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THC WEAKEST PRESPECIFICATION

C.A.R. Hoare and He, Jifeng

"For, aside from the fact that the concepts occurring in
this calculus possess an objectiye importance and are in
thege tlmes almost indispensable in any scientific dis-
cussion, the calculus of relations has an intrinsic charm
and beauty which makes it a eource of intallectual delight
to all who become acqualnted with it. ALFRED TARSKI /67

0. Introduction

in Dijkstra's calculus of weakeet preconditione [Zf, a program ie
specified by a predicste R describing the desired propertiee of the values
of the program's wvariabies when the program gsuccessfuily terminates. If Q
is a program, the weakest precondition

wp (Q,R)

gives a predicate S which can be uwsed as the most gensral specification of
a program P which is to be executed before 4 in order to guarantee that

the comblpation P3Q will maet the original specification R. If
\

wp (Q,R) = trus

then Q already meeta the specification R, and the programming task ia

camplete,

The weakest prespecification of program @ end specification R will be
wrltten
a\A
It serves the same purpose as Dijkstra's weekset precondition, but

goheralises it ln Four wayse,



(1) Tha specification R describes not only the deaired
properties of the fimal welues of the variables, but also their desired
relatignship with the initial vslues; such specifications are normal

in specification languages Like vOM/3] and 2/4/.

(2) Te parameter O may be & program, or it may be just the
spoecification of a program still ta be written, Consequently, the weakest
prespecification can easist in eplitting a tesk R into two subtasks Q and
Q™R3 then any implementation of O\ R, when composed sequent ially with any

implementation of 0, is gusranteed to meet the priginal requirement R.

(3) A pertial relatior R is teken as the spescificetian of a quagged
command, whoss guard must be cpntained in tha domain of R, Thus guarded

commands can te specified and implemented independently, before being

callected into a set with if or do.
Loy Ll

(4) The programming language is extended to include gemeral reacureion,

af which itarstion is a simple spacial case.

This incraase in generality is obtained at tha cost of some increasa in

camplexity, which can be justifisd only when it is needed.

Section 1 of this papser proves the basic properties ol the weskest
prespecification within the framework of ths relationsl calculus, Section 2
defings an axtended wversion of Dijkstra's pragramming language; programs
are a particular inductively dafinad subset of sll relations, which are
total; they snjoy 8 numbsr of usefyl additioral properties, including
computability. Section 3 shows hou weakast prespecificetions and Dijkstra's
progremming language can be treated within the fremework of VDM, in whlch a
specification or a program is expresaed in tearms of e precondition as well
ap @ relstisn, The more elaborate proofs ara relagated to the appendix,

where they are treated entirsly within the framework aof ths relational



1, The calculus of relations
A relation is defined conventionally es a set of ordered pairs from

some fixed universe Z(usually left implicit)

R = {ao.slsoﬂs}

The following notations are widely used

T Loy are mee s e ey e R ko P e —aa s

R = {so,s[ ‘-T(BORS)]I complement
| v
! R = {9 - laRs } conversse
i a o
| . P .
R3S = {SD'E | 3 s. SDRSASES} composition
RES = Vso,s. SDRS — 3055 inclusion
' Rus = {5 ,elsﬂsv&Sa} or
0 o o
Rab = {s,slsﬂa;\sSs-S end
o [ o .
. IB] R = {so,sl IJn e N. eORns} upion
{ ﬂ R = {s 49 I Vn eM. snr 5} intersection
] n n Q o n
! 0 = {so,s l rslse§ empty
t
i Uy = {su,e | true} universe
I = {so,s 5, = s} identity

We shell use the following siempntery theoreme of the theory of

refations, without expllcit reference:

P31 = ;P =pP (D UQ);R = (p;R) U(UER)
P30 = Oip =0 Ri(Pu@) = (R;P) u(R;a)
(P;0)R = Py(aQ3R) PEOARES m=d Pip 036

vy = P EPU



In this section wa shall use relations to represent both programs
end epecifications. The inclusion reletion can therefore be intarpreted
in three differing waye. IF P and Q are programs and R amd S arse

gpecificetions:

P ¢S5 means that progrem P meets speciflcation 5, because

sverything it does asatisfies S.

P <@ means that program P is tha same or more dasterminiatic than
0; everything it does, Q can do too; but ) may do more.

Further, P satisfies every specification eatiafied by Q.

5¢€T7 means that specification T is thg same or wsaker {more
general) than S. Every praogram thet satisfies 5 also

setiafies T.

In Sectlion 2, progrems will be defined as a certain subsat of total

raletions; but ir this section, the distinction is irrelewvant.

Suppose now we wish to deyelop a program to meet spacification R,
and we decide to achisve this by sequential composition of two program
comporents. Then we decide that the specification af the sacond compornent
will be 0. The next guestion is, what ghould be the speci Pication of the
firat component? We would liks to know the weakest (most ganeral}
specificstion whose satisfaction is both & necessary and sufficlant
condition for the correctness of the whale program. 7This will be calied
the weaksat prespacification of Q to achieve R, end will be denoted by
the infix backslash

a\R.

Readara who doubt the axlatence of this nparstor esre requesated to suspand

their disbelief until the paragreph numberad (%) below.



Lat P meet this specificetian, i.e.,
PSR

Then we want to emsure that P composed with any implementation of Q
will meet the specification R. Hecauss compositian is monotonic, this

is ansured if P composed with { iteelf setisfiea R, i.e.,
P;0 € R.

Thus we motivate the postulsts
FEANR = PO S A.

Aut we went QN R to be thes weakesat relstion for which this implication

holds, Thua we need to strengthen tha implicstion to an aguivalenca

et | e R Y T

/(p;a)'-—‘.-ﬂ = va(a\R) \

it 2 e Rt o e A T A

All the proofs in this eection will be based on this &ingla besic law for

prespecifications.

In the arithmetic of nstural numbers, we have a very aimilar law

for the inverss of multiplication
NnYXm<Lr S n£r+m

where divisiom dlecerda the remainder. In this analogy, aii thegrame
proved from the basic law will hold trus for natursi number divieion.
The identity relation corresponds to unity, the ampty relation corresponda
to zero, and the universal relation iz & sort of infinity, ea shown by the

theoreme

U = ONR = RNU

Proof:; from the baselc lew, since U;0SAR eand UjREU.

The enalogy with multiplication and divielon may be illuminating in whet
follows, where nnm can be intarpretad ea the minimum of two pumbers and

nym Ba their maximom,



1.1 Algbdbraic properties

{1) O™NR itself is & solution to the originel problem of Finding an X
such that
X;Q< A,

Proof: (™R %GR

.T. ([@R)30=ER
This result has the follewing consequences
{(s) UN\R &R
Proof: UNR € (UNR)3U

CR by (1)

(6) (UNR);U = UNR

Proof: ((UNR);W);U0 = (UNR)j{uzu)
= (UN\R);U
&€ R by (1)
« e (USNR)IU S UN\R by the basic law

The reverse contelnment is trivial,

{2} P itsslf ls & solution te the problem of finding &an X such that
XiQ & P30
Prgof: PG € P;Q

S P aN(PG)

{3} If O\R conteina the tdentlty relation, then U by itself meste
the originel specification R; this is a necessery and sufficiant
condition for completion of the programming tesk.

ISO0N\R = G<ER
Proofs LHS =2 130§ R = RHS
(4) Every program meats the specification thet Lt beheves like itaalf

I & aNQ



(5) The identity relation givas no help in meating eny specification

P = INP

Proof: X &P X;1€p

X € 1\p
The introduction of X in this end in meny lster proofs enables the beaic

law to be used in the proof of equationg s= well as inequalitiea.

