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He WEAKEST PRESPECIFICATlON 

C.A.R. Hoare and He, Jifeng 

"For, aside rrom the fact that the conceptll occurring in 

this calculus possess an objective importance and ere in 

these tlmell almost indispensable in any llcientiric dis­

cussion, the calculull of relations has an intrinsic charm 

and beauty which makes it a aource of intallectual delight 

to all who become acquaInted with it. ALFRED TARSKI [6j7 

O. Introduction 

In Dijkstra's calculus of weakeet preconditione [2], a program ie 

speci fied by a predic1!ltt! R describing the desired propertiee of the values 

of the program's variabies wl',en the program successfully terminates. If 0 

is a program, the weakest precondi tlon 

wp (O,R) 

gives a predicate 5 Which can be used as the most general specification of 

a program P which is to be executed before a in order to guarantee that 

the combInation P;O will meet the original specification R. If 
\ 

wp (a,R) true 

thsn a already meeta the specification R, and the programming taak ia 

complete. 

The weakest preepecificatior, of progrBIIl a and apecificetion R wlll be 

'ILIrltten 

O,R 

It serves the same purpose as Dijkstra's weekeet precondition, but 

general1ses it In four WaYS. 
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2. 

(1) The specification R describes not only the desired 

properties of the final values of the variables, but also their desired 

relationship with the initial values; such specifications are normal 

in specification languages like VDM[J] end Z[4}. 

(2) The parsmster 0 may be a program, Or it may be just the 

specification of a program still to be lIJrilten. Consequently, the weakest 

prespecification can aesist in splitting a task R into two subtesks (J and 

a'Rl then any implementa.tion of O'R. when compo9sd 99ql.Elntially with any 

implementation of 0, is guaranteed to meet the original requirement R. 

