DATA TYPES
AS
LATTICES

by

Dana Scott :".

Oxford University Computing Laboratory

Programming Research Group

PRE &

MiRAR0RRRAND

3033969640

k
!

ey . e
T A W e e e

Technical Monograph PRG-5, September 1976

Ouxford University Computing Laboratory
Programming Research Group
45 Banbury Road, Oxford OX2 6PE

Reprinted from the SIAM Journal on Computing. Volume 5, 1976, pages 522-587. Copyright 1976 by Society for
Industrial and Applied Mathematics, Philadelphia. All rights reserved.

SIAM | ComPUT. 1y LA I
Vol 5. N 31, Seplember 1976 ’“”""rr-.'

DATA TYPES AS LATTICES ST

To the Memory of Christopher Sirachey, 1916-1975

DANA SCOTTH

Abstract. The mearing of many kinds of expressions 1n programming languages can be taken as
elements of certain spaces of “partial” objects. [n this report these spaces are modeled in one universal
domain Pw, the set of all subsets of the integers. This domain renders the connection of this semantic
theory with the ordinary theary of number theoretic (especially general recursive) funcuions clear and
straightforward.

Key words. programming language semantics, lattice, continuous lattice, algebraic lattice,
computability, retract, combinatory logic. lambda calculus, recursion theorem, enumeration degrecs,
continuous function, fixed-point theorem

Introduction. Investigations begun in 1969 with Christopher Strachey led to
the idea that the denotations of many kinds of expressions in programming
languages could be taken as elements of certazin kinds of spaces of **partial”
objects. As these spaces could be treated as function spaces, their structure at first
seemed excessively complicated—even impossible. But then the author disco-
vered that there were many more spaces than we had first imagined—-even
wanted. They could be presented as lattices (or as some prefer, semilattices), and
the main technique was to employ topological ideas, in particular the notion of a
continuous function. This approach and its applications have been presented in a
number of publications, but that part of the foundation concerned with computa-
bility (in the sense of recursion theory) was never before adequately exposed. The
purpose of the present paper is to provide such a foundation and to simplify the
whole presentation by a de-emphasis of abstract ideas. An Appendix and the
references provide a partial guide to the literature and an indication of connec-
tions with other work.

The main innovation in this report is to model everything within one
“universai” domain Pw = {x|x € w}. the dumain of all subsets of the set w of
nonnegative integers. The advantages are many: by the most elementary consid-
erations Pw is recognized to be a lattice and a topological space. In fact, Pw is a
continuous lattice, even an algebraic lattice, but in the beginning we do not even
need to define such an *“‘advanced” concept; we can save these ideas for an
analysis of what has been done here in a more direct way. Next by taking the set of
integers as the basis of the construction, the connection with the ordinary theory
of number-theoretic {especially, general recursive) functions can be made clear
and straightforward.

The model Pw can be intuitively viewed as the domain of muliple-valued
integers; what is new in the presentation is that functions are not only multiple-
valued but also “multiple-argumented”. This remark is given a precise sense in § 2
below, but the upshot of the tdea is that multiple-valued integers are regarded as

* Received by the editors May 23, 1975, and in revised form March 17, 1976,
Tt Mathemaues Depariment. Oxford University, Oxford, Engtand OX2 6PE.

522

DATA TYPES AS LATTICES 523

objects in themselves—possibly infinite—and as something more than just the
coliection of single integers contained in them. This combination of the finite with
the infinite into a single domain, 1ogether with the idea that a continuous function
can be reduced to its graph (in the end, a set of integers). makes it possible to view
an x € Pw at one time as a value, at another as an argument, then as an integer,
then as a function, and stil] later as a functional {or combinator), The “*paradox’ of
self-application (as in x{x)) i1s solved by allowing the same x to be used in two
differeni ways. This is done in ordinary recursion theorv via Godel numbers {as in
{e}(e)}, but the advantage of the present theory is that not only is the iunction
concept the extensional one, but itincludes arbitrary continuous functions and not
just the computable ones.

Section 1 introduces the elementary ideas on the topology of Pw and the
continuous functions including the fixed-point theorem. Section 2 has to do with
computability and definability. The language LAMBDA 15 introduced as an
extension of the pure A-calculus by four arithmetical combinators; in fact, it is
indicated in § 3 how the whole system could be based on one combinator. What is
shown is that computability in Pe according to the natural definition (which
assumes that we already kaow what a recursively enumerable set of integers is) is
equivalent to LAMBD A-definability, The main tool is, not surprisingly, the first
recursion theorem formulated with the aid of the so-called paradoxical com-
binator Y. The planis hardly original, but the point is to work out what 1t all means
in the model.

Along the way we have to show how to give every A -term a denotation in Pw;
the resulting principles of A-calculus that are thereby verified are summarized in
Table 1. Of these the first three, (a), (8), and (£), arc indeed valid in the model;
however, rule (n), which is a stronger version of extensionality, fails in the Pw
modecl. This should not be regarded as 2 disadvantage since the import of (1) is to
suppose every object is a function. A quick construction of these special models is
indicated at the end of § 5. Since Pw is partially ordered by <. there are also laws
involving this relation. Law (£*) is an improvement of (£); while (g} is a {orm of
monotonicity for application.

TasLr L

Some laws of A-calcidis

{ex) Avt=Aavt(v/]

(3 (Ax.7)y) = 7[v/x]

&) Axs=Axeg ff ¥Yys-=o

() y=Ary(x)

(F Axs<Avr b YorzZao ‘

cand we vomply wlxs Sely)

524 DANA SCOTT

Section 3 has to do with enumeration and degrees. Gédel numbers for
LAMBDA are defined in a very easy way which takes advantage of the notation of
combinators. This leads to the second recursion theorem, and results on incom-
pleteness and undecidability follow along standard lines. Relative recursiveness is
also very easy to define in the system, and we make the tie-in with enumeration
degrees which correspond to finitely generated combinatory subalgebras of Pew.
Finally a theorem of Myhill and Shepherdson is interpreted as a most satisfactory
completeness property for definability in the system.

Sections 4 and 5 show how a calculus of retracts leads to quite simple
definitions of a host of useful domains (as lattices). Section 6 investigates the
classification of other subsets {nonfattices) of Pw; while § 7 contrasts partial
{multiple-valued) functions with total functions, and interprets various thecries of
functionality. Connections with category theory are mentioned.

What is demonstrated in this work is how the language LAMBDA, together
with its interpretation in Pew, is an extremely convenient vehicle for definitions of
computable functions on complex structures (all taken as subdomains of Pw). Itis
a "high-level” programming language for recursion theory. It is applied com-
binatory logic, which in usefulness goes far beyond anything envisioned in the
standard literature. What has been shown is how many interesting predicates can
be expressed as equations between continuous functions. What is needed nextisa
development of the proof theory of the system along the lines of the work of
Milner, which incorporates the author’s extension of McCarthy’s rule of recursion
induction to this high-level language. Then we will have a flexible and practical
“mathematical” theory of computation.

1. Continuous functions. The domain Pw of all subsets of the set w of
nonnegative integers is a complete latlice under the partial aordering < of set
inclusion, as is well known. We use the usual symbols U, N, |_J,[Jfor the finite and
infintte lattice operations of union and intersection. Pw is of course also a Boolean
algebra; and for complements we write

~x ={n|ngx}

where it is understood that such variables as i, j, k, I. m, n range over integers in w,
while u, v, w, x, y, z range over subsefs of w.

The domain Pw can also be made into a tepological space—in many ways. A
common method is to match each x = w with the corresponding characteristic
function in {0, 1}*, and to take the induced product topology. In this way Pw isa
totally disconnected compact Hausdorff space homeomorphic to the Cantor
“middle-third” set. This is not the topology we want; it is a positive-and-negative
topology which makes the function ~x continuous. We want a weaker topology:
the topology of positive “'information”, which has the advantage that all continu-
ous functions possess fixed points. (The equation x = ~x is impossible.) The
topology that we do want is exactly that appropriate to considering Pw to be a
continuous lattice. But all this terminology of abstract mathematics 15 quite
unnecessary, since the required defimtions can be given in very elementary terms.

L
(2]
Ln

DATA TYPES AS LATTICES

To make the topology “visible™, we introduce a standard enumeration
{eq|n € w} of all finite subsets of w. Specificaily we set

&n :{k[h kls . km' 1}3

provided that kg<<k;<:--<k,_, and n=Y,. 2% Thus n is the code number
for e,, and the elements of ¢, are the exponents in the binary expansion of the
integer n. This is a one-to-one enumeration of finite subsets, where k € ¢, always
implies k < n, the function max {e,) is {primitive) recursive in n, and the relations
kee, e.Ze,, €. =€, Ue; are all {primitive) recursive in k, m, n.

Topologically speaking the finite sets ¢, are dense in the space Pw, for each
x € Pw is the "limit” of its finite subsets in the sense that

x=Ufe,le, < xi.

To make this precise we need a rigorous definition of open subset of Paw.
DEFINITION. A basis for the neighborhoods of Pw consists of those sets of the
form:

{xePwle, c x},

for a given e,. An arbitrary open subser is then a union of basic neighborhoods.
It is easy to prove that an open subset U< Pw is just a set of ““finite
character”; that is, a set such that for all x € Pw we have x € U'tf and only if some
finite subset of x also belongs 10 U. An alternate approach would define directly
what we mean by a continuous function using the idea that such functions must

preserve limits.
DErFnvITION, A function [: Pw — Pw is continuous iff for all x € Pw we have:

Foy={{fle)]e, = x}.

Again tt Is an easy exercise to prove that a function is continuous in the sense
of this definition iff it is continuous in the usual topological sense {namely: inverse
tmages of open sets are open). For giving proofs it is even more convenient to have
the usual £-6 formulation of continuity.

TueoreM 1.1 {The characterization theorem). A function [:Pw—Pw is
continuous iff for all x e Pw and all €, we have:

enSf(x) iff Te, Cxe,<fle).

Note that open sets and continuous functions have g monolonicity property:
whenever x C y and x € U, then yec U; and
whenever x C v, then f(x)< f(y).
This gives a precise expression to the “positive” character of our topology.
However, note too that openness and continuity mean rather more than just
moenotonicity. [n particular. a continuous function 1s completely determined by
the pairs of integers such that i € f(e,), as can be seen from the definition. {Hence,
there are only a continuum number of continuous functions. but more than a
continuum number of monotonic functions.) This brings us to the definition of the
graph of 2 continuous function.

526 DANA SCOTT

To formulate the definition, we introduce a standard enumeration (n. m) of
all pairs of integers. Specificaily we set

(n, n) :%(n +min+m+1)+mn.

This is the enumeration along the “little diagonals™ going from left to right, and it
produces the ordering:

(0,0), (1, 0. (0, 1).(2,0), (1, 1), (0,2),(3,0), (2, 1), -+ .

Note that n Z(n. m) and m = (n, m) with equality possible only in the cases of
(0, 0) and (1, 0). This is a one-to-one enumeration, and the inverse functions are
{primttive) recursive—but we do not require at the present any notation for them.

DeriniTion. The graph of a continuous function f: Pw — P is defined by the
equation:

graph(f) ={(n, m}lmefle,)}:
while the function determined by any set u < w is defined by the equation:
fun(u)(x)={miTe, < x.(n, m)c u}.

THEOREM 1.2 (The graph theorem). Every continuous function is uniquely
determined by its graph in the sense that:

() fun (graph(/}} = /.
Conversely, every set of integers determines a continuous function and we have:
(i1) u < graphifun(u)),
where equality holds just in case u satisfies:
{iit) whenever (k, m)e uande, = e,. then (n, m)e u,

Besides functions of one variable we need to consider also functions of
several variables. The official definition for vne variable given above can bz
extended simply by saying f(x, y, - -) is continuous if it is continuous In each of
x, ¥, - - - . Those familiar with the product topology can prove that for our special
positive topolegy on Pw this is equivalent to being continuous on the product
space (continuous in the variables jointly). Those interested only in elementary
proofs can calculate out directly from the definition (with the aid of 1.1)
that continuity behaves under combinations by substitution [as in:
flglx, v}, hiy. x, v)}.

TieoreM 1.3 (The substitution theorem}. Continuous functions of several
variables on Pw are closed under substitution.

The other general fact about continuous functions that we shall use con-
stantly concerns fixed points, whose existence can be proved using a well-known
method.

TuroreM 1.4 {The fixed-point theorem). Every continuous function f: Pw —
Pw has a least fixed point given by the formula.

fix(f) ={_Kf"(&)|n € w},

where o9 is the empiy set and [is the n-fold composition of f wuh isself,

IDATA TYPES AS LATTICES 527

Actually fix is a functional with continuity properties of its own. We shall not
give the required definitions here because they can be more easily derived from
the construction of the model given in the next section.

For those familiar with the abstract theory of topological spaces we give in
conclusion two general facts about continuous functions with values in Pw which
indicate the scope and generality of our method.

THEOREM 1.5 (The extension theorem). Let X and Y be arbitrary topological
spaces where X € Y as a subspace. Then every continuous function f: X » Pw can
be extended to a continuous funciion f: Y »Pw defined by the equation:

fly) =Y flx)ix e XN Uljy e U,

where y € Y, and U ranges over the open subsets of Y.

THeoREM 1.6 (The embedding theorem). Every Ty-space X with a countable
basis {U,|n € w} for its topology can be embedded in Pw by the continuous function
£ X > Pw defined by the equation:

e(x) :{n]x e}

Technically the T,-hypothesis is what is needed to show that & is one-to-one.
The upshot of these two theorems is that in looking for (reasonable) topological
structures we can confine attention to the subspaces of Pw and to continuous
functions defined on afl of Paw. Thus the emphasis on a single space is justified
structurally. What we shall see in the remainder of this work is that the use of a
single space is also justified practically because the required subspaces and
functions can be defined in very simple ways by a natural method of equations.

In order to make the plan of the work clearer, the proofs of the theorems have
been placed in an Appendix when they are more than simple exercises.

2. Computability and definability. The purpose of the first section was 1o
introduce in a simple-minded way the basic netions about the topology of Pw and
its continuous functions. In this section we wish to present the details of a powerful
language for defining particular functions—especially computable functions—
and initiate the study of the use of these functions. This study is then extended in
different ways in the following sections.

Before looking at the language, a short discussion of the ““meaning” of the
elements x € Pw will be helpful from the point of view of motivation, Now in itself
x € Pw is a set, but this does not reveal its meaning. Actually x has no “fixed”
meaning, because it can be used in strikingly different ways; we look for meaning
here solely in terms of use. Nevertheless it is possible to give some coherent
guidelines.

In the first place it is convenient to let the singleton subsets {n} € Pw stand for
the corresponding integers. In fact, we shall enforce by convention the equation
n = {n} as a way of simplifying notation. In this way, w = Pw as a subset, (Note that
our convention conflicts with such set-theoretical equations as 5={0, 1, 2, 3, 4},
What we have done is 10 abandon the usual set-theoretical conventions in favor of
a slight redefinition of set of integers which produces a more heipful convention for
present purposes.) So, if we choose, a singleton “means” asingle integer. The next

528 DANA SCOTT

question is what a “large” set x € Pw could mean. Here is an answer: if we write:
x=1{0,5,17}=0U5U17,

we are thinking of x as a muliiple integer. This is especially useful in the case of
multiple-valued tunction where we can write:

fla)y=0Us5U17.

Then “m € f(a)” can be interpreted as *“m is one value of f at a.”” Now a € Pw, t00,
and so it is a multiple integer also. This brings us to an important point.

A multiple integer is (often) more than just the (random) collection of its
elements. From the definition of continuity, m € f(a) is equivalent to m < f(e,)
with e, < a. We may not be able to reduce this to m € f({n}) with n € @ without
additional assumptions on f. Indeed we shall take advantage of the feature of
continuous functions whereby the elements of an argument a can join in coopera-
tion in determining f(a). Needless to say, continuity implies that the cooperation
cannot extend beyond finite configurations, and so we can say that a is the union
{or limit) of its finite subsets. However, finitary cooperation will be found to be
quite a powerful notion.

Where does this interpretation leave the empty set J?7 When we write
“f{a) =" we can read this as “*f has no value at a”’, or ““f is undefined at a”. In
this case f(a) exists (as a set}, but it is not “‘defined’” as an integer. Single- {(or
singleton) valued functions are “well-defined”, but multiple-valued functions are
rather “‘over-defined”.

How does this interpretation fit in with monotonicity? In case a < b and
me f(a), then we must have m € f(b). We canread “a < b™ as “b is an improve-
ment of a” is better-defined than a”. The point of monotonicity is that the better
we define an argument, the better we define a value. “Better” does not imply
“well” (that is, singleton-valuedness), and overdefinedness may well creep in.
This is not the fault of the function; it is our fault for not choosing a different
function.

As a suvhspace o < Pw is discrete. This implies that arbitrary functions
piw-»w are continuous. Note that p:w->Pw as well, because w € Pw. By
Theorem 1.5 we can cxtend p continuously to §:Pw - Pw. The formula given
produces this function:

Mptninew} if x=;
(2.1) plx)=19 pin) ifx=ncw;
@ otherwise.

This is a rather abrupt extension of p (the maximal extension); a more gradual,
continuous extension {the minimal extension) is determined by this equation:

(2.2) plx)=U{p(n)nex}.

The same formulae work for alf multiple-valued functions p : @ -+ Pw. Functions
like f = p are exactly characterized as being those continuous functions f: Pew >
Pw which in addition are disiributive in the sense of these equations:

fxUy)=fx)Uf(y} and f(2)=02.

DATA TYPES AS LATTICES 529

The sets & and w play special roles. When we consider them as elements of
Pw we shall employ the notation:

1= and T=w.

The element | is the most “undefined” integer, and 7" is the most “overdefined™.
All others are in between.

One last general point on meaning: suppose x € Pw and ke x. Then k =
{n, m) for suitable (uniquely determined) integers n and m. That is to say, every
element of x can be regarded as an ordered pair; thus, x can be used as a relation.
Such an operation as

{2.3) x;y={(n, D|Am.(n, mye x, (m, He y}

is then a continuous function of two variables that treats both x and y as relations.
On the other hand we could define a quite different continuous function such as

(2.4) x+y={n+mlnex, mey)

which treats both x and y arithmetically. The only reason we shall probably never
write (x +y); x again is that the values of this perfectly well-defined continuous
function are, for the most part, quite uninteresting. There is, however, no
theoretical reason why we cannot use the same set with several different “mean-
ings" in the same formula. Of course if we do so, it is to be expected that we will
show the point of doing this in the special ease. We turn now to the definition of the
general language for defining all such functions.

The syntax and semantics of the language LAMBDA are set out in Table 2.
The syntax is indicated on the left, and the meanings of the combinations are
shown on the right as subsets of Pw. This 1s the basiclanguage and could have been
given (less understandably) in terms of combinators (see Theorem 2.4). 1t is,
however, a very primitive language, and we shall require many definitions before
we can see why such functions as in (2.3) and (2.4) are themselves definable.

TAaBLE 2
The language L AMBDA

0={mn
x+l={n+lnex}
x=1={nln+1cx}
ony=ncaflefU{mey @Ak k +1ez)

u(x)={mlIe, = x.(n, mie u}

Axy o e m)lm el x])

530 DANA SCOTT

The definition has been left somewhat informal in hopes that it will be more
understandable. In the above, 7 is any term of the language. LAMBDA is
type-free and allows any combination to be made by substitution into the given
functions. There is one primitive constant (0); therc are two unary functions
(x+1,x—1); there is one binary function {(u(x)) and one ternary function
(z>x,y); finally there is one variable binding operator (Ax.7). The first three
equations have obvious sense. 1n the fourth, z 2 x, y is McCarthy’s conditional
expression (a test for zero). Next u(x) defines application (u is treated as a graph
and x as a set), and Ax.7 is functional abstraction (compare the definition of fum). In
defining Ax.7, we use 7le,/x] as a shorthand for evaluating the term = when the
variable x is given the value e,.

Note that the functions are all multiple-valued. Thus we have such aresult as:

(2.5) GULO)+1=7U11.
The partial character of subtraction has expression as:
(2.6) 0-1=1.

We shall see how to define + and — in LAMBDA later. The conditional could also
have been defined by cases:

1 ifz=_1;

X if z=0;
2.7 Dy, y= , ’
@7 oY gz =1,

xUy if0ecz#0.

We say that a LAMBDA-term 7 defines a function of its free variables (at least).
Other results depend on this fundamental proposition:

THeOREM 2.1 (The continuity theorem). All LAMBDA definable functions
are continuous.

Once that is proved. we can u-e Theorem 1.2 to establish:

THeOREM 2.2 (The conversion theorem). The three basic principles («), (),
(£) of A-conversion are ail valid in the model. '

By “model” here we of course understand the interpretation of the language
where the semantics gives terms denotations in Pw according to the stated
definition. Through this interpretation, more properly speaking, Pw becomes a
model for the axioms (), (8, (£). Two well-known results of the calculus of
A -conversion allow the reduction of functions of several variables to those of one,
and the reduction of all the primitives to combinators (constants)—all this with the
aid of the binary operation of application.

Tueorem 2.3 (The reduction theorem). Any continuous function of k-
variables can be written as

Slxg, xp- xe) =wly) - (X o),

where u is a suitably chosen element of Pw.
ThroreM 2.4 (The combinator thearem). The LAMBDA -definable func-

DATA TYPES AS LATTICES 531

tions can be generated { from variables) by iterated application with the aid of these
Six constants:

0=0
suc=Ax.x+1
pred=Ax.x—1

cond=AxAyAz.z ox,y
K=AxAy.x
S = AuAvAx.u(x}o(x))

But the result that makes ail this model building and combinatory logic
mathematically interesting concerns the so-called paradoxical combinator
defined by the equation:

(2.8) Y= Aww(Axu{x(x)D(Ax.u{x{(x)).

