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Absiract

The Design and implamentiation of Programming Languages
R. J. M. Hughes

implementation sirategies for purely lunclional languages sre reviewed and
a new one using “super-combinators” proposed. An efficignt elgorithm for
compilation to super-combinafors is described, and realiagtions ol the
elgorithm are presented in imperelive, functional and loglc programming
languages. The new method I3 compared with Turner’s combinators by an

exparimantal comparison end by a theoretical analysis.

The observed inability of lunctional programs to make afticient vse of lore
is Investigated, and it is shown that this I3 due to the sequeniial naturs of
the underlying abstract machines. Language extensions 1o incorporais
paralielism are Introduced and thell adequacy fs demonstrated In several

saxramples.

Garbage collection i3 discussed end reference counting salected as the
most promising sirategy. An extension lo referance counting 10 enable il to

collect circuler structures s describad.
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GHAPTER 1

INTRODUCTION

The tile of lhis thesis. *The Design and Implemenialion of Programming
Languages”. was chosen before any of the work reported was envisaged
to satisty Universily regulations. Nevertheless. !t Is an apt. il cheaky.
description of the contenis. It Is cheeky becsuse wa aré aclually concerned
anly with functional programming languages. It is apt because our first advice
o & language designer wouid be to make his language functipnal. We begin

In chapter 2 by justifying this advice.

Thergafler we are concerned malnly whh implementaiion. We have been
implemeniing functional languages on and off since 1978 tand Lisp for even
longer) and we believe thal this experléence bas glven us e good general
understanding of the principles Involved. In chapter 3 we expiain our

viawpolnt and Introduce some terminology for use later.

We have fong begn eon admirer ol Turner's combinalor Implementailon
method, and much of this thesis is concerned wilth our own improvement
on 1 vsing “super-combinaiors®. Our method I3 explained and anaiysed in
the tollowing three chapters. First. in chapter 4. we explain the principles
ol our method and a numbar of enhanceménis 10 1. Heare we aré oOnly

concernad with determining whet code a program should be complied Inio.



In the next chaptier we damonsirate that an eificient compilar can be written
10 ganerate 1his code by exhibiing Ihree diflerenl onea. written In the
imperatlve, funcilonel and ilogic programming styles. This a&iso provides an
oppartunity 1o compare the three differant kinds of language In action. Finally,
In chapter 6 we eveluate our naw melhod by a lheorelical comparison of

hs sfficlency with Turner's method.

Wa have observed experimentally that functional programs sometimes require
unreasonably large amounts of storage, and thal even qulie simpie programs
can gradually clog thé memory with useless garbage. We ergue In chapler
7 that there are deep—seated reasons for (his behaviour. and that %t can
only be evoided by a fundamenial change (o parallel abstract machines.
Wa propose an extension 1o funciional lenguages (0 control parallelism and

justity our choice by showing how W can be used In several examples.

Finally, In chapter 8 we turn gur ellention to garbage collection. We believe
thal there are compelling reasons tor using relerence counting garbage
collaction. bul hitherto this has been awkward because reference counting
garbage colleclors had dilliculty with clrcular structures. We propose an
sxtanslon 1hat enables reference counling (o be used with any kind of

alructure.

This completss an averview ol our thesis. We wiah to nole one other point.
Tha reader wlil find thal the words “theorem” and “proo!l” occur very rarely.
H & all. We make no apologles tor this. On the contrary, we are following
normal methemetical praclice In preterring a convincing argumeni 1o a formal
damanstralion. We hope that the reader will gain a better understanding
from our Informai explanations and “proofs by exemple” than he would have

done trom the pages of symbols they replace.



CHAPTER 2

FUNCTIONAL LANGUAGES

2.1. INTRODUCTION

1 Is often claimed that functional programming will reévolutionise the sollware
industry by making programs an order ol magnliude easler to write. and
yet functional programming Is usually delined as “propramming whihout
asstgnment®. N 1S very dilflcull to see why omitling |he assignmen) statements
from one’s programs will bring such beneflls, s0 we leei W Is worthwhile
10 examing this point In more derall. We shall try (0 answer the quesiion

‘why is functional programming s6 good".

it is helpfu! 10 racall the history of another software revolytlon: struclred
programming. Very similar clalms were made for stiucivred programming
in Its early days. and yet It was often delined as “programming withoul the
gota™. 1t is difficull 10 see why avolding goto statemenis should make
programming easler. in fact, ol course, this negatve definillon of struclired
programming betrays a gross misundersianding of the whole Idea. It Is not
the omission ol gotos thal makes struclured programming easler. it I3 ihe
inciusion ol new struciured programming construcis such ss the whiie bop
ang If-then-else tn new languages Iike Fascal. One can omil gotos In
FORTRAN IV umit one Is blug In the face without making programming any

gasier,



In ihe same way the negalive delinition {falls 1o0tally to cepture the spirit
of functlonal programming. s success Is not due to the omission of
assignment, but to the Inclusion of new. poweriul ieatures In new functionat
programming languages. it would even be possible 10 design a functional
programming languaga Inctuding assignment. in the same wey as Pascat
Inciudes tha goto: bui. like the Pescal golo. assignment wowuid be neither
usalyl nor necessary. In section 2 of Ihis chaptar we shail endeavour 1o
idenilly the important feaiures of funclipnal programming languages. Some
ol these fealures are galso found In pon-funciional languages such as
Gedanken (Reynolds70]. Scheme [Sieele?8] and ML [Gordon?89]. We do not
te@l ithat this weakens our cass al all. in fact. I sirengihens It. becauss
each of ihese languages is nice precisely because It Includes some of the
festures we are applauding. None of them includes ail the Important features

wa wil describe, however.

Anglrer stmllarily between aiructured and lunctionel programming le ihal
programs have nicer formal properties than thelr unstructured or
non-lyncllonal counlarparts (single eéntry and extt of blocks In siructurad
programs, and refarentisl transparency in functionel programs). This |s
Important, but we do not (aai (hai It is a major lactor In making programs
wasisr 10 writa. Raihar. It opens up the possibllity ol formal program
devsioppment, In seclion 3 we discuas the close relallonship between
funclional programming and lormal specification as It is practised at Oxiord.

ang deéscriba cur view of how programs could be developed In lhe future.
2.2. FUNCTIONAL FEATUPES
We hava sald \hat wa beliave functional languages make progremming aasler

because they includa naw, powerlul leatures. But what ssaclly aAre lhese

feawres? In this section we identify those we feel ere the mnost Important.



COne reason why the functional programmer does less work s 1hat the
funcilonai system does more work. The system essumes responsiblilty In a
number ¢f areas. ireeing the pragrammer from having 1o think aboul tham
at all. One imporiant area Is stgrege allocetion. The functional programmer
Is notl required to declde the llleumes of the objecis he creatles; inskad
the sysiem deietes them and reuses the space (hey occupled when thare
ere no references 10 them lefl. This avoids the risk of bugs caused by
deleitng objecis tao early, or excesslve siorage use caused by deieling tham
100 late (8 "dumb” garbage collector or bad virtuet machine design can
sl cause objecis to be deleted loo late). The mosl tmpartant advanizge,

however. is that the programmer does not need 1o think about Jt

Another area In which Lhe system assumes responsibilty Is that o! declding
evalyation aqrder. In imperative languages. the evaluation arder Is explcit
In the pragram, but in funcilonal languages the system Is free to use any
sultable orders; Lhis gives rise 10 the possibliy of several different sirategles
for determining order. including lazy avalvation, This Is even more Impariani
than automatic storage alloceilon. béeceuse it means ihat the structure of
a program need no langer be determined by the deslred evaluation arter.
Great simplfications can result: for example. problems that are usvatty soved
by backtracking 10 1ind the first solution can instead be solved by wrling
functions thal return a list of ail solulions. If only the lirst solulion In the
list Is used. then only that solution will be compuied: on the gther hang,
i that solulion proves unsatisfactary and the next solution s uwsed inskad
then the syslem will pick up where H lelt olf (lhet Is. we can getl backlrécilng
behaviour without writing backiracking programs}. Many otheér problems can
be solved most nalurally by programs whose siruclure does nat reflect the

desired evatuation order: lor a larger exemple, see saction 5.4,



Another consequenca ol breaking this connection Is thet we cen program
using Infinlta data-structures, provided we never require the aystem 1o
compuie all thair compgnents. Non-terminating progrema can ofien be
exprassed very neully as lunctions on Infinite data-structur@s. Their use can
aiso Improve tha modularity of l1erminating programs: for example. a
numarical Iteration can be axprassed as one function that compules an
infintte list of approximailons and arror bounds, and anothar that selecls
a particular element ol ihal iis1. This separeles the concerns of compuling
the Aapproximations. and deciding. using whatevar Ctlterlgn  seams

appropriate, which approximation to setie for.

Infinite  data-structures are often applied to Input end opwufpul. Typically a
program is passed an Infinite list of (nputs and returns an Infinite list of
Oulputs. and the sysiem chooses an execution order in which the outpuls
are computed 85 the Inpuls are consumed. Progremming in terms of the
enire Inpul or outpul of a program allows programs o be combined very
easly: for example. functional operating systems wlli not need speclal “plpas”

In order for one program 0 read another’s oufput.

Turning to more specilic ltealures, higher-order functiona are one ol the
most valuable. These ara funcilons 1hat 1ake other funcllons as arguments
or return them as results. Using hipher-order functions we can effectively
extend cur language with whatlever conirol structures we désira. We can use
this to Improve the modularity of our programs by Iniroducing special purpose
conirol siruciures as part of abstract types (cl. harators b CLU [Liskaov7 8],
For axample, the weil known map funcllon Is en appropriaté conirol structure
tor list processing. I\ enables us to write certaln funclions on [ists without

knowing tha details of thelr Internal alructure.



Tha recursion equalion styla ol funciaon definitlon is also very valuable. In
assance this Is just anather way ol writing certain conditionais. lis advaniages
are that equallons are usually mora readable than condifionals. and that
it allows qulte compiex conditions to be expressed very almply. This is
pariicularly true of functions of many argumenis. where a sequence of lests

can become very unperspicuous.

The expressive power of tunctlonal languages is considerably Increased by
incorporating a “set-expression” notation. as Turner does in KRC (Turnerd1).
This notwation seems |deal as a functional lterailon consirucl. It brings the
same clarity to Junclional programs as the for-loop broughl 1o impersiive

programs.

Finally, a valuable feature which Is not coenflned to lunctional languages.
but which tts easlly into thelr conceplual lramewark. Is 1he provision ol
abstract dala-iypes. Implementalion is easy: all that is necessary Is an
eabsiraction lunciton that stamps objecis with a type. Its Inverse. and a lype
lesiing function. This simple extensiaon allows the programmer 1o make his
Intention far clearaer. and allows the system to catch jar more errors. With
this simple kind ol abstract data-lype the programmer Is able to express
the conceplual Oitiorence beiween two objects with the same represantaiion
by stamping them with dgitlerent types. and so the sysiem is able to check
that the usage of these oblects is consisient with the programmer’s intenion.
Garelul use of scope Is necessary 10 guaranlee that only a parlicular set
of operations is applied 10 objecis of a partlcular lype. so this is nol quite

an implamentalion of “abstract data—types” &s the tarm Is usually undersioad),



We heve described lhe particular features we feei are most Imporiant In
making functionai langueges powerful and easy to use. Equally Imporiani,
however, is the faci that the varlous language elements cen be combined
in any way. There Is n0O host of special cases and resirictions |n a functional
Ianguage. In contrast 10 Fortran, Pascal ang Ada; each consiruct may be
described simply and used wherever the programmer choosas. This simplicity
and ireedom allows one lo become conversanil with the language quickly,

and to use i conlidently.

2.9. FORMAL SPECIFICATION

A very compelling reason ior teavouring functionel programming is that It
fits very well with tormal program devetopmenl. We shall Hiusirate (hls by
describing how programs are developed (ormally et Oxftord and expldaining

why using funclional programming langueges can simplity the process graaltly.

To begin whh, a formal specification of the task to be performed Is writien.
This consists of a number of delinions of types and functions on them.
These definitions are constructed In tlerms of the besic objecis of
malhamatics: seis, natural numbers. relations, eic. Definillons may be
constructive. efleclively giving 8 melthod jor compuling the abject delined.
or non-construcillve. For example. the squaring funclion can be delined

constructively by

square: N — N

sguare = An:N. nan



and the square root functlon can be defined non-constructively by

¥y: N+ N

Y = sguare’’

Having written the lormal specificalion. the programmer transiorms W inio
an enlirely consiructive one. by providing consiruclive daeflniilons for all hia
iunctions and proving the new delinitions aquivalent to the old ones. A the
eng of this stage. the specilicalion not gnly delines what Is o be compuled.

It describes & reasonable way of computing N

The Ifinal stage of program devalopmenl consists ol laking the linal
specitication and transiating It Into Pascal. The wransiation is done Informally,
and Is not proved correct. Indeed, the resulling program usueily lalls to

meet the spaciicalion because it has Implemantation IImits bulll Into 1L,

This last stage Is a great inconvenlance 1o iormal pragram developers h
cannol be proved correcl. because In peneral il isn’t correct. Moreosar,
It Involves a lot of work al a very low level, organising storage managem:ni,
executlon order etc. In lact, It Is {olally unnecessary. The linal speciiicaton,
betng compietely construcilve. is already a funcilonal program. There is ng
need 10 go any further. Slopping at this siage not! onty eliminates the (nlornal

part oi program development - it also saves the programmer a lol of work.

To summarise. formal specilication offers functional programmers a way of
developing provably correct pragrams. Functional programming ofters formal
spacitiers 8 way of implementing their specHications correcily and easly.

Together. they wili be poweriul Indeed.



CHAPTER 3

IMPLEMENTATIONS

3.1. INTRODUCTION

In (his chapter we Oiscuss the main implemeniation techniques used lor
functional languages. and Investigaie iheir advantages and disadvaniages.
Beginning with the observalion that all funciional languages can be transiated
into the A-calculus plus constants. we take the A-calculus as the canonicai
functional language. Aller a description of reduciton, which s an execution
parrdigm sppropriate 10 the A-calculus. we go on to develop specific
implementations. We consider machine represeniations. and expiain why we
choose & graph. We Identlly the major Inefficlency of a graph-reduction
A-reducer. and show how different atiempts to cure it can lead to the SECD

machine and Turner’s combinators.

3.2, THE LA-CALCULUS

We begin with a brief description of the )-ceiculus [Curry58]., adopiing the

Kollowing abstract syntax for expresstons:

E :=:= €| V| (EE) | W.E

where C ranges ovar A sst ol constanis and ¥ ranges over a set ol variable




names. {E1 E2) represents E1 applied to Ez and AV.E representa the
function of ¥ that E is. G Includes numbers. booleans &tc.. and also basic
functions such as cons. AV.E is said to bind the variable ¥ inside the body.

and unbound variablas are sald to be free.

The maaning ot an expression is defined by reductlon rutes of the form
E1 red E2, which means that wherever an expression of the form E1
appears. 1 may be replaced by Ez. Each basic functlon has lis own rule.

for example

head (cons a b) red a

+mn red mn

providad thal m and n are naturat numbara. {Here we adop! the conventloh
that application is left assoclalive and drop unnacessary brackets). The eflect

of applying a h-expression ts defined by the B-rule

(8) (MW.E) Ea red E[Eo/V]

whare the right hand side stands for E with ail free occurrences ol V

replacad by Eo.

Howaver. the g-rule 18 only applicable when Eo has no free variables. This
Is more restrictive than the BS-rule as usvally siated. but we don’t care
because wa are interesied In reducing complete programs, which a priail
have no Ireea wvariables. This means that ihe top-level application of #
program must have arguments with no free varlables either. and 30 ths
restricted A-rule is applicablie. it the top-leval of a program ever becomes

a h-ewpression. then wa ase conteni not to periorm any reductions on the



body of this j—exprsssion. because we regard reductions Insigde funcilons
as program transformation. not program execulion. The advanlage we geain
by this Is thal we néver need to Invoke the expensive a-rute (which renames

vallables 10 avold inadveriani binding).

An Implemeniation of the i-c#iculus must operate on sn expression by
applying reduction rules to I until no more are applicable. The expression
is then asald 10 be Iin normal form. and ihis normal form Is the resull of

the computsilon.

The choice of the reductions to be perlormed at any particuiar moment Is
& matter of Implameniailon strategy. It s consirained by the faci that certain
functions {for exampla. +) are siricl. thet Is can only be applled to argumenis
in normal form. and by lhe fact that reductigns of tha top-tevel of the
program should aiweys be performed since they lead most directly lo

production of the answer. Within these constrainis we may choose:

(1) never 10 reduce an appiication unless the argumeni I3 In
normal form. This gives & "strict” or “cali-by—value* semantica

which we argued againsi in chapter 2,

(2) 0 reduce al! reducible expressions in parallal, This gives
‘sager® evaluation, which may waste resources as soma

reductions might never have been necessary.

(3 to perlarm onily reductions at the top-level of the pr.oqram.
or |hase direcily necessary to enable a strict top-level reductlon
fo \ake place. This gives “lazy evaluauon®. This approach can ruvn

into some very aublle problems (aee chapter 7).

{4) some combination of (2) and (3). This Ils the approach we

sdvocste, and will elucidste In chapter 7.



In ordar t0 run real lunctional programming languages on a \-caiculus
machine, we musl translate them Into tha k-calculus. We define translaton
rules of the form E1 trans Ea, which when applied repaetedly will iransiste
a program inlo the equivalant L-expression. A complete set of translation
rutas would be too long-winded 10 reproduce here. but we glve a low

axamptes:
Ei1 + Ez trane + E1 Ez
let I = E:r in Ez tranms (A1.E2) E1
if E1 then Ea else Ey trane IF EiI Ez2 Ea

where IF |5 defined by

IF true Ei1 Ea red E1
IF false £E1 Ei1 red E2

Aecursive declarations are transiated by the rule

latrec I = E1 in E2 trane let | = ¥ {(X1.E1) in E:

using the basic tunction Y which we have not seen before. The reducticn

rule for Y s

Y f red £ (Y f)

which uses Y | again on the right hand side. This means that Y { has no
normal form, because it reduces to ( (1 .00 It is ihis potentlally Inlinlte
behaviour that allows Y 1o implement recurslan. Y is very Imporiant and we

shall return lo Its impliementation in the next section.



Mulual recursion s a little (rickler. The syniax we use ie
letrec I1-E1 and [2-E21 and ... in Eo
Ws nead 10 Inlroduce two new rules to transiate it, firstly
11=E1 and !21=E2 trane (I1.12) =~ cone E1 Ez
This transjates the mulvally racursive definfilons into & single recursive
‘siructured” definition. which declares several namas to be the componants
of a structure. This single definition can be transisied further by our earlier
rules, producing a A-expression binding a “structured variable™. We transiate
this kind of A-expression Into simpla X-expressions as follows:
A{I1.I2)E trane U (xI1XxI21.E}
viing an expiicit unpecking function U defined by

Uf x red £ (head x) (tall x)

We hope that thess sxamples have Convinced the reader that iranslation

Inlo the A-caiculus is not an Qnergus task.
3.3. REPRESENTATION

A critical choice In the dasign of a reduction machine Is \he choice of
the representation of expressions. There are two essentlelly different

posalbilitiea: as a siring, or as a graph.



in siring reducilon machines the program Is sftored es a sequence of
symbols. much as It appwars on paper. During funcilan applicetion the
machine actyally subsilivies one expression Into anather, angd must shuflle
the symbols around 1o makea room. This I3 potentlally & cosily operaton.
Still worae. if the ergumeni of a function is not In normel lorm then lhe
substitution may gQreatly Increase the amount of work 10 be done. since It
may creale several coples. each of which must be reduced independertly.

For example. in the case

(Ax.+ x x) expeneive red + expensive expeneive

then the amount of wark Is doubled. assuming that reducing “expenshs”
I8 conslderably mare costly than an addlilan or a function applicetlon. for
this reason siring reduction s really only sullable for sirict languages. which
guarantea thai argumenis are in normal form beforeé substitution. Mage's
airing reduction machina. for exampls. uses FFP which Is Indeed e stict
language [Mago79]. Since we belleve non-striciness tw be e vial

programming 100l we reject siring raduction.

in contrasi, & graph reduclion machine represenis avery expression as &
cell which contains pointers 1o its sub-exprassions. Now whan en ergument
Is substituted lnigo a function body It I3 not necessary to copy the argument:
insigad a pointer to the argument can ba substituled. This makes funcibn
application much more elliclent. Not only this, it also meéans ihat there is
only sever one copy of the argument The first time it is reduced It will be
raplaced by Ita normal form, and ail polnlars o the argumeni wili now
aulometicaliy rafer 1o itz normal lorm. This means that no meiter when the
argument s first reduced. it will naot be raduced more {hen once. Graph

raduction machines thergfore provida good support for non-sirict languages.”



They slso psrmit an efficlant impiementation of ¥. Recall that t\he reduction

rule for Y s
YL redf (Y I)

On a graph reduclion machine we can take advantage oOf the faci thal a
copy of the left hand side appears on the right by constructing a circular

!fredt]

#t |s clesr thef Ihis reduclion rule |s equivalen 10 the original one. but is

much more afficient since it reduces (Y N completely In only ona atep.

The disadvantage of graph reduction machines Is thal, just as there is only
sver one capy of an argument. so there is only ever one copy of a function.
This means ihat substitution during function application must not be
destructive - for i it were then the function would be corrupled and could
nol be called agein. Therefore. Insiead of copying the argument when we
apply a function, we must copy the funcilon body. This is the fundamental
Inglliciency of graph-reduction: the lechniques we shall discuss In the rest

ol this chaptar seek 1o eliminate of reduce (.

34. THE SECD MACHINE

As we remarked above. In a graph reduclion architecture functlion application
requires copying the function body. and this can become very expensive.

