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The first paper is an elementa.ry introduction to the basic ideas of using mathematics 
to specify computing systems. It consists of three specifications: a simple symbol 

table, a file update, and a sort. 

The second paper is a. tutorial exall1ple which introduces the schema language for 
presenting specifica.tions. The example is a symbol table for use in processing a block 

structured language such as Algol 60. 

The third paper is a specifica.tion of a sequential file system. It does not contain any 
extra tutorial explanation of the system being specified; it is an example of the style 

of specification as would be written in practice. 

The fourth paper comes from an industrial case study. It is interesting in that this 
quite small specification contains the essential parts of a. rea.} system. It jlJustrates 

some points about specifying rea.l systems that are not covered in the more textbook 

examples above. 

The final paper outlines the basics of a dia.ry system. It provides a quite abstract 

basis of a diary system which could be developed into a more realistic system. 

iv 
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2 Spcc.:ification Examples
 

A Symbol Table
 

The first example specifies a simple symbol table. It demonstrates using a 

mathematical function to specify an abstract data type. We will specify a symbol 

table with operations to update, lookup alld delete entries in tue symbol table. We 

will describe our table by a partial function from symbols (SYM) to values (VAL) 

st SYM --f-) VAL 

The arrow ~ indicates a function from SYM to VAL tbat is not necessarily defined 

for all elements of SYM (betlce "partial"). The subset of SYM for which it is defined is 

its domain of definition 

dom(st) 

If a symbol s is in tbe domain of definition of st (5 E dom(st)) then St(5) is the 
unique value associated with s (st(s) E VAL). The notation { s t---+ V } describes 
a function which is only defined for that particnlar s 

do'( { S ""' v }) " { S ) 

and map'" that s onto v 

{sr-tv}(s)=v 

More generally we ca.n use the notation 

{ Xl r-t y!, )(2 r-t YZ' , x" r-t y" } 

where all the )(K' 5 are distinct to define a function whose domain is 

{ Xl' Xl' x" 

and whose value for each x K js the corresponding Yk. For example, if we let Ollr 

symbols be names and vahles be ag€s we have the followiug mapping 

st :: { "John" r-t 23. "Nary" r-t 19 } 
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which ma.ps uJohn" onto 23 and "Mary" onto 19, then tbe domain of st is the set 

dom(st) = { "John", "Mary" } 

"nd 

st(~John") = 23
 

st(Wnary") = 19
 

The range of st J rng (s t ), is the set of values that are associated with a symbol in 

the table. For the example above 

rng(st) = { 19, 23 } 

The uotation {} is used to denote the empty function whose domain of defiuition is 

the empty set. 

Initially the symbol ta.ble will be empty 

st = {} 

We are describing a symbol table by modelling it as a. pa.rtial fundion. This use of a 

fuuction is quite different to the normal use of fuuctions in computiug where an 

a.lgorithm is given to compute the value of the function for a given argument. Here we 

use it to describe a data. structure. There may be lIlany possible models that we can 

use to describe the same object. Other models of a symbol table could be a list of 

pairs of symbol and valne, or a binary tree containing a symbol and value in each 

node. These other models are not as abstract because lIIany different lists (or trees) 

cau represent the same fnnction. We would like two symbol tables to be equal if they 

give the f'ame values for the same symbols. However, it is possible to distinguish 

betweeu two unordered list representations that as symbol tables are equal; on the 

other hand, for the function representation different functious represent differeut 

:::ylllbol tables. The list and tree models of a symbol table tend to bias an 

implementor working from the specificatiou towards a particular implementation. In 

faet, both lists and trees could be used to implement such a symbol table. However, 

allY reasouing we wish to perform involviug symbol tables is far easier using the 

partial fuuction rnodel than either the list or tree model. 
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As some operations can change the symbol table we represent the effect of an 

operation by th~ relationship between the symbol table before the operation and the 

"ymba} table after the operation. We use 

st, st' SVM -+-Jo VAL 

where by convention we use tbe undecorated symbol table (st) to represent the slate 

before the operation and the dashed symbol table (5t ') the slate after. The operation 

to update <In entry ill the table is described by the following schema 

Updat' ~ 

st, 5t' : SYM VAL-I-) 

s? SYM 
,,? : VAL 

st ' = s[ e { s7 ~ v? } 
I -----" 

A schen];> consists of two parts: the declarations (above the centre line) in which 

variables to be used in the schema C).re declared, and a predicate (below the centre 

line) cont:J.ining predicates giving properties of and relating those variables. Iu the 

schema Update the secoud ljne declares a variable with name "5?" whicb is the 

symbol to be updated. The third line declares a variable with n:lme "v?" to be the 

value to be as;;:ociated with 57 in the symbol table. By convention names in the 

declarations ending in "7" are inputs and names ending in "! 11 will be outputs; the "?" 
and"!" are otherwise just part of the name. 

Tbe predicate part of tbe schema stales that it updates the symbol table (st) to give a 

new symbol table (st') iu wbich the symbol s7 is associated with the value v? Any 

previous value associaled witll s7 (if there was one) is lost. 

The opprator e (fuIlction overriding) combines two functions of the same type to give 

a ne", fuuction. The new function f egis defined al x if either f or 9 are defined 

at x, and will have value 9 (x) if 9 is defined at x, otherwise it will have value f (x) 

dom(f e g) =- dom(f) U dom(gl 

X E dom(g} "'" (f. g) (x) g(x) 

x It dom(g) 1\ x E dom(f) ""'* (f III g) (xl =- f(x) 
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For example 

{ "Mary"1---lo19, "John"~Z3 } $ { "John"~25, "George"~62 } 

= { .. Mary ..~19, "John"~25, "George"~62 } 

For the operation Updat e above the value of s t ' ()() is v? if x = s7, otherwise it is 

st (x) provided x is in the domain of st. In our example we are only using ill to 

override one value in our symbol table function; the operator $ is, howeveJ.:, more 

general: its arguments may both be any functions of the same type. 

The following schema describes the operation to look up an identifier in the symbol 

table 

LookUp ~ 

st, st' ; SYM ~ VAL I 

s7 SYM 
v! : VAL 

s7 E dom{st) A 

vi = st(s7) A 

st' = st 

The second line of the signature declares a variable with name "s7" which is the 

symbol to be looked up. The third line of the signature declares a variable with name 

"v!" which is the value that is associated with s7 in the symbol table. 

The first line of the predicate states that the identifier being looked up should be in 

the symbol table before the operation is performed; the above schema does not define 

the effect of looking up an identifier which is not in the table. The second line states 

that the output value is the value associated with s? in the symbol table st. The 
final line states that the contents of the symbol table is not changed by a LookUp 

operation. 
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The operation to delete an entry in the symbol table is given by 

De) ete -----, 

st, st' SYM -++ VAL 

s? SYM 

s? E dom(st) " 

st I = {s?} ~ st 

To delete the entry for 57 from the symbol table it must be in the table to start with 

(5? E dom{st)). The resultant symbol table st' is the symbol table st with s? 

deleted from its domain. We use the domain sublraction operator ~ where 

dom(s~f) ::: dom(f) - s 

x E dom{ s~f) ~ (5~f)(x) = fix) 

where f is a function and s is a set of elements of the same type as the domain of f. 

For example 

{"Mar!::l", "John" } ~ { "Mar\:l"~19. "John"~25. "George"f-)62 } 
{ "George"~62 } 

Exercise: In place of a single Update operation define two separate operations: Add. 

to add do symbol and value if the symbol is not already in the table, and Rep 1ace, to 

replace the value associated with a symbol already in the table. 0 
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File Update
 

The second example is a specification of a simple file update. It uses sets and 

functions to model the file update operation. 

Each record in the file is indexed by a particular key. We will model the file as a 

partial function from keys to records 

f ; Key ---H Record 

A transaction may either delete an existing record or provide a new record which 

either replaces an existing record or is added to the file. The transactions for an 

update of a file will be specified as a set of keys d? which are to be deleted from the 

file , and a partial function u? giving the keys to be updated and their corresponding 

new records. We add the further restriction that we cannot both delete a record with 

a given key and provide a new record for that key. For example, if 

f ::: {k1 ~ r 1, kz ~ r z• k3 ~ r3' k 4 ~ r 4 } 

d? = {k" k, } 

u?::: {k3 ~ rs, k ~ s r 5 } 

then the resultan t file f will be I 

f'::: {k1 ~ r 1, k3 ~ rs, k ~ r 6 }s 

Our specification is 

FlIe Updat e I 

f, f' Key ~ Record 

d? IF' Key 
u? : Key ~ Record 

d? 0;: dom{f) 1\ 

d? n dom{u?) ::: {} 1\ 

f' (d?~ f) iII u? 
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The original fjle f and the updated file f' are modelled by partial functions from 

keys to record~, The keys to be deleted (d?) are a subset of Key_ Hence d? is an 

element of the powerset of Ke!d (the set of all subsets of Key); the notation f Key is 

used to denote the powerset of Key. The upda.tes u? are specified as a partial 

function from Key to Record. 

We can only delete records already in the file f. Hence the set of keys to be deleted 

d? ml1st be a subset of the domain of the origio3.1 file (d? b dom( f»). We are 

precluded from trying to both delete a key and add a new record for the same key ~ 

the intersection of the deletions with the domain of the updates must be empty 

(d? n dom(u?) :;:: 0). The resultant file f' is the original file f with all records 

corresponding to keys in d? deleted (d?"1 f)j overridden by the new records u? 

