
AMODEL FOR

COMMUNICATING SEQUENTIAL PROCESSES

--,.
r: ,1\. R',· HoARE '·'1""'" ''''D''''-r-'i'",--c.. , . .F

~\:., ".:.:::,.' .. .-.

/ ~2 FEB 2002

~_ _ __ .c_. ".._.. ', '..

f),,' ,_
0)(FD() fA V{\f.r~~

IIIIIII~III~I
3033969943

Technical Monograph PRG-22
June 1981

Oxford Univers ity Computing Laboratory
Programming Research Group
45 Banbury Rca d
Oxf ord OX2 6 PE

G) 1980 Cambridge Universi ty Press

This material was first published in
liOn the Construction of Programs ll

ed. R.M. McKeag and A.M. McNaghton
Cambridge University Press. 1980
pp 229-243. and is reprinted by
kind permission of the publishers.

Cl
I '-""-"'fih/ Computing Leboratory

L ~.!. _."'Ig
I .., '" j

l ,,_'U.lJVX} :::IUD

ABSTRACT

A previous paper (Hoare, 1978b) has suggested that
parallel composition and communication should be accepted
as primi rive concepts in programming. This paper supports
the suggestion by giving a simplified mathem()tical model
for processes. using traces (Hoare, 1978a) of the possible
interactions between a process and i (s envi ronment.

CONTENTS

Page

Introduction

Basic Concepts and Notations 2

Parallel Combination of Processes 4

Sequential Combination of Processes 7

Alphabet Transformation 9

I nput and Output , 1

Communication , 3

, 4

Sharing , 7

A Multiprogrammed Batch Processing
System 1 9

Discrete Event Simulation 21

Technical Notes 24

Acknowledgements 25

References 26

Named Source and Destination

AMODEL FOR

COMMUNICATING SEQUENTIAL PROCESSES

INTRODUCTION

The primary objective of this paper is to give a simple rr.athe
matical model for communicating sequential processes. The model is
illustrated in Be vide range of familiar progr~~ing exercises,
including an operating system and a simulation study. As the
exposition unfolds. the examples begin to look like programs l and
the notations begin to look like a programming language. Thus the
design of a language seems to emerge naturally from its formal
definition, in an intellectually pleasing fashion.

The model is not intended to deal vith certain problems of non
determinism. These have been avoided by observance of certain
restrictions detailed in the technical notes. No attention hae
been paid to problems of efficient implementation; for this, even
further restrictions should oe imposed.

The long term objective of this study is to provide a basis for
the proof of correctness of programs expressed as communicating
sequential processes. Hovever, in this paper the formalities have
been kept to a minimum and no proofs are given.

~oncepts

(1)	 The ultimate constituent of our model is a symbol, vhich may be
int,litively understood as denoting a class of event in which a
process can participate.

(a)	 "Sp" denotes insertion of a coin into the slot of a
vending machine YM.

(a)	 "large ll denotes withdrsval from VM of a large packet of
biscuits.

(c)	 "up" denotes incre~entetion of a COUNT regi ster.

(2)	 The elphabet of a process is the set of all s~bols denoting

events in which that process can participate.

(d)	 {Sp, lep, large, small, Spchange} is the alphabet of the
vending machine VM.

(e)	 {up, down, iszero} is the alphabet of COUNT.

(3)	 A trace is a finite sequence of symools recording the actual or
potential behaviour of a process from its beginnin~ up to some
moment in time.

(f)	 <lOp, small, 5pchange> is a trace of a successful initieJ.
tr~~saction of VM.

(g)	 < > (the en:.pty sequence) is a trace of its behaviour before
its first use.

(h)	 <up, down, iszero, down> is not a ,trace of a COUNT, since
a zero count cannot be decremented.

(L)	 P. process P is defined by the set of all traces of its possible
behaviour. From the definition of a trace, it f'ollows that for
any process p.

(1)	 < > is in P (i.e., P is non-empty)

(2)	 if st (the concatenation of s ith t) is in P then so is
5 by itself (Le., P is prefix-closed)

These properties will help to simplify the definition of
parallel composition of processes.

Notat ions

(1)	 The process ABORT is one that never does anything.

2

ABORT = {< >}

(2)	 If c is a s~bol and P is a ~rocess the process (c~p) first
does I'C" and then behaves like the process P.

(c-+p) = {< >} U {<c>s]s is in p}

where <c> is the sequence consisting solely of the symbol c.
By convention the arrow a.ssociates on the right, so that

c-+d-+P = c..-+(d-+F).

(3)	 The process F'l::::Q behaves either like the process P or like the
process Q; the choice ...-ill be determined by the environ!"lent in
which it is placed.

FtJQ	 = PvQ (normal set union)

(See technical note (1).)
By convention -+ binds more tightly than Cl, so that

c~F!Jd~Q = (c~P)'J(d->Q).

(L)	 The alphabet of e. process P will be denoted by P. Usuall:r we
will assume that the alphabet of a process is given by the set
of all symbols occurring in its traces.

ABORT () (the empty set)

c..... p = {e}uP

F!JQ = PVQ

(5)	 We shall frequently use recursive definitions to specify the
behaviour of long-lasting processes. These recursions are to
be understood in the same sense as the recursive equations of
(say) e, cont ext-free grammar expressed in EN!'.

Examples

(i)	 VM = I 5:p~1 51'""'" Ilarge-+VMJ5p+ABORT)

Dsmall-+VM

Dlarl 5mall~1 5pchange-+VM)

Olarge-+VM

On its first step \1M accepts either 5p or lOp. In the first ease,
its folloying step is either the acceptance of a second 5p (prepar
atory to withdrawal of a large packet of biscuits) or the immediate
withdrawal of a small packet. The second case should be self
explanatory. In all cases, after a successful transaction, the

3

subsequent behaviouT of \~: is to offer a similar service to an
arbi trary long sequence of later customers. But if any customer is
so un~ise as to put three consecutive 5p coins into the slot, the
rr.achine ~ill break (ABORT), nnd never do anythin@: else again.

In ~ conventional BNF grammar, the use of mutually recursive
definitions is familiar. To avoid the limitations of context-free
languages, we shall someti~es give an infinite set of mutually
recursiye definitions.

(j) COUl'iT describes the behaviour of a count register ~ith current
n

val~e n. For n>O,

cour~ = (~~~CUrT l[do~n+COlm~ 1)
r, r.+ n

~heIeas the he~eviour of a zero count is

CCill~TO = (up~COUNTIOiszer~OUNTO)'

A zero count cannot be decremented, but it car: respond to a test
"iszero". The use of this test \lill be illustrated later.

PJ.-.RALlEl COVEINATION OF PROC~SSFS

The traces of a process define all its rossihle behaviours. The
.!!:,.ctual "behaviour of B process P operating in an environment E ~ill

in gene:ral be constrained by this environment. TIle environment F.
can also be defined as a process, consisting of all sequences of
events in 'Which it is capable of participating. Each event that
actuall~' occurs must be possible at the time of occurrence for both
the ~rocess and for its environment. Consequently, the set of all
the traces or-the process and its environment operating in parallel
~ith each other is simply the intersection of the two sets (PnE).

