and IV I is isomorphic to the
 

fixed-point set of 8) the set {yE lEI! a (y):::: y}, under inclusion.
 

Proof: Tha t a is an approximable mapping is a direct consequence 
afDefinition 6.10. Indeed, in the notation of Proposition 6.12,we 
have 

a:::: i .. j. 

and this is another proof that a is approximable. This remark is 

also convenient, since we know from 6.10 

j i:::: Iv •0 

Therefore, we find: 

aoa-i .. i .. j i .. j "" a 

and so a is a retraction. 

We can also employ i and j to give the isomorphism on IVI. 

If xE lVI, then i (x)E If I and we calculate: 



134 

a (i (x) ) • i j i (x) • i (x).0 0 

Thus> i{x) belongs to the fixed-point set of a. In the other 

direction, if a(y) "'" y, then i(j (y)) = y. But j (y) E I V I. so i 

maps I VI one-one and onto the fixed-point set of 3. As i and 

j are monotone. the map is an isomorphism with respect to S. o 

Not every retraction comes from a relationship like V <I E; 

in fact, we can see from the definition of a above that a!: IE" 

But. as is indicated in Exercise 8.11 • even this condition is 

not sufficient to characterize the kind of retractions provided 

by 8.2. The characterization is as follows. 

DEFINITION 8.3. A retraction a E ... E is called a pl'ojection 

provided 

asI E ; 

it is ~ni~y iff its fixed-point set is isomorphic to a domain.C 

EXAMPLES 8.4. If a system V over li. is not trivial. then the 

two element system 0 = {{OJ, {o.H) comes from a retraction 

on V. Specifically, define a combinator 

check: V ... O 

by the relation 

X check Y iff either Y= {O,n or X*.6.. 

We see check(x) ::::.1 iff x = .lV. We leave to the reader the0 
definition of a combinator: 

fade:OxV ... V 

where we have for tE 101 and xE IVI: 

fade (t,x) = .lV' if t "'.10 

=x, if not. 

Now, take any uE IVI with u¢.l, and define 

a(x) • fade (check(x). u). 

Then a is a retraction (not a projection in general) and the 

range of a is isomorphic to O. 
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Another way of using these combinators is to find
 

(0 .... £) as a retraction of (0 .... £). Specifically. define a

1 

combinator 

str;ct: (V~E) ~ (V~E) 

by the equation 

strict(f) :;'x. rade (ched(xJ, f(x)), 

where this time 

fade 0 x E-f E • 

The range of strict consists exactly of the strict functions 

and this time strict is a projection whose range is indeed 

a domain. 

Similarly, we can find a projection on V x E with a range 

isomorphic to V ~ E by the combinator such that: 

smash(x,y):: fade (check.(xJ,fade (check.(y),<x,y»), 

fOT X E I V I and y E IE\. 0 

THEOREM 8.5. For an approximable mapping a : E .... E the following 

are equivalent: 

(i) a is a finitary projection; 

(ii) a(x) = {YE E 13 XE x. XaX~Y}. for all xE lEI. 

Proof: Suppose a satisfies (ii) first. Inasmuch as 

XEX and X~Y always imply YEx. 

for all xE lEI, we see a(x)s:x must always hold. Moreover, it 

is obvious that 

X E x and X a X always imply X E a(x); 

therefore, a(x) s: a (a (x)) for all x E IEl. This shows that a 
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is indeed a projection. 

Let V'" {xe E 1 Xa X} J then it is easy to check that V '<:1 E
 

and that a is determined from V exactly as in 8.2; thus, the
 

fixed-point set of a is isomorphic to a domain, by what we have
 

already proved. So we have shown (ii) implies (i).
 