The last line of F i 1e Update could have equivalently been written 

f' d?	 ~ (f ~ u?)0 

Although it is not alwa.ys the case that these two lines are equivalent, the extra 

condition that the intersection of d? and dom( u?) is empty ensures th eir eq uivalence 

in this ca~e. 

Lemma.:	 Given d? n dom(u?) 0 {} the following identity holds 

d? ~ (f	 ~ u?) = (d? 4 f) ~ u? 

Proof: Firstly we show the domains of the two sides are equal 

dom( d? lil( feu?)) ::: dom( f$u?) - d? 

(dom(f)	 u dom(u?» - d? 

(dom(f)	 - dO) u (dom(u?) - d?) 

(dom(f)	 - d?) u dom(u?) 

as d? n dom(u?) ::: {} 

dom(d?~ f) u dom(u?) 

dom((d?4 f)~u?) 
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Secondly, for any key k in the domain, the two sides are equal. We prove this for the 
two cases: k e dom(u?) and k E dom(u?). 

(a)	 Ifk e dom(u?) then 

kEd? as dom(u?) n d? = {} 

(d?~(fou?» (k) (fou?)(k) as kEd? 

u?(k) as k E dom(u?) 

and ( (d? ~f) ou?) (k) u?(k) as k e dom(u?) 

(b) If k "	 dam(u?) then 

(d?~(fou?»(k) = (fou?)(k) as k E dom(d?~(f@u?)) 

f(k) as k E dom(u?) 

and «(d?~f)ou?) (k) = (d?~f)(k) as k E dom(u?) 

= f(k) as k E dom(d?~(f@u?)) 0 

In the specifica.tion of F 11 e Update if we were not given the extra restriction then, 

as specified ill the last line, updated records would have precedence over deletions. If 

the alternative :;;pecification were used then deletions would have precedence over 
updates. It is sensible to include the extra restriction in the specification as it allows 
the most freedom in implementation without any real loss of generality. 

Exercise: Define an operation (File Add) to add a number of keys with associated 
records to a file. The keys should not already be contained in the file. 0 
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Sorting 

The third example specifies sorting a sequence into non-decreasing order; it uses b",gs 

(multi-sets) aDd sequences. 

The input :lnd the output to Sort are sequences of items of a given type X which has 
a total order "<x" defined on it. We model a sequence as a pa.rtial function from the 

positive natura.! numbers (f::f'") to the base type X as follows 

seq X f:: {s f::!"'" ~ X dam(s) 0 1. .151 ) 

where 151 is the number of entries in the mapping 5 (which is also the length of the 

sequence 5). The notation of enclosing a list of items in angle brackets can be used to 

construct a sequence consisting of the list o~ items. For example 

tor a. b. c ) 

{ 1 ~ a.	 Z ~ b, 3 ~ c } 

We can select an item in a. sequence by indexing the sequeuce with the position of the 

item 

t(2) b0 

So [5(1). 5(2). , 5( lsi) 1 

The empty sequence is denoted by [J. 

The output of SOit must be in non-decreasing order. We define 

Non-Decreasing ,
 
s seq X
 

I:J	 i, J dom(s) •
 

(I < J) =:- ~(s(J) <x 5(1))
 

where "<x" is the given total ordering on the base type X. 
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The output of Sort must contain the same values as tbe input, witb the same 
frequency. We can state tbis property using bags. A bag is similar to a set €xcept 
that multiple occurrences of an element in a bag are significant. We can model a bag 

as a partial fun~tjon from the base type X of the bag to the positive integers (F'<r) 
where for each el€ment in the bag the value of the function is the number of times 
that element occurs in the bag 

bag X ~ X -++ f\j+ 

We use the notation [ ] to construct a bag. For example 

[ 1, 2, 2, 2 ] { 1 >-> 1, 2 >-> 3 } 

The following gives some examples of bow ;'lets, bags, and sequences (in this case, of 
natural nnmbers) are related 

{1,2,2,2} {I, 2, 2} {2, 1, 2} {1,2} {2, I} 

[1,2, Z, 2] • [1,2,2] [2,1,2]. [1,2] [2, 1] 

[1,2,2,2J' [1,2,2J' [2,1,2]. [1.2]. [2,1] 

In specifying Sort we would like to say that the bag formed from all the items in the 

output sequence is the same as the bag of items in the input sequence. We introduce 
tile function I t ems which forms the bag of all the elements in a sequence. For 
example 

,temsl[J) =[]
 

'temslllJ) = [1]
 

, 
, t ems I [ 1, 2, 2] ) ,temsl[2,1,2]1 [1,2,2]
 

,temsl [1, 2, 3]) ,temsl [2, 1, 3] 1 [1,2,3]
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More precisely 

Items seq X -- bag X 

l:J 5: seq X • 

ilems(s)	 { x : rng(s) 

x .... !{, dom(s) I s(,) x}! 
} 

Each elemenl x that occurs in the sequence is mapped onlo its frequency 01 

occurrence in the sequence (i.e. the size of the set of positions in the seqnence that 
have value x]. 

The specification of sorting is given by 

Sort	 ~ 

I n?,
 

Dut! seq X
 

Non-Decreasing[out!/s] A 

Items(out!) = Items( In?) 

The output of the sort is non-decreasing (in the use of Non-Decreas I ng above the 

variable s has been renamed to out I :>0 that the predicate of Non-Decreas I ng 

applies te the output of the sort). The output sequence UlliSl con lain the same items 
as the input, with the same frequency. 

Sort is an example of a lion-algorithmic specification. It specifies w hat Sort should 

a.chieve but not how to go about achieving it. The advantage of a non-algorithmic 

speciCication is that its meaning may be more obvious than one which contains the 
extra detail necessary to be algorithmic. The specification is given in terms of the 

(defining) properties of the problem without biasing the implementor tow:uds a 

particular form of algorithm. There are many possible sorting algorithms. The 

implementor should be allowed the freedom to choose the most <l.ppropriate. 

~: Rewrite the sort specifica.tion for the case of sorting a sequence with no 
duplicates into strictly ascending order. 0 
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Solutions to Exercises 

SymbQJ table 

Add	 , 

st, st ' SYM --+t VAL 

s? SYM 
v? : VAL 

s7 rt dom(st) 1\ 

st' = st u { s? 1---+ v? } 

Rep 1ace	 , 

st, st I SYM .... VAL 
s? SYM 

v? VAL 

s? E dom(st) 1\ 

st' = st Ell { 5? 1---+ v? } 
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File add 

F i 1e Add , 
. f' , Key ~ Record 

a? : Key ~ Record 

~ = {}dam(a?) n dom(r) ~
 

I f' = f U a?
 

Sorting 

NoDup 1 I cat es ---, 

5 : seq X 

v I, J dom(s) 

I" J) "" (s(,) ,sIJ)) 
I 

Ascend I n9 

s : seq X
 

V I, dam(s)
J 
(I < j) ==> (5 ( I) <x 5 (J ) ) 

Sart ---, 

In?, Qut! seq X 

NoDup I I cates [ I n? Is J /I
 

Ascendlng[outl/sJ /I
 

rng(ln?) rng{out l )=0 
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Specification
 

Abetraet
 

A specjfica~ic\n of a symbol table for a block structured language is given. This 

specification is in tended to demonstrate how using the specification notation z,1 ,Z, 3 a 

specification can be built from components. 

A simple symbol tJ.ble suitable for a single block is described first; it has opera~iolls to 

look up, npdate and delete entries. This simple symbol table is the same as that given 

in the section entitled "Examples of Specification Using Mathematicsn'l- preceding this 

section. The treatment given here differs from that in the earlier paper in that it 

emphasises how such a specification can be built using the scben~a notation of 'If' and 

includes a treatnleut of error (onditions not given in the earlier paper. Readers not 

familiar with the mathematics used in this specification should consult the earlier 

paper for a more detailed explanation. 

The second part of this paper specifies a block structured symbol table in terms of a 

seqnence of simple symbol tables; one for each nested block. Operations are given to 

se<l.rch the enviroIlment for a symbol, and to start and finish nested blocks; the 

are rations on a simple symbol table are upgraded to. work on the symbol table 

corresponding to the smallest enclosing block. 

Explanatious of notations in the paper are given in italics within the paper and a 

sUlllmary of the notations used is given in an appendix. 

Copyright © 1. J. Hayes 11 Jul 85 15 
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Symbol Table 

A 5ymbDl table associates a unique value (from the set VAL) with a symbol (from the 

set SYM). The oper;ltioDS allowed on :l. symbol table are to: 

update the value associated with a symbol in the table; if the symbol is 
not already in the table it wiJl be added, 

look up the value associated with a symbol in the table, and 

• delete a symbol and its associated value from the table. 

To specify an abstract data type for a symbol table we first give a model of 

the state of a symbol table and a description of the initial state, then we 
specify each of the operations on a symbol table in terms of the relationship 
between the state before an operation, tbe inputs to the operation, the outputs 
from the operation, and the state after the operation. 

The St.at.e 

Tbe state (If a symbol table can be modelled by a partial function from symbols to 

values 

ST 0 SYM -+'> VAL 

Initially tbe symbol t:l.ble is empty 

~ {}st 1N1T 

Operations 

Eacb operation on a symbol table transforms a symbol table before (st) into a 

symbol table after (st'). 

