A RANGE OF OPERATING SYSTEMS
WRITTEN IN A
PURELY FUNCTIONAL STYLE

Simon B. Jones

Technical Monograph PRG-42

September 1984
(published as 2 monograph February 1935)

Oxford University Computing Laboratory
Programming Research Group

811 Keble Road

Oxford OXI 3QD

© 84 Simon B. Jones

Department of Computer Science
University of Stirling
Stirling FK9 4LA

Also published as:
Computing Science Technical Report TR.I6

Department of Computing Science
University of Stirling
Stirling FK9 4L A

A Range of Operating Systems

Project Report

ABSTRACT

From February 1982 to September 1983 the author was investigating the
design and implementation of operating systems in a purely functional
style. The research was carried ocut at the Programmlng Research

Group, Oxford University.

This report explores a variety of different designs of cperating system,
and the aspects of functional programming which lend themselves to these
designs. The variocus techniques illustrated and exploited include the
construction of simple interactive systems (through lazy evaluation and
recursive functicons on streams), streams functions as processes and
networks of processes (clear modularisation of systems), sharing of
resources and time dependent systems {through the use of a non-determinate
choice operator}, and physically distributed systems {streams are assoc-—
iated with remote communication lines}. Functional programming provides

a powerful tool in the design and implementation of such systems.

A companion report describes the underlying abstract machine support
required for the lmplementation of functional operating systems.

Simon 8., Jones
September 1984

(ii)

CONTENTS

Chapter One
Chapter Two
Chapter Three
Chapter Four

Chapter Flve

References

A _Range of Operating Systeos
Written in a Purely Functional Style

Project Report

Intreduction
Exploiting Interactive, Lazy Evaluation
Metworks of Processes

Peripheral Hardware and Distributed
Systems

Summary and Conc¢luding Remarks

(1ii}

15
28

41
43

Written in a Purely Functional Style

Project Report

FOREWORD

Thla document i3 one of a peir reporting the results of the Fupctloml
Opecnting Systems project commenced st the Prograumming Reswarch Croup, Oxford
Universlty, In February 1982.

The reporkt is divided inte two parks: The development of an abatrict machine
to support a purely functionel aystems programming leoguage (6], and the
sxploration of a spectrum of functlonal, distributed opecating systems (this
document) .

The two aspects of the wark progresded together, drivlipg and supporting each
othar, So a certain amount of the narrative text }» common to both reports
{in pertlcular the Totroduction), and the reports may be read indepesdently.
Navertbaleas, the reports must be taken together to provide a full gecord of
the project, as the technical detsils are complementary.

I would like to acknowledge the Financial support of the Distributed Computing
Systems Panel of the Sclence and Engineering Beseerch Council.

Thanks are due, in particular, to Peter Wenderson and Geraint Jones, and also

to othecrs at the Programming Research Group, for valusble ideas and feedback
during the project.

Simon B. Jones
Seprember 1984

(iv)

Chapter 1

INTRODUCTION

Motivatlon

The projeck iz mobtlvated by three general ovbservatlons of contemporacy
hardware and msof tware developments:

1.

As has often been pointed out by manufacturers and researchers, the cost
of computer hardware ham been fslling rapldly in recent years, and may
continue to do so for some years yet. This hes been due to Ilmproving
integrated clrcult technology. For etample, the Hewlett Packard HP9000
serles of microprocessors pack nearly half a million awltching elements
onte a silicon chip approximately 6mm square. Thue, not oniy costs but
nlao sizes heve been decreasing. These developments make It look
sensible to attempt to harness the potential of many processors working in
co—aperation In order to construct more powerful computers. Ir addition,
hardware experts assert that improvements in chip technology {greater
density of switching elements, reduction In power consumption, etc) are
approaching their foreseeable limits. This lenda even greater urgency to
the investigation of multiple processor computer architecturea i3 & means
of gebleving greater computer power,

In tha Fleld oFf programming there is increasing interest In the role of
pursly Functional programing languages as a major weapon in the software
engineear’'s armoury egalnat the problem of complexity. Although the
first purely Functional progcamming language was lnvented in sbout 1960
[B}, kha Functional style of programming has remained simpiy an
Intellectusl curlosity for most of the intervening peried. More
recently, with growing maturity of functlonal programming, and partly as s
rasult of research on novel computer architectures (e.g. data flow
machines [3, 10}, reduction machlnes {2, 9}, Functionsl programmipg is
being more widely accepted-us one directlon towards advanced programming
tools, In Rritian ICL and CEC are both examining how Functlonal
programming ralatas ko thelr needs for systema and applications
prograumming.

One of the natural roles for functional programming seems to be lts use in
describing and implementing computer programs or systems concelived as
collections of concurrently executing Independent processes. (Note that
there 13 no implication here that lndependent processes must be siecuted
on tndependent processors). The processes communicate via flxed channels
and are thua conFlgured as a atatlec network determined by the channel
connactlions. Thiz spproach leads toc very clear programe i{n many rather
sophisticated toy problems {e.g. the sleve of Eratosthenes [4)), wnd wall
modularised proegrams In larger, practical applicatlions.

-2 -

Taken together, these three observatlons suggest a rather exciting programme
of research: To use some functional programming language as the systems
programming language For implamenting applications which ara to be executed as
a network of processes dlistributed over a network of processors. The resultse
of sueh an investigation would be to extend our undergtanding of the potential
of Funetional progeamming as a systems programming tool, to reallse this
potential inp the form nf an tmplementation, and to exhlbit the practlcsl value
of auch an approach by bullding useful multiprocessor systems. We would hope
ko demonstrate thak in large practkleal applications the technigue leads to
eanily managed, earily reconfigurad, well moduiariged implemantatlona.

Programme of Research

The startlng point for the investigation had to be s small, uncomplicated
implementation of a small, uncomplicated Functliona! programming Ianguage.
Thls simplicity was desicable sloce extending the language, and its
implementation, would be easier, and the Fundamental properties of the
extensiony would not be obscured. Extending a sophlsticated functlional
language with a complex (and probably cumbersome) Implementatijion would be
neither easy nor 11luminating. Thus we chose Llapkit Lisp, spd its
implementation ss a high leve) mbatract SECD machline [4]). Lispkit Lisp will
henceforth be referred to as almply Llspkit.

Lispkit and 1ts implementation have been modifled and extended to provide a
Full systems programming envjrooment when executing on s tlngle protessor.
This extended system will ultimately enable a Lispkit program to run
Interactively, to receive input From the keyboard and serial lines, to produce
cutput on the screen apd gserinl lines, and to interact with a disk baaed file
store.

A small conllection of such sztended Lispkit machines will be connected via
thair aserial lina ports to give some particular netwock. A single Lispkit
program, comprising & collection of concurrent processes, will then be
dlarributed staklcally over the network to erecute in & true multiproceasing
fashion. A mingla processecr in the network may support one or more
processss, 83 may be convenlent For the partlcular spplication.
Communicatlon between processes runpning on tbe ssme processor will occur
within the machine rather than via external serial lines. The physical
network of gerial lines will he determined by the applicatiam, and will be
reconfigured quite wasily for different appllicatliona.

A typical sapplication would be a small operating system providing a slingle
user workstation. For example, one processor can be running an Intelligent
File service, anothar can be handling the terminal, jnterpreting commands and
editing, and s third can be executling background jobs requested by the user.
By exploliting the network of processors in this way such a system could be
expected to sustaln a considersble workload from the user.

Altarnativaly, given a collectlon of Lispkit machines, a programmer could
construct a stapd-alone Lispkit program for some application, and could
connect the machines in a network appropriate to that pactlicular
application. Tn this way the ertended Lispkit implementation could provide
better performance for particular applications, as well as a powerful
component In a general purpoze work-station.

Functlonal operating systems

The progress of the project is largely driven by the requirements cof the
different designs of operating systems which we wish to try out. AN
extensione to Liapkit and its implementation become necesaary, they are
modified, after asome deliberation, by as little as poasible to maintain
simplicity and cleanllness,

Many atyles of operating systems may be devised within the Ffunctloml
fremework - lmaglination, as usual, is the limiting factor! We have trled
several diatinct varleties of systemes so0 far, but other Important spproaches
are baing inveastigated elsewhere (1, 7], However, the experiments reported
hare demongtrate the power which is available, through Functional programming,
rn the professional dasigner of personal workstatlons, distributed syctems,
Intelligent business systems, snd so on.

Ona approach s ko aimply try to code a fairly conventlional uniprocessing
operskting aystem (e.g. in the style of CPF/M oc Unix) as a alagle monolithic
program ko be run on s aingle Functional programming coamputer. This would
not explolt concurraency at all. Nevertheless, experiments have shown that
axtremely powerful operating systems can be provided in this way.

The firsk step to exploiting concurrency is to devise aystema comprislng
several stream processing Functions conpected in & network. An input stream
la recelved from the keyboard (the user's commands) and a result stream is
sent to the screen (the system's responses). Unfortunately the components of
such systems tend ko work in synchronlsation, and there is no large scale
concurrent activity.

The potential For large scsle concurrent ackivity s conveniently fotroduced
by using a atream merging {(interleaving) cperator [5). The oubput of such a
merging operator is some unpredictable (non-determinate) mizing of the
elements of the two streams. This suggests an implementation in which the
producers of the stresma to be merged beaver away continuously {and
concurrently), presenting stream elements to the merge operator for salectlon,

The use of the non-determinate choice operator in this work, and its
implemantation in the Lispkit machine, are gquite stralghtforward, but the
mechanlsm has a controversial background from the theoretlcal point of view
[1k]).

Although non-determinacy (in the gulse of merge) permits the construction of
systems exhlbiting uaeful econcurrency, it is by no means obvioua how to
explolt this potential on the uger's behalf in the best way. We have ntarted
exploring designa for more sophistlcated opersting systems which could assist
a productive user in exploiting the power avalleble in the collection of
processors et his disposal.

These experiments lp system dasign are reportad in the later chapters of this
document .

The Lispkit languaxe and SECD machine mrchitectuce

As mentioned abova, Lispkit Lisp and ite SECD mechlne implementation were
chosen as the starting point for the investigatlon. This is a clean and
simple base From which to work. The language and implementaticon as described
in [4], provide a mechanism for executlng "one shob” progrems which recelve
all the input datm, perform some cowputaktlon, and produce the result, la three
strictly sequential steps. The outline of & mechanism for "lazy evaluatlon”
("demand driven computation™) 13 also discussed.