For example, a customer of a vendinr: machine is initially pre
parec to accept a large or ever, a small packet of biscuits, if they
are available. Alternatively he inserts a coin, vi thout noticin[
its value, and ther. attempts to ~ithdra~ a l~r~e packet of biscuits.

CUSTOMER = {< >,<large>, <small> ,<lOp>, <5p>,

<lOp,large> , <5p,large>}

When ~ interacts ~ith this customer, the set of possible traces of
their irteraction is

VMI',cUSTOMER = {< > ,<lOp> .<lOp,large> <5p>}

Note hoy VM does not permit the customer to \lithdraw the biscuits
~ithout paying. But even ~orse, after insertion of 5p the VM is
preparec. to yield only a sIr,all packet of biscuits. whereas the

4

foolish customer is trying vair.ly to extra.ct a large packet. :'10
further events are nossihle; machine and customer are lod:prl for
ever in deadly en:1:'r~ce (Dijkstra. 1968).

The description giver_ above aSSl..lmes that the alpha.bets of the
process and its environment are the same. so thn,t every event
requires sirr.ultaneous participation o~ both of them. :n ~enprRI.

some of the symbols could be in the alphabet of only OJ1e of t~e two
processes, and so the correspondir.g events can occur ~ithout ~he

part icipation of the other process. For example, a customer nay
fumble in his pocket. or curse ~hen he is thwarted; a venrling
machine may clink on accepting a coin and clunk on ~ithdra\tal of
biscuits.

CUSTOMERB = {<fumble,5p,large>, ...

<fumble,5p,curse,small> •... }

NOISY\'1~ =	 {< 5Jl, clink, small, c h.nk> ... }

Events 'Which are particular to only one of tr.e intera:::ti~ pro
cesses can occur concurrently with events ~articular to the c:hpr
one. It is convenient to model such concurrency by arbitrary inter
leaving of symbols. Thus the traces of the combined ber.aviour of
NOISffii and CllSTOlITRB ~ill include

{<fumble,5p, clink,curse,small.clunk>,

<ftunble, 5p, curse ,clink ,sIllall ,clunk>, ... }

even though the clink nnd the curse can overlap in ren,l tine. The
reason why interleaving is an acceptable model of concurrency is
that we are interested only in the logical properties of proc~s~es

and not in their timing.

The process (pllQ) is the process resulting from the operation
of P and Q in parallel. The curious mixture of synchronisatiJn of
symbols in both their alphabets with interleaving of the other
symbols has a surprisingly simple definition.

(piIQ) = {sis is in (PuQl' & (s,"p) is in p & (s'l'Q) is inQJ

'Where s'rX	 (s restricted to X) is obtained froI!l s by simply omitting
all symbols outside X,

•and X	 is the set of finite sequences of symbols froI!l X.

Thus each	 process ignores events of the other process ~hich dJ not
require its participation. In the case that the alphabets of the
tvo processes are the same, (pIIQ) is just the intersection o~ the
sets (PnQ). In the case ~here the alphabpts are disjoint (Pn~={}),
(plIQ) is the set of all interleavings of a trace from P with a
trace from Q. We adopt t'he convention that 'I is the most IOJsely
binding operator.

5

A ~ell-known examrle on which to tpst this definition is the

story of the five dinir.1?, philosophers. The systel!'. as a wr.ole con

sists of two groups of processes:

r::-nUIG FOaM = PHILOSOPh'"ERS!1 FOPKS

where PHILOSOPHERS = PHIL II ... 11 PHIL,o ' l!

and FORKS = FORK !! ••• ! !FORK"
 o

anc PHIL. (i sitsdown -+

1

i picksup fork i -+

i picksup fork (i ~ 1) -+

i ~utsdovn fork i -+

i putsdown fork (i , 1) -+

i p;etsup -+

PHIL.)
1

and FORK. (i nicksup fork i -+ i putsdovn fork i -+ FORK.
11 o

n(i e 1) picksup fork i -+

(i e 1) putsdo\otJ1 fork i -+ FORK.)
1

where (i $ 1). (i e 1) are taken modulo 5.

'The alphabets of the philosophers are pairwise disjoint. 'This
means that (characteristically) they do not intpract directly with
each other: their joint behaviour is an arbitrary rnerginp of their
indivicue,l behaviol..irs. 'The sar.:.e is true of the forks. Hovever,
each event of picking up a fork and putting it dovn requires simult
aneous participation of exactly two processes, one philosopher and
one fork.

It is well :known that the simple systelT' described above is
liable to a deadly embrace after:

<0 sitsdown, ... , h sitsdown,

o picksup fork 0, ... , 4 picksup fork q>.

An ingenious solution to this problem is to introduce a BUTLER
process into the dining room; his task is to assist each philosopher
to and from his seat, ensuring as he does so that not more than four
philosophers are seated at a time.

NEWDININGROOM = DININGROOH! !BUTLER
o

where BUTLER (for n betveen 0 and 4) describes the behaviour of
n

6

the butler "'hen there are n philosophers seated. For eXelT:ple

BUTLER = (0 getsup-+EUTLFR n ••• n4 getsup-+BUTLEP3)4 3

The remaining cases \~ill be defined later.

SEQUENTIAL COMBINATION OF PPOCFSSES

The process ABORT has 'been defined as one that never does any
thing, because it is already broken. We no", ",ist to introduce
another process SKIP, "'hich also does nothing, but for a com!"leteJy
different reason: it has already succeeded. and there is nothing
more for it to do. Successful termination can be re~arded as an
event denoted by a special symbol I (success), and the procf!!'is that
just succeeds is:

SKIP ::; {<>, < wi> }.

(See	 techni cal note (2).)

The use of SKIP can be illustrated by lLdaptin~ some previous
eXaJ1lples.

(a)	 A vending machine "'hich participates in just one transaction
(successful or unsuccessful) :

VMl	 = (5p.... (5p (large SKIP 0 Sp ABORT)

o small SKIP)

o lOp (small (Spchange SKIP)

o large SKIP))

(b)	 A customer, .ho terminates successfully after a single success
ful transaction:

CUSTOMERC = (Sp large SKIP

o lOp large SKIP)

(c)	 Their joint behaviour is:

VMlll CUSTOMERC = (5p ~ ABORT

o lOp + large SKIP)

Note that "'hen / is in the alphatet of both P and Q, successful
termination of (pll Q) requires that both of them tenninate success
fUlly. (See technice.l note (3)).

The introduction of the concept of successful terminaticn permits
the definition of sequential composition (p;Q) of processes P and Q.

7

'This te~aves first like- F. If P fails, then so does (F;Q). But if
F tas tE'rr;.inated successfully, (I';G! continues hy beha\'ing like (.
f',~ore fo:;r.ally,

p;~::.: fs!s is i1'. F E.nC s Goes net CCr.tfl~lC

u{stls<y'> is ill F ~U1C tis ir. C.J

V'P adopt the convention that serj colon binds Trost t ilZht]y l so tr.nt

a -j. P;Q 0 R = a'" (?;Q) [R

A simple repetitive statement can 'be defined

for i: t •• h""'P._. 1 SKIP if r.< £.