1ST [ st, st' ST I 

The definition of each operation must include declarations of the before and 

after states of the operation; rather than write out these declarations in full in 

each definition, we introduce a schema 65T that contains just these 

declarations and include this schema in the definition of each operation as an 
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,.bbreviation for the dec1aratioIJs. The "I::." (for "change") in "liSP is just 

p,.rt of the name of the schema; we allow Greek letters in name". By 

convention names beginning with "6" are used for scheIllas that contain before 

and after state components. 

Error hclDdling and the operation to look up a symbol do llot modify the symbol table. 

=5T [ ft5T 1st' = st ] 

The schema ='5 T declares the before and after sta.ies (in 1::.5T) and wnstrains 

them to be equal; this schema describes the effect on the state of iIlquiry-like 

operations (such as looking up a symbol in the symbol table) and error 

handling; both of these do not modify the state. The "=" (for no change) in 

"=5T" is aga.in just part of the name. By convention names beginning wifh "=:" 
are used for schemas which are written to express that there is no chJnge. 

An extra constraint may be added to the predicate part of a schema by 

following the schema with a "I" followed by the predicate. The 'lddiUonal 

predicate is and'ed with the existing predicate of the schema to form the 

predicate of the resulting schema; in the case of =:5T the existing predicate is 

true (the default when no predicate is given as in 1::.5T). Expanding the 

definition of =5T we get 

=5T Q 

st '1 st 5T I 

st' = st 

To look up the value v! associated with a symbol s? we use 

LookUp. ---, 

=5T 
s? $YM 

v! VAL 

s? E dom(st) 1\ 

v! = st{s?) 
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The schema =ST is lJsed ill the definition of LookUp to declare the before and 

a.fter states (st and st') and to constrain them to he equal. The c01lvention of 
using the =cST schema saves writing out Jo/J the state components and the 

equality constraint explicitly. 

A schema IIJay be inclllded in the declaration part of a schema; the deciMations 

of the included schema are merged with the otller declarations and its 

predicate8 are and 'ed with the predicates of the ;,;cheJll<l. 

LookUp 

. 
, 

st, 

5' 

v! 

st' , ST 
SYM 
VAL 

st' == st A 

,? 

" 
E 

= 
dom(st) 

st{s?) 

A 

To update the value associated with a symbol we use 

Update 

6ST 
s7 SYM 
\/? : VAL 

st' == st Ell { s? ~ \/? } 

This schema uses h.ST to include the declarations of the before and after states. 

If the ~Y/l1bol was already in the table its old value is replaced by v?; if it was not in 

the table it is added. 
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To delete an entry in the symbol bble we use 

De 1ete _ 

65T 
s? : SYH 

s7 E dom(st) 11 

st' = {s?} ~ st 
"------------------' 

Errors 

LookUp and De 1ete are only defined if the symbol is present in the table. If the 

symbol is not present an error is reported and the symbol table is not modified. 

NotPresent! ~ 

=5T 
s? SYM 
rep I Report 

s? ¢ dom{st)A 

rep! = "S~mbo 1 not present" 

The schema ,=5T is included in the above schema to introduce the declarations 

of the before and after states and constrain them to be equal.
 

A com'entio!J used within this specification is th,!! schemas denoting errors
 

have names ending in "I"; the "!" is just part of the name.
 

Successful operations return :l. report of "OK". 

Success [ rep I Report I rep! "OK" I 
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The operatioD5 with error handling a.re 

STLookUp (LookUp ~ Success) v NotPresentl 

STUpdate Update A Success 

STOelete • (Delete ~ Success) v NotPresent! 

Either a LookUp operation can be successfully performed (if s? E dom(st)), 

in which case a report of "OK" is given, or the LookUp canDot be performed 
(if s? ~ dom(st)), in which case an error report of "Symbol not present" is 
given. 

The conjunction (II) of two schemas is formed by merging their declarations 

(variables wmmon to both declarations must have the same type) and and'ing 

their predicates. Below we give expanded versions of the look up operation. 
We do not normally find it necessary to expand such definitions to understand 
the specification but the expansions are in~ended to belp people wbo are not 
familiar witb tbe no~ation. 

LookUp A Success 

I =51
5? SYM
 
v! VAL
 

I rep! Report
 

I s? E dom(st) A 

v! ::: st(s?) A 

I rep! ::: "OK" 

In this example tbere are no common variables. 
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The disjuction (v) of two sche11las is formed by merging their dedar<l.tions 
(v-;uiables com.mon to both must have the same type) and or'ing their 
predicate parts_ 

STLookUp 
~ 

=ST 
s? SYM 
vi VAL 
repl Report 

(s? E dom(st) 1\
 

vi st{s?) 1\
 

rep! = "OK")
 

v 

(s? ~ dom(st) 1\ 

rep! = "5~mbo 1 not present") 

In this example the declarations in =5T and the declarations of s7 and rep! 
are common and have the same types, and bence can be merged. Note that no 
constraint is placed on tbe value of v! returned in the errOr case. 

Exercise 1: Give expanded forms of the schemas 5TUpdate and STOe Iet e, 0 
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Block-Struct.ured Symbol Toble 

We will now describe a symbol table suitable fN use in prrJces;,:.ing (e.g., compiling) :'l. 

block-structured language such as Algl~l 60. In such languages eZlch varbble 

declaration is associated with a block and a variable may be referenced only from 

within the block with which it is associated. Bloch lllay be nested within other blocks 

to an arbitrary level; each nested block mu.-;;t be completely euclosed by the block in 

which it is included. For example, consider tbe foll(Jwing fragment of Algol GO 

begin	 A
 
integer x, y;
 

x:=Z;y:=3;	 ( 1) 

begin	 B
 
real y; integer 2;
 

y :=	 0.5; x:= z; (2) 

end B; 

':d :::::	 x; (3 ) 

end A 

The outer block A declares variable" x and y of type integer. These variables llJay 

be referenced anywhere within block AI except ~hat the variable y of block A may not 

be referenced wit.hin blrJck B because there is a variable with the same name declared 

in block Bj within blrJck B tbe outer (block A) declaration of y is "'bidden" by the 

declaration uf y in block B. We refer to those parts of the program in which a 

vari ..bJe may be referenced as being within the ""cope" of that variable. 

A symbol table suitable for sequential procl2's-sing of :l. block-structured language 

should supprJrt tbe scopiug rules rA blrJck-strudured languages; it should have 

opep~ions for starling <lnd finishing blocks as well as operations to access, updato; and 

delet.e entries in the table. 
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The State 

The simple symbol table described in the earlier part of this paper is suitable only for 

keeping track of the variables of a single block. At a given point in a program we 

need to keep track of all the variables declared in all the blocks enclosing that point; 

this can be done by associating a simple symbol table with each block enclosing the 

point. To keep track of the order in which the blocks are nested we will arrange the 

symbol tables into a sequence so tha.t, if a block A encloses another block B, the 

symbol table for A will precede the symbol table for B in the sequence. We can 

model a block-structured symbol table by 

B5T ~ seq 5T 

The first symbol table in the sequeuce is for the outermost block enclosing a poiut. 

In the example given above, the block-structnred symbol table within block A but 

excluding block B (e.g., at the positions marked (1) and (3)) will be a sequence 
contaiuing a single symbol table 

[ { x ~ Integer, y f---+ Integer} 1 

Within block B (e.g., at the position marked (2)) the sequeuce contains two symbol 

tables 

[ { xf---+i nteger, \oJf---+lnteger }, { yf---+real, zf---+lnteger } ] 

At auy point within a program at most one variable of a given uallle may be 

referenced. We will refer to the variables that may be referenced at a given point, 
aloug with their associated information, as the "environment" of that point. An 

environment may be represented as a simple symbol table. In the example Jbove, the 

environment within block A but excluding block B (e.g., (1) and (2)) is 

{ X f---+ I nteger, \oJ f---+ Integer} 

and within block B it is equal to the symbol table for block A overridden by the 

symbol table for block B 

{ X f---+ I nteger, \oJ f---+ Integer} e { \oJ f---+ real, Z f---+ Integer} 

:: { X f---+ Integer, \oJ f---+ real, Z f---+ Integer} 
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In general, if we have a block-structured symbol table consisting of a. sequence of 

symbol tables the environment is given by overriding the symbol tables in 

sequence. For example, for the sequence 

[st 1, st z• . .. . st" 1 

the environment is 

st 1 e st z lil ... Ell stno 

We can define the distributed Qverride operator lill which extracts the environment 

from a sequence of symbol tables by 

fill ; seq ST ~ ST 

O/[] ~ {} 

O/(s [t I ) (O/s) 0 t 

Initially DO blocks have been entered; hence the block structured symbol ta.ble is the 

empty sequence 

bst lNI1 [ J 
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Operations 

The operations on a block-structured symbol table transform a sta.te before (bst) to a 

state after (bst ' ). 

~B5T [ b5t, b5t' B5T I 

Some operations leave the state unchanged. 

=B5T Q [ ~B5T I b5t' = b5t 

There a.re two opera.tions which retrieve information about a symbol from a 

block-structured symbol table: BLookUp and BSearch. BLookUp looks in the masted 

nested symbol ta.ble only; it will be defined in terms of STLookUp. BSearch searches 

for a symbol in the environment (i.e., the most nested occurrence of the symbol in the 

block structured symbol table). 

