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Abstrad. The meaning of many k.inds of expressions In programming languages can be tak.en as 
elements of cerra in spaces of ··partial" objects. In this report these spaces are modeled in one universal 
domain Pw. the set of all subsets of the integers. This domain renders the connection of Ihis semantic 
theory with the ordinary theory of number theoretic (especially general recursive) funClIons clear and 
straightforward. 

Key worm. programming language semantics, lattice, continuous lattice, algebraic Jatlice, 
computabilily, retract. combinatory logk. lambda calculus, recursIon theorem, enume'rarion degrecs, 
continuous function, fixed-point theorem 

Introduction. Investigations begun in 1969 with Christopher Strachey led to 
the idea that the denotations of many kinds of expressions in programming 
languages could be taken as elements of certain kinds of spaces of "parrial" 
objects, As these spaces could be treated as function spaces, their structure at first 
seemed excessively complicated--even impossible. But then the author disco­
vered that there were many mOre spaces than we had first imagined--even 
wanted. They could be presented as lattices (or as some prefer, semilattices). and 
the main technique was to employ topological ideas, in particular the notion of a 
continuous function. This approach and its applications have been presented in a 
number of publications, but that part of the foundation concerned with computa­
bility (in the sense of recursion theory) was never before adequately exposed. The 
purpose of the present paper is to provide such a foundation and to simplify the 
whole presentation by a de-emphasis of abstract idea•. An Appendix and tbe 
references provide a partial guide to the literature and an indication of connec­
tions with other work, 

The main innovation in this report is to model everything within one 
"universai" domaii, Pw ~ {xix ~ wi. the domain of all subsets of the .el w of 
nonnegative integers. The advantages are many: by the most elementary consid­
erations Pw is recognized to be a lattice and a topological space. [n fact, Pw is a 
continuous lattice, even an algebraic lattice, but in the beginning we do not even 
need to define such an "advanced" concept; we can save these ideas for an 
analysis of what has been done here tn a more direct way. Next by taking the set of 
integers as the basis of the construction, the connection with the ordinary theory 
of number-theoretic (especially, general recursive) functions can be made clear 
and straightforward. 

The model Pw can be intuItively viewed as the domain of multIple-valued 
integers; what is new in the presentation is that functions are not only multiple­
valued but also "multiple-argumented", This remark is given a precise sense in § 2 
below, but the up.hot of the idea is that multiple-valued integers are regarded as 
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objects in themsdves-possibly inhmte-and as something more than Just the 
collection o[ single integers contained in Ihem. This combination o[ the finite wilh 
the mfinite into a single domain, together with the idea that a continuous function 
can be reduced to its graph (in the end, a set of integers). makes it possible to view 
an x E Pw at one time as a value, at another as an argument, then as ;m integer, 
then as a [unction, and still later as a [unctional (or combinator). The "paradox" o[ 
sd[-application (as in xix»~ is solved by allowing the same x to be used in two 
differeht ways. This is done in ordinary recursion theory via Gode! numbers (as in 
(eHe». but the advantage o[ the present theory is that not only is the function 
concept the extensional one, but it includes arbiuary continuous functions and not 
just the computable ones. 

Section 1 introduces the elementary ideas on the topology o[ Pw and the 
continuous [unctions including the fixed-point theorem. Section 2 has to do with 
computability and definability. The language LAMBDA IS introduced as an 
extension of the pure A-calculus by four arithmetical combinators; in fact, it is 
indicated in § 3 how the whole system could be based 00 Ohe combinator. What is 
shown is that computability in Pw according to the natural defioition (which 
assumes that we already know what a recursively enumerable set of integers is) i~ 

equivalent to LAMBDA-definability. The main tool is. not surprisingly, the first 
recursion theorem [ormulated with the aid of the so-called paradoxical com­
blhalOr Y. The plan is hardly original, but the point is to work out what it all means 
in the model. 

Along the way we have to show how to give every A-term a denotation in Pw; 
the resulting principles o[ A-calculus that are thereby verified are summarized in 
Table I. O[ these the first threc, (n), ((3), and (~), arc indeed valid in the model; 
however, rule (11), which is a stronger version of extensionality, fails in the Pw 
model. This should not be regarded as ;] disadvantage since the import of (11) is to 
suppose every object is a function. A quick construction of these special models i!' 
indicated at the end o[ § 5, Since Pw is partially ordered by c::, there are also laws 
involving this relation. Law (';*) is an improvement of (E,; while IlL) is a form of 
mt)fiotnnicity for application. 

T >\BU 
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Section 3 has to do with enumeration and degrees. Godel numbers for 
LAMBDA are defined in a very easy way which takes advantage of the notation of 
combinators. This leads to the second recursion theorem, and results on incom­
pleteness and undecidability follow along standard lines. Relative recursiveness is 
also very easy to define in the system, and we make the tie-in with enumeration 
degrees which correspond to finitely generated combinatory subalgebras of Pw. 
Finally a theorem of Myhill and Shepherdson is interpreted as a most satisfactory 
completeness property for definability in the system. 

Sections 4 and 5 show how a calculus of retracts leads to quite simple 
definitions of a host of useful domains (as lattices). Section 6 investigates the 
classification of other subsets (nonlattices) of Pw; while § 7 contrasts partial 
(multiple-valued) functions with total functions, and interprets various theories of 
functionality. Connections with category theory are mentioned. 

What is demonstrated in this work is how the language LAMBDA, together 
with its interpretation in Pw, is an extremely convenient vehicle for definitions of 
computable functions on complex structures (all taken as subdomains of Pw). ft is 
a "high-level" programming language for recursion theory. It is applied com­
binatory logic, which in usefulness goes far beyond anything envisioned in the 
standard literature. What has been shown is how many interesting predicates can 
be expressed as equations between continuous functions. What is needed next is a 
development of the proof theory of the system along the lines of the work of 
Milner, which incorporates the author's extension of McCarthy's rule of recursion 
induction to this high-level language. Then we will have a flexible and practical 
"mathematical" theory of computation. 

1. Continuous lunctions. The domain Pw of all subsets of the set w of 
nonnegative integers is a complete lattice under the partial ordering ~ of set 
inclusion, as is well known. We use the usual symbols U, n, U, nfor the finite and 
infinite lattice operations of union and intersection. Pw is of course also a Boolean 
algebra; and for complements we write 

-x ={nlnEx} 

where it is understood that such variables as i, j, k, I. m, n range over integers in w, 
while u, L', W, X, y, z range over subsets of w. 

The domain Pw can also be made into a topological space-in many ways. A 
common method is to match each x£; w with the corresponding characteristic 
function in {D, 1t, and to take the induced product topology. In this way Pw is a 
totally disconnected compact Hausdorff space homeomorphic to the Cantor 
"middle-third" set. This is not the topology we want; it is a positive-and-negative 
topology which makes the function -x continuous. We want a weaker topology: 
the topology of positive "information", which has the advantage that al1 continu­
ou, fundion; possess fixed points. (The equation x = --x is impossible.) The 
topology that we do want is exactly that appropriate to con;idering Pw to be a 
continuous lattice. But all this terminology of abstract mathematics IS quite 
unneces~ary, since the required definitions can he given in very elementary terms. 
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To make the topology "visible ", we introduce a standard enumeration 
{e"jn E w} of all finite subsets of w. Specifically we set 

provided that ko< k l <. , .< k",_1 and n = I."m 2". Thus n is the code number 
for e", and the elements of e" are the exponents in the binary expansion of the 
integer n. This is a one-to-one enumeration of finite SUbsets, where k E ell always 
implies k < n, the function max (e,,) is (primitive) recursive in n, and the relations 
kEen, en ~ e,m en = em U fie are all (primitive) recursive in k, m, n. 

Topologically speaking the finite sets e" are dense in the space Pw, for each 
x E Pw is the "limit" of its finite subsets in the sense that 

To make this precise we need a rigorous definition of open subset of Pw. 
DEFINITION. A basis for the neighborhoods of Pw consists of those sets of the 

form: 

for a given ell' An arbitr£lry open subser is then a union of basic neighhorhoods. 
It is easy to prove that an open subset U ~ Pw is just a set of "finite 

character"; that is, a set such that for all x E Pw we have x E U if and only if some 
finite subset of x also belongs to U. An alternate approach would define directly 
what we mean by a continuous function using the idea that such functions must 
preserve limits. 

DEFINITION. A functionf: Pw....:,. Pw is continuous iff for all x E Pw we have: 

Again it is an e£lsy exercise to prove that a function is continuous in the sense 
of this definition iff it is continuous in the usual topological sense (namely: inverse 
images of open sets are open). For giving proofs it is even more convenient to have 
the usual £-D formulation of continuity. 

THEOREM II (The characterization theorem), A function f: Pw ~ Pw is 
continuous iff for all x E Pw and all Em we have: 

em ~f(x) iff 3e" ~ x.em ~f(e"). 

Note that open sets and continuous functions have a monolonicity property: 
whenever x 0;; y and x E U, then y E U; and 
whenever x ~ y, then f(x) ~ f(y)· 

This gives a precise expression to the "positive" character of our topology. 
However, note too that openness and continuity mean rather more than just 
monotonicity. In particular. a continuous function is completely determined by 
the pairs of integer... such that m E f(e n). as can be seen from the definition. (Hence, 
there are only a continuum number of continuous functions. but more than a 
continuum number of monotonic functions.) This brings us to the definition 01' the 
graph of a continllOu~ function. 
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To formulate the definition, we introduce a standard enumeration (n, m) of 
all pairs of integers. Specifically we set 

In, m) =~(n +m)(n ,. m + 1) +m. 

This is the enumeration along the "little diagonals" going from left to right, and it 
produces the ordering: 

(0,0), (1, 0), (0, 1), (2, 0), 0, 1), (0, 2), (3, 0), (2,1), ' , .. 

Note that n ~(n. m) and m ~(n, m) with equality possible only in the cases of 
(0,0) and (1,0). This is a one-to-one enumeration, and the inverse functions are 
(primitive) recursive-but we do not require at the present any notation for them. 

DEFI"tTloN. The graph of a continuous function f: Pw .... Pw is defined by the 
equation: 

graph(f)={(n, m)lmEfle,,)}: 

while the function determined by any set II ,; w is defined by the equation: 

fun(u)(x) = {mI3e" ,; x.(n, m) E u}. 

THEORE" 1.2 (The graph theorem). Every continuous function is uniquely 
determined by its graph in the sense that: 

(i) lun (graph(f)) = f. 

Conversely, every set of integers determines a conrinuous function and we have: 

Iii) u,; graph(lun(u», 

where equality hoLds just in case u satisfies: 

(iii) whenever(k. m)E uande" :::;en , chen (n, m)E u. 

Besides functions of one variable we need to consider also functions of 
several variables. The qfficial definition for one variable given above can be 
extended simply by saying !(x, y, ... ) is continuous iff it is continuous in each of 
x, y, .... Those familiar with the product topology can prove that for our special 
positive topology on Pw this is equivalent to being continuous on the produd 
space (continuous in the variables jointly). Those interested only in elementary 
proofs can calculate nut directly from the definition Iwith the aid of 1.1) 
that continuity behaves under combinations by substitution [as 10: 

f(g(x, y), h(y, x, y»)] 
TIIEOREM 1.3 (The substitution theorem)'. Continuous functions of several 

variables on Pw are closed under substitution. 
The other general fact about continuous functions that we shall use con­

stantly concerns fixed points. w'hose existence can be proved using a well-known 
method. 

TIIEOKFM 1A (The fixed-point theorem), Every crmtinllOus fftflcf;OI/ f; Pw""" 
Pw has a Least fixed point given hy the formuLa: 

fixil) =UU"(0)jn E w}, 

where ,~_) is the empiY set and!,' is the n-fold cO/llpwilflOn oj f wah itself. 
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Actually fix is a functional with continuity properties of its own. We shall not 
give the required definitions here because they can be more easily derived from 
tbc construction of tbe model given in the next section. 

For those familiar with the abstract theory of topological spaces we give in 
conclusion two general facts about continuous functions with values in Pw which 
indicate the scope and generality of our method 

THEOREM 1.5 (The extension theorem). Let X and Y be arbitrary topological 
spaces where X s; Yas a subspace. Then every continuous function f: X -. Pw can 
be extended to a continuous function f: Y -> Pw defined by the equation: 

fry) = U{(i{f(x)!x E X n v}IY E V}, 

where y E Y, and V ranges over lhe open sl,bsets of Y. 
THEOREM 1.6 (The embedding theorem). Every To-space X with a countable 

basis [V" In E w} for its topology can be embedded in Pw by the continuous function 
E : X -> Pw defined by the equation: 

Technically the To-hypothesis is what is needed to show that, is one-la-one. 
The upshot of these two theorems is that in looking for (reasonable) topological 
structures we can confine attention to the subspaces of Pw and to continuous 
functions defined on all of Pw. Thus the emphasis on a single space is justified 
structurally. What we shall see in the remainder of this work is that fhe use of a 
single space is also justified practically because the required subspaces and 
functions can be defined in very simple ways by a natural method of equations. 

In order to make the plan of the work clearer, the proofs of the theorems have 
been placed in an Appendix .....·hen they are more than simple exercises. 

2. Computability and delinability. The purpose of the first section was to 
introduce in a simple-minded way the basic notions about the topology of Pw and 
its continuous functions. In this section we wish to present the details of a powerful 
language for defining particular functions-especially computable functions­
and initiate the study of the use of these functions. This study is then extended in 
different ways in the following sections. 

Before looking at the language, a short discussion of the "meaning" of the 
elements x E Pw will be helpful from the point of view of motivation. Now in itself 
x E Pw is a set, but this does not reveal its meaning. Actually x has no "fixed" 
meaning, because it can be used in strikingly different ways; we look for meaning 
here solely in terms of use, Nevertheless it is possible to give some coherent 
guidelines. 

In the first place it is convenient to let the singleton subsets {n} E Pw stand for 
the corresponding integers. In fact, we shall enforce by convention the equation 
n = in} as a wayof simplifying notation. In this way, w s; Pw as a subset. (Note that 
our convention conflicts with such set-theoretical equations as 5 = {D, 1,2,3, 4}. 
What we have done is to abandon the usual set-theore~ical conventions in favor of 
a slight redefinition of set of inregers which produces a more helpful convention for 
prescnt purposes.) So, if we choose, a singleton "means" a single integer. Tht: next 
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question is what a "large" set x E Pw could mean. Here is an answer: if we write: 

x = {a, 5, 17} = aU 5 U 17, 

we are thinking of x as a multiple integer. This is especially useful in the case of 
multiple-valued function where we can write: 

[(a)=aU5U 17. 

Then" mE [(a)" can be interpreted as "m is one value of [at a." Now a E Pw, too, 
and so it is a multiple integer also. This brings us to an important point. 

A multiple integer is (often) more than just the (random) collection of its 
elements. From the definition of continuity, mE [(a) is equivalent to mE [(en) 
with e" sa. We may not be able to reduce this to mE [({n}) with n E a without 
additional assumptions on f. Indeed we shall take advantage of the feature of 
continuous functions whereby the elements of an argument a can join in coopera­
tion in determining [(a). Needless to say, continuity implies that the cooperation 
cannot extend beyond fillite configurations, and so we can say that a is the union 
(or limit) of its finite subsets. However, finitary cooperation will be found to be 
quite a powerful notion. 

Where does this interpretation leave the empty set 0? When we write 
"[(a) = 0" we can read this as "[ has no value at a", or "[ is undefined at a". In 
this case [(a) exists (as a set), but it is not "defined" as an integer. Single- (or 
singleton) valued functions are "well-defined", but multiple-valued functions are 
rather "over-defined". 

How does this interpretation fit in with monotonicity? In case as band 
mE[(a), then we must have mE[(b). We can read "asb" as"b isan improve­
ment of a" is beuer-defined than a". The point of monotonicity is that the better 
we define an argument, the better we define a value. 'Better" does not imply 
"well" (that is, singleton-valuedness), and overdefinedness may well creep in. 
This is not the fault of the function; it is our fault for not choosing a different 
function. 

As a suhspace (I'.C;:: Pw is discrete. This implies that arbitrary functions 
p : w -I' ware continuous. Note that p: w ~ Pw as well, because w £; Pw. By 
Theorem 1.5 we can ""tend p continuously to p: Pw -> Pw. The formula given 
produce,", this function: 

n{p(n)ln E w} if x ~ 0; 

(2.1) p(x) ~ p(n) if x = nEw;
{ 

w otherwise. 

This is a rather abrupt extension of p (the maximal extension); a more gradual, 
continuous extension (the minimal extension) is determined by this equation: 

(2.2) p(x) = U{p(n)ln EX}. 

The same formulae work for all multiple-valued functions p: w -> Pw. Functions 
like [= p are exactly characterized as being those continuous functions [: Pw-> 
Pw which in addition are distributive in the sense of these equations: 

[(xUy)=[(x)U[(y) and [(0)~0. 
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The sets 0 and w play special roles. When we consider them as elemel1ts of 
Pw we shall employ the notation: 

1=0 and T=w. 

The element 1 is the most "undefined" integer, and T is the most "overdefined". 
All others are in between. 

One last general point on meaning: suppose x E Pw and k E x. Then k = 
(11, m) for suitable (uniquely determined) integers 11 and m. That is to say, every 
element of x can be regarded as an ordered pair; thus, x can be used as a reLation. 
Such an operation as 

(2.3) x; y ~ {(n, 1)13m.(n, mJ E x, (m, I) Ey} 

is then a continuous function of two variables that treats both x and y as relations. 
On the other hand we could define a quite different continuous function such as 

(2.4) x +Y= In + min E x, mEl') 

which treats both x and y arithmeticaLLy. The only reason we shall probably never 
write (x +y); x again is that the values of this perfectly well-defined continuous 
function are, for the most part, quite uninteresting. There is. however, no 
theoretical reason why we cannot use the same set with several different "mean­
ing~" in the same formula. Of Course if we do so. it is to he expected that we will 
show the point of doing this in the special case. We turn now to the definition of the 
general language for defining all such functions. 

