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1. introduction

By abslract net is meant here a one ol the Petrl Nets' slruciure but of quie generat
Interpretation” arblirary objecis may be assigned to places and arbilrary (ransformations
on “markings® - to transitions Certalnly varlous sorts ol Peiri Nets may be expressed
In this seting. by specilylng a particular interprelation But atso such sruclures as
arithmetic or boolean expressions. sequenlial fopowcharl schemata, data-low systems
atc. can be represented as absiract nets. The represenialion however Invoves piclurgs
- amorphic collections of llnes usually. hardly iniellgible perhaps apart Irom simpile
structures, llke trees Bul there is a way of structuring large nets from simple. sasy
to understand parts. by making use of suilably chosen operators on nels. We chose
here a concurrancy operalor Cil*. corresponding 1o that for CSP (Hoa BI} and., n a
segnse, Inverse lo it — a sublraction operator "\". In Section 3 there is a simple example
of net conslruction by means of these operators. Secllon 4 Is corcerned with
gecomposition of nets wrl concurrency operalor {(li-{aciorisation). It turns i thal some
nais, Pelrl Nets, for example. may be I-tactorised n any possibla way, bul usually
this Is npl so with some other interpretations Theorem 4 3 eslablishes a necessary
and sufficlent condition tor an abstract net 10 be l-1actorisable wrt a given partition
of places. Theorem 4 4 s1aies uniqueness of an ulimate I-factorisation, the iactor!sailon
into atomic not decomposable subnets Section 5 coniains an algebrac note. and
suggesis & linear notation [or nets

This work was supported by a Visiting Fellowship Reseerch Grant from ilhe UK Science
#nd Enginsering Research Council



2. Preliminaries

2.1 Genersi denotations

{x,,xz,...,xnj -~ the et of elements L P YRR
X o Xge v o XD - the n-tuple of theae elementa
{n€X: G) - the set of all x from X eatisfying

a predicate G

(S,,S?,...,BR] - partition of a set 5; thus,
3 n3 - g for 1#k and
U]SI - 3: UI stands f or U;r
f: A -5 B - total function from A into B
f: A - B - partial function from A into B
[G,—'E‘Iaz—hﬂal lun—'En] - conditional expression with
condit ionsa L .
and expressions EE, ....E

Relations and their reairictions. If A, B ers sets then r Is e relation pravided thal
rc AxB. A restricion of r 10 a sat A" Cc A s

t|{A' = r A A'xB, and to tha set B' c B is

r|B*' = £ n AxB'

The seme definitlon epplies to functions I ©: A — B or 1 @ A - B considered as
single—veived relations. By enalogy. it r € AxB U BxA. la. r I3 & bipartite relslion,

then
t|A' = r n (A'«B U BxA'}

£}B' = 1 n (A=B' U B'=xA)

We write rla, rib instead of rj(a), rlib) (acA. beB)



2.2 Abstract nets

An abslract nel 1s a sysiem P = «5TF:AD whera 5 15 a linite set of places.
drawn as circles. T Is a flnile se&t of transitions, drawn as bars, F c 5T U TxS,
a Dipartite ralatgn. 13 a8 set ol arrows going from places o transitions or from
transilions to places. i multiplicities of arrows are reguired, then F may be regarded
as a nchon F° SxT U TxS — (0,1.2,.) For nels considered here. we assume
S # ¢ Thne structure <S.T.F> is called a nei-schema and this Is &xacily as in Peirl
nets. The interpretation howaver, I8 qune abstraci: A is an arbitrary set (nh Petri nets
A= 1(0,1.2,.). M: S5 — A js an arbitrary total lunciion called a marking ol the net
P.M =5 — A s the set of all markings. ] Is a mapping which with every transition
1€T assocrates & binary relaton in M ie. D € M x M Ih will b3 written ¢
and will pe called intarprelaton of t Transition t Is flrable at a marking M il thare

exists M’ such that MPM’ and in this case M’ is a next marking loflowing M, rasuhed

r
tfrom finng L. A sequance of markings

HD,H1,M2,... and transitions:
to't’t’tz' ..

are said 10 D a compulation sequence and a firing sequence raspeclively. Il for
I=0.1.2.... iransition tl Is arbiirarily selecied, firabte in Ml and M'tr‘Mm. For pL
Mj 18 reacnable from M; through a firing sequence LS -”','41 and, by
convenlion. M‘ is reechable [rom M, through 1he emply sequence. M’ 13 reachable
from M I M’ 18 reachatile from M through a ceriain firing sequence Sl we
welle then M—>mM’. A language generasled by a net P trom a marking Mo is:

L(My F) = {VeT*: 3M.M M)

Wo assume here ¢ w0 ba a partial lunclion & M-sM and thus write N = {foM)
whenever MI'M’. It € Is undsfined for M € M 1.8 it is not firable at M, il is written
1'1M} = L and we essume 1 ¢ M. For reasons made clear {urlhar, twe convenllons
are admiied: M U | = L U M = L and (]S, = L for any MeM and ScS. Example:
for Petri’s place/transition nels wiih “weak firing rule”. the {* relation & deflned by
MM’ o> WaeS.M(8)2F(8,t) A M'(8}-M(8)=F(t,8)~F(s,t)

ang this ndeed s a partial function,
2.3 Paralsl combinston

Let P =~ (<8, T, P, A 0> and Q = <(8. Ty Fod Ay [

Assuming SP N S, = $. a parallel combination A = FIQ of F and Q is a net

R = “sn'Tn’rn)'An'ln)’ where:



-

8, = 8, USy, Ty =Ty uT, F,=F, UF,, A, =-A UR

and the Inisrpretailon L Is defined by

t.IP(!%)UHo If t € T, - T

L b

t(llln)- t(Ho)UHP if teT, - T

tl"(up) u tl"ma) i e M Ty

whers marking of R = PAQ Is M_ = M, U M_. Operallon N wilil also be retarrad
10 as a concurrency opearailon.

Notes

(a) Mﬂ = M, v Mn. the unlon of functions. is understood as the
union of relations. Dua to S, n S = #- My agaln is a
function - this molivales tha assumptionl The reason for conventlon
MU= |LUuUM-=1] 13 also evidenl transilion t shoutd be flirable
In tha nat R provided that t s firable in this constituent
P andior 4 of AR to which t Belongs.

m " TP n TQ = 4 then R = PIQ works as P and Q Iin parallisl
and Independently of sach other: P and Q arg entirely loosely
coupied nets, T, n T, # @ then P and Q synchronise
mutually on iransitions from TF n T, The opposhe axtreme
of couwling ts when T, = T, P and Q are then enlirely tightly
coupled nels.

(¢) Operation I Is assoclative and commutallve, 3o we use

n
) IFtP‘ to denote P, llell ---HP provided

hat § n 5 = #g. for 1 = | Simiarly. W {P,} zeZy Is an indexod
family of nets with disjoin1 sets ol places. than by

”z(ZP: is denoted the parallel combination of all P_.

(d) If R=PHQ them L(M,R) = L(M, P)IL(M;. Q).

whera the operation "1° on languages is the parallel combination gl processes
from tha model for CSP [Hoa 841



2.4 Neighbourhood

For a given net P = «8.TFAD, we use the nolation

A =8 U, Tt o=1tut, whap e

'@ = {teT: F(t.,s)), o = {teT: F(a,t)},

t = {s€3: F(m,t)}, t = (meS: F(t,s)}

So0. s and 't denote ths nelghbourhood of place s and transition t respectively.
with no mention to which net It 1s related. This Is satistaclocy as long as one nat

was fixed for consldaration. but is

no longer. M a franshion t belongs 10 several nets

combined by R operation. It Is then necessary 1o Indicate In whi:th net the
nelghbourhood of t is considered. We Introduce notation:

nbh(t,P) = (esSP: PP(B,t) v PP(t,a)]

nbh(s,P) = (teTP: FP(B,t} v PP(t,s)]

nbh(s ,P) = U.Esunbh(a,P) for 8, c s

However. we will retain the °“dot notation® If there is no ambigully.

2.5 Subtraction — an Inverse 10 concurrency operation

In Section 3 we wlii make a modest use of an operetion Inverse. in a sinsq. to “N-,

Let
P o= (S, Tp FO A I, @ = <48, To Fd g, 1>, R = PAQ is a nat
R = <8, T, P>, A, 10,  with:

8y = 8, - S5, T, = nbh(3,,P), P, =F, - F,

Ry = A, - A, My =M, - M,

h ] L

ET (M) = ET(M) - tU(Mg)

and by convention

1A-M=-M - ] - 1

The subtraction aliows to remove unnecessary subnets from neis construcied hy parallel

combination.