BSearcho-----------------------, 
=B5T 
5? SYM 

I 
VALv' 

s? E dom(l£l/bst) !\ 

v' (./b5t) (5?) 

When the start of a block is encountered a new (empty) symbol table is appended to 

the ~eq lIence 

BSt art0--------------
~B5T 

bst' = bst - [st INlT 1 
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When the eod of a block is encountered the last symbol table in the sequence is 
deleted 

BEnd() -----; 

JIBS! 

bst ,,[ ] A 

bst J front (bst):::: 

We want to be able to perform the simple symboi table operation::; (STLookUp, 

S TUpdat e and STOe 1et e) on the most nested (last) symbol table in the sequenCe. 

These operations can only be performed provided the sequence is non-empty, and 

they only change the last symbol table in the sequence. The relationship between the 

before and after values of the last symbol table in the sequence is determined by the 

simple symbol table operations. 

The common part of the three upgraded operations is given by 

Upgrade , 
JlBST
 

JIST
 

bst , [J A 

front(bst') :::: front(bst) A 

st :::: l~st(bst) A 

st' :::: last(bst') 

The above description does not specify the relationship between the last 
symbol table in the sequence before (st) and after (st') an operation; we 

have J.Jrea.dy described these relationships in Ollr definitions of the simple 

symbol table operations. We can now define the upgraded symbol I,able 

operations in terms of the definitions of tbe simple symbol hble operations 
given earlier. 
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The upgra.ded operations are given by 

BLookUPo (STLookUp ~ Upgrade) \ 6ST 

BUpdateo (STUpdate ~ Upgrade) \ 6ST 

BDeleteo (STDelete ~ Upgrade) \ 6ST 

A schema may have a list of its components hidden by use of schema hiding 
("\"). The declarations of the hidden variables are removed from the 
declaration part of the schema and ate existentially quantified in the predicate 
part. If the second operand to "\" is a schema tben all the variables in the 
declaration part of the second schema are hidden in the first schema. 

The components of liST (st and st') are hidden in the above definitions 
because we wish to define the opera.tions as working on before and after 

states which are of type BST; the liST components are only used to make the 
link between the specifications of the operations on the simple syI1lbol table 
and the part. of tbe SST state that the simple operations are to be performed 
on. The reason for introducing Upgrade is to allow the definitions of the 
operat.ions on simple symbol tables to be used directly in the definitions of the 
operations on block structured symbol tables. 

BUpdateo 

,--------------------, 
6BST 
s? SYM
 
v? VAL
 
rep! Report
 

(3 st. st' ST 
bst'I]'
 
front(bst') = front(bst) ~
 

st = last(bst) ~
 

st' = st $ { s? ~ v? } 1'\
 

rep! = "'OK" ~
 

st' = last(bst')
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BUpdat eo may be simplified to 

6BST 
5? SYM 
v? VAL 

rep! Report 

b,t " [I '
 
front(bst') :: front(bst) "
 

last(bst') ::: last(bst) l!l { s? ~ v? } "
 

rep! ::: "OK"
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Errors 

The upgrn.ded opera.tions and BEnd will fail if the seq uence i,s empty 

Empty' -. 

=BST
 
rep! Report
 

bst ~ [I A
 

rep! = "Not ... Jthln any block"
 

The BSearch operation will fail if the symbol is not in the environment. If the 
sequence is empty we give preference to the Empty! error, hence (or this error we 
require that the sequence is non-empty. 

Not Found ! j 

=BST 
s? SYM 
rep! Report 

bst ~ [J A 

s? E dom{E9/bst) 1'1 

rep! = "Symbol not found" 

The final definitions of the operations are 

BSearch = (BSearcho A Success) v NotFound! v Empty' 

BStart = BStart A Successo
 

BEnd - (BEnda A Success) v Empty'
 

BLookUp = BLookUPo v Emptyl
 

BUpdate = BUpdateo v Empty!
 

BDelete BDeleteo v Empty!
• 
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The expanded and simplified definition of BSearch is 

I =BST 
s7 : SYM 
v! ; VAL 

rep I Report 

(51 E dom(m/bst) A 

Vi = (Iil/bst) (s7) II 

rep! := "OK") 
v 

Ibst " [I A 

57 ~ dom(liljbst) II 

rep! := "Symbol not found") 
v 

Ibst = [I A 

rep! = "Not I-llth,n an~ block") 
I ---' 

Exercise 1: Give a.n expansion of BDe 1et e. 0 

Exercise 3: Define a search operation BLocate tha~ returns HoL only the value 
associated with a symbol but also the level of the innermost block in which it is 

declared. 0 
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Solution!'! to Exercises 

1. STUpdate ~ 

~ST 

$'7 SYM 
v? VAL 

repl ; Report 

st' :; st ID { s? 1---+ v? r 1\ 

rep! :::: "OK" 

STDe lete ---, 

AST 
5? SYM 

, 

rep! : Repor t 

(s? E dom(st) 1\ 

st I ::: { s? } ~ 

rep! :::: "oK") 

st A 

(s? E dom(st) A 

St'=5t/\ 

repl :::: "Symbol not found") 
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BDe 1ete _2. 
1165T --, 

s? SYM 
rep! ; Report 

(3 st, 5t' 5T 
bst , [I A 

front(bst') = front(bst) II 

st ::: last(bst) II 

(s? E dom(st) 1\ 5t' = { S7 } ~ st 1\ rep! = "OK") 

v(s? , dom(st) 1\ st' = st 1\ rep! ::: "Symbol not found") 
) A 

5t' = last(bst') 
v 

(bst=[]A 

bst' = bst 1\ 

rep! = "Not 1-1 i t hi n any block") 

This is equivalent to 

80e 1ete , 

1165T
 

s? : SYM
 

rep! : Report
 

(bst # [J A s7 E dom(last(bst» A 

front(bst') = front(bst) A 

last(bst') = { s? } 4 last(bst) 1\ 

rep! = "OK") 
v 

(bst 1- [] 1\ 57 ~ dom(lest(bst» 1\ 

bst'=bstll 

rep! = "Symbol not found") 
v 

(bst=[JA
 

bst' = bst 1\
 

rep! = "Not within any block")
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3. 

BLocateo I 

=BST 
s? SYM 

\/1 VAL 

1eve 1 I : N 

bot .; [I A
 

5? E dom( E!l/bst) 1\
 

1el'e1! :::: max {I dom{bst) I s? E dom(bst(l)) } "
 

\II = bst(level' )(5 7 )
 

BLocate Q (BLocateo" Success) \I NotFound! v Empty! 



Sequential File Specification 

Ian Hayes and Ib Holm S~rensen 

Abstract 

This specification describes a file .s:ystem with operations to 

o open, close and abort access to a file, 

o sequentiall)' read and write an open file, 

o	 reposition, find out the cmrent position, and find out the leng~h C'f an open 

file, and 

o delete an €.xisting closed file. 

The specification is organised as follows: the action of operations on an individual file 

(Read, W, I te, Repos i t Ion, Pas I t lon, and Length) are described followed by the 

related error conditions; these operations are then upgraded to specify their action on 

the state of the whole file 5Y5tem (i.e. as operating on an individual file in the larger 

state); operations to open, close and abort access to a file and to delete a file are 

defined; error conditions for files being nonexistent, not open, or already open are 

defined and the final definitions of all the operations, complete with error handling, 

are given. 
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Individual Files 

We can represent the contents of a file by a sequence of basic units 

F i Je ~ seq Un \ t 

where Un i t is the smallest addressable unit of information in a file (e.g., a byte). 

Initially a file is empty 

Flle]'~lT ~ (1 

When a file is in Use (open) for sequential reading or writing we need to keep track of 
how much Df the file has been processed. We can model this by introducing two 

sequences: the part already processed, and the rema i nder of the file. 

OpenF i 18 --" 

contents. 
processed, 
rema i nder F i 1e 

contents ::: processed - rema I nder 

The contents of the file is the concatenation of the processed part and the remainder. 
The current position in a file is the point between its two parts. 

Operations 

The operations transform a state before (OpenF i 1e) into a state after (OpenF I 1e' ). 

ll.OpenF j 1e g, OpenF i 1e " OpenF i 1e' 

If the state of a file is unchanged by an operation we use 

=OpenFi 1e ~ [LWpenFi 1e I OpenFi Ie' :: OpenF'le J 
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A Read operation returns a sequence v I of up to n? units in length starling at the 
current position in the file 

Reado I 

llOpenF lIe 

n? N 
v I : F I] e 

Vi = (1 .. n?) <J remainder 1\ 

processed' = processed ~,,! 1\ 

contents' = contents 

The value returned is the initial part of the remainder of the file; if 
Iremalnderl ;<: n? then the length of vi will be n?j if Iremalnderl ~ n? then 
v! will be the whole of remainder. Tbe current position moves to the end of the 
portion read. Tbe cautents of the file is uncbanged. 

The sequence read, concatenated with the final remainder, is equal to the initial 
remainder 

Reado ='" v! ~ rema i nder' = rema j nder 

A Ur i te operation cbanges a file by overwriting the initial part of the remainder of 
the file witb an input seq uence v? If necessary the file will be extended to 
accomodate the extra information. 

Ur I teo --, 

llOpenF i Ie 
v? File 

contents' = processed- (remainder IJl v?) 1\ 

processed' = processed ~ v? 