(3) A ~~rtial_ r~latiDI"' R is taken as the specification of a ~gq 

~~~an_? Iolhosa guard must be contained in the dom~in of R. Thus guarded 

commands can ce specified and implemented independently, before being 

collected into 1'1 set loIith if ot' do. 

(Ii) The prograrrming language ia extended to include genaral recuraion, 

of which itaration is a simple spacial case. 

This increase in generality is obtained at tha cost of some increasa in 

complaxity, which can be jU3tifiad only when it is needed. 

Section 1 of this paper proves the basic properties or the weakest 

praspecification within the framework of tha relational calculus. Section 2 

defings an axtended version of Dijkstra's programming language; programa 

are a particular inductively defined subset of all relations. wt-,ich ere 

tot~l; they enjoy a nUnDer of useful additional properties. including 

computability. Section:3 shows how weakast prespecifications and Dijkstre's 

progremming languaga can be traated wi thin the framRwork of VDM. in whIch a 

specification or a program is expresaed in terms of a precondition ae well 

88 a relation. The more elaborate proofs ara relegateu to tha appendix, 

lLIhere they srB treated entirely within the framework of the relfltionel 
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1. The calculus of relations 

1\ relation 1s defined conventionally 89 a set of ordered pairs from 

some fixed universe Z(usually left implicit) 

A {SOlS ISoRS! 

The folloWing notations are Iolidely used ,- --- .._~ .."- --,----~--'.' 

Ii {g 0 ~ ";',- :t(~'~;911' complement 

~ {sa's IsAso} converse 

R;5 SeRS '" SSS) composi bon{sole I "3 s. 

R '=5 V 5 ,9, SeRs ~ 9 59 inclusion 
0 0

AvS [-0,'/ S Rs v S 58} or 
o 0 

1A n 5 {'o,S I s Rs '" S 59 'nd o 0 J 
U R 3 n E. N. e R 9} union 
n n o nh's/ 
nA h,sl Yn eN.sRs} intersection 

o nn n 

emptyo (so ,9 I r" .. \ 

u [so ,8 I tru,} universe 

identity[sa's h = SJ 

We shell use t~e folloWing elementary theorems of the theory of 

relations, without I!Ixpllcit reference: 

P; I = liP =. P (p vQ);R = (P;A) u (a;R) 
p;a = DIP = 0 R; (p u Q) = (R,P) v (A,O) 
(P;Q);R = P, (O;A) 

P~Q ... Rlf5 ~ P;R~Q;5 

UiU = U P '!i: P;U 



,.
 

In this section 11/9 shall use relations to represent both programs 

end specifications. The inclusion reletion can therefore be interpreted 

in t hrae di ffer i ng waye. If P and Q BrB programs end Rand 5 are 

speci ficalions: 

P c;.S	 meana that program P meets specification 5, becaUSE! 

everything it does 9atisfiee S. 

p ~ GI	 means that program P is the same or more deterministic than 

Q; everything it does, Q CBn do too; but Q may do more. 

Further, P eatiafiea every specification satisfied by Q. 

5 S T	 meana that specification T is the earns or weaker (more 

general) than S. Every program that satisfies 5 alao 

satiefies T. 

In SectIon 2, programs will be defined 8S a certain subset of total 

TElletion9; but in this section, the distinction is irrelevent. 

Suppose now we wieh to develop a program to meet specification R, 

and we dilcida to achil'lve this by sequential composition of two program 

cO~Onents. Thsn we decide thst the specificetion of the sscond component 

will be O. The next question is, what should be the speci fication of the 

first cOll'lpOnent? We would like to knolol the weakest (most general) 

specific8tion whose satisfaction is both e necessary and sufficient 

condition for the correctness of the whole program. This lI/i11 be celied 

the weakeat prespaci fication of 0 to achieve R, end will be denoted by 

the infb back~lash 

Q"-R. 

Reedera who doubt the axistence of this opsrator ere requeeted to suspend 

their disbelief until the paragraph nulllbered (g) below. 
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Let P meet this specification, Le., 

P S Q..........R
 

Than lIle Iilant to ensure that P cOrJllosed with any irJlllementation of Q 

will meet the specification R. Because composition 19 monotonic, this 

is ensured if P composed \&lith a itself ssti5lfies R, Le., 

PIO ~ R. 

Ttlue lila motivate the postulate 

p~a'R ~ P;Ot;;R. 

But illS IIJsnt to be the weakest relation for IIIhich this implicationQ" R 

holds. Thus we nBed to strengthen the implication to an SQuivdence 

r(",:;)-;;;-;'P S(~~;;· ) 
_.._. .. -...---~--.---->~--_ ~...-~ 

All the proofs in this section will be based on this single basic law for 

preapecifications. 

In the arithmetic of natural numberSl, we have a very similar law 

for the inverss of multiplication 

n'Jtm~r E n~r+m 

where division discards the remainder. In this analogy, aii theorems 

proved from the basic iaw ... ill hold true for naturei number division. 

The identity relation corresponds to unity, the empty relation corresponds 

to z:ero, and the universal relation ie e sort of infinity, es ehOllln by the 

theoreme 

U O'\R R'\U 

Proof: fro,," the basic law, since U;IJ S Rend U;R ... U. 

The analogy with multiplication and division mey be illuminsting in whet 

followe, where n n m CBn be intarpreted ee the rninimu"" of two nUI!tJers end 

nvm ss their maximum. 
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1.1 Al~bralc properties 

(1) Q""R itself is I!l solution to the original problem of Finding an X 

such that 

X;QS R. 

Proof:	 O-"""R lia ........ R 

(Q'-I1),Q"R 

This result	 has the following consequences 

(0) u'-I1 S	 R 

Proof:	 U'R ~ (U,"R);U 

~R by (1) 

(b) (U'A),U • U'A 

Proof: ((U'\.R);U)jU (U'R),(U,U) 

(U,R) ,U 

S R by (1) 

(U'R)IU So U'-R by the basic law 

T'" reverse	 contelnmont is trivi;,l. 

(2) P itself Is B solution to the problem of finding 8n X such that 

XiQ ~ PjQ 

Proof:	 PrQ ~ PjQ 

p ~ a,,-(p;Q) 

(3) If a'R conteins the identlty relation, then Q by itself meets 

the original specification R; this Is a necessary and auff'iciant 

condition for completion of the programming task. 

Q ~ RI" Q'R • 
Proof: LHS • IJQ -. R RHS 

(4) Ellery progrelfl mesh the specification that it behsves like itaslf 

I" a'-Q 
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(5) The identity relation gives no help in meeting any epecificatior"l 

P = I",P 

Proof: x ~ p X; I £P 

x S 1 ,p 
The introduction of X in this and in many later proofs enables the basic 

law to b~ used in the proof of equations B!l lIlell as inequalities. 

(6) In order to meet both specifications Rand 5 with the aid of Q, 

it is necessary to write a program which both meets R with aid of 0, 

and also meets 5 with the aid of Q 

a\(RnS) (a'\R) n(a'S) 

Proof: X€Q'\(A"S)	 :!! X;Q«;;RnS 

!!! (X;QS;R) ",(X;O $5) 

~ (X ~Q'R),.. (X s.a' s) 

" XS(a,R)n(a'-5) 

This law corresponds to one of Dljkstra' 9 healthiness conditions fot" 

the weaKest. precondition 

wp (Q, R .... S) wp (0, R)", IIIp (0, S) 

The lew extends to infinite conjunctions 

a\(11 R) " ll(a'R	 )
n n n n 

(7) If P and Q are programs, DuQ is a program which behaveB either 

like P or like Oi and we cannot control the choice between them. In 

order to meat a specification r'eliably with the sid of P lJ Q, we must be 

prepared to meet it wi th the eid of P; we must alao be preparlllO to 

meet it with the aid of Q froof' X E (f'u QJ"\ R. 

E Xj(fVGllER,
(pva)\R (p\ R) n (O'-R) 

~ 1)1; f) II(II j 0-) f: f<Proof: Similar to 6. 

This law extands to infinite diajunctionsl _ ("i fJ Ef.. JI ()(jQ)~t. 

(. ) (UP n ) '-R n (Pn'-R) ! X S; ,.\~ ,.\ >< 5 Q"\~n n 
11 ... D __ . ft 
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(8) In order to maet specification R with the aid of (PIO). you must 

ensurs that P can meet R with the aid of Q 

(PIO)''- R p'\.(o\.") 

Proof: XS(P;Q)'.R ;;;;: X;P;Q~R 

:= X;P~Q'R 

:l: X c;P'(Q'-R) 

This law is the eame ae Dljkslre's definition of the weakest precondition 

for sequential cO"llDsition 

IlIp (P;GI,R) wp (p,wp(O,R» 

(9) The tinw;; has Burely arrived to check that the l<lsakeat praspecification 

actually exists. A simple deFinition is 

"~A ~ U\:v \ no 'O"} 

and the basic law is readily proved from thia definition 