P£.,Pf.+l;··· ;?h if t.:5~:

P":':ltil C Q C! (p; (p until 'J;)

(j)	 A v~ndir.g mactine which serves Bt L"ost three customers:

VY.3 = V1't.l; 'WI; \""1

(e)	 f,nd no\/' b ..ent~' customers:

VH?D = for i: 1 •• 20 ... VYI

(f)	 Arl automaton \/'hid accept;; any nurltler ef "a"~ folloved r.y n
sirele "b" 8-nc. then the SBn'P nmher cf "c"s:

"np::,n = ~r -J. SKIF [l (a'" (Af!FlC n • (c SKIP))))

(g)	 A rrocess \/'rich accepts any interlenvin@: of more "up"s tre.n
·'do....n"s; but ter!Tlinates successf11lly on first receiving are
more- "cJo\/'n" than "up"

PC:::	 = (oovr_'" SKIP C up'" (POS;,POS))

Note: to counteract an initial "up" it is ne-cessnry to accept
t\1O more "down"s than "up"s; tbis is done by first accepting
one more, and then by accepting one more again.

(h)	 t.n alternative formulation of (g):

PO::: = (up'" pas) until (dol.,'n ... SKIP)

(i)	 A process that behaves exactly liy. € COm!T
o

ZEFC = (iszero ... ZEPO 0 up ... (P0S; ZERO))

8

It ..(j)	 An e.utoClBton that accents equal rJUl'lDerS of "a " s, c s, fiI'.r1 " e " s:

Ar·pe~El". = (AnEef'.; (a SKIP;) ! I emF-I".

.....here enDEn ",il] re defined telmT.

The first process ensures that the "c"s nw.tch the "a"s. end
ignores the "e"s. The otber process ignores the "a"s I hut ensurE'S
that the "c"s are matched by the "e"s.

I!': fUturee shall often abbreviate

"(d SKIP)" to just "d"

ALPF~BET TRANSFORV~TION

Let f be a total function ",1:ich maps the syrr.bols of one alpha
bet Y onto symbols of nnother nlphabet 7, so that:

f(y) is in 7: for all y in Y

Given a process P 'With alphabet Y, ",e cel". define a process f(P)
vi th alphabet Z, 'Wh ich behaves like P, except that it dces f(y)
vhenever P ",ould have done y.

f(P) If(s) 1 s is in P} (See techn5cal note (~)

..,here f(s) is obtained from s by applying f to each of its symbols.

(a)	 to represent the sad effect of monetary inflation on a vend) n@
machine:

NEWM = f(V1-')

.....here f(Sp) = lOp, f(small) = verysmall, etc.

(b)	 a process usee in an earlier example

CnDEn = f(AnBCn)

'Where f(a) = c, f(1;) :.: d , end f(c) = e

The most frequent use of alphabet chaORe ",ill r,e to Rive diff
erent ~ to otherwise similar processes. So 'We introduce a set
M of special symbols to serve as process names. If x denotes an
event, and m is a name in f'i', then the compound syrnhol "m.x" denotes
participation in event x by a process naned m. '\o,Te stipulate thnt
events prefixed by distinct process names are distinct:

m 1t n implies m.x ;c n.x
\lith the exception that m.1 = I for e.ll names m.

9

The prefi>:inp: of' R nw.!" is accomplished by a function

nrefi>: (x) = m.x	 for all x.
~ rn

v,,'e can nay define m:P as a process ,..it~ name rr.. vhich does rr.x vhen
eve:r P vould do x:

rr.,F=prefix IF: IRy conventionc, p;~IIF = I" (r;Q))IIF)
m

(c)	 TYc distinct vending ~achines, operating independently in

paTallel (by interleaving of traces):

(red,YM ! I green,w.)

In p,eneral, the alphabet of' a process will contain (in addition
to events that require participation of its external environment)
certain other events which represent its internal vorkings. ~ese

internal ever.ts are intended to occur automatically, vithout part
icipation or even knowledge of the envirowent. 'To model the con
cealment of such events, we vish to remove the cor~esponding sytr~ols

f'rom the alpha.bet of the process, and from every trace of its
behaviour. I,et X he the sP.t of syntbols to be concealed; the result
of the eoncealIrent is defined:

pIx = (s\lF-X) s is in p} (See technical note (5))

'Where P\X =: p-x (set subtraction)

(d)	 A soundproofed version of NOIS~~

N01SY\'M \ {clink. clunk}

When a process has been defined by parallel composition of tva
or more processes. the mutual interactions of the component pro
Cesses are often of no concern to their common environment. These
interactions are just the events named by symbols oecurrinp, in the
alphabets of more than one of the cor:ponents. Ve represent. the con
cf's.lment of' these events by enclosure in squa:-e hrackp.ts:

[FI!Q' = (FIIQ) \ (pnQ) _ (I)

This definition generalise~ to more than tyO components:

[Pl!~P211 ... iIPnJ = (P11Ip?II ... IIPn) \ X - (I)

where X =.U.(1'. n P.)
l;CJ 1 J

(e)	 A ~SER process uses 8 COmiT register named m , interacting vith
it hy events

{m.iszero.	 m.up, m.do~}

1 0

These interactions are to he ccnceaJ ~d, thereby f'n:-;uriHfI: that the
register- serves as a local variR'!:le for tbe benefit of only u'e
single user:

irr_:CQU:IT ! ~USFP.J
o

(~) Eilf_ilar to (e). but 'With t·\lO registers:

[n:CCUJ!'!',,:!,I!r.l: CCFNT) !lIF,Ff\l
o

(g)	 Ins:ic.e tr.e ~JSER process, t:,e followir:g subrrcccss will a~~ tr:f'
current value of n te' tl, leavine the value of n u!"!cr.angec:

/.DDNTOM	 =: {n. iszero FY.IP

C n.dm,;-n ((IT..up /lDD~ITCt<')

(n.up Sf:lr)

Another use for concealment is to rerncve / from the alrhabet of'
a process that is not intended to terminat",. For eX8.11rph·, if F is
a normaIly terminating process. *p is II rrocess wh:ich repeats P f'or
as long as is required by the environment within which it rur,S:

~p	 = (F; (~p)) \ (I)

(h)	 A fa~iliar exomple:

VH = *VHI

IKPUT /',ND OfJ'I'PPT

Tne vodel developed in t'1e rrevious !'>ect.j ons is sUffider.tly
ger:eral to apply to any kind of event. In the following sectio~~

we shall tf' cor.eerned 1'rirr,arily with corr:r::uni cat i or. events. ir.vol ving
output of inforrra.tj or:: r-y ene process end ir.put of infornitior. by
another. For these events we :introduce rarticular notatiolls. If' t
is a value of tY]'e 7, then

:t denotes	 output of a ~essag~ with value t

?t denotes	 inrut of a messaee with value t.

(a)	 A process which behaves as a Boolean varia.l:J.e. ft.t an:! time, it
is reedy to input its next value or to output the value 'IIhich
it has most recently input (if finy).