3. Net construction — a familar example

Concurrency operation 1 suggests constructing large, mentally unmanagable neis from
small. easy to understand components, each of which models a meaninglul object.
As an example. consider Flve Oining Philosophers. Although simple. it clearly displays
the Idea of siructuring. Threa versions of the problem are shown and we assume the
ordinary FPatl net Interpretation

Version 1.

The behaviour of I-th lork Is modetied by the net In Fig.3.1 and of I-th phliosopher
by the net In Fig.3.2. The philosophers are numbered 0.1.2.3.4 clockwise. & . O
mean addition and subtraction modulo 5, fork | s on the left ol I-th philosopher. fork
WY on his right. so transilon | pick] causes picking by 1-th phliosopher his taft
fork etc. in Fig.3.3 the whole net called TABLE' Is shown-

TABLE' = ||! (FORK IIPH,)

from which shddedplar:es. as superfluous can be removed as foltows. Lel nets DL
and DR, be as In Fig 3.4, then

TABLE = TABLE'\||. (DL, IIDR)

which ts shown In Fig 3.5 This net is obvlously deadlock-prone: Ihe deadlock OccCurs
I sl philosophars hoid thelr left or right forks To avoid deadlock. & butler may be
called for halp:

BUTLER = LEFT||RIGHT

where nets LEFT (RIGHT), shown in Fig.3.8. preveni the siate In which every philosopher
holds NMa leh (right? fork. So. the deadlock-free net is:

DEADLOCKFREETABLE = TABLE || BUTLER

Version 2.

Here. FORK, Is as in Version 1. The nei for I-th philosopher Is in Fig.3.7. The net
TABLE. oblained In the same way as In Version 1 (aher removing supertiuous places),
Is in Fig.3.8. Aithough this Is the deadiock-Tree net. 50 no buller Is needed. the livelock
may occur: a phllosopher can sit down, then pick up the one fork, then put It down,
then pick up the other fork. then put it down, then gel up withoul having eaten. then
again sit down. alc. to Infinity.

Veraion 3,
Here ageln, FOFH!(I Is as In Version 1. The net for I~th phllosopher te In Fig 3 8. The

net TABLE. obtalned In thae same way as in Version 1. is In Fig.3.10. This Is a
deadlock—-prons net. s0 the butier shouid ba applied.
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0 pul0 Q pick 0

4 pick 4 1pot]
4 purd 1 pick
3 pick 3 2pvt 2
Aputd 2 pick 2

LEFT, capacity of the piece = 4

0 pot 1 & plek
4 pick 0 Y put 2
4 puto 1 pick.2
A pick 4 2 pur 3
aput 4 2 plck 3

RIGHT, cepacity of t\he place = 4

Fig.3.8 BUTLER
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F picki 1 plck@en
| eat

1 putl | put ¥B1

I getup

Fig.3.9 PH. Arrow ffom | getup
1o the top place Is Invisible.

Fig 3.10 TABLE
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4. Net detomposition

This section Is concernsd with decomposilion of syslems specilied as abstract nels,
Into subsysiems working In parallel givan net P, we lock lor nels PP, such
that P = 'T=1P1 . 1 turns out that. alhough nel-schemas <5 7.F> can obviously be
decamposed in as many ways as lhere are partitions of the set S, this Is npt so with
Interpratation. Nats in Petri's Inierprelation, for instance. can be decomposed In evary
way, oven [nto single-place subnats (Example 4.2). nets compullng arlthmelic
exprassions cannot be decomposed at all (Example 4.3}, whilst sorme others can. bul
only wrt speclilc partitions of places. S-partittons. in short (Example 4.4). Such
decomposlion, or I-faciorisation. may usually be done in many ways. but it Is unique
for a fixed S-pariliion (Theoram 4 2) Thaorem 4.3 gives a necessary and sulflcient
condition for a net 10 be decomposable wrl a given S-paruuon. Ils easy proof Is due
lo Theoram 4 1. considerably simplifying detfiniion of iI-operator Theorem 4 1, In wrn,
foltows directly irom two natural properiles. assumed as axioms for Inlerprelation: Axiom
() states that a Iransilion atlached io no place Is firable regardless of marking. Asiom
(i) - that the aftact of firing a transitton confines to ts neighbourhood (“locailly axiom™)
The section s concluded by Iniroducing a canonlc %-faclorisation, Irraspeclive ol
S-pariliona Theoram 4 4 slales tha uniqueness of this parlicular decomposition of nels
Into atomic subnels.

Axitoms lor interpretation

(1Y)  1f ¢ = ¢ then thM) » 1
(11) 1£t' (M » L then thM)|s-t = M|s-t

Lamma 4.1

Supposa Inlerpretations of nets satisfy Axloms (1} (ii). Then the delinitton ol interprelauon
Iﬂ' Iniroduced in Section 2.3 for the composite nel R = Pk} simplifles to:

Tn k L
th(mM) - LT vty

Proot
it suffices tc show that

lFI ]D
tAT, = t (M) =M, t¢gT, = t(M) =M

Suppose 1t ¢ T, Then nbhaP) = ¢ (otherwise. Ihere would exisl s € nbh(tP)

I
c SF: butl this Is equivaienl to t € nbh(s.P) C TP) By Axiom () 1 (MPJ v I and

LS

by Gp: t (M) = M, This Is shown analogously for Q.

qQ.ed



From Lemma 4.1. by Induction. ihe following useful theorem Is obtalned:
Theoram 4.1

Let P’ = ttS,.T,_F,).Al.Il)_ {=1...n be given nets whh 5, N Sl = § lor kw] and

with Interpretations I] satisfying Axioma (B (H). Suppose P = I;'=1 P‘. Then

vy = Ujll'(M]) for M = UIM' and I - the interpretation in P.

This theorem, & direct conasquence of Axloms (D (b, ailows for o very simple
P given P:1the sets S. T.F, A M. t for P

L]
F1 | t
are |ust unlons ol reapective seta tor P

consiryction of a net P = 1§
i
Definitdon 4.1

A net P = «3 T F AD Is decomposable wri a partition [51 ..... 5,) of B It there are

- = = n
nets P, = “SI‘TI'FI"AJ‘I]’ {=1....n} such that P l’=1 P’

Theorem 4.2

H & net P Is dacomposable wrl a partition of {the asel of s placea than the
decomposlition Is unlque. sirictly speaking. unique up to non-isciated transittons.

Proot
Suppose tor 1=1.2 and k=1...n: Pu. = “Su‘Tu'Fn"‘“a‘I&’ are@ neils such that
s, -8 s8-Us  T=-UT F=UPF

A= UA, and (due to Theoram 4.1) - Un‘l;]:"l

To be proved.
(1) 8, = 3, (2) T, = Ty 3) P, =P,
I
(4) A, = A, (5) t™- ™ for k=1,...n.
Points (1) and (4) are obvious (one may assume .ﬂ\“l = A). Poinls (3) and (5) are

readify obtained: U‘F“ = U,F?| Impiles tUIF”ﬂs,l = tU‘FH)ISl which with

‘Uf"’ls. = F|ll Implias (33! tha same reassoning applles to tI” bringing (5) To

check (2), nole that if lsolated iransitions are not taken into account then

T, = nbhis Py = U

brings (2).

nbhis,P_ ) which, by definllion of nbhis,P.). by () and (3}
2€5, “
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Definition 4.2
A parthion (S.....5) ot S i3 tunctional wrt a nel P=«S.T.F>.ADL Il Tor every LeT:
@ i Ms, = Mls, men rfamfs, = fms,

provided that M) w L e M) w L for any M. M. k=t...n
M 0 M w L dor k=1...n then TM} w L

- h

whore M = Ums,

Exampile 4.)

A "RELAY" pasaing numbars fram Input <In) to output (oul) provided that a binary-valued
control (¢} hoids 1, 1a spacilied as .

RELAY =~ ({{in,out,c}, (t}, f<in,t),<t,out), {c,t>)}>.,R,I> with
thiM) = | & M(c) -0

t'(M)(8) - [s=in v 8=c — 0 | s=out — M(in)]

(R denotes the se! of real numbers). The only funcilonal partition of (in.out,c) wrt RELAY
Ia ({e).{In,oun).

Theorsm 43

A nel P : «5TF.AD Is decomposable wrl s partition 15,...8) of B I this Is
a functional partition wrt P

Proot

Let P be decomposebis wrt SI..,S .

Then. thers exist nets P = <5 .T.F>A.l> such that P = I P, Applying
Theorem 4.1 we obialn

1
™ v = ulnlm|s,: for any marking M In the net P.
S

Note that ﬂs, is a marking in the nel P‘. Since t* are funclions. then

=) Mlsll = M'Is. = tl“(Mlsi) = tj"(M‘IS.) for any markings M. M In P.



