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Introduction

LispKit is the portable implementation technique for a purely functional
programming language, LispKit Lisp. The implementation consists of a
small virtual machine, and a corpus of language support software, itself
written in LispKit Lisp. It is the size and simplicity of the virtual machine
which gives the implementation its portability.

Thelanguage is a dialect of the Lisp language and shares two of the most
powerful features of that language: the vniversal structured type, the list;
and s-expression syntax which is both expressive and easily manipulated by
program. It differs from full Lisp in that all LispKit programs must be
written in a functional style, since there are no language primitives for
updating data structures. The absence of destructive assignment greatly
improves the intelligibility of programs, and is held to improve
programmer productivity, by simplifying the creation and maintenance of
correct programs.

The principal text both on the LispKit implementation, and on the
LispKit Lisp dialect, and a useful introduction to this manual, is

Functional Programming,  Application and Implementarion, P, Henderson
Prentice/Hall International, London 1980, 0-13-331579-7

referred to throughout this manual as the book. It describes a virtual
machine and a language slightly different from those described in this
manual, but familiarity with the system described in the book will helpinan
understanding of the current system, especially so if it is intended to make
any changes to the virtual machine or to the system support software.

In order to install the LispKit system on your machine, first follow the
instructions in the section at the back of this manual which is specific to
your particular machine. That section also contains a detailed description
of machine specific features such as the interface to the filing system, and
the precision of arithmetic. Having foliowed these instructions read the first
part of the manual, which takes you through the writing of a simple
program, its compilation and execution.

The substance of the manual follows, consisting of a detailed description
of the construction, function, and use of each of the components of the
support software. The companion volume to this manual contains source
listings of each of the programs described in the manual, and may be useful
for reference,

Finally, the implementor’s guide describes those features of the virtual
machine which differ from that described in the book, together with details
of the scheme used to manipulate compiled code objects in the LispKit
system. Reference to this section should be unnecessary unless you intend
to make changes to the implementation, and you should be warned that the
details in this section may be changed in future issues of the system.

G. A J
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Summary of the LispKit Lisp
language

Every LispKit Lisp program is an expression — an s-expression — which
has a value, and this value depends only on the values of the components of
the expression, which are themselves LispKit Lisp expressions. The syntax
of the language is simple: every expression is either the name of a variable,
or is one of the forms of expression beginning with a keyword as described
below, or is a list of components, each of which is an expression.

The semantics of the language are also simple: the meaning of any
expression is its value, no more and no less, and this value depends only on
the values of its component expressions; any component sub-expression of
an expression may be replaced by any other expression having the same
value without changing the value of the whole. Generally speaking, sub-
expressions are evaluated only if their values become necessary in the
evaluation of a larger expression. This means that infinite values — for
example the list of all the numbers, or of all the digits in the decimal
expansion of an irrational number — may be handled in a natural way.

Data types in LispKit Lisp

There are four types of value which a LispKit Lisp expression may have.
The simplest types of expressions have values which are either numbers, or
symbols.

In the case of the system to which this manual applies, a number is a
signed integer in a machine specific finite range, and the representation of a
number is a sequence of decimal! digits, optionally preceded by a sign. For
example,

-0 0 and 40
all represent the number zero, and each of
45 4137 and -27

is a distinct number.

A symbol is represented by a finite sequence of characters. Since the
system interprets any number representation in its input as a number, it 1s
not possible for the user to type symbols which begin as though they were
numbers, although digits may appear later in a symbol that begins with,
say, a letter. For reasons that will become apparent, neither can the user
type symbols which contain spaces, newlines, full stops, or opening or
closing parentheses. Examples of symbols are

Hello hellc Hello_world X32 X432 *v@?

each of which is distinct from the others.



Both numbers and symbols are called atomic values, since they have no
internal structure accessible to the LispKit programmer. Essentially, atoms
are values which may be compared for equality; in addition, the usual
arithmetic operatiens are provided for the manipulation of numbers.

There is a single primitive data structure in LispKit Lisp, namely the
pair. A value which is a pair 1s distinct from any atomic value, and consists
of two component values, called the head and the tail of the pair. The
compenents of a pair may be any type of value, including being themselves
pairs, so that pairing may be used to construct arbitrarily large data
structures. One particular form of data structure is known as a list: there is
one atomic list, the symbol NIL; any pair is a list provided that its tail is also
a list. Thus a list is either NIL, or contains a sequence of components which
are

* ts head
* the head of its tail
* the head of the tail of its tail

and soon, terminated by a tail whichis NIL. We shall normally use the term
‘list” only for finite sequences of this form, and the term ‘stream’ for
sequences with infinitcly many components. The representation of a pair
consists of the representations of the components, separated by a full stop,
and the whole enclosed in parentheses, thus for example, each of

(ab} {-123.(p.q)) and {(((a.b).c).{d.e))

is a pair; the first is a pair of symbols, the others are pairs which have pairs
as components.

There is an abbreviated representatiorfwhich is convenient in the case of
lists: itis permitted to omit the full stop and the parentheses around the tail
of a list, or the full stop and the NIL in the tail of a list, so that cach of

{a.b.{c.(d.0)))}
(a.(b.(c.(d.NILD)})
(a.(b.(c.(d)}))
(a.(b.(c d)))
(a.bcd))
(abecd)

represents the same list. Layout — spaces and newlines - may appear
anywhere between atoms in input to the LispKit system, and is ignored,
except that atoms must be separated from each other, either by
punctuation — a full stop or an opening or closing parenthesis — or by at
least one space or newline.

The fourth form of data value is the function. There is no representation
for a function value, but there are LispKit Lisp expressions whose values
are functions, as explained below. A function is a value which may validly
be applied to arguments, to yield a value which depends only on the
function and the arguments to which it is applied.



Expressions in LispKit Lisp
The simplest expression in LispKit Lisp is the constant expression, which
has the form

{quote (exp3)

Its value is the expression {exp), so that the values of the expressions
{quote 0) {quote 1) (quote 2) {quote 3}

are the first four natural numbers, and the value of the expression
{quote (Hello world!})

is a list with two components, the symbol Hello and the symbol world!.
The equality of two atomic expressions may be tested by an expression of
the form

(eq (expl) (exp2))

whose value is the symbol T, provided that the values of {exp1) and of
{exp2 > are both atoms, and either they are both the same number, or they
are both the same symbol; its value is the symbol F otherwise. In particular,
note that if either of the expressions has a value which is not an atom, the
value of the eq-expression must be F. The expression

(atom (exp})

has value T if the value of {exp) is an atom — a number or symbol — and
has vatue F otherwise.

Expressions which take the values T and F —standing for True and Faise
— are principally used to control the choice between alternative values. The
value of an expression of the form

(if (expl> (exp2) (exp3})

is the value of the expression {exp2’ provided that the value of {exp1) is
the symbol T, and is the value of {exp3) otherwise. For example,

(if (atom (quote NIL)) (quote gwir} {quote anwir))
has value the symbol gwir, and
(if (eq (quote (a)) {quote (a))} (quote gwir) {quote anwir))

has value the s ymbo! anwir, since the eg-expression has value F, neither of
its components being an atom.
Pairs are constructed by expressions of the form
{cons (expl > (exp2))

which is an expression whose value is a pair, the head of which is the value
of {exp1), and the tail of which is the value of {exp2>. Pairs may be
analysed by expressions of the form

(head (exp>) and (1ail {exp))



whosevalues are the head and tail, respectively, of the value of (exp). [f the
value of {(exp) is not a pair, then neither of these expressions is defined.
Examples of these expressions are

(cons (eq (quote NIL) (quote NIL)) {quote (a.b)))
the value of which is (T.(a.b}). and
(head (cons (tail (quole (a b ¢))) {quote NIL}}))

the value of which is (b c).

Large LispKit Lisp expressions may be made more easily readable by
giving names to their components. This may also make their evaluation
more efficient, since a frequently occurring expression need only be
evaluated once if it is given a name that is subsequently used to stand for its
value The simplest way of naming components of an expression is the form

{let {exp> . {declarations})

where the {declarations) are a list of pairs
{{name}.{exp>}

The value of the expression
{let Cexp)> ((namel>.{expl)) ({name2).(exp2}) -}

{which is read as ‘let {name1 ) be (exp1 ) and {name2> be (exp2> --- in
{exp))isthe value of its body — (exp)> —where occurrences of the names
{namel), (name2>, --- stand for the values of the corresponding right
hand side expressions, {exp1>, {(exp2}, :-.. There may be any number of
declamtion pairs in a let-expression, for example, the value of cach of

(let (quote (aleph (aleph beth) {aleph beth))))
and

(let (cons {quote aleph} (cons aleph (cons aleph beth)))
(aleph.(quote (aleph beth)})
(beth.(quote NIL)) )

ts the list
(aleph {aleph beth) (aleph beth))

Note that the occurrence of the atom aleph in the expression
(quote aleph)

is not a name, but a constant, much like a gquoted string in a Pascal
program, and sc is not relevant to the declarations in the let-expression.

Anogther way of naming sub-expressions 1s the function-valued
expresston

{lambda {argument list> {exp})

where the {argument list} is a list of names. The value of the expression



(lambda ((name1> {name2) ...) {exp))

(which is read ‘that function of {name1», (name2) --- which is {exp)’) is
a function. It is a function which may validly be applied to as many
arguments as there are names in the {argument list). The value of such an
application is the value of {exp), where occurrences of the names
{namel), (name2), --. stand for the values of the corresponding
arguments in the argument list.

A function application is an expression of the form

(¢exp) (expl) (exp2) --)

where the value of {exp) is the function. The value of the whole of such an
application is the value of the body of the function where the values of the
actual arguments, {exp1}, {exp2), --- are given to the formal arguments.
The value of an application is not defined either in case the first expression,
{exp), does not have a function value, or in case its value is a function of a
number of arguments different from the number of actual arguments —
{expl1), {(exp2>, --- — provided.
Similar to let-expressions are letrec-expressions, which take the form

(letrec (exp) . {declarations}}

The value of such an expression is the value of the body (exp), where the
names introduced in the declarations stand for the values of the
corresponding expressions. A letrec-expression differs from a let-
expression only in that occurrences of the declared names in the right hand
sides of the declarations alse stand for the corresponding values. This
means that letrec-expressions (letrec standing for ‘let, recursively’) may
have values which are infinite. or which are recursively defined functions,
for example, the value of

(letrec i {i.{cons (quote 1} i)))
1s the stream consisting of an infinite sequence of ones:
1111111111 1111 .

and the value of

(letrec reverse
(reverse.(lambda (1)
(if {eq | (gquote NIL}} (guote NiL)
{append (reverse (tail 1))
{cons (head I} (quote NIL))) } ))
(append.{lambda (a b}
(if {eq a (quote NIL)) b
(cons (head a) (append (tail a) b)) ) )) }

is the function which, given a list as its argument, reverses that list.
Several forms of expression are provided for performing arithmetic

operations on numbers. Provided that the values v1 and v2 of {exp1) and

{exp2) are numbers, and that the results of the operations are expressible



in thenumber range of the particular LispKit implementation, the value of
(add {exp1) {exp2>)

is the sum of v1 and v2; the value of
(sub {exp1> {axp2))

is the difference v1 —v2; the value of
{mul <exp1) {exp2)}

is the product of v1 and v2; the value of
{div (exp1) {exp2>)

is the quotient obtained oan dividiag v1 by v2; the value of
(rem {expl1) {exp2))

is the remainder on dividing v1 by v2; the value of
{leq <exp1) {exp2))

is the symbol T if v1 is less than or equal to v2 and is the symbol F
otherwise. The division operation is an integer division, and in the case of
v1 and v2 both being positive, the value of

(div {exp1) {exp2})
is less than or equal to their exact quotient, that of
(rem {exp1) {(axp2))
is less than v2, and that of
{add (mul (div {exp1) (exp2)) (exp2>} (rem (expl1) (exp2>))

is v1.
Finally, if the value of {exp) is a number in the appropriate range, the
value of the expression

(chr (exp})

is the single character symbol consisting of the character with that ASCII
code, except that chr of thirteen (ASCII carriage return) is translated by the
LispKit system into the representation of a new-line, appropriate to the
underlying machine, and the particular output device being used.



How to write and run a
program

Itis assumed that either you will have some experience of writing programs
ina functional style, orat least you have available a text on the subject,such
as the book. This manual does not attempt to perform the function of a text
book: this chapter is intended only to introduce you to the keystrokes
necessary to write and to run a LispKit Lisp program. Doing this will
require you to use a number of the utility programs supplied as parts of the
system, themselves LispKit Lisp programs. Again, this chapter does not
detail the full capabilities of these programs, for example the editor, and
you should certainly consult the particular descriptions of these utilities
once you have succeeded in writing your first program.,

The program which we will take as an example is one which reads a
sequence of numbers from the keyboard. Whenever the sequence is
interrupted by the atom sum, the accumulated sum of the numbers that
have been input is to be output, and if the atom end is typed, the program is
to terminate,

Designing the program

Every LispKit Lisp program is an expression whose value is a function.
This function maps the potentially infimte sequence of input s-expressions
onto the list of s-expressions which appear at the output. Thus, in our case,
the function must map an input stream beginning

(2 2 sum 5 sumend -
into the output list

49)
It is probably good practice for a program to announce itself, and possibly
to explain its cutput, so wewill actually cause it to generate the output list

( Example program {newline)>
Sum is 4 {newline>
Sum is 9 (newline)
Finished )

The kernel of this program is therefore

(lambda (input_stream)
{append {quote (Example program})
{cons newline
{append (add_up {(until_end input_stream))
{quote (Finished)) ))) )

11



where we have vet to define the functions add_up and vntl_end. The
function append and the value of newline will be ebtained from a library
of standurd definitions.

Nolice that the input stream 1s thought of as being infintte: the program
will only read a finite number of s-expressions from the beginning of this
stream, Notice also that although we have written parentheses around the
input and cutput sequences o emphasise that we think of them as single
entities, you will not type the initial parenthesis in the irtput, nor will the
parentheses appear in the output from your program.

The function until_end takes a stream as an argument, and returns the
list of those components of the stream which precede the first component
which is the atom end. Its definition is

until_end = {lambda (s)
(if (eq (head s) {quote end))
{quote NIL)
(cons (head s) (unul_end (tal s))} })

The definition of add_up 1s the next task, and we choose to keep a running
total of the numbers input so far. so the deflinition must be something like

add_up = (lambda (numbers) (accumulate numbers {quote Q)))

whereaccumulate is a function, still to be written. which adds the numbers
from its first argument to the running total. which is its second argument,
and returns a list of the values of this accumulator at the points where sum
occurs in the first argument. The delfinition we choose 18

accumulate =
{lambda (I total)
(if {eq | (quote NIL)) {quote NIL)
{if {eq (head |} (quole sum}}
{append (print 1otal) (accumulate (tail 1) total))
(accumulate (tail 1) (add (head |) total)) }) )

The function print simply formats an output line

prnt = (lambda {n)
(append {guote (Sum is))
(cons n (cons newline {quote NIL}))) )

Finally, we will put all these components together in a single cxpression
using the fetrec-form (letrec because both until_end and accumulate are
recursive functions)

(lerec
(lambda {input_stream) --)
funtil_end. {lambda ---))
fadd_up. {lambda --))
faccumulate. (lambda ---})
{print, {lambda -- )} }



Inputting the text of the program

It is possible to prepare LispKit Lisp sources with a conventional text
editor, and then to use the LispKit system only to compile and execuie the
code. This approach is not to be recommended. however, since you would
spend a great deal of your time in counting parentheses, and might ¢asily
miscount! You would also be disregarding the facility with which the
LispKit editor allows whole expressions to be manipulated as single
entities. We will use the structure editor to input the text of the program,
deliberately introducing an error, so that we may later use the editor to
correct that error.

First, begin execution of the SECD machine. Details of how to do this
will be found in the section of machine-specific information. On the Perg,
for example. you must log in, set the default pathname or the searchlist so
as to have access to a directory or directories containing both the machine
and the bootstrap file, and type

fSECD return®

The machine will then announce itself and its version number, and prompt
you for input.

The machine reads all of its input from a single input stream which is
normally connected either to a filing system file, or to the keyboard of your
terminal. Whenever the machine requires more input. it will prompt

Take input from where?

to which you should reply with the name of the next file which the machine
should read. There is a special name —— usually CONSOLE:, or anempty
line, that is just {refurny — which you can give to cause the machine to
treat the keyboard as its next input file. By now, the machine hasalready
prompted you for its first input file. The reply to this prompt should be the
name of the file containing the code of the editor. On the Perq, this file is
E.LOB, on other machines it may be different, check the filb name
conventions in the section on machine specifics. You would then type
something like

E.LOBreturn)

The code having been read, it is executed, and the editor announces itself
and prompts you for another file name

Editor
Take input from where?

This time, the editor is expecting the file to be edited, and since theinput will
come from the console, you type

CONSOLE {return’

or whatever is appropriate to your particutar machine. Now you are
expected to type the file to be edited. This file is the s-expression which is the
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source of the program. You could try typing the whole of the program at
this point, but it is easier to type large s-expressions in small portions. We
will choose to type the outer level of the program. and fill in the detail later,
SO You type

(letrec body until_end add_up accumulate print){returm>
The editor will now reply
ready

whichis a signal that it has read in the whole of the file to be edited: in this
case acheck that the parentheses balance! Whenever the editor is expecting
a command, if you type

pireturn)

the editor will print an outline of the expression currently being edited,
suppressing deeply nested fine detail. Type this now, and the editor will
output

( fetrec body until_end add_up accumulate print )

— there is as yet no fine detail to be suppressed. To change the body
component of this expression, we will use the exchange command. for
which you should 1ype

(e bady
(fambda (inpul_strean)
(append (Example program)
(cons newhne
fappend (add_up (until_end input_stream))
(quote (Finished)}) })) } )

This command replaces the component of the list that matches body by the
expression

(lambda (input_stream) -}
Here we have introduced the deliberate error — omitting to gquote the list
(Example program)

Layout between any two atoms. or between atoms and punctuation is
totally insignificant, and you may choose to lay out your inpul as you
please. When you have typed the exchange command. try typing

plreturn
again. This time, the output should look something like

( letrec
{lambda { mnput_stream ) ( append . * ) )
until_end
add up
accumulate
print )



The asterisk represents structure which is nested in more than three levels of
parentheses. If you get no output, then it is probably because you forgot to
close an opening parenthesis in the exchange command! The editor will still
be trying to read the rest of that command, and you will have to type
enough closing parentheses to complete the command. The other
components can now be changed in turn, again using exchange commands.

fe until_end
funtil_end.
(fambda (s)
(if feq (head s) (quote end))
{quote NIL)
(cons (head s) (untif_end (taif s)))) } })

(e add_up
(add_up.
(lambda (numbers) (accumulate numbers (quote 0}))) ))

fe accumulate
{accumufate.
(fambda (I total)

(if feq ! (quote NiL})
(quote NIL)

(if feq (head |) (quole sum))
{append (print total)

faccumulate (tail I) total))

faccumulate (tail 1) fadd (head i) total))) )) ))

fe print
(print.
flfambda (n)
fappend (quote (Sum is))
fcons n (cons newline (quote NIL))}) ) })

You should probably check your typing by giving print commands
between successive exchanges, If you now type a final print commaad, the
editor should output something like
( letrec

{ lambda ( input_stream ) { append . * ) )

{ until_end lambda {8 ) (if.*))

{ add_up lambda { numbers } ( accumulats numbers * ) }

( accumulate lambda (1 total ) (if. *) )

{ print lambda ( n } (append . *} )}

Notice that although you typed the definitions in the letrec-expression as
dotted pairs, the editor has output them with the minimum of punctuation.
You can of course, should you wish, use this form for input. If you now

type
(o alf){returmy
then the editor will print the whole of the program, suppressing no detail.

