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1. IntrOduction 

By abslract nel Is meant here a one 01 Itle Petri Nets' slructure but 01 q~lte general 

Interpretation' arbitrary oblecls may be assigned to places and arbitrary Iransformallons 

on "markings" ~ to transtllons Cerlalnly various sorts 01 Petri Nets may be ellpressed 

In lhls setllng. by spectlylng a particular inlerprelaUon BUI also such !lrUClures as 

arUhmetlc or boolean expressions. sequenlial Itowcharl schemata. dala-Ilow systems 

atc. can be represented as abslract nets. The represenla1l0n however InvOlves pictures 

- amorphlc collecllons 01 lines usually. hardly Inlellglble perhaps apart Irom simple 

structures. like trees BUI lhere Is a way 01 structuring large nels Irom Simple. easy 

to understand paris. by making use of suitably chosen operators on nels. We chose 

here a concurrency operator "W. correspondIng 10 Ihal tor CSP (Hoa 811 and. In a 

sense. Inverse 10 it - a sublraclion opera lor "'". In SecUon 3 there is a sl'l'lple ellample 

of net construcllon by means 01 These operators. Section 4 Is concerned with 

decomposition 01 n91s .rl concurrency operalor U1-lactortsallonl. It lurns oul Ihat some 

nals. Pelrl Nels. for ellample. may be II-Iactortsed In any possible wa,.. bU1 Ui!Jua'ty 

Ihls Is not so with some oTher InterpretaTions Theorem -43 eslablishes a nece~sary 

and sufficient condition 'or an abstract net 10 be II-Iactoflsable wrt a given partition 

01 places. Theorem -4 4 slales uniqueness 0' an uillmate I-iactorisallon. Ihe lactorLsallon 

InlO "tom/c not decomposable subnets SectiOn 5 conlalns an algebraic note. and 

suggesls III linear nOla lion lor nels 

This wOrll w"" "upporrsd by a VISIling Fsi/owship Rssserch Grsnl from 1119 UK Science 
'nd Engineering Re"e"rch CounCIl 
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2. Prellmtnertea 

2.1 oener.' denotatfon_ 

{X"X~•... ,X.. } - the !!let of elements x" x 2 ' ... ,x,. 

(Xl'X~, •.. ,X,.) - the n-tuple of these elements 

{XiX: G} - the !!let of all x from X eatisfying 
a predicate G 

(S, ,S~, ... ,5 1 partition of a set s; thus,
11 

51 n Sk - , for i")c and 

UJS - S i "j stands f or ~~,
J 

:l: A _ B - total function from A into B 

!: A __ B - partial function from A into B 

(a,-E,la:--+E:lI ... lall_E",] - conditional expression with
 
conditions a 1,a2, ... ,all
 
and expressions E"E 2 , ... ,E"
 

Rell!ltlons and Ihelr restrlcllons. II A, 8 efe sels then r Is e felallen provided lhel 

r £" AIlB. A reslrlcUon of r 10 a sal "" £" A Is 

riA' - r n A'.B, and to the set B' £ B 1s 

rls' - r n Ad" 

The seme definition applies to functions f A -to B or f A B consld'ered liS 

,lnOle-v.'ued relallons. By enalooy. II r ~ A_a u e_A, La. r Is 8 blparllla relallon. 

ttl en 

riA' - r n (A'dl U B.-A') 

rIB' - r n (A-B' U B'_A) 

We write 'la, ,Ib Inslead of '11 a}. rlfbl CU:A. bEB) 



2.2 Abstr8Ct nels 

An abstract net IS a system p:: ~(S.T.F),A.[) where S IS a finile set of places. 

drawn as circles. T Is a finite set of translUons. drawn as bars. F!; S..T U T .. S. 

a blpartne re'altQn. IS a set of arrows gOing from places 10 IranslUons or Irom 

transilions to places. II multiplicities 01 arrows are required. then F may be regarded 

as a runcllon F' S>c T U TxS -to 10.1.2.. ,) For nels considered here. we 8ssume 

S ., _. The slructure <S.T.F> is called a net-schema and Ihls Is exactly 890 In Pelrl 

nets. The Interprelallon however. is QUl1e abstract: A Is an arbitrary set Un Petri ne1s 

A = 10,1.2, .. n. M: S -.---,. A is an arbitrary tOlal function called a marking or Ihe oel 

P... = S _ A IS the set of all markIngs. J Is a mapping whiCh wllh every IranslUon 

lfOT assoClales a binary rellwon In M i.e. [(I)!; .. x" 1m will ber wrllteo ~ 
and Will De called IOlerpre'allon 01 I. TransiUon t Is IIrable at a marking M II there 

exists M' such that Mr.~' and In this case M' is a nexl marking following M, resuHed 

Irom !Iring I. A sequence of markings' 

M ,M ,M2,·· • 
and transltlons: o 1 

t ,t ,t ,·· •o 1 2 

are said to De a computallQn sequence and a IIrlng sequence respectlyely. If lor 

1=0.1,2... transUloo I, Is arbitrarily selected, lirable In "'\ and Mlt~Mto" Far 1>L 

M IS reacnable Irom M through a firing sequence tl' Itl'1' ...IH !lind, by
J i 

convention. M Is reechable Irom M through lhe empty sequence. M' IS reachablel i 

Irom M IfI M' IS reachable from M through a certain lIrlng sequence I::t....t; we , " 
wrlte then M---4-M'. A language gener8ted by a nel P Irom a marking lito Is: 

v 
L(Mo'P) - {vfOT*: 3M. Mo------)M} 

We assume here l 10 be a parual luncllon I~ M_M and thus wrile ~' = II(M) 

whenever MI'M'. II r- Is undellned lor M fO M I.e. tt Is not 'Irable at ~, H Is written 

I'IM) = 1 and we essume 1 t M. For reasons made clear lunher. two conyenlions 

are admtned: M U 1 = 1 U M = 1 and 11so '" 1 lor any MfOM and S~S. Example: 

lor Petri's placellransltion nels with ·weak firing rule", the It relation II defined by 

Mt\t' ~ "f/8fOS.M(B).lF(B,t) II M' (B)-M(e)-F(t,s)-F(s,t) 

ano UliS Indeed Is a partial lunclton. 

2.3 P.r.1IeI combtNltion 

Let p ... «Sp,Tp"p)'''p,l p) and Q - «Sa,Ta,Fo)'''o,l )·a

Assuming Sp n So = _, a parallel comblnallon A = PIQ of P and I) is 8 net 

.....here:R - «SA,TtII"A) '''A' I,,), 
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SA - Sp U sa' T fit - TpUTa' F R - F p U F Q' AFt - Ap U A Q 

and the lnlerprelallon ~ ., defined by' 

t"'< .... J u M if t£Tp-T
a a 

Tt,"<MR) - ~ t"(Ma ) U Mp If t € To - p 

t"'(M ) U t"(MaJ if t £ n Top Tp 

where marking of R '= Pia Is M M U Mo. Oper8lllon • will also be relerred
R p 

10 as a concurrency operallon. 

-
Ca) M ::: Mp U M . the union or funCllons. Is understood 8S the

R a
 
union of relations. Due 10 Sp n Sa = _. M egaln is a
R 
function - this moll....lIles the assumptlonl The reason fOr conventlon 

M u i = 1 u M = 1 Is 81so evident trensltlon t should be 'Irable 

In lhe net R provided thai I Is "rable In this constituent 

P and/or a 01 A 10 which I belongs. 

If Tp n TQ = _ then R:: Pia works l!IS P and a In parallel'b' 
and Independently 01 Bach other: P end a ere entirely loosely 

coupled nels." Tp n To " _ lhen P end a synchronise 

mutually on transitions from Tp n To. The opposite elCtreme 

of coupling Is when Tp :: TQ P end a ere then entirely tlghlly 

coupled nels. 

tc) Operation. Is aS90clallve end commulallve. so we use 

II~tPJ to denote P 1I1P 2"·· . liP", provided 

lh8t 5, n 5 = _. lor I "J. Similarly. If (Prj (HZ) Is an Indexod
J 

family or nels with disjoint sels 01 pieces. then by 

IluZP 18 denoted the parallel combination of all PI' r 

Cd) If R - PliO then L(MR,R) - L(Hp,PlIlL(Ho'O), 

whera Ihe operallon "." on languages Is the parallel combination 01 processes 

rrom the model lor C5P IHoa 81.1. 
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~,4 NetghbOurhood 

for a given nel P '" «S.T,f).A.b. we use the nol8Uon' 

'8' .. 'e u ,,', t· .. ·t u t·, whale 

'e .. (tET: pet,s)}, a' .. {tET: F(a,t», 

t .. (efS: P(BI,t)}, ~ .. (aES: P(t,a)} 

So. 's' 8nd'r denote ths neighbourhood of pl8ce s 8nd Iransl1lon I respecttvely. 

with no mention to which nel II Is relaled. This Is s8tlsfaclory as long as on8 net 

...,as fixed for conslderallon. but Is no longer. If 8 Iranslllon I belongs 10 ~eve'BI nels 

combIned by • operllllon II Is then necessary 10 Indlcale In whl~h nel the 

neighbourhood of t Is ConsIdered. We Introduce nola lion: 

nbh(t,P) .. (eES p: Pp(B,t) v pp(t,a») 

nbh(a,F) .. (tETp : Fp(S.t) v pp(t,e» 

nbh(So'P) .. U.ES nbh(a,P) fOl Sa f; S 
c 

However, we will relaln the 'dol notafio,,' II Ihere Is no ambiguity, 

2.5 Subtrectlon - an Inverse 10 concurrency operatlOll 

In Secllon 3 we ...,111 make a modest use at an operetlon Inverse. In a SInSQ. 10 ".'. 

Let 

p .. «Sf',Tf'.Fp>,Ap,lp;>' Q" «Sa,Ta,Fa>,Aa,l >. R" P\Q is a neta 

R .. «S",T",P">,A,,,I,,>. with: 

SR .. Sf' - SQ' T R " nbh(SR'P), PR - F p - Fa' 

AR .. Ap - AQ , "" - Mp - Ma , 

t~,~) - t~(Kp) - t~(Ma) 

and by convention 

1.- M - M - 1. - 1. 