Thus Lthe bsse langusge wnd SECD machine fall shorkt of the requirements of the
operating systems research in u number of ways:

1. A detailed mechanism for luty evalustion is the flirst essentlal
additlion. The machine must be extended. The Lispkit language i3 not
altersd syntactically, but the range of programs which can be exprassed in
the language ls connidersbly widened.

2. The restrictlon to "one shot* progrem execution must be gemoved, and w
program must be allowed to work interactively between lta inpuk and output
Btreans (typically the keyboard and screen).

3. An operator for non-determinate choice must be introduced linto the
langusge and implementation. This involves the pseudo-parallel execution
of conturrent processes on & single 3ECD machline.

4. Finully, 'n order to enable the programmer Lo sccess & range of lapubt and
cutput devices, the SECD machlne muat ba extended to provide a mechanism
for multiple input and multiple oukpubt stredms. Most of the apparatus
required is already avallable from the previous extensions.

Tha modifled Liapkit language and SECD -nchlqe are reported fully In [6]).

The development of the extended SECD machine is clomely related to simllar
work by Abramsky abk QMC {lal.

Hardware

petalled arguments about the hardware to be used for running distributed
systems are not a major concern of the project, Howaver that is no excuse
for not consliderling the matter at all.

We wish to attempt to exploit concurrency at a macroscopic level in a

system. That Vs, substantial subsystems will be allocated statically tv each
procesasar in the network. This is In contrast to the exploltation of
concurrancy at @& microscopic level, where there s dynamic allocatlon of
gimple tasks to processors. Examples of the lstter approach are data Flow
machines (3, 101, and reduction machines Alice [2], ZAPP [9].

Thus we requlre a small collection of reascnably powerful processors (e.g.
half a dozen Parqs) connacted in some simple, easily reconfigured vay, The
distrlbuklon of parallellsm et the microscople level necessitates s« large
collectlon of small processors (e.g. 103, 100s or 1000s of trensputers)
connectad by a complex, general purpose communlcations network.

Therw ara many groups sttempting valiantly to develop and assess the latter
approach in various ways, and with varylng results. We have decided to opt

for the former, more immediate approach.

However, be_""ond the intention to use a small number of powerful proceassorg,

the precise hardware techniques are not under congideration. For
erperimental purposes we have used "off the shelf" microcomputers, such as RML
380Z, SuperRrain, Sirjus, Perq and so on, as available, These macthines have

elther one or two serial linea.

A Ffuture optlon could be to support all the processors and memory on a single
bug. The abstraction of a collection of processors communicat!ng vla fized
chanpels could he provided on such hardware without the expense of bulk daka
trangfars along serial lines. That ‘g, perhapas, a task For someone elme in
the future.

Chapter 2

EXPLOITING INTERACTIVE, LAZY EVALUATION

Introduction

Chapters Two and Three of [6] describe how the implementation of Lispklit Lisp
can be extended to permit the conatrucklon and executlon of stream procesgssing
programs. Such programe are wrltten as puce functions produclng an output
stream of s.eipressions by consuming un input atream of s-expresglions.
Usually the lnput stream is assocliated with a computer’'s keyboard, and
s-eipreasslons are read only when required by the Lispkit program. Similarly,
the cutpuk stream |y usually associated with a computer’s screem, and the
Lispkit progrum is driven by demanding !t to produce the successive
s-eipresslions of the output atream,

A veary gsimpls sxample of an interactive program la the following Ffunction,
which doubles, Increments and cutputs each number read from the lnput stream:

A {kb).Jinc{double(kb}?}
whererec inc(s) = cons(lshead{s),inc(tail{s)))
double{a) T cons(2*head(s),dovble{tall(s)))

where the dumvy tdentifler kb has been used simply to suggest thet the numbars
are read From a keyboard. wWhen this small Llspkit program, which is complete
as It skands, Ja compiled and executad on a lazy, Interactive Lispkit system
{such a» one of those deacribed in [11}) it behaves as might be expected: The
progrum will wait untll a number i3 typed, the incremented double of the typed
number }s digplayed on the screen, and the program waits for another input.

A complete suite of program development tools has been developed to enable
consktruckion of Lispkit programs. Each tool is ltself a purely functional
Lispklt program operaking on the stream input/stream output principle, and
will execute on the modified SECD machine. The sulte of tools, which
Includes a structure editor, compller, syntax checker and source code
librarian wnd various gignificant applications programs, are Ffully documented
in [111.

A simple interactive operating system

The availability nf a lery, lnteractive, stream input and cutput Lispkit
system prompts the Following chellenge: Is it possible to construct a purely
Tunctional, interactive program which will provide a "tradltional™ operating
system anvironmenk in which the user may store and retrleve files, and axecute
programg (themsalves Filea) which read and write flles? In this context
“tradlticnal”™ should be taken to mean that the user types a sequence of
program erecutlon commands, possibly separated by keyboard input te an
executing program, in much the same way as would be done to a Unlx or CP/M
system,

what follows Is a vary slmple inatance of such an opearatlng system. For
histarical raasons It s called 057 (no relatlon to any other which may have

that nume},

057 maintaing a Ffile store of programs and datae. Each file haz a name which
is a single atamic value (a number or symbol}, and lts contents {s any
S-expression. Since the SECD machine has no access to s disk based Fllae
store, 0S7 manages lta file store as an sgsociation list in the cell heap.
Programs to ba executed are fetched From the file store. Input data files
are fetched from the flle store, and output result files are placed i{n the
File store.

Each command which the user may type to O0S7 1s s 2-1ist specifyling & program
to be axecuted and lts input and oubput Flles:

{programname dataname resultname)

programname must be the name of a File currently in the flle store. dataname
may be either the name of a file in the store, or the special name "kb"™
indicating that the input is to be s sequence of itema taken from the
kayboard, or the special name "none” indicating thet a dummy input conszlisting
of the single atom "NONE™ should be supplled to the program. "kb” and "none"
have precedence ovar files of the same name. If a file i3 named as laput but
Is not prasent In the file store then the atom "MISSING" is supplied to the
program as inpuk. resyltname may be elther a flle name, 1n which case the
output is placed in that File, or the special name "screen” indicating that
the cutput is a gequence of ltems which should be sent to the screen.

"scraen” takes precedence over a flle name - a fact thet makes lt Impossible
to create a Flle called ™screen”.

Tn 057 the program exacuklon machanism s a source level interpreter, and so
the program File named inm a command must contaln the source code for a Ligpkit
Functtion. Tha functlon is expected to return a single result computed from a
singla input. Detalls of the interpretar will not be gliven here - there is
no novelty in the interpreter, and similar interpreters are deacribed in [a])
and ([11]. We will simply assume the avallabillby of & function

execute(f a) = ...

which will compute the value resulting when the Function vaelued program £ is
applied to the single argument a.

Whan a command specifies that "kb™ should be used for input, the single
argumant supplied Lto the program is a 1list formed from the pubsequent
S-nzpressians typed at the keyboard up to, tut excluding, the flrst
s-expregsion which is the atom "end”. wWhen a command specifies that "screen”
should be used for output then the result from erecution must be a list of
Items and sach is placed in sequence in the outpubt stream which 13 being sent
to the screen.

With these prelininaries over, we can teckle the recurslve functlions which
contrel the interactive kernel of tha system:

system (kb,Iz) =
if prog = "MISSING™
then cons ("ERROR™, system (tail(kb},fs))
else systematep{prog,source,slnk, tall(kb),Fs)
wherarse prog = get(fe,First(head(kb})))
source = second({head{kb)}
slnk = third(head{kb))

The system function hag as arguments kb, the atream of s-expressions typed at
tha kayboerd, and Fs, tha current state of the flle store (ap mssoclatlion
1ist). Tta result iz a stream of outputs which will be sent to the screen.
The haad of kb will be a command to be obeyed, apnd the operstlons flrat,
gsacond and third extract the components of the command. get{fs,n} looks up
the Flle named n in the flla store fs (this is defined later) - returning
"MISSING" iF the File 13 not found.

The reaponalbility For executing khe program and continuing the lintaraction is
delegated to the Function aystemstep, which has the output stream as its
result:

systemstep {prog,soyrce,sink kb ,fa} =

append{gcr,system(kb' ,fs'}}

whererec
input = if source = "kb™ then untilend(kb}
else if source = "none™ thap "NONE™"
slse get(fs,source)
output = execute{prog,input)
scr = 1f slnk = "gereen™ then output else “NIL"™
k' = if sourca = "kb” then efterend{(kb) slse kb
Fa" = if saink = "screen” then Fs else put{fs,sink,output)

Systemstep receives as arguments the text of the program to be sxecuted, the
source and sink Fields of khes command being obeyed, the lnput stream with the
command removed From its head, and the current file store. The rasultant
output gkream is Formed by appending any screen ocutput from the current
command ontc the ocutput stream from continuing system interactlon. The
syetem continues intaracting with a possibly shortened keyboard stream, and
possibly medified File store, This gives the lllusmion to the user of a
system and File store which are undergoing state transitions, although the
implementation is purely Functional. In the local deflnitlons of input and
kb' we see how the input data For execution of the program {s taken from a
file or from soms prefix of the keyboard stream. In the local definitions of
scr and Ffs' we gee how the output from the executed program is directed aither
to the screen or to a Flle in tha file store. put{fs.,n,c) generates a new
file store state from Fs in which the File named n bas contents ¢, end any
previous file nemed n is inacecaessible.

Yarlous simple Functions have been used and must now be defined.
For extracting data Files from the keyboard stream:

untilend(kb) = if head{kb) = "end” thenm ~NIL~
else cons({head(kb), untilend{tail{kb)))

|

afterend({kb) = \f head{kb) = "end” then tall(kb) else afterend(tail(kb}}

Fetching files from the file store, and updating the Flle store:

get(Ffs,n) = if Fs = "MIL" then "MISSING” else
1f head(head{fs)}} a n then tallthead(fs)}
else get{tail(fs},n)

put(fs,n,c} = if fs = "NIL" then cons(conrs(n,c),"NIL") else
If head(head{fz)) = n then cona(consin,c},tail(fs})
else cons{head{fs), put{tall(Fs),n,c})
Note bthak puk{fs,n,c) has no side effect. Inateoad |t simply recreates as

much of the association list as 13 necessary and returns the new list.