In the converse direction. assume that a is a finitary 

proj ection. And let the system V be isomorphic to the fixed 

point set of a. We have the situation of Theorem 6.15. There 

is a projection pair. 

i ; V -f E and j : E -f V, 

where the connection with a gives: 

j i = I V and i 0 j .. a s: IE'0 

By 6.1.5 Vii!! V' <l E and we want to identify V I in terms of a as
 

follows:
 

V' = (X EEl X a Xl • 

~ow from a reading of the proof of 6.15 the neighbourhoods of 

V' are just those corresponding to the finite elements of V. 

But any such element is a fixed point of a. We have 

XE V' implies aCt X) .. t X implies X a X. 

Conversely, if XaX holds, then tX5a(tX). But a is a projec­

tion, so t X is a fixed point. But i(j (t X) ) .. t X lI1eans j (+ X) 

is a finite element of IVI. So XE V'. and we have '0' identified 

as desired. 

Finally, if we calculate a'" i • j by the formulae of 6.12 

(with V' for '0, of course), we obtain our formula (ii). 0 

The criterion for being a finitary projection just obtained 

provides us with a very interesting new combinator. 

THEOREM 8.6. For any domain f define 

sub; (E~El ~ (E~El 

by the formula 

X sub (fl Z iff 3YEE. XSYfYSZ, 
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for all X. Z E E and all f: E ... E. Then the range of sub consists 

exactly of the finitary projections on E, and mOreover sub itself 

is a finitary projection on (E ... E). If E is effectively given, 

then sub is computable. 

Proof: It is trivial to check that subef) is always approx­

imable. Also, it is obvious from the definition that the corre­
spondence 

f I- ,"b(f) 

preserves directed unions of f's. Thus, sub is itself approximable. 

We note that 

X,=Y £ YSZ always implies X fZ; 

hence, sub(f):= £ holds. Also 

Y fy always implies Y sub (f) Y, 

hence, sub(f) ~ sub (subef}) hold~This shows sub to be a proJec­
tion on (E ... E). The effectiveness of the definition makes it 

also clear that sub is cO'/ll[!utable "'hen E has a computable present­

ation. 

Since, sub is a projection. its range is the same as its 

fixed-point set.. If 

sub (a) '" a, 

then there is no problem in checking that a satisfies 8.S(ii) 

and COnVel'Be"ly. So the range of sub picks out exactly the finitary 

projections in view of B.S. 

Finally. to prove that sub is a finitary projection of 

(E .. E), we invoke 6.1' and remark that, in view of 8.2, the fixed 

point set (range) of sub is in a one-one inclusion-preserving 

correspondence wi th the domain {V I V <t E}. 0 

These resul ts have almost completely translated the theory of 

<l- subdomains into ).,- calculus via the sub-combinator. One last 

step will comple te the passage, and then we shall be able to 

return to solving domain equations. 
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DEFINITION 8.1. Let <l! be the set of rational numbers, and let 

[0,1) = {qE~ I O<;Q<1l, 

and similarly for [r, 5) for any r < 5 in <11.. The neighbourhood 

system U o....er [0,1) is the set of all non-empty finite unions of inter­

vals of rational intervals [T. 5) with 0< r< 5 <1. 

A picture of a typical element of U could be drawn like this: 

To TO T, T T. T52 3 

Note that any union can be taken as a diajoint union of the form 

U [T2i , T2i • 1 ) 

i<n 

where O( TO < T <T < ••• + < 1. (Hint: Any overlapping1 2 
< T 2n < T

2n 1

intervals or abutting intervals can always be combined into one 

long interval.) It is a most elementary exercise to show that, by 

virtue of this representation, the system U has a computable 

presentation. (Some isomorphic versions of U - equally effective 

- are recorded in the exercises.) Note that U has no minimal 

neighbourhoods: every set in U can be wri tten as the union of two 

disj oint sets in U. (Hint: Use the densi ty of the ordering of 

<I!.) The significance of U can now be explained. 

THEOREM 8.8. The system U is universal in the sense that, for 

every countable neighbourhood system V, we have 

v j U. 