Suppose M) » L M) » L and M[s, = M'[s,.
1 1
Then. by (0 1/M|S) # L and simitarty  UM[s) L
Thus. by (*) and property of restriction |
- b Y
fawls, = U dmlspls, = itwls
. - At L
fonls, = dh mBpls, = M
By (*1) we get (M5, = s,
Now, suppose fovn = L, 11(M'> = ] and MISn = M'IS.-
Clearly, by convention from Sectlon 2 3. also r‘(M)lSk = F(M‘)lsk_
a0, wa proved ihat point (a) In Dafinltion 4.2 holds. To prove (b
rl k - 1 _ 1 _
supposs (M) » L and M = UM lSk. Therelore MIS, = Mlsj_ I=1. ..n
1 Lo
By Theorem 4.1. &) = Ulrlmls]> = Uthm |sj>

and L » rtM®

1

Utimts). tor k=1...a. which impiles fiv) » L
Let IS'....Sn) be a functlopal partition wrt P.

We look tor P, = B T F>A.L> such that P = Il P

Define: F, = F|5,. T, = nbhiS P) u 1SOL, where

ISOLP = {teP: tgnbh(8.P)}. (s0. 180ty Is the get of transitions Isolaied In
connecled 10 no place seS). A = A

I‘(MJISH where M is arbitrary marking In P, satislying
omy = Mls, = M. and M) # L, such M exists

L olherwise
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Due 1o (a) In Definlion 432, tl"(M.) does not depend on the cholce of M.

= " = - =
We show P = l"=1 P.. Evidanily, S = U.Sl. F = Uth, T = Uth.

A = UhAln' To check that for given merkings Ml nP. M=Um Impiles:

(mrx) 11(Ml = 'Uklli(Ml). conslder twgo cases:

Case E"(Mt) v | tor every k=1....n. By dellniton of lj":

(2220 el"m.) = fmbfs, where MY S > A i3 a certain

marking In P satistylng M"IS|l = M. and II(MI‘) * 1, 3Ince M|S = m¥ S,

then applying potnts (a) and (b) from ODelinitlan 4.2 and (****) we get

1
fanls, = tvhls, = i) which Implies **%)

1 T
Case t"(Mj) = 1 for & certain |. By defindlon ol t! this means that

fM) = | tor each marking salislying Mls, = M, Thus. o) = L

tor M= 1Im On the other hand. U.!l"(M.) =L thus eqguailign (**%)

[ 3

holds also in this case. This completes the procl ol the theorem.

q.e.d



Example 4.2

Petrl Nels (and thelr extensions Nke nets with mullipliciies on arrows. wih Inhiblting
arrows etc.) ara decomposable wri arbitrary partition ol places. The reason Is tha
following. The esaential feature of any sort ol Peirl interprelation Is that. although
firabliity ot a transition depends usueily on several places. marking of a place after
tiring depends ao/ely on s marking before the firing. Thuys.

Mis = M|s = fowjs = fMo|s (provided that 1 Is firable 'a M il it Is firable In
M) lor any plece s. transiion 1 and markings M, M'. This Impiles (a) in Definllion
4.2, for any partiion [Si,....S"). Holding of (b) ts obvipus, Therelore, erbitiary partiion
Ia functionel wrt any Petr! net. Hence, by Theorem 4.3 - our concilysion

Example 4.3

Let a net be a tree represeniing an arithmelic expression. places hold numbers,
lransltions are operators +, = eic Function 1' regplaces a conlents o t's output
place by the resuil of corresponding arithmetlic operation on I's lhpuls. leeving them
unchanged. Such nets are nol decomposable. regardless ol a pertition ol piaces. Let
us demonsiraie this on the net ADD lor xty, Lel z be the rool of the free for x+y
and lst iransition t be + So. ADD Iis specified as:

ADD = <{{{x,y,z). {(t}, {<x,t>, {y,t>,<t,z>}>,R, I> with
th(M) » )} for all M

th(M)(8) = [8=X v 8=y — M(B) | 8=z — M(x)+M(y)]

Suppose there Is a functional parihion [S',Sz....] ol {xy.r} and let zeS, Then elther
xﬁsk or yA5, Let x£S, and consider markings M, M"

M = (13, <02 .05 M= (o2, .2 2. 0)
Therefore
m M5, = M'|s, ) MOO+MGy) & M O0+FM (y)

The partilion is functional. thereiore, by (1) we heve
Fanls, = fmols,  which impiies @ fow@ = fMo@

By speciication of £ (3 conhadicts (2). hence there is no functlonal partition of
fx.y.z}. By Theorem 4.3 the net ADD cannot be decomposed at el
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Example 4.4
By Theorem 4.3, the only li-factorisallon of RELAY (Exampis 4.1) is

RELAY = VIC wlih value (V) and control {C) lactors speclfled as.

V = ({(in,out}, (t}, {{in,t)>, <{(t,outd}>, R, 1,2 with

t ) ¢ 1 for all M,

tIV(HV)(u) = [s=in — 0 | B=out — M, (in)]

C = (e}, {t}, (<c,t>}>, (O,1), 1. with

LM - L e M(c) - O
o) = 0




Now, gne can look for an ultimale decomposiion ol nels, 18 decomposion tnlg a
sart ol agtamic subnels, hot further dacomposable. It turns out to ba unique. sop we
get a canonic representation of nets: every het is a parallel composilion of a number

of atomlc nals

Datinktion 4.3

n
=1
af partition of Hs ptaces). Such PI Is cailed Ihe alpmic net

A ll-faciorisatlon F = 8 P‘j 15 atomic Il nona of P, is IlI-laclorisabla regardless

Theorem 4.4

The atomic It-factorisalion ol any nel :s unigue. 1e 1If (N

and I':'_‘Pi: arg two alomi |i-lacloresallons of P then n = m  ang
1 1 4 2
P1,,...,F'r| is a permutation of F",‘.. ,F‘m
Proof
n 1 m 2 .
Let lr1P| . '|'1Pi be two distinct atomic Ii-factorisations
of P. with corresponding S-partnons is',,..,8' L (%, . 8%

By Theorem 4 2. (51‘,...,S'n) ’ (S"’1 ,Sfﬂ). which means thal there

exist distincl and non-disjoint 5 and Sf. Faclorisations are atomic,

a0 PL Is not ll-factorisable, tnuys. no parlition of s'., In parncular

(s) nsf, SL—S?J may be funcuanal wri PL  (by Theorem 43)

Thus, there exist markings M. M' and a Iransition t fHragle In M and M such (hat
elther:

1 2 ' 1 2
(1) M|s_ ns] = M'[s| ns]

(2) thmy|s\ns? « thm')s]as?
or:

1 2
(3; w|s)|-s?

2

- M'|s] -8

(4) tlimjs! -s? » e'myys) -s?
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ff €1}, (2) heold then lot M, be a marking coinciding with M on SL and with M" on
§-S|. Hence. by (13, M, coincides with M" on &7

Partition {Slu‘ S_S‘u) 15 {unchonal wrl P. lhus |'(M‘) LR

(by ) In Definilion 4.2). Partitions (5) .81 1 (8% .. .82 ) are funciional wrt P.
thus (by (& In Definition 4.2)

T 1 I 1

tem) |8} = thmy|s)

them,) |s? - t'omr)|s?

Therefore t'(M)}s)ns? - thM')|s)ns?

which is In conlradiction with (2)

If (3>, (4) hoid then lel M? be a marking ceinciding wilh M on

s\ us?

\ and with M’ on S—ts‘kusf). Hence. M, coincides with M

on S'l and. by (3}, with M’ on S*S":. Parution (S"l UST. S-lSL US":))

Is tunctiongl wrt P. 1hus t'(MI) # L (by () n Definition 4.2

1

Partitions (5 ....S| 2

). 82, 8-8%} are functional wri P. thus oy (a) in Deflnltion 4 2)

thmyy 8] - oy |s),
t'(M,) s-s7 = t'(M')[ss-5?

These equations imply:

I 1 H 1 ¥ ?
thm,) |s)-s? - tlmy|s] -s?
t'oy s -s? ~ th)|s) -s?

?

- thMry|s) -s?