11

BoeL	 = (?truE' -+ TRt'F'P,nOL n 'lfalse -+ FALSFBCOL)

':'F~.r:Enc. = ('?truf> ':"F?CT:::00L n 'lfalse -fo- FATSF:~.oCL

f' :truf" TBUfBOCL)

ar.c FALf3FBCGI, is similar.

~~e~ a proC€SS perforrr,s input of some value x, its subsequent
behavio'J.r will u:su8.lly depend on the value whicl1 it has just input .
.t..lthough t":e type T of x I;,ay be kno-...-n. the idpn-:it:r of the value
which is actua.lly goir,g to be input is usually not k:r.o·,.-n; the pro
cess must be p~epared to do ?t (input cf t) for ~ t in Tj the
selectLm ...-:ill be made by its environnent. 'fo achievp this ...-e
introeut:e a. fonn of input cOlTJIlard:

(?x:T P) = {<>} 1J {<?t>slfor t in':' nne Pin r }
x	 t

~\ote that tbe vE.riab],e x is a durnny (boune, locl'..l) '..--ariable in this
construction. :t is not a syrrbol, a.nd it does not appear in any
traces of the process.

(b)	 A process which just copies ~ha.t it inputs:

COP~T = (1x:T !x -+ COPY)
T

~is process serves as a one-place buffer.

(c)	 Similar to (h), except that consecutive pairs of "*" are
replaced by "t":

Sc;UASH = ~('lx: CHAR -+

if x ~ "*" then !x

else ('ly:CHP.F -+ if y = "*" then "t "

else : "*" -+ :y)l

(d)	 A processr_ich behaves as a variable of type T:T

VAR (?x: T -+ VAR)T =

whe!'e VAR = (:x -+ VAR 0 (?y:T -+ VAR))
x x Y

VAR is the behaviour of a variable with value x.
x

Clearly, BOOL = VAF{false,true}

(e)	 A processhich inputs cards. and outputs their cOntents one
character at a time, interposing an extra space after each
care.:

, 2

l~PACK = ~(?c:CARD ~

(for i: 1..80 lc) ; !" ")
i

where CARD = array 1 .. 80 2.f. CHAR.

(f)	 A process which inputs characters one at a tim€' ann assemtles
them into lines of 12) characters, which are tben output

PACK = PACK<>

....here PACK£, = l£, iPACKo	 (if length (t) 125)

(?c: CHAR ~ PACK) (otherwise)t<c>

(g)	 P queue QUEUET at any time is prepared to input a new element

of tYJIe T I or to output the eleIT'ent whichas input the
earliest (if any):

QUEUE = BUFF< >
T

vhere BUFF = (?x:'I' BllFF)
<>	 <x>

and	 for s ~ < > ,

BUFFs (?x:T EUFF
s<x>

0:	 first(s) + PUFF t())res s

(h)	 A stack is similar to a queue. except that it outputs the
element vhich vas input the latest; it can also give an
indication vhen it is empty:

STACK = *(~ isempty ~ SKIPT
D?x:T STK)

x

"'here STK = (?y:T STK i STK C ~x ~ SKIP)

x y x

is a stack with x as top value, which terminates vhen empty.

COr.'MUNICATION

Suppose tbat ve vish tvo processes P and Q to operate in par-
allel in such a way that every message output by P is inyut directly
by Q. The resulting compound process is denoted (P»Q)hich can
be read: tIp feeds Q". '!'he synchronisation involved in direct com
munication requires that each output ~t in P be re~Rrded as the
sBme event as an input ?t in Q. Such events are to be conceE1.1ed
from their common environment.

The required effect is achieved by transforming the alphahets
of P and Q, prior to their composition. Thus ve define

P»Q cstrip:(P)llstrip?(Q)]

13

where strip~(!t) t, strip: (':'t) ?t

and strip?(!t) :t, strip? (?t) t

Kote that all output frorr the out::;ide environment i~ ir:!'~t hy p. and
8,11 Ol;tpUt ry ~_ is input by the enviror..r.'.er.t.

(n)	 ~at is to be ir.put fro~ BO-column cards ar.d output in lines

of 125 characters t:'ach:

L:STING '= l)]'TPACK»PACK

(b)	 S:milar to t~e above, exce!'t that cor:secutive "*"s are to [.f"

nplaced by "+" :

C0Nl-rAYS FXAMPLE = UNPACK»SQTJASH»PACK

(c)	 8.:milar to (a) except that cOrnIliunice.tion is l~es~"r:chronisec1 by
i"Cterposing an unbounded buffer:

Ui'iPACK> >QCEUE » PPCK
cnAB

TI-is example shows that no generality is lost by terip.f syn
ctronised co~unication as primitive.

(d)	 S:irnilar to (c) but vith only double buffering:

U~PACK»COPYCF~2.»COPYCTIAR»FACK

NAMFD SOUnCE MID DF.STINATION

The » com}inator allows construction of chains of anonymous
comnruricating processes, each taking input from its predecessor and
sendir.g output to its successor in the chnin. For other more
elaborate patterns of cOll".munication ..e sball Ul'e n8llled procel'ses.
and ellow each input or output to quote the name of its source or
destination:

m:t denotes output of message t to process named JIl

m1t denotes input of message t from process named l':\.

(B)	 tc update and test e. Boolean variable named b: BOOL

USERB = (...b!true '" (b?true -+- '" Ob?false -+-- •••) •••)

Ths has the effect(..b:=true.,,(if b then."e1se ...) ...)

We also need to input arbitrary values from a named source:

(ll1?x:T -+- p) = {<>} U f<m?t>slt is in T and s is in F }

x	 t

(1.:	 to update PoI". i r.:tefer \"a.~j p'\": e nCI:ll2ci m:

,CS:F:·: = (... r. .: .•. (r-?x:T:~'!' F!(X+::)) ... ;

7':' is hes the effect: (•.• m: c ! ... m:=m+3 •..)

fenceforth we srell use the~e ccnventicnal not~tions for

ur!1atir.& va.riaUes.

(C)	 0. subroutine whic~ repeatedly it,puts ft !'loetinf Pc1l"'t arg1J.'"'lf'nt
and outputs its tan[€nt 8E result:

Tn:	 = '::'(?x:FP -+ sin!x -+ cos:x -+

(sin?y:FP (cos?z:fP -+ ~(y/z))))

In order to est8clisL synC"1:.ror:isec cor-.ffiunicatioI' bet'\-reen e
narr.ed process r:::P and an unr.er.:ed procf'ss Q, we neec tc ensure tnBt
each ru:t in Q denotes the SBrr.£ event as ?t in p. and eech r.?t in 0
oenctes the ser-.e event as !t in r:. '!"::'is is conveniently acHpvec,
by adapting the defir:itio~ of prefixF. when appliec to input e~d

C\ltput events. thus: .

prefix (?t) = m!t Dr.d nrefix (:t) = m?t. mre	 .

In	 future we shall assume thot this adopted definition of pT~fjx
mis used in process naming.

As in the case of ». it is usually desirable to conceal con
munications with s. narned process. 'I:e therefore define

[re,pIIQJ = of (m,pl!Q) \ m.X

~here ffi.X is the set of all symcols prefixed ~y rn.