{(6) 1ln order tc meet both specificatiops R and S5 with the aid of Q,
it is pecessary to write a program which both mests R with aid of

and also mgets 5 with the aid of Q
0N(RnS) = {aNa)a{oNs)

Proof: XE€QN(RAS5S) = X;Q%RnS

(X;2SR) a (x30 E5)

He

(XGOANR) A ({XE0NS)

X £{ANR) n (GN3)

This law corresponds to one of Dljkstra's healthinmsss conditions for

the weaksst precondition

wp {Q, ®aS) = wp (0, R)awp (0, S)

The lew sxtends to infinite conjunctiaons

a\(rn\ R,) = Q(U\Hn)

(7) If P and 0 are programs, Pu(Q {3 s program which behaves either
like P or like 93 and we canndt control the choice between them, In
order to mest a specificetion ralfiably with the ald of Py Q, ws must be

prepared ta meet it with the eid of P; we must also be preparsed to

mest it with the aid of § frooj: x €(Pu a)\ R
X {fva) ¢ K

(PvaIN\R = (P\R)n (UN\R) E
Proof: Similer ta 6. g (X;P)v (%;Q) € K
This law extande to infinite diajunctionst = (%; €] € R A (%5 R) <k
() (UpdN\p = (e \e) t xg R\R A > € &\K

- - Oy £ o . D



(8) In prder to meet specification R with the aid of (P3;Qd}, you must

ensure that P can mest R with the aid of Q

(P;UN\R 0N (a\.R)

Proof: X&(P;a)™R = X;P;QER
X3PEQNR

X €PN (a\R)

i

M

This law is the Bame ap Dijkstra's definition of the weakast precendition

for sequential composition

wp (P;Q,R) = wp (p.UP(Qrﬁ))

(9) The time hes surely arrived to cheeck that ths waskeat prespecification

actuelly exists, A simple definitilon is

N eU{v | via <R}

and the basic law is readiiy proved from thia dafinitien
BaeR ~ pe fr ‘Y;QSR}
—> p< Ufr ) v;asr}
PQU{Y )Y;UER} =3 P;DEU{Y;Q)Y;QQRB ; distrib U
- P;0%R sat thaory

A weakast Inverse can be similarly defined for any function which
distributes through srhltrary wnions. For conjunction, we have
PnQ €R = P =RuUl

Disjunction does not have such an inverae, because it does not distribute

through an empty union,



{10} A more explicit definition of the weakeat prespecification can ba

given as a predicate relating an initiel atate so with a firal stats &

so(u\ﬂ)s = Ya. e0 é%wfp RS i

1f P = QN\R, this states that every poSslble final state a8 produced
by P from initial state 8, when used a8 ipput to G, ensures that any
flpal state B produced by Q ia final atate allowad by R for the given
initial stete s The above formula ip the predicate calculus is useful

when O is a specification expreseed as a predicate rether thsn a program

exprepsed in a programming langusge.

The basic law may be proved by predicate calculus from thias deflrition

{or vlca-yeraa)

Vs.(eD{P;Cl)a =, Ra)

1}

¥s.((38. s P& A & ds) =» s_Ra) def ;

"

Va,Vé.(goF’é A 50s =M aoﬂa) pred. loglc

Vi.(aps =3 Va(ss =30 Re))

n

(11} The Familiar concept of reletionel Canverse cen be defined in terms
of the weakest praspecificatlion.

v —y =

g = o\T

where T io the divereity relation {negstion of ldentity).

e Teis,s |l sts]

Proof:
s, T\T)e = Ya.(ss=> o #2) by (10)
= Vi(s =5=3 a08) predicate logic
CE L g

s {is daf ¥
a



(12) Alternatively, the weskest praespecification can be defined in

terms of the relational converss

N = Rild
Proofs
ey . - e
o (Ril)s = -1 3. 8 RE a é&le def ;
= Viie = soﬂi pred. logic
= sO(LHS)a by (10}

{13) The rext jaw stetes how negetion distributes through weakeat

praspecification
a~R = (R\D\T
Proofs
s (RH)s = "IS(E\E)BU (11)
= TIVa.(sRé =y sB3) (10)
= Va(ens =5 s fE) prop. logic
= e (LHS)e (10)

Thia law might be celled the ascond basic iaw for prespecifications,

and it is reeded in the proof of all laws quotsd in the remainder of 1.1,

Since converse can be defined in tsrme of waekest prespscificstione,
it is an qttrsctlve idga to sdopt the weakeet prespecification se e
primitive of ths reiational calculus in place of converse. In thie cass,
the three Tarski exiome raiating to conversa can be repieced by the two
baslc laws for prespecifications. The details ers worked put in the
Appendix. 5ince P3Q fe csiled the "reietional product™, ita ipverae could

wall ba cilled the "raistional quotient”,



{14) In general, prespecification does not distribute threugh
conjunction in its fFirst argument. But if one of the limba of the
conjunction is of the form P, the Following distribution law can

be used

(VYA Q)NB = (PNO0) w{A\R)

The relation P;U has the same domain as P, but relatee sach member of

this domain to anything whatspever

SU(P;U)S = da, sops

~_

The relation PNO is egual to P3U; 1t relates everything to snything

outside the domain of P

9,(P\D}s = —1ds . s ps

(15} A condition is writtern in B programming language as a boolean
expression. We will represent such a condition as e relation whoss
domein is just those initial states in which the expression succeesfully
evaluatas to trus, and which ralates each member of its domein onto iny
final state whatsoever. More formally we define 8 relation b to be a

condition if
b = bju

We shall use lower case lettars for conditions,

A guarded command in Dijkstre's programming notetion is written
b —> 0, where the guard b is.a condition and P is a command. The
guarded command is ora that refuses to start unless its guerd is true}
we can therefore define it as a relation whose domein ia restricted io

the domain of b

b—>»pP = bap



{(16) If P is a relatjon with a restricted domain, it can bs converted

into a tots]l reletion by the operation

If P represents a program, p* behaves lika P in all initial statsa in
which P can stert; but otherwise it does anything whatsoever. 1ts

weskest prespecification is

P'NR = PN\RA{PND u U\R)
UNR is e condition describing those initial states in which the
apecificetion R permits snything whetecever to happan

s (UNR)s = Vs, s R4

Proof: et sppendix thearam 22.

(17) In Dijketra's notation, guardsd commands cannot occur fmdividually

but only in eets, For axemple, here is g sat with two slemente

ifo—>pJe—>ar1

We can uee the connactive w 1n place of the fat bar ﬂ » and sa

repreaant the above command aa

tbaP vecan)t

(18) it F is & total function, we can prove

F\NR = Rj(FN\I) Proof: see appendix theorem 1 5.

In the cass of s total function

r\1='FJ

80 the law quotsd abova givss an analogue of Dijkatra's weskest prscondition

for sesignmnt

wis := F(a), suRa) e BOR(F(S)) Lew of esubetitution

]

ao(RlF)- def 3

X aoﬂi A afFd pradicats celculue



{19) Tre weekest postspecification pof ¢ with respect to R gives the
waakest splution @ to the inequality
P;sO<=R

wharn P and R are known in advance, 1t can be defined in terms of the

weakest prespecification
R/P = (RNTIN(PND)

and its properties are highly anelogovs, for example
R/(P30) = (R/P)/0.