Moreover, if V is effectively given, then the projection pair 

making the embedding can be taken as computable. Indeed there is 

a correspondence between effectively presented domains and the 

computable, finitary projections of U. 

~of: As V is countable, we can assume that 

V={XnlnE:N}, 
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where V is a system over a set d (say, X " A). We shall do the o 
effective and general cases together, where for the latter all 

remarks on recursiveness are just left out. So, if we want V 

effectively given. the above enumeration should be taken as the 

computable presentation. 

Without loss of generality we can assume 05""0"', since other­

wise we would just replace V by V+ The advantage of this pre­

paration is tha t unions in V· keep things rather sepa1"ate (as we 

noticed in cons tructing lP 0). In particular, we can be sure of 

this equi valenc e: 

Ct) X s I I X iff 3 id. XmS Xn . 
m i":rlc n i , 

This property, £or example, fails for the system U as presented 

in Definition 8.7. However, that observation is of no moment. 

because we are employing the assumption with respect to V not U. 

The reasOn for the assumption is this: for 6E {+.-} define 

forXEV: 

6X=X if6"'+ 

=d\Xif6=­

(A similar notat ion will be used for yE U.) Then for 6E {+ ,_}n 

the sets of the form 

n 6 i Xi (= X6 • for short) 

i<n 

form a partition of ~ into (at most) Zn parts. The reason for 

assumption (t) is that we can effectively decide for each 

6E {+,_}n whether one of these intersections is empty or not. 

(Why? - assuming that V is effectively given, of course). If 

for some reason we had not wanted to pass to Vi, we could have 

made this stronger assumption of decidability on the (positive) 

system V. (U, for example, satisfies ito) 

Suppose. co r responding to Xo' X1 , '" , Xn_1 • we have selected 

Y1' •.•• Y - ~ E U so that. for all 6E {+,-)D,YO' n 1 

CO) no. X. : '/' iff Y••, , no; , '/'. 
l<n i<n 



140 

We wish to show - effectively - how to choose Y correspondingn 
to X • so that (.) holds with n-t1 replacing n. Proceeding in­n 
ductively, we obtain a recursive enumeration of sets Y E U so 

n 
that 

P",(Y InEIl}.q u. 
n 

Clearly the isomorphism (matching X. to Y.) will be computable
1 1 

and the projection is computable. (It will then remain only to 

consider the arbitrary finitary computable projection to complete 

the 'proof of the theorem.) 

So, consider Xn; for each oE {+,-:fthere are four cases: 

X n X I{J X n-X I{Jo n o n 
X n X X n-x., I{J 
o n o n '" I{J 

Corresponding to X is a similar intersection Yo" If Xc were rp,o 
then Yo would be also. If not, YeS [0,1) is a union of rational 

intervals that can be written do.... n explicitly. (Why?) In our 

four cases on X , the first implies the fourth. (Why?) Thus, we 
n 

need only make some choices in these circumstances: 

X.I: n X "" rp : choose I.I: = rp ;u n u,n 

X n- X '" ¢ : choose Io,n'" Yo;o n 

otherwise : choose Io,n~Yo' with rp+J 6 ,n*'Y · o 

All these cases are decidable by assumption on V, and the effective 

choice of (unions of) intervals is effective by construction of U. 

Now set 

Y U n Io,n l ¢n OE {+,-} 

The set Y E U. it can be found effectively, and (-) is obViouslyn 
satisfied for n+1 

Finally, suppose that a is a computable, finitary projection 

of U. As we have seen in the proof of 6.5, the domain correspond­

ing to the range of a is isomorphic to the neighbourhood system 

{Y E U I YaY} <l U.• 
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Clearly. if a as a set of ordered pairs of neighbourhoods is 

recursively enumerable, then the above set is also recursively 

enumerable (because equality between neighbourhoods is deddable). 