THEOREM 2.5 (The first recursion theorem). If u is the graph of a continuous
function f, then Y{u)=x(f}, the least fixed point of f.

There are two points to note here: the fixed point is LAMBDA-definable if f
15; and Y defines a confinuous operator. The word “recursion™ is attached to the
thecrem because fixed points are employed to solve recursion equations. 1t would
not be correct to cail the fixed-point theorem (Theorem 1.4) the recursion
theorem since it only shows that fixed points exist and not how they are definable
in a language. The second recursion theorem (in Kleene's terminology) is related,
but it involves Godel numbers as introduced in § 3.

From this point on we sce no need to distinguish continuous functions from
elements of Pw; a continuous function will be identified with its graph. Note that u
1s a graph iff u = Ax.u(x), which is equivalent to Theorcm 1.2 (1ii}. For this reason
(functions are graphs) we propose the name Graph Model for this model of the
h-calculus. (There is more to LAMBDA than just A, however.)

The identification of functions with graphs entails that the function space of
all continuous functions from Pw into Pew is 1o be identified (one-to-one) with the
subspace

FUN = {u}u = Ax.u{x)} < Pw.

The identification is topological in that the subspace topology agree with the
product topology on the function space. This is the topology of poimtwise
converpence and is closely connected with the {attice structure on the function
space which is also defined pointwise (that is, argumentwise}. In the notation of
A-abstraction we can express this as the extension of the axiom of extensionality
called (£*}in Table 1 of the Introduction. The laws in Table | are not the onty ones
valid in the model, however. We may also note such argumentwise distribution

532 DANA SCOTT

laws as:

(2.9) (fUg)x) = flx)U glx);

(2.10) Axt)UAxo)=Ax(rUo):

(2.11) (fOg)x) = flx}Nglx);

(2.12) (AN (Ax.o)=Ax(tNa).

In the above f and g must be graphs. It is also true that if % = Pw, then
(2.13) Uiffe FHx) =ULf(x)| fe &,

but the same does not hold for [7].
We state now a sequence of minor results which show why some simple
functions and constants are LAMBDA-definable.

(2.14) 1= x(x)NAx.x(x));
(2.15) xUy=(Az.0)>x y; (Hint: 0, 1€ A2.0)
(2.16) T=YAx0U(x+1));

(2.17) xNy=YAfAxAy.x 2> (y 20, 1), flx—D(y— 1)+ L)(x)y).

The elements 1 and T are graphs, by the way, and we can characterize them as the
only fixed points of the combinator K;

(2.18) a=Aixa 1f a=1 or a=T,
Next we use the notation {xg, x;, - - -, x,-,) for the function where p:w = Pw is
defined by:
o= ien
(2.19) 0=1
(2.20) {x)=Az.z>x, 1
221 (x,y)=Azzox (z— 12y, 1)
(2.22) {Xg, X1 ", X) =AZ.Z2 2%, (X1, - L x (2= 1),

Obviously we should formalize the subscript notation so that «, = u(x}; then we
find:
x, ifi<n,

(2.23) R T

This gives us the method of LAMBDA-defining finite sequences (in a quite
natural way), and the next step is to consider infinite sequences. But these are just
the functions p where p; w — Pw is arbitrary. What we nced then is a condition
expressible in the language equivalent to saving « ® i for some p. This is the same
as

u= Ax| Hu|i € x}.

DATA TYPES AS LATTICES ‘ 533

but the |_J- and set-notation is not part of LAMBDA. We are forced into a
recursive definition:

(2.24) $ = Y(AsAuAz.z Duy, s(Atu)z —1)).
This equation generalizes (2.22} and we have:
(2.2%) $ ()= x| Hure x}.

Thus the combinator § “revalues” an element as a distributive function. This
suggests introducing the A-notation for such functions by the equation:

(2.26) Ancw.r=8(Az.1z/n]}.

With all these conventions LAMBD A -notation becomes very much like ordinary
mathematical notation without too much strain,

Suppose that f is any continuous function and a € Pw. We can define
p @~ Pw in the ordinary way by primitive recursion where:

p(0)=a;
pin+1)=f(n}p(n)).

The question is: can we give a LAMBDA-definition for g (in terms of f and a as
constants, say)? The answer is clear, for we can prove:

{(2.27) p=YAukncw.n>a, fin— 1{uln—-1))).

This already shows that a large part of the definitions of recursion theory can be
given in this special language. Of course, simultaneous (primitive) recursions can
be transcribed into LAMBDA with the aid of the ordered tuples of (2,22}, (2.23)
above. But we can go further and connect with partial (and general) recursive
functions. We state first a definition.

DEerNITION. A continuous function f of k-variables is computable iff the
relationship

me fle Ne,) - {ea,)

is recursively enumerable (r.e.) in the integer variables m, ng, 1y, - -, By 1.

1f g is a partial recursive function in the usual sense, then we canregarditasa
mapping ¢ w > J{L}, where g(n}=_1 means that g is undefined at n. Saying
that q is partial recursive is just to say that m € g{n} is r.e. as a relation in n and m.
It is easy to see that this is in turn equivalent to the recursive enumerability of the
relationship m € 4(e,): and so our definition is formally a generalization of the
usual one. But it is also intuitively reasonable. To “‘compute” y = f(x}, in the
one-variable case, we proceed by enumeration. First we begin the enumeration of
all finite subsets e, < x. For each of these f starts up an enumeration of the set
fle,); so we sit back and observe which m ¢ f(e,) by enumeration. The totality of
all such for all e, = x forms in the end the set y.)

THeorem 2.6 (The definability theorem). For a k-ary continuous function f,
the following are equivalent:

(i} fis computable
(11} AxgAx, - Axp g flxadx)) - - - {x (Y asasetisre,
(i} AxgAx, - - Axe flxgdx)) - (x\) is LAMBDA -definable.

534 DANA SCOTT

As a hint for the proof we may note that the method of (2.27) shows that all
primitive recursive functions p have the corresponding p LAMBDA-definable.
Next we remark that a nonempty r.e. set is the range of a primitive recursive
function; but the range of pis p(T). which is clearly LAMBDA-definable. That
any LAMBDA-defirable set (graph} is r.e. is obvious from the definition of the
language itself. More details are given in the Appendix,

We may draw some interesting conclusions from the definability theorem. In
the first place, we see that the countable collection RE £ Pw of r.e. sets is closed
under application and LAMBDA -definability. Indeed it forms a model for the
A-calculus (axioms (), (8), (£*%) at least} and it also contains the arithmetical
combinators. (Clearly there will be many intermediate submodels.} In the second
place, we can see now how very easy it is to interpret A-calculus in ordinary
arithmetical recursion theory by means of quite elementary operations on r.e.
sets. Thus the equivalence of A -definability with partiai recursiveness seems not to
be all that good a piece of evidence for Church’s Thesis. In his 1936 paper (a
footnate on p. 346) Church says about A-definability:

The fact, however, that two such widely dificrent and (in the opinion of the author) equally
natural definitions of eflective calculability turn out 10 be equivalent adds Lo the strength of the
reasons adduced below for believing thai they constitutc as gcneral a characterization of this
notion as Is consistent with the usual intuitive understanding of it.

The point never struck the present author as an especially telling one, and the
reduction of A-calculus to r.e. theory shows that the divergence between the
theories is not ar all wide. Of course it is a pleasant surprise to see how many
complicated things can be defined in pure A-caiculus (without arithmetical com-
binators), but this fact cuts the wrong way as evidence for the thesis (we want
stronger theories, not weaker ones). Post systems (or even first-order theories) are
much better to mention in this connection, since they are obviously more inclusive
in giving enumerations than Turing machines or Herbrand-Godel recursion
equations. But the equivalence proofs are ail so easy! What one would like tosee is
4 “natural” definition where the equivalence with r.e. is not just a mechanical
exercise involving a few tricks of coding,

In the course of the development in this section we have stated many
equations which are not found in Table 1, and which involve new combinators. In
conclusion we would like to mention an equation about Y which holds in the
model, which can be stated in pure A-calcuius, and which cannot be proved by
ordinary reduction (though we shall not try to justify this last statement here). In
order to shorten the calculatiofs, we note from definition (2.8) that Y{u)=
Y(Ay.u(y)); so by Theorem 2.5 this also equals u{Y(u)).

(2.2R) Y(AfAx.glx)(f(x)) = Ax. Y (g{x)).
Call the leit side f" and the right f". Now
F=Axg(x)Y{glx)=Ax.gx)}f(x)).

thus f' < f", because [is a least fixed point. On the other hand f’ = Ax.g(x){f'{x}).
50 f'{x}=g(x){ f{x)). Thus f"{x) < f'{x), because f"(x}is a least fixed point. As this
holds forall x, we see that /"< f'; and so they are equal. There must be many other
such equations.

DATA TYPES AS LATTICES 535

3. Enumeration and degrees. A great advantage of the combinators from the
formal point of view is that {bound) variables are eliminated in favor of
“algebraic” combinations. The disadvantage is that the algebra is not all that
pretty, as the combinations tend to get rather long and general laws are rather few.
Nevertheless as a technical device it is mildly remarkable that we can have a
notation for all r.e. sets requiring so few primitives. In the model defined here the
reduction to one combinator rests on a lemma about conditionals:

(3.1} cond(x)(y)(econd(x)(y)) = y.

Recail that cond (or =) is a test for zero, so that:

{3.2) cond(x)(y)(0) = x.

This suggests that we lump all combinators of Theorem 2.4 into this one:
(3.3) G = cond({5uc, pred, cond, K, S})(0).

We can then readily prove:

THrOREM 3.1 (The generator theorem). All LAMBDA -definable elements
can be obtained from G by iterated application.

A distributive function f is said to be rotal iff f(n) € w for all n € w. As they
come from obvious primitive recursive functions, we do not stop to write out
LAMBDA-definitions of these three total functions:

(3.4) apply=Ancowimew(n m)+1
(3.5 opl(n,m))=n
(3.6) arg({n, m)) =m.

The point of these auxiliary combinators conrerns our Gédel numbering of the
r.e. sets. The number 0 will correspond to the generator G: while {n, m)+1 will
correspond to the application of the nth set to the mth. This is formalized in the
combinator val which is defined as the least fixed point of the equation:

(3.7 val = Ak € w.k > G, val(op(k — 1)){val(arg(k — 1))).

This function accomplishes the enumeration as follows:

TreorEM 3.2 (The enumeration theorem). The combinaror val enumerates
the LAMBDA -definable elements in that RE = {val(n)|n € w}. Further:

(i) val(0) =G,

(ii) valapply(n)(m))=val(n)(val{m)).

As a principal application of the Enumeration Theorem we may mention the
following: suppose u is given as LAMBDA -definable. We look at its definition
and rewrite it in terms of combinators—eventually in terms of G alone. Then
using 0 and apply we write down the name of an integer corresponding ta the
combination--say, n. By Theorem 3.2 we see that we have effectively found from

536 DANA SCOTT

the definition an integer such that val n = u. This remark can be strengthened by
some numerology.

3.8 apply(0)(0)=1 and wval(l)=0;
3.9 apply(0)(1)=3 and val(3)=(sue, -);
(3.10) apply(3)(1)=12 and wval(12)=suc.

Thus, define as the least fixed point:

(3.11) num = An € w.n 2 1, apply(12){num{n — 1)),
and derive the equation for all n e w:

(3.12) val(num(n)) = n.

We note that num is a primitive recursive (total) function. The combinator num
allows us now to effectively find a LAMBDA -definition, corresponding to a given
LAMBDA-definable element u, of an element v such that uniformly in the
integer variable n we have val(v(n)) = u(n). Further, v is a primitive recursive
(total) function. This is the technique involved in the proof of Kleene's well-
known result:

THeoREM 3.3 (The second recursion theorem). Take a LAMBDA -definable
element v such that:

(i) val(v(n)} = Am € w.val(n)Yapply(m)(num(m))},
and then define a combinator by:
(ii) rec = An € w.apply(v(n))(num{v(n))).
Then we have a primitive recursive function with this fixed - point property .
(111) val(rec(n)) = val(n)ree(n)).

Note that if u is LAMBDA-definable, then we find first an n such that
val{n) = u. Next we calculate k =ree(n). This effectively gives us an integer such
that val(k)= u(k). Godel numbers represent expressions {(combinations in G},
and val maps the numbers to the values denoted by the expressions in the model.
The k just found thus represents an expression whose value is defined in terms of
its own Godel number. In recursion theory there are many applications of this
result. Another familiar argument shows:

THEOREM 3.4 (The incompleteness theorem). The set of integers n such that
val(n)= L1 is not r.e.; hence, there can be no effectively given formal system for
enumerating all true equations between LAMBIDA -terms.

(A critic may sense here an application of Church’s thesis in stating the
metatheoretic consequence of the nonresult.) A few details of the proof can be
given to see how the notation works. First let ¢ be a (total) primitive recursive
function such that:

val(v(n))=nNval(n).
and note that:

nOval(n)=1 iff ne&val(n).

DATA TYPES AS LATTICES 537

Call the setin question in Theorem 3.4 the set 6. If it were r.e., then so would be:
{newlv(n)ebl={(Ancwon)Nbon nkT).
That would mean having an integer k such that:
val(k)={new|vin)e b}
But then:
keval(k) iff o(k)ebh
iff val(v(k))=1
ift k«val(k),

which gives us a contradiction. This is the usual diagonal argument.

The relationship val(n)=val(m) means that the expressions with Godel
numbers n and m have the same value in the model. (This is not only not r.e. but is
a complete {I5-predicate.) A total mapping can be regarded as a syniactical
transformation on expressions defined via Gddel numbers. Such a mapping p is
called extensional if it has the property:

val(p(n)y=val{p(m)} whenever val(n)=val{m).

The Myhill-Shepherdson theorem shows that extensional, syntactical mappings
really depend on the values of the expressions. Precisely we have:

THEOREM 3.5 (The completeness theorem for definability). If a (iotaf)
extensional mapping p is LAMBDA-definable, then there is a LAMBDA-
definable « such that val(p(n)) = q(val{r)) for all n € w.

Of course g is uniquely determined (because the vaiues of g are given at least
on the finite sets). Thus any attempt to define something new by means of some
strange mapping on Godel numbers is bound to fail as long as it is effective and
extensional. The main part of the argument is concentrated on showing these
mappings to be continuous: that is why ¢ exists.

The preceding results indicate that the expected results on r.e. sets are
forthcotning in a smooth and unified manner in this setting, Some knowledge of
r.e. theory was presupposed, but analysis shows that the knowledge required is
slight. The notion of primitive recursive functions should certainly be well
understood together with standard examples. Partial functions need not be
introduced separately since they are naturally incorporated into LAMBDA (the
theory of multiple-valued functions). As a working definition of r.e. one can take
either “empty or the range of a primitive recursive function” or, more uniformly,
“a set of the form {m|In.m+1=p(n)} where p is primitive recursive”’. A few
obvious closure properties of r.e. sets should then be proved, and then an
adequate foundation for the discussion of LAMBDA will have been provided.
The point of introducing LAMBDA is that further closure properties are more
easily expressed in 4 theory where equations can be variously interpreted as
involving numbers, functionals, etc., without becoming 100 heavily involved in
itricate Gddel numbering and encodings. Another useful feature of the present
theory concerns the ease with which we can introduce relative recursiveness.

538 DANA SCOTT

As we have seen, {val(n)|n € w}is an enumeration of all r.e. sets. Suppose we
add a new set a as a new constanf. What are the sets enumerable in a? Answer:
{val(n)(a)|n € w}, since in combinatory logic a parameter can always be factored
out as an extra argument. Another way to put the point is this: for b to be
enumeration reducible to a it is necessary and sufficient that b = u({a) where
u € RE. This is word for word the definition given by Rogers (1967, pp. 146-147),
What we have done is to put the theory of enumeration operators (Friedberg-
Rogers and Myhill-Shepherdson) into a general setting in which the language
LAMBDA not only provides definitions but also the basis of a calculus for
demonstrating properties of the operators defined. The algebraic style of this
language throws a little light on the notion of enumeration degree. In the first
place we can identify the degree of an element with the set of all objects reducible
to 1t (rather than just those equivalent to it) and write

Deg(a) = {u(a)|u < RE}.

The set-theoretical inclusion is then the same as the partial ordering of degrees.
What kind of a partially ordered set do we have?

THeorem 3.6 (The subalgebra theorem). The enumeration degrees are
exactly the finitely generated combinatory subalgebras of Pw.

By “‘subalgebras™ here we of course mean subsets containing & and closed
under application {(hence, they contain all of RE, the least subalgebra). Part of the
assertion is that every finitely generated subalgebra has a single generator (under
application). This fact is an easy extension of Theorem 3.1. Not very much seems
to be known about enumeration degrees. Joins can obviously be formed using the
pairing function {x, v} on sets. Each degree is a countable set; hence, it is trivial to
obtain the existence of a sequence of degrees whose infinite join is not a degree
(not finitely generated). The intersection of subalgebras is a subalgebra—but it
may not be a degree even starting with degrees. There are no minimal degrees
above RE, but there are minimal pairs of degrees. Also for a given degree there
are only countably many degrees minimal over it; but the question of whether the
partial ordering of enumeration degrees ts dense seems still to be open,

Theorem 3.6 shows that the semilattice of enumeration degrees is naturally
extendable to a complete lattice (the lattice of all subalgebras of Pw), but whether
there is anything interesting to say about this complete lattice from the point of
view of structure is not at all clear. Rogers has shown (1967, pp. 151-153) that
Turing degrees can be defined in terms of enumeration degrees by restricting to
special elements. In our style of notation we would define the space:

TOT = {u|lu=$%$(u) and Yn c w.u(n) € w},

the space of all graphs of total functions. Then the system {Deg(u)|u € TOT} is
isomorphic to the system of Turing degrees. Now there are many other interesting
subsets of Pw. Whether the degree structurc of these various subsets is worth
investigation is a question whose answer awaits some new ideas.

Among the subsets of Pe with natural mathematical structure, we of course
have FUN, which is a semigroup under e = Auavax.u{v{x)). It is, however, arather

Ln
L
o

DATA TYPES AS LATTICES

complicated semigroup. We introduce for its study three new combinators:
(3.13) R =Ax(0, x);

(3.14) L =Ax.x (xs5);

(3.15) = Axxo> (1, u,x), u(x)(x).

THEOREM 3.7 (The semigroup theorem). The countable semigroup
RENFUN of computable enumeration operators is finitely generated by
R,Land G.

The proof rests on the verification of two equations which permit an
application of Theorem 3.1:

(3.16} LedeR =Ax.u(x)
{3.17) HoteR=ulp}).

Certainly the word problem for REMNFUN is unsolvable, indeed, not even
recursively enumerable. Can the semigroup be generated by two generators by
the way?

4. Retracts and data types. Data can be structured in many ways: ordered
tuples, lists, arrays, trees, streams, and even operations and functions. The last
point becomes clear if one thinks of parameters. We would normally hardly
consider the pairing function AxAy.(x, y) as being in itself a piece of data. But if we
treat the first variable as a parameter, then it can be specialized to a fixed value, say
the element g, producing the function Ay.(a, y). This function is more likely to be
the output of some process and in itself can be considered as a datum. It is rather
like one whole row of a matrix. If we were to regard a two-argument function f as
being a matrix, then its ath row would be exactly Ay.fla)(v). If s werc a selection
function, then, for example, Ay.f(s(v))(y) would represent the selection of one
element out of each column of the matrix. This selection could be taken as a
specialization of parameters in the operator AuAvA y.u(v(y}j(y). We have not been
very definite here about the exact nature of the fixed q, f, or s, or the range of the
variable y or the range of values of the function f. The point is only to recall a few
elements of structure and to suggest an abstract view of data going beyond the
usual iterated arrays and trees.

What thenis a data type? Answer: atype of data. That is to say, a collection of
data that have been grouped together for reasons of similarity of structure or
perhaps mere convenience. Thus the collection may very well be a mixed bag, but
more often than not canons of taste or demands of simplicity dictate an adherence
to regularity. The grouping may be formed to eliminate irrelevant objects and
focus the attention in other ways. It is frequently a matter of good organization
that aids the understanding of complex definitions. In programming languages,
one of the major reasons for making an explicit declaration of a data type (that is,
the restriction of certain variables to certain “modes™) is that the computed
objects of that type can enjoy a special represeniation in the machine that allows
the manipuiation of these objects via the chosen representation to be reasonably
efficient. This is a very critical matter for good language design and good compiler
writing. In this report, however, we cannot discuss the problems of representation,

540 DANA SCOTT

important as they may be. Our objective here is conceptual organization, and we
wish to show how such ideas, in the language for computable functions used here,
can find the proper expression.

Which are the data types that can be defined in LAMBDA? No final answer
can be given since the number is infinite and inexhaustible. From one point of
view, however, there is only one: Pw itself. It is the universal type and all other
types are subtypes of it; so Pw plays a primary role in this exposition. Butin a way
it is too big, or at least too complex, since each of its elements can be used in so
many different ways. When we specify a subtype the intention is to restrict
attention to a special use. But even the various subtypes overlap, and so the same
clements stili get different uses. Style in writing definitions will usually make the
differentiation clear though. The main innovation to be described in this section is
the use of LAMBDA expressions to define types as well as elements. Certain
expressions define retracts (or better: retraction mappings), and it is the ranges (or
as we shall see: sets of finite points) of such retracts that form the groupings into
types. Thus LAMBDA provides a calculus of type definitions including recursive
type definitions. Examples will be explained both here and in the following
sections. Note that types as retracts turn out to be types as lattices, that is, types of
partial and many-valued objects. The problem of cutting these lattice types down
to the perfect or complete objects is discussed in § 6. Another view of types and
functionality of mappings is presented in § 7.