Consider for example

Aaiblc. E




When this funclion Is applled, E would have 10 be copled three times, once
10 substiute Jor a, once 1o substitute for b. and once to substitute for c.
In general, an expresslon would be coplied once for every varieble In scope
in . Since there are often many varlables In scopge at & 1ime this |s

prohlblively axpensive.

One of the aitempts to avoid this Is the SECD machine [Landiné4]. The
fundamantal ldea is to delay substitutions until the very last minule, $O lhat
when we are linally forced 10 perfarm them we can do several |ogether,
copylng the expression anly once. To do lhis we need two new data types:
an “environment”, which |s a mapping from Iidentiflers 10 values. and a
“closure™ which conslsts of an expression and an environmen! ol delaysd
subsiitutions 10 apply to it. Wriling a closure as Elp), where p s Ihe

environmant. wé change the reducilon rules of the machine lo

(Ex E2} {(p) red Ea(p} Ez{p)

({(x1.E1}{p1r}) (E2{p2)) red E1(p1 & (I—E1{p2))}}
C (p} xed C

vV (p] rted p(V)

N I8 clear from this dascription that the SECD machine is st a graph
reduction meachine. Likeé other graph reduction approaches. it provides good
support for non-sirict languages. &nd for the same reason: the environments
contain only potnlers to expressicns, and so each exprassion Is only reduced

once.

However, real SECD machines use four repisiers, the steck, eénvironment,
control and dump 1o avold construcling some of the Intermediale closures
tthis Is the reeason for the namal). This optimisaton, coupled wih the mare

complex reduction rules. makes the behaviour of an SECD machine guhe
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difficult to reason aboul. Because of this we prefer lo work with simplar
spproaches, Some of our results cannot be eppliad to SECD machines at

mil,

The SECD machine dces Indead avoid dotng any substitulions, but Il replaces
iham with énvironmant iookups which can prova very axpensive when there
are many pames In the environment Turnar tound that his SECD
implementation spent most of l1s iime looking up names In tha environmant

{Turner?9]. This has led 10 cther atiempis 10 reduca the cost ol substiution,
3.5. CAF REDUCTION

Since substitulion Is the major Inefficiancy In & graph reduction machine,
and substhivtion only occurs when A-expressions are appilad. It is naturel

10 ry lo eliminate A—expréssions and variabies altogeiher. To this end we

dafine the language ol constant applicative forms (cals) whose syntax |s
E ::» C | (EE}

This language is particularly simple and easy o Implemant however. lor

It 1o be useful we must have & way ol translating l\—exprassions Into It

To do this we have 1o introduce & new class of constant. the combinator.

These have the syntax

re x 1 ... Ia. B
B ::= C | I | (BB)

The reduction rule for combinators is

(xIr...In.B) Ei...En red B[{Er/11,.. . ,En/ln]
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A comblinator Is very like a X-expression, but there are two Important
ditferences: firstly, a combinator 1akes several arguments at once. and
sgcondly, a comblnelor must have no free varlabies. Taken together, thess
mean that an eéxpression can never be subsiltuted Into twice. slnce the only
expressions that can be substituled into are combinator bodies. end the
result of substituiion Is not a combinator body. SO we have eliminated ihs

mator Inefficiency of graph reduction.

We may lranslate the A-caiculus Into cals as follows: il the iree variables

of AV.E are 11..In. 1hen

W._E trans {x[1...In V.E) I1...In

Repeated applicattons of this rule will eliminate all the l-expressions In the
program, and It Is clear that the resulling combinators will have no fres
varlables. as required. This approach has been used by Johnsson in his

ML compiler [Johnssondal.

3.4. THE SKI MACHINE

it has long been known that ) -expressions can be transiated inlo cafs which

use only three different combinators,

S = xabc. a ¢ (b c)
K = xab. a

]l - xa. a
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by the transistion ruies

AV.V trans 1
AV.V)1 trans K V2
AV.E1 E2 trane 5 (AV.E1) (AV.E2)

However, applying theae translation rules 10 an expression of eny size ylelds
an snormously large resull. Turner observed (Turner79] that using an

optimisation rule
8 (K a) (K b) trans K (a b)

drasticelly reduces the size of the result. He used ihis rule. together with
8 fsw other combinstors which abbreviate common forma. to make a practical
cal-reductlon implsmanietion of SASL. He jound that his Implementation
performad considerably better \han his SECD-machina implementation of the
same language. apperently because ihe excesslve cost of environment

jookups wes avoided.

He found thal the use of his optimisation rule had anopther interesting

consequence. which we may lllustrale by consldering the example

Aax. + 12
Of course, every time this function Is applied H returns the answer 3. We
ars Ineresied In whether tha eddition ls performed on every cell, or once

only. Uesing the A-reduction rules. we find ihat

(Ax. + 1 2) ared + 1 2 red 3
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The additlon Is performed on every call. since the function body Is copled
during application.
Translating to comblinators, we get

Ak. ¢+ 1 2 trane S(S(K +)(K 1)j(K 2)
and when this ftunction is applied. we find

S(S(K +)(X 1)){K 2} a red S(X +)(K l)a(X 2 a)

red K + a (K 1 a) 2

red + 1 2 red 3

50. as in the case of direct i-reduction, the expression <+ 1 2y s

constructed and reduced on every call
8ut. using Turner’'s oplimisatlon rule, we find that
Ax. + 1 2 trans K (+ 1 2)
and
K (+1 2) ared + 12 red 3
In this case. the result of applying K (+ 1 2) is a pointer 1o K's argumen,
+ 1 2). When this expression 5 reduced lo 3. K's argumenl hecomes J.

So. afier the lirst call the functlon I3 aimply (K 3). and N returns 3 withow

periorming any additions at ail,



2z

We have just demonsirated that Turner's oplimisation rute guaranieas that
constant expressions are Only evalyated once. lts effect la more far-reaching
Man thia. though. because It treats any expréssion Insigda & function ihat
tdoss noOl Involve the bound varlable in the same way. It guaraniees thal
any such expression |s evalualed only once, and thal s value wil be used
diractly thereafler. Thus It subsymes such optimisations as conslant folding

an¢ move-gut from lgops In Imperallve languagas.

We may summarise our conciysions as

Every exprassion |s evaluated al most once after the variables

in It have been bound.

We catl 1his properly fully lazy evaluvation. It Is analogous 1o lazy evalustion,
bul is more general since ihe latter stales only that evaery argumen? of a

function Is evalualed al mosl once.
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CHAPTER 4

SUPER-COMBINATORS

4.1. INTRODUCTION

We have descrlbed two diflarent approaches 1o impraving the efficiency of
graph-reduction implementations of the Xl-caiculus. The combinater
technique of saction 3.5 Is simpla. and has the advantage that compilaiion
into those combinators Is easy. Turrer’s method, on the other hand. requires
a mare complex complier and breaks the execution down Intg very amall
steps: an application of 5. far example, does nol achleve very much
compared 1o an application ol some larger combinators. Howaver, It brings

with It the very Impartant advaniage of fuily lazy avaluallon,

In this chapter we shall dovelop a mathod that combines the besl featurss
of both approaches. Evalvation will be fully tazy. but Individual combinaiors
wlll accomplish much. The basic method wilt be introduced In seclion 42.
Subsequent secllons presani varlous Improvemenis that can be made, and
the final sectlon presents the resuils of an exparimental camparison of our

auper-combinators with Turner's approach.
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4.2. THE BASIC METHOD

Our purpose Is 10 modify the approach of section 35 so0 that it avoids
unnecessary rapeated evalyation of expressions thai are independent of soma
bound varlables. We lirsi of ali give these expreasions a name: they are
tha free expressions ol L-expressions. by analogy with free variables. In fact.
fras variables are the minimal Iree expressions of a k-expression. We call
Iree exprassions that Are nol parl of any larger free expression msximal
frea expressions (mies). For exampie., the l-expression Ay.(+ (* x X} (* ¥y
y)) has many free exprassions, inciuding +. * and (* x x) slnce none ol
thase expreasions Involves y. butl it has only two maximal free expreasions.

being (+ (* x ) and *.

Wo can npow define a new (ransiation scheme. Consider the A-expreasion
A\V.E. and suppose that E1 ... En are lla maximal free expressions. Lei 11

.. In be identitiers not used In the i-expression. Then

AV.E trans
{klL...InV.E[11/E1,...,In/En]}) EL ... En

By the dsfinition of comblnator application. It s clear that both sides of
this eguation ara equivaieni. and therefore the iransiation Is correct. Also.
the combinator we hava produced cannol have Any free varlables, becausae
any free varieble Is & free expression. and would therefore be enclosed
In one of |he maximal free expressions €1 .. En. Theretore the transiation
produces genuins combinelors. As In seciipn 3.5, repeated application of

e rule wili iransiate & whole program to combinalors.
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We have yet 10 show how this method gives fully lazy evaluation. We shali

first of all consider cur previous axample. M.+ 1 2. This is lransleted as

Ax.+ 1 2 trans (kxax.a) (+ 1 2)

=K (+ 1 2)

exaclly the same code as produced by Turner’s approach. When this function
is applled 1 returns & poinler to the argument. (+ 1 2), and so when lhis
Is reduced to 3 the functlon actually becomes (K 3). No further addlions

ara performed.

To take a more realistic exampla. we consider the lunction that selecis the

nth elemenl of @ sequence.

el a Y(relinls.
1F (= n 1) (hd 8) (el {- n 1) (tl 8)))

This function can be partially parameterised. as in (el 2}, 10 give a funcion
that siways selacts 2 particular elemant of a sequence. Fully lazy evalugtion
In this case wouid maan thal such a partially parameterised functlon wsuld

need t0 do no arithmetic on n 10 selecl the right element.

Looking at the innermost k-expression first. we see that it has maximal lree

axprassions (F (= n 1)) and ¢ (- n 1}. W Is translated into

o (IF (= n 1)) (el (- n 1))
where a » gabe. a (hd a) (b (tl s))
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When we apply lthe same process lo the other k-expressions 1o0o. we end

up with

el a2 ¥ ¥

v & xel. B el

8 s xel n. a (IF (= n 1)) (el (- n 1))
a s xabs. a(hd a) (b (tl a))

Now. when the partially parameterised function {e! 2) ls lirsi applied to a

sequence, Il wil be reduced as [(ollows:

el 2 red Y v 2

red r gl 2

red g el 2

red a (IF (=2 1)) (el (- 2 1))
red a (IF falae) (el 1)

a

... red (IF false) (a (IF true} {el 0Q))

All of these reduclians will be performed on the first call, trensiorming (el
2) ino a funciion thal selects the secand efement ol a sequenca withoul

doing any arithmetic.

Molice thay we aigd nat dother 10 absiract out constant iree expressions in
this example. In faci. i is vunnecessary 10 00 50 In order to guaranige that
the combinalors generated have no free variables. It is convenlenl. bbth
an peper and In Impiementations. 10 allow combinators 10 include constant
exprossions, but with 1the understanding that the fulf laziness property still
appltes. We moadity our understanding of comblnator applicalton so that (xa.+

1 2} 1s equivalent to (xaba) (+ 1 2).



S0. this basic mathod glves us a fully lazy evalualion of our original progmm.
without breaking execullon down inio smell steps - Indeed. {ha code
produced conielns only one combinator for each source A-expression.
Expariments show that It (s already more efficleant than Turner's method.

In subsequent seclipns we will se¢ haw It can be Improved stit furthar.
4.3. PARAMETER ORDER

The basic super-combinator method doés not define the comblnalors
uniquely. since we allowed the paramelers of ithe combinaior 10 appear in
any order. We should ask ourselves whether one order is llkaly to be bMier

than another, or whethar ali orders are equally good.

One factor which might influence a cholce of parameter arder |s the dasira
10 eliminate redundant parametlers and combinators. An example of a
redundan! combinator is xaage. which is equivalent to a. Using a Insleed
is more efficient, since it eliminates an unnecessary combinator applicsion.
Paramatgr-order has a bearing on this In & case such as Saxab.abae, vhich
s not equivatent to a. It @ is a combinator Introduced by the complier.
and the compiler has the cholce ol the order in which the paramaters of
a appear. lhen it can choose the olher orger, making Saxab.aab which
Is equivalent 10 a Thus a correCl choice ol parameter order can help make

more combinators redundant,

An example of a redundanl parameler Is b In xadb.a(+ a Nb. which Is
equivalent to ka.a{+ a 1). The advantage of ghlminating b !n this cese Is
thatl this will permit the combinator 10 be applied when fewer argunents
arg avaliable, and hence will allow the resuit of 1he application o be shared

more widely. This will reduce the 1otal number of combinator applicitions
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necessary. Once egaln. @ correct cholce of parameler order lor a is
essentlal. since otherwise 8 would be xab.ab(+ a 1) in which no parameters

are redundant,

Another fector Influencing cholce ol parameter arder is the desire 10 make
maximal (ree expressions as large as possiblie. I, by rearranging the
paramelers of one combinalor. we can make several mies of en enclosing
A-exppression combine Into one larger one. then we have Improved the
efficiency of the enclosing combinator. This Is analogous to trying to mave
as much work as possible out of e loop. For exampie. consider

An. a (hd a) (+ n 1} (tl s)

which has mies (a (hd s)) and (! s} This A-expression wlll be translaled

[Llte}

(eabn. a (+ n 1) b) (a (hd 3)) (tl s8)

However. i the parameters of a had been arranged as lollows:

an. a (ha a) (tl a) (+ n 1)

then 1he A-éxpression would have been replaced by

{(xan. a {(+ n 1)) (a (hd 8) (tl1l 8))

The latter form s more efficlent. both because the combirator has fewar

arguments and a simpler body. and so Is more eflicient 10 Aapply. and

because the large expression (a thd s) (1l s) need only be consiructed

ance and can then be shared belween all calis of the function.



We derive a general rula from this example. The combinaior a Is derlved
from a A-exprassion with mies (hd 2}, (il s} and + n 1). We have sesn
that, when choosing a paramaler order tor . those mies which are also
free oxprassions of the next enclosing k-expression should appear before
those which are not. Suppose a« has parameters E1 ... En. so that the caii

of a will appear as
a Ex ... En

Thers should be some | such that. lor all i less than or eqguai to |, Eils
a free expression of the next enclosing k-axpression, and for all k grealer
than j. Ek is not. This guarantees that (o Ex .. EP Is a free expression

of tha nexi enclosing \-expression.

Now, consider the A-expression enclgsing that, To maximise the size of iis
mies In the same manner. all the EI which are free in It should appear
before the Ek which are not. and 80 on and so forth, In genarai. the aptimal
ordering under this crlterlon can be estabilished as follows. Every Et s a
free exprassion of one or more anclosing A-sxpressions. Cail the lnnermost
A-expression In which Ei Is not free lis native l-exprs'sslon. This Is |he
innermost  A-expression which blnds a varlable in Ei. Il the nelive
A-expression of Ei encloses the naiive A-expression ot Ej. than Ei precedes
Ej tn tha opiimal ordaring. This does not deting the aptimal ordering uniguely,
because expressions wiih the same natlve A-expraasion can appear In any
ordar. This dossn’t mattar, because any ordaring satisfylng ouwr conditlon

Is as oplimal as any other.

Notice thal an exprassion has no meaning outside Its native l-expression,
because the bound varlable of Its natlva A-expression appears In Nt

somewhere. Aiso. conslent expressions have no native A—expressions ai all,
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becausa they ara free In all L-expressions. For the sake of uniformity they
arg ragarded as being native 10 some nollonal A-expreasian enciosing the

whols program.

Wa have deduced en optimal ordering to maximise the alza of mfes. Let
us raturn to the aubjeci of redundant parameiers. Firat we observe that the
compller can only choose the order ol parameters ol comblinaiors, 2nd so
the only case In which i can help make paramalers radundant is when
one combinator Is defined directly as a call of anciher. For example. suppose

8 is defined by
8 ® xkpqra. a ...6...

No paramelers are redundeni unjess s is, but s was the bound varlable
of the r-expression & was derived Irom. Thereiore. s was the bound variable
of \he A-expression immadialely enclosing a. if the parameters of @ have
been orgared optimally as delined above. then all perameters Involving s
coma at the end of Ita parameter lisl. If there Is only one such parameter,
and I\ ia slmply . then a Is a redundant parameter and can be eliminated:
otherwise s I3 not redundent end nor are any of the olther paramelers. If

s i redundant, than tha calt of @ myst take the form
a El ... En @

whara 8 does nol occur in E1l o En. Therelore each Ei Is frae In 3, and

hance 30 Is (@ E1 ... En). If n Is non-zero. 1hen § would actually be deflnad

by

8 & xpa. p e
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whers p corresponds to (a Er ... En). I n Is zero. then

A e x8_ aa
In tha firsi case £ is equal o | and we may eliminate W, using ¢(a E) ..
En) Instead of (8 (a Ex .. En)). In the second case 8 is equivalent 0 a.
and so can be eliminaled. So we see thal the optimal ordering we have
defined aiso guarantess that parameters and combinators will be made
redundani It possible. and mareaver. detection s reduced to looklng for
two simpile cases.
We shell demonsirale the Imporiance of this opiimisation by exhibiting a
{rather pathojogical) example where i1 makes an enorrmaus difference ic the
size ol code produced. Consider the funcilion Fn thal applies a functian QG
10 Iis n argumenta in raverss order.

Fn @a AIx...AIn. G In ... I1

The maximal free exprassions of the Innermost h—expression are 11 .. In-1,

s0.  we do not choose the gplimal order. we could transiate

Mn. G In ... I

inio

an Inv ... 11

where an 8 xla-1...1121n. G In ... I1

where no parameters ara redundant. Bul now

Pn o AIr...kln-1. an In-y ... 11
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which Is In Ihe same form as 11 wss In originally. I we continue the

transiation in thia way, wa wlll dgefine an-1..a1. where

& kli-t. . [10i. aitt Li-v ... 11

Fn 2o a1

Hera ai is of size O(), and 30 wae will transiate the x-expression of size

O(m Inio code ol size 0{n2), This Is bad news Indeed.

On the gther hang, il we use the optimal parameter ordaring. wa wlll be

forced 1o define

@an ™ K[1...1a. G In ... I

Qiving

Fnm dl2...0p1, an It ... Imt

All the othar & will be radundant, 80 we will finally deflne Fraan. The cooe
wilt be of size Otn). The remendous improvement In this example leads
us to expect a signilicant improvement In practice. In chapter 6 we wiil show
that using the optimal parameter order leads 0 an Improvement In ihe

compiexity ol the code size.

4.4. OPTIMISING CONDITIONALS

When the method described above i3 used in praciice wa find that, on the
whole. it performs well, bul in some clrcumstancas performs worse ihan
Turner's method. An example where this happens ls the naive Fibonacci

function
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fib & Y (Axfibin. IF (< n 2)
n
(+ (fib (- n 1))
(£1b (- n 2))})

Alter translation in1o super-combinators, b looks ke

ftib a Y a
a2 xkf n. IF ({(n 2)n
(+ {£ (-n 1)) (f (-n 2)))

Because of the divide-and-conquer nature of the function. fib Is called with
argument 0 or 1 disproportionateiy more often than with other values. In

thesa cases It is reduced as loliows

fib 1 red a fib 1
red IP (¢ 1 2) 1
(+ (£lb (- 1 1)) (£1b (- 1 2}))
red 17 true 1
(+ (fib (- 1 1)} (fib (- 1 2))}
red 1

and wg see¢ thal the large axpression + (fib (- ) 10 Uib - 1 2 is
consirucied and never evalvaled. The cost of consiructing this expression
Is likely to outwelgh the rest of the cosl of computing (b 1). SInce. the

axprassion is rever aclually required. this efforl is eniirely waslad.

In fact, this kind of situstion can occur whenever we write a conditianal
exprassion, In the expression (F Eix Ez E3). it Is certain that only one

of Ea and Ey wlil actually be required. and so to construct both is wastaiul.
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Turner's approach acivally avoids construciing (he unnecessary one. since
the consiruction Is done only on demand. In eftect. Turner treets (ix. iF
E) E2 Ea) as (ax. IF E1 ((Ax.E2) ® ({xx.E3} w0} Since bolh functions AxEz
and ix.Ex ere independent of x, lhe only expressions thai need to be

consiructed on eech call are the applications of these funcllons to x

Forunately. the same technique works for  super—combinators. When

comptling an expreaston

IF E1 Ei E3

with the enclosing A-axpression binding x. we can treat It as

IF E1 ((Ax.E2)x) ((xx.E1)Xx)

In this case ix.Ea and kx.E2 will be free axpreasions of the enciosing

A-pxpression, and the combinator body will contain only

IF EL (a x) (b x)

where & and b are parameier nemes corresponding to £2 and Ea. Only
two celis will be allocated towards Ez and £1 when x Is bound. Aher an
aiternativé has been chosen ihe selected brench will be construcled and
evaluated. Of course. Il one or both of E2 and Ea does not Involve x then

H-wiif ot need 1his treatment.
Applying this oplimisation 10 the Fibonaccl exampie. the new code is
f£ib = ¥ (xfib. a [ib (2 fib))

o s xtib a n. I¥ ({n 2) n (an)
A = xfibn. + (fib (- n 1)} (fib (- n 2))



Counting the number of application celle allocated during a call of (ilb 1),
wa (ind that it has decreased from 13 to 6. while the number oi cells
allocated per recursion lor n greater than 1 haa only Increased from 13

10 4. This rapresents a great improvemeni in etficlency.

We have discussed this optimisation in the context 0l conditionals. Hawsver.
It Is warth replacing any large expression E that may well never be evalvaled
by \x.E) x, where x is tha bound varlable of the enclosing A-expression.
To do this to every expression. though, would be to create combimaiors
almost as amall a3 Turner's ones. and s0 0 throw away the maln advanlage
of super-combinalors. Fortunataely, most expreasions that the programmer
writes sre eventually evaluated. and $o It Is only In cases like the condilional

thal H is necessary 10 use this transtormation.

