JSD EXPRESSED IN CSP

by

K.T.Sridhar C.A.R.Hoare

Oxford University Computing t >-~
Weifson Building
Parks Road
Oxford OX1 3QD

Technical Monograph PRG-51
July 1985

Oxford Universily Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford 0OX13QD

England

Copyright @ 1985 K.T Sridhar! and C.A.R.Hoare?
lgupported by a fellowship from UNDP end on leave from

NCSDCT

Tata Institute of Fundamental Research
Homi Bhabha Road

Bomobay 400 005

India

20xford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford ©OX13QD
England

Abstract

System development in JSD is done by building a model of the real world
taking into account the time-ordering of events, and ther extending this mode!l
to satisfy the functiomal requirements. The resulting specification is
transformed into programs more efficiently executable on current computer
systems. We study the relationship between JSD and CSP arnd suigest that
CSP provides a theoretical basis for the concepts and methods of JSD.
Constructive specifications in CSP are given for problems solved wsing JSD.
Efficient implementations for cooventional sequential processors may be
derived from the paralle] CSP solutions using the algebraic {aws governing the
CSP operators.

1. Introduction

In the introduction to his book on System Development [J|, Michiel Jackson
acknowledges the influence of earlier work on communicating sequential processes.
The similarity of JSD with CSP is due to their common aim to descnbe, specify,
develop and implement systems whose subject matter has a strong time dimension.
These include embedded systems, switching systems, control systems, and all kinds of
data processing systems, both on-line and batch processing.

Michael Jackson’s book is written as a practical guide to practicing programmers. It
helps them to organise their thoughts, their projects, and their teams in a more
effective fashion. The development process is split into six steps, staning with a
description of the system environment and the capture of customer requirementa and
culminating in the production of efficient code in a particular langrage for a
particular machine. The method involves liberal use of diagrams, and is illustrated by
five amusing apd instructive examples.

A laler book on Communicating Sequeatia]l Processes [H2| takes a much more
theoretical approack. The notations are modelled on mathematical formulie; they are
given a mathematical definition, and they are governed by mathematica laws. No
advice is given on development steps; and although ah implementation is given, it uses
a functional programming language and cannot be recommended for amy practical
purpose. Diagrams play a very subordinate role, and the examples, thoughnumerous,
are very much smaller.

The purpose of this paper i3 to clarify the relationship between JSD ané CSP. We
have tried to show that CSP provides a promising theoretical basis for the practical
concepts and methods used in JSI). We hope that this may suggest fruitful directions
for research in the practical application of CSP, and that it may lead o a better
appreciation of JSD and perhaps suggest further improvements.

Many of the most apparent differences between JSD and CSP are only supedicial, and
arise from the differences described above in the orientation and target rewdership of
the two books. In order to strip away these superficialities we have deveoped CSP
solutions for each of the five examples used in [J] to illustrate JSD. Such non-trivial
case studies still seem to offer the best research technique for elucidating the
similarities and differences, and the merits and defects, of proposed m:thods for
design and development of computer programs.

This paper is designed to be self-contained, but readers familiar with CSP aad/or JSD

2

will find it much easier to follow. The next section contains a brief review of CSP: it
describes the CSP operators used in the remainder of the paper, and gives their
mathematical definition in terms of the trace model [H2|.

Sections 3 to 7 contain a treatment of the five main examples of [J]. In each example
we follow Jackson's strategy of first solving 2 simple version, and then adding further
functions and complications. However, it i3 not possible to pursue all the
complications of [J] in the span of this shorter article.

In section 8 we show how the algebraic laws of CSP can be used to transform a highly
parallel program into one with the same specification of its observable behaviour, but
which can be executed efficiently on a conventional sequential processor. This is a
more mathematical version of Jackson's recommendation for the implementation steps
in his development process. Section 9 summarises the main technical differences
between CSP and JSD and the final section indicates directions for further work.

In an appendix we have given a summary of all the mam notational and
terminological differences between JSD and CSP. A reader familiar with JSD may
wish to study the appendix first as an aid to familiarisation with CSIP; other readers
are recommended to consuit the appendix as an aid to understanding Jackson’s book.

2. CSP

The formalisms used in this paper are taken from [H2l. However, we make the
simplification that processes are described only in terms of traces of their behaviour,
ignoring problems of non-determinism. This simplification is justified perhaps by the
fact that we are more interested in the specification of precesses than their
implementation. Thus we merely specify that the system must not deadlock; and we
do not at this atage need to introduce such complexities as refusal sets in order to
prove that a particular implementation avoids such problems,

The behaviour of a process is described in terms of externally observable events
drawn from its alphabet. A trace of a process is a sequence of events it can engage in
up to some moment in time. traces{P) denotes the set of all poasible traces of a
procesz P, initials(P) is the set of events in which P can engage right on its first
step

initials(P) 2 {a | <a> € traces(P)}

3
The following two sections summarise the most important concepts and operators of
CSP. For further information the reader is referred to [BER], [H1] or [H2].
2.1 Operations on Traces

Since traces play a crucial role in understanding the behaviour of processes it is
necessary first to define a number of operators on traces.

A trace is denoted by a sequence of symbols (which stand for events) separated by
commas and enclosed within angular brackets. <a, b> is a trace of two events @ and
b. <> denotes the empty trace. The letters s and t are frequently used b stand for
traces. Catenation of two traces is denoted by the symbol *, for example

<g, b>*<c> = <a,b,c>
st A is the trace s restricted to the events in the set A

<a,b,c, a>l{a, c} = <a,c, 8>
The length or cardinality of a trace is denoted by #s

#<g,b,c> = 3

The first event in a non-empty trace s is denoted by sg, while s’ i3 the rest of the
trace s after removing s,

<a,b,c>g = &
<a, b,c>’ = <b,c>

The partial ordering relation s<t means that s is a prefix (initial subseqience) of t
<@, b> € <a, b,c, a>

The empty trace is a prefix of all traces.

Sequential composition of traces s and t is denoted s;t. A special symbol V is

introduced to stand for the event of successful termination of a process, and so it can
occur only at the end of a trace. If s does not contain the event /, then

s;t = s
(s~<d>};t = s~t

For any set of events A, A" denokes the set of all possible traces obtained using the
events of the set A. Let f be a function from a set of events to another set of events,
f:A~»B. Then f* is a function from the set of traces A* to B, atd is defined by the
two equations

fF*{<>) = <>
f*{<a>*s) = <f(a)>"f*(s)

2.2 CSP Operators

The syntax of the main CSP operators that we use is given below it BNF style. [n the
following P and Q are processes; s ia a trace; s is “n event; A and B are sets of
events, i 3 a process label; Bool is some boolean condition; «F is the alphabet of
proceas P.

CSP ::= e — P | STOP, | SKIP, | RUN,
IPiQlPDQ