CAVIAR: A Case Study in Specification

by

Bill Flinn
Standard Telecommunication Laboratoriea
Harlow, England

and
It Holm Seérensen

Programming Research Group
Oxford University Computing Laboratory

Oxford University ¢ .-
Woliszc o,
Parks i~o_ ;

Oxford OX] 30
Technical Monograph PRG-48
June 1985

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford 0X13QD

England

Copyright (©) 1985 Bill Flinn and It Holm Sgrensen

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX13QD

England

CAVIAR: A Case Study In Specificatian

Bill Flinn and Ib Holm S¢rensen

Abstract

This paper deacribes the specification, written in the specification language known as
Z, of a reascnably complex software system. Important features of the Z approach
which are highlighted in this paper include the interleaving of mathematical text with
informal prose, the creation of parametrised specifications, and use of the Z schema
calculus to construct descriptions of large systems from simpler components.

Copyright © Bill Flinn and Ib Holm Sgrensen 26 Jul 85 1

CAVIAR

Contenta

0. Introduction

1. The Case Study

2. Identification of the Basic Seta
3. The Subsystemms of CAVIAR

4. A General Resource-User System

6. Specialisation of the General R-U System
5.1 An R-TJ system where resources cannot be ahared
5.2 An R-U gystem where each user may ocenpy at most one reicurce
5.3 An R-1J system where a user occupiea
at most one nonsharable resource
5.4 The specification library

8. Claseification and Instantiation
8.1 Some laws for CAVIAR
6.2 Matching system with models
6.3 The hotel] reservation subsystem - HR-V
6.4 The transport reservation subsystem - TR-V

7. The Meeting Attendance Subeystem
7.1 A pool system
7.2 The meeting - visitor subsystem

4 CAVIAR

8. The Meeting Resource Subsystems
8.1 A dlary aystem
8.2 The conference room booking subsystem
8.3 The dining room booking snbsystem
8.4 The visitor pool - V-P
8.5 The construction process

9. The Complete CAVIAR System
9.1 Combining subsystems to form the system state
9.2 Operations on CAVIAR
9.2.1 Operations which involve meetings only
9.2.2 Operations which involve vigitors only
9.2.3 A general visitor remaval operation
10. Conclusion
11. Acknowledgements
12. References and Related Work
Appendix: Mathematical Notation

Appendix: Schema Notation

CAVIAR [

0. Introduction

This paper presents a case study in system specification. The notation used to record
the system’s properties is known as Z [1, 2, 3]. Z ia based on set theory, and itsuse as a
specification language has been developed at the Programming Research Group at
Oxford University. Some important aspects of the Z approach are illustrated in this
paper.

As is well known, software development can be divided into several phases;
requirements analysis, apecification, design and implementation. Z can be applied in
both the specification and design phases; however, in this paper we will address the
specification phase only.

We view a specification as having a two-fold purpose: firstly, to give a formal
(mathematical) system description which provides a basis from which to comstruct a
design. Such a mathematical description is essential if we are to prove formally that a
design meets its specification. Secondly, to give an informal statement of the system’s
properties, in order that the specification can be tested (validated) against the (usually
informal) statement of requirements. Thus the Z approach is to comruct a
specification document which consists of a fudicious mix of informal prese with
precise mathematical statements. The two parts of the document are complementary
in that the informal text can be viewed aa commentary for the formal text. It can be
consulted to find out what aspects of the real world are being deactibed and how it
relates to the informally stated requirements. The formal text on the other hand
provides the precise definition of the system and hence can be used to reslve any
ambiguities present in the informal text. A benpeficial side effect for pratitioners
writing such documenta is that their understarding of the system in question is greatly
helped by the process of constructing both the formal and the informal descriptions.

It is often the case that the process of abstraction used to construct a sperification
resylts in séructures which are more general than those actmally required for the
system being considered. It is part of the Z approach to identify and desrbe such
genera] structures. These descriptions canr be placed in a specification library.
Particular cases of these general components can then be used later, either as part of
the current system or in subsequent projects.

This specification case study develops a number of general systems which are
subsequently constrained and combined to form the complete system description.

6 CAVIAR
1. The Case Study

This specification of a Computer Aided Visitor Information And Retrieval system
resulted {rom the analysis of a manual system concerned with recording and retrieval
of data about arrangements for visitors and meetings at a large industrial site.
Standard Telecommunications Laboratories (U.K.) sponsored the study in order to
investigate the feasibility of converting to a computer based solution. Of particular
concern were the interrelation of the stored information, the gquality of the user
interface apd the volume of data which was required to be processed. The customer
provided as input to the study an informal requirements document. We attempt to
provide in this paper an outline of the steps involved in development of the eventual
formal specification. It is important to stress at the outset that we view the task of
constructing such a specification to be an iterative process, involving several attempis
at constriction of a mode! for the aystem interspersed with frequent dialogues with
the customer to clarify details which are ambigucus or undefined in the initial
requirements document, and frequent redrafting to clarify the atructure of the
document.

At au early stage in the analysis it became clear that the CAVIAR system consisted
of sgeveral highly independent subsystems. Each subsystem records important
relationships within the complete system and these separate subsystems are
themselves related according to some simple rules. Most of the operations to be
provided in the user interface can be explained as functions which transform one
particular subsystem only, leaving the others invariant. These observation led to the
decision fo first define the subsystems in isolation and then to describe the complete
system by combining the definitions of the subsystems. Once this decision had been
taken, it also became clear that each of the individual subsystems, when viewed at an
appropriate level of abstraction, was a particular instance of a general structure.
From this vantage point it was natural to specify each of the subsystems by “refining”
a specification which describes the underlying general system.

The process of analysis as presented here begins with an identification of the sets
which appear to be important from the customer’s point of view. Next the
relationships between these sets are investigated and a preliminary classification of
the subsystems follows. The third phase consists of developing an appropriate general
mathematical structure in which to place these subsystems. Various ways of
specialising (restricting) the general structure are then investigated and particular
subeystema are modelled by instantiation. Fipally the subsystem models are
combined.

CAVIAR 7
2. Identification of the Basic Seta

We now present a briel account of the existing system, emphasizing the important
concepts in boldface. Visitore come to the site to attend meetinge and/or consult
Company employees. A visitor may require a hotel reservation and/or tranaport
reservation. Each meeting is also required to take place in a designated conference
room, 3t a cerfain titne. A meeting may require the use of a dining room for lunch,
on a particular date. Booking a dining room requires lunch information including
the pumber of places needed. Each conference room bocking requires session
information about resources required for use in the meeting, e.g., viewgraphe,
projectors. The main operations required at the user interface can briefly be
deacribed as facilities for booking, changing and cancelling the use of resources. We
list below the sets together with the names that we shall adopt for referring to them.

Set Name
Meetings M
Visitors ¥
Conference Rooms CR
Dining Rooms DR
Lunch Information LI
Session Information S1
Hotel reservation HR
Transport reservation TR

The informal interpretation of these sets is straight forward and for the purpose of
this specification no further detail is necessary. Note that the question of modelling
time remains to be resolved; at this point we simply observe that hotel reservations
are made for particular dates, transport reservations are made for certain times on
particular dates, and conference room bookings are made for sessions on particular
dates. We shall not specifly the term session further apart from noting thata date is
always associated with a session; it could, for example, denote complete momings or
afternoons, or hourly or half-hourly intervale, depending on the way conference rooms
are allocated.