,,0 £" ......, P .. \! Iv,o ""1 
~ P"U~\v,oS"} 

,sU[v lV,O""] =9> P'o~u(v,O'Y'O""~ dhtrib U 

~ P;Qo;<R set theory 

A ~"~.!!..?_~ ~_rlv.~r.~B Can be similarly defined for any function which 

distributes through erbltrary .unions. For conjunction, 1118 have 

Pn Q '!:; R =p£RuQ 

Disjunction does not heve such an inverse, beCause it does not distribute 

through an 9"llty union. 
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(10) A more explicit definition of the lIIeaksst prespecification can be 

given as a prsdi cat Q relating an initial ~tate ~ with a final stat8 B- ,_____ 0 

s~·(Q,~)-~--,.=,· -'I 9.--;O;~"~-Ri',' 
o 0 

_._-,,------~~. ----,-~.- ­

if P = 0'\ RI this states that every pos91ble final state 9 produ~ed 

by P from initial state eo' when used as input to Q. enSures that any 

flnel state B produced by Q is a final state allowed by R for the given 

initial stete s. The abOve formula in the predicate calculus 1s useful 
o 

when Q i9 a specification expressed ae a predicate rether thsn a program 

expressed in a programming language. 

The basic law mey be proved by predicate calculus from this deflni tion 

(or vice-verse) 

"'s.{e (p;a)s r-e Rs)o 0 

::0 \Is.({3s. BOPS A 5 as) -9 So Rs) d.f 

;: Ye.Vs.(eoPJ .... sQs =+ e Rs) pred. 101;llC
0 

" I/i.(. P; =9 1/ .(iO. ~' R,»o 0 

(11) The femiliar concept of r:.~lBtiDnBl COn\lera9 can be defined in terms 

of tt>e weakest pre specification. 

o • 0\1 

..,here "i is tho divlIiI.r:.~~~.ty relation (negation of Identity). 

•.•. l' : i So ,S I So t s J 
Proof; 

, (0\1), Vi.(,O; -+ , ~ i) by (10)
0 0 " 

" Yo(, =; ~ ,0;) predicate logic
0 

: .0. 
0 .~, def It 

0 
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(12) AltElrna';ively, the weakest prespBcification Can be defined in 

terms of tt"oe relational conl/srsa 

"" = ";~ 
Proof: 

e fA;o)s = --, 3 s. s Re .... eQe der ; 
0 0 

~ V; 80a ~ sRi prado logic
0 

BO(LHS)e by (10) 

(13) The next bill stetes how negation distributes through loIeakeat 

preepBci (itatian 

O,R ("\Q)\ I 

Proof: 

B (RHS)lI -, s(Fi\Q)e (11 )
O o 

~ ""\/;.(9 Re *"'7 sQi) (10) 
o 

IV e(sQs ~ SoRS) prop. 109ic 

8 (LHS)e (10)
0 

This law might be celled the aecond basic Lalli for prespecificatione, 

and it is r,eeded in the proof of ell 18\118 quoted in the remainder of 1.1. 

Since converse Can be defined in terma of lIIsekslllt prillspaci ficetloOEl. 

it is an attrective idee to adopt the \IIeakeet preapecificet.ion as €I 

primitive of the relatIonal calculuB in place of converele. In this CBSS, 

the three Tarski exiome reiating to converse can be replaced by the two 

basic law~ for prespecificetione. The details ere worked out in the 

Appendix. Since PIQ ie ceiled the "reietionel product", its inversEl could 

well be called the "reiational Quotient". 
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(14) In general, prespeciflcation dOBS not distribute through 

conjunction in its first argument. But if one of the lirrtJa of the 

conjunction 1s of the form P;U, the following distribution law can 

be used 

«P;u)" QJ ,," (p"o) v (Q"") 

The relation P;U has the same domain as P, but relates each melltler of 

this domain to anything Whatsoever 

So(p;U)s 3,91. S Ps 
o 

v 
The relation P'\.O is equal to P;U; it relates everything to Bnythin~ 

outside the domain of P 

sO(P'\.D)9 : -,3; . s p~ 

(15) A condition is written in e programming language as a boolean 

expression. We will represent such a condition as 8 relation whose 

domain is just those initial states in which the expression successfully 

eveluates to true, and which relates each member of its domain onto any 

final stete whetsoever. More formally we define e relation b to be a 

condi lion if 

b ::: b;U 

lIle shall use 10'lder csse lettar!! for conditions. 

A guarded command in Dijkstre'e programming notetion is written 

b ~P, where the guard b is.a condition and P i9 a cOlTlTlBnd. The 

guarded COlTlTlsnd ie one that refusee to start unless its guard is true; 

blS can therefore define it as a relation Wh05l8 domein is restricted to 

the domain of b 

b~P bnP 
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(Hi) If P Js 8 relation with a restricted domain, it can bs converted 

into B tolal raletion by the opBr~t1on 

p+ = P II P;U 

If P reprS5snts 8 program, pi- beha\l95 like P 1n all initial stales in 

which P can stert; but otherwiliB it does anything whatsoever. its 

weakest preapecUicalion is 

P""R P",R n (P",O u "",R) 

U",R is e condition describing those initial Slates in which the 

specification R permits anything whatsoever to happan 

6 (U'\R)s E' \ls.sRA
0 o
 

Proof: see appendiX theorem 22.
 

(17) In Oijkstra's notation. guarded commands cannot occur individually 

but only 1n eets. For axample, here is a set with two elements 

.!.!.b~pOC~Qll 

Ide cen use the Connective u In place of the fat bar 0 , and so 

represent the 9bo\l8 cOflJllend 88 

(bl'l P '" C "Q)+ 

(18) If F 19 8 totsl function, we can pro\le 

f\ R R,(F"I) Proof: see appendiX theorem 1 g. 

In the ceee of 8 total function 

f\ I f
u 

so the law quoted aoo\la gi\l89 en analoglJlB of Dijketra's 1l.I99kest precondition 

for lIesignllllnt 

~p(a ;; r(a), eaRs) ·oR(f(.» Law of euoet! tution 

'3 A II RA '" o IIF' predicata calculue 

a o (RIF)8 def , 
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(19) TI">.8 weakest pcstspecification of P with respect to R gives the 

weakest solution Q to the im'lquality 

P;Ql.:R 

when P and R are known in advance. It can be defined in terms of the 

weakest prespeci f i cation 

R/P = (R,I)'\(p"-I) 

and its properties are highly analogous, for 8xa"llle 

R/(P,O) (R/P)/O. 

We leave the dete! Is as pleasent exercise for the interested reader. 
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1.2 Recursion and fixed points 

A function F from relations to relatione is said to be monotonic
 

if it respects relational inclusion, Le.,
 

s V ~ r(x) -= r(v) for all X and Y 

Tarski [S} has shown that the equation (over a complete lattice) 

x = F (X) 

has e solution whenever r ia monotonic. In fact, there may be many 

Bolutianll; the least of them will be denoted 

."x.r(x). 

It is defined by 

."x.r(x) ~ n tvlr(v)~ V} 
and is known as the ~~d poin~ of the function r. 

Thlf i~ortBnclI of these results Is that many useful operators of 

the relatio~al calculus era monotonic in both their arguments, in 

particular the oparators 

u : ,... 

Furthermore, any expression mads from monotonic operators is monotonic 

in ell its operands. For example 

r(x) = (0 n (p,X» v (b 01) 

is monotonic in X. It corresponds to a program lMhich firet teats b; 

if b 1s truB, it executes tha commend P, followed by Xl if false, it 

terminates without chenging anything. The construction 

/x.r(x) 

is the progtl!lm which executee the wholl!l of J-lX.F(X) whenever called upon 
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In the above descriPtion to F1xecute X. It therefore behavBs like the 

conventional whi Ie-loop 

~bS,£.P 

or, in Dijkalra'Si notation 

do b --7 P ad .. 

In the more general case }lX.F(X) 15 like B callan e recureive 

procedure, IoIith name X Bnd body r(X); whenever X i9 encountered in 

the execution of the body, the whole of }JX.f(X) is executed in its place. 

In addition to a leBsl fixed point, 8 monotonic function alse hee 

a greatest f~xad ..P91nt, denoled ...t'X.F (X), which \ljill be used in the 

next section. 

The question now ariesliI, what is the weakest preepecification of 

the least fixed point? The answer to this question requires more 

analysi BO' 

A function r fro~ relatione to relations is said to be cooti!wous 

if it distributes through the union of B.scen_ding chains ar relations. 

Definition. r is continuous if 

r( U" ) U r("n)
n>O n n~O 

whenever Vn ~ O. An C;; Rn+1 

If f is continuous then it is monotonic, snd its least fixed point can 

be constructed ss the union of s seriee of approximetione obtained by 

iterating the function r 

n
px.r(x) = U r ( 0) 