15



Now, try typing
filelreturn)

and the editor will print the whole of the program again, but this time
without formatting the output. This is the form in which programs are
stored in files.

In exactly the way that the machine has a single input stream which is
used to read a succession of files, so too it has a single output stream which
can be redirected on demand. Whenever the machine’s input stream is
conmnected to your keyboard, and the machine is waiting for input, you can
type a key — usually ‘control and Y’, that is the 'Y" key struck whilst
holding down the control key — which will cause the machine to prompt
you o

Send output to where?

The reply is again a file name, and from this point on all output from
LispKit Lisp programs will be sent to that file, until you redirect the output
stream again. There is, of course, a name — usually CONSQLE: or the
empty name, again — which names the screen of your terminal.

To write the program into a file, type

{ctrl Y {returmy
and the LispKit system will prompt you with
Send output to where?

Here you should type the name of the file to which you want to send the
program text, we shall choose EXAMPLE.LSQ, but you should probably
follow the file name conventions of your machine if this is different from
ours. Type the file name

EXAMPLE LSO return)

The editor is still expecting a command from you, but whatever command
you type at this point, all output from the editor wili be sent to the file
EXAMPLE.LSO. Naturally what you should type here is

fie(return’

but be careful, because even error messages will go to the output file, and
not to the screen!
Having done this, you will want to redirect the output to the screen,
which is done by typing
Letrl Yo {returny
CONSOLE: return)

Output from the editor will now come to your screen, and you can carry on
editing the same expression should you wish. In this instance, we are
finished with the editor, so you should type

end{returny

16



Exit editor

Checking and correcting syntax errors

The LispKit system is now expecting the code of a new program to appear
in the input stream. In order to cause this to be read from a file, rather than
from the keyboard, it will be necessary to type a key that indicates to your
machine that tts current file, which is the keyboard, is now exhausted. This
key is usually ‘control and Z’, but you should again check the details for
your particular machine. Type

Letrl Z)

without, notice, a {return> to follow it, The system will prompt you, as
before.

Take input from where?

to which you should reply with the name of the file containing the code of
the syntax checker

SYNTAX.LOB returny
The syntax checker will then announce itself, and demand its input

Syntax check
Take input from where?

to which you should reply with the name of the file containing the program
source

EXAMPLE LSO returny

There will now follow a list of detected defects in your program, which in
our case would be something in the nature of

append used but not defined
in the body of the program
Example used but not defined
in the body of the program
program used but not defined
in the body of the program
newline used but not defined
in the body of the program
append used but not defined
in the body of the program
append used but not defined
in accumulate
append used but not defined
in print
newline used but not defined
in print
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Now we know that append and newline were meant not yet to be defined,
we will find these in a standard library later, but the occurrences of
Example and program are definitely errors, so we will go back to the editor
to change the offending expression,

By now, the system is already prompting for an input file, so type

E.LOB{return}
and the editor will announce itself, and prompt

Editor
Take input from where?

Recall that at this point, the editor expects the file which is to be edited, so
type -
EXAMPLE LSO return
and the editor will re-read the text which it had earlier written, and prompt
Take input from wherse?
Since the editor now requires a command, you should reply

CONSOLE:(returmy
pireturm)

this last being a print command, to check that we are editing the right file.
You will see that the body of the program, in which the cheeker found an
error, is the second component of the file, so type

2 plreturm

The command 2 makes the second component of the current expression the
new object of attention, so that this print command will output

{ lambda
{ input_stream )
( append ( Example program ) { cons newline *} } )

The simplest sequence of commands that can repair the error is probably
32 (c 99 fquote 95))

which first makes the sub-expression
(Example pragram) '

the current expression, and then uses the change command to replace it by
(quote (Example program)}

Notice the use of 99 in the change command: a number in a pattern stands
for ‘any expression’, and then in a replacement, the same number stands for
‘the same expression again’. You can now move back up through the
structure of the expression using the up command

u



and printing the expression as you go, should you want ¢ inspect the
change and make sure that you have it right. Finally, you will want towrite
the newly changed expression back out to a file. Use the top command

top

to select the whole of the file being edited as the current expression, before
you write out the file. The file command and the various print commands
output only the current expression, so it is good practice always to close an
edit session

{ctrl Yy {returm)

Send oulput to where? {file name) {returr)
top filereturn’

{ctrl Yy{return

Send output to where? CONSOLE{return’
end

Exit editor

using a top command to ensure that you do not forget to write out the
upper levels of the structure of an expression.

1f you wish, you can now run the syntax checker again, and you will find
that only standard functions have yet to be defined. We will move on to
fetch these from a library.

Compiling the program
The next input which the machine requires is another program to be
execuled. Type

(ot ZHLIBMAN.LOB

to run the library manager, which will announce itself, and prompt for an
input file. The input expected at this point is the function that you have
written, so type

EXAMPLELSC

The library manager will scan through your function looking for undefined
names, and will prompt you with a list of these names, and request more
input

newlina append
Take input from where?

The input expected at this point is a library which defines newline and
append. In this case, the relevant library is

STANDARD _LIB

from which the librarian will extract the necessary functions. The next
output from the librarian is

chr

which is a list of names used but not defined in the expression formed by
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adding the definitions of newline and append to your program. This
function is defined in the library SECD_CODE, so reply to

Take input from where?
with the file name
SECD_CODE.LIB

The librarian would go on to prompt you with the list of names still
undefined, but in this case there will be no more undefined names, so the
next prompt will be

Type anything to print result
Take input from where?

Now you will need a work file to keep the program comnstructed by the
library manager, and the interaction from this point on should go as
follows

Take input from where? CONSOLE {return) to Lake aput (rom the keyboard
(otef Yy {returny

Send output to where? WORKFILE.LSOreturn) 10 send ouTput 1o the workfle
file(return) 0 cause the outpul 1o be sent
el Y {return) 1o close the workfile

The next program that you are going to run is the compiler. This generates
the code as its only output, taking the source as its input, so the interaction
proceeds

Send output to where? EXAMPLE LOBreturn)
{atrt 2>
Take input from where? LC.LOBreturn)

Take input from where? WORKFILE.LSO(return)

Take input from where? CONSOLE {return)
Letl Y {return)
Send output to where? CONSOLE {return

Running the program

The program which you have written and compiled is exactly the same kind
of object as the utilities that you have used, so you should be able to follow
the following interaction without further commentary,

cout 2>

Take input from whaere? EXAMPLE.LOB{return’
Example program

Take input from where? CONSOLE:{returny
2{return
2{return’y



sumdrelurn)

Sum s 4

5 sum{return

Sumis 9

! sum 1 sum 1 sum{return’
Sum is 10

Sumis 11

Sumis 12

end {return)

Finished

Try running the program again, check that you know how to send either
parts or the whole of the output to a file, and can cause the program o take
its input from a file. Read the documentation on the editor, which you will
find later in this manual, in the section headed the list structure editor;
experiment with using the editor to check that you understand the more
powerful editing commands.

When you have finished your LispKit session, you can return to the host
operating system of your machine by executing the program HALT.LOB.
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LispKit Lisp support software

The core of the programming environment is provided by four programs, a
structure editor E, the compiler LC for the LispKit Lisp language, a source
code constructor LIBMAN which is used in the modularisation of Lisp
programs, and a syntax checker SYNTAX which makes detailed checks for
statically detectable errors in Lisp programs.

A LispKit Lisp program is normally created with the editor. which is
principally intended for the manipulation of the s-expression syntax of Lisp
programs. Since libraries are also s-expressions, the editor may also be used
to create libraries — effectively separate modules —containing component
functions of the program. The program is then assembled using the library
manager, LIBMAN, which extracts from each library just those functions
required by the program, and constructs a self-sufficient source. Thisis then
translated by the compiler, LC, into a code object which can be executed by
the virtual machine. Since the same s-expression syntax is used for code,
even code objects may be manipulated and inspected by the use of the
editor.



The LispKit Lisp compiler

The LispKit Lisp compiler transiates a LispKit Lisp source expression into
an object which, when executed as code by the SECD wvirtual machine,
evaluates that expression. The source expression may be any closed LispKit
expression — that is, one in which every name which occurs is also defined.
The code is also an s-expression, with a structure that reflects the structure
of the definitions in the source, but where the operators of LispKit Lisp
have been translated into SECD machine opcodes.

When the code produced by LC is executed, the expression is evaluated
m the lazy order {call by first demand: see the book for a discussion of lazy
evaluation). This means that interactive programs will take their inputs
when they are first needed, and that infinite values may be handled simply.
The meaning of the code which is output by the compiler is discussed in the
implementor’s guide. All that concerns us here is that it is a data structure
with a finite s-expression representation which may be sent to a file.

The output of the compiler is indeed normally sent to a file, from which it
may be retrieved for subsequent execution. By convention filenames with
extension

.LOB

are used for the codes of complete programs, which are functions from an
mput stream to an output stream, filenames with extension

.CLS

are used for all other codes.

The LispKit compiler makes no checks on the validity of its input, so
outputs no error messages; neither does it output any form of prompts. The
first input must be the source program, and the first and only output is the
compiled code. Accordingly, the interaction required to compile the
INTEGERS expression would be as follows:

Take input from where? CONSOLE: 10 allow output redirection

Lot Yy{return>

Send output to where? INTEGERS.CLS desnnauen o compiler oulpui

Lt 2>

Take input from where? LC.LOB compiler 15 program o be
execuled

Take input from where? INTEGERS.LSO the Lisp soure

Take input from where? CONSOLE 1o allow outpul redirecuion

(el Yy<{returmn) to close the putput fle

Send output to where? CONSOLE:



Notice particularly that the input to the compiler must be a closed
expression. Many of the program sources in the LispKit system have free
variables which are meant to be references to libraries; these texts must be
passed through the library manager before being compiled. This means
that the input to the compiler is often taken from an intermediate workfile
that has been produced as output from the library manager.

Since the compiler makes no checks on the expression supplied as its
argument, it is quite likely to crash if there are errors — such as undefined
names — in the source text. The syntax checker, SYNTAX, which isa part
of the LispKit system, will find any errors that could cause the compiler to
fail.

Construction notes
LC.LSQ requires the following libraries

LISPKIT.LIB
OP_CODE.LIB
ASSOCIATION.LIB
STANDARD.LIB

and the composite text compiles to produce the elosure in LC.CLS. The
value represented by the closure is a function mapping the source ento the
code; the complete program in LC.LOB consists of the following sequence
of items

the closure LOADS.CLS
the closure LC.CLS
an argument count 1



The Lispkit Lisp syntax
checker

The syntax checker is a program which checks for most sta tically detectable
errors in a LispKit Lisp source expression. In particular, it will find all
unbound variables, and any errors of form. Any expression which is passed
as comect by the syntax checker can be compiled by the LispKit Lisp
compiler.

Each detected error results in a message in the output stream, which
should be essentially self explanatory. The general form of an error
message is )

{type of error}
{position)

where the {type of error) is a message such as
append used but not defined

or
incorrect form of definition

and the {position} is a sequence
inalpha in beta in gamma

which means that the error is to be found m the definition of alpha which
occursin the definition of beta which is in the definition of gamma. Where
this is helpful, it is also possible that the expression in which the error was
found will occur in as the first item in the position list, for example

incorrect letrec form
in { iatrec a . b ) in alpha

The {position’ may also be
in the body of the program

which represents the body (third component) of a lambda-expression, or
the body (second component) of a let— or letrec-expression. possibly
nested in the body position of outer lambda-, let— or letrec-expressions.

The checker announces itself, by way of prompting for its only input,
whichis the expression to be checked. The subsequent output is then either
a list of errors, or is

revealed no errors

in the case of a syntactically correct expression. Accordingly, aninteraction
might proceed as follows:



might proceed as follows:

Take input from where? SYNTAX.LOB
Syntax check
Take input from where? MAP_UNTIL _END.LSO
load_code used but not defined
in the body of the expression
newline used but not defined
in map_until

The syntax checker may also be used to list the names of the unbound
variables of an expression, since each occurrence of each of these will be
reported as an error. In this particular example, both of the errors reported
are of this form, since MAP_UNTIL_END.LSO contains these two
references to the library STANDARD.LIB.

Construction notes
SYNTAX.LSO requires the following libraries

SYNTAX_FUNCTION.LIB
SYNTAX_ERROR.LIB
LIPKIT.LIB
S_EXPRESSION.LIB
STANDARD.LIB
SECD_CODE.LIB

and the composite text compiles with no linking to form the program
SYNTAX.LOB.
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The list structure editor

The list structure editor is a tool for constructing, inspecting and modifying
s-expressions, which are the visible representations of the data objects in
the LispKit system. The editor operates on a single expression. which is
referred Lo in this section as the file. Normally, the file would be read in from
a filing system file, hence the name, although a new file may be created by
typing 1ts value at the beginning of an editing session.

Thesession proceeds by the user typing a sequence of commands. which
are acled upon by the edilor. At any time, there is a distinguished sub-
expression of the file which is called the current expressions. This is the part
of the file on which the user’s attention is focused at the time. There are
commands for displaying the current expression, commands for navigating
about the file by changing which particular sub-expression is the current
one, and various commands for making changes to the current expression.
At any time during the session, the file may be written out to the output
stream, and so to a filing system file. This mechanism may be used either for
checkpointing the edit, or to save the final result of an edit.

Each command will be described in turn, and an outline of an editing
session follows. It isconvenient first to introduce the notions of component
and of pattern matching.

Components

Various of the commands in the editor operate on the components of the
current expression, For the purposes of this editor, the (immediate)
components of a list such as

{un {dau (tri) . pedwar} (pump . chwech) saith)
are its head, the head of its tail, the head of the tail of its tail, -

un
(dau (tri} . pedwar)
(pump . chwech)
saith

In theeditor, they are numbered from one, so that component three of the
above list is

(pump . chwech}

For the purposes of the editor, it is convenient to extend the notion of
component to general s-expressions which may not lists, because they do
need not end at a final NIL. Thus

{un {dau (tri) . pedwar} {(pump . chwech) saith . wyth)



has a fifth component, which is the atom
wyth

By this definition, the last component of a list is always NIL.

Pattern matching

A pattern is an s-expression which is given a meaning by the process of
matching it against an expression. A pattern matches an expression: if the
patternis simply a number; or if the pattern is a symbolic atom and isequal
to the expresston; or if the components of the pattern match corresponding
parts of the expression. That is, in order to match, the pattern must be the
same as the expression, except that a number in the pattern may stand for
any s-expression in the corresponding position in the expression. provided
that two occurrences of the same number stand for cqual sub-expressions
of the expression. The pattern

unigryw

matches only one expression. namely
unigryw

The pattern
98

matches any s-expression. The pattern
(un.dau}

again matches only one expression,
{un.dau)

The pattern
(Peredur (Rhonabwy.1) .1)

matches many expressions, in¢luding each of

(Peredur {Rhonabwy))
(Peredur {Rhonabwy.x) .x)
(Peredur (Rhanabwy cyntaf ail} cyntaf ail)

A template has the same form as a pattern, and is always used in
conjunction with a pattern. When a pattern is found to maich a given
expression, the matching defines a correspondence between the numbcers
which occurin the pattern, and the sub-expressions of'the expression which
each number represents. An instance of the template in this enviromment is
the expression obtained by substituting for the numbers in the emplate,
replacing them by the corresponding sub-expressions of the matched
expression. Thus. in an environment where the pattern

{Peredur {(Rhonabwy.1) .1)



matches the expression

{Peredur (Rhonabwy Macsen Wledig) Macsen Wiedig)
the value of the template

{Rhonabwy (Peredur 3) (1.1))
is the expression

{Rhonabwy (Peredur 3) ((Macsen Wiledig) Macsen Wiledig))

Display and output commands

At any stage during the session, a print command may be issued which
displays the current expression. The editor will never spontaneously show
the current expression, so print commands are used frequently. The full
form of the command is either

(patl)
which outputs the whole of the current expression, or

{p{n)

where (1) is a positive integer. This latter form outputs only the top {n}
levels of the structure of the current expression, and any fine structure
embedded in more than {n) parentheses will be suppressed, being replaced
by an asterisk. In each case, the displayed expression is formatted, by the
insertion of line breaks and indentation which reflect the structure of the
expression,

For convenience, the most frequently used form of the command is
available as an abbreviation, which is simply the atom

P
and which stands for the command

e3)

Irrespective of the size of the current expression, this gives sufficient detail
to plan the next command or two, and it normally produces a displayed
expresiion which is small enough that its structure can rapidly be
assimilaled.

Because the formatting of p-output requires a great deal of computation
for large expressions, and because the formatting would greatly increase
the size of files, it is undesirable always to format the output which is sent to
disk files. Accordingly, there is a command

{ file)
abbreviated to
file

which oulputs the current expression without any formatting. This
command is intended to be used only for writing to filing system files.



Navigation commands
Each navigation command selects a new current expression. It does not
make any change to the file.

Provided that the current expression is not an atom, its {n)dth
component may be selected as the new current expression by typing the
number

<

as a command, If there are less than (s> components in the current
expression, then the editor will report this as an error.

More generally, the find command may be used to select a sub-
expression which matches a pattern. The find command

{f {pattern})

selects a sub-expression of the current expression which matches the
{patterry. In the event that there is more than one matching sub-
expression, the new current expression is the first match found by searching
the current expression in component order. The component order of
scarching an expression (e) is: firstly, the immediate components of (e>,
from left to right; then a component order search of each of the immediate
components of {&) taken in turn. Generally speaking, the find command is
only used to match an immediate subcomponent, or to find the unique
occurrence of a pattern in the current expression. If there are no matches
for a pattern, the find command is reported as an error.

As the user navigates through the file, moving the current expression
deeper into the structure of the file, the editor keeps a record of the upper
levels of the structure which are no longer a part of the current expression.
This record is the context of the current expression. The up command,

WU

restores one layer of the context to the current expression, having the effect
of moving one level up the structure tree. Thus an vup command
immediately following a successful

{n>

command undoes the effect of that command. After a successful find, an up
command still moves up by only one level of structure, so may or may not
rcverse the effect of the find command, depending on the depth to which the
find had to search before finding a match.

The whole of the context may be restored to the current expression by the
top command,

top

Since the file consists of the current expression and its context, the top
command has the effect of selecting the whole of the file as the newcurrent
expression.



File modification commands
The commands which make changes Lo the file all act by making changes to
the current expression, without changing the context. If a change is made to
the current expression, and the context restored to the expression by
moving up, then it is the changed expression which becomes a part of the
new current expression, and so of the new file.

Provided that the current expression is not an atom, the after and before
commands

(a {patterny {termnplated) and (b {pattern) {template}}

identify the first immediate component of the current expression which
matches the {pattern), and insert an instance of the {template) as a new
immediate component either after, or before, that matched component. It
is an error to attempt either command when there is no immediate
component which matches the {pattern).