(el to declare a local Eoolean variable for USEPR:

[1,P.CCLlluSFREJ

(e)	 to declare a local integer variable for USERM:

[m'VAR1NTI !USEPM]

(r)	 n subroutine ~hich calls t~o local sUlroutines to assist in
its cnlculations:

TANGENT = [sir:STN! Icos:cosl ITANJ

(g)	 A subroutine which eomputes a factorial by recursion. A~

before. the argument and result are conx.unicated by input and
output:

15

FAr: (?x:Nt; -+ if x r .!lLer-,

.f-]SE' [f:Fl,C:! I

f:(x-l); (f?y:tTF -+ ~(~.;;))1)

fact mtivatio". if I'ecessary, creates onother act i VE:t ~ 0:1 to COJ~plJte

the ren.::rsive cal~.

(h)	 ;,_ ,irr,:'lE.r technique can 'te used to define €I rpcursive cata
st~1Jct'lJre, for exrtr'F]e, a set wlJich ir.ruts it::: :r:er.bers~ "n(l

'" ". . 1~r:s'W~rs .ye~ ~f the vo,lu: n:;ut was a ready n nember ann
:~o othennse. fach E.ct~vat)on stcres oce nurrber x, E_Olc" uses

a :'"er-ursive er:tivaticn to store tre rest of the set.

SFf'}' = ('?x:T -+ :no -+

[rest, cC"_! I
~('?;,{:T -+ if y ~ then_ ::.res

else rest:y (rest'?yes ;yes

n :-est'?no -+ :no

)])

~I:e previous examples show co:mr:,t:.r:icat.ion 't-etween fl single nel'"ed
(slave) process ar,d a single unnamed (mnster) process. In nore
genenl comrr.1Jnicaticn networks. it is r:ecessoI;r to ella\,' ('ne nFl.Fed
proce<s to cornmunic8,te with another r:eI1ed process. !,,, before, this
is acrornr1ished ry equeting the event r::t ir a process nw,eo n ",:lUI
U"e eYent n'?t in t. process n8mec Jr. Af,lJir" the ~ef'init:::'on of
prefil 55 adapter. for this purpose:

rr

rjefi~ (n?t) = prefix (m:t) = n.n:t.
r n

(i)	 A. net..rorY for multiplicatior of a Matrix r.y a vector. Processes
efL1, CO!?, COL3 output the co1urrns of B JT'at.rix n:. '>'a111Ps
y~. v?' v fon;; a vector hy whiclJ the r:;f!.trix is to be r.:ultiplieo.

3
':'IlE"	 resu] ti!:~ co:!.t.:.."Cir. is "::0 te outpc:t to B. r.ISPU.Y proce::;s.

t::nce it is desire,tlE' to ir:nut three nUlLbers et n tirre, Bnd
mu1ti?ly t~ree nuwters at B tin~. a network of frocesses is
requi~ed. They are pictured in fiGure 1, 'Where each co~unicatjo~

channel is 8Yr:otatea ry t.be typical valc:p that paSSE's alone it.
Each of the processes M M , M repeatedly inputs a partial sum

1
,

2 3from above and a column value from the left, and then send its
result down to its successor. The algorithm is defined:

['o'Mollm1 'M1 i jm2'M21Im3'M31Im4 ,DISPLAY]

where M = ~(ml ~O) (6 source of zeros)
O

16

fend fo, r < :$:3

I·'.
1

= *(rr.. ~ ?Sll~,:r? -+
- l--,

col.'?X:?P""*li. :
l 1+1

(sum+v.*X))
1

~.I
L-=--J

X

1
i

r+('; *... \
, ~ "l'

I

1 colC I Z~)I I
• r+(·· .y '+(v *y ~

, '1 : ' ? -:,.

r+ I ,. !"y :+1-,,- *x)+1'." ,.., \
.""-~"? 2 '?-3'

Fif,l~re

SIiARIIIG

Let X be- p, finite or infinite set. 8.r:C let P be a rroc€'~~ ::"'"r
eachxirX. x

~ II x:xJp = ABOPT if X is empty
x

p)IF)1 ... if Y is {u,v, .. 1

(see technical note (6))

[Qx :X~F = ABORT if X is f'l'T'.!,ty
x

= pDp 0 .•• if X is (u,v, ... J.
u v

....Ff' define Any e.s the set of all process nar.:es,
and e.ny(r) {r. 1 i is an integer}.,
(a) PHIl.OS0PHERS = r II i :o.. "J FEll.

1

(b) EL~LFF = [Ci :0 •• ~~ (i sitsaovn -+- EUTLEP1".+1 n
r:!i e:etsuD + BUTLER 1) for n o..3

n

17

(c)	 tn exclusion semaphore:

HUTEX = ~([OX:ANylx?llcquire x?releaseJ

It	 must be released by the se.r;e rrocess "rhich acquired it.

(e)	 tn array of three exclusion senaphores, r~otectinf three ident

i cJ.: resource~;

r- •	 1 ,-' '''''~1:''yII
II

1: "- r :",-,-,--,i

t ~ser can acquire anc releese any cne of tte available resources by

U:b::.ine;Rny(r):t:ine~acquire........ use t::e resource ... ;
r:ir.e~re)eose)

(e)	 fi hard'lorare line printer with name !"'" is to he sha.TPG for the

m:trut of conplete files

r,t	 = ~(rrx:M;Y~)(?acq,~ire
h

(x;~:In'E h!i until x?release SKIP))

Each :teretion of the major loop first "ncquires ll an urbitrar-y user
x. ani. then copies lines from x to h, until recei vine a "release"
signn: .

(f)	 This irrproved definition of ToP f>nsures tbat esc!: uSf'r's file
h

is separated from the next b:,. a "! thro'lor" to the next even page
coundary, and t'lorO ro,,",s of "!asterisks".

I.P	 = (h!thro;! h:8.sterisks
h

~(rDx:ANY'x?acquire h!asterisks;

(x?i:LINF if 9~asterisks then h!t ~ SKIP

until x?release) i

h~thro'lor h;llsterisYs}

(g)	 t shared variable of type T.

SFU_R = (rCx:A1rylx?y:T SP.yJT

vhere SH ([[1x :ANYlx;y sr

y	 y

n[D:x;A~rylx?z:T SE)z

This exan;ple 5ho,"5 that R corranunicatior.-bosed t!"leory of pernllelisrr
is r.ot in principle different from one cased on shared vllriarles.

::n t~e previc1..,;s exar-,rlps. "''':f:r: ::',ar:y ?rocpssp:;o 8t.ter:~t ,5."1;1t
c.r:PC'~f,2-:: to 3.CQll~ l'E FL .'?:-Eret~ r(,3C1~rce. rel1 r',l"t r,r.e "'~:'.~ ~-D"'=> tc

---";;:':; 2r'~- "j·'?r t.he resc"Y"-': is released, it is not detel"'!"1inec in
.....i:at sequer:ce they ,:5.:::: ",'.'e: tl,n:l~' ::.c:~::~-f' :~_~ rf,o.c'_:rcl". "'&0 -'-+

iI'for"trnt t-.:· ('or.t-yo,"=,2- t~.e seQ~Je)~C'(' ,y... '~('T,':2iticr. ••~.'" :'Ir:er: ~, r~""C

::-m'T'icotE'c' sr're~u2e!' '"':-:ic:~ ·.. i]~ ""Tarc;-p "':.~'", re':;"":'f'st ",_:',,4 -:~r~

?TM,ti:-,C cf the !'""esmlrcp 8S c.i3tirct e·!er:t~.