4.5, GRAPHICAL COMSBINATORS

The method we have described siaris fram a translation of ths source
program Into the A-caiculvs and produces combinators from that. This leads
to soma inefficlency In the Ireatment of deciarations: for example let x =
1 In x+2 Is lass etilicient than 1+2. becausse the former Is transiated Into
{xx+2! 1. and thenca Into (xxx+2) 1, and 30 requires & combinator
application during its evaluaillon. N would b8 nice W thess Iwo equivalent

programs wera equaliy efficiani.

We c¢an achieve this Il wae extend the comblinatar language siightly to Inclide
declarations. in this case let x=1 In x+2 Is a perfectly valld expression In

the object language. In faci we can Interpret auch expressions direcily as
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graphs, For example, lat x=1+2 in cons x x can be Interprated as the graph

{cone )
LL*(Q‘ 1 2)

and leirec x = cons 1 x in x can be Interpreted as

C(conu 1 ])

Since we pre already working whh graph reducilon, the Iniroduction of
combinators with more complex graphs as bodles reaprasents no real
axtension at all, Under this graphical interprelation of declarations the iwo
oxamples we began with aclally represenl the same graph, and so are

cerginly equeily efficient.

We now have combinators with general graphs as bodies. rather than irees.

An example of this kind of combinalor is Y, which we can deilne as
Y » gf. letrec x = £ x in x

since (Y 1 is reduced 10

in order to perform super-comblnalor abstraction on a program comaining
declarations, we first of alt float the declaralions outwards as far as posasible,

using the lact thai

Ax.let I=-E1L in E; = 1lst (=E1 Lln Jx_ E2
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provided x does nat occur In Ei. This equation holds becausa both sides
represant the same graph. and we ara simply choosing the most convenlent
written representation of #. Having done ihis, wa simply perform ordinary
supsr-combinator ebsireclion, remembering that a variable defined In o
declaration Is free in & A-expression i thé expression It represents Is (s
requirgs soma care In the case of letrec declarations). The result will e

graph swuctured comblrator code for the program

For example, starting from

letrec fib = an. IF (¢( n 2}
n
((An. + (fib (-~ »n 1))
(fib (- n 2)))
n}

in tib

wa derive

letrec fib = xn. IP {{( n 2) n {(a n}
and a2 - xn. + (fib (- n 1)) (fib (- n 2))
in fib

Both combinalors are simpler and more efficient then their earller
counterparis. The improvement In efficiency s pariicularly great in the casae
of mutuslly recursive declaralions. which undér the old melhod were
iransietad Into the consiruction and subsequent destruction of a Jist of the

values being declarad.
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we will not pursue this particular extension any further, As we have remarked
above, the presence ol combinators wilh graph-struciured bodies does not
interfere with other aspecis of graph reduction. and so we can simpilly the
resi of this thesls by discussing tree-siructured combinators only. Where
relevant we witl remark on the extensigns neceasary 1o cope wiih the morae

general cese.

4.0. EXPEAIMENTAL RESULTS

To iest the super-combinator melhod In praclice we compared It against
Turrer's method. His method was chosen far the experimant because ihere
Ia elready considerable evidence thet it 1= more efficienl than a lazy SECD
machine {Turner79] (Peyton-JonesB2l. A compiler iar a high-levei iunciional
language was written. which translatad Inio the A-calculus and could 1hen
gensrale elther kind of combinators. Only the methods ol sections 4.2 and
4.3 were used. The code was run on a BCFL Interpreter which contained
precompiled  definitions ol Turner's combineigrs end could load
super-comblnator definitions, compled into mechine code. If necessery. The
compller and reducer made a numbeér of measuréments. Including code size.
number of reductions performed during execution. 1otal number of cells

claimed, and run-time.

Ten small programs were writlen and benchmarked, ranging from Ackerman's
function 10 a wnlilcation algorithm. and the resuvlis are summarised In the

table below.



Program Size ACode AReductions ACells ATime

Size Claimed
1 26 b -13 39 0
2 16 -10 -48 45 0
3 419 0 -42 1o -12
4 51 -5 -47 32 a
5 75 9 -16 9 -3
6 93 -9 -42 -16 0
7 106 -9 -23 -19 -21
8 115 -13 -30 -8 ~-11
9 ie7 -7 -39 21 -17
10 317 -3l ~60 -35 -45

The figures in the table are the percentage

change in woving to eupexr—-combinators.

Theae resulls do nol demonstrate an awesome superiority, However, It should
ba barne In mind thal al the sxemple were very smail, and that the
advanieges of super-cambinators should become more pronounced for largar
programs (since small programs iend 10 compile to small supar-combinaiors,
the advaniage of “large axecution steps” Is lost, The tabte Is arranged In
order of Increasing program size, snd there Is a visible improvemeni as
wa |aok down 1he columns. The anomalies In tha “cells claimed® column
are probably due to the fact lhal we did not use Ihe technique of seclion
4.4, which atfecis particularly programs 2. 4 and 9. We are heartened that
no progrsm tsn more stowly whan compiled to super-combinators. Therefore
we are ressonably confident that the use of super-combinators wlll produce

4 significsnt Improvemen! In \he performance of real programs. for

domilt of Tha arpatimanty, s the Appundias,
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CHAPTER S

SUPER-COMBINATOR COMPILERS

5.1, iINTRODUGCTION

In chapter 4 we described how functional programs can be Iransiated into
esuper-combinators. but we did not Qive an aigorithm for this iranslatlon.
We have not yel demonstrated that It can be done reasonebly efiiclently.
In section 5.2 we glva an Intormel description of such an algorithm. which
converis 8 A-axprassion inle super—combinators in a single pass. and in
the following three eections we oulline three different implamentationsof this
algerithm In Imperative. functional and logic languages. Finally. In section
5.7 we will review our experlence of Implemeniing a reasonably complax

algorithm in \he three Oifferent styles.

5.2. THE ALGORITHM

Wo lirst describe an algorithm that Incorporaies the techniques of sections
4.2 and 4.3. The optimisation ol secion 4.4 |s aasily added. and the

geneiation of graph-siructured combinators has already been discussed.

Since the slgorithm is going to order combinalor parameters opumatly. It
will need to work with the netive k-axpressions of parts of the program.
We begin by observing that the native x-expression of any expréession can

be idenlified by a single nPumber. This is bacause ihe k-éxpressions
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enciosing a particular program polnt farm a sequence. and S0 wé may raler
to them by thalr position in this sequance. Thus. 1 refers to the outermosi
L -exprassion. 2 refers toc the nexl one In eftc. We may therefore assoclale
a numbper idenlitying its native k-expression with every expreasion In ihe
program. We call this number an axpression’s lexical level, or somatimes
just Its /evel, It Is convenient to assign constant expressions a |evel al zero.
since this corresponds to a nollonal X-exprassicn enclosing the whole

program,

We can compule the lexical level of every expression In (he program in
a single recursive pass. es lollows. We assign consiani expressions a levai
of rera, and we deal with identlflers using an anviranment which maps them
to thelr lexical leve! (the number corresponding to the k-expression binding

them).

Wa assign applications the maximum of the lexical levets of the funclon
ang argument. This Is justified becausa the maximum corresponds 10 (he
innermost of the two native A-expressions. it i3 clear thal the applicatlon
la not free In this x-expression. but Is free In all Ihner A-expreéssions, and

80 this ruie correctly identifles the application’s native A-expression.

Determining the lexical level of a k-expression Is more complex. We nolice,
though. that the problem can be avoided il we can replace l-expressions
by c¢orresponding applicative forms “on the ly". in this case we can scan
the body of a l-expression. replace i by the corresponding
super-combinator applicalion. and then compute the lexical levat of ihis

applicatlan using the rules above. This is the approach we will take.

We may summarise our conclusions 3o far as follows. The program synax
trea Is scannad In depth-lirst order. As soon as any sub-trae@ has bean

scenned,. Its lexical level Is detarmined, and It is converted Into the equivalent
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combinator form. When the scan terminates. the whole program will have

been complled inio supar-combinators,

Baiore explatning how A-expressions are complled on the fly. we consider
the problem ol identifying maximal free exprassions. We are Interested, not
Just In idantitying the mtes of ihe nearest enclosing x-expression. but in
lgentitying ail the expressions In the program which ere mies of any

»-exprassion. Fortunately this cen be done using only the level numbers.

For an expression 1o be maximal f(ree it must fist be free In some
A-expression. fe Its level number musi be less than that ol the nearesi
anciosing A—expresaion, and secondly |t must be maximal. This means that
is level number musi diiter from the level number of the Immediately
anciosing  expression (or N must be the antirety of the body of e
A-expression}. Otherwise, both it and the immediately enclosing expression
would be free in ell the seme X-eéxpressions and It could nol be maximal
fres 10 any. We can even Identlly the k-expression It will be meximal free
in: It has to be one In which it I3 free, but In which the enctoalng expression
is not (res. Therefore it Is maximal free In the native A-expression of the

anctosing expression.

We may summarise ithese rules by: an expression Is an mie It N Is the
body of 8 A-expreasion and its texical level is less than the tevel of the
k-expression, or If it s a function or argument and iis lexical level is lass
than the levet of the applicailon It forms parl of. The expression Is an mile
of \he h-expression It Is the body of in the first case. and lhe native

L-mxpression of the epplication In tha second case.
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Therelore. onceé we have scanned the body o a A—expression we will have
Ideniified all s maximal free expressions. This 1ells us what the parametars
of the corresponding super-combinator will be. We need to sort them Into
the oplimal arder. but this Is easy because ihe order depends on which
nativa A-ewpressions enciose which others. and this can be delermined by
comparing level numbers. We can order the parameters oplimally by soting

them inio order of Increasing lexical level

Now we can replace the i-expression by a super—combinator applied ta
the mies, and construct the combinalor by replacing the mfes in the
A-expression’s body by apprapriale parameler names (numbers In real

implementations). This completes the description of our algorithm.

For the most part. this algorithm Is lairty simpie. However, It Is qulle tricky
lo raplace mlies by argumant names. as we gally said In the last paregreph.
In an efiiclenl way. The next three sections outline impiementations of his
algorithm In imperative. funciional and logical styles. and differ primarih In

the solutions adopted tc this problem.
5.3. AN IMPERATIVE COMPILER
We shall describe our Imperailve compiler by giving & Pascal-ltke shelston

and leaving the reader 10 1)l In the deislis. We begin by gQiving the ipe

of tha syniax free nodes:
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type node = record level: integer;

case kind of

conatant : (...);

variable: {...);

application: (fn, arg: node);
lambda: (bvar, body: node);
argument : (argnum: integer);

combinator: (numargs: integer;
body: node)}

end;

Since the compllar operaias by physically transtorming the original syntax
tres Into the combinator varsion there Is provision for storing a level number

in the node and there are aharnatives to rapresent comblnators.

Notice that we raefer 10 combinalor arguments by integers. These correspond
to stack offsats during execullon, and their precalculation means thai
combinaior argumenis do not have to be jooked up in an environmeni at
run-time. This als0 meens that we can represent supaer—combinatlor by

Its body and a count of It arguments.

We wrila node consiruction tuncttons In upper case by convantion, and we
use ilhrea of them: APPLY to construct an application rrode. SUFER 1o
construct & combinator noda, and ARG 1o construct a comibinator argumeni

name.
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t
The complisr mainialns 4we- imporiant global varlables, whose declaratlons

are:

var cl: integer :=~ 0;
mfes: array [l..] of
psequence of address of node;

bvs: mnrna[i--] of sequence of addrss of nede;
ct ts the currenl ievel, inillally zero. 1 Is Incremented when the compller
begins to scan s \-expression snd decremented sfterwards. so It always
holds tha nesting depth of the nearest enclosing h-expression. mfes Is used
to atore maximsl frea axprassions as they are found. It Is an array with
one element per A—expression enclosing the current node. The element hoids
a sequance of all the mies of that h-expression (ound so far. in fact It
Is the addresses of the mfes which are held in 1theé sequence; this permlis

the reptacement of mfes by argument names alluded fo above. l:vs \u\ds
the addresses of oM occurmncas of beund vandelas, 1o that
thay can be replacad. by Aumberad oguments,

The compiler lseif is the following procedure:
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procedure complle (var n:node; e: env);
it 1sconstant (n) then n.level := 0O
elif isvariable (n} then
n.level := lookup (n. e)j nuamt(hstﬂ-hw\]'aﬂm: l\)
elif isapplication (n) then
complle (n.fn, e); compile (n.arg, e);
n.level := max (n.fn.level, n.arg.level);
for cpt in (fn, arg) do
if n.cpt.level ¢ n.level then
augment (mfes [n.level],
address n.cpt)
£i
od
elif islambda (n) then
cl := cl + 1; mfep (cl] = <{>; bﬂtd]:'-’-()'l
compile (n.body, bind (n.bvar. cl, e));
sortmfes (mfes [cl]); t
n := SUPER (length (mfes [cl]A, n.body);
for i in 1l..length {(mfes [cl]) do
n = APPLY (n, deref mfes (cl] (1]);
n.level := n.arg.level;
if n.fn.level < n.level then
augment {(mfes (n.level], address n.fn)
£1i;
deref mfes [cl]) [1] := ARG (1)
od; for i A fe (va [l 1) do
cl i= cl - 1 deref bvald)li]) =
T ARG, (Iq.-g\k(mfa(el]') )

od
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Noles: n I3 a ver parameier so that the compliar can overwrite It with the
complied varaion of the node. The environment Is manipuleted with bind,
which returns an environment equal 10 the given one excepl thet the glven
veriable |s mapped toc 1the given Integer, and lookup which returns tha level
of a veriable. augment adds an element 10 the end of & sequence. addres:
ralurns the address of a varlable, and deref permits that variable to be
read or updated via ts Address, sortmles saris a sequence of mle addresses

Intc optimal order. according 1o the criterion explained above.

The essential fsature of this complier |s the way that it stores mie addrasses
20 that It can both lelch the mie ta construct the replacemenl applicaiive
lorm, and update the reference to It in the funclion body to refer to an

argumeni nama Insiead.

5.4. A FUNCTIONAL COMPILER

As in 1he last section, we shali begin by describing the types we use. There
are several typas in the funcllonal compiier, sinca we cannot use assignment
to store ell the Information in the same node. We use & syntex itke that

ol HOPE (BurstatiB0) to describe them.

The Inpul and output from the compller are NODEs:

data NODE = VAR(...) |
CONST(...) |
APPLY (NODE,NODE) |
LAMBDA (NODE , NODE) |
ARG (NUMBER) |
SUPER(NUMBER,NODE)
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Tha racursive complle luncilon itself must have several resulls. since we
expecl i 10 return (he level of &n exprassion, (ind lis mfes, and raturn a
vergion of tha expression with &)l mies replaced by ARG(n) nodes We
encapsutate tham in the type EXPR:

data EXPR = EXPR({NUMBER,EXPR-LIST,NODE)
Nolice that I |s the compiled farm of the mies thal is retlurned.
Since we expect 1he complier 1o replace mies by ARG(n) nodes. end since
tha namas o be used depend on the contexi In which the éxpression being
complled occurs. we must pass the compller an argumeni giving the names
10 vse lar @ach mie found. We use the NAME type to pass the nema of
an mia. and the names of all i\s sub-mfes logether.

data NAME - NAME (NUMBER,NAME-LIST)
Findlly. environments have type ENV which is NODE—NUMBERENUMBER.
Given & VAR-NQODE they relurn & {evel number and an argument number
to be usaed as & replacement
The type of the compiler is

compile: ENV—NAME-LIST—NODE—EXPR
Since tha NAME-LIST gives the nemas of the mies found. It wil always have

an isomorphic struclure to the EXPR-LIST part of the rasuit. This Isomorphism

will axtend to all lavals of the siructures.
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We shail descrlbe ihe complle function in a SASL-like notation [{Turner76}

with a lew extensions. Its skeleton ls;

letrec compile env namee exp =~

case exp of

VAR(...) —*
CONST(...) —
APPLY(f.,a) — ...
LAMBDA(v,8) —

esaac

Compiling varlablea and conslanis |s easy: the relevant paris of complle are

VAR(...) —+ let lev, num = env exp in
EXPR(lev, [], ARG(num))
CONST(...} — EXPR(0, {), exp)

Appiications are harder 10 deal with sihce the compiler musi decide whalher
elther the function or the aArgumen! is an mte. and If so replace it by lts
name. Getiing the NAME-LIST paramater right 1¢ the recursive calls of
complle Is also tricky. We shall first show the necessary program and then

explain .



APFPLY(f, a) —
letrec EXPR(flev,fmfen,fnew) =
compille env fnames f
and EXPR(alev,amfes, anew) =
compile env anames a
and result, fnames, anamea =
flev=alev —
(EXPR(flev,fmfes++amfes,

APPLY (fnew,anew) ),
take(£fmfes)namen,
drop(aﬁafes)namea) H

let NAME{num,subnames):namesa' = namesg
in
flevialev —»
{EXPR(alev,
EXPR(flev,fmfes,fnew): :amf es,
APPLY (ARG (num) . answ) ),
subnames, names');
flevialev —
(EXPR(f lev,
EXPR(alsv,amfes,anew):fmf es,
APPLY (fnew, ARG (num)),
names', subnames)

in result

50
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Nolgs: The unusual tuncllons used In this expression are as follows: ++ s
appoend. @ is cons. £ Is langth of a jist, and take and drop return the firsl

n elements and all bul the first n siements of a list respeclively.

Notice that complle compules Inames and anames from the resuits of ths
recursive calls. even though they are themseives parameters to those calls.
It guaraniees that if the original call had a names parameler Isomorphic
10 ita EXPA-LIST resull. then the recursive cails will have 10p. This clrcular
style ol programming Is only posstble because of tazy evaivetion, and even
s0. one must convince onesell that the function is aclually defined. It Ia
esasy lor functions written in this way to fall 1o terminate. In the case of
complle. one can argue that all level numbers are obviously dafined. and
so all mies are 1oo. Finally, this Implies that all names and new exprassiong

are also defined end a0 complle always terminaies.



A-expresaions are complled by the expression below.

LAMBDA(Y,2) —
letrec vlev, env' = bind v voum env
and emfes, enew -
letrec EXPR(elev' ,emfes’,enew') =
complle env' enames' e
and enames' =
vlev=elev'—enames; subnamee
and [NAME (num,eubnames)] = enames
in vlev=eleov' —
emfee’, enew’;
[EXPR(elev' ,emfes’ enew'}],
ARG (nhum)
and orderedmfes, permutation =
let » -
sort (x(7,EXPR{alev,?7,7))
L(?,EXPR(blev.?,7)).
aleviblev)
(zip [1..femfes] emfee)
in map (h(l,e).a) 8, map (h(l,e).1) =
and reault, orderednames, vnum =
mkap comb orderedmfea names
and comb = EXPR(0, [], SUPER(vnum,enew})
and enames =
map (r(l,n).n)
(mort (A(L,7)0(3,7). 1<3}
(zlp permutation
orderednames})

in reault



53

Firat, we add the bound variable to the environmant using bind. which we
assume aiso assigns and relurns the new [evel number. Then we complle
the body ol the A-expression and take accouni ol the laci thal the whole
body might be an mfe «f viev |s greater than alev}. Notlice that ihe
declaration of num and subnames can only be executed when enames has
precisely onea element. This Is periectly acceptable. since in olher cases
nelther num or subnames Is used and so the declaratlon does nol need

to be exacuied.

Wa go on 10 sort the mies found Into optimal arder, and record Ihe
permutation used so 1hat the corrgsponding names can be resiored lo the
original order later. The quesllon mark used as a variable name means 1hat
the variable I not actually required. sorl takes partial otder and a list
and sorls the list Into Increasing order. zip takes two lisis and returns the

corresponding st of pairs,

Wea can then use the subsidiary funcllon mkap. which takes &8 combinanr
and a {ist of arguments (In reverse order) and conalrucls the application
of the combinator to the arguments. It also needs to be passed the names
correspending to the mies of the result. of course. and N refurns a lisi
of names 10 be used 1o replace the argumants and the next availablg

argumeni number,

Finally. we can construct the super-combinator ltself and sort the names

1o repiece the arguments inio the original argument order.



54

M only remains 10 Oellne mkap We do s0 below with no further explanation.

since N Is very similar 10 the APPLY case of complie

letrec mkap £ [] (] = (£, [], 1)
and mkap f
(EXPR(alev,amfes, anew):atgs)
rnamea =
letrec EXPR(flev,fmfes,fnew),
anames’,
nextarg =
mkap f args fnames
and NAME (num,subnames):rnames’' =
rnames
and r, fnames, anames =
flev=alev —
(EXPR(alev,
amfes++fmfes,
APPLY(fnew,anew) ),
drop (famfes) rnames,
take {(famfes) rnames);
flev(alev —»
(EXPR(alev,
EXPR(flev,fmfes,fnew):amfes,
AFPLY (ARG (num) , anew) )},
subnamen,
rnames"')
in (r,
NAME (nextarg,anames) :anames’,

nextarg+l)



5.5. A LOQIC COMPILER

We presenl our logic programming complier In Prolog [Kowalski79). The
datatypes used corréspond 1o the ones in the functional version. so we ahall

nol describe them furthes. The complle predicale takes the lorm

compile(env,node,expr,names)

where env is an environment, node Is Iha original eapression. expr is 4
sirvuciure with funcior EXPR coniaining the level. mfes and new form af the
axpression. angd names s a llst of names Isomorphic 10 the mie caomponent

of expr.

comptie Is detinad by lour clauses. the lirat twa of which complle variables

and consisnis, They are:

compile(env,VAR(...}),EXPR(1,[]1,ARG(n}},.[]) :-
lookup{env ,VAR(...},1l,n).
complile(_,CONST(...),EXPR(O,(],CONST(...)),[1}.

We have assumed that lookup finds the level and carresponding argument
number of a variable from 1he environmeni. and that the underline Is an

anonymous variable.