The notion of a retract comes from (analytic) topology, but it seems almost an
accident that the idea can be applied in the present context. The word is employed
not because there is some deep tie-up with topology but because it is short and
rather descriptive. Three easy examples will motivate the general plan:

{4.1) fun = Auix. ulx);
{4.2) pair = Awlug, u));
{4.3) bool= Au.us0, 1.

Here = is che doubly strict conditional defined by
(1.4) 23x,y=z2(2>x,T),(z>2T,y)

which has the property that if z is both zero and positive, then it takes the value ™
instead of the value x U y.

DermniTiON. An element a € Po is cailed a retract iff it satisfies the equation
a=aca,

Of course the e-notation is used for functional composition in the standard
way:

(4.5) uev=ax.ulvix).

And it is quite simple to prove that each of the three combinators in (4.1-(4.5) is a
retract according to the definition. But what is the point?

Consider fun. No matter what u € Po we take, fum{u) is (the graph of) a
function. And if u already is (the graph of) a function, then « = fun(u}. That is to
say, the range of fun is the same as the set of fixed points of fun is the same as the
set of all (graphs of} functions. Any mapping @ whose range and fixed-point set

DATA TYPES AS LATTICES | 541

coincide satisfies a =a<a, and conversely. A retract is a mapping which
“retracts” the whole space onto its range and which is the identity mapping on its
range. That is the import of the equation a = a = a. Strictly speaking, the range is
the retract and the mapping is the retraction, but for us the mapping is more
important, (Note, however, that distinct retracts can have the same range.) We let
the mapping stand in for the range.

Thus the combinator fun represents in itself the concept of a function
(continuous function on Pw into Pw}. Similarly pair, represents the idea of a pair
and bool the idea of being a boolean value as an element of {1, 0, 1, T}, since we
must think in the multiple-valued mode. What is curious (and, as we shall see,
useful) is that all these retracts which are defining subspaces are at the same time
elements of Pew.

DerFinenion. If a is a retract, we write u:a for u =a{u) and Au: a7 for
Aurlalu)/ul.

Since retracts are sets in Pw, we cannot use the ordinary membership symbol
tosignify that u belongs to the range of a; so we write « : a. The other notation with
the A-operator restricts a function to the range of a. For f to be so restricted simply
means f=f ¢ a. For the range of f to be contained in that of the retract @ means
f=a - f These algebraic equations will be found to be quite handy. We are going
to have a calculus of retracts and mappings between them involving many
operators on retracts yet to be discovered. Before we turn to this caleulus, we
recal) the well-known connection between lattices and fixed points.

TueoreM 4.1 (The lattice theorem). The fixed points of any continuous
function form a complete lattice (under <); while those of a retract form a
continuous lattice. .

We note further that by the embedding theorem (Theorem 1.6), it follows
that any separable (by which we mean countably-based) continuous lattice is a
retract of Pw; hence, our universal space is indeed rich in retracts. A very odd
point is that a=ava is a fixed-point equation itself (Au.u<u is obviously
continuous). Thus the retraction mappings form a complete lattice. Is this a
continuous lattice? (Ershov has proved it is not; see the Appendix for askeich.} A
related question is solved positively in the next section. Actually the ordering of
retracts under & does not seem to be all that interesting; a more algebraic ordering
1 given by:

DerFiniTION. For retracts a and b we write aesb fora=ach=b-a.

The idea here should be clear: a & b means that a is a retract of b. [t is easy to
prove the:

THeOREM 4.2 (The partial ordering theorem). The retracts are partially
ordered by &<,

There do not seem Lo be any lattice properties of & of a general nature. Note,
however, that if retracts commute, ac b ="b o aq, then a b is the greatest lower
bound under &= of a and b. Also if we have a sequence where both a, & a,., and
a,< d,. forallne w, then U{anln € w}is the upper bound for the a, under #°, as
can easily be argued from the definition by continuity of =.

Certainly there is no “least” retract under &, One has L = 1¢a (recall:
L=Ax.Ll),butnotae L= 1. This last equation means more simply that a{1l)=1;
that is, g is strict. For retracts striciness is thus equivalent to L 2 g, 50 we can say
that there is a least strict retract. The combinator I = Au.u clearly represents the

542 DANA SCOTT

largest retract (the whole space), and it is strict also. In a certain sense strictness
can be assumed without loss of generality. For if a is not strict, let

b =Ax{nla(x)# a(L)}.

This function takes values in {1, 7} and is continuous because {x € Pw|a(x)#
a(L)} is open. Next define:

a*=Auwalu)Nblu).

This is a strict retract whose range is homeomorphic (and lattice isomorphic) to
that of a. Note, however, that the mapping from a to a* is not continuous {(or even
monotonic).

To have a more uniform notation for retracts we shail often write nil, id, and
seq for the combinators L, I, $. Two further retracts of interest are

(4.6) open=Aw{m|3e, Se,.neul;
4.7 int=Auus0 int{lu—1)sSu u

The range of open is lattice isomorphic to the lattice of open subsets of Pw;
definition (4.6} is not a LAMBDA-definition of the retract, but such can be given.

In (4.7) we intend int to he the least fixed point of the equation. By induction
on the least element of u (if any) one proves that:

1L fu=1;
intlu)=vu HHuew;
]\T otherwise.

This retract wipes out the distinctions between multiple values, moving all above
the singletons up to 7' its range thus has a very simple structure. The retract int
clearly generalizes bool. The range of fun is homeomorphic to the space of all
continuous functions from Pw into Pw; the range of pair. to the space of all
ordered pairs; the range of seq, to the space of all infinite sequences. A combina-
tion like Aw.int-seq{u) is a retract whose range is homeomorphic to the space of
infinite sequences of elements from the range of int.

We now wish to introduce some operators that provide systernatic ways of
forming new combinations of retracts. There are three principal ones:

{4.8) as—h=Aubcouoa,
{4.9) a @ b=Aaul{alu,}, b(u,));
{4.10) a®@ b =Awuy S0, ale), {1. blu)).

These equations clearly generahze (4.1)—(4.3). Before we explain our operators,
note these three equations which hold for arbitrary a, b, a', b" e Pw:

(4.11) : (aerb)o(a’e>by=(a'va)o>(hob);
(4.12) (a®b)e(a@b)=(aa)R (bb');
(4.13) (a@b)ela Db)=(ucaYEB(bob').

The reversal of order (a' ° a) on the right-hand side of (4.1 1) should be remarked.

DATA TYPES AS LATTICES 543

These equations will be used not only for properties of types (ranges of retracts)
but also for the mappings between the types.
THeoreEM 4.3 (The function space theorem). Suppose a, b, a’, b’, ¢ are
retracts. Then we have:
(i} a o> bisarerract, and it is strict if b is,
(i) v:a—biffu=ix:au(x)and Vx:au(x):b,
(i) ifaca and b= b', thena b= a' > b’
(iviiffracsbandf:a = b, thenfof . (bosa')e{a—b"),
(viiffra—sbandf :bosc thenfof:a>—c
Parts (i), (iii), (iv), and (v) can be proved using (4.8) and (4.11) in an aigebraic
(formal) fashion. It is {ii) that tells us what it all means: the range of a «— b consists
exactly of those functions which are restricted to (the range of} @ and which have
values in b. So we can read u :a o> b in the normal way: u is a {continuous)
mapping from a into b. In technical jargon, we can say that the (strict) retracts and
coatinuous functions form a category. In fact, it is equivalent to the category of
separable continuous lattices and continuous maps. In this context, (1v) shows that
o+ operates not only on spaces (retracts) but also on maps: it is a functor
contravariant in the first argument and covariant in the second. Further categori-
cal properties will emerge.
THEOREM 4.4 (The product theorem). Suppose a, b, a’, b’ are rerracts. Then
we have:
(i) a® bis aretract, and it is strict if a and b are;
(i) u:a®@biffu="(up, u,) and uy: a and u,: b;
(i) ifa=a and bbb thena®bexa' @b,
(ivi iffracobandf:a' = b thenfRf . a®a bR b
Again the operator proves to be a functor, but what is stated in Theorem 4 4
is not quite enough for the standard identification of &2 as the categorical product.
For this we need some additional combinators:

(4.14) fst=Au.u,;

(4.15) snd = Auu;;

(4.16) diag = Auu, u).
Then we have these properties:

4.17) fste(a®@b):(a®b)o—>a;
(4.18) sndeo{a®@b):{a@ by b,
(4.19) diagca:a—~a®a;
(4.20) fste(f® f)=felst;
(4.21) . snde (f® f)=f osnd.

Here a and b are retracts and f and f' are functions. Now suppose a, b, and ¢ are
retracts and f:c —a and g:c—> b. Let

h=(f& g)diage c.

544 DANA SCOTT

We can readily prove that:
hic—~(a®b),
and
fstoh=f and sndeoh=g

Furthermore, h is the unigue such function. It is this uniqueness and existence
property of functions into @ ® b that identifies the construct as a product.

There are important connections between o+ and ®. -To state these we
require some additional combinators;

(4.22) eval = Au.uoliy);

(4.23) curry = AuAxAy.u({x, y)).

If @, &, and ¢ are retracts, the mapping properties are:

(4.24) eval o (b YD B): ((bor)@ b ¢

(4.25) curry o ((a @ b) o= c):({a® b) o» c)o» (@ o> (b o> ¢)).

Suppose next that f:{a ® bjo» ¢ and g:a >~ (b>>¢). We find that
eval o (curry(f) @ b)=f

and
curry(eval ° (g ® b)) = g.

This shows that our category of retracts is a Cartesian closed category, which
means roughly that product spaces and function spaces within the category
interact harmoniously.
TueerEM 4.5 (The sum theorem). Suppose a, b, a', b’ are retracts. Then we
have
(1) a® bisarerraci, and it is always strict;

(i) u:a@biffu=Loru=Tor
u={0, u)yandu, aor
u=(1, uyyand u;:b;

(i) ifex<a’ and b=V, thena®@ b= a Db,
(iv) iffra—bandf:a' — b, thenf®f . aDa —bDb".
There are several combinators associated with@:

(4.26) inleft = Ax.{0, x),
(4.27) inright = Ax.{l, x);
{4.28) outleft = Au.uy S 1y, L
(4.29) outright = Aw.ug S 1, uy;
(4.30) which = A.ig:

(4.31} out = Aw.u,.

DATA TYPES AS LATTICES 545

(The fast two arc the same as fst and snd. but they will be used differently.) Wc
find:

(4.32) {a @p)cinlefts q:a > (aDb),
{+.33) (@a@®h)-inrightc b:b o~ (a@b);
{4.34) acoutlefte (a@b):{a®b)—a;
{4.35) beooutrightc(a@b): (a@h)o— b;
(4.36) which < (a@®b}:(a®b) o bool.
(4.37) acoute{a@al:(a®a)— a;

where a and 4 are retracts, Most of these facts as they stand are trivial until one
sets down the relations between all these maps; but there are too many to put them
down here. Note, however, if a, b, and ¢ are retracts and f:as»cand g: b —c,
then if we let

h=coouto(fPg),
we havc:
hi(a®b) =,
and
hoinleft=f and heinright=g

But, though h exists, it 1 ntot unique. So @@b is not the categorical sum
{coproduct). The author does not know a neat categorical characterization of this

operator.
There would be no ditliculty in extending © and @ to more factors by
expanding the range of indices from 0, 1to 0, 1, - - . # — 1. The explicit formulac

need not be given; butif we write 4, ® a, & - - - ® a,,..;, we intend this expanded
meaning rather than the iterated binary product.

To understand sums and other facts about retracts, consider the least fixed
point of this equation;

{4.38) tree = nil D (tree & tree).

To be certain that tree is a retract, we need a general theorem:

TrEOREM 4.6 (The limit theorem). Suppose F is a continuous function thai
maps retracts to retracts and let c = Y{F}. Then c is also a retract. If in addition F
maps strici retracis lo strict retracts and is monotone in the sense that a = b implies
Fla)yce F(b) for all (strict) retracts a and b. then the range of ¢ is homeomorphic to
the inverse limit of the ranges of the strict retracts F™ (1) for n € w.

This can be applied in the case of (4.38) where F=Az.nil®(z ® z). Thus we
can analyze tree as an inverse limit. This approach has the great advantage over
the earlier method of the author where limits were required in showing that tree
exists. Here we use Y to give existence at once, and then apply Theorems 4.3-4.5
to figure out the naturc of the retract.

In Theorem 4.6, the fact that ¢ is a retract can be reasoned as follows: Lis a

546 DANA SCOTT

retract. Thus each F"{_1} is a retract. We compute:
coc=\J{F'()ncwt | J{F'(L)|new}
={_{F"(L)> F"(1)jnew} (Note:same n.)
= U{F"{J_)in cwl=rc.

In case F 1s monotone and preserves strictness, then we can argue that each
F"(1}es c. The retracts F"(1) are the projectioms of ¢ onto the terms of the limit.
Of course F'{L)oe F™(L) if n=m. The u:c can be put into a one-to-one
correspondence (homeomorphism, lattice isomorphism) with the infinite se-
quences (L, U1, . Ut) where v, F*(L)and v, = F'(1)(t,,). Indeed ¢, =
F (L)1) and u =_J{v,|n € w}. This is exactly the inverse limit construction.

Retreating from generalities back to the example of tree. we can grant that it
exists and 1s provably a retract. Two things in its range are L and T by Theorem
4.5(ii). but they are not so interesting. Now L :nil, so by Theorem 4.5(1i) we have
{0y =¢0, 1):tree. Let us think of this as the atom. What else can we have? If
x, vy tree, then (x, y):tree (O tree and so (1, (x, y)) : tree. Thus {the range of) tree
contains an atom and is closed under a binary operation. Note that the atomicand
nonatomic trees are distinguished by which and that suitable constructor and
destructor functions are definable on tree. But the space also contains infinite
trees since we can solve for the least fixed point of:

t={1, ((0).)

and f:tree. (Why?) And there are many other examples of infinite elements in
tree.

A pont to stress in this construction is that tree being LAMBD A-definable is
computable. and there are many computable functions definable on or to (the
range of) tree. All the “structural " functions, for example, are computable. These
are functions which in other languages would be called isatom or construct or
node, and they are ail easily LAMBD A-definable. Just as with @, &, o, they are
not explicit in the notarfion, but they ar: Jefinable nevertheless. In the case of
node, we could use finite sequences of Boolean values to pick out or name nodes.

o
1A

Thus solve for name = nil ©bool = name, and then give a recursive definition of:
node :name — (free — tree).

Anv caombination of retract preserving tunctors can be used in this game. For
example:

" (4.39) lamb = int@ (lamb ~» lamb).

This looks innocent, but the range of lamb would give o quite different and not
unattractive model for the A-calculus (plus arithmeticy, What we do 1o investigate
this madel is to modify LAMBDA slightly by replacing the ternary conditional
z2x. v by a quarterndry onc w =, y, Z: otherwise the syntax of the language
remains the same. The semantics, however, is a little more complex.

Let us use 7, o, o, € as syntactical variables for expressions in the modified
language. The semantics is provided »y a function # that maps the expressions of
the language to their values in (the range of) lamb. To be completely rigorous we

DATA TYPES AS LATTICES 547

also have to confront the question of free and bound variables. For simplicity let us
index the variables of the language by integers, and let us take the variables to be
Vg Up, U2y * 74 Uy - -+ . We cannot simply evaluate out an expression 7 to its value
#[r] until we know the values of the free variables in . The values of thesc
variables will be given by an “environment” ¢ which can be construed as a
sequence of values in lamb. We can restrict these environments to the retract:

(4.40) - env = Arlamb - seq(«).

When t:env, then 7, : lamb is the value that the environment gives to the variable
v,. We also necd to employ a transformation on environments as follows:

(4.41) flx/n]=Ame weq(ni(mi >« 1,

Here eq is the primitive recursive function that is 0, if n, m are equal, and is 1,
atherwise, for n, me w. The effect of 1[x/n] is to replace the nth term of the
sequence ¢ by the value of x, otherwise to leave the rest of the sequence
unchanged. To correspond with our use of very simple variables we have selected
a simple nation of environment: in the semantics of more general languages it is
customary to regard an environment as a function from the set of variables into the
domain of denotable values.

The correct way to evaluate a term 7 given an environment ¢ is to find
[rJts). We use the brackets | and [here simply as an aid to the eye in keeping the
syntactical part separated from the rest. The environment enters as a function-
argument in the usual way; thus we shall have:

(4.42) #[7]:enve lamb.

(4.43) Fle) =1,
FM0](¢1 = inleft(0)
Fr+ 110 = which{F[+]()) S inleftiout (Fr](: N+ 1), L
Fl+—11(2) = which(F]]()} > inleftiomt (X))~ 1), L

X018 = 1, o, plit) = lamb(which(F[8] (:))=
(out(F[B](1)) > F[r[(0), #[ol(e)), X[pl()

Hr{alie) = which(F [](1)) 5L, out{F [+](0)) (A [a]le})
HlAv,. 7)) = inright(Ax :lamb. [|l([x/n])).

A good question 1s: why does # exist? The answer is: because of the fixed-potnt
theorem.

If we rewrite the semantic equations #[=]{t} = (- - - } in (43) by the equation
F[r]=Ar:env(- -), then #isseen to be a function from expressions to values in
lamb. As the range of lamb is contained in Pw, we can say more broadly that
#e Pw®™P where Exp is the syntactical set of expressions and the exponential
notation designates the set of alf functions from Exp into Pw. This function setis a
complete lattice because Pew is. Therefore if we read (4.43) as a definition by cases
on Exp, then we can find # as a suitable fixed point in the complete lattice Po **P.
Indeed it 15 the fixed point of a continuous operator.

548 DANA SCOTY

Actually we can regard Exp as being a subset of Pw 1o avoid dragging in other
lattices. What we need is another recursive definition of a data type:

444 exp = int&nil Dexp Texp T (exp & exp @ exp X exp)
44)
@ (exp ® exp)E(int & exp)

Note that there arc as many summands in (4.44) as there are clauses in (4.43). We
can think of exp as giving the “abstract” syntax of the language. We use the
integers to index the variables and the nil element to stand for the individual
constant. Read (4.44}) as saying that every expression is either a variable or a
constant or the successor of an expression or the predecessor of an expression or
the conditional formed from a tuple of expressions or the abstraction formed from
a pair of a variable and an expression. We do not need in (4.44) to introduce
special “symbols™ for the successor, application, etc., because the separation by
cases given by the @ operation is sufficient to make the distinctions. (That 1s why
the syntax is “abstract™.} The point is that for recursive definitions jt does not
matter how we make the distinctions as long as they can be made. From this new
point of view, we could rewrite {4.43) so as to show:

(4.45) #: exp — (env >— lamb),

which is clearly more satisfactory—especially s it is now clear that # is computa-
ble. And this is a method that can be generalized to many other languages. The
method also shows why itis useful to allow function spaces as particular data types.

Another example of this method can be illustrated, if the reader will recall the
Godel numbering of § 3. [t will be seen that there are similarities with the tree
censtruction: instead of 0 and apply(ni(m), tree uses (0) and (1, (x, y)). Note,
however, that Gadel numbers are finite while tree has infinite objects. But the
intinite objects are always limits of finite objects, so there are connections. (We
discuss this again in § 6.} In particular, recursive definitions on Gddel numbers,
like that of val, have analogues on tree. Here is the companicon of (3.7).

i-}.463 vaal — Ax : tree.whichi ' 2 G, vaaliist(out(y)))(vaal{snd(out(x))}.

We have vaal: tree — id, where of course (4.46) is taken as defining vaal as the
least fixed point. This is an example of a computable function between effectively
given retracts. The LAMBDA-definable elements of Pw are the computahle
elements i the range of vaal.

We have discussed the category of retracts and continuous maps. but if they
are all LAMBDA-definable, then they fall within the countable model RE. Thus
there s another category of effectively given retracts and effectively given
continuous maps. (Examples: tree, id. vaal. and all those retracts and maps
generated by ®, %, and «—.) This category seems to deserve the status of a
generalized recursion theory: though this is not to say that as yet very much is
known about it. In fact, the proper formulation may require an enriched category
rather than a restricted one. Thus instead of confining attention to the computabie
retracts and computable maps, it might be better to use the full category with all
maps and to single out the computable ones (also mayhe the finite ones) by special
predicates. In effect we have avoided any methodological decisions by working in

DATA TYPES AS LATIICES 549

the universal space Pw and by defining a notion when requircd—if possible with
the aid of LAMBIDA. This makes it possible to give all the necessary definitions
and to prove the theorems without at first having to worry about axiomatic
problems.

5. Closure aperations and algebraic lattices. Given any family of (finitary)
operations on a set (say, w) there is a closure operation defined on the subsets of
that set obtained by forming the least subset including the given elements and
closed under the operations. Examples are very familiar from algebra: the
subgroup generated by a set of elements, the subspace spanned by a set of vectors,
the convex hull of a set of geometric points. We simplify matters here by
restricting attention to closures operating on sets in Pw, but the idea is quite
general. The main point about these “algebraic™ closure operations—as distin-
guished from topological closure operations—is that they are continuous. Thus, in
the case of subgroups, if an element belongs to the subgroup generated by some
elements, then it also belongs to the subgroup generated by finitely many of them.
In the context of Pw we can state the characteristic condition very simply.