With the addition of the trivial standard functlons which are missing, this
completes the design of 057, with exception of the Invocation of the system
functlon to -connect the input and ocutput streams. When invoking the system
Function it must be supplied with an initial File store. One posslbility is
to bulld a quoted constant flle store Into the program:

X {kb).system(kb, initlalfs)
whererec
initialls
system(kb,f3)

o P R A

1

Alternatlvely the "input streem redlrection” facillty, of the Lispklit system
described In (111, can be exploited in order to read an Initial Flle store as
the first s-etpression of the input stream:

A{kb).system{ tall{kb) head{kh})
whererec
system{kb,fg) = ...

Using 057

Thera i3 now the small) metter of deciding what should be placed in an initial
file stors, and looking at example programa for executlon under OS7.

The first point to noklica is that 057 is not capable of obeying any command
unless the program named in that command is already present in the file
store, Thus \f the flle store starts empty then it must always remaln so.

A minimal initial fila store will contein a program which will enter keyboard
input Ilnto the flle store - this is the bootstrap which will ensble us to
program anything that is possible with 087,

- 10 -

A sultablae bootstcrap program to include in the Flle store is the program:
h{kb) .head(kb)

or, in the concrete s—expression syntexr required by 037:
(lambda(kb) (head kb}}

and the inltiel Eile store containing it as & Fflle named put:
({put.(lambdalkb}{head kb})})}

When this program is executed by the command
(put kb newmame)}

followsd by keyboard input

{contents of & new File)
and

the program put s spplied Lo the slngle argument
({contents of & new Flile))
The output from the progrem Is the hesd of the Input list
{contents of a new Elle)
whlch is then placed In a File called nawname.
A complementary program, called get, could he added to the Initinl Flle store,
or added to the running system by executlng put. get 1s:
R{E).cons(F,"NIL")
When executed by a command of the form
{get Filename screen)

the program get will Fetch the named file snd will send the contents of the
flle to the screen in a list of items containlng only the File contents.

Note that put expects to receive a 1ist of items (of which 1t only processes
the first), and get produces a list of ltems. Hence they are only sulftable
for their designed roles as transfecs between the terminal and File store.

Other example pPrograms:

To copy one file into ancother:

ME).E (the identity Functlon)
Exumple executjon:
{copy get newget)
copY can also be used to echo the keyboard Lo the screen untll and s typed:

(Linas with * are typed by the user)

{copy kb screen) *

ashe *
abe

12134 =
1223s

(x y) end *
{x yz)

next command

A program, intsfromto, which takes two numbers From itz lnpub argument and
produces the list of numberz from the flrst to the second:

*fin) . Fromto{head{in) hend{(tall(in}})
whererec
Eromto{m,n} = }f man then consi{m,"NIL")
else cons{m,fromto(m+l,n})

Hence generating numbers on the screen from keyboard lnput:

{intsfromto kb screen) ®
15 end x
12345

Reading the Inpuk from a file, sending the list to a Flle, then dleplaying the
result file on the screen:

{put kb data)

{1 5) end

{intsfromto datas result)
(get result screen)

(1 234%5)

2 R W W

(Motice the difference between dumping the result liat diractly to the screen
(whicb could be simulated by {copy result screen)), snd "getting™ the result
flle, whare get is careful to preserve the parentheses!)

An Interestlng affect In the last ewample, which cannot be abserved in this
written presentastion, is that the lary evalustion causes the generation of tha
list of integers to be delayed until lt e required to be displayed on the
dcreen. Howaver large lta result flle, Intafromto will spparently genecste
that £1le in negligible timae. The price }s palid, though, when the file is
displayaed since its contents will be computed st that time. Fortunstely, the
lazy evaluation mechanism ensures thet gsubsegquent acceseses to the result file
Find that 1t har already been evalusted, snd It will be displayed

"inatantly”. ¥ote that none of this eubtlety hes been coded explicitly imto
the operating system - it 1= & netursl consequence of lazy evalustion.

Thls effect lp clearly relsted to Unix "plpes”. The example iz a pipalline
with three program stagas snd two pipes (the files dats and reault). Taking
the second pipe only, the result Flle is a temporary file between Intsfromto
and get, and theme two programs will execute In co-routlne fashlon when the
output from get 1an displayed. In Fact OS7 implements & generalisatlon of
plpes since avery reault file from sny program axecution is delsyaed and mey
subsaquently hacome the intermediste flle in the plpe between executing
progeams . Hence pipelines do not need to be entered as consecutive
commands. It is easy to aee that the command processing In system end
eystemstep coyld be mod}Flad to recognise s specisl syntex For o plpeline, sund
could expand such a commsnd to a Eerles of normal commands, with no slterstion
to the underlying executlon mechanism. For example, & pipellne could be
entered {zomevhat unoriginally) wea

(put kb | {ntsfromea | get.screen)
and could be expanded ta the sequence of commands

{put kb temspl)
{(intafromto templ temp2)
(got temp? screen)

In this way 't should be poselble to implement much more sophiztlicated “shell”™
languages, such as that deacribed by Shultis {12).

Interactive programs may alsc be wrlitben to run under 087, ugsing the familier
"stream in/stream cut™ paradigm. The only precautjon to be taken is te
remamber that the input will be a Finite 1llst if "end” 1s typed, and the
program should taka care to termlinste its output list clesnly when the Input
stream i1s erhausted.

Remarks

pespite the remarkable simpllcity of 0OS7, it nevertheless provides the bagis
for an extremely powerful operating system. 057 hag been fully implamented
and wlll execute on the "distribution” Lispkit ayetem [11]. In Its own
1imited way 1t is qulte gatisfying to use.

Wilthout introdacing undue complexity, a number of significent lmprovements can
be made ta 0S7:

The system can be altered to execute programs which are present 1o the file
store an compiled SECD machine object code. If the object code is a clogure
for a Function of ane argument then the Interpreter invoksd by azecuta(f, a)
cap be d)spensed with and Functlon appllicatlon used instead:

execute(f,a) = f(a)

In thia case the minimal File store must contaln the objeact code for the put
program, The object code for a compiler, which can convert a Llspkit source
File inte a File contalnipng the object code ag & closure, would be an
essential requircement and could usefully be Included in the Initiel File
store. Advantages gained from this would be the full speed execution of
programg, and a smaller operating system {(since now a part of lts function,
the interpreater, has been moved into the File gtore as the compller).

The input/ocutput intaerface for each executing pcogram may be exterded to allow
multiple input flles and multiple output files. Thus each progcam would be a

Function of several acrguments, producing several results, Foar example, an
editor program could be writtep which processes a sequence of edit commands
and a flle to produce a sequence of responses apd an output File. So to edlt

fllel, giving commands at the keyboard, receiving responses on the scraean, and
placing the edited flle in flle? tha Following command would be enterad:

(edit (kb Filel) {screen Flle2))

Alternatively, the input/output interface could be altered more drastically in
ardar tp give a progeam contcol over ltes own Flle input and output. One
acheme to schieve thla is to construct programs so that they generate a single
output sequence of cequests for operating system secvices (such as "gebt thiz
File”, "get that Flle”, "put thie 1n this file™, "fetch keybeard lpput*™, "send
this tp the screen”, “get a dlirectory of the Flle store™, "delete thls flla=,
and 3¢ on), and rceceive as input a single sequence of ceplles Lo those
caquests for aystem aservices which need ceplies. The operatling system then
services tha requesta, replying to the program, ceading keyboard input,
sending cutput to the screen and updating the file stoce a3 necassary:

requests = execute {prog,cepllies}
scc,kb’ ,fs' ,replies = servicerequests{requests, kb, f3)

{whera the tuple "scr,kb",fs' replles” indicates that servicerequests returns
a compound result - probably a four-limt).

- 14 -

Each of these srtensions has been !mplemented (ylelding various operating
eystamas 0S8 - 0511} - providing a range of experimental operating systems,
aach qulte rewarding to play with., Unfortunately thera is no rocm to explore
each of them ip detail here.

A system with each of the extenzlons Jncorporated is very powerful . In such
a systam it becomes possible to gea how the entlre command lnterpretaticn
strategy and program execuktion mechaniam could iteelf be placed in & program
flle In the Ffile store. Thug the cora of the cperatlng system itaelf would
becoma evan smaller and simpler. Thls would be a move very close to the Unix
principle of a "shall™ program. This ls a challenge remalning for the
future, as it has not yet been lmplemented.

Chapter 3
NETWORKS OF PROCESZES
Introduction

A function which consumes one or more input streams and produces one or more
Streams ag outpuk ls referred to as a process. Such £ procese can execute
autonomously, \ndependently of any other processes, ln the sense that it 1s
constrained only by the demand For values on itz cutput streamis) und the
availabillty of values on its lnput stream(s).

Thur the inpteractkive doubling Function glven In the intreoductlon b0 Chapter
Two 1ls a single process.

0S7 is also consktructed as a single, monolithic process. Although 0OS7 ig
broken down into several distinet groups of functlons (the system kernel, the
Flle store and the progeam execution mechanism), neverthelesa thers are only
two diacernible streams in the system (the keyboard lnput and the icreen
output) and the system kernel has explicit contrel of the File store data
structure and of the submlssion of programa to be executed.

The deslgn of complax systems can be simplified 1f major subaystems are
implementad as autonomous processes. Then a further modularisation step has
been achleved - not only will the functlons handling the filestore have been
Isolated syntactically From the rest of the system, but they will 1lso axecute
43 a unit, Wwithout interferepce or ezternal control. The subsystem processes
will ba linked to form a statlic network by associatlng the ocutput streams of
processes with the \nput streams of other processes - and the processes will
comvunicate thalr requirementa to each other by the transmlaslon of messages
in the streams.

Tha purpose of this chapter 1s to explore some systems of this kind.

A major benefit Lhst results From this style of modular design ls that the
Individual processes (modules) can he reused in different networka, with only
minimal reprogramming being necessary within each process {(for example to
extend message vocabularles, or to adjust message formats). The conly
signiflcant difference between networks (in terms of the program tert) would
be In the program ~“glue"” specifying the network linkage - thls can a1l be
given Withln the basic Functional programming framework.

A simple determinakte system:

As we shall sees, by using non-determinate components very powerful systems can
be constructed, Howaver the general principles of networks of processes can
possibly be seen best in a simple determinate network. The example to be
presentad here iz a determinate version of "sys5” in [5}.