Applications are compiled by tha clause

compile{env,APPLY(f,a),expr,nhames) :-
compile(env,f, fexpr,inames),
compile{env,a, aexpr, anames},

apply (fexpr,acxpr,fnames, anames,expr,names).
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The luncton and argument are complied firsl. and then apply Is used to
combing the resuits. It the function and argumen! have the sama leval. then

apply simply applies one 1o the other

apply(EXPR{1l,fmfes,fnew) EXPR(1l,amfen, anew),
fnames, anames,
EXPR(1l,mfes, AFFLY{(fnew, anew)) , names) :-
append(fmfes,amfea,mfes),

append (fnamees, anames ,names) .

Otherwise the one wlth the lowest level Is made Into an mie-

apply (EXPR(fl,fmfea,fnew) EXPR(al,amfea,anew),
fnames,anames,
EXPR(al ,EXPR(fl,fmfes, fnew}.amfes,
APPLY (ARG (n},anew)),
MAME (n,fnames).anamea} :— fl{al.
apply(EXPR(f1l,fmfea,fnew) ,EXPR{al,amf ea, anew),
fnames, anames,
EXPR(f1l,EXPR(al,amfes,anew) _fmf ea,
APPLY(fnew,ARG(n))),

NAME (n,anames}.fnames) :- fl>al.



A—expressions are complled by the ciayse:

compile(env,LAMBDA(V,€e) ,expr ,names) :-
bind(env,v,nextarg,env’' lev),
complle(env',s,eexp’ ,enames’),
lambody(lev,eexp',enames’,
EXPR(elev.emfes,eneéw),enames),

sortmfes(emfes,enames,sortedmfes,sortednames),

mkap (EXPR(O,[],SUPER(nextarg,enew)),
aortedmfes,sortednames,

expr ,names,nextarg).

Firsi we bind v Into the environment. gliving It argument number nextarg.
We assume that bind computes both the new environment env’ and the new
level number lay, as In the funclional varsion. Then we complle the body,
and take account of the fact that 1t might farm an mfie by Ilsell (n lambody.
aortmies sorts the mies and names Inio optimai order, and finally mkap
Is used to construct the reptacement expression. assign names and compute

the number of arguments of the combinator,

lambody !s datined by

lambody (lev,EXPR(lev,mfes,new}, names,
EXPR(lev,mfea,new),namee).

lambody (lev,EXPR(1,mfen,new) ,namea,
EXPR(lev, [EXPR(]l,mfen ,new) ] ,ARG(n)},
[NAME (n,namea)]) :- l{lev.

which Just makes ths body of the A-expression Into an mie If It doesn

comain the bound varlable,
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mkap applies the combinator 10 its arguments and assigns their names. lis

form Is

mkap(comb,mf es, namee , expr, enames, nextarg)

where comb Is the combinalor t0 be applied. mies is Its arguments. names
the names lo be essigned 10 those arguments, expr the resulting expression.
enames the names of mies of that exprassion. and nexiarg the next iree

srgument number. It is deflned by the clauses:

mkap(f. (). [).£.[1.,1).
mkap(f, arg.mfee,NAME (nextarg', anamea) . names,
e, enames ,nextarg) :-
mkap{f,mfes,names,e',enames’ nextarg'),
apply({e',arg,enames',anames,e enames),

nextarg is nextarg'+l.

Wa have made greal use of 1he Prolog varlable in this program to distribute
the computation of name structures and argument numbers to convenient
places. We foel that this program demonstrates the power of Prolog rather
well: such things as sorling mies and names proved considerably simpler
lhan In the functional equivalent. We have alsg used thla styls 10 Inciude
an oplimisaton in the compiler. which removas repeated mies from the

parameter list. This can be done by the predicate

optimiee(mfes,names,mfes’, names’)



which takes an unoptimised mfe list in mfes and names, and computea the

gptimised equivatenl n mfes’ and names’. i Is defined as

optimise([).[).(1.[1).
optimise(mfe.mfes, name.namea,
mfe.mfes’,name.namee’) :-
not (member(mfe, mfea)),
optimise({mfes,names, mfes’,names’').
optimise{mfe. mfes,name.names,mfece' names') :-
element{mfen, il ,mfe), element(names,l,name),

optimise({mfea,names,mfes' names’).

where element(isi el lndex) Is true It 8l is the Indexith elamant of list. Tha
corresponding optimisation in the functional complier was too complicaled

to Include.

5.8. CONCLUSION

The super-combinalor absiraction algorithm described in this chapter Is
reasonably complex. and so it Is Inleresting to compare aur three diffarenm
Implamentations. Curtously. the tmperative program is the shortest and
requires least explanation. This Is partly becayse we assumed that many
facllies of tunctional {anguages were avallabla. which Is not usually the
case. Howaver. (he Imperative solution represents all iis informetlon in one
complex data-siructure. rathes than breaking It dawn into simpler unlts, and
it depends crucially on side-efiects happening at the right times. We contend
that these make it difficult 10 understand. even though It is relalively short.

Of course. they also rendaer Il 1otally ynsuilable lor & parallel Implemeniation.
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The functional and toglc programs are very simliar. However, the
Isomorphism between name struciures and mie structures (which is cruclal
© both of them) is concealed In the functional version., since lhe name
atryctures appear as argumenis and tha mfe structures appear as results.
This renders the struciure of tha functional verslon more obscure. We
consider this strong evidence that the need lo specify directian of Informailon
How can occaslonally lead to badly siructured programs. Excepit for this point
wo found the luncllonal style more expressive than Prolog. Both the functional
and fogic versions are dlvide-and-conquer programs, and so both are

sultable for Iimplementailon on a parallel machine.

We would have liked 10 clalm that the experlence of implamenting the same
complex algorithm In three diflerant Janguages demonstrated conclusively the
supariority of functional and logic programming over Imperative programming.
Untoriunately thls example Is not terribly conclusive. The Pascal hacker may
woll claim that the imperative implementallon is easier to understand because
It Is shorter. but this Is because he Is used to 1hinking In terms ol
slde-effects and time. However. our own understanding of the absiraction
algoritihm was advanced considerably by the experlence of wriiing 1the
lunclional and loglc versions, while writing the Imperative progrem served
only 10 confuse us. In this respect we fael thal the axample has demonstrated

the superlority ol declarallve programming. il only to ourseives.



CHAPTER ©

ANALYSIS OF EFFICIENCY

8.1. INTRODUCTION

In this chapler we attempt a theoratical analysis ol the eiliciency ot
supar-combinators. Although 1L 18 difficult to obtain concrete results In this

area. we have two resuits which we think significant.

Wa considar transiation of a program of slze n Into super—-combinators ang
Into Turner’'s combinators. and we find the order ol ihe size ol code
produced. Burton has already shown thet the combinator code need be no
larger than Qinlogn} [(BurtonB2). we will show thel. on average. It Is indeed
this large. We wlill also show that the super-combinalor code can be no
larger than O(ntogn). bwi thal it may somelimes be this large. and we will

offer some evidence that it Is usually smailer.

This problem Is Interesiing for iwo raasans. Firstly, In early implementetions
using Turner's comblinalors. excessive code slze was & sarlous problem.
Some small programs complled into code so large (hat It couid not possibly
be run. We would like to demonstraie that lhis cannot happen using
super-combinators. Secondiy. at least In “stralght lineé” programs, code tize
ls an approximaie measure of execution speed. We use this 0 make a (very

vague) comparison with the SECD machine.
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6.2. TURNER'S COMBINATORS

We begin by quoting the appropriate results for Turner's combinators.
Kennaway has shown that the translaiton rmethod Turner describes can iead
to the production of code of size O(n?) [Kennaway82). Burion has piven
sn improved method and shown that It produces code of sika Otnlognl In
the worst case [Burton82). it is easy to see lhat this result is oplimal. and

we give A& prool hare.

We lake the size of an expression io be the number of nodes In Ils synax
tree. since thia is consistent with the graph reduction applications we have
In ming. This Is equivalent 1o the number of symbols In hs written
represeniation. not couming brackets. In this definltion we dilter trom Burton,
who counls the lengths of identitlers in his size measure. (However, we have

fransiated his resull. glven above. int0 our terms’.

Now, since Turner uses a lixed sel ol combinaiors, S Jdiflerent ones say,
it Iy clear thet there ere alt most S" different combinator expressions of
sizs n. Howaver, singe A-exprassion may conlaln Oin} diffarent symbols.
there may be otn™ different A-expressions of size n. In lact. we can exhibit

n" non-interconvertibie A-exprassions of size Otn), being

Avli...vn. CONS wi (... {(CONS wn NIL) ...)

where all the vi are different identifiers, and sach wi I1s one of the v). These

L-eaprasgions are cleerly non-interconvertible since they alt yield different

resuvits when epplied to n different argumenis.




Now, sach ol the n" X\-expressians we have given must complie © »
ditterent combinator expression, s0 if N I3 the worst case code size then
thers must be al jeast n" different combinator expressions of alze no more

than N. We must therefore have

and so. 1aking logarithms,

nlogn < Hlogs

That 1a, N Is at lsas)l Olnlogn)l. We can aciually derive sironger rgsull
from this argument’ no matlter how good the complier, almost all
h-exprosslons must compile to code af sixre at laast Odnlogn). Burton’s resull
therefore tells us that the average code slxe of a L-expresalon after

fransiation to coambinators Is O(nlogn).

8.3. SUPER-COMBINATORS

An analysis of the complexity of the code sire of super-combinalors Is much
more  difficult. We wlll beqin by observing that translallon to

super-combinaiors does increase lhe size of the program, and by identllying

the source of the increase.

Consider a8 single i-expression Ax.E. and suppose H has mles El 10 En.

i will be translated into

(xl1...1ax. E[1i/E}]) E1...En
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H we consider the syntax tree of the body Of the original A-emprassion, we
s@@ thal It la broken up Into the mfas. and the non-mfe part. Tha paris
all resppeer In the code, the mias As super-combinator argumrnents. end
the non-mie part es the super-combinalor body. The diagram bhelow

{llustrales thla, using dotted lines 1o dellmi the perts of the tree.

Since super-combinator srguments are actually represenied by Integers It
Is only neceasary io store the arity ol a super—comblnalor st Its hsed. not
ths nemes of i3 argumentis. xl1.. .. E would thatefore be represented as
tnE. ang »0 wa count the £ and argumeni names as one node. the same

as Ax,




it appaars that the only nodes In the cade which do not correspond direcity
{0 nodas In the ariginal source are thoae usad to apply 1he combinator
to Its arguments. There is one of these logr each mia, and so we may
conclude that when a prggram |s transiated Inio supar-caombinators lis size

Increases by the total number of mitas found durlng iranslation,

Since accounting for mies Is so ceniral ta gur probiem H ts worth studying
them further. We hava already peinted oul Ithal an mia Is an mie of ihe
native i-expression of Hs immediately enclosing expression. To see why,
suppose Ep I3 an mie. and Hs immediately enclosing expression Is Ei.
Clearly Eo and E1 have different nallve k-axpressions, and the nalive
A-exprassion of Eo encloses that of E1. Since Ei s lrea In alt X -expreasions
enclosad Oy its native gne. Eo cannot e maximal frea In any of them.
Hawever, since E1 Is not free In its native h-expression, and Ep s, then
Ee i» maximal frea In It. In Implemanialion farms this cofresponds 1o
observing thel. since E1 will be passed from its native A-expréssion to Ra
proper locallon, Eo will he carriad along Inside It and need not bs passad

saparately.

Moreaver, each mle will only ba an mie of ona \-axprassion. That {s it
will not be an mfe of the exprassion produced when tha A-eapression I
ie an mfa of ia compilad. This Is becausa. whan (ha1 l-axpression tis
trranslated into & combinator application, the combinalor paramelers are

ordered by ihe opimal ordaring given In saction 4.3. Consider Ei in

By the optimallty criterion, elt the Ej to the lalt of Ei have nalive
A—oxprassions enclosing or aqual 1o tha native h-axpression of Ei. and a0
t@ E1..Ed has the same native l-exprassion as £ This means ihat E Is

not an mis of any olher A-expression. although (a Ei..E} may be.
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S0. now we know lhat we need oniy count mfes, each of which wlll only
o«;cur once. However, ithe situatlon Is complicaiad by the facl that expressions
introduced durlng transiation mey themselves turn out to be mifes of further
A-exprassions. For example. i1 a A-expression has iwo mfes Ei and Ea
wilh ditferant natllve l-expressions, then It wllt be replaced by (¢ Ey E2),
and (@ E1) will isell be an mfe of the nalive A-expression ot Ei. Nol only
thia, (@ E1 E2) may be an mie of the nexi enciosing x-expression. Ehlher
of these new mies may then cause enclosing A~expressions to have st
further new mfes. The problem of analysing the code size ol
sups/—-combinators is accaunting for these mfes peneraled during transiatian,

as well as lhose originally present In the program.

8.4, ACCOUNTING TREES

in order 10 keep irack of the generated mias we Introduce the nolion of
an gccounting tree. An accounting tree for a program Is a iree whose
verices are the JM-expressions of the program, and whose edges are
consirained to connect a k-expression tc an enclosing one. By conventlon
wa draw accounting trees growing upwards with the notional outermosi
L-gxpression at the boitom. so. tar example, the diagram below shows wo

possibie accouwnting lrees for

xa.(rb.xc.b){xd.a)




67

rc .
rb rd b L Ad
Aa ha
root ool

in aur dlagram. edges connect L-expressions above to enciming

)h-exprassions belaw,

For any program. there Is a “tallest” accountng iree which we call the Initial
accounting tree. In which all i-expressions are connected 1o their
Immediately enclosing k-éxpressions. The tree on the leh above is the InHial

accounting tree for the given program,

Starting from a program’s Inillal accouniing tree, we wil use the mies
originally present in the program, ane by one, to transform the accounling
iree 30 ithat we can discover Irom It which furthar mias will be generaled
4s a consequence of the ariginal ones. The number of addiional mfes due
to an original ana will also be a reasonabla measuré of the ‘cosi® ol the
assocleted transformation to the trea. This wiil allow us to franslats ihe
problem ol super-combinator code size Into an equivalent one concetning

the cost of a iree—transformation algorithm.
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During the transiormation process we will presarve the lollowing invariant:
sach l-sxpression will ba connected to the native k-exprassion aqf Its most
recently discoversd mfe. orlginal or generated. unless none of ts mfas have
been discovered yet. In which cese it will beé connecled to s immediately
enclosing A-expression. The order in which original migs are used lo
transform the tree will be constrained by the following rula: If E1 ang Ez
are migs such that the native k-expression of E2 encloses (s nearer the
rool of the ireg than) ithe native A-expression of E1. than we will use E1
befors we use Ea. This consiraint means that we wili always discover the
mies ol any parlicular L-expression In reverse order. although not

necessarlly one after anothar. Thia property s crucial 1o the proof.

Now. consider processing an originai mfe E of l-expression A Let N be
E's native A-expression. We must at Jeast remove the edge leading
downwards from A and connect A 10 N Insiead. in order 1o gpreserve our
Invarlant. Suppose B is the A-expression Immediately below A before this
modification. Then we know that A will be replaced by a combinator

expréssion

« ... EE' ...

where E' has nellve A-expression B, or that A witl be replaced by

and B s A's immadiately snclosing )-expression. We know this because




of the aptimal ardering of mlas, and because mles are discavarad In reverse

order as noted aboave. In alther case,
(a ... E)

wilt be a genarated mis of B. So. B must also be reconnecied 10 N, and
the sama argument applias to C. tha i-expression Immediately below B,
and so on. There must ba & chain of A-expressions B.C.D... leading
downwards from A Ihrough the accounting tree, sach gf which should be
recannected directly to N, and each of which has a generaied mie with
nalive k-axpression N. This chaln must terminate somewhera, and cannot
tarminate at the root al tha accaunting wee since the rool nollonal
L-expression cannal passibly have any mias at all. It must tarminate instead
at N. Stricily speaking. It tarminaias at a i-axpressign |ust above N. M say,
since M already has an mia with nativa k-exprassion N and s0 no rew
mia Is actually generaiad. The Iransformaiion ihat resuils ts litustraled In

the diagram beiow.

\/
\/
\/
\ \/

_.‘ .y M -eeesssrsansnss

\
Y
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So. if tha path langth from A to N Is n, then the presence of an original
mfe of A with natlve X-sxpression N Impiles ihe presence of n—3 generated
mies. We assoclale a “cost™ of n with performing the associsted
transiormation o! tha accounting tree. so the total increase In slze of a
program whan {iranslated to super-combinalors wili be fese than the total

cost of tha transiormations applled to Its accounting trea.

Wa may therefore conclude thal when a program fs transiated into
super-combinalors the Increase In i1s slze Is iess than lhe maxtmum 1otal
cost of applylng as many ‘fiatten” operallons as the program originally
contsins mfas 10 a tree ol as many nodes as the program conlains
A-axpressions, where a flatien operation consists of selecting a path In the
tree leading towards tha rool and reconnecting every other node on the
path direclly 1o the and nearasl the rool, and where the cosi of a flatten

opetation is the ltengih of 1ha path.
8.5. UNION-FIND ALGORITHMS

Wa break oft from analysing super-combinators now 10 describe the
uwnlon-ilnd problam and afgorithms lor Hs solution. It will turn oul that
previous analyses of these aigorithms will enable us 10 completé our analysis

al supar-combinalor code size.

Tha UNION-FIND problem concerns the manipulation of a number of disjoint
sels which partition a universe. initlally the universe is pertitloned -Imo
singletons, and thersafter 1wo kinds of operaiion may be applied:
UNION{A.B.C} which unhes 1ets A and B Into a new sel called C. and FIND(x}

which delarmines which set the alementi x belongs to.




The basic UNION-FIND algorithm raprasants the sets as lrees of elemsnis
with set namas @t tha rools. UNIONs ara parformed by making the rool of
Ihe trea repraeseniing one set point at the root of the trea representing the
other. FINDs are parfarmed by following polntars unill one reaches a rpot.
UNION is therefare of consiant cost, and FIND of cosi proporilonal 1o the
langth of ihe painh followed. Two optimisations can be appliad to Ihis

algorithm:

The Coltapsing Rule: when a FIND Is performed. all nodes on ihe path to
ihe root are made to point direclly at the root. speeding up subsequent
FINOs.

Tha Weighting Rule: a UNION operalion alweys makas iha sat containing
lawar alamants poimt at tha sel containing more. This wlil atso tand to speed

up subsequant FINDs.

N turns cut thel, for the purposes of analysing these aigorithms., we can
consider all UNIONs to occur first, bullding a tree, followed by partial FINDs,
which siart at an alameni and f(ollow & path part of tha way lo the rool.
H should be clear that the aigorithm using only ihe coliapsing rule performs
axactly the same kind of tranaformations as our manipuialions of accouniing
Irees in the last section, and moareovar the cost measuras are the sime

In bolh cases,
Tarjan hes analysed ihesa algorithms [Tarjan75] and his results are hat,
It m2n partial FINOs ara periormed on a tree of n nodas then the (olal

cosl, 1{m.n), will sailisty

t(m,n) = 0(m.max(1l,log{n?/m}/log(2m/n)))
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If only the collapsing rule is usad, and

t(m,n) = O{m.a(m,n))

it the coltapsing and weighting rules are both usad, where a Is related to

the inverse of Ackermen’s lunction and grows so slowly that it is bounded

by & small constent for ell praciical gurposes.

Fischar has glven en sxample [Fischer72) where

t(n,n) a nlogn

using only the collapsing ruie. showing the farmer upper bound tight In 1he

case m=n,

8.8. CONCLUSION

We may therelore conclude thal tha Increase in tha elze of a program

containing n h-expressions and ma2n original mfes Is bounded by

O(m.max(1l,log(n3/m}/log{(2m/n}))

Leting a=m/n be the average number of original mles per k-expression.

this bound can be rdexprgssed Aas

O(m.max{l,log(n/a)/log 2a})

It 18 clear thal, for a2). login/al/log 2a decreases &s a Increases, and

i Is equal 1 1 for a=v(n/2). Therelore, for a2 y(n/2) thes bound I3 linear




In m, and therefore linear in the size of the program. For 1€a<y(n/2). the
bound Is less than ihe value at a=1. O(nlogn). In lact. log(n/a)fiog 2a<k

when a?( _+(2n¥)/2, so lor these values of a the bound Is km. For a1,

ke )
we observe that decreasing the number of FINDs cannot possibly Increase

the overall cost. which is iherelpra stil bounded by O{nlogn).

Therelore lhe code size ol a program of size N whan iransiated to
super-combinalors }s bounded by O(NipgN). Fischar’'s example shows (hat
there are prograrms whose code Is this large. however. his axample Is highly
symmeiric and s not a llkely structure for a real program. For programs
where |he average number of mies per A-axpression |s large enough then
the code slze Is llnear In the program size. For programs "balanced’ In
the sense that their Inittal accouniing firees couid be construcled by a
sequenca of UNIONs salistying the weighling rule a mych tighter. almoat
linear. bound applles Lastly, these are worst-case bounds, and we have
been told that in practice even ihe collapsing rule |s sufficlent to make
a8 UNION-FIND algorithm run In nesarly-finear time. This suggests ihat lhe
average behaviour Is better than O(nlogn). and that In praclce

super-comblnalor code size whl be nearly linear In the size of the program.

We betleve that the code size of combinalor and super—combinaior
implemeniaiions rellects a “slow-down factor®. whereby the same expression
may lake longer to execute If i |s part of a large program than If it is
part of a small one. We belleve code size Is a good measurs of ihlis
slow-down factor because, In each kind of implementatlon. the time to apply
a comblnator Is proportional to s size: there ara no “instructions” which
may take a variable amount of time to execute. It might appear that ihis
slow-down s present only In these Implementations. but In fact It is also
prasent in the SECD machine. and In conventional Implementations of
languages llke Pascal In these cases {1 appears as the time lor an

anvironment lookup. which varies with the number of names In the
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environmeni. Because there ts no direct way ol relating tha average number
of names In scope with the size of a program It is diflicu to estimate the
slow-down faclor of the SECD mechine, bul we observe that Il is possible
1o writa programs of slzs n with a slowdown factor of O(ny for Henderson‘s
SECD machine [HendersonB0l. and !t seems reasonable t© us that the
average number of names In scope shouid (ncrease at least with the
logarihm of the program slze, giving a slow-down lactor of at ieast Qdogn).
Singce 1he maximum possible siow-down factor for & super—combinator
Impismentation is Oflogn). this suggesis super-combinators may be an
inherenily more elilclent implemeéniation method than the SECD machine.