Therefore t'(M)|s)-s

which Is In contradicllon with (4)

q.8.0.
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Example 4.5

A smal dala-flow syslem |5 represenied by the nel m Fig 4.1 This 13 a computation
of arithmelic expresslon x+ty*z.  Places holding values and control 1okens arg labelled
with a letter subscripted by v and c respeclively. Transitions ara labelled with |

subscripied by corresponding operators.
xv xe YV Ye z" zf—

(MY#r ] = H(x=)=n(yc)=1, muc)=0

El (M)wl = M(u)-M(z)-1, MW )=0
tI(H)(B}=[s€[x',yv,zv,w',zn,wg}—;M[s)I
se(x, y 1-=01

B=u —*M(x )+M(y ) ls-uc—bl]

EL (M) () =[Be{x, Y, 2, u u 1,y )-+M(s))
5€{'—'=n2cl—'0|

s=wv—bH(u'}*H(z‘HB=w=ﬂl]

Flg 41

The atomic decampasition dl this net Is shown n Fig.4.2

X Y.
£, _?_ t _?_




5. An algebraic note

We conclude with a simple and rather loose observation. Every abstract nel delermines
an abelian. partlal semigroup of some of Ns subnets. where the semigroup operation
{(partial. because lhe aperation N stipulates that |he sels of places ol ils argurnents
be disjoint Is oblalned as lotlows. If l:'=1P' I1s the canonic (unique. by Theorem 4 4)
represenialion of a given net P, then (P .. ._Pn} is the sel ol all alomic subnets ol
f. Let SGiP] be the set of all nets of the form PHIPi?I IP.m whare 1<k &n,

k|ik' for i4j and 1€i<m, 1€|Km The semigroup Is then <«SGIP]. I> and #ts set ol
generators ks (PP ) For a net P with  “Pelri-like" Interprelahon. evary such
generalor s a single-place net Let us depole it Agshe o where s slands

for a place. 1., . sland for entry 1o s transmoins ano ||,n,|n for exn tram
s transhions. The cho-sen nolation seggests a language !or wrilng nels li-factlorisable
into single-place generators. Its alphabet consists ol countable sets S and T of places
and transhions respectlvely, concurrency symbol "F° and comma °," s senlences are
net-tarms. a nal-lerm I8 either l‘,...,1’7151‘,.. ‘t" or H Q and R are nel-larms with
disfoint sels of places then QFR Is also a net-term Every net-term is a denolalion
ol & nei, but, clearly. lhie correspondence is many-to-gne. since many nel-terms may
denote the same nel. Considering lhe synlax onty. it Is easy to characlerize \hem
atgebraically by proviging a lew equaliligs between terms and then siating thal two
tarms are syntactically equivalent with respect to \hese equalities il and only  they
represani the same net-sitruclure. Synlactic equivalence, denotegd by “«—»°. means that
a term can be (ranstormed inlo equivalent one by succesive applicalion ol glven

equalilies. In language definition and “¥* are just syntaclic formaton symbois {gr

lerms. In algebraic conslderallons °," |s an operatlon In the se1 T" of all finlte lists
of transition names (with emply list A} and “#" 15 an operation in the set NT ol all
nel-lerms. The equaliiles are.

For any wu, v, w € T* P, Q, A € NT

(a) 2,0 =u,h = u

(b)) u,{v,w) = (u,v),w
(c} u,vnm v,

{8) uv,u=u

(e} PH(QIR) = (PNQ)NR
(£) PIQ = QUP
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Theorem 5.1
P «— 0 |({ff <SP'TP'FP) - <S°,TQ.F0)
Prool outiine
Let P «» Q. Note. that appicalion ol one equahly of (8 - (I to a term P does
nol change the net-struclure <SP,TP,FP>. indeed, in such one-step transtormalion the
sels S, and TP ramaln unchanged - 1his follows from considering six cases of
transformation. one case for one equallty Also. FP remains unchanged. smnce the
one-step transformation leaves neighbourhoods of places unchanged By Inducilve
argumenl wa conclude that any finlte number of single steps leave all the Ihree sets
unchanged. thus,
(S, TpFp> = (SQ,TQ,FQ>.

Conversely. let not P «+ Q. Thus. Inere exists an atomic lerm in one nel, which
has no <« equivalent counlerparl In thé olner. This means ihat elther
8, 8, or T, » T, or Fo v F,
or any combinstion theraol hold. therelore
(SP,TP,FP) [ <S°,TQ,F°>
g.e.d,

The language and the algebra ol its terms gel a lliitle more complicated it generalors
Induced by a given interpratalion are not necessarlly single-place subnets.
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1. mirogucuon

Srarung Irom a concept ol “apsiracl® nat - an undrrected biparlilg graph depicting
& focality relation rather than flow relaban. bul Interpreted gquite generally ftransitions
repreéseni arbitrary state ansiormations) - we define some CSP-like opsrallons on
nats. These are: paraliel synchronisad composillon. external cholce. asynchronous
nterigaving. prehx (“hrst hré transiion 1 then behave ltke net P*) and recursion They
ara s0 delined tnal the set of firing sequences generaled by a composile net aquals
g regspecuve CSP combinabon ol the sets of firing saguences genersted by its
components, Thus. lthe underlying model on which the relationship belween nals and
& part ot CSP is investigated here Is the Wrace model. Tha cangldarations. absiract
and semanlic al the beginninp. become mare specHic and syntactic o3 the slory
proceeas. firsity, introducing a “plug—in" consirucior (Section 3) we come up

This wark wes supportcd by & Visiting Feliowship Rassarch Grent from the UK Science
and Engineering Research Councii
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with a syniax of general nets. but this will exhibil meretly thair structure. i.e. tha iocality
reialion. Tha baneviour 0Of nats denpled by thelr syntactic forms 1s slil aimost enlirety
mdden in e interprelanhon. Next (Seclion 4). three CSP-litke operators are delined
tor nels: parallel composiion, choice and inlerteaving and this makes ihe firsl step
towargs syntachc tacilihes Jor wnierprelabon. The next ona i1s 1o define a counierparl
ol C5P's pretixing consirucl. We adopt \he FPelri net's llow ol control machanism for
this, comming up whh a syniax ang semantics ol conirof neis. These are essenhally
placa/transilion Pein nels with errow-mulliplicity 1 and are wrlilen as expressions which
we call control erms. Thew semantcs wil be defined in denolalional mahner (Se.tion
5). Finally (Section 6). a class ol nels, D-hets as we say. will be selecied and therr
formal language deftned. They are iinite p/t Petr1 nets ol rasiricied siructure but
augmentead semantics and are targeis “which CSP-processes will be translateg into.
In deanng with recursion, we (oliow e tecnnique ol symacuc approumailons from
[Hoa—-Otde 83). then singie out a special case - looping — which aliows lor axceptionaily
simple transianion. The transtanon tunction F may be thought ol as an algorithm of
assingning nels to CSP-procsses. Hence a kind of nei-model ol CSP. Unforlunalely,
thare ramam three CSFP nolions. dwergence, internal choice and hiding. to make this
modal roré complata. Tha paper would, nowever, grow unplausibly. 50 we leave lham,
a3 well as njerance rules tor D—rarms, 10 a separale one The praoils of proposilions
and theorems will be rather skeichy. a lew more eleborate proofs are in Appendix



¢. Bamic concepte

Net: structure and interpretation

A net 18 a pair P = <ofP).,p[P]), 1t3 structure 1s

o[P], its Iinterxpretation g[P]. The structure 18 a triple
og[P) = ¢5,T.F), where S 18 a set of variables (typical
member: s8), T i3 a set of operatora {typical member: t} and
P c {{s,t): 8£S, teT} 15 a bipartite relation called here

a locality relation. Fictorially, F 1s a set of lines connecting
varlables with operators alternately. We use 't to stand

for the set of wvarlablea attached to operator t, i.e.

t = {8€3: {s,t}eF), callied a neighbourhood of t :n

the net P. The 1nterpretation 13 a pair up[P)] = <A,1tp: teT} >,
where A 13 a set of values of variables; a function M: 5 — A 1m
a valuation of variablcecs and ™M = A° s the set of all valuvations.
e’ 18 a binary relation in M, assnciated with operator t:

tF cM xM. The only regquirement 18 that thia relation be, in

a sense, local: holding of (M,M'> ¢ t? should be determined

by a relationship between restrictions M|t and M'|t and

by equslity M|S-t =~ M'|S-t'. This will be made formal in the
next section. A valuation is also called a mtate of the net.
Operationally., e’ may be seen am a nondeterministic transition
from a state to another state. We write Mt M’ for (M, M"} ¢ tF.
Although nets Qiffer here from Petri nets in structure (which
here is a bipartite undirected graph) and in interpretation
(which here i® quite abstract), we adopt Petri's phraseology.
Accordingly, we say "places" for variables, "tranajtions® for
operators, "markings” for states and "firable® for executable.
Places will then be drawn as circles and transitions as baras or
boxes. Relation F however plays here a part of locality relation
rather than flow relation, or casual dependency relation, which
will later be derived from F.