8 CAVIAR

The notion of time and the relationship between the different units of time used
within the system can be formalised by asserting the existence of three sets as follows:

Date
Sessijon
Time

together with two total functions

date-of-session : Session — Date
date-of -t ime 1 Time — Date.

3. The Subsystems of CAVIAR

The first approach to a mathematical model stems from the realisation that several of
the sets listed above can be viewed as resources and other sets viewed as users of
those rescurces. We can identify the following subsystems of CAVIAR in this
framework (i. e., Resource-User systems). Observe that in different subsystems the
same set may appear in differing roles.

System Resources Users
CR-H Conference rooms Meetings
DR-H Dining rooms Meetings
M-v Meetings Visitors
HR-¥ Hotel reservations Visitors
TR-v Transport reservations Visitors

Once we have made this mathematical abstraction it seems worthwhile to develop a
general theory of such resource-user systems for the following reasons:

1. A specification of such a general system would be more useful as part of a
“specification library” than a specific instance of such a system. Re-usability is
much more likely to be achieved by having generic specifications available
which can be instantiated to provide particular systems.

2. Particular subsystems of the general system can be constructed as special
cases of the general specification in various ways. This will amply repay care
and time spent on the general case. Furthermore, such instantiation may well
result in 3 more compact implementation.

CAVIAR 9
4. A General Resource-User System

We consider a system parametrised over three sets;
[T.R U]

Informally, T is to be thought of as a set of time slots, R is a set of resources and U
is a set of users. We describe a general resource-user system as a function from T to
the get of relations between R and U. Thus we have a rather general framework: for
each time alot t € T, some users are occupying or using some resources. The set T
will later be inatantiated with different sets in the various applications. Notice that
considering relations between R and U allows ue the possibility of a user sccupying
severa] different resources simultazeously, as is shown informally in the following
diagram:

Formally, the structure we are describing is captured by a function of type
T— (Re L)

We shall now incorporate this into a schema defipition, This schema is parametrised
over the sets T, R and U, and contains some useful ancillary concepts in addition to
the function ru above which will be useful in later analysis. In Z apecifications it is
common to introduce such derived components: as specifiers of software we are
neither in the pogition of a pure mathematician looking for a particularly spare set of
concepts and axioms with which to define a mathematical structure, nor are we in the
position of an implementor trying to minimise storage. The component in-use, which
gives the set nf resources in use at any point of time, will be useful in contexts where

10 CAVIAR

we are not concerned with the user component of the system state. The function
users, which gives the users occupying resources at any point of time, will be used in
situations where we do not require the informatjon about resources. We also note that
there may be occasions when we wish to consider the set of inverse relations
generated by ru; we call this function ur.

. R-U S—
ru : T = (R e U)
inmuse : T = PR
users T—=PU
ur : T = (U & R)
Yi: T »
in-use(t) = dom{ru(t)) a
users(t) = rng{ru(t}) a
urft) = {re(tN! |

The initis] state of this system is defined by making ru(t) the empty relation for
each t,

Init-R-U 2 [R-U | rag(ru} = { {} }]

Our first theorem proves that such an inital state is reasonable and assures us of the
consistenty of the definition of R-U.

Theorem 1.
F 3 R-U -+ Init-R-U

In the interests of readability we have not given proofs of theorems stated in this
paper,

We continue by defining the appropriate operations for this structure. The first atep
is to identify commonalities. For our purposes, the operations that we wish to
consider on this structure are concerped with making a new booking, i. e., adding a
Dew pair (r,u) toan existing relation at some time t, cancelling an existing booking,
i. €., removing such an (r, u) pair, or modifying in some other way the relation that
exists al some particular time. In fact we shall be a little more general and define a
class of operations on R-U which allows the image of a set of time values to be
altered. This is because we anticipate such operations as booking a conference room

CAVIAR

for a meeting which lasts for several time slota. Of course a booking which involves

only a single time slot is a particular case.

Thus we may surmmmarise the common part of all the operations as follows. Their

description involves: a state before, R-U which introduces ru, in-use, users

and ur; a state after, R-U’ which introduces ru’, in-use’, users and ur; a set of

time values, t? which denotes an inpui. The operations always leave the function ru

unchanged except for times in t7. Formally this is captured by

— AR-U

R-U
R-U’
t?7 P T

t?7 dru’ = t? 4dru

We now have a success{ul booking operation defined as follows

__ R-U-Book
AR-U
r? : R
u? = U
Vt:t?
{(r?, u?) & ru(t) A
ru‘{t) = ru(t) U { (r?,u?) }

Thus R-U-Baok inherits all the properties of AR-U. Furthermore, it takea two
additional {input) pararmeters r?:R and u?:U, and is constrained by a predicale which
imposes a requirernent on the input parameters and also further relates the before

and after states.

12 CAVIAR
Notice that we are making the predicate
Vot: t? « {(r?2,u?) ¢ ru(t)

a pre-condition for a successful booking. In fact, we can show that this condition is
suflicient for performing a successful booking, i. e, i we are in a valid system state
with the required input parameters of the correct type available and furthermore the
above condition holds, then there exists a resulting valid system state which is related
to the starting state according to the R-U-Book schema. Formally, this is the content
of the following result:

Theorem 2
R-Ua [t7: PT; r?: R; w?: Ul ¥ t: £2 » (r?,u?) € ru(t) |
-
3 R-U' - R-U-Book

A successful cancellatiop aperation may be defined via

—— R-U-Cancel .
8R-U
r? : R
u? U
¥t t?7 -
(r?,u?) € ruft) A
ru‘{t) = ru(t) - { {r?,u?) }]

The pre-condition for successful cancellation is that the pair (r?, u?} is related by
ru(t) ferall time values t in t?;i. e., the following thearem holds.

Theorem 3
R-UaA [T t?:PT;r? :R;u? U ¥t:t? ¢ {r?7,u?) € rult)]
[
3 R-U’ » R-U-Cancel

CAVIAR 13

So far we have only specified successful operations; thus these deacriptions are
incomplete. We could at this stage define robust operations by introducing
appropriate error recovery machinery. In the interesta of simplicity we shall not give a
general treatment of errors; however we shall indicate in a later section how the
descriptions of the operations at the usger interface can be completed.

We shall define two further operations on this structure. The first involves deleting a
resource and all use of that resource. This is an operation to be treated with caution:
see Theorem 7 below.

— R-U-Del -Res |
AR-U
r? : R
VYt : t?
r? € dom ru(t) A
ru’{t) = {r?} €ru(t)

Informally, this operation may be desacribed as follows. Consider each element t in t7
and the corresponding relation ru(t) in turn. All elements {r?, u} are to be removed
fromruft).

Theorem 4
R-U A [t? : PT: r? : R | ¥ t: t? « r? € dom ru(t) |
F
3 R-U’ + R-U-Del-Res

Corresponding to deleting a resource there js an operation which, given a user value
u?, deletes all pairs (r,u?) from the relaticns associated with time values in t?.
This is defined as follows:

__ R=U-Del-User
AR-U
u? = U

Yt t?-
u? € rng rult) A

ru’(t) = ru(t) B { u?}

14 CAVIAR

Theorem &
R-U A t? : PT; u? : U | ¥t : t? « u? € rng ru(t) |
'_
3 R-U' « R-U-Del-User

8o far we have listed theorems that a specifier is obliged to prove; viz the result that
the initial state satisfies the required definition {and therefore that the specification is
consistent) and the theorems that explicitly give the pre-conditions for each operation.