The syntax and semantics of the language LAMBDA are set out in Table 2. 
The syntax is indicated on the left, and the meanings of the combinations are 
shown on the right as subsets of Pw. This is the basic language and could have been 
given (less understandably) in terms of combinators (see Theorem 2.4). It is. 
however. a very primitive language, and we shall require many definitions before 
we can see why such functions as in (2.3) and (2.4) are themselves definable 

TABLE 2 

The language LAMBDA 

O~{O) 

I 
x + I ={n+ l!nEx}
 

x-l={ldn+1EX}
 I 
z:Jx.y=:nE.l!OEz}U{mcyj3k.k+lf,.::) I 

u(x) '" Imf3e" ';: X.(II, m} f II} 

Ax.• - l(11. ml!m,~ ;[(',,/ x_I_I ~__~_J 
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The definition has been left somewhat informal in hopes that it will be more 
understandable. In the above, T is any term of the language. LAMBDA is 
type-free and allows any combination to be made by substitution into the given 
functions. There is one primitive constant (0); therc are twO unary functions 
(x + I, x -1); there is one binary function (u(x) and one ternary function 
(z =>x, y); finally there is one variable binding operator (Ax.T). The first three 
equations have obvious sense. In the fourth, z => x, y is McCarthy's conditional 
expression (a test for zero). Next u(x) defines application (u is treated as a graph 
and x as a set), and Ax.T is functional abstraction (compare the definition of fun). In 
defining Ax.T, we use T[e,!x] as a shorthand for evaluating the term T when the 
variable x is given the value en_ 

Note that the functions are all multiple-valued. Thus we have such a result as: 

(2.5) (6UlO)+1=7UII. 

The partial character of subtraction has expression as: 

(2.6) 0-1=.L. 

We shall see how to define + and - in LAMBDA later. The conditional could also 
have been defined by cases: 

ifz=1-; 

if z =0;
(2.7) z=>x, y=!; if 0" z r' 1-; 

xUy if OEl r' O. 

We say that a LAMBDA-term T defines a function of iTS free variables (at least). 
Other results depend on this fundamental proposition: 

THEOREM 2.1 (The continuity theorem). All LAMBDA definable functions 
are continuous. 

Once that is proved. we can tl<e Theorem 1.2 to establish: 
THEOREM 2.2 (The conversion theorem). The three basic principles (aj, ({3), 

(,.;) of A-conversion are ail valid in the model. 
By "model" here we of course understand the interpretation of the language 

where the semantics gives terms denotations in Pw according to the stated 
definition. Through this interpretation, more properly speaking, Pw becomes a 
model for the axioms (a), ({3), (";). Two well-known results of the calculus of 
A-conversion allow the reduction of functions of several variables to those of one, 
and the reduction of all the primitives to combinators (constants)-all this with the 
aid of the binary operation of application. 

THEOREM 2.3 (The reduction theorem). Any continuous function of k­
variables can be writren as 

where u is a suitably chosen element of Pw. 
THHlRFM::,4 (The comhinator Iheorem). The LAMBDA-definable func­
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tions can be generated (from variables) by iterated applicacion wlch the aid of these 
six constants: 

0=0 

SDc=Ax.x+ 1 

pred = Ax.x - 1 

cond = AxAyAz.z :0 x, y 

K = AxAy.x 

S = AUAvAx.u(x)(v(x)) 

But the result that makes all this model building and combinatory logic 
mathematically interesting concerns the so-called paradoxicaL comhinator 
defined by the equation: 

(2.8) Y = Au.( Ax. u(x (x )))(Ax. u(x (x»). 

THEOREM 2.5 (The first recursion theorem). If u is the graph of a continuous 
function f, then Y(u) = fix(f), the least fixed point of f. 

There are two points to note here: the fixed point is LAMBDA-definahle if f 
is; and Y defines a continuous operator. The word "recursion" is attached to the 
theorem because fixed points are employed to solve recursion equation~. It would 
not be correct to call the fixed-point theorem (Theorem 1.4) the recursion 
theorem since it only shows that fixed points exist and not how they are definabLe 
in a language. The second recursion theorem (in Kleene's terminology) IS related, 
but it involves Godel numbers as introduced in § 3. 

From this point on we sc:e no need to distinguish continuous functions from 
elements of Pw; a continuous function will be identified with irs graph. Note that u 
is a graph iff u = Ax.u(x), which is equivalent to Theorem 1.2 (Iii). For thiS reason 
(functions are graphs) we propose the name Graph Model for this model of the 
A-calculus. (There is more to LAMBDA than just A, howeveL) 

The identification of functions with graphs entails that the function space of 
all continuous functions from Pw into Pw is to be identified (one-to-one) with the 
subspace 

FUN = {ulu = Ax.u(x));; Pw. 

The identification is topological in that the subspace topology agree with the 
product topology on the function space. This is the topology of pointwise 
convergence and is closely connected with the lattice structure on lhe function 
space which is also defined pointwise (that is, argumentwisel. In the notation of 
A-ab~tracti()n we can express this as the extension of the axiom of extensionality 
called (~*) in Table I of the Introduction. The laws in Tahle I are nol the only ones 
valid in the model, however. We may also note such argumentwi:-.c distribution 
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laws as: 

(2.9) (fU g)(x) = fIx) U g(x); 

(2.10) (Ax. T) U (Ax.lT) = Ax.(TU IT) ; 

(2.11) (fn g){x) = f(x)n g(x); 

(2.12) (Ax. T) n(Ax.lT) = Ax.(Tn IT).
 

In the above f and g must be graphs. It is also true that if :Ji ~ Pw, then
 

(2.13) UUlf E :Ji}(x) = UU(x)!f En 

but the same does not hold for (l. 
We state now a sequence of minor results which show why some simple 

functions and constants are LAMBDA-definable. 

(2.14) ~ = (Ax.x(x))(Ax.x(x)); 

(2.15) xU y = (Az.O) => x, y; (Hint: 0, 1E AZ.O) 

(2.16) T = Y{Ax.OU (x + 1)); 

(2.17) x n y = Y{AfAxAy.x => (y => 0, ~), f(x - l){y -1) + l)(x)(y). 

The elements ~ and T are graphs, by the way, and we can characterize them as the 
only fixed points of the combinator K: 

(2.18) a = Ax.a iff a = 1- or a ~ T. 

Next we use the notation (xo, Xl>" " X"_I) for the function fJ where p: w -> Pw is 
defined by: 

if i < n;
P(i)~{: 

ifi?-;n. 

(2.19) () =~ 

(2.20) (XI = Az.z => x, 1­

(221) (x, y) = Az.z => x, (z - I => y, ~) 

(222) (x", XI, •.. , x") = Az.z => x", (XI> .•• , x"){z - 1).
 

Obviously we should formalize the subscript notation so that u. = u(x); then we
 
find: 

X, if i < 11;
(2.23) (xo,Xj,"',Xrt 1);= { 'f'

.1 I I 2': n. 

This gives us the method of LAMBDA-defining finite sequenc", (in a quite 
natural way), and the next step is to consider infinite sequences. But these are just 
the function~ pwhere p: w ~ Pw is arbitrary. What we need then is a condition 
expressible in the language equivalent to saying tl ~ r for some (J. This is the same 
as 

u = AxU{u,li E xl, 
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but the U- and set-notation is not part of LAMBDA. We arc forced into a 
recursive definition: 

(2.24) $ = Y(AsAuAz.z ::::> uo, s(At.u,+ ,)(z -I). 

This equation generalizes (2.22) and we have: 

(2.25) 

Thus the combinator $ "revalues" an element as a distributive function. This 
suggests introducing the A-notation for such functions by the equation: 

(2.26) An E W.T =$(Az. T[zl n]). 

With all these conventions LAMBDA-notation becomes very much like ordinary 
mathematicaJ notation without too much strain. 

Suppose that [ is any continuous function and a E Pw. We can define 
p: w ~ Pw in the ordinary way by primitive recursion where: 

p(O) = a: 

pIn + I) =[(n)(p(n». 

The question is: can we give a LAMBDA-definition for p (in terms of [ and a as 
constants, say)? The answer is clear, for we can prove: 

(2.27) p= Y(AuAn E W.1l ::::>a, fIn -1)(u(Il-I»). 

This already shows that a large part of the definitions of recursion theory can be 
given in this special language. Of course, simultaneous (primitive) recursions C(in 
be transcribed into LAMBDA with the aid of the ordered tuples of (2.22), (2.23) 
above. But we can go further and connect with partial (and general) recursive 
functions. We state first a definition. 

DEFINtTION. A continuous function [ of k-variablcs is computable iff the 
relationship 

m E[(e")(e,,,) ... (e". ,) 

is recursively enumerable (Le.) in the integer variables m, no, nl,· .. ,nk .. l. 
If q is a partial recursive function in the usual sense, then we can regard it as a 

mapping q: W -> W U 1-L}, where q(ll) = ~ means that q is undefined at Il. Saying 
that q is partial recursive is just to say that mE q(n) is Le. as a relation in nand m. 
It is easy to see that this is in turn equivalent to the recursive enumerability of the 
relationship mE q(e,,); and so our definition is formally a generalization of the 
usual one. But it is also intuitively reasonable. To "compute" y ~ [(x), in the 
one-variable case, we proceed by enumeration. First we begin the enumeration of 
all finite subsets en ~ x. For each of these f starts up an enumemtion of the set 
[(e,,); so we sit back and observe which mE [(en) by enumeration. The totality of 
all such m for all ell :; x forms in the end the set y. 

THEolu',M 2.6 (The definability theorem). For a k-ary colllilluous [ullclion [, 
Ihe [ollowillg are equivalelll: 

(i) [is computable; 
(ii) AxoAx, ... Ax,. ,.[(xo)(x,)· .. (x. ,) as a sel is r.e.; 

(iii) AxoAx,' .. Ax•. ,.[(xo)(x, I ... (x.,) is LAMBDA-defillable. 
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As a hint for the proof we may note that the method of (2.27) shows that all 
primitive recursive functions p have the corresponding p LAMBDA-definable. 
Next we remark that a nonempty r.e. set is the range of a primitive recursive 
function; but the range of p is p(T). which is clearly LAMBDA-definable. That 
any LAMBDA-definable set (graph) is r.e. is obvious from the definition of the 
language itself. More details are given in the Appendix. 

We may draw some interesting conclusions from the definability theorem. In 
the first place, we see that the countable collection RE c!; Pw of r.e. sets is closed 
under application and LAMBDA-definability. Indeed it forms a model for the 
A-calculus (axioms (a), «(3), (e) at least) and it also contains the arithmetical 
combinators. (Clearly there will be many intermediate submodels.) In the second 
place, we can see now how very easy it is to interpret A-calculus in ordinary 
arithmetical recursion theory by means of quite elementary operations on r.e. 
sets. Thus the equivalence of A-definability with partial recursiveness seems not to 
be all that good a piece of evidence for Church's Thesis. In his 1936 paper (a 
footnote on p. 346) Church says about A-definability: 

The fact. however, that two such widely different and (in the opinion of the author) equally 
natural definitions or effective calculability turn out to be equivalent adds lo (he strength of the 
reasons adduced below for believing thai they constitute as general a characterization of this 
notion a!> is consiqent with the usual intuitive understanding of it. 

The point never struck the present author as an especially telling one, and the 
reduction of A-calculus to r.e. theory shows that the divergence between the 
theories is not at all wide. Of course it is a pleasant surprise to see how many 
complicated things can be defined in pure A-calculus (without arithmetical com­
binators), but this fact cuts the wrong way as evidence for the thesis (we want 
stronger theories, not weaker ones). Post systems (or even first-order theories) are 
much better to mention in this connection, since they are obviously more inclusive 
in giving enumerations than Turing machines or Herbrand-Godel recursion 
equations. But the equivalence proofs are all so easy! What one would like to see is 
a "natural" definition where the equivalence with Le. is not just a mechanical 
exerClse involving a few tricks of coding. 

In the course of the development in this section we have stated many 
equations which are not found in Table 1, and which involve new combinators. In 
conclusion we would like to mention an equation about Y which holds in the 
model, which can be stated in pure A-calculus, and which cannot be proved by 
ordinary reduction (though we shall not try to jUSll(y this last statement here). In 
order to shorten the calculatior!!., we note from definition (2.8) that Y{u) = 
Y(Ay.u{y»); so by Theorem 2.5 this also equals u(Y(u». 

(2.28) YIA!Ax.g(x)(j(x)) = Ax. Y(g(x)) 

Call the left side r and the right f". Now 

f" = Ax.g(x)(Y{g(x») ~Ax.g(x){f"{x)), 

thus rc= f", because r is a least fixed point. On the other hand r~ Ax.g(x)(j'(xl). 
so j'(x) = g(x)( j'(x)). Thus f"{x) c= j'(x), because f"{x) is a least fixed point. As this 
holds for all x, we Sec that f" c= r; and so they are equal. There must be many other 
such equations. 
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3. Enumeration and degrees. A great advantage of the combinators from the 
formal point of view is that (bound) variables are eliminated in favor of 
"algebraic" combinations. The disadvantage is that the algebra is not all that 
pretty, as the combinations tend to get rather long and general laws are rather few. 
Nevertheless as a technical device it is mildly remarkable that we can have a 
notation for all Le. sets requiring so few primitives. In the model defined here the 
reduction to one combinator rests on a lemma about conditionals: 

(3.1) cond(x)(y)(cond(x)(y)) = y. 

Recall that cond (or ::» is a test for zero, so that: 

(3.2) cond(x)(y)(O) = x. 

This suggests that we lump all combinators of Theorem 2.4 into this one: 

(33) G = cond«suc, pred, cond, K, S))(0). 

We can then readily prove: 
THEOREM 3.1 (The generator theorem). All LAMBDA-definable elements 

can be obtained from G by iterated application. 
A distributive function f is said to be lotal iff f(n) E w for all nEw. As they 

come from obvious primitive recursive functions, we do not stop to write out 
LAMBDA-definitions of these three total functions: 

(3.4) apply = An E w.Am E w.(n, m) + 1 

(35) op«n, m» = n 

(3.6) arg«n, m» = m. 

The point of these auxiliary combinators con!~erns Our Godel numbering of the 
Le. sets. The number 0 will correspond to the generator G: while (n, m)+ j will 
correspond to the application of the nth set to the mth. This is formalized in the 
combinator val which is defined as the least fixed point of the equation: 

(3.7) val = Ak E w.k::> G, val(op(k -l»(val(arg(k -1))). 

This function accomplishes the enumeration as follows: 
THEOREM 3.2 (The enumeration theorem). The combinator val enumerafes 

the LAMBDA-definable elements in that RE ={val(nJln E w}. Further: 
(i) val(O) = G, 

(ii) val(apply(n )(m») = val(n )(val( m)). 
As a principal application of the Enumeration Theorem we may mention the 

following: suppose u is given as LAMBDA-definable. We look at its definition 
and rewrite it in terms of combinators-eventually in terms of G alone. Then 
using 0 and apply we write down the name of an integer corresponding to the 
combination-say, n. By Theorem .1.2 we see that we have effectively found from 
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the definition an integer such that val n = u. This remark can be strengthened by 
some numerology. 

(3.8) apply(O)(O) = 1 and val(l) = 0; 

(3.9) apply(O)(l) = 3 and val(3) = (sue, ... ); 

(3.lOl apply(3)( I) = 12 and val(12) = sue. 

Thus, define as the least fixed point: 

(3.11) num = An E w.n::> I, apply(l2)(num(n -I)), 

and derive the equation for all nEw: 

(3.12) val(num(n)) = n. 

We note that num is a primitive recursive (total) function. The combinator num 
allows us now to effectively find a LAMBDA-definition, corresponding to a given 
LAMBDA-definable element u, of an element v such that uniformly in the 
integer variable n we have val(v(n») = u(n). Further, v is a primitive recursive 
(total) function. This is the technique involved in the proof of K1eene's well­
known result: 

THEOREM 3.3 (The second recursion theorem). Take a LAMBDA-definable 
element t1 such that: 

(i) val(v(n» = Am E w. val(n)(apply(m)(num(m))), 

and then define a combinator by: 

(ii) ree = An E w.apply(v(n»(num(v(n»). 

Then we have a primitive recursive function with this fixed-point property: 

(iii) val(ree(n) = val(n)(ree(n». 

Note that if u is LAMBDA-definable, then we find first an n such that 
val(n) ~ u. Next we calculate k =ree(n). This effectively gives us an integer such 
that val(k) = u(k). Gode! numbers represent expressions (combinations in G), 
and val maps the numbers to the values denoted by the expressions in the model. 
The k just found thus represents an expression whose value is defined in terms of 
its own Godel number. In recursion theory there are many applications of this 
result. Another familiar argument shows: 

THEOREM 3.4 (The incompleteness theorem). The set of integers n such that 
val(n) ~ 1- is not r.e.; hence, there can be no effectively given formal system for 
enumerating all true equations between LAMBDA-terms, 

(A critic may sense here an application of Church's thesis in stating the 
metatheoretic consequence of the nonresult.) A few details of the proof can be 
given to see how the notation works. First let v be a (total) primitive recursive 
function such that: 

val(v(n») ~ n n val(n). 

and note that: 

nnval(n)~1- iff nEval(n). 
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Call the set in question in Theorem.1.4 the sel b. If it were Le., then so would be: 

{n E wlv(n) €b} = (An E w.vln) n b =0 n, n)(T). 

That would mean having an integer k such that: 

val(k) = {n E w[v(n) E b}. 