The system comprises two interacting components, a detabase which acts as a
file store for the system, and an editor which contrels operatlon of the
system.

- 16 -

The databuse }s 1 simple process with a single lnput stream composaed of
messuges raqguesting databaze sctions, and & single output stream composed of
replies to the reguests.

° ts repllies
reques 'JW P 1
’1__]
Requests are of two Forms:
(GET f) in which case the reply 1s the contents of file f, or

“MISSING"” iF there is po such File.

(PUT f g) Iin which case flle F is updated to have contents s, apd the
ceply 13 "DONE™.

dbf is easlly programmed a3 a recursive function from a single input stream of
requesta ¢ to 1 single output stream:

dbF{c) = dbFfl{c,"NIL"} where "NIL™ represents an lnitially empty
database

dbfl{c ,db} = cons(m,dbfl(tnil{ec),db*})}
where m,db’ = dbstep(head(c),db)

dbstep interprets the different requesta, generating a reply and new database,
as appropriate:

dbstep{ ("PUT™ [2},db) = "DONE",put (db,£,5)
dbstep(("CET" £),db) = get(db,f),db

where wa can adopt the definltions of put and get as applled to fllestores In
0357,

The editor process accepts two lnput streams, commands from the user’s
keyboard and replies from the database, apd generates two outpat streams,
responses to the user's screen and requeats to the database. Hence the
overall ayatem structure

keyboard gcreen
edit
dbou — dbin
dbf €

Glven definitions of the process components edlt and db, the whols system may
be conatructed and ezxecuted by the following definitlon:

system(keybourd) = screen
whererec screen, dhin = edit{keyboard,dbout)
dbout = dbf(dbin)

This simply describes the linkage of the atreams keyboard, screen, dbin, dbout
between the procesgses.

It remains to define the edit process funcktliom.
We imagina tha editor to maintain a copy of the File that is currently being

edited. The aditor will recognise a slmple set of commands from the
keyboard, which is adequate for the purpose of illustration:

{GET f) Replace the current file with the contents of file f from
the databese.

(PUT £} Place the current flle in the database wlth pame F.

(CHANGE tl1 +2) Edit the current flle in aome way determined by tl and t2.

PRINT Display the contenta of the currept file on the tcreen.

Agaln, edlt may be programmed easily as a recursive functjon; atarting the
editor wlkh an initial current file “NIL":

edit(kb,dbln} = editstep(kb,dbin, "NIL")

editstep{c,dbin,x) must decode commands that arrive an ¢ from the keyboard,
generate responses on the two output streams, and edit the current file x
wvhere necessary. There are four cases. The ficst deals with fetching e« oew
file to be edited:

editatep(({"GET"F}.c),(x’'.dbin),2)} =
cone{“"NEWFILE" ,screen) ,cons{ {"GET" f) ,dbout)
where screen,dbout = editstep{c,dbln,x*)

Thls requires some explanaktion. The first command ko be executed ie: {GET),
and so the First request to be oufput to the database iz {(GET f). Since db
works 1n a synchronous fashion {(exactly one reply for each request) the Flrst
item on the lnpuk streem from the database 1s thus the flle contents
requested, x'. The response NEWFILE is sent to the screen to indicate that
the file has been Fetched. To determine the continuation of the screen and
dbouk strewms, editstep iz called recursively to execute the subsequent
commands ¢, with subsequent repllea from the database dbin, and the new
current file 1.

The availability of the new file contents x* in the current recursive step
seems somewhat miraculous, but it is quite valid and healthy, and is a natursgl
consequence of lazy evaluation!

mailto:editst@p(c:.dbin,x
mailto:b@t.we@n

- 18 -

The remaining cases are similar:

editstep{ ({"PUT"” F).c),("DONE" .dbin},x) =
cona{"DONE™ ,screen) ,cons({"PUT™ f x) , dbout)
whare scceen,dbout = editsteplc,dbin,x)

editstep((("CHANGE"t1l t2).¢) ,dbio,x) =
edltatep(c,dbin,change{x,t1,t2})}
{in this case no screen response is generated)

editstep(("PRINT".c¢} ,dbln,x) =

cons(x,screen) ,dbout
where screen,dbout = editstep{c,dbln,x)

Dotalls of the editing Functlion "change” are not required here. With this
axception, wa have a complete program For the aditor system.

Hare 1s an erimple sassion with the system (lines marked with an asterisk are
typed by the usger}:

(system starts)

(GET FRED} *
NEWFILE

PRINT *
MISSING

(CHANGE 1 (HMELLO FRED)) *
PRINT x
{HELLO FEED)

(PUT FRED) x
DONE

If we wish to introduce a program e:ecl.;tlon Facllity into the system then the
following network 1s a simple solutlan:

keyboard screen
edit
I
run
f dbf k
L
The editor component now has three input and three output streems. One pair

is used to transmit the current flle to the run component when the command RUN
is anterad at the keyboard, and to receive the result of evaluating the
program {it could replace the current file in the editor}.

This system is stcalghtforwerd to construct. Aowaver 1f we wish the result
of program evaluation to be entered directly into the database then a mores
Intricate solution is required - since the database must be prepared to
recelve Itz next Input from sither the editor or run component. In this
partlcular system It s pozsible ko sclve the problem by placing o« sawitch on
the input to tha database, and operating the switch by a separste stresm of
tontrol signels from the edlitor. This is essentlelly the use -of ano "oracle®,
to be discussed shortly, and in general becomes too Intricate or lupossible.

Sharing, ssynchroncua activity and non-determinacy

The simple notwork systems exhibited so fer execute in a purely synchronocus
Fashion, although there is certainly scope For some parallel evalustlon given
a machine of appropriste architecture. Rowever, In more advenced systems it
19 desirable toc be able to axpress that ¢ertaln computations do not namd to
walt For completion of other computations. For example, where sevecsl
programs are bei{ng evaluated concurrently, we may wish that the File store !s
updated with the results in the order that the evaluations are complated.

For thls, some kind of non-determinate program component is cequirced.

In {5} Renderson proposies the use of a non-determinate stream Interleaving
aperator, which I shall refer to sz "merge”. In a netwark of processas the
merge operetor s represented as follows

a—

b——>
and we would writke

¢ = margei{n,b)

The intended meening of this equatlon is that the stream c comprises all the
elements of streams a and b, with the ordering of elements From a preservaed,
and the ordering of elements from b preserved, but with the elements of a and
b interleaved ln some arbltrary fashion. Operatlonally, we might expect
that the interleaving of elements iz in some way determined by the
avnllepility of the wlements; the aveilabillty would itaelf by determined by,
for example, the arcival of a value from an externsl device such as
keyboard, or by the completion of the computation of a value.

Leaving sside, For the moment, the implementatlon of merge, Henderscn shows
how a number of dlfferent systems may be conatructed wbere independest users
may accesz shared databages concurrently. Three examples Follow:

- 20 -

""’2'!
keyboard 1
1+1 | screan 1
kdbf
keyboard 2
4""1 +2 | =2 scresn 2

Here a single database is shared by two users, each with thelr own keyboard
and screen. The procass tags aach message on A stream with
tbe number n. The procass passes only those messages with teg
n, and removes the tag. tdbf is]like dbf, but it tags each raply to a
request with the tag from the request. The commands from each keybhoard are
passad tn the database a3 they are available, and each user seeg their own
replies. 0Of coursa, since the database is shared, as ln a conventional
gsharad filestnres, each user wil) observe changes to the database as the result
of the other user's activity st tbe keybourd.

ryyaa®

keyboard — sereean

Here a single user may make simultaneaus use of two independent databases -
the user must tag commands appropriately to Indicete which databage iz to be
uged, Repilas will appear on the acreen a3z they becoma avallable, and hence
short requests sent to one of the datsbase¢s mlght esgily overtake long
requests sent to the other databasme,

Taysd”

sal

keyboardl sys2 creen 1
+2

2

1
keyboard? Bys2 sereen 2

57—

Hare two independent users share two independent databages. The system
copntaina two embedded copies of sys2. Each user may lssue concirreat
requesta to both databases, and each databese merges the requests from each
usar. The equations for thie network are easy to write dewn. 1n (5]
Henderson gives the following system definlition (wlith minor adjustment of
tagging convent lona):

syss(keyboardl ,keyboard2) = screenl,scleen?

whererec screenl merge(tag{l,5a1),tag(2, abl))

screen? = merge(tag(l,sn?), tagl(2,3b2})
sul,sa2 = sys2(untag(l.keyboardl),untag{l, keyboard?)})
sbl,sb? = sys2(untag{?,keyboardl} ,untag({?,keybonrd2))

We have aeen how some simple syatems exhibiting shacing end asynchronous
activity can be constructed using the non-determinate merge operator. But
how iz mecge to be implemented? Thece are various approaches. Abramsky
[1a] has chosen to make merge a primltive operator ip his functioml
programming language - this places the bucden of implementatlion estirely on
the systems programmer, who can ensure that the [nput streams are svaluated
and inspected concurrently, and alseo can ensure that s “falc™ cholee ls made
between wlements of the input streams. Friedman and Wise [13] introduce a
non-determinate 1list construction operator, “frons*, which may be ysed to
program merge and other opecratlions. I chose to look briefly at ths prospects
for using “orarles™, since thls did not require any language extemiions, and
then at more length at the provision of sn "ambiguous cholce oparator”
{HeCarthy [14]) which, again, can be used to program merge and other
operatlonsg.

Qraclss

As hinted in & previous sectlon, in some cases it 1s posgihle to supply te
merge a stream of control signals \ndicating from which Input stress the next
transmitted element must be taken. Hence we may define an "orscular merge’
operator which has three gstream lnpuks:

stceaml 5

control » out

stream?

If an element "1™ on the control stream indicates that the next element must
coma from stream 1, and "2" indicates stream 2, then we have the following
simple recursive defipition:

merge{sl, g2,c) = if head{c) = 1
then cons{hesd(sl) , merge{tail(sl), s2,tailic}))
else conslhead(s2) ,merge{sl, tail{s2),tall{c})}

- 22 -

The remaining problem is then the orlgin of the control signal stream.