DerFiNITION. An element a € P is called a closure operation iff it satistics:
[ca=a-a

We s¢e by definition that a closure operation 1s not only continuous, but itis
also a retract. This is reasonable smce the closure of the closure of a subset must be
equal to the closure. To say of a function that 1 < a. means that x < a{x) for all
x € Pa. In other words, every set is contained in its closure. (Note that closures are
oppusite to the “projections”, those retracts where a =) Among examples of
closure operations we find F and T ; the first has the most closed sets (fixed points),
the second has the least. (Note that T = always is a fixed point of a closure
operation; T = Ax.T is thus the most trivial closure operation.) The examples fun,
open, int of § 4 are all closure operations (cf. (4.1}, (4.6}, (4.7)). We remarked that
fun is a retract, but the reader should prove in addition:

(5.1} U AxLulx).

for all ue Pw (cf. Theorcm |.2). We note that this fact can be rewritten in the
language of retracts as:

{5.2) | F=B 52 B

the significance of which wiil emerge after we develop a bit of the theory of closure

operations.
Unfortunately the natural definition of the retract bool does not yield a
closure operation. In this section we adopt this modification:

(5.3) boool = Au.u=20,T+1,

The closed sets of boool are L, 0, T+1, and T. Note that with any closure
operation a. the function value a(x) is the least closed set (fixed point of a)
including as a subset the given set x. Thus given any tamily 6 & Pw of “closed™ sets
which is closed under the intersection of subfamilies, if we define

(5.4) afx) = Wy €rzyh

550 DANA SCOTT

then this will be a closure operation provided it is continuous. This remark makes
it easy to check that certain functions are closure operations if we ¢an spot easily
the family € of fixed points.

Alas, the ""natural’ definition of ordered pairs (cf, (2.21}) leads to projections
rather than closures. Here we must choose another:

(5.5) [x. y]=0nlnex}U2m+ |me y}.
with these inverse functions:

(5.6) [ulo={n|2n € u},

(5.7) (uli={m]2m+ l € u}.

We shall find that the main advantage of these equations lies in the obvious
equation:

(5.8) u=[lulo, [ul],

which is not true for the other pairing functions. Of course we have:
(5.9) ({x, y)Jo=x,

(5.10) ([x ylli=y

We shall not extend the idea of these new functions to triples and sequences,
though it is clear what to do.

Abstraetly, an algebraic lattice is a complete lattice in which the isolated
points are dense. An isolated (sometimes called: compact) pointin a lattice is one
that is not the limit (sup or L.u.b.) of any directed family of its proper subelements.
This definition works in cantinuous lattices, but more generally it is better to say
that if the isolated point is contained in a sup, then it is also contained in a finite
subsup (a sup of a finite selection of elements out of the given sup). In the case of
the lattice of subgroups of a group. the isolated ones are the finitely generated
subgroups. The isolated points of Pw are the fintte sets e,. To say that isolated
points are dense means that every element in the lattice is the sup of the isolated
points it contains. The sequel to Theorem 4.1 for closure operations relates them
to algebraic lattices.

Trieorem 5.1 (The algebraic lattice theorem). The fixed points of any closure
operation form an algebraic lattice.

The proof is very easy if one notes that the isolated points of {x|x = a(x)},
where a is a closure operation, are exactly the images a(e,) of the finite setsin Pw.
What makes Theorem 5.1 more interesting is the converse.

THEOREM 5.2 (The representation theorem for algebraic lattices). Every
algebraic lattice with a countable number of isolated points is isomorphic to the range
of some closure operation.

By Theorem 1.6 we know that the algebraic lattice is a retract, but a more
direct argument makes the closure property clear. Thus, let D be the algebraic
lattice with {d,|n £ w} as the set of all isolated points with the indicated enumera-
tion. We shall use the square notation with symbels = and] for the lattice
ordering and sup. The desired closure operation is defined by:

a(xy={m|d, = Li{d,|n e x}}.

DATA TYPES AS LATTICES 551

[tis an easy exercise o show that from the definition of ““isclated™ it follows that a
18 continuous; and from density, 1t follows that 7 is in a one-to-one order
preserving correspondence with the fixed points of a.

In the last section we introduced an algebra of retracts, much of which carries
over to closure operations given the proper definitions. Without any change we
can use Theorem 4.3 on function spaces, provided we check that the required
retracts are closures.

THeorEm 5.3 (The function space theorem for algebraic lattices). Suppose
that a and b are closure operations; then so is a = b.

The proof comes down to showing that:

(5.11) ulx)< blulalx)),

whenever @ and & are closure operations. But this is easy by monotonicity. Note
that (5.1) 1s necded.

For those interested in topology, one can give a construction of the isolated
points of the function space which is much more direct than just taking the
functions & ¢ ¢, © a, which on the face of it do not teli us too much. But we shall not
need this explicit construction here.

The rcason for changing the pairing functions is to be able to form products
and sums of closure operations. In the case of products, the analogue of & is
straightforward:

(5.12) alxlb=aula(ulo), b{[ul)];

while for sums using @' = Ax.0U a(x —1) +1 and similarly for & we write:

(5.13) a{Eib=Au(ule=0,00U{ul; 21,)5 [a'(ulo). L] [~ 6'Tuli].
We can then establish with the aid of (5.8)-(5.10}:

TrneorEM 5.4 (The product and sum theorem for algebraic lattices). Suppose
that a and b are closure operations; then so are a X b and a '+ b. Analogues of the
results in Theorems 4.4 and 4.5 carry over,

Following the discussion in § 4, we can also show that the closure operations
form a Cartesian closed category, which in some ways is better than the category
of all retracts. What makes it better is the existence of a “universe”.

Every continuous operation generates a closure operation by just closing up
the sets under the continuous function (as a set operation). We can institutionalize
this thought by means of this definition:

{5.14) V=Aarx. Y{Ay.xUaly)).

Clearly V is LAMBDA-definable, continuous, etc. A more understandable
characterization would define V(a)(x) by this equation:

(5.15) Via)xy = Wylxcyand aly)c y}.

These two definitions are easily seen to be equivalent. What is unexpected is the
discovery {due in a different form to Peter Hancock and Per Martin-Lof) that V
itself 1s a closure operation.

THEOREM 5.5 (The umiverse theorem for algebraiclattices). The function V is
a closure operation and its fixed points comprise the set of all closure operations.

LN
"N
[

DANA SCOTT

Thus to say a 1s a closure operation, write @ : V. To have a mapping on closure
operations, write f: V-V, Remark that 5.5 allows us to write V: V. It all secms
rather circular, but itis quite consistent. The category of separate algebraic lattices
“contains itsell"—if we are careful to work through retracts of Pe.

The proof of Theorem 5.5 requires a few steps. We note first that for all
x,a€Paw:

(5.16) x< Viallx).

Let v= V{a)(x). This is the least y with xUa(y)< y. What is the least z with
yUalz)< z? The answer is of course y, which proves:

(5.17) Vi{a)(V(aHx))=V(al(x).

Thus V{a) is always a closure operation. If a is already a closure operation, then
clearly Via)(x)= a(x). Therefore we have shown:

(5.18) a=Via) it aisaclosurcoperation.
But then by (5.16) and {5.17) we have by (5.18):
(5.19} Via)=V{Via)).

From {5.16) by monotonicity we see:

(5.20) alx}Sal(Viakyhc Via)(x).
Hence by (5.1) we can derive:

{5.21) acAixa{x)cAx.Vig)x)= Via)

From i5.19) and (5.21) it follows that V itscif is a closure operation.

The operation V. forms the least closure operation containing a given
element, and it shows that the lattice of closure operations is not only a retract of
Pw but also an algebraic lattice. Since we can now use V as a retract, the earlier
results become formulas:

(5.22) (ha : V.Ab 1 V.a[x]b) : Vo (Ve V):
(5.23) (Aa : V.Ab : V.a[t]b) : Vo (Vo V):
we can also state such functorial properties as:

(5.24) (Aa : V.Ab : V.a=b): V3 (Vo V),

Using this style of notation we have:
THEOREM 5.6 (The limit theorem for algebraic lattices).

(Af { VoV Y(f)) : (Ve V)V,

In words: if fis a mapping on closurc operations, then its least fixed point is
also a closure operation. The proof of course holds with any retract in place of V,
but we are more interested in applications to V. For example, note that V{ L)j=1.
Now let f = Aa : V.a = a. The least fixed point of this fis the limit of the sequence:

L. L Il dIoDes{leol), {(Te2hos(IesI)es({ToaDes{ld)), - -

DATA TYPES AS LATITICES 553

and we see that ali these retracts are strict. This means Y(/) is nontrivial in that it
has at least two fixed points (viz., L and T). But 4 = Y(f) must be the least closurc
operation satistying

{5.25) d=d—d,

and we have thus proved that there are nonfrivial aigebraic lattices isomorphic to
their own function spaces. This construction (which rests on hardly more than
(5.2). since we could take d = Y(Aa. IU (a = a))} is much quicker than the inverse
limit construction originally found by the author to give A-calculus models
satisfying {n}. There are many other fixed points of (5.25) besides this least closure
operation, but their connection with inverse limits is not fully investigated.

We note in conclusion that most constructions by fixed points give algebraic
lattices (like lambin § 4). and so we could just aswell dothem in V if we remember
to use xj and [H. The one-point space is T {(nof nil), and so the connection with
inverse limits via Theorem 4.6 is not as clear when nonstrict functions are used.
For many purposes, this may not make any difference.

6. Subsets and their classification. Retracts produce very special subsets of
Pw: a retract alwavs has a nonempty range which forms a lattice under <. For
¢xampie, the range of int is { L. T}U . We often wish to eliminate . and T: and
with a retract like tree the situarion is more complex. since combinations like
(1, ((1, (L. (0N, T might require climination. In these two cases thc method is

simple.
Consider these two functions:

(6.1} mid=Ax:int, x>50,0

(6.2) perf-- Au:tree.which{u)= 0, Aperf(Estiout(u))})(peri(sndioulii}))]
where A 1s a special combinator:

{6.3) A=dxAvix o 20, T, HUG =x20, TIL T

We find that w = {x ;iaimid{x) = 0} In the case of trees. note first this behavior of
LY

Al 0 7T
S
4 LT
0|10 7
TIT T 7

The guestion is: what subset is {u - iree|perfiu) = 0}?
Now perf i~ defined recursively. We can sce that

perfi 1= 1. perf(Ti=T. perf((h)=10,
and
perf((1, (x. v))) = Afperf(a)perfiy)

when g v o teee. Ivery tree, aside from T or s either atomic ar o parr af trees.
The atomic tree s perfect” (that s, perfii0; —). A firure tree which doos not

554 DANA SCOTT

contain L or T is perfect—as we can see inductively using the table above for 3.
An infinite tree is never perfect: either some braneh ends in T and perf maps it (o
T,or T is never reached and perf maps it to L. Thus the subset in question is then
seen Lo be the sct of finite trees generated trom the atom by pairing. This is clearly
a desirable subsct, and 1t is sorted out by a tunction with a simple recursive
definition. The general question is: what subsets can be characterized by
equations? The answer can be given by reference 1o the topology of Pew.

DeriniTION. Let (3 be the class of open subsets of Pw, and § be the class of
closed subsets. Further let *B be the class of all (finite} Boolean combinations of
open sets.

We recall from § 1 that £/& (just in case for all x € Pw, we have x € Uif and
only if some finite subset of x is in {U. The elass of open sets contains &) and Pw and
is closed under finite intersection and arbitrary union; in fact, it can be generated
by these two closure conditions from subsets of the special form {x € Pw[n € x} for
the various n € w. An open set is always monotonic (whenever xe U and x < y,
then y € U), so that every nonempty e (% has Te [/

Another characterization of openness can be given by continuous functions.
Suppose U e ®. Define f:Pw {1, T} so that

U={x|flx)=T}

then £ is continuous, Conversely, if such an £ is continuous, then U is open. But if
we do not assume the range of fisincluded in {1, T}, this is not true. For the case of
general functions we know that f is continuous if and only if {x|f(x)€ V} is open
for all open V' This defines continuity in terms of openness, but we can turn it the
other way around:

Turorem 6.1 (The (3 theorem). The open subsets of Pw are exactly the seis of
the form:

{x| ftx) 204,

where [Pew > Po is continuous,

We could have written O € f(x) or the equation f(x) 0= Oinstead of f{x)20.
Note that in case f:Pw —{L, T}, then f(x) 2015 equivalent to f(x: =T. Also any
other integer could have heen used in plaee of 0.

We can say that {x|0 € x} is the rypical open set, and that every other open set
can be obtained as an inverse image of the typical set by a continuous function. We
shall extend this pattern to other classes, especially looking for equations. In the
case of openness an inequality could aiso be used, giving as the typical set
{x|x # L1}, But since closed sets are just the complements of open sets, this remark
gives us:

ThneoreMm 6.2 (The % theorem). The closed subsets of Pw are exactly the sets of
the form:

{x|fix)= L1}
where [Pw — Pw is continuous.

Aside from {xix = 1}, we could have used {x|x < a} as the typical closed set
where a € Pw is any element whatsoever aside from T. This T has. by the way. a

DATA TYPES AS LATTICES 558

special character. We note:

(M=N{xlnexilne).

Thus {T}is a countable intersection of open sets, otherwise called a (8,-set. There
are of course many other 85-sets, but {T} is the typical one:

Trhrorem 6.3 (The 3, theorem). The countable intersections of open subsets
of Pw are exactly the sets of the form:

{x|flx)=T},

where [Pw — Pw Is continuious.
It may not be obvious that every (;-set has this form. Certainly, as we have
remarked, every (3-set has this form. Thus if Wis a (4;. we have:

W= {U.|new
and further,
U, ={x|fux)=Th

where the f, are suitably chosen continuous functions. Define the function g by
the equation:

glx)={(n, mme f.(x}}.
Clearly g is continuous, and we have:
W={x|g(x) =T},

as desired.

We let 5 (13 denote the class of all sets of the form €M U, where Ce & and
U e . Similarly for 5115 Now {x|x <0} is closed and {x{x 20} is open. Thus
{0}e 5711 (3. This set is typical.

THEOREM 6.4 {The % theorem). The sets that are intersections of closed
sels with apen sets are exactly the sets of the form:

{x|ftx} =0},

where [Pw — Pw is continuous. '
Again it mav not be obvious thatevery & 11 (3 set has this form, We can write:

C={x|flx)= 1},
and
U={x{gix)=0}
where Ce 5 and {/= ¢4 and the continuous f and g are suitably chosen. Define
hivy={2n+line f)}U{2nln < gixi}.
and remark that A is continuous. We have:
COL = {d ki) =0

as desired.
Iris casy to see that fefe SOOI e ds fimite, but in gencral {af« 4710, In

556 DANA SCOTT

case a 1§ infintte but notequal to T {say, a = {n|n >0} = T + 1. then {a} is typical in
its class.

THEOREM 6.5 (The 3184 theorem). The sets that are intersections of closed
sets with countable intersections of open sets are exactly the sets of the form:

{x]fix)=al,
where [Pw - Pw is continuous and a is a fixed infinite set not equal to T.
Note that (% (1 (), is the same class as § N (&;, so we see by Thearem 6.4 that
a good choice of @ is An £ w.0.
There is no single subset of Pe typical for 8, which can be viewed ay the finite
unions of sets from the class N @,
THEOREM 6.6 (The B theorem). The sets that are Boolean combinations of
open sets are exacily the sets of the form:
{x[flx)e e},
where f:Pw = Pw is continuous and £ is a finite set of finite elements of Pow.
To sec that every '8 set has this form, suppose that
V= MIU Wlu' . U "Vu s
where cach W, e ¥ &, We can write:
W, = {x[fix)=0}.
where f,:Pw-{1,0, T}is continuous. Then define:
glx)={2c+j]j € filx)N{0, 1} i <},
and note that g is continuous. Let
E={yci{mm<2n}|Ai<nlicy 2i+1&y}h
we have:
V={xlglxie #}
as desired.
TreoreM 6.7 (The 2By theorém). The sets that are countable intersections of
Boolean combinations of open sets are exactly the sets of the form:
x| flor=glx)},

where [, g Pow — Pw are continuous.

This is clearly the most interesting of these characterization theorems,
because equations like f(x) = glx) turn up all the ttme and the collection is @ very
rich totality of subsets of Pw. [tincludes all the retracts, since they are of the form
{x|x = a(x)}. And much more. That every such setin Theorem 6.7 is 2B, follows
from thesc logical transformations:

e o=y 2 awfn 2 e ne gtol)
= (M) dagn s flos s guobU e S0, ng gaoi)
-0

That puts the setm the class (FU O, < B

DATA TYPES AS LATTICES 557

On the other hand, we can see that (¥ U {®),, is exactly ;. Because, in view of
Theorem 6.6. B, the class of countable unions of B-se1s, is exactly (¥ 1 #),. The
remark we want to make then follows by taking complements.

Now let § be an arbitrary W;-set. We can write:

5= m (x| ful2) = O} U{x| galx) = O]),

where f,, g, : Pw > { L, 0, T}are continuous. Now let u, v be continuous functions
which on {L, 0, T} realize these two tables:

|l O 7T
L1 6 0
0|10 o0 o
TIo o 0

where (' =0U 1. This is an exercise in many-valued logic, and we find for
xnye{l 0, T

ulx)(y)=vlx)ly) if x=0ory=0
Thus define continuous functions f" and g’ such
f=AxAn € w.ul ful x})(g,(x)),
g = Axan € wv(f,(x))g.{x)),

and we find:
S ={(x|flx)=g'(x)}

as desired.
This 1s as far as we can go with equations. More complicated sets can be

defined using quantifiers, for example the i or analytic sets can be put in the
form:

{x|3y.fx)y)=glx)(y}h,

and their complements, the I1] sets, in the form
(x¥y zh00(y)(z) =0},

with continuous f, g, k. For the three classes we then have as “typical™ sets those
shown in Table 3.

1t should be remarked that *B; contains all the closed sets in the Cantor space
topology on Pw (that is, the topology obtained when it is regarded as the infinite
product of discrete two-point spaces}. Therefore the | sets for the two topologies
on Pw are the same. Hence, since we know for Cantor space that Al=Z{NII s
the ctass of Borel sets, we can conclude that the two topologies on Pw have the
same Borel sets. {That i1s. in both cases A{ is the Boolean o-algebra generated

from the open sets.)

558 DANA SCOTT

TABLE 3
Classes and rypical sets

Classes Typical sets

o] {r|0€ 1}

i {1}

FNG {0}

&MG, {T+1}

pAP Loty = 1))

b {u[Ty.uoly) = u(y)}
1, {ul¥y Jzuly)iz) =0}

Returning now to the example involving trees mentioned at the beginning of
this section, we see that the set of perfect (finite) trees can be written in the form:

{x|x = tree(x), perf(x) = 0} = {x|(x, perf(x)} = (tree(x), O}:

thus itis a B,-set. (Note that ‘B, are obviously closed under finite intersection by
the ordered pair method justiilustrated; that they are closed under finite union is a
little messier to make explicit, but the essential idea is contained in the proof of
Theorem 6.7.)

As another example, we might wish to allow infinite trces but not the strange
tree T. Consider the following function:

(6.4) top = Au : tree.which{u} < L, top{ist(outiu})) L topisnd{out(«))).

We can show that top: Pw - {L, T}. For a tree u the equation top{u}= 1 means
that it does not contain T, or as we might say: it is topless. The topless trees form a
closed subsct of the subspace of trees. (An interesting retract is the function
Autreel{u) U top{u) whose range consists exactly of the ‘top]ess trees plus one
exceptional tree 7.) Such a closed subset of (the range of) a retract is a kind of
semilattice. (We shall not introduce a precise definition here.) Every directed
subset has a limit (least upper bound} and every pair with an upper bound has a
least upper bound. But generaily least upper bounds do not have to exist within
the semilattice. The type of domains that interest us hecome continuous lattices
with the addition of a tep element T larger than all the other elements. The
elimination of T 1s done with a function like top of our example. This is convincing
evidence to the author that an indepeandent theory of semilattices 15 quite
unnecessary: they can all be derived from lattices, The problem is simply to define
the top-culting operation, then restriction to the “topless’™ elements s indicated
by an cquation (like topfu) = 1). In this way all the constructions are kept within
the controt of a smooth-running theory based on LAMBIDA. This point secms to
be impartant if one wants to keep track of which functions$ are computabie.

An aspect of the problem of classification treated in this section which has not
heen given close cnough attention is the explicitly constructive way of veritying
the closure propernies of the classes. Consider the class ;. for example. Let B be
the typical sct as shown in Table 3. Then whatever [« Pw we choose. the scl

{x!fix)s B}

DATA TYPES AS LATTICES 559

is a B;-set and cvery such set has this form. Thus the f's index the elements of the
class. Suppose f, g € Pw. What we should look for are two LAMBDA-definable
combinators such that union(f)(g) and inter{ f)(g) give the functions that index the
union and intersection of the sets determined by f and g. That is, we want:

{x|union()(g)(x) € B} ={x|f(x)e B}U{x|g(x)c B}.

It should be possible to extract the precise definition from the outline of the proofs
given above, but in general this matter needs more investigation. There may very
well be certain classes where stich operations are not constructive, even though
the classes are simply defined.

7. Total functions and functionality. There is an inevitable conflict between
the concepts of fofal and partial functions: we destre the former, but it is the latter
we usually get. Total functions are better because they are “‘well-defined’™ at ali
their arguments, but the rub is that there is no general way of deciding when a
definition is going to be well-defined in all its uses. In analysis we have
singularities, and in recursion theory we have endless, nonfinishing computations.
In the present theory we have in effect evaded the question in two ways. First we
have embraced the partial function as the norm. But secondly, and possibly
confusingly, the multiple-valued functions are normal, total functions from Pw
into Pw. The point, of course, is that we are making a modelof the partial functions
in terms of ordinary mathematical functions. But note that the success of the
model lies in norusing arbitrary functions: it is only the continuous functions that
correspond to the kind of partial functions we wanted to study. 1t would be a
mistake to think of the variables in A-calculus as ranging over arbitrary
functions—and this mistake was made by both Church and Curry. The fixed-point
operator Y shows that we must restrict attention to functions which do have fixed
points. Itis certainly the case that Pwis not the only model for the A-calculus, but it
is a very satisfactory model and 1s rich enough to illustrate what can and what
cannot be done with partial functions.