Tbe current position moves to the end of the sequence written. If tbe remainder is 

empty befare a Ur i te then the input sequence is appended to the end of the file. 

Ur I t eo I rema \nder = []
 
==> contents' = contents-v?
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To moYe to a pJrticular position in the file we caD use the Repos I t Ion operation 

Reposltiono -, 

60penF 11 e
 

p? N
 

p? E O.. Icontentsl 1'1 

iprocessed' I ;;;: p? A 

contents' = contents 

Provided p? refer5 to a valid position in the file, a Repos I t I or. will position the file 

so thai the processed part of the file i5 of length p? The contents of the file is 

ullchanged. 

To find out the current position in the file and the length of the file we use, 

respectively 

Pas I t i ana o =OpenFJ 1e; p! N pI !processed I 1 

lengtho '" [=:OpenF I Ie; n! : N n l ;;;: Icontentsl J 

The contents and current pOBition of the file aTe unchanged by both Pos It, on and 

Length. 

Exercise 1: Define an operation to truncate a file to the current processed part 

leavillg the fjle positioned at its end. 0 
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Errors 

A Repos i t Ion can fail if the requested new position is outside the bounds Df the file. 

All other operations are total. 

OutofBounds! ~ 

=OpenF 11 e 

p? ; N 

rep! : Report 

p? e: O .. lcontentsl f\ 

rep! = "Pos i t i on out of bounds" 

where Report ~ seq Char. 

Successful operations return the report "OK" 

Success ~ [rep! : Report rep! "OK" ] 

The operations with error handling are 

Read Reado f\ Success• 
Ur Itc - Ur i teo f\ Success 

Repos i t i on ;;;; (Reposltlono f\ Success) v OutofBounds! 

POSition = Position f\ Successo
 

Length = Lengtho f\ Success
 



40 Sequential File 

Named Files 

File names are sequences of characters. 

Name ~ seq Char. 

We will represent a file system by the currently open files (open) and a file store (f5) 
which contains the contents of the closed files plus the contents of open files at the 

time they were opened jf they existed in the file store at that time; the latter are kept 

so that a sequence of operations on a fiie may be aborted and the file reverts to its 

state prior to being opened. As we need to keep track of the current position of open 

files e<l.cb is represented by an OpenF i 1e; the files in the file store a.re just 

represented by their contents. 

FSys

I open Name --+Y OpenF I 1e
 

I fs Name --+7 File I
 

Initially a file system is empty 

FSySINIT 0 [FSys I fs = {} , open = {} I 

File system operations transform a state before (FSys) into a state after (FSys'). 

llFSys ~ FSys 1\ FSys' 
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The operations defined previously on individual files may be used to open.te on an 

open file. 

FSUpgrade , 

6FSys 

fn? ; Name 

ll.OpenF 11 e 

fn? E dom(open) A 

OpenF 118 = open(fn?) 1\ 

open = open Ell {fn? ~ OpenFlle'} A 

fs' = fs 

The appropriate file, which must be open, is selected and updated by one of the 
operations on a file. The file store does not change. 

The upgraded operations follow 

FReado = (Read A FSUpgrade) \ ll.OpenF j '1 e 

FWrlteo - (\.lr i te A FSUpgrade) \ 60penF lIe 

FRepos I t i ana ~ (Reposition A FSUpgrade) \ ll.OpenFlle 

FPos i t i ana • (Position A FSUpgrade) \ ll.OpenFlle 

FLength D • (Length 1\ FSUpgrade) \ ll.OpenFile 
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The file operations defined so far are only permitted on open files. We need 

operations to open a file, close a file (saving its contents in the file store), and ahort 

use of an open file (uot saving its contents). 

Open ---. 

ll.FSys 

fn? Name 

30penFile 

fn? ~ dom(open) A 

fn? E dom(fs) ~ contents fsUn?) " 
fn? E dom(fs) ~ contents [I ' 
processed :: [J " 
open ::: open U { fn? ~ OpenFlle } " 

f5' ::: fs 

The file must not already be open. If the file exists the contents of the open file 

become the contents of the file in the file store otherwi5e the open file is initially 

empty. The opened file is posilioned at its beginning. The file store remains 

unchanged. 

C105e' , 

6F5~s 

fn? ; Name 

fn? E dom(open) "
 , fs / ::: fs $ { fn? ~ open(fn?).contents } ~
 

I open = { fn? } ~ open
 

The file must be open. The contents of the open file replaces any previous value (i,e. 

the contents of tbe file at the time of the last open) in the file store. The file is deleted 

from tbe open files. 
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Abort 

6FS~s 
fn? : Name 

---, 

I 

fn? E 

open 

fs' == 

dom(open) 

= { fn? } 

fs 

fI 

~ open fI 

The file must be open, It is deleted from the open files. The contents of the file store 

remaius unchanged. If the file existed in the file store before being cpened its 

previous value remains in the file store; if it did not exist it still does not. 

If there is a system crash while the file system is iu use it is intended that the effect of 

the crash should be the same as if an Abort operation was performed for each opeu 

file. 

Crash, ~
 

6FS
 

open = {} fI
 

fs' == fs
I , 

The final operation needed is that to delete au existing file. 

Delete 

6FS~s 

fn? Name 

fn? E (dom(fs) - dom(open)) fI 

fs' {fn?} ~ fs fI 

open == open 

The file to be deleted must exist in the file store and not currently be oper.. The file 

is deleted from the file store. The open files do not chauge. 

Exercise 2: Define operations to rell:lllle a file and to copy a file. Does the following 

hold for your definitions: Rename .= Cop~ i Delete[oldfn?/fn?] 0 
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Errors 

All errors leave ,he file system unchanged 

=FSysError G: [ llFSys; fn?:Name; rep! :Report I FSys' FSys J 

If the file does not exist then De 1ete willlail. 

F t 1eNonExl stent ! ~ 

=FSysError 

fn? it dom(fs) 1'1
 

rep! :::: f n? ~ " does not ex i 5 t . "
 

If the file is open De Jet e and Open will fail.
 

F, leOpen! ,
 

:::FSysError 

in? E dom(open) 1'1 

rep! :::: fn?-:-" IS open." 

If the file is not open the operatiollS on individua.l files and C1 ose and Abort will 

faiL 

FI 1eNotOpen I --,
 

i =FSysError
 

l
I 

fn? it dom(open) 1\
 

rep! ::. fn?-" not open."
 
I 
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The operations with error handling are 

FRead = FReada
 
v F i 1eNotOpen!
 

FUr I te - FUr I tea
 
v F i 1eNotOpen!
 

FReposltion f;: FReposit,ona
 
v F i 1eNotOpen!
 

FPos I t ion 0 FPos I tiona
 
v F I 1eNot Open I
 

FLength 0 FLengtho 
v F 11 eNotOpen! 

FOpen 0 (Open 1\ Success)
 
v F i 1eOpen I
 

FClose - (Close 1\ Success)
 
v F 11 eNotOpen!
 

FAbort 0 ( Abort 1\ Success)
 
v F II eNotOpen I
 

FDelete = (Delete 1\ Success)
 
v FlleOpen!
 
v Fi leNonExlstent!
 

Note that for FOe 1ete, if the file did not exist and had been opened, the spe'cification 
allows either error message to be reported; this is an example of a non-deterministic 

specification. 

Exercise 3: Define the additional errors for Rename and Copy and give final 
definitions of these two opera.tions. 0 
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Solutions to Exercises 

1. Truncat e , 

.6.0penF I e 

processed' processed A 

rema I nder' [ I 

z. Rename ~ 

.6.FS~s 

oldfn?, ne~fn? : Name 

oldfn? E dom(fs) - dom(open) A 

ne~fn? e dom(fs) U dom(open) A 

fs' = {oldfn?} ~ f5 U { ne~fn?t---+fs(oldfn?) } A 

open· = open 

Copy I 

.AFSys 
o1dfn?, ne~fn? Name 

oldfn? E dom(fs) - dom(open) A 

ne~fn? e dom(fsl U dom(open) A 

fs' = fs U { ne~fn?t---+fs(oldfn?) } A 

open = open 
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3. FrleExlsts! I 

EFSysError 

fn? E dom(fs) 1\
 

rep! = fn?-" already eXists."
 

FRename 

FCopy 

0 (Rename A Success) 
v FlleNonExistent1loldfn?/fn?] 
v Fl1eOpen i [oldfn?/fn?] 
v FlleExlsts l [ne~fn?/fn?] 

v FlleOpen l [ne~fn?/fn?] 

0 (Copy A Success) 
v FlleNonExistent ' [oldfn?/fn?] 
v FlleOpen! [oldfn?/fn?] 
v FlleEx\sts!(ne~fn?/fn?] 

v FlleOpen! [ne~fn?/fn?l 



FJexitirne Specification 

Abstract 

This paper gives a simplified specific~tion of an actual flexitime sy~(em. It is 
interesting for a number of reasons. It is q1lite brief and not all that complicated, and 
gives some good examples of the power of using set theory for specification. The 

specification makes u&:e of a state which is f<Lr richer than that necessary for an 
implementation; this <Lpproach has it&: rewards in an overall simplification of the 

specification. The specification is also &:implified by using an absolute time frame 
rather than one usirrg times only within the current pay period. 