We conjeciure that any Implemeniation method for the L-calculus (or any
other languaga with Algol-ltke scope rules) muat have a alow—domi_clor.

and that in iha worst case this  facior will be AO(iognJ.



1 CHAPTER 7

EVALUATION ORDER

T.1. INTRODUGCTFION

In chapter 2 we argued thmsl one oi the masl imporianl advaniages ot
lunctional programming ianguages Is i1hat they rellave the programmer of
the burden of expressing a desired evelustion order through the struciure
of his program. In (his chaptér wé exhibit cases whare a particuler evatuslion
order Is critical 1o ihe efficiency of the program., and we suggesi

struclure-independant ways of controlling 1.

Lel us flrst consider how conirol over evaluation orger |s used to Improve
elliciency in imgperative languages. We take as an exampie a program that
reads @ f(lle and prinis the number of caphal As in . One possible evalusiton
order |s {0 read the whole lile into memory [irsi, and then count all the

Ag In it and print the result. This would be programmad as:

read the file;
count the Aa
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Alternalively., we could read the flle one character at a tima and updale

the count as wa go. This would be programmed as:

open the file;
zero the count;
until end of file do
read a character;
if it'e an A then increment the count fi
od;
cloee the file;
print the count

This |atter program is much less moduiar than the former. the two iogically
Independent oparations of reading the flle and counting the As have had
10 bs programmed logether. Howaver. it IS much more efficienl beceuse
K needs onty a constant amount of spece to run In. The former method
may requires an amount of space which depends on the size of the fie.

This Is such 8 gross difierence that we cannot afford 1o ignore Il

S0 evatvaling e program in the correcl order can be critical lo space
eificiency. Since we cannat (and do not wanl f0) express an order through
the struclure of a functional program, we must ask ourseives: {irstly, Is lazy
gvalualion {or eny athaer slrateQy already In use) the correct cholce enyway,
and I nol. how can we basi cause the correct order to be used? in seclion
7.2 we whl exhibit examples which demonstrate lhat lazy evalyalion Is
sometimes & poor chalce. In section 7.3 we will give an example that no

sequentlal eveluation order can avaluate efficlently. We concivde that a

paralisl sbsttect machine is a preraquisie for space-elfficient avaluation. and

we sugpest explicit siruciure-independent ways of conitroliing parallel



Now lel us move on to & simple text processing funcilon tp. 1p allows
abbreviations 10 be detined end substituted Into the texi. For simplicity. we
assume tha! only one abbraviallon need be deflned at a lime. An abbravialion
definitton appears In the text as the abbrevlatlon enciosad In brackets. and
subsequent axclamalion merks are replaced by the text between the brackels.

S0, for exampie, tp would converl

(abbreviation)An ! definition appears in the text

as the ! enclosed in brackets.
tnio

An abbreviation definitilon appears in the text as

the abbreviation enclosed in brackets.

tp lakes two arguments. the texl 1o ba processed (a8 list of characiers! and
the Inillal abbreviation velue, end raturns \he list of characters In the resui,

R is deilned by

tp 1] ab =)

tp ("!':x2) ab = ab ++ tp x ab

tp ("(":x) ab = tp (after ")" x) (before ")" x}
tp (c:x) ab = c:tp x ab

where belore and aller are assumed to return the characisrs In the second
occurrenie
argument up 10 and beyond the first seswrawes ©f the [irst argument

raspectively.
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This observation motivates us to accumulale the sum differently. so that
partial sums are reducible aariler. We Introduce an accumulaling parameter,

thus:

length 1 =~ length' 1 D
length' ({1 n = n
length' (a:x) n = length' x (n+l}

Now length (1.2.3] can be reduced as follows:

length [1,2,3] red length’ [1,2,3] 0O
red length' [2.3] (D+1)
red length' [2,3] 1
red length' [3] (1+1)
red length' (3] 2
red length' [) (2+1)
red length' []) 3
red 3

using only constant space. However. this consiant space verston depends
on the second parameter of length’ being reduced Lefore length’ Is apphed
lisell. This wouid nol be a0 In a completely lazy sysiem. insiead the sum
would be accumuialed unevaivaled. as ihe expression (((0+N+1+1), and
would only be reduced when refurned as the resuft of lengih. So a lazy
svaluator would make this version no more eHicient than the lormer. We
will show Iater how we can force an otherwise lazy evaluator 10 execute

this function etficiently.



avaiyallon In seclions 7.4 and 7.5. In seclions 7.6 and 7.7 we tackle some
Interesiing exarmpies using our primliives, and ehow ihat they aliow etiiclent
solutions to be written, In sectlon 7.8 we report the disadvantages ol our

primitives, and In section 7.8 we draw Our conclusions.
7.2. LAZY EVALUATION

In this section we will explain a lew examples which show ihat aimple lazy
avalualion can sometimes be gressly ineificient. First of all. we consider
the Junction thal computss the lengih ol a lisl. The simpiesi detinition we

could use Is the following:

length [} = 0
length (a:x) = 1 + length x

Athough we would expeci 1o ccmputa the length of a Hst in consiant space.
this formulation will clearly require space proportional 10 the tength of its

argumeni, since. for example. length [1.2.3] Is reduced aa follows:

length {1,2,%] red 1 + length (2,3}
red 1 + (1 + length [3])
red 1 + (1 + (1 + length []))
red 1 + (1 + (1 + 0))

red 3

The chain of additions which Is bullt up s not reducible unill 1t I8 compista.
When ihe last @lement ol the lIst Is scanned by length. then the eniire chain
musl be preseni in storé and sa wlit consume space proporilonal to ihe

langth of tha argument.
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One would expect thal the only space required by ip to process a flle would
be the space required to store the current abbreviation. Alas, this Is not
so. Consider the input ilst *(a)bcdelghljiimnop...”. tp of this list wil be

raduced by & lazy evalyalor as follows:

tp "(a)bc..."™ ? red tp (after "}" "albhc...")
(before ")" "a)bc...")
red tp "be..." (before ")}" "a)bc...")
red "b":tp "cd..." (before ")"
*albc...")

So. since the value of the sbbreviation is not required until en exclamalion
mark occurs In the input. it will aclually be slored In the unevaiuated torm
(bajora "}* "albc.."). it will retaln a pointer 1o almost all the input fila.
prevanting It from belng reclalmed by the gerbage collector. Thus tp. ke

length, mey raquire an arbitrery amouni of space to run in.

In both these ceses a large expression which reduces 10 a small vaiue Is
leit unevaluated for a lang time. representing a gross waste ol storage. In
order 1o lorce merller avaiuation wa introduce an aptional sirict function call.

Wa define a combinalor VAL by

VAL [ x red £ x

bul we insist thal x is evaluated beiore VAL is applied. We will usually use

an inflx nolation, writing 1 (val x) Instead of VAL | x, and we will (eel iree



lo use the notation (val €) in any conlext where E is & function ergument,
whether thls s Iepliclt or axplict. For example. wa will happlly wrke let
x = val £ In.. to oOgnote a sirict declaration, and we will write la. val D,
cl 10 denole that b Is evaluaied before the tuple is constructed. whils a

and ¢ are loft wnevaluated untll required.

Now we can write

length' (a:x) n = length' x (val n+l)

ta torce evaluation of ienglh 10 be In the elficlent order.

We can use VAL to define a “sequentlal evaluetion® operalor which evalustes

N3 first argument and then returns its second:

a ; b a {Ax. b) val a

and we can deline other funciions which control evaluetion order, for example
force —- an |dentilty functtlon on lists thal relurns Ns result only after all

tha elements of the list heve been svalueled.

force 1 = case 1 of
[r—1n
(a:b) — a ; force b

esac ; 1

Finally wa can rake tp siore abyraviationa eiliciently by writing

tp ("{(":x) ab = tp {after ")" x}

(val force (before *)}" x))



B2

All these avalualion control methods ere In uss in the Lispkil software baing

writian by Henderson. Jones and Jones [Hendersona3l,

in this section we exhibiled two functions which are evaluatad Inefiiclently
by a lazy evaivalor and wa showed how they can be made eificient using
VAL We regard this as a good solution because h doas nol necessitate
chenging program siructure. It sgems thal we can wrlle our programs without
consldering execution grder at lirst, and then annolate them with VAL and
othar control functipns such es force to make tham elficient. Unfortunately

mahers are not quite that simple. a3 we wlli ses In Ihe next section.
7.3. THE NEED FOR PARALLELISM

In his section we will consider a very simple parsing problem. We want
a function split which 1ekaes a list of characters and relurns a peir whos(
firsl component Is the Yirst line ol characters. and whoss second component
s the rest of the argumen list. splt could be delined by:

split 1 = [before nl 1, after nl 1]

where nl Is the newline character. Nailurally. we would like split 10 run In

constent space |f possible. For eaxample. a program like

program 1 = let [a, b] = split 1 in
{length a, length b}

tan obvlously be executed !n constant space.



However. the slwple delinillon given above does not have this property The
reason for this s (nformatiy}) that both components of the result of spilt
contain pointéers o the entiré inpul tist. and so whichaver is avalualed first,
the other will prevent garbage collaction of any of the inpul. In the simple
program above this will iead o at lgast the first line ol Input belng present
I memary In its entirety. Since the Mlirst line may be arbiirarily long. this
Is an Intolerable overhead. (It might seem that unnecessary buffering ol one
ine is insigniticant. It should be remembered that this Is an extremaly simpie
example, and thatl the same behaviour can also arise In much more severe
forms. For example. reading the first file off & magnetic tape Is exactly
anslogous to the case we are discussing. bul the unnecessary buflering

of an enfire flie is much more serlous).

We migh Iry 10 address this problem In the same way as we solved the
problems in the last section, by rewriting splt In a different way and using
VAL 10 conirol tha execution order. However, this exampie does not yield
to this treatmeni. We will prove Informally that no sequeniiel evalustor can

execuls any versln of split efticiently.

First of all we clarily lhe nolion of a "sequential evalyator”. By this we mean
that, once the evalualor has begun to reduce en expression E, it will only
reduca E and other expreasions that E demands until E has been complgtely

reduced.

Now, we assume that s is a version af spiit which will run In consieni space,
provided it 1s used In the right coniext. We Imagine thet e Is applied 10
the Inlinite list ol characters irom the keyboard. and thal characters are
typed relalively slowly. We consider the second component ol s's resull. the’

part of the Input list atter the first newline. This 15 a pointer Into the Input
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lis\ ater the lirst newling character. and s0O cennot possibly be compuied
untll &l the first line has beéen typed Therelore, i the conlext demands
this valye belore it has consumed all the [irs! lina, thén N will pe suspended
unill the Hirst newtine is typed, ano arblirarlly much of the ling may need
10 be ‘buflered up” to be consumed leier. We assume. therefore, that the

conlext consumes all of the first line belore demanding lhe resi of the Input.

Let ¥ ba the masximum number ol charactars of Inpul which are helg In
maemory simullaneously. We know that K exisis, since ctherwlse the program
would require more than constant space. Lsi | be the inpul jist, and iet
im be the part of the input list alter the first n characters, Since s must
return i3 two rasulls to the coniext belore the cContext can consume any
characters at all, we know that 3 returns belore K+1 characters have been
typed. Therefore the expression E denoting the “rest of the input” must be
Creaisit before K+1 characters have been typed. Since E evaluates to a
poiniar into the input st its unevaluated form musl aiso contaln a pointer
into the Input list. This unevaiuated form is created before K+! characlers
have been typed. end so the potnter must point before . If this pointer
temains unchenged throughout the consumption of the first Hne then 1 will
cayse most of the Inpul i0 be retsined In memory. consuming en arbhrary

ampunt of space,

Wes must therelore assume Ihal the relerence from E 10 ik Is via some other
exprassion E'. which is demanded, and so raduced., Dby the consumplion
of the first Hne. This reduction musl eliminate the poinlter 10 Ik, We have
siready shown that the consumption of the first line cannot demand E. so

tarelore £ and E' are not equal. We must have instead
E =~«PFE'

lor some tunciion F, In order 1o sellsiy our assumphon about K. E' must




be reduced after al most 2K characiers have been typed. and consequenily
the raesplt of reducing E° must conlain a pointer Into the Input list beiore
Ia. Once again, this pointer. it retalnad throughout the conaumption of the
Iirst lina, would 1ead to an arbitrary amount of input beling buflered In awvra.
snd s0 It muat be vla same third expression E which Is demanded by

the consumption of the first jine. We must have

E' = F' E"!

By continuing 1his argument. It follows that 1t the flrst line Is n characters
long. a chain of al least n/K expressions will be built vwp. Since none of
the expressions sre equal., &1 least n/K cells wlil be used. and &
non-consiant amount of space will be consumed. This proves our asserlon:

no sequentlal evaluator can execuie any version of spiit in conslam space.

Let us consider the significance ol this resuvil. We have demonstrated oniy
that one particular useful function cannol be run eMicienlly on sequential
abstract machinesa: however, I Ia intultively clenr that a similar problem arises
whenever there Is more than one “consumer® tor a value: il the sequeniial
nature of the absiract machine lorces one consumer 1o run first then ihe
other will retain the value and delay parbage collection. (In the case of
splil, thare are two consumers. Thay are lis iwo resulis). Even i N were
possible 10 combine the two consumaers inlo one this would be a bad solullon
since il would destrgy the modularity ol the program. We have shown thal
even this bad solution is nol possible in general on a sequenilal machine.
We are therefore compelled to Introduce parallelism Inlo our abstrac|

machina.
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Having done so the problam Is not yel solved: we must address the problem
of scheduling reductions so as 10 minimise the apace used. We can take
two approaches here: eilther schedullng Is Implicitly periormed by the
Implementatlan. or it Is expliclily conirolled by the programmer. Some
progress has been made with the tormer approach. Wadler has shown in
[WadlerB3) that If & program can be execuied In constent space then all
scheduling can be done el complle time. and he has given an algorithm
for doing so. However, he has also shown that, Il a program cannol be
execyled In constanl space. then the problem of schedullng s executign
ta minimlse the space used Is NP-complete (Wadler83]. Although Implicit
scheduling seemsa the maore desirable solulign In the long run, we consider
that these dillicuities make It Impractical at present. We prefer 1o look lor

simple ways In which the programmer can control scheduting explicitly.

7.4 PAR FOR MORE PARALLELISM

We bagin by providing an explicit mechanism for stariing perallel evaluation.
By analogy wilth the VAL funchion which we introduced in seclion 7.2, we

dedne a combinaior PAR by

PAR f x red f x

wih the additional property that x slarts execuling In parallel belore the
reduction (s performed Since PAR does not walt for x to finish It Is truly
an Hdentity function (VAL Is not because It is strict In xy. We wll use en
nflx notallon for PAR and deline conirp) funclions for use with H. just as

ve did for VAL,



Firsi we note that the spiit problem can be solved by defining split by
split 1 = [before nl 1, par after nl 1]
so 1hai. as the context consumes the first Jine. the second component is
also execuitng and swaliows characliers as they arrive. (par Is the Infix
varsion of PAR, and the nolation In jhis examgple means thal (after nl |}
staris execuling Immediately the resull of split Is constructed).
Now. H we deflne
all be (Ax. b) par a
which staris & exacuting In parallel and returns b, then we can write
parlijst 1 = case 1 of
1 — 11
(a:b) — a Il parliet b

esac Il 1

parlist | relurns | but staris paraliel evaluation ol all I's components. We

could use parlist in tha dalinitign of aplit ihus:

split 1 = [par parliet (before nl 1),
par after nl 1]

which Is betiar than the ftormer In that. even i the contexi does nol refer

1o the first ling until long after it has consumad the rast of tha Inpul, the
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firat line will be computed and will not retain a polnter to the entire input
list. S0 the programmer Is able to ensure that split runs efficienity by

annaolating it with par and conirol functions.
7.5. SYNCH FOR LESS PAPALLELISM

We have shown how the programmaer can delibaralely Introduce parallelism
to make split run efliclenlly when applled ta the keyboard. but we have so
far overiooked the need 1o reduce pareltelism by synchronisation. To see

why this can be necessary, Iscensider our {ast definition of spiil:

split 1 = [par parlist (before nl 1),
par after nl 1]

If split is notl applied to the keyboard, bul 10 some compuled Jist. then there
Is & danger that the expression (par after nl i) will cause | 10 be evalualeﬂ
fasisr than the context is able 10 consume the lirst line, This may rasull
in much of tha first (Ine being buffered while the conlext cetches up. Wa

nesd to synchronise the consumplion of | In the two exprassions.

We rocall at this siage that “lazy evaluation® scheduling of graph reduction
is achleved by propagalion ol demand. Origlnally the result ol the whole
program Is demanded, end ithereafter demand i3 prapagated by strici
operations through the graph. Only paris of the graph at which demand has
ariived are reduced. PAR modties the propagation of demand by propagating
It lo two nodes simuiteneously. We now need 1o synchronise execution by

rastralning the propagation of demand.
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We Introduce a new funclion SYNCH lo achieve this. SYNCH Is defined by

SYNCH ¢ = [e, ®]

Haowever, the two coples of ¢ which are returned are aclually differeni caM
them e1 and e21. No demand is propagated from el or ea 10 e untll both

have been demanded. Thus, If we write

let [a, b) = SYNCH (1 + 2) in

[par factorial a, par fibonacci b]

we cen be sure thet 1 and 2 will nat be added unill boih laclorlel and
ibonaccl are ready 10 use the answer. SYNCH Is acilually a dangerous
function tn that it can cause deadlock Il one of el and ei1 Is never

demanded. Neverlhaiess. it Is an Important contrgl mechanism.

in the spii example, we need 10 ensure that 1wo separale processes cansume
a list at the sama rale. We wil define a functlon SYNCHUST thet takes a
st and relurns two verstons of . in such a way that boilh verslons must

be consumed al the same rate.

SYNCHLIST 1 =

let (81, 82] = SYNCHLIST (tail 1) in

let (11, 12]) = case 1 of
[y — (1), (11
{(x:1'}) — [x:8l, x:82)
agac in

leat [wl, w2] = SYNCH 1 in

[wl ; 11, w2 ; 12])
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SYNCHUIST works as \'Ollovlvsr when It Is first called nane of the deciarations
ars avalysted and It raturns lis two results Immediately. Eventually, demand
wlll areive at ane of them, say (wl; I11). and so wl will be demanded. Since
wl is @ resull from SYNCH the computation will be suspanded at this point
Letar anciher paraliel process wlll demand (w2. 12), and so demand wlilf
arrive at w2. Now ihe condlllons tor SYNCH 1o propagale demand are
salisfled. and so SYNCH’s argument | will be evaluated and returned as
the valus of w1 and w2. This will allow 1} and 12 to begln executing. and
80 each rasult of SYNCHLIST will be computed. Qiving x:<another synchronised
lisv. Thys. as required, SYNCHLIST consiralns the cansumers ol s iwo

resulls 10 work at tha same rale.
Now Ii we define

split 1 = let [11, 12] = BYNCHLIST 1 in
[before nl 11, par after nl 12]
then wa ara assured that characlers will ba consumad by both procasses
as ey ars demended by the consumar. In 1his case 1 would be
Inappropriata to apply partst to tha Hrst rasult since we wan! evaluslon
to be driven by 1he consumer gf he first line, (Technical point. for ine
purposes of SYNCH we regard demand to have arrlved at an expression
whea It is reclaimed by the garbage coltectar Without this the example above
would deadlock at the end of Ihe first line bacause no more demands would

arriva at 1),

So by annotating split with explicit parallelism and synchronlsation functions
we can make Nl run In constant space in a varlety of comexts. This annoiation

doss nol represant a change in tha struclure of the program, and so we
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really can write the program first. without regard 1o evaluallon order, and
annolate It allerwards. However., we mus! leke In10 account the intended use
of a function when we annoiale it. and we may need ditierently annotated
versions for use In difieranl coniexts. in the remainder of \his chapter we

will give a lew more examplas of the application of PAR and SYNCH.

7.6, QUICKSORT

Quichsori can be exprassed very elgganily in a funcilional langurage. Il can

be dellned by the equations

aort []1 = {]
gort (a:x) = sort (beax; bd{a} ++
[a] ++

sort {bex; b>a}

using Turner's ZF notation [Turner81l (tb<x: ©<al means the Hst of etements
b of x which are less than a}. The imperative Quicksort sorts a list of n
elemeanis In space O(m and time O(n?) In tha worst case. Olnlogni on

average. We shall examine the complexity of the tunctional version.

First of all we consider 1he ilme 1aken to sorl e list ol n elements, Tim.
On average. the wo recursive calls to sorl will be on lisis of length n/2,

and 40 wg have

T(O) = a constant
T{n)} = 2T{n/2) + the raest of the cost
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Since the rest of the cost of a call of sort is proporilional 10 the lengih

of tha argument. we have

T(h} = 2T(n/2) + O(n)
which has the solution

T(n) = D{nlogn)

Howevar. In the worst case the list will be splt Into an empty list and a

list of length n-1, and 80 wg will have
T(n) = T(n-1) + O(n)
with the solution
T(n) = 0(n?)

S0 w gbserve with satisfaction thal the functional version of Qulcksorl has

the same iime complexity as the imparative one.