Complementary to the after and before commands, the delete command
removes a component from the current expression. Provided that the
curtent expression is not an atom, the command

(d {patterny)

removes from the current expression the first immediate component,
reading from left to right, which matches the {pattern). Thereis an error if
the current expression has no components which match the pattern. There
is a convenient abbreviation

d

which deletes the first component of the current expression.
Wholesale changes to the structure of the current expression are made
with the change (or construct) command

{c {patterny {termnplate))

whichattempts to match the whole of the current expression. If successful it
replaces the current expression by an instance of the {ftemp/ate) in that
environment. There is an error if the {pattern’ does not match the current
expression.

The replace command may be thought of as a particular degenerate case
of the change command. The command

{r {expression))

replaces the whole of the current expression by the new {expression.

The exchange command operates on the immediate components of the
current expression in exactly the way that the change command operates on
the whole of the current expression. If the current expression is not an
atom. the command

{e {patterny {ternplate})
replaces the first immediate component which matches the {pattern) by an
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instance of the {tempfate) in that environment. There is an error if there is
no such component.

Each of the modifiers described so far makes only one change to the
current expression. The global change command

(g {pattern> {template)

finds all component lists of the current expression which match the
{patterny and replaces them by the corresponding instances of the
{templatey. Notice that the replacement process acts recursively on the
parts of the original expression substituted into the {tempfate). Because
the process could not terminate. it is an error to attempt a global change of
the form

(g <n» (tempfate})

where the {m)>, being a number, would match the whole of the current
expression. It is not an error to perform a global change with a pattern that
matches no component lists of the current expression.

The final, and most important of the changing commands is the
backtracking command,

undelete

which will undo the effect of any one of the changes, if performed
immediately after that change. Its effect is to replace the current expression
by the expression which was current immediately before the most recent
change command. Thus, an expression may be changed by any one of the
change commands, and if the result is unsatisfactory, then the change may
be undone by an undelete command.

The undelete command is of course itself a change commmand, andso may
itself be undone by an undelete command. The undelete command may
also be used to move portions of a file about, since the value which is
restored by an undelete command is not affected by any intervening
combination of movement and printing commands.

The end command

Perhaps the most useful command that may be issued to any program is the
command which stops that program. The command

end

is used to end an editing session. Notice that it does not write anything to
any filing system file, and that the whole of the editing session is lost after
the end command, unless some positive action was taken Lo preserve it
earlier in the session. The normal way to finish a successful editing session is
therefore

{etrl Yy{returny to redirect the oulput

Send output to where? {file name) file 1o reveve edited 2xpressian
top file oulpul the whole of the fje
{ctrl YD {returm) 1a close the oulput file



Send output to where? CONSOLE:
end 10 leave the editar
Exit editor

An example of an editing session

The script below is that of a session which changes the error message from
the editor. Notice in particular; that any number of commands may be
typedon a line; that there is no output from the editor unless specifically
requested; that the saving of the changed file must also be explicitly
requested; that the whole of the file should be selected by a top command
before the file command if the whole file is to saved.

Take input from where? £.L OB to execute the editor

Editor

Take input from where? £ CONTROL.LIB the text to be edited

ready

Take input from where? CONSOLE: the source of the ediung
commands

P the fiust cornmand

({editlambda (fi) { editloopi* ) ) outpul by the edilor

{ editloop lambda (it) { letrec . *} )
{ editstep lambda {ct ) {let.*) } )

(I (quote Error)) u p three separate commands
( list newline ( quote Error } )
(e (quote Error) (quote NumbSkuiitt)) p the change being made

{ list newline { quote NumbSkullll } )

el Yy <{return) to save the resulting file
Send output to where? ABRUPT_E_CTRL.LIB

top file write out the whole of the file
Cetr! ¥y return ciose (ke outpul ble

Send output to where? CONSOLE:

end and leave the editor

Exit editor



Construction notes
E.LSQ requires the following libraries

E_CONTROL.LIB
E_FUNCTION.LIB
E_MATCH.LIB
E_MISC.LIB
S_EXPRESSION.LIB
STANDARD.LIB
SECD_CODE.LIB

and the composite text compiles with no linking to form the program
E.LOB.



The LispKit Lisp library
manager

The library manager is a utility for constructing a complete LispKit Lisp
program from an outline of the program and a number of libraries which
contain the component functions of the program. A library is an
association list, like the definitions in the tail of a LispKlit letrec —form.
The LispKit system contains, for example a library of standard functions
which has the form -

{ {append.{lambda (el e2) ---)}
imember.(lambda {e 1) -
fequal.{lambda (el e2) -- ))

and so contains definitions of the functions append, member, equal,
amongst others. The lbrary manager takes a LispKit Lisp expression
which may have free variables, and then takes a number of libraries,
extracting definitions of the free variables from those libraries, and
assembling the whole into an expression with no free variables. Only
expressions with no free variables are acceptable to the compiler.

For ilustration, take the example of the library manager itsclf, which
(barring a bootstrapping problem!) was written using the library manager.
The text of the program is in the file LIBMAN.LSO, and is a LispKit Lisp
expression, of the form

(letrec (lambda (i) {(append --- (librartan ---}))
(librarian ---)
(bind ---} )

in which a number of the vartable names which appear are unbound. for
example append, and freevars. Now freevars is defined in a library called
LISPKIT.LIB, which contains functions that are connected with the
compilation of LispKit Lisp programs. If this library is presented to the
library manager, it constructs the expression

(letrec (letrec (lambda (i) {append --- (librarian ---)))
(librarian ---)
(bind ---} )
(freevars 1)

Some of the functions, such as append, are still free in this expression, and
so alsois a new function. addelement, used in the definition of freevars,
and defined in the library SET.LIB. Presented with this library next, the
manager constructs an expression of the form



(letrec {letrec (letrec (lambda (i} (append --- (librarian ---}))
(brarian ...}
(bind ---} }
(freevars .--) }
(addelement .-}
{union ---)
(intersection -+-) ---)

thus adding, for each library, an extra level of letrec —definition o the
outside of the program being constructed.

Finally, if this is necessary, the manager encloses the expression in a
further level of definition so as to catch all free occurrences of the standard
functions that the compiler recognises as operators. Thus, for example, in
the expression

(head (map head (quote (a.b) {c.d}))}

the first occurrence of head is recognised by the compiler, and sois not
considered tobe a free variable of the expression, but the second occurrence
is free. If this expression were passed through the manager, along with a
library defining the function map then the result would be

(let (letrec {head (map head (quote {a.b) (c.d)}})
(map. -+-) )
(head. (lambda (arg1 arg2) {head arg1 arg2)) ) )

where the second occurrence of head is now a reference to the function
defined at the outside level,

When the expression has been closed, by defining all of its free variables,
the manager writes the complete expression, so that it may subsequently be
submitted for compilation.

At gach stage of the construction process, the manager prompts for a
new library by listing the free variables of the current expression, so the
interaction to construct the library manager itself would proceed asfollows

Take input from where? LIBMAN.LOB program o be exevated
LispKit Librarian
Take input from where? L/IBMAN.LSO skeleton of expression

sequence newline filter close reduce member unioN list of free varizbles
difference map append freevars

Take input from where? LISPKIT.LIB first hibrary
addelement sequence newline filter close reduce

member union difference map append

Take input from where? SET.LIB second library
sequence newline filter close reduce member map

append

Take input from where? STANDARD.LIB thurd and final bbrary
Type anything to print result

Take input from where? CONSOLE: to permut output redirection
{etrl Yy<{returm)

Send output to where? WORKFILE destinalion for result

fite causes oulpul Lo be sear
{etrl Y (return) closes output file
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At any stage in the construction process, if the reply to the prompt of a list
of fres variables is not a library, but the atom

end

then the manager will immediately allow the output of the expression in its
present, uncompleted state; if the answer is the atom

abort

then the library manager terminates immediately, with rio output.

The right hand sides of the definitions in a library may be recursive, in
that they refer to their own left hand sides; they may make reference to
other definitions in the same library; they may also contain references to
definilions in other libraries. In this last case, the library containing the
reference must be offered for binding before the library containing the
definilion; notice that this requirement implies that mutually recursive
definilions must both occur in the same library. Libraries which are
irrelevant to the expression, because they contain no definitions of
variables free in the expression, are simply ignored, and the same prompt is
repeated.

Whenever a program in the distribution suite is constructed by use of the
library manager, the construction notes in the section of the manual
relating to that program contain a list of the libraries which are required. in
the order in which they should be supplied to the library manager.

Construction notes
LIBMAN.LSO requires the following libraries

LISPKIT.LIB
SET.LIB
ASSOCIATION.LIB
STANDARD.LIB
SECD_CODE.LIB

and the composite text compiles with no linking to form the program
LIBMAN.LOB.



The bootstrap loader and run
time system

The bootstrap loader and run time system, LOADER, is normally the first
program loaded into the LispKit virtual machine. It successively loads and
executes the codes of other LispKit Lisp programs until the machine is
halted. The majority of the loader is written in LispKit Lisp, but there are a
handful of applications of pseudo-functions. It is not possible to apply the
methods used to reason about functional programs to these. since their
evaluation causes side-effects. The coding of the loader should be
compared with *systems programming’ in more conventional high-level
languages, where it is also necessary to write unusval code in order to
manipulate the interface with the underlying machine. Compared with
embedding the run time system in the virtual machine, this approachmakes
the implementation more readily portable, and facilitates reasoning about
the gross behaviour of the run time system.
The body of the letrec-form which is the loader,

(run_and_halt load_go_loop)

does not have a value, nor does any attempt to evaluate it ever terminate,
The argument

load_go_loop

is a proper expresston, whose value is a pair consisting of a function and a
list. This value represents the application of the function to the list, as an
argument list. In the course of exccuting the loader the application is
evaluated, and this evaluation causes each successive program to be
executed in turn. Ir this sense, the loader evaluates each program for the
side-effect of reading the input to and writing the output from eachof these
programs. Since no LispKit Lisp expression has any such side-effect, it
follows that the parts of the loader which accomplish the reading and
writing are not written in LispKit Lisp.

The ordinary user need not vwanderstand the behaviour of the lvader in
any detail; he need only know that the code of the loader normally resides in
a well known place in the filing system of his machine, and that the LispKit
virtual machine reads this code at the beginning of every programming
session. Throughout this manual, it is assumed that there is a copy of the
closure from LOADER.CLS in this bootstrap file. If the machine is unable
to find the bootstrap file, then it will output a message to that effect, for
example, on the Perq the message is

No file SECO_BOOT

and is followed by a prompt for the name of a file which does contain a



bootstrap loader. In this way, a sophisticated user may choose to replace
the loader which is normally used by the LispKit system. Details of the
implementation of the loader are available, for those who are interested, in
the implementor’s guide, towards the end of this manual.

Related to the loader is the short program HALT which can be executed
as an ordinary LispKit program, but which causes the loader and virtual
machine to terminate, and returns control to the host operating syslem.

Construction notes
LOADER.LSO requires the following libraries
S_EXPRESSION.LIB

STANDARD.LIB
SECD_CODE.LIB

and the composite text compiles with no linking to form the closure in
LOADER.CLS.



The end of session program

Complementary to the bootstrap loader, LOADER, the halting program
HALT is run to end a LispKit session. The program is another non-Lisp
application of the form

(run_and_halt (guote NIL})

which the machine recognises as a special case. The effect of executing this
program is to cause the machine to terminate successfully, and to return
control to the host operating system. On some machines, this may involve
re-booting the host,

Construction notes
HALT.LSO requires the library

SECD_CODE.LIB

and the composite text compiles with no linking to give the code in
HALT.LOB.



Support for independent
compilation

The LispKit system provides for components of a LispKit Lisp program to
be compiled separately from each other, and for the various codes so
produced to be loaded together to form a single composite code equivalent
to that which would be compiled from the source of the whole of the
program. This technique is employed in the system itself, (for example, the
bootstrap loader is compiled separately from user programs) and is also
available to users for use within their own programs. 1t is useful both for
decomposing large programs into readily manipulated component parts,
and for constructing new programs from pre-existing building blocks.
Details of the implementatton of separate compilation are to be found in
the implementor’s guide. In essence, what the system provides is a
mechanism for reading code objects from the input stream, and a function

load_code

in the STANDARD library which transforms these codes into the values
which they represent. This is most readily explained by example. Consider
the program

(let {lambda (input) (f g input))
(f. (lambda (x i) (cons x (cons x (cons (head i) {quote NIL}))) )}
(g. (quote Hello)) )

This could be compiled and executed as a single entity, as follows. Assume
that its source text is in the file TOGETHER.LSO.

etel Yy {returrr)>
Send output to where? TOGETHER.LOB
etrl T

Take input frorm where? LC.LOB
Take input from where? TOGETHER.LSO

Take input from where? CONSOLE:
{etr Yy {return)

Send output 1o where? CONSOLE:
(etrl Z)

Take input from where? TOGETHER.LOB
Hello Hello

Take input from where? CONSOLE:

helfo

helle
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Now.if it was desired to treat the definitions of f and g separately from the
body of the program, the following three text files would be created

LOAD2.LSO
(lambda (input) (let {f g real_input)
{f. (load_code (head input)))
{g. (load_code (head (tail input)}))
{real_input. (tail (tail input)})} )
FLSO
{lambda (x i} (cons x {cons x {cans (head i) (quate NIL}}}) )
G.LSO
(quote Hello)

and they would then be compiled separately. Notice that the filename
convention used for the System files is that names with the .LOB extension
are for files containing the codes of stream to stream functions only, and
that other codes are kept in files with the extension .CLS.

The following script describes the construction of a compilete expression
from LOAD?2 and the STANDARD library, which defines the function
load _code.

Take input frorm where? LIBMAN.LOB
LispKit Librarian

Take input from where? LOAD2.LS0O
load_code

Take input from where? STANDARD.LIB
Type anything to print result

Take input from where? CONSOLE:
{etrf Yy <{return)

Send output to where? WORKFILE
file

{cirl ¥ <returnd

The three expressions which are the separate components of the new
program would be compiled

Send output to where? LOAD2.LOB
et 2y

Take input fram where? LC.LOB
Take input from where? WORKFILE
Take input from where? CONSOLE:
Lol Y (returny

Send output to where? F.CLS

Leht 2y

Take input from where? LC.LOB

Take input from where? F.LSO



Take input from where? CONSOLE-
{otrf Yy <{returm)

Send output to where? G.CLS
{ctil &>

Take input from where? LC.LOB
Take input from where? G.L50

Take input from where? CONSOLE:
{etrl Yy {return;
Send output to where? CONSOLE:

and to run the program, all that is required is to execute the LOAD? object
code with an input stream which begins with the objects for f and g

{ctrl 23
Take input from where? L0AD2.LOB
Take input from where? F.CLS

Take input from where? G.CLS
Hello Hello

Take input from where? CONSOLE:
helfo

hello

This method of execution is suitable whilst a program is being developed,
but once all the parts of a separately compiled program have been
completed, it is convenient to be able to disguise the separateness of the
components frorn a user of the program. This linking is simply done by
concatenating the component object codes of the program into a single file,
thus

{ctrl ¥y {returm)

Send autput to where? APART.LOB
Cetrl 2

Take input from where? CONCAT.LOB
Take input from where? LOAD2.L OB
Take input from where? F.CLS

Take input from where? G.CLS

Take input from where? CONSOLE:
end

Letrf Yy {return)
Send output to where? CONSQOLE.



The compostteobject code may now be executed in exactly the same way as
the original cede of TOGETHER

(el Iy

Take input from where? APART.LOR
Helle Hello

Take input from where? CONSOLE:
hello

hello

since each of the component objects automatically appears in the input
stream where they are required.

A number of general purpose loaders, similar to LOAID2, are provided
as parls of theLispKit system, and are used as components of some of the
system utilities, Descriptions of these programs follow.



The loader COMPOSE

The loader COMPOSE takes a sequence of object codes for functions of
one argument. 1t loads these codes in such a way that the composition of
the functions is applied to the first itemn in the input stream, and the result is
written as the sole component of the output stream.

In order to use COMPOSE, its input stream must contain a number {n>,
followed by {n> object codes, each for a function of one argument, and
then the one argument, to which the composition of the functions 1s
applied. As an example, consider the LispKit Lisp summariser,
STRUCTURE, which is composed from two functions of one argument,

structure = (lambda (s} {skeletan of 5))
pretty = (lambda (e) {formatted copy of €))

The summariser output consists of a formatted skeleton of the firstitem in
its input stream, so to run the summariser. the input stream should contain
in turn

the code for the loader COMPOSE.LOB
the number of composed codes 2
the codes for the functions PRETTY.CLS

STRUCTURE.CLS
the text of the argument {expression

accordingly, the file STRUCTURE.LOB, which contains the code that is
normally executed to display the bindings of an expression, consists of the
four items

the code for the loader COMPOSE.LOB
the number of composed codes 2
the codes for the functions PRETTY.CLS

STRUCTURE.CLS

and expects the next item tn the input stream to be the expression being
analysed. This file behaves as though it contained the code of

(lambda (input) {cans (pretty (structure (head input))) (quote NIL)))

Construction notes
COMPOSE.LSO requires the library

STANDARD.LIB

and the composite text compiles with no linking to form the code
COMPOSE.LGB.
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The loader LOADK

The loader LOADK (x for constant) is intended for use with constant
expressions which define an output stream but require no arguments. [t
loadsthe code of a constant expression into an environment which ignores
the input stream.

In order to use LOADK, its input stream must begin with the code of
such a constant expression. As an example, the expression

{letrec (first {quote 1) ones)
{ones. {cons (quote 1) ones}}
(first. (lambda (n I}
(if (eq n {quote 0)) (gquote NIL)
{cons (head I} (first (sub n {(quote 1)) (tail 1)))) N )

whose value is a list of ten ones, could be compiled to give a closure which
would then be used as the argument to LOADK, and which might be
called, say TEN ONES.CLS. The input stream should contain, in order

the code for the loader LOADK.LOB
the codc for the expression TEN_ONES.CLS

If desired, the codes could be linked to form a program which always
output a list of ten ones, by concatenating these two codes inte a single
.LOB file. Such a file would behave as though it contained the code for

{(lambda {input} ten_ones)

Construction notes
LOADK.LSO requires the library

STANDARD.LIB

and the composite text compiles with no linking to form the code
LOADK.LOB.



The loader LOADS

The loader LOADS (S for standard} is intended for use with expressions
which were written to run on the virtual machine described in the book. The
programs for that machine expect to receive a fixed finite number of
arguments, and deliver a single, possibly atomic. result. LOADS loads the
code of such an expression into an environment which reads the arguments
from the input stream, and delivers the result as the only component of an
output stream.