(~1)	 A "first-come first-served" scheduler. sharing a group of N
resources. A QUEUE is needed to store the names of waiting
users, and an integer to indicate the number of free resources
minus the number of ungranted rerlests:
;::'F~~. = l(r:C';:~TFr::-t-?"''!~ 1fT~~;Vl~T;;T'!

frep ;=?-:;

* (Clx : t. ::-y1x ?reqtlPst. :"'ree := tTe",,-~

i: free (C t}"l~ '};): gl..s~. x!f;rETteC'

:-=~x: Al:Y;x 7rele€se --+ .j:'rr;oe ::::. free+l;

_~.:-	 free ~ n thpr~ '<}?y:.tTTI -~ -,r: [.r:lr>te~) ~~f: ~;.rIr ,,
C'onvpntlori11 notations [.ave l'een ~l:':eil 1~or upn£ltinr tlr3tll·les.

fi r-':i_;L':"IFF0GF:N~!;FD :'-/l.T('): ppnrF~~:Irr; sys,:"n'

ft f'lultirrogrB1'1l!!er r.£ltd: :rro('p~!Oin[systerl :inrmts jobs f:;0f Emy
of , cnrcreecers, BYecutes toer.1 or, 8n~' of P J'!"'ocessoTs. ar,n o':tT"ll.:ts
t!~e res'",lts on Rn;:,p of I line :;,rinter!". P.n account :is Jo:et't of t·ne
cost cf E''-,c!-. jcb. E.nd t1':.5s ::'s pr::'Y'tec out at t!-,e eY'f.. I:- tr.e ('ost
exc:eecs e. ce:r'tEtir<. li::'!it, t::e jor is tn:ncate8..

1~e	 overall ~tructure cf the system is

MPPS = [CARDREtDERS! ILI1WPRINTERS I IPROCESSORS]

where CARDREADERS = [II i:1. .C]cr. oCR
1 Ci

and LINEPRINTERS = [lli:1..LllPi:LPhi

find FFOCESSOR8 = C! !i:J. .• FJpri:P~oC,

r~ct processor executes e strea~ of jcbs submittec ry usefS~

FRoe = *3I~GLEJC'3

The process SDIGI.E\JC'B executes a single user's job; takinp; iIiput
fro~ e.ny free reacer and channelling output to a~' free printer :

19

S::::LEJ0P =

~ ,..·t ."'Al:< ! Ic "rAP I I
- c, = . \ 'T:i':' ... CAFI" I

{rCir.:eny(cr)]ir:!,<lcquire

rCot : ar..y (lp; 'out: e.cqci re

cost: =C'; Rml;

in!releese;

out~acccunt(cost); out:releas~

) 1

The process RLJtJ needs an auxiliary process r;SFR (not S):O',rn here)
'lJ"hich actually executes the user's job. 'Tr.is USE'S is essu.r:-ed to 'be
initialiseo to some stander": compiler or control le.nguF.gE' intf.:'r
preter. It interposes a rer;uler-":timeslice" signa.l after every
million instructions executedj an(~ sends a ":finishec" signs,l wben
the user progr8J!1 is finished (if ever):

T\Uj.' =- [!'r:T:srnllr,OOF:

~here LOOP = cost := co~t + 1;

if cost> cost limit then SKIP

else (prH:LI1T -.. out:r. + LOOP

Jpr:c -.. (in7x:CARD ~ c:x LOOP)7

~pr?ti~eslice rnop

Jpr?finished -+ SKiT

In pructice, the interf8ce ~et""'een eSETI ar.n H)OF will be imrlemer.ten
"ty hardwe.re protectior. mecher.lsFs end l'y supervisor calls e,nc e~dts.

In order to prever.t interfenmce 1::etween successive jobs SU(,

mittei in a "tetch, the ceres of each job are serarated frorr t}le
next ~ob by an "enncard", which is used fer no other purpose. 'f1F'

task of CB is to ensure th8t t!-.e cArds for each job B!'e consurec'
right up to tr.e endcard nut not reyond it:

c~ = *([Cx:ANY]x?acquire -+ (h:'c:C.APD -+ FlU'))

" - c

where FILE = (x:c -+ if c = endcard then FIIT c - -- c

else('h?c:CARn + FII,F)-- c

~x? re leas e -+ SCA N)
c

..,-here SCAN if c = enncard then SKIP c

else(h?c:CARD -+ SCAN)

-- c

20

If t0e uspr 8tterrts tc ~ead ~eyonc the er.~carG. ~e just fpt"
f~~rt!",pr caries of He er.r'cere.

€ ne,,' srecif'y ar. 3rre.:;.- cf rrocps~es ",.:hich :"f-rfnrr l'sP1;dc
offJire outPl:.t of' £'iles. foch rrocess uses a fj)f' (8cqu5rpc fron R

fil-jpC; syster.:; to r:old t'r'e user's O1;.tpUt, R.nc1 acquires e rpfl.l lin'C'
printe!' "nly "Then the uspr'~. out.put is corrr1pte.

r-II_ .tn") _ C"Tj>SPcrrr.Y PS L.- I !l . ",.,_5 ri _ .:'1.

where f,r t> !::'Qx:P-I;':!"x'.'acquire -+

~Sf:nr.y(file)lf~acquire -+

(x?t:T.n;~ -+ f~~, "clr:til x'?rp)pasp);

r:rewind;

(r1out:e.ny(lp)~out:f:lc'1u:i.rf'-+

(f'?t:LIFF ~ outll until f?pof);

out :release)

E:·IP acts l~lt:e a "rrocess" in a lang"clap;e like !.'n;;nJ; fl. ;"',ew "ir.:;trtnce"
corres into existence as a result of each "call" of the fom:

(fOout:any(slp)Jout:ecquire -+ ••• out:.n .•• out!£.2 .•. out!release)

DISCBFTE EVFl'T SIr·l1JLATIOll

In desigt"'ing a progrerr to F:imu] ate n fra.p;nent of thp re:=l) uarle.
it is necessarJ also to simulate the pat>sage of real time. A~y pro
ce~s of the progr~ may ~eed to enquirp the current valup cf siFu)
nted tirre. by inputting it froF. 8 "timerH rrccess:

(ti~er?t:~I}'F -+ ••• t is tiIT,e now .. ,).