Flexitime allows people to vary the bours they attend work (within certain bounds) 
provided they work the required total number of hours witbin each pay period. 
Keeping track of the time worked for each employee can be computerised by having 
employee&: clock in when they begin work for the day and clock out when they leave. 
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State 

We. Will only record workiug time to the nearest minnte. 

TI me G f::l -- iu min utes 

A per:od of limE' call be represented by a set of (not necessarily contiguons) minutes. 

Per I od IF Time 

We can represent the standard working times for a pay period by a set containing all 

the minutes between gam and 5plIl, excluding the lunch break from 12noon to Ipm, 

for all the days in the pay period. In a similar way we can represent the range of 

permissible f1exitime working hours by a set of times. The function Standard_Hours 

takes a time as argument and gives the set of standard working times for the pay 

period emcompassing the time given as its argument. Similarly, the fnnction 

Flex I t I me_Hours gives the set of flexitimes in the period encompassing the time 
given as an argument. 

Our mode! of the system will record the times HDiked for all tbe employees, plu5 the 

time at which people currently working clocked in. Each employee is assigned a 
unique identifier from the set rd. 

1ex j _ 

Standard_Hours,
 

Flexltime_Hours Time ~ Period
 

Harked Id ~ Period
 

In Id~Tlme
 

dam(ln) ~ dom(Horked) 
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Operations 

Each operation transforms a state before (Fl ex i) to a state after (Fl ex I'). 

.6Flexl Flexi A Flexl' 

Some operations do not change the state. 

=Flexi [ .6Flexl I Flexl' = Flexi 1 

Clocking in and out operations performed by employees involve them inserting their 

unique (card) key into a special terminal which transmits the employees identifier and 

the current time to the system. The system responds with an indicator of the 

operation performed. The common part of the clocking operations is given by 

Clocking I 

.6Flexl 

i d? Id 

t? Time 

I nd ! Response 

id? E dom(~orked) A 

Standard_Hours' = Standard_Hours A 

Flexitime_Hours' = Flexltime_Hours 

where Response ~ { "ClockIn", "ClockOut", "ReadOut", "Unkno~n" }. 

The identity of the employee must be known. Clocking operations do not effect 

St andard_Hours or Flex it I me_Hours. 
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An employee clocking in is given by 

~l ockIno I 

ll.Clock I ng 

,d? it. dom(ln} II 

t? E Flexit ime_Hours(t?) 1\ 

In = in U { Id? ~ t? } A 

~orked' = Horked A 

Ind! =: "Clockln" 

The employee must not have clocked in already and the current time must be in the 

bounds of the flexitime working hours for the current pay period. The employee is 

clocked in at the given time. 

An employee clocking out is given by 

£lockOut o ( 
l!.Clock i ng 

Id? E dom(ln) " 
Horked' =: Horked ~ 

{ Id? ~ (h1orked(id?) u In(ld?) .. (t?-l)) }" 

In' = { I d? } ~ in 1\ 

ind! = "ClockedOut" 

The employee must have clocked in. The minutes worked since clocking in are 
credited to the employees time worked. Only the period that lies within flexitime 

hours fe<llly counts towards flexitime but we have chosen to record the total working 
time ill this specification in order to simplify it and allow extensions to keep track of 
overtime worked etc. The minutes worked are all those minutes from the time the 
employee clocked in (although he may not have worked the whole of that minute) 

upto but not including the minute in which he clocks out (even though he has worked 
part of that minnte). On average partia.l minutes not worked at clock in should cancel 

out partial minutes worked at clock out. 
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On each transaction the system responds with the current credit or debit of time 
worked by the employee within the current pay period, relative to the standa.rd times. 

orked I 

t£l ock I ng 
cr! : RelMlnutes 

cr!	 = Il-lorked'(id?) n Flexltlme_Hours(t?)1 

- I{ t : Standard_Hours(t?) I t < t? }I 
I	 -------' 

where Relminutes .; 71... The credit (cr!) is of type RelNinutes (relative minutes) 

which is positive to indicate a credit and negative to indicate a debit. Only the period 
of time worked that is within the flexitime hours for the current pay period counts. 

The clocking operations in full are 

ClockIn Clocklno A Worked 

ClockOut'; ClockOut o A Worked 

If au employee not currently working inserts a card outside flexitime hours they will 
not be clocked in. However, they will receive an indication of the current time credit. 

eadOut 

Worked 

Id? II dom( In) A 

t? r£ Flexltime_Hours(t?) A 

i nd! = "ReadOut" A 

Flexi' = Flexi 
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If an unknown key is inserted an error respouse is given 

U,known 1 _ 

'OFl e>< I 

Id? Id 

I nd! : Response 

Id ~ dom(worked) ~ 

I nd 1 ::: "Unkno~n" 

An administrative operation is required to add a Dew employee. The identity of Dew 

employee ischosell from those llot already in use. 

~dd_Employee -, 

liFlexl
 

I d! Id
 

Id! ~ dom{worked) ~ 

worked' ::: worked U { id! ~ {} } II 

In::: In 1\ 

Standard_Hours' ::: Standard_Hours II 

Flexltime_Hours' ::: Flexltlme_Hours 
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Diary Specification 

A diary records details of events. It records when an event will take plac€ and what 

the event is. We will model an event by 

Event 

when Per I od 

what Inf ormat Ion 

where Per i od :::;; (P Time. A period is a, not necessarily contiguous, set of times. We 

will not specify the structure of Informat i on here; it can be thought of as just text. 

A diary consists of a set of events. 

Diary ~ IF' Event 

We will not put any constraints on the entries in a diary as we view a diarr pnrely as 

a mechanism for recording information about events. 

Initially a diary is empty. 

Dlar~INIT ~ {} 

Operations 

Each operation on a diary transforms a state before (D 1 ary) into a ,tate after 
(D, ary'). 

lIDiar~ [ entries, entries' Di ar~ 1 

SOllie operations leave the diary unchanged. 

=Dlary [ lIDlary I entries' entries 1 
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Two primitive operations on dbrje~ afe adding and deleting entries.
 

AdJEV 
~[):ar~ 

Event? 

I 
ertrles' entrIes u { Event? } 

~ 

Del e18E;) 

liD I ary 

E'.'enl? 

ertrles' entries - { Event? } 

When qW2rying a diary it is Ilseful to extract all the event:;; that overlap a given time 

period. 

Quer(~:LPer I ad 

=0 i ary 

at? PerIod 

entries! Dlar~ 

entrles l { ev entries I at? n eV.I-.,nen t- {} } 

The abow operation ~llows the input of any set of times as the period at? In a 

realistic dirtry system there would be a small language th:.11 is used for specifying time 

periods; such a language can be specified independently of the <l.bove and the time 

period associated with an input string call be input to the Query_Per I ad operation. 
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Another useful querying operation is to select all the events which match some 

criterion. 

Query_Match 

=D i ary 
match? Event ~ Boolean 

entries! : Diary 

entries! ( ev entries I match(ev) } 

In a reali:;;tic diary system the function match?, which is atl input to the above 

operation, would be :;;pecifjed according to a small input language which allowed such 

operations as pattern matching against the information field of an eveut :lnd tests on 
the time peric\d of an event. 

Multiple Diaries 

So far we have only a single diary. The :;;ystelll should be able to maintain mauy 

diaries: oue for each person plus others for :;;llch entities as groups of people, rooms, 

etc. 

Diaries Ent ity ---B Diary 

where Ent I ty is the set of all possible entity names. 

Initially there are no diaries in the system. 

DlariesINIT ~ {} 
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The operatiollS on individual diJ.ries l\1ay be promo!,ed to the mUltiple diary state by 

I
Multiple
 

liD, ar j 85
 

e? Entity
 

liC I ary 

e? E dom(dlarles) "
 

entries = dlarI8s(e?) 1\
 

d1ar I es' = d I ar I es e { e?t-+entr I es' }
 

where .601 ar' I es d I ar I es, diaries' Diaries }. The promoted 

operations are 

Add~ '" (Mu 1tiP 1e A Add EV ) \ 6D,ary 

DeleteM =;: (Multiple 1\ OeleteE.'JJ \ 60lary 

Query_Per lodM ; (Multiple" Query_Period) \ liOlary 

Query_Mat ch M (Multiple 1\ Query_Match) \ 6Dlar y 

The diaries of a S<2t of .mtities may be combined into a single diary. 

:omh I ne 

=0 I ar I es 
se? : lP Ent I t'j 

entries.' Diary 

missing! : [p Entity 

mI 55 i ng I 5e? - dom(dlarles) 1\
 

entries' U { e: (58? n dom(dlarI8S)) • dlaries(e) }
 

where ,,0 I ar I es ~ [liD I ar I es I d I ar I es' = d I ar I e5 l. The rlbri€B of all 

thoBe ettiti €s in the Bet 5e? that exist are cumbin€d into a single diary. The entities in 
5e? tb~t do not b~ve diaries are reported in the .set mI55 r ng ! . 
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Groups of Entit.ies 

So far we have a single diary associated with an entity. An entity would have its own 

individual diary but would also be interested in the diaries of all the groups it is a 

member of. We can introduce a relation between entities representing group 

membership. 

Groups :::;;: Ent It~ H Ent i ty 

Given a relation is i ngrp Groups and an entity p, the groups of which p is a 

member are those contained in the set 

i 5 Ingrp cr { p} D. 