In order to use LOADS, its input stream must contain the code of a
function of {n> arguments, followed by the number {n), and then the
arguments, in sequence. As an example, consider the LispKit Lisp
compiler, LC, whieh is a function of one argument

compile = {larmbda (e} {(make code for e})

This has been compiled to produce the closure in LC.CLS, which expects a
single argument and returns the compiled code. In order to use this code,
the following sequence must appear n the input stream

the code tor the loader LOADS.LOB
the closure for LC LC.CLS
the number of arguments 1
the argument {source expression’

accordingly, the file LC.LOB. which contains the code that is normally
executed to perform a compilation, consists of the first three of these items

the code for the loader LOADS.LOB
the closure for LC LC.CLS
the number of arguments 1

and expects the next item in the input stream to be the source expression to
be compiled. This file behaves as though it contained the code for

{lambda (input) {cons [compile (head input)) (quote NiL)}}

Construction notes
LOADS.LSO requires the following libraries

STANDARD.LIB
SECD_CODE.LIB

and the composite text compiles with no linking to form the code
LOADS.LOB.
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The loader
MAP _UNTIL END

The loader MAP_UNTIL_END takes the object code for a function of
one variable, and applies this function to each of the items in its input
stream, up to but excluding the first occurrence of the atom end. The
output stream which 1t constructs consists of the sequence of results of these
applications, in the order of the arguments in the input stream.

In order to use MAP_UNTIL_END, its input streamn must contain the
code of a function of one argument, followed by the sequence of arguments
to which this is to be applied, and terminated by the atom end. As an
example, consider the s-expression formatter, PRETTY, which is a
function of one argument

pretty = (lambda (e) (formatted copy of e))

This has been compiled to produce the closure in PRETTY.CLS, which
expects a single argument and returns the formatted form. In order 1o use
this code, the following sequence must appear in the input stream

the code for the loader MAP_UNTIL_END.LOB
the closure for PRETTY PRETTY.CLS
anumber of arguments el)
(e2)
Ce 0
the terminator end

If a file was constructed, containing the two 1tems

the code for the loader MAP_UNTIL_END.LOB
the closure for PRETTY PRETTY.CLS

then this file would behave like the code of the program

(letrec {lambda (input) (map pretty (untilend input))})

Construction notes
MAP_UNTIL_END.LSO requires the library

STANDARD.LIB

and the composite text compiles with no linking to form the code
MAP_UNTIL_END.LOB.



The linker CONCAT

One of the programs central to the separate compilation scheme is the
linker, CONCAT, which is used to concatenate a number of s-expressions
into a single file. Its function is to copy a number of expressions from the
mpul stream to theoutput stream, terminating at the first occurrence of the
atom end.

Construction notes
There is no text for the program COMNCAT. The code in the file
CONCAT.LOB is formed by linking

MAP_UNTIL_END.LOB
IDENTITY.CLS

where IDENTITY .CLS contains the closure for the function

identity = {lambda (x) x)
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Formatting and printing
utilities

When being manipulated in the machine, complex data structures are
represented by areas of the store and by values which are machine addresses
of the host machine. There is no information in this structure about the
layout of any s-expressions which were input to the machine. If you look at
the output of a program such as the library manager, you will see that any
useful layout has been removed, principally to economise on storagespace.
It is exceedingly difficult to see the structure of an s-expression presented in
this form. A number of programs have been provided which assistin the
reading of large s-cxpressions.

PRETTY is a program which lays out an s-expression so that the
indentation reflects the nested structure of the expression. DUMP is a
program that obscures (dumps} the fine detail of an s-expression, leaving its
overall structure more apparent. A number of programs, such as theeditor,
E, make use of the pretty printer and summariser to format the interaction
with the terminal. STRUCTURE and SHOW_LIB are programs specific
to LispKit Lisp, which take a LispKit Lisp source expression, and display
the skeleton which supports the structure of the expression, and label the
places where each new name is introduced.



An s-expression pretty printer

The s-expression pretty printer produces its output by assembling a copy of
the first item in its input stream, into which copy it inserts atoms whose
printed representations are layout characters. This is done in such a way
that the layout of the printed result reflects the nesting structure of the input
expression.

If an expression is sufficiently small that it will fit onto a line, then it is
printed in that form; if not, then each of its components is formatted
individually, and they are laid out in a vertical column. slightly indented.
The pretty printer recognises structures which are tail nested in similar
structures, for example the else-if pair in

(if{c 1) (115 (if e 2) 1 2)<e 23))

and lays these out in a vertical column, instead of increasing the indentation
for the inner expression.

The source listings in the companion volume to this manual were each
produced with this pretty printer.

Construction notes

There is no filed source text for the body of the program, which was
constructed by the library manager from the expression

preity
(which has one free variable) and the libraries

S_EXPRESSION.LIB
STANDARD.LIB
SECD_CODE.LIB

and the composite text compiled to give the code in PRETTY.CLS, The
code in PRETTY.LOB is formed by linking

the closure LOADS.LOB
the closure PRETTY.CLS
the argument count 1

so thal the resulting code calculates
(lambda {(kb)} (cons {pretty (head (kb))) {quote NIL)))



An s-expression summariser

The s-expressionn summariser produces its output by assembling a copy of
the first item in its input stream, but omitting from the copy any sub-
structure of the input expression which would be nested in more than two
parentheses in the output. An asterisk is substituted for the omitted detail.
The resulting expression 1s normally of a size that its structure can be
readily seen.

As an example, consider the result of presenting the library
S_EXPRESSION.LIB as input to the summariser

Take input from where? DUMP.LOB

Take input from where? S_EXPRESSION.LIR
( {( dump let . * ) ( flatien letrec . * ) { pretty let . * ) )

The library is readily seen to be a list of three definitions. and they are seen
to be definitions of dump, of flatten, and of pretty.

Construction notes

There is no filed source text for the body of the program, which was
constructed by the library manager from the expression

dump
(which has one free variable) and the libraries

S_EXPRESSION.LIB
STANDARD.LIB

and the composite text compiled to give the code in DUMP.CLS. The code
in DUMP.LOB is formed by linking

the closure LOADS.LOB
the closure DUMP.CLS
the argument count 2
the first argument 2

so that the resulting code caiculates
{lambda (kb) {cons (dump {quote 2} (head kb)) {quote NIL)))
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The LispKit Lisp summariser

The summariser displays the point of declaration of each of the names
definedin a LispKit Lisp expression. It produces its output by assembling a
copy of the first item in its input stream, but eliding from the copy all
expresstons which define no new names. The resulting output expression
consists of a skeleton of name-defining constructs, in which the bodies of
the expressions are replaced by asterisks. This output is formatted
according to the criteria used by the pretty printer described above.

As anexample, consider the summary of the library manager, LIBMAN,
obtained by applying STRUCTURE to the expression in the file
LIBMAN.LSO by the following interaction

Take input from where? STRUCTURE.LOB

Take input from where? LIBMAN.LSO
{ larec
(lambda (i) *)
(librarian
lambda
{eui)
( letrec
{ missing . * )
(e .™)
(u.*)
(next. *)
( write lambda (ei)*)})
{bind
lambda
{eua)
{ letrec
(*
(**(*({lambda (d)*).*)))
(defs* (lambda (d ) *).*)
(u
Ld
{ lambda
(v)
(*{lambda (d 1) *) *}) =~}
(a

(lambda (d) (** {lambda ([)*))).*)))



( bind_operators
lambda
{eu)
{ letrec
*

{ define
lambda

{ arity }
{lambda { name } {let * (arguments . * )} } ) ) })

Every name introduced by a binding construct — let, letrec, or lambda —
in the expression in LIBMAN.LSO appears in the skeleton above There
are no new bindings in any of the sub-expressions that have been
represented as asterisks in the skeleton. There are, of course, free variables
in LIBMAN.LSO which are references to libraries such as LISPKIT.LIB,
and the bindings for these are not shown, since they do not form a part of
the expression in LIBMAN.LSO.

Construction notes

There is no filed source text for the body of the program, which was
constructed by the library manager from the expression

structure
{which has one free variable) and the libraries

LISPKIT.LIB
STANDARD.LIB
SECD_CODE.LIB

and the composite text compiled to give the closure in STRUCTURE.CLS.
The code in STRUCTURE.LOB is formed by linking

the closure COMPQSE.LOB
the function count 2
the closure PRETTY.CLS
the closure STRUCTURE.CLS

so that the resulting program calculates
(lambda (kb) (cons {pretty {structure (head kb))) {quote NIL})})
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The library summariser

The library summariser is a small extension of the LispKit Lisp expression
summariser, and displays the introduction of each of the names defined ina
LispKil Lisp source library. It produces its output by assernbling a copy of
the first item in its input stream, but eliding from the copy ail expressions
which define no new names. The resulting output expression consists of a
skeletan of name-defining constructs, in which the bodies of the
expressions are replaced by asterisks. This output is formatted according to
the crileria used by the pretty printer described above.

Theresult is an expression which lists the names of each of the definitions
tncluded in the library, together with a skeleton of the definition given for
that name.

Construction notes
The text in SHOW_LIB.LSO compiles to yield the closure in
SHOW_LIB.CLS. It is a function which converts a library into a letrec-

expression which can then be dealt with by the summariser. Accordingly,
the code in SHOW_LIB.LOB is formed by linking

the closure COMPOSE.LOB

the function count 3

the closure PRETTY.CLS

the closure STRUCTURE.CLS

the closure SHOW_LIB.CLS
so thal the resulting program calculates

(lambda (kb)

(cons (pretty {structure {show_lib {head kb)}}) (quote NIL)))



Some other LispKit utilities

In addition to the programs described so far, there are several programs,
whose sources are listed in the companion volume to this, and which are
parts of the LispKit system’s programming environment. Some of these
tools are alternative implementations of the functions of tools already
described, others are definite extensions which we have found useful Inany
case, these programs are included both for their own utility, and in order to
guide the user in the design of his own programs.
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An interpreter for LispKit Lisp

The interpreter provides an interactive environment for experimenting
with the design of components of a LispKit Lisp program. Any valid
LispKit Lisp expression may be evaluated by the interpreter, but additional
checks are performed as compared with the normal execution of compiled
code. This means that the interpreter provides a means of checking for
programming errors at the expense of considerably slower execution. There
is alse some editing capability to facilitate experimentation.

Essentially, the interpreter prompts the user for a LispKit Lisp
expression, evaluates that expression, writes the result, and repeats the
prompt. Any valid LispKit Lisp expression may be evaluated in this way.
In addition, expressions with free variables may be evaluated, provided
that those free variables have been defined in an outer level environment
which is manipulated by the various commands listed below.

If the user responds to the interpreter prompt with one of the special
forms reserved for commands, then this is treated as a command, and not
as an expression to be evaluated. Most of the commands manipulate an
environment which is treated as the definition part of a letrec-form.
Expressions evaluated by the interpreter are evaluated as though they
appeared in the body position of this letrec-form. Notice particularly that
command forms are only recognised when they appear as the response toa
prompt; they are not treated specially when they appear as sub-expressions
of angther expression; they cannot be manipulated as if they were LispKit
Lisp expressions.

Interpreter commands

Definitions may be added to the outer level environment by use of the
command

(def {name) (expressiony)

where (name) is an atom, and {expression) is a LispKit expression,
posstbly with free variables. This has the effect of binding the (name) to
the value of the (expression)>, but notice that it is the value of the
{expression’ in the outer level environment that is in force when that
{name) is used. This allows for mutual recursion between definitions; since
definittons may be changed, this also means that each definition depends on
the most recent definition of each of its free variables.

Theinterpreter maintains a stack of definitions for each defined name. so
that successive uses of the def command will mask previous definitions.
The complementary command

fcancel {name>)



discards the most recent binding of the {name), making the most recent
preceding definition (if any exists) current. The list of defined namesmay be
inspected at any time with the

vars

command which lists the names bound by each definition. Multiple
occurrences of a name in the list indicate multiple definitions of that name.
The texts of definitions may be recalled by the save command

(save (name 1) {name 2 --- {name n))

which was designed to save the definitions in a file. It writes to the output
stream an expression which contains the texts of each of the definilions of
each of the {mame)s listed, in the form

{restore (def {name 1) (expression 1))

(def ¢{name n} {expression n>} }
and the interpreter recognises the command
(restore (cormmand 1) --- {command n})

as representing the sequence of listed commands. Thus the save command
may be used to create a file which contains a restore list of the definitions in
force in one interpreter session, and by including that file in the input
stream of another session, those definitions may be reinstated. There is an
abbreviation

save
which saves all of the definitions, specifically for transferring a complete

session in this way.
The final cornmand is

end

which is used to end an interpreter session. It does not preserve any of the
state of the session, so this must be done by explicit saving if required.

Special names and forms

There are three names which are used by the interpreter in addition to the
names of its commands. The first is a vanabie

patience

bound in the outer level environment. This should normally be bound to a
small positive integer, and is prebound in this way at the beginning of the
session. When the interpreter is evaluating an expression, it counts the
number of symbols being written to the output stream and abandons the
evaluation after the first patience number of symbols. This means, for
example, that it is safe to attempt to print an infinite list.
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) patience
50

Yy fquote fa b de))
(abcde)

y (cancel patience)
patience cancelled

: (def patience (guote 3))
patience defined

yfquote (abcde))
(ab...

)y fletrec i (i. (cons (quote *) i})))
(v*. ..

The default value of patience is fifty, but you may find larger or smaller
valuesappropriate in a particular case; in the above example, the value of
three prevents the whole of any list of more than one element from being
outpuL

The second special name is not properly a variable in the outer level
environment, since it may not be defined by the user. The name

it

is alwzys bound to the value of the most recently evaluated expression, so
that for example

b (quote 2)
2

y fadd it it)
a
)
Notice particularly that it is not possible to use the it pseudo-variable to
give aname to the result of an evaluation. The next exam ple demonstrates
this point

y (quote cyntaf)
cyniaf

3t
cyntaf

> (def diweddaraf it)
diweddaraf defined

y diweddaraf
cyntaf

S (quote aif)
ail

s diweddaraf
ail

>

This behaviour will be seen to be consistent with the behaviour of other free
variables of definitions.
In addition to these names, there is a name which is reserved if it appears
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at the head of an application. The form
(exec {closure})

is a valid expression in the extension of LispKit Lisp which is recognised by
the interpreter. The value of the expression in the {c/osure) position must
have the same form as compiled code, that is it must be a pair, the head of
which is a code sequence, and the tail of which is an environment. Further
details of closures and code are to be found in the book, and in the
implementor’s guide.

The value of an exec expression is the function for which the argument is
the closure. The advantage of an exec expression is that its evaluation
proceeds at the nommal speed of compiled code, but at the disadvantage of
evading all of the error checking of the interpreter, The closure of an exec
expression may not refer to any of the definitions in the top level
environment.

) (def greet
flambda (who) (cons (quote Hello) (cons who (quote NiL)))))
greet defined
Y fgreet (quote world))
{Hello world)
> (def fastgreet
fexec (quote ((2 NIL 1 (0.0) 24 13 2 Hello 13 5).NIL)}))
fastgreet defined
> (fastgreet ¢ quote world))
(Hello world)
>

A description of the code may be found in the book, and in the
implementor’s guide in this manual.

An example session using the interpreter
Take input from where? INTERP.LOB
LispKit interpreter. type end to finish
>
Take input from where? CONSOLE:
(def pair (lambda (x y) (cons x (cons y (quote NIL})))))
pair defined
> (pair (quote A) (gquote 8B))
(AB)
Y el Yy {return)
Send output to where? SAVEFILE
(save pair)
{etrl YD) {return>
Send output 10 where? CONSOLE:
fcancel pair)
pair cancelled
> vars
patience
> etrt 2



Take input from where? SAVEFILE
» pair defined

?
Take input from where? CONSOLE:
{pair (quote 1) (quote 2))
{12)

y end
Exit interpreter

Construction notes

INTERP.LSO requires the following libraries
INTERP_MISC.LIB
TUPLE.LIB

STANDARD.LIB
SECD_CODE.LIB

and the composite text compiles with no linking to form INTERP.LOB.



An alternative s-expression
editor

Like the list structure editor, this editor is tool for manipulating s-
expressions, but this editor is of a considerably simpler construction, and
has a smaller range of commands based on a simpler notion of s-expression.
This editor has been largely superseded by the editor E.

The editor manipulates a single expression, called the file. An editing
session proceeds by the user typing a sequence of commands. At any time
there is a currertt sub-expression of the file, which indicates the focus of
attention of the user. There are commands which select different current
expressions, commands which display the current expression, and
commands which make changes to the current expression.

The display command

At any stage during the edit session, a print command may be issued which
displays the current expression. The editor will never spontaneously
produce any output, excepting error messages, so print commands are used
frequently, The full form of the command is either

{o alf)
which displays the whole of the current expression, or

fo ()

where {n) isa positive integer. This latter form displays only those parts of
the expression which are enclosed in no more than {n) parentheses,
replacing all deeper structures by a single asterisk, so as to make the overall
structure more readily apparent.

For convenience, the most frequently used form of the command may be
abbreviated to

Je]
which is entirely eguivalent to

{p 2)

This gives sufficient detail to plan the next command, and normally
displays an expression sufficiently small that its structure is readily visible.

The print command is also used to write a copy of the edited file toa filing
system file, by redirection of the output stream, thus:

{etrl Yy <{returm)

Send output to where? (oulput file>
tap {p all)

Letrf Yy {return>

Send outpul to where? CONSOLE:



Navigation commands
Each navigation command selects a new current expression; it makes no
changes to the file.

Provided that the current expression is a pair, the head of the pair may be
selected as the current expression by using the

h

command, and the tail may be selected by the
t

command, Thus a sequence of / and t commands may be used to select any
sub-component of the current expression.

Whilst moving down through an expression, using the 4 and ¢
commands, parts of the file pass out of the current expression. These parts
and their relationship to the current expression form a context, which can
be used by the editor to reconstruct the file from the current expression. The
up command

u

undoes the effect of one 4 or t command, by recovering one layer of the file
from the context. The whole of the file may be resclected as the current
expression by use of the

top

command which restores the whole of the context to the current expression.

File modification commands

The commands which change a file all act on the current expression,
without affecting the context. If a change is made to the current expression,
and the eontext restored by v and top commands, then it is the changed
expression which becomes a part of the file,

The fundamental changing command has the form

fc {pattern) (template})

which matches the structure of the (pattern) against the current
expression. Pairs in the {pattern) must correspond to pairs in the
expression, but each atom in the (pattern) can correspond to any sub-
expression of the current expression. There is no check that multiple
occurrences of an atom in the {pattern) correspond to the equal sub-
expressions. If the match is successful, then the current expression is
replaced by a copy of the (template), excepting that each occurrence of
each atom present in the {pattern) is replaced by the expression to which it
corresponds.

The replace commands may be thought of as being a particular special
case of the change command, in that

(r {expression))



simply replaces the whole of the current expression by the new
{expression>.
To accommodate the human capacity for error, there is a command

undo

which, if performed after any change, replace, or undo command, will undo
the effect of that command, unless there have been any intervening
navigation commands.

The end command
Perhaps the most useful command recognised by the editor is the command

end

which terminates an editing session. Notice that this command dees nat
save any of the results of the editing session, and that unless some positive
action is taken to send the edited file to some filing system file, by using the
mechanism of output redirection, the changes made during the session will
be lost.