Furthe:I"'r..ore 1 a process may nf'ec to eela:r itself until sirnulRtf'd
time renches some predetermined value, say e o'clock. This is done
t-y outruttine: the require(1 "alarm settinf" to thp tir.'.er pY'ocess:

timer:e

This is an event which is £uaranteed to occur cnly at e O'C]GCK (in
si:nulated time). Thus ~ to delay itself for (1_ ur.its of sirl1llE.ted
tire, a process can perforn the actions:

llOLD(d) = (timer?t:'I'nl,E -+ tirJer!(t+d))

7he timer process is always prepared to output the current
value of simulatec time. It is also prerared to input a v8lue~

provided that this is equal to the c~rrent value of si~ulated time.
ir; this way a process perforning a HOLD operation is pe~_ittec to

21

contir,u~. Finally. if all activity of tht:' use!" processes "'las te:rn
ineted, the simulated time dod is sterT'f'r or. to it:s next alc;
':"·:~·t cf5crHes the 'te}-,;·yjcl:r of -sr.p ti:--e!" z.t sir:u2.e.teG t.:.,e ~:

"rTI' = (r"..... ~ .~y lX 't""'" ':IV
~ .. t ," .1'.. t

[:rrx :ANY~x?t '='Ir~t

~other~ise ~ ~n~next(t)

..-here '·ot'l':,er-,·,ise 1
' is an €ver.t which is int.e!:Gec tc oc~ur cr~l:., ~"r.E-r

nothir.f else ca~ occur.

It remains to give a rigorous definition of such an event. If
P is Eo process, we define rescue (p) as:

e

reSClll,' (?) = C\fe}e .

¥There .~ = fsls i~ in r

and	 if t<e> is an initial surstrine: ,·f s

8.rd!	 if t<y> is in r, ther. x = e}

No...... if H.e Uf,FPS nre 8 e:r(1u!' of processes to r:e exec'clted ir sir:-u] at €r
time

sir:n,la'l:c (USERS) = df

reScuE-tO t\. . (tinlf.'r:TD·! !psmS).lr;er.o I.ervlse 0

(li)	 ! ~t r/>T}:S te R s€"·t of MJ.nes c'!" 'c,nidirectional ['lJths in a !'1et
\.I'or'k. For each p8th 11 in :.'fiTFS:

lenl'th Cp) is the tir:r € taYJ'n to tr<!.verse the pot);.

S'~cc (r-) is the .'Jet of pat~s ;\,,['cinf from the ne~tinnti()n of r.

:?tRY. is 8 ;-,rocess representinc a sirgle tr<?_ver~al of n[;.:.r r;
p it. is 1dcu~rec' r:.' [1 "start" ~:ir:r;·l f::-oT'~ or.t G'" i~s ;,r~

,:ecC'~;sors. am! ~fter traver~i.r'G thf' :1eth, it !,:r'0~2E'etes

£1 stl:'1'"t signal to 2.11 its successor:; in parallel:

~PfRI\ (Ts :PJl':1:S's?~tart ""'"
p

rnID(lengtt(t)) ;

U! !f,:succ(p):c.:start ... f3CPT)

) 0

(b)	 A special path "dest l' i~-; singled out as tr.e intencen cestin
~.t}or. of e journey. It trig5ers tr.e sta.rt TJoi:ct of ttl" jmJyrey,
~nd ther. waits for the first spork to ~ropagate tac% to i~self.

22

It tten	 outputs tDe tif"e e.rrl t.e;r.ir.l'!tec; sucC"~~sf":;J';

nE:?':" = scurce: start;

(:-;os : P P':"h8~ 5 '7 start

(t:I1:er?t:':"'J1.T...,. ;t)

(c)	 Tc Cl,.;.tpu"t tre leJ'1gth of the shc~..tpst route ~ n -':;hp net...·orr
:,etlJeen tr.~ source e:-;d the c.estir_aticn:

sir:u]at~ (: lp:(PP.T'"iS - :d~st:)J p:;:PlRY

aest:D?S~) ..
I	
~

(r])	 A T'lf'.chine shop pos.sesse!3 tP!"1 eroup!'; of J:lflc':1ines. tach fr0\lT'
cont!3ins seven :r:e.cnines • .,}den are schf'rluJ.f>n hy a foreMan IJsing
Fl "first-coI'"IF"-... first-served" discipline. T'-l'" sho~ hes t.o rro
cess a c:et of orders ic"enti:'ieo 'ty naMes in X. ~ar.h order in
turn uses n reacer to i~put its pa.TBJ"-,etf>rs:

sterttilr.e: ~t ~lich it e~ters t~e shop,

l<U!!lberofsteps: requil'ec to fulfi] the orcpr,

and for eE'.ch step;

med:inegroup: of !'l!3,chine needed for this step)

servicetirr.e: for this step.

Pn exclusior. se~a~hore is required for proper sharing of the re~der.

Cutput of results has beer. ignored:

f'.PCFIrn:F-:Cp =

sirr.ule,te (rrdr:MJTEY

!l[lli:l •• lCJforerr.8.n".. :FCF~"T

Illll"x]x:ORrEF
,

l)

[ach order must read in its pare.!'1eters before starting t() pro
gress in the simulation proper. All orders initially COI1'pf"te to
use the ree,der f"OT this purpose. It dcE'S not matter in ·..h~t sequ
ence they actualJy aCQuire it:

ORDER =	 rstarttime: VARNrl inurnberofsteps:VARppl I
rdr~ec~uire; (reader?n:NN ~ starttime := n);

(reader?n:\~ ~ nunber of steps := n);

r[II i: 1 .. numberofstepsJn:achinegroup. Vft.F ;,

1 rn

23

11 [II i : 1 •. nUIT.nerofste'Ps l serv';,cet ille .: Vt R I'.
1 ~r '.

: : (:'or i: 1 .. numnerofsteps -->

(reaGer?n:~T -+ !!'Bc'l-.iLE'fTCUtl::= ~ \.

(reader?r.: m: sen·j cetir:e : = r,' \
i

rCl':release; FF0GPF:::r

TI-.€ first ecticr of e~cr. order is to wait ur,til jt.:::; ~tarttj:rr.e ,s
cue. It then progresses through each ster'. l?cqdritl{; its r-.Bchine
fran: 2. ~c:;e::::ar:, ar.c ho:"dinr; it for tte requirec sprvlce tir"'e:

?HGRFff =

(ste.rttir:;e?r;:~~r -+ tir'er:n);

(for	 ill .. r.urr~erofstep5 ~

(~achineeroup.?mp,:N~ -+
. 1

foreman !request; foreman ?granted;

fI'[rog

(servicetiucei?r:!:l' -+ }j()LD (n));

foreman !relelJ.s€

mp

'TE2}-m~~1.1 r::O':FG

Tc avoid tte introduction o~ ncn-~eterrr,inis~, we hnve ors~r:pc

n.e	 follow'ing restrictior.s:

(1)	 Define pO as the set of symbols denoting events in vhich P can
pertic:1p~te 0" its first step:

pC= b:! <;<:) (P}

'IJe use FCQ only '\ofhen p0:lQo = {}, so that the decision beb.reen
Fend Q CHn be made on th~ first ster.

(2)	 'The event of I occurs only 8,t tr.E' ~nd of a trace; and '·rher it
GOCS occur, it is the l'l"'.ly event t:U'It can or.cur:

:or	 D,~ 1 trar.es ':,

if sl is ir. r, an~ st is in P then t = <./>

T.... is ensures that s·J.ccessful temin~tiol' ci' a process is nhrvys
cetenni ni st j c .