We leave the detai ls as pleasent exercise for the interested reader,



1.2 Recursion and fixed points

A funciion F from relations to relations is said to be mopotanic
————

if it respects relational inclusian, i.a.'

rey = F(x) £f(Y) for all X ang ¥

Tarski [75_] has shown that the equation (over a complete lattice)
X = F(x)

has & solution whenever F is monotonic. In fact, thare may be many

aclutiane; the least of them will be denoted
PXLF(X).

1t is defined by

prF(x) & N {Y |rin < Y}
and is known as the lggst fixsd point of tha function F.
Trhe imgortencea of theee resultse ls that many uasful cperators of

the relatiorel calculus ere monotonic in bath their arguments, in

particular the operators
U 3 N
Furthermare, eny expreseion mads fram monotenic operators is monctonic
in ell its operends. For axample
FX}) = (b n(PiX)) u(b Aal)
is monotonic in X. 1t corrasponds to a program which firet tests b;

if b i3 true, it axecutas the command P, followed by X; if false, it

tarminates without chenmging anything. The construction
PLLF(x)

is the pragram which executes the whola of pX.F(X) whenasver called upon



ln the above descriptlion to execute X. It therefare behaves like the

conventional while-loop
while b do P
P -

or, in Dijketra'as notation
dob—>P od.
L] "

In the more general case ;JX.F(X) is like a call on 8 recureive
procedurs, with name X and body F(X); whenaver X is encountered in

the execution of the body, the whole of }.IX.F(X) ias executed in its place.

1n addition Eo 8 least fixed point, a wonotonic function alsc haa
s gruatest fixed poipt, denoted A%.F(X), which will be used in the

next secticn,

The question now ariees, what is the weakeat prespecification of
the least fixed point? The eneswer to this question requiree more

analyeis.

A function F from relations to relations is seid to be gontimous
if it distributes through the union of ascending chains nf relations.
Definition., F is continuous if

FURD = nLgDr(nn)

<
whenever Vn 0, FI(_1 < Rn+1

If F is continuous then it is monotanic, snd its leest Fixed point can
be constructed saa the union of 8 eeriee of approximetione obteined by

iterating the function F

X LF{X) U f(o
nyD

whars FD(K] X

i

and  F™(x) - F(FM X))

15,



Fromlaw 1(7}a, we can derive tha weakeet prespeclfication of

BX F{X)
n
(e FOONR = () (FTa) \R).
n30
The importance of this law derives from the fect that the operators
[ and N

ars all ceoitinuous, and so is svery function expresssd by means of them.

Cornaider for example the function F which defires iteration
F(X) = (bn(Psx)ulbal)
for this Function

pPGFOONR = (Y P

n0

1]
c

where F
0]

and  Fo,o= (B\NOUPNF }n (b\0 uR)

Proof: By induction it is simple to prove thst
Foo= fM(o)\R for ell n.

Unfortunetely, the lew given above is not the same ae Dljksatra's

law for iteration, which would be

n

(g_q.b—)lﬁ_q“d.)\ﬂ = Vr
n)l]

F = bn(P\Fn) v baR

Somathing has gone eeriously wrong in our attempt to usa the relstionel
calculus to mxplore Dijkatre's programming language. Ths nature of the

problem end its cure will be expleinsd in the next secticn.



2. Programming languages

1n the previous section we developed a theory im which programs
and specifications were represented by arbitrary relations. Houwever,
it is not possible ta give a meaning to a2 recursively definad program
unlesa the Fungtion defining the "body" of the recuraive program ia
monoetonic and preferably continuous. For example, negation is not

monctonic, and there is no solution to the equation
X=X

Consaguently, tha axpresaions
px.? and J’X.?

cannpt have any reasonable meaning.

The easiest way to ensure that all recursively defined programa
ere meaningful is to reetrict the notations of the programming lenguage
so thet all the combinators of the language sre continuous, or at least
monotonic, This will also restrict the set of relations which are
expreasible in the language, That ie the approach we ahali take in

this esction,

There is another objective in reetricting the notations of a
programming language, namely the efficiengy of lmplementation. The
language P describaed in the next subesction does not achisve this
objective, and ia therefore perhaps more sultable for epecificetion
purposee than For practical implementation, The subsaction 2,2 describes
a lsnguegs B which is a slight extension of tha lenquaga of Oijkitra,

snd which can be imlemanted efficiently,

17,




18.

2.1 Tha language (P

Tha combinators and notations of the languaga P ars the same as
thoee of the relatignal calculus, but they exclude cumplement , conwerse,
and weskest orespscification., Mnre precisely, the lanquege
is the set of relations which can be defined from specifisd primitive

reletipns by applicetion of tha permitted combinators.

Dafinition, P is the smallest set of relations satisfying the
following conditionst

1. peP

2. IfP is a totel function, then p ¢ P

3. IfP end G are in £ than so are P33, P e, PR Q,

and b A P, whare b isgs a condltion

4, 1If Piz_@ and Py g P, for all i

then \J P, is in £

ix0

This language satiefies the major criterion of a programming
language, that all the combinetore ere countinuous, so that a recuraively

spegcified program alwaye has a mganing
n
pf(x) = U0}
nx0
and it satisfies the recursion equation

FORLR(X)) = px. (),

Howevwer, thate ere serious problems in efficient implemantation of

the language P .



13,

The First problem is the combinstor A . This is an axtremaly
powerful combinator in a programming language. for exsmple, one tould

solve a sortlng problem in tha following simple fashiont

{1} Construct a program P which assigns to the array an

arbitrary aacending sesquance of numbers,

(2) Conetruct another program § which epplise to the array en

arbitrary permutation,

{(3) Then the program Pa( will sort tha array into ascending

SEQUENCE .

A program can be written like this in the programming languege PROLOG,
but it is extremely slow in execution, and a programmer would be
recommended to transFform such 8 progtam ipto ope which does not use n

in such a spectecular way,

The reason for the inefficiency is that an implementation myst
try ell the poasible executions of P end all possible sexecutione of [J,‘
and so find an execution of both of them which gives the same final
result. Tha cornsequence is an exponantial incresse in the computing
powsr required, at lesst in the worst case. Furthermore, if A is
used elsewhers in the progrem, it will often be necesaaryto
discover all metching axacutions of P and Q. The implementation dwe
not know how many there ere, and may have to go on looking forever.
AfFter a few recursions, an exponentially growlng proportion of thse

gvellabls computlng power le expended on thesa frultless asmarches, In

PROLOG, the cut is frequently used to keep this problem under coptrol.

Anothar featura of the language 1s that thers ia no obligation

on tha programmer to write recursions thet terminate, A non-terminsting



20,

recursion (1.g., pX.X) is equal to the ampty relastion 0. It follows

that for anr progrem P

n
o

(pX.X} v P

But en implementetion capnot detect which of the operands of W ia
going to fall to terminete; so both operands must be sxecuted
simultansously {or in turne) until one of them terminates. If all
resulte of sxecutlon are reguired, ¢omputing powsr will caontinue to be
wasted on the nontermineting calculetion. Even PROLDG shies away from
thie inefficiency by giving precedence to the first alternstive, thereby

departing from the ideal of a atrictly lagleal semantics.

In conclueion, the languagae P is highly unsuitable for efficient
implementation,. It might be ueasful es a lapguage for speciFication and
deeigni but for thase purposes recursion does not pley such e central
role, and there is less raason to accept an embargo on such highly
expreseive concepta as negation. In spite of its elegance, simplicity
end power, the language £ 1ia not much use, and we shall pursue it no

further.