The subtraction allows to remove unnecessary subnet! from nets constructe:! by parallel 

combination. 
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3. Net construction - III familiar 8J:ample 

Concurrenc:y operation I suggests constructing large. mentally unmanagable nets from 

small. easy to understand components. each of whIch models a meaningful oblect. 

As en 8IU!lmp1e. consider FIve Dining Philosophers. Although simple. II clearly dIsplays 

the Idea 01 structuring. Three versions 01 the problem are shown and we assume the 

ordinary Patrl net Interpretl!lllon 

Version ,. 

The behavIour 01 l-Ih lork Is modelled by the net In Flg.3.l and of Hh philosopher 

by the net In Flg.3.2. The philosophers are numbered 0.1.2.3.4 clockwise. ®. 0 
mean addition and subtraction modulo 5. lork I Is on the lell 01 I-th philosopher. lork 

1f)1 on his rlghl. so Iranslllon I plclc I causes picking by ]-th philosopher his lell 

fork ele. In Flg.3.3 the whole net called TABLE' Is shown' 

TAIlLE' - II~o(FORJ(,IIPH;) 

from which !~Gdetl places. .!IS superfluous can be removed as follows. Let nets DLI 
and DR be IS In Fig 3.4. then1 

TABLE - TABLE'\II~(DL,lIDRI) 

which Is shown In Fig 3.5 This net Is obviously deadlock-prone: the deadlock occurs 

If all philosophers hold their left or right lorks TO avoid deadlock. a buller may be 

called for hslp: 

BUTI...ER - LEPTIIRIGHT 

where nets LEFT (RIGHT>. shown In Ftg.3.8. prevent the slate In which every philosopher 

holds Ita 'et! Crlghtl fork. So. the deadlock-free net Is: 

DEADLOcrPREETABLE - TABLE II BUTLER 

Ver~/on 2. 

Here. FORK, Is as In VersIon 1. The net lor Hh philOsopher Is In Flg.3.7. The net 

TABLE. oblalned In the same way as In Version 1 (a'ter removIng superfluous places). 

Is In Flg.3.8. Although this Is the deadlock-free net. so no buller Is needed. the Ilvelock 

may occur: • philosopher can sit down. then pick up the one fork. then put II down. 

then piCk up the olher fork. then put II down. then gel up without having eaten. then 

aOaln sit down. alc. to Infinity. 

Vera/on 3. 

Here aoeln. FORK Is as In Version 1. The net for Hh philosopher Ie In Fig 3 9. The1 
net TABLE. obtained In the same way as In Version 1. Is In Flg.3.10. This Is a 

de.dlock-pron. net. 10 the burler should blll applied. 
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4. Net deoomPMltlon 

This sec lion Is concerned wilh decomposllIon of systems specllied as abstracl nels, 

Into subsyslems working In parallel given net P. we look ror nels PI" 'P such 
n 

Ihal P '= I~'pI 11 turns out Ihat. allhough net-schemas <8, T ,F) can obvIously be 

decompose(j In as many ways as 'here are partitIons 01 the set S. this Is not so wlll1 

InlerpretatlQn. Nats In PetrI's Inlerprelatlon. tor instance. can be decomposed In e ...ery 

way. even Into sIngle-place subnats (E)(amp1e 4.2). nels compullng arlthmellc 

e)(presslon~ cannot be decomposed at all (E)(ample "\,3>. whilst some others can. but 

only wrl specific parllUons 01 places. 8-parlillons. in short IE >o:ample 4.4J. SUGh 

decomposillon. or 1I-laclorisaHon. may usually be done in many ways. bul II Is unique 

lor a 'bed S-parlltlon (Theorem 42) Theorem 4.3 gives a necessary and sullieleni 

conditIon lor a net 10 be decomposable Wr\ a given S-parllllon. 115 easy proof Is due 

to Theorem 41. consIderably simplifying dellnilion of !I-operator TheDrem 41. In lurn. 

foHows directly IrDm two natural properlles. assumed as axioms for Inierpreiatlon: AxIom 

m sleles IMt a lransltlon al1ached 10 no place Is fjrable regardless Df markIng. Axiom 

(II) - Ihel Ihe ellect 0' II ring a transltlDn confines tD Its nelghbDurhood ("IDcallty axIDm") 

The secllon Is concluded by IntroduCing a canonic a-Iactorlsation, IrrespeCl!ve 0' 
S-parllllDns TheOrem'" 4 states lhe uniqueness 01 thiS particular lJecomposltlDn of nels 

Into aromlc subnets. 

Axioms lor interpretation 

(1) If ·t· - _ then t[(H) ,. -l 

I II) If t'(H) • .L then tr(H) Is--t • Hls--t-

Lemme 4.1 

Suppose Interpretations of nets satisfy AlCloms (I) (ill. Then the derlnillon 01 interpretation 

~. Introduced In Section 2.3 lor lhe composile net A '= PIIQ Slmpl\1les to: 

t'R IHR ) - ,"'(Hp ) u t'o(H
Q

) 

Prool 

II 5ufllces 10 show Ihel 

'pt ~ T p ~ t (Mp ) - Hp • t ~ T """ t~(Ha) - M a a 

Suppose I /. T ' Then nbhCl.P) '" _ (otherwise. there would e.ist s £ nbhct.Plp 

£ Sp; but thIs Is equivalenl 10 t E nbhls.Pl £ Tp) By Axiom (I)' tJ,,(MpJ ,. 1 arid 

by <II): I~(M~) ,. M ' This Is shown analogously lor Q.p 

q.8.d 



From lemma -4.1. by Induction. Ihe fOllowing useful theorem Is obtained: 

Tbeontm 4.1 

let P .. ((SrTrFJ>.ArIJ). J"'1.. .. n be given nels wllh S~ n SJ '" _ lOr k"l andJ 

with Interpretations ~ U1tlsfylng Axioms CIl (1) Suppose P I~I Pj' Then 

nM} '" UJliOA } lor M '" UIM, and I - the Interpretation In P.
J

ThIs theorem. a direct consequence of Axioms OJ (Ill, allows lor e vlry simple 

construction 01 a nel P '" 1~1 P
j 

given P,: the sels S. T. F. A. M. ( for P 
are lusl unions 01 respective sets lor Pr 

Deftnttlon 4.1 

A net P '" ((S.T.F>,A,!> Is decompoUible wn a partition lSI' ...5"1 of S UI there are 

nels PI '" «SrTrFI~.AJJ]) <I"'l ..... n) such thai P '" I~:I PJ 

Theorem 4.2 

If a net P Is dacomposable wrl a partlllon 01 Uhe set 00 Its places then Ihe 

decomposition Is unique: slrlclly speaking. unique up 10 non-lsolaled transitions. 

P,ooI 

$Uppo$. lor 1"'1.2 and k'" 1. ...n: Pili «S•.T... FIII).AIII .1.) are nets such tl'lel 

9. - 9.. 9 - U"SHI T - U..TIII F· U"'l~ 

A - UIt"1Il and (due to Theore,. 4.1) tl: _ U.. t~1t 

To be pro".d: 

(1) - 93'1 (2) - T:!II (3) , I" - P a9 1111 T tlt
 

[lit ~
",It - "a ( 5) t - t for k-l" .. n.(4) 

Points (n and (-4) are obvious (one may assume Alii '" A). PaIn" (3) and (5) are 

readlfy oblalned: Ut1J '" UtZI Implies (Utll>ls.. '" (Ut2'I)ls.. whIch with 

(UtIJJISll '" Fill Implies (3); the SlIme reasoning e.pplles 10 t~1 bringing (5), To 

ch,ck (2). nOle fhat If Isola led Iransnlons are not laken Into accounl Ihen 

T... nbhCSII,P ) '" U.~SIll nbh(s,PIll) whiCh. by deflnillon of nbh(s,P•.L by 11) and (3)
IIl

brings (2). 
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Definition ".2 

A partition (S"., ,S", 01 S 15 functional wrl a nel P"'((S,T,f>,A.D If for every 1£ T: 

'0' " Mis, < "'Is, then ~''')Is. = "'....,Is. 

proY'lded that ~(M) .. 1. = liM') .. .J. for any M, M". k'" 1.... n 

" ~IMk) .. .l- lor k"), ... n then rIM) .. 1.'b' 
where M '" U.,Mkls., 

Example 4.1 

A °RELAV" pautng number! Irom Input (In) 10 outpul (oun provided that a blnary~valued 

control (cl holds 1, Is specUled liS 

RELAY .. «On,out,c), {tL (<in,t>,<t,out),<c,t)}},R,I> with 

e(M) - L ~ M(c)" 0 

tl(M) (a) - [l!!l-in II a-c -+ 0 I a-out -+ M( in) ) 

(A denote" the sel or real numbers). The only funcllonal partition or On.oul.cJ wrl AElAV 

Is ((c).Un,oum, 

Theorem ".3 

A nel P = «S.T.f>.A.!> Is decomposable wrl " parlllion IS ..... S") 01 S Iff this Is 

a functional partlUon wrt P,

Pr_ 
Le' P be d.compo"ebl. wrt 51' .. 5",
 

Then. therll elliat nels P '" «SJ.TrF(Arl > such tha' P Applying
j j -7=1 P r 
Theorem ".I we obtain 

I 
(-) nM),. u"J(MISl lor any marking M In the net P. 

Note that Mis, la a marking In lhe nel P Since III are funcllons. then 
r 

(..) Mis., M'1811 - ,\eMIs..> -= i\M'ls..) lor any markings M. M' In P.II: 



suppose fcMI" -L. reM') ".L and Mis. '" M'ls•. 

I I. IThen, by e-) 1J(M'Sj) " 1. and sImilarly t'eM'SJ) " .L 

Thus, by e-) and property of restriction -1-.
 

I'M>ls. = ,U/JIMls,"ls, • ,J,.'Mls,>
 

,r,M'>Is. = ,U,,'(Mt',>>js, = t"IM'~,>
 

Bye"') we gel ,(cMlls. = ,1 eM ')ls.
 

Now. suppose ~CM) = .L I (M') .: 1. and Misk '" M'ls•.
 