Pirability, stop, chaos, skip

Transjtion teT isa firable at a marking M iff McPM® for a
certain M'. Two extremes are: t& - # (t never firable)
and t" - = e (t always firable}. in logical notation

P - FALSE and t' - TRUE, so in the first

respectively: t
case t ie just a stop transition, in the second - a chaos
transition. If t% « (<M, M>: M e M), i.e if t* in identity

raslation ID, then t 18 s skip tranaitlon.
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Extension of interpretation to sequences of transitions

If teT and veT® then v c M=M is defined inductively:

P

Woap, ey oA P e W

v , where A is the empty seguence,
* is composition of relationa. If Hov?‘u then v 13 a firing

sequsnce leading from marking M, to M. In what follows, we

drop the atar, writing vF for v7. Hote that {uv)® = uf e WP

and that the atop transition cannot occur in a firing seguence.

Language of firing sequences

If M, eM then L(M,P) - {veT*: 3In: HOVPH}

is the mset of all firing seguences generated by the net P from M.

Rxample 2.1: a"b"c" - language

For the net P drawn jin Fig.2.1,

LMy B) = Ut It

1f w(P) « <av, (t7: 1-1,2,3)) with

MEM' = H(s_)=0 A M(3)>0 A ¥3=0..4: M’ (8)-M(s ) +k,
where kh'_l for j=i, k'-l for j=i+l and k'-D otherwise

and with L def ined by: M (8 1=n and uo(s)-o for srs,.

So

Fr'?. 2.4



Communicating processes "netted”

A net may be Been as a speclfication of a problem. Pictorially,
such a specification exhibits a locality schema only: an
operator can reach for an 1nformation stored in a place &, say,
but not 1n s'. What the operator does, what can or must be done
next or simultanously, 1s hidden in the interpretation, thus not
readable from the picture. The level of such speciflication may
vary from a rough schema of a (distributed) system to a program
1n machine code or a network of gates in a clrcuit. Take, for
example, a flowchart P, Fig.2.2(a), of a seguential program with
uniquely labelled boxes containing CSP's ifo 1nstructions

Q?, Q!,..(variables and expressions are droppsad). P may be drawn
as a net in Flg.2.2(c), where thansitions are labels, places are
points of control flow 1n the {lowchart and may hold a token
indicating presence of the contrel. Conditional instructions
(diamonds) are represented in the net as conflict places. Thus,
at this level of specifying, the conflict is resclved
nondeterministically. The net assumes Petri's interprstation, mo
we direct 1ts lines (a syntactic provision). In Fig.2.2(k) there
1s another flowchart, § and its net-representation 8 1In
Fi1g.2.2{(d). Now, we wish toc make a net for parallel composition
PIIQ of communicating processea. Subscripts will indicate a net
to which subscripted things belong and "t, matches tQ' means:

elther L labels a Q7 and tu labels a P!
or t, labels a Q! and to labels a P?

The net P|IQ 1s defined as follows:

Seo ™ Se ¥ Sg

T’HO = it ) t, matches to]

Felg ™ F''u F~ where

F' = (€8, (Lo, by }> ¢ (Bt )eF, v <a,t >eF}
F* = {([tp,toi,s> Ttk .seF, v (t . 8)eP )

S50, a transition t = [tp.tn} 1n Pl{Q identifies a pair

of instructlons capable of ¢communlicating mutually and t is
firabvle (read: the communication may occur) 1ff both t, and t
are (read: control reached t, and t ). Tha net P is

1in Fig.2.2(e). Summerising, we define interpretation in P{IQ

Q

MePHOy e oy (HIBP)L: (M*|S,) A (n|sa)tg (M]8,)
where t = (toety). M, M' are markings 1n PI{Q and HISP
18 a reatriction of M to S, etc. Places 1n P and { should be

distinct: SP n SD - 8.



Sup

tia




In Section 4 the atory 18 a little simplified: Ter0. = T, U T,
and there .may be common transitions in P and Q. SyAchriniuatxon
will then occur on those common transitions. Further results,
however, can be strightforwardly guoted, starting from the
sbove general definition of PIQ. The experiment with "
encourages to LIy also some other constructors: we conatruct
aome classes of nets from one or a few atoms.

Labelling

Transitions in a net P are then labela of instructions from a
set 1 in the "netted” system, hence a labelling functlion:
h: T — 1 which may be extended Lo seduerices by:

hi(k} = & (hA - empty segquence of transitions ot instructions)
h{vt) = h{v)h(t) (v ¢ T* t € T)

and to sets of sequences X,¥ ¢ T~
h(XY¥) = h{(X)h(¥) (the aympol h 18 ueed also for extensions).

Thua, traces(P') - h(L(M ,P}), where P' 18 a system
repreaented as a net P Hl%h initial marking M, and traces(P')

18 tne set of traces generated by P’', 1.e. 1nstructionh sequences
recorded 1in the order of their execution. Following the above
mentioned simplification we Wwill asaume: traces(P') = L(HD,P).

Are nets predicates?

We conclude this section with the following remark, which, at
least in i1tes first part touches an issue, for programs expressed
in [Hoa-Olde 83], [Hoa B4). In operaticnal terms, net's

activity may be obeerved either as a progress of subseguent
firings, or as a progreesive changee of the state. 1n the first
caee, our "observation space® is T* (with the usual tree-like
ordering), in the second 1t is P (with an ordering derived from
locality F). Fixing a marking M. €M ar initial, we might
abatractly identify a net P with a predicate P(v): IMM: HUVPH
- if we are concernsd with obeerving firing seguences (traces)
as P's behavioura, or we might identify it with a predicate
P(H): IveT*: Huv M - if our concern is to observe

changes of the state. In both cases, however, when making this
identification, we consent on loming a relativistic aspect of
net's behaviour: two observers may see it guite differently,
hence guite different are predicates accounting for their
observations. In other words, we assume the "absolute time
scale”, or a "global clock®" ensuring total cordering of events.
This ipvolves a simulation of concurrency by interleaving

rather than a direct description. To capture timing aspects
(e.g. concurrency) more adequately, one might 1ncorporate mame
concepts from the fundamental work [Petri 76] and follow the
technique developed e.g9. in {(Maz 77}, [Lauer 75),

{Win 77]. That is, instead of “"total seguencea®™, tc assume
"partial sequences” as observable objects. These objects are
equivalence classes of a predefined independence relation
between events. However, the free variable of our net-predicates
would then range over constructe much more elaborate than firing
sequences or markings - an increase of adeguacy at the price of
complexity of (hardly) observable objectsa.



3. Conetyuctive deecription

A net-term 18 a notation for a net. To simplify wr iting, we use
the spame symbole P, Q.... for (names of) net-terms and nets for
which they stand. Two conatruction devices are chosen in this
Section: tupling of places and a "plug-in* «» constructor, which
attaches a given transition to a net already built up.

Exawple 3.1
tJ(ﬂz,BJ,B‘)H(BQ,BI,B?,BJ,B‘) denotes a net consisting of places

LIV 7 and transition 'c,3 "plugged into" places 8,.8,8, and

t,(ao,5,,s,)Ht,(8,.82.ﬂal4—*t3(sz,sars‘h—-(so.s],sa,sa.S.J

denctes the a"b"c"

net 1n Fig 2.1.

Definition 3.1 (net-terms)

1. (8,;,...,8) 1B & net-term denoting a net P withi:
o[P) = (B, - .r0 ) 0, B

H[Pl = {(A,d), where A is a set.

2. Let be given: a net Q = ((5,T,F),<A,{tnz teT) > >,

a traneition t, ¢ T, places (8,,...,8} c€ S and

a relation p € A" « A" (put p~TRUE for n=0). Then:
to(s',. . .,a.)-—-Q is a net—-term denoting a net P with:

olP} = <8, Tu{t,},Puile ty): i=1,..,n}>

w(P) = & (t7: tetu(t))})), where t7 = t% for t « t, and
MEPM' e (M(8.), ..., H(8,))p(M (8), ... M'(5)) A |3 = M'|3,
where S = S-(8,...,8).

Obviously, for every net there 18 a net-term denoting it.
Definition 3.1 gives then a construction mechanism for nets.
Almost ae evident is the following
Proposition 3.1
(1) Suppose for 1,3 € {1,2}:

(a) M |t = M |t

(b) M |s-t = M',[S—'t'
Then: N t'M o W _t'n

" 2 n n

{2) If 't = g then t = skip

t3) tf t = chaocs then t =S



Proposition 3.1 may be verbalised as follows. (1) - two markingse
are 1n relation t only and when two other markings, cotinciding
respectively with the former on t's neighbourhcod, are.

{2) - isolated transitions are firable but dc nothing.

(3) - chaos is attached to all places.