An example of an editing session

Take input from where? EDIT.LOR
Editor ready
Take input from where? £.£L50

Take input from where? CONSOLE:

p
{ letrec { lambda * * } { comment quote * } { edit lambda * * } (editioop
fambda * * ) (editstep lambda * + ) )

tthp

( comment quote ( ** ) )

tthp

{ { List editor, Geraint } ( last changed 21 February 1983 ) )
hittp

( Geraint )

fc fx) (x Jones]) p

( Geraint Jones )

{etrl Yy{return>

Send output to where? NEWFILE.LSO
(o all]

{ctel Yy<{return)

Send output to where? CONSOLE:
end

Exit editor

Construction notes

The text in EDIT.LSO is complete in itself, and compiles directly togive the
code in EDIT.LOB.
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An s-expression librarian

The librarian provides the ability systematically to insert common sub-
expressions into any s-expression. It has been largely superseded as a tool
for constructing LispKit Lisp source texts by the Iibrary manager
LIBMAN which 1s described elsewhere in this manual.

Thelibrarian takes an expression as input, and searches this expression
for ocourrences of sub-¢xpressions of the form

(include (name})

where {name) is an atom. Each of these is substituted for by a value
obtatned from the user in response to a prompt of the form

{name) =

Normally, these responses would be taken from files. Only the first
occurrence of a name causes the librarian to prompt for input; thereafter all
occurrences of the same name are substituted for by the same value.

The substitution process is repeated on the substituted values until no
includes remain, The librarian then gives the user the opportunity to
redirect the output stream before writing the resulting expression to a file.
Finally, the command

end

terminates the program.

An example of a the use of the librarian
Take input from where? L/IBRARIAN.LSO

Take input from where? CONSOLE:
(lelrec (include body) (two.(include two)))

body = ftwo (include list) (include list))

two = (fambda {a b) fcons a (cons b {quote NiL))))

list = (quate {a b c))

Type ‘end’ to finish, anything else to print result

fife

( letrec (two {quote{abc))(quote(abc)))}{twolambda(ab)
(consa(cansb {quote NIL)})))

end

Exit librarian



Construction notes

LIBRARIAN.LSO requires the following libraries
TUPLE.LIB
ASSOCIATION.LIB

STANDARD.LIB
SECD_CODE.LIB

and the composite text compiles with no linking to form the object code
LIBRARIAN.LOB.
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A simple variable scope
checker

The scope checker is a program which analyses LispKit Lisp source
expressions, and lists every occurrence of a variable not bound in that
expression, together with a description of the position of the free
occurrence in the expresston, This function has been subsumed, for normal
use, by the LispKit Lisp syntax checker, SYNTAX, which includes this
check in its repertoire.

Thechecker takes a LispKit Lisp expression as the first item in its input
stream, and outputs either the empty list of messages,

NIL

to indicate a properly closed expression, or a list of messages, such as
((vfy(xga))

to indicate, in this case:

an unbound occurrence of y in the definition of f
an unbound occurrence of x in the definition of g
which is defined in a

This cutput might be produced from the interaction
Take input from whera? CHECK.LOB
Take input from whare? ERRONEOUS.LSO
((vf)(xga))

in case the file ERRONEOUS.LSO contained the text

(let {F a)
(f. (lambda (x) {cons x y)})
(2. (let (g g) (g. (lambda (y} (cons xy)}} )) )

Construction notes

CHECK.LSO compiles to give the closure in CHECK.CLS, and thecode in
CHECK.LOB is formed by linking

the closure LOADS.LOB
the closure CHECK.CLS
the argument count 1



Examples of applications

The remainder of the LispKit Lisp programs described in this manual are
ineluded, here and in the accompanying volume of source listings, not
because they are components of the system, but to serve as examples both
of the programming styles used by various members of the LispKit project
and of the types of programs which have been written in LispKit Lisp over
the past year.
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A simulator for VLSI
descriptions

This program is a sitnulator for a VLSI description language, uFP, which is
based on Backus’ FP language

Can programming be liberated from the von Neumann Style?
J. Backus,
in Communications of the ACM, Augusr 1978, Volume 21, number 8

A fuller description of the uFP language may be found in a D.Phil. thesis
currently in preparation by Mary Sheeran at the Programming Research
Group.

The values manipulated by a uFP program are thought of as being
signalsin the circuit being simulated, with each signal being represented by
a time-sequence of values. The semantics of uFP are defined by a
translation into FP, and this translation is used in the interpreter, followed
by an interpretation of the resulting FP expression.

The design of the interpreter has intrinsic interest, since it consists of a
skeleton which is largely independent of the interpreted language, and an
evalualor and a library of definitions which together describe uFP. By
using the skeleton of the interpreter, and substituting for the uFP evaluator
and library, it should thus be possible with little effort to implement an
interpreter for another language.

Included with the uFP interpreter is a file muFP_LIB. LSO of cxample
definition commands which describe the construction of a full-adder circuit
from primitive gates.

An outline of the FP language

The FP functions recognised by the interpreter are:
id

which is the identity function;
hd tl

which take the head and tail, respectively, of lists;
add sub  mul div rem

each of which takes a two-list of numbers and returns the result of the
corresponding Lisp arithmetic function applied to those numbers;

eq

whichcompares the components of a two-list and returns 1 or 0 according
as they are equal or not;



null
which returns 1 or 0 according as its argument is NIL or not;

zZip
which performs a matrix transposition on an argument which is alist of
lists:

appendl appendr

which cach take two-lists as arguments: append| stands for ‘append on the
left’. takes a value and a list. and conses the value on the front of the list;
appendr takes a list and a value, and extends the list on the right by that
value;

distl  distr

which take two-lists and “distribute’ one of the components through the
other, so that distl which stands for ‘distribute on the left’ takes

{a(1234))
into
{{a1)(a2) (a3)(ad))

for example, and distr operates similarly, but on the right.

Additionally, there are a number of FP combining forms whose
semantics are relevant to those of uFP. The combining forms are netded in
FP because there is no direct way of defining higher order functions, The
forms recognised by the interpreter are:

(select {n})
which is the function that selects the <n)th component of its argument:
(compose (exp1) <expZ> {exp3> -.-)
which is the composition of the component expressions;
(construct (expl1) (exp2)> {exp3d) --+)
whose value is the list of its component expressions;
(alpha (exp>)

which ts a function that expects a list as an argument and applies its
component expression to each component of its argument. that is it'map’s
(exp) down its argument;

(slash ¢exp))

which is a function that expects a list as an argument and forms the
continued application of its component expression through its argument.
that is it ‘reduce’s {exp)> down its argument;
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(constant (literal’)

which returns a constant function, whose value at any argument is
{literaly;

(if (exp1) (exp2) {(exp3))

which takes an argument and applies the second and third component
expressions to that argument, returning the one result or the other
according as the result of 2pplying the first component expressionis 1 or 0.

An outline of the muFP language
Any P expression is also a valid uFP expression, and represents the
pointwise application of the FP function to an input time-sequence of
values of the right type. Formally, any such function — which 1s called
‘stateless’ — is translated into a pointwise application by using the alpha
form 1 FP. Similarly, there are pointwise extensions of each of the FP
forms which define corresponding uFP forms. The detall of the translation
may b found in the function mufp in the text of muFP in the volume of
sources which accompanies this manual.

There is an important additional syntactic form, from which ¢FP derives
its name, and which is used to model circuit elements which have state.
Provided that (f_exp) is a function of type

input x state — output x state
and {s_exp) is of type state, then
(mu (f_expy {s_exp})

is a function from input to output where the state is initially {s_exp) and
subsequently the state is fed back — with a delay of one time step — from
the result. An example is shown, in the interpreter session below. of the
simulation of a one stage shift register. The {f_exp> for this simulation is

{construct {select 2} (select 1})

whichdefines tts output to be equal to its second argument (previous state),
and defines its next state to be a copy of its current input. The shift register is
{mu {construct (select 2) (select 1)) _! )
which has initial state, and so initial output,
|

— which we use to stand for “not defined” — and then copies its input to its
output with a delay of one time-step.



Interpreter commands

The interpreter recognises a number of s-expression forms as commands
which change its behaviour. The command

{run {exp})

takes a uFP expression {exp). evaluates it, and applies it to an input
sequence which is read from the input stream, terminating at the atom end.
The output from the yFP expression is sent to the screen.

Names may be associated with expressions by the command

(def {name> {expression))

which allows the {name)> to stand for the {expression) and gives the
capability for making recursive definitions. These definitions may then be
edited by typing the command

fedit {name))

which invokes the editor E, described elsewhere in this manual, to edit the
text of the definition of {(name’. When the editor is left by typing end the
interpreter expects another command.

The command

vars
displays a list of all defined names, and
dump

outputs a sequence of gdef commands which can be stored in a file and re-
input to the interpreter to redefine these names. Any individual definition
may be seen in a more readable form by using the command

(show {name})

which pretty-prints the definition of {name}. A definition is revoked by the
fcancel (name))

command which removes the definition of {rname). Finally, the command
end

ends the execution of the interpreter.

An example muFP interpreter session
Execution of the interpreter begins

Take input from where? muFP.L OB
muFP Interpreter

>
Take input from where? CONSOLE:
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First, we will introduce the one stage shift register example referred to
above; we begin by defining the transition function:

(def two_one (construct (select 2) (select 1)))
yfrun two_one)

(dib)

(ba)(cd)

(de) (7123)

(21) end

then a one stage shift register with an initially undefined state:

y (def shift? {mu two_one _|_))
» frun shift1)

0

__1

02

13

2end

and now a two stage shift register composed from two one stage registers:

» (run (compose shift? shiftl))

The next example shows a somewhat larger uFP expression with differing
amounts of delay in each output:
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y (def ririang
{compaose
(slash
{compose
append!
{construct
{select 1)
(compose shift? (select 2)) )))
appendr
{construct id (constant NIL)) ))
S frun tiriang)
oo o)
(¢._1I_)00)
(¢0._1_)(1r11)
(1Q00.__Y(222)
(210)(333)
(321)(000)
(032)(000)
{003 })end



Finally, an example of how to use the editor to correct mistakes in
definitions:

» (def agddup (slash sub))
» (edit addup)

D
( slash sub ) (e sub add) end
> fshow addup)

{ def addup { slash add } )
> (run addup)

0000

ort111)

4¢1234

10 end
> end

Exit muFP interpreter

Construction notes
The text in mu FP.LSO uses the following libraries

E_CONTROL.LIB
E_FUNCTION.LIB
E_MATCH.LIB
E_MISC.LIB
S_EXPRESSION.LIB
ASSOCIATION.LIB
STANDARD.LIB
SECD_CODE.LIB

and the composite text compiles to give the code in muFP.LOB.
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A simple semantic network
database

This note reports on the development of a simple program for storing and
interrogating information stored as a semantic network. In such a network

we have labelied nodes and labelled, directed arcs. We use each

R

arc to record a relationship aRb. For example, the facts that John and
Mary love each other and that both love Logic are recorded in the
following net, as are the facts that John is a Male, and Mary is a Female,
and that they are both Programmers:

Logic
foves foves
isa foves isa
Female ¢ g——nno—» »—® Male
Mary loves John
isa isa
[ ]
Programmer

Methods of recording complex facts in semantic networks are well known

The Hundbook of Artificial Intelligence,  Volume [
vl A, Burr and E. 4. Feigenhaum,
Wiltium Kaufman Inc..  Los Altos Califormia, 1982

We shall design and build a LispKit Lisp program which allows us to
manipulate a semantic network represented as an s-expression. The
important point to note from the example is that we shall be required to

deal with sets of nodes. for example, all those things which John loves. that
is

'Logic,Mary},

and so that shall be our starting point.



A calculator for sets
Consider the standard LispKit Lisp idiom for an interactive program.

(letrec (lambda (kb) (map eval {untilend kb)))
{eval, (lambda (x} (cons x x})) }

In this, every itern the user types. until he types ‘end”’, is submitted to eval
and the result is printed on the screen. Qurexample has a rather uninspiring
eval which, given x, simply constructs the pair (x.x). Nevertheless, this
program has the form of a calulator, responding to every typed itm by
printing a pair made from two copies of that item.

To make the calculator do something useful let us define a simple
language of set valued expressions using the usual set operations

(expry = {set>
| (union {expr) {expr)}
| {inter (expr) {expr))
I {diff (expr) {expr}}
(sety = <atom list)

A constant set is denoted by a list of atoms without repetition. For
example, each of

{abg)
{(1234586)
(1ta3c -1

is a set. The user of our set calculator may type any (expr) and the
calculator will evaluate it. For example, on his typing

(diff {union fa bc) {cde)) (adf))
the calculator should respond
{bce)

Consider how we might recognise that the {expr} has union asits operator.
That is, that it is of the form

(umion {expr) <{expr)}.
The following predicate would serve:

isunion = (lamida {e) (and {not (atom e))
{eq (head e) (quote union)}})

Similarly, we have predicates for recognising the other well-formed
{exprs
sinter = (lambda (e} {and (not {(atom e})
(eqg (head e) (quote inter))))

isdiff = (lambda (e) (and {not {(atom e})}
(eq (head e) (quote diff)}))

If the {expr) does not satisfy any one of these predicates, then we check to



see whether it is a list of atoms, a constant set value. Hence

isatomtist = {lambda (e)
(or {eq e {(guote NiL})
{and (not {atorm e))
{and (atom (head e}) (isatomlist (tail e))})))

is deployed.

Dismantling the {expr) once we have recognised that it has an operator
and two operands can be done safely using functions arg1 and arg2 which
select the first and second operands, if available, and return the empty set
— that is, NIL — if not.

argl = (lambda {e)
(if {leq (guote 2) {length 8))
(head (tail e}) (quote NIL)))
ag2 = (lambda (e)
(if (teq {quote 3) {length e)}
(head (tail (tail e})) {quote NIL)))

Thus with this scaffolding we erect a new eval function which accepts
utterances in our language of set valued {expr>s and which computes the
set which each utterance denotes.

eval = (lambda (e)
(if {isunion e)
(unign (eval (arg! e)) {(eval (arg2 =)))
(if (isinter e)
{intersection {eval (arg1 e))} {eval arg2 e)))
(if (isdiff e)
(difference (eval (argl e)} (eval {arg2 e)))
(if (isatomlist e}
e
emptyset )])))

Slotted into our calculator program in place of our trivial eval, we have
already a not uninteresting application.

Semantic network representation
We choose to represent a network using association lists as in

‘Lisp’, P. H. Winsion and B. K. P. Horn,
Addison Wesley, Reading. Massachusetts, 1981

An association list can be thought of as a finite function mapping atoms to
values. It is represented as a list of pairs, each pair consisting of an atom
and a value. The standard operations are

defined : atom x association list — Boolean
associate : atorn x association list —  wvalue

which respectively tell us whether there is a binding of a particular atomina
particular association list, and return the corresponding value when there is



one. Let us refer to the set of atoms which are defined in a particular
association list as the domain and the set of values onto which they map as
the range of the association list.

The network will be represented by an association list whose domain is
the set of nodes, and whose range is a set of association lists. These
embedded association lists will have sets of relation names (arc labels) as
their domains and sets of nodes as their ranges. For example, the earlier
example has the representation

((John.((loves.(Logic Mary))

(isa.( Male Programmer))))
{Mary.({loves.(John Logic))

(isa.( Female Programmer)} }) )

Hence we could discover, for example, those things which John loves by
evaluating

(assaciate (quote loves) {associate (quote John) db))

where db is the above network representation.

Now consider how we might give our set calculator the ability to
compute using sets derived from such a semantic network. Suppose we add
the following syntax to the language of our calculator

(expry = (im (expr} {atlry)
(attr} = {atom)

Here we intend to allow utterances of the form
firm (John) loves)
to denote those things which John loves, and
fim fJohn Mary) isa)
to denote those things which either John is or Mary is, that is
(Male Female Programmer).
So the utterance
{im {expr) {attr})

denotes the image of the set {expr) under the relation {attr). From hereon
in we shall refer to the relation R in aRb as an attribute of the object a.
Power comes when we realise that

inter {im (John) loves) (im (Mary) loves))
denotes those things which both John and Mary love, that is ( Logic), and
(dilf {im (Johrz} loves) (im (Mary) loves))

those things which John loves, but that Mary doe¢s not, that is (Mary)!

So how are we to extend our calculator? First we note that eval has to
have a second argument, which is the network, and we christen this db, for
database.
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eval = (lambda (e db)
(if (isunion e}
{union (eval {arg1 e)} (eval {arg2 e)})
(if (isinter e)
(intersection (eval {arg1 e)} (eval arg2 a)))
(if {isdiff e)
(difference (eval {argl &)) {eval (arg2 e)))
(if (isim ©)
(imageset (eval (argl e) db) {mkatom (arg2 e)) db}
(if {isatomlist @)
e
emptyset )})))

Here we have relied on the obvious

ism = (lambda {(e) {and (not {atom e)) {eq (head e} {guote im)))})
and the possibly unnecessary

mkatom = (lamhda (x} (if {atom x) x {quote NIL}))
to analyse the {expr) and in case it is of the form

{im {expry {attr))

to submit it to the function imageset to compute the denoted value.
Consider what imageset must do. Given a set of nodes and an attribute it
must compute

{J image(n,attr,db)
meredesel
That i, for each n in the given node set it must compute the union of the set
of nodes which are in the image of that node with respect to the given
attribute. Such an expression has a direct, if clumsy representation in
LispKit Lisp.
imageset = {lambda (nodeset atir db)
(reduce
union
(map (lambda (n) (image n attr db)) nodeset)
emptyset})

By mapping the function
Ain.image(n,atir,db)

over the node set we compute
{ mage(n,attr,db) nencdeset |

and by reducing this set of node sets using set union we flatten it into the
required node set.

The work of interrogating the semantic net has been left to the function
image, which has a direct rendition using a double application of associate
as described above.



image = (lambda {(node atir db)
(if (defined node db)
(let (if (defined attr 2} {associate atir a} emptyset)
{a.(associate node db))
emptyset))
Note that if we ask about a node outside the domatn of db, or an attribute
outside the domain of an embedded association list, then we compute the
empty set as default.

So our new calculator is complete. It allows a limited form of
interrogation of a semantic net. The database can be constructed elsewhere
and given to the calculator in the conventional way, as the first objecton the
input stream. Thus the driving function becomes

{lambda (kb)
{map (lambda (c) (eval c (head kb})) {(untilend (1ail kb))}}

as we have come to expect with this type of interactive LispKit program.

A small extension
Now we extend the language of the calculator to allow the utterance
{inv {atlr) {expry)

which denotes the set of nodes which have the given attribute in the set
(expry. For example

{inv loves {Logic))
denotes those things which love Logic, that is
{Johkn Mary).

We callit the inverse image of (expr) under {attr). This is surprisingly easy
to compute, and powerful. Are there any Programmers who love Logic?

{inter {inv loves (Logic)) {inv isa (Programmer)))?

Yes there are. Both John and Mary in fact.

The standard function domain, applied to an association list, returns the
set of atoms defined to have values by that association list. Given this we
can define

invimage({nodeset,attr,db) =
{ nedomain{db) . image{n,attr.db}~nodeset # (O }

This reads as follows: the inverse image of nodeset under the given attr is
the set of all those nodes n such that the image of n under attr has some
element in comm on with nodeset. This may be rendered into LispKit Lisp
as follows:



invimage =
(lambda (nodeset attr db)
(filter
(lambda (n)
(not {eq (intersection {image n attr db) nodeset) emptyset))}
{domain db} ))

The extensions required to eval are obvious, so we do not list them here.
The final version of the program, developed below, is listed in the
companton volume to this, and may be inspected for these extensions.

Updating the database

We consider how new components may be added to the semantic network.
Let us postulate an outer layer of command structure for our calculator.