In the case of the editor system proposed eerlier, where both the edit and run
components nesdad to send requests to the database, then the edlt component
itzelf could generate the control signals to route the correct next request to
the datebase:

keyboard » 2Crean
edit

' control
Labf] N

Whaere we are trylng to merge stream elements from two keyboards, then we need
to assume the existance of external hardware which generatas an input stream
of oracle signals by observing, for example, the key deprassions et tha two
keyboards,

Thus *3ys2” simply usas the external oracle to control interleaving:

keyhoard 1 screen 1
control
keyboard 2 screen 2

To employ the oracular merge in "sys3", the control slgnals can only be
generated by inspection of the tegs typed by tha user Indlicating which
databsse ls to be uged:

acrean

keyboard

Here Lhe teyboard \s passad through a process, "onlytags", which discards the
database request part of each message. These resldual tags are used as Lthe
oracle algnal controlling the merge operator. This glves a Ffunctloning
system, but unfortunately the interesting asynchronous hehaviour, whereby
requests passed to one databese may overtake requests passed to the other, has
been eliminated from the system. The effect of genarating oracle signals in
this way iz to produce s strictly synchronous system (though in principle it
is still possible for both datasbases ko be active concurrently). Since the
entire system i3 programmed in s determinate functional programming language
this 13 hardly surprising.

Similarly "sys4™ can be implemented using oracular merge, but it tock
considerable affart ko design the Following solutlen:

+1

kayboard 1 —» 8Y8Z screen 1—»

*| {oracle) x +2

]
control f
t
+1

keyboard 2 L sys2 crean 2
{oracle) +2

Where "split" is a special purpose switching process:

a— —ne

(s |
¥
b—"‘_!—‘—bd

Esch alement of b 18 sent to elther ¢ or d. It }s sent to ¢ If the
corresponding elament of a ie 1, and te d §f the corresponding elemeat is 2:

split({1.a),{x.b)) = cons(x,c),d
where c¢,d = spllt{s,h)

aplit({(2.a),{x.b)) = c,cons{x,d}
where c,d = aplit(e,b}

This implementation of sys4 is very obscure, and is very good evidencs that
the tople of explicitly programmed orscies should not be pursued any further.

The ambigucus cholice opsrater

In [14] McCarthy discusses the properties of a« new primitive operatlon mwmb, in
order to allow some controlled measure of non-determinacy into s funclional
programning language. In the work repocted in (6] I adopted this operator,
renaming it or (4 practice since dropped). as a 3guitable tool for
axperimenting with nop-determinacy in functional operating =syitems. letalls
of the implamentakion of or ere given in [&]. oc s a binary operstor, and
an expresslon of the form

el or eZ

- 24 -

takes the value either of el or of. e?, The expreastons el and 2 are in fact
evaluatad concuccently (ip = time sliced fashion), snd the first to return a
value determipes the choice of value for the overall expression. If elther
sxipression computes ipdefinitely, or waits for some external lnput, then the
computation of the other expression ls not held up. Thia is a simple choice
between two vilues based on the availability of those values. It is &
committed chaice, and involves no backtracking. We cen use oc to progrsm the
atream merging operator, but some care is needed to obtain an operationally
carrect solution. Various solutions are conzidered In [6]. For the
purpodes of this report T ghall assume the following definitlon of merge:

merge{51,52) = altl or alk2
whare altl = Lf here{head(S1)}
then conathend(S1),mergei{tall(21),82))
8lse UNDEFINED

s1t2 = if here(headi(32})
then conz{head{S2) merge(Sl,taill(82)))
else UNDEFINED

where "here' ia some test of the availability of a stream element, for esxample
here(x) = if atom(x) then true else true

Mote that this definition of merge does nothing te guarantee Falrneas — elther
stream might accidentally be ignored indefinitely. MHowever, neither is it
inktrinaleally unfair, and in practice turns out to behave quite well with the
implementation of or glven in [6].

Wote alse that the indiscriminate use of or can lead to great confuaion, as
the properties of functional programs become less flexible, and progrums must
be rearrarged and transformed with care. For example, the expreaalon

will alwsys yield the result YES, for any expresslon e, since e 1ls evalusted
once and its value lg bound to x. On the other hard, If we gubatitute ®
through for occurrences of x

if e = ¢ then YES else HO

then the result could also be NO if ¢ contsine eny nop-determinate components.

Thus we now have a technigue for implementing the non-determinate merging of
streams of messages 1o a network of processes. The shared and asynchronous
databass systems operate as desired with this technique of mecging, with no
othar special programming.

We can now returns to the editor/database/run compouent systems dlscumsed
eariler, and look brlefly at the use of non-determinacy in the msyachronous
network glven by Henderson as “sysé™ 1n [5]:

"zyst™

N - S

keyboard

The editor component now has only one input stream and one ocutput stream.
The faput stream lg an interleaving of the commands enteced at the keyboard
and replles from the database - each tagged sultably with X or D to ldentlify
theic origln In order thet the editor may handle them sppropristely. The
editor generates a single sktream contalning messages for all destimtlions -
sgaln they are tagged by the editor and the network dlrects esch metsage to
its appropriate destlnatlon.

Measages passing directly from the edltor to tbe database, and databame
masgsages resulting from program evaluations are merged inke a single stream of
requapts to the dmktabase. Hence the editor can make umrestricted sccesa to
the database whlle a program is belng evalyated (the uSer may have to exerclse
restraint 1n inspectlng the database In the hope of flnding the results of the
evalustion!)

The merging of keyboard and database streams, before input to the editor,
ensbles the user bo continue issulng commands to the edltor, and to bave them
acted upon, while activity la occurring asynchronously ln the cun and/or
database componenks. Again the user will have to exercise restraint, ailoce
Lhere will be a period, sfter requesting a new File to edit and before that
flle has been noted by the editor, during which any edit commands enteced will
be spplied to the old file!

"aysé” is thus ona step towards the design of e powerful single user operakting
systenm, The system is an Integrated network of functional components (in
both senses) whlch can absorb the workload provided by the user through
saynchronous actiwvity.

Without delving any more deeply into the programming details, 1t ls now
possible to imaglne a great range of mere general operating systems. Each-
system will be a network of asynchronously operating component processes. I
will show three possible syatem structures. In each case a user at s
keyhoard and screen malntains simultaneous conversations with three subsystems
- an editor, u program erecutor, and a "filer™ (not the file store, but a
component specialising in listing, rensming, copylng, deleting Flles, and 30
on) . The user enters commands sometimes to one subsystem mod sometimes to
anothec, switching the conversation by explicit cormmands to o "mode maoager™ -

this s exackly analogous to the use of windows and e window manager it a
personal workstatlon.

-~ 26 -

The mode manager keepa track of the intended destlnation of keyboacd commands,
and tegs messziges sppropriately to ensure their correct routing in the
netwark. Thg editor can store and retrieve files. The program executar
featches program and data Files, end stores result Files. Simitarly the filer
Ruat have accesas to the file storce. Thus a2 quite general commupications
network is cequired.

The First system provides an Independent path through esch subsyatem from the
keyboard to the zcreen, and each subaystem has a lacgely distinct path to esad
Erom the filestore:

editor

E

keyhoard mode
_ﬁ ——
mgr. o -X
executor screen
+X
¥ |

filer

o7 |—>F
file store

In this system T have taken the llberty of using the mecge symbol to mecge 3
gtreams - this 1s easily Implemented by cascading Z-way merge opecators:

—_—

—

4 second possible gystem uses a single centralised "bus”™ to distribute all
messages from gsource to destination. In this case we also peed tags to
ldent)Fy the file store and screen as destinations:

keyboard made
mgr.

G fFer)
75— it seor]

N]
» SCREEN »gcreen

Here a more sophlsticated tagging system is required. The main tag on 4
nessage must indicate the dastinatlon of the message. In sddition however,
the meswage part must contain the tag of the sending component, to be used as
the "return sddresy™ tsg on any reply evoked from the destination component.
This 1s a typlcal communlicatjons problem, snd it is oot a fundamental issue
here. This system also enables a more flezible commupicatlons strategy, if
it is requiced. For ayample, the editor could make use of sarvices providad
by the filaer.

The Ffinal offering In this chapter {s & rearrangemeat of the components of the
pravicus system. The new gystem hes & ring archltecturs, aomewhit
ceainlascent of the Cambridge Zing. Each component is sttached at s node on
the ring - passing mesaages with the correct tag are extracted from the ring,
and any responses are merged with the residual message stream:

keyboard mode
ngT.
Illlhut SCHEEN]
Editor "
poda
allbut E
[-X executor
Brecutor
node {
allbut X
.-
r {-F] filer
Filer [
node
1 [elibut r
.
[-Fs} filestore
Fileatore
node ::I
allbut FS

where sllbut x eliminates those messages tagged with x, but pasaes all others
ynchanged.

- 28 -

Chapter &
PERTPHERAL HAR{WARE AND DISTRIBUTED SYSTEMS

Introduction

In the pravioug chapter we wera concecned simply with the logical architecture
of oparating systems conceivad as networks of communicating processes. It
waa implicitly assumed that, IF cequired, each antlre network could be run as
a4 alngle functional program (which is precisaly what it is) on a single
procassor. The only extecnal services required would be the provision of an
intarface conpecting the single Input and cutput streams to the user's
kayboard and screen. Where a syatem required a Flle store we impllcltly
simulated thls by using the main memory of the processor.

Claarly, more raalistic operating systems must also make some provision for
nccasa to the wide range of peripheral devices which may be connected to
computars. In partlcular T would like to consider access to axternal Flle
stores, apd communication between computers via remeote lines. The former is
necesaary For systems with larga storegas capacity, and tha latter will enable
tha constructlon of true distributed aysteme in which networks of processes
are alac networks of procassora.

The gtandard Lispkit machine, describad in {11], providas sn abstract machine
For the exacstion of Lispkit programs in which the programmer's view of the
physical world 1lg restricted to a single Input atream of s-expressions and »
single output stream of s-expressions. Usually these streams are interfaced
to a terminsl by the abatract machine)mplementatlon. It 1z possible fer the
streams to e temporacily reconnected to Files beld on disk, but this ls
outside the logical architecture of the Lispkit ebstract machine. Tha
reconnaction cannot be controlled by an executing Liepkit program since it ie
entirely dependent on the uaser typing special control codes.