But then: 

kEval(k) iff V(k)Eb 

iff val(v(k») = l­

iff ki'val(k), 

which gives us a contradiction. This is the usual diagonal argument. 
The relationship val(n) = val(m) means that the expressions with Godel 

numbers 11 and III have the same value in the model. (This is not only not Le. but is 
a complete n~-predicate.) A total mapping can be regarded as a syntactical 
transformation on expressions defined via Godel numbers. Such a mapping p is 
called extensional if it has the property: 

val(p(n))=val(p(m)) whenever val(n)= val(m). 

The Myhill-Shepherdson theorem shows that extensional, syntactical mappings 
really depend on the values of the expressions. Precisely we have: 

THEOREM 3.5 (The completeness theorem for definability). If a (total) 
extensional mapping p is LAMBDA-de~nable, then there is a LAMBDA­
de/irwble II meh 'hat val(p(n») ~ q (vall 11)) for aLI nEW. 

Of course q is uniquely determined (because the values of q are given at least 
on the finite sets). Thus any attempt to define something new by means of some 
strange mapping on GodeJ numbers is bound to fail as long as it i.~ effective and 
extensional. The main part of the argument is concentrated on showing these 
mappings to bc continuous; that is why q exists. 

The preceding results indicate that the expected results on Le. sets are 
forthcoming in a smooth and unified manner in this setting. Some knowledge of 
Le. theory was presupposed. but analysis shows that the knowledge required is 
slight. The notion of primitive recursive functions should certainly be well 
understood together with standard examples. Partial functions need not be 
introduced separately since they are naturally incorporated into LAMBDA (the 
theory of multiple-valued functions). As a working definition of r.e. one can take 
either ··empty or the range of a primitive recursive function" or, more uniformly, 
"a set of the form {mI3n.m + 1 ~ plll)j where p is primitive recursive". A few 
obvious closure properties of Le. sets should then be proved, and then an 
adequate foundation for the discussion of LAMBDA will have been provided. 
The point of introducing LAMBDA is that further closure properties are more 
eas.ily expressed in a theory where equations can be variously interpreted a!\ 
involving numbers, functionals, etc., without becoming too heavily involved in 
intricate G6del numbering and encodings. Another useful feature of the present 
theory concerns the ease with which we can introduce relative recursiveness. 
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As we have seen, {val(nJln E w} is an enumeration of all Le. sets. Suppose we 
add a new set a as a new constant. What are the sets enumerable in a" Answer: 
{val(n)(a)ln E w}, since in combinatory logic a parametet can always be factored 
out as an extra argument. Another way to put the point is this: for b to be 
enumeration reducible to a it is necessary and sufficient that b = u(a) where 
u E RE. This is word for word the definition given by Rogers (1967, pp. 146-147). 
What we have done is to put the theory of enumeration operators (Friedberg­
Rogers and Myhill-Shepherdson) into a general setting in which the language 
LAMBDA not only provides definitions but also the basis of a calculus for 
demonstrating properties of the operarors defined. The algebraic style of this 
language throws a little light on the notion of enumeration degree. In the first 
place we can identify the degree of an element with the set of all objects reducible 
to it (rather than just those equivalent to it) and write 

Deg(a) = {u(aJlu ERE}. 

The set-theoretical inclusion is then the same as the partial ordering of degrees. 
What kind of a partially ordered set do we have? 

THEOREM 3.6 (The subalgebra theorem). The enumeration degrees are 
exacrly the finitely generated combinatory subalgebras of Pw. 

By "subalgebras" here we of COurse mean subsets containing G and closed 
under application (hence, they contain all of RE, the least subalgebra). Part of the 
assertion is that every finitely generated subalgebra has a single generator (under 
application). This fact is an easy extension of Theorem 3.1. Not very much seems 
to be known about enumeration degrees. Joins can obviously be formed using the 
pairing function (x. y) on sets. Each degree is a countable set; hence, it is trivial to 
obtain the existence of a sequence of degrees Whose infinite join is not a degree 
(not finitely generated). The intersection of subalgebras is a subalgebra-but it 
may not be a degree even starting with degrees. There are no minimal degrees 
above RE. but there are minimal pairs of degrees. Also for a given degree there 
are only countably many degrees minimal over it: but the question of whether the 
partial ordering of enumeration degrees is dense seems still to be open. 

Theorem 3.6 shows that the semilattice of enumeration degrees is naturally 
extendable to a complete lattice (the lattice of all subalgebras of Pw), but whether 
there is anything interesting to say about this complete lattice from the point of 
view of structure is not at all c1eaL Rogers has shown (1967, pp. 151-153) that 
Turing degrees can be defined in terms of enumeration degrees by restricting to 
special elements. In our style of notation we would define the space: 

TOT ~ {ulu =$(u) and 'tin E w.u(n lEW}, 

the space of all graphs of total functions. Then the system {Deg(u)lu ETOT} is 
isomorphic to the system of Turing degrees. Now there are many other interesting 
subsets of Pw. Whether the degree structurc of these various subsets is worth 
investigation is a question whose answer awaits some new ideas. 

Among the subsets of Pw with natural mathematical structure, we of course 
have FUN, which is a semigroup under o ~ AuAvAx.u(v(x)). It is. however, a rather 



539 DATA TYPES AS LAITICES 

complicated semigroup. We introduce for its study three new combinators: 

(3.13) R = Ax.(O, x); 

(3.14) L = Ax.X,(X2); 

(3.15) u= Ax.xu:O (l, u, x,), u(x, lex,). 

THEOREM 3.7 (The semigroup theorem). The countable semigroup 
REnFUN of computable enumeration operators is finitely generated by 
R, Land G. 

The proof rests on the verification of two equations which pcrmit an 
application of Theorem 3.1: 

(3.16) Lo u 0 R = Ax.u(x) 

0.17) UoVoR=u(v). 

Certainly the word problem for RE nFUN is unsolvable, indeed, not even 
recursively enumerable. Can the semigroup be generated by two generators by 
the way? 

4. Retracts and dais types. Data can be structured in many ways: ordered 
tuples, lists, arrays, trees, streams, and even operahons and functions. The last 
point becomes clear if one thinks of parameters. We would normally hardly 
consider the pairing function AxAy.(x, y) as being in itself a piece of data. But if we 
treat the first variable as a parameter, then it can be specialized to a fixed value, say 
the element a, producing the function Ay.(a, y). This function is mare likely to be 
the output of some process and in itself can be considered as a datum. It is rather 
like one whDle row of a matrix. If we were to regard a two-argument function f as 
being a matrix, then its ath row would be exactly AY.f(a)ty). If s were a selection 
function, then, for example, Ay.f(s(y»(y) would represent the selection of one 
element out of each column of the matrix. This selection could be taken as a 
specialization of parameters in the operator AuAvAy.u(v(y»)(y). We have not been 
very definite here about the exact nature of the fixed a, f, or s, or the range of thc 
variable y or the range of values of the function f. The point is only to recall a few 
elements of structure and to suggest an abstract view of data going beyond the 
usual iterated arrays and trees. 

What then is a dara rypeo Answer: a type of data. That is to say, a collection of 
data that have been grouped together for reasons of similarity of structure or 
perhaps mere convenience. Thus the collection may very well be a mixed bag, but 
mare often than not canons of taste or demands of simplicity dictate an adherence 
to regularity. The grouping may be formed to eliminate irrelevant objects and 
focus the attention in other ways. It is frequently a matter of good organization 
that aids the understanding of complex definitions. In programming languages, 
one of the major reasons for making an explicit declaration of a data type (that is, 
the restriction of certain variables to certain "modes") is that the computed 
objects of that type can enjoy a special represemation in the machine that allows 
the manipulation of thesc objects via the chosen representation to be reasonably 
efficient. This is a very critical matter for good language design and good compiler 
writing. In this report, however, we cannot discuss the problems of representation, 
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important as they may be. Our objective here is conceptual organization, and we 
wish to show how such ideas, in the language for computable functions used here, 
can find the proper expression. 

Which are the data types that can be defined in LAMBDA') No final answer 
can be given since the number is infinite and inexhaustible. From one point of 
view, however, there is only one: Pw itself. It is the universal type and all other 
lypes are subtypes of it; so Pw plays a primary role in this exposition. But in a way 
it is too big, or at least too complex, since each of its elements can be used in so 
many different ways. When we specify a subtype the intention is to restrict 
attention to a special use. But even the various subtypes overlap, and so the same 
elements still get different uses. Style in writing definitions will usually make the 
differentiation clear though. The main innovation to be described in this section is 
the use of LAMBDA expressions to define types as well as elements. Certain 
expressions define retracts (or better: retraction mappings), and it is the ranges (or 
as we shall see: sels of finite poinls) of such retracts that form the groupings into 
types. Thus LAMBDA provides a calculus of type definitions including recursive 
type definitions. Examples will be explained both here and in the following 
sections. Note that types as retracts turn out to be types as lattices, that is, types of 
partial and many-valued objects. The problem of cutting these lattice types down 
to the perfect or complete objects is discu.\sed in § 6. Another view of types and 
functionality of mappings is presented in § 7. 

The notion of a retract comes from (analytic) topology, but it seems almost an 
accident that the idea can be applied in the present context. The word is employed 
not because there is some deep tie-up with topology but because it is short and 
rather descriptive. Three easy examples will motivate the general plan: 

(4.1 ) fun = AuAx.u(x); 

(4.2) pair = Au.(uo, u ,); 

(4.3) bool = Au.u 5 0, l. 

Here 5 is ,he doubly strict conditional defined by 

(404) z 5 x, Y = z => (z => x, T), (z => T, y), 

which has the property that if z is both zero and positive, then it takes the value ~ 

instead of the value x U y. 
DEFlNlTlON. An element a E Pw is called a retract iff it satisfies the equation 

a = a 0 a. 
Of course the o-notation is used for functional composition in the standard 

way: 

(4.5) u ' v = Ax.u(v(x)). 

And it is quite simple to prove that each of the three combinators in (4.1 \-(4.3) is a 
retract according to the definition. But what is the point? 

Consider fun. No matter what u E Pw we take, fun\u) is (the graph of) a 
function. And if u already is (the graph of) a function, then u =fun(uj. That is to 
say, the range of fun is the same as the set of fixed points of fun is the same as the 
set of all (graphs of) functions. Any mapping a whose range and fixed-point set 
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coincide satisfies a = a 0 a, and conversely. A retract IS a mappmg which 
"retracts" the whole space onto its range and which is the identity mapping on its 
range. That is the import of the equation a = a 0 a. Strictly speaking, the range is 
the retract and the mapping is the retraction, but for us the mapping is more 
important. (Note, however, that distinct retracts can have the same range.) We let 
the mapping stand in for the range. 

Thus the combinator fun represents in itself the concept of a function 
(continuous function on Pw into Pw). Similarlypair,represents the idea of a pair 
and bool the idea of being a boolean value as an element of {1-, 0, I, Tj, since we 
must think in the multiple-valued mode. What is curious (and, as we shall see, 
useful) is that all these retracts which are defining subspaces are at the same time 
elements of Pw, 

DEFINITION, If a is a retract, we write u: a for u = a(u) and Au: a.T for 
Au.T[a(u)/u). 

Since retracts are sets in Pw, we cannot use the ordinary membership symbol 
to signify that u belongs to the range of a; so we write u : a. The other notation with 
the A-operator restricts a function to the range of a. For f to be so restricted simply 
means f ~ f 0 a. For the range of f to be contained in that of the retract a means 
f = a 0 f. These algebraic equations will be found to be quite handy. We are going 
to have a calculus of retracts and mappings between them involving many 
operators on retracb yet to be discovered. Before we turn to this calculus, we 
recall the well-known connection between lattices and fixeLi points. 

THEOREM 4.1 (The lattice theorem). The fixed points of any continuous 
function form a complete lal/ice (under <;;); while those of a retract form a 
continuous lattice. 

We note further that by the embedding theorem (Theorem 1.6), it follows 
that any separable (by which we mean countably-based) continuous lattice i" a 
retract of Pw; hence, our universal space is indeed rich in retracts. A very odd 
point is that a = a 0 a is a fixed-point equation itself (Au.u 0 u is obviously 
continuous). Thus the retraction mappings form a complete lattice. Is this a 
continuous lattice') (Ershov has proved it is not; see the Appendix for a sketch.) A 
related question is solved positively in the next section. Actually the ordering of 
retracts under £ doe:;; not seem to be all that interesting; a more algebraic ordering 
is given by: 

DEFINITION. For retracts a and b we write a ():; b for a = a 0 b = boa. 
The idea here should be clear: a <k b means that a is a retract of b, It is easy to 

prove the: 
THEOREM 4.2 (The partial ordering theorem). The retracts are partially 

ordered by <k. 

There do not seem to be any lattice properties of <k of a general nature. Note, 
however, that if retracts commute, a 0 b = boa, then a 0 b is the greatest lower 
bound under <k of a and b. Also if we have a sequence where both a" ~; a"+) anLi 
a" <;; U,,+ I for all nEw, then U{a" In E w j is the upper bound for the a" under "", as 
can easily be argued from the definition by continuity of o. 

Certainly there is no "least" retract under <k. One has 1- = 1- 0 a (recall: 
1- = Ax.1-), but not a 0 1- = 1-. This last equation means more simply that U (1-) ~ 1-; 

that is, a is strict. For retracts strictnt:ss is thus equivalent to -.L (~ a, so we can ~ay 

that there is a least strict retract. The combinator I = Au.lt clearly represents the 
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largest retract (the whole space), and it is strict also. In a certain sense strictness 
can be assumed without loss of generality. For if a is not strict, let 

b = Ax.{nja(x) '" aCl)}. 

This function takes values in {1-, T} and is continuous because {x E Pwla(x) '" 
a(L)} is open. Next define: 

a* = Au.a(u) nb(u). 

This is a strict retract whose range is homeomorphic (and lattice isomorphic) to 

that of a. Note, however, that the mapping from a to a * is not continuous (or even 
monotonic). 

To have a more uniform notation {or retracts we shall often write nil. id, and 
seq for the combinators 1-, I, $. Two further retracts of interest are 

(4.6) open = Au.{mI3e" <;:: em.n E u}; 

(4.7) int = Au.u 5 0, int(u - i) 5 u, u. 

The range of open is lattice isomorphic to the lattice of open subsets of Pw; 
definition (4.6) is not a LAMBDA-definition of the retract, but such can be given. 

In (4.7) we intend int to be the least fixed point of the equation. By induction 
on the least element of u (if any) one proves that: 

r1- if u =1-; 

int(u) = lU if u E w; 
T otherwise. 

This retract wipes out the distinctions between multiple values, moving all above 
the singletons up to T; its range thus has a very simple structure. The retract int 
clearly generalizes boo!. The range of fun is homeomorphic to the space of all 
continuous functions from Pw into Pw; the range of pair. to the space of all 
ordered pairs; the range of seq, to the space of all infinite sequences. A combina­
tion like Au.int () seq(u) is a retract whose range is homeomorphic to the space of 
infinite sequences of elements from the range of int 

We now wish to introduce some operators that provide systematic ways of 
forming new combinations of retracts. There are three principal ones: 

(4.8) a o-lo b = Au.b 0 u 0 a; 

(4.9) a ® b = Au.(a(u,,), b(u,)); 

(4.10) a EB b ~ Au.uo 5(0. a(lI,)), (1. b(u, ». 

These equation, clearly generalize (4.1)-(4.3). Before we explain our operators, 
note these three equations which hold for arbitrary a, b, a I, b' E Pw: 

(411) (a o->b)o (a' 0-> b')=(a'o a) o->(h 0 b'): 

(4.12) (a ®b) 0 (a'® b') ~ (a 0 a')® (b 0 b'); 

(4.13) (a EB b) 0 (a' EB b') = (u 0 a') (f; (bob'). 

The reversal of nrder (a' 0 a) on the right-hand side of 14. I I) 'hould he remarked. 
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These equations will be used not only for properties of types (ranges of retracts) 
but also for the mappings between the types. 

THEOREM 4.3 (The function space theorem). Suppose a, b, a', b', care 
retracts. Then we have: 

(i) a >-> b is a retract, and it is strict if b is; 
(ii) v: a >-> b iff u = Ax : a. u (x) and IIx : a. u(x) : b ; 
(iii) if a e>;; a' and be>;; b', then a >-> b e>;; a' >-> b'; 
(iv) iff:a >->bandj':a'>->b', thenf>->j':(b >-> a') >->(a >->b'); 
(v) iff: a >-> b andj': b >-> c, thenj' 0 f: a >-> c. 

Parts (i), (iii), (iv), and (v) can be proved using (4.8) and (4.11) in an algebraic 
(formal) fashion. It is (ii) that tells us what it all means: the range of a >-> b consists 
exactly of those functions which are restricted to (the range of) a and which have 
values in b. So we can read u : a 0-+ b in the normal w'ay; u is a (continuous) 
mapping from a into b. In technical jargon, we can say that the (strict) retracts and 
continuous functions form a category. In fact, it is equivalent to the category of 
separable continuous lattices and continuous maps. In this context, (iv) shows that 
>-> operates not only on spaces (retracts) but also on maps: it is a functor 
contravariant in the first argument and covariant in the second. Further categori­
cal properties will emerge. 

THEOREM 4.4 (The product theorem). Suppose a, b, a', b' are retracts. Then 
we have: 

(i) a ® b is a retract, and it is strict if a and bare; 
(ii) u:a®biffu=(uo,uJ)anduo:aanduJ:b; 

(iii) if a e>;; a' and b e>;; b', then a ® b e>;; a' ® b'; 
(iv) iff: a >-> band f: a' >-> b', thenf®j': a ® a' >-> b ® b'. 
Again the operator proves to be a functor, but what is stated in Theorem 4.4 

is not quite enough for the standard identification of ® as the categorical product. 
For this we need some additional combinators: 

(4.14) 1st = Au.uo; 

(4.15) sod~ Au.uJ: 

(4.16) diag = Au.(u, u). 