{eommand) = (add {expr) {attr) {expr))
| db
| (expr)
Here we have introduced three commands. The command
{add {exprT) {attry {expr2))

adds to the semantic net all the associations between members of {expr1}
and <{expr2> under attribute {attr)>. Thus

{add (John Mary) dislikes (Fortran Messiaen))
adds four facts to the database. The command
b

causes the entire database to be printed to the output stream, the
conventional method of saving an updated state. Finally, the command
{expr) evaluates the denoted set, as before, and prints it. The driving
program then becotnes

(lambda (kb) {execute {untilend (tail kb)) (head kb)})
and the outer loop is implemented by the function execute.

execute = (lambda (c db)
(if (eq ¢ {quote NIL}))
{quote NIL)
{if {1sadd {head c))
{execute
(tail ¢)
{addset db
{eval (arg1 {head c)) db)
{mkatom (arg2 (head c)))
(eval (arg3 (head c}} db}))
(if (isdb (head c})
{cons db {execute (1ail c) db))
(cons {eval {head c¢) db) (execute {tail ¢) db}))}}))



Thus we see that there are lwo categories of command. The add command
computes a new database by calling addset with its evaluated arguments,
but produces mo response, while the other two commands produce
responses but proceed with the execution on an unaltered database.

So now to addset. Let us delegate the responsibility for updatinga single
node to a function addel (for ‘add element’). This function will begiven a
node, an attribute, a node set and the database. [t will compute the
database which records that this node has this attribute in addition to all of
tts pre-existing attributes, whether or not it previously had this attribute;
also, that this node is related by this attribute to each node of the node set,
in addition to any pre-existing relationships.

2" * 3
d a
a a
-
2, a .
a
- db and addel( 0, a,

1 {3, 4, 3}, db) .1

The composition of
addel (node,attr.nodeset,db}

from db is straightforward but we must be a little cautious to deal properly
with nodes and attributes not yet recorded in the database. The standard
function

update * assaciation list x atom x value — association list
is used. This computes the association list with the pairing
{atom.value)

either replacing any other pairing for atom, or as a new element if there is
no pairing for atom. Thus we have

addet = {lambda (node attr nodeset db)
(let
(let (update db nade {update a attr (union nodeset s})}
(s.(if {defined attr a)
(associate attr a)
emptyset )) }
(a.{if {(defined node db)
(associate node db)
{quote NIL) )) ) }



Note the definition of a, which protects us against a node which does not
yet appear, and of s, which similarly protects us against a missing attribute.
Giventhat a 1s the association list paired with node in db, and that s is the
set paired with attr in a, then

(update db node (update a attr (union nodeset s)))

computes the database with the additional associations which we require.
So we come finally to the function addset. This is defmed from addel by
using reduce, as follows .

addset = (lambda (db ns1 attr ns2)
{reduce (lambda (n db) (addel n attr ns2 db)} ns1 db))

The consequence of this is that each n in the set ns1 is added to db,
associated with the set ns2. That is, we compule

{addel n1 atir ns2 (addel n2 attr ns2 ... {addel nk attr ns2 db)---})
where ns1 = (n? n2 ... nk)

and so each new association is recorded.

Sample session

The following session is started from the semantic network stored in the file
SEMNET_LIB.LSQ. which is listed in the companion volume to this.

Take input from where? SEMNET.LOB
Take input from where? SEMNET_LIB.LSQO

Take input from where? CONSOLE:

fim (Mary) loves)

( Whiskey Logic John )

{inv loves (Logic))

{ John Mary )

{union (inv loves (John)) (inv loves (Mary)))
{ Mary John }

(inv iss (Giving)})

{ Giving1 Giving2 Giving3 )

fim {Giving?) giver)

{ John )

fim (Giving1) givee)

{ Mary )

{im (Giving1) given)

{ Book )

{im (inv isa (Giving}) given)

( Book Flowers Kiss )

fim (inter (inv giver (John)) (inv givee (Mary)))} given)
{ Book Flowers }

{add (John Mary) dislikes (Fortran Messiaen))
(inv dislikes (Messiaen))

{ John Mary )



fim {John) dislikes)

( Fortran Messiaen )

fadd (inv loves (Logic)) loves (Poetry))
{im (John) loves)

{ Logic Mary Poetry )

(inv foves (Poetlry))

{ John Mary )

(diff (im (Jotn) foves) (im (Mary) loves))
( Mary )

fadd (Giving) isa (Action))

fadd (Giving ) includes (inv isa {Giving)))
(im (Giving) includes)

( Giving? Giving2 Giving3 )

end

Construction notes
SEMNET.LSO requires the libraries

SET.LIB
ASSOCIATION.LIB
STANDARD.LIB

and the composite text compiles to give the code in SEMNET.LOB.



An interpreter for a logic
language

The program LOGIC is an interpreter for a logic language, essentially a
dialect of PROLOG free of side effects. The interpreter is closely based on
the LispKit Lisp interpreter, and the reader is assumed to have read the
manua! for that program, INTERP. The interpreted language is based on
LogL1p, which is described in

LOGLISP: Metivation. Design and Implementation,
4. A. Robinson and E. E. Sibert
in Logic Programrming, ed K. L. Clark and 5.-A4. Tarrlund
Acaderic Press, London, 1982

It involves the manipulation of a database of assertions, both by
commands which change the database, and by expression forms which
interrogate the database. These are all in addition to the LispKit Lisp
interpreter commands, and the LispKit Lisp expression forms. as described
in the section of the manual on the program INTERP.

Thedatabase may be thought of as asserting some relationships between
LispKit data objects. These relationships are represented by s-expression
forms, for example

(desents are dry)

Any sexpression form either does or does not represent a truth, in the
context of a particular database. A form is true with respect to a database
either if the form was asserted whilst creating the database, or if the form is
deducible from the assertions that have been made.

Commands for making assertions

Initially, there are no relationships which are asserted in the database. The
command

ffact {conclusian))

adds to the database the assertion that the s-expression for {conc/usion)
represents a true relationship. Thus, for example, the command

fact (deserts are dry))

would assert the truth of the statement that
{deserts are dry)

More generally, the command

(fact {eonclusion) . {hypothesis list))



asserts that whenever each of the statements in the (hypothesis list) is true,
then the {conclusion’ is also true.

Large numbers of systematically related facts may be asserted
simultaneously by the command

fforall {variable listy {conclusion) . {hypothesis list) )

The ¢variable Iist) is just a list of atoms which represent dummy variables
in the command. A foral/ command asserts that if each hypothesis in the
{hypothesis list) is true under any substitution of expressions for the
variables in the {variable list), then the conclusion is also true under that
substitution, Thus the command

(forall (x) (x are unpleasant) (x are dry))

{read ‘any x are unpleasant if those x are dry’) would add to the database in
our example the assertion that

(deserts are unpleasant}
The fact command is just an abbreviation for
(forall NIL {conclusiony . (hypothesis list))
Finally, there is a command
new

which retracts each of the assertions previously made, allowing the user to
start afresh with an empty database.

Additional expressions

There is an expression which allows queries to be made of the database,
namely

(ail {variable listy . {condition list))

This is treated as any other expression. as though it were a LispKit Lisp
expresston. Its value is a list of all the substitutions for the variables in the
{variable /ist) under which every one of the conditions in the
{condition fist> is true. Thus, in the context of the desert database which
was constructed above, the value of )

fall (x) (deserts are x))
would be a two element list
( (dry ) ( unpleasant ) )

The vatue of an a# expression may be empty, indicating that there are no
substitutions which make all the conditions necessary concomitants of the
assertions in the database; the value may be infintte; it may contain
repetitions; it may even contain variables.



If the value of an a/f expression contains logical variables, then they will
be printed in the form

( {variable name} : {subscript} }

In this case, the conditions of the enquiry are true no matter what
expression is substituted for the logical variables. Notice that although
these subscripted variables are printed as lists, the LispKlit Lisp predicate

(atomn ---)

is true of of all logical variables.

The other new expression form which is recognised by the interpreter
allows assertions to be added temporarily to the database, and then
removed after an enquiry is complete. The value of

(logic (body) . (assertion list))

is the value of the (body) with respect to a database in which each of the
assertions of the {assertion /istd> has been added to the database. The
evaluation of this expression does not, of course, affect the database. For
an example of the use of the logic expression, see the restore file
LOGIC_LIB.LSO which contains an expression that defines the
palindromic lists.

An example session using the interpreter

Take input from where? LOGIC.LOB
Logic LispKit interpreter: type end to finish
)
Take input from where? CONSOLE:
(lact (John likes Mary))
asserted
y(all (xy) (x ltkes y))
{ { John Mary ) )
Y (lorall (x) (Fred tolerates x) (x likes Mary))
asserted
y{foralf (x) (Jean.x) (Fred.x))
asserted
y{lorall {x v) {x tolerates y) (x likes y))
asserted
Y{alt (x y) {x tolerates y))
{ { John Mary } { Fred John ) ( Jean John } )
3 new
new database
y(all {xy) (x likes y))
MIL
Yend
Ext logic interpreter

Construction notes

The source in LOGIC.LSO is complete in itself, and compiles to give the
objectin LOGIC.LOB.



A script-driven adviser

EXPERT is an interpreter for a language intended to control
conversations. Fhe primitives of the language provide for sentences to be
output by the program, for responses to be elicited to questions, and for
salient parts of the history of a conversation to be recorded. An example is
given, in the companion volume, of a script for governing a conversation
which gives guidance on a repair task.

The program expecis an s-expression at the head of its input stream
which is a script. Nodes in the script describe the state of an automaton
which proceeds from state to state. writing stalements and questions to jts
output stream, and rcading replies from the remaining input. The course
taken through the script may be determined by the replies, by *hard wired’
decisions in the script, or by the values of variables which are changed as
determined by the script.

A script is an association list, in which each binding representsa state,
which has a name that is bound to a list of instructions. There is one
particular state, named init, in which execution begins. The machine then
obeyseach of the instructions bound to the name of its state until thestate is
changed, or there are no instructions lefi. Execution terminates when the
machine enters the state named end. The

(say . Cexp})
instruction writes the s-expression <{exp) to the output stream.
(ask (var) . (exp))

writes (exp) and then expects a reply from the input. The replyis a single s-
expression which is then bound to the atomic name {var) in an association
list of variables which the program maintains; at the same time, the value is
placed in an accumulator which is referred to by conditional instructions.
Variables may also be bound to values by the explicit assignmen|

{note (var) (exp))

which binds the value {exp) to the variable {var).
(getval (var})

loads the accum ulator with the value bound to the variable named {var).
(eng {var} . {exp))

combines the functions of ask and getval since it loads the accumulator
from the variable {var} provided that it is already defined, but if itis not
defined, then an ask is performed first. The current state may be changed by
d

{goto (stated)

9N



instruction which causes execution to resume at the first instruction of the
state (state), or by

(1f {val) {siate))

which changes the state only if the accumulator contains the specified
value, or

{ifn {value} {exp))

which performs the change of state only if the accumulator does not
contain the specified value.

In any expression, the symbol * may be used to stand for the value of the
accumulator. In particular, the instruction

(goto *)
can be used to implement ‘return from subroutine’ jumps.

Example of a conversation
Take input from where? EXPERT.LOB

Take input from where? EXPERT_LIB.LSO
Kelloggs Delegging Machine ( Model A ) service rouline

Is the button pressable?
Take input from where? CONSOLE:
yes
Do all the legs fall off? no
Do any of the legs fall off? no
Are there any legs? yes
Inspect the non — departed legs:
Have they been nailed on? no
Is there any sign of glue? yes
Soak legs in paradi—chloro — phenyl —pentanoic acid
Press the button again
Do all the legs fall off? no
Do any of the legs fall off? no
Fita new button assembly ( part no #765/wy;35454y/z2 )
Press the button again
Do all the legs fall off? yes
Is the machine clean and shiny? no
Sponge the machine with warm soapy water, taking care not to wet
the expeditionary telephone emulator or the cold air intake conduit
Is the machine clean and shiny? yes
Your Kelloggs Delegging Machine { Model A ') is in perfect working order

Construction notes
EXPERT.LSO requires the libraries

STANDARD.LIB
SECD_CODE.LIB



and the composite text compiies to give the code in EXPERT.LOB. Since
this program requires a script as its first input, you may choose to link
this code with a particular (uncompiled) script, such as that in
EXPERT_LIB.LSO to make a program that is specific to one type of
conversation.



nkib - A speed benchmark

The function nFib is included in this manual, not for any intrinsic interest,
but because it is used as a speed benchmark for each new implementation of
the LispKit system. The function, defined by

nFib{0)
nFib(1)
nfib(n+2)

1
1
nFib{n+1) + nFib(n) + 1

is used to calculate the number of function invocations required to
calculate its own result. Thus, for example

nFb(16) = 1973

and the algorithm used to calculate this value executes one thousand nine
hundred and seventy three function calls. The closed form of the definition
of nFib is

nFib{n)

M (1+J5)" N 5-./6 (1_\/5), B

5 2 5 2

2 Fib{n) — 1

(Fib{n} being the nth Fibonacci number) showing that nFib(n) makes a
number of function calls exponential in the argument n. Each of the timings
reported in the final sections was made with a call of nFib on an argument
chosen to make the call last for about half a minute.

Construction notes

The text in NFIB.LSO is complete in itself and compiles to give the closure
NFIB.CLS. The code in NFIB.LOB is formed by linking

the closure LOADS.LOB
the closure NFIB.CLS
the argument count 1



Examples of the use of infinite
objects

One of the most striking usgs of lazy evaluation is in the description of
computations which yield infinite objects. A LispKit Lisp expression may
have a value which is infinitely large; for example, the input streamis a list
with infinitely many components. Such an expression describes the infinite
computation which would, as it was executed, generate more and more of
the value of the expression. The order of execution of the computation
imposed by lazy evaluation ensures that the only work done in a
computation is that which is essential to the result. Thus, if the result of a
program depends only on the result of finitely much of an infinite
computation, that program will stll terrmunate, If, however, the whole of an
infinite object is to be calculated, for example, if a LispKit Lisp program
defines an infinite output stream, then the output will be produced
piecemeal, as the computation progresses.

Four examples of LispKit Lisp expressions whose values are infinite lists
(streams) are listed in the companion volume to this. Each is a sourcewhich
may be compiled to producea .CLS file which can then be executed with the
LOADK loader.

The first, INTEGERS, evaluates to a list which consists of the non-
negative numbers (natural numbers) and is an example of a program that
will produce arbitrarily much output, since it runs in a bounded space. Of
course, the number range will eventually be exceeded, and overflow will
accur, but the program will continue counting up until interrupted.

The second expression, PRIMES, describes the list of prime integers,
using the Sieve of Eratosthenes. Since this method requires all smaller
primes to be available for the calculation of the next prime, the program
gradually accumulates state, and an attempt to evaluate the whole of the
list of primes will eventually lead to the cell store being filled.

The expression ROUND is an example quoted by Gilles Kahn to
demonstrate the power of languages which process infinite objects. Its
value is the list consisting of all the round numbers, that is those whose only
prime factors are two, three, or five. The list is generated in ascending order
by merging three other lists, ¢ach of them also infinite, each defined interms
of the hst of round numbers itself. The algorithm is presented in

A Discipline of Programming, E. W. Dijkstra
Prentice-Hall. New Jersey 1976, 0-13-215871-X

where the problem is attributed to R. W. Hamming,

Finally, the expression EDIGITS evaluates to the list of the digits of e,
the base of natural logarithms. This program is a slight modification of a
program by IDavid Turner (who attributes the algorithm to
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E. W. Dijkstra) which is described in

Recursion equations as a programming lunguage, D, A. Turner
in Functional Pragramming and its Applications,
ed J. Darlington, P. Henderson, D. A. Turner
Cambridge University Press, 1982, 0-521-24503-6

and calculates the sequence of digits by a process of translating the
contmied sum

1]

I
f~1a
| =~

a

i

into a decimal expansion.

Construction notes
Each of the four .LSO files contains a complete expression, and may be
compiled to yield the corresponding .CLS file, thus

Cetrl Yo {return
Send output to where? EL/GITS.CLS
(el 7

Take input from where? LC.L OB
Take input from where? £ED/GITS.LSO

Take input from where? CONSOLE.

Letrl Yo returny

Send output to where? CONSOLE:
The following type of interaction may be used Lo evaluate one of these
expressions

Take input from where? LOADK.LOB
Take input from where? ROUND.CLS
1234568910121516182024 2527 ...

or, of course, the codes may be linked to form complete programs,
ROUND.LOB for example consisting of

the closure for LOADK L. OADK.LOB
the closure for the expression ROUND.CLS



Libraries of useful standard
functions

A number of expression libraries are listed in the volume of sources which
accompanies this manual. By convention, these are given file names with
the extension

.LIB

Of these, some are components of specific programs, and are named
accordingly, for example

E_FUNCTION.LIB, E_MATCH.LIB and E_ MISC.LIB

contain portions of the list structure editor E. Other libraries are more
general, and contain suites of related functions which are intended to be
more generally useful.

A libraryis an association list, of the same form as the definition part of a
letrec-expression. Used with the library manager, LIBMAN, it extends the
LispKit Lisp language by adding definttions of extra standard functions
and values. Programs may be written assuming the definitions of such
functions as append and equal, and these definitions added automatically
by the library manager, to produce a complete LispKit Lisp program.
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The library ASSOCIATION

This library contains functions for manipulation of association lists, such
as libraries. An association list is a list of pairs: the head of each pair is an
atom,called the ‘name’ of the pair, and the tail of each pairis a value which

is said to be ‘bound’ to that name.

{domain a)
{defined o a)

(associate e a)
(binded a)

{tnbind e a)

(update a e d)

is the list of names bound in the association list a

is irue if some value is bound te the name e in the
association list a

15 the valuc bound to the name e in the association list @
is an association list containing a binding of d to the
name &, in addition te all the bindings of the association
list @

15 an association list containing the bindings of the list a.
except that the name e is nol bound

is an association list containing the bindings of the list a,
excepl that d is bound 1o the name e



The library SECD_CODE

The definitions in this library are either hand written code objects — which
are mainly sequences of opcodes which could not be produced by
comptlation of LispKit Lisp source — or are functions which construct
LispKit Lisp code objects. They provide a small interface between the
LispKit programmmer and the virtual machine. It is to be expected that the
implernentation of most of these definitions could change in future
implementations of the LispKit system. but that their specifications would
remain essentially unchanged. The implementor’s guide describes the
relevant machine concepts in more detail.

The functions in this library fall into three distinct classes according to
the type of programs in which they can safely appear.

Any program may reasonably use the function flexible which takes a
function of one argument, and returns a function of an unspecified number
of arguments, so that

{(flexible fya bcd ) = (f{listabcd--))

Similarly, the function chr behaves as a perfectly ordinary LispKit Lisp
function, such that

(chr n)

is an atom consisting of the single character with ASCII code n.

The following functions may be used — usually in ‘systems programs’ —
with the exercise of care in controlling the order of execution. They
manipulate data structures which have specific meanings to the virtual
machine; for example, code which is executed by the machine must be fully
evaluated before execution begins, and the function make_closure takes
an expression whose value is code, and returns a fully evaluated copy of the
code.