It follows eas ily that the subsystem is effectively given as a 

neighbourhood system in its o.....n right. 0 

We have now proved that U is a nice and big domain that is 
nicely behaved with respect to computable mappings. It has some 

very interesting subdomains; to name a few: 

u+u, U~U. UxU. U 0 U 

UU~ U§ WU U U.1 ) • • • 0+ 

That all of these are :j U follows from knowing that they are all 

effectively presented. What we wish to check next is that they 

all combine well with respect to projections. To this end the 

explicit definitions are given for the constructs +, x, and ..... and 

the details of the others are left for the exercises. 

DEFINITION 8.9. Let the computable projection pairs 

i + : U + U... U and j + U ... U+ U 

be fixed. Simi1arly choose ix' jx and i ... , j .... for U x U and U.... U. 

Define: 

a+b = cond <which, i+ 0 1n a 0 out .' i+ 1n 0 b out, > 0 j+0 0 0 0 o o 1 

axb=ixo<a o projo.b o pro 9 1 > ojx;
 

a ...b = i .... (>.. f. b 0 f a) 0 j ... '
0 0 

for all a. b :U_ U. 0 

These interesting(computable:)combinators on elements of 

U.... U have many,many properties. We shall, however, only see what 

they do to projections. 

PROPOSITION 8.10· If a, b: U.... U are projections, then so are a+b. 

axb, and a....b. If a and b are finitary, then so are the others; 

for the fixed-po i nt set of each of them is isomorphic to the 

corresponding construct applied to the domains determined by a 

and b. 
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Proof: Suppose that a, b S I (= I for short). ThenU 

a+b S I + I = i+ " j+ OS I. 

The other cases are similar. 

Suppose a == a a and b:::: bob, then, for example,0 

(axbJ (axb) = i x <3" projo' b" proj1>" <3" projo' b oproj1>" jx0 0 

== i x " <3 " a" projO' b " b <> proj1 > " j X 

::: a x b. 

The other cases are similar. 

Now in case the fixed-point sets of a and b are domains. they 

are respectively isomorphic to 

Va = {X E U I X a X} and
 

Vb = {Y E U I Y b Yl •
 

We have to show, for example. that 

Va.... VbS!!Da ...b • 

Now to simplify matters, remark. that the fixed-point set of a .... b 

on U is isomorphic to the fixed-point set of ~ f. b " f" a on (U -+ U) • 

(Hint: use i ....and j .... to set up the isomorphism.) So we have to 

think what it is fOT an f: U .... U to satisfy 

f=b=f=a. 

Notice that we might as well say that a: U --Va and that this map 

is the other half of an obvious projection pair Where 

ia:Va-+U. 

and i a =a and a" i =i So if g :Va-+V leta a a b , 

f = i b G g " a. 

then b" f" a = f. Conversely, if f is like this, then let 

g '" b " f "ia . 

Thus. i b " g " a '" b f" a'" f; so there is an order-preserving isomor­

ph ism be tWeen the g : Va'" Vb and the f '" b " f " a. 
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The isomorphism proofs for + and ~ are similar. 0 

iI.'ell, this was a lot of work, but the pay-off is rather 

handsome. What ......e have done is transpose all the 

V <! U 
a 

over to finitary projections a: U .... U. This transposition is an 

isomorphism, because 

V <1V iff as:b. 
a b 

Moreover. by the method of 8.9 and 8.10 .. atl. our favourite con­

structs have bean made into combinators. that is, approximable ­

even computable - maps on the domain of fini tary projections. 

ALL APPROXIMABLE (COMPUTABLE) MAPS HAVE (COMPfRABLE) FIXED POINTS. And there 

you are~ Tjle standard fixed-point method is available to obtain 

computable (i.e. effectively given) solutions to aU domain equations 

(even sets of equations) where the constructs can be reworked in 
this way to be defined on projections. Examples are suggested in 

the exercises. 