Clearly. by convenllon 'rom Secllon 23. also ~eM)lsk = ~eM')ISk' 

so. we proved lhat point (a) In Dellnltlon 4.2 holds. To prove (b) 

suppose ~CM·l"....L and M:: U.Mklsk· Therelore Mis, = MIISj" J.:1 ... n 

, I I
By Theorem 4.1: fI(M) = UfJ(Mls) = UtJCMJ S I 

I J I j 

1 
and .L" ~(Mt<, UJt ICMk!Sr lor k'" 1, ...n. which Implies ~CM)".L 

Let lSt" .S"' be a functional partition wrr P. 

We look lor P • «5.,T.,F.> .-\.~) such Ihal ~ = 1~:1 p•.• 
Define: F. = Fls lI , T. = nbhIS•. P) U ISOl where p 

IS0lp '" lIEP: ttnbh(S.~». (50. ISOLp Is the set of transitions Isola led In P. I.e. 

connecled 10 no place SES). A. = A. 

I(M>ls., where M Is arbitrary markIng In P, satlslylng 

.slU,\> :II: Mis. = M., and ~(M) " .L t IIf such M ellis Is 

..L • otherwIse 
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Due 10 (a) In Dellnillon 4.2. llt(M ) does nOI depend on Ihe choIce of M.k

We show P ::: .:::, Evldenlly, S ::: UkSk, F ::: UkF k. T " UkTk,PII . 

A ::: UIlAk. To check Ihal for given msrklng, ~\ In Pk, M ::: U",Mk Implies: 

(••• ) nMJ '" U.I\(M,) . consider two case,: 

Case ?l(M ) .. ..1 lor every k=1 .... n. By deflnUlon of f'.: 
k(* ••• ) I CM ) - rCM) Sk' where M : S -----+ A I, a cerlaln~ 

l

-",k

marking In P sallsfylng Mklsk::: Mk. and I(Mk) " .1. Since MIs",::: Mklsk. 

Ihen applying polnls (a) and (b) Irom Definition 4.2 and (... **) we get 

J
 
f(M)IS '" I(M.II)IS ::: 1 kCM ) which Implies (U *)


k k k

11 T. 
Case I (Ml '" ~ lor II cerlaln J. By deflnlilon 01 t '. this mea ns thai 

I(M) ""..1 for each marking ,aUslylng Mls ::: M ThuS. IrCM) =' .1
j J 

UI\M):::~ equallonIe' ... UkM . On Ihe olher hand . , , thus (***)
k


holds also In Ihls case. ThIs complete, Ihe proal 01 the theorem.
 

q.e.d 



Elfampfe 4.2 

PetrI Nels (and their extensIons like nets wllh mulUpllc1Ues on arrows, wllh InhibIting 

arrows elc'> ate decomposable wrl arbitrary parUtlon 01 places. The reason Is the 

following. The essentIal leature 01 any sort 01 Pelrl Inferprelatlon Is InaI. although 

tlrablllty 01 a transition depands usuelly on several places. marking 01 II place after 

firing depends ~o/e/'l on liS marking before the lirlng. Thus, 

MI•• M·I. ~ nM)ls:: n~nls <provided U'lat I Is flrable In M III i1 Is IIrable In 

M') lor any piece s, transition 1 and markings M, M'. ThIs Implies (a) In Dellnlllon 

".2, for any partilion fSI,,, ..S,/ HOlding of (b) Is Obvious, Therefore, erbUrllry parllllon 

Is functlonel wrl any Pelrl net. Hence, by Theorem 4.3 - Our conclusion. 

E",emple ".3 

lei l!!I net be a Iree repressnllng an arithmetic expression. places hold numbers, 

lrenslltons are operators -+ ... etc Function ,I replaces a conlents oil's output 

place by the resull 01 correspondIng arllhmellc operation on I's Inpuls. leevlng them 

unchenged. Such nets are nOI decompo!l8ble. regard'ess 01 a perlllion 01 places. leI 

us demonslrele this on the nel ADO lor x+y. lei Z be Ihe rool of the tree lor x+y 

end let Irensltlon I be +. So. ADD is speclfted as: 

ADD - «(x,y,zJ, (tJ, l<x,t>,<y,t>,<t,z»>,R,!> 'W'ith 

tICH) "'...L for all H 

t](H)(e) - (e-x v e-y _ H(e) I e-z _ M(x)+H(y)] 

Suppose there IS a funcllonel perllllon 1S,.S2....) 01 (x,y,z) end lei l£Sk Then either 

x,i'Sk or y,i'StI: let K,i'Sk aM consider markings M, M': 

M :: (Ql.l>.<y,2>,(z.O» M' l<x.2>. (y.2), <z.O») 

Theretore 

Mis,' M'ls, (2) M(:d+M<yJ.,. M'bHM'(y) 

The partillon Is functional. lherelore. by n) we heve 

/'M'lsk • /'M"Is, which Implies (3) nMHz):: nM')(z) 

By specIfication of f, (3) contradIcts (2). hence there Is no functional partition of 

("'.y.d. By Theorem 4.3. the net ADO cannol be decomposed al ell. 

(ll 
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Ex.mple 4.4
 

By Theorem 4.3. lhe only II-lactorlsallon 01 RELAY (Example 4.1) Is·
 

RELAY = vile wllh value (vl and control <C) lac tors specified as,
 

v - «(1n,out), (t), {<1n,t>,<t,out>}>, R, Iv> .... ith 

t '\} ~ 1. for all M v 

tty ("v) (I!) - [s-in ----+ 0 Ie-out ----+ M ( in) 1 v

C - «{oj, It}, (c,UP, {O,II, Ie' .... ith 

t lc (".,) '.L = Me(e) • 0 

t'c(Me ) (0) - 0 



Now, one can lOOk for an ultlmate decomposl\lon 01 nets, 1e decomposl"lon InlO a 

sorl 01 atomiC sub nels, hot further decomposable. It lurns Oul to be un1Q1l6. so we 

get a canonic representation of nets: e ....ery hel Is a parallel compos!llon of a number 

of atomic nels 

08"""'0" 4,3 

A II-Iactorlsatlon p '" I~~,PJ IS aromic '" none or P is 11- laclOrlsable regardless, 
01 partlllon 01 lis places). SUCh P Is called Ihe a/omlC he!, 

Theorem 4.4 

I~ pi 
F' J 

The atomic It-ractorlsalion or any net IS uniQue. I e II 

1m p2and are IwO atomic II-ractorlsallons 01 P then n '" m ano 
j= 1 I 

pi, , .... ,P~ is a permutation 01 p' p', ' , m 

Prool 

n 1m p2Lei R pi be two dlstlnCI atomic 1t--factorlsatlOns 
,~1 I .=1 i 

Of p, with corresponding S-partltlons IS\, ... !S~). (S2" "S~ I 

, , ,
By Theorem 4 2. IS l' ",Sn) ~ (S 1 ,S~ I. whICh means that there 

exlsl distinct and non-disjOint S~ and S2, FaclOrisatlons are atomiC, 

P: 
, 

sO Is nol 11-laClorlsl!lble. trlus. no parlilion 01 S~. In parhcular 

IS~ns~, S~-S~) may be fum:llonal wrt P~ (by Theorem 43) 

Hws. there exlsl markIngs M, M' and a IransHion I IIraOle In M and M' such thai 

either: 

(1) Mls l ns2 _ M' Is' ns 2 
II. I 11.' 

1 2( 2) ~(M)ISI ns ~ ~(H')'S' nsII. I II. I 

or: 

(3) Mis' -S' - H'/S' -S' 
k I • I 

1
( 4) tf(M) IS: -s~ " t (H') lSI._S2, 
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If (1), (2) hold Ihen Ie' be • markmg COincIding With ... on S' and with M' on"', •
S-S~. Hence. by <l). "', coincides wllh ... ' on S~
 

Partlllon (S~ S-S~) IS functional wrl p, Ihus II(M,) • 1
. 

(by (b> In DellnHlon 4.21. Partitions {SI, ..... S~ I. IS 2, ,. ,S2 I are functional wrl P, 
m 

rhus (by (a) In DefinHion 4.2>. 

tT(M >.,IS' _ tJ(M) IS'. 
t'(M >Is' - t1(M'>IS'" , 

2 2Therefore tI(M) lsi ns = tI(M') Is1 ns
k I k , 

which is In conlradiCllon with (2l 

If (3), (4) hold Ihen fer M be a marking coinciding wllh M on 
2 

S~US~ and with M' on S-(S~US~). Hence. M2 coinCIdes wllh M 

on S~ and. by (3). with M' on S-S1., Partllion (S1. US 2., S-(SI.,US 2 Jl 

Is functlonsl wrt P, ThuS tIO~1) .;. 1 (by (bl m Definilion 4.2l 

Partitions (S' ... ,S1 J. (S2, S-S2) are functional wrl P. thus (by (al In Definition" 2l 
1 n I I 

t'(M ) Is' - t1(M) Is' 

t'(M ) Is-" • t'(M') Iss-s'• I , 

These equsUons Imply: 

tI(H ) Is1 _S2 ~ tl(H) Is 1 _s2
2 k t k I 

t'(M ) Is' _SO - t'(M' >Is' _SO
2 k I k " 

Therefore tJ(M)IS~-S~ ~ tl(M')IS~-S~ 

which Is In contradlcllon wtth (oil 

q.e.d. 
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Ekample 4.5 

A small dais-flo..... syslem Is represenleo by lhe nel In Fig 4.1 This IS a cOll1pulallon 

01 arllhmellc expression lI-ty"z. Places holding values and control lok.ens are labelled 

..... tth a leiter subscripted by v and c respecllvely. Transllions are labelled with I 

9ubscrlpled by corresponding operators. 

x... Xc y... Yc z... 'Zc 

tt (H)JII.l <= H(x )=H(y ) ... 1, M(u )"0
• c c c 

t.~ (H)JII1 <= M(Uc)=H('Zc)=l, H(Wc)~O 

t J (M) (s)"'[sE:lx ,y ,'2 ,W,'2 ,'fO }_M(Bll
• ... ... ... ... c , 

SE:(xc,yc J --+ 01 

s=u..,-H(x ... )+M(yv) 18-Uc-l] 

t~ (H) (a)~{BE:{x.,y... ,z ... ,u.,u""Xc,y,)-"'H(s) I 

SE:(uc''Zc 1- 01 

s=w..,_H( u..,) *M( '2 ... ) la",w -1]
c

Fig 4.1 

The atomic decomposiHon df this net Is shown In Flg.4.2 

Y, x , Y," " 

t. t.l t.l 
u, 

" 
u,t.l t.~ 

t' 

It. 