Nondeterminiem and functions

Regarding nets operationally, we find two sorts of nondeterminism
in their activity. One is at the level of the whole net, since it
may be more than one firable transition at a given marking and
the other is at the level of single transitions because U is a
relation, not mnecessarily being a function. Notice that in Petri
nets it is a partial function t?: Mo M, hence - the firast

sort of nondeterminism only. However, assuming t¥ to be a
relation is beneficial when we introduce in the next section some
C3P-1like constructors for neta. It turns out that the concurrency
constructor || preaerveapthe fuglctlonality (i.e. tP“Q iB a
function provided that t° and t° are), while the interleaving

i1l and the cholice (] do not. This property simplifjies 1tas
definition. If relation p in Definition 3.1 is a partial function
p: A" - A" then t© is a partial function t¥. s - M.

We write then M' = tF(M) whenever MtPM'. 1f tF is undefined

at M ¢ M, i.e. when t is not firable at M, it is written

I‘.P(ll) = 1 and we assume | ¢ M. Two conventions are adopted:
MU l=1uM~-4-and LIS, =~ L, for any M ¢ M and Sog S.

Proposition 3.2
Let t¥ be a partial function tt: M - M. Then:
. P - P ey [k
(1) If M|t = #'{t then t (M)t = t (M|t
(2y 1t t%M) » 1 then tPiM)[s-t - M{s-t
Proof - direct from Definition 3.1.
Operationally, Proposition 1.2 verbalises: (1) - the effact of
firing a transition depends soclely on ites neighbourhood,
{2) - the effect of firing a transition confines to ita

nejghbourhood. This expresses the local character of transition's
activity.
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4. CSP-like operations on nets

Definition 3.1 allows to conastruct arbitrary net but, provides
no syntactic means for specify:nr its behaviour., except that
each tramsition acts locally. The behaviour is determined by
interpretation of transitions. To illustrate this, recall
Exmgle 3.1, where the net-term determines the structure of
a"b"c” net, but 1ts behaviour, e.g. sequencing, 13 enforced
externally by a rule separate for each transition. In this
sectior we make a first step towards some syntactic facilities
tor interpretation, adopting three CSP-like constructors

for nets: parallel composition ||, asynchronous interleaving
Il and general choice (J. Their definitions are se chosen

that behaviour of composite nets PIIQ, PliIQ and POQQ correspond
to that of respective composite CSP processes, if this
correapondence holds for the components P and Q. However,

the corretpondence may be established merely 1f a common
observation space is taken for nets and C3P and as the one we
take here the set of traces. Therefore we define I, Il and [
constructors 1n such a way that if of, Py, <M", 3> are nets
with fixed 1nitial markings and P', Q' are CSP processes

such that

L(M",P) - traces(p') and L(M%, Q) = traces(Q') then:

L(M¥9, P Ig) - traces(P'l1Q'), L(M™ P)jIQ) - traces(P'NQ'),

A etc. 18 the

L™, p0) - traces(P'[Q'), where M
Initial marking tn PHQ and operators |i, |It, D on CSP

processes P' and Q' are from [Hoa 83]. The next step in prtoviding
syntactic facilities for interpretation is to derive seguencing,
or flow of control, from locality relation F. Thus, to model the
CSP's concept of prefixing. This is in the next section.

Superscript notation

For a net P =~ <¢S,T,P>,<A,(t’: teT)>> and marking M we use

to stress that this is a marking in P. Tu put 1t differently,
M - M|S 18 a restriction of M to 3. This is a prof itable
notation when several nets with disjoint sets of places are
cogmbined iInto one. For example, as we will see in a while,

9 . * UM% Note that the notation *t’® also atresses
that transition t 18 interpreted in P.



Detinition 4.1
Let netes P and Q be given with:
O(P} = <S5, T, Fp’. afP) = <A, {t": teT )
Q.
alQ) = 8, T, Fgo. u[Q) = <A, (t7: teT.}>
and let SP n SQ = ¢. Nets 2UQ, PiltQ and P[JQ are defined
ag follows. Their structure 18 1dentical:
a[PiIQ] ~ a(PHIQ] = o{POQ] = (S US,, TUT,, FUF >
Their interpretations:

the set A of values of places 13 A, UA and transit:one
1n composlte nets are interpreted as follows:

My — MPPMeP A Oy ?
neby (MPEFM P A MUYy (M09 A WRam )
e o ((MPVPMOP A MO0y v (MOVOM O A MMt Py ) A VETLUTY

where M = M UM%, M' = M'F u M'? are markings in the
composite nets .
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Comments

1)y M- My %, the union of functions, 18 meant as the
union of relations. Due to S, nsS_ =~ ¢, Magain is a
functioh - this motivates the assumption.

(2) The choice of the meaning of ||, |ll, [] for nets is
formally justified by Theorem 4.1. lnformallyh In coperational
terms, it may be understood as follows. For t'™ notice that Lf
thu then MtHoM' = HP!:PH‘P A MO=p @ {by Proposition 3.1(2)).
Thue, the activity of t 1n Pl 18 just 1tes activity in P and hae
no effect for Q. Similarly 18 when tfF,. If CLeT DT  the activity

of t 1nPIliQ 18 1ts si1multancus activity 1n P and . A simtlar
argument convinhces that P and Q work entirely independently
in thelx compoeition PIiIQ. The motivation of || for nets

18 to provide a syntactilc support for synchronisation

(by “"hanishaking®). On the other hand, the simplicity of its
definition 18 due to simplifying convention made 1n Section 2 and
to a set-theoretic principle: 1f t occurd 1n Te and 1n Tn
then 1t occurs 1n T, v T, as a one member, being an
1dentification of tfwse two occurencea. The motivation of |H
18 to expreps 1ndependent work of several copies of one net
without renaming transitions 1n the different copiea. Again,
the definition makes use of the mentloned principle.

For PIQ, the argument 1s a little more subtle and the

reader 13 advised to recall definition of extension of
interpretation to segquences (Section 2). Firatly, notice that
the 1ntetpretation of silngle transitions cannot be primitive,
but must be derived from a stronger 1nformation, j.e. from the
Interpretation of flring sequences (traces). Thia must be so0o,
1f we with to retain the abstract 1nterpretatlon 1n the
components P and @, rather than to apecify 1t somehow for the
purpose of a definition of P[Q. For example, 1n Petr:i nets,
the cholce 18 realised by the concept of conflict, but this 1s
due to the very specific 1nterpretation. In contrast, the
above definition of PQ allows for determining v'¥

(:cT'J without any apecifilc assumption con interpretations

v, v'. Realieing POQ by conflict may be seen as the
implementation of [[ 1n terms of Petr1i neta. Secondly. every
behaviout, 1.e. veT*, of P[JQ should compriee firings 1in
exactly one component, elther P or Q. Hence, 1f v 18 a firing
seguence either 1n P or 1n Q¢ then v e T{ U TY.

Thitdly, 1f v = t,to-..t_, 18 made by PIQ then Dlooklng

at t .  one knows whether v' 18 made by P or by Q provided that
L ETNT, . Otherwiee, to find out this, one has to look

n% t,+ then, perhaps at t,6 etc. This suggests tec call {

a “general cholce® or “external choice", after {Hoa B3).



Proposition 4_1

{l1) Operationes ||, I, ] are associative and symmetric.
(2) 1f T, N T,=~4¢ then PIIQ = PIQ

(3) 1f t,P and t,Q are functions then 80 is tﬁo, but

Az

t and tqh need pot be.

[

(4} 1f t ¢ T, then t" is (total) function t7(M) = W

(51 If t¥ and tY% are functions then t”h(M) - tP ) v Y9
Proof - direct from definitions.

The following result justifies definition of operations ||, W, {
for neta:

Theorem 4.1

Let M) be a marking {initial) in either of compos:ite nets PIIQ,
BINQ, P{IQ- Then:

(1) L{M,PHQ) = L(M),P)IL(M,Q)

(2) LM PIIQ) = LM, P) LM, Q)

(3) L(M,P0Q) = L(M;, PIUL(Ml, Q)

where operations |§ and Nt on languages, 1.e. sets of traces,
are defined i1n [Hoa 83).

Proof - Appendix.



5. Control

Sequencing

So far wes could express flow of control specifying it in
interpretation. Tou provide a suitable syntax, notice that
unlike other C3P-like operatore. the prefixing "t—P"

makes no sense for nets unless one indicates a marking at
which "first fire t then behave like P®. S0, we should rather
write t—(M,.P), but thie alpo is unfortunate notat ion

as it involves marking, which isa not a syntactic object.

A way is to adopt the Petri-like flow of control mechanism,
thue to relect a restricted class of nets as "control patterms”.
Such a control net C, when combined with a net P by concurrency
operator, enforces a seguencing discipline in C}HP. (Motice
that the dataflow concept ia expressible this way). Definition
5.1 ie mtivated by the fact that every place/transition Petri
net (apswme that multiplicities on arrows are 1) may he built
from one place, one transition Petri-like interpreted,
applying «— and |l constructors. We consider only pure nets,
i.e. those without tight loops stesta. By Propoaition 5.1,

the definition provides denotational semantics for a language
of Petri nete.