In {6) the abatract Lispkit machline ls extended to support many physical
devicea, each being associated with its own stream(s) of input to and output
From tha machlne. Thus the user's terminal 1s stlll supported by one lnput
and one output stream, a printer or graph plotter could be supported by a
singla output stream each, and each remote port provided by the hacdware cap
ba aupported by ona Input and one output stream (for received data and
transmitted daka, raspeactivaly). A Flla store can slmllarly be supported by
a single cutput straam (carrying command messeges tc a dlsk based Flle store
driver) and a singla lnput stream {cecelving replles to commands where
raqulred}. Thie vlew ofF a Fllastore corresponde more or less pracisely to
the re-implamentation of dbf as a process running outside the Lispklt machine,
and storing data on a disk In a convantional way. In Fact the semantic
propecties of both Flle store lmplementatlons are identical as Far as any
application program Is concerned.

The standard machine bas a simple logical interfeca:

screen

keyboard

The program to be axecuted is a Function [which muat be defined as mapping a
slngle argument stream to & single result stream:

flinatresm} = outstream
where ...
The extended multi-stream machine almply generelises tble intscface:

keybomard —————— 3 #creen

flle store —— f L o Flle store

remota ——————————— 5 rumocte

and the program Ffunction F row must be defined as mappling e single srgument
which is & tuple {or list) of input gtresms, to a single result which la a
tuple of output gkreams: ‘

f(<keyboard, fstorein,remin>} =<screen,fztorecut,remout>
where ...

It ts the job of the implementer of any particular lmstance of the abstract
multi-gstceam machlne to establish & correspondence between phyaicel devices
and partlicular streams in the jnput and output tuples. Each program muat
respeck tha correspondeance for the machine on which it ja to execute. There
ls no restricklon in the loglcal architecture on the number of devices which
may be rapresented ln the tuples - there may be any number of terminsle, file
stores, remote 1ines, etc. There need not be a gne to one galring of lnput
and ogutput streams - for example joysticks or digitising tablets could be
suppoctad by unpaired input streems, and printery and plottersy by uwopalred
output stremms.

Further detalls of the logical propertles and Implemenkation of fils atore and
remote line Interfaces are contained In [6].

Two example systema Follow. The first 1% a flle transfer system between Ltwo
separate computers connected by a single remote lime - this lllugtrstes the
use of external File stores and remote line communication. The ascond

example iy aenother single user network operating system - this will be used to
illustrate the physical distribution of operating system components over a
network of computers, and the eagse of reconflguring such a aystem with changes
tn hardware availabillty.

A simple file transfer system

The hardware configuration that we w{l1l be working with in the design of this
system comprcises two processors each with a terminal and disk based file
stors, and connected by a single remote line cable. One of the processors
will be designatad as the Maszter, and all requests for file transfers will be
sntered at Jts keyboard. The HMaster controls all file transfers. The okher
procesanr ia designated as the Slave, its terminal is used only to log the
activiky of the slave machine, and hence the keyboard is ignored entlrely.

The STave cacrcies out actlons in response to requests from the Maater,

- M -

ugser st remote 1ine »

terminal Master Slave —>» screen log
disk disk
file store file stare

The user can enter two types of comwmend:

(SEND A Bl "Copy the contents of file named A on tha Master
machine to a fFile nemed B on the Slave machine”

(RECEIVE A B) "Copy the contents of file named A on the Slave
machine to » flle named B on the Master machlne"

A very simple strategy Is to Implement the Slave so thet it acts nz a
tranpsperant communication channel between the Master and the Slave's disk.
The Master ls than implemented as IF it had dlrect access to two File
stores. Thus messages acciving et the Slave along tbe remote line are
directed lmmediately to the disk, and replies From the disk are sent on the
remote lipe. The screen log Is obttined by monitoring the messages which
pass from the Master to the Fille store. The functional program to be
exacuted on the Slave machlne is eazily denjgned:

Slave(<keyboard,filein,remin>) = <gcreen,Filecut,cemout>

whererec flleaut = remin
repout = Fllein -
screen = cons{heading,monitor{reminp))
heading = "(File transfer slave)"

The Ffunctien "monitor” cannot be implemented withcout knowledge of the format
0F mesgages passed From the Mastec te the Slave's Flle store. Requests to
the Flle store have exactly the same form as regquests to dbFf in the previous
chaptar.

{GET 1) "fatch contents of Flle A™
{(PUT B C} “write o File B with contents ¢*

A simple lag would pote the action and File neme EFrom esch request:

mopitor{{message .more}) =
cons{listthead{message) head{tail{messnge)}},
moaitor{more))
50 the sequence of reguests
(CET fred){CET bill}{PUT joe(new contents))
will be logged on the screen as

{GET Fred)}(GET bill) (PUT jos}

Honce we requlre that the Master generates file store regquests focr both the
Master machine and the Slave machine.

To setisfy a sand commend (SEND A B) the Master must lsaue the request (GET i)
ke itz local fllea atore, obtain the contents € as reply (whlch will he the
atom MWISSING If there ls no such file), and transmit the request (PUT A C) to
the Sluve. To satiafy a receive command (RECEIVE A B) the Muster must
transmit the request (GET A) to the 3lave, obtain the contenta C az the reply
on the remata 1line, snd lggpue the request {(PUr A C) to the local file gtore.

Now we can wr'lte down the recursive functlon definlng the Master program,
including a heading llne for the screen and u trap for Invilid commands from
the keyboard:

Maater(<keyboard,fileln,remin>} =
<conuihoading,dcreen) ,Fileout, remout>
where #crean,filecut,remout = decode{keyboard,filein,remin?
headlng = "(File trensfer master}™

dacode{ {{"SENO" a b).commands},(c.Fllein),remin) =
errars, cong{ ("GET"a),fileocut) ,cons({"PUT"b c) ,remout}
where errors,flleout,remout = decode{commands,fllein,remin)

dacode{{("RECEIVE” a b).commends},Fllein,{c.remin}) =
errars,cons({"PUT"™ b ¢),fileout),cons{(GET u),remaut)
whare arrors,f)leocut ,remout = decode{commands,Filein,remin)

dacode({x.commands} ,filein,remin} =
cons ("ERRCR" ,errors),fileout, remout
where errorse,fileout ,remoat = decode{commands,Fileln,remin}

Note that, as implemented in (6], extecrnal flle stores do not return any
respons® to a PUT request (unlike dbf which returns DONE), In common wlth
the progremming of the editor component in the previous chapter, the cases For
SEND and RECEIVE both assume that the requested file contents from local or
remote disks are avallsble in the same recursion step. Again thls ls quite
healthy. Conventlions on the representation of file numes have not bheen
condlidered here, though clearly some specific declsion will he required in
practice.

Thus the two parts of the file transfer system have been represented qulte
eadily as recursive Functionkl programs. When loaded onto sultable
multl-stream abstract Lispkit machines, connected by a remote line cahle, a
rudimentary Flle transfer system ie available.

A_note on methodology

Tn the design of the flle transfer system above, the preclse configuration of
tha hardware was almost irrelevant. The system is conceived ag esssntislly a
single functional program for the transfer of files From ane disk to another,
taking commandg from one tarminal end displeying a log of sctivity on the
gacond disk on the screen of a second terminal.

- 32 -

user's — :{ monitor l—)screen log

terminal decode

ftle store 1 file atare 2

Thia diagram shows the lpgical architecktursa of the Flla trensfer systeom.

Givan a single computer with twe terminals and two disks, thia loglcal
architecture can easlly be configured to run on the single physzical machlne.
For example:

keyboard 1 — —————> screen 1
keyboard ? ——— ———————— ecreen 2
filestore 1 ——M8M —— transfer —————= file store 1
filestore 2 ————> flle store ?

transfer(<kbl, kb2, fsinl,fein2>) =

<cons{haadingl,serl) ,constheading2,scr2);fsoutl,fsout2>

whererec gcrl feoukl,faout? = decode(kb,fsinl,Fsin2)
acr? = monitor{fsout?)

headingl = "(Flle transfer master)”
haading? = "(Flle transfer alave)”

Alternatively we could notice that the logical architecture can be partitloned
to glve two subsystems, each of which c¢ould be configured to run on a aingle
machine. The c¢riterion for partitlonlng the system ls to discover subsystems
connecked to each other by streams (preferably a forward and reverse palr)
which can correspond to remote lines in a physically distributed nystem,

Thua tha logical architecture of the file transfer system can be partitionsd
into the Wister and Slave subsystems a3 lmplemented wirller:

user's —L——3 decode
temlna]d‘— €

file store 1 file store 2

A distributed operating system

Now we can proceed to the design of a general purpose, single user,
distribyted opersting system. The deajgn will be described in two stages.
Firatly we shall consider a network of procesamss which implement the desired
Facilities, Secondly, we shall consider configuring the loglesl system
architectura to various physical architectures.

Hare 18 a varbal specificatjon for the system:

The system should provide facilities for storing program flles {(mource code
snd complled code} and data files, edlting those filws, executinog compiled
program files with glven data Files and placing resultant filee In permanent
storagea, and pretty printing files to some output device. The user will be
able to issue commands of three types:

{EXEC A B C) "Execute object code program in file A, taking contents of
flla B ag data, and placing result in flle C"

(PRETTY A) "Pratty print the contants of File A"
Any astom, or list where First elemant i3 not EXEC or PRETTY:

"Perform wn edlt operstion, possibly a transfer from flle
store to editor or vice verm”

In addition we would 1ike, Firstly, that program source Files be compiled
aytomatlcally as they enter the file store, snd secondly, that actions Invoked
by the three classes of command teke place concurrently, es fer s powsible.

A File store which ensures that all source programs also exist in an

up-to-date compiled form, \s one example of sn “intelligent” subsystem which
automatlcelly performs important housekeeping duties, etc on the nser's behalf.

Tha dingram that follows shows the leogicel network architecture of ome
posgibla solutlon to the problem specification:

disk

intelligent
file store

[

exacution

Subsystem printer

pretty print
subsystem

M
edltor

front end

terminal

- 34 -

Input from the terminal passes (mmediately to a front eod process which
directs each command to the appropriate subasystem. The frant end alsc
collects replies from each subsystem and displays them on the screen - this
\nvolves & non-dsterminate macge of three streams of mesgages. While any one
or more of the three command processing subsystema is unnccupied and ready Lo
racelve @ command, the Front end process will be ready to aceept keyboard
input. Any input For s subsystem that !s currently ogc¢cupied will be queued -
this happens Incidentally through the propertles of streams and lazy
evaluation. Note that, individually, the executor, edlitor, and pretty
printer are not required to service many commands concurrently, (and In the
implemantations which follow, they will not do eo0}, and hence queuing will
occur - on the ather hand, If these subsystems were re—implemented in sueb a
way at to provide concurrent service then the gqueues would disappaar without
any reprogramming of the front end becomlng necessary.