Fig. 4.2 



5. An algebraic nole 

We conclude with a simple and rather loose otJservatlon. Every aDslraCl net determines 

an abelian. par11al semlgroup 01 some of liS sutJnels. where the semlgroup operation 

(par1lal. tJecause Ihe operation ~ stipulates Ihal Ihe sels 0' places 0' its a/gumenls 

be dlsjolnU Is oblalned as fotlows. If 1~=lP, IS the canonic (unique. tJy Theorem 44) 

represenialion 01 a given nel P, then !P,,, .. P ' is the set 0' all alomlc suDnels I)'n 
P Lei SOIP) be the sel 01 all nets 01 the form P IP I ~Pk where l'-k,'-n.k k 

" m 

k."k. for l,Ij and l(i(m, l(J(m The semlgroup is 'hen (SGIPJ. II> and !Is sel of 

generalors Is {Pl' .. PIII For a net P wilh "Petri-like" interpretation. every such 

generator IS a ~lngle-place net Lei us denole II '" ,t'_lstl' ,I". where s slands 

lor a place. 1 ,,,.,t s18nd for enlry 10 s transitions ano III ,In 'or e~t1 tram_1
 
'


1
s lr8nslllon5. The cho .....sen nOlatlon suggesls a language lor wriling nels ll-faclorisable 

Into single-place generators Its alphabet consists of countatJle sels Sand T of places 

and transItions respectively, concurrency symbOl "~. and comma"." lis senlences are 

nel-terms: 8 net-lerm Is either 11, ... ,11_1S\, .. ,t or If a and Rare nel-terms wUh n 
diS/Oint seb 01 places then a.A is also a net-Ierm Every net-term is a denotation 

01 a net. b~l. clearly. lhis correspondence Is many-to-one. since many nel-terms may 

denote the same nel. Considering Ihe synla~ onty. it Is easy 10 characterIze Ihem 

algebraIcally by prOViding a few equalilles tJelween terms and then stating Ihal two 

terms 8re ~ynlacllcally equivalent wllh respecl to lhese equalities it and only 'f they 

represent the same net-structure. Syntactic equIvalence, denoted by -(_". means that 

a term can be transformed into equIvalent one by succeslYe applicalion of given 

equalities. In language definition .,. and "." are JUSI synlaCtlC formallon symbOls lor 

terms. In algebraic considerations .,. Is an operation In the sst T- 01 all finite lists 

0' transUlon names (with emply list ;\) and "t· 15 an operallon In the sel NT ot alt 

nel-terms. T"he equalities are 

FOr any u, v, w £ T" P, Q, A £ NT 

(a) ;\,U-U,;\-U 

(b) U, (v,w) - (u,vl,w 

(c) U,v - v,U 

(d) U, U - U 

(. ) PII(QIIR) - (P 110) II R 

(f) PliO - OIiP 
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Theorem 5.1 

p ~ Q l f f <Sp,Tp'Pp ) ~ <So,To,F )o 

Proof ouiline 

leI P _ Q. Nole. Ih"l appllc"tlon 01 one equ"IIIy of (al - (/J 10 "term P does 

not change the nel-struclure <Sp.Tp.F )' Indeed. in such one-slep Iranslormatlon thep
sets Sp and Tp remaIn unchanged - Ihls lollows Irom considering six cases 01 

Ir"nslorm"tlon. one case for One equailly Also. Fp remains unchanged. Since lhe 

one-slep transformation leaves neighbourhoods 01 places unch"nged By InduCllve 

argumenl we conclude that any IInlle number 01 single steps leave "II the three sets 

unchanged. thus. 

(Sp,Tp,F p ) - (So' To' Fa)· 

Conversely. let not P _ O. Thus. there exlsls an atomic lerm In one net. which 

has no _ equIvalent counterpart In the other. This me"ns thaI either 

Sp ... So or T p ... To or Fp .. Fa 

Or any combInation thereol hold. Iherelore 

(Sp,Tp,Fp) ... (So,To,F >o 

g.e.d. 

The language and the algebra 01 Its terms gel a IIlt1e more complicated II generalou 

Induced by " given Interpretation are nol necessarily single-place subnels. 
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I. tntrOOUCllon 

Srartmg Irom a concept at 'aosiract" net - an undIrected blparUle graph depicting 

a locality felallon rather than flow relallon. bUI Interpreted quite generally (transiliona 

represenl arbllrary slale Iranslormatlons) - we define some eSP-like operations on 

nels These are: parallel synchronIsed composlllon. e~ernal choIce. asynchronous 

IOlerlea..-mg. prehl! 1"llrst I,re ,ransHlon t lhen behave like net P') and recutalon They 

ara so Clerlned Inal Ihe sel 01 Ilrlng sequences generated by a compOsite net equals 

the respecu..-e CSP combinatIon 01 the sels Of firing sequences generated by 1190 

companems. Thus. the underlymg model on which the relallonshlp between nets and 

Ie pari of) CSP Is m..-esllgaleCi here IS the trace mOdel. The con,lderaUons. abstract 

ano semantic at the begInning, become mOre speclltc and syntactIc es Ihe Slory 

proceeos. Flrsuy, .nlroduclng a "plug-In" consHuctor ISecUon 3> we come up 

TM3 war" wes :supparrcd br 81 VI:Sl!lng Fflllow:shfp Re:snfch Grent from the UK Science 
,nd Englnflflrlng Resflerch Council 
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Wllh It symu 01 general nels. bul thtS 'tIt111 911hlbll merely Ihelr structure. l.e. Ine locality 

ralallan. Tile behevlour 01 nels danoled by Ihelr syntactic forms IS sUII almost enllrety 

tlldden In the mlerpr9lst,on. Nexl lSeClion 4). three eSP-like operalOrs are dellned 

lor nels: parallel composHlon. comee and InlSrte8Ylng and Ihls makes the IIr81 slep 

towards SYOIacllC laCIlU'9s lor tnI9rprel<!11lon. The nexl ana I' 10 dellne a counlerparl 

or esP's prelrxing conSirucl. We adopt Ihe Palrl nel's lIoW' 01 control mechanism lor 

Inls. comm1ng up wllh 8 synlax and semanllcs 01 conrrol nels. These are essenllally 

piace/iransition Pain nels WIth erroW'~mulljpllcHy 1 and are .rlllen as expressions which 

ws call contrOl terms. Tnet' semantiCS will be defined In denOlaltonal manner tSe,:tlon 

SJ. Finally (Section 61. a class 01 nelS. O-nets as we say. will be selecled and lhelr 

formal language deltned. They are llnlte pIt Pelrl nets 01 reslrlcled slructure bul 

augmented semantiCS and are targels 'whlcn eSP-processes will be translated into. 

In dealing .. lin recurSion. we lollow Ine lecnnlque oj synlaCllC apprOJllmalions from 

(Hoa-Olde 831. Inen sIngle out a special case - loopmg - which allows lor eJlcepUonally 

,Imple ,ranslallon. The tranSlatIOn tunctlOn F may be tnougnt of as an algorithm 01 

asslngnlng nets to eSP-procsses. Hence a kind Of nel-model 01 CSP. Un1ortunalely. 

Inere remain three CSP nOllons: dlyergence. mlernal chOice and tlldlng. 10 make tnls 

model more complete. Tne paper would. nOweyer. grow unplausibly. so we leaye Ihem. 

a, well as Injerence rules lor D-,arms. 10 a separale one The prools 01 proposillons 

and tneorems will be ralner skelcny. a few more eleborate proofs are In Appendix 



2. Ba8ic concept8 

Net: 8tructure and interpretat10n 

A net 18 a pair P .. <o(P}'~dPP, 1tS i!tructure 1S
 
O{P], its interpretation ~[Pl. The 8tructure HI a tr iple
 
o[P] .. <S,T,F>, where S 1S a set of variables (typical
 
member: 8', T i8 a set of operators {typical member: t) and
 
p S. Ils,tJ: SES, tET} 1S a b1partite relation called heH
 

a local1ty relat1on. P1ctorlally, F lS a set of lines connecting
 
variables wlth operators alternalely. We use t to etand
 
{or the set of var lables attached to operator t, i. e,
 
t' .. {8ES: ts,t}EF), called a ne1ghbourhood of t 1n
 
the net P. The Interpretat10n 1S a pal[ ~(P] ., <A,ltP : tt=TJ>,
 
vhere A IS a eet o{ values of variables; a function 14: S ~ A lS
 
a valuatl0n of v"riab}r-s and ... - AS i8 the set of all valuations.
 
t P IS a blnary relation in M, associated wlth operator t:
 
t P s we Jl". The only is thls be,
requirement that relation in 

a 8en8e, 10ca1: ho Id ing of (H, H' > (tP shou Id be determined 
by a relat10nship between restr1ctions HI-t' and 14' I t' and 
by equ8lity Hls-'t' - M' Is-'t'. This will be made formal in the 
next 8ectlon. A valuation i8 also called a 8tate of the net. 
operatlonally. t" may be Been a8 a nondeterministic traneition

P(rom a Btate to another state. We wr ite MtPN' for <14,14') E t 
Although nets differ here from Petr i net8 in structure (W'hich 
here i8 a bipartite undirect.ed graph) and in interpretation 
(Which here i8 quite abstract), we adopt Petri's phra8eology. 
Accordingly, we Bay ·places- for variables, -tran8ition8- for 
operator~, -markings- for states and ·firable- for executable. 
place8 wl11 then be drawn a8 circle8 and tran8itions ae bar8 or 
boxes. Relation F however p18ya here a part of locality relation 
rather than f10w relation, or casual dependency relation, which 
vBl later be der ived from P. 

Pirability, stop, chao8, skip 

Tran8ition t €T is f irable at a marking M 1ft MtPH' for a 

Pcertain H'. Two extreme8 are: t .. _ (t never firable) 

and t" ..... M (t alw8yll f1lable). in logical notation 

Prespectively: t" .. FALSE and t .. TRUE, 80 in the f hilt 

ca8e t ie just a 8top transition, in the second - a chao8 

Ptran8ition. If t" - «M,H): HE"}, i.e if t 18 identity 

r8lation 10. then t le 8 skip traneitlon. 
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Extension of interpretation to sequences of transitions 

If t£T and v£T- then vf" £Jf.M ia defined inductively: 

P~P- .. ID, (tV)p- _ t • vP* where l is the empty 5equence, 

• 18 compo8ition ot relatione. If MovP*M then v IS a firing
 

sequence leading from marking "0 to M. In what fo11oW'1'I, we
 

drop the star. writing vI' for vP"'. Note that (Uv)p - up· vI'
 

and that the stop transItion cannot occur in d. firing sequence.
 