n~O 

where fO(X) "" X 

Bnd rn+'(x) =r(rn(X» 
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From 11:1111 1 (7)a, \i.lB can derive the 1II11akeet prespeclficBtion 01" 

px.r(x) 

[fX.' (x »'\.R • n ('"(0) \R). 
"~O 

The importaonce of this law derives from the fect that the operators 

u: and n 

ere all cC1tinUOU9, and 90 i9 Bvery function expra9ged by means 01" them. 

Consider for example the function F which defines iteration 

F(X) '" (b ... (p;X»)u(b" I) 

for this r'Jnetion 

1'"0'(X)'\R n '" 
"~O 

where	 r u 
o 

Bnd Fn+' (b\O u P\F ) () (;;\0 U R) 

" 

, 
Proof: 8y induction it 1s simple to prove that 

'"(O)\R for ell n. 

" 
Unfortunately, the 18101 given abOVE! is ~ the Same ae Dijkstra'9 

law for i bration, which lUould be 

(do b ~P od)\ R 
II '"- - "~O 

where	 Fa = C 

, 1 = bn(P\ r ) .... b "R 
<>+ n 

Something 1\e.9 gone Bariouel)' wrong in our attempt to uee the relationel 

calculus to explore Oijketre'e progrsIT'IT11ng languBge. The nature of the 

problem end its cure .,111 be expleined in the next slIct!on. 



z. Programming language!! 

In ttll1l prsviou~ soction !ole developed a theory in which programs 

and specifications were represented by arbitrary relations. However. 

it is not possible to gille a meaning to a recursively defined program 

unleS9 the function defining the "body" of the recuraive program ia 

monotonic and preferably continuous. For e~ample, negation is not 

monotonic, and thera ia no solution to the equation 

X X=0 

Consequently, the axpressions 

1JX.x snd ,(x.x 

cannot have any reasonable meaning. 

The easies~ way to ensure that all recursively defined programe 

ere meaningful is to reetrict the notations of the programming language 

so thet all the colltJinators of the language ere continuous. Dr at hlest 

monotonic. This will also restrict the set of relations ....hich are 

expre9sible in thl;! lan9uage. That is the I'lpprOaC~1 lIJB ahali take in 

this eection. 

There is another objectille in reetricting the notations of a 

progrefTlfTling language, namely the efficiency or l~lementation. The 

langu8lge f> described in the next subsection does not achieve this 

objective, end ia therefore perheps more suitable for epecificetion 

purpogee than for practical ilTlP,lementetion. The eubsection 2.Z describeS 

a languege 1) which is a. alight BKtension of the lenguage of Oijkttre. 

snd ""hich can be i ~lemented efficiently. 
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2.1	 The language (j> 

Th8 cOlTlbinators and notations of the language para the same as 

those of the relational calculus, but they exclude cuml-'lement. convtlrse, 

Bnd w~ekest ::>re5pecification. I'lnre precisely, the language 

is the set of relations which Can be defined from specified primitive 

relations by application of the permi Hed combinatoJ's. 

Definition. tP is the smallest set of relations satisfying the 

following Co"ditions~ 

1.	 0 '- p 

2.	 If P 19 a total function, then P l. 61 

3.	 Ir P and Q are in f> than so are PjO, P v Q. P n Q. 

and b " P, wheel!! b is a cundItion 

4.	 If Pi c.lP and Pi So Pi+1 for a.ll i
 

then UP. is in r
 
i~O 1 

This language satisfies the major criterion of B programming 

language, tt1at all the corrt:linetore BCEI cuntinuous, 00 that a recursively 

epecif ied rr~gram always has a meaning 

~X.'(X) LJ '"(0) 
"~O 

and it satisfies the recursion equation 

,(yx.r(X» 1'X. ,( X), 

HOloiever, there ere seriou3 problems in efficient i~lemantation of 

t he language p . 
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The First problem is the contJinator n. This i!l an extremely 

powerful combinator in a programming language. for BKsmpls. ons !;ould 

solve a sorting problem in the following simple fa9hion~ 

(1)	 Construct a program P which assigns to the array an 

arbitrary Bscending sequence of numbers. 

(2)	 Construct another program Q which applies to the a.rray en 

arbitrary parmutation. 

(3)	 Ttlen the program P t'I Q will sort the array into ascending 

sequence. 

A program can be wri Uen like this in the programming languagB PROLOG, 

but	 it is extremely slow in Bxecution. and a prografTlTler lIIould be 

recommended to transform such 8 program into one which dOBS not usa n 

in such a spectacular Wl!oy. 

The reason ror the inefficiency is that en iq::llementation mU!lt 

try ell the poasible eXBcutions of Pend a.ll possible executione of 0, 

and so find an execution of both of them which gives the same final 

result. The consequence is an exponantial increase in the computing 

power required, at leest in the worst case. Furthermore, if n i9 

used elsewhere in the progrem, it ""ill often be necessary to 

disco\Jer ~ metching executions of P and O. The ifTlllementetion dree 

not know how many 'there ere, end may have to go on looking forever. 

After a few recursions, an exponentially growing proportion of the 

eveilable computing power ie expended on trese fruitless searches. In 

PROLOG, the cut is frequently used to keep this problem under control. 

Anoth~r featura of the language ia that there is no obligation 

on the programmer to ""rite recursions thet terminate. A non-terminating 
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recursion (,.g., 1JX.X) is equal to the ampty relation O. It folloW9 

that for anf program P 

(~x.X) uP=: P 

l:iut en implBmentetion cannot detect which of the operands of u is 

going to fail to terminate; so both operands mU9t be 9xecuted 

simultaneoudy (or in turns) until one of them terminate9. I fall 

results of 8ll:Bcution are ['squired, computing pn\ll8[' will conti nUB to be 

wasted on the nonterminating calculation. Even PROLOG shies away from 

this inefficiency by giving prgcedence to the first alternetive, thereby 

departing ftom the idgal of a strictly 10g1cal semantics. 

In cOfltlueion. the language 51 1a highly unsuitable for efficient 

irnplemsntetlon. It might be uEleful 99 a language for specification and 

design; but for these purposes recursion does not play auch e central 

role, and there is less reason to accept an errtlargo on such highly 

expreseive eom:epts as negation. In spite of its elegence, simplicity 

end pOlller, the language P is not much use, and we shall pursue it no 

further. 
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2.2 The language ~ 

In this section lIle define e language 1) which avoids the problema 

of fJ at the expense of slightly greater complication. This language 

sirl~ly omits the problematic combinator n The problem of oJ 19 

solved by ensuring that ell relations P of the language ara total, i.e., 

P;U = u.
 

An indirect consequence of this is that the program
 

p u 0 

never requires execution of more than one of P or QJ and the implementation 

may choose either- of them arbitrarily. This kind of arbitrary choice is 

sometimes known as "demonic non-determinism", because the prograrnlTlllI' must 

be preparad for en implementation which ia both omnIscient and malevolent, 

lind so lo/i11 choose the least favouI'lible alternative IIJhenellBr the program 

allollJB such a choi!=llI. Tha nondeterminism of the language P is "enge1ic" 

in the eense that it ..,il1 give e result whenever a result llll posalbllll, 

even at the B.lCpSnse of en exponantial incrsllIse in Consumption of cOlJlluting 

resources. 

1n the language P , e partial ralation R repreaents a pr09ram ..,hich, 

if started in a state outside its domain, would fail to terminata, Since 

ail ralationa in ~ ars totai, it ia not possible to reprellient non­

termination in this way. Instaad 1.lIB introduclll a fictitioua statlll .L into 

tha domain and range of all ralations 1n .n. This atanda for the (forever 

unreachable) "result" of a prolJram that nevar terminataa. If P is III 

program, the inversllI imaglll of .L ia the set of initial atllltllls for ..,hich 

p may fail to terminatE!; ao ite complament 1a the set of initial atatelll 

in whir::h P must tarminate. If any progrem ia sterted in this fictitioulli stllltlll 