The front end pracess ls moat easily programmed as a small network of
processag, Thla 13 an 1llustration of the methodological polnt that any
process in a network can ltself ba refined as a network of procesxzes,
Process networks in the domain of purely Ffunctional programming are
beautlfully modular Jp that processes are semantically entirely independent -
no process can have hidden slide effects on the working of any other process.
The only intersct!onsz betwean procedses are manifest quite explicitly io the
streams of messages that pase between them. This remaina true even when
non-determinacy 1s present ln the network - despite the fact that
non-determinacy does compromise some of the hallowed properties of purely
functional progrems,

The reflped network for the front end ls:

. editor
executor hL i pretty printer
1 —_—
split
keyboard acreen

which caen be programmed ae:

Frontend(keyboard,execrepliea edlitreplies,prettyreplies) =
gereen,execcommands ,edltcommands, prett ycormands
where acreen = merge(merge{execreplies,edltreplies),prettyreplles)
ezeccommands ,edl teommands ,prettycommands = apllt{keyboard}

splitikeyboard) = Filter{iserec,keyboard),
Fllter(notexecorpretty keyboard),
Fllter(ispretty,keyboard)

lsexecic) = (pot stom{c}} and headic) = "EXEC"
lspratty{c) = (not atomic}) and head{c) = "PRETIT"
notezecorpretty({c) = (not isexec(ec)) and (not lsprettyi(c))

The process which manages the intelligent File store 13 alsoc conveniently
refined ag a network of processes. it sust accept requests for £file store
actions Erom communication channels with the executor, edltor and pretty
printar. These requesta will arrive asynchronously (in no predetermined
order) and hence non-determinate merging Is wgaln necessary. Before merging,
each request must be tagged to indicate its source so that the corresponding
reply from the file store can be directed to the correct subeystem. This is
a multiplexing operstion. Clearly the disk cepaot handle these Lagged
commands, so the file store manager must astrip off the tags and reabtach them
to the replies from the disk {(there is no reply to a PUT request, and in this
case the tag s discarded). Fortunately, as implemented in (6], the dlsk is
a synchronous external device, and the requests are serviced In precisely the
order they appear in the output stream — thus the retagging iy & sound
oparation. When the File store manager passes s PUT reguest to the disk 1t
checks whether the file ia a program source text (hy spplylng ¢ test to the
file name), and, if it l8, generates an extrm PUT requeskt with the compiled
Form of the program as contents (and with a modified File namm), Replles
from the file store are returned to the appropriste subsystem by m
"demultiplexer”, which is rather like "split” above.

Hence the intalligent File wtore can be refined to the following network:

djsk

requesty

pretty printer

axmcutor o —

L4
editor

which can be implemented by the following functlona:

Filestore(execreq,editreq,prettyreq,diskreplies) =
axecreplies,editreplies,prettyreplies,diskrequests
wherarec replies,diskrequests = Lfs{requesats,diskreplles)

requests = muxdlexecreq,editreq,prettyreq)

execreplies,editreplies,prettyreplios = demux3d{replies)

{1Fal((tag ("GET" a}).requests) (c.diskreplies)) =
cong{ (tag c),ceplies),cons{("GET™ a),dlskrequests}

where replies,diskrequests = Ifs(requesty,digkreplins)

1Fa(({tag C("PUT" & ¢)}.requepts) ,diskreplies)
1f issource{a) then replies,dr2
else rveplles,drl
whereree drl = cona{("PUI" & c),diskcequests)
dr2 = cons(("PUT" u c),
cona((“PUT"” modify(a) compllel{c);,diskrequests))
replies,dizkrequests = {fs{requests,diskreplies)
complle{prog) = ... not specified here ...
modify{name) . not specified here ...
mux3ia,b,c) wmerge{tag(l,a) merge(tag{2,b), tagi{d,cl)}}
demux3{s) untag{l,s) ,untag(2 s}, untag{ld,s)

-36_

For this definition of muxl) we must use a versilon of merge which ensures that
both the tag and the tegged message are present before selecting a stream
element. The Following definltion of "here” will do the trick (see the
definltion of "merge”™ ln Chapter 1):

here(x) = stom{head{(x)) and if atom(head(tail{z)}} then true slse true
It remalns to design the edltor, ezecutor, and pretty pecinting subsystema.
These are guitsble ko be implemented as almple recursive functlons - an
attempt to refine them as networks produced rather contrived and jnelegant
aolyklions. For the editor we can adopt the aynchronous editor described In
Chapter 2. This had terminal input and ocuktput streams, and Flle stote 1lpput
and output streams, and hence will fit quite naturally into this network

sysktem. The only e¢hange required is to remove the check for DONE following a
PUT command. The executor 13 quite stralghtforward. Each message it
raecelves From the front end will have the form (EXEC a b c). Por each such

megsuge the executor will request files a and b from the filestore end recelve
the contents of the Flles In reply (or MISSING for either of the flles 1f not
present In the Flle store). IF mither a or b is miswing then suitable error
magsaged sre sent to the user's terminal (and the executlon does not cccur),
otherwisa tha result is sent to the flle store (and the screen remalns

quiet). Thus the execuktion component

Front end (_3,010cut0r ‘__! flle store

csn be progruwsad:

exec{(("XXEC" a b c}.commands),{prog data.filereplles)) =
responses,cons{ {"GET"a),cons{("GET™ b)},filerequesta)}
whererec responses = Jf errocs
then append{errormessages,otherresponses)
else otherrasponses
Filerequests = if errors
then otherrequests
else cons({"PUT™ ¢ respult),otherrequests)
otherrvesponses,otherrequests = exec(commands ,filareplios)
cesult = executoe(prog,data)
errors = {prog = "MISSING") or (data = "MISSING")
ecrmessages = If prog = "MISSING"
then cona(”(Program misaslng)™,em)
elae em
em T |f data = MISSING
then cone(”{Data missing)™,"NIL")
2lge "NIL®

(*The oc used In this definitlon i3 a Boolean cperator).

Here exec has two arguments - the stream of TXEC commands from the keyboard
(via the front end} and the stream of replies from the file atore. The
function has a peir of stresms as ite resulk; a stream of error messeges
destined for the user’s screen, and 4 skream of requests for [lle store

operations,

The pretty printer !s eazlly programmed io a elmller way. It raceivas
meggages from the front end of the form (PRETTY a}. For each such command it
must requesk the conteats of file a from the file stace. If the Flle 1s
mizeing them an error meszage I3 sent to the user, otherwise the contents is
sent to the printer, prettily formatted:

;J —
front end c pretty printer < Eile Btore
>printer

pretty{{ ("PREITY" u).commands),{text.filereplies)) =
regpondes,cons({"GET" a),fllerequests) ,printing
whererec error = text = "MISSING"
responses = iAf errer
then cons("(Text miseing)"”,otherresponses)
else otherresponses
printing = if error thec atherprinting
else cons{prettify(text),otharprinting)
otherresponses, fllerequegts,otherprinting =
pretty({commands,filereplien)

prettify(text) = ... not apecified here ...

This completes the progremming of the indlvidusl component processes of the
distcibyted operating syotam. We must naw look at the problem of canflguring
the logic¢al architecture of the system to specific hardware, (learly the
simplest physical organisation for the system 11 to run the entire network as
a single Functionel program on & single multiple stresm computer. Por this ~
we require an abstract machine with, at lesst, terminel input drd output
streams, s« dlgk bugsed file stoce input and output stresms, and » printer
output stream. The function to be executed by the asbatrsct mechine is then
given by the Following definition:
system(<keyboard,fllein>) = <screen,fileout,printer>
whererec screen,fetoex,fetoed,fetopp = .
frontend{keyboard,extofe,edtofe,pptofe)
edtpfe,edtofs = edit(fetoed,fatoed)
sztofe,extafs = exec{fetoer,fstoex)
pptofe,pptofs,printer = pretty(fetopp,fstopp!
Eatoex,fatoed, fatopp,.Elleout =
filestore{extofs,edtofs,pptofs,filein)

This function deflnition simply glives the connections which make up the
network. Names have been allocated to each of the internal striams in the
network, such as pptofa which stands for "pretty printer ta file store™.

- 3B -

When all the subsystems are executing on a single processor there will clearly
need to be timesharing to achleve concurrent axecution of the subaystems (the
abstrackt marhine will take care of this). For maximum ppeed we would lite
ouch Subsystem to execute on s separate processor. If four procegsors are
available tten each major component can egxecute op 1ts own processor, and the
Front end cold share one of the processors. Bearing in mimd that one remote
line c¢an support one stream in each directlon, the front end and editor can be
allocated ko s pracessor A with a terminal and three remote 1lines, the
wzecutor car be allncaked to a processor with two remote 1l nes, the pretty
printar can ba allocated to a procesgdor € with two remote limes and a printer,
and the File store can be allocated to a procesaor D with a dlsk aad three
raemote liner:

s~~~ 777 1 r-—=——=""¢
i 12 all 2 !
) ¥ 1] ! !
' i hd]]
!' | axacutor ! i pretty !
| —1_-?
: | - : printer| | printer
1 | F—— " 1
Lt (editoc ! L—44--4
1 | | 1
~ 1] '3
EI I "I front end

L] __2

terminel ¢ Eemote iine

We require four functlons, one to be executed by each machline:

ysA{<keyboard,remlin,rem2in,ceadin>) =
<Beraen,remlout ,rem2out , remldout>
wherarec screen,remlout, fetoed,remdout =
Erontend(keyboard,remlin, adtofe,rend in)
edtofe,rem2out = edit(fetoed,rem2in)

2yeB{<renlin,rem?in>) = <remlout,rem?out>
where remlout,rem2out = exec{remlin,rem2in)
sYC(<remlin,rem?in>) = <remlout,remZout,printer>
whera remlout remout,printer = pretty(remlin.rem2in)
syaD{<Filein,remiin,rem2in,remiin>) = <flleout,remlout, remZout,remdout>
whera remlout,rem2out ,remdout, filleout =
fllestorsiremlin,remZln,rem3in, Elleind

Each pair of streams conpecting the subsystems has been assoc isted with one
remote line port on each of the two processors Ilnvolved. The appropriate
phyaical comection must be made between each palr of corresponding ports.
For example, the streams previously known as extofs and Fstoex are now
asgsocinted with remote port 2 on machine B and remote port 1 on machlne D, and

these ports pusk have an appropriate electrical connsctlon mide between

them. In this way the network has been partitioned by assoc lating
communicakion gtreame directly with physical remote lines. No major software
components raed altering, only the functions describing the interfaces between
streams and hardwere ports need to be rewritten.