21,

2.2 The language S)

In this section we define 8 language D which ayoids the problema
of P at the expense of slightly greater complication., This language
simply omits the problematic combinator A . The problem of v ls

solved by ensuring that ell relations P of the languages ara total, i.e.,

Py = U,

An indirect conseguence of this is that the program

Pul

never requirea execution af more than one of P or Q, end the implementation
may choose either of them arbitrarily. This kind of arbitrary cheice is
sametimas known as “demopic non=determiniam', bacausa the programmer must
be preparad for an implementation which ie both omnlascient end melevolent,
and so will choose the leest favourable alternative whepeuver the program
allows such a choics. The nondeterminism of the language £ is "angalic"
in the sense that it will give & reeult whepsver @ result la possibla,

svan at the expense of en exponantiel incraese in copnsumption of computing

respurces.,

In the languags P , 8 partial ralation R repreaenta 8 program which,
if sterted in 8 state outside its domain, would Fail to terminats, 5Gince
all ralations in D gre total, it ia not poaasible to repreesent ron-
termination 4in thils way, Insteed we introduce a Filctitious state & into
tha domain and range of all relations in D . This etanda far the (forever
unreachable) "result” of a8 progrem that never terminetss, IF P is
program, the lnverse imags of A is tha set of initlel astetes for which
P may fail to terminate; so ite complement ila the set of initisel atates
in which P must tarminate. 1If any progrem i started in thie fictitioua stets
(which of course it never will ba), then we decree arbitrarlly that the Fipsl

state will be wholly arbitrery.
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The introduction of 1 to totaliss a partial function is a
common mathematiceld construction, For example, if you want te
calculate how many partial functions there are betwsen finite sets
A and B, the sasipst way is to extend B by a fictitious element 4 ,
and then compute the numbar of totai functiors between A and B u {4-3 .
In other branches of mathematics, all the basic concepts sra Jjust ea
fictitious a8 L+ —~ you can never obasrve pointe, linea, singularities,
infinities, ste, In our thaory 4 plays a particularly importart role;
its introduction gives a method of specifying and proving that a progtam
capnot fail to terminete. To prove the absance of error, it is
necesaary to use a mathematicel thecry in which the error is explicitly

*
repreasnted.

Because all ralatlons of the languaga ab are total, the empty
raelation O is gxcluded, It is recesssry to choose another repreeentation
for a nonterminating recuraion. An appropriate choice is the universal
relation U, One of the troubles with O in the ifianguage P ias that it

satiefies svary spacificatlion R
0% R for all R

and ao acts as a "miracle" in the sense of Dijkstre., Yet the pon-
terminating srogram is in prectica among ths least satisfactory

programs — i. would hardly even satiefy & customer who doesn't cara

what he gatel! That is why we identify tha non-terminating program with
U, i.®., a program that can do anything whbatsoever - aeven feil to
terminate. U may aeem to be worse than a non-terminating progrem,
bacauvse 1t may actuelly terminate with a wrong result, But imn Oijkastrats
view Lt is the progremmer's reaponsibility to avold non-termi mation as
weli &s every other error, so there is no nead to make distinctions

between tha various waya in which a progtam may go wrong,

* Rgadera with good tamste may still find it difficult to accept L . Thay
should be tomforted by the fect that our whole theory can be daveloped

without L, st the expenas of complicatsd nsw dafinitions of all the
relationsal operstora, as shown in sectian 3,



There is amother problem: the least Fixed point of a function on
totsl relationa is not necessarily total. The solution ls to use the
greataat fixed point lpnstead of the lemet, and replace the raquiremant
for eontinuity of the combinetors of the language by Lts dual, co-
continuity. A Fupction F is said to be cg-gontinuous if it distributes

through tha intersection of descending chaina of programs.
Definition, F ie to—continuous if

AN AT

(1;0 Py) iaor( i)
uhenevar P, € 4D end P,,yEP, for all i. Provided this condition

ia mat, the greateat fixad point can be defined as an intarsection

AxF(x) = 0 Fyy
n30

and this satlsfies the recursion equation
F(AXF()) = A% (x),

With theee explanatione, the time has come to definea the
languaga D . It is the smallest sst of relations patiafylng the

conditiona

1. ue D,

2. If P is 8 total function on every steste excapt &

then P"' < J)

3. IfF P and O ere in D s then sgo ara

P30 and (bapr v eng)t (vhere b snd c ere «conditiona)

4, If pi¢D end PGP, for sll L0

then ( Ne) e O,
130

23,



Dijkstre's language is contelnad in D, as shown by the fFollowing

correspondantes?t
abort = U
: +
skip = {su,s ] a = auA BO ;! _L}
' +
(e:=f{8)) = {50,5 ‘ s = F(su)A sy ZLas ;!-L}
P3Q = pQ

do—plc—>a f1 = (brruca)
dob—3pog = ax i s —> (il e —>skp 1
where —1b Fras the seme domain as b, end sach is true in those states

In which the othar is faise.

An gesignment to a subset of the varlables of a stats ean readily
be extended tp en assignment over the whola state. The definition of
guarded command sete can readily be edepted to eny finlta number of

alternatjives,

The clein that this lenguage is similer to Dijkatra's is supported
by en operational understending of that language; it will be astrengthened
1n the next subsection by tha eimilerity betwean the weskest pre-
apecification of each language conatruect and Dijkstra's weaekeat precondition.
Mearwhlle it remalns to prove the clsim thet all relations in ‘;D are
totel. To do this, it is necaseary to chaoose a slightly stronger induction
hypotheaia, which includes a "finitery™ property. This progparty ia also
nesded 1n proving the second claim, that all the combinators of the
lenguage are co-continuous. Theee proofs will be complated in the remainder

of thia eubsection,
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Let the set of all stetas (including L ) be 2.
For any subset B of % and any relation ¢, we define B4AP as the

image under P of these initial statea in B,

ale = f{s]3s 8. snpa}

P is defined as a total fipitary relation if For any s (.E, {551!3 is
either a nonempty Ffinite set or the yniversal set, E_; and Furthermore

{J-}1P 1s universal. For future use we dafine k = 1 x &

First the Following results sre trivial:

1 =% iF P is Finitery
sltruny = iy u Gl
alia) = 1) 1u

GHe - G1m
Qe = D] 1e)

B1(hnp) = Eb1p where Bb= {alscBAbia true in a}
Now we intend to show thet all programs In D arg total finitary reletionse,

{1) U is totel finitary

Proof: s e 2 — {a}‘l U =2

(2) 1fF P is a total function, than P u k is total finitary,

L}

e U b«
{31

Proof: s § 1 e {'s}“(liI v k)

which hes exactly one member, because P i3 a total function,
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Since .. is mot in the domaln of P, it follows that
Wle o - {1 v pix - i - £

(3) LetP and § be total finitary relatlons. Then P;Q is

also tagts: Finltary.

Proaof: tase 1 [5}1p = 2
LYV = (Yl = 5102

case 2 {5}113 = {51,52, “vey srn}
{SH (Piq) ({s}‘\nﬂn = {51,52, 5"31 0
LI, ({si’ﬁ'] a)

Either 31.({5111 Q=2.) and thsn \iJ{ai}’la =2

n

or Vi.({si.]l’\Q is finite), and so is LlJ{al}l]l].

(4) IfP end Q both ars total flnitary, and b snd ¢ are

conditions, then (baP Uc aa)? ie also finitary.

Proofs

Blearu cad)t = [%](b nh) ui;‘ﬂ(cnu) u{aﬂ(ﬁnE) theorem 21

in mppendix
Since P and Q are total, at least ona of these tarms is non-empty.