(which of course it never ..,i11 ba), thEln ..,e decree arbitrarIly that the flnllli 

state will be who~ly erbltrlllry. 



22. 

The introduction of J- to totalis8 a partial function is 8 

common mathematical construction. For example, if you 'l<lant to 

calculate hew many partial functions there are betl<Jsen finite sets 

A and B, the easiest way is to extend B by a fil:::titiau9 element .J.. 

and then cOll'pute the number of total functions between A and 8 \J { ....~ • 

In other branches of mathematics, all the basic concepte era just ae 

fictitioue Mi .L you can never obaerllB pointe, linea, singularities, 

infinities, ate, In our theory J- pleys a partiCUlarly i~ortant rols; 

its introduction gives a method of specifying and proving that a program 

Cannot fall to terminals. To prove the absence of error, it is 

necessary to usa a mathematical theory in which the error is explicitly 

•
repreaented. 

Because all ralations of the lenguage 1J are total, the empty 

relation 0 i9 excluded. It is necessary to choose another repreeentation 

for a nontatll'linating recuraion. An appropriate choica is the universal 

ralation U. One of the troubles with 0 in the ianguage ~ i a that it 

satiefiee every spacification R 

o S. R for all R 

end ao acte as a "miracle ll in the senss of Dijkstra. Yet the non­

terminating ~rogram is in practice among ths leaet sl!ltisfactory 

programs - i: would hardly even satisfy a cU9tomer IIJho doesn't cera 

what he gets! That ie why we identify the non-terminatinQ program with 

U, i.e., a program that can dO' anything whatsoever - even fail. to 

terminate. ~ may aeem to ba w·oree than a non-terminating program, 

bacause it may actually terminate with a wrong rasult. But in Dijkstra's 

view it is the progremmer' e responsibili ty to avoid non-termi nation as 

weli aa every other arror, so there is no need to ITII!lke distinctions 

betlLlSen the ~arioue waya in which a program may go wrong. 

* Readers with good teste may still find it difficult to accept J- • They 
should be comforted by the fect that our Whole theory can be developed 
witl"lout .L, at the expenae of co~licated nsw definitions of ell tl"le 
reiationaloperetora, as ehown in section 3. 
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There is another problem: the leaat fixed point of II function on 

total relations is not necessarily total. The solution 1s to ullS the 

greatest fixed point Instead of the leaet, and replace the requirement 

for continuity of the colltlinetors of the language by its dual, cc-

continuity. A function r is said to be c.:~~~t:I,l1Q.us if it distributee 

through the intersBction of descending chaine of programs. 

Definition. F ie co--eontinuous if 

r( (\ Pi) n r(Pi) 
l~O i~O 

lIIhsneverP.£J:::::) andP.,S.:p. foralli. provided this condition 
1 ,1+ 3. 

ia mat, the gr9ateat fixad point can be defined ae an intersection 

,1x.r(x) (\ rn(U) 
nlO 

and this satisfies the recursion squation 

r(./"x.r(x» ,(x.r(x) • 

With these explanations. the time has come to define the 

language 1) It is the smallest sst of relatione eatiafying the 

condi tiona 

,. U " n, 
2. 

,. 

If P is e total function on every stete excapt 

then p-+ "p 
If P and Q ere in J:) , then 90 are 

p,O and (bl'\P \J c I'\Q)+ (where bend care 

.... 

.condi tiona) 

4. 

" .n . 
IfPi<-I) 

then ( () Pi) 
1¥J 

Bnd P1+1~Pi for ell i~O 
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Dijkslra's language is containad in D, as shown by the following 

corrBspondBnt69~ 

0 U~ 

8ki~ 0 {so,S) B ;: !to .... 80 ., .L}+ 
(e.= '(e» 0 [eo·e 19 == f(8 o )1\9

0 
I-.L '" 81.1.f
 

p;o PIa
 

if b--;P[]c~Q !l. (b nP oJ C "'Q)+
 

~ b ----?p ~ nX. -if b ~ (P;X)O .. b ~ skip '1
 
~-

whers -'b	 ~B9 the same domain 8S b, end Bach is true in thoBB states 

in which the othel" is false. 

An Bssionlll9nt to B subset of the variables of B slate can readily 

be extended to en 89signlll9nt over the whole state. Tha darini ticn of 

guarded commllnd sete can reBdily be Bdepted to any finite number of 

alternatives. 

The clein that this language is similar to Dijkstra'a is supported 

by an operational undlH'standing or that language; it Ilol111 be strengthened 

in the next 9ubs8ction by the similarity batween the weakest prB­

specification of each language conatruct and Dijkstra's weakest precondition. 

Meanwhi 1e it lemains to prove the clsim thet all relations in .J) are 

totaL To do thill, it is necasaary to choose a elightly stronger induction 

hypotheeie, lItIllich includes II "f-in1tery" property. This propElt'ty 1s also 

needed in pro~ing the second cleim, thet ell the corilinetore of the 

language erB to-continuoue. These proors will be complated in the remainder 

or this aubB8tt!on. 
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Let the eet of all states (including .L) be ~. 

For any subset 8 of 1:. and any relation P, illS define 81 P as the 

image under P of t.hese initial states in 8. 

81 P {s I 3so~B So PsI 
P is defined as a total !i.nitary relation if for any 9"'!.. {s~ 1p is 

either a nonampty finite se\:' or the universal set, ~; and furthermore 

\.LJ1p Is For U!lB define = ..L)( 'E.universal. future we k 

First the following result!!l ere trlvl;d-: 

L 1p = 1: if P Ie finitary
 

81(PUQ) = (81p)U(810)
 

81(p,Q) = (81p)10
 

[0}1 P = (\.011p"J 

(0}1 «('Pi) = (I (t·J1P,J 
81 (b" p) = Bb1P where B "" {s Is £8 ,.. b h true in e}b 

NoW lila intend to show thet all programs in J:) are total finitary relatione. 

(1) U 19 totel finitary
 

Proof;
 o" ~ ~ to!l u ~ 

(2) If P is 8 total function, than P u k is total finitary. 

Proof: ot-L_l'-l1(PVk) [011p V io11 k 

{·n p 

which hes exactly one member, becauee P 13 a total function. 
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Since ..L Is not in the domain of P, it follows that 

(~lr(PUk) ·\"\1pU [41k. f.cJ1k.1. 

(3) let P and Q be total finitary relations. Then PjQ is
 

also tot~l finItary.
 

Proof I ~a5e 1 {s\1 P ::=. L.
 
['}I (p;ol • <[s}1p110 210. L
 

case 2 {s)1p::: {S,.52• .. •, am) 
t,11 (p;o) = ({oJ1p)10 [9 1 ,82 , .... Sm11 ~ 

Y«('i~1 0) 

(ithe' 3i.({,'\10 = ~ ) end then \)&i\ 10 = L., 

~r Yi.(t\\IQ finite), is If[9111a.is and 90 

(4) If P and Q both are total f In1 tary, and b snd care
 

conditions, then (b" pUc I\Q)+ is also finitary,
 

~roof: 

\e11(b,pu eoO)+ = (~(b"P) u\s'\1(eoO) ug1(bocl theorem 21 
in l'I.ppendix 

SinCB P and a are toteol, at laBet eng of these terms Is non-empty. 

Since eal;:h of them ia either finite or equal to L , 90 i 9 their union. 

(s) If for all I, P. is total finitary and P ,,,,Pi' then (np.) is 
1 1+ i .1 

total finitary. 

Proof: ror any 9 € L WEI have
 

{,j1<0Pi) (\<[,J1 Pi)

i 
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Thus it follows that 

Vi. «[0) l Pi) ~) ===} <[0)1 (t;"IP i ) ~L)
 

WhangVIH' t:. here exists i such that l·)l Pia ~ (.,. ... • ',1 • if
 
a 

~for all n)i than we know thatl'll"n ['~h '0 a 

l3t·n <'lPi) = t ' 
•••• B",1.

1 

otherllJisB there exists 11 > i such that:. [911 Pi, C {sllpl ,end tnen we o o 

repeat the ssms argum,mt:. for 1, a9 above for 10 , Since (Ill"" 8 m \ 119 

finite, the above prOCBSS will be finite before IIIB find e iN sud that 

for all n > iN 

{·ll P n = t·\hi. 
This completes the proof. 

By the results (1) - (5) just provlld, lola have ahown that:. ell 

programll in JJ arB totel finitery. NOloi we turn to eXalJlinfl the continuity 

of these oper9tors in n. 
(6) If Q le a total finitary relstion, end lji~ Ie a deore~5ing 

chain of total fin1 tary relationa, band CarEl .conditions, then 

(b' (0Pi) 0",0)+ = t;' (b,P \J e,O)+
i 

Proof: 13y (5) it fo11nlll8 thet aleo totlll finitery.(0 Pl) Ie 

rurthermore we have 
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LHS	 b ... (Q Pi) U t" Q U b" ~ theorem 21
 

(t;! (b • P1)) U (c. a) U (b n ;;) (sa t theory)
 

0(bnP
i 

\.J cna U bl\~) (set theory)
 

RHS	 theorem :21 

(7) If	 (Pi) is a decreasing chain or' total finitary relations, then 