Then we have these properties: 

(4.17) 1st 0 (a ® b):(a ® b) >-> a; 

(4.18) sod 0 (a ® b): (a ® b) >-> b; 

(4.19) diagoa:a.;,-..,a@a; 

(4.20) 1st 0 (f® f') = foist; 

(4.21) sod o (f® f) =f o sod. 

Here a and b arc retracts and f and j' are functions. Now suppose a, b, and care 
retracts and f: c- a and g: c .... b. Let 

h=(f®g)odiagoc. 
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We can readily prove that: 

h:c>-->(a0b), 

and 

1st 0 h = f and snd 0 h = g. 

Furthermore, h is the unique such function. It is this uniqueness and existence 
property of functions into a 0 b that identifies the construct as a product. 

There are important connections between >--> and 0. ·To state these we 
require some additional combinators: 

(4.22)	 eva/ = Au.uo(u,); 

(4.23) curry = AuAxAy.u«x, yl). 

If a, b, and c are retracts, the mapping properties are: 

(4.24) evaJ o «b>-->c)0b):«b""'cl0b)>-->c 

(4.25) curry ° «a 0 b) >--> c): «a 0 b)"'" cl >--> (a >--> (b >--> c». 

Suppose next that f: (a 0 b) >--> c and g: a >--> (b >--> c). We find that 

eval 0 (curry(f) 0 b) = f 

and 

curry(eva/ 0 (g 0 b» = g. 

This shows that our category of retracts is a Carlesian closed calegory, which 
means roughly that product spaces and function spaces within the category 
interact harmoniously. 

THEOREM 4.5 (The sum theorem). Suppose a, b, a', b' are relracls. Then we 
have 

(i) a Eb> b is a retracI, and il is always slricl; 

Oi)	 u: a Eb> b iff u = 1- or u = Tor
 

u = (0, u,) and u,: a or
 

u=(1, u,landu,:b;
 

(iii) if a Of; a' and b Of; b', Ihen a Eb> b Of; a' Eb> b';
 
iivl iff: a >--> band f: a' >--> b', thenftB f: aEb> a' >--> b Eb>b'.
 
There are several combinators associated with EB:
 

14.26)	 inlell = Ax.(O, xl; 

(4.27)	 inright = Ax.(1, xl; 

(4.28) Budell = Au.uo '3 "I, 1-; 

14.29) nutrighf =Au.Uo '31-, u,; 

14.30) which = Au. 110 ; 

14.31 )	 nul = Au.u,. 
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(The last two arc the samc as 1st and snd. but they will be used differently.) Wc 
find: 

(4.321 (a (Bbl o inlelt 0 a: a ~ (a(Bbj; 

(4.33) la (Bb) 0 inright o b: b ~ (a(Bb); 

(4.34) a 0 outlelt 0 (a(Bb): (a(Bb) ~ a; 

(4.35) b 0 outright 0 (a(Bb) :(a(Bb) ~ b; 

(4.311) which 0 (a(Bb): (a (Bb) ~ bool: 

(4.37) a 0 out 0 (a(Ba):(a(Ba) ~ a; 

where a and b are retracts. Most of these facts as they stand arc trivial until one 
sets down the relations between all these maps; but there arc too many to put them 
down here. Note, however, if a, b, and c are retracts and f: a ~ c and g: b ~ c, 
then if we let 

we havc: 

h:(a(Bb)~c, 

and 

h 0 inlelt =f and h 0 inright = g. 

BUI, though h exists, it is nol unique. So a (Bb is not the categorical sum 
(coproduct). The author does not know a neat categorical characterization of this 
uperator. 

There would be no difficulty in extending ® and EB to more factor~ by 
expanding the range of indices from n, I to n, I, .... n -1. The explicit formulae 
need not be given; but if we write au (2) al ® ... (2) an _ J, we intend this expanded 
meaning rather than the iterated binary product. 

To understand sums and other fact~ about retracls, consider the least fixed 
point of this equation: 

(4.3HJ tree ~ nil(B(tree <8 tree). 

To be certain that tree is a retract, we need a general theorem: 
THEOREM 4.6 (The limit theorem). Suppose F is a conlinuous func/lOtI that 

maps retracls 10 relracts atld leI c ~ YIP). Thetl c is also a relract. If ItI additiotl F 
maps strict retracts to strict retracts and is monotone in the sense that a 0:; b implies 
F(a) ex F(b) for all (slricl) relrac/s a atld b. Ihetllhe ratlge ofc is homeomorphic 10 

Ihe itlverse limil of the ranges of Ihe slricl relracls F~I1-J for tI E w. 
This can be applied lD the case of (4.38) where F~ AZ.nil(B(z @ z). Thus we 

can analyze tree as an inverse limit. This approach has the great advantage over 
the earlier method of the author where limit> were required in showing that tree 
exists. Here we use Y to give existence at once, and then apply Theorems 4.3-4.5 
to figure out the nature of the retract. 

In Theorem 4.6. the fact that c is a retract can be reasoned as follows: 1- is a 
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retract. Thus each F"(~) is a retract. We compute' 

eo e ~ u{r(~)il1" w} 0 U{F"(~)il1 E w} 

~ u{r(~) FOI~)in E w} (Note: same 11.)0 

~ u{rl~)il1 Ew} ~ C. 

In case F IS monotone and preserves strictness, then we can argue that each 
FO(~) oc c. The retracts FO(~) are the proJeetioMs of e onto the terms of the limit. 
Of course rll) oc Fm(~) if 11;'" m. The u: e can he put into a one-to-one 
correspondence (homeomorphism, lattice isomorphism) with the infinite se­
quences (1'0, v,,' .. ,Vo ,' • -), where 1'0: F"(~) and v" ~ r(~)(V"+I)' Indeed "0 ~ 
F"(~)(ul and u ~ U{v"jl1 Ew}. This is exactly the inverse limit construction. 

Retreating from generalities back to the example of tree. we can grant that it 
exists and is provably a retract. Two things in its range are ~ and T by Theorem 
4.5(ii), but they are not so interesting. Now ~: nil, so by Theorem 4.5(ii) we have 
(0) ~ (0, ~): tree. Let uS think of this as the atom. What else can we have'.' If 
x, y : tree, then (x, y): tree 0 tree and so (1, (x, y): tree. Thus (the range of) tree 
contains an atom and is closed under a binary operation . .Note that the atomic and 
nonatomic trees are distinguished by which and that suitable constructor and 
destructor functions are definable on tree. But the space also comains infinite 
trees since we can solve for the least fixed point of: 

t ~ (I, «0), t» 

and t: tree. (Why?) And there are many other examples of infinite elements in 
tree. 

A point to stress in this conqruction is that tree being LA,r-vtBDA-definable is 
computable, and thf're are many computable functions definable on or to (rhe 
range of) tree. All the "strucrura!" functions, for example, are computahle. These 
are functions which in other languages would be called isatom or construct or 
node, and they are all easily LAMBDA-definable. Just as with 'E. 0, ~, they are 
!lot explicit in the notarion, but they 3J': jennabk ncvcrthtless. In the case o~ 

node, we could use finite sequences of Boolean values to pick out or name nodes. 
Thus solve for name = nil@bool c.S name, and then give a recursive definition of: 

node: name ,,....,. l tree ,..>---) tree J. 

Any' combination of retract preserving functors can be used in this game. For 
example: 

14.39) lamb ~ inlt.±J(lambr, lamb). 

This loob innocent. but the range of lamb would give a quite different and not 
unattractive model for the A-calculus Iplus arithmetic). What wc do to investigate 
this model is to modify LAMBDA slightly by replacin~ the ternary conditional 
=~ x, y by a quarternary onc w ~ x, y, z; otherwi"e the syntax of thl' language 
remains the same. The semantics, however, is (-l little more comr1ex. 

Let us use T, (T, p, e as syntactical variables for expre:ssiuns in the modified 
Jangu'lge. The ~emantic., is provided ."») a function y{ that maps the expressions of 
the language to their values in Ithe range ,]f) lamb. To be completely rigorous \I.e 
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abo have to confront the question of free and bound variables. For simplicity let us 
indcx the variables of the language by integers, and let us take the variables to be 
Vo, l' I, V:" •..• Vrl , •••• \-Ve cannot simply evaluate out an expression T to its value 
:if/TI until we know the values of thc free variables in T. The values of these 
variables will be given by an "environment" r which can be construed as a 
sequence of values in lamb. We can restrict these environments to the retract: 

(4.40) env = At.lamb 0 seq( r). 

When t: env, then 10 : lamb is the value that the environment gives to the variable 
Vn . We also need to employ a transformation on environments as follows: 

(4.41) l[xlnJ= Am E w.eq(n)(m) ::>x, 1m . 

Here eq is the primitive recursive function that is 0, if n, m are equal, and is I, 
otherwise, for n, mEw. The eflect of I[xl n] is to replace the nth term of the 
sequence I by the value of x, otherwise to leave the rest of the sequence 
unchanged.' To correspond with our use of very simple variables we have selected 
a simple notion of environment: in the semantics of more general languages it is 
customary to regard an environment as a function from the set of variables into the 
domain of denotahle values. 

The correct way to evaluate a term T given an environment t is to find 
Je[ TI( I). We use the brackets [and I here simply as an aid to the eye in keeping the 
syntactical part separated from the rest. The environment erHers as a function­
argument in the usual way; thus we shall have: 

(4.42) 7f[ TI: env ~ lamb. 

14431 X[v.,n(r) = I" 

X[OI(1) ~ inlelt(O) 

,i'1'[ T+ Iii t) = which(7f[ TI( r)) 5 inlelt(out(.i'1'[d( t)) + I), ~ 

X[ T- Iii I) =which(7f[ Tnu)) 5 inlelt(outi}('1Ir1(I)) - I), ~ 

X[O::> T, cr, pl(1) = lamb(which(X[Ollitil::> 

(out(7f[ 01(1)) ::> X[TI( I), ,i'1'[o-I(r)), X[p Ii I)) 

Je[T(fr ,nu) = which(X[ TI(r)) 5.L, out(:it[TI(1) )(<K[crl(/)) 

:it[Avo . Till) = inright(Ax : lamb.X[TII(t[xln]). 

A good question is: why does :Ie exi~t? The answer is: hecause of the fixed-point 
theorem. 

If we rewrite the semantic equations 7f[TI(r) = ( ... ) in (43) by the equation 
X[ TI =AI: env( ... ), then :if is seen to be a function from expressions to vaJues in 
lamb. As the range of lamb is contained in Pw, we can say more broadly that 
}{E PwEJ:P, where Exp is the syntactical set of expressions and the exponential 
notation designates the set of all functions from Exp into Pw. This function set i~ a 
complete lattice because Pw is. Therefore if we read (4.43) as a definition by cases 
on Exp, then we can find J{as a suitable fixed point in the complete lattice Pw

bP
. 

Inde~d it is the fixed point of a continuous operator. 
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Actually we can regard Exp as being a sub.1ft of Pw to avoid dragging in other 
lattices. What we need is another recursi·ve dennition of a data type: 

exp ~ iol(±)oil(±)exp(±)expc±J iexp@exp @ exp@ exp) 
(4.44) 

(±) iexp @ exp I (±) (iol@ exp) 
•

:"otc that there arc as many,ummands in (4.441 as there are clauses in (4.43). We 
can think of exp as giving the "abstract" syntax of the language. We use the 
integers to index the variables and the nil element to stand for the individual 
constant. Read (..1.,44) as saying that every expression is either a variable or a 
constant or the successor of an expression or the predecessor of an expression or 

the conditional formed from a tuple of expressions or the abstraction formed from 
a pair of a variable and an expression. We do not need in (4.44J to introduce 
special "symbols" for the successor, application, etc., because the separation by 
cases given by the (±) operation is sufficient to makc the distinctions. (That i, why 
the syntax is "abstract",) The point is that for recursive definitions it does not 
matter how we make the distinctions as long as they can be made. From thi' ne" 
point of view, we could rewrite (4.43) so as to show: 

(4.45) :f{: exp ~ (en,· ~ lamb), 

which is clearly more satisfactory-especially a, it is now clear that :f{is compllta­
hie. And this is a method that can be generalizcd to many other languages. The 
method also shows why it is useful to allow function spaces as particular data types. 

Another example of this method can be illustrated, if the reader will recall the 
Godel numbering of § 3. It will be seen that there are similarities with the tree 
construction: instead of 0 and apply(nl(m), tree uses (0) and (I, (x, y». Note, 
however, that Godel numbers are finite whik tree has infinite objects. But the 
infinite ohjects are always limits of finite objects, so there are connections. l\\e 
discuss this again in § 6.) In particular. recursive definitions on Godel numbers. 
like that of val, have analogues on tree. Here is the companion of (3.7). 

(.l ..1hl vaal- Ax. treewhichlx' :;> G, vao'iisl(oull x l))(vaal(snd(oul(x))) I. 

We have va.I :tree·~ id, where of course 14.46) is taken as denning vaal a' the 
least fixed point. This is an example of a computable function betv;:,:en effectlvel) 
given retracts The LAMBDA-dennable elements of Pw are the computable 
elements in the range of vaal. 

Vv'e have discussed the category of retracb and continuou"J maps, but if they" 
are all LAMBDA-dennable, then they fall within the countable model RE. Thus 
there is another category of effectively given retracts and effectively gl\'ell 
cnntinuous maps. (Example~: tree, id, vaal. and all those retracts and map" 
generated by 81, @, and 0-,.) ThIs category \)cems to deserve the status of a 
generalized recursion theory: though this i", not ru :-.ay that as yet very /7lUch IS 

known annut it- In fact, the proper formulation may require an enriched categ.ory 
rather than a restricted one, Thus instead of confining attention to the computable 
retracts and computable maps, it might be beller to use the full category with all 
maps and to 'ingle out the computable ones lalso maybe the nnite onesJ by special 
predicates. In ellect we have avoided any methodolngical decisions by wt)rking in 
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the unive"al space Pw and by defilllllg a notion when required-if po"ihle with 
the aid of LAMBDA. This makes it possihle to give all the necessary definitions 
and to prove the theorems without at first having to worry ahout axiomatic 
problems. 

5. Closure operations and algebraic lattices. Given any family of (finitary) 
operations on a set (say, w) there is a closure operation defined on the subsets of 
that set obtained by forming the least subset including the given elements and 
closed under Ihe operations. Examples are very familiar from algebra: the 
subgroup generated by a set of elements. the subspace spanned by a set of vectors, 
the convex hull of a set of geometric points. We simplify matters here by 
restricting attention to closures operating on sels in Pw, but the idea is quite 
general. The main point about these "algebraic" closure operations-as distin­
guished from topological closure operations-is that they are cOlltinuous. Thus, in 
the case of subgroups, if an element belongs to the subgroup generated by some 
clements, then it also belongs to the subgroup generated hy finitely many of them. 
In the context of Pw we can state the characteristic condition very simply. 

DEFINITION. An element Q E Pw is ealled a closure operation iff it satisfies: 
[ ~ Q = Q 0 Q. 

We see by definition that a closure operation IS not only continuous, but it is 
also a retract. This is reasonable since the closure of the closure of a subset must be 
equal to the closure. To say of a function that J <; a. means that x <; a(x) for all 
x E Pw. In other words, every set is contained in its closure. (Note that closures are 
opposite 10 the "projections", those retracts where a <; J.) Among examples of 
closure operations we find J and T; tbe first has the most closed sets (fixed points). 
Ihe second has the least. (Note that T = w always is a fixed point of a closure 
operation; T = Ax.T is thus the most trivial closure operation.) The examples iun, 
open, int of § 4 are all closure operations (cf. (.J.1), (4.6), 14.7)). We remarked that 
iun is a retract, but the reader should prove in addition: 

(51) u <; Ax.u(x). 

for all u E Pw (d. Theorcm 1.2). We note that thl' fact can be rewritten in the 
language of retracts as: 

(5.2) 

the significance of which will emerge after we develop a bit of the theory of closure 
operations. 

Unfortunately the natural definition of the retract bool does not yield a 
closure operation. In this section we adopt this modification: 

(5.3) boool = Au.u 2 0, T + 1. 

The closed sets of 00001 are 1, 0, T+ 1, and T. Note that with any closure 
operation a, the function value aCt) is the least closed set (fixed point of a I 
including as a subset the given set x. Thus given any family '(j <; Pw of "closed" sets 
which is closed under the intersection of sllhfamilies, if we define 

(5.41 
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then this will be a closure operation provided it is continuous. This r.emark makes 
it easy to check that certain functions are closure operations if we can spot easily 
the family 'e of fixed points. 

Alas, the "natural" definition of ordered pairs (ef. (2.21)) leads to projections 
rather than closures. Here we must choose another: 

(5.5) [x. y] = {2nln E x}U (2m + 11m E y}. 

with these inverse functions: 

(5.6) [u]0={nI2n E u}, 

(5.7) [u]]={mI2m+IEu}.
 

We shall find that the main advantage of these equations lies in the obvious
 
equation: 

(5.8) 

which is not true for the other pairing functions. Of course we have: 

(5.9) [[x, Y]]o = x, 

(5.10) (lx, y]]1 = y. 

We shall not extend the idea of these new functions to triples and sequenees, 
though it is clear what to do. 