Since each of them ia either finite or equal to z y 80 is thair union.

x c c >
{5) If far all i, F’i is total Finitary and Pi”._Pl, then ({Dpi) is

total Ffinttary,

Proaf: For any sez wve have

EIeney = N@Etep



.

Thus it follows that

Vi, (3 Y =2 = @Yoy -2
Whenevsr thers exists i  such that {B}1Piq = £51’ cen g s"'% . iF

for all n)iD {a}‘lpn = {skﬂpin, than wa knaw that

GG = Lo s}

Otherwisa there exiats 1, > i~ auch that {e}‘] I:IJ-_1 < {sﬂpiu syand then we
rapeat the same argument for 1, as sbava for iu. Since {_91‘ 'mg iae
finita, the abpve process will be finite before we find e SN such thet

f 11 i
or a n>z.~

{91]% = {sﬂ"in
This completes ths proof.

By the results (1)} - (5} just proved, wa have ehown that all
programs in .D ara total finitery, Now wa turn to examine the comtinuity

of thase operators in D.

(6) 1F Q 1@ 8 total Finitary relatien, and {ni'ﬁ is a decressing

chaln of total Finitary relationa, b end ¢ sare canditions, then

(batflr)Ueaa)® - Q(bapiu caa)?

Praof; By (5) it folloue that (0!31) la =leo total Finitery.

fFurthermora we hava
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LS = ba(QP) U a0 U vne theorem 21
= (Dar)) U (ca) U (bnte) {set theory)
= Q(b AP, Jecna U bag) {set theory)
= RHS theorem 21

(7) 1t {PJ is a decressing chain of total Finitary relations, then

(C\Pi)lﬂ - Q(Pi;u)

Proof:

Vi ((37e, = Z) = (3HNe i = (3100
AN ILANL:

(Q )

1

= 21 =f1\(£‘lu)
- La}'lotpl;u)

Nugylepta

31 ({o17p, 1o rimtte) =3 F1_.Vn. ((n>1) =5 ({s}1e = {170, 1 ()
==,*~@}1((QP1);0) - ({511(Qni)>1u
@ g3ete - @311

[l}

{o3 Ve 50} for 131

-101 ({!}1(pim')) = {9]100’1:0)



{(B) If P is a totel finitary relation, and {Qi} is a dacreasing

chain of tatal finitary relatisns, then
Q) ay) = Qesay
Proaf: case 1. {s}]p = Z
GylesQop = 3100, - %
Ao = N,
~ {410V esa))
case 2. {s}le « {et;hennt }
Y1 Qo = ({311 Qo)
- M {£;31 Dan

= j&}n (0 {"ﬁ“”i)
= o(j\{l({tiﬂ 0;))

= 0({5”")1 ol
{5}\0(";01)

]

Here wa have wsed the est-thearetic fact that finite uwnion distributes

through the intersection of a descending chain.

29.



From (7) we derive tbe corollary.

30,

(3) If {pl] is a decreasing chain af tatal finitary reletions, then
(e\r = Li)(Pi\H)
eoors  TE = (1P NI \T carollary of thaorem 6
= WT))\T 2.2 (7)
- (?m)\f sat theory
= Q(Pia(R\T)\T) 1.1 (7) e
= Qw corollary of theorem &

= RHS sat theory
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2.3 \eakest preepecifications end preconditiaons

This subsection gives the weakest praeapecification for each of
the constructs of the language ‘D . The varisbles P and ( are
sssumed to be relationg in the langanB‘D , and R is en arbitrary
relation earving as a specificaticn., But we atert with two healthiness

conditionsa
(1) N0 =0

Proof: S5es appendix thaorem 18,

This corresponds to the healthiness condition

wp (P,Falee) = false
(2) IfR R _,, ond e R s == ({;ﬂni =%) forallix0
PN(URyY = U (PN\R))
ix0 i»0
Proof: Case 1 {9}19 =Z
5 (Qo(ﬁi;ﬁ\f)) s> Vi. [a}17 ¢ {]
Vio fo317, 2 3
RYGARLAERE:

30 4
> s ((ani);p\n s

u

J

¥
W

case 2. {s}1r = {t by eees b }
5 (iQD(Ei;E\i)a—) Vi (31 apn et d (3
B 1T 0 ftrrent] 403
3> s ((Qﬁi);ﬁ\f) .
{so,alVi s, R& Y
{so,s]V!. a8 = o Ré}

RAHS,

(1) abort\ R

Proof: U \R



(4) sk1p\R = kNDnRwu k\NO n (U\R)
— + s :
Proof, HS = (kanal) \r definition of skip
= (k\D v INA) A (kKND v UNR) thecrem 23

= (kKN\D A R) YU (KNP n (UNRY)

v{kND A KNO} U (R A (UNR)) theorem 1
= RHS theorem 13
Corollary
skip\R = R provided *\o AR = UN\R

This corresponds to D1 jkstra's

wp {skip,R} = R

(5) (s :=f(s))N\AR = R;(FN\T) v (F\D nUNR)

Proof. ks = tTN\R

= R;(?\T) ) (r\u ~ UNR) corollary of thecrem 25
IFf U\R = 0 or Af f is & totsl fumnction (from theorem 18 it follows
that f\D = 0), then

R3{F\T)
{sn,s \ soﬁf(a)}

This is anelagous to Dijkstra's rula for sasignment.

(e :=r(a))\R

(83 (Ps0)\NR = PN\ (Q\R)

This rule halde for ell relatlions,

3z,
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() it b—>p [Qc—>0ri\n

= (60 v PNR) A {c\D v aNR)

A (BENouwT\o v UNR)

Proof: LHS = (baPuc nCl)+\F! dgefinition of alternative command
= RHS thaorem 23
1f UNR = D, this is similar to Dijketrs's law

wp (if b —>p0 c-—du fi,R) =
(b =3 wp (P,R)) a (c==> wp (Q,R)) A (bve)

{8) gab—>rog\R = \J H
n30b n

whera HD = U\R

and Hop = (b\DuD\Hn)n(ﬂb\D v skip™\R} A (bT\_B v UNR)

Proof: tet F(x) = 1f b—3(p;x) [ b —> skip f1

LHS = ((;1] FIUYINR

= \’_’JU(Fn(U)\H) by 2.2 (9)
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We therafore need to prove by induction

r“(u)\a. = H

(0) FP(u)\a

(y f™NuN\r

n

for all n.

FOFT(UIINR

e —>pir () b —> skip £iNR

(6N\0 v PNCFT(UINRY) » (TIDN\Q w(skip\R))

A (BNO v =8 N0 v UNR) by 2.3 (7}

(BT v P\Hn) A (bN0 v {akip\R})

a (BNT v AbN0 u UNR)
theorem 13 and 3induction hypothesis



3. The VDM connection

In apseci Fying the desired beshaviour of a sequantial program,
it ia quite natural to describe thia ss & ralation R between the
initial values of the variebles on entry to tha program and ths
final walues of the variebles on succeesful termination of the program,
it is unnecessary to moks any mention of the paesibility of non-
termination, becauss it cen be taken for grantad that we mever uiah
to epecify that & program must Feil to termirate. 1t tharefore ssems
unnecessary, as wall as unnstural, to introduce the Fictitiouse
non-terminated state A- into tha mathematics of the language m N
evan though it greatly aimplifies the proofs. 1In this section ue

describe how this problem is solved in the vienna Devalopment Methoed /3/.
P Yisnna Development fethed /3/

Let the spacification R be a relstion between resl initial and
final stetes (i.e. excluding & ). 5Suppose we know that tha program
s-peciried by R will never be entered unless the initial vaiues of the
varisblee astisfy a cartsin candition b, Tha dealgner of the program
can rely on the assumption thst b holds on antry; it ie the
respongibility of some other componant of the syatem to guerantee the
truth of thia essumption. Thus a programming teak ie aspecified in

VDM ag & pair
{8,R)

whara bt is a condition describing only the initial stata sndR is
a8 raletion betwesp initiel and finsl atetas, The relation R in VDM

is misisadingly called & postcondition.