«()pil,a. ()(p.,a) 
1 1 ' 

Proof: 

V, «(ojIPi Ll _	 (.11 «(,\p,),a) = (\-\1«(,\p»1a 

«('(to}l p1»la = (r;J'i:.l1a 

~la = n(~1a) = n«rol1p.)1 a)
i i 1.: J. 

[o} 1n(P
1 
,a)

1 

3i «(011Pj i. finite)=9310.Vn. «n~1o)=9(LoI1Pn ~(011p10}) (5) 

=9~\1«np1),a) = ([,J1«(\P1))1 a 
1 . , 

(r;J<!:')l p1))l a = ([01 1p1
0 
l1a 

[.11(P1,a) fo' 1~10 

n ([o11(P1,a» = (011 n<P1,aJ
-1 >;. 1 . 1 

0 
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(B) If P is a total finitary relation, Elnd tai\ is a decreasing 

chain of total finitary relations, then 

P;«(\ 0i) = (,1 (P;Oi) 

Proof: Caee 1.	 [s11p =!. 

t·! I(P; (l0i) =	 ~1(,\Oi = L 

(,\ (L10i) = 0[·11(p'Oi) 

• [.\10(p,Oi) 

Cas. 2. t.llP = {\.t,.... tn l
 
{'11(p; (,\Ot) = (['11p) 1 (0 "i)
 

Md.t 
j 1100i)
 

j\)n (t;) (t jl1 °i) 

n(LJ «(tl1 "i» 
i Hn J 

!\(H1 p )1 "i, 

= {,.}1n(p,",),
 
Here we have used	 the eet-thaoretic fact that finite union distributes 

through the Inters8ctiDn of 8 descending chain. 
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from (7) ~8 derivB the corollary. 

(9) If rLl is a	 decreasing chain of 

( np,)\R U(P."-R)
i 11 

Proof: LHS	 (Q P,),R'.I\1 

(\(P.,(R\I)\ 1" \' 

(y(P,;(R\I)!\1 

n(P., (R\I)\1)
i 1 

n(p'''R) 
, 1 

RHS 

total finitary reiationsl then 

corollary of theorem 5 

2.2 (7) 

set theory 

1.1 (7) e 

corollary of theorem 6 

set theory 
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2.3 Weakest prBspecifications and preconditions 

This subsection gives the weakest prs9PElcification for each of 

the cOnstructs of the lenguClge 1). The variables P and Q BrB 

assumed to be re~ation9 in the language J). and R 1s en arbitrary 

relation serving as a specification. But WEI elert with two healthiness 

conditione 

(1) 0,0 = 0 

Proof: Sea appendix theorem 18. 

This corresponds to the healthiness condition 

IIIp (p, false) felae 

(2) If Ri~ R +1 , and a Ri .1. ===9 ({'s11R i :::~) for all i ~ 0
i 

P,(UR ) U(P,R,)

40 i i,O
 

Proof: Case 1 {,11p =2: 

, (n (R.;~\f)) • ~ Vi. ['011 Ai I Uo i}O ~ 

Vi. ('011 Ai "2 (.1.\ 

~ ('011 (!\ "i) '2 \.~} qo 

+ , «(!\ "i);P\,) • 
o 1)0 

Cas. 2. { .} 1p f~o' t, t tn1 
s (n ("i ;P'I). ~ Vi. «('011 Ai) (\ (to .t, •.... t n) 11.1 o i ). 0 

~ ['011 (£'o"i) n{to ·t, ..... tnl 1[1 
~ • «()A.) ;P\1) • 

o i 1. 

(» abort'\. R- h·'I'b '0 R·1 
Proof: U" R {so,eJIJA. s u '=====9 ao RS} 

RHS. 
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(4) SKIP\R k'O "R v "k\O ,,(U\R) 

Proof. LRs	 (k o1)+\R definition of skiE' 

(k\O U I\R) ~ (k'.O v U'.R) theorem 23 

(k'.O 'R) U (k'.O , (U'-R)) 

U(k'.O' k\O) U (R' (U'.R» theorem 1 

RRs theorem 1 J 

Corollary 

skie\R R provided "k\O ,.. R U"-R 

This corresponds	 to Oijkstre's 

~ (skip.R) :: A 

(5) (8 ,= '(8»'.R R,('\l) U <r'.0 ~ U'R) 

Proof. LHs	 f+\ R 

R,a\l) U ('\0 ~ U'.R) corollary of theorem 25 

If U'\R o or 1 f f is B total function (from theorem 18 it follows 

that r'\ 0 0), then 

(0 .= '(o»\R	 R,('\I)
 

h·°looR'(o)!
 

This Ie anlliogous	 to Oijkstre's rule for assignment. 

(0) (P,Q)\R =	 P"\(Q\R) 

This rule holds	 for ell relatione. 
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(7)	 Y. b ---7 pO, ---7 q .Lf"R 

(b\ 0 u P\R) , (,",O v q",R) 

" (b\ 01.1 'C\O	 II U'R) 

Proof: lHS	 (b "P v c t\Q)+\R definition of alternatiVB CQiIJTland 

RHS thaorem 21 

1f U\R '=	 0, this is similcH to Dijkelre's law 

lIIp <,U b ~ P n c ---7 a !J..R) = 

(b --;. lIIp (PIA» ... (c.-..,. lIlp (a.A)) A (b v c) 

(6) a2. b ~ P S£t'R = U H 
n 

n~O 

lIIherA H o '" U\.R 

ond H 1 ,. = (b\OvP\H )'bb\O v okip",R), (b\O vTh\D n v U\R) 

p,oof, Lot ,(x) = .!! b _ (p;X) 0 -'b ----'> okip t.!. 

LHS = (n ,n(U) )\R
n\.b 

c U (,n(U)"A)	 by 2.2 (9) 
n~O 
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3. The VDM connection 

In apeci "''ling the desirsd bahaviour of a sequential progr8'l1, 

it is quite naturel to describe thia as e reletion R between the 

initial values of the variebles on entry to the program and the 

final valuaa o-r the variebles on succaasful termination of the progralll, 

it i9 unnecessary to meke eny mention of the poasibility of non­

termination, because it cen be taken for granted that we never dah 

to epecify that a program must rail to terminate. It thsreforB a8ems 

unnecessary, as well as unnetural, to introduce the rictitioua 

non-terminated state ..1.- into the mathematics of the language Xl 
even though it greatly eimplifiea the proofs. In thie section ~e 

describe how this problem is solved in the ~!.f2!I.~ ~v_~~.,?pmant.~thod [J]. 

Let tha spacification R be 60 relation between reel initial and 

final stetes (i.e. eXcluding ..J,..). Suppose we know that the prDgram 

specified by R "'ill nevsr be entered unless the initial vaiuee Df the 

varieblee estisfy a certain condition b. The deeigner of the program 

can rely on the assumption that b holds on entry; it ie the 

reeponsibil1 ty of some other component of the system to guerantee the 

truth or thia assumption. Thus a prograrnning teak ia apecified in 

VDM aa a .E.!!.£. 

(b, R) 

IIJhare b is a condi tion dQscribing only the initial etate end R 1e 

a relation between initial o!lnd final atates. The relation R 11" VDM 

is miaieadingl 'I called e postcondition. 

The VDM specification(b,R) cen be readily traneleted to e 

specific6otion -ror the progrerrrning language 1), in which ..1.- ia 

introduced to represent non-tarminetion. Suppose thet e progralll P 
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meets thie specification, but the environment fails to meet its part 

of the obligation, and the program is in fact entered in an 1.nitial 

state whicn faile to meet the condition b. In the evant of such a 

violation, the program P has had ita basic assumption falsified; and 

consequently it might do anything whatsoever - it may evan fail to 

terminate. The specifier, having promIsed that b will be true, has no 

r19ht to place Bny restriction on the behaviour of the program I&Jhen 

the promise 1s not kept. We therefore define 

(b, R) b • A 

where the complement b is reletive to a L. which includes ....L-. A 

relation of the form given in this definition is Bald to be Bxpressible 

in VDM. 

This dsflnition of the VDM specification shows a very natural and 

convenient llIay of specifying programs that in certain circumstancBe are 

allowsd to Faiil and it doea so without explici t mention of" the awkward 

fictitious state..1.. • in the remainder of this section lIIe will show 

that ali apecifications can For all prectical purposes be expresssd Ln 

the 110M fornat. (The quallFications of tha previous sentence are 

necessary, bacause relations like t{.J- ,.J-)~ cannot be so exprassed.) 

The first task will be to ehOlll that 

(1) Aii pr/lgrema of 3) can be expressed in VOM.
 

for ail practical purpose!! two .specificationa ere equivalent i.f they
 

are eetiefitd by exectly the seme set of programa of the ianguage J)
 

Thua our eecond tesk is to prove that
 

(2) for any relation A, there ie an equivalant relation expressible 

in VOI'1. 
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3.1 The language ;}) defined 1n VDM 

The first ta sk is to shaw that every program of the language 1) 

can be expressed in the VDM formet 

(b,R) b"	 R 

where b is condition and R 15 B relat.lon, and neither of them 

mention ..L Thi s i8 dona by defining Bech construct of the language :tJ 

1n terms of 110M, assuming that each operBnd of the construct 1e also 

expressed in VDM. The deaired result followa by structural induction 

on tha program expressed in lJ 

(1) U (o,R) 

(Where it dOBs	 not metter what R ie). 

Proof: (O.R) o v R	 by definition of VOM 

u 

(2) If P is a	 partial function (with..L not in ite domaIn or range) then 

p' • (p;'9,p) 

Proof; p+	 P u PIU definition of + 

(p ;U,p) definition of 110M 

(3) (b,P);(c,Q) (b() P;-a,P;C) 

Proof; lHS (b' \J p) ; (c v Q) 

b i (c v 0) U	 PIC U PI Q 

cUP; cUP; a Bince [.L.) x :2.. !: (C Il a) 

(b "p;e) u PIa set theory 

RHS 