Abstraetly, an algebraic lattice is a complete lattice ;n which the isolated 
points are dense. An isolated (sometimes called: compact) point in a lattice is one 
that is not the limit (sup or l.u.b.) of any directed family of its proper subelements. 
This definition works in continuous lattices, but more generally it is better to say 
that if the isolated point is contained in a sup, then it is also contained in a finite 
subsup (a sup of a finite selection of elements out of the gi",en sup). In the case of 
the lattice of subgroups of a group. the isolated ones are the finitely generated 
subgroups. The isolated points of Pw are the finite sets eo. To say that isolated 
points are dense means that every element in the lattice is the sup of the isolated 
points it contains. The sequel to Theorem 4.1 for closure operations relates them 
to algebraic lattices. 

THEOREM 5.1 IThe algebraic lattice theorem). The fixed points of anv closure 
operation form an algebraic laltice. 

The proof is very easy if one notes that the isolated points of {xix = a(x)}, 
where a is a closure operation, are exactly the images ale") of the fimte sets in Pw. 
What makes Theorem 5.1 more interesting is the converse. 

THEOREM 5.2 (The representation theorem for algebraic lattices). Every 
algebraic lattice with a countable number of isolated points is isomorphic to the range 
of some closure operation. 

By Theorem 1.6 we know that the algebraic lattice is a retract, but a more 
dlfeet argument makes the closure property clear. Thus. let D be the algebraic 
lattice with {d"in E w} as the set of all isolated points with the indieated enumera­
tion. We shall use the square notation with symbols J;: and U for the lallice 
ordering and sup. The desired closure operation is defined by: 

a(x) = {mldm J;: U{d"!n EX}}. 
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It is an easy exercise to show that from the definition of "isolated' It follows that a 
is continuous; and from density, it follows that D is in a one-to-one order 
preserving correspondence with the fixed points of a. 

In the last section we introduced an algebra of retracts, much of which carries 
over to closure operations given the proper definitions. Without any change we 
can use Theorem 4.3 on function spaces, provided we check that the required 
retracts are closures. 

THEOREM 5.3 (The function space theorem for algebraic lattices). Suppose 
that a and b are closure operations; then so is a 0-> b. 

The proof comcs down to showing that: 

(5.11 ) u(x) c; b(u(a(x»), 

whenever a and b are closure operations. But this is easy by monotonicity. Note 
that (5.1) is needed. 

For those interested in topology, one can give a construction of the isolated 
points of the function space which is much more direct than just taking the 
functions b 0 e" a, which on the face of it do not tell us too much. But we shall not0 

need this explicit construction here. 
The reason for changing the pairing functions is to be able to form products 

and sums of closure operations. In the case of products, the analoguc of 09 is 
straightforward: 

(5.12) a ~b = Au.[a([u]o), b([u],)]; 

while for sums using a' = Ax.O U a(x -I) + 1 and similarly for b' we write: 

(5) 3) a ~ b = Au.([uo]o => 0,0) U ([U], => 1, I) 5 [a'([u ]0), 1-]. k b'l[u] I Ij. 

We can then establish WIth the aid of (5.8)-(5.10): 

THEOREM 5,4 (The product and sum theorem for algebraic lattices). Suppose 
that a and b are closure operations; then so are a [><: b and a (±: b. Analogues of the 
results in Theorems 4,4 and 4.5 carryover. 

Following the discussion in § 4, we can also show that the closure operations 
form a Cartesian closed category, which in some ways is better than the category 
of all retracts. What makes it better is the existence of a "universe". 

Every continuous operation generates a closure operation by just closing up 
the sets under the continuous function (as a set operation). We can institutionalize 
this thought by means of this definition:
 

15.14) v = AaAx. Y(Ay.x U aly».
 

Clearly V is LAMBDA-definable, continuous, etc. A more understandable
 
characterization would define V(a)(x) by this equation: 

(5.151 V(aj(xj = nlylx c; y and aly) c; y). 

These two definitions are easily seen to be equivalent. What i~ unexpected is the 
discovery (due in a different form to Peter Hancock and Pcr Martin-LiiO that V 
itself is a closure operation. 

THEOREM 5.S (The universe theorem for algebraic lattices). The/unction V is 
a closure operation WId its fixed points comprisl! the set 0/ all clo:-.ure operation.\. 
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Thus to say a IS a closure operation, write a : V. To have a mapping on closure 
operations, write f: Vo->V, Remark that 5,5 allows us to write V: V, It all secms 
rather circular. but it is Cj ui te consisten t. The category of separa te algebraic lattices 
"contains itself"-if we are careful to work through retracts of Pw, 

The proof of Theorem 5,5 requires a few steps, We note first that for all 
x, a E Pw: 

(5,16) x£; V(a}lx), 

Let v = V( a )(x), This is the least y with x U a (y) £; y, What is the least z with 
y U a(z) £; z" The answer is of course y, which proves: 

(517) Via )lV(a)(x)) = Via )(x), 

Thus Via) is always a closure operation, If a is already a closure operation, thcn
 
clearly V(aJ(x) = a(x), Therefore we have shown:
 

(5,181 a = V(a) jff a is a closure operation.
 

But then by (5,16) and (5,17) we have by (5,181:
 

(5,19) V(a) = V(Vla I)
 

From (5.16) by monotonicity we see:
 

(5201 a(xl£;a(Vla}lx))£; Vla)(xl.
 

Hence by (5.1) we can derive:
 

(5.21) a £; AX.a(x) £; Ax. VI a)(x) = V( ai.
 

From (5.191 and (5.21) it follows that V itsclf is a closure operation.
 
The operation V form~ the least closure operation contaimng a given 

element. and it shows that the lattice of closure operations i~ not only a retract of 
Pw but also an algebraic lattice. Since we can now use V a~ a retract, the earlier 
results hecome formulas: 

(5.22) (Aa : V.Ab : V.a[><]b): Vo->(Vo->V): 

(5.23) (Aa : V.Ab : V.al±Jb): Vo->(Vo->V): 

we can also state such functorial properties as: 

(5.24) (Aa : V.Ab : V.ao->b): Vo->(Vo->V). 

Using this style of notation we have: 
THEOREM 5.6 (The limit theorem for algebraic lattices).
 

(,If: Vo->V.YU)): (Vo->V)o->V.
 

In words: if f is a mapping on closure operations, then its least fixed point is 
also a closure operation. The proof of course holds with any retract in place of V. 
but we are more interested in applications to V. For example, note that V( 1.) = I. 
Now let f = Aa : V.a 0-> a. The least fixed point of this fis the limit of the sequence: 

1.. I, 10->1, (10->1)0->(10->11, (10->110->(10->1))0->((10->110->(10->1))," 
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and we ,ee that all these retract' are strict. This means Y(j) is nontrivial 111 that It 
has at least two fixed points (viz., 1- and T). But d = YI II must be the lea,t closure 
operation satisfying 

(5.25) 

and we have thus proved that there are "o"trivial algebraic lattices isomorphic to 
their own function spaces. This construction (which rests on ha,dly more thi:tn 
15.2), since we could take d = YiAa.1 U (a 0-; a))) is much quicker than the inverse 
limit construction originally found by the author to give A-calculus models 
satisfymg I ~ t. There are many other fixed points of 15.25) besides this least closure 
operation, but their connection with inverse limits is not fully investigated. 

We note in conclusion that most constructions by fixed points give algebraic 
lattices (like lamb in 9 4). and so we could just as well do them in V if we remember 
to use [2J and GJ The one-point space is T ("0' nil), and so the connection with 
inverse limits via Theorem 4.6 is not as clear when nonstrict functions are u~ed. 

For m£'lny purpo~e~, this may not make any difference. 

6. Subsels and Ibeir classification. Retract' produce vcry special subsets of 
Pw: a retract al\Nay~ has a nonempty range which forms a lattice under c;. For 
example, the range of inl is 11-, T} Uw. We often wish to eliminate .c and T: and 
with £'I retr£'lC! like tree the situation is more complex. since comhi nations likt.' 
(I, (( I, (1.. (0»)), T) might require elimination. In these two cases the method Is 
simple. 

Consider these two functions: 

(6.1 ) mid = Ax :inl. xS 0, ° 
16.21 perf·- Au : tree.which(u) 5 0, :>lperflfslloullu))))(perflsndloullu)111 

where j, is a special combinator: 

16.3) :> = AxAdx => I y => 0, TI, T) U (y co Ix => 0, TI. TI 

We flnd that (0 =- h: inCjmid(x 1-= O} In the C3"e of (rec .... nok first thi ... behavior o( 
:>: 

:> 11. ° T 

------r-
1- .L .L T 

(J0 1- T 

T T T T 

The queslioll l~: what suh~ct i~ {u: treejperf( u.! -=-= OJ? 
NilW pert i... dcflnt:'d recur')ivcly. Vv'c can ~LC that 

perfI ,I ~ L perffTI ~ 1. perfl(O)1 ~ O. 

perM!. (,. \'))1 :>Iperll., )I(perlfyllc 

whell t, \,. tree. I~.\'LTY trce. a"'ldc ff(l11l Tor !-. IS either ah)l1lic or cl pall' Ilt tree .... 
The aLolnic [rCL'I~ "pcrkct" (that i.... perfl(O))-OJ.;\ Jifllll' lrL'L' \\lllch dnl·"Il11t 
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contain ~ O[ T is perfect-as ~'e can see inductively using the table above for ~. 

An infinite tree is never perfect: either some hraneh ends in T and perf maps it tD 
T, or T is never reached and perf maps it to L Thus the subset in question is Ihen 
seen to be the set of finite trees generated from the alom by pairing. This is clearly 
a desirable subset, and it is sorted out by a function with a simple recursive 
definition. The general question is: what subsets can be characterized by 
equations" The answer can be given by reference 10 the topology of Pw. 

DEFINITIOI". Let Cl:\ be the class of open subsets of Pw, and (\: be the class of 
closed subsets. Further let 'B be the class of all (finite) Boolean combinations of 
open sets. 

We recall from § 1 that V E elj just in case for all x E Pw, we have x E V if and 
only if some finite subset of x is in U The elass of open sets contains 0 and Pw and 
is closed under finite intersection and arbitrary union; in fact. it can be generated 
by these two closure conditions from subsets of the special form {x E Pwln E x) for 
the various nEw. An open set is always monotonic (whenever x E U and x <;; y, 
then y E V), so that every nonempty V E tij has T E U 

Another characterization of openness can be gjven by continuous functions. 
Suppose V E Cl:\. Define I: Pw -> {~, T} so that 

V={xl/(x) = T}; 

then I is continuous. Conversely, if such an I is continuous, then V is open. But if 
we do not assume the range of I is included in {l, T}, this is not true. For the case of 
general functions we know that I is continuous if and only if {xl/(x) E V} is open 
for all open V Tbis defines continuity in terms of openness, but we can turn it the 
other way around: 

THF.OREM 6.1 (The (~ theorem). The open subs:ets of Pw are exactly the St'ls of 

the form: 

(xl/(x) ;20}, 

where f: Pw ---) Pw is continuous. 
We could have written 0 E I{x) or the equation I(x) n IJ ~ 0 instead of l(x);2 O. 

Note tbat in case I: Pw -> {~, T}, then I(X);2 0 IS equivalent to I(x I ~ T. Also any 
otber integer could have been lIsed in place of O. 

We can say that {xiO EX} is the rypical open set, and that every other open set 
can be obtained as an inverse image of the typical set by a continuou"i function. We 
shall extend Ihis pattern to other classes, especially looking for equations. In the 
case of openness an inequality could also be used, giving as the typical set 
{xix '" ~}. BlIl since closed sets are just the complements of open sets, this remark 
gives us: 

TflEOR I'M 6.2 (The if theorem). nte closed subsets 01 Pw are exactly rhe sers 01 

rhe lorm: 

{xl/lx)=H 

where f: Pw -J> Pw is continuous. 
Aside from ~xix = ~}, we eould have used Ixlx C ll} as the typical closed set 

where a E Pw is any element whatsoever aside from T. Thi"i T has. hy the way. a 
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Thus IT} is a countable intersection of open sets, otherwise called a l~o-set. There 
are of course many other GJ,-sets, but {T} is the typical one: 

TlifORfM 6.3 (The 6l, theorem). The countable intersections of open suhsets 
of Pw are exactly the sets of the form: 

{xlf(x) = T}, 

where f: Pw -+ Pw is continuous. 
It may not be obvious that every (IJ.-set has this form. Certainly, as we have 

remarked, every CIl-set has this form. Thus if W is a OJ,. we have: 

and further, 

Un = {xIMx) =T), 

where the frl are suitably chosen continuous functions. Define the function g hy 
the equation: 

g(x)={(n, m)!mEfn(x)). 

Clearly g is continuous. and we have: 

W={xlg(x)=T}, 

as desired. 
We tet ii' n(lj denote the class of all sets of the form C nu. where CEil and 

U \0 (lj, Similarly fur iI n(II,. Now {xix <; O} is closed and {xix ;2 O} is open. Thus 
{OJ E iI (I C~, This set is typical. 

THEOREM 6.4 (The iI n(Il theorem). The sets that are intersections of closed 
sets with open sets are exactly the sets of the form: 

{xlfix) = or, 
where f: Pw -+ Pw is continuous. 

Again it may not be obvious that every;\- n()i sd has this form. Vv'c can write: 

C= {xlflx) ~ ~}, 

and 

u={xlglx)=O}. 

where lE /\' and U ;e:_ (~} and the continuous f and g arc :-.uitably chosen_ DdlnL' 

hlx) = {2n + lin E flxl} U {2nln \0 gi.r II, 

and rcmar~ that It i" (,:ontinuou..,. We hllloC: 

~h dC"in:d.
 
It I" ca:-.y to "'Cl' that Id t ;\" n(~ if (' j<; linite, but ;11 gennal {a}, /\. (1 ('I)/i. In
 



DANA SCOTT 

case a is infinite but not equal to T (say, a = (Il III > 0) = T + 1). then fa} is typical in 
its class, 

THEORHI 6.5 (The II'n(II, theorem). The sets thai are illterseniolll of closed 
sels wilh countable inlersections of open secs are exaclly Ihe sels of che jorm: 

{x!f(x)=a), 

where f: Pw -> Pw is conlinuous and a is a fixed infinice seC flOC equal 10 T. 
Note that (II' n(IJ), is the same class as t5 n(IJ" so we see by Theorem 6,4 that 

a good choice of a is An E w.O. 
There is no single subset ot Pw typical for ~\, which can be viewed as the finite 

unionI of sets from the class lI·n ill. 
THEOREM 6.6 (The Q:1 theorem) The sels thaC are Boolean combinaCions of 

open seCs are exactly the seCs of the form: 

(xlf(x) En 
where f: Pw -4- Pw is continuous and /.;' is a finite set of.finite elements of Pw. 

To see that every ~ set has this form, suppose that 

\/= W"U W1U .. ·U w" I, 

where each W, E II' nill. We can write: 

wheref,: Pw -> {lo 0, T} is continuous. Then define: 

g(xl=(21+jljEjilx)n(0, l}. i<lll. 

and note that g i~ continuous. Let 

t: = {y ~ {m:m < 2n)13i < n.li E y. 1; + I t. y}: 

we have: 

V={x!glxIE f'} 

as desired. 
THEOREM fl.? (The '..l\'i theorem). The sets that are countable intersections of 

Boolean combi,ratiom of open sets are exactly the sets of the form: 

(xIIIXI = g(xl), 

where rg; Pw ~ Pw are continuous. 
Thl:' is clearly the most interesting of thc~t: charucteriz<-ltion theorems, 

because equations like f(x) = g( x) turn up all the till1l' anu the collection is a very 
rich totJlitv of suhsets of Pw. It includes all the retract'l, ... inee the\' arc of the form 
{xix '-=- (dx)}. And mUl'h more. That every ~uch ~ct ill Thcnrem ().? is ~\" follows 
from lhese logical Ir_ansformations: 

{x': I (x) "- g I r \) ~~ 1.r IV' Ii ,,= IJJ[ n .,:: (i x ) .(,-'J. n F gl.\" JJI 

~ r~1 I{x I" " rr <I. " " gil II U { r," "II rI. "t gil III 
II--(l 
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On the other hand, we can see that (,f U(~)u is exactly lB" Because, in VIew o{ 
Theorem 6,6. ~'" the class of counlable unions of lB-sets, is exactly (I\' n(11)" The 
remark we want to make then {allows by taking complements. 

Now leIS be an arbilrary lB.-set. We ean write: 

r 

5= n ({xlf,,(x)=OjU{xlgJrl=O)J, 
,,=(j 

where f., g" : Pw -> {1-. O. T} are continuous. Now let u, v be continuous {unctions 
which on {1-, 0, T} realize these two tables: 

u 1- a T v 1- a T 

a a 0' 

0 
1­ 1- a 0 1­

0 0 0'0 0 0' a 
T. 0 0' 0' T 0' 0' T 

where 0' = au 1. This IS an exerCise in many-valued logic, and we find {or 
x, y E {1-, 0, T): 

u(x)(y) = v(x)(y) iff x =0 or y ~ O. 

Thus define continuous (unctions f' and g' such 

f' = AxAn E w.u(f"lx»)(g,,(x». 

g' = AxAn E w.v(f,,(x»)(g,,(x), 

and we find: 

5 ~ (xlJ'(x) = g'(x)} 

as desired. 
This is as far as we can go with equations. More complicated sets can be 

defined using quantifiers, for example the '1; or analytic sets can be fmr in thl.; 
(arm: 

(x!3yI(x)(y) = g(x)(y)}, 

and their complements, the Il: sets, in the form 

(xj\ty 3z.h(x)(y)(z) = O}, 

with continuous f. g, h. For the three classes we then have as "typical" sets those 
shown in Table 3. 