Mow, ia1 us consider 1the space camgplexily, S(n). Clearly S(n) € T(n). We
considar the gmount of space in use |ust alter comgputing the lirst element
af ha sorted list. Sinca this slament could originally be anywhere in the
srgument 10 sort, it |s clear that sort musl force ihe complete evalyation
of ts argumani before it can compule ihis element. So, considering ihe
second equelion tor sorl. we sae that by this stage the expression (bex:
bal must be completaly evaluated. and so whl not share any cells whh

the originel argument. On & lazy evaluator. the second recursive caill of sorl,



sart [(b+x. bra) will nat have been evalualed at all, and so wlll contaln a
relerence to the origlnal srgument x Therelore the space In use wHi be
approximately the space requlred for x plus the space requlred 1o sart |bex.

bt} In the average case. then,
S{(n) = n + 5(n/2)
and s0
5{n) = O(n)
In the worst case. hawever,
S(n) = n + 8(n-1}
and s0
5{n) = 0(n?)
So the worst case space complexily ol the funcllonal Quicksorl Is as bad
as lis time complexity, far worse than the Imperativa egulvalenl, Even in

cases that deviate slightly from the average. this means a worsg space

behavlour,

Of course. this Is just the kind of problem ihat our primitives were Intended
10 solve. We shall yse them 10 force DOLh recursive sorts 1o consume the

argument list at Iha same rale. This can be done by dellning

sort (a:x) - let [x1, x2] = SYNCHLIST x in
par sort {bexl; ba} ++
par [a] ++

par sort (bex2; blal
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Yo find e apace complexity of thls function, we obsarve thal, sinca access
10 the argument list Is synchronised. it Is consumed as It is compuied. No
storage is wasied In buffaring. Therefore. each recursive Invocailon of sort
requires only a constant amount of space. Also, the number of parallel
Invocatlions of sort is bounded by \wice the number of elements to be sorted.
since an elament is consumed when Iwo parallel Invocations are starled.
H follows ihat ihis sort funcilon requires only O(n) space to sort n elements,
@s good a resull as the imperatlve one. Morgover. on a machine with enough
parallelsm, this version of sort will sort n elements In O(m time using (on

average) Oflogn) processors.

This erample shows that cur primiives can be used nol only to make certatn
programs fun In constant space, bul can also provide substantiat

improvaments in the space complexity of programs thal do notl

T.T. FIPES

The UNIX operaling sysiem provides a facillty whereby two (or more?
programs may be run in paraliel connected by a “plpe®, so thal one program
receives as Inpul the oulput of tha other. This cen be a convenlent way
of writing mulll-pass compilers. for exampie. so thal each pass receivas
the pulput of the previous one. and all passes can run in parallel and exploit
the capabilities ol multi-processor machines. The programs are loosely
synchronised in that each producer may run ahead of its consumer. but

ony by a limited amount.

Phpes are nalurally Incorporated Into a functional operaling system. Assuming

that programs are funcilons from a list of Inputs to & list of oulpults, we



may conneclt 1wo programs using the lunclion

connect progl preg?2 input = progl (prog2 input}

which Just compoges the two programs. Running (connect progl prog2)
effectively runs progl and prog2 in paraliel, connecled by a pipe. However,
in this case lhe programs area synchronised exaclly. since prog2 will only
run when progl demands an inpul. This is undesirable il the underlying
machine Is capable of real parallelism, because it could lead o processers
slanding idle while |hgre Is real work 10 be done. We can easlly correct

this by detining

connect progl progl? input =
progl par pipe N (preg2 input)

N = some number

using the function pipe which takes a number and a st and returns a Copy
of the Hst, but staris the evalyation of the N+I'th list element as soon as

the {‘th i3 demanded. pipe Is deflned by

pipe n 1 = parlist (take n 1) It
pipe' (drop n 1) 1

pipe’ [} 1 =1

pipe' (a:f) {b:1} = a il (b:pipe’' { 1)

Now when (connecl prog) prog2} is run. prog2 is started immediately and
Its first N oulputs are demanded Thereafter, whenever progl consumes cne
of lts Inpuis. another gutput of prog2 starts 10 be compuled. progl and prog2
run in parallel ang prog2 Is allowed 10 get up 10 N elements ahead. This |

fs exaclly the behavicur of \wo programs connected by a plipe in UNIX
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The meithgd we have used here is aclually more gensral than the UNIX pipe.
Although we have applied it to lsis. we could as easlly write a function
which works on trees. or any other dala-struclure. We have presented a
general vay of starting the evaluailon of data ahortly bafore it s required:
It can be used In any contexi where this Is desirable. Igr examgple to starl
disc transfers shortiy before the data on the disc Is needed. or jusl o

Increase the avaliable parallelism in a controlled way.
7.0. DISADVANTAGES

Since PAR end SYNCH are a conirol mechanism, nol a panacea. it Is
posalble 1o use them to cause undesirable consequences. There are i1wo
main categories of such errors: deadlock and rampant parallelism. Deadlock
©ccurs it SYNCH Is used without a corresponding PAR. For example, Il sort

wara delined by

sort (a:x) = let [xl, x2]) = SYNCHLIST x in
sort {bexl; b(a) ++
[a] ++

sort {bex2: bra)
then i would never prooduce any rasults because demand would never arrive
at x2. On the other hand, rampant parattellsm occurs if PAR Is used 0o
oflen without corresponding SYNCHs. For example. if pipe were defined by

pipe n 1 = parlist 1

wen 1 would try 10 compute all the output of the producer process n

parallel, possibly clogging the system.
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Thesa probiems ars worrying because a good understanding ol the
Imptementation Is required to avold them. The nalve user Js unlikely 1o saa
anything wrong with the erroneous defialtions In this sectlon. (In fact. it Is
necessary o know iricky detalls of the implementation In order 10 predict

how some programs will behave. For example,

let [a, bP] = SYNCH e in a + b

will be evalualed correclly it the Impiementation evalyates the arguments
ol « in paralial. bui witl deadlock If they are evaluated In sequence. Another

exampile |s the fupction exists

exists p = p, \ function p

exists p = exieta (p true) or exists (p false)

which takes a predicate. a curried function expecting several boglean vaives
and returning a boolean. #nd returns trua il lis argument Is not identically
falss. if the arguments ol or are evaluated In sequence then exists periorms
a space efficient sequential search. but If they are evaluated in parallei then

rampant paraliellsm will resull which wil clog the sysiem complelely.

Thareiore PAR and SYNCH, although flexible. require considerable experilse
In their use. This may signily thal lhey should be replaced by a mare
structured equivalen); bul al the moment we ere unable 10 sugpest what

form it might 1ake.
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7.9. CONCLUSION

In this chapler we have demonstraled beyond doubt that parakiel abstract
machines are a prerequisite for efficient tmplemenialons of functional
languages, and that correct scheduling Is vhial It this efficlency is 10 be
achieved 11 1y debatable which ts the besi way lo ensure correct scheduling.
but we favour explicit conirol by the programmer using simpie primitives
Wo have defined two such primilives and worked enough examples 1o
&ngendar conifidence thal they are sulficlently powerful for most praciical
problems. Cur primilves have the ImMportant advantage thal they are
struciyra—Ingependent, so thal the programmer does not have 10 lake them

into conslderallon when first designing his program.
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CHAFTER 8

GQARBAGE COLLECTION

8.1. INTRODUCTION

We have argued in chapler 2 that gne of the important advantages of
tunctignal languages is the provision of a garbage collecior. Following Dennis
[Dennia8]1] we w8lso believe 1hat the bast way ¢ provide flestores and
databeses i3 within a very large garbage-collecied virtvai memory. In this
chapter we concern ourselvea with garbage collection methods auliabls for

functional languages runalng In very targe virtval memories.

In sactign 6.2 we will discuss the general stralegies &veilsbie and argua
that reference counting Is the mostl promising for our neads. In section 8.3
we will axamine how clrcular siructures. the bane of refersence counting
parbage coilactors, arise. In sectlons 8.4 and 8.5 ws wil present our
extension 10 reference counting for managing circular structures. Finally, In
section 8.8 we wlill examine the costs of our method. In section 8.7 we will
refer briefly t0o Brownbridge's method. and in section 8.8 we wlil present

our conclusions, )
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B.2. QAARBAGE COLLECTION STRATEGIES

There me two main strategles for deleting objects no longer reguired. which
we shall reler to as mark-scan garbage collection and relerence counting
garbage collection. Mark-scan algorithms determine which objects can be
deteted by visiting all objecis eccessible irom any machine register, and
then deleting the others. Relerence counting algorithms store a count of
the number of references to an object wilh the object. and delele the ablect
when his count becomes zero. Both calegories cover a wide varlett of
algorihms, and. in pariicular. elther stralegy may be used In paraliel with

the main compuiation [Dijkstra7?8] (Hudak82] [Grh81|.

in 1he coniex! we have described. however, relerence counting seems 10
have a marked advantage. Firstly. vislling every accessiblé object. as
mark-scan algoriihms do. Is very expensive when there are a vary large
numper ol objects. Qur vary targe virtual memory will conlain a very large
number of accesslble objects. Relarence counling algorithms. on the other

hang. visit only objects as they are being procassed.

Secondly, merk-scan algorithms may not delele inaccessible objects untll
long after they become Inaccessible, whlle reference counling algorithms
dealsle them Immedialely This Is particulerly Imporiant bn a virtual mamcry
sysiem, because it means hat. with relerence counling. short-lived objecis
can all sharg the same locations. These locations wil Lherelore form pari
of the compulation’'s working set. Since applicative language axecullon
generaies a very large number of short-lived objects. we do not belleve

that & very large virtual memory s viable if thay are not delated promptly
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Thirdly. mark-scan algorithms operale in several phases. and some kind
ol synchrgnisalion Is necessary when the phase changes. This Is. 8l the
least, an Inconveniance. In contrast. reference counling Involves only very

local tnfarmation and requires no global synchronisation.

For thess reasons we do not belleve that mark-scan garbage collection Is
viable In large virtual memory paratlel applicative systems, However,
refarence counling also sutfars from a serlous disadvantage - objects which
arg accessiblfe from themsetves, and sg form part of clrgular slroctures,
are nol deleted ai all. Since even Lhe ubiquitous racursive funclion is vsuaily
reprasanted by a circular structure. lhis presents a very serious problem

which could negate all the other advantages of relerence counting.

8.3. CIRCULARITY

it Is worth exarmmining how circular structures arlse during executlon. Some
are crealed becausa lhe programmer has daliberately delined a circular
data-siructure, (or example by

let x = cons (1, x)

The majority are the reprasentations of recursive functions. For example,

Ihe factorial functign might be rapresented by

—> n. if n = 0 then 1

else n * fact {(n-1)

where fact = ]

where the circular poinler Is shown by the arrgw.
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it has peen suggested 1hat it Is nol necessary 1o use circular structures
other than recursive functions (which are vital since Wteralion I3 expressed
as recursion in applicative languages). Dennis has proposed a non-clrcular
raprasentailon for recursive lunctions in [Dennis82), and Fripgman and Wise
have qtserved In [Frladman79) 1hal relerence countlng will work for recursive

functiors {in their representation) ! the circular pointer ts nol counted.

However, neither of these schemes allows the construclion of genuinely
Clrculer gala-siructures. Qur own expertence of using KRC [TurnarB1), which
does nol allow circular structures to be consiructed at run-time, suggesls
that tey are aimost always unnecessary. but occaslonally a program cannot

be witten elficlentty and convenlently without them.

An etample of such a program Is a programming language Interpreter. The
probiam here is that, since funcilions in the language being Interpreted musi
be iepresenie¢ by data-siructures In the underlying language. recursive
funciions would naturaily be represented by circular data-siructures. We have
enccuniered similer problems In writing a synchronous process simuiaior
ard In the algorithm for complialion to super-comblnators given in seciion
5.4.In these cases it seems lo be either very difficult ar extremely Inefficlent

1o program without c¢lrcular structures.

Bolrow has described [BobrowB0O] a wmethod 1hal manages clrcular
daa-siructures using informaiton supplled by the programmer. His method
has some sirong simitarittes to our own: however. changes to the
daa-structurgs can Invalldate the Information the programmer supplied,
lesding o delay or outright fallure In reclalming some objects. For this

reason Ns applicability Is limheo.



103

We belleve that the exienslon of reference counting to deel with circular

structures in abl their ganeralily Is essential.

B.4. THE STATIC PROGRAM GRAPH

We restrict ourselves t0 super-combinator Implamentations of funcltional
languagses. and for the time being we assume that the graphical combinatars
Introduced in secllon 4.5 are not used. We begin our extenslon of relsrence
counting by constdering a snapshol of the progrem graph at a particutar
Ingtant. and looking for a way to describe ls circularilles. We recall two

definitions from graph theory.

Definition: A greph Is atrongly connected N, for any 'wo nodes A and B,
therg Is a peth from A to B and vice varsa. For axamplée. the lell hand

graph below s strongly connecled. bul the right hand graph Is nat

¥ LY »
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Definltion: A strongly connected component of a graph s a maximal atrongly

connected subgraph,

N foliows from these definitions that any praph can be gecamposed Into
disjoint sirongly connecied components. The figure balow shows a sample

graph snd Ws decomposlition.

The sirongly connected components of a progrem graph are 1he units of
Clrcularity; for, il one node in A component I8 accessibla, then the whote
component Is accessible: conversely. ! one node in a component can be
deletad. then all the nodea in the component can. I joliows that It I8 more
sppopriate 10 consider garbage colteciion of sirongly connected components

than of individual nodes.



To this end we daling the derived graph G’ of 8 graph G to be the resuit
of coalescing all nodes In the same sirongly connecled component. More
precisely. the nodes of G are the sirongly connected componenis of Q.
end there Is an edge from node A to B of G’ If there Is an edge In G
from a8 node I A lo a node In B. The next diagram shows an example

graph and its derived graph.

The derived graph is always acyclic. We can see this because. {f H were
nol. then there would be 1wo distinct strongly connecied componenis A and
B with paths both from A to B and from B 1o A But ihis means thal in
the arlginal graph. lhere musi have been paths from a node in A 10 a node

in B and vice versa. Because A and B are both sirongly connected. this
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Impties that there must have besn a path rom any node In A 1o any node
in B and vice versa. so A and B wouid both be parl ol the same strongly
cannected componenl. This violaies our assumplion thai A and B were

distaini,

Since the derived graph is acyclic, | can be garbage collected salely using
relerence counting. This mollvates us 1o modify the program graph by adding
a fisld 1o each node which polints 1o & shared reference count. All the nodes
in the same sirongly connecled compenent peoint to the same shared
reference counl. which contalns the number of relerences 1o tha whole
camponent from other componenis, An example of a program graph with

ahared reference counts drawn as boxed numbers Is
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We can now delele a wholg strongly connecied componenl whan the shared
reference count becomes zero. We can also perform a fast test 10 discover
whether fwo mnodes are in the same sirongly connecled componeni., by

comparing thelr shared refarence count pointers. This will be Imporiant later.

As well as the shared relerence counts. we retaln ihe relerence counts of

each individual node. which we refer to as 1he local reference counts.

8.5. THE GRAPH IN MOTION

We can now use relerence counting to reclaim circular siructures provided
we can keep the shared refergnce count struciure up 1o date. In this secilon
we show how the machine can update the shared relerence counts during

1
reduction,

Since our machine language Is applicaitve. ail the reguction rules obey e
vary Importent proparty: atl the nodes accessible from the root of a reduction
afier the reduction are elther newly claimed, or wera already accesslble
before the reduction. Becausa of this, two distinct sirongly connécted
componenta will always remain so. sinca no raduction can make one
accessible from the other H it was not already so. The only ways in which
& strongly connecled component can change are by growing. /e having newly

created nodes added to It, or by spliting into several smalléer ones.

For tho purposes of exposilion, we consider each reduction to happsn in
two stages. In the lirst sisge, new cetls are claimad and pointers 10 the
result are added to the node being reduced. This may cause sirongly
connecied components 10 grow, but cannot cause them to spil. In the

second stage. (he old polntars from the rool are deleted. This may cause
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strongk connecitad camponents 1o split. but cannol cause them (0 grow.
in betveen Ihe w0 stagas there wilt be more ihan Iwo pointers Irom the
root. This wili ceuse npo problems In the Implementation because some of

the pointers wlil aciually be held In reglsters.

8.5.1. ADDING NODES AND POINTERS

When addifig nodes and pointers (o [he program graph we musi declde which
sirongly connected component the new nodes belong lo. Having decided
this he local and shared reference counts may be adjusied accordingly.
We liustrate how this may ba done using the combinator 5. whose efiect

Is shown below.



After ihe first stage In the application of S. the graph will appear as shown
below. with four pointers from the root Tha nodes marked * are new and

must be allocaied to a strongly connecied component.

We notice the following property of sirongly connecled componems: if a node
Is parl ol a non—irivial component (one consisting of more than one node)
then at lgast one of 1he nodes poinilng to i1 Is In the same componeni.
Since the siarred nodes form a iree, there Is only one node polnlln'g -1
sach one: the nade directly above Il in the tree. Il follows thal if any slared

node i3 In # non-trivial component then the node direcily above N is In
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the ssme component. and, ultimately, so Is the root. Therelora, eévery starred
node sither forms a trivial strongly connecled component by ltself. or s

In thy same compgnent as the rool.

In ordar 1o decide which of these cases appiles. we notice another properiy
of stongly connecied components: il a node is part of a non-irivial
componant then al loast one ol the nodes I points to is parl of ihe sams
componeni. A starred node In a non-irivial component must therelore polnt
either 10 an argument ol the reduction In the same componeni. or o anather
starred component with the same property. Il lollows that all starred nodes
In non-trivial componenis lie on paths from 1he reol 1o an argument In the

same component.

Conwrsely. apy node on a path belween two nodes In the same component
Is algo In that companent. We may therefore allocate new nodes to
components as follows: when a reduction Is perlormed then any néw nodes
on & path from 1he root ta an argumemt (n the same strongly connecled
component as the rool should be added 10 that component. Others should
form new, trivial components by themaselves. This Is a simple and compiete

rule for keeping our dala-structures correct

Evenr the Y operator Is covered by this rule. 1 adds no new nodes to the
graph. but adds a clrcular pointer. This polnter cannot alter the strongly
comnected component structure of the graph: Il only ahers the local reference

count ol the root
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8.5.2. DELETING POINTERS

When a pointar is deleted thare dre two cases 10 consider. If the pointer
connecta nodes In two dilterent strongly connected components than I is
only neceasary to update the local and shared reference counis of the targel.
and dalele the iarget i nacessary. All the nodes ol e strongly connected
componant can be deleled at once because they are all accesslbla from

any noda In the companent.

i1 the poinier conngcls two nodes in the same sirongly connecled component,
then It Is possibie that the component may split Into many smaller ones.
For exampla. deleting the marked pointer In the diagram beiow spilis Lhe

strongly connecied compenent up as shown.
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We have 10 find the strongly connected components of the componeni baing
spih. and mark them as new strongly connected components of the program
grepr. Thara Is an efficient algorithm due lo Tarjan (Tarjan72] tfor finding
the srongly connected componeants of a graph In one scan over |l We can
appiy this sigorithm 10 the component being spiit. and it will run quickly
because ws ars only spplylng It 10 a smali part of Ihe program graph. Al
the same time we can compule the shared reference counis ol the new
components by adding the local refarence counls of thelr constituent nodes
together and subiracting the numpber of internal poinlers. Any componeni

whose shared reterence coumt Is zero |s deleled.
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8.8. EXAMINATION Of COSTS

This melhod requirgs more storage than traditional reference counting.
because each node must have a shered ralerance count poinier stored In
It. Since, in genaral, a reference count requires about es many bits as a
pointer, it would seem tha! adding e shered relerence counl polnter 1o a
node elready containing 4 local reference count. e head polnter. and & taH
pointer. represents about & 33% Increase In storage requirement. (n practice
we expect the increase to be smaller than this, because nodes will also
nagd space for schedullng Information and the MNka (nodes in ALICE

|Darling1on81) occupy a total of 32 bytes).

very Iiitla extra slore need be used 1o hald the shared relerence counts
themselves. It one of the nodes of each strgngly connecled componant is
distinguished In some wey. then the shared reference count can be siored
In its shared reference counl poinier fleld. and lhe olher nodes in the
component caen paint 1o i, This requires onty ona bl per node. Using this
scheme non-circular parts of the graph, which consist of strangly conneciad
compgnents ol one node each, can be slored compactly and have their
relerence counis updaled quickly. This Is very Impaortant because the bulk

af the graph is of this torm.

Qur method is also slighlly slowar than ordinary relerence counitng. partly
because of lthe exira cosl ol updating shared reference counis. but mainly
because of the cost of splitting up slrongly connecled componems.
Forlunetaly. we do not belleve sirongly connected componenis will be split
very often. This |s because circuler siruciures are usually bulit and then

usad saveral 1imes: for example racurslve functions are usually called many



114

limes. Since sirongly connected components need 10 b@ spilt only when they
ctharge shape. ihis will happen while they are being builti, bul not while
they are In use. Therelore. for exampla, calling a recursive funcilon shoutd

Invaire no splitting.

The amount of splitting could be reduced sull further by using graphical
combinalors. as suggested In sectlon 4.5 This would allow many circular
siructures 1o be built In one siep. rather than by applying Y followed by
{ree comblnatars, and so would ellminate splilling in these cases. Provided
thal the combinaior body comains information on i1s own siyongly connected
componeni siructure, the structure of the result of applicatign Is easy to

delermine, in a8 similar way to that used above.

Owr mathod shares the advaniages ol ordinary reference counting. pamely
that raterence counting activilies can be done In parallel with the main
computation. and that only local intormation Is required. We therefore expact
i b be sullable for virtvual memary appiicallve sysiems, and reasonably

efficient.

8.1 BROWNBRIDGE'S METHOD

Ou method oitfers Irom the other approaches we discussed in section 8.3
in being a comptete solution o the garbage collection problem tor graph
reduction.. implemenitations: that Is. ng additional resiricilons need be placed
on the appilcative programmer to ensure that garbage collection works.