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furthermore we have 

(p;c);U P; (c;u) 

PIC since C is a condi tion 

thus P;c and ita negation P;c ara e190 condi tions 4 

(4) (b ,.,(d,p) v cn(8,IJ»+ = «b"c) ,.,(b"d),.,(c"e), b,.P ... ella) 

Proof: LHS b n ('d uP) .. c ... ('8 v Q) .. (b""':C) corollary of theorem 21 

(b ve) n (b ",Cf)" (c "e) .. (b ,.p) .. (c .. Q) set theory 

RHS definlti on of VDM 

(5) If (b , P )£ D. and (b Pl+1) £ (b Pi) for al1 i~Ot i i +1 , i
, 

thon nib" Pi) (Ub" un (b, 0 p,»
i 1. 1.)0 j~i J Ji ' 

lElmma. zr (b i +1 • P
i 
+,) £(b i , Pi) for all i}. D, then 

b1 +1 50 til 

ond ror 811 i~ 0bi " Pi+,S" b1 "Pi 

Proof: Bince b is a condition"1+,1«.1..1 xl) +1b1+1 i 

(b
i
+

1 
t'I (~x{..L'));U th110CBm 14 

«°1+1 u P +,) n (.i.)( tJ.));U since PH -, d089n't mention ..L.
i 

5: «(b U Pi) n (~J( f..L.~ »iU by the assumption
1 

bl 
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~b
i 

0 P i+' b i ,. (b"i+1 oJ Pi+1 ) since b1+1 =bi 

S bi",(bt",P ) by the assumption
1 

b. ,. P., , 

Proof of	 theorem 

Cses1.	 (s,sl)~b. for all i =- 0o	 , 

It	 la obvious that
 

(SO,S1) t: n b. " LHS n. RHS
 
i).O 1. 

Case 2.	 There exists K such that (SO,8 ) i: b1 K 

Suppose that (a ,B,)E n(b.,p) from lSrml8 it follows that 
o i.). 0 1. i 

(s0,5, ) € bin P1 for a11 i ~ K 

which implies that 

(So' 5,) € n (b. n Pi) S RHS
 
i::" K 1.
 

Now Bssume that (a ,8,) ~ ( LJ b , u " Pi))' There 
o	 1<);0 K .,0 n (b i

i;SK 

Bxists n	 such that 

(s0' s, ) € bin P1 for all 1 ) n. 

When n '"	 D. loJe obtain 

(a ,sl)~ n (t.." Pi) ~ lHS 
o	 i ~ 0 1. 

Otherwisa there ara two aubc8a8s 

CaBB 2.1 (so's,) i: b _1n
 

(9 ,9,) It b _1 ~ b _ So ... S b
0	 n n 2 o 

which induces to 

(9 181)t	 n b. n (bin P1)SLHS 
o 1'n-1 1. " i:>n 
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eB8e 2.2 (so' 9 ) €. b _1 n 1 

(So,S,) lEo b _ 1 ,." Ct." n Pn) ~ b n. P,,-1_1n n

Then ~e repeat the 9ame argUlTlElnt for n-1 as above for r"l. Finally 

we can 9ho~ (9 ,9 )£ LHS elsa.10 

Combire these cases ~e conclude that LHS : RHS. 

These five theorems show that the programming language J) can be 

wholly defined loIithin the VDI'I notation. furthermore, if (b.P) ie 

IBxpreBsed <Ie e program in 3J • it haa the additional ifTJ;:lortant property 

that every stBte satisfying the ,condItion b Ie within the domain of 

P, or Illars forltlslly 

(6) b ~ p;u 

Proof: aince (b,P) is a total relation 

(b .. P);U "" U 

but LHS::: b;U '" P;U 

"" b " P;U since b Ie a candi tion 

The conclusion follow., by set theory. 

It rem~ins to define the wsakeet prB9pBcification of B peir of 

specifications exprIBgeed in t~B VDM atyle. 
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3.2 All apecifications Cl"n be equivalently expressed in VDM 

let Rand 5 be tloiO relations, intended to be ueed as specifications 

of e prognm in the language J). SUPPOSB also that every program in :J) 

WhIch eatlsils5 R also ~ati~fiea 5, and ViC9 vereB. Then it cannot matter 

which of the relatiOns Rand 5 is taken as the original specification; 

each or thlim gives exactly the same range of choices to the designer of 

the progrEl~. The two speci fications are therefore said to be equivalent. 

08fini tion, Rand 5 are equivalent if 

I/P £ :D P £ R ~ P ~5 

Corollary: 811 unlmplementable specifications ara equivalent. 

Clearly this concept of equivalence 15 dependent on the derinition of 

the progralllming language. in this caSEl 1). For other languages, Rand 5 

may indeed specify different programs. 

Iile ca~ now show thet the VOM style of specification is adequate 

for all purposeQ in the specification end development of programs in 1) , and 

there Is m need ever to make explicit mention of the fictitious stata..L.. 

This state hee been extremeiy usefUl in exploring the mathematic.,l 

propertlea of the lenguage 1J but in the application of the 

m8trsm8tic~, the VOrl 9tyle offers a convenient wey of avoiding Its 

explicit m~ntion. 

Theorem. For any ~pecification 5, there is en equivelent specification (b,R) 

Proof: dafine J) (s) [(c,P) I(c,p) £ D A (c,P) S s} 
b r) [< I (c,P) ~ ;0 (S)} 

R U{p I (c,P) £ Jl (s)} 
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No,," II.Ie hlllve 

(b,A) U{(c,P) I(C,P) .. J)(Sl} <;; 5 

On the otner hand if P £01) and P C;S, then lIle knoLil thet 

p £00(5) Iolhich implies that fl'S(b,R) 

This completBs the proof. 
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Appendix 

This appendh develops the relational celculus using the weakest 

prespecification (a!J defined In 1.1 (10» In pIece of the more 

fa"lil!ar converse operator. All proofs are based on just two axiorns 

(in addition to t.,o familiar aXloms for I) 

P;QSR !!'!! p~a"R 

Proof: see 1.' (10) 

O,\R (;'-'<0)\1 

Proof: !IIee 1.1 (13) 

These tWD axioms ere sufficient to prove the three 8)(10",9 of Tar!kl f6J 
which relata to convBr8s. namely 

~ = P (Theorem ~ below) 

P;Q = alP (Theorem fi bll1ow) 

(p;a) ... R o c (UiR) nP o (Theorem 11 balow) 

Replscement of t his last BxlD1l'1 will not be lsmented. 

Oefinitions 

'. roc any relation R. Its converse ~ 1a defined .!II the weakest pre-

specification of R with respect tc I. i.e. 

R = ii'l 

2. let P and R be relations. The wBekest p08tspecificatlon of P 

with ["espect to R, denoted By Rip, is defined es the ,",8ke.t preepecir1cat!on 

of the converse of R with respect to the converse of 'P, i.e. 

RIp - (R\I)\(P\I) 
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Theorem 1 

The identity relation gives no help in meeting any specification 

P • I'P 

Proof: Xs.p ;;;: Xi 1 ,=:p 

=- X=I 'P ilIxlom 1 

Thaorem 2 

In order to meet i!lpBcificilt1on R with thf!l aid of (Pia), you must 

ensure that P can meet R with the aid of q 

(';O)\R p,,-(a\R) 

Proof: XS-(P;q}"'R ~ X;PiQ-s.R axiom 

:£ X;P S-q'\",R axiom 

" XSP'-.(O'-.R) exiom 

Theorem 3 

The operations cO'"Pl~nent and converse COllllllute 

p 

Proof: UiS ..	 (I\.p)\r exiom 2 

RHS theorem 

0\1 • P"-1	 i.eA, ~ 

Theorem 4 

The F;;:OmerSB operetian is the inverse of itself 

(p\Il\1 • P i.e o, ~ P 
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Proof: LHS I\P	 8xlD11l 2 

p	 theorem 

p 

Theorem 5 

(p\ a )\1 = p,(a\l) 

Proof: LHS	 (p\«a\I)\I)\1 theorem 4 

«P, (a \1»\1)\1 tt.orsm 2 

p;(a\l) theorem 4 

Corollary 

P'\ii ~ R, (p\T) 

Proof: LHS	 ('\P)\1 axiom 2 

ii;(p\T) theorem 5 

Theorem 6 

The converSB of	 P co~oeed with Q 15 equal to the converse of Q 

cO~Qsed wi th the convsr 98 0 r P. 

~ "" PjQ\ I . (ii\I);(;;\I)	 1.e. PIC • Q;P 

Proof: LHS	 (p;a)\1 theorem :3 

(P\ (a\,»	 theorslII 2 

«a\1)\ p)\1	 8x10m 2 

(Q\1),(P\I)	 thE!otem :3 end theorelll 5 

Corollery 

P\R • (P;41\I»\1 

P,oo'. RHS • ((1!\T)\ T), (p\T) theorem 6 

"ii;(;;\1) theorem 4 

P\R corollary or theorell 5 
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Theorem 7 

The converse operation 1s monotonic. 

P<;co ~ (;;\i) <;'(0'\1) 

Proof: x-:;P'\T :;	 X;P Sol 811l!om 

xla~T since P?Q
=* 

:; x~ii\T	 a.dam 1 

Corollary 

(P\I)<;c(ij\1) • P:Q 

Proof: direct from	 theorem" and theorelll 7~ 

Theorem e 

P cOqJosed with a "'ill Met the specification A iff Q lnBete the 

weakest post8peclflcation of P wit'" reepect to R. 

P,IISA • 0 S(R\I)\ (p\I) 

Proo': LHS 3!:' (P;Q")\ 1 ~(R\T) theorslft 7 end corollary 

• (ij\T), (;;\T) ~{R\I> theorelll 6 

.. (0\1)" W\T>\ (R\I) 8x10111 1 

• (ii\T) \K {('R"\'l)\ (P'\'I)) \1 exiom 2 

,;,; (0\1) S.{(R\ 1>\ (p\1))\1 theocs", 3 

.. "S.(R\1)\ (P\I) theorem 7 and corollary 

Theorem 9 

The identity relation 1s the w8eke_t prsspeclr1cat1on of ita 

co~lelRent wlth respect to !taeH. 

T\i • 
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Proor: LH5	 1; (1\ I) 

( 1\1)\1 theoce'" 5 

1 thencelll 4 

Theocsm 10 

P cOlllposed wi th a IIIl1!ets I iff so dOBS Q composed loll th P. ( The 

discovery or this simple theorem about the fixed points of relatiOl't5 

astonished each of' the authors individually.) 

P;Q ~T == a;p~I 

Proof: LHS : 0 'S:.(i"\T>\(p,\I) theocelll 8 

~ Q~I\(P\lJ theoce.. 9 

.. Q £(P\I) theorllllll 