Language of fit" 1ng sequences
 

If "0 £ .... then L(Mo'P) - tV€T": 3M: MovPM}
 

18 the Bet of all fir lng sequences generated by the net P from Mo. 

b..-ple 2.1: a"b"c" - language 

For the net P drawn in f'1g.2.1. 

L("o. P) .. u,,~ot~t:t; 

If ~(PJ. (II/,{t~: 1-1,2,3) with 

MtPM' '*""=' II{e )-0 A M(B»O A 'fIj-O .. 4: M'(s )=M(l'I J+k. 
• '-1, , I III 

"'here klt"-l for )-1, k~-l for j-i+l and k,,-O otherwise 

and with 110 deflned by: "o(",)-n and "0(8)-0 for S"'Sl" 

13 s+s. 

t.t: -0 

F"~. 21 



CommunIcatIng processes "netted" 

A net may be seen aa a apec1f1cat1on of a problem. Pictorially. 
auch a spec1f1cat10n exhIbIts a locality schema only: an 
operator can r each for an InformatIon atored in a place !I, say. 
but not In a'. What the oper ator doe a , what can or mUBt be done 
next or slmultanously, IS hIdden In the Interpretation, thus not 
readable from the pIcture. The level of such speCification may 
vary from a rough schema of a (distributed) system to a program 
In machIne code or a network of gates In a circuit. T&ke, for 
example, a flowchart P, Fig.2.2(a), of a sequentIal program with 
unIquely labe11ed boxes containIng CSP's i/o Instructions 
01, QI, .. (var iables and expressIons are droppsd). P may be drawn 
as a net in Flg.2.2{c). where thansltions are labels, places are 
points of controi flow In the flowchart and may hold a token 
1nd icat Ing pr esence of the control. Conditional instructions 
(diamonds) are represented in the net as conflict places. Thus, 
at thIS level of specIfying, the conflIct is resolved 
nondeterm1n1stically. The net assumes Petri's interprstation, so 
....e direct Its lines (a syntactic proVHllon). In Fig.2.2(b) there 
18 another flowchart, 0 and its net-representation is In 

Flg.2.2(d). Now, we wIsh to make a net for parallel composition 
PliO of communicating processes. Subscr ipts will indicate a net 
to which subscripted thIngs belong and "tp matches to" means: 

eIther t p labels a Q1 and t labels a P! a 

or t p labels a O! and t labels a P1 a 

The net PIIQ IS defined aa follows: 

Splta Sp U Sa 

TptlQ - {{tp,t.ul: t p matches tal 

F .. F' u P- wherepllO 

F· - {(s, {tp ' tal> (s,tp)fFp v (s,ta)fF )a 

F .. f({tp't.o)'S) (tp,s)EF p v <tQ,S)EFaJ 

So, a transltlOn t .. (tp,t[j) In PliO identifies a pair 
of 1netruct10ns capable of communicatIng mutually and t ie 
flrlllble (read: the communicatIon may occur) Iff both t p and to 
are (read: control reached t p and to). Ths net PliO ie 
In Flg.2.2(e). SummerisIng, we define interpretation in PIIQ : 

HtPII",,- _ (HiS )tP (H'IS ) • (HiS ItO (H'IS )p p p a a a 

where t .. (tp,t )' H, H' are markings In PIIQ and HisI'u

IS a restr1ct10n of H to Sp etc. Places In P and 0 should be 

dIstInct: Sp n Sa .. _. 
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Ln Section 4 the story 18 a little simplified: - T,. u ToTplO
and there ·may be common transitions In P and Q. sy~chrin1Batl0n 
will then occur on those common tranSitions. Further resulta, 
however, can be strlghtforwardly quoted, starting from th8 
Sbove general definition of PIIO- The experiment With RII R 

encourages to try also some other Constructors: we construct 
some classes of nets from one or a few atoms. 

Labelling 

Transitions in a net Pare Ulen labels of instructions tram a 
Mset 1 in the Rnetted system, hence a labelling function: 

h: T _ I wh 1 Ch may be extended to sequences by: 

hP,} ,., ... p. - empty sequence of tranSitions or Instructlons} 

h(vtJ = h~vJh(t} (V € T~ t € T) 

and to sets of sequences X,} ~ TI
 
h(XY) - h~X)hl':t) (the symbol h IS ueed also for extensions).
 

Thus, traces(P')" h~L(M ,1')), where P' IS a system
 
repre8ented ae a net P wI~h Initial marking "0 and traceB(P')
 
IS tne set of traces generated by P·. I.e. Instruction sequencee
 
recorded In the order of their execution. follOWing the above
 
mentioned Simplification we Will assume; traces(P'} - L(Mo'P).
 

Are nets pred 1catee1 

We conclude thiS section With the following remark, ~h1ch, at 
least in Its first part touches an issue, for programs expressed 
in {Hoa~Olde 83], (Hoa 84]. In operational termB, net's 
actiVity may be obeerved either as a progress of subsequent 
f1rlngs, or ae a progressive changee of the state. In the fust 
case, our ·obeervation space- is Tt (With the usual tree-like 
ordering), In the second It is" (With an ordering derived from 
locality P). Pi:lclng a marking M €M as initial, we might 
abstractly identifY a net P Wit~ a predicate P(V): 31MtII: M vPM 
- if we are concern8d With obserVing firing sequences (trac~s) 
as P's behaviours, or we might identify it with a predicate 
P (M): 3vtT": MoV"" - if our concern 18 to observe 
changee of the state. In both cases, however, when making this 
ident1fication, we consent on losing a relativistic aspect of 
net's behaviour: two observer8 may see it qUite differently, 
hence qUite different are predicate8 accounting for their 
observations. In other words, we assume the Rabsolute time 
scale·, or a -global clockR ensuring total ordering of events. 
ThiS involves a simulation of concurrency by interleaving 
rather than a direct description. To capture timing aspects 
(e. g. concur r ency) mor e adequately, one might Incorporate aome 
concepts from the fundamental work [Petri 76] and follo~ the 
technique developed e.g. in lHaz 77}, [Lauer 75J, 
(Win 77J. That is, instead of Rtotal sequences-, to aBBUIM 
Rpartlal sequences- as observable objects. These objects are 
eqUivalence classes of a predefined independence relatlon 
between evente. However, the free Var iable of our net-pred 1cates 
~ould then range over constructe much MOre elaborate than f tr 1ng 
sequences or markings - an increase of adequacy at the pr ice of 
co~plexity at (hardly) observable objects. 
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3. Conet(yctlve description 

A net-term IS a notation for a net. To simplify wr itIng, we uae 
the same symbols P, Q, ... for (nameB of) net-terms and netR for 
which they stand. Two construction devIces are chosen in this 
Section: tupling of places and a ·plug-in· ~ constructor, which 
attaches a gIven transItIon to a net already bUIlt up. 

IIz..-p1.e ).1. 

tJ(82,aJ,941~(aO,al,a2,f13,a4)denotes a net consistIng of placeR 

e , ... ,s4 and transitIon t 3 ·plugged into· placea S2,B3 ,S4 ando


t, (a ' 15" 9,) ~t2( 8 ,8,' 8 ) ~t3( 8 2, S3' 8 4) ~ (8 0 ,8 1 , a:l' SJ' 54)
o 1 3 

denotes the a"b"c" net In Fig 2.1. 

Definition 3.1. (net-terma) 

1. (s" ... ,ell) la a net-term denoting a net P wIth: 

O[P) - «e,,'" ,Sll) ._".1> 

,u{P) • <1\,_>. where A ie a set 

2. Let be gIven: a net Q - «S.T.F),<A,{tO: tf:T»>, 

a transition to I T, place8 la" .. ,8ftl ~ Sand 

a relation p S A" '" A" (put p-TRUE for n-O). Then: 

t (8 , ••• ,81l)~Q i8 a net~term denoting a net P with: o t 

O{P) - <S,TU{t },PU((Sl,t ): i"1, .. ,n»O O
P,u{P) • O,,(tP: t£Tult )}>' where t - to for t - to and o

Mt:M' - (M(8,), ...• M(8 1l »P(M'(Sl)'···.H·(Sn) "Hjso - H'lso 

where So· S-{8, •... ,""I. 

Obvioualy, for every net there lR a net-term denoting it. 
Definition 3.1 g1ves then a con8trYction mechanism for neta. 
Almost all evident 1e the following 

Propo.,ition 3.1 

(1) Suppo8e for 101 £ (l,2): 

( a) • I·t - M I·t·
" ~ 

(b) • Is-·t· - M IS-t11 ,:I' 

Then: Mtl t "'2 - Mnt "n 
(2) If ·t - _ then t - skip 

(3) If t· chaos then ·t· - 5 



Proposition 3.1 may be verbalised as follows. (1) - two narkingl'! 
are 1n relation t P only and when two other markings, coinciding 
respect1vely with the former on t's neighbourhood, are. 
(2) - isolated transit10ns are firable but do nothing. 
(3) - chaos is attached to all places. 

Nondeterminism. and functions 

Regarding nets operationally. we find two sorts of nondeterm1nism 
in their activity. One is at the level of the whole net, since it 
may be more than one firable traneition at a given markin9 and 
the other is at the level of single transitions because t is a 
relation, not necessarily being a function. Notice that in Petri

Pnets it is a partial function t ; II -. .. , hence - the fast
Psort of nondeter~lnism only. However, aS8uming t to be a 

relation is beneficial when we introduce in the next I'!ection some 
eSP-like constructors (or netl'!. It turns out that the concurrency 

t PUOconstructor II preserves the functionality (i.e. is a
Pfunction provided that t and to are), while the interleaving 

III and the choice 0 do not. Thie property slmplifiel'! 1ts 
definition. rf relation p in Definit10n 3.1 is a partial function

P Pp: Aft --++ A" then t i8 a partial function t : II -. It. 
PWe wr He then M' .. tP(N) whenever NtPN'. If t is undef ined 

at H f II, 1.e. when t is not firable at M, it is written 
tP(N) .. .1 and we assume .l t M. Two conventions are adopted: 
M U J..- - .J.. U M .. .J... and ..LIS - .l, for any M EM and So ~ S.o 

Propoettlon ].2 

Let t P be a partial function t P: M -++ H. Then: 

\ 1) If MI·t· - M'I·t· then t'\M) '·t· - t'\M') I·t· 

(2 ) If tP(M) • .L then t'\M) IS-·t· - Mls-·t· 

Proof - direct from Definition 3.1. 