Brownbridge will shortly pubilsh an extenslon of reference counting that is



completely general (BrownbridgeB3). His method distingulshes “strong® and
‘waak’ pointers. and relerence counis the two kinds separelely. When the
last sirong pointer 1o a node is deleled the garbage collector allers the
slalus of anough other pointars 10 ensure that \he whole graph Is spsnned
by an acyclic graph of sirong pointers. and deletes paris o! the graph that
are no longer refergnced. On occasion this process may need 10 scan a

large part of the graph,

The great advantage of Brownbridge's method over cur own {s thet it requiras
no assumptions about tha kind of usa to which it Is put. whereas our method
can only be wsed with graph raduction Implemaniations of appilcailve
languages. However. since the two algorithms are so0 diflerent. it Is very
difficull to predict which Is the more etliclenl lor eny particular use to which
they are bolth applicable. We are unable to compare them In any more getall

since we do no! undersiand Brownbridge's algorithm yel

8.8. CONCLUSION

We expect thal computer sysiems In the future will be highly paraltel, and
will have large virlual memories. Qarbage colleciion will be essential. but
mark-scan garbage colleciion will be Impractical. In the pasi, relerence
counting parbage collectlon has been unable lo coliect general circular
tlructuras. although parlicular cases have been covered We believe that
such general circular struclures are 3 vital programming tool. We have shown
how, ai leasl in a graph-redvcttan machine executing applicative programs,
reference counting can be exignded 1o handie any structure at all. Qur
method Is alightly more costly than ordinary relerence counting. but. we

beliave. vasly cheaper lhan excluding circular structures altopether.
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CHAFTER 9

RELATED WORK

9.1, INTRODUCTION

i this chapter we survey other work in the araa of the efficlen
Impiamentetion of functional languages. The fleld Is very actlive. thanks parlly
o fhe software enginesring advantages of junctional langueges. and partly
to the promise 1hatl they can be used 10 exploit highly paralial architectures.
As 3 consequence. almosl all possible avenues are being Investigaled. in
section 9.2 we wlll describe w0 siring reduction architectures. In seciion
9.3 we wlll consider architectures that perform graph reduction on the
orignal program. or some nol-very—heavlly compiled verslan of It. Section
9.4 describes several approaches based on the SECD machine. In sectlon
8.5 we will discuss altemnpis 1o exploil Turner’'s SKI appreach falrly directly,
and In section 96 we will describe Implemeniations basad on
supsr-combinalors or very simlar Ideas. Finally, seciion 9.7 concerns lisell

with dataflow.

9.2. BTRING REDUCTION

in Ihis section we will describe two string reduction archilectures. one

deigned by Berkling ang one by Mago.



Berkling’s architacture [Berkling}! Is designed for reducing L-expreasions. H
consists of a processor and two stacks. a left stack and a right stack (In
fact the processor conlains several other stacks for holding exprassions
iamporarily). The machine starts with the Input expression In sither the leit
or the right stack and transters W back and lorth belween them peariarming
A reductions untl It is no longer reducible. The flnal expression Is then

output. A prolotype maching wes actually construcled.

Although this is perhaps the mosl natural way 10 construct a reduclion
machine. it has a number of disadventages. Firsily, since no altemnpt Is made
1o sefect appropriale expressions for reduction, the machine can wasle a
greal deal of time on reductions which &re not eclually necessary. This Is
compounded by the substitution of partielly reduced argumenis Inio funclion
bodles: ! the argumenl is used more than once then any subseguent
reduclions of It must be duplicaled. Secondly. operations on large
data-siructurés are expensive since the whole dela-structure musl be
scanned for &wary operallon. Howevar, the archltecture c¢an easlly ba
extended to exploll several processors, and this might partially cutweigh the

disadvantages.

Mago's architecture is entiraly giffarent. it is designed 10 execute Bechus’
FP {Backus7B8) rather than tha )-caiculus. The machine consists of a large
number ol cells, each of one of wo kinds. One kind of cell is arranged
In a long linear sequence which holds the symbols of the FP program being
reduced, and the olher kind |s arranged as a binary iree connected to the

first kind at the leaves.
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The machina operates In cycles, during which all reducible expressions are
tocamd, micracode broadcast through the tree 10 the cells that need it. emply
spaces rearranpged o make room for expansion of the program. and finally.
the reductions perlormed. The machine !s Lherelore able 0 reduce all
reducible axpressions in the program at the same time. provided there Is

space to hold all the resulls.

Mago’'s machine clrcumvents the first flaw In Berkling's. An expression s
only considered reducible Il all its sub-expressions are completely reduced.
This ensures that no reducible expression Is ever copied. and so work Is
newer duplicaled. The price. however, Is that all funclions ere slrict. and
sothe progremmer cannot 1eke advantege of lazy evaluation. Since we regard
lazy evatuation es one of the mosl important advaniages 0! functional

programming. wa consider this e serigus deflclency.

The second flaw in Berkllng's machine is also present In Mago’'s: since
arguments are copled from place 10 place. l Is very expensive 10 maniputate:

large data-siructures. Mago has proposed a partial splution to thls problem



[MegoB81]. whereby 1he machine can be made 10 leave a larpe data-struclure
where i1 Is and move other arguments and results pasi it. This is not a
completely general solution, however. Il remeins 0 be seen to whal extent
the agvsntages ol paralielism in this machine will be olfset by the cosi of

data movemenl.
§.3. GRAPH REDUCTION OF THE SOURCE

Several paople have designed Implementations which (more or less) periorm
graph reduction on the original source of the program. We say "more or
ieas” because many of ihese Implementations periorm some (rivial
campliation. but nothing s0 major as compiling 10 Turner's combinators or

0 SECD machine code.

Turnar has wsed greph reduction of thée source In his KRC Implamentation
[TurnaerB1). This I3 an Interpretive Implementation on conventlonal mechines.
which yses the KRC program. a flat sei ol recursion equations, as the
reduction rules 1or the Interpreter. The advantage on a conventional machine
Is that it Is able 1o produce error messages thet are extremely Intelligible
1o the progremimer, since they conlaln references to nemes and expressions

in the original source.

Kelter, Lindstrom and Palll use grapb reduclion of source programs in their
AMPS (applicative multiprocessing sysfem) [Keller?8). In their case the
machine Is programmed in a “functional graph language” (FGL), a dlalect
of LISP, end the machine operales by graph reduciion of FGL programs.
LiIke Mego’'s machine. their design consisis of a large number of parsliet
processors connecled lo the leavea of a binary tree of d)fferenl processors.
However, In thalr case the Individus! processors are esach capable of

significanl computations, and the tree sarves conly lor communication and
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loed hstancing. The communication tras supporis a global address space,
80 any process may be run on any processor. Processes are created by
INVOKE Instructions, analogous 10 subroutine calls. The AMPS does not try
10 expboll paralletism on a very small scala (within subroutines}. The INVOKE
insiryclion places the newly created process on an INVOKE-lIst in the
exacuing procassor. and when the processor linishes (or suspends) the
current process N i1akes the next one Irom tha INVOKE-lIsi and proceeds
with ihat Insiead. Perlodically the communication tree ohtains the length oi
the INVOKE-list In eech processor and transfers processes lrom heavlly
loaded processors 10 naarby lightly lpaded ones. In this way work s

disiributed through the machine.

The AMPS communication tres I8 able to support local communications vary
afficiently. since they need only pass through a smail nymber of nodes.
This s both ita stranglh and Its weaknass. |is designars belleve thal executing
progrems  will  exhibit sufficiant locallty of reference thai almost ah
communicetions will ba local and tharefore flast. However. since all
communications trevalling a distance of hail the machine or more must go
through the root of the trea. then it only a smell percentage of
communicetions turn Qut (o be \ruly long-distance the rool will bacoma (ha

botlenack of the enitira system.

AUCE (Darlington81] Is anoiher désign using graph reduction of ihe source.
In this cese ithe processors and Memories ar® separate. and communicaile
Ihrough e packat switching network. Thus all processors are the 5same
distanca from all memorlas. and locaiily ol relerance I3 nol an Issue.v The
program greph consists of applications ol funcilons whose delinillons are
held In tha microcoda store. This store must be loaded with definitions of

#l functlons in the user’s program bafore executlon begins. ALICE also

1upports A-axpressions. which It implements by capying the function body
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substituting for 1he arguments. so nesied ) -expressions are nol very efficlent,
Only reference counting garbage collection Is performed by the hardware,
s0 additional garbage collection must be programmed explicitly H clrcular
stiructures are to be used. Reducible nodes are held In a pool which
circulates among lhe processors. and sc when & processor becomes Idie
I need only grab ene of Ihese nodes to continua execuling. The grain of
parallelism Is wvery tine. since atl the operations In a functlon may be
performed in paratlel. Parallelism can be conirolled explicltly. and. in

particular, both PAR and SYNCH (chapier 73 can easily be Implemented

ALICE conlains some messy lealures. for example. uncurried funcitons wilh
al most three arguments are much more elliclent than other kinds. We
suspect lhat elforts 10 exploit such features will lead to complex end unwieldy
sofiware Neverthelass. the overall deslgn accords very closely with our own
views, and we are conlident Ihal ait the resulls of our work would prove

easlly applicable 10 ALICE.

9.4, SECD MACHINES

The SECD machlne (described In seciion 3.4} has also been vsed as the
basis for functional language implemeniations. Henderson uses this approach
In hls Implementations of Lispkit. a very simple dlalecl of Lisp [Hendersondol.
He complies Lispkit into an (almosl linear machine code with 21 Instructions,
and then executes the machine code with an Interpreler. Interpreters have
been wrillen lor a wlide varlety ol machines {ranging from a ZBO lo a YAX)
and Henderson Is now constdaring 8 hardware Iimplemenialion. A
considerable body of Lispkit softwara has been writlen by Henderson. Jones
and Jones [HendersonB3). including a complate sell-hosting programming

gnvironment,.
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These Implemamations perform fairly well, but have a lendency 10 run oul
of sigre during long computations. This Is parlly due 10 (he problems
discyssed In chapier 7, since the Implementations are complalely sequential.
It is glsp dve to the use of anvironmenls, which by thelr very nature are
wasislul of siora, since an environment may be relalned because one value
in It is needed. and may ihus cause the retention of many objacts which
could actually be thrown away. (This problem could be amaliorated by using
frag varlable Nsis rathar than environments, which contaln only the part of
the anvironmeni that is actually needed. However, many more free varlable
lists than environments would need to be consirucled. and so the galns
from this (echnique might well be outwaighed by the extra cost of
construction). Nevertheless Lispkit s a praciical and proven programming

sysem.

Sleele and Sussman also used the SECD machine as the basis for their
¥LS Lisp interpreter, SCHEME-79 [SieeleB0). Thelr processor interpreis a
dislagt of Lisp called SCHEME [Steeie?B8l. which Is similar 19 Lispkil Lisp.
The most imporiant differences are that SCHEME is not purely functional,
ard that it doas no! support lazy evaluation. A vety simple compller converts
standard {functlons In SCHEME programs Into Iindexes Into the microcode,
an{ varlable names Inlo Indexes Into the environment. The SCHEME-79
processor is able to Interpret Lisp at aboul the same speed a5 e PDP-10
KA-10, and Steele and Sussman expect an lmproved version to be an order

ol magnitude laster.

Liks Henderson's Lispkil implemanitation, SCHEME makes no allempt 10 explolt
pasallel processors. it is also subjeci to the same criticism 1hal environments
are wasteful ol storage, alhough this maiters less in the absance of lazy

evslyation since suspended expresslons. the main sources of reterences to
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environments, do neot occur s advamage Is that 1 laovolves  lalrly
well-understood technplogy, and so H |s more praclcal in the shori larm

than some of the other approaches In this chapter.

The SECD machina is also al the heart of a project Involving Frledman,
Wisa, Johnson and Kohlsiaedl. whose alm Is lo design a paraliel appiicailve
language processor. Thelr work Is based on a language calied Dalsy
[KohistaedtB1) which runs on a virtual machine cefied DSi [JjohnsonBil. DSI
provides lazy ewvawation, a non-deterministic mulli-se¢t  consiruclor for
Inltiating paralleiism [FriedmanB0]l, and allows some clrcular slruclures to
ba created. An exiension of reference couniling parbage colMection dus to
Friedman and Wise is used which is able 10 recover the permissible Clrcular
structures IFriedman79f. At presemt DS Is implementad by an Interpraier
running on a convenllonal machine. but N Is expected thal a paraliel
Implementation in  hardware will be consiructed evenlually, This
Implementalion will make use of many processors and many memorles
connected by a swilching network described In [WiseB1]. an architeciure quite

simitar 1o ALICE.

Sinca DS1 (s an SECD machine the sama criticisms of the Ineficiency of
using environmenis apply to It However. Dalsy Includes some leatures
designed to minimise the unnecessary retentlon of environmenms, and DSi
does permn parailellsm. so0 the problem may be much less severe In this
context. Parailelism |s controlled in a very diflerent way from Our own
suggestions. and It s not clear whether the programmer can control store

use In Daisy as eiflectively as he can using PAR and SYNCH,



8.5 TURNER'S COMBINATORS

We have aiready given a very brlef explanation of Turner’'s combinalor
Implementation techniqua [(Turner79] In section 3.8. We remarked there thal
in his Implementation of SASL. Turner used some addMional combinalgrs.
We will not present them In detall. bul we wiil explain their flavour Recall

thal 5 s defined by

S = xabc. a ¢ (b ¢}

ang introduced Into complled programs by the rule

AY_.E1 Ea trans 8 (V. E1) (Av. Ez)

$ may be regarded as a “direcior™ combinator (IKennaway82]) that takes
its lhirg argument V) and diracts it towards both Ex1 and Ea. H elther Ea
or Ea does not require V then It must reject It (using the K comblnator).
Tumear Improved the quallly ol the code considerably by Introducing selective
director combinators: 1hat Is, combinators thai direct the argument oniy

where It Is required,

One of the atiractions of Turner's combinalors is that \here ara few encugh
of them to form the machine code ol a compwer. This has been expiohed
by Clarke. Gladstona. Maclean and Norman in the SKIM machine IClarke80l].
This is a bisice uni-processor with a ceil-structured memory
Mmicroprogrammed 1o execule Turner’'s combinatory. SKIM is programmed tn
SMALL, a SASL-like applicative tanguage. and compiles the SMALL complier
asll written In SMALL) In about a quarter ol an hour, An tmproved version
s sxpacted to offer comparable performance (o a 88000 running conventional

languages.



Jones and Muchnlk have lakan a rather ditiereni approech lJonesB2?). The
complle each combinalor Into mora primitive oparations ol a stack machine
code and then optimise the code produced. This Is e hybrid bestween
conventiophal compliation and combinator reduction. The euthors have not

yet compared lis efficiency io direct combinalor interpretation, or 9 SKiM,

The view ol combinators es “direciors’ has been taken lurther by Kennaway
and Sleap [KennawayB2). They represent a direcior 8s one of 1. /, \. and
- indicatlihg thal an argument s to be direcied to both. the left, the righi,
or nelther of the branches of a luncilon spplication. They use sirings of
such direciors as combinators, Indicailng the appropriate directors for
successive argumaents. Direcior strings are attractlve as combinators bscavss

Ihey can be represented very conclsely, using only two DbIits per director.

These director sirings will be used In Burton and Sieep's ZAPP (Zern
Assignmenl Paraltel Processor) [BurtonBl). ZAPP consisis of a large numbaer
of processors., sach with considerable locai memary. The processors are
connectad in a cyclic nehwork thal aliows each processor to see an Infinhe
virtual binary iree ol other processors. As In AMPS, each processor mainiains
8 st of pending processes. When a processor becomes lightly loaded It
may steal a pending process from one ol lis neighbours, with the restiction
that a stolen process may never he re-siolen. This restriction guaraniees
that a process never migrates furthar than one nelwork communication from
Its origin. and therclore that s result nesd only be iransmitied one network
step once it s computed. Since &ach processor sees an infinite binary tree.
work can spread through the network very quickly. ZAPP doe#s not suppor|
a plobal address space: insiead all data a process may need Is stolen along
with the process. Herein lies the weakneas of ihe design, for dats can be'

stolen before 11 Is computed. One unavalualed dslum can be stolan many
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times by many dilterent processors, forcing them all to evaluvate it and
multiplyng the amourmt 0! work 10 be done. Thus the attempt to ensure
locality of relerence risks enormously duplicatad computation. 1 remains 1o

be seen whether this will occur In practice.

ZAPP also iIncorporates an elegant device for cantroliing parallelism
automalically. Burton and Sleep observe thal breadih-first computation leads
to lots of parallallsm, but also lois of space ulillsation; on the other hand,
depth-lirsi compulation Is very space elliclent but glves rise 1o no
parallsilsm, ZAPP compromises by assigning breadih-lirst processes a lower
priorlty than depth-ilirst ones. and executing highaer priority processes by
prefersnce. This leads to breadih—first computation uniil all processors are
In vuse lollowed by depth-first compuation. resulting In a space requirement

proponional 10 the number of pProcessors.

9.8, SUPER-COMBINATOR APPROACHES

We have not yet made a realistic implementation of & functional language
using super-combinators, and nor. 1o our knowledge. has anyone else.
However, Johnason has independently developed a very simHar technique
which he uses in his ML compliler [JohnssonB3) (actuslly he compiles a
purey lunctional dialect of ML with lazy evalpation). Johnsson generales
combinaiors from ML programs by a process he calls “lampda IHting”. which
Is analogous to generating super-combinalors using only the methods of
sacions 3.5 and 4.5 The combinalors are then compiled into machine cofe
for the G-machine. an absiract machine with a stack In addition 10 the graph
stonge. which performs the assoclated graph transtormation. The G-machine
cods I3 fransiaed into VAX machine code and cailed from a graph reductlon

Interprater. However. Johnsson goes to a great deal of trouble to optimise
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the G-machine code so that It avoids constructing places of graph which

can aafely be reduced Immediately. lor exampie, the tunctlon succ defined

by

succ n = n + 1

Is compliad intc G-maching coda which nevar consirucis the expression n+1,
bul just compules its value siralghl away. This, togethar with aother attorts
to aptimise the code produced. makes Johnsson's lszy ML run as fast as
more cohvenilonal fenguages. Johnsson is considering olher implementations
of the G-machine, including an lmplemeniation In hardware and a paralled

varslon.

In  agdition. Falrbairn  wiil shortly be using super-combinators In  an
implementation of his tanguage Ponder [Fairbairn82) for the Motorgia 88000,
Like Johnsson, he will make great efforts 10 axecule each combinator more

sificlenlly than by simple graph transiormation.
9.7. DATAFLOW

A vary diferent view of funclional languags Implemeniation |s embogdiad in
detatiow designs. The original tdea of dalafiow was that the program wouid
be represented by a network of Insiruciions through which date would flow,
and out of which answars would emerge. Since many paris of (he graph
might be active at the same lime the approach offars good prospacis lor
parallalism. Dennis et al. designed a machine based on rthese prlnclg'les
described In [Dennis78l. which consisted of eight processors conneciad by
a swiiching network like the ane used In ALICE and DS). lts disadvantage
is Inherent In 1he original conception: since the program Is sistic. it cannot

c¢ontain Invocations of recursive or higher—order functions.
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Watson and Qurd proposed a partlal solviion o this probiem In [Watson79).
wherely data Is “coloured” with the particular function invocation It belongs
10. Thit allows multiple concurrent activations of the same piece of program
graph. and so recursion Is possible. butl this scheme st does not supporl
higherarder funcilons nafuraily. Walson and Gurd have bullt a singie
processor machine 1o thelr design. which achleves high speed by parallelism
Inside the processor. Exiension 10 a multiprocessor version would present
no pnblems. An Imporiant palnt about their design is thai one processor
axecules several processes almultenecusly., and so It I= not hald up while
a communication, such as a memory access. ls In progress. This means
that thalr communication network, while it must have high throughpul, need

not mcessarlly compiete individual transactions quickly.

tn [Dennis@1] Dennis proposes a new kind ol daiaflow architecture in which
the pogram graph changes dynamically. It differs irom previous datallow
desigss In that a dataflow graph represents an oblect, which reduces lo
e valhe. rather than a function thraugh which data must fiow. It Is able
t0 suport higher-order funclions and 5o on, and In facl, It le really a graph
reduclion archiecture ol the kind we have been discussing In this thesis.
The major diflerence s 1hal evaluation (s data-driven rather 1than
demand-~driven, that is. all reducible expressions In the program are
evaluied In parallel, whether thelr results are really needed or nol. We
suspect thel some method of restraining parallghsm wlil prove necessary,
wheriupon odalaflow archllectures and other graph reduction archileciures

will tave converged almost completely.



CHAPTER 10

CONCLUSION

Qur firsl conclusion s thal supar-combinators provide a reasonable and
efficient implermentation method. superior 8l least 10 Turner's combinalors.
We heve demonsiraied [hls experimentally and theorelically, and olher work

{saciion 9.6} supporls our conclusion.

Of particular Interest is 1the discovery of the “siow-down facior® (chapter
8. In which we refused io belleva at iirst. Wa originally thought that no
slow-down lactor was the mark of a good Implemeniatton meihod. and did
not belleve that Turner's combinalors suffeted from one untll we saw
Kennaway's prool. We |hought that super-combinators had no slow-down
factor unmli we saw Fischer's example. Only aller belng wrong twice did we
re-examine other approaches and observe |he same behaviour In tham ail
We conclude Iram ihis that W |s dangerous to design implementation
stralegies solely |0 make individual operations last. When a new strategy
s proposed {1 should be accompanied by a carelul apalysis ol its siow-down

behaviour.

We balteve we have demonsirated conclusively that tuncilonal abstract'
machings musl support parallellsm, and thel there is strong evidence that

this parailelism must be conirolied expliclily by the programmers. This can
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be dwne adequately using our PAR/SYNCH construciions. which have the
impanant property that they can be added 10 a working program: they need
not  consldered dwing Ihe design. However. 8 more struciured alternalive

might prove easier 10 use.