Def inltion 5.1 (Control terms and netns)

Syntax
C ::=f | L)C
f ::= (8) | stesf | LA

The eyntactic categories C, f, s, t are read respectively:
control-tsrm, factor, place, transition. Context-dependent
restrictions for et«rf and te«srf are: s must occur in f
but t must not (hence, factor is a single-place construct with
at most one occurence of every transition). And for f]IC

the place in f must not occur in €. A factor in which 8 occurs
will be called s-factor.

Semant ics
Control-termes describe directed nets called control nets. Take

natural mmbers as values of places. The structure and
interpretition of control netes is defined as follows:

Case f ::a (8) : 8 = (8}, T, = $. F =8, Mt'M' e M = M
Case f ::= st «f : 3 - ss,u U {s), T - T“u u {ty}.
Fo=F, U (8.t}

M(s)

Ms)+l, if t =t
MM =

t
Mt OoM', if t ooty



Case f ::=- toﬂ**to : 8 = sn u {8}, T, = T% u {tU].

F,o= B, U {Ct,8))

M'(s) = M(s)+l, if t =t
MEM! =

]
ML OM 1f toeot,

Cape C ::= HCo : Sc - S' u Scn, Tc - Tr u TCO,

F.=F UF
[ J (2‘J

£ . C_ G
MEOM' e MM A MO0
where M = Hls,etc.

Abbreviation: omit "+»(8)" in "Bteos....e>(8)" etc.
Remarks

(1) Racall Definitions 3.1 and d4.1: a factor is thus a net-term
with n - 1, A - N, directed locality relation F, p given

by either xpy = x =y + 1 or xpy = y = x + 1 and

with condition M{S, - M'I8, ensured by the case fu= (8).

A control net ism a parallel combination of factors. The context-
dependent reatrictions in Definition 5.1 conform to regquirements
in Definitiona 3.1 and 4.1. :

§
(2) Notice that inhibiting arrows: (:}——a{{:]

(t cannot (jire if M(8)>0) from [Age-FlyAMglis just another mort
of a control net, which 18 like st except at xpy = 1-y=0.

(3) Notice that aegquencing, or control flow through a net, e.qg.

ty L
(:}___7____,(:)_a_4+,__.<:) 18 actuvally simulatad by

paralle]l synchronised (il) activity of three nets:

t, | e I tal f-J.I :

and this is essentially what 18 going on in Petri nets.
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Proposition 5.1 (A characterisation of Petr1 netp)

Every control net 18 a finite pure Fetra net and conversely.

Proof

{8} is a2 no-transitions-one-place Petrl net, cohstructors «
and | preeerve property of being Petri net. Convetrsely, every
Petri net is (uniquely) |[I-factorisable intc one-place nets
(Theorem 4.3 and Example 4.2 in [Cza 84]). Every pure

ocne-placs Petrl net is described by a factor f.
g.e.4

Exampls 5.1
The net in Fig. 5.1 18 described by the control-term:
stﬂ—»ahc—nt,m—tt,sHt‘s,Haltallt?s,Hs,‘,t.

t, 54 [

tr &, It-4

Fig. 5.1 Behaviour of one fork on Philosophers' table

Deadlock and recurrence

A deadlock occurs if a marking i1s reached when no transition
can fire:

lee[Ho]VteTP : t 1s not firable at M
where (M) = (M: IveTs: M v M}

is the set of all markinge reachable from M,. This 1s

a total derdlock. Othere, when only some transitiona will
never fire are defined obviocusly.

A recurrence occurs if initial marking ims restored:

B‘VETP‘: an'llo AV 4 )

Deadlock and recurrence can cccur in arbitrary nets, not
necessarily control nets. However:

Proposition 5.2

It is decidable whether a control net with inatial marking M,
can reach a deadlock ¢r rsstors Mo.

Proof : Reachability problem ie decidable for such
nets [(Kos 82].



6. Bome CSP-processes and nets: a relationship

Frefix, postfix

These are transitions beginning and ending net's activity. To be
formal, firstly say that a given placaflis a source (sink) 1If

{t: F(t,s)} = g ({(t: F(s,t)} = g) and for tranesitions
similarly. Syntactically, 8 18 a source (s8ink) place 1in a given
control term 1f no ts (8t) occur in 1ts a-factor. Secondly, for
a term C and transition t denote by £t.C (C.t) a term obtalned
from C by replacing every a-factor f , where 8 18 a source

(sink) place, by s-factor ta++t’ (st+af').

Restriction: € must not occur 1n t'. Example:

t. (51t||lsit11|t133) - ts|<—oslt'l|taz+—;szt‘|lt1Bj
Notice that:

(1) Operation means creating arrows from tramsitiont to
source places in a net C

(2) 1f there are no source places in C then t = g 1n the
net t.C

(3) There are ho source places In the net t.C

D-terme and D-nets

Definition 6.1

Syntax

D ::= {(8) | 8t | t.D | DOD*' { DID' { DHID'

where 8 1a a place, t 18 a transition, D and D' are D-terms.
Semantica

D-terms descr ibe D-nets. Their semantics 18 determined by the
meaning of prefixing (.) and by Definitions 5.1, 4.1.

comment: D-nets are finite Petri nets with restricted structure
and augmented semantics: there is at most one entry and exit

arrow from each place, there are no cycles and th' th

are not Petri 1lnterpretations, even 1f tD. t” are
(mee Proposition 4.1(3)).

The following theorem states that the D-net s t|it.D', without
source transitionsa, marked 1 on 8 and 0 elsewhere, behaves like
CSP's prefix construct: "first t %hen behave like D".
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Theorem 6.1

Let: D' be a D-net without eource transitions, D = soth.D',
and "D“o) -1, My(s) = 0 for s # s, Then:

L(M,.D) = (r} U (t]"uab_ L(M,D")

wvhere -rr - (M : M i8 a marking in D' and HDtD(M u {(aD,O)j))
and M(es) = 1 1f 8 is a source place in D' and M(s) = 0

if not, for every M ¢ M,

Proof Appendix

Restricted CSP

Considering a relationship between CSP and nets, we take a
subset of an "abstract”™ C3P {Hoa-0lde 83] (but with ||l }:

P ::= etop | t—P { POQ | PUQ JPINQ | & | ut-P

Here, Pi{} is a paralle] composition with eynchronised
communications in the intersection of P's and Q's alphabets.
Other C3P constructs, like divergence, local nondeterminism
and hiding are left to a separate paper. We assume that
informal meaning of C3P procesases ia known to the reader
and definre a:

Translation function §F : CSP-processes -—+ nets

Firstly, we translate finite CS5P-expremsions: stop, t-—P,
POQ, PIIG, PINQ. Event-letters are translated iInto names

of net's transitiona, but recall labelling and simplifying
convention from Section 2. During the translation, new places
are created. The translation procedure 18:

F(stop) = (8} (creation of a new place)
F(t—P) = Btjjt.F(P) (creation of a new place)
F(P(Q) =~ F(P)CFLQ}
F(PNQ) = F(P)IIF(Q)
F{PUIQ) = F(P)NF(Q)

Secondly, turning to 1nfinite C3P-expresgions notice that
"statically®, uf.P represents not just an infinite
expression but even uncountable one - if P contains more than
one free occurence of § (e.g. with two free ¢'s, u¢ P

ie 1somorphic to complete infinite bilnary tree, with

a8 many branches as theare are real numbers). Thus, we do

not translate 1t directly into an uncountable net (we do not
have such among D-netsl) 1n the full generality. Instead, we
follow a technigque of “"syntactic approximations™ from
{Hoa-COlde 83). And in the next paragraph we make a direct
translation, which, although inadequate in some exceptionally
malicious cases, Beems to be eufficient in most "normal® ones.



Let Q4 be a CSP expression which results from Q by
replacing every occurrence of a u¢{.R 1n Q by stop and
let P t+ @ means that Q results from P by replacing one
occurencs

of a u¢f.R by R(uf.R). Here, R(gf.R) 18 an

expression obtained from R by replacing all free occurences
of £ by gt.R. If P ¥ (Q (transitive closure of ) then
anp 18 called a syntactic¢ approximation of P.

To translate u¢.P 1n general, we need 1nfinite nets,.