For the apecifications that we shall develop from now on these theorems have been
omitted in the intereats of brevity.

In addition to these obligatory results, there are other “optional” theorems that are a
consequence of the specification, and which often give ingight into the structure being
developed.

Two such results for our system are as follows:

Theorem 8
R-U-Book # R-U-Cencel |" ru’ = ru.

Informally, this theorem states that if we make a booking and follow it immediately by
a cancellation using the same input parameters, then the state of the system does not
change.

Theorem 7
R-~U-Del-Res
'_
in-use’ = in-use & (At:t? + in-use{t) - { r? }) A
users’ = users @

{(At:t? « users(t) = {u: U ! ur(t){{u}) = {r?} })

This thecrem makes precise the informal comment made earlier about the need for
caution with the R-U-Del-Res operation. This theorem shows that resources are
removed from the system structures, which we do expect, but furthermore the
operation can also remove existing users.

There is a similar result concerning the R-U-Del-User operation.

CAVIAR 15
6. Specinlisation of the General R-U Systemn
We shall now specialise the general R-U system into particular classes of the system.
These apecialisations are motivated by the observation that for some of the instances
listed earlier, at any given time a resource may be related to only one user,or a user
may eccupy only one resource, or both.
5.1 An R-U syetem where resources cannot be shared
The firat case we define is the class where each resource may be utilised by at most
one user, but each user may occupy several resources. We denote this system by
RV (where *3* iz just a character in the name) and define it formally by
RU & [R-U | rng(ru) € R+U)

The initial state of this aystem is given by the same condition as for Init-R-U; thus
we have

Init-RXU & [R¥U | rngl{ru) = { {} } |
All operations are described in terms of
ARSU 2 R3U A ROV

The operations on this system may be defined as special cases of the general
operations for R~U. We first consider the bocking operation.

RSU-Book & ARSU A [R-U-Book | ¥ t: t? + r? & dom ru(t)]

The qualifying predicate is included in indicate that there is a further precondition
for booking a resource in a RXU system.

We now have two parts to the pre-condition for this operation; firstly this qualifying
predicate, and secondly the pre-condition arising from R-U-Book. In fact the former
implies the latter, aa is easily checked.

The cancellation operation i3 defined as follows:

R>U-Cancel & R-U-Cancel a AR3L

16 CAVIAR
On considering the two deletion operations defined for R-U, we observe that
R-U-Del-Res is equivalent to a cancellation in our present context, because the
resource is associated with only one user. We therefore need only the operation which
deletes a user.
RYU-Del-User 2 R-U-Del-User A ARDU
5.2 An R-U system where each user may occupy at most one resource
The second case we define is the class where each user may occupy at most one
resource but resources may be ghared amongst users. We denote this aystern by REU
and define it formally by
R¢U & [R-U | rng{ur) s U+R]
The initial state of this aystem is also given by the predicate for Init—R-l, We have
Init-R<Y & [RAW | rng(ru) = { {} }]
The operations are described in terms of
ARCU & R¢U A RCU
We now define the booking operation for the system.

R<¢U-Book & ARG A [R-U-Baok | ¥ t : t? * u? & rng ru(t)]

As before, a qualifying predicate is needed and again as before the constraint given
here implies the earlier pre-condition for the gemeral R-U-Book operation.

The cancellation operation ig defined as follows:

R<U-Cancel ¢ R-U-Cancel A AR<U
On considering the two deletion operations defined for R-U, we observe that this time
R-U-Del-User is equivalent to a cancellation in our present context, because a user
may be msociated with only one resource. We therefore need only the operation which

deletes aresource.

R¢y-Del-Res & R-U-Del-Res A ARCU

CAVIAR 17

5.3 An R-U system where a nser occupieé at most one nonsharable resource
The third and last specialisation we define shares all the properties of the systems
defined in the preceding two sections. It is therefore defined as the conjuaction of the
two schemas above. In this system each user may occupy at most one resource and
each resource may be occupied by at most one user. Formally we have

REU 2 RIU a RCU
The initial state of this system is clearly defined by

Init-RZU & [RZU | rng(ru) = { {} }]
The operations on this system are given by the conjunction of the operations defined
for each of the two earlier systems. For this system we require only the booking and

cancellation operations. Thus we have

RZU-Book 2 RXU-Book A R<U-Book

in»

RZU-Cancel R>U-Cencel A~ R<U-Cancel

5.4 The specification library

We have now conatructed four specifications which might be considered to form the
nucleus of a specification library for resource-user systems. We may summarise the
relationships between the four classes of system schematically as follows:

,R-'U —— Host generel
.“/
RXU |+ R<U

RZU

Host constrained

1B CAVIAR
8. Clageification and Instantiation
6.1 Some hws for CAVIAR

In this section, in order to illustrate the clarification process which took place during
requiremenis analysis, we list some observations about the CAVIAR system which
emerged during dialogue with the customer. We formalise the important constraints
a8 laws which need to be taken account into account in the development which
follows.

1. At any time a conference room is agsociated with only one meeting.
2. At any lime a meeting may be associated with more than cne conference room.

Law 1 is reasonably obvious: it would be difficult to hold more than one meeting in a
given room. Law 2 is not obvious: it was unclear from the informal description
whether or not a meeting could occupy more than one room. In fact the customer
believed initially that a meeting could only take up one room, but a counter-example
was found amongst the supporting documentation.

3. At any time a meeting is associated with only one dining room.
4. At any time participants from several meetings can occupy the same dining room.

These laws followed from the informal information provided that all visitors in a
particular meeting would go to lunck in the same dining room. It was further
established that all seats in a dining room were treated as indistinguishable, so further
meetings could be accommodated if enough seats were available. Further clarification
was necessary regarding lunch times: it transpired that there were “early” and “late”
lunches; however this was handled by “doubling up” each dining reom. For example,
a booking would be made for “DR 1, early” and this was a different dining room from
“DR 1}, jate.”

5. At any time a visitor 1s associated with only one meeting.
6. At any time a meeting may involve several visitors.

Law 5had to be checked out with the customer.

CAVIAR 19
7. At any time a hotel room is associated with only one visitor and vice versa.

8. At any time a transport reservation is associated with only one visitor and vice
versa.

Law 7 was natural, but law 8 was less so. It was established that even if the transport
department decided to uge a minibus, a separate transport reservation would be isaued
to each visitor.

6.2 Matching system with models

In this section we firat consider each CAVIAR subsystem in turn and match it to the
appropriate model. In fact we have enough structure available to define two
subsystems directly and we do this in the remainder of this aection.

(1} We first consider the conference room - meeting system CR-H.

From laws 1 and 2 we see that CR-M is an instance of the R>U subsystem.

(2) The dining room - meeting subsystem DR-H.

Applying laws 3 and 4 we find that DR-M ie an instance of R<U,

However this system does not contain any information about numbers of seals or the
lunch details, so we will need to extend this system later.

(3) The meeting - visito subsystem H-¥,
From laws 5 and 6 M-V is an instance of R(U.

However we have not documented the fact that meetings have to be created before
visitors can be attached to them; this will also be done later.

(4) The hotel reservation - visitor subsystem HR-Y, and the tramsport reservation -
visitor subsystermn TR-V, both have the property that each resource is occupied by
only one user and vice versa. Therefore both these systems are instances of R-U.

In fact this model is sufficient to define HR-V and TR-V completely, by instantiation,
as we now show.