It should be remarked that IB, contains all the closed sets in the Can lor space 
topology on Pw (that is, the topology obtained when it is regarded as the infinite 
product of discrete two-point spaces). Therefore the L: sets {or the two topologies 
on Pw are the same. Hence, since we know for Cantor space that ~~ = L: nn; is 
the class of Borel sels, we can conclude that the two topologies on Pw have the 
same Borel sets. (That is. in both cases u: is the Boolean a-algebra gcnerated 
(rom the open scts.) 
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TABLE J 

Classes and typical selS 

Typical ;;et~ 

(~ {xIOE ,I 

"
 III
 
(~, IT! 
"r'iru {Of 
;~n OJ~ IT+t} 
'l..\,o; {uluo"'=' utIr: (uI3y.uo(Y) ~ u,(yl} 

lulVy 3z.u(y)lzl ~ OJII: 
Returning now to the example involving trees mentioned at the beginning of 

this section, we see that the set of perfect (finite) trees can be written in the form: 

{xix ~ tree(x), penix) ~ OJ ~ {xl(x, penix) = (tree(x), 0»); 

thus it is a !B,-ser. (Note that!B, are ohviously closed under finite intersection by 
the ordered pair method just illustrated; thal they are closed under finite union is a 
little messier to make explicit, but the essential idea is containeu in the proof of 
Theorem 6.7.1 

As another example, we might wish to allow infinite trees hut not the strange 
tree T. Consider the following function; 

16.4) top = All ; tree.whichl u) c;~, top(fst(out( I< I)) U toplsnd(out( u))). 

We can show that top: Pw -> {~, TJ. For a tree u the equation top( u) = ~ means 
that it does flol contain T, or as we might say: it is topless. The topless trees form a 
closed subset of the subspace of trees. (An interesting retract is the function 
AI<.tree( u) U top(") whose range consists exactly of the 'topless trees plus one 

exceptional tree T.) Such a closed suhset of (the range of) a retract is a kind of 
semi/alliee. (We shall not introduce a precise definition 'here.) Every directed 
subset has a limit (le"t upper bound) and every pair with an upper bound has a 
least upper hound. But generally least upper bounds do not have to exist within 
the semi lattice. The type of domains that interest us heeome continuous lattices 
with the addition of a rep element T large;- than all the other element~. The 
elimination of T i~ done with a function like top of our example. This is convincing 
evidence to the author that an independent theory of semilattices is quite 
unnecessary: they can all be derived from lattices. The prohlem is simply to define 
the top-culling operation, then restriction to the "topless" clements is indic()ted 
hy an equatiorI Ilike topl 1<) = ~). In this way all the eOrIstructions are kept within 
the control of a smooth-running theory ha!'cd on LAMBDA. Thi~ point seems to 
be important if one wants to keep track of which functions are computahle. 

An aspect ()f the problem of clas~ificationtreated in thi~ -;ection which ha~ not 
heen given c!()se enough attention i~ the explicitly constructive way of veritying 
thl' clo~ure properties of the c1a~~cs. Consider the das~ \..!.\'i' for examplL'. Let B he 
the typical set as ~hown in Tahle 3. Then whatever r'~ Pw we choose, the ~d 

I'i/lx) ~ B} 
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is a llJ,-set and every such set has this form. Thus the {s index the elements of the 
class. Suppose f, g E Pw. What we should look for are two LAMBDA-definable 
combinators such that union(f)( g) and interi f)(g) give the functions that index the 
union and intersection of the sets determined by f and g. That is, we want: 

{xlunionif)(g)(x) E B} = {xlfix) E B} U {xlg(x) E B}. 

II should be possible to extract the precise definition from the outline of the proofs 
given above, but in general this matter needs more investigation. There may very 
well be certain classes where such operations are not constructive, even though 
the classes are simply defined. 

7. Total functions and functionality. There is an inevitable conflict between 
the concepts of total and partial functions: we desire the former, but it is the latter 
we usually get. Total functions are better because they are "well-defined" at all 
their arguments, but the rub is that there is no general way of deciding when a 
definition is going to be well-defined in all its uses. In analysis we have 
singularities, and in recursion theory we have endless, nonfinishingcomputations. 
In the present theory we have in effect evaded the question in two ways. First we 
have embraced the partial function as the nOrm. But secondly, and possibly 
confusingly, the multiple-valued functions are normal, total functions from Pw 
into Pw. The point, of course, is that we are making a modelof the partial functions 
in terms of ordinary mathematical functions. But note that the success of the 
model lies in not using arbitrary functions: it is only the continuous functions that 
correspond to the kind of partial functions we wanted to study. It would be a 
mistake to think of the variables in A-calculus as ranging over arbitrary 
functions-and this mistake was made by both Church and Curry. The fixed-point 
operator Y shows that we must restrict attention to functions which do have fixed 
points. It is certainly the case that Pwis not the only model for the A-calculus, but it 
is a very satisfactory model and is rich enough to illustrate what can and what 
cannot be done with partial functions. 

Whatever the pleasures of partial [unctions (and the multiple-valued ones, 
too), the desire for total functions remains. Take the integers. We are more 
interested in w than w U{.l, T}. Since the multiple values.l and T are but two in 
number, it is easy to avoid them. The problem becomes tiresome in considering 
functions, however. The lattice represented by the retract int ~ int is much too 
large, in that there are as many nOn total functions in this domain as totai ones. The 
aim of the present section is to introduce an interpretation of a theory of 
functionality in the model Pw that provides a convenient way of restricting 
attention to the functions (or other objects) that are total in the desired sense. The 
theory of functionality is rather like proposals of Curry, but not quite the same for 
importlint reasons as we will see. 

In the theory of retracts of §§ 5 and 6, the plan of "restricting attention" was 
thl: very simple one of restricting to a Jubset. It was made notationally simple as the 
subsets in question could be parameterized by continuous functions. The retrac­
tion mappings stand in for their ranges. Even better, certain continuous functions 
act on these retractions as space-forming functors (such as EB and ?--:I'), which gives 
greater notational simplicity because one language is able to ~erve for several 
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tasks. When we pass to the theory of total functions, this same kind of simplicity is 
no longer possible owing to an increase in quantifier complexity in the necessary 
deti'nitions. (This remark is made definite below.) Another point where there is 
some loss of simplicity concerns the representation of entities in Pw: subsets will 
no longer be enough, sincc we will need quotients of subsets. This is not a very 
startling point. Many constructions are affected in a natural way via equivalence 
classes. An equivalence relation makes you blind to certain distinctions. It may be 
easier also to remain a bit blind than to search for the most beautiful representa­
tive of an equivalence class: there may be nothing to choose between several 
candidates, and it can cost too much effort to attempt a choice. Thus our first 
agreement is that for many purposes a kind of object can be taken as a set of 
equivalence classes for an equivalence relation on a subset of Pw. 

Because Pw is closed under the pairing function AxAy.(x, y), we shalt construe 
relations on subsets of Pw as subsets of Pw all of whose elements are ordered 
pairs. That is, a relation A satisfies this inclusion: 

17. I) A,; {(x, y)lx, y E Pw). 

DEFINITION. A (restricted) equivalence ,elation on Pw is a symmetric and 
transitive relation on Pw. 

Such relations are restricted because they are only reflexive on their 
domains-which are the same as their ranges-and these are the subsets with 
which the relations are concerned. We shall write x A y for (x, y) E A and x : A for 

. x A x. What we assume about these relations is the following: 

(7.2) x A Y implies yA x. 

(7.31 x A y and y A z imply x A z. 

In case a is a retract, we introduce an equivalence relation to correspond: 

(7.4) Ea ~ {(x, x)lx: a). 

This is the identity relation restricted to the range of a. Such relalions (for obvious 
reasons) and many others satisfy an additional intersection property: 

(7.5 ) xAy and xAz imply xA (ynz). 

We shall not generally assume 0.5) in this short discussion, but it is often 
convenient. 

Each equivalence relation represents a space: the space of all its equivalence 
classes. Such spaces form a category more extensive than the category of retracts 
studied above. The familiar functors can be extended to this larger category by 
these definitions: 

17.hl A ~ B = {(Ax. ul x), Ax. vlx»1 ulx)Bvly) whenever x A y}, 

17.7) -A x B = {((x, x'), (y, y'»lx A y and x' B y'j, 

17.X) A +B ~ {((J, x), (0, y)!x A y}U {« 1, .'). (I, Y'lilx' B vl 
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THEOREM 7.1 (The closure theorem). If A and B are restricted equivalence 
relations, then so are A -> B, A x B and A + B. We find: 

(i)	 f:A->B iff f=Ax.fix) and whenever xAy, then f(x) Bfiy), in 
particular: 

(ii)	 iff: A -> B and x : A, then f(x) : B; furthermore, 
(iii) u: A x B iff u = ("'" u\) and Uo: A and u\ : B; 
(iv) u: A +B iff either u = (0, u\) and u,:A or u = (I, u\) and u\: B. 

It follows easily from 7.1 that the restricted equivalence relations form a 
Cartesian closed category which-in distinction to the category of retracts-has 
disjoint sums (or coprod"cts as they are usually called in category theory). This 
result is probably a special case of a more general theorem. The point is that Pw 
itself is a space in a Cartcsian closed category (that of continuous lattices and 
continuous maps) and it contains as subspaces the Boolean space and especially its 
own function space and Cartesian square. In this circumstance any such rich space 
must be such that its restricted equivalence relations again form a good category. 
Our construction is not strictly categorical in nature, as we have used the elements 
of Pw and have relied on being able to form arbitrary subsets (arbitrary relations). 
But a more abstract formulation must be possible, The connection with the 
category of retracts is indicated in the next theorem. 

THEOREM 7.2 (The isomorphism theorem). If a and b are retracts, we have the 
following isomorphisms and identities relating the spaces: 

(i)	 Ea,=(x,y)la(x)=a(y)}; 
(ii)	 Ea_ b '= Ea -> E,; 

(iii) Ea0, = Ea x E,; 
(iv) Ea®b = Ea+ Eb U {(L .1), (T, T)}. 
Part (iv) is not categorical in nature as it stands, but (ii) amd (iii) indicate that 

E is a functor from the category of retracts into the category of equivalence 
relations that shows that the former is a full sub-Cartesian-c1osed category of the 
latter. We cannot pursue the categorical questions here, but note that there are 
many subcategories that might be of interest; for example, the equivalence 
relations with the intersection property are closed under ->, x, and +. 

Returning to the question of total functions we introduce this notation: 

(7.9)	 N = {{n, n)ln E w}. 

This is the type of the integers without and 1. and T, i.e., the total integers. We note 
that: 

(7.10) N = {ul u = (uo, uo), u" = inl(uo), mid(uo) = OJ. 

Thus N is a ~,-set. What is N -> N? We see: 

(7.11) f: N-> N if! f:lunandf(nlE w whenever nEw. 

This N -> N is indeed the type of all total functions from w into w. It can be shown 
that N -> N is also a QI,-set: good. But what is (N -> N) -> N? This is no longcr a 
lB,-set, the best we can say is 11;. By Theorem 7.1 it corresponds to the type of all 
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(extensional) continuous total functions from N -> N into N. (The condition on A 
and B on rhe right side of (7.6) makes the concept of function embodied in A -> B 
exten~ional, since the functions are meant to preserve the equi\'alence relations.) 

A more precise discussion identifies N -> N as a topological space, usually 
called the Baire space. If we introduce the finite discrete spaces by: 

(7.12) Nk = {tn, n)ln < k}, 

then N -> N, can also be identified with a topological space, usually called rhe 
CantDr space. In this identification we find at the next type, say either (N -> N) -> N 
or (N -> N,) -> N" that elements correspond to the usual notion of continuous 
function defined in topological terms. However, these higher type spaces are not 
at all conveniently taken as topological spaces. Certain of them can be identified as 
limit spaces according to the work of Hyland, and for these ->, x, and + have the 
natural interpretation. We cannot enter into these details here, but we can remark 
that the higher type spaces become ever more complicated. Thus ((N -> N) -> N)-> 
N is a n;-sct and each -> will add another quantifier to the cjefinition. This is 
reasonable, because to say that a function is total is to say that all its values arc 
well-behaved. But if its domam is a complex space, this statement of totality is 
even more complex. Despite this complexity, however, it is possible to sort out 
what kind of mapping properties many funclions have. We shall mention a few of 
the combinators. 

THEOREM 7.3 (The functionality theorem). The combinators J, K, and S 
enjoy the following functionality properties which hold for all equivalence relations 
A, B, C: 

(i) J: A -> A; 
(ii) K:A->(B->A); 

(iii) S: (A -> (B -> C» -> ((A -> B) -> (A -> C»). 
Furthermore, these combinators are wliquely determined by: these properties. 

Let us check that 5 satisfies (iii). Suppose that: 

f(A -> (B -> C»)f· 

We must show that: 

S(n((A -> B)-> (A -> C»S(f'). 

To this end suppose that: 

g(A -> B)g'. 

We must show that: 

S([)(g) (A -> C) S([')(g'). 

To this end suppose that: 

xA x'. 

We must show that: 

S([I(K )(x )CS([')(g')(x'). 
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Now by definition of the combinator S we have: 

Si!J(g)(x) = f(x)(g(x)), 

S(f)(g')(x') = ((x')ig'(x')). 

By assumptions on g, g' and on x, x', we know: 

g(x) B g'ix'l. 

By assumptions on f, f' and on x, x', we know: 

f(x)(B ... O{ix'). 

The desired conclusion now follows when we note such combinations as S(!J and 
S(f)(g) are indeed functions. (We are using Theorem 7.1(i) several times in this 
case.) 

In the ease of the converse. let us suppose by way of example that k E Pw is 
such that 

k:A ... (B ... A) 

holds for all equivalence relations A and B. By specializing to, say, the identity 
relation we see that whatever a E Pw we take, both k and k(a) are functions. To 
establish that k = K we need to show that the equation: 

k(a)(b) = a 

holds for all a, bE Pw. This is easy to prove, for we have only to set:
 

A = {(a, a)} and B={(b, b)},
 

and	 the equation follows at once. Not all proofs are quite so easy, however. 
In the case of lhe combinator S it is not strictly true to say that Theorem 

7.3(iii) determines it outright. The exact formulation IS this: if,. E Pw is such that: 

s(f) ~ s(AxAy.f(x)(y)) and s(!J(g) = s(f)(Ax.g(x)) 

for all f, & , Pw; and if 

s: (A ... (8 ... O)"'(IA ... B) ... (A ... ell 

for all A, B, C, then s ~ S. In other words, we need to know that s converts its first 
two arguments into functions with the right number of places before we can say 
that its explicit functionality identities as being the combinator S. 

In Hindley, Lercher and Seldin (1972) they show that the functionality 
property: 

(7.13) AfAg·fo g: (S ... 0'" IIA ... BI'" (A ... Cl). 

follows from Theorem 7. Uit) and Theorem 7.311i) and (iii) in view of the identlty: 

(7.14 )	 AfAg.f 0 g ~ S(K(S))(KI 

(see Appendix AI. 
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A more Interesting result concerns the Iteralor.\ JetlncJ as lollowOj: 

(7.15) Zo= Ajh.x, 

(7.16) Z"+I = AjAxIIZ"lfJ(xl). 

In other words, Z"If)(x) ~ Fix), These natural comblnators can be typed very 
easily, but Gordon Plotkin has sbown that tbe obvious ,typing actually charac­
terize~ them. 

THEOREM 7,~ (Tbe iterator theorem), The combinators Z" enjoy the following 
functionality propert, which holds for all equivalence relations A: 

(i) Z" : (A -> A) -> (A -> A I. 

Further, If any eletrlenl IE Pw satisfies (i) for all A, then it must be one of the 
iterators, provided that l(f) = z(AxI(,)) holds jor all f E Pw. 

That eacb of the Z" satisfies Theorem 7.4li) is obvious. Suppose z were 
another such clement. Then clearly: 

I = AfAr,zlflix) 

Suppose f anJ x are tlxeJ for the moment. Let: 

A ={(f"(x), f"(x»ln E w}, 

where we call ~uppose in £tdditiol1 that: 

f ~ Ax.f(x), 

Then f: A -> A is clear, and so zl f): A -> A also, But x: A, therefore z( [)(x) = 

Fix), I'm some n ~ w, because zr/)(x): A. Tbe trouble with this easy part of the 
<irglllllcllt j, th<it the integer n depends on I and x. ,",,'hat WI; must :-,how i~ thai it i:-. 
independent of f and x, then z ~ Z" will follow. 

Plotkin's method for this case is to introduce ~()me independent successor 
functions: 

17,1 j J if, ~ Ax,{ij, k + I)I( j, k) ex). 

Note that: 

m((., O)=((/,m) if/o-I';
i7,I~) (T J J, I . f ., 

~ '1""/. 

It then follows that: 

i7 19) 

Having these it.lentitlcs, we return 10 the argument. 
From what we saw before, given j e. w, there is an n/ such that: 

Take any two J, j' '= w. We also kno\\' there i" an fl'~ OJ whl'rc: 
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in vie"! of (7. J<)). But since IT, £ (T) U fJi" and (T/ r; u) U ur, we have: 

(f, Il j ) U (/, ni') c:: (j, II) U (}', Ill. 

It follows that 

and so they are all equal. This determines the fixed nEw we want. 
Suppose that both! and x are finite sets in Pw. Choose f> max (!U x). Let A 

this rime bL: the least equivaicilce relation such that: 

rlx) Ar(x)Ulf, m) 

holds for JII III E w. We then check that: 

Ax.[(xi(A ~ AJiAx.[(x) U OJ. 

Therefore, we have: 

ZIAx.[1 x»)(A ~ A)z((Ax.[(x» U "j l. 

Jnd since x A x U (j, 01, we get: 

z(Ax.[(x»)(x) A z((Ax.[(x) U (T,J(x U If, 0)). 

Now there is an integer Tn E UJ such that: 

z((Ax.[(x» U (Ti)!x U If, 0) ~ r(x IU (T';'((j~ 0» 
~r(x)U(j,m), 

where we have been able to separate f and u because j is ~o large. But the 
right-hand sidc must contJin ZI(T,)(j,())~lf, II). Thus III and our fixed n are the 
same, The other element 

zIAx.!lxl)(x) ~ rlXI 

for some q E UJ. Thus we have: 

r(x) Aj"IxlUlf, 111. 