Another pay-off concerns the}" - calculus itself. Inasmuch 

as 
u+u, U><U, U ... Us, U. 

we might just as well forget the outside world and regard all these 

useful domains as being part of U. For example. on the left we 

have the new notation and on the right the old notation: 

which (z) = which(j.(z)) 

in i (x) ~ i+(ini(x)), i ;; 0, 

out (x) ~ out i (j +(x)). i;; 0.1
i 

~< x. y> i >«<x.Y» j 

proj i (z) = proji (j x(z)),i 0 0, 

u (x) - j.(u) (x); 

}" x. "t = i .... (:Xx. "t). 

And. there is no reason to stop here. The system 

T'" ([0,1/2),[1/2,1),[0,1)) <1 U , 

so we might as we 11 think of 
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true, falseE lUI 

and think of cond: UxUxU ... U. No! that is wrong: under the new 

regime EVERYTHING IS AN ELEMENT OPU. With the new meaning of A, all 

functions, all pairs, all combinators, all constructs become 

e7,ements of U. 

It takes a little time to get used to "universal conscription" 

with all elements doing (at least) double duty in the same domain, 

but there are many advantages, both notational and conceptual. 

EXERCISES 

EXERCISE 8.1'. Let ~ be the set of rational. numbers and define a 

neighbourhood system by the equation 

R • ([ O. r) IrE ~ and a < r " 1). 

Show that the following defines an approximable map a: R ... R 

[O,r)a[O,s) iff r<s or r::s=1. 

Show in addition that a is a projection where the fixed-point set 

of a is in a one-one correspondence with the real. numbers between 

o and 1 inclusive. (Hint: Recall Dedekind cuts and show 5" matches 

<.) Conclude that a is NOT finitary. (Hint: Aside from 1. there 

areno finite elements for {xIx'" a(x)}.) 

EXERCISE 8.12. Gener:llize the notation 2X+1 for subsets XSJll' 

to sets of the form 

2k X +l, where l < 2k • 
k

Let V be the non-empty fini te unions of sets 2 :N -+i. Show that 

U~ V and that the isomorphism is effective, thus obtaining another 

presentation of U. 

EXERCISE 8.13. (For logicians.) Prove that the universal domain 

U is isomorphic to the domain of all proper filters of the free 

Boolean algebra on ~o-generators (= the Lindenbaum algebra of 

propositional calculus). (For topologists.) Connect this 
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representation of U wi th the collection of non-empty open subsets 

of the product space Z:N (= Cantor space). 

EXERCISE 8.14. A retraction a :-0 .... 0 is called a closure opel"atoZ' 

iff Ipsa. On a domain like P:N. give some examples of closure 

operators. (Hint: Close up a set of integers under addition. Is 

this continuous on P:N 1) Prove in general for any closure 

a: V .... O that the fixed-point set of a is ah.ays a finitary domain. 

(Hint: Show that the fixed-point set is closed under intersec­

tions and directed unions.) What are the finite elements of the 
fixed-point set? 

EXERCISE 8.15. Give a direct proof that the domain {X I X <IV} 

is effectively presented if V is. (Hint: The finite elements of 

the domain correspond exactly to the finite systems X<] V.) In 

the case of V::: U, show that the computable elements of the domain 

correspond exactly to the effectively presented domains (up to 

effective isomorphism). 

EXERCISE B.16. For finitary projections a E .. E. write 

V.=(XEE I X.X} 

(cL B.5.). Show that for any two such projections a, b :E .. E 

we have 

asb iff Va <I Vb' 

(This fills in the gap at the end of the proof of B.6.) Also 

finish off the proof of 8.8 by shOWing that if E is effectively 

given and a: E .. E is computable, then Va is effectively given. 

EXERCISE 8.17. Find explici tly (if possible) the projection pairs 

for U + U, U x U, and U -+ U needed for 8.9. Are any of these domains 

isomorphic with U? (The author does not know a really good con­

struction for U -+ U.) Find a universal domain V~ U. 