20 CAVIAR
9.3 The hotel reservation subsystem - HR-V
We define HR-V as follows:
HR-¥ & RZU,p.y(Dete, HR, V]
This object is a decorated instance of the RCU achema, with its parameler sets

instantiated by the sets Date, HR and V introduced in section 2. To be more explicit,
the definition above is shorthand for the following:

— HR-v .
FUR-y : Data — (HR & V)
ir~useyg_y ¢ Date — P HR
usersyg.y : Date = PV
urpR-y : Date = (¥ & HR)

rng{rugg_y) = HR-BY A
rrg{urpyp-y) & V9HR A
(¥t: Date; r: HR »

r € in-useppylt) ® r € dom(rug y{t))) A
(¥t: Date; u: V «

u € usersyp_y(t) & u € ren(ruggy(t))) A
(¥t: Date <+ urppoy(t) = (rug (t))™)

Thus each component of the schema is given the decoration in the definition, and each
occurrence of the parametrised sets is instantiated as shown above. From now on we
shall use such decoration without further comment.
The initial state of HR-V is given by

Init-HR-¥ 2 Init-RZU,,[Dste, HR, Y]

and the operations are given by

Back-Hotel-Roomy, & RZU-Book,p_y[Date, HR, V]
and

b3

Cancal-Hotel-Room, RZU-Cancel,p_y[Date, HR, ¥]

CAVIAR 21
8.4 The transport reservation subsystem - TR-V
This subsystem is essentially the same as the HR-V subsystem except for the
parametrisation. The instances of the parameters are denoted respectively Time, TR
and ¥, where once again the sets TR and ¥ are aa in section 2. We shall not specify the
set Time further, except to repeat that it contains a Date component (see section 2).
Thus we have

TR-V & RZUpg.ylTime, TR, V]

with initial state given by

Init=-TR-¥ 2 1nit-RZUp.(Time, TR, V]

and operations given by

[1+]

Book-Transportg REU—BookTR_U[Time, TR, ¥]

and

[}

Cancal-Transportg REU-CancelTRN[T ime, TR, ¥}

22 CAVIAR

7. The Meeting Attendance Subsystem

We now ture our attention to what is necessary in order to complete a model for M-V,
Booking and cancelling operations bave been defined already but so far we have not
taken account of the fact that before bookinga can be made the system has to ®"create®
meetings, The question of exactly which objects are “currently defined® at any
particular time is important because in several cases only those objects known to the
system (i, e, those objects that have been created but not yet destroyed) ¢can book
Tesources, eic,

7.1 A poolsystem

We can medel this situation with a simple structure which we term a Poal. This
schema i3 parametrised over the set T and an arbitrary set X. There are only two
operations to be defined; namely those that add an object to, and delete an object
from, the pool, over a specified time period.

Formally we have

[T X1
Pool

1
|—exi5t5:T—'PX
]

with initial atate given by

Init~Pool 2 [Pool | rnglexists) = { {} } |
For later use we define

=Poal e [APool | Pool’ = Pool]
Given

APool 2 Pool A Poll”’

CAVIAR 23
The operations are given by

__ Create
APool
t?2 : P T
x? « X

axists’ = exists ® (At : t? « exists(t} U { x? })

and

— Destroy
APool

t?7 - P T
x?7 : X

exists’ = exists & (At ; t? « exists(t) ~ { x? })

We could have included in the Create cperation the pre-condition that the cbject x?
not already exist for any of the times in t?. However we make a deliberate decision
here to omit this - having in mind the situation where an object may already exist for
some of the times in t? and its existence needs to be extended to all of t?. A similar
remark applies to the Destroy operation,

7.2 The meeting - visitor subsystem

To construct the model for the M-V systern we combine the Pool and RSU structures.

—_ H-¥
R<Uy_y[Session, N, V]
PoolylSession, M)

vt - T -
in—usep_,(t) & existsy(t)

24 CAVIAR
Thus we have combined an M-V instance of an R<U system and a meeting
instantiation of a Pool system (with the parameter sets as shown). The predicate
assures that visitors can only attend existing meetings.
The initial state is given by

Init-H-¥ @ Init-R¢Uyyl[Session, i, ¥] A Init-Pooly[Session, H]
We now defipe the operations on H-V in terms of

aM-Y 2 H-v A M-y’
The first operatior is concerned with adding a visitor to a meeting.

Add-Yisitor-to-Meetingy @
4H-Y¥ A =Poolj[Session, H] A R{U-Bookp y[Session, M, V]

When an operation is *promoted” in this way, its new pre<ondition is determined as
follows: the %ld® precondition (i.e., that arising from its definition) must be
conjoined with a further predicate which arises from the new invariant of the larger
state. Here, for example, the pre-condition for the earlier booking operation is given in
section $% namely

Vot t?7%y = u?py € eaglrugy{t))
and this must be conjoined with

Vit t?qy « rPyy € existsy(t).

This second predicate is a consequence of the M-V invariant.

Thus the complete pre-condition for the Add-Visitor-to-Meet ing operation is
given by

Vit o 2.y« u?qy ® raglrug {t)) A r7y, € existsp(t)

which states that the visitor (W?y_y) is not already attending a meeting at that time
and that the meeting he ia going to attend actually exists.

CAVIAR 25
The second operation removes a visitor from a meeting.

Remove-Visitor-fromHeetingy &
AM-V A =Pooly[Session,N] A R&U-Cancel_,[Session,H, V]

It is easy to check that the pre-condition for the Remove-Yisitor-from-Heet ing
operation iz simply the predicate which is inherited from the initial R-U-Cancel
operation; namely

Vot t2 y ¢ (FPon UPhoy) € rugylt)

We now define the operations which create and cancel meetings as foilows:

€reate-Meeting, @
AN-¥ A 2R<Uy_ ,[Session, N, V] A Creetey[Session, M

For the creation there is no pre-condition.

_ Cancel-Heeting,
AH-V
R¢U-Del1-Resy_,(Session, N, V]
Destroyp[Session, N

t?n = t?n_u M

X?n = r‘?n_u

The pre-conditions for cancelling a meeting arise from the original R-U-Del-Res
operation, i. ., that

¥t : t?qy * rPyy € dom{rug_y{t))

and secondly from the identifications required for the input parameters.

26 CAVIAR
8. The Meeting Resource Subayetems

We are left with the systems CR-H and DR-!1 to define. We observe that both of these
have further information associated with the resource-user relationship, so in order to
capture this facet in our model we introduce the concept of a diary system.

8.1 A diary system

The diary is to record information about some elements of a set. We denote the get in
question by X and the associated information by Iy. For each t, the set of elements of
X for which we have information is defined as recorded(t}. Once again this system
is dependent on time, T.

[Tpr IX]

__ Diery
info T = (X » 1)
recorded : T = P X

¥t : T *» recorded{t) = dom{info(t})
I

with initial state given by

Init-Diary & [Diery | rng{info) = { {} })
The two operations to be defined both involve a change over a particular time period.
Note that we are motivated to make this definiticn in order to maintain compatibility

with existing systerna. Formally we define

ADisry 2 Diary A Diery’ A [t? : P T]

—_ Add .
ADiary
x? : X
i? @ Iy

(Yt : t? » x? € recorded(t))a
info' = info ® (At : t? + infolt) @ { x? — i? })

CAVIAR 27

The complementary erasure operation would remove one element (and t{he
information associated with it) from info(t). However we note that this isa special
case of the following more powerful operation.

__ Erase —
ADiary
x? : T = FX
dom(x?)} = t? A
(Vt: t? » x?(t) © recorded(t?)) A
infor = info® (At : t? « x?(t) 4 Info(t})
|

8.2 The conferemnce room booking subsystem

We are now in a position to fully specify the subsystem CR-H, by instantiation as
follows:

_ CR-H
ROUpr-n[Session, CR, M}
Diarycg[Session, CR, SI]

in-userp y = recordedrg

with initial state given by

Init-CR-M 2 Init-R¥Ug [Session, CR, M)
A Init-Dierycp[Session, CR, SI]

It would be more correct to regard the session information SI as being related to a
meeting rather than a conference rcom. The reason for associating SI with conference
rooms i8 that it contains information which is issued to the department supplying
equipment for meetings, and they are concerned with the venue rather than what is to
take place there.

28 CAVIAR

The operatiozs that we require for CR-H are given below. Information is recorded
about each resource when it is booked, and must be erased when a cancellation takes
place. The definitions uae

ACR-f1 & CR-HM » CR-M’

— Book-Conf-Roomg
ACR-H
R}ﬁU—Bookcn_n[Sess ion, CR, 1]
AddER[Sessi on, CR, SI1

tpn = t7cp A
rp-n = X7re

— Cancel-Conf-Rooms,
ACR-M

RYJ-Del-User p.y[Session, CR, M)
Erasecp[Session, CR, SI]

t7er-n = t7p A
{¥t: t?0ppn * xPrlt) = urgpenlt) ({u?g) |

The cancellation operation here deletes all conference rooms associated with a
particular tneeting over the specified time period. This is the operation which is most
compatible with the Cancel-Heeting operation defined for M-V. However, if
required, we could also define the operation that cancels just one conference room -
meeting pairing.

CAVIAR potl
8.3 The dining room booking subeystem
The final subsystem that we need to consider is DR=M.
The analysis a0 far does not take account of the fact that dining rooms have a finite
capacity, 80 we need to extend out model. We suppose that we have been given a
function

max-no : DR — N

which records this capacity and we record the number of seats in each dining room
which have been reserved already.

The DR-H system is defined formally as follows:

__ DR-AH
R<Upr_p [Date, DR, H]
DiarypgfDate, M, LI]
rsvd : T — (DR » N)

userspg_p = recordedp, A
(vt:Date » dom(rsvd{(t)) = in-usepzu(t) A
(Vr: in~usepp p(t) *» rsvd(t){r) < max-no(r)}

)

Observe that in thh case information is associated with each user, and therefore the
diary systein takea N as its main parameter. Dining rooms that are in use have a
pumber of seats reserved, and this number has to be within the dining room’s

capacity.
The initial state of DR-H is given by

Init-DR-H & Init-R<pp_pyl[Date,OR, N] A Init-Diarypz[Date M, L]
The two operations that we require for this structure are booking a {number of seats
in a) dining room and caacelling a lunch booking for a particular meeting. In normal

circumstances, a resource (dining room) will not be subject to being taken out of
service (although this occurrence is clearly easy to model if required).

30 CAVIAR

Both these operaticus leave rsvd unchanged for time values outside the period in
question; we make this part of the operation invariant.

ADR-H ,
AREUDR_HIDEt e, DR, "]

ADierypgp{Date, M, L1]

amount? : T -+ N

t7Rn = t7pp A
dom{amount?) = t?pp .y A
t?0p-n 4 rsvd’ = t?ppy 4 revd

— Book-Dining-Room, .
4DR-N

R¥U-Bookpgp_y[Dete, DR, M}

AddpplDete, t, L1]

*?pr = U?pp-n A
Vit *
rsvd(t){r?pe.n) + emount?(t} < mex-no{r?yp) A
rsvd’{t) = rsvd(t)
® { r?pp-n V* revd(t}{r?pp) + amount?(t) }

Cancel-Dining-Room, .
ADR-M

R¥U-Cencelpp_y[Date, DR, t]

ErasepgiDete, 1, L1]

(Mt : t75p.p *
xPorlt) = { u?pen } A
ravd (t) = rsvd(t)
® { r?ppp 7 rsvd{t)(r?pg-n) - amount?(t) }

CAVIAR 31
8.4 The visitor pool - V-P

From the informal requirements we find that visitors must be ®legitimate™ before they
are allowed to attend meetings or have resources booked on their behalf. This
requirement is easily met by introducing a visitor Pool structure, with actunal
parameters Date and ¥. Thus we define Y-P as

¥-P 2 Pooly[Dete, ¥]
with initial state given by
Init-V-P & Init-Pool,[Dste, V]

The operations that we require on this structure are simply those of crestion and
destruction of visitoms. Formally we have

Creste-¥Yisitary, 2 C(restey(Dete, Y]
and
Destroy-Yisitor, 2 Destroyy[Dste, Y]

8.6 The conatruction process

In this section we summarise the constructions we have used to build the individual
CAVIAR components.

In sections 7 and 8 we added pool and diary components to our basic library in
section 5.4. We now have a library which consists of the 6 components R-U, R3U,
R<U, RZU, Peol and Diary. We indicate in the following diagram how each
subsystem has been constructed using components from the library.

R-U

/

Diary RMU | ,REU Pool

A i
I! \ ,/‘ \" // \ |

4 i J / E “‘. §
CR-M DR-M TR-V HR-V M-V V-P

32 CAVIAR

9. The Complete CAVIAR System

We have now achieved our first goal of specifying all constituent subsystems of
CAVIAR. We have yet to combine the subeystems into a coherent whole, This is now
a comparatively easy task, once we have observed a few extra constraints.

9.1 Combining subsystems to form the syatem atate

We define the visitor part of the system aa follows:

__ ¥-5YS
y-P

HR-Y
TR-Y

{vd : Data * users,z ,(d) & exists,(d)) A
(¥t : Time * users;gy(t) € existsy(date-of-time(t)})

The invariant states that visitors that have hotel or traneport reservations must be
known.

The meeting part of the system is defined by

— ¥-SYS
H-v

CR-H
DR-H

{¥s:Session » usersppp(s) & existsy(s) } A
{vd:Dete *
userspp_y(d) &
U { s:Session | date-of-session(s) = d *+ existsy(s) }

The invariant states that meetinge which are occupying conference rooms or dining
rooms must be known to the syatem at that time.

CAVIAR 33
These two subsystems are now combined to form the CAVIAR gystem.
— CAVIAR

¥-5YS5
H-5YS

¥s : Session * usersy y{s) € exists,(dste-of-session(s))

Informally, the invariant states that all visitors who are attending meetings must be
known to the syatem.

The initial state of the system is given by the conjunction of all the initialisations. It is
easy to verify that this conjunction satisfies the invariant.

Init~CAYIAR e Init-HR-¥ A Init=-TR=V A Init-H-V¥ A
Init-CR-H A Init-DR-H A Init-¥-P

9.2 Operations on CAVIAR
The operations on CAVIAR may be divided naturally into three groups.
9.2.1 Operationa which involve meetinga only

These operations ire concerned with H-5YS ounly and leave ¥-5YS unchanged. We
denote this by

H-0P & ACAVIAR a =V-5YS
where
ACAVYIAR 2 CAVIAR A CAVIAR’

and
=Y-5YS 2= [V-SYS A ¥-SYS' | V¥-SYS = V¥-5YS')

{Note: in the following similar definitions of =CR-M, =DR-H, etc. are omitted))

34 CAVIAR
The first operation is to construct a meeting
Create-Heeting & H-0P A Creste-MHeetingy ~ =CR-H ~ =DR-H

This operation has no precondition (there is no precondition for Create-Heet ingg),
80 it is total. The next operation is to cancel a meeting.

Cancel-Heeting; & H-OP A Cancel-Heetingy A ECR-H 4 =DR-H

We can determine the pre-condition for this operation as follows: firat we establish the
constraint arising from the system invariant. The operation removes an element from
existsy so this element cannot be a user in CR-H or DR-H during the period t7y.
Formally, we require that

Vt:t? e r?y € usersppp{t) U usersy, y(date-of-session(t))

The second part of the pre-condition arises from the earlier pre-condition for
Cancel-Meet ingy. This is precisely

7=ty A x?p = P70y A (VEit?uy, 0 rPqoy € dom(rupy(t))).

We shall at this point fulfil the promise made in section 4.1: indicating how to define
the corresponding total operation. This is formed by the disjunct of the successful
operation with the schema whick takes as its qualifying predicate the negation of the
pre-condition established above.

— [ancel-fleet ing-Fail
SCAVIAR
t?q-y : P Session
t?y4 : P Session

x?y : M
rPpy M
(3t :t7

r?n-y € userspp p{t) U usersy, p{date-of-session{t)))
VP ¥ 2y
vV x?y o r?y
v (3t:t?qy v rPyoy £ dom{rupy(t)))

CAVIAR 35

Cancel-Meeting 2 Cancel-Heeting; v Cencel-Meeting-Fail
Informally, if the required precondition for the meeting cancellation is not satisfied,
the system is unchanged. In practice we would require an appropriate error message

to be output.

For the sake of brevity, we shall present the remainder of the operaticne without
going through this process.

The next two operations add visitors to, and delete visitors from, a meeting.

Add-Yisitor—to-Heeting &
M-0P A Add-Visitor-to-Meetingy A =CR-H A =DR-H

A

Remove-Visitor-fromHeeting &
M-0P » Remove-Visitor-from-Meetingy ~ =CR-H A =DR-N

The pre-conditions for these operations are straightforward to determine in the ygual
way and we shall omit them and also those for the remaining operations.

The next two operations deal with conference roorms.

Book-Conf —Room & M-OP A =M-Y A Book-Conf-Room, A =DR-H

w

Cancel-Conf-Room M-0P A =H-¥ A Cancel~Conf-Roomy A =DR-H

We now have the two operations concerning dining rooms.
Book-Dini ng—Room @ M-0P A =H-V A =CR-M A Book-Dining-Room,
Cancel-Dining-Room & M-op A =H-V A =CR-N A Cancel-Dining-Room,

There is one final operation to be defined in this section: namely the cancellation of
both dining room and conference room(a) associated with a particular meeting. This is
not the conjunct of the two cancellation operations already given because each of
these leaves the components it is not acting on fixed. Hence we need a different
operation defined bty
Cancel-Heeting-Arrangements &
M-0P A =M-V A Cencel-Conf-Roomy » Cancel-Dining-Roomg

36 CAVIAR
9.2.2 Operations which involve visitors only

This section containa operations which mvolve Y-SYS only and leave M-5YS
unchanged. We denote this group by

¥-0P & ACAVIAR A =M-5YS

The first pair of operations introduce visitors to and remove visitors from the visitor
system,.

Create-Visitor 2 V¥-OP A Create-Yisitory A EHR-Y A =TR-V
Destroy-Visitor 2 V¥-OP A Destroy-Visitory A =HR-¥ A =TR-V
The Caviar invariant induces the following pre-condition for the Dest roy operation.
Vi @ t?y « x?y £ usersy_y(t)
vy{t: date-of'—time'ilt?ul » usersyp_y{t) }
UL {s : dete-of-session }{t?) * users, ,(s) }
The two cperations concerned with hotel rooms are as follows:
Book-Hotel-Room & Y-OP A =V-P A Book-Hotel-Roomy A =TR-¥
Cencel-Hotel-Room 2 V-OP A =V-P A Cancel-Hotei-Roomy A STR-¥
The two operations concerned with transport reservations are

Baok-Trensport 2 V-0P A

V-P A =HR-V A Book-Transport,

Cancel-Transport 2 V-0P A =V-P A SHR-V A Cencel-Treansport,

9.2.3 A general visitor removal operation

Finally we define an operation which removes a visitor entirely from the eystem for a
particular set of dates.

__ Dalete—Yisitor
ACAVIAR
=CR-N
=DR-H
Cencel —Hot el -Raomg
Cancel —Transport,
Remove—Yisitor-from-Heet ing,

Destroy-Yisitaor,

x?y = uPpy = WPy = UPhy A
17 = gy A
t?py = {d: t?; t : Time | dete-of-time(t) = d

A UTrgy € usersppy(t) =t } A
t?hy = { d : t?y; s : Session | dete-of-session(s) =d

A U7y € usersy yls) - s}

10. Conclusion

This specification bas created a conceptual model for the CAVIAR eystem which
provides a precise description of the systemn atate and its external inter{ace, logether
with an exact {unctional specification of every operation. The subtle
inter-relationships between constituent subasystems are described in the predicates
which constrain the combination of these subsystems, and these have been laken into
account in the specification of the operations. The system designer can now
concentrate on the important parte of the design task: namely selecting appropriate
data structures and algorithms, without having to be simultaneously concerned with
the complexity of subsystem interactions. This reflects the classical principle of
separation of concerns.

It may be argued that a specification such as we have given above is a long way from
an actual software product. Experience shows however that minimal effort s required
to develop software once such a specification has been constructed. For example, in
the case of CAVIAR, a Pascal implementation was constructed direcily and quickly
{rom the specification.

38 CAVIAR
11. Acknowledgements

A formal specification of CAVIAR was given in 1981 by J.-R. Abrial. This work was
carried out at the Programming Research Group at Oxford University in
collaboration with B. Sufrin, T. Clement and one of the co-authors. T. Clement
implemented a prototype version of the specification on a ITT-2020 computer in
UCSD Pascal. J.-R. Abrial’s original specification document listed most of the
properties of the systemn that appear in this document, though the style of the
presentaton, the notation, and the conventions used in thia paper have since been
developed by members of the Programming Research Group.

We would like to thank J.-R. Abrial for his original contribution, I. Hayes for editing
thia paper and all those invelved in helping with the project, particularly the
personnel in the Visitor Services Department of STL, who willingly provided the team
with information about the current manual system in operation at that time,

We wouild also like to thank Bernie Cohen, Tim Denvir and Tom Cox for their initial
effort in setting up this collaborative effort between STL and the Programming
Research Group and their continuing interest.

12. References and Related Work

1. Abrial, J-R. The specification language Z: Basic library. Oxford University
Programming Research Group internal report, (April 1980).

2. Morgan, C. C. Schemas in 2: A preliminary reference manual. Oxford
University Programming Research Group Distributed Computing Project
report, (March 1984).

3. Sufrin, B. A., Sgrensen, I. H., Morgan, C. C., and Hayes, . J. Notes fora Z
Handtook. Oxford University Programming Research Group internal
report, (July 1985).

4. Morgan, C. C,, and Sufrin, B. A. Specification of the UNIX file system. IEEE
Transactions on Software Engineering, Vol. 10, No. 2, (March 1984),
pp- 128142,

5. Hayes, I. J. Specification Case Studies. Oxford University Programming
Research Group Monograph, PRG-46, (July 1985).

Z Refexrence Card
Mathematical Notation
Version 2.2

Programming Research Group
Oxford Upiversity

1. Definitions and declarations.
Let x, »;, be identifiers and T, T, sets.

LHS 2 RHS Definition of LHS as
syntactically equivalent to RHS.

x: T Declarationof x as type T.
)it Tyrospr Tpp ol % T

List of declarations.
Xy, Xz, e %, o T

CEE TR NS Ut PR A
[A 8] Introduction of generic gets.
2. Logie.

LetP, 0 be predicatesand D declarationa.

true, false Logical constants.

- P Negation: “rot P™.
Pad Conjunction: P and Q”.
Pva Disjunction: “P orQ”.
P = 0 Implication: “P implies Q” or
SifP then Q"
P + 0 Equivalence: “P is logically
equivalent to Q7.
¥x:T+P
Universal quantification:
“or all x of type T,P holds”.
Ix: TP
Existential quantification: “there
exiats an = of type T such that P".
P x s TP,

Unique existence: “there exists a
unique x of lype T such that P”,
€ (Ix: TP A

“(Jy: T | y#x « P))

.39 -

VoxgeTys %o:Tos ool 3 x 2T, o P
“For all x; of type T,
%z of type T5,..., and

x, of type T,, P holda.

CIS YRR PEEE 723 FY SRS "n:Tn . P
Similar to V.

3 i Tys %zt T oo 5 %2 T, ¢ P
Similar to ¥.

VD[P-0Q &(¥vD-P=>0Q).
FJOIP+«@ a(3D-PaQ).
t; = t; Equality between terms.
ty #t; e -~(t =ty).

3. Sets.
Let S, T and X he sets; t, t, terms; P a
predicate and D declarations.

t €5 Set membership: 4 is an element
of 5™
tes g ~(t € 5).
SeT Set inclusion:
g8 (Vx:5+x€T).
5¢cT Strict set inclusion:
2 SeTaASHT,
{} The empty set.
{ty, t; +» t, } Theset
containing t1,t5, ... and t,.
{x:T1P}

The set containing exactly those
x of type T for which P holds.

(t,, ta . » t,) Ordered n-tuple
ofty,ty ... and t .
T, x T, x ... x T Cartesian product:

the set of all n-tuples such that

the kth component is of type T, .
o2 : Ty %93 Tos oo 5 xsT, | P}

The set of n-tuples

{xy, %3, ... , %} witheach

x, of type T, such that P holds.
{0 | P + t} The aet of t’asuch that given

the declarations D, P holdas.

{0D«t}) @ {D]| true + ¢ }.

PS Powerset: the set of all subsets
of 5.
FS Sei of finite subsets of 5:

& {T: PS5 | Tisfinite }.
sSnT Set intersection: given 5, T: P X,

@ {x:X | x€5Ax€eT]},
SuT Set union: given S, T: P X,

2 {x:X | x€5vxeT}
5-7 Set difference: given S, T: P X,

@ {x:X | x€SAxeT]}.
n ss Disiributed set intersection:

given 5S: P (P X),

@ {aX | (V5:55 « x € §)}.
U ss Distributed set union:

given SS: P (P X},

@ {x:X | {35:95 » x & G)}.

(54 Size (number of distinct
elements) of a finite set.

#S a |5].

4. Numbers.

N The set of natural numbers
(nob-negative integers).

N* The set of strictly positive
natural numbers:
aN-{0}.

z The set of integera (positive, gero

and negative).

m..n ‘The set of integers between m
and n inclusive:
e{kiZlmskaksgsnl

min S Minimum of a set,S : F N.
min S € S A
{(¥x + S * x 2 min S).
max S Maximum of a set,5 : F M.

mex S € S A
(¥x : S * x € max S).

5. Relations.

A relation is modelled by a set of ordered
pairs hence operators defined for sets can
be used on relations,

Let X, Y,and Z beaeks; x : X5 y : Y;
and R: X & Y,
X & Y The set of relations from X to Y:
e P (X x Y}
xRy x is related by R toy:

e {x, y) €R.
x>y a (x y)

(xgPup 0 s Xy,)
The relation
{ (x1.91)- - !(xnngn) }
relating x, toy;, ..., and
x, toy,.

dom R The domain of a relation:

& {x:X | (Jy:¥ » x Ry}
rng R The range of a relation:
£ {y:Y | {I:X + x R y)}.
Forward relational composition:
given R : X4Y; Ry: YOOZ,
o { w:X; =z:Z | (3y:Y »
xR yAyuR,z)}
Relational composition:
a Ry s Ry.
R Inverse of relationR:
& {yY: x:X| xRy}
idX Identity function on the set X:
& {x: X+ xH x}.
Rk The relation R composed with
itself k times: given R : X & X,
RO & id X, R**! 2 R & R,
R" Reflexive transitive closure:
dU{nm N+«R"}
R* Non-reflexive transitive closure:
al{n N «R"}
R(S} Image: given S: P X,
2 {y:Y I {Ix:5 « x Ru)

Ry 5 R,

54R

S 4R

RPT

RPT

R, ® R,

Domain restriction to 5:

given Sz P X,

e {x:Xsu:¥ | x€5 A x R y}.
Domain subtraction:

given 5= P X,

& (X - S) 4qR.

Range resiriction to T:

given T: P Y,

@ {x:X;y:¥ | x Ry » yeT}.
Range subtraction of T:

given T P Y,

aRP (Y-T).

Overriding: given Ry, Ry : XY

¢ (dom R; 4 Ry) U R,.

6. Functions.

A function & a relaton with the property
that for each elementin its domain there is
a unique element in ils range related to it.
As functions are relations all the operators
defined above for relations also apply to

functions.

X+ Y

The set of partial functions from
XtaY:
e {f: Xe v |
(¥x: dom f
(IAy: ¥ - x f y)) }.
The set of iotal functions from
XtoY:
@ { f: X»Y | dom f = X }.
The set of tne-to-one partial
functions from X to Y:
s {f: X+ Y|
(Yy: rng f
(Itx: X =~ x f y)) 3.
The set of cne-toc-one total
functiona from X to Y:
e f: XonY | dom f = X }.
The function f applied to t.

- 41-

(A x : X

vxgr Ty

7. Orders.

total_order X

| P=t)

Lambda-abstraction:

the function that given an
argument x of type X auch that P
holds the resultis t.

e {x: X|P-xwm¢ }

sx: Ty [P oo t)
@ {xy:Ty: ... 5 %yt T, | P -
(’(]_’ L 4 xn) -t }-

partial _order X

The set of partial orders on X.

2 { R: XX 1Vx,g,z: X -
x R x A
xRynyR x = x=y A
x RyayRz = xRz

}

The set of total orders on X.
¢ { R: partial_order X |
¥x,y: X =
x RyvyR x
}.

monotonic X <y

The set of functions from X to X
that are menotonic with respect
to the order <, on X,
a{f:X+X]|
x <y = f{x} <, fly)
1.

8, Sequences,
seq X The set of aequences whose
elements are drawn from X:
@ { Az N*-»X |
dom A = 1..|A] }.
[Al The length of sequence A.
[] The empty sequence {}.
[, ..., 3]
e {1~e;, ..., n—a, }.
fay, ..., 8] (b, ..., byl
Corcatenation:

@ [a4,..., 8 by ..., bl,
[17A = AT[] = A,

head A & a{l).

last A & A(]A]).

teil [x] TA & A,

front A7 [x] @ A.

rev [a,, &, ..., a,]
Reverse;
@ [a,, 85 al,

rev [1 = [].

/AA Distributed concatenation:
given AA : seq(seq(X)),
o (1) ... TAA(lAA]),
o= L.

1/AR Digtributed relational

-

composition:

given AR : seg (X & X},
& MR(1) 3 ... 3 AR(IAR]},
$/[] = id X,

disioint AS Pairwise dispint;
given AS: seq (P X),
@ (¥ i,) : dom AS « | #
= AS(i) n AS(}) = {}).
AS partitiong S
2 disjoint AS
Al ren AS = §,

A in B

squesh f

51A

ALT

9. Dags.

bag X

(]

Contiguous aubsequence:
8 (IC,D: seq X

CT”a7D = B).
Convert a function, f: N + X,
into a sequence by aquashing its
domain.
squash {} = [],
andif £ # {} then
sguesh f =

[F(i}] ~squash({i}4 f)
where i = min(dom f) eg.
squash {2+A, 27—, 4B}

= [A B, C]
Reatrict the sequence A to those
items whose index is in the set 5:
& squash(S 4 A)
Restrict the range of the
sequence A to the zetT:
& squash{A P T).

The zet of bags whose elements
are drawn from X:

2 X » N

A bag is represented by a
function that maps each element
in the bag onto ite frequency of
occurrence in the bag.

The empty bag {}.

[x,, x. %,] The bag

items s

containing =;, Xp ...and x,
with the frequency they cecur in
the list.
The bag of items contained in
the sequence s:
e { x:irng s *

x| {1 :dom s | s{i)=x}!

}

Z Referxrence Card
Schem a Notation

[For details see “Schemas in 77

Programming Research Group

Oxford University

Schema definition: a schema groups together

some declarations

of wvariables and a

predicate relating these variables. There are
twe ways of writing schemas: vertically, for

example

5 L)
x : N
y: seg N
xS|g|
1

or horisontally, for the same example

5sa

[x: N; y: seq N | xsly|].

Use in signatures after¥, », {...}, etc.:
(¥ + y # []) & (¥x:N: y: seg N |

tuple S
pred S

Inclugion

x<lyl - y#(]).
The tuple formed of a achema's
variablea.
The predicate part of a schema:
eg.pred S i8 x < [y].
A schema S may be included
within the declarations of a
schema T, in which case the
declarations of S are merged
with the other declarationaof T
{variables declared in both S and
T must be the same type) and the
predicates of S and T are
conjoined . eg.

I

S|P

S[new/old]

Decoration

-5

SaAT

x, z: N
y : seqg N

x<|y'l\z<x
]

The schema S with P conjoined to
its predicate part. e.g.
(5 | x>0) is
[x:N;y:seq N | xs|y|Ax>0].
The schema S with the
declarations D merged with the
declarations of S.e.g.
(S:z:N)is
[% z:N: y:seq N | xsly|]
Renaming of components:
the schema S with the component
old renamed to new in its
declaration and every free use of
that o1d within the predicate.
eg.Slz/x] is
(z:Ni yrseq N | z 5 [yl 1]
and S[u/x, x/y) is
[y:Ni x:seq N | g = Ix]|]
Decoration with subscript,
superscript, prime, efc_;
eystematic renaming of the
variables declared in the schema.
eg.5' is
[x":N: y“:seqN | x"<|y’]]
The schema S with its predicate
part negated. e.g."5 is
[x:N: y:seq N | ~(xgiyl}]
The schema formed from
schemas S and T by merging
their declarations (see inclusion
above) and and’ing their
predicates. Given
T e [x: N: z: PN | xez],
SAT is

S \ (Vl, Vz,

x: N
y: seq N
z: PN

x€ |yl Axez

The schema formed from

schemas S and T by merging
their declarations and or'ing their
predicates. eg.Sv T is

x: N
y: seq N
z: PN

x€ |yl vxez

The schema formed from
schemas S and T by merging
their declarations and taking
pred S =* pred T as the
predicate. e.g. S = T is similar
to5 A TandS v T except the
predicate containa an *=+" rather
thanan “A* or an *v®,

The schema formed from
schemas S and T by merging
their declarations and taking
pred 5 & pred T as the
predicate. eg. S ¢ T the same
a8 S A T with “=?" in place of
the ™,

cev s V)

Hidirg: the schema 5 with the
variableavy, v, ..., and v
hidden: the variables listed are
removed from the declarations
and are existentially quantified in
the predicate.eg. S\ x s
[yiseqg N | (Ix:N - xg|yl)}]

S F (v,

A schema may be specified
instead of a list of variables; in
this case the variables declared in
that schema are hidden.

eg (SAT) \'S is

z: PN

(3 x: N; y: seq N »
x s lyl Axe€ez)

Var eee s v.)

Projection: The schema S with
any variablea that do not occur
in the list vy, vz, ..., v,
hidden: the wvariables removed
from the declarations are
exiatentially quantified in the
predicate.

eg. (SATY I (x,y)is

1
x : N
y : seq N
(3 z: PN-
x€ [yl A xez)
1

The list of variables may be
replaced by a schema as for
hiding; the variables declared in
the schema are naed for the
projection.

The following conventions are used for
variable names in those schemas which
represent operations:

undashed
dashed

ending in "7
ending in *P*

state before the operation,
atate after the operation,
inpute to the operation, and
outputs from the operation.

The following schemna operations only apply
to schemas following the above conventions.

pre S

post S

Precondition: all the state after
components {dashed) and the
outputs {ending in *!®) are
hidden. e.g. given

S 1
x?, g, s, y' : N
s =83 ~x?7Aayl =3
]
pre S is
1
x?, s: N
(3s’, y!' : N+
s’ =s=x? A y! = 8)
1

Postcondition: this is similar to
precondition except all the state
before components (undashed)
and inputs (ending in “?*) are
hidden.

Overriding:

g (SA =preT) v T,

e.g. given 5 above and
T

x?, s, 8" :+ N

s < x? A8 =8

1

SeTis

1
x?, 8, 5", y!' : N
(s’ =s-x? Ayl =5~
{3 s : N~

5 < x? Ag’ = s))

v {s <x? As’ = 5s)

- 45 -

The predicate can be simplified:

1
x?, s, s, uy! : N
(s =sx?ayl =5
As 2 x7?)
v
(s < x? A8’ = 5)
1

Schema composition: i we
consider an intermediate atate
that is both the final state of the
operation S and the initial state
of the operation T then the
composition of S and T ia the
operation whichrelates the
initial state of 5 to the final
state of T through the
intermediate atate. To form the
composition of S and T we take
the state after components of 5
and the state before components
of T that have abasename™ in
common, rename both to new
variables, take the schema “and”®
(») of the resuliing schemas, and
hide the new variables,

eg. S e Tis
1
x?, 8, 8, y' : N
(35°:N.
g = 8=x?r y! =5 A
sg < x7 A5’ = 8q)
¥

* bagename is the name with any decoration
(@°", “1®, “?% etc.) removed.

S>»>T

Piping: this schema operation is
gimilar to schema composition;
the difference is that rather than
identifying the state after
components of 5 with the state
before components of T, the
cutput components of 5 (ending
in *1*) are identified with the
input components of T (ending
in *?°) that have the same
basename.