The VDM specification{(b,R) cen ba reaedily translatad to e
spacification for the programming lasnguage ﬂ y in which 4. ia

introduced to represent non-terminetion. Supposs thet e program P
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meets this apecification, but the enviranment fails to meet its part
of the obligation, and the program is in fact antered in an initial
state which Faila to meet the condition b. In the event of such a
violation, the program P has had ita basic assumptlion falsified; and
consequently it might do snything whatsoever - it may even fail to
terminate. The specifier, having promleed that b will be true, kas no
right to place any reatriction on the bahaviour of the program when

the promis=e is not kept. We therefore define

(b,R} = b wRh

where the complemant b is reletive to a X which includea A , &
reiation of the form given in this definition is saild to be axpressible

in vOom,

Thia dafinltion of the VDM specification shows a very natural and
conuvanient vay of specifying programs thst in certain circumstances ara
allowsd to Fail; and Lt doga so without explicit mention of the awkward
flctitious state &= , 1n the remainder of this section we will show
that all apecifications can For ell practical purposes be expressed in
the ¥OM fornat. (The gquallfjicatians of the previous sentence are
necessary, bacause relatiocns like {(J.. ,-.l.)l capnot bs so expressed.)

The first tagk will be to ehow that

(1) Ail progrema of J) can be expressed in VOM,
For all prectical purposes two, specificationa ere eguivalent if they
are eatlefisd by exectly the same set of programs of tha lenguage 3 N

Thua our eecond tesk is to prove that

{2) Ffor any ralatlon R, there le an pguivalant relation expressible

in vOom.
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3.1 The language L defined in VDM

The first task is to show that every progrem of the language 3
can bs expressed im the VDM format
(b,R) = b u R
where b is condition and R 19 a reletion, and neithaer of them
mantion 1. . This ie done by defining eech conatruct of the languege D
in terms of UOM, assuming that sach operand of the conatruet le alseo
expregsed in YOM, The desired result follows by structural induction

an ths program sxpreased in .
(1) v = (0,R)
(where it doas not metter what R is}.

by definition of UDMm

"
a
[
=]

Proof: (Q,R)

L}
=

(2) 1f P is a partisl function (with .. not in ite domain or range) then

+

P = ((F‘;LD,D)

Preof: P = By Pju definitien of *
= (P;U,P) dafinitien of UDM
(3) (byP)i(c,0) = (b N Pim, P;a)

Proof: LHS (bwpP);(Tuv)

i

= B;(Twvd)VU PIT VPO

TV P30 aince {L}XZE(EUU)

"
o
[
T

(b A P5T) u P30 set thaory

= RHS
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Furthermore we haua

(psE)iv = Pi(Es0)
= Pjc since € is a condition

thua P and ita negation Psc ara 8lsg conditions,

ol

(8) (b n{dP) v cn{e,0))} = {(buc) n(Bud)n(cua), baP w &al)

froof: LHS = ba(dePluvca(ovi)vwibor) corallary of theorem 21
= (buc)n(bad)na{cad)ulbaP)uical) set thaary
= RHS definition of vDM

. .
(5) If (b, P e D, ang (05,90 Pyyq) € (b, #) for all i30
then n(b., pi) = (Ub,. Um (b. A P.)3
i ! 101 130 34 3 J
Lamma. If (bi+1, Pi+1] < (bi, pi) for all 130, then
= e
I’J.l-H - bi
and bi " Pi+1 [-2 bi" F'i for 811 1) @
Proof: by = b1+1;([.l.} x2) alnce b1+1 is a conditlion
= (hi+1 A (X x{J-}));U theorem 14

({Bi_H upP, 4l (X x L.L.S));U since P, o dossn't mention L
< (('Ei v P)a { Z x {J.} }};U by the assumption

= bi



= i t Y
bi - F’H.‘ bi n (bi+1 v Pi+1) since b1+1 € b,
€ b~ (Ei v P by tha assumption
= b, s P.
i i
Proof of theorem
Case 7. (5 _,s5,} € b, for ell i 30
o’ 1 i

1t le obviows that
(s ,s.)e ﬂE, € LH5 n RHS
o' ; i
iwn0

Case 2. There exists K such that (50.91) IEK

Syppose that (a ,8,) € ﬂ (b.,pP) from lamma it follows that
o’ 1 130 it i

(30,51)5 bi Py for aii i » K

which implies that

(s ys0€ () (b.ap,)EhrHS
o’ R i i
iBK

Now assume that (50,51) € ( U By U ﬂ (bi n Pi)). Thare
KO K30 i3k

gxiste n such that

(50.91)£ binpi For all 1 3 n,

When n = D, we obtein

(90051)€ n (bl n Pi) & LHS
i»0

Dtharwiss thera ere two subceses

Case 2.1 (80.51) 3 bn-1

(50'51)‘:En-193n-2 g --- G0,

which inducea to

(30,91 Je n b,

ign-1 1

n ﬂ (b, P;) S LHS
iwn

39.
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Cese 2.2 (50,31} [ bn-1
[50'51) € bn—1 o (bn n Pn) EljI'I--‘| n pl'l--1

Then ve Tepeat the same srgument for n-1 as abeove for m. Finally

we can shov (50,91)€ LHS elso.

Combine these Cases we conclude that LHS = RHS.

These five theorams show that the programming languaga a?) can he
wholly defined within the VDM notetion. Furtharmore, if (b,P) ie
expressed s e program in ‘D , it has the additionmal important property
thet svery stete setisfying the _ .condltion b la within the domeirn of

Py or more formally
(6) bepPy

Proof: eince {(b,Pp) is & total relation

(b Py = U

but LHS =b;u v P3U

=b v FjU gince b 1la a . conditiaon

The conclusion followse by set theory.

It remins to defina the weaksst prespecification of & pailr of

specificetions expraseed in the VDM etyle.



(7) (6,8) \{ceR) = ({c4R);u,6N0 n (0\(c,R)))

®\(c,R)) ~ {0 \(c,R))

Proof: LHS

It

(END v (UN{E,R))) A (AN (6,R))

a1,

1.1(7)

thearem 15

= (0\8A(aN\(c,R))) » ((UN\(c,R)) » (BN (E,R))) set theory

= (BNOn @\ (c,R))) v (UN\(c,R))

= RHS

1,1{7)

corollary 4 of theorem 13
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3.2 All appcifications can be equivaleptly expressed in YDM

Lgt Rand 5 be two relatigns, intended to ba uvead as specificationa
of @ program in the languege J) . Suppoea alsp that svery program in 2
whlch gatisfies R also satiafies S, and vice verae, Then it cannot matter
which of the relstions R and 5 is taken as the originsl specification;
esch of them gives exactly the same rangs of choices to the designer of

the progres, The two specifications are therefore sald to be aquivalent.
Definition, R and 5 are equivelent if

Vo e D PER = PES
Corollary: sll unimplementable specifications are eguivalent.

Clearly this concept of equivelence is dependent on the definition of
the progrewning lenguage, in this cese 1) . For other langueges, R and S

tmay indeed specify differant progrems.