Im ha more dislant future mark-scan garbage collection wii become
Impractical due to the slze of virtlual memories that will need {0 be garbage
collected. Our final concluston Is thal an exiension of reference counting

can be used Inslead. at a moderate addltinnat cosl
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Al Introduction

These appendices contain details of the experiments referred ta bricfly
In section 46, The experiments were performed during 1981, and were
intended 10 compare the performance of an SKI implementaion with a
super-conbinator implementation. Since I did not eriginally intend to
include iny more than the results of these experiments in my thesis 1
did not preserve listings of the programs used or samples of their
output. [nstead, these appendices consist of an explanation of the
experiments in sufficient detail to allow the reader to repeat them.

We begin in section A2 with a brief description of the source
language we compiled, and some sample programs. In scction A3 we
will deswibe the compiler used to gencrate SKI and super-combinatar
code. Shee we cannot reproduce a listing of it, we include in seclion
A.4 a lining of a working compiler written in Prolog, which compiles
Lispkit Lisp inta super-combinators. In scction A5 we discuss the
abstract machine-code interpreter and the slatistics we gathered. Finally,
in sectior A6 we present the experimental results in more detail



A.2 Nose: the language and examples

The functional language which we compiled in our cxperiments was
Nose (an acronym for NO Side FEffects). Nose was designed at
Cambridge in 1980 as part of a Diploma in Computer Science [Hughes8D).
It draws heavily on the applicative subset of PAL [PAL ref] for its syntax,
and so should appear familiar to anyone knowing PAL, ISWIM [Landin6] or
SASL [Turner?6l Like PAL, Nose has fixed length tuples rather than lists,
and these must be chained together for list processing. Unlike Ppar,
Nose is purely functional and has a lazy semanticss. Nose type
checking is performed at run-time.

Rather than give a precise definition of Nose, we will indicate its
flavour by giving several example programs. The [irst of these is a
program to compute Ackerman's function. This program was actually
used in our experiments.

let rec ackm n =
il mal then n+l
elif n=0 then ack (m-1) !
else ack (m-)) (ack m {n-1))
fi

in ack 113

This is a curried version of Ackerman’s function. When programming in
Nose we tended o write non-curried funclions instcad, using Nose
tuples as argument lists. The following program is a non-curried version
of Ackerman’s function, and was also used as an ecxample in our
experiments.

It rec stk [m,n)] »
If meDd then nel
elif n=0 1hen ack [m-L1]
else ack [m-Lack{m.n-1]]
n

in ack [23]

As an cxample of list processing in Nose, we include the following
program for compuling primes.

show [20sieve(lrom 1)]
where rec
( from n = [nfrom(o+l))
also deva [px] = [paleve(filter x)]
where rec filter {nx] =
if n%p=0 then flter x
else [nfilter x}
n
alpo rot show [n]] =
il =0 then ~_"°
e (10,7, "showln-LIC])
n

)

This program, which uses Eratosthenes’ sieve, was adapted from one in



[Turner7s. It illustrates the use of Nose's indexing operator (1) to access
components of a pair. This program was also used in our experiments.

One of our most complex ecxamples was a functional wunification
algorithm. The program we actually used has been lost, but a similar
Nose definition might be:

let rec unify [abenv] =

] a and b are expressions o be unified. env is cither ‘empty’ (of 1ype
# void), or it is a tuple of bindings of type [string,any]*. unify returns
# a new environment whieh it an extension of env in whith a and b
# are equal {afier substitution of values for variables), or "empty' if
] no suech environment exists. Variables are strings beginning with "=",
kind env in
emply:veid ~> emply
| bindings{string,any]# -»
if a=b then bindings
elif isvar a then
if bound{a,bindings] then
unif y[leokup(a,bindings],b,bindings]
elze [3,b) pre bindings
fi
elif isvar b tken unify[b,a,bindings]
etwe kind [a,b] in
[atupiany= ttupanyn] -»
il length atup=length btup tben
uufLbindings)
where ree wulienv’] =
il idiength aiup then env’
else unify[atupfi,bluph,
uufi+l,env']}
fi
. clse empty
fi
| otberany -» empty

dnik
fi
dnik
where bound [a,env] = (bound’ |
where rec bound' | =
if i2length env then false
else let [a',v'] = envli In
if a=a' then Lrue else bound' (i+1) [
i)
also lookup [e.env] = (lookup™ 1
where rec lockup® i =
et [a°,v°] & envll in
il a=a” then ¥ else lookup' {i+) G
also javar a =
kind a in
satring -> stem s =
| otherany -> lalse
dnik

This example demonstrates Nose “kind-cxpressions”. They are the only
typc-testing mechanism Nose provides.



These examples shoutd be cnough to satisfy the reader’s curiosiLy. We
do not claim that Nose is a particul2rly good language. Several aspects
of s design appear wrong in retrospect - for example, the wuse of
fized length 1uples instead of listy, and the unwicldy kind-expressions.
It was only an experimental tool, and it scrved its purpose.



A3 The Nose compiler

The Nost compiler was originally written at Cambridge to investigate
optimisation methods for lazy languages [Hughes®0l It was written in
GEDANKEN and run on thc CPU GEDANKEN system, developed at
Cambridg: beiween 1976 and 1980. It was ported 1o Oxford by wriling
an abstran machine-code interpreter for GEDANKEN code.

The compiler was extended to compile to either SK! combinators or
super-combinators. First a common pass transformed declarations into
lambda-erpressions and  syniactic  constructs into  calls of siandard
functions (see section 3.2). The output of this pass was an cxpression
in the pre lambda-calculus with constants. Since everything up to this
stage wu common to the SKI and super-combinator cempilers, no
extraneow factors influenced our cxperiments.

The lambda-cxpressions were 1iranslated into SKI combinators using the
methods of [Turner’a] and [Terner79b]. That is, Turper’s later "optimising™
combinaters (58", B' and €'} were used. The lambda-expressions were
translaied into super-combinators using the imperative algorithm of
section 33, The super-combinators were then compiled into BcPt code
that, when executed, built the result of applying the combinator. The
BCPL code was called by the combinator interpreter at run-time. An
carller wrsion interpreted super-combinator definitions: compiling to sCPL
improved speed by 15%. The improvements of sections 44 and 45
were no used, and in some cases this has biased our results against
super-conbinators. This 8 most noticeable in the case of Ackerman’s
function {see section A.6).

A deficency of our compiler was that Nose tuples were compiled as
lists. Since list processing programs in Nose chain tuples topether this
introductd an unnecessary overhead into the code produced by both
compilen, which will have distorted our results somewhat Differences
In cffidency which we have obscrved would be more pronounced of
this had been correcied.

Secondly, our compiler was very slow due 1o the use of a BCRL
Interprewer for GEDANKEN abstract machine-code. This, coupied with the
small imount of store available (zbout 25K words) limited. the
size of example we could try severcly. Our resulis may therefore be
disiorted by "end-effects™. We have interpreted them by looking for
trends s program size increases.



A4 A Lispkit compiler in Prolog

The Nose compiler described in section A3 was far wo large (o
include as an appendix. So that the reader my run a super-combinator
compiler if he so wishes, we have included a version written in
Prolog. This compiler is the model for section 5.5. It compiles Lispkit
Lisp rather than Nose, but is otherwise very similar,

COMPILEPRO

fn This file contains the steering program of the Lispkil compiler. Consult it, and then
invoke the compiler by, for example, compile(’frolo.lso’,'Trolosup’).
n/

7- consuli(lizts), /m standard list-processing functions n/
- consult(lispkit).

1= consult{sup).

1- consult{optimise).

1- consult{writecode).

1- consuit(eny).

compile{From,To) :-
write{"LISP Compiler to Super-combinators’), nl,
wrlte{(From), writel’ —--> "), write{To}, nl,
{docomplle(Prom,Ta), write{'Compilation succeeds'), nl;

wilte(’Com pllation feiled’), ni).

docom plie{From,To) =~
see{From), read(Prog), seen,
write('Syntax Analysls complete?, 0, |,
preprod Prog, X), Nepkit(X,Lam),
write{’Converied o Jambda calcwlws’), nl, L
sup(nile,Lam expr(0]).8up,_ID,
write{"Com plled to super-combimators’), nl, |
optimise(Sup,Opt),
write("Optimisation complete’), nl, |,
1el){To), writecode(Opt), nl, to0ld, L



LISPKIT.PRO

m This file defines the predicate lispkit(A,B), which converts a lispkit program
into lambda-caltulus ready for compilation
1

lspkit(Name,quote{Name)) = standard(Name).
lepkit{Int,quote{constant{int))) - integer(Int).
hspkit{Name,Name) :- atom(Name).
Ispkit([quote,E],quote{constan(E))).
lspkit((lambda (] Body],Bodyl) :- lispkit{Bedy,Bedyl).
lspkit{{lam bda,Nam e.Names,Body) Jambda(Name,Bodyl)) =

lispkit{[lambda,Names,Body], Bedyl).
Ispkiu[let,Body[Defs),E) -

decom pose(Dels,Nam es, Vals),

Tispkit([1am bda,Names,Bady], F1),

applist(E1,Vals E).
Ispkit({letrac,Body|Defs]apply(Body2,apply(quote(fix),vals2))) :-

decom pose{Defs,Names,Valy),

lispkit(Body,Bodyl),

lamlist(Names,Body],Body2),

makelisu(Vals, Valsy),

tamlist(Names, Valsl, Vals2).
lipkit([FLF) ~ lspkil(F,F)
lipkit([F,Alapply(FLAD) = lispkif(FFI), Jispkit(A,AlL).
lipkiu(FARLE) - R\=[], lispkit([{F.A]IRLE).

seplist{ B[], E).
applint(E, V. V9,ED) :- lispkit(V, V1), applist(app!y(EVI).Vs,ED).

lan list([),F.apply{quote{k),F)).
Isulist( A BFapply(quote{unpack)Jambda(A F1))) - lamlist(B,F Fi).

makelist{[],quate(nil)).
mikelint(A.B.apply(apply(quete{cons), ALBL) -
makelisu(B,BI), lispkit{A,Al).

deom pose{[1I1[T).
deom pose([A BICJJAINJIBIVY = decompose(C,N.V).

stndard(add).
stardard(aub).
stardard(divi
standard{mul).
stardard{rem).
atardard{eq).
atantard(less).
atamdard(greater).
stardard(cons).
stardard{car).
standard(cdr).
standard(if).
standard(which),

preprodAA) - atomiclA).
preproc{ A BALBI) - preproce{A,Al), preproe(B,BI).
preproc{A,C) - AsB, preproc(B,C).




SUP.PRO

Fi Thir s & compiler 1o muper-combinators written In Prolog. Inpul syptsx:
atom  quote{lconst) spply{fnarg) lambda(id,ec)
Output syntax:

auper(nargs,body} arg(n)
n/
L] sup{Env,In,Out,Numes) takes an entironment and an Input expression, and
computes an gutpul expression of the form expr(level,m{es,object source).
Numes ia Isomorphic to mfes
n/

sup{Env Id,expr(L £3arg(N),Id}]) = stom(!d), leokup(Env Id,L,N}, L
sup{__ quore{Const),expr(0,[),quote{Conat),quote{Const)} - .© - L
sup(Env,epply(Fn,Arg).Expr,Names) -

sup(Env,Fn FnExp, FnNames), sup(Env,Arg ArgExp,ArgNames),

supapp(EnExp,ArgExp FnNames, ArgNames,Exp,Namey), L
sup{Env lambda{ld Exp),Expr,Names) :-

bind(Env 1d,Nargs Envl),

sup(Env),Exp FBody0,NBody0),

lookup{Envl,ld,Lev,Nargs),

lam body(L ev,EBody0,NBodyd,EBody, NBody),

suplam (lam bda{ld Exp),EBody, NBody,Expr,Names, Nargs), L

supappl ex pr(FL FM,FEFS),expr(AL AM,AE,AS),FlNms,ANms,
expr(L,M,upply(FE,AE),spply(F5,A5)),Nm3) ~
(FL=0,AL=0Q;FL=AL), maz{FL,ALL),
append(FM, AM M), append(FNm1,ANmy,Nm3).
supapp{expr(FL FM,FEFS)expr(AL AM,AEAS),FNms,ANms,
ex pr(AL,expr(FL,FM,FE F5).AM.apply(arg(NN). AE)apply(FS,AS)),
nama{NN FNms) ANms} -
FLCAL, FLA=D.
supapp(expr(FL,FM,FEFS),eapr(AL,AM,AEAS) FNms,ANm3,
expr(FL,eapr(AL, AM,AE AS) FMapply(FEarg(NN)).apply(F5.A8)),
name{NN ANmS)FNm3) -
FL>AL, AL\=0,

max(A BB) - ACB.
max{A B.A) ~ A>=B.

lambody(Lev,expr(L ,MES) N expr(L M,ES)N) - LevzL; L=0.
lambody(Lev,expr(L ,M,ES),N,expr(Lev lexpr(L M.E5)Larg(N1).S)[nam e NLN)]) ~
Lev\aL, L\=d.

suplam(Exp,expr(BL ,BM,BE B5),NBody Expr, Names,Nasgs) ~
sortm fes{ BM,NBody, BMI,NBodyl),
optmfes{BMI,NBodyl,BM2,NBody2),
mkap{expr(Q fLsuper(Nas gs,BE), Exp), BM2 NBody 2,Expr,Names,Nurgs).

optm fes({LILI1ID.
optmfles{M M1 N N3, M Msl N.Nsl) :+ not{member(M,Ms)), optmfes(Ms, N3 Mal,MNsf).
optmles{M.Ms,N.Ns, M1l Nul) - element(Ms, L M), dement({Ns,IN), optm@es{Ms Ns Msi N}



sotm Fes([1 01D

satm fes{{expr(L ,M,E S)[Ms). N, M3l Nsl) -
splitm fes(L [ex pr(L,M.E.S)[Ms],N,Sm M, Sm N, EqM,EqN,BiM,BiN),
sorim fes{Sm M, S N .SmMLSmNI), sortm lex{BiM,BiN,BiM1 BiNI),
append(BiMI,EqM, BiEqM), append(BiNI,EqN BiEqN),
append{BiEqM, Sm ML Msl), append(BiEqQN,Sm NI, Nsl).

spitm fes(L (LILILOLLIMD.

spitm fes{L0,expr{L M,E.5).Ms,N Ny,expr(L M,ES) SmM,N.Sm N,EqM,EqN, BiM,BiN) -
L<LO, splitmfes{L0,Ms,N3,SmM,Sm IN,EqM, EqN BiM,BiN).

spltmfes{LO,expr(L0,M E,S).Ms,N.Ns SmM,Sm N, ex pr(L0,M,E$). EgM,N.EqN, BiM,BiN) =
splitrofes({L 0, M N1.5Sm M SmN EqM,EqN,BiM, BiN).

spitm les{L0,expr(L ,M,E.S).M3s,N.Ns SmM,Sm N,EqM,EqN, ex pr(L,M,E,S).BiM,N.BiN) -
LYLO, splitmlex(L.0,M3s,N3s,SmM,Sm N, EqM,EqN_BiM,BiN).

misp{Comb[)[).Comb[].1).

mtap{CornbArg.M,name(Nargsl, ArgNames).N,Expr Names,Nargs) -
mEkap{Comb,M,N,Expri. Namesl Nargsl),
supapp{ExprlLArg Namesl,ArgNames,Expr,Names),
Nargs is NargsisL



OPTIMISEPRO

optimlse(arg(X)arg (X))

optimise{quote(X),quote(X)).

optimise(apply(F.A),B) - optimise(F,F1), optimise{A.Al), oplapp(FLALB).
optimise(super{N.E),5) = optimise(EFl), optsup(N,F,S).

oplapp(super(2 superapply(arg(1)arg(2)).A.A).
oplapp{F,A apply(F,A)} - constant(F), constant(A).
optapp(F.A superapply(F.A)).

optsup{l,superapply(F.arg{l)LF) - constant(F).
optsup{N, Esuper(N,E)).

constant{quote{X}).
constant(appiy(F.A)).
comstant{super{N,E)).

WRITECODE.PRO

writecode{quote{comstan{C))) - writecomtant(C),
writecode{quote(nil)) - write(T])).
wriltecode{quote(Atom)) - wrile{Atom).
writecode{arg(N)) - write(’/"), write(N).
writeeode{apply(apply{quote(cons). A)B)) -
write(T), writecode(A), write("”), writecode(B), write("])
writecode(apply(F,A)) - write("}, writecode(F), write’ "), writecode(A), write(")).
writecode(superapply{apply(quotelcom) A}, B)) =
write{’¢’), writecode{A), writel'"), writecode(B), write{%"),
writecode{superapply(superspply(quote(com),A),B)) =
writecode(superspply(apply(quote{cons).A) B)).
writecode{superapply(F A)) - write('(), writecode(F), write(® °), writecode(A), write(')').
writecode(super(N E)) = write{"\"), write{N), write(’ "), writecode{EL

wilteconstant({]) = wriw({)).

writeconstam{A B) = write{ 1"}, writcconstant(A), wrlte(’’), writeconstani(B), write(’]").
writsonstant{Atom) = atoem{Atom), write(’™"), write{Arom), write(™").
writecanstant(Int) = Integer(lnt), write(lm).

ENV.PRO

bind(nile 14N, env(1d,1, N nile)).
BInd(Bnv,IdN,env{Id, L N,Env)) = Enveenv(__L, ._), LI s L+L

lookup(Env Jd,Lev,N) = includeonty(Bav Jd env(Id Lev N )
Includeonly{nile 1d,nile).

intludeoniy{env(1d,Lev N Env),Id env(ld,Lev,N,Envl)) >~ includeonly{Env,1d,Env1),
Includeony{ernv(1d0,__,__Env)1d Envl) - Id0\=ld, Includeonly(Env,1dEnvi).



A.5 The interpreter

In order 10 ensure that our measurements of the efficiency of SKI
combinators and super-combinatars were comparabie, we used the same
interpreter in each case. Our interpreter was written in BCPL, and was
very similar to the one described in [Turner?9a)l The program being
cxecuted was represented in memory as a graph of application cells.
The intrpreter reduced an  cxpression by, first of all, following
function pointers until it reached a non-zpplication. This would be the
function to be applied. The nodes passed were placed on a
"left-ancestor stack”, from which the arguments of the function could
be found. The result of the function application was computed, and
the original expression over-written with an “indirection node” referring
to this result. These indirection nodes were removed by the garbage
collector. This process continued until ecither an  atomic result was
computed, or a function was found without enough arguments. At this
point, the original expression was fuily reduced.

The inizcpreter  contained 2 npumbér of hand-coded functiens for
performing basic operations, and hand-coded definitions of all the SKI
combinalors. When used to execute supec-combinator code, the
compiled super-combinators were loaded alang with the interpreter and
called dircctly by it

The intrpreter made a number of measurements during execulion.
These were:

The  number of reductions performed. We  expect  the
super-combinator interpreter to do  significantly fewer reductions
since cach  super-combinator  corresponds to several  SKI1
combinators. The ratic of SKI reductions to super-combinator
reductions is an indication of the number of SKI combinatars
that each super-combinator cotresponds to.

The total number of cells claimed. This measure was used by
Turner in his comparison of SKI combinatars with the SECD
machine. It is probably the best machine-independent measurement
‘of cfficiency.

The number of garbage coilections and the maximum number of
ctlls in use simultancously, mecasured at cach garbage collection.
This figure was intended to reveal the amount of store actually
required by cach program.  Unlortunately, our compiler
restricted us to such small programs that garbage coliections at
run-time were rare, and no meaningful figurces were obtained.

The run-time in seconds.

The reults of these measurements, and other measurements performed
by the compiler, are summarised in the next section.



A.6 Experimental results

Table 1. Furpose apd size of program source, measured in list cclls.
Prozram Sur. Burpose

1 call “twice™ [Turner7%a)

2 36 Ackerman’s Tunction (curried)

3 49 towers of hanoi

4 3l Ackerman's [unction (non-curried)

s 735 factorial

6 93 append

7 106 20 primes

8 115 cratlosthenes’ sicve

9 307  unification algorithm

10 317 e to 20 decimal places
Table 1L Compile-time in seconds.
Erogram Sm SKI S€ ZGain

1 124 177 -43

2 36 166 206 -24

3 49 225 261 -16

4 51 199 243 -22

5 75 230 342 -49

6 93 321 372 -l6

7 106 422 429 -2

s 115 463 468 -1

9 307 1590 (341 +16

10 317 2216 1265 +43

Table III. Code size in cells.

Brogram Sizz SKI SC %Gain
1 26 22 36 -36
2 36 48 43 +10
3 49 W 0 0
4 51 76 62 45
5 7% 91 99 -9
6 93 130 U8 49
7 106 160 145 49
8 15 176 153 +13
9 307 479 445 +1
10 317 639 435 43



Tible IV. Number of reductions.

Program Sizz SKI €  %Gajp
1 26 120 104 +13
2 36 782 410 +48
3 49 2430 1423  +42
4 51 1566 913 +47
5 75 1145 692 +36
6 93 215 126 +42
7 106 7463 5429 +23
8 115 11919 8707 430
9 307 2713 1675 +39
10 317 257590 103151 +60

Table V. Total cells claimed.

Brogram Size SKI 5C  %Gain
i 26 65 90 -39
2 36 g5l 1235 -46
} 49 3300 3626 -10
[} 51 1446 1897 -32
b 75 887 967 -9
[ 93 199 168 +6
7 106 7463 6108 +19
[] [} ] 8337 7728 48
9 307 2787 3363 21
1] n7 272208 177712 435

Table VL Run-time in seconds.

Proiram Size SKI SC  %Gain

1 26 0 0 0

2 36 2 2 0

| 49 8 7 +12
4 s1 2 2 0

b 75 3 3 +3
6 93 1 1 0

7 06 4 n +21
] us 18 16 +I1
9 307 6 5 +17
10 37T 544 299 +45
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