(apply_code f 1) applies the evaluated closure f to the evaluated
argument list
(make_closure f) evaluates the closure f
{make_arglist 1) evaluates thae argument list |
{inspect_code f) used by make_closure
(inspect_env e} used by make_closure
{inspect_arglist i} used by make_closure and by make_arglist
(strict_cons h 1) returns the same value as
(cons ht)
but also evaluates both h and t before doing so
(sequence a b) returns the vilue of b having first evaluated a
{finite ) is true provided that e is a finite data structure, and has

the side effect of [orcing the evaluation of the whole of e



The following are not real functions, and should appear only in bootstrap
loaders and in the run time system.

{run_and_halt x} takes an application X and evaluates it, and never
relurns

(print_item x) sends a representation of x 1o the output and returns x

(read_item} reads a value from the input, and returns that value
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The library SET

This library contains a number of functions for manipulating lists which
are to be treated as sets (in the mathematical sense) of atoms. The
membership test for such sets is the function member, defined in
STANDARD.LIB.

emptyset 15 the set with no elements

{singleton e) is the set eontaining only e

(addelement e |} is the set containing e, and all the elements of |
(remelement e 1) is the set eontaining all of the elements of I, exceplinge
(union 3 b} is the set containing every element of either of a or b
{inmersection a b) is the sel eontaining every element commen to a and b
(difference a b) is the set containing all elements of a excepting those

whieh are also elements of b
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The library S_EXPRESSION

This library contains a number of functions relating to the representation
and formatting of data structures.

{dump n {)

is a structure which is the same as f except that all sub-structures more than
n levels away from the root have been removed and replaced by atoms
containing a single asterisk. This function is used to give an impression of
the overall structure of the expression.

(flatten s ¢}

is a list which consists of a flat representation of the structure s,
concatenated with the list ¢. In particular

(flatten s (guote NIL))

is the flat representation of s, that is, it is a Iist of the atoms of s separated by
atomscontaining the parenthesis symbols, and full stops, arranged so that
this sequence of atoms is the representation of s as an s-expression.

(pretty s)

is a structure containg each of the atoms of s, in a similar disposition, but
interleaved with space and newline atoms in such a way that the printed
representation of the result is layed out and indented so as to reflect the
nesting structure of s.



The library SORT

This library presently contains only one function definition, that of the
function quicksort. If less is a function for which

(less a b)
is true of items @ and b of some type, precisely when a is ‘less’ than b, then
(quicksort less)

is a function which sorts a list of items of that type into ascending order by
Hoare's quicksort algorithm. For example,

(quicksort (lambda (a b) (if (eq a b} (quote F) {leq a b))}})

is a function that expects a list of numbers as its argument, and returms a list
of the same numbers sorted into ascending order.
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The library STANDARD

The definitions in this library are those which might be expected to be
required by almost any LispKit Lisp program. They are mostly functions
whichwill be well known to any programmer with experience of some list
oriented functional language.

List processing functions

(append el e2)

15 Lhe list obtained by concalenation of its two
arguments

{member e 1) is T if the atom e is present in the list |

(equal el e2) tests the cquality of two non-function data structures

(null e) is Tif e is NIL, and is F otherwise

(length ) is the number of components in the list |

(fust n 1} returns a prefix of the first n components of the list |, or
the whole list if shorter

{hst 1 --- en) returns a list of its arguments

(transpose m)

Logicd operators

is the matrix transposition of a list of lists m

(not ¢) isTifcisF,andis Fifcis T
(orel ¢2) is T if either of the arguments is T, and is F if both are F
{and c1 c2) is T if both of the arguments are T, and is Fifeitheris F

{unless c1 c2)

Stream operations

is an abbreviation for
(and (not c1) ¢2)

{until e 1) is the list of components of the stream | which precede
the first occurrcnce of the atom e
{untilend 1) abbreviates
(until (quote end}) 1)
{atter e 1} is the stream of eomponents of | which follow the first
occurrence of the atom e
(afterend () abbreviates

{map f 1)

(reduce f | 2}

(fiter p 1}

(after (quote end} [)

Commonly used higher order functions

is the list whose components arc obtained from those of
| by application of f
15 the continued application of f over the list | with zero
z, that is

(f (head I) (f (head (tail 1}) {(f .- 2}.-))
15 the list of those components ¢ of | for which (p ¢)is T



(close 1 1) is the first value x in the sequence

L{e D), {r {r I3y, -
[or which
{equal x {r x}}

The remaining definitions conceal details of the implementation of the
LispKit system which should not be written into every LispKit Lisp
program that the user writes.

(number x) 15 Tif x i3 2 numeri¢c atom. and F otherwise

(load_code c) is the value represented by the code object ©. See the
section on separate compilation, and the implementor’s
guide,

(apply f 1} applies the function f to the argument list )

newline an atom which prints as a hne break

space an atoem which prints as a blank space

105



The library TUPLE

This library contains definitions of a number of functions which are
convenient when accessing components of a list.

(elnt) 15 the nth component of the list t
(1) is (el {quote 1) t), the first component of the list t
(21) is (el (quote 2) t). the second compenent of the list t

and so on up to

(61} which is (el {quate &) t), the sixth clement of the list t



The virtual machine

The Pascal source listing of the virtual machine describes the interface
between the LispKil system and its host machine. This program is the only
part of the whole system which is not source and object code portable from
implementation to implementation. The SECD machine is modelled on
Landin’s SECD interpreter for applicative forms, described in

The mechanical evaluation of expressions, P. J. Landin
in The Computer Journal, 308-320, January 1964

A fuller description of the virtual machine may be found in the book, which
should be read along with those sections of the implementor’s guide which
describe Lhe instructions which were added in order to implement lazy
evaluation.

The source listed in the companion volume to this manual is in standard
Pascal (in as far as such a standard exists) and is complete but for the
absence of the definitions of a handful of routines at the head of the
program. The routines are those which describe the interface to the
underlying filing system. Example codings of these routine are given for
various dialects of Pascal, and for different operating systems. A
combination of the reference text and any one of the interface texts, as
listed, is a perfectly good implementation of the virtual machine, and has
been used as such. Equally, it is the blueprint for the various machine coded
and microcoded implementations of the virtual machine which are detailed
in the final sections of this manual.

Consult the section at the end of this manual which relates to your
particular machine to discover which sources are provided in the
distribution package for your machine.

Should you wish to implement the LispKit system afresh on a new
machine on which there is available an implementation of Pascal, then the
only change which you need make to the text of the reference machine, as
listed in the companion volume to this manual, is to provide the definition
parts of the following declarations.

const TopCell

procedure GetChar(var ch : char)

procedure PutChar(ch : char)

procedure |nitialise(Version, SubVersion : char)
procedure Terminate

Consult the implementor’s guide for a description of the required
behaviour of each of these routines; the example codings provided in the
listings volume should also be of assistance.

All of the LispKit Lisp sources in the companion volume are entirely
machine independent, as are the object codes, so no changes would be
necessary to these.
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The implementor’s guide

The later chapters of the book should be read by anyone who wants to
undersiand or change the architecture of the LispKit implementation. This
section of the manual deals only with the differences betwecn this
implementation and that described in the book.

Lazy evaluation: LDE, UPD and AP0

In the book, the lazy evaluation strategy is discussed in terms of the
addition of explicit delaying and forcing operations to the Lisp program.
The implementation of the language described in this manual
automatically delays and forces any expressions which need to be so
treated.

The lazy evaluation strategy requires that an expression be evaluated
only when its value is needed in the evaluation of the whole program, and
that once an expression has been evaluated, its value is noted so that it need
not be recalculated. For this purpose, a new form of cell is added to the
store of the machine — a recipe — which is represented as a pair of a type
distinct from that of the cons cell. The head of a recipe is the code to be
executed in order to evaluate the expression represented by the recipe, and
the tail of the recipe is the environment to be used during the execution of
that code. Three new intructions are added to the machine: LDE — load
expression — which constructs a recipe; AP0 — apply to no arguments —
which inspects the value at the top of the stack, and causes it to be executed
if it is a recipe; and UPD — update recipe — which is used to return from
the execution of a recipe.

Theransition for the LDE instruction, opcode 22. using the notation of
the book, is

se(LDEc'.c})d — ((ce)s)ecd

where the pair (c¢:e) that is left on the top of the stack ismarked as being a
recipe. The effect of an LDE instruction 1s similar to that of an LDF
instruction, and a recipe is treated very much like the ¢closure for a function
value, The essential difference is that a recipe contains the code and the
whole of the environment in which that code is to be executed, whereas a
closure still has one component of the environment missing — the
argument list which is supplied by an AP instruction.

As the AP instruction causes the execution of the ¢code in a closure, so
there is an instruction, AP0 with opcode 24, which causes the execution of
the code of a recipe:

{(ce').s) e (APQ.c)d — NILe ¢ (({c:e).5) ec.d)
(a.s) e (APOc)d — (as)ecd ifaisnotarecipe



It differs from the AP instruction in two respects. Firstly, 1t tests whether
the value at the top of the stack is in fact a recipe; if not, then the APQ
instruction has no effect. Secondly, when a closure i1s applied, the second
item on the stack is an argument list which is added to the environment of
the closure; when a recipe is forced, there is no argument list, so the
environment for the execution of the code of the recipe is just that
contained in the recipe itself. Notice also that the recipe is not removed
from the top of the dumped stack, since it will be needed again, by th: UPD
instruction at the end of the recipe code.

In order to prevent repeated evaluation of recipes, an instruction is
required which overwrites a recipe with its value, once this value is
calculated. Since this overwriting must happen at the end of the exccution
of the code of a recipe, the operation is combined with the RTN operation,
and is implemented by the UPD instruction, with opcode 23,

{v) & (UPD) (sec.d) — rplaca(s,v)ecd

This restores, from the dump register, the values of the registers which were
current when the recipe was forced by an AP0 instruction, and overwrites
the recipe, which is now at the top of the restored stack, with the value
calculated by the code of the recipe.

The compiler has been modified from that described in the book to
generate these instructions when it s necessary to delay the evaluation of an
expression. The strategy adopted is 1o delay the evaluation of the
arguments to each cons operation, the arguments to each lambda defined
function, and correspondingly, the right hand sides of all definitions in let
and letrec expressions. Again in the notation of the book, the changes to
the compiler are described by:

(cons e1 e2}*n = (LDE e2*ni(UPD) LDE e1*n|{UPD) CONS)

(eel .- eky*n = (LDC NIL LDE ek*n|{(UPD} CONS ...
LDE e1#n|{UPD) CONS e*n AP)

{lete (x1.e1) --- (xk.ek})*n =
(LDC NIL LDE ek*n|(UPD) CONS -
LDE e1*n|(UPD)} CONS
LDF e*m|{RTN} AP]
where m = ({x1 .- xk).n)

{letrec g {x1.21) .- (xk.ek))*n =
{(DUM LDC NIL LDE ek*m|{UPD}) CONS .-
LDE e1*m (UPD) CONS
LDF e*m;{RTN)} RAP)
where m = ({x1 --- xk).n)

Further, since an object loaded from the environment may turn outtobe a
recipe for the value which was expected, some APQ instructions must be
inserted into the code in those places where it may be necessary to force
recipes, so for names of variables:

x*n = (LD location(x.n) APD)



and since data structures may have delayed components:

(head e)}*n = e*n | (CAR APQ)
(1l e)*n = e*n | (COR APQ)

Interactive execution: STOP, READ and PRINT

The SECD machine described in the book first reads a program and its
arguments, then executes that program to completion, and finally prints
the result. The implementation of the language described in this
implementation makes use of lazy evaluation, so can handle infinite data
objects. This property is used to construct a notionally infinite stream of s-
expressions which are read from the keyboard, and a notionally infinite
stream of s-expressions which are output to the screen. Since a prompt
requesting input from the user does not depend on the value that is input,
the mechanism of lazy evaluation allows prompts to be issued to the screen,
and for input from the keyboard to be taken, in their proper order.
The mechanism which constructs the recipe for the input stream is
written in LispKit Lisp, and appears in the text of the bootstrap loader —
LOADER.LSO — but requires the addition of an instruction to the
machine. The transition for the READ instruction, opcode 25, is

se (READc)d — (xs)ecd

where x is the data structure represented by an s-expression newly read
from the current input file. The compiler never generates this instruction,
which is found in the function read_item in the library SECD_CODE.
This function is used in the bootstrap loader — LOADER — which
constructs a stream using the function

input = (lambda NIL (sequence item (cons item (input}}}}
where item = (read_itemn)

Whenthis function is applied to an empty argument list, it first inspects the
value of item, which causes a call of read_item to read an s-expression from
the input. This having been done, it returns a pair consisting of that value
which was read, and a recipe for another application of input. Thus, no
matter in which order the components of the input list are inspected by the
user, the nested calls of the function input inspect them in sequence, and
they are read from the input in their proper sequence.

Similarly, there is an extra instruction, PRINT with opcode 26, which
causes a representation the value at the top of the stack to sent to the
output, and then discards that value. Its transition is

(vs) e (PRINT.c)d — secd

and, like READ, is never generated by the compiler. It appears only in the
function print_item in the library SECD_CODE. This function should be
applied to one argument, and always returns that argument as its result,
having first printed a representation of the argument. In the bootstrap
loader there is defined a function



consume = (lambda (s) (step s))
where step = (lambda (s}
(sequence (print_item {head s)) (consume (tail 5))))

which causes calls of print_item to occur in the proper sequence to output
the components of the stream given as an argument to consume.

Finally, there is a change to the transition for the STOP instruclion. If
the consume function in the loader were written exactly as above, then since
the tail call of consume would happen before the execution of the RTN
instruction in the outer call, more and more space would be consumed by
the unnecessary retention of old register values in the dump. Accordingly,
the tail call of step in the definition of consume is not comptled. Instead, a
data structure is returned from each call of consume representing the
application of step. This structure is simply a pair of the closure for step,
and the argument list. The STOP instruction, opcode 21, is modifiedso that
if it is executed with such a pair at the top of the stack, instcad of
terminating it causes the application to happen. The transitions for STOP
are accordingly

(((c".€').a).5) e (STOP)d — NIL (a.e') ¢ (s e (STOP).d)
(NIL.s) e (STOP)d — (NILs) e (STOP) d

the former case representing an application, and the latter termination. The
STOP instruction is never generated by the compiler and appears only in
the function run_and_halt in the library SECD_CODE, and in the
program HALT.

Atom construction and decompostion:
CHR, IMPLODE and EXPLODE

At the time of writing this manual, there are two schemes in use for
construction and decomposition of atoms. Earlier SECD machines — with
version number up to 3a— have a single instruction, CHR, with opcode 27,
which constructs single character atoms. The transition for this instruction
15

{n.s)e (CHR.c)d — (ans)ecd

where n is a number and an is an atom consisting of a single character with
ASCII character code n. The instruction is never generated by the compiler.,
but is found in the function chr defined in the library SECD_CODE, by
which definition

(chr n)

evaluates to give the atom that prints as character n. Two of these atoms are
treated specially by 3a machines: chr of thirteen is printed as a line break;
the space character in chr of thirty two is not printed, so that printing this
atom causes only the inter-atomic space to be output.
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In machines with version number 3b and later, the treatment of atoms
has been much simplified. Instead of the separate storage spaces for atoms
and cells which were described in the book, and used in earlicr machines,
the characters of atoms are now stored in the cell store of the SECD
machine, and are accessible through a new machine register, the
SymbelTable. There are also two instructions for the synthesis and analysis
of atoms, namely IMPLODE with opcode 27, and EXPLODE with opcode
28. Their transitions are as follows:

(32.5) e {IMPLODEc)d — (anulls)ecd
where anuli is the symbol containing no characters;
{ns) e (IMPLODEc)d — (ans)ecd

where n is a number different from thirty two, and an is the symbol
consisling of a single character whose ASCIH code is n;

(Ins) e (IMPLODEc}d — (als)ecd

whereln is a list of numbers, and al is the symbol consisting of the sequence
of characters with those ASCII codes;

(a.s) e (EXPLODE.c)d — (Ins)ecd

whereal is a symbol, and In is the list of ASCII codes of the characters of
that symbol. The two special cases in the transitions for IMPLODE should
be considered as purely temporary measures to allow version 3a code to run
on 3b machines. It is intended to define an additional two functions
implode and explode to use these instructions, and replace the definition of
chr so that

(chr (quote 32})
(chr n)

(implode {quote NIL))
{implode (list n))} otherwise

o

Again at the time of writing, none of the LispKit Lisp code supplied in the
distribution kits makes use of the IMPLODE and EXPLODE instructions,
and the only source of CHR instructions is the use of the function chr.

Closures and the loading of code

In the book, the compiler is described by defining an operation * which
takes a LispKit Lisp source and a syntactic environment and returns the
code which must be exccuted to evauate that expression in that
envirgnment. This operation is implemented in the compiler itself by a
function comp for which

e*n = (comp e n (quotse NIL))

From the text of the compiler, it will be seen that the result returned by the
compiler when applied to the source text {exp} is in fact

{<exp>*NIL . NIL)



This pair is intended to represent a closure, the closure for the function
f = (lambda NIL {exp>)

This form is chosen because a finite, loop-free such closure may be found
for any expression {exp) even if it has an infinite value. The closure, being
finite, may be input and output at will, and is readily executed to yield the
value of the expression {exp). This mechanism is also used in the hand
compiled code in the library SECD_CODE, some functions of which are
represented by quoted closures.

The bootstrapping mechanism in the LispKit machine expects the first
item read from the input to be a closure, and the initial values of the
registers are determined by that closure as follows:

let x = get_exp in
begin S := NIL, E := tail{x); C:= head(x); D := NIL end

For convenience of use, the initial input is taken from a particular named
file in the filing system (dependent on the particular machine for which the
implementation is intcnded) and this file normally contains the closure for
the LOADER.

Subsequently, if a closure is read from the input stream. as for example
by the loader, it may be treated as if it were the code for f above. For
example, in the text of the bootstrap loader, the function execute is defined
as

exgcute = (larnbda (s) ({load_code (head s)) {tail s)))
where load_code = (lambda (s) (s))

Now, if (head s) is the closure emited by the compiler for the text {exp),
then it is the closure

{{exp>*NIL . NIL)
so evaluating
(load_code (head s))

has the effect of leaving the value of {exp) at the top of the stack, and
provided that {exp) is a function the application in the body of execute is
an application of the function which is the value of {exp) to the remainder
of the stream s.

The standard Pascal reference SECD machine

The portability of the LispKit system derives from its use of a small virtual
machine which is easily implemented in any host environment. With the
exception of this virtual machine, the whole of the system, and all user
programs, can be carried from implementation to implementation with no
changes being necessary.

In order to achieve the best performance possible, the virtual machine is
usually tailored to each particular installation, for example, by
microcoding the instruction execution. For this purpose. the Pascal text of



the reference machine should be taken as a guide to the required behaviour
of amy new implementations.

[tisalso possible to produce a perfectly functional implementation with
minimal effort, by using the reference text directly, providing that an
implementation of Pascal is available on the host machine. The reference
text has the form of a Pascal program from which a number of definitions
have been omitted. An implementor need only supply forms of these
definiions which are appropriate to his particular host machine and
operating system.