Again since j is so large, (f, Il)"rlx). Thus by Our choice of A we must havc 
r(x) = ["Ix). This means then, since n is Iixed, that for all finite f, x: 

z(Ax/lx))(xl ~ ["(x). 

But then by continuity this equation holds for all f, x. It follows now that z = Zn, by 
the proviso of the theorem. 

These result~ bring up many questions which we leave unanswered here. For 
example, which combinatnr~ (i.e., pure A-terms) ha\'c functionality as in the 
cxamplc~ above, and can we decide when a term is one ~L1ch? In particular, can the 
diagonal comhinator Ax.XlX) be typed" (The argument of Hindley, et al. (I ~72, P 
HI) is purclv formal Jnd does not apPJrent)v apply to thc model.) What ahout 
lerm~ in LAMBDA beyond the pure ;\ -calculus',' 
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Appendix A. Proofs and technical remarks. 
For Section 1. If we give the two-point space {~, T} the weak T.rtopology 

with just three open sets: 0, {T}, {~, T}, we have what is called the Sierpinski 
space and its infinite product {~, T}W with the product topology is the same as Pw. 
The finite sets e" E Pw correspond exactly to the usual basic open sets for the 
product. For those familiar with such notions, this well-known observation makes 
many of the facts mentioned in this section fairly obvious. From any point of view, 
Theorem 1.1 and the remarks in the following paragraph are simple exercises. 

Proof of Theorem 1.2. Equation (i) as a functional e·quation comes down to 

which is just another way of writing the definition of continuity. Thus it is indeed 
true for all x. Next, inclusion (ii) means that if (n, m) E u, then 3e, s; e".(k, m) E u. 
Clearly all we need to do is take k = n. If we also want the converse inclusion to 
hold, then what we need is condition (iii). 

Proof of Theorem 1.3. Substitution is generalized composition of functions of 
many variables with all possible identifications and permutations of the variables; 
however, as we are able to define continuity by separating the variables, the 
argument reduces to a few special cases. The first trick is to take advantage of 
monotonicity. Thus, suppose fix, y) is continuous in each of its variables. What 
can we say of fix, x), a very special case of substitution? We calculate 

fix, x) = U{f(em x)le" <;: x} 

=U{f(em em)le" S; x, em <;: x}. 

Then if we think of ek = en U em and realize that f(e", em) ~ I(ek- ed, we ~ee that 

fix, x) =U{f(e" e, )Ie, S; x}. 

This means that f(x, x) is continuous in x. This same argument works if other 
variables are present, as in the passage from f(x, y, z, w) to f(x, x, z, w). When an 
identification of more than two variables is required, as from fix, y, z, w) to 
fiX, x, x, x), the principle is just applied several times. 

Finally to show that f(g(x, y), h(y, x, y)) is continuous, it is sufficient to show 
that f(g(x, y), h(z, u, v) is continuous in each of its variables separately. By simply 
overlooking the remaining variables, this comes down to showing that f(g(x)) is 
continuous if f and g are. But the proof for ordinary composition is very easy with 
the aid of the characterization theorem (Theorem 1.1). 

Proofof Theorem IA. This well-known fact holds for continuous functions on 
many kinds of chain-complete partial orderings; but Pw il'lustrates the idea well 
enough. Suppose f had a fixed point x = fix). Then since 0 s; x and f is 
monotonic, we see that f(0) <;: f(x) = x. But then again.[(f(0) <;:f(x) = x; and so 
by induction, ["(0) <;: x. This proves that m(f) S; x; and thus if m(f) is a fixed 
point, it must be the least one. To prove that it is a fixed point, we need a fact that 
will often be useful: . 

LEMMA. [f x" S; X"+I for all n, and iff is continuous, then 

f(U{x"ln E w}) = U{f(x")ln E wi· 
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Proof. By monolOnicity, the inclusion holds in one direction. Suppose eM s; 
f(U{x.ln E wi)· 1ben by Theorem 1.1 we have eM S;f(ed for some e. ~ 
U{x.ln E wi. Because e. is finite and the sequence is increasing, we can argue that 
e. S; x. for 80me n. But then f(e.) s;f(x.). This shows that eM s; U{f(x.)ln E w) 
and proves the inclusion in the other direction. (Exercise: Does this property 
characterize continuous functions?) 

Proof of Theorem 1.4 concluded. Noting that ["(0)s; ["+1(0) holds for all n, 
we can calculate: 

[(fix,(m = U{f(f"(0))!n E w) =U{r'(0)/n EwI. 

But this is just fix(n), since the only term left out is /,(0) = 0. 
Proof of Theorem 1.5. The function [is clearly well-defined even when y E Y 

has a neighborhood V where xn u= 0: in that case [(y) = w by convention on 
the meaning of n in Pw. In case XEX, it is obvious that [(xls;f(x). For the 
opposite inclusion. suppose that m E f(x). Because f is continuousand {zlm E z} is 
open in Pw, there is an open subset Vof X such that x' E V always implies that 
m Ef(x'). But X is a subspace of Y, so V= xn V for some open subset Uof Y. 
Thus we can see why mE [(x). It remains to show that [is itself continuous. 

We must show that the inverse image under [ of every open subset of Pw is 
open in Y. But the open subsets of Pw are unions of finite intersections of sets of 
the form {z ImE z}. Thus it is enough to show that {yj m E[(y)} is always open in Y. 
But this set equals U{UjmEn{f(x)lxEXn U)), which being a union of open 
sets is open. Note that what we have proved is that [is continuous no matter what 
function f is given; however, if f is not continuous, then [ cannot be an extension 
of f. 

For readers not as familiar with general topology we note that the idea of 
Theorem 1.5 can be turned into a definition. Suppose X s; Pw is a subset of Pw. It 
becomes a subspace with the relative topology. What are the continuous functions 
f: X -> Pw? From Theorem 1.5 we see that a necessary and sufficient condition is 
that the T: Pw -> Pw be an extension of f. Thus for x E X we can write the equation 
f(x) = [(xl as a biconditional: 

mEf(x) if! 3e.s;xVx'EX[e.s;x'impliesmEf(x')], 

which is to hold for all mEw. This form of the definition of continuity on a 
subspace is more complicated than the original definition. because in general 
e.~ X and we cannot write f(e.). 

Proof of Theorem 1.6. What To means is that every point of X is uniquely 
determined by its neighborhoods. Now e(x) just tells you the set of indices of the 
(basic) neighborhoods of x. Thus it is clear that, is one-to-one. To prove that it is 
continuous, we need only note: 

(xln E e(x)) = V., 

which is always open. To show that, is an embedding, we must finally check that 
the images of the open sets U. are open in e(X). This comes down to showing: 

,(V.) = ,(X) n{zln E Z}, 

which is clear. 
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For Section 2. Equation (2.1) defines a continuous lunction because it is a 
special case of Theorem 1.5. where we have been able to simplify the definition 
into cases because (I) is a very elementary subset of Pw. Equation (2.2) gives a 
continuous function since the definition makes pdistributive, as remarked in the 
text for finite unions, byt it is just as easy to show that pdistributes over arbitrary 
unions. The ditterence between a continuous f and a distributive p is this: to find 
mE f(x) we need a finite subset e" c; x with m Efie"); howpver, to find m E p(x) we 
need only one element n E x with mE p((n}) = p(n) = p( n). Continuous functions 
are generalizations of distributive functions. The generality is necessary. For 
example, in (2.3) we see another function x; y distributive in each of its variables; 
but take care: the function x; x is not distributive in x-there is no closure under 
substitution. This is just one reason why continuous functions are better. Another 
good example comes from (2.4) if you compare the functions x, x+x, x+x+x, 
etc. 

Equations (2.5H2. 7) are very elementary. Note that z => x, y is distributive in 
each of its variables. We could write: z => x, Y = P(z), where piO) = x and 
PIn + \ 1= y, to show that it is distributive in z. 

Proof of Theorem 2.1. If we did not usc the A-notation, then all LAMBDA­
definable runctions would be obtained by substitution from the first five (ef Table 
2). Since they are all seen to be continuous, the result would then follow by tbe 
substitution theorem (Theorem 1.3). Bringing in A-abstraction means tbat we 
have to combine Theorem 1.3 with this fact: 

LEMMA. If fix. y, z, ... ) is a continuous function of all its variables, then 
Ax.[(x, y, z, ...) is a continuous function of the remaining variables. 

Proof It is enough to consider one extra variable. We compute from the 
definition of A in Table 2 as follows: 

Ax.[lx, y) = (In, m)lm Efle", y)} 

~ ((n, m)13e, c; y.m Ef(e", e,)) 

= U{{(n, mllm Ef(e", e,J}Ie, c; y} 

= U{Ax.[lx, e,!Ie, c; y}. 

Thus Ax.[lx, y) is continuous in y. 
Proof of Theorem 2.2. The reason behind this result is the restriction to 

continuous functions. Theorem 2.1 shows that we cannot violate the restriction by 
giving definitions in LAMBDA, and the graph theorem (Theorem 1.2) shows that 
continuous functions correspond perfectly with their graphs. 

The verific"tion of (a) of Table 1 is obvious as the 'x' in ·AX.T' is a bound 
variable. (Care should be taken in making the proviso that' y' is not otherwise free 
in T.) The same would of course hold for any other pair of variables. We do not 
bother very much about alphabetic questions. 

The verification of (f3) is just a restatement of Theorem 1.21i I. Let T define a 
function f (of x). Then by definition f( x) = T and Ax. T ~ graphl n. Also funl u)( x) 
in the notation of Theorem 1.2 is the same as the binary operation Id.n in the 
notation of LAMBDA. Thus in Theorem 1.2(i) if we apply both sides to v we get 
nothing else than (f3I. 
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Half of property «() is already implied by (/3): tbe implication from left to 
rigbt. (Just apply botb sides to x.) In tbe olher direction, 'rtx. T ~ IT means thaI T and 
IT define the same function of x; thus, the two graphs must be equal. 

Remarks on other laws. The failure of (TI) simply means that not every set in 
Pw is the graph of a function. Condition (iii) of Theorem 1.2 is equivalent to saying 
that U ~ Ax.u(x), in other words, U is the graph of some function if and only if it is 
the graph of the function determined by u. 

Law (iL) is the monotone property of application (in both variables); there­
fore, (iLl and W together imply «(*J from left to right. Suppose that 'rtx. T <;; IT; then 
clearly: 

{{n, m)1 mE T[ eo/ x]} <;; {In, m)[m E IT[ eo / x]}, 

which gives «(*) from right to left. 
There are, by the way, other laws valid in the model, as explained in the later 

resullS. 
Proof of Theorem 2.3. This is a standard result combinatory logic. We have 

only to put: 

That is, we use the iteration of the process of forming the graph of a continuous 
function. As each step (from the inside out) keeps everything continuous, we are 
sure that the equation of Theorem 2.3 will hold for iterated applicalion. 

Proof of Theorem 2.4. This can be found in almost any reference on 
combinatory logic or A-conversion. The main idea is to eliminate the A in favor of 
the combinators. The fact thaI we have a few other kinds of terms causes no 
problem if wc introduce the corresponding combinators. The method of proof is 
to show, for any LAMBDA-term T with free variables among xo. Xl. .. , , X.. _ h 

that there is a combination y of combinators such that: 

T= 1'(x,,)(xt!··· (X'_l)' 

Thi .... can bc done by induction On the complexity ut T. 

Proof of Theorem 2.5. The well-known calculation shows that we have from 
(2.H): 

Y( u) ~ (Ax.u(x(x)))(Ax.u(x(x))) ~ u( YI u)). 

Thus Yi u) is a fixed point of thefunction u(x). What is needed is the proof to show 
that it is the least one. 

Let d ~ Ax.u(x(xJ) and let a be any other fixed point of u(x). To show, as we 
must, that dId) ~ a. it is enough to show that e, ~ d always implies f,(e,) <;; a; 
because by continuity we have: 

d(dL~ U{eJf,)lf, <;; d) 

By way of i"duct(on. supp"," that Ihis implication hold, for all n < l. Assume that 
<'I <;; d and that mE e,(ed. We will want to use the induction hypothesis to show 
that mEa. By the definition of application. there exists an integer n such that 
tn. m) r:: 1:>/ and en S; e{. But n ;? (n, m) < I. and en s;: d. By the hypothesis, we have 
eol f,,) s: a. Note Ihat (n, m I€ d also, and that d is defined hy A-abstraction; thus, 
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mE d(e,) by definition. By monotonicity u(e,(e,») c: u(a) = a; therefore mEa. 
This shows that e,(e,) c: a, and the inductive proof is complete. 

Remark. Note that we did not actually use the fixed-point theorem in the 
proof, but we did use rather special properties of the pairing (n, m) and the finite 
sets el-

Equation (2.9) is proved easily from the definition of application; indeed u(x) 

is distributive in u. Equation (2.10) is proved even more easily from the definition 
of A-abstraction. For (2.11), we see that the inclusion from left to right would hold 
in general by monotonicity. In the other direction, suppose m E/(x) n g(x). Then 
for suitablc k and I we have (k, m) EI and e, c: x, also (I, m) E g and e, c: x. Lct 
e, = e, U e, c: x. Because I and g are graphs, we can say (n, m) EIn g; and thus 
mE un g)(x). This is the only point where we require the assumption on graphs. 
Equation (2.12) follows directly from the definition of abstraction. For (2.13), 
which generalizes (2.9), we can also argue directly from the definition of applica­
tion. In the case of intersection it is easy to find U" such that 0 E u,(T) for all n, but 
n{u,lnEw}=L 

Equation (2.14) is obvious because the least fixed point of the identity 
function must be L A less mysterious definition would be ~ = 0-1, but the 
chosen one is more "logical". 

For (2.15) we note that by definition: 

Az.O = {(n, m)lm EO) = {(n, O)ln E w). 

Because 0 = (0, 0) and I = (I, 0), we get the hinl. Equation (2.16) makes use of U 
for iteration. If x ~ 0 U (x + I), then x must contain all integers; hence x = T. The 
iteration for n in (2.17) is more complex. The fundamental equation we need is: 

x n y ~ x => (y => O. lJ, «x - 1) n (y - 1) + I. 

This says to compute the intersection of two scts x and y, we first test whether 
o EX. If so, then test whether 0 E y. If so, then we know 0 EX n y. In the meantime 
we begin testing x for posilive elements. If we could compute (by the ,ame 
program) the intersection (x - I) n (y - I), then we would gct the positive ele­
ments of the intersection x nyby adding one. This is a very slow program, but we 
can argue by induction that it gives us all the desired elements. Of course, n is the 
least function satisfying this equation. 

In the case of (2.18) it is clear that we have: 

Ax.~ = {(n, m)lm E~) =~; 

Ax.T={(n, m)lmET}=T; 

because in the last every integer is a (number of a) pair. Suppose now that a ~ Ax. a 
and a '" T. Let k be the least integer where k E a. Now k ~ (n, m) for some nand 
m. If mEa, then (n, m) E a = Ax.a; hence mE a. But m ~ k and k is minimal; 
therefore, m = k. But this is only possible if k = m = n = O. Suppose further a " l­
and that I is the least integer where lEa. Now I = (i, j) with j E a and j ~ I. So j = I 
and 1= j = i = O. This contradiction proves that a = ~ or a = T. 

Equations (2.19)-(2.22) are definitions, and (2.23) is proved easily by 
induction on i. Equation (2.24) is also a definition. To prove (2.25) we note thaI 
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{u,li E x} is continuous (even: distributive) in u and x. Thus, there is a continuous 
function seq(u)(x) giving this value. What is required is to prove that it is 
LAMBDA-definable. We see: 

seq(u)(x) = {n E uolO EX}U{m E U{ui+di + 1 E x}13k.k + 1 EX} 

= X :0 Uo, seq(AI.u,+t!(x -1): 

that is, seq satisfies the fixed-point equation for S. Thus S ~seq. To establish the 
other inclusion we argue by induction on i for: 

'rIx, uri EX=? u, ~S(u)(x)l 

This is easy by cases using what we are given about $ in (2.24); it implies that 
seq ~ $. Note that: 

AnEw.T=AnEW.u iff 'Vn EW.T=: U. 

For primitive recursive functions, even of several variables, there is no 
trouble in transcribing into LAMBDA-notation any standard definition~­

especially as we can use the abstraction operator An E w. If we recall that every Le. 
set a has the form: 

a = {mI3n.p(n) = m +1}, 

where p is primitive recursive, we then see that a = piT) -1. This means that 
every Le. set is LAMBDA-definable. 

Proof of Theorem 2.6. In case of a function of several variables, we remark: 

hoAx, ... AXk_'.f(xo)(x,)· .. (Xk_l) 

~{(no,(n,,(··· ,(n, "m)" ')))!mE!(e",)(e",)'" (e",_,)}. 

This makes the implication from (i) to Iii) obvious. Conversely, if a graph u is r.e., 
then from the definition of application we have: 

mE u(e",)(e",)' .. te,,) iff Ino, In" (... , (n,_" m)" ')))E u, 

which is Le. in m, no, nl,"': nk-!' Therefore (Sand (ii) are equivalent. 
We have already proved that (ii) implies (iii). For the converse we have only 

to show that all LAMBDA-definable sets are Le. For this argument we could take 
advantage of the combinator theorem, (Theorem 2.4). Each of the six COm­
binators are Le., and there is no problem of showing that if u and x are Le., then so 
is u(x); because it is defined in such an elementary way with existential and 
bounded universal number quantifiers and with membership in u and in x 
occurring positively. Explicitly we have: 

mE u(x) iff 3e" ~ x.(n, m) E u 

iff 3n 'rim < n[[m E e" implies m E xl and (n, m) E u]. 