Whatever the pleasures of partial functions {and the multiple-valued ones,
too), the desire for total functions remains. Take the integers. We are more
interested in than w U{L, T}. Since the multiple values | and T are but two in
number, 1t is easy to avoid them. The problem becomes tiresome in considering
functions, however. The lattice represented by the retract int o int is much too
large, in that there are as many nontotal functions in this domain as total ones. The
aim of the present section is to introduce an interpretation of a theory of
functionality in the model Pw that provides a convenient way of restricting
attention to the functions (or other objects) that are total in the desired sense. The
theory of functionality is rather like proposals of Curry, but not quite the same for
important reasons as we will see.

In the theory of retracts of §§ 5 and 6, the plan of “restricting attention’ was
the very simple one of restricting to a subset. [t was made notationally simple as the
subsets in question eould be parameterized by continuous functions. The retrac-
tion mappings stand in for their ranges. Even better, certain continuous functions
act on these retractions as space-forming functors {such as & and >}, which gives
greater notational simplicity because one language is able to serve for several

560 DANA SCOTT

tasks. When we pass to the theory of total functions, this same kind of simplicity is
no longer possible owing to an increase in quantifier complexity in the necessary
definitions. {This remark is made definite below.) Another point where there is
some loss of simplicity concerns the representation of entities in Pw: subsets wiil
no longer be enough, since we will need quotients of subsets. This is not a very
startling point. Many constructions are affected in a natural way via equivalence
classes. An equivalence relation makes you blind to certain distinctions. It may be
easier also to remain a bit blind than to search for the most beautiful represernta-
tive of an equivalence class: there may be nothing to choose between several
candidates, and it can cost too much effort to attempt a choice. Thus our first
agreement is that for many purposes a kind of object can be taken as a set of
equivalence classes for an equivalence relation on a subset of Pa.

Because Pw is closed under the pairing function AxAy.(x, y), we shall construe
relations on subsets of Pw as subsets of Pw all of whose elements are ordered
pairs. That is, a relation A satisfies this inclusion:

(7.1) Ac{(x, y)lx, y e Pal.

DerFINITION. A (restricted) equivalence relation on Pw is a symmetric and
transitive relation on Pw.

Such relations are restricted because they are only reflexive on their
domains—which are the same as their ranges—and these are the subsets with
which the relations are concerned. We shall write x A y for (x, y)€ A and x: A for
" x A x. What we assume about these relations is the following:

{(7.2) xAy implies yAux

(7.3 xAy and yA:z imply xA:z

In case a is a retract, we introduce an equivalence relation to correspond:
(7.4) E,={{x, x){x:a}.

This is the identity relation restricted to the range of a. Such relations (for obvious
reasans) and many others satisfy an additional intersection property:

(7.5) xAy and xAz imply xA(yNz)

We shall not generally assume (7.5) in this short discussion, but it is often
convenient.

Each equivalence relation represents a space: the space of all its equivalence
classes. Such spaces form a category more extensive than the category of retracts
studied above. The familiar functors can be extended to this larger category by
these defimitions: ‘

(7.6) A= B={{Ax.ulx), Ax.vtxp|uix)Bu(y) whenever x A y},

7.7} CAxB={x,) (nyxAyand x' By},
17.8) A+ B =0, 10, (0, yilx AyYUL, a0 (1L i By'h

DATA TYPES AS LATTICES . 561

THEOREM 7.1 (The closure theorem). If A and B are restricted equivalence
relations, then so are A-» B, AxBand A+ B. We find.
(i) f:A-B iff f=Axf(x) and whenever x Ay, then f(x)Bf(y). in
particular:
Qi) iff: A—=>Bandx: A, then f(x) . B; furthermore,
(i) u:AXBiff u="_(uq u) and ug: A and u; : B;
(iv) u: A+ Biffeitheru={0, u)) and u,: A oru={1, u;) and u, : B.

It follows easily from 7.1 that the restricted equivalence relations form a
Cartesian closed category which—in distinction to the category of retracts—has
disjoint sums {(or coproducis as they are usually called in category theory). This
result is probably a special case of a more general theorem. The point is that Pa
itself is a space in a Cartcsian closed category (that of continuous lattices and
continuous maps) and it contains as subspaces the Boolean space and especialty its
own function space and Cartesian square. In this circumstance any such rich space
must be such that its restricted equivalence relations again form a good category.
Our construction is not strictly categorical in nature, as we have used the elements
of Pw and have relied on being able to form arbitrary subsets (arbitrary relations).
But a more abstract formulation must be possible. The connection with the
category of retracts is indicated in the next theorem.

THEOREM 7.2 (The isomorphism theorem}. If a and b are retracts, we have the
following isomorphisms and identities relating the spaces:

(i) Ea={(x, y)la(x)=a(y)};

(“) anb = Ea d Eb;

(111) Ea@b = Ea X Eb;

(iv) E,ap=E,+E,U{{(L. L),{T, T}

Part (iv} is not categorical in nature as it stands, but (it) amd (iii) indicate that
E is a functor from the category of retracts into the category of equivalence
relations that shows that the former is a full sub-Cartesian-closed category of the
latter. We cannot pursue the categorical questions here, but note that there are
many subcategories that might be of interest; for example, the equivalence
refations with the intersection property are closed under -, X, and +.

Returning to the question of total functions we introduce this notation:

(7.9} N={{n, n)incw}l

This is the type of the integers without and | and T, i.e., the total integers. We note
that:

(7.10) N = {u|u = {uo, uo), uo = int(uo), mid(up) = O},

Thus N is a B,-set. What is N+ N? We see:

(7.11) f:N-N ift fifamand f(n)e o whenevernec w.

This N = N is indeed the type of al total functions from w into w. It can be shown

that N — N is also a ‘B-set: good. But what is (N > N) - N? This is no longer a
B,-set, the best we can say is 1. By Theorem 7.1 it corresponds to the type of all

L
o
[£9]

DANA SCOTT

{extensional) continuous total functions from N - N into N. (The condition on A
and B on the right side of (7.6) makcs the concept of function embodiedin A > B
extensional, since the functions are meant 1o preserve the equivalence relations.)

A more precise discussion identifies N - N as a topological space, usually
called the Baire space. If we introduce the finite discrete spaces by:

(7.12) Ny ={(n, n)\n <k},

then N— N, can also be idcntified with a topological space, usually called the
Cantor space. In this identification we find at the next type, say either (N> N)-> N
or (N—N,)> N,, that elements correspond to the usual notion of continuous
function defined in topological terms. However. these higher type spaces are not
atall conveniently taken as topological spaces. Certain of them can be identified as
limit spaces according to the work of Hyland, and for these -, x, and + have the
natural interpretation. We cannot enter into thesc details here, but we can remark
that the higher type spaces become ever more complicated. Thus ({(N - N)—> N) -
N is a TI3-set and each - will add another quantifier to the definition, This is
reasonable, because to say that a function is total is to say that a// its values are
well-behaved. But if its domain is & complex space, this statement of totality is
even more complex. Dcspite this complexity, however, it is possible to sort out
what kind of mapping properties many functions have, We shall mention a few of
the combinators.

THEOREM 7.3 (The functionality theorem). The combinators 1, K, and §
enjoy the following functionality properties which hold for all equivalence relations
A, B C

() I-A-A;

(ii}) K: A>(B—+A);

(iii) 8:(A->(B->C)»((A=>B)>(A-0)).

Furthermore, these combinators are uniquely determined by these properties.

Let us check that S satisfies (i1). Suppose that:

fLA=(B->O)f.
We must show that:
S(fH(A > B)> (A > C)S(f).
To this end suppose that:
g{A->B)g'
We must show that:
S(fHg) (A=) S(f(g).
To this end suppose that:
rAx.

We must show that:
SO) (x)CS{f)N x).

DATA TYPES AS LATTICES 563

Now by definition of the combinator § we have:
S(NgHx) = flx)glx)),
S(NEHIXN = Flx)(g'(x')).
By assumptions on g, g’ and on x, x’, we know:
g(x)Bg'{x').
By assumptions on f, f and on x, x’, we know:
fx)B- Ofix).

The desired conclusion now follows when we note such combinations as 8(f) and
S(f)(g) are indeed functions. (We are using Theorem 7.1{i) several times in this

case.)
In the ease of the converse. let us suppose by way of example that k € Pw is

such that
k:A->(B->A)

holds for all equivalence relations A and B. By specializing to, say, the identity
refation we see that whatever a € Pw we take, both &k and &(a) are functions. To
establish that k = K we need to show that the equation:

k(a){b)=a
holds for all a, & € Pw. This is easy to prove, for we have only to set:
A={la @)} and B={(5 b)),

and the equation follows at once. Not all proofs are quite $o easy, however.
In the case of the combinator § it is not strictly true to say that Theorem
7.3(111) determines it outright. The exact formulation is this: if s € Pe is such that:

s(fy=sAxay.fx)y) and s((g)=s(fHArx.g(x)}
for all /, ¢ - Pw; and if
$ A= {B->-0)>((A=>B)»{A->On

forall A, B, C, then s =S. In othér words, we need to know that s converts its first
two arguments into functions with the right number of places before we can say

that its explicit functionality identilies us being the combinator §.
In Hindley, Lercher and Seldin (1972) they show that the functionality

property:

(7.13) AAgfeg (B>Ci= (A= B)-(A- Q).

follows from Theorem 7. L{ii) and Theorem 7.3ui) and (1i1) in view of the identity:
(7.14) Afrg.fo g =S(K(S)HK}

(see Appendix A}

564 DANA SCOTT

A more interesting result concerns the werarory defined as tollows:
(715} Z():/\fl\x.x.
(7.16) L. =AfAxftZ, filx)).
In other words, Z,.{ f)(x) = f"{x). These natural combinators can be typed very
easily, but Gordon Plotkin has shown that the obvious typing actually charac-
terizes them.

THEOREM 7.4 [The iterator theorem). The combinators L, enjoy the following
functionality property which holds for all equivalence relations A

(i) Z,.(A->A)= (A~ A).

Further, if any element z € Pw satisfies (i) for all A, then it must be one of the
iterators, provided that z(fY= z(Ax.f(x)) holds for all f = Puw.

That each of the Z, satisfies Theorem 7.4(1) is obvious. Suppose z were
another such element. Then clearly:

2= AfALZfHx).
Suppose fand x are fixed for the moment. Let:
A={{f"(x). " {x)n e w}.
where we can suppose in addition that:
f=Aeflx})

Then f: A+ A is clear, and so z{f): A > A also. But x: A, therefore z(fi{x) =
{"ix), for some n € w, because 2 f)(x): A. The trouble with this casy part of the
argument is that the integer n depends on f and x. What we must show is that it is
independent of f and x, then z = Z, will follow.

Plotkin™s method for this case is to introduce some independent successor

functions:

(7.17) J,:Ax.{(j,k4-1)|(j,k}"~_.t}.
Note that:
R _ {(jom) if;=7/"
(7.18) o, 0) {l et
It then follows that:
{(7.19) {o, Ucr,r)m((,r', OUG, M=, m)Uf, m).

Having these identities, we return to the argument.
From what we saw before, given j e w, there is an », such that:

RO =gl 0 =11 n)
Take any two 7, f = w. We also know there 1s an n< o where:

Ao, Ua WL YUy 00— (7 mi Uty),

DATA TYPES AS LATTICES 565

in view of (7.1Y). But since g, < g, Uv; and o, < g,U gy, we have:
(L UL mp e, npJ i)
[t folows that
m=n=n,
and so they are all equal. This determines the fixed n € @ we want.

Suppose that both f and x are finite sets in Pew. Choose j>max { fU x). Let A
this ime be the least equivalence relation such that:

fMixy AUt m)
holds for all tn € . We then check that:
AXfOA - A)AxfxNU o
Thercfore, we have:
TALAXNA » A)zAxflx) U ;).
and since x A 2 U(J, M, we get:
Z(Ax fl)x) A z((Axflxy Ua Hx UL O
Now there ts an integer s € w such that:
AU U, 00) = () U e, 0))
=T (XU, m),

where we have been able to separate f and ¢ because j is so large. But the
right-hand side must contain z(o)(j, Oy = (. n). Thus m and our fixed n are the
same. The other element

ziAxflx)ix) =[x
for some g € w. Thus we have:
Fix) Affx)yULlfn).

Again since j 1% so large, (. n) & f7(x). Thus by our choice of A we must bave
f7ix) = f"(x). This means then, since r is hxed. that for all finite f, x:

z(Ax flxNtxr = f"(x).

But then by continuity this equation holds [or all £, x. Ittollows now that z = Z,.. by
the proviso of the theorem.

These results bring up many questions which we leave unanswered here. For
example, which combinators {i.e., pure A-terms) have functionality as in the
examples above, and can we decide when a term is one such? In particular, can the
diagonal combinator Ax.x(x) be typed? (The argument of Hindley, etal. (1972, p.
81) is purcly forma! and does not apparently apply to the model.) What about
tlerms in LAMBDA bevond the pure A -calculus?

566 DANA SCOTT

Appendix A. Proofs and technical remarks.

For Section 1. If we give the two-point space {1, T} the weak T)-topology
with just three open sets: &, {T}, {L, T}, we have what is called the Sierpinski
space and its infinite product { L, T}* with the product topology is the same as Pw.
The finite sets e, € Pw correspond exactly to the usual basic open sets for the
product. For those familiar with such notions, this well-known observation makes
many of the facts mentioned in this section fairly obvious. From any point of view,
Theorem 1.1 and the remarks in the following paragraph are simple exercises.

Proof of Theorem 1.2. Equation (i) as a functional equation comes down to

{m|de, = x.me fle,)} = fix),

which is just another way of writing the definition of continuity. Thus it is indeed
true for all x. Next, inclusion (ii) means that if (n, m) € i, then e, S e,.(k, m)e u
Clearly all we need to do is take k = n. If we also want the converse inclusion to
hold, then what we need 1s condition (ii).

Proof of Theprem 1.3, Substitution is generalized composition of functions of
many variables with all possible identifications and permutations of the variables;
however, as we are able to define continuity by separating the variables, the
argument reduces to a few special cases, The first trick is to take advantage of
monotonicity. Thus, suppose f(x,) is continuous in each of its variables. What
can we say of f(x, x), a very special case of substitution? We calcuiate

flx, xy={J{fen, x)|en & x}
={fle,. emlles < x, em <= x}.
Then if we think of e, = e, U e,, and realize that f(e,. e,.) = fles. er), we see that
f(x, x) = U{flew e dex < x}.

This means that f(x, x) is continuous in x. This same argument works if other
variables are present, as in the passage from f(x, y, z, w) to f(x, x, z, w). When an
identification of more than two vanables is required, as from f(x, vy, z, w) to
Ax, x, x, x), the principle is just applied several times.

Finally to show that f{g(x, v), h(y, x, ¥)) is continuous, it is sufficient to show
that f(g(x, y), h{z, &, v))is continuous in each of its variables separately. By simply
overlooking the remaining variables, this comes down to showing that f(g(x)) is
continuous if f and g are. But the proof for ordinary composttion is very easy with
the aid of the characterization theorem (Theorem 1.1).

Proof of Theorem 1.4. This well-known fact holds for continuous functions on
many kinds of chain-complete partial orderings; but Pe illustrates the idea well
enough. Suppose f had a fixed point x =f(x). Then since @ cx and f is
monotonic, we see that f(@) ¢ f(x) = x. But then again, f(f(iZ)) < f(x)=x; and so
by induction, f"(&) € x. This proves that fix(f) < x: and thus if fix(f) is a fixed
point, it must be the least one. To prove that it is a fixed point, we need a fact that
will often be useful; '

LemMMa. If x, © x,.+y for all n, and if f is continuous, then

Flxne wh={_{fixa)|n e w}.

DATA TYPES AS LATTICES 567

Proof. By monotonicity, the inclusion holds in one direction. Suppose e, =
fl{x.|n € w}). Then by Theorem 1.1 we have e, <f(e,) for some e, &
({x.|n € w}. Because e, is finite and the sequence is increasing, we can argue that
ex C x, for some n. But then f{e,) < f(x,). This shows that e,, <|_J{ f(x.)|n € @}
and proves the inclusion in the other direction. (Exercise: Does this property
characterize continuous functions?)

Proof of Theorem 1.4 concluded. Noting that f*(J)c f* “1(@) holds for all n,
we can calculate:

flx() = A (@Nne o} =" (D)n € w).

But this is just fix(n), since the only term left out is f%(2) = 2.

Proof of Theorem 1.5. The function f is clearly well-defined even when ye Y
has a neighborhood U where XN U= in that case f{y) = w by convention on
the meaning of () in Pw. In case x € X, it is obvious that f{x)< f(x). For the
opposite inclusion, suppose that m € f(x). Because f is continuous and {z|m € z} is
open in Pw, there is an open subset V' of X such that x'e V always implies that
me f{x'}. But X is a subspace of Y, so V=X U for some open subset U of Y.
Thus we can see why m € f(x). It remains to show that f is itself continuous.

We must show that the inverse image under f of every open subset of Pw is
open in Y. But the open subsets of Pw are unions of finite intersections of sets of
the form {z|m € z}. Thus it is enough to show that {y|m € f(y)}is always openin Y.
But this set equals {_J{U]m e ({f(x)|xe XN U}}, which being a union of open
sets is open. Note that what we have proved is that £ is continuous no matter what
function f is given; however, if f is not continuous, then f cannot be an extension
of f.

For readers not as familiar with general topology we note that the idea of
Theorem 1.5 can be turned into a definition. Suppose X < Pw is a subser of Pew. It
becomes a subspace with the relative topology. What are the continuous functions
f: X > Pw? From Theorem 1.5 we see that a necessary and sufficient condition is
that the f: Pw - Pw be an extension of f. Thus for x € X we can write the equation

f(x) = f(x) as a biconditional:
me f(x) it Fe,cxV¥x'eXle,cx implies m e f(x)],
which is to hold for all mew. This form of the definition of continuity on a

subspace 1s more complicated than the original definition, because in general
e, & X and we cannot write f(e,).

Proof of Theorem 1.6. What T, means is that every point of X is uniquely
determined by its neighborhoods. Now £(x) just tells you the set of indices of the
(basic) neighborhoods of x. Thus it is clear that ¢ is one-to-one. To prove thatitis
continuous, we need only note:

{x|neelx}}=U,

which is always open. To show that £ is an embedding, we must finally check that
the images of the open sets U, are open in £{.X). This comes down to showing:

e(U)=e{X){z|ne 2},

which is clear.

568 DANA SCOTT

For Section 2. Equation {2.1) defines a continuous function because it is a
special case of Theorem 1.5, where we have been able to simplify the definition
Into cases because w Is a very elementary subset of Pe. Equation {2.2) gives a
continuous function since the definition makes p distributive, as remarked in the
text for finite unions, byt it is just as easy to show that pj distributes over arbrtrary
unions, The difference between a continuous f and a distributive p is this: to find
m € f(x) we need a finite subset e, = x with m € f(e,); howpver, tofind m ¢ p(x) we
need only one element n € x with m ¢ p{{n}) = p(n) = p(n). Continuous functions
are generalizations of distributive functions. The generality is necessary. For
example, in {2.3} we see another function x; y distributive tn each of its variables;
but take care: the function x; x is not distributive in x-—there is no closure under
substitution. This is just one reason why continuous functions are better, Another
good example comes from (2.4) if you compare the functions x, x +x, x + x+x,
ete.

Equations (2.5)-(2.7) are very elementary, Note that z = x, visdistributive in
each of its variables. We could write: z 2 x, y=pj(z}, where pi(y=x and
p{n+ 11 =y, to show that it is distributive in 2.

Proof of Theorem 2.1. If we did not use the A-notation, then all LAMBDA-
definable functions would be obtained by substitution from the first five (cf. Table
2). Since they are all seen to be continuous, the result would then follow by the
substitution theorem (Theorem 1.3). Bringing in A-abstraction means that we
have to combine Theorem 1.3 with this fact:

Lemma. If f(x, v, 2, - *) is a continuous function of all its variables, then
Ax.flx, y, z,- - +) is a continuous function of the remaining variables.

Proof. 1t is enough to consider one extra variable. We compute from the
definition of A in Table 2 as follows:

Axflx, y)={(n, mme fie., y)}
={(n, m) e, c y.me fle,, e}
= J{(n, m}im e fle,, e)lec < v}
= { HAxf(x, ex)ec < v}

Thus Ax.f(x, y} is continuous in y.

Proof of Thearem 2.2. The reason behind this result is the restriction to
continuous functions. Thearem 2.1 shows that we cannot violate the restriction by
giving definitions in LAMBDA, and the graph theorem (Theorem 1.2} shows that
continuous functions correspond perfectly with their graphs.

The verification of {a) of Table 1 is obvious as the "x' in "Ax.7’ is a bound
variable, (Care should be taken in making the proviso that 'y’ is not otherwise free
in 7.) The same would of course hold for any other pair of variables. We do not
bother very much about alphabetic questions.

The verification of {8) is just a restatement of Theorem 1.2(1). Let 7 define a
function f (of x). Then by definition f(x) = r and Ax.7 = graph(f). Also fun(u}x)
in the notation of Theorem 1.2 is the same as the binary operation utx) in the
notation of LAMBIDA. Thus in Theorem 1.2(i) if we apply both sides to v we get

nothing else than (8).

DATA TYPES AS LATTICES 569

Half of property (¢) is already implied by (8): the implication from left to
right. (Just apply both sides to x.) In the other direction, ¥.x.7 = o means that 7 and
o define the same function of x; thus, the two graphs must be equal.