Operationally, Propoeit1on 3.2 verbalisel'!: (1) - the effect of 
f1ring a trans1tion depends solely on its neighbourhood, 
(2) - the effect of firing a transition confines to its 
neighbourhood. This expresses the local character of transition's 
activ1ty. 
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4. eSP-Ilke operations on nets 

Definltlon 3.1 allows to construct arbltrary net but. provides 
no syntactic means for 8peclfy~n~ its behavlour, except that 
each trana1tlon acts locally. The behaviour is determined by 
interpretation of transitlons. To illustrate thls, recall 
Exam~le 3.1. where the net-term determlnes the structure of 
a"b"c net, but lts behavlour, e.g. sequenclng, 15 enforced 
externally by a rule eeparate tor each transltlon. In thlB 
sect lor we make a flrst step towards Borne syntactlc faClllties 
tor interpretatlon, adoptlng three eSP-Ilke conetrllctOtS 
for nete: parallel compOIution II, asynchronous lnterleavlng 
III and gen.eral choice O. Their def in1tione are so chosen 
that behaviour of COmpos1te nets PIIQ, PUIQ and PDQ correspond 
to that of respective composite esp processes, if this 
correspondence holds tor the components P and Q. However, 
the correspondence may be established merely 1f a common 
observatIon space is taken for nets and esp and as the one .... e 
take here the set of traces. Therefore we def1ne II. til and D 
constructors 1n such a .... ay that if (MP,P), (Mo,Q> are nets 
w1th f1xed 1nitial mark1ngs and P', Q' are CSP processes 
such that 

L(MF',P) .. traces(P') and L(NQ,Q)" traces(Q') then: 

L(MFfa,PIIQ)" traces(P'IIQ'), L(MRlQ,PllIQ) - traces(P'IIIQ'), 

PlQL(MFtu,P[JQ) .. traces(P'DQ'), ....here M etc. is the 

initial m.arking In PIIQ and operators II. III, 0 on CSP 
processes P' and Q' are from [Hoa 83 J. The next step in providing 
syntactic facilities tor interpretation i8 to der1ve sequencing, 
or tlow of control. tram locality relation F. Thus, t~o model the 
esp's concept of pretixing. This is in the next section. 

Superscript notation 

For a net P'"' «S,T,P),(1\,(tP: tET}» and marking M ....e use 
Mf to stres8 that this is a marking in P. Tu put 1t differently,
Mf - MIS is a restriction of M to S. This is a prof itable 
notation when several nets with disjoint sets of places are 
combined into one. For example, as we will see in a while, 
~a .. Mf U MQ. Note that the notation -e'· also stresses 
th.t tranSition t 1S interpreted in p. 



Definition 4.1
 

Let nets P and Q be glven w1th:
 

o(P) - <Sp,Tp,F p >' #[P) .. <Ap,{t
P 

: tETpl>
 

oo[Q)· (So,Tu,F >, #[QJ .. (Aa,(t : tf:T ) > a a 

and let Sp n Sa .. (1. Nets PlIQ, PlltQ and POQ are defined 

as follows. The1r 8tructure 18 1dentlcal: 

a(PlIQJ - o{PllIQl .. o{POQ] - <SpUSa,TpUTo,FpUFa)
 

The1r 1nterpretat1ons:
 

the set A of values of places 1S Ap U A and transitlDnB
 a
1n compos1te nets are lnterpreted as follows: 

Mt~' =- MPtPM'P 1\ HUt~'O 

tHPtF'M'P 1\ MU.M'o, v (HOt~,a 1\ Hf'''M'f')Mt""" = 
Mvlil;.· ((MPyPM'P 1\ HO_H'o, v (MQyoH,a 1\ Hf'''H,PJ) 1\ VETIUTl= P Q 

where H."f U MU, M' - H'P U H,a are mark1ngs in the 
compo81te nets. 
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ColNftente 

ll} M· PI U MO, the unIon of funct-Ione, 18 meant. "8 the
 
unIon of relatIone. Due to Sp n So ... JII, M agaIn 18 a
 
functlOh - thIS motIvates t.he assumptIon.
 

(2) The ChoIce of the meanIng of II, Ill, 0 for nete is 
formally JUBtlfled by Theorem 4.1. InformallY"'waln operational 
terms, It ma~ be under8tood all follows. For t notice that if 
t,tT then Mt ~. <= MPtPM'P /'I MO·M'o (by PrOpOSItIon 3.1(2»).a 
Thus, the actIvIty of t In PIIQ 18 Just Its activity In P and has 
no effect for Q_ SImIlarly 18 when t,tT ' If tETpnT the actIvityp q
of t In PIIQ 18 It.8 elmultanoue actIvIty In P and y. A similar 
argument. ConvInces that. P and Q work entuely Independently 
In then COmp0l!lltlon PltIQ. The motivatIon of II for nets 
18 to provIde a 8yntactlc 8upport for synchronISatIOn 
(by -handehaklng-). On the other hand, the sImplIcIty of its 
defInItIon IS due to sImplIfyIng conventIon made In SectIon 2 and 
to a eet-theoretlC prIncIple: If t occur8 In T and In T p Q
t.hen It oCCurs In T U To ae a one member. beIng an 
IdentIfIcatIon of tr,eee two occurencefl. The motIvatIon of lit 
IS to exprese Independent "'ork of several copIes of one net 
WIthout. renamIng transItIons In the dIfferent copIes. AgaIn. 
the defInItIon makes use of the mentIoned prInCIple. 
For PDQ, the argument 18 a lIttle more eubtle and the 
reader 18 adVIsed to recall defInItIon of extenSIon of 
InterpretatIon to sequencee (SectIon 2). Firstly, notIce that 
the Int.erpretatlon of SIngle transItions cannot be primItIve. 
but must be derIved from a stronger InformatIon, i. e. from the 
InterpretatIon of fIrIng sequences (traces). Thle must be so, 
If we wuh to retaIn the abe tract.. InterpretatIon In the 
componente I' and Q. rather than to specIfy It somehow for the 
purpose of a defInItIon of PDQ. For example. In PetrI nete, 
t.he chOIce IS realIsed by the concept of conflIct, but this IS 
due t.o the very speCIfIC InterpretatIon. In contrast, the 

Plluabove defInItIon of PDQ allo"'s for determInIng v
(V(T-d WIthout any spec If lC assumption on interpretatIons 
vf', v . Real181ng PCO by conflIct may be seen as the 
ImplementatIon of D In terme of PetrI nets. Secondly. every 
behaVIour, 1.8. v(T-, of PDQ should comprIse fUlngs In 
exact.ly one component, eIther P or Q. Hence, If v 18 a firIng 
eequence eIther In P or In 0 then v (" T~ u T·. 
Thudly, If v - tot _.. t,..., IS made by PDQ then l):ookIng 
at. to one knows whether v 18 made by P or by 0 prov 1 ded that 
t.\JI,i'TpnTo · OtherWIse. to fInd out thIS, one has to look 
at t" then. perhaps at t etc. Th18 8uggests to ca11 0 

2 
a -general chOIce- or -external cholce-, after {Hoa 83). 



Propos! t ion 4 _ .1 

( 1) Operatlone II, III, 0 are aeeociative and symmetric. 

T n T ~ ... _( 1) If	 then PIIIQ • PIIQp 

P to	 t Pito(3 J If t and are functlons then eo i. but 

teM> t~ond need not be.
 

P

(4)	 If t ~ T p then t ie (total) function tP(H) • It 

U(!)J If t" and t are functlons then tpflJ(H) • tP(MP) U t-Q(MQ )
 

Proof - dlIect ([am deflnltlons.
 

The followlng reeult Juetlf les def lnltlon of Ope[atlC.lnS II, Ill, 0
 
for nets:
 

Theore. 4.1
 

Let Ho be a marklng (inltlal) 1T1 elther of composlte netB PIIQ,
 

PIIIQ, pDQ. Then, 

, u 
( 1) L(Ho,PtIQ) - L(Mo,PIIIL(Mo,Q) 

(2) L(Mo,PIIIO) - L(M~,PJ IIIL(~,Q) 

(3) L(Ho,FOQ) • L(M~,P)UL(~,Q) 

wher e oper at lona II and III on languages, 1. e. seta of traces,
 
are! deflned in [Hoa 83].
 

Proof - Appendlx.
 



5. Contul 

Sequencing 

So far we could expres6 flow of control epeclfylng it in 
interpretation. To provide a suitable eyntax, notice that 
unlike other CSP-like operators, the prefi~ing -t-+p· 
Makes no eense for nets unless one indicates a marking at 
which -flret fire t then behave like p •. So, we should rather 
write t~(Ho'P), but thle aleo ie unfortunate notation 
as it in~olves marking, which ie not a syntactic obJect. 
A way ie to adopt the Petri-like flow of contrul mechdllism, 
thue to eelect a reetr icted class of nets as ·control patterns·. 
Such a control net C, when combined with a net P by concurrency 
operator, enforces a sequencing discipline in CliP. (Notice 
that the dataflow concept ia ellpressible this way). Definition 
5.1 ie motivated by the fact that every place/transition Petri 
net (aseume that multiplicities on arrows are 1) may he bUilt 
from one place, one traneition Petr i-like interpreted, 
apply ing _ and II conetructore. We cons ider only pure nete, 
i.e. thOle without tight loope et_te. By Proposlt ion 5.1, 
the definition prOVides denotational semantics [or a language 
of Petr i nete. 

n.finltim 5.1 (Control terme and nets) 

Syntax 

C"-(1(1I0 

f ::- (e) I st_f I ts_f 

The eyntactic categories C, f, s, t are read respectively: 
contr ol-term, factor, place, trans i t ion. Conte~t-dependent 
restrictione for et_f and ts~f are~ e muet occur in f 
but t must not (hence, factor ie a single-place construct with 
at Most one occursnce of every---t,.(,aneition). And tor fllC: 
the place in f must not occur in C. A factor 1n which e occure 
will be cilled e-tactor. 