Potential implementors should consult the examples of machine specific
codings in the companion volume to this manual, and read the section at
the back of the manual on using these implementations. Within the
limitations imposed by each host environment, the implementor’s aim
should be to produce a user interface as like those of existing
implementations as is possible. The definitions which must be completed
are described below.

const TopCell
TopCell is the number of storage celis which are available on the LispKit
heap. The machine declares two arrays of integers, and three packed arrays
of bits, each indexed from one to TopCell, so the value of TopCell will
probably be limited by the amount of store available to the Pascal
programmer.

procedure GetChar{var ch : char}

Successive calls to GetChar should read successive characters from the
input stream, returning the character read in the argument variable. If the
character code of the host machine is not ASCI11, or some other ISO-7 code,
then this routine should also translate the input characters into [SO-7.
Calls of GetChar should be capable of returning at least the range of
printable ISO-7 codes, and the code for a space.

Although calls of GetChar demand characters one at a time, keyboard
input should be buffered a line at a time, giving the typist the opportunity to
correct mistakes within the line. If this is not done by the operating system,
then it should be done by the implementor of GetChar. A single space
character should be returned by the call of GetChar at the end of each line,
but ne line terminating character should be returned.

There should be some mechanism for indicating that input from the
keyboard has ended. This is often provided by the host operating system,
but if not, should be implemented in GetChar, Conventionally, the typing
of ‘control Z* marks the end of keyboard input, and with it, the end of a
line.

Whenever the file from which the current input is drawn becomes
exhausted, a call of GetChar should prompt at the console for a new file,
and attach the input stream to the new file. That particular call of GetChar
should, however, return a space character, leaving the first character of the
file to be returned by the next call.



Similarly, there should be a character, conventionally ‘control Y’, which,
if it appears on a line of typed input, causes the output siream 1o be
redirected. The call of GetChar which would have returned this character
should instead prompt at the console for the name of a new output file, and
attach the outpurt stiream to that file. The special character, and any
subsequent characters on the line, should be discarded, and the call of
GetChar should return a space character in its argument variable, denoting
the end of the line.

For example, if the user types

ab et Yy ¢ d {return> e f {returny g h {ctrt Z»
then successive calls of GetChar should return the codes for
ab (space} e f {space} g h {space)
and the third call should prompt
Send output 1o where?
and the ninth,
Take input from where?

The next call should read the first character from the file specified in
response to this prompt.

procedure PutChar{ch : char)

Successive calls to PutChar should write their arguments as successive
characters of the output stream, As with GetChar, if the host machine does
not use an ISO-7 character code, then PutChar should take care of the
translation. PutChar must be capable of outputting any printable ISO-7
character, and space. In addition, character code thirteen, ISO-7 carriage
return, should cause a new line to be taken in the current output file.

procedure Initialise( Version, SubVersion : char)

This routine is called once, before any other user provided code is executed.
It is responsible for the initialisation of the input and output streams, and
for any initialisation which the user provided routines may require in a
particular implementation. Specifically, every implementation of Initialise
must do the following.

A message should be sent to the console, including the name of the
implemenation, and the two characters Version and SubVersion.

If a bootstrap file exists, then the input stream should be arranged to start
with the bootstrap file; if the bootstrap file does not exist, or cannot e read
for some other reason, then a message to that effect should be sent to the
console, and the user should be prompted for an input file in the normal
way.

The output stream should be directed to the screen of the user’s console.

Notice that the files ‘input’. and ‘output’ are provided in the program
heading to be used for conducting the interaction with the user; ‘InFile’ and
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‘OutFile’ are provided for use in the input and outpul streams. Neither of
this latter pair is used anywhere in the reference tex1, so are free to be used
as required by GetChar and PutChar.

procedure Terminate

This procedure is called once to signal the end of the execution of the
machine. It is responsible for ensuring that any output buffering is flushed,
that the current output file is established, and that any required machine
specific finalisation is done. The call of Terminate should not return to its
caller; rather it should relinquish contiol to the host operating system,
Notice the provision of label 99 at the end of the reference text, should this
be required.
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Variations between machines

This section describes the method of installing the LispKit system oneach
of the machines for which support is provided by the authors of this
manual. Here also are the details of the interface to the host operating
system, and the machine specific performance parameters of each
implementation of the LispKit virtual machine.



ICL Perq machines

The distribution floppy disk is written using the FLOPPY command of
POS, and contains a command file for use with FLOPPY 1o retrieve
distribution software. Unless the label on the floppy disk specifies
otherwise, the disk is written single-sided and double-density.

To retrigve the distribution software, place the floppy disk in the Perq’s
drive, set the path-name of the directory to which the distribution is to be
copied, and type the following sequence of commands

FLOPPY (returny
get get.cmd{returny
(agetlreturn)
qgireturn)

The entire contents of the loppy disk have now been copied into the current
directory.

The POS Perq distribution contains two Pascal programs which
implement the virtual machine, one called SECD which is written entirely
in Pascal, and one¢ called fSECD (f for fast) which is partly coded in Perq
microcode. The microcode appears in the files SEGMP.MICRO (source)
and SEGMP.BIN (object). Each of these Pascal programs must be
compiled and linked, so type the following commands

Compife SECD{return>
Link SECD{return)
Compile ISECD{returm)
Link FSECD return

It is now possible to execute either machine by typing its name as a
command, so a short interaction might appear as

Y ISECD{raturn)
Perq microcoded SECD machine 3a

Take input from where? NFIB.LOB<return)

Take input from where? CONSOLE:{return)
15 return)
1973 <etrf 2>

Take input from where? HA4[.T.L OB
>

The machine which is normally used is fSECD, which 1s some twenty times
faster than SECD. The latter machine is included because its text gives a
complete description of the virtual machine, and because it is simpler to



modify should you wish to experiment with different designs for the virtual
machine.

Normally, when you execute SECD or fSECD, the file SECD.BOGT
should appear in the current directory, or in some other directory in your
search list, since 1t contains the default systemm LOADER which is used to
bootstrap the virtual machine. Similarly, SEGMP.BIN should also be
avaiiable during the execution of fSECD.

The convention for file names is as used in the body of the manual, that is
a program such as NFIB is described by source text in a file

NFIB.LSO

which is compiled to produce the code (closure) contained in
NFIB.CLS

Code files with extension .LOB, such as
NFIB.LOB

contain code or sequences of codes which may be executed by the default
system LOADER. Finally, files with extension .L{B, such as

STANDARD.LIB

contain association lists (libraries). Any valid form of POS file name may be
used in response to prompts from the virtual machine, including full path
names, and all abbreviations supported by POS. for example

part:user »dir1 >dir2 Hf
->fa
:userydiry..>a)b

The various performance parameters for the two machines are:

SECD fSECD
User functicn calls per second 75 2k
Number of cells available 10k 3%
Precision of arithmetic 16 bits 16 bits
Cell store garbage collector recursive recursive
Boot file name SECD.BOOT SECC.BOOT
Key to end file control-Z control-Z
Key 1o redirect output control-Y control-Y
Key to interrupt machine control-shift-C contral-shift-C
Key to suspend output conirol-8 control-§
Key to resume outpul control-Q control-Q
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68000 machines

Unlessthe label specifies differently, the distribution floppy disk is a UCSD
p-system floppy disk written in the (default) Sage 80-track format and
contains a 1280 block UCSD volume called DISTRIB:. This volume
contains a number of subsidiary volumes which, in tufn, contain the files of
the disribution. In order to use the system, you will need a copy of Version
IV of the UCSD p-system. The distribution software does not make use of
any Version IV specific features of the Pascal system, but the code files were
all created with Version IV software. It should be possible Lo recompile and
reassemble the texts, all of which are provided, should you be running any
other Yersion of the p-system. The distribution disk was created with
Version IV.12.

Two versions of the LispKit virtual machine are provided in the
subsidiary volume VM:. One is a Pascal souree, called the reference
machine,

VM:SAGE.SECD.TEXT

whichruns very slowly, and has a small cell space. You will need to compile
this source should you want to run the reference machine. It is included in
the distribution since it describes in detail the behaviour of the virtual
machiae, and since it is easily modified should you wish to experiment with
the architecture of the virtual machine.

Theother version is coded in 68000 assembly code, and it comprises all of
the other text files in the VM: volume.

VM:SECD.HOST.TEXT
is a Pascal host. and
VM:SECD.GUEST.TEXT

a 68000 code external procedure, which have been compiled and
assembled, respectively, and linked to form the code file

VM:SECD.CODE

which is the code to be executed to run the virtual machine.
To run the system. you will require to make a copy of the system
bootstrap loader, which is contained in the file

VM:SECD.BOOT
on thedistribution disk. and to place it on your system disk, under the name
*SECD.BOOT

Note that since SECD.CODE uses all of the store of the Sage for its cell
store, the system disk should not be a RAM disk, since this may be



overwritlen before the bootstrap file is read. Simtlarly, if you are using a
RAM disk, then any files on it should be backed up to a non-volatile
medium before executing SECD.CODE.

The suggested procedure for getting the sytsem up is as follows. First,
configure a p-system system disk which does not boot from the RAM disk;
then, using the p-system filer, mount the subsidiary volume VM: from the
distribution disk, and copy the files SECD.CODE and SECD.BOOT o the
new system disk, by typing

fomDISTRIBVAL.SVOL {returm)
WWMSECD.CODE *8(return
tYMSECD.BQOT *§{return)

Now, copy the subsidiary volumes LSO;, L1B;, CLS:, and LOB: from the
distribution disk to a working disk, place this on-line, and mount each of
these four subsidiary volumes,

Itis not necessary to copy the LispKit files, since the distribution disk will
make a perfectly adequate working disk, but you will have more disk space
available if you do not have the texts of the virtual machines on-line,

The machine 1s now executed by typing

x*SECD{return
50 a short interaction might appear as

Filer: G(et, S{ave, W{hat, N(ew, L{dir, R{em, C(hng, T(rans, D{ate,! p
Prefix file names by what volume? L/SPKIT:

Filer: G{et, S(ave. W(hat, N(ew, L{dir, R{em, C{hng, T(rans, D(ate,? ¢

Command: E(dit, R{un, F(ile. C{omp, L(ink, X(ecute, A(ssem, D{ebug,? x
Execute what file? *SECD (return)
SECD machine version 3b for the Sage ij/iv

Take input from where? [LOBNFIB{return®

Take input from where? CONSQLE {return)
15¢raturnd>
1973 (ctrl Z)

Take input from where? -LO8.HALT
SECD machine terminated normally

UCSD p—System V.1 BootStrap

The convention for file names is different from that used in the body of the
manual, since there is a small limit (seventy-seven) on the number of files
that may appear in any on p-system directory. The file system is still the p-
system file system, but rather than use the form

(filename >.{extension)
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each type of LispKit file 1s kept in a separate volume, and the file would
appear (in p-system terms) as a file called {filename) in a susidiary volume
called (extension}, that is

(extension>: (filename>

so, for example, NFIB is described by source text in a file on the LSO:
subsidiary volume on the distribution disk, that is

LSO:NFIB

in p-sistem terms. Files must be referred to in this way when using the
Pascalreference machine.

It isnot possible to ‘mount’ subsidiary volumes in the LispKit machine,
so a dightly different file name convention is adopted. Simple volume
names

CONSOLE:
PRINTER:
REMOTE:
REMIN:
REMOUT:

are used to refer to serial devices. Names of the form
<volume):(file)

refer toa file called (file) on a’volume called ¢{volume ) which must be one
of unit4, or unit 5 (normally the left or right hand floppy disk drives on the
Sage 1], or the sole floppy disk drive on a Sage iv), or units 9, 10 or 12
(normatly the three accessible partittions of the Winchester disk on a Sage
1v}). Names of the form

{volume):(subsidiary>:{file>

refer toa file called (file) on a subsidiary volume called (subsidiary>. The
subsidiary volume must be in a file called

{stbsidiary>.SVOL

on the vrolume {volume)> which must, again, beinunit 4, 5,9, 10 or 12. The
following abbreviations are allowed, following the p-system style: an empty
file name (just {return’) stands for CONSOLE:. a file name with no *:" is
prefixed with the prefix volume name, a file name beginning ' is prefixed
with the prefix volume name, a file name beginning **’ is prefixed with the
system volume name. There is no provision for setting of the prefix ar
systemnames, each of which is inherited from the p-system. Similarly, the
date used to create new files is that set in the p-system before execuling the
machire. The BIOS configuration — remote line speed, type of printer, eic.
— however, 1s that in the BIOS file when the system was last booted.

For examples of these file name conventions, if the working disk is called
LISPKIT:, and is the prefix disk, then the program NFIB may be found in a
file which is referred (o as either ane of

LISPKIT:LSO:NFIB or :LSO:NFIB



which is compiled to produce the code (closure) contained 1n the file called
either

LISPKIT:CLS:NFIB or :CLS:NFiB
Code files on the subsidiary volume LOB:. such as
LISPKIT:LOB:NFIB  alias :LOBNFIB

contain code or sequences of codes which may be executed by the default
system LOADER. Finally, files in the volume LIB:, such as the file called by
either of

LISPKIT:LIB:STANDARD or :LIB:STANDARD

contain assoctation lists (libraries). In common with the p-system, each
volume name component of a file name must be at least one character long,
and no more than seven; similarly, the final component must be at least one
character long, and no more than fifteen. Case of characters is not
significant.

Note also that all files written with this machine are p-system Datafiles,
irrespective of any extension on the file name. If you want to process
LispKit output with a program that expects Textfile input, the LispKit
output must be reformatted by the program

VM:DATA — >TEXT
which copies its input to its output, making the necessary changes of
format. A typical run would be

XVM:data — Y TEXT pi=LSONFIB po=+NFIB.TEXT
Cetrl 2

which produces a text copy of the LispKit source of NFIB on the system
disk.
The various performance parameters for the two machines are:

Pascal Assembler coded
User function calls per second 7 1k
Number of cells available 4k N
Number of symbols available 200 500
Precision of arithmetic 16 bits 32 bits
Cell store garbage collector recursive non-recursive
Boot file name *SECD.BOOT *SECD.BOCT
Key to end file control-Z control-Z
Key to redirect putpul control-Y control-Y
Key 1o interrupt machine set by p-syslem control-B
Key to suspend autpur set by p-system control-§
Key to resume output sct by p-system control-§

* The number of cells available in the assembler coded machine depends on the size of the
installed RAM. In a half megabyte Sage ij. there are some sixty thousand eells available, the
exact number depending on the size of the BLOS which is used.
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Digital Equipment VAX
machines

The LipKit system software is supplied on magnetic tape, and unless the
label specifies otherwise this is a nine track, sixteen hundred bits per inch,
phase encoded tape, primarily intended for use on Digital Equipment VAX
machines running VMS. The tape is written using the COPY operation of
VMS, and conforms to the ANSI standard. We trust that this will make it
possible for users with other host machines to import the LispKit system
using this VAX tape.

The recommended procedure for recovering the distribution files on a
VMS YAX (subject to local custom and practice at your site) is to mount
the tape on tape drive {xn), select a directory {directory) to receive the
files, and to execute the following DCL commands:

$ Define LKTape MT{xn>:

$ Define LKDisk (directory)

$ Allocate LKTape

$ Mount LKTape

$ Copy LKTaper*: [ KDjisk»* *

The euntire contents of the tape have now been copied into the selected
directory.

The VMS VAX distribution contains two programs which implement
the virlwal machine: one is called SECD and is written entirely in Pascal; the
other i called fSECD (f for fast) and is largely coded in VAX machine
code. Since only texts are supplied on the magnetic tape, you will need to
compitle, assemble, and link these programs, as follows:

$ Pascal LKDisk:SECD

$ Link LKDisk. SECD

$ Pascal LKDisk ASECD

$ Macro LKDisk fSECDasm

$ Link LKDisk:{SECD,ISECDasm

See the file MAKESECD.COM on the tape for the commands used to
constract the original system. It is now possible to run either machine by
typing either

$ Run SECD
or
$ Run ISECD

as appropriale, It is suggested, however, that you construct command files



of the following form, which establish a number of useful logical names:

$ Create (command file name)

£ Define LK {directory)

$ Define LispXKit§SECDboot LKLOADER.CLS
$ Run LKISECD

$§ Dedssign LispKitsSECDboot

& DeAssign LK

(ctrl 2>

which can either be executed by typing
$ @ {command fife name)

or by defining a symbol, say
$ SFCD '= = (@ {command file name’

so that you can invoke either machine by typing its name as a command.
See the file SECDPREP.COM on the tape for the commands used to run
the original system. A short interaction might appear as

$ ISECD
VAX Pascal SECD machine 3a
SECD machine 3a implementation for the Vax (test)

Take input from where? LK.NFIB.LOB (return)
Take input from where? CONSOLE {return’

15{return
1973 <ctrl 2>

Take input from where? LXHALT.L OB return’>
SECD machine terminated normally

3

The machine which is normally used is fSECD, which is faster than SECD.
The latter machine is included because its text gives a complete description
of the virtual machine, and because it 1s simpler to modify should you wish
to exeriment with different designs for the virtual machine. Note thatat the
time of writing this manual, the tape being distributed includes a version 3b
SECD machine, but a version 3a fSECD machine.

Normally, when you execute SECD or fSECD, the logical name

LispKit$SECDboot
should be associated with the file
LOADER.CLS
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copied from the distribution tape. This file contains the default system
LOADER which is used to bootstrap the virtual machine.

Because not all of the file names used in the body of the manual are
permissible VMS file names, a systematic name translation has been carried
oul inproducing the magnetic tape: all underscore characters are omitted;
the urextended name is then truncated after the ninth character. Thus the
file referred to in the manual as

MAP_UNTIL_END.LSO
has been copied from the tape as
MAPUNTILE.LSO

and soon. Again, since several users may be sharing the distributed copy of
the LispKit system at your site, we suggest that a user normally writes his
own files in a directory which is selected as his default directory, and that all
users share access Lo the copy of the tape. If you use the command files
suggested above, then the logical name LK: can be used to refer to the
distribution software, thus

LE:MAPUNTILE.LSO

With these provisions, the convention for file names is as used in the body
of the manual, that is a program such as NFIB is described by source text in
a file

LK:NFIB.LSO

which is compiled to produce the code (closure) contained in
LK:NFIB.CLS

Code files wilh extension .LOB, such as
LK:NFIB.LOB

contain code or sequences of codes which may be executed by the default
system LOADER. Finally, files with extension .LIB, such as

LK:STANDARD.LIB

contain association lists (libraries). Any valid forrm of VMS file
specification may be used in response to prompts from the virtual machine,
including full file names, and all abbreviations supported by VMS,
including logical names.



The various performance parameters for the two machines are:

SECD fSECD
User function calls per second 200 900
Number of cells available 40k 40k
Number of symbols available 500 *
Length of symbolic aloms 12 characters *
Precision of arithmetic 32 bits 12 bits
Cell slore garbage collector recursive NoN-recursive
Symbel store garbage collector none ’
Boot file logical name LispKit$SECDboot  LispKitSSECDboot
Key to end file control-Z control-Z
Key to redirect output contrgl-H control-H
Key to interrupt machine control-Y control-Y
Key to suspend output control-S control-S
Key [0 resume output controi-Q control-Q

* Since FSECD is a 3b machine, the atoms are stored in the ccll store, and are of unlimited
iength and number. ceil store permitting, and symbols are subject to the normal cell store
garbage collection regime.
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