For Section 3. For the proof of (3.1) we distinguish cases. In case x = y = 1-, 

we note that condl 1-)( 1- I= 1- and 1- (1-) = 1-, so the equation checks in this case. 
Recall: 

cond(x)(y)~Az.z :ox, y={ln, m)!mEle" :ox, y)}. 
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We can show 0 e' eond(x)(y), Note first 0 = (n, m) iff n = 0 = m; furthermore, 
eo ~ ~ and 1 =0 x, Y= 1; but 0" 1. Also we have: 

eond(x)(y)(O)=x and eond(r)(y)(J)= y; 

so if either xi' 1 or y i' 1, then eond(x)(y) 'i' 1. In this case, eond(x)(y) must 
contain positive elements. The result now follows. 

Theorem 3.1 is obvious from the construction of G, because G(G) = 0 and 
G(O)(O) = sue, and so the G(O)(i) give us all the other eombinators. 

The primitive recursive funetions needed for (3.4)-(3.6) are standard. Equa­
tion (3.7) is a definition~if we rewrote it using the Y-()perator~and the proof of 
Theorem 3.2 is easy by induction. There is also no difficulty with (3.8)-(3.12), The 
idea of the proof of Theorem 3.3 is eontained in the statement of the theorem 
itself. The proof of Theorem 3.4 is already outlined in the text. 

Proof of Theorem 3.5. The argument is essentially the original one of 
Myhill-Shepherdson, Suppose p is computable, total and extensional. Define: 

q = {(j, mJlm E val(p(fin(j)))), 

where fin is primitive recursivc l and for all JEW: 

val(fin(})) = er 
Certainly q ERE, and we will establish the theorem if we can prove "continuity": 

val( p(n)) = U{val( p(fin(j) ))Ie, <; val( n)). 

We proceed by contradiction. Suppose first we have a kE val(p(n)), where 
ke'val(p(fin(j)) whenever e, <;val(n). Pick r to be a primitive recursive function 
whose range is not recursive. Define s. primitive recursive, so that for all mEw: 

val( s( m)) ~ (j E val(n Jim" Irt ill i '" ill. 

The set val(n) must be infinite, because p is extensional, and if val(n) ~ e, ~ 

val(fin(j)), then ke' val( p(fin(j))) = val( p(n»). Note that val(s(m)), as a suhset of 
the infinite set, is finite if m ;s in the;: range ()f r: otherwise it is equal to val(n). 
Again by the extensionality of p we see that k Eval!pls(m)) if and only if m IS not 
in the range of r. But this puts an Le. condition on m equivalent to a non-r.e. 
condition. which shows there is no such k. 

For the second case suppose we have a ke'val(p(n), where for a suitahle 
ej <; val(n) it is the case that k E val(p(fin(j))). Define: 

t = Am E w.e, U Ival(mJ =0 val(n), val(n»). 

We have: 

e, if val(m') = 1; 
t(mJ= { val(n) if not. 

We choose u primnivL: fL:cursive, where: 

val(u(m)) = tim). 

By the chOice llf k, and by the extensionality of p, and by the fact that valin) i' e" 



573 DATA TYPES AS LATTICES 

we have: 

k EVal(p(u(m))) iff tim) =e} 

iff val(m)=.L 

But this is impossible, since one side is Le. in m and the other is not by Theorem 
3.4. As both cases lead to contradiction, continuity is established and the proof is 
complete. 

Proof of Theorem 3.6. Consider.a degree Deg(a). This set is closed under 
application, because: 

u(a)( v(a)) =S(u)(v )(a), 

and S(u)(v) is Le. if both u and v are. Note that it also contains the element G; 
hence, as a subalgebra, it is generated by a and G. 

Let A be any finitely generated subalgebra with generators ab, a~ • ... , a~-l' 

Consider the element a =cond«ab, a~,· .. , a~-l»(G). As in the proof of 
Theorem 3.1, a generates A under application. It is then easy to see why 
A =Deg(a). 

Proof of Theorem 3.7. We first establish (3.16) and (3.17): 

Lou 0 R =Ax.L(u«O, x»)) 

=Ax.L«I, u, x» 

=Ax.u(x). 

u 0 v 0 R = Ax.u(v«O, x))) 

= Ax.u((J, v, x») 

= Ax.u(v)(x) 

= u(v). 

Now starting with any u ERE, we write u = T, where T is formed from G by 
application alone. By (3.17), we can write u in terms of G and R using only o. That 
is, u belongs to a special subsemigroup. [n view of (3.16), we find that Ax.u(x) 
belongs to that generated by R, Land G. But 

RE nFUN ~ {Ax.u(x)!u ERE}, 

and so the theorem is proved. 

For Section 4. The notion of a continuous latrice is due to Scott (1970/71) 
and we shall not review all the facts here. One special feature of these lattices is 
that the lattice operations of meet and join (n and U) are continuous (that is. 
commute with directed sups). As topological spaces, they can be cbaracterized as 
those To-spaces satisfying the extension theorem (which we proved for Pw in 
Theorem 1.5). 

Proof of Theorem 4.1. Consider a continuous function a. and let A = 

{xix = a(x)}. By the fixed-point theorem (Theorem 1.4) we know that A is 
nonempty and that it has a Ie "51 element under <;;. Certainly A is partially ordered 
by £; further, A is closed under directed unions but not under arbitrary unions. 
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That is, A is not a complete sublattice of Pw with regard to the lattice operations 

of Pw, but it could be a complete lattice on its own-if we can show sups extst. 
Thus, let S s:: A be an arbitrary subset of A By the fixed-point theorem, find the 
least solution to the equation: 

y = U{X\XE S}U aryl. 

Clearly x s y for all XES; and so x = a(x) s:: aryl, for all XES. This means that 
y = a(y), and thus yEA. By construction, then, y is an upper bound to the 
elements of S. Suppose Z E A is another upper bound for S. It will also satisfy the 
above equation; thus y S z, and so y is the least upper bound. A partially ordered 
set with sups also has infs, as is well known, and is a complete lattice. 

Suppose that a is a retract. We can easily show that the fixed-point set A 
(with the relative topology from Pw) satisfies the extension theorem. For assume 
f: X -> A is continuous, and X S Y as a subspace. Now we can also regard 
f: X -> Pw as continuous because A is a subspace of Pw. By Theorem 1.5 there is 
an extension to a continuous {: Y -+ Pw. But then a 0 f: Y -+ A is the continuous 
function we want for A, and the proof is complete. 

The space of retracts. Let us define: 

RET={a\a~aoa), 

the set of all retracts, which is a complete lattice in view of Theorem 4.1. It will be 
proved to be not a retract itself by showing it is not a continuous lattice; in fact, the 
meet operation on RET is not continuous on RET. 

The proof was kindly communicated by Y. L. Ershov and rests on distinguish­
ingsome extreme cases of retracts. Call a retract a nonexrensive if for all nonempty 
finite sets x we have x~ a(x). Call a retract b finite if all its values are finite (i.e., 
beT) is finite). If a is nonextcnsive and b is finite. then Ershov notes that they are 
"orthogonal" in RET in the sense that c = a n b = ~. The reason is that, since 
c c;; b, it is finite; but c ~ a, too, so c(x) s; a(x) for all x. Because c is a retract. we 
have c(x) = c(c(x» s a(c(x). As c(x) is finite and a is nonextensive, it follows 
that c(x) ~.L for all x. 

This orthogonality :s unfortunate, because consider the finite retracts bn = 
Ax. e•. We have here a directed set of retracts where U{b. In E w} = Ax. T = T. If n 
were continuous, it would follow that for nonextensive a: 

a =a n T~ a nUlb.ln Ew}=U{a n b.]nEw}= 1, 

showing that there are no nontrivial such a. But this is not so. 
Let « be a strict linear ordering of w in the order type of the rational 

numbers. Define: 

a(x) = {ml3n E X.m« n}. 

We see at once that a is continuous; and, because« is transitive and dense, a is a 
retract. Since « is irreflexive, it is the case for finite nonempty sets x that 
max~ (x)'" a(x); hence, a is nonextensive. As afT) = T, we find a "'.L The proof 
is complete. 

Note that there are many transitive, dense, irreftexive relations on w, so there 
are many nonextensive retracts. These retracts, like a above, are distributive. A 

7 
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nondistributive example is: 

a':; {mI3n, n' E x.n« m« n'l. 

Many other examples are possible. 

Proof of Theorem 4.2. The relation (lE; is by tbe definition of retract reflexive 
on RET; it is also obviously antisymmetric. To prove transitivity, suppose 
a (lE; b (lE; c, then 

a :; a 0 b == a 0 b 0 c = a 0 c. 

Similarly, a = c 0 a. Note. by the way, that a ()<; b implies that the range of a is 
included in that of b; but that the relationship a,; b does not imply this faCL The 
relationship a ()<; b, however, is stronger than inclusion of ranges. 

Proofs of Theorems 4.3-4.5. We will not give full details as all the parts of 
these theorems are direct calculations. Consider by way of example Theorem 
4.3(i). We find: 

(a .... b) 0 (a .... b) = Au.b 0 (b 0 u 0 a) 0 a 

= Au.b 0 u 0 a 

=QG--Job, 

provided that a and b are retracts. A very similar computation would verify part 
(iv), if one writes out the composition: 

(a .... b') 0 (f .... f) 0 (b .... a') 

and uses the equations: 

f = b 0 f 0 a and r= b' 0 r 0 a'. 

The main point of the proof of Theorem 4.6 has already been given in the 
texL 

For Sections 5-7. Sufficient hints for proofs have been given in the texL 

Appendix B. Acknowledgments and references. My greatest overall debt is 
to the late Christopher Strachey, who provided not only the initial stimulus and 
continuing encouragement, but also what may be termed the necessary irritation. 
Not being a trained mathematician, he often assumed that various operations 
made sense without looking too closely or rigorously at the details. This was 
particularly the case with the A-calculus, which he used as freely as everyday 
algebra. Having repeatedly and outspokenly condemned the A-calculus as a 
formal system without clear mathematical foundations, it was up to me to provide 
some alternative. The first suggestion was a typed system put forward in Scott 
(1969) (unpUblished, but later developed as LCF by Robin Milner and his 
collaborators). Experience with the type structure of function spaces, which had 
come to my attention from work in recursion theory by Nerode, Platek and others. 
soon convinced me that there were many more similar structures than might at 
first be imagined. In particular. a vague idea about a space with a "dense" basis led 
quickly to the more direct construction, by inverse limits, of function spaces of 
"infinite" type that were very reasonable models of the classical "type-free" 
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A-calculus (as well as many other calculi for other "reflexive domains). The details 
Can be found in Scott (1971) and Scott (1973b). Algebra was justified, but the 
work in doing so was tiring and the exact connections with computability were not 
all that easy to describe. 

In the meantime Plotkin (1972) contained suggestions for a "set-theoretical" 
construction of models, but not much notice was taken of the plan at the time it 
was cirCUlated-perhaps owing to a fairly sketchy presentation of the precise 
semantics of the A-calculus. The present paper evolved particularly from the 
project of making the connections with ordinary recursion theory easier to 
comprehend, since a satisfactory theory of computability and programming 
language semantics had to face this problem. The idea of using sets of integers for a 
model was first put forward by the author at a meeting at Oberwolfach at Easter in 
1973 and in a more definitive form at the Third Scandinavian Logic Symposium 
shortly thereafter (see Scott (1975a) which is a preliminary and shorter version of 
this paper). The author gave a report on the model at the Bristol Logic Collo­
quium in July 1973, but did not submit a paper for the proceedings. A series of 
several lectures was presented at the Kiel Logic Colloquium in July 1974. 
covering most of the present paper which was distributed as a pre print at the 
meeting. The text (but unfortunately neither acknowledgments nor references) 
was printed in the proceedings (Springer Lecture Notes in Mathematics, vol. 499). 
In 1973 after experimentation with definitions somehow forced him into the 
definition of the model, the author realized that it was essentially the same as 
Plotkin's idea and, even more surprising, it was already implicit in a very precise 
form in much earlier work by Myhill-ShepherdSllO (1955) and Friedberg-Rogers 
(1959) (see also Rogers (1967)) on enumeration operators. What had happened 
was that Plotkin had not made enough tie-up with recursion theory, and the 
recursive people had nol seen 'he tie-up with A-calculus, even though they knew 
that one could do a lot with such operators. Actually, if the author had taken his 
own advice in 1971 (see Continuous lattices, Scott (1972a, end of § 2)), he would 
have seen that many spaces have their own continuous-function spaces as 
computable retracts, a fact which is just exactly the basis for the present construc­
tion; but instead he said: "it [the representation as a retract] does not seem to be of 
too much help in proving theorems." 

Over the years in work on A-calculus and programming language semantics. 
personal contact and correspondence with a large number of people has been very 
stimulating and helpful. I must mention particularly de Bakker. Barendregt, 
Bekic, Blikle, Bohm, Curry, Egli, Engeler, Ershov, Goodman, Hyland, Kreisel, 
Landin, Milne, Milner, Mosses, Nivat, Park, Plotkin, Reynolds, de Roever, 
Smyth, Stay, Tang, Tennent, Wadsworth. (I apologize to those 1 have inadver­
tently left out of this lis!.) In the reference list a very imperfect attempt has been 
made to collect references directly relevant to the topics of this paper as well as 
pointers to related areas that may be of inspiration for future work. The list of 
papers is undoubtedly incomplete, and inaccurate as well. but the author hopes it 
may be of some use for those seeking orientation. It is a very vexing problem to 
keep such references up to date. Some remarks toward references and acknow­
ledgments on the specific results in the various sections follow. Felipe Bracho 
deserves special thanks for help in the preparation of the final manuscript and with 
the reference lis!. 

=
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Section 1. The relevance of the "positive" or "weak" topology first came to 
the author's attention through the work of Nerode (1959). Continuous functionals 
were studied by Kleene and Platek and many other researchers in recursion 
theory. Monotonicity was particularly stressed by Platek (1964). The graphs and 
the definition of application are used in the same way by Plotkin (1972) and 
Rogers (1967, see p. 147). The fixed-point theorem is very well-known. See, e.g., 
Tarski (1955). The extension theorem was formulated by the author, but it is very 
similar to many results in point-set topology; it was used in a prominent way in 
Scott (1972a) to characterize continuous lattices. The embedding theorem is 
well-known; see, e.g., tech (1966). 

Section 2. The language LAMBDA is due to the author. Note in particular 
that Plotkin and Rogers do not define A-abstraction, even though they know of 
the existence of many combinators and could have defined abstraction if anyone 
had ever asked them. In particular, they understood about conversion in many 
instances. The reduction and combinator theorems are well known from com­
binatory logic and can be found in any reference. The first recursion theorem is 
basic to all of elementary recursion theory; what is new here is the adaptation of 
David Park's proof (Park (l970c), unpublished) to the present model to show that 
Curry's "paradoxical" combinator actually does the recursion. The definition of 
computability and the definability theorem tie up the present theory with the older 
theory of enumeration operators. 

Section 3. The idea of reduction to a few combinators is an old one in 
combinatory logic; the author only needed to find a small trick (formula (3.1» 
which would take care of the arithmetical combinators. The ideas for the Godel 
numbering and the proof of the second recursion theorem are standard, as is rhe 
proof of the incompleteness theorem. It only looks a little different since we 
combine arithmetic with the "type-free" combinators. The proof of the complete­
ness theorem for definability (Theorem 3.5) is taken directly from Myhill­
Shepherdson (1955). The author is indebted to Hyland for pointing this out. The 
subalgebra theorem is an easy reformulation of talk about enumeration degrees: 
for more information on such degrees consult Rogers (1967), Sasso (1975), and 
also Gutteridge (1971). The area is underdeveloped as compared to Turing 
degrees. Semigroups of combinators have been discussed by Church and Bohm. 

Section 4. The notion of a ferracr is common in topology, butthe idea of using 
them to define data types and of having a calculus of computable retracts is 
original with the author. Of course the connection between lattices and fixed 
points was known; more about lattices is to be found in Scott (1972a). The various 
operations on retracts and the idea of using fixed-point equations to define 
retracts recursively are due to the author. Applications to semantics were given in 
Scott (1971) for flow diagrams, and this has been followed up by many people. in 
particular Goguen, et al. (1975) and Reynolds (1974b). 

Section 5. Algebraic lattices have been known for a long time (see Gratzer 
(\968) and also closure operations (sec, e.g., Tarski (1930)). It was Per Martin­
LOf and Peter Hancock who suggested that they might form a "universe"; in 
particular the construction of V is essentially due to them. The limit theorem is 
due to the author. 

Section 6. More information on the classification by notions in descriptive set 
theory of various subsets can be found in the work of Tang who also makes 
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connections with the work of Wadge. The various normal forms for the classes of 
sets (e.g., Table 3) are due to the author. 

Section 7. Functionality has been studied for some time in combinatory logic 
(see, e.g., Hindley, et al. (1972) for an introduction). The author had the idea to 
see what it all means in the models; there are, of course, connections going back to 
Curry and Kleene, with functional interpretations of intuition is tic logic (cf. 
Theorem 7.3, which is well-known). The proof of Theorem 7.4 is due to Plotkin. 

Appendix A. After the main body of the paper was written, Y. L. Ershov 
solved	 the author's problem about the space of retracts. Ershov's proof is 
presented after the discussion of the proof of Theorem 4.1 in this Appendix. Quite 
independently Hosono and Sato (1975) found almost exactly the same proof. 
Before corresponding with Ershov, the author was totally unaware of the connec­
tions with and the importance of Ershov's extensive work in "numeration" theory 
(see citations in the reference list). 

Appendix B. All defects are due to the author. 
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