Se.antics 

Control-terme describe directed nete called control nets. Take 
natural nu~ere as values of places. The structure and 
interpretltlon ot control nets ie defined ae follows: 

C•• e f ::- (e): S, - (e), T, - _, F, .. _, HeH' _ H - H' 

(:••• f ::- eto~fo: 8," S, u (e), T, - T u {to}', t, 
P, .. P, u {(e,to» 

o 

i1' t - to{ M(:l - M' (8)'1, 

Nt'... , -
Nt,", , 11' t ." to 



Cass f :: .. tos-fo : 5, ... 51 U {s I. T, .. T, U (to I . , , 
f', .. P, U «to's»), 

if t - tor,'" .",",HMt'M' = 

Ht'M' , If t " to 

C••BC::-fIIC Sc "'- Sf U Sc' " T, U T ' o , Tc c, 
FC·P,UFc, 

C C c
MtCM' = M't'M" " M 0t ~. 0 

where H' - MIS, etc. 

AbbrevIation: omlt (s) .. in "8b- (8) .. etc. 

ReJllarkB 

(II Racall Defmitions 3.1 and 4.1: a factor 18 thus a net-term 
wlth n .. 1. A'" IV. dHBctBd locality celation p. p givBn 
by eIther xpy ~ x .. y + 1 or xPy ~ y .. x + 1 and 
WIth conditIon M/S " M'lS Bnsuced by the case f::- ls). 
A control net is a 

o
parallBl

o 
combination ot factors. Th@ context­

dBpendent restrictions in Definition 5.1 conform to requirements 
1n Detinitions 3.1 and 4.1. 

(2) Notice that inhibiting arrows: 6--{]
t 

(t cannot tire it M(s»O) trom [Age-PlyMh jU8t a.nother Bort 
of a control nBt, which 18 like st except'lhat xPy ~ l"y-O. 

(3) Notice that 8Bquenclng r or control tlow through a net. e.g. 

IS actually siMulated byO--+-O~ 
parallBI Bynchronlsed (II) actlvity ot three nets; 

t.~ t~~~ 
and th~B i8 &ssBntia11y what 18 g01ng on in PetrI netl. 
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Propo81tlon 5.1 (A characterlsatlon of PetIl nets)
 

Every control net 18 a flnlte pure Petrl net and conversely.
 

Proof 

(e) il!l a no-traneltlone-one-place Pet.r 1 net, constructorB _ 
and II pI8eerve property of being Petrt net. conversely, every 
Pet.ri net 18 (uniquely) II-factorieable into one-place nets 
(TheoreIl4.3 and Example 4.2 1n [cza 84)). Every pure 
one-pIllet PetIl net 18 deeer ibed by a factor f. 

q.e.d 

b.-.ple S.l 

The net in Fig. 5.1 18 described by the control-term: 

et l ........... "t:t......-Jt,8......-Jt.81l t ,8,""--+" ,t311 t,e,-s:,t-. 

F1g. 5.1 BehavIour of one fork on Philosophers' table 

Deadlock and recurrence 

A deadlock occurs if a markIng 18 reached when no tl:aneit ion 
can fire: 

.=IINf:{MoJVtETf': t 18 not fuable at M 

loIheUI (Mol - {M: hETp: MoyPN} 

i8 the eet of all mark1nge reachable from "0' This 115
 
a total deadloc~. Othere, when only some tran81tlons will
 
never f ire are def illed obvlouely.
 
~ recurrence occure if 1n1tial marking is restored:
 

nf:Tp: "0."110 '" v i< l. 

Deadlock and recurrence can occur 1n arbitrary nets, not 
nece8ear ily control nete. However: 

PEopoeltton 5.2 

It i8 decidable whether a control net with inlt1al marking Mo 
can reach a deadlock or reetore Mo. 

PEoof: Reachab1l1ty problem is decidable for such 
net8 (K08 82]. 



6. 80Wle Csp-processes and nets: a relationship 

Prefu, postf ix 

These are transItIons beginnIng and endIng net's activity. To be 
formal, fir at ly say that a gIven plac~is a sour ce (s Ink) 1f 
{t: F(t,s)} - ~ ({t: F(s,t)} - ~) and for transIt10ns 
SImilarly. Syntact1cally, s IS a source (sink) place 1n a gIven 
control term If no ts (st) occur in ItS s-factor. Secondly, for 
a term C and transition t denote by t.C (C.t) a term obtaIned 
from C by replaCIng every s-factor f., where s IS a source 
(sInk) place, by s-factor tS+-+f (st+-+f.).

s
RestrIctIon: t must not occur In fl. Example: 

t.(S,t,IIS2t,lItlS]' - tSl+-+Slt,lIt"2+-+s2t111tls3 

NotIce that: 

(1) OperatIon "." means creating arrows from tranSItIon t to 
source places in a net C 

(1.)	 I f there are no source places in C then "t" - ~ In the
 
net t.c
 

(3)	 There are no source places in the net t.c 

D-terms and D-nets 

Deflnition 6.1 

Syntax 

o ::- (S) I st I t.0 I 000' t 0110' I 01110'
 

where s IS a place, t IS a transition. 0 and 0' are O-terms.
 

SemantICS
 

O-terms descr Ibe O-nets. Their semantICS IS determIned by the
 
meanIng of prefIXIng (.J and by Oefinitions 5.1. 4.1. 

Comment: O-nets are finIte Petri nets with restrIcted etructure 
and augmented semantics: there is at most one entry and exit 

arrow from each place. there are no cycles and tc(JD', t cttr 

are not Petrl InterpretatIons. even If to, t~ are 
(see PrOpOSItIon 4.1(3)).
 

The follo ..... ing theorem states that the O-net sotltt.O', without
 
source transitIons. marked 1 on So and 0 elsewhere. behaves like
 
CSP's prefiX construct: "first t then behave like 0".
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'l'heor_ '.1 
Let: 0' be a D-net without source tran8itlons, D ... Botllt.O', 

and "D(80 ' - 1, ~(6). 0 for 8 • 80 . Then: 

L(IID,D) • Iq u (t).... L(M,D')
 
D'
 

"here lie- - {H : M 18 a marking 1n D' and "otD(H u ({So,O»)) 

and M(81 - 1 It 8 is a 80urce place 1n D' and H(8) .. 0 

if not. tor every M E M[7 

Proof Append Ilt 

Reatr lcted GSP 

Considering a relationship between CSP and nets, we take a
 
eubllet ot an -abell.ct- C9P (Haa.-Olde 83] (but w1th III):
 

P :: - etop t~P \ POO 1 PliO IPIIiO I I I ..I·P 

Here. PI\Q 1s a parallel composltion with synchronised
 
communicatlons in the intersection of P's and Q'e alphabets.
 
Other CSP constructe. like divergence, local nondeterminism
 
and hiding are left to a separate paper. We aSSUme that
 
inforMal meaning ot CSP procee,see 115 known to the reader
 
and def ine a:
 

Tranlllation fun<::tlon F; eSP-pro<::esses ~ nets 

F1rstly, lie tranelate finite eSP-expreefllone: stop, t~P,
 

PDQ, PliO, PIIIO. Event-letters are tranelated Into nameB
 
ot net's tranBltionB, but re<::all labelling and s1mpl1fying
 
<::onventlon from Se<::tIon 1. Our1ng the translatlon, new pla<::f'.11
 
are cre.t~d. The translation pro<::edure 1S:
 

F(stopJ (0) (creat1on of a new place) 

F(t_PJ stllt.F(P) (<::reat1on of a new place) 

F(POO) • F(P) 01'(0) 

F{PIIO) ·F(P)lIF(O) 

F(PIIIO) ·FIP)lIIF{OI 

SecondlY, turn1ng to 1nf1nIte eSP-express1ons notlce that 
-1I.t.t lcally-, pt. P represents not Just an 1nf 1n1te 
elrpre-•• 1on but even un<::ountable one - if P containa more than 
one fre-e occurence of t (e.g. w1th two free t'e, pt.P 
111 lso.-orphic to cOMplete inf mite b1nary tree, with 
• ., ....ny branchee as there .re real numbers). Thus, we do 
not tr.nslate 1t dne<::tly into an uncountable net (we do not 
h.ve au<::h among O-net81) 1n the full generality. Inatea.d, we 
follow. te<::hnique of -syntact1c approximations- fro.. 
(Ho.-Olde 83). And in the next paragraph we IMke a direc.t 
transl.tlon, Wh1Ch, although inadequate in sOlie exception.lly 
..li<::lous <::a8e8, 8eelll8 to be eufficient in most -nor ..aP ones. 



Let Q_~ be a CSP expressIon WhIch results from Q by 
replaCIng every occurrence of a ~t.R In Q by stop and 
let P t- Q means that 0 results frOm P by replaCIng one 
occurence 
of a ~t.R by R(~t.R). Here, R(~t.R) 18 an 
express10n obtaIned from R by replaCIng all free occurences 
of t by ~t.R. If P tAO (tranSItIve closure of 1--) then 
0stop IS called a syntactIc apprOXImation o~ P. 
To translate ~(.P In general, we ne~d Infln1te nets. 
One way 1S to make use of cpo's of occurence nets [Win584J, 
lGol-Hyc 84]. Instead, we extend (commutative and assocIative) 
operators liT [] to any collect1on of arguments: 

E - IltEZ 0 1 , E' ... OtEZ Or 

where (D Z E Z) IS an Indeked famIly of D-nets., , 

E 1S def1ned Obv1ously: 

Sf - 'tEZ So, 
Til - "tEZ To, 

- U PP D tEI DI 

Mt~' _ \I MD1tDIM,ol 
..Z 

and s1milarly E' (1.~. by sU1table extend1ng Deflnltion 4. 1 to 
many arguments). Denote: 

Z ... (QIt~ (.I.P) ~QI 

The translat10n IS now slmple: 

1'(~t.P) - DIEI I'(Z) 

Theor_ 6.2 

If P is a CSP expressIon then traces(P) - L(Mo'I'(P)) 

where M 18 a marking In the net F(P), such that Mots) • 1 o 

It a 1S a source placs and Mo(s) - 0 if not. 