Q;psT SlIio," 1 

CoroUery p\T 1/ P 

Peoof: X Sop\ I	 :: X;P ~I axlolll 1 

= PiX ~l theorelll 10 

"" X~I/p theoce'" 8 

Now we corne to show one of the basIc theocs"'!! In the celculus or 

relations defined by A. Tacski £6] 

Theorem " 

(P,Q)n(ii\fl	 o .. (Q ;R)"IP\T) o 
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Proof:	 LH5 (p;a)~ R\1 set theory• 
•	 (p,a)<;R\1 theorem 3 

(p;a);R c;.T axiom 1• 
•	 Q;R~TI P theorem 8 

Q;R,:p,\T corollary of theorem 10• 
•	 RH5 theorem 3 

Definition 

A relation b is said to be a condition if 

b	 "" b;U 

i.e. it	 relates Bverything in Its domain to anything whatsoever. 

Theorem	 12 

1. b is a condition if' its converse "b\T relates everything to 

to anything in the domain of b. 

b b;U ;; b\T U;(0\1) 

2. If	 b i~ a condition so its CO~!Bment b 

b	 = b;U = b;U=> b 

Proof~ 1 • LH5 = 0\, = b;U\1 theorem 7 

• 0\1 = (0\');(;;\') theoI'oem 6 

= 0\1 = U'(O\') since UjO ::: OS] 

2.	 LH5 ~ b;U 1"'\ b . 0 set theory 

= b;U n (0\1)\1 = 0 theorem 4 

~ u,'b\i n 0\1 = 0 theorem 11 

=> U,b\I" b\1 theorem 3 

= Ulb\1 = b\1 since U;A?R 

• 0 = b;U	 theorem 12.1 



51. 

Theorem 13 

If b is a	 cQlldition. then its con\lsrse 

;;\1	 b'\.O'. 
,nd 1. ;;\1 = '\0 

Proof: 1.	 LHS u;'b\T 

b'\O 

2.	 LHS .\1
 
;;\0
 

;;\0
 

Corollary 

1. U\1	 - U\O = 0 

2. (P,U)\ I = P,\O 

J.	 0\1 = 0\0 = U
 

= P;U
•• "iJ'\P 

Proof:	 LH5 = U\O'. 
0 

2.	 LH5 . p,\ (u,\l) 

p\O 

J. 0\1	 = 0\0 

~ 

ii 

U 

'. LHS =	 p'O\1 

is gi\l8n by 

theorslIl 12 

corollary of	 tl"'&orsm 5 

theorem J 

theoreM 12 snd theorem 1 J. 1 

theorBIII 13 

since X;U'C..O"'" X'!iO 

theorem 2 

corollary 1 of theorem 1 J 

set P '" 0 in corollary 2 
of thaorBIII 1 J 

theorelll 13 

corollary 1	 of theorem 13 

corollary of	 thaore. 5 

P;U	 corollary J of theorelll 1) 
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In the following part ""e shall USB lower casfI letters for conditions. 

Theorem 14 

P;(b n q) (Oob'O);O i.e •• PdbllQ) (P .... b);a 

On tllA left hand side, Q has its domain I"ostrlctod to the condition b. 

On the right hand side, P hag its codomain subject to the same restriction. 

'ulhen P and IJ are corrposed, it deBS not matter whether the restriction takes 

place ~rter P or before Q. 

Proof: lHS =	 (Pn(b'O});(bl"Q) U (Pn(b ......... O»;(bnU) 

(p o(",")),(b nO) since (b........... O);bSD 

(PO(b'O»,(boO) V (Pn(b\O)),(bnO) 9ince ('b\O)jb'iO 

(po(",")),(bnO) u (Pn(b,O»,(boO) theorem 13 

""5 

Corollary 

x;((p;u)" Q) (x n (P,-O»;Q 

Proof: lHS .. (XI\ (PIU>",O);Q theOI'"BIIl , 4 

(x, p,(V"O»,O theorem 2 

(X '" P'\.O);Q coroliery 1 
theorem 13 

of 

Theora'" 15 

Prespeciflcat!on di9tr1butes through conjunction in its first 

argUlll!lnt if on8 of the 11mbs 0' the conjunction 19 of the form PIU 

«p,v) 0 0)\" P'\o v Q'-R 
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~Proof: X S LHS X; «r;u)" Q)sn	 3xlom 1 

=	 {X f\(p'-O»;U'SR corollary or theorem 14 

'" X(\(p~a)SQ'R E!)(!om 1 

'" XS:P'O",Q'-.R set theory 

Corollary 

(bnUl".' b" 0 0 0,\' 

Proof: LHS «b,U) 0 UJ'" since b =blU 

b '-0 v Q"'-R theorem 15 

Thaorsm 15 

PrespecHication distributes through disjunction in its first 

argument 

(PVO)'" (p",) " (0"') 

Proof: X =(P",. U)........ R . X;(pv Q)S:R axiom 1
 

•	 (X;PIiA) A (X;QIiR) set theory 

(X~P'R) A, (x ~a'R) a)(lom 1" 
=	 X'=(P'R)'" (O'R) set theory 

Theorem 17 

Prespecirication abo distributes tnrough conjunction In It, gecond 

argunent 

0'-<' oS) (0") , (O"S) 

Proof: Similar to theorem 16. 
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Corollary 

0\0 =	 0 ~ O,\R '= u\" 

P,oor: (O\R) n(o'\")	 O\(Ro.) theorern 17 

0,\0 set theory 

o by the aS9umpt.!on
 

from which the result foIl 01119.
 

Der in! tions 

1.	 P is a ~t.!:~_.~~~t~on if it ,has universal domain 

P;U = U 

2.	 A relation P is said to be a total function if 

P := PIT 

Theora," 18 

If P 15 a totaL relation, then it! weakest prespeclficatlon with 

respect to nuil relation 1s null. 

P;LJ U	 =9 p\o o 

Proof: p\O	 (P;U)'\I corollary 2 or theorem 13 

U\I by the e~9~tJ,.on 

o	 corollary 1 of theorem 13 
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Corollary 

1r P 1s a leta I function then 

,. p"o . 0 

2. o\T = P\I 

Proof: 1 • P;U = p;(lul) set theory 

P;1 \,I P; I the distributive law or 

P v P by the assumptIon 

U 

from which and theorem 18 we reach the conclusion 

2. LH5 . (P,I)\I	 by the assumptlon ~ 'C ·cc,," 

",·,A ~op\ (1\1) theOrem 2 

p\! theorem 9 

Theorem	 19 

When P 1s a total function, its weakest preapaclficatlon 1s Us 

seQuential composl tion of the given specification A and the converslt 

of P. 

p\' = R,(P\I) 

Proof: RHSjP = ';«(P\I),P)	 ttle 8S90clatlve law of J 

'So R;I	 axiom 1 

A 

RHS '5:	 P\R 

On thE'	 other hand we also have 

P\A '=	 P\R corollary of theorem 17 

R,(P"\I) corollary of theorem 5 

• R,(P\I)	 corollary 2 of theorem 18 



Def ini tion 

ror eny rl:Jlatlon p. P;U 1'1 a condition whlch holds just for all 

initial states in the domain of P. We defIne p'" all a celation that 

behaves like P if started in the domain of P, but OOBS anything 

~hatso&ver 1r started outside that domain 

+
P = P I) P;U 

Theora". 20 

p'" is 8 total relation 

Proor: p-t-;u (I'1;U) u (p;U;U) Derinltion of ... 

(p;U) v (P:U) theorem 12.2 

U 

Theorem 21 

ITbI\P) l,J (cnO»;U (b'v p;U) n (-; 1/ Q;U) 

Proof: lHS (b ,,-P);U ~c t\1J);u	 the dhtr ibutlve law of 

(I n ~);p;U '" (I n c ...... o);ajU theorem 14 

(b n P;U) I) (c t\ QiU) theorem 14 

(b n PIU) n (c n Q;U) set theory 

'" (b' '" PiU) I"l (c v Q;U) !!let theory 

Corollary 

If p and Q both	 Bre totai ~elatlon9. then 

«bnP) \I (cnQ»;U = tin'C 

Procf: LHS	 (ii " PjU) n ('C '" QiU) theorBIII 21 

b t\ c 1I1nce P; U .. q i U = U 
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Lemma 1 

P;U \n (p'.o) u (u'.n) 

Proof: LHS (p;U 'U)'.R 

(P;U\O) u (u,n) 

(~) u (U,R) 

(p'.(U\O)) u (U'-R) 

(P'-O) u (U\.R) 

set theory 

theorem 15 

theorem 1 J 

theorem 2 

coroilary 1 or theorem 1 J 

Theorem 22 

P-+\R P"R n{p,,",o ... U"R) 

Proor: LHS (P u P;U)'.R 

(p") ~ (p;u\n) 

"n ~ (p'.O u U\.R) 

deFinition 

theorem 17 

lerrme 1 

or -+ 

lemma 2 

If P and Q both are 

(btl Pvc f\U);U\R 

total relation9, then 

= b\O U -c\o U U'-R 

Proor: LHS (b" ;;), R 

(bvc),",O U u,,",n 

,\° v ;;\0 v U'.R 

corollary or 

lemma 1 

theorem 16 

theorem 21 
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Theorem 2J 

If both P and Q 8rg totel relations, then 

(b ",p U c naY+\R (b'\.O U _'\.R) n (c'O V O'R) 

n (0\0" ;;\0 U U'\R) 

Proof: LH5 (bnP)'\.R t\ (ct'\Uj""R t\ (b",P u enU);U\A theorem 1'1 end 115 

(b'\.O lJ P'R) n(c\OUG'\.R) ,dbiloP U c"Q}jU~R	 corollary 0' 
thoorem 15 

RH5	 ll'!FMla 2 

)..elllma J 

(p;u) n I S p;(P'\i) i.o. (PIU).-I =- PIP 

On the len. hand 511de, the domain of identity relation is restricted to 

the domain of P. The 50JITIB restriction is not quite so gevers on the 

right hand side. 

PrOOf: LHS :: (pdp", T u P'\.I)) t\ I !Ie t theory 

(P,(P\.I»0 1 U (p,P'\I)nl set theory 

!: T n I \J (pdp\})) f'll BJoilom 1 and thaorem 10 

SO _;(e\l) se t theory 

Theor8111 24 

P," '" R,(;;\I) U _'\.O 

This theorelll pIeces a usaful upper bound on the ~Bake9t prBspeci ficat1on. 
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Proofl XSP'\R i!! X;P~R 

='9 X,P;("\I) S R;("\I) 

:4 XI(P:U"I)~ R;(P'\T) 

= X "P'\.O 'S:R;(P"\T) 

='9 x S R;("\I) U P,O 

Dofinition 

P is seid to be a perliel furll:lion if 

PjT £: p 

Theorem 25 

if P is a p.artial function, the aboll'e theorem 

to an equation 

P\R _ R;(;;\I) U (p,O) 

Proof: RH5;P '" R;(r\ f);P U (P'-..O);p 

~	 R;(P;l)\ l;P U (P'-..O);P 

R;(P\ (I\I)),P \) 0 

R;(P\ I );p 

S R
 

RHS S P\R
 

Corollary 

if P is a partial functlon, then 

P+\R ~ R;("\I) U «P\.O) n (U\R» 

axiorn 1 

by the monotonicity of 

lemma 3 

theorem 14 

set theory 

cen	 be strengUened 

the distribuUII'e law of 

theorem 7 

theorelll 2 

theorem 9 

8.x!Oln 1 
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