(?)	 If'; is in thp FJpheret P '''·,:.t :r,c-t C tI-:er :=01 !c;', is 811o'\.te(] QnJy i::
the e.lp"!!atet of ,;: -j~ whoJl~r r:nr,bi,H'C ir) t:-:e ~~ph;:lbf't 0 r. 71-is
(,Y'sures tr,et s·)ccess!\.. l tenri:'1Ht ion of :' 8.l.ltor:et:: '"'I}:' 1:: C'.!• .": r:h()rt
e.r.,Y furtLe:- ac":-:'v':'ty o:~ ::;.

(4 ~	 ,r: alp'..-,e.c e": -t: raT'S fo~,~ -:-- ioc is al...-n~':3- <:. or.e-Of'E' ::'ur.ct: (,r, .

(~\	 For <; }:",~, F(.,;; ~'escri~f'::; the future r:ehBVinJr of r "'her. s is
t\e trace 0:~ its past ~,elH1.vi0ur:

F(,,) :: {t!st is :in p}

\\;e elefir,OC' s\X as sr(F-'~). i'l';' insist t;-,at after conce[l]j'lf'rt, of
Z, t.!:e ft;ture '!'ehf1viour- of f1 procesr-, is sti11 t:r,ir]l,ely deter
miEe(~ ty n,e still vis~rle s)T,tols ':I~ its pD.st :- ehroxiour:

T·or ;.;ll S "'-DC! t in r

:f s\:'~ = t\v teen r,Jr:!\~: = :::(tY\.y

(r)	 Ir infir:ite RT!""~,~r of .r'[;,1'811p"l rr0cpsses ;.'ust net cOY"f"'Iunicete
,olin eF.ch ,Jt'r.er (tr,eir a1r1Hlr.ets r..ust 'he eisjoint). '!"l".i."
eEsure~ that thp :infinitp rnr(lll('~jsr~ can r'e r.eflr:ee as tr.e
IilTit of ttp rarnlle~ c;l:.~'hnf'ti('n cf 3Il finite.: su1·~;('ts.

Po Cyrrrl..':.Er,G:f1'TH'T~

ACIr::1COl] ecgelT' ert s are due to Many colleagues. The inspiratioT'
for tilE> design of cOlT"l.JT'unicatinc: proc,,"sses j~ cUP. to F.li. T',;jj:st.rr;.
P. '!ilner sr.e""'·ec bo'"' rJ ;c,etter-aticc..: 70cel for th('f'1 couJel re r0f'
structC(l. ~. Cf'-r.;.plelJ. 5.r.n l'. I.e.\.er PY"f' resfansi1 Ie far the pralle 1
cOrihi nAter. ~;. Francez <:nn It.'. r. de 1:'oev""r helfe,~ st;~staT't i.a:1y j n
the r.evElopme::1t. J. Kenna",.;e.~r gave necessan· r;.P.t~lf'·L",-tiC'n: su?~ort.

F.!:. j·:cKes£ designee tre {,!,p.rntine syste;; ane W.-H. Ka.ubisch designed
thp. sif:1ulation progralTL. Irr.prc\rer-,ents over earJy er,1.fts ~'ere ~t;e to
rersrice.cicuE co:rr-,,-;ents of 'f'.1·. :i~kstra e.:r:c P. Yasuhera. '"h~ sirrllJ
atiC'n eYe:mpIe is due to O.-,r. Ciah:, anc so is tre fOrl"uIat.i(,n rrr
DijJ.:"stn;'s sr,orte~t !,"lath £1.1gorithr.L. The BUTLER is due to
C• Scholten.

25

References

Dijkstra, E.W. (1968) Co-operating sequential
processes. In Programming languages, ed.
F. Genuys. Academic Press, New York,

pp.43- 11 2.

Dijkstra, E."'. (1975). Guarded commands,
nondeterminacy, and a calculus for the
derivation of programs. Comm ACM 18.8,
pp. 453-457.

Hoare, C.A.R. (1978a). Some Properties
of Predicate Transformers.
JACM 25, 3, pp. 461-480.

Hoare, C.A.R. (1978b). Communicating
Sequential Processes.
Comm. ACM 21, 8, pp. 666-677.

Kaubisch, W.-H., Perrott, R.H. & Hoare, C .A.R.
(J976). Quasi-parallel Programming.
Software - Practice and Experience, 6,
pp. 341-356.

Milner, Robin (1978). Synthesis of
Communicating Behaviour. Mathematical
Foundations of Computer Science.
Lecture Notes in Computer Science 64,
Springer-Verlag, pp. 71-83.

26

PROGRAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS

JUNE 1961

This is a series of technical monographs on topics in the field ot cOlllputaUon.
Caples may be obtained trom lhe Programming Research Group. iTechnlcal
Monographs). 45 Banbury Road. Oxford. OX2 6PE. England.

PRG-l (out of prinrJ

PRG-2 Dana Scott
Outline of a MathematIcal Theory of Computar/on

PRG-3 Dana Scott
The Lattica of Flow Diagrams

PRG-4 (cancelled)

PRG-5 Dana Scott
Data Type$ as Lattices

PRG-6 Dana Scott and Christopher Strachey
Toward a Mathematical SemantIcs for Computer Languages

PRG-7 Dana Scott
Continuous Lattices

PRG-8 Joseph Stoy and Christopher Strachey
0$6 - an Experimental Operating System for a Small Computer

PRG-9 Christopher Strachey and Joseph Stoy
The Text of OSPub

PRG-10 Christopher Strachey
The VarIeties of ProgrammIng Language

PRG-ll Christopher Sirachey and Christopher P. Wadsworth
ContlnuatJons: A Mathematical Semantics for Handling FIJII Jumps

PRG-l2 Peter Mosses
The Mathematical Semantic.s of Algol 60

PRG-13 Robert Milne
The Formal Semantlc.s of Computer Languages
and their Implementations

PRG-14 Shan S. Kuo. Michael H. LinCk and Sohrab Saadat
A Guide to CommunIcating Sequential Processes

PRG-l5 Joseph Stoy
The Congruence of Two Programming Language Definitions

PRG-l6 C. A. R. Hoare. S. D. Brookes and A. W, Roscoe
A Theory of CommunIcating Sequential Processes

PRG-17 Andrew P. Black
Raport on the Programming Notation 3R

PRG-18 Elizabeth Fielding
The SpecIfication of Abstract Mappings
and their implementation as B+-trees

PRG-19 Dana Scott
Lectures on a Mathematical Theory of Computation

PRG-20 Zhou Chao Chen and C. A. R. Hoare
Partial Correctness of Communicating Processes and Protocols

PRG-21 Bernard Sutrln
Formal Speclffcatlon of a Display Editor

PRG-22 C. A. A. Hoare
A Model for Communicating Sequential Processes

PRG-23 C. A. A. Hoare
A Calculus for Total Correctness of Communicating Processes

PRG-24 Bernard Sufrln
Reading Formal SpecifIcations