We can now show thet the VDM style of specification i® adequate
for all pwposes in the specification end developmsnt of programs inD , and
there ls ni nped sver to make explicit mention of the fictitious stata L.
This atate hgs heen extramely useful in exploring the methematical
propertiea of the language oa 3 but in the application of the
matrematica, the VDM style offers a convenient wey of avoiding Lts

explicit mention.

Theorem. for any specifigstion 5, thers la en equivalent specification (&,R)

Proof: dofine .D (5)

{te.p) | (c,p) € D ate,?) € 5}
N e e ed )}
U{rlemed (5)}

b

R
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Mow we bave
@ = Uftew)

On the other hend if F‘ED and P <5, then we know that

(c,P) e 1)(5)} cs

PeD(5) which implias that P <(b,R)

This campletes the proof.
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Appandix

This appendix develops the ralational celculus using the weskest
prespacification (as defined 1n 1.1 {10}) in plece of the more
familiar conver se operator. All proofs are based on just two axioms

(in addition to two familiar axioms For i}
1 P3QER = PSQN\R

Proof: ses 1.1 {10)

2 anAR = (RNDINT
Proof: sea 1.1 (13}

These two axioms srs sufficlent to prove the three axioms of Tariki Zﬁ__]

which relata to conversa, namely

P = P {Theorem 4 below}
~ v

pPia = &P (Thaorem 6 below)
{(PsA)aR = 0 = (Q;H)nﬁ = 0 {Theorem 11 below)

Replecament of t his laat axipm will mot be lasmented.

Definitions
1. For eny relation R, its converse £ ia deflned as the weakeat pre-
specification of R with raspect to T, L.a.
R = ANT
2. Let P and R b8 relations, The weakest postaspecification of P

with respect to R, denotad By R/P, is defired as the weakeat praspecification

of the converse of R with respact to the converse of P, i.s,

/e e (R\TY\(P\T)



Theorem 1
The identity relation gives no help in mesting any specificatlon
P = IN\P
Proof: Xcp = X;jl &P
= XEINP axlom 1
Theorgm 2

In arder to meet specification R with the aid of (P;Q), you must

ensure that P can meet R with the aid of (

(;a)N\R = PN(u\R)

Proof: XS(P;0)N\R = X;P;U<Rh axiom 1
= X3P €U\R axiom 1
= XSP\{Q\R) axiom 1

Theorem 3

The operations complement and converae commute

NI = NI i, 8 = P
Proof: LHS = (IN\P)\T axiom 2
= AHS theorem 1
Theanram 4

The converse operetion is the inversa of itasslf

(P\T)\T = P i.a.,g = P

46.
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Froof: LHS =

= e

n
-

Theorem §

PNaNT = rila\D)

Proof: LHS

e\ (AN\DNTHNT
P (ANTONTINT
Ps{a\T)

Caorollary

PNR = A (A\T)

Proof: LHS = (E\E)\T

Thaorem 6

exiom 2

theorem 1

theorem 4

thecrem 2

theoram 4

axiom 2

theoram 5

Tha converse of P composed with ( 1s equal to the converee of G

compased with the canverse of P.
FE\T = (@\D:(R\D)

Proofi LHS = (_PW
(PN (a\T))
(NI PNT
= (@A\IB(F\T)

H

Corollary
NF = (PRNINT
proors RHs = ((R\TI\T);(F\T)
= ®mE\D

- R

theorem 3

theorem 2

axlom 2

theoram 3 end theorem S

thaorem &
thecrem 4

corollery of theorem 5§

a7,
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Theorem 7

The conversa operation ls monotonic.

pea == (FNT)S(GN\I)

proof: xeP\I 5 x;pel axigm 4
- .
= LT R=S1 gince P2Q
AT AN gxiom 1
Carollary

FE\TYe(U\T) = pPeca

Proof: direct from theorem & and theorem 7.

Theoram 8

P composed with Q will meet the spacificatlon R 1ff § meate the

waakest postspecification of P with respect ta R,

piner = 0c(R\TD)\ (P\T1)

Proof: LHS = (P_:E)\Tg(-ﬂ-\?) theorem 7 and corollary
= (E\T);(B\T) S(E\-I-) theorsm 6

@\DeF\D\ "\D axton 1
A\D=(R\D\FNIHN\T axiom 2
AN\T)S((R ;T) ;. (P\T) )\T theorcem 3

u&(R\T)\(F\T} theorem 7 and corollary

I

L1}

Theocem 9
The identity relation ix the weakest prespecification of 1its

complement with respect to itaslrl.

TNT = 1



Proof: LHS = I;(T\ T)
= (1\D) \T theorem S
= 1 theorem 4

Theoram 10

P comppsed with O meets T LFf so doas Q composed with B, { The
discovery of this simple theorem about the flxed points of relations

astonished gach of the authors indlvidually.)

prost: s = 0 <(T\T)\(P\T) thearem B
= el \(P\T) thoorem 9
¥ 0<(P\1) theoram 1
= o3pel axiom 1
Coraliary PN\TI = I/P

axiom 1

I |
>
-
o
i
|

Proof: xep\T

theorem 1D

#
=
-l
™
)]
=]

theorem B

H
o
n
-
"'{-r

Now wé come to show one of the baslc theorems 1n the calculus of

rejstlons deflned by A. Tarskl /67

Theorem 11

1) alANT = 0 = @AAE\T) = o

49,
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Proaf: LHS = {(P:;0)< RN\T set theory
= (ML)SRN\T theorem 3
» (Pja)3RET axiom 1
S Q;RsI/ P thearem B
= QREPNI corollary of thaorem 10

= RHS theorem 3

Definitian
A relation b is saftd to be a condltion &iF
b = bjU

i.0, it relates sverything in Its domain to anything whatsoswver.

Theorem 12

1. b is a condition Liff its conversa E\Y relates everything to

to anything in the domain of b,
b o= bjb = BN\T = U3(B\T)

2. If b is a condition so its complement b

b = bju % b = E;U
Proofy 1. LHS = E\T = bju T theorem 7
= E\T = (U\T),(E\Y) theaorem 6
H E\T = U;(E\T) since U;0 = 0€1
2. LHS wwwd bsUNRE = 0 set theory
¥ bijun (E\T)\T = 0 theocrsm 4
E Uzb \T A E\T = 0 theorgm 11
=3 Uu;b\T ¢ b\T thaorem 3
= U;b\? = D\T since U;R 2R

b = E;U theorem 12.1



Theorem 13

51,

a conditien, than its converse 1s given by

if b is
1. E\-I— = b\
and 2. BNT = ®\O
Proof: 1. LAHS = U3b \T
= BNO
2, LHS = B\T
= B\oO
= B \0
Corollary
. u\NT = u\o =0
2. (PRUNT = P\oD
3. D\T = o\D = U
a, UN\P = P;U
Proof: 1, LHS = U\D
= D
2. LHs = P\ (u\T)
= P\D
3, oN\T = a\o
= U:U
=0
= U
4. LHS = Po\T

theorem 12

corollary of thegorem 5

theorem 3

thegprem 12 and theorem 13.1

theorem 13

since X3URD =p XED

thaorem 2

corollary 1 of thearem 13

set P =D in corollary 2
of theorem 13

theorem 13

corollary 1 of theorem 13

corollary of theorem 5

corollary 3 of theoram 13



In the following part we shall use lower case letters for conditlons.

Theorem 14

pi(bad) = (PAabw=0)iQ i.e., Pg{bnagd) = (P~b);0Q

On tha left hand side, ] has its comaln restricted to the condition b,
On the right hand side, P haas its codomain subject to the same restriction,
When P and ] are composed, it does not matter whether the restrlctlon takes

place after P or before 4.