Many other configurationa are posaible. Syppose that the avellable hardware
is rather more limited — three processors, A with two remote lines end a
terminal, B wikth two remote lines, and ¢ with a disk, e printer and two remote
lines. Then tha system can be partitloned as in the following diagram:

Communieation between machines 4 and B, and between machines B and C can be
supported by one remote lipe for each route, However, -between machines A and
C we have two paics of streams but only cne remote line available. To solve
this problem we can multiplexr several streams on a single remote line:

disk
l:_é ________________ 1
)
1 fila ltorﬂ:i pretty printer [4>printer
A L f
1/ I [T]
s 1 i
: |demué| 5 17} ¥ :
L S Y= 1
2 | e e S A
l;‘ --rr-——- = B |
1 | 1 '
" ! I [|
] 1 ! 1
| l;?cutnr) ' I
: 1 I |
1 ! |
! Faa) 1, I
| t | S
| l L T |
b e e e e m - 1 I H A I

terminal

Now we can write down the function to be executed by each mechine:

sysil<keyboard,ramlin,rem2in>) =
<screen,remlout,rem2out>
whererec scroen,remlout, fetoed, fetopp =
frontend{keybourd,remlin,edtofe,pptofe)
adtofe,edtofs = adit(fetoed, fatoad)
rem2out = mux2({edtofs,fetopp)
fatoed,pptofe = demux2(rem2in}
ayeB(<remlin,rem2in>) = <remlout,remZout>
wvhere rtemlout,rem2cut = execi{remlin,rem2in’

gysC({fllein,remlin,rem2in>) =
<Filepunt,remlout,rem2out,printer>
vharerec remlout,fstoed,fatopp,filecut =
fllestore({remlin,edtofs,pptofs, Eilein)
petofe, pptofe,printer = pretty(fetopp, Fstoppl
adtofa,fatopp = demuxZ{rem2in)

rem2out = mux2({fstoed,pptofe)

Again, no subsystem has been altered, only the Interfacing glue. Functions
mux? and demuxZ ean be conatructed by analogy with muxl and demuxl.

If only two machines were available, with a single line between them, then it
would be straightforward to sllocate the executor to the same mechlne ss the
editor, and to multliplex three pairs of atreams on the single remote line
between the two machlnes.

Thua we have a methodology that produces systems which sre vecy easy to lay
ouk on the waileble hardware, and which can easlly be reconfigured 1f some
hardware components Feil, or if more hardware becomes aveailable, During the
Inftial stages of system design it is not necessary to consider these
evantuelities in detail.

Chapter 5

SUMMANY AND CONCLUDYNG REMARKS

In the two year duration of the Functional Operating Systems project a
considecable amount of progrean was made. Achlevements occurred In kthe
development of bthe LispKit abstrack machlne to aupport Lhe advanced festures
required of operating systema - this work was reported in (6}). In parallel,
& range of oparating systems way explored, exploiting the various advanpced
Facilltles offered by the enhanced sbaktrackt machines - o record of the major
polints 1n thiy exploratlon haa been reported ln this moncgraph.

The exploration can be seen ln three stages:

Flratly, it waes shown \n Chapter Two how conventionel atyles of operating
syatem can be programmed purely functionally in o quite stralghtferward way.
The destgn of ome pacticular, moderately conventlonal, system wag considered
in deta}l, and various extensions were dlscussed. The provigslon of a lezy,
\nteractlve implementation of a functjonal programming languege makes puch
systems a realistle propositlon.

Secondly, Functlonal programming !s an excellent medlum for the construetion
of oparakting systems as nebworks of co-operating processes communicating via
streams of messages. Considersble scope for interesting systems srlses with
the addition of pon-determinacy to the language to allow merglog of streams.
Thess themes were explored in Chapter Three, with the consideration of a
variety of simple shared database spplicatlons, and the design of i single
uaer operating system with various different networks of procestes.

Thirdly, the networks/processes/stresms paradige extends vercy nicely to
operating systems whlch are distrlbuted physlically over & collectlon of
procassors, The archltecture and major components of such operatlpg systems
are degigned wlthout consideratlon of the eventual hardware configuration,
The network i3 then partitloned for the available hardware, and only small
amounts of InterFacing code need be written. The independance of the logical
architeeture of the operating system from the hardwatre means that the systems
sre easlly reconFigured with changss in hardware avajlablility. These ldeas
wera lllustrated in Chapker & by the design of a computer-to-computer file
trangfer system, &and the design snd conflguration of a single user operating
gystem For the exploitation of true physical concurrency.

Thus Functlional programming has brought to operating systems its power of
expression, the modular design of networks (processes mey be refiped sx
sub-petworks), and ease of dlstribution and reconfliguration. In the time
svailable it has only been possible to make s broad feasiblllty atudy of these
topiea — many more sophisticated opecating systems remain to be designed,
other advanced technlques-of Functlomal progrwsming remsin to be discovered
and exploited In khe construction of operating systems, and there are surely
other, probably moce appropriaste, enhanced verslona of the LlspKit abskract
machine to be desli gned.

T bellieve that this project has shown that the functional approach ko
programming operat Ing systems 13 Indeed feamihle. It 1s certainly wrthy of
Further study in order to refine the implementetlons and techmiques. Other

groupn are wlresdy pursuing these toplcs From thelr osm viewpolnts, wnd other
approsches are coming Lo light.

- 42 -

CSP |1%] and occam (16) provide an alternative approach te the conatruction of
networks of proceszes, and they handle mesaage streams in an elegant way. In
Fack, CSP amd occam nt they stand are more or less language skeletonz — a
Framawork Fer expressing processes and communications, with no sdvanced
language component for expressing the computationel part of each proceses
{searching file stores, compiling, etc). It hags been argued that, in
functionally programmed processes, the sxpression of stresm communlications is
the least elegant park. Perhaps CSP and occem have eomething to offer here,
or perheps there are equally elegent functional programming techniques waltlng
ko be discowred {research employing functional programmlng does continue to
discover elexant techniques with surprising Frequency). CSP and occam also
present thelr own solution to the non-determinacy problem from the outsek,

Finally Clert and Gregory [17) report on work progreesing concurrently with
the research reported here. They describe the uze of PARLOG, & parallel
logic programming language, to tackle a number of the problemm explorsd in the
nurlier chapters of this monograph. Thelr solutlons are bromdly gzimilar,
with gome lnteresting differences where thay exploit uniflcation For the
parsing of mssage stresms, and where they use the "logicsl variable”™ to
combine a stream of messages and s stream of repliea lnto u single stream in a
very elegant Fashion. PARLOG 13 essentlally a version eof Prolog, extended
with many Feitures of operational significance. The langusge is quite
inteicate. It tackles the problem of non-determinacy by making a committed
choice when | suhgoal matches several alternative clauses 1n the program.
Backtracking cannot occur once the choice has been made. This effectively
provides the aquivalent of oc sz described in Chepter Three.

This conslderable lnterest clearly indicates the signiFicance of the
continuing study of Ffunctional operating syatems.

References

I1a] ABRAMSKY , 5 SECD-M: A virtusal machlne for appllcative
multiprogramming.
Queren Mary College, Computer Systems Laboratory, 1982.

[RY3} ABRAMSEY , S A s)mple proof theory for non—determlnistlc recursivae
programa .
Queen Mary College, Computer Systems Laboratory, 1982.

[z} DARLINGTOMN, J and REEVE, W Allce, a multiprocessor reduction mmchine
for the parallel evaluatlion of applicative langusigaes,
Inkternal report, Dapartment of Computing, Imperial College, 1981.

[31 DENNIZ, T B Varletles of data flow computers. Proe. of 1st Int.
CopF. on Distributed Computer Syvtems, pp 430-439, Octtober 1979.

{41 HENDERSOW, P Functlonal programming: Application and implementation.
Praentice Hall, London, 1980.

[5] HENDERSON, P Purely functional operating aystems.
In Functional programming and its applications, Eds. Darlington,
Henderson and Turner, CUP 1982.

6] JONES, S R Abstract machine support for purely Functlonal operating
9ystems.
Programming Research Group Technlcal Monograph PRG-34, Oxford
Uniwveralty, August 1983.

{71 XARLSSON, K Nebula: A functlonal operating system.
Intesrnal Report, Laboratory for Programming Methodology, Chalmers
University of Technology end University of GCoteborg, 1981,

(8] McCARTHY, J et ul. The Lisp 1.5 Programmer's Manual. MIT Prass, 194&2.

[91 BURTON, ¥ W and SLEEF, M R Executing functional programs on a virtual
tree of processors.
Proc . ACHM Conf. on Functional Programming Languages apd Computer
Archltecture, October 1981,

[10] WATSON, I and GURD, J A prototype dataflow computer with token
labelling.
Proc . Nak. Comp. Conf. Vol 48, pp 623-628, 1979.

[11] HEMDERSON, P, JONES, & A and JONES, S B The Lispkit Manual,
Programming Research Group Technical Monmograph PRG-32Z (2
volumes), Oxford University, 1983.

[12] SHULTIS, T A& fFunctional shell.
ACM SICPLAN Notices, Vol 18, No. &, pp 202-211, June 1983.

[131

t14}

(15)

[18)

(17]

— 44 -

FRTIEMMAN, D P and WISE, D S An indeterminate constructor for
applicative programming,
Tn Conf. Record of 7th Annual ACM Symposium on Princlples of
Programmlng Languages, Las Vegas, 1980.

MeCARTHY , 3 A bssis for s mathematical theory of computatlon.
In: Studies in logic: Computer programming and formal system.
Eds. Braffort and Hlrschberg, North Holland, 1963,

HOARE, C A R A model for communicatlng sequentlal processes,
Programming Research Group Technical Wonograph PRG-22, Oxford
Universlty, 19B1.

INMOS Ltd Occam Progrerming Manual.
Prentice-Hall International, 1984,

CLARK, X L and GREGORY, § PARLDG: A parallel logic programming

language.
Department of Computlng Research Report DOC B3/5, Imperlal

College, London, May 1983.