Because the groups are t,hemselves entities we can form supergroups from a number 

of groups, etc. For example, the group of people employed in a division consist of the 

groups of people in the departments of the division. 

An enLity p will be interested in its own diary, the diaries of the groups it isa member 

of, the diaries of th~ supergroups those groups are members of, and ,a OD. In 

mathematics we can use the (reflexive) transitive closure of the relation is i ngrp, 

which we denote by is Ingrp*, to provide a new relation: an entity is related to all 

the entities whose diaries it is interested in. 

Select_Ent It les 

=Groups 
e? : Ent Ity 

se! IP Ent It ~ 

se! Isingrp'[{p}D 

where :=:Groups :::;;: [ IS Ingrp, I S I ngrp' Groups I I S Ingrp ISlngrp ]. 
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Note: if R is a relation of the form 

R X H X 

then its reflexive transitive closure R" is the smallest relation with the followiug 

properties for all x, y, z X 

x R" x
 

x R y => X Rl'i Y
 

x R" y 1\ Y R* z => x R" z
 

To extract the combined diary that an entity is interested in we use 

Comb I ned_D I ary Select_Entities » Combine 

The set of entities selected by Se 1ect_Ent I ties are input to the Comb I ne 

operation which combines the diaries of the entities that exist into a single diarYi any 

of the entities that do not have diaries are reported in the set mI S5 J ng! . 

End note: The above specification only provides a basis for a diary system. Such 

administrative operations as setting up Dew entities, removing entities, and setting up 

and modifying the group membership relation are not covered. 
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1. Definitions and declarat.ions. 

Let x, xk be identifiers and T, Tk sets. 

LHS • RHS Definition of LH5 as 

syntactically equivalent to RH5. 
x: T	 Declaration of x as type T. 

Xl: T1 ; xz: TZ; •. ; x n : Tn 

List of declarations. 

Xl' x2' ,. , x n : T 

~ x 1:T: xZ:T; xn:T. 

2. Logic:. 

Let p. Q be predicates and D declarations. 

~ P Negation: "not P".
 
P , Q Conjunction: "P and Q".
 

P v Q Disjunction: "P or Q".
 

P ~ Q Implication: "P implies Q" or
 
"if P then Q". 

P .. 0 Equivalence: "P is logically 

equivalent to Q". 

'V x ; T • P 

lIuiversal quantification: 

"for all X of type T, P bolds", 
:3 x ToP 

Existential quantification: "there 

exists an x of type T such that p", 

3 1 x ToP" 
Unique existence: "there exists a 

unique x of type T such that P". 

~ (3 x : T 0 Px " 

....,(3~:T I !:j#x P,»)0 

'V xl:Tl;	 xz:TZ; ; xn:T • P 
n 

"For all Xl d typel l' 
Xz of type T2' ... , and 
X n of type Tr' P h,)lds. 

3 x"T t ;	 xz:Tz ; ; xr:T" P 
Similar to 'V, 

3 1 x1'T 1 : xz:Tz ; x.:T n • P 
Similar to 'V. 

v 0 I P • Q ; ('V D • P ==> Q). 

3 0 I P • Q OI3D·P'Q). 
t 1 = t z	 Equality between terms. 

t 1 1- t 2	 o ~(t, = til. 

3. Sets. 

Let 5, T and X be sets; t, t k terms; P a 

predicat.e and D declarations. 

t E 5	 Set membership: "t is an element 

of 5". 
O~(tES).t " 5 

5 l; T Set inclusion: 
(V x SoxET), 

5 c T	 Strict set inclusion: 
~ SsT"S~T, 

{} The empty set. 

{ t l' t z.. ,. , t n } The set 

containing t l, t z,' and tn' 
( x TIP ) 

The set conta.ining exactly those 

x of type T for which P holds. 

(t 1• t z• . t n) Ordered n-tuple 

oft1,t Z" and tn' 
T1 x Tz X , .. X Tn Car:esian product: 

the set of all n-tuples such that 

the k th componenl is of type Tk' 

{ xj:T 1; xz:Tz ; .. : xr:T n I P} 

The set of n·tuple~ 

(Xl' xz' " .• )(n) with each 
)(k of type Tk such that P holds. 
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The :let of t's sllch that given the 

declarations D, P holds. 
o • t 

~ (0 I true • t ). 
~ S Powenet: the set of all subsets 

of S. 
F S Set offinite subsets of 5: 

2 {T: IP 5 I T is finite }. 
S n T Set intersection: given 5, T: IP X, 

Q { x: X I xES 1\ X E T } .. 
S u T Set union: given 5, T: IF' X, 

2{x:X I xESvxET}. 
S - T Set difference: given 5, T: IP X, 

G: {)(:X I xES" x t! T }. 
n ss Distributed set intersection: 

given 55: IP (IF' XL 

o kX I	 IVS,SS • , E S)}. 

u SS Distribut.ed set I1n ion: 

given 55: IP (IP XL 
o {"X I	 13S,SS • , E S)) . 

IS I Size (number rJf distinct 

elements) of a finite set. 
I 

4. NUJllbeT8. 

N Thf set of natural numbers 

(non-negative integers). 
N' The set of strictly positive 

natural numbers: 

OM-(O}. 

~ The set of integers (positive, zero 

and negative). 
m.. n Tbe set of in tegers between m 

and n inclusive: 

2{k:Z I m(kl\k(n}. 
min 5 Mmimum of a set, 5 IF N. 

mlnSeS/\ 

(Vx 5·x~mln5). 

max 5 ~faximul11 of a set, 5 IF N. 

max 5 e 5 /\ 

('9'x ; 5 • x ::;; max 5). 

5. Relations. 

A relation is modelled by a set rA ordered 

pairs hence operators defined frJr sets can 

be used on relations. 

Let X, Y, and Z be sets; x X; I::J Y, 
and R; X H Y. 

X H Y The set of relations from X to Y: 

~ ~ IX ' Y). 

X R y x is related by R to I::J; 

~ I x, ~) E R. 

x f---) y :;:: (x, Y) 

{ x 1f---)Yl' xzf---)yz, xnf---)Y } 

The rela.tion
 

{ (x,, y,), , (xc' Yc) }
 

relating Xl to Yl' and
 

x n to Yn .
 

dom R The domain of a relation: 

~ (x,X I 13y'Y • , R y)}. 

rng R The range of a relation: 

n 

~ (y,Y I	 13,'X ' , R y)}. 

R1 I Rz	 Forward relational composition: 

given R1: X~Y; Rz: YHZ, 

~ ( "X, "Z I 13y'Y • 

x R1 Y /\ Y RZ Z )}. 

R1 0 Rz Relational composition: 

:::i Rz I R1. 

R-1 Iuverse of relation R; 
o (y,Y, "X I X R y ). 

,d X Identity function all the set X: 
:;:: {x ; X • X 1---+ X }. 

R'	 The relation R composed with 

itself k times: given R : X H X, 
RO .;: I d X, Rk~ 1 :;:: R~ 0 R. 

R'	 Reflexive transitive closllre: 

~ U ( n' til • RC
). 

R' NrJn-reflexive transitive closure: 

~ U ( n' N' • RC
). 

RaSI Image: given 5 ; f X, 

~ (y, Y I 13" S ' , R y)}. 
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S <I R	 Domain restriction to 5: 

given S:	 [P X, 
~ {x:X;y:Y I xES A X R y}. 

S ~ R Domain su btr<J.ction: 

given 5:	 lP X, 
~(X-S)<lR. 

R ~ T Range restriction to T: 

given T:	 lP Y, 
o {X' X ,~, Y I x R ~ A yET}. 

R ~ T Range subtraction of T: 
given T: lP Y, 
~R~(Y-T). 

R1 iII Rz Overriding: given R1,R X~Y,z 
~ (dam Rz ~ R1) U Rz. 

6. FWletions. 

A function is a. relation with the property 

that for each element in its domain there is 

a unique element in its range related to it. 
As functions are relations all the operators 

defined above for relations also apply to 

functions. 

x ~ Y	 The set of partial functions from 

X to Y: 

~{LX""'YI 

('tIx: dam f • 

(3 I y' Y • x f y)) }. 

X ---+ Y The set of tot<J.l fundions from 

X to Y: 

o { f' X..... Y I dom f = X }. 
X	 >+t Y The set of one-ta-one partial 

functions from X to Y: 

~{LX-"'YI 

( .... 1,,1: rng f • 

(3 I xX·xfy))}. 

X )-1 Y The set of one-to·one total 

functions fr01l 1 X to Y: 

~ { L X,.,..y I dom f = X }. 

f t	 The function f applied to t. 

(AX XIP·t) 

Lambda-abstrac tion: 

the function that given an 

argument x of type X such that P 

holds the result is t. 
~ { x; X I P • , >-> t }. 

(A xl: T1; '" ; xn: Tn I P t) 

~ {x 1 :T 1 ; : xn:Tn I P 

(Xl' ...• xr) ~ t }. 

7. Orders. 

part I a I_order X 

The set of partial orders on X. 
~ { R: X(1X ) 1J~,y,z: X 

x R x /I 

X R y " y R x ~ x=y " 

xRyllyRz~xRz 

} 
total_order X 

The set of total orders on X. 

~ { R: part i a l_order X 

Vx,y: X 

xRyvyRx 

}. 
monotoniC X <x 

The set of functions from X to X 

that are monotonic with respect 

to the order <x on X. 