(FalbND))i{bn ) v (Pn(bX\D)):{bn0j

{(Pna(b~0))5{bn0) since (b™~D);b<0

Proof: LHS

(Pa(bN0));(bnD) v (Pr\(E\O));(EnD) aines (BN U);EED

(PA(END))i(ban) v (Pn(EwD))i(En0) thearem 13

= RHS
Corollery
x;((r;u)n0) = (Xn(P\O))3Q
Proof: LKS = (X~ (PjU)N\D);0 theorem 14
= {Xa PN (UND))1a thearem 2
= (XnP\D0);0 coroliery 1 of

theorem 13

Theorem 15

Prespeciflcation distributes through conjunction in its first

argumant if one of the llmba of the conjunction is of the form PjU

((P;U)AUMNR = P\O v g™\R

52.



X;({Psu}nn)en

]

Proof: X glLHS

|

{x n(P0}};0%R
X a(PNO)EQR

XEPNOwON\R

Ll

Corollary

(baul\A = bNO uO\R

((orudna)N\m
b N0 v UNR

Proof: LHS

Thaorsm 16

axlaom 1
torollary of theorem 14
exiom 1

sat theory

since b = bju

theorem 15

Prespecification cistributes through disjunction {n Lfts first

argument

(PwaIN\R = (PNR) n (a\R)

proof: xc(Puyg)~R = x;(Pva)enR

(xsPeR) A (X30%R)

{(XCP™NA) A (X SANR)

X €{P™R) n (O\R)

Thesorem 17

axiom 1
set theory
axfiom 1

set theory

Prespecification alsp distributes through ¢onjunction In its second

argument

aN(R aS) = (aAN\AR) n (ON\5)

Proof: Similar tg theorem 16,

53.



Corollary

G\0 = 0 =3 O\R € u\R

aN\(RaR)
uNo

= 0

Proof: (a\R) n(a\R)

"

Ll

from which the result follows.

Definitions

54,

theorem 17
set themory

by the assumption

1, P is a total relation if it has universal domain

PiU = U

2. A relation P is sald to be a total function if

P o= psl

Theorem 18

IF P 15 a toptal relation, then lts weakest prespecificatlion with

respect to nuil relation 1s null.
P = U =3 PN\D = O

(PUNT

UNT

= 0

Prooft P\U

corollary 2 of theorem 13
by the assumption

corallary 1 of thaorem 11
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Caoronilary

If P is a total function then

1. P\D

2, PA\T = e\I

0

Proof: 1. P = p3llul) ;et theory
= P31l wP;T the distribytive law of ;
= Py P by the aasumptlon
= U

from which and theorsm 18 we reach the conclusian

2, LHS = (P;T)\-I- by tha assumptlon F -

P\ (_I-\T) theorem 2 Lweed ol

P
W oy

PN\1 theorem 9

n

Theorem 19

When P is a totel functlon, its weakast prespacificatlion is the

sequential compoasitinn of the given specification R and the converse

of P.
PNR = R;(P\I)
Proof: RH5;P = R3((PN\I);P} the amspclative law of j
€ R;l axiom 1
= R

.". RH5 € p\R

On the other hand we also have

e\RE D\_R- corollary of theoram 17

CHCAND corollary of theoram 5

R;(p\l] corollary 2 of theorem 1B



Definition

For any rolation P, P3;U Is a condition whlch holds just for all
initial states in the domain of P. ue define P’ 22 a ralation that
behaves like P if started in tha domaln of P, but does anything
whatsoever Lf started outside that domaln

Pt = pu T

Theorem 20

e? is a total relation

proof:  PYju = (P;0) u (P30;3U) Definltion of +
= (P;u) v (P;U) theorem 12,2
= U

Theporem 21

{6aP) v (cnu));u = (BuPsudn(c v a;u)

Proof: LHS = (baP)i wican): the dlstributive law of ;
= {Iab\0};P;U w{Inc~0);0;u theoram 14
= (ba Pju) v {cn Qju) theorem 14
= (b nP;U)n (cnad;u) aet theory
= (b wPsl) a (e va;l) ast theory
Corocllary

1f p and Q both ara total relatlons, than

{{baP} v (cna}l;U = bac

Proafs LHS = (b w PjU) n{c v Q;0) theoram 21

= bac aince P30 = Q3U = U




s7.

TiUNA = (PN0} v (U\R)

Proaf: LHS = (P;U nUJNR set theory
= (Pzu\D) w {UN\R) theorem 15
= (P;UN0) v (UNR) theorem 13
= (PNJUNT) v (UNR) theorem 2
= (FND) v (UNR) corallary 1 of thegrem 13

Theorem 27

P*NR = P\R a(ANO v UNR)

Praof: LHS = (P w P;UYNA deFinition of +
= (P\R} ~ (P;0NR) theorem 17
= P\R n {(P\0 v UNA) lemng 1

Ltemma 2

1f P and @ both are total relations, than

6APv tnl)30Ne = BN0 v el\o v NG

Propof: LHS = (EAE)\R corollary of theorem 21
= buc)N\U v UNR lemma 1

= tNoveN\o v UNR theorem 16
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Treorem 23
IT both P and O ars total relatlons, then
(bar v cal)'\R = (6D v PNR) A (c\D v OQ\R)
A (N0 v TN v UNR)

(6aP)NA A (AR A (BnP U EAG):U M thearem 17 and 16
= (BND v PNR)a(c\NDVUGNR) alb AP U c AU NR  corcllary of

theorem 15

Froof: LHS

= RHS lemma 2

Lemma 3

(P;0) n 1 & P;(FN\T) 1.8, (PIUY nl = Py

On the left hand side, tha domain of identity relation i{s restricted to
the domain of P, The samm resatrictlon is not quite so severe on tha

right hand side.

Proof: LRSS = (P;(P\T u KT—)) Al sat thaory
= {(m(P\T))arT u (PIF\—T)nI set theory
€ Thalv (P,‘(E\T)}hl axipm 1 and thaorem 10
€ o (F\T) set theory

Theorem 24

PR € R;3(PNT) v PN\

Thls theorem places a usaful upper bound on the weakest prespecificatlion,



Proof: X&P\R

= X3;P<R

x;(Piun1) e R;(FNT)

= %P;(P\T) € A3(FN\T)
=3

)

Dofinition

P is seid to be a pertisl Function if

P;T =y

Theorem 25

X AP0 & R;{(F\T)

X € R;(FNT) v P\ 0

59.

axlom 1

by the monctonicity of ;
lemma 3

theorem 14

set theory

1f P is a partial function, the abowve theorem cen be strengthtened

to an equation

D\R -

Proof: RH5;P =

=

"

<

Ri(F\T) u (P\D)

s (F\T)i0 U (PN0)5p
Ry(PsTINT;P u (PNO)3P
Re(PN(TN\T) )P v 0
as(PN\1);P

R

"« RHS & P\R

Corollary

1f P is a partial functlaon, then

P\ R

= PN\ U ((P\0) n (UN\R))

the dlstributive law of ;
theorem 7
theorem 2
theaoram 9

axlaom 1



Proof:

LHS
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(F\R) A (PND YV UN\R) theorem 22
(R:(P\T)U P\O) A (PO VY UNA} theorem 25
(R;(PN\T) n PN0) U (83 (F\T) n u\R)

V({(PNO) A {UNRY) sat theory
(RPND A U FNT) U (R P\ n (U\R))
V(PN 0) n (UNR)) corollary of thaoram S

R:(E\T) v ((PND) n (UNR)) by the monotonicity of