Remarks on other laws. The failure of (n) simply means that not every set in
Pw s the graph of a function. Condition (i1} of Theorem 1.2 isequivalent to saying
that u = Ax.u(x), in other words, u is the graph of some function if and only if it is
the graph of the function determined by .

Law (u) is the monotone property of application (in both variables); there-
fore, (u) and (£) together imply (£*) from left to right. Suppose that Yx.r = o; thea
clearly:

{{n, m)|me rle,/xTh<{in, m)ime ofe/ x]},

which gives (£*) from right to left.

There are, by the way, other laws valid in the model, as explained in the later
resujis.

Proof of Theorem 2.3. This is a standard result combinatory logic. We have
only to put:

U=AXAX; AX L flxg, X0, X)

That is, we use the iteration of the process of forming the graph of a continuous
function. As each step (from the inside out) keeps everything continuous, we are
sure that the equation of Theorem 2.3 wilt hold for iterated application.

Proof of Theorem 2.4. This can be found in almost any reference on
combinatory iogic or A-conversion. The main idea is to eliminate the A in favor of
the combinators. The fact that we have a few other kinds of terms causes no
problem if we intraoduee the corresponding combinators. The method of proof is
to show, for any LAMBDA-term r with free variables among xq. x;, -+ *, Xn.1,
that there is a combination y of combinatoars such that:

T=ylxo)lxg - - ().

This can be done by induction on the complexity of .
Proof of Theorem 2.5. The well-known calculation shows that we have from
(2.8):

Y(up=(Ax.u{x(x))HAxulx(x)))=1{Y(u).

Thus Yiu) is a fixed point of the function u(x). What is necded is the proof to show
that it is the least one.

Let d = Ax.u{x(x)} and let a be any other fixed point of u(x). To show, as we
must, that d(d)< a. it is enough to show that e, = 4 always implies ¢;(e,) S a;
because by continuity we have:

T dd)=_Kelee < d}.

B3y wav of induction, suppuse that this implication holds for all a <Z L Assume that
¢, < d and that m < e/(e;). We will want to use the induction hypothesis to show
that m < a. By the definition of application. there exists an integer a such that
(n,m)e e and ¢, © e But n Z(n, mb<{, and e, € d. By the hypothesis, we have
e, e,) € a. Note that (n, m) € d also, and that d is defined by A-abstraction; thus,

570 DANA SCOTT

medie,) by definition. By monotonicity u(e,ie,)) S ula)= a; therefore me a.
This shows that ¢,(¢;) < g, and the inductive proof is complete.

Remark. Note that we did not actually use the fixed-point theorem in the
proof, but we did use rather special properties of the pairing (n, m) and the finite
sets ¢,

Equation (2.9) is proved easily from the definition of application; indeed t(x)
is distributive in u. Equation (2.10) is proved even more easily from the definition
of A-abstraction. For (2.11), we see that the inclusion from left to right would hold
in general by monotonicity. In the other direction, suppose m € f(x) 1 g{x). Then
for suitablc k and { we have (k, m)<f and e, < x, also ({, m)e g and ¢, = x. Let
e, = ¢, Ue < x Because f and g are graphs, we can say (n, m)< f{1g; and thus
me(fN g)(x). This is the only point where we require the assumption on graphs.
Equation (2.12) foliows directly from the definition of abstraction. For (2.13),
which generalizes (2.9), we can also argue directly from the definition of applica-
tion. In the case of intersection it is easy to find u, such that 0€ u,(T) for all n, but
(MWNunnew}= 1.

Equation (2.14) is obvious because the least fixed point of the identity
function must be 1. A less mysterious definition would be L =0-1, but the
choscn one is more *‘logical™.

For (2.15) we note that by definition:

Az.0={(n, m)|me0}={(n, 0)|ncw}.

Because 0= (0, 0) and 1= (1, 0), we get the hint. Equation (2.16) makes use of U
for iteration. If x =0 (x + 1), then x must contain all integers; hence x =T. The
iteration for (11n{2.17) is more complex. The fundamental equation we need is:

xNy=x2(y=20, 1), {(x—DNy—1)+ 1.

This says to compute the intersection of two scts x and y, we first test whether
0c x. If so, then test whether O € y. 1f so, then we know 0 x M y. In the meantime
we begin testing x for positive elements. 1f we could compute (by the same
program) the intersection {x — 1) (y—1), then we would gct the positive ele-
ments of the intersection x 1y by adding one. This is a very slow program, but we
can argue by induction that it gives us all the desired elements. Of course, (s the
least function satisfying this equation.
In the case of (2.18) it is clear that we have: ,

Avl={n m)mel}=1;
AT ={(n,m)meT}=T;

because in the last every integer is a (number of a) pair. Suppose now that a = Ax.a
and a # T. Let k be the least integer where k£ a. Now k = (n, m) for some n and
m. If me a, then (n, mjea =Ax.a; hence m# a. But m=4k and k is minimal;
therefore, m = k. But this is only possible if k = m = n = 0. Suppose further a # L
and that [is the least integer where /€ a. Now [= (i, j)withjeaand j=/ Soj=1
and ! =j=i=0. This contradiction proves thata=lora=T.

Equations (2.19)-(2.22) are definitions, and (2.23) is proved easily by
induction on i. Equation (2.24) is also a defimtion. To prove (2.25) we note that

ES AS LATTICES 571

{u,|i € x} is continuous (even: distributive) in u and x. Thus, there is a continuous
function seq{u)(x) giving this value. What is required is to prove that it is
LAMBDA-definable. We see:

seq(u)(x)={neugl0ex}U{mel Huli+1lex}Thk+1ex}
=X 2 ug, seq(At.u,, J(x—1).

that is, seq satisfies the fixed-point equation for §. Thus $ c seq. To establish the
other inclusion we argue by induction on ¢ for:

Vx, u[ic x=>u, c$(ui(x)]
This is easy by cases using what we are given about § in (2.24); it implies that
seq < §. Note that:
Ancwr=Ancwo It ¥Ynecwr=o

For primitive recursive functions, even of several variables, there is no
trouble in transcribing into LAMBDA-notation any standard definition—-
especially as we can use the abstraction operator An € w. If we recall thateveryr.e.
set a has the form:

a={m/3npn)=m+1},

where p is primitive recursive, we then see that a = §(7)— 1. This means that
every r.e. set is LAMBD A-definable.
Proof of Theorem 2.6. In case of a function of several variables, we remark:

AxoAx, » - Axo flxe)(x) - ()
={lnp, (A1, - (e om) - W) me fle, Nen,d -+ - (eq)
This makes the implication from (i) to (ii} obvious. Conversely, if a graph uisr.e.,
then from the definition of application we have:
me ule,le,) ey it (noln, (oo (meum) - New

which isr.e. in m, nig, 1y, - * -, ny_;. Therefore (ii and {ii) are equivalent.

We have already proved .that (ii) implies (iii}. For the converse we have only
toshow that all LAMBDA-definable sets are r.e. For this argument we could take
advantage of the combinator theorem, (Theorem 2.4). Each of the six com-
binators are r.e., and there is no problem of showing thatif « and x are r.e., then so
is u(x); because it is defined in such an elementary way with existential and
bounded universal number quantifiers and with membership in « and in x
occurring positively. Explicitly we have:

meu(xy ff Je,cx(n, meu
iff InV¥Ym<n[[mce, implies me x]and (n, m)e ul.

For Section 3. For the proof of (3.1} we distinguish cases. Incase x=y =2,
we note that cond(2 }(L)= L and L(1}= 1, sothe equation checks in this case.

Recall:

cond(x)(y)=Az.z2x, y={(n,m)|mele, 2 x, y)}.

572 DANA SCOTT

We can show (@ cond{x)y). Note first 0={n, m) iff n=0=m; furthermore,
ep=_Land Lox y=1;but0g L. Alsowe have:

cond(x)(v)(0)=x and cond(v}y)(1)=yv;

so if either x # L or y# 1, then cond{x)(y}# L. In this case, cond{x)(y) must
contain positive elements. The result now follows.

Theorem 3.1 is obvious from the construction of G, because G{G) = (} and
G(0)(0) = suc, and so the G(0)(s) give us all the other combinators.

The primitive recursive funetions needed for (3.4)-(3.6) are standard. Equa-
tion (3.7} 1s a definttion—if we rewrote it using the Y-operator--and the proof of
Theorem 3.2 is easy by induction. There is also no difficulty with (3.8}-(3.12). The
idea of the proof of Theorem 3.3 is contained in the statement of the theorem
itseif. The proof of Theorem 3.4 is already outlined in the text,

Proof of Theorem 3.5. The argument is essentially the original one of
Myhili-Shepherdson. Suppose p is computable, total and extensional. Define:

g =1{(j, m)|m e val(p(fin(/}))},
where fin is primitive recursive, and for all j € w:
valifin(/)) = ¢,
Certainly g € RE, and we will establish the thcorem if we can prove “‘continuity™:
vall p(n)} ={_l{val(p(fin{j))}e, < val(n)j.

We proceed by contradiction. Suppose first we have a k< val(p(n)), where
k& val{p(fin(j))) whenever ¢, < val(n). Pick r to be a primitive recursivc function
whose range is not recursive. Define s, primitive recursive, so that forall me o

val(s(m))={jeval(n)jme (r(]i = 1}

The set val(n) must be infinite, because p is exiensional, and if val(n)=e, =
val{fin{ /)), then k¢ val{ p(fin{f))} = val{ p(n)). Note that val{s{m}), as a subsct of
the infinite set, is finite if m is in the range of r: otherwise it is equal to val(n).
Again by the extensionality of p we sce that k € valép(s(m))) if and only if m 15 not
in the range of r. But this puts an r.e. condition on m equivalent to a non-r.e.
condition, which shows there is no such k.

For the second case suppose we have a k¢ val{ p(n)), where for a suitable
¢; < val(n) it is the case that & € val{ p{fin¢))}). Define:

t=Amewe,U(valim) = val(rnj, val(n}).
We have:
e if val(sr) = L,
t(m):{ .
val{»}) if not.
We choose u primitive recursive, where:
val(u(m)}) = tim).

By the choice of &, and by the extensionality c)fp, and by the fact thal val(n) # ¢,

DATA TYPES AS LATTICES 573

we have:
keval(p(uim))) iff tim)=e¢
iff vallm)= L.

But this is impuossible, since one side is r.e. in m and the other is not by Theorem
3.4, As both cases lead to contradiction, continuity is established and the proof is
compiete.

Proof of Theorem 3.6, Consider.a degree Deg(a). This set is closed under
application, because:

u(a)(v(a)) =S(u)(v)(a),

and S(u)(v}is r.e. if both u and v are. Note that it also contains the element G;
hence, as a subalgebra, it is generated by a and G.

Let A be any finitely generated subalgebra with generators ag, a3, - - -, dn-;.
Consider the element a=cond({ag, a}, -, a,-))(G). As in the proof of
Theorem 3.1, a generates A under application. It is then easy to see why
A =Degla).

Proof of Theorem 3.7. We first establish (3.16) and (3.17):

LegoR=Ax.L(al0, x)))
=Ax.L{1, u, x})
=Ax.u(x).

do 0o R=Ax.id(((0, x)))
=Ax.a4({l, v, x))

= Ax.u(v)(x)

= u{v).

Now starting with any u< RE, we write u=r, where 7 is formed from G by
application alone. By (3.17), we can write @ in terms of G and R usingonlye. That
is, & belongs to a special subsemigroup, [n view of {3.16), we find that Ax.u(x)
belongs to that generated by R, L and G. But

REMNFUN={Ax.u(x)ue RE}

and so the theorem is proved.

For Section 4. The notion of a continuous lattice is due to Scott {1970/71)
and we shall not review all the facts here. One special feature of these lattices is
that the lattice operations of meet and join (M and |)) are continuous {that is.
commute with directed sups). As topological spaces, they can be characterized as
those Ty-spaces satistying the extension theorem (which we proved for Pw in
Theorem 1.5).

Proof of Theorem 4.1. Consider a continuous function a, and let A=
{x|x = a(x)}. By the fixed-point theorem (Theorem 1.4) we know that A is
nonempty and that it has a least element under <. Certainly A is partially ordered
by <; further, A is closed under directed unions but not under arbitrary unions.

574 DANA SCOTT

That is, A is not a complete sublattice of Pw with regard 1o the lattice operations
of Pw, but it could be a complete lattice on its own—if we can show sups exist.
Thus, let S < A be an arbitrary subset of A. By the fixed-point theorem, find the
least solution to the equation:

y={J{xixe StUaly).

Clearly x c y for all x€ §; and so x =al(x) < a(y), for all x & S. This means that
y=aly), and thus ye A. By construction, then, y is an upper bound to the
elements of §. Suppose z € A is another upper bound for $. It wili also satisfy the
above equation; thus y < z, and so y is the least upper bound. A partially ordered
set with sups also has infs, as is well known, and is a complete lattice.

Suppose that a is a retract. We can easily show that the fixed-point set A
(with the relative topology from Pw) satisfies the extension theorem. For assume
f:X—>A is continuous, and X< Y as a subspace. Now we can also regard
f: X = Pw as continuous because A is a subspace of Pw. By Theorem 1.5 there is
an extension to a continuous f: Y- Pw. But then a © f: Y > A is the continuous
function we want for A, and the proof is complete.

The space of retracts. Let us define;

RET={ala =a-a)j,

the set of all retracts, which is a complete lattice in view of Theorem 4.1. It will be
proved to be not a retract itself by showing it is not a continuous lattice; in fact, the
meet operation on RET is not continuous on RET.

The proof was kindly communicated by Y. L. Ershov and rests on distinguish-
ing some extreme cases of retracts. Cail aretract a nonextensive if for all nonempty
finite sets x we have x& a(x). Call a retract b finite if ali its values are finite (i.e.,
b(T}is finite). If a is nonextensive and & is finite. then Ershov notes that they are
“orthogonal” in RET in the sense that ¢ =a 1 b= 1. The reason is that, since
c < b, itis finite; but ¢ < g, too, so ¢(x¥) < a(x) for all x. Because ¢ is a retract, we
have ¢(x})=c{c({x}) = alclx)). As c{x) is finite and a is nonextensive, it follows
that c(x} =1 for all x.

-This orthogonality is unfortunate, because consider the finite retracts b, =
Ax.e,. We have here a directed set of retracts where | _j{b,\nc w}=Ax.T=T.1f M
were continuous, it would follow that for nonextensive a:

a=a1T=a M U{b.|lnecwt={aMbncw}=1,
showing that there are na nontrivial such a. But this is not so.

Let « be a strict linear ordering of w in the order type of the rational
numbers. Define:

a(x)={m[Anc xr.m« n}.

We see at once that a is continuous; and, because <« is transitive and dense, a is a
retract. Since <« is irreflexive, it is the case for finite nonempty sets x that
max.. {x) & a{x); hence. a is nonextensive. As a(T)=T, we find @ # L. The proof
is complete.

Note that there are many transitive, dense, irreflexive relations on w, so there
are many nonextensive retracts. These retracts, like a above, are distributive. A

DATA TYPES AS LATTICES 575

nondistributive example is:
a'={m|3n, "'ex.n<m« n’}.

Many other examples are possible.

Proof of Theorem 4.2. The relation o< is by the definition of retract reflexive
on RET; it is also obviously antisymmetric. To prove transitivity, suppose
a o ha& ¢ then

a=aoh=qaohoc=a-c

Similarly, @ = c » a. Note, by the way, that a o b implies that the range of a is
included in that of b; but that the relationship a < 4 does not imply this fact. The
relationship a & b, however, is stronger than inclusion of ranges.

Proofs of Theorems 4.3-4.5. We will not give full details as all the parts of
these theorems are direct calculations. Consider by way of example Theorem
4.3(i). We find:

(@ b)olaosb)=Aubo{beusalea
=Auwbcuca
=ao> b,

provided that @ and b are retracts. A very similar computation would verify part
{iv), if one writes out the composition:

(@osb’)o(for fle(bosa’)
and uses the equations:
f=befoa and f=h<foq.

The main point of the proof of Theorem 4.6 has already been given in the
text,

For Sections 5-7. Sufficient hints for proofs have been given in the text.

Appendix B. Acknowledgments and references. My greatest overall debt is
to the late Christopher Strachey, who provided not only the initial stimulus and
continuing encouragement, but also what may be termed the necessary irritation,
Not being a trained mathematician, he often assumed that various operations
made sense without looking too closely or rigorously at the details. This was
particularly the case with the A-calculus, which he used as freely as everyday
algebra. Having repeatedly and outspokenly condemned the A-calculus as a
formal system without clear mathematical foundations, it was up to me to provide
some alternative. The first suggestion was a typed system put forward in Scott
{1969) (unpublished, but later developed as LCF by Robin Milner and his
collaborators). Experience with the type structure of function spaces, which had
come to my attention from work in recursion theory by Nerode, Platek and others,
soon convinced me that there were many more similar structures than might at
first be imagined. In particular, a vague idea about a space with a *‘dense” basis led
quickly to the more direct construction, by inverse himits, of function spaces of
“infinite” type that were very reasonable models of the classical “type-free”

576 DANA SCOTT

A-calculus (as well as many other calculi for other “*reflexive domains). The detatls
can be found in Scott (1971) and Scott (1973b). Algebra was justified, but the
work in doing so was tiring and the exact connections with computability were not
all that easy to describe.

1n the meantime Plotkin (1972) contained suggestions for a *‘set-theoretical™
construction of models, but not much notice was taken of the plan at the time it
was circulated—perhaps owing to a fairly sketchy presentation of the precise
semantics of the A-calculus. The present paper evolved particularly from the
project of making the connections with ordinary recursion theory easier to
comprehend, since a satisfactory theory of computability and programming
language semantics had to face this problem. The idea of using sets of integers fora
model was first put forward by the author at a meeting at Oberwolfach at Easterin
1973 and in a more definitive form at the Third Scandinavian Logic Symposium
shortly thereafter (see Scott (1975a) which is a preliminary and shorter version of
this paper). The author gave a report on the model at the Bristol Logic Collo-
quium in July 1973, but did not submit a paper for the proceedings. A series of
several lectures was presented at the Kiel Logic Colloquium in July 1974,
covering most of the present paper which was distributed as a preprint at the
meeting. The text {but unfortunately neither acknowledgments nor references)
was printed in the proceedings (Springer Lecture Notes in Mathematics, vol. 499).
In 1973 after experimentation with definitions somehow forced him into the
definition of the model, the author realized that it was essentiaily the same as
Plotkin's idea and, even more surprising, it was already implicit in a very precise
form in much earlier work by Myhill-Shepherdson {1955) and Friedberg-Rogers
(1959) (see also Rogers (1967})) on enumeration operators. What had happened
was that Plotkin had not made enough tie-up with recursion theory, and the
recursive people had not seen the tie-up with A -calculus, even though they knew
that one could do a lot with such eperators. Actually, if the author had taken his
own advice in 1971 (see Continuous lattices, Scott (1972a, end of § 2)), he would
have seen that many spaces have their own continuous-function spaces as
computable retracts, a fact which is just exactly the basis for the present construc-
tion; but instead he said: *‘it[the representation as a retract] does not seem to be of
too much help in proving theorems.”

Over the years in work on A-calculus and programming language semantics.
personal contact and correspondence with a large number of people has been very
stimulating and helpful. 1 must mention particularly de Bakker. Barendregt,
Bekic, Blikle, Bohm, Curry, Egli, Engeler, Ershov, Goodman, Hyland, Kreisel,
Landin, Milne, Milner, Mosses, Nivat, Park, Plotkin, Reynoids, de Roever,
Smyth, Stoy, Tang, Tennent, Wadsworth. (I apologize to those I have inadver-
tently left out of this list.) In the reference list a very imperfect attempt has been
made to collect references directly relevant to the topics of this paper as well as
pointers to related areas that may be of inspiration for future work. The list of
papers is undoubtedly incomplete, and inaccurate as well, but the author hopes it
may be of some use for those seeking orientation. It is a very vexing problem to
keep such references up to date. Some remarks toward references and acknow-
ledgments on the specific results in the various sections follow. Felipe Bracho
deserves special thanks for help in the preparation of the final manuscript and with
the reference fist.

DATA TYPES AS LATTICES 577

Secrion 1. The relevance of the “positive” or “weak™ topology first came to
the author’s attention through the work of Nerode (1959). Continuous functionals
were studied by Kleene and Platek and many other researchers in recursion
theory. Monotonicity was particularly stressed by Platek (1964). The graphs and
the definition of application are used in the same way by Plotkin (1972) and
Rogers (1967, see p. 147). The fixed-point thearem is very well-known. See, e.g.,
Tarski (1955). The extension theorem was formulated by the author, but it is very
similar to many results in point-set topology; it was used in a prominent way in
Scott {1972a) to chara_cterize continuous lattices. The embedding theorem is
well-known; see, e.g., Cech (1966).

Section 2. The ianguage LAMBDA is due to the author. Note in particular
that Plotkin and Rogers do not define A-abstraction, even though they know of
the existence of many combinators and could have defined abstraction if anyone
had ever asked them. In particular, they understood about conversion in many
instances. The reduction and combinator theorems are well known from com-
binatory logic and can be found in any reference. The first recursion theorem 1s
basic to all of elementary recursion theory; what is new here is the adaptation of
David Park’s proof {Park (1970c), unpublished) to the present model to show that
Curry’s “paradoxical” combinator actually does the recursion. The definition of
computability and the definability thearem tie up the present theory with the older
theory of enumeration operators.