~{f X-"XI 

)( <x y ==> f(x) <x f(y) 

} 
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8. Sequences. 

seq X	 The set of sequences whose 

elen.. ~ents are drawn from X: 

•	 "fA, N'~X I 
dom A = 1 .. IAI }. 

I AI Th~ l~llgth of sequence A. 
[ ] Th~ empty sequence {} . 

[aI' ·a. "I 
:Hoa 1, nHoa n }.

~ 
[aI' eo,l - [bl' b,] 

CO:r:::l..CJtenation: 

Q [8:, ... , an' b t ,···. bill]' 
[J -, = A- [I = A. 

head A • A(l). 

last A • AIIAI). 
tall [x]~A ~A. 

front A~[x ] ~ A. 

rev raj.	 a2'_ an] 

Re "frse: 

~ [an.···. a Z' 131], 

re....., I)	 = []. 

fAA Di:stributed concatenation: 

gi......,enAA seq(seq(X)), 

• A\(l)- -AA(!AAI), 

- il] = [I· 
'fAR	 D __ sr.-ibuted relational 

co rllposition: 

gi--..ren AR seq (X ~ X), 

• I.R (l) , ... , AR ( I AR I ), 
.,-[] = 'd X. 

dis 10 I nt	 AS Pairwise disjoint: 

gi -ven AS: seq ([p XL 

;: (1;/	 I. J : dam AS • I .,. J 

= AS(,) n AS(J) = (}). 

AS par tit i ems S 

;: diSJOint AS 

/, U ran AS ::: S. 

A ill B Contiguous subsequence: 

~ (3C, 0: seq X • 
C-A-D = B). 

squash f Convert a function, f: N ---+* X, 

into a sequence by squashing its 

domain. 

squash {} = [], 

and if f :f {} then 

squash f == 

[ f ( , ) J - squash ( { 'H f) 
where I == ml n(dom f) e.g. 

squash {Z""""'A, Z7HoC. 4HB} 
= [A, B, C] 

5 1 A Restrict the sequeuce A to those 

items whose index is ill the set S: 

= squash (5 4 A) 

A I T	 Restrict the r<lnge of the 

sequence A to the set T: 
~ squash(A ~ T). 

9. Bags. 

bag X	 The set of b<lgs whose elements 

are drawn from X; 
Q X --j..) f\j+ 

A bag is represented by a 

fuuction that maps ead element 

in the bag onto its frequency of 

occurrence in the bag. 

[]	 The empty bag {}. 

[ Xl' xz' x n ] The bag 

containing xl' xz' . and xn 
with the frequency they occur in 

the list. 
J terns s The bag of items contained in 

the sequence s: 
Q { x: rng s • 

XHo I {I : dam sis ( I ) ==x} I 
} 
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Schema definition: a scbema groups together 
some declarations of variables and a 
predicate relating these variables. There are 

two ways of writing schemas: vertically, for 
example 

x N 
y seq ~ 

x < Iy I 

or horizontally, for the same example 

5 • I X'	 N; y; seq N I x< I y I I. 
Use in signatures after \I, A, { ... }, etc.: 

(VS· y" Ii). (~X'N; y; seq N I 

x<lyl • y"IJ). 
tupl e 5 The tuple formed of a schema's 

variables. 
pred S The predicate part of a schema: 

e.g.pred S lS x ~ Iyl. 
Inclusion	 A schema S may be included 

within the declarations of a 
schema T, in which case the 
declarations of 5 are merged 
with the other declarations of T 

(variables declared in both 5 and 
T must be the same type) and the 
predicates of 5 and Tare 
conjoined. e.g. 

TI;, 

is 

x, Z : ~ 

y seq ~ 

x'!:';lyIAZ<X 

5 I P The schema S with P conjoined to 
its predicate part. e.g. 
(5 I x>O) is 
[x:~;y:seq N I x'!:';I\dIAX>Oj. 

5 ; D The schema 5 with the 
declarations D merged with the 
declarations of S. e.g. 
(S ; Z : ~) is 

[ x,z:~; y:seq N I x'!:';lyl 
5 [nel-l/o 1d] Renaming of components: 

the schema 5 with the component 
old renamed to neH in its 
declaration and every free use of 

that old within the predicate. 
e.g.5[z/x] is 

I z;N; y;seq N I z < Iyl 
and 5[y/x. x/y] is 

I y;N; X'seq N I y < Ixl 
Decoration Decoration with subscript, 

superscript, prime, etc.; 
systematic renaming of the 
variables declared in the schema. 
e.g. 5 I is 

Ix';N; y';seq ~ I x'<ly'll 
~5	 The schema 5 with its predicate 

part negated. e.g. ~S is 

[x;N; y;seq N I "(x<lylll 
5 A T	 The schema formed from 

schemas 5 and T by merging 
their declarations (see inclusion 

above) aud and 'ing their 
predicates. Given 
T • [X' N; z; ~ N I xEz], 

z < x	 S 1\ T is 
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A schema may be specified 

x N instead of a list of variables; in 

~ seq ~ this case the variables declared in 

z ~ N that scherna are hidden. 
e.g. (5 1\ T) \ 5 is 

x,;;;I~Ii\XEZ 

z ~ N 
S v T The schema formed from 

schemas 5 and T by merging (3 x: N; y: seq f\! • 

their declarations and or'ing their x:<;;;lyIAXEZ) 

predicates. e.g.S v T is 

5 ~ (Vj. v2' ...• v n ). 

x N Projection: The schema 5 with 

!:J seq N any variables that do not occur 

z ~ N inthelistvl' vz. '. vn 
hidden: the variables removed 

x~lylvxEz from the declarations are 

existentially quantified in the 
S ... T The schema formed from predicate. 

schem<1s 5 and T by merging e.g.(S'T) r (x,y) i, 

their dec! Clrations and taking 
pred 5 ~ pred T as the 

predicate. e.g. 5 ~ T is similar 

to 5 A T and 5 v T except the 

predicate contains aD "'~" rather 
than an "'A" or all "Y". 

S .,. T The schema formed from 

x N 

seq N 

(3 z ~ N 

Y 

, 
x , I yl A x E z) 

schema" 5 and T by merging The list of variables may be 

their declarations and lClking replJ.ced by a schema as for 

pred S ~ pred T as the hiding; the variables declared in 

predicate. e.g. 5 ~ T the same the schema are llsed for the 
as 5 AT "",it,b U**" in place of projection. 
the "A", 

5 \ (v j ' vz ' ,vn ) The following conventions arE' Ilsed for 

Hding: the schema 5 with the variable nanle5 in those schemas which 

variables v 1 ' vz• .", and vn represent (lperatiolls: 

hidden: the variables li5ted are u)lcb.shed sbte before the op0ration, 

removed from the declarations da:::hed state after the opention, 

and <:lre exi;;tentially quantified in ending in "?" inpnts tr) the operation, and 

the predicate. e.g. 5 \ x is ending in ''I'' ontputs from the oper:l.tion. 

[~:seq f\! I (3x:f\! • x~,'yi)] 
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5 

The following schema operations only apply 

to schemas following the above conventions. 

pre S	 Precundition~ all the state after 

compODen ts (dashed) and the 

outputs (ending in "!") are 

hidden. e.g. given 
5 _ 

><7, 5, s', y! N 

5 S-><?I\yl=s 

pre S is 

><?, s : N 

(3 s !d! N· 
s' = s-><? 1\ !d 1 = 5) 

post S	 Postcondition: this is similar to 

precoudition except all the state 

before cOlnponents (undashed) 

and inputs (ending in "?") are 

hidden. 

5 • T	 Overriding: 
~ (S 1\ ~pre T) v T. 

e.g. given 5 above and 
T , 

><?, s. 5 N 

5 < x? 1\ 5 = 5 
~ 

5 • T is 

~,x?, S. 5	 • N 

(5' = 5-><7 1\ ~ I = S 1\ 

-(3 5' N' 
s < ><? 1\ s = 5)) 

v (5 < ><7 1\ S' s) , 

The predicate can 'je simplified: 

><?, s, s yl : N 

(5' = 5-><? '" y! 
1\ 5 :3 ><?) 

v 

(5 < ><? 1\ 5 I = 5) 

5 , T	 Schema compositicn.: if we 

consider an intermediate state 

that is both the fiml state of the 

operation Sand tr.e initial state 

of the operation T then the 

composition of S ,illd T is the 

operation which relates the 

initial state of S to the final 

state of T through the 

intermediate state. To form the 

composition of S and T we take 

the state after components of S 

and the state befo:e components 

of T that have a b<tsename* in 

comIllon, rename Joth to new 

variables, t..ke theschema "and" 

("') of the resultin~ schemas, ami 

hide the new vari.bles. 

e.g. SaT	 is 

I ><?, 5, 5 'd I N 

(3 50 ' N 
So = 5-><7 ,<. !d! = 5 1\ 

So < x? 1\ 5 = 50)IT
basename is the naille witb any decoration 

("'", "!", "7",.:tc.) remove'i. 
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5 » T	 Piping this schema operation is 
similar to schema composition; 

the di!rerence is that rather than 
iden tilying the state after 
compcuents of 5 with the state 

before components of T l the 
output components of 5 (ending 
in "!") are identified with the 
inputeomponents of T (ending 
in "?~) that have the same 

basellame. 
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