Proof 

NotIce that the Theorem holds for P ... stop, then apply 
Theore~s &.1 and 4.1. 

q .•. d 
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~ speclal cAse of recurs Lon: looplng 

In !!lome Clues (perhaps many) It 8uff lces to trans~ate ~(.P lnto 
• D-net (thUs fInIte) as folloWS. Suppose P may be translated If 
we de! 1m addItIonally a translatlon of ~. Suppose that 
fr88 occ~renceB at. ( 1n P are guarded: t_( and denote by 

9 1((), ···,9,«(' guards of all ('s tree occurencee In P. 

Thus, (OCCUlS 1n P 1n cont.exte 9,lO-L ... ,g,U;)--t"­

As a translatlon of ~(.P we admlt the D-net F(P) wlth 
all these guards connected to eource places of F(P). To do th1B 
formally, we wrlte (t].D to mean the eame ae t.o but: 

(1)	 it 18 legal to Wrlte (t).D even If t occurs in an 
a-factor of 0, Where B 18 a Bource place, 

(Z) BOUlce places 1n 0 remaln those 1n [t).D.
 

How, we have the translatlon:
 

F(IJ - (.) (cr eat 10n of a. new place)
 

F(~/.P) • [g,(/)] ... (9,lI) I·FIP) 

The dept.h of recurelon 19 1n thu case modelled by natural 
nuMbers - the values of places ("tokens" stored 1n places). 

AclmowledlJ.ent 

I ... grateful to Jlfeng He for many dlscusslons on CSP. They 
helped to clAr 1fy 80me lssues. 



Appendn: 

Proof of Theore.. 4.1(1): L(Ho,PJlO) - L(~ ,PJlIL(~ ,OJ 

Let v IE L(M ' P II Q). Th1S meana there IS a markIng H o 

and a [lr1ng l!!lequence v IE (TpUTaJ* such that HovPII~. 

Denote by VI - Y'Tp and v, - vrTo restrlctlons of v to 

T and To respectlvely and observe, by Deflnitlon 4.1, thatp 

_ MP	 vP HP A HO yO MOHovPII~ o I 0 'l 

Thus, Vl(L{M~ ,P) A V2f'Lt~ ,Q) A vlE(TpUTo'" 

\l(h1Ch,	 by del lnlt.lon of It for CSP [Hoa 81] means 

p 0 v IE L(M ,P)I/L(M ,QJ.o o 

Let y IE L(~ • P) /lL(M~ ,0) where H~ , M~ are markings 1n 

P and Q respectlvely and let VI" VrTp ' v - vrT ' 1 o 

Then, by def ln1tlOn of II for CSP (Hoa 91] ; 

V,IEL{t( .P) A v,t!"Ll< ,0.1 A YIE(T,.UT )­o 

which means there lS a marklng M such that. 

Ot( V~ ti'	 A ~ v~ M A VIE( TpUT )·a 

Thus, MovPllaM A vlE(TpUTo)· 

which meane v IE L(Ho,PIIQ). 
q.e.d 



Proof of Theorell 4.1(2) : L("o.PIIIO) ,. L{"~ .E')llIL(~ .0) 

Let v· tot l ... t""l E L("o,PIIIO). ThiB means there IS 

a Mark1nq"1I such that "Ov·"", By Defin1tlOn 4.1 this is 

equ1vale~t to the followIng conJunction: 

~':().n-I tK;t:"r.1 A tf,-M~l) " ("tt-?MI~1 A I("M: 1 ) 

for SOMe markIngs Mo,H, •... ,14...
 

Let vI t t, ... t. be a subsequence of v euct! that
 
110 1 P 

M" t P M' II MQ 
- ",,°'1 A til ETpIII III _101 -\ I J 

holds fOI J-O,l, ... ,p and let V," t t •... t 
1 

be a
'0, • 

8ubl!lequence of v such that 

NO t Q KJ II MP 
\.. 
I 

l. 
J 

I .• ]
I 

~. 
J 

- t{'1, A t .. l!:Ta, 
By def IOttl0n of v 

1 ~ - H~l for k., 1 k,., and 

by def InItlon of v:r If ~, for 1 j 1;01' therefore 

Q Q Q"v" andP 
Nil I Mil 0' ",v,HL '1 

o p o • 

Thul!l. V, f: L(M r .P) and v, l!: L(H~ .0). 
'0 o 

NotIce that .... MP U MQ hence 
'0 '0' 

If. - M'
'0 

and ~ M,Q . Therefore 
o 

V, f: L(t( ,E') and v:r l!: Ll~ ,OJ· 

By delln1tlon of InterleavIng for trAces (Hoa 831, v 1s an 
1nterleav,ng of v , and v, (·v Interleave8(v .v,J")

l 

thul!l. V I: L(r( .PJ IIIL(K; .OJ· 



• • 

Let V" tot,""' ttrl ( L(Hp ' P) III L(Mo.Q) where Mp • M areo 

mark~ngs 1n P and Q respectively. Then v 18 an 1nter1eaving ot 
some sequences: 

v .. tkt•... t. E L{Mp.PJ 
1 0 I P 

v, .. t.otl,'" t'q ., L{Mo,Q) 

Thus, there exist mark1nge H'• and H' Buch thato 

Mpv~H'p and Mov~ H'o 

Thie means there are mark1ngs 

M,.., Mpt, ••.• MP'k In P and mark.~ng",. , . 
in Q such that

""'0' "ea,""""" 
(1) V H t 

p 
..... and 

1~-1 P'k l kj j+l 

( 2) where~=o..q-l HOl. t,.• "" --1 t ,..1 

Mpt, .. Mp Hea" • H. 
o 

M,.. .. H'p Met .. M'o 

Due to Sp n Sa - _. one can def ine mar kings 

Mo. "1"" .M" in PIIIQ a8 tallows: 

and for i-1.2 •... n-1" ........ U Hq"
 

" a U ..... 

"' 
1! k 

I 
< 1 ( k,.., for a certain j ( p 

- I .., 
I 

M" U Ha
"' 

1! 1 
I 

< 1 < 1", for a certain j < q 



-z't-

Notlce that this d8flnltlon ie correct, since every i-1,2, .. ,n-1
 

belongs to exactly one of opsn intervals (kl,k!",)
 

tor j-O,l, .. ,p-l, (lr,I,..,) for j"O,l, .. ,q-l.
 

Prom defJnltion ot Hi ~ - Mp and M~ - Ha 

and tor 1-1,2 •.. n-l 

if 11 < 1 ( 1"'1MPI 

of, • 

""" ifk(l(k~1 I ~1 

"a If k, < i ( k ttl 

Ii', • 

"ct If ( 1 ( 1 ,.., 1' 1 ,. 

ThUl!t. it 11 ( 1 (1J41 (j-O,l, .. ,q-!) then 

(- constant mar king H[J. ) andof • """, 

henes, by (1), M tPMP holds. Therefore:
I I rt1 "' ..... 

"' 

(3) Kt'",P" Jf'-M Q 

, I'" I t"1 tor I. < i ( 1,.," 
511111ar Iy: 

(4) Ii' t' H' , of-H" for k < k,.,"I 1"1 I .. , ( i
J 

'[O~ (3) and (4):
 

(p( tf' MP "til -Mo ) v (tP to MO " M -MP )

I 1 ... , I'" " t" I I ,., 



lor every 1-0,l •... ,n-1. App1y1ng Def1n1tlon 4.1 

(ol III lor nets) we obta1n; 

which ll'leans M vPIJMIIt=o.."-1 I I ,.1 , . thus V E L(Mo,PIIIO).M""" 
q. e.d 

,Proof of Theorea 4.1(3) L(M"POQ) '" L{H~ ,f) U L(M'~ .Q) 

Let y £ L{Ho,POQ}. Th 1S means v < (TpUT ) 11 and 
e

PfjQ
there lS a mark1ng M such that Mov M. Hence, by 

DefLnitlon 4.1 lot D to' nets) , Y £ T p U Tt, and 

(tI' yF'MP 
I\. MU -MQ ) V (ttl yClMCI " M" ..MP)

II 0 0 0 

Therefore, V £ L(M~ ,P) U L(~ ,0). 

Let y E L(Mp.P) U L{MCI,QJ, where Mp • Me are mark1ngs
 

1n P and Q respectively. Suppose v E L(Mp'P), Thus, y E T~
 

and MpyPM p for a certaln "p' Def 1n1ng (due to S"nS,,-ttlJ:
 

Mo"MpUMy
 

M .. M~ U Me
 

we obtaln:
 

I( .. Mp M~ .. M
Q 

M" - M' M ­p 
Q 

Ho 

Therefore:
 

tI'. vF'MF' I\. ~ -MQ and thus,

• 0 

P Pl (t<; yF'M " M~ "MO) y (~y"MQ " M: -M » I\. Y£T~UTQ 

holde. Hence, "oyP{}lH WhlCh means v E L{Mo'POO). 

The 1e ehown analogously for v E L(MQ.Q). 



Proof of Theorell 6.1 Ll"o'O) - {l.} U (t}U",~ L(M,O', 

"
 Let v ~ L(Mo,D). Thi8 means MOV~' and v - tu 

tor certain M' and u, Slnce the only f il.t.ble at Mo 

tran81tlon 18 t. Thus, 

a... M,tOM" /I M"u~' 

Not1ce that M"uoM' M" (1 u(1M' D'= 

(eince after filing t, place 8
0 

Wlll alway8 hold 0) 

and M"O' (I\,. hence U E ''''~~(1 L(M,O'). 

Therefore v ( p.} u (t)'",EI't L(M,O'). 

" 
Let v (0.·1 u (tJU"'d4 L(M,D'). Thus, v - l. oJ:: V - tu 

" 
where U E ''''€It L(M,D') mean8 fOl someWh1Ch Hu(1M' 

" 
M (~ a.nd H'. Therefore 

MotO(M U {<8 ,O») /I (H U (8 ,O»)UO(M' U (So,O>))
0 0

hence M(lvo(M' U 1<8 '0}) which mean8 v ( L(Ho,D).
0 

q.e.d 
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