146 

EXERCISE 8.1 e. Many of the cases of 8.10 were left unproved. 

Please establish these assertions explicitly. 

EXERCISE 8.19. Suppose we know both 

T and E ~ E :8 E • 

Does it follow that E + E and E)( f S E? 

EXERCISE 8.20. For any system we know V "1 V + V, but ....,hat about 

V :s V )( V and V ;S V .... V ? 

Would these projections be computable if V is effectively given? 

Are there more than one projection pair in each case? 

EXERCISE 8.21. Using the fixed-point construction, show that 

there is a continuous and computable operator A a. a§, such that 

if a is a finitary projection of U, then 

~ (V ) §v § aa 

EXERCISE 8.22. Which of the two relations hold; 

B S C or C :8 B ? 

Or do they both hold? In general if we use domain equations 

V' T(V) + S(V). and 

E = T(E) 

will f ~ V hold? What projections do you see in the examples in 

6.2? 

EXERCISE 6.23. Suppose a construct T on domains can be made into 

a computable operator t : [U .... U) -(U .... U) so that whenever a : U .... U 

is a finitary projection, then so is tea) and 

Vt(a) " T(Va)· 

Does it follow that II til = fix.(t) is such that 

V S T (V )
lltll lltl1 



really is the initial solution of the domain equation with respect 

to projections? Since t is computable, ....;ill this solution be 

effectively g~ven? 

EXERCISE 8.24. Suppose Sand T are two (binary-argument) con­

structs on domains that can be made into computable operators on 

projections of the universal domain. Sho~' that we can therefore 

find a pair of effectively presented domains such that 

v " S(V,E) and EaT (V,E) • 

EXERCISE 8.25. The problem is to find non-trivial solutions to 

the domain equa t ion 

(' ) V=:-V-+V. 

8how that the "obvious" solution by retracts is of no use because 

1-+1"'1 

for projections. Change the method as follows. Show first 

uO> x uO> ~ uC:O 

Next solve 
v ~ V -+ U"" 

and remark that U .q V ; so V is universal and non-trivial. Finally 

prove (') for this V. (Hint: First show 

VxV~V, 

and then show V satisfies (').) Is this V effectively given? 

EXERCISE 8.26. Discuss in more detail the "pay_offl! for U, name­

ly the translation of t'untyped" A - calculus into U as shown by 

the equations at the end of the lecture after the proof of 8.9. 

In particular show how the whole of the typed A - calculus can 

beretranslated back into U with the aid of projections. (Hint: 

1';'henever you want to write 

f:Va-+Vb • 
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wri te instead 
£=bofoa. 

where 3, b are finitary projections. Whenever you want to form 

a A. - abstrac tion 
Va 

AX 0, 

where (1 is of type Vb' instead form 

AX. b(o·[a(x)/x)). 

where 0' is the further translation of 0 into untyped ).,- calculus. 

Be sure to show that this result Tlhas the right type" in the sense 

defined above.) 

EXERCISE 8.27. (Suggested by James Donahue.) Finite cartesian 

products of domains are formed by the 17 x 17 1- construct we have0 
used so often. The problem is to define - computably - some 
infinite cartesian products. In particular, as applied to the 

universal domain U. the combinator sub is to be regarded as a 

finitary projection of U whose fixed points are exactlya~~ 

the finitary projections. A map 

d=subodosub 

can be regarded as a polymorphic type (because, whenever t is a 

finitary projection (::: type), then so is d(t)). The continuous 

pro~tof all these types would be the domain of all approximable 

functions x such that 

x(t) = d(t)(x(t)) 

for all types t. (Why does this equation mean that x is in the 

product?) Define IT as a combinator by 

II • A d A X At. sub (d (s ub (t))) (x ( sub (t) Jl . 

Show that for d a polymorphic type, ned) is a type. (Hint:
 

It is easy to check that ned) is a projection; the problem is to
 

show it is finitary.)
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