One way 18 to make use of cpo's of occurence nets [Win384],
[Gol-Myc 84]. Instead, we extend (commutative and associativel)
operators |, b to any collection of arguments:

E = HzEZ Dl' E' - []zEZ Dz

wher e {D! : Zz € 2] 18 an indexed family of D-nets.
E 18 defined obviocusly:

SE = 'zez SD:

TLI - HIEZ TDI

Fl:i = "ze?. I=‘1:|z

D D
' Ty Iy I
MtEm Vuz Mt In

and similarly E' {1.e. by suitable extending Definit:ion 4.1 to
many arguments). Denote:

Z = (Qupp * (2E.P) PO}
The translation 1s now simple:

ewee) =[] g e

Theorem 6.2

It P ise a CSP expression then traces(P) = L(HU,F(P))
where Hn 18 & marking in the net F(P), such that Huls) =1
1f » 18 a pource place and Hots) = 0 if not.

Proot

Notice that the Theorem holds for P = stop, then apply

Theorems 6.1 and 4.1.
g.0.d



A epecial case of recursion: looplnhg

In some capes (parhaps many) 1t suffices to tranelate ué.P into
a D-nst (thus finite) as follows. Suppose P may be translated if
we define additionally a translation of §. Suppose that

frees occurences of £ 1n P are guarded: t—¢ and denote by

9,08}, --.,9.(§) guarde of all {'e free gccurences 1n P.

Thus, £ cccurs in P in contexte g (§)—é.....g lE)—¢€.

Ae a tramnslation of uf.P we admit the D-net F(P) with

all theet guards connected to scurce places of F(P). To do this
formally, we write (t].D to mean the same as £.D but:

{1) 1t 18 legal to write (t]).D even 1f £ occure in an
s—factor of D, where B 1 A source place,

(2) wsource places 1n D remaln those 1n [t].D.

Now, we have the translation:

FlLE) = (8) (creatlon of a new place)
F(ut.P) » lg,l€)]...(9,(£)].F(F)

The depth of recureion 13 1n thils case modelled by natural
numbers - the values of places ("tokens" stored 1n places).
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Append:ix
Proof of Theorem 4.1(1) : L(M,PHQ) = L{M) ,P)IIL(M] ,0Q)
et v ¢ L(M ,PI1Q). This means there 18 a marking M
and a firing sequence Vv € (T,UT,)* such that HDVP“DH.
Denote Ly v, = viT, and v, - \.rl'Tc| restrictions of v to
T, and T, respectively and observe, by Defipition 4.1, that
PLl L Q L3 0
R I A P RO
Thus, v enL(M ,P) A v eL(M ,Q) A ve(T UT )*
1 o H (] P 'n
which, by defin:ticnh of | for C3P [Hoa B8l] means
v € L(My ,P)IL(M] Q).

Let v € L(M] ,P)m..(ng ,0) where n; , M@

; are markings in

F and ¢ respectively and let v, - vET,, v, = vIFT_.

?
Then, by definition ¢f i for CSF (Hoa 81}
v eL(M ,B) A veL(M , Q) A VE(TUT,)"

which means there 18 a marking M such that
H’;vf M A Hg vg HQ A ve(TPUTQ)'

Thus, Hov"“uu A VE(TUT )"

which means v € L{M.FlQ).
q-e.d



Proof of Theorem 4.1(2) : L(M,PIIIQ) = L(My ,E)HIL(H] Q)

Let v = tot’r"t € L(MO.PHIQ). This means there 18

1

a marking M  such that “qVF'GMn' By Definition 4.1 thie is

equivalent to the following conjunction:

v

P uf Q Q 0 P
=0.n-1 (i(;t,— Mo A "?'Hm ) v (pﬁ'r,'. M . "f-uin)

"1 141 1

for some markings “u'“v R—
Let AL LIPS be a subsequence of v such that
L I | -]
P [ 4 | 4 Q a
Mo Y Mg AN S M AT,
j f I i i I
holdes for 3=0,1,...,p and let v_ =t t .. .t be a

subsequence of v such that

a .q P
Nt H?.n AN "Jln.ﬂ AL Ty
[ i ] t 1
By defin:ition of v_: W = for X, (1 < k and
1 ) *1 [ 1
by definition of v, * !ﬁ - HE| for l]. ¢ 1 ¢ li'"' therefore
P P o._a .,
"’ viM and mOvim2
4 0 q
Thus, v, € L.(H." ,FP) and v, ¢« L(H“,Q).
o 2 Yo

Notice that M, = M.P u Ml';, hence
(]

H‘: - “"’n and H‘: - Hl‘:. Therefore

v, € L[H:,P) and v, € L(H“; Q).

By definition of interleaving for traces [Hoa 83}, v ie an
inter leaving of v, and v, (v 1nterleaveu(v|,v,]“)

thus, v e LM .P)IIL(MD .Q).



Let v = tut‘...t € L(HP.P)HIL(HD.Q) where HP' HO are

nm1

markings i1n P and Q respectively. Then v 18 an 1interleaving of
somes segquences:

v = t € ...t L L{HP.P]
0 []

v. = tt ..‘tlq € L(HQ,Q)

Thus, there exist markinge M and MB such that
M.vD MY, and M v MY

Thie meana there are markings

M_, H_ ,...H in P and markings

HD H,' Hp
M M_,...M in @ such that
o M M
P
(1 Yoo, M UL Mo and
2) ¥ oMt wheze
|=0.q-1 “1 l-' HCIN
Moy = M My - Mg
M, - M M, = M
", > a, o

Due to 3, n S, = #, one can define markinga

M, M. .M in PlIQ as follows:
M, - H“o v Hqﬂ and for i=1,2,...n-1
M, v H"r” if k' LN B km for a certain j < p

134 llt 1 ¢ lr1 for a certain j ¢ g



Notice that this definition is correct, since every i=-1.2,..

belongs to exactly one of open intervals (kl,krﬂ)

for j=0,1,...,p-1, (l',l )} for j«06,1,..,q-1.

r

i . - o .
From definition of M, : H: M, and M HQ

and for 1=1,2,..n-1

M if l' <1« l'_.1
pﬂ -
"HM if k' ¢ 1 ¢ kM
H“ 1f k' LT { kru
H‘.’ -
" if 1 <1 ¢ 1
@,, ) P

Thue, if 1 ¢ i1 ¢ 1

1 B (j'n,l,..,q-l] then

ﬁ = "um (= constant marking H“-,..) and

IIT - M, hence, by (1), lt!':t::’lll::1 holda. Therefore:

PP —a .
(3) ri."tlu”n o M3, for 1 < i <1,.

Similarly:

4,0Q P .
@) MMl A -ul o for ko< i K.

[} L]

From (3) and (4}:

F o P Q Q ua 3
”{tl um"’?'”n’ v (H?t‘ Mo A “':-"rn)

-1



for every 1=0,1,...,n-1. Applying Definition 4.1
{of lIl for nets) we obtain:

v

0.1 Mll:':bll”1 which means anmhn thuas v ¢ L(MU,PHIQ).

q.e.d

Proof of Theorem 4.1(3) : L(M,POQ) - LM .P) v LM Q)
Let Vv € L(HD,P[]Q}. This means v ¢ (T,UT )" and
there 1s a marking M auch that anpﬂqu. Hence, by

pDefinition 4.1 (of [| for nets), v € TR U TY. and
PP a4 o s B ) F oo

(H‘:vl! AHOH]V(H‘OVM AHOH)

Tharefore, v € L(Hz Py v L(Hg Q).

M are markings

Let v ¢ L{M,,P) v L(M,,Q), where M, M,

in P and Q respectively. Suppose v € L(M,,F). Thus, v ¢ T}

and HPVP".'P for a certaln H;_. Defining (due to spnsn-ﬁ]:
Ho - HP u HQ
M =~ H'P [H Mu

we obtain:

"f. M, Mo = Mg

P - ! Q -

M M .| HQ
Therefore:

H; VPMP A Hg =-p7 and thus,

PP '] Q Gl P P
uuzvn A MY =M% v (Hgvl\l A ME M) A veriuTy

holds. Hence, HOVFﬂ']H which meane v € L(HO,P[]Q).

Ths is ehown analogously for v ¢ L(HQ.Q).



Proof of Theorem 6.1 : L(HD,D) = {x} v [t)“mdll L(M,D")
o

Let v ¢ L(M,,D). This means M,vOM' and v - tu

for certain M* and u, since the only firable at M,

transition 1s t. Thus,

. Dy e .
3, : MtP A M ulM

Notice that M"ulM' — M Ty

(eince after firing t, place s, will always hald O)

and M"7 ¢ N, hence u € 'utﬂ[’_ L(M,D").

Therefors v « (A} U (t}lumu L(M,D").

Let v € {(x) U (t]lluﬂ L(M,D'). Thus, v = » or v = tu

r

where u ¢ ' L{M,D'} which means Mu”M'  four some
ueﬁ[,.

] :ltv and M'. Therefore

MDtD{M U {(8,0))) A (MU [<so,0>])uD(M' U (<8,,00))

hence HuvD(M' U [<sn,0>}) which means v ¢ L(MD.D).

q.e.
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