g 366 e 2

THE DISTRIBUTED COMPUTING SOFTWARE PROJECT -

by

Roger Gimson
Carroll Morgan

Oxfora Universiy

Computing Labaoratory

Programming Research Group-Library
8-11 ¥eble Read

Oxford OX3 34D

Oxfard (0865) 54141

Technical Monograph PRG-50
July 1985

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX13QD

England

Copyright (C) 1984 Peter Peregrinus Ltd. for chapter entitled
The Role of Mathematical Specifications

Copyright (©) 1985 Roger Gimsou, Carroll Morgan

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford O0X13QD

England

Introduction

Work on the Distributed Computing Software Project began at Oxford University
Prograinming Research Group in 1982. The goal of the project is to construct and
publish the specification of a loosely-coupled distributed operating sysiem, based on
the model of antonomous clients having access to a number of shared services.

A fundamental cbjective of the project is to make use of mathematical techniques of
program specification to assist the design, development and presentation of distributed
system services.

In this monograph we present some of the results of the first stage of the project.

In the first chapter we include a paper which gives an overview of the use of
mathematice in system design, and its application to the specification of an example
file service. It illustrates how abstraction from details of implementation can allow the
exploration of novel system designs.

The following chapters contain the user documentation for some of the services which

have been implemented to date, They illustrate how it has been possible to make use
of mathematical techniques to provide precise manuals for users of the services.

The project is funded by a grant from the Science and Engineering Research Council.

Chapter 1
Chapter 2
Chapter 3
Chapter 4

Chapter 5

Contents

The Role of Mathematical Specifications
Authentication of User Names

Time Service - User Manual
Reservation Service - User Manual

Block Storage Service - User Manual

25

35

51

Chapter 1

The Role of Mathematical Specifications

1.1
1.2
1.3
14
1.5
16
1.7
1.8
1.9

Introduction

A first example

The first compromises

A compromise avoided

Modularity and composition of services
Experience so far

Future plans

Glossary of symbols

References

This chapter appeared in the book “Disiributed Computing Systems
Programme” (ed. D.A.Duce) published by Peter Peregrinus Ltd. 1984,
under the title “Ease of use through proper specification”.

6 The Distributed Computing Software Project

1.1 Introduction

The aim of the Distributed Computing Software Project is to explore the new
possibilities of distributed operating system design which have been made possible by
the low cost of distributed processing hardware. The mathematical techniques of
program specification and development play a crucial part in this aim because:

we can vge mathematical specificationa to explore designs motivated purely by
eageof-use rather than by ease-of-implementation (since specification allows
abstraction from implementation constrainta);

we will have a precise notation in which such designa can be reliably
communicated to others, and which will assist the discovery and discussion of the
designs’ implications;

it will be possible to present the specifications directly in the user manuals of the
distributed operating system, thus increasing their precision while decreasing
their size; and

we will be able to use the mathematical techniques of refinement to produce
implerentations which are highly likely to satisfy their specifications (and hence
also will be accurately described by their user manuals).

It is especially important that those benefits should be realised in the construction of a
distributed operating system - because distributed operating systems offer the rare
opportunity for the user to contrcl the asystem, rather than vice versa. The high
bandwidth of current local area networks allows an efficient modularity; for example,
a structure consisting of largely autonomous services and clients is entirely feasible. In
such a system, the choice between (rival) services, and the manner in which they are
used, would be entirely up to the clienta. This is the basis of the open systems
approach: provided services are well-apecified, clients are free to make use of them in
whatever manner is consistent with their apecification.

The role of mathematical specifications 7

1.2 A firet example

One of the most visible parts of any operating system is its file system. Even today,
the desigh of these range in quality from excellent to horrific. But others of course
may think inatead that they ramnge from horrific to excellent: the features one user
canpot do without, another may abhor. It is through such features that an cperating
system controls (even the thoughts of) its clients, and this is exactly what we hope to
avoid,

A file service in a distributed operating system is there to be shared by as many
clients as possible. To achieve this, it must be unopinionated: it must have so few
{eatures that there is nothing anyone could object to. It is only in the context of
specification that we can propose such a radical design; any less abstract context
introduces efficiency constrain.s, Some of these, of course, will have lo be met
eventually, but perhaps not all of the ones that might conventionally be presumed.
We must not introduce such constraints simply because we could not express ourgelves
without them: first we state what we would like - then we can compromize.

Ae an example, let us consider the simplest file system design one could imagine. We
describe it as a partial function “f i les® {from the set ‘NAME™ of file names to the set
“FILE" of all possible files; and we say nothing about the structure of the sets NAME
and FILE themselves:

files: NAME - FILE

The mathematical notation above introduces the variable files, and gives ite type as
NAME —+ FILE. The English text states that this variable is to describe the file system.
Qur style of mathematical specification is an example of the Z specification technique,
and we will continue to use it below. It is not possible for us to explain Z itself in any
detail in this document, but we hope its flavour will be evident; and in any case the
bulk of the meaning will be conveyed by the English. Sufrin [8] and Morgan [3,4]
together give an introduction to Z. A glossary of the mathematical eymbels used is
provided at the end of this chapter.

We propose two operations only on the file system: StoreFile stores a (whole) file,
and RetrieveFile (destructively) retrieves it.

8 The Disiributed Computing Software Project

StorefFijle

Let files be the atate of the file system before the operation, and let f1les’ be the
state afterwards. Let file? be the file to be stored, and let name! be some filename,
chosen by the filesystem, which will refer to the newly stored file (we conventionally
use worde exding in ? for inputs, and in ! for outputs). That is, given

files, files”: NAME —» FILE
file? : FILE
name ! : NAHE
the effect of StoreF ile is to choose a new name, which is not currently in use

nare! € dom files

and to update the partial function by overriding its current value, so that after the
operation i maps the new name to the newly-stored file

files' = files ® [name! — file?]
(We notice as an immediate advantage of our abstraction that we have given the

implementor the freedom to store identical but differently named files usimg shared or
separate slorage, ag he chooses.)

Let files be the etate of the file system before the operation, and let files’ be the
state afterwarde. Let neme? be the name of the file to be retrieved, and let file! be
the file itself. That is, given

files, files": NAHE - FILE
neme? : NAHE
file! : FILE

the effect of RetrieveF ile is to return the named file to the client

file! = files (name?)

The role of mathematical specificationa g

provided it exists
name? € dom files

and to remove the name (and hence the file) from the partial funciion which
represents the file system

files’ = files \ {neme?}

The description above s “of course® not feasible with today’s technology - which is a
pity. It would be too impractical to have to retrieve a whole large file if we wished,
say, just to read one small piece of it. But how wonderful it would be if a file system
could be so simple! At least we were able to describe it.

1.3 The first compromises

The best we can do with our simple file system is to use it as the basis for a
development of a more practical design - and the description above provides a context
into which the necessary compromises can be introduced. Here are some of them (in
no particular order):

Compromise Reason
It must be possible to read the The communication medium is
file without deleting it. not enlirely reliable . g

breakdown during retrieval could
destroy the file without returning
its contents.

Clients must be prevented from Mistakes are inevitable - evep
destroying the files of others honest clients could accidentally
{remember, a f{ile can% be destroy other clients’ files,
updated}.

Filea must be given a limited Any implementation of the file
lifetime, and clients must be system, however capacious, will

charged for their storage. still be finite.

10 The Distributed Computing Software Project

We introduce these compromises in a revised dedign (again using the notation of Z).
First, we name three new sets

CLIENT - the set of client identifications,

TIME - the set of instants (e.g. seconds from 15% January 1980 - but we
need not be specific here},

cosT - the set of costs (e.g. pence).

The definjtion of a file 18 extended to include ihe identification of itsa owner, and its
time of crealion and {eventual} expiry. DATA is a fourth new set which containa all the
possible values a client could store in a file (its contents). We will collect these
attributes in a schema FILE, and atate at the same time that in any file, the creation
time must precede the expiry time:

FILE

oMWner : CLIENT
cresated,

expires : TIME
contents : DATA

created € expires

The schema FS below describes the state of the file storage system itself:

FS

files: NAHE —+ FILE

and the schema AFS describea the general aspects of any operation on it:

&S

files, files': NAME -» FILE
who : CLIENT
when : TIME

The rote of mathematical apecifications 11

who is the identity of the client performing the operation, and when is the time at
which it is performed. We can abbreviate AFS (without changing its meaning) by
building it from the schema FS instead of directly from the variable files:

AFS ,
FS
FS*
who ¢ CLIENT
when: TIME
]
Storefile

The (revised) StoreFile operation we will present as a schema including the
variables files, files’, who, and when (supplied by AFS), as well as the data to be
stored (contents?), the expiry time {(expires?), the new name chosen by the service
{name!), and the charge made in advance {cost!}:

StorefFile
AFS

contents?: DATA
expires? : TIME

name ! : NAME

cost! : COST

{3IFILE".
oWner’ = who
creeted’ = when
expires’ = expires?
contents’ = contents?

name! € dom files
files” = files @ [neme! — FILE"]
cost! = Teriff (FILE'))

12 The Distributed Computing Software Project

A new file FILE" is constructed which is owned by the client storing it, which records
its creation time as the time it was stored, which will expire at the time the client
specified (then becoming inaccessible), and whose contents the client supplies.

A new name neme! is chosen, not currently in use, and the file is stored under thai
name. The charge made I8 some function Tariff of the file (hence of its owner,
creation and expiry times, and contents). Here i8 a possible defnition of Tariff
(which depends in turn on some function Size):

Tariff = (NFILE. {expires - created) * Size{contents))

Readfije

The ReadFile operation returns the expiry time and the contents of the file stored
under a given name. Its parameters are the name of the file to be returned {name?),
when it will expire (expires!), and its contents (contents!):

ReadFile
AFS

name? : NAME
expires! : TIHE
contents!: DATA

F5" = FS

(3FILE.
FILE = files (name?)
expires > when
expires! = expires
contents! = contents)

ReadF ile does not change the state of the service. The map files is applied to the
name, to determine the file’s value FILE, which must not nave expired. Its expiry time
and contents are returned.

The role of mathematical specifications 13

Deletefi]

The Deletefile operation removes a file from the service. A rebale is offered as an
incentive to deletion before expiry. neme? is the name of the file to be deleted, and
cost! i3 the (possibly negative} charge made for doing so (we assume negation “-" is
defined on COST):

DeleteFile .
AFS
name?: NAME
cost!: COST
{3IFILE.
FILE = files (neme?)
expires > when
owner = who
fites” = files \ {name?}
cost! = - Rebate (FILE, when})

The map f iles is applied to the name, to determine the file’s value FILE, whick must
not have expired. It must be owned by the deleting client. The file’s name name?
(and hence the file itself) are removed from the partial function which represents the
stored files, and the cost is determined by a function Rebete of the file and its
deletion time. Here is a possible definition of Rebate:

Rebate = (AFILE: when: TINE. (expires - when) * Size(contents))

Naturally, there are other compromises which could be made, in addition to or instead
of those above. In the next section, however, we dizcuss a compromize which we
suggest should not be made.

14 The Disiributed Computing Software Project

1.4 A compromise avoided

One glaring inefficiency remains in our proposal: that we must tranafer whole files at
once. Many clients will not bave time or the resources (e.g. local memory) to do this.
But here we will not compromise by modifying our file storage service to cater for this
inefficiency - rather we insist that the business of the file storage service will be file
storage exclusively. Partial examination and updating will be the business of a file
updating service.

To propose a service which treats the contents of files as having structure, we must
propose a giructure. The proposal we make is the very simple view that the contente
of a file is a sequence of pieces. (Sequences are functions from the natural numbers N
to their base type, and begin at index 1) We do not wish to say what a piece is,
however, for this description.

DATA
L seq PIECE

The file updating service in fact has no state; all ite work is done in the calculation of
ite outputs from its inputs. Its two operations are ReadData and UpdateDate.

ReadDats

ReadData takes the contenta of a file contents?, a starting position start?, and a
number of pieces to be read number?, and returns the data pieces! at that position
within contents?. (#pieces! is the length of the sequence pieces!, and
1..8pieces! intheset {i: N | ! € i ¢ #pieces!}.)

The role of mathematical gpecifications 15

ReadDate —
contents?: DATA
start?,
number? : N
pieces! : DATA
spieces! = min (number?, (#contents? - start?)}
(Vi: 1..#pieces!. pieces! (i) = contents?{i + start?)}
L]

The length of the data returned is equal $o the number of pieces requested, if possible;
otherwise, it is as large as the length of contents? will allow. The i*M piece of
pieces! returned ia equal to the (i+start?)th piece of contents?.

UodateData

UpdateData takes the contents of a file contents?, a position start?, and some
data pieces?, and returns an updated contents contents!.

UpdateData .
contents?,
contents! : DATA
stert? : N
pieces? : DATA

scontents! = mex {(#icontents?, (start? + #pieces?))
start? < #contents?

(¥i: 1..acontents!.

(it - stert?) € 1..#pieces?
= contents!(i) = preces?(i - start?)
(i - start?) ¢ 1..#8pieces?

= contents!{i) = contents?(i})

16 The Distributed Computing Software Project

The length of the new contents is equal to its original length, unless an extension was
necessary to accommodate the pew data; however, the new data must begin within the
original contents or immediately at its end. The i'" piece of contents! is equal to
the (i-start?)th piece of pieces?, if this is defined; otherwise, it 1s equal to the ith
piece of contents?.

Qur propasal is of course only one of the many possible (for a different proposal, see
the definitibn of these operaticns in Morgan and Sufrin (5. We could, of course,
propose several updating services, each providing its own set of facilities. Moreover,
the original operations which transferred whole files would still be available to those
clients able to use them (see figure L.1).

The role of mathematical specifications

/

Transferrad

Updating
Service R

Piscas
Trensferred

N\

I
(=

Figure 1.1

Whala
Files
Transferced

el et
1 Servica B
ranafarrad

Pieces
Trensfarred

.

Separate updating and storage services

18 The Distributed Computing Software Project

“Whole
Filas
Trensferred”

Updetina
Sarvice A %

A

HWhole
Filas
Transferred

Preces
Transferred

Figure 1.2 Combined updating and storage service

. 9

The role of mathematical specifications 19

1.6 Modularity and composition of services

The siructure we have presented above separates the issues of how files should be
stored from how they should be manipulated. As a result, we have offered the user an
unusual freedeom of choice - he can read just one piece of a file, or he can treat a file as
a single object (with the corresponding conceptual simplification; Stoy and Strachey (7]
for example allow this in their operating aystem 0O8S6).

S§till, it is likely that a further compromise will be necessary: for large files, the time
taken to transfer the file between the two services (storage and updating) may not be
tolerable. We solve this not by changing our design, but by an engineering decision:
for applicaticns that require it, we will provide the two services together in ope box,
and the transfers will be internal to it (see figure 1.2). Its specification we construct by
combining the material already available.

Storefile, ReadFile, aud DeleteFile will be available as before. However, we
introduce two new operations, ReadStoredFile and UpdateStoredFile, whose
specifications will be formed by composing the specifications given above, (The
schema composition operator “4”, used for this, is defined in [3]. Here, we will explain
it informally.}

ReadStoredFile

Reading a stored file is performed by first reading the whole file with Readfile, and
then reading the required portion of its contents using ReadData. In Z we write this

ReadStoredFile @ ReadFile § ReadData

If we were to expand this definition of ReadStoredFils, the result would be as
nelow:

20 The Ditributed Computing Software Project

ReadStoredfile
AFS
name? : NAME
start?,
number? : N
expirest: TIME
pieces! : DATA

FS' = FS
{IFILE.
FILE = files {name?)
expires > when
expirea! = expires
#piecea! = min (number?, {(#contents - start?))

{Vi: 1..#pieces!.
pieces! (i) = contents{i + stert?}})

ReadSteredf ile takes a file pame neme?, a starting position start?, and a pumber
of pieces number?, and returns the expiry time of the file expires!, and the data
pieces! found at the position specified. (expires! is returned by ResdStoredfFile
because ReadFile returns it; we could bave dropped this extra output, but choose not
to introduce the Z notation for doing so.)

YodateStoredFile

The complementary operation UpdeteStoredFile ia a more difficult composition,
since we must accumulate the costs of the component operations, and we must enaure
the updated file is (re-Jstored under its original name. For the sake of honesty, we will
give the definition, but we will not expand it:

The role of mathematical specifications 21

UpdateStoredFile ¢

ReadFile 3

DeleteFite f[decost!/cost!]

UpdateData 3

Storefile [neme?/neme!, scost!/cost!] 3

{dcost?, scost?, cost!: COST | cost! = deost? + scost?)

UpdateStoredFile first reads the whole file, then deletes it, then updates it, and
then stores its new value under its original name. Finally, it presents as its overall cost
the sum of the two charges made by Deletef ile {which may well be negative) and
Storefile.

What we have done is to compose two simple but infeasible operations to produce a
more complicated but feasible one (rather like the use of complex numbers in
electrical engineering, for example). Naturally, the implementor need net transfer
whole files back and forth within his black box on every read and update operation -
but nevertheless the updating and storage service provided by the box must behave as
if he does: that is, it muat behave as we have specified. Our decomposition was chosen
for economy of concept; the implementor's must be chosen for economy of time and
equipment, and the whole range of engineering techniques are available to him to do
8o {caches, update-in-place, etc.).

1.8 Experience so far

While the project has followed the general principles above, it has in fact adapted to
constraints in different ways. lts storage service, which we have implemented in
prototype, stores blocks of a fixed size {rather like the service described by Biekert
and Janseen(1]). This distinguishes it as a “universal” storage service from, say, the one
tmplemenied at Cambridge (described by Needham and Herbert[6]). Organisation of
blocks into files, the keeping of directories, etc. is done by software in the clients’ own
machines {for example, using a “File Package® as described by Gimson [2]). This
allows clients freedom in the choice of what file atructure they build, but of course
makes the sharing of files more difficult. If one package should become popular,
bowever, it could be placed in a machine of its own, and 8o become a service,

22 The Distributed Computing Software Project

There are many aspects of the project that it has not been possible to cover. For
example, the specification of the errors that may occur in use Is an essential part of
the full specification of a service. We include such details in the user manuals of the
services we have implemented. The manuals follow the style of specification presented
here, combining formal text and English narrative tc give a precise yet easily
underatandable description of the user interface to a service.

So far, the pressure of simplicity in our mathematical descriptions has kept the designs
correspondingly simple. At present, they are perhaps too much so; but by using
mathematical specification techniques we have built basic services which genuinely are
simple. And that is where one must begin.

1.7 Future plans

The atyles of specification, and of presentation of user manuals, has to some extent
been developed in parallel with the software to which they bave been applied. These
styles are now more stable, and further services will be specified, designed, and
implemented in the same way.

The goal of the project is to produce a suite of designs from which implementations
can be tuilt on a variety of machines. Each design will be documented, in a
mathemalical style, both for the user and for the implementor. Thus the primary goal
is to copsiruct a distributed system on paper.

For a paper construction to have any value, the designs proposed in it must be widely
applicabie, and genuinely useful. Machine-independent techniques of description will
take care of the first requirernent. To ensure that the second is met, prototype
implementations must be constructed of each of the designs, and experience must be
gained of their use.

The role of mathematical specifications 23

1.8 Glossary of symbols

€ %is an element of®
¢ %is not an element of®
3 “there exists®

1) “for all”

»

“is syntactically equivalent to”
N The set of natural numbers (non-pegative integers)

m..n The set of natural numbers between m and n inclusive
m..n 4 {k: M| mgksgn}

{sig | pred} The set of sig such that pred

A+ B The set of partial functions from A to B

[a+2b] The function {{a, b)} which takesa tob

f{x) The function f applied to x

dom The domain of a relation {or function)
for f: A-B,

domf 4 {e: Al (3b:8.b=f(a))}

/ Domain restriction
for f: A9B; A © A,
f /74 2 {(ab): flace€h}

\ Domain co-restriction
for §: A+B;: A c A,
fFANA & {(a,b): £ | ae A}

-] Functional overriding
for f, g: A+B,
feg & (fFidomg)ug

24 The Distributed Computing Sofiware Project
seq A The set of sequences whose elements are drawn from A
seqg A ¢ {s: N A]| (In: N. doms =1..n)}
s The length of sequence s
dom s = 1..#s
[new/old] Schema variable renaming

Schema forward composition

1.9 References

(1

@

(4]

51

6]

(7]

(8]

Bickert, R., and Janssen, B., 1983, “The implementation of a file system for the
open distributed operating system Amoeba”, Informatica Rapport, ¥rik
Gimsen, R. B., 1983, “A File Package - User Manual®, Distributed Computing
Morgan, C. C., 1984, “Schemas iz Z - a preliminary reference manual®,
Disyributed Computing Project Working Paper, Programming Research Group,
Oxford University

Morgan, C. C., 1984, “Schemas in Z - an example®, Distributed Compufing
Prokct Working Paper, Programming Regearch Group, Oxford University
Morgan, C. C., and Sufrin, B., 1984, “Specification of the Unix File System®,
1EEE Trang, Soft, Eng,, March 1984

Needham, R., and Herbert, A., 1982, “The Cambridge file service”, in “The
Cambridge Distributed Computing System®, Addison-Wesley, 41-63

Stoy, J. E., and Strachey, C., 1972, “OS6 - An operating system for a small
computer®, Comp. J, 15, 2, 195-203

Sufrin, B., 1983, “Mathematics for system specification”, Lecture Notcs 19831984,

Chapter 2

Anthentication of User Names

2.1 Nicknames and usernames
2.2 Authentication
23 Guest user

26 The Disitihuted Computing Software Project

2.1 Nicknames and userpamea

As a short-term measure, a very simple scheme has been chosen to make it difficult for
one client to imperaonate another.

Each registered client has a nickrame and a username. Nicknames are allocated
from a set Nickneme, and the allocation is public - that is, it is common for clients to
know each others® niclmames. It is expected that nicknames will change only rarely, if
at all.

Usernammes are allocated privately, from a set User; a client should not reveal his
username to anyone else. Since ugernames may become ¢ompromised (known by too

many people) or forgotten (known by too few!), it might be pecessary to change a
client’s username from time to time.

2.2 Anuthentication

Authentication is achieved by the existence of a (secret) partial function
GetNickname : User -9 Nickname

shich gives for any username the nickmame of the client who should be its sole
posaessor. Since the set User of usernames has been made very large, and the set

dom GetNickneme
of authentic usernames has been made a relatively small part of it, it will be hard for
clients to guess the usernames of others. Services therefore may use the function

GetNickname to authenticate their clients; they might reject requests for which

client? ¢ dom GetNickname

Authentication of user names 27

2.3 Guesi nser

There is a guest username GuaestUser which some services might recognise as a
special case. This username is public, and is expected to be used by clients
temporarily without a private username of their own. It is guaranteed that the guest
usernarme is not the authentic username of any client

CuestUser € User - dom GetNickneme

QOxford University

Computing taboratory

Programming Research Group-Library
8-11 ¥eble Road

Oxford OXt 3QD

Dxford N8RS 54141

Chapter 3

Thne Service - User Mannal

31 Time service operation
GetTime

3.2 Error reports
3.3 UCSD Pascal interface
3.4 Modula-? interface

30 The Distributed Computing Software Project

3.1 Time service operation
The time service provides only one user operation, GetTime, which returns the
current time

in secopds since 00:00:00 I January 1980.

The description of the operation has three sections, titled Abatract, Definition and
Reports.

The Abstract section gives a procedure heading for the operation, with formal
parameters, a8 it might appear in some programming language. The correspondence
between this procedure heading and an implementation of it in sorae real programming
language must be obvious and direct.

Each formal parameter is given 2 name ending with either ? or !. Those ending with
? are inputs, and those ending with ! are outputs,

The Definition section defines the meaning of the operation.
The Reports section lists the poasible (success or failure reporting) values which the

report! formal parameter can assume. Reports are discussed in more detail in
section 3.2.

Time service user manual 31

GETTIME

Abatract
GetTime {clieant?: User;
now! : Time;
cost! : Honey;
report !: Report)
Definitlon

The current time now! iz retnrned, measured in seconds from 00:00:00 ¥ January
1980. The cost cost! is fixed. The client’s username client? must be authentic (see
Chapter 2).

client? € dom GetNickname

Reporta

Success
Servicebrror

32 The Ditributed Computing Software Project

3.2 Error reports

The report parameter report! indicates whether the operation succeeded or failed.

The value Success indicates the operation succeeded.

The value ServiceError indicates the operation failed; in this case, oo reliance
should be placed on any other values returned. Possible reasons for this report are:

The service isn’t running
There was a comrnunication error

‘Time service user manual

3.3 UCSD Pascal interface

UNIT TT;

INTERFACE {UNIT TI 28-Nov-83}

{Time Service - UCSD-Pascal Interface}
USES {$U SYTYPES.CODE} SY_Types:

TYPE
TI_Report = (T1_Success, TI_ServiceErrar});

PROCEDURE Ti_GetTime ¢ InClient : SV_User:
YAR OutNow : SV _Time;
YAR OutCost : SY_Maney;
YAR OutReport : TI_Report);

{return current time}

33

34 The Distributed Computing Software Project

3.4 Modula-2 interface

DEFINITION MODULE TI: ({* Roger Gimson Z2-Feb-84)

(* Time Service - Modula-2 Interface *)

FROM S¥Types IMPORT User, Time, floney:

EXPORT QJALLFIED Report, CetTime;

TYPE
Report = {Success,
ServiceError);

PROCEDURE GetTime (InClient : User:
VAR OutNow : Time;
VAR OutCost + Money;
YAR OutReport : Report);
(% return current time *)

END TI.

35

Chapter 4

Regervation Service - User Manual

4.1

4.2

4.3
14
4.5

Introduction

Reservation service operations
Reserve
SetShutdown
Scavenge

Error reports
UCSD Pascal interface
Modula-2 interface

36 The Distributed Computing Software Project

4.1 Introduction

The distributed operating aystem at the Programming Research Group is made up of
various services which are largely independent. In particular, it’s possible that one
service can be turned on or turned off while other services and clients continue to run.

When a service is turned off (shutdown), there should not be any client who is at that
moment nvolved in some series of interactions with it - because interruption of such a
gseries could be quite inconvenient (for the client). If these series (or tramsactions) can
be recognised by the service, it is possible tc avoid this inconvenience as follows.

Shutdown procedure:
1. The operator requests shutdown of the service.
2. The service rejects any atternpt to begin a new transaction, but allows
current transactions to continue.
3. When all transactions have completed, the service notifies the operator that
shutdown is complete.

However, there are some problems; for example, a client might himself fail to
complete a transaction (presumably due to accidental failure of his own software). i
this happened, the service would mever shutdown. A more serious problem is that for
some services (e.g. the block storage service) there is mo recogmisable transaction
structure, and so the above scheme cannot be used at all. We solve both problems
with an independent Reservation Service.

The reaervation service does not interact at all with the service it reserves; it interacts
only with its own clients, and with the operator. It allowe clients to state when, and
for how long, they would like to use the reserved service, and it allows the cperator to
state a shutdown time beyond which all reservations are to be rejected. It becomes
the clients’ responsibility to protect themselves from sudden shutdown of the service
(by making reservations), and the operator’s responsibility to turn off the service only
after the shutdown time (which he may set). Thus a shutdown can be unexpected only
by those clients who have made no reservation,

A typical use of the reservation service would be for <lients to include a reservation
request at the start of every program using the reserved service. The duration of the
Teservation should be long enough to allow the program to complete, but short enough
to allow the operator to make a reasonably spontaneous decision to shutdown.

Reservation service user maaual 37

The state of the reservation service has two components:

expires a map from clients’ nicknames (their public identities - see
Chapter 2) to the fime at which their current reservation expires

shut domn the shutdown time most recently set by the operator.

RS

1
expires : Nickname + Time

shutdown: Time

Each operation requested by clients includes the three values:

client? the username of the client
cost! the cost of the operation
report! a report indicating whether the operation succeeded or failed.

4RS
RS
RS*

client? : User
nickname: MNickname

cost ! : Honey
report! : Report

client? € dom GetNickname
nickneme = GetNickname {client?)

The username client? is supplied by the user; it is his private username (as distinct
from his public nickname). client? must be authentic (client? € dom
GetNickname) if the service is not to ignore the request.

The client’s nickname is calculated by the service. cost! and report! are returned
to the user by the service.

38 The Distributed Computing Software Project

4.2 Reservation service operaticas

Three operations are described in this section: Reserve, which s requested by clients,
SetShutdown, which is requested by the operator, and Scavenge, which ia performed
by the service itself (at its discretion). The latter two operations are included here only
as an aid to the reader’s intuition.

The deacription of each operation can have up to four sections, titled Abstract,
Definition, External Calla and Reports.

The Abstrct section gives a procedure heading for the operation, with formal
parameters, as it might appear in some programming language. The correspondence
between this procedure heading and an implementation of it in some real programming
language must be obvioua and direct.

Each formal parameter is given a name ending with either ? or !. Those ending with
? are inputs, and those ending with ! are cutputs.

A short description may accompany the procedure keading.

The Definition section mathematically defines the operation, by giving a schema which
includes as a component every formal parameter of the procedure heading; within the
schema alio appear subschema(s) whose components include the service state before
and after the operation (this can be more (RS, RS™) or less (ARS) explicit). Any other
componedls appearing in the schema are either local to the operation (that is,
temporary) or represent values exchanged with other services (ipvisibly to the client).

Qualy the formal parareters of the procedure heading are exchanged directly between
client and service.

A short description may accompany the schema.

The External Calls section lists the calls this service may make on other services, in
order to complete the requested operation. These appear as procedure calls which
match the procedure headings given in the description of the operation called. {These
are fourd in the user manual for the called service.) The correspondence between
formal and actual parameters is positional, with missing (i.e. irrelevant) actual
parameters indicated by commas.

Reservation service user manual 39

The Reports section lists the possible (success or failure reporting) values which the
report! formal parameter can assume. If such a value is followed by a component in
parentheses and/or a predicate, it is to suggest that the reported value would occur
because that compenent satisfied the predicate. The component and predicate are
therefore a hint to the cause of the report.

Reports are discussed in more detall in section 4.3,

40 The Distributed Computing Software Project

RESERVE
Abstract
Reserve {(client? : User;

interval?: Interval;

until! : Time;

cost! : Money;

report! : Report}
A reservation is made for a period of interval? seconds. until! returns the expiry

fime of the new reservation.

A client can cancel his reservation by making a new reservation in whick interval?
is zero; see Scavenge below.

Definition
Reserve '
ARS
interval?: Interval
untill,
NowW : Time
until!l = now *+ interval?

until! < shutdown

expires’ = expires ® [nickneme +* until!]
shutdonn’ = shutdown
cost! = 20

The reservation must expire before the shutdown time. The current time now is
obtained from the time service (see Chapter 3).

External Calla

Time Service

Reports

GetTime (,nowW,,Success)

Reservation service user manual 41

nox Is obtained by a successful call of GetTime. It is measured in
seconds from 00:00:00 1°¢ January 1980.

Success
Servicekrror

NotAvailable

TooManyUsers

shutdown
shutdown

#expires

< noW + inte: val?
= until!l
= Capacity

42 The Distributed Computing Software Project

SETSHUTDOWN
Abstract

SetShutdonn {shutdomn? : Time;
threatens!: Boolean)

The operator may set a new shutdown time. He is informed if the new time threatens
existing reservations; if i does, it is his responsibility to negotiate with the clients
affected.

Definition

SetShut down -
RS

RS”

shutdown? : Time

threatens!: Boolean

shutdown’ = shutdomn?
threatens! & (Jexpiry: ren expires. expiry > shutdown')

expires’ = expires

The shutdewn time is changed to the new value regardless of existing reservations.
Reservations are unaffected.

Reservation service user manual 43

SCAVENGE

Abstract
Scavenge()}
The service can at any time remove reservations whose expiry time is in the past. This

s in fact the omly way in which reservations are removed (by client, operator or
service).

Definition
Scavenge .
RS
RS
noW: Time
shutdoun’ = shutdakn

expires’ & expires

(Vremoved: dom expires. removed £ dom expires’
= expires{removed) £ now)

Scavenge does not change the shutdown time.

Scavenge can remove reservations, but it never makes new ones. A reservation is
removed only if its expiry time is in {he past.

44 The Distributed Computing Software Project

External Calla
Time Service
GetTime (, mow,, Success)

nod 18 obtained by a successful call of GetTime. It is measured in
geconds from 00:00:00 15! January 1980,

Regervation service user manual 45
4.3 Error reports
The report! parameter of each operation indicates either that ths operation

succeeded or suggesta why it failed; in most cases, failure leaves the service unchanged.

An operation can return only the report values listed in the Reports section of its
description. If it returns the value Success, it must satisfy its defining schema. If it
returns any other value, it must satisfy instead the appropriate schema below.

ServiceError

Servicekrror

S —
RS
RS’
report! = Servicebrror
|

ServiceError indicales an unexpected failure, which might not be the client’s fault.
These are typical causes:

Service not running

Network (hardware or protocol) failure
Service hardware fault
Service software error

Oxtorg University

Computing 1.aboratory

Programming Sesearch Group-Library
8-11 Heble Road

Oxferd OX1 3QD

Oxford (DRR5) 54141

46 The Distributed Computing Software Project

NotAvailable
NotAvailahle -
RS
interval?: Interval
until!,
now : Time

report! = NotAvaileble

shutdomn < now + interval?
until! = shutdown

RS® = RS

If the reservation cannot be made due to early shutdown, the shutdown time itself is
returnedinuntil!.

nowm is obtained from the time service.

Reservation service user mapual 47

TooManylsera

TooManyUsers
ARS

now: Time

report ! = ToolanyUsers
#texpires = Capecity
nickname ¢ dom expires

RS’ = RS

The service has finite capacity Capacity for recording reservations; this report eccurs
when that capacity would be exceeded. The report cannot occur i the client has a
reservation (since it is overwritten by the new one).

nou is obtained from the time service.

Clientz who can't themaelves make reservations might be able to rely temporarily on
the reservations of others.

48 The Distributed Computing Software Project

4.4 UCSD Pascal interface

UNIT RI;
INTERFACE {UNIT RI 28-Nov-83}
{Reservation Service - UCS5D-Pascel Interfece}

USES {§U SYTYPES.CODE} SY_Tupes;

TYPE
RI_Report = {RI_Success, RI_ServiceError, RI_NotAvailsble,
RI_TooManyUsers);

PROCEDURE RI_Reserve { InClient : SY_User;
Inlntervel : SY_Interval;
VAR OutUntil : S5Y _Time;
VAR OutCost : SY_Money:;
VAR QutReport : RI_Report};

{reserve use of the service for Inlnterval, terminating at
QutUntil, otherwise return the time et which the service
becomes unavaileble in OutUntil}

Reservation eervice user manual

4.5 Modula-2 interface

DEFINITION MODULE RI; (# Roger Gimson 22~Feb-84 #)

{* Reservation Service - Hodula-Z Interface #)

FROM S¥Types IMPORT User, Time, Interval, HMoney:
EXPORT QUALIFIED Report, Reserve;
TYPE

Report = (Success,
ServicekError,

NotAvailable,
TooManyUsers):
PROCEDURE Reserve (InClient + User;
Inlnterval : Interval;
YAR OutlLimit : Time;
VAR OutCost : Honey;

YAR OutReport : Report);
(# reserve use of the service for Inlnterval, terminating at
OQutLimit, otherwise return the time at which the service
becomes unavailable in QutLimit #)

END RI.

419

Chapter 5

Block Storage Service - User Manuaal

5.1 Introduction
5.2 Accounting
5.3 Security

5.4 Storage service operations
Submit
Read
Status
Destroy
Replace
Extend
BlockNames
BlockCount
Scavenge

55 Error reportsa
56 UCSD Pascal interface
5.7 Modula-2 interface

51

52 The Distributed Computing Software Project

6.1 Introduction
The block storage service stores blocks oo behalf of its cliepts. A client may submit
some data
date: Deta

which the service will store within a block

Block
swner : Nickneme

created: Time
expires: Time
data : Data

As well as containing the client’s data, the block records as its owner the nickname
(see Chapter 2) of the client who submitted it, and it records the time of its creation.
Whenever a block is created, a lifetime must be given by the client; it is the number
of seconds for which the service ig obliged to store the block. After its lifetime, a block
is aaid to have expired, and can be discarded by the service without notification of the
client. A rame will be issued by the service when the block is created

name: Name

which becomes the client’s reference to the block. Any subsequent operations on the
block will require this name.

The service contains a mapping from block names to blocks; it contains also a finjte set
of new block names which it has not yet issued. When a new name is issued, it is taken

from this set.

5s

blecks : Neme -+ Block
neuwnames: F Name

newnames N dom blocks = {}
NullName € newnames

Block storage service user manual 53

The service guarantees never to issue the special name Nul 1Name; this name can
therefore be used by clients’ applications to indicate “no block” (similarly to the use of
the ni! pointer in a programming language).

There are eight operations the client may ask the service to perform:

Submit - create a aew block and store it.

Read - read the data of a stored block,

Status - obtain the complete status of a stored block.
Destroy - remove a stored block from the service.
Replace - replace one stored block with another.
Extend - change the lifetime of a block.

BlockNames - obtain the names of blocks currently owned

by the client.

BlockCount - obtain the number of blocks currently owned
by the client.

There ig also a Scavenge operation which the service may perform at any time: it can’t,
however, be requested by clienta:

Scavenge - remove an expired block.
Every operation the service can perform for a client must receive the client’s
identification as input, and it must provide the cost and a report as output; normally,
the report will be Success:

client?: User

cost! : Honey
report!: Report

54 The Disiributed Computing Software Project
The client’s username must be autheniic (see Chapter 2) ; if it is, he will have a
nickname:

nickname: Nickname

nickname = GetNickneme (client?)

During an operation, the service can ask the time service (Chapter 3) for the current
time:

rnow?: Time

Finally, any name issued by an operation is removed from the set of new names, and
30 can never be issued again:

newnames’ = newnames - dom blocks’

This schemsa describes these general aspects of operations on the storage service.

ASS |
58
5S°
client? : User
noW? : Time
nickname : Nickname
cost! : Money
report! : Report
nickname = GetNickname {(client?)
nenwnames’ = newnames — dom blocks’
)

Block storage service user manual 55

5.2 Accounting

Each client will be responsible for the expense of hig using the service.

Costs

Every operation has a cost , which may have two components, One is the expense of
performing the operation itself:

SubmitCost
ReadCost
StatusCost
DestroyCost
ReplaceCoat
ExtendCost
BlockN amesCost
BlockCountCost

The other, if present, is related to the service requested by the .operation. For
example, the submit operation charges in advance for the storage of the block
submitted, and the destroy operation may give a rebate (negative expénse}if the block
is destroyed before its expiry time.

The expense of storing a block iz determined by applying a tariff function to the
block’s creation and destruction times. This is a typical tariff function:

Tariff (created, destroyed) =
if destroyed > created them destroyed - created
else 0
Accounting policy
The values of SubmitCost etc. and of the tariff function may be varied; their precise

values at any time will be published separately. Expenditure will be recorded ir 3 log,
and clients will be expected to observe any limits placed upon thern.

56 The Disiributed Computing Software Propct

5.3 Security

The service provides limited security in two areas; in both cases it depends on certain
values being chosen from such a large set that they are hard to guess.

A client may not access a block unless he knows its name, and block names are hard
to guess. The name of any block is initially known only to its creator; the service will
never tell any client the name of a block he doesn’t own,

Blocks may be replaced or destroyed only by their owners, and user names are hard to
guess (see Chapter 2).

Block storage service uper maaual 57

5.4 Storage service operations

On the following pages appear descriptions of the storage service operations. Each
description has three sections, titled Abatract, Definition and Reports.

The Absiract section gives a procedure heading for the operation, witk formal
parameters, as it might appear in a programming language. The correspendence
between this procedure, and an implementation of it in a real programming language,
must be obvious and direct.

Each formal parameter is given a2 name ending with either ? or !. Those ending with
? are inputs, and those ending with ! are outputs.

A short description accompanies the procedure heading.

The Definition section mathematically defines the operation, by giving a schema which
includes as a component every formal parameter of the procedure heading; within the
schema also appears a subschema (ASS) whose components include the service sfate
before (SS) and after (557) the operation. Any other components appearing in the
schema are local to the operation (that is, temporary) and may assuine any values
consistent with the predicates.

The client is directly aware only of the components which are formal parameters of
the procedure heading.

A short description accompanies the schema.

The Reports section lists the possible (success or failure reporting) values which the
report! formal parameter may assume. If such a value is followed by a predicate, it
ig to suggest that the value would occur only if the predicate were true. The predicate
;s therefore a hint to the cause of the report.

Section 5.5 discusses report values in more detail by giving 2 mathematical definition
of each of their occurrences.

58 The Disiributed Computing Software Project

SUBMIT

Abstract
Submit { client? : User;

lifetime?: Time;

data? : Data;
name ! : Name;
cost ! : Honey;
repart! : Report)

A block is formed from the 1ifetime? and deta? values given, and is stored by the
service under the new name name!. The <ost includes the expense of storing the block
until its expiry time.

Block storage service user manual 59

Definition

Submi t)
455
Block®
lTifetime?: Time
data? : Data
name! : Name
owner ’ = nickname
created’ = now?
expires’ = created” + lifetime?
data’ = data?
neme ! € neWnemes
blocks® = blocks ® [name! — Block’]
cost! = SubmitCost + Tariff {created’, expires’)

1

The owner of the block is the client submitting it.

A new name is chosen which has never before been issned, and the new block is stored
under that name.

Reports

Success
ServiceError

NoSpace = #blocks = StorageCapacity

60 The Distributed Computing Software Project

READ

Abstract

Reed (client?: User;

name? : Neme;
data! : Data:
cost! ¢ Money;

report!: Report)

The data is returned for the block stored under neme?.

Block storage service user manual

Definition
Read |
ASS
Block
name?: Name
data!: Data
85" = 5§

Block = blocks name?
data! = date

cost! = ReadCost

The service is unchanged by this operation,

Reports

Success

ServiceError

NoSuchBlock = nama? ¢ dom blocks

61

62 The Diiributed Computing Software Project

Abstract

Status (client? :

name?

onner !

created!:
expires!:

cost!
report!

STATUS

User;

: Neme;

1 Nickname;

Time;
Time;

: Money;
: Report}

The statusis returned of the block stored under name?.

Block storage service user manuil 63

Definition
Status .
4SS
Block
name? : Name
owner! : Nicknsme

created!: Time
expires!: Tima

58" = 85§

Block = blocks mame?

owner! = guner

created! = created
expires! = expires
cost! = Statuslost

The gervice is unchanged by this operation.

Reporta

Success

Servicekrror

NoSuchBloeck = name? # dom blocks

64 The Disiributed Computing Software Project

DESTROY

Abstract

Destroy (client?: User;
name? : Name;
cost! : MHoney;

report!: Report}

The block stered under name? is removed {rom the service; there may be a rebate If it
is destroyed before its expiry time,

Block storage service user manual

Definition

Destroy
455
Black

name?: Name

Block

oWner = nickname

]

blocks name?

blocks' = blecks \ {name?}

cost! = Destroylost =~ Tariff (created, expires)
+ Tariff (created, now?)

A block may be destroyed ounly by its owner.

Reports

Success
Servicekrraor

Not Ouner = ouner ¥ nickname
NaSuchBlock = name? € dom blocks

65

66 The Ditributed Computing Software Project

REPLACE

Abstract
Replace {client?: User;

name? : Name;
data? : Data:

name! : Name;
cost! : Money;

report!: Report)

The data part of the block stored under name? is replaced by data?. The block is
given a rew name.

Block storage service user manual 67

Definjtion

Replace
4SS
Block
Block”
name?: Name
deta?: Data
neme! : Name

Block = blocks name?
owner = nicknamg

owner’ = omWner

created” = now?

expires’ = expires

data’ = data?

name ! € neWwnames

blocks' = blocks \ {name?} ® [name! +— Block']
cost! = RepleceCost - Tariff (created , expires)

+ Tariff (created , now?)
+ Teriff (created’, expires’}

A block may be replaced only by its owner, The new block contains the new data, and
ita creation time is the time of the replace operation. Its owner and expiry are taken
from the old block,

A new name is chosen which bhas never before been issued, and the new block is stored
under that name,

Reporta
Success
ServiceError

Not Omner = gWner # nickname
NoSuchBleck = name? # dom blocks

68 The Distributed Computing Software Project

EXTEND
Abstract
Extend {(client? : User;

name? : Name;
lifetime?: Time

cost! : Money;

report! : Report)

The expiry time of the block stored under name? is changed to now? + lifetime?;
there may be a rebate if its new expiry time is earlier than before.

Block storage service user manual

Definition

Extend
458
Block
Block'
name? : Name
lifetime?: Time

Block = blocks name?

oWner = nickname

oMner” = ouWner

created’ = created

expires’ = noW? + lifetime?

data’ = deta

blocks’ = blocks ® [name? = Block']

cost! = ExtendCost - Teriff {created , expires)

+ Tariff {crested’, expires’)

A block may be extended only by its owner.

Reports

Success
ServiceError

NeSuchBlock = name? £ dom blocks
NotOwner =+ ouwner # nickname

70 The Distributed Computing Software Project

BLOCENAMES

Abstract

BlockNemez (client? : User;

key? : Key;
count? : N
key! : Key;

nemeset!: F Nama

cost! : Honey;
report! : Report)

BlockNemes returns a (finite) set of names of blocks owned by the client.
Since a client may own many blocks, it may not be practical in a single operation to
return all of their names:

allnemes = blocks™’ o ownar ! {{nickname}}
The operation BlockNames therefore returns only a part of al Inames, and repeated
calls of it may be necessary to construct el Inemes as the union of the paris returned.
To consiruct sllnemes, the client first calls BlockNames with a apecial key

StartKey:

BlockNemes | key? = StartKay

Block storage service user mapual 71

He then continues to call BlockNames repeatedly, supplying as the new key {key?)in
each case the key (key!) returned by the previous call. The following is an example of
the itP call:

BlockNames | key? = key,
key! = ey,
nameset! = nameset

Finally, the special key EndKey will be returned to indicate that no more calls need be
made.

BlockNames | key' = EndKey

At that point, providing allnames has remained constant (i.e. no submils etc. have
occurred for this client),

allnsmes = U nameset,
i

Oxford University

Compiting faboratory

Programming Regearch Group-Library
8-11 Keble Road

Oxford OX1 3QD

DOufard {0R65) 54141

72 The Distributed Computing Software Project

Definition
BlockNames s
ASS
key? 1 Key
count? : N
key! : Key

nemeset!: F Name

al Inames: F Name

55" = 8§
al1names = blocks™! ¢ owner™! {{nickname}}

key? € key!
nameset! = (key! - key?)} N allnemes

#nemeset! < count?

count? limits the size of the set returned.

A key iz itself to be regarded as a set of names; i.e. the set of keys is the (finite) set of
all such sets of names

Key 2 F F Name

Each key value, passed from one call to the next, includes all the names that have
been returned {and possibly some that have not, but never will be).

Block storage service user mapual 73
The special keys are
StartKey, EndKey: Key

Stertkey & {}
EndKey e Name

Reporis

Success
ServiceError

74 The Distributed Computing Sofiware Project

BLOCECOUNT

Abstract

BlockCount (client?: User;
count! : M;
cost! : Money;
report!: Report)

An estimate {upper bouad} is returned for the number of blocks currently owned by
client?,

Block storage service user manual 75

Definition

BlockCount
ASS
count!: N

al Inames: F Name

S5 = 5§
allnames = blocks™ ¢ owner™! {{nickname})

count ! > #allnames

The count returned is an upper bound (rather than an exact value) because it may
include blacks which have been scavenged since the last inifialisation of the service.

This operation may be unavailable if it was not enabled at initialisation of the service.

Reports

Success
ServiceError

CountNatAvailable

76 The Distributed Computing Scltware Project

SCAVENGE

Abstract

Scavenge (neme?: Name)

The block stored under neme? is removed from the service; only expired blocks may

be scavenged.

Scavenge may be invoked by the service at any fime; it can never be invoked by clients.

Definition

Scevenge
ASS
Block
name? : Name

Block = blocks name?
expires < now?

blocks’ = blocks \ {name?}

Block storage service user manual 77

5.5 Error reports

The report! parameter of each operation indicates either that the operation
succeeded or suggests why it failed. In most cases, failure leaves the service
unchanged.

An operation can return oply the report values listed in the Reports sectibn of its

definition. If it returns the value Success, it must satisfy its defining schema. If it
returne any other value, it must satisfy instead the appropriate schema below.

NoSuchBlock

NoSuchBlack
4SS

nema? € dom blocks
report! = NoSuchBlock

35" = 55

This report is given if there is no block stored under name?; note that this may be
because the block has heen scavenged,

78 The Distributed Computing Software Project

NoSpace

NoSpace .
ASS

#blocks = StorageCapacity
rgpart! = NoSpace

$8' =SS

A new block cannot be submitted when the service’s storage capacity is exhausted.

NotOwner

NotOwner .

4SS

oWner # nickname
report! = NotOwner

88" = 55

Operations which can remove or change a block must be performed by the block’s
owner only (excepting Scavenge).

Block storage service user mannal 79

CountNotAvaliable

CountNot Available
ASS

_

report ! = CountNotAveilable

If the BlockCount operation wae not enabled at service initialisation, this may be the
result of an attemnpt to invoke it.

ServiceError

ServiceError
58
58’

report! = ServiceError

ServiceError indicates an unexpected failure which is probably not the client’s fault.
These are typical causes:
Network {hardware or protocol) failure

Service hardware fault (e.g. disk error)
Service software error

80 The Distributed Computing Software Project

5.6 UCSD Pascal Interface

UNIT SI:
INTERFACE {UNIT SI 10-Aug-24}
{Block Storage Service ~- UCSD-Pascal Interface}

USES {$U SYTYPES.CODE} SY_Types;

CONST

SI_DateSize = 528; {date bytes per block}

SI_Namelimit = 64; {max returneble names par call of BlockNemes}
TYPE

SI_Name = SV_I1G6HEX;

{black name}

SI_Date = PACKED ARRAY [1..SI_DataSize] OF SV_Byte;
{block date}

SI_Key = PACKED ARRAY [1..4] OF SV_Byte:
{key used to chain BlockNemes calls}

SI_NameSat = RECORD
count : INTEGER;
names : ARRAY [1..SI_NameLimit] OF SI_Name
END;
{set i.e. names[1]..nemesfcount] returned by BlockNames}

SI_Report = (SI_Success,
SI_ServiceError,
SI_NotOwner,
SI_NoBlocksLeft,
SI1_NeSuchBlock,
51_CountNotAvaileble);

Black storage service uaser manual 81
VAR
SI_NullNeme : SI_Name; {neme of no block}
SI_StartKey : SI Kay:; {given to first call of BlockMNames}

SI_EndKey : Sl Key; {returned by final cell of BlockNames}

PROCEDURE SI_Submit InClient : S5V_User;
InLifetime : SY_Intervel;

YAR InData : 51 _Pata:
YAR QutName : SI_Name;
YAR COutCost : 5Y_Honey;

YAR QutReport : SI_Report);
{store given data in a block, returning its name}

PROCEDURE SI_Read { InClient : SVY_User;
InName : SI_Name;

YAR QutData : SI_Deta;

¥AR QutCost ¢ SY_Honey;

YAR QutReport : SI_Report):
{read deta of named block}

PROCEDURE SI_Destroy (InClient : SY_lser:
InName : SI_Name;
YAR Outlost : SY_Honey:
YAR OQutReport : SI_Report);
{destroy nemed block}

PROCEDURE SI_Replace { InClient 1 SV_User;

InName : SI_Name;
YAR InData : SI_Data;
YAR CutName : SI_Name;
YAR Cutlost : S§V_Honey;

VAR CutReport : SI_Report);:
{gives effect of destroy then submit}

82 The Disiributed Computing Software Project

PROCEDURE SI_Stetus (InClient : SY_User;
InName : SI_Name;
YAR OutOQuner : SY_Nickname;

YAR OutCreated : SY_Time:

YAR OutExpires : SV_Time:

YAR OutCost : SY_Money:

YAR OutRepart : SI_Report):
{return sttributes of named block}

PROCEDURE SI_Fxtend (InClient : SY_User;

InName : SI_Name;
InLifetime : SV_Interval;
YAR OutCost : SY_Honey:

VAR OutReport : SI_Report):
{change the 1ifetime of the named block}

PROCEDURE SI_BlockNames (InClient : S5Y_User:

InKey : 51 _Key:

InCount : INTEGER;
YAR OutKey : 5] Key;
VAR OutNames : ST_NameSet:
YAR OutCost + SY_Money;

VAR OutReport : SI_Report);
{starting from given ey, return up to given number of names
belonging to this client, plus new key to obtain further names}

PROCEDURE SI_8lackCaunt ¢ InClient : SV_User;
YAR OutCount : SY_1DINT;
¥YAR OutCost : SY_Money:
YAR OutReport : SI_Report};:
{if available, return the number of blocks owned by this client}

Block storage service user manual 83

5.7 Modnula-2 Interface
DEFINITION MODULE SI: {# Roger Gimson Z2-Feb-84 %)
{* Block Storage Service - HModula-2 Interface %)
FROM SVTypes IHPORT User, Nickneme, Time, Interval, Money;
IHPORT Long:
EXPORT QUALIFIED DateSize, NamelLimit,
Name, Data, Key, NameSet, Report,
Nul1Name, StartKey, EndKey,

Submit, Reed, Destroy, Replace, Status, Extend,
BlockNames, BlockCount ;

CONST
DataSize = 528; (w data bytes per block *)
NamelLimit = 64; (* max returnable names per call of BlockNames *)
TYPE
Name = ARRAY [1..4] OF CARDINAL; {* block nam: #*)
Data = ARRAY [0..DataSize~1] OF CHAR; (» block dats =)
Key = ARRAY [1..2] OF CARDINAL;
(#* for chaining BlockNames calls %)
NameSet = RECORD
count: CARDINAL ;
names: ARRAY [1..NameLimit] OF Name;
END:
(* set i.e. nemes{l]..names[count] returned by BlockNsmes =)
Report = (Success,
Servicekrror,
NotQuner,
NoBlocksLeft,
NoSuchBlock,

CountNotAva:lable);

84 The Distributed Computing Software Project

VAR
NullName : Neme: (% name of no block #)
StartKey : Key; (# given to first call of BlockNames *)
Endkey : Key; (* returned by final call of BlockNames #*)

PROCEDURE Submit (InClient : User;
YAR InLifetime : Interval;
YAR InData : Dats;
YAR OutName : Neme;
VAR OutCost : Honey:

VAR OutReport : Report);
(* store given data in block, returning its name *)

PROCEDURE Read (InClient : User;

VAR InName : Name;
VAR COutData : Data;
VAR OutCost : Honey:

YAR OutReport : Report):
(% read date of named block *)

PROCEDURE Destroy (InClient + User;
YAR InNeme : Neme;
VAR OutCost : Honey:

VAR OutReport : Report);:
(* destroy named block #)

PROCEDURE Replace (InClient 1 User;
YAR InName : Name:
YAR InDeta : Data;
VAR OutName : Name;
VAR CutCost ¢ Money:

YAR OutReport : Report);
(* give effect of destroy then submlt)

Block storage service user mannal

PROCEDURE Status (InClient : User;
YAR InName : Name;
YAR OutOwner : Nickname;
VAR OutCreated : Time;
YAR OutExpires : Tima;
YAR OutCost : Honey;
VAR OutReport : Report):

{* return at tributes

of namaed block *)

PROCEDURE Extend (InClient : User;
YAR InName s -Name;
VAR InLifetime : Interval;
VAR OutCost : Honey;
VAR OutReport : Report};

(» change the lifetime of the named block »})

85

PROCEDURE BlockMNames (InClient : User;
InKey : Keu;
InCount : CARDINAL;
YAR OutKey : Key:
VAR OutNames : NameSet:
YAR OutCost : Honey;
YAR OutReport : Repart);

given number of names
obtain further names #)

(# sterting from the given key, return up to
belonging to this client, plus nenw key to
PROCEDURE BlockCount { InClient : User;
YAR OutCount
VAR OutCost
YAR OutReport : Report);

(# if available, return the number of blocks owned by this client #)

: Long. Integer;
: Money:

END SI.