Section 3. The idea of reduction to a few combinators is an old one in
combinatory logic; the author only needed to find a small trick (formula (3.1)}
which would take care of the arithmetical combinators. The ideas for the Gdodel
numbering and the proof of the second recursion theorem are standard, as is the
proof of the incompleteness theorem. It only looks a little different since we
combine arithmetic with the ““type-free’ combinators. The proof of the complete-
ness theorem for definabitity (Theorem 3.5) is taken directly from Myhill-
Shepherdson (1955). The author is indebted to Hyland for pointing this out. The
subalgebra theorem is an easy reformulation of talk about enumeration degrees:
for more information on such degrees consult Rogers (1967), Sasso (1975), and
also Gutteridge (I971). The area is underdeveloped as compared to Turing
degrees. Semigroups of combinators have been discussed by Church and Bohm.

Section 4. The notion of a refract is common in topology, but the idea of using
them to define data types and of having a calculus of computable retracts is
original with the author. Of course the connection between lattices and fixed
points was knowr; more about lattices is to be found in Scott (1972a). The various
operations on retracts and the idea of using fixed-point equations to define
retracts recursively are due to the author. Applications to semantics were given in
Scott (1971) for Aow diagrams, and this has been followed up by many people. in
particular Goguen, et al. (1975) and Reynolds {1974b).

Section 5. Algebraic lattices have been known for a long time (see Gratzer
{1968)) and also closure operations (see, c.g., Tarski (1930)). [t was Per Martin-
Lof and Peter Hancock who suggested that they might form a “‘universe™; in
particular the construction of V is essentially due to them. The limit theorem is
due to the author.

Section 6. More information on the classification by notions in descriptive set
theory of various subsets can be found in the work of Tang who also makes

578 DANA SCOTT

connections with the work of Wadge. The various normal forms for the classes of
sets (e.g., Table 3) are due to the author.

Section 7. Functionality has been studied for some time in combinatory logic
(see, ¢.g., Hindley, et al. (1972) for an introduction). The author had the idea to
see what it all means in the models; there are, of course, connections going back to
Curry and Kleene, with functional interpretations of intuitionistic logic (cf.
Theorem 7.3, which is well-known). The proof of Theorem 7.4 js due to Plotkin.

Appendix A. After the main body of the paper was written, Y. L. Ershov
solved the author’s problem about the space of retracts. Ershov’s proof is
presented after the discussion of the proof of Theorem 4.1 in this Appendix. Quite
independently Hosono and Sato {1975} found almost exactly the same proof.
Before corresponding with Ershov, the author was totally unaware of the connec-
tions with and the importance of Ershov’s extensive work in “numeration’ theory
(see citations in the reference list).

Appendix B. All defects are due to the author.

REFERENCES

L. AIELLO, M. AIELLO AND R. W. WEYHRAUCH (1974), The semantics of PASCAL in LCH,
Artificial Intelligence Lab. Memo. AIM-221, Stanford Univ., Staniord, Calif.
S. ALAGIC{1974), Categorical theory of iree processing, Catcgory Theory Applied (o Computation and
Control, E. Manes, ed., Univ. of Mass., pp. 80-9%,
M. A. ARBIB AND E. G. MANES (19744), Fuzzy marphisms in automaia theory, Category Theory
Applied to Computation and Control, E. Manes, ed., Univ. of Mass., pp. 48-105.
(1974b), Caregorists’ view of automata and systems, Carcgory Theory Applied 10 Computation
and Control, E. Manes, ed.. Univ. of Mass., pp. 62-79.
—— (1974c), Basic conceprs of category theory applicable 10 computation and conrol. Category
Theory Apphed to Computatien and Contral, E. Manes, ed., Univ. of Mass., pp. 2-41.
J. W. DE BAKKER (1971a), Recursive procedures, Mathematical Centre Tracts, vol, 24, Amsterdam.
{197 1b), Recursion, induction and symbol manipulanion, Proc. MC-25 Informatica Symposium,
Mathcmatical Centre Tracts, vol, 38, Amsterdam.
). W.DE BAKKER AND W. P. DE ROEVER (1972), A Calculus for Recursive Program Schemes, Proc.
IRIA Collog. on Automata, North-Holand, Amsterdam.
}. W. DE BAKKER AND D. SCOTT (1969), A theory of programs, Unpublished notes, IBM Semuinar,
Vienna, 1969.
J. W. DE BAKKER (1969), Semaniics of Programming Languages. Advances in Information Systems
Science, vol. 2, Plenum Press, New York.
J. W. DE BAKKER aNn L. G. 1., MEERTENS {1%73), On the completeness of the inductive assertion
method, Mathematical Centre Rep. IW 12/72, Amsterdam.
——— (1974). Fixed points in programming theory, Foundations of Computer Science, J. W, de
Bakker, ed., Mathemalical Centre Tract, vol. 63, Amsterdam.
H.F. BARENDREGT (1971}, Some extensional term models for combinatory logics and A -calculi. Ph.D.
thesis, Univ. of Utrecht.
H. BEKIC (1971), Towards a mathematical theary of processes, Tech. Rep. TR 25.125. IBM Lah.,
Vienna.
(1969), Definable operations in general algebra, and the theory of auiomata and flowcharrs,
Rep., IBM Lah., Vienna.
H. BEKIC ET AL. (1974), A formal definmon of a PLJ | subset, Parts fand 1, Tech. Rep. TR 25,139,
IBM Lab., Vienna.
R. S. BirD (1974), Unsolvability of the inclusion probiem for DBS schemas, Rep. RCS22, Dept. of
Computer Sci., Univ. of Reading.
G. BIRKHOEF {1967), Lattice Theory. 3rd ed., Colloguium Publications, vol. 25, American
Mathematical Society, Providence. R 1.

\

DATA TYPES AS LATTICES 579

-~

A-BLIKLE (1971), Afgorithmically deﬁnabza funcnons: A contribution towards the semantics of
programming languages, Dissertatiofes Math. Rozprawy Mat., 5.

—— (1972), Equational languages, Information Control, pp. 134-147.

—— 9731, An algebraic approach 1o programs and their computations, Proc. Symp. and Summer
School on the Mathematical Found@Uons of Computer Sci., High Tatras, Czechostovakia.

A. BLIKLE AND A. MAZURKIEWICZ { 19ﬂ}. An algebraic approach 1o the theary of pragrams,
algorithms, languages and recursiveness, Prac. Internat. Sympos. and Summer School on the
Mathematical Foundations of Computer Sci., Warsaw—Jablanna.

A. BLIKLE (1974}, Prouing programs by sets of computations, Proc. 3rd Symp. on the Mathematical
Foundation of Computer Sci., Jadwisin, Poland; Lecture Notes in Computer Science,
Springer-Verlag, Beriin, 1974.

C. BOHM (1968), Alcune proprieta delle forme 8- n-normal Nei A-x-calcolo. Consiglio Nazionale del
Richerche: Publicazione 696 deil’ Instituto per le Applicazioni del Caleole. Roma.

— (1966), The CUCH as a formal and descriptive language. Formal Language Description
Languages for Computer Programming, T. B. Steel, ed., North-Holland, Amsterdam, pp.
179-197.

— (1975}, A-Calculus and computer science theory, Proc. Rome Symp., March 1975, Lecture
Notes in Computer Science, vol. 37. Springer-Verlag, Berlin.

R. M. BURSTALL (1972a), Some techriques for proving the correcmess of programs which alter data
strucures, Machine Inteiligence vol. 7, B. Meltzer and D. Michie, eds., Edinburgh, pp. 23-50.

———— (1969), Proving properties of programs by structural induction, Comput. J., 12, pp. 41-48.

——(1972b), An algebraic description of programs with assertions. verification and simulation. Proc.
ACM Conf. on Proving Assertions about Programs, Las Cruces, New Mexico, pp. 7-14,

R. BURSTALL AND). W. THATCHER (1974), The algebraic theory of recursive program schemes,
Category Theary Applied to Computation and Control, E. Manes, ed., Univ. of Mass., pp.
154-160.

J. M. Cap1ou (1973), Recursive definitions of partial functions and their computations, Ph.D. thesis,
Computer Sci. Dept., Stanford Univ., Stanford, Calif.

J.M. CaDIOU AND 1. J. LEVY (1973), Mechanizable proofs about parallel processes, Presented at the
14th Ann. Symp. on Switctung and Automata Theory.

1. W. Casg (1971), Enumeration reducibility and the parrial degrees, Ann. Math. Logic, 2, pp.
419-440.

E. CECH (1966), Topological Spaces, Prague.

A. K. CHANDRA (1974), Degrees of transiatability and canonical forms in program schemas part 1,
IBM Res. Rep. RC4733, Yorktown Heighis, N.Y.

——— (1974a), The Power of Parallelism and Nondeterminism in Programming, I1BM Res. Rep.

RC4776, Yorktown Heights, N Y. B

(1974b), Generalized program schemas, IBM Res. Rep. RC4827, Yorktown Heights N.Y.

A. K. CHANDRA AND Z MaANNA (1973), On the power of programming features, Artficial
Intelligence Memo. AIM-1835, Stanford Univ., Stanford, Calii.

A, CHURCH (1931), The caiculi of lambda-conversion, Annals of Mathematical Studies, vol. 6,
Princeton University Press, Prineeton, N.J.

M. J. CLiNT (1972), Program proving: Co-routines, Acta Informauca, 2, pp. 50-63.

R. C. CONSTABLE AND D. GRIES (1972), On classes of program schemata, this Journal, 1, pp.
66-118.

D. C. COoPER (1966}, The equivalence of certain computations, Comput. J.. 9, pp. 45-52.

B. COURCELLE, G. KAHN AND J. VUILLEMIN (1974), Algorithmes d” equivalince pour des equaitons
recursive simples, Proc. 2nd Collog. on Automata Languages and Programming, Saarbruc-
ken; Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 213-220.

B. COURCELLE AND J. VUILLEMIN (1974), Completude d’un systeme formel pour des equations
recursives simples. Compte-Rendu du Collogue de Paris.

———(1974), Semanncs and axiomatics of a simple recursive language, Rapport Laboria. vol. 6i},
IRIA: Also: 6th Ann. ACM Symp. on the Theory of Computing, Sealtle, Washington,

H. B. CURRY AND R. FrYS (1958}, Combinatory Logic, vol. I, North-Holland, Amsterdam.

H. B. CURRY, J. R HINDLEY AND L SELDIN (1971), Combinarory Logic, vol. 2, North-Holland,
Amsterdam.

M. Dawvis (1958), Cimputabidity and Unsofvabdiry, MeGraw-Hill, New York.

580 DANA SCOTT

LW DIKSTRA (19741, A srmiple axiomatic basis for programimung language consiructs. Indag, Math |
3o, pp. 113,

—-— (19761, A Dusaplene of Programming. Prentice-Hall, Englewood Chifs, N.J., to appear.

= 114721, Notes on struciured programemng, Structural Programmung, . A R. Hoare, . W,
Dijkstra and O. J Dahl, Academic Press, New York.

1. DoNanuk (1974), Scottery Child s Guide No. 1, Dept. of Comput. Sci., Univ, of Toronto.

B. N. Duona (1974), A high level, variable free calculus for recursive programmung, Compul. Sci.
Dept. Rep. CS 74 03, Umiv. of Waterloo.

S. EILENBERG aND C. C, ELGOT {1970), Recursweness, Aeademic Press, hcw York.

11974), Awomara, Languages and Machines, vol. A, Academic Press, New York (vol B in

pressl.

C. C EvGoT (19710, Algebraic theorres and progrant schemes, Symposium on Semantics of Algorith-
mic Languages, E. Engeler. ed.. Lecture Notes in Mathematics. vol, 188, Springer-Verlag,
New York.

———{1967), Abstraci aigoruhms and diagram closure, IBM Res. Rep. RC 1750, Yorktown Heighis,
N.Y.

C. C.ELGOT, A. ROBINSON AND J. D. RUTLEDGE (1966}, Muluple controf computer models. IBM
Res, Rep. RC 1622 Yorktown Heights, N.Y.

M. H. van EMDEN AND R AL KOWALSKY (1973, The semantics of predicate logic as «
progranuning language. Memo, no. 83 (MIP-R-103), Dept of Machine Intelligence, Univ. uf
Edinburgh

E EnGLLER (1968). Formal langiiges: Automata and siruciures.]ectures m Advanced Mathema-
tics, Markham.

————=(§974), Algorithmuc Logie, Foundacions of Computer Svience.). W, de Bakker, ¢d., Mathemal-
cal Centre Tract MCT 63, Amsterdam.

=== (1967}, Algonchmue properiies of suctures. Mathematical Systens Theory, 1, pp. 183-195.

J. ENGELFREIT (1974), Simpie program schemes and formal lunguages, Springer Lecture Notes in
Cumputer Science, vol. 20.

J. ENGEI FREIT AND E. M. SCHMIDT (1975}, {() and CH, DAIMI PB-47, Matematisk fnstiut,
Aarhus Universuet, Datalogisk Afdeling, Denmark.

IN L ERsHOV (197 1), Computable numerations of morphisms, Algebra and Logic. 10, pp. 247-308.

= = - HNT I, Conpuateble funcrirons of finie tvpes. toad L L, pp 367-437

———(1972hy, Everywhere defined (otal) contintwonus funcrnonals, Algehra and Logic, 11, pp.
H56-HN5.

—- - 11972d). Continuous lattices and A -spaces, Dockl, Acad Nauk USSR, 207, pp. 523-326.

———— (1972e), Theory of A-spaces, Algebra and Logic, 12 pp. 369-916.

VY73, Theorie der Numenerangen, Yeb Deutscher Yerlap der Wissenschalien, Berhin,

A, E.FISCHER anD M. 1. FISCHER (1973), Mode modules as representations of domaens, Proc. ACM
Symp on Prineiples of Programmung Languages, Boston, pp. 139-143.

M. J Fiscier 11972), Lambde caledus schemara, Proc. ACM Conf. Proving Assertions about
Programs. Las Cruces, MM, pp. 104--109.

R. W. FLOYD (1Y67), Assigrung meanmgs to programs, Proc. Symp. in Appl. Math.. vol 19,
Mathematical Aspects of Computer Science, J. T. Schwartz, ed,, pp. 33-41.

M. M. FOKKINGS {1974). Inductive Assernon Patterns for Recursive Procedures. Compte-Rendu de
Colloque de Paris.

R M. FRIEDBUERG anD H. R. ROGERS (195391, Reductbiliry and completeness for sets of integers, Z.
Math, Logik Grunlagen Math,, 5, pp. L17-125,

H Fraepman 119713, Algorithmie procedures, generalized Turing algorithms. and elemeniary recur-
ston theory. Lopic Colloquium 1969, North-Holland. Amsterdam, pp. 361- 389,

S0 GarLann ann D, C Lucknam (1972), Translating recurston schemes inta program schemes,
Proc ACM Conf on Proving Assertions about Programs. Las Cruces, N.M | pp, 8396

H GLRicRE (T 1906), Lathice Theorv, Harrap.

1A GOGUFN 11967), L-fuzzy sen.). Math. Anal, Appl., (4. pp [45-174

77777 {19643, Categories of L-sets, Bull. Amer Math Soc., 75, pp. 524-622

- (19720, hchomomorphims, Samulations, ¢ orrec iness, stehroptiney and termunaiion for programs
and program schemey. Proc 1Hh IEEE Conl on Switciung and Aptomata Theory. pp
52-60

DATA TYPES AS LATTICES 581

—— (19741, Semannes of computation, Category Theory Applied 10 Computation and Contsol, E.
Manes, ed., Univ. of Mass., pp. 234-249.

I A.GOGUENETAL.(1975), inma.'algebm semantics, IBM Res. Rep. RC 5243, Yorktown Heights,
NY.

M. J. C. GORDON (1973a), Models of pure LISP, Experimental Programming Rep. 31, School of
Artificial Intelhgence, Univ. of Edinburgh. {Also Ph.D, thesis, Fraluaton and denotation of
pure LISP programs: A worked example in semaniics.:

~————(1973b}, An extended abstraci of “Models of pure LISP", Memo. SAI-RM-7, School of
Actificial Intelligence, Univ. of Edinburgh.

11973a), Operational Reasoning and denotational semanncs, Artificial Intelhgence Memo.
264, Stanford Univ., Stanford, Calif.

{1975b), Towards a semantic theory of dynamic binding, Artificial Intelligence Mema. 265,
Stanford Univ., Stanford, Calif.

G. GRATZER (1968). Universal Algebra, Van Nostrand, New York.

. GUESSARIAN (1974). Sur une reduction des schemas de programmes polyadigues a des schemas

monadiques et ses applications, Compte-Rendu de Collogue de Pans.

L. GUTTERIDGE (1971), Some Results on Enumeration Reducthility, Ph.D. dissertation, Simon Fraser
Univ., Burnaby, B.C., Canada.

J. R HINDLEY, B. LERCHER AND 1. P. SELDIN {1972, Introduction to combinaiory iogic. London
Mathematical Society Lecture Note Series, vol. 7, Cambnidge University Press, ("amhrjdge,
England.

I R HINDLEY AND G. MITSCHKE 1197 5), Some remarks abowt the conrections between combinatory
logic and axiomatic recursion theory, Preprint 203, Fachbereich Mathemarik, Techmische
Hochschule Darmstadr.

P. HitcHcock (1974), An approach o formal reasoning about programs, Ph.D. thesis, Unwv. of
Warwick, England.

P. HitcHcock AND D. M. R. Park (1972), Induction rides and proofs of termination, Proc,
Colloques IRIA, Theorie des Automates des Languages et de la Programmation.

C. A. R. HOARE {1Y69), An axiomatc basis of computer programemung, Comm. ACM, 12, pp.
576-580, 583.

—— (1971a), Proof of a program: FIND, lbid., 14, pp. 39-45.

(L1971hj, Procedures and parameters: An dxiomanc dpproach, Symposium on Semantics of
Programming Languages, E. Engeler, ed., Lecture Notes 1in Mathematcs, vol. 185, Springer-
Verlag, Ncw York, pp. 102-116.

——(1972), Notes on dasa structuring, Structured Programming| C. A. R. Hoare, E. W. Dljkstra and

Q. 1. Dahl, Academic Press, New York.

C. A, R HOARL anp P Lavrnr (1974), Consistent and complementary formal theories of the
semantics of programrung languages, Acta Informatica. 3. pp. 135-153.

C. A. R. HOARE AND N. WIRTH (1972}, An axiomatic definitton of the programmuny language
PASCAL, Bericht der Fachgriippe Computer-Wissenschaften 6. Eidenossische Toechnische
Hichsehule, Ziirich.

C. Hosono AND M. SATO (1975), A solunon to Scont's problem: Do the retracts in Pw form a
continugus lattice?”, Rescarch Inst. for Mathematical Sci., Kyota (preprint}.

G. HOTZ (1966), Eindeutipket und Mehrdeutigkeit formaler Sprachen, Eleciron. Informationsverarbeit,
Kybernetik (Berlin), 2, pp. 235.-246.

1. M. E. Hyt.AnD {1Y75a), Recursion theory on the countable functonals, D. Phil, thesis, Oxford
Unie.. Oxford, England.

———(1975b}, A survey of some useful partial order relations in lerms of the lainbda calrulis. Proc.

Conf. on A-Caleulus and Computer Science Theory, Rome, pp. 53-95.

(to appear). A svaractic characterization of the equality in some models tor the lambda calculus.
J. Londan Math. Soc.

Y. L IANOV (19700, The logical scheme of algorithms, Problems in Cyherneiics, vol. 1. Pergamon

Press, New Yorh

S lGarasen (1972), Admissibility of fixed point wnduction i first order logre of typed theartes,
Artfical Intelisgence Memo. AIM-168, Computer Sci. Dept . Stanford {ni ., Stanford.
Cuhf.

582 DANA SCOTT

K. INDERMARK (1974), Gleichungsdefinierbarkeit in Relaponalsiukiuren, Habilitationsschrift,
Mathematisch Naturwissen-schaftlichen Fakultat der Rheinischen Freidrich-Withelms-
Universatat, Bonn, W. Germany.

C. B. JONES {1973}, Mathematical semantics of goto: Exit formulaton and its relation to continuaions,
preprint.

G. KAHN (1973), A preliminary theory of parallel programs. Rapport Laboria IRIA,

D. M. KAPLAN (1969), Regular expressions and the equivalence of programs, 1. Comput. System Sci.,
3, pp. 361-385. ‘

R. M. KARP aND R. E. MILLER (1969), Parallel program schematra, Ibid., 3, pp. 147-195.

D. J. KFOURY (1972), Companng aigebraic struciures up to algorithmic equivalence, Automata,
Languages and Programming, M. Nivat, ed.. North-Holland, Amsterdam, pp. 253-263.

——— (1974), Translatability of schemas over restricied interpretations, . Comput. System Sci., 3, pp.
387-408.

8. C. K1LEENE {1950), Iniroduction to Metamathemarics, Van Nostrand, New York.

B. KNASTER (1928), Un thegréme sur les fonctions d’ensembles, Ann. Soc. Polon. de Math., 8. pp.
133-134,

P.J. LANDIN ([964), The mechanical evaluation of expressions, Comput. J. 6, pp. 308-320.

——— (1965}, A correspondence between ALGOL 60 and Church’s lambda notation, Comm. ACM. 8,
pp. 89-101.

——{1966a), A A-Calculus approach, Advances in Programming and Non-numerical Computa-
tion, L. Fox, ed., Pergamon Press, New York, pp. 97-141.

—— (1966b), The next 700 programrmung languages, Comm. ACM, 9, pp. 157-164.

———(1966a), A formal description of ALGOL 60, Formal Language Description Languages for
Computer Programming, T. B. Steel, ed., North-Holland, Amsterdam, pp. 266-294.

—— [1969), A program/machine symmetric automata theory, Machine Intelligence, vol. 5, B.
Meltzer and D. Michie. eds., Edinburgh University Press. pp. 99-120.

P. J. LANDIN AND R. M. BURSTALL (1969), Programs and their proofs: Anr algebraic approach,
Machine Intelligence, vol. 4, American Elsevier, New York, pp. 17-44.

J. LESZCZYKOWSKI {197 1), A theorem on resolving equations in the space of languages, Bull. Acad.
Polon. Sci. Sér. Sci. Math. Astronom. Phys., 19, pp. 967-970.

C. H. Lewis ano B K ROSEN (1973-74), Recursively defined data types. Parts I and Il |BM Res.
Reps. RC 4429 (1973), RC 4713 (1974), Yorktown Heighis, N.Y.

B. Liskov AND §. ZILLES (1973), An approach to absiraction computation structures, Group Memo.
88. Project MAC, Mass. Inst. of Tech.. Cambridge. Mass.

D. LuckHAaM, D. M. R. PARK AND M. PATERSON {1%70), On formalized computer programs. |.
Comput. System Sci., 4. pp. 220-249.

S. MACLANE {1972}, Caitegortes for the Worlung Marhenmiatician, Spunger-Verlag, New York.

E. MANES (1974), Category Theory Applied to Compultation and Controi, Proc. Ist Internat. Symp.
Math, Dept. and the Dept. of Computer and Information Sui, Univ. Mass., Amherst. Also:
Lecture Notes in Computer Science, vol. 26, Springer-Verlag, New York.

Z. MANNA (1969}, The correciness of programs, 1. Comput. System Sci., 3, pp. 119-127,

(1974), Mathematical Theory of Compuiation, McGraw-Hill, New York.

Z. MANNA anND], M. CADIOU {1972), Recursive definitions of partial functions and their compura-
tions, Proc, ACM Conf. on Proving Assertions about Programs, Las Cruces, N.M., pp. 58-65.

Z. MANNA AND J. MCCARTHY (1970Q), Properties of programs and partial function logic, Machine
Intelligence 5, B. Meltzer and D. Michie, eds., Edinburgh University Press, pp. 27-38.

Z.MANNA, Z NESS AND). VUILLEMIN (1972}, Inductive methods for proving properties of programs,
Proc. ACM Cont, on Proving Assertions about Programs, Las Cruces, N.M., pp. 27-5(}.
Z. MANNA AND A. PNUEL (1970}, Formalization of properties of functional programs, J. Assoc.
Comput. Mach.. 17, pp. 555-569.
(1972), Axtomatc approach fe total correctness of programs, Artificial Intelligence Lab. Memo.
AIM-210, Stanford Univ,, Stanford, Cahf.
Z. MANNA AND J. VUILLEMIN (1972), Fixpoint approach to the theory of computation, Comm. ACM.
15, pp. 528-536.

G. MARKOWSK Y (1974), Categories of chain-comdlete posets, RC 5100, Comput. 5ci. Pept. IBMT. 1.

Watson Rescarch Center, Yorktown Heights, N.Y.

DATA TYPES AS LATTICES 583

—— {1974}, Chain-complete poseis and directed sets with applications, RC 5024, IBM T.J. Watson
Research Center, Yorktown Heights, N.Y.

A MAZURKIEWICZ (1973}, Proving properties of processes, PRACE CO PAN-CC PAS Reports, vol.
134, Warsaw, '

——(1971), Proving aigorithms by tail funcions, Working Paper for [FIP WG2.2, Feb. 197(). Since
published in: Information and Control, 18 (1971), pp. 220-226.

I. MCCARTHY (1963a), A basis for a mathematical theorv of computanon, Computer Programming
and Formal Systems, D. Braffort and D. Hirshberg, €ds., North-Hoiland, Amsterdam,
pp- 37-70. _

——(1562). The LISP 1.5 Programmers' Manual, MIT Press, Cambridge, Mass.

——{1963b), Tawards a mathematical science of computation, Information Processing 1962, Proc.
IFIP Congress 1962, C. M. Poppleworth, ed., North-Holland, Amsterdam, pp. 21-28.

—— (1966), A formal description of a subset of ALGOL, Formal Language Description Languages
for Computer Programming, R. B. Steel, ed., North-Holland, Amsterdam, pp. 1-12.

J. MCCARTHY AND 1. PAINTER (1967), Correctness of a computer for arithmetic expressions,
Mathematical Aspects of Computer Science. J. T. Schwartz, ed., Proc. of a Symposium in
Applied Mathematics, vol. 19, pp. 3341,

R. E. MiLNE {1974), The formal semantics of computer languages and their implemeniations, Ph.D.
thesis, Cambridge Univ.. Cambridge, England. [Also: Techaical Monograph PRG-13,
Oxford Univ. Computing Lab., Programming Research Group).

R. MILNER (1972), Implementation and Application of Scott’s Logic for Computable Functions, Proe.
ACM Conf., Las Cruces, N.M., pp. 1-6.

—— (1973), Models of LCF, Artificial Intelligence Memo. AIM-186, Computer Sci. Dept.,
Stanford Umiv., Stanford, Calif.

———(1969), Program schemes and recursive function theory, Machine Intelligence 5, B. Meltzer and

D. Michie, eds,, Edinburgh University Press, pp. 39-58.
(1970a), Algebraic theory of computable polyadic functions, Computer Sci. Memo., vol. 12,
University College, Swansea.

———(1970b}, Equivalences on program schemes,). Comput. System Sci., 4, pp. 205-219.

R. MILNER AND R. WEYHRAUCH (1972}, Proving compiler correciness in a mechanized logic.
Machine Intelligence, 7, pp. 51-72.

R. MILNER (1973a}, An approdch fe rthe semanncs of parallel programs. Proc. Convgno di
Informatica Teorica, Instituto di Elaborazione delle Informazione, Pisa, Italy.

———{1973b), Processes: A mathemarical model of computing agents, Proc. Collog in Mathematical
Logic, Brisiol, England.

F. LocKWOOD MORRIS (1973}, Advice on structuring compilers and proving them correct, Proc.
SIGACT/SIGPLAN Symp. on Principles of Programming Languages, Boston, pp. 144-152.

——— (1970}, The nexs 700 programming language descniptions, Computer Center, Univ. of Essex
(typescript}.

—— (1972), Correctness of translanions of pregramming languages, Computer Sci. Memo. C§
72-303, Stanford Univ., Stanford, Calif.

I. H. MORRIS (1968). A-calcuius models of programming languages, Ph.D. thesis. Sloan School of
Management, MIT MAC Reprint TR-57, Mass. Inst. of Tech., Cambridge, Mass.

——— (1971). Another recursion induction principle, Comm. ACM, 14, pp. 351-354.

(1973). Types are not sets, Proc. ACM Symp. on Principle of Programming Languages,

Boston, pp. 120-124. ’

— (1972}, A correcness proof using recursively defined functions, Formal Semantics of Program-
ming Languages, R. Rustin, ed., Prentice-Haill, Englewpod Cliffs, N.J.. pp. 107-2.4.

J. MORRIS AND R NakaJima {1973), Mechanical characterisation of the paruat order in lattice
models of A-calcuius, Tech. Rep. 18, Univ. of Calif.. Berkeley.

P. D. M0OssES (1974, The mathematical semanucs of ALGOL 60, Tech. Monograph PRG-12,
Oxford Univ. Computing Lab., Programming Research Group.

———(1975a), The semantics of semantic equanons, Mathematical Foundatons of Computer
Science, Goos and Harimanis, eds., Lecture Notes in Computer Science. vol. 23, Springer-
Verlag, New York, pp. 409-422.

———— (1975h), Mathemancal sermantics and compiler generatidn, Thesis, Oxford Umiv., Oxford.
England.

S84 DANA SCOTI '

I MYHILL AND | O SHEPHE RDSON (1955), Effective operations on partial reciosive funciions. /.
Math. Logik Grundiagen Math.. 1, pp. 310-317.

R.NARAIIMA (1975), Infinte normal forms for A - caicutus. A -Calculus and Computer Science Theory,
C. Bohm, ed.. Spricger-Verlag, Berlin, pp. A2-82

A. NERODE (1939), Same Stone spaces and rectirsion theory, Duke Math. 1., 26. pp 397-406.

M. Nevar (1972), Languages Algebriques sur Ie Magma Libre et Semannhgue des Schemes de
Programmes, Proc. IRIA Symposium on Avtomata Formal Languages and Programming.
North-Holland. Amsterdam.

D. C. OrPEN (1975), On logic and program verification, Tech. Rep. 82, Depl. Computer Sor.. Liniv, of
Torenta

D.M R Park (1970a). Frepoint induction and proofs of programn properties, Machmc [niclligence, 3.

B. Meltzer and D). Michie, eds., Amenican Elsevier, New Yaork, pp. 39-78.

(1970b). Notes an a formalism for reasoning about schemes, Univ. of Warwick, unpubhshed

noLes,

——— (1970¢), The Y combunator Scott’s lambda-caictlus models, Univ. of Warwick, unpublished
notes.

————{1970d). Finiteness s Mu-ineflable. Theory of Computativa Report, No, 3. Dept of
Computer Sci., Univ. of Warwick (1974).

M. 5. PATERSON (1963), Program schemuata, Machine Intelligence, 3, D. Michie, cd., Amernican
Elsevier, New York, pp. 19-32.

M. 5. PATERSON AND C. 5. HEWITT (1970), Comparative schemarology. Record of Project MAC
Conf. on Concurrent Systems and Parallel Computation, Assoeiation for Computing
Maehinery, New York, pp. 11911

R. PLATEK (1964), New foundations for recursion theory. Thesis, Stunford Univ.. Stanford. Call.,
unpublished.

G. U PLOTRIN (19720, A set-theorencal defimton of application, Memu. MIP-R-95, School ol
Artifieial Intelligence, University of Edinburgh.

——— (1973a). The A -calcilus is w-wncomplete, Res. Memo. SAT-RM-2, School of Artificial Inteili-
genee, Univ. of Edinburgh,

———— {[973b). Lambda-definapihty and logrcal refutions. Memo, SAL-RM-4. School of Arubeiai
Intelligence. Umiv. of Edinburgh.

e — (L9730 Call By narme, Call-by -value and the A-calcalis, I Res. Memo SAT-RM-f, School
of Aruficial Intelligence, Univ. of Edinburgh.

——— (1973), A powerdomam construction. Dept. ot Anificul Intelligence Res Rep. 3. Univ of
Edinburgh.

H. Rasiowa (1973). On w ' -ralued algorihaue loge and refated problems. Supplement to Proc.
Symp. and Summe: School vn Mathernutoal Foundanons of ¢ ompulu Sci., High Tatras,
Czechoslovakia

P RAULEFS (119730), The vverivped lambda calcudis. Interner Bericht Nro 2, Institut far [nformauk.
Umversitat Karlsruhe

— === 197503, Standard madels of the overivped lambdd -calcutus, In[L'ner Bercht Ne. 3. Inshituat
fir Informank, Unwversitat Karlsruhe,

R. R. REDIEIOWSKI (1972), The theory of general events and w5 application to parallel programming,
T.P 18.220 1BM Nordic Laboratory, Sweden.

1.C.REYNOLDS (1969, Gedanken. A Simple Typeless Language, Reprnt 7621, Argonne National

Laboratory, Argonne, I
11972a), Defininonul tnterpreters for higher order programeung langtages, Proc. ACM 25th
Nat Conl.. Boston. sol. 2, pp. 717-7440.

——— 1 IN72b), Notes an a laitice-thearetic approack o the theory of compulation, Systems and
Informatico Sci Dept Syracuse Univ.. Svracuse. NUY.

———— ({0 appeart. Towards a theory of tvpe viructure, Collog on Programming Pans, April 1674
Lecture Nutes 1in Compauter Scence, Springer-Verlag, Berfin.

e (197301, (i the relauon between direct and conanuatiop semapines, Proc. 2nd Collog on
Automala, Languages and Urogramnung. Saarbracken, Lecture Notesyn Computer Science.
vol 14, Sprmger-Verlag, Berlin, pp. 141-156.

—— < U1Y74h), Semantics of the latiiee of flow dagrams. Systems ung Inlormgtiion Saence Dept .
Syracuse Umiv. Svracuse, N Y peeprin)

LA
o
AN

DATA TYPES AS LATTICES

1. C. REYNOLDS (to appearl, On the interpretations of Scon’s domains. Symposia Mathematica.

W. P. DE ROEVER (1974a), Recursion and parameter mechamisins: An axiomatic approach. Proc
2nd Colleg. on Automata Languages and Prograinming, Saarbrucken, Lecture Notes in
Computer Science, vol. i4, Springer-Verlag, Berlin, pp. 34-65.

———(1974b), Operarional, mathematical and axiomatized semantics for recursive procedures and
dara strucrures, Mathematical Centre Report D/ |, Amsterdam.,

H. R. ROGERS (1967), Theory of Recursive Functions and Effeciive Computabitity, McGraw-Hill, New

York.
B. K. ROSEN (1973), Tree- manipulating systems and Church-Rosser theorems, J. Assoc. Compul.
Mach., 20.

I. D. RUTLEDGE {19700). Program schemaia as awomaia. part 1, IBM Res. RC 3098, J. Comput
and System Sci.. 7 (1973), pp. 543-578,

——— (1970b), Farallel processes - -+ Schemata and transformation, 1BM Res. Rep. RC 2912,
Yorktown Heights, N.Y

A. SAaLwiCKL (1970a). Formalized algorithmic languages, Bull. Acad. Polon. Sa. Sér. Math.
Astronom. Phys., 18, pp. 227-232. -

———— (19700}, Or the equivalence of FS-expressions and programs, 1bid., 18, pp. 273-27%.

——— (1970c), On the predicate calculi with iteration quantifiers, Ibid.. 18, pp. 279-286

J. G. SANDERSON (1973), The lambda calculus, lattice theory and reflexive demains, Mathematical
Institute Lecture Notes, Oxford, England.

L. P. Sasso (197 1), Degrees of unsolvability of partial functions, Ph.D. dissertation, Univ. of Calif.,
Berkeley.

——— (1975}, A survey of partial degrees. J. Symbolic Logic, 40, pp. 130-140.

(1973), A minimal partial degree, Proc. Amer. Math. Soc., 38, pp. 388-392.

D. SCOTT (1969), A type-theoretical alternative 1o ISWIM, CUCH, OWHY. Unpublished notes,
Oxford, England.

——— {1970), Qutline of a mathematical theory of compuiation, Proc. 4th Ann. Princeton Conf. on
Information Sciences and Systems, pp. 169-176. [Also: Tech. Monograph PRG-2, Oxford
Univ. Computing Lab., Programming Research Group (1970).]

———(1971), The lastice of flow diagrams, Symposium on Semantics of Algorithmic Languages, E.
Engeler, ed., Lecture Notes in Mathematics, vol. 188, Springer-Verlag, New York. pp.
311-366. [Also: Tech. Monograph PRG-3, Oxford Univ. Computing Lab.. Programming
Research Group (1970)].

—— (1972a), Confinuous latices, Proc. 1971 Dalhousie Conference, Lecture Notes in Mathema-
nics, vol. 274, Springer-Veriag, New York, pp. 97-136. [Also: Tech. Menograph PRG-7,
Oxford Univ. Computing Lab., Programming Research Group (19711}

————-t1972b1. Mathematical concepis in programmuing language semantics, AFIPS Conf. Proc., vol.

40, pp. 225-234
(1973u), Data types as lattices, Unpublished lecture notes, Mathematical Centre. Amsterdam,
1973,

———— (1973b), Models for vantous type - free cafcufi, Proc. IVth fnternat. Cong. for Logic, Methodol-
ogy and the Philosophy of Science, Bucharest. P. Suppes ct. al., eds., North-Holland,
Amsterdarn, pp. 157-187.

———11975a), Lambda calewlus and recursion theory, Proc. 3rd Scandinavian Logie Symposium, Stig

Kanger. ed., North-Holland, Amsterdam, pp. 154-193.
{1975h}, Combnators and classes, A-Calculus and computer science theory, Proc. Rome Symp.,
March 1975 Leeture Notes m Computer Science, vol. 37, Springer-Verlag. Berlin, pp. 1-26.

——~ (197 5c), Some phiiosophical issues concerning theories of combmators, A - Calcwlus and compuiter
science theory, Proc, Rome Symp., March 1975 Lecture Notes in Computer Science.vol. 37,
Springer-Verlug, Berhin, pp. 346-366.

D Scorr ann O STRACHEY {197)), Toward a mathemaiical semantics for computer lunguages,
Proc. Symposium on Computers and Automata, Polytechme Inst. ol Brookivn. sol. 21 pp.
19-46. | Also. Techmeal Monograph PRG-6, Oxtord Univ. Computing Lab . Programming
Research Group (197 1).]

I ¢ SHEPERDSON (1973, Conputation over absiract siructures Senal and parallel procedures and
Fredman’s effective defintional schemes, Logic Colloguum 1973, H B Rose and 1 (€
Sheperdson. eds . North-Holland, Amsterdam. pp 4435 -513

586 DANA SCOTT '

C. STRACHEY (1966}, Towards a formal semantics, Formal Language Description Languages for
Computer Programming, T. B. Steel, ed., North-Holland, Amsterdam, pp. 198-220.

(1967}, Fundamental concepts in programming languages, Unpublished lecture notes for the
NATO Suminer School, Copenhagen.

————(1972), Vaneties of programming languages, Proc. Internat. Computing Symp., Cini Founda-
tion, Venice, pp. 222-233. [Also: Tech. Monograph PRG-10, Oxford Univ. Computing
Lab., Programming Research Group (1972).] ,

C.STRACHEY AND C. WADSWORTH {1974), Continuations* A mathemaltival semantics for handling
full jumps, Tech, Monograph PRG-11, Oxford Univ. Computing Lab.. Programming
Research Group.

A_TANG (1574). Recursion theory and descriptive set theory in effectively given T,, spaces, Ph.ID. thesis,
Princeton Univ., Princeton, N.J.

———(1975a), Borel sets in Pw, IRIA-Labona, preprint.

(1975b), Notes on subsets on Per with extra -finitary property, IR1A, preprint.

———{1975c), Sets of the form {x|R(x) = T} in Pw, IRIA, preprint.

(1975d), = Degreey in P, [RIA, preprint.

(1975c}, A hierarchy of By sets in P, IRIA, preprint.
A. Tarskl {1930), On some Fundamental Concepis of Mathernancs (1930); translated by J. H.
Woodger in Logic. Semantics, Metamathematics, Cambridge, 1956, pp. 30-37.
—— (1955}, A lattice-theorerical fixpoint theorem and its apphcations, Pacific). Math., 5, pp.
285-309.
R. D. TENNENT (1973), Mathematical semantics and design of programming languages, Ph.D. thesis,
Univ, of Toronto. [Also: Tech. Rep. 59, Univ. of Toronto (1973).]
(19740). The mathematical semantics of programming lunguages, Dept. of Computing and
Information Sci., Queen’s Univ., Kingston, Ontario, Canada (preprint).
———{1974b), A contribution to the developmeni of PASCAL -like languages, Tech. Rep. 74-25,
Dept. of Computing and Information Sci.. Queen’s Univ., Kingston, Ontario, Canada.
— {1975), PASQUAL: A proposed generalization of PASCAL, Tech. Rep. 75-32, Dept. of
Computing and lnformation Sci., Queen’s Univ., Kingston, Ontario, Canada.
I VUILLEMIN (1973a), Proof techniques for recursive programs, IR1IA—Laboria Rep.
{1973b), Correct and eptimal fmplementations of recursion in a simple programmung
language, IR1A-—Laboria Rep. 24.
C. P. WaADSWORTH (1971), Semantics and pragmatices of the lambda -calculus, D. Phil. thesis,
Oxford Univ., Oxford, England.
———(1975a), The relanon between lambda -expressions and thewr denotation, Dept. of Systems and
Information Sci.. Syracuse Univ.. Syracuse. N.Y. (preprint).
(19735b), Approximate reduction and lambda - calculus models, Dept. of Systems and Informa-
tion Sci., Syracuse Univ., Syracuse, N.Y.
{1975¢), Some unusual i -calculus numeral systems, in preparation.
{to appean), On the topological ordering in the D -model of the lambdu -calculus, in preparation.
E. G. WAGNER (1971a), Languages for defining sets in arbirrary algebras, Proc. of the 11th IEEE
Conf. on Switching and Autommata Theory, pp. 192-201. '
(1971b), An algebraic theory of recursive definitions and recursive languages, Proc. of the
3rd ACM Symp. on Theory ol Computing. '
———(1974), Notes on categonies, algebras and programming languages, Unpublished lecture notes,
London.
M. WAND (1973), Mathematical foundations of formal language theory. MAC-TR-108, Project
MAC, Mass. Inst. of Tech., Cambridge, Mass.
———(1974a), An algebraic formulation of the Chomsky hierarchy, Category Theory Applied 0
Computarion and Control, E. Manes, ed., Univ. of Mass., pp. 216-221
———{1974b}. On the recursive specification of daw rypes, Category Theory Applied to Computation
and Control, E. Manes, ed., Univ. of Mass,, pp. 222-2235.
———{1974¢), Realizing duta siructures us lattices, Tech. Rep. 11, Computer Sci. Dept., 'ndiana
Univ.
(19735), Fixed-punt corstrucions in order-enriched categories, Tech. Rep. 23, Computer Sci.
Dept . Indiana Univ.

DATA TYPES AS LATTICES 587

P. WEGNER AND D. LEHMANN (1972}, Algebraic and 1opological prerequisites to Scott’s theory of
computation, Tech, Rep. 72-2, Dept. of Computer Sci., Hebrew Univ. of Jerusalem. i

R. W. WEYRAUCH AND R. MILNER (1972), Program correctness in a mechamized logic. Proc. of the
tst USA-JAPAN Computer Conl., pp. 384-390.

J. B. WRIGHT (1972), Characterization of recursively enumerable sets, J. Symbolic Logic, 37, pp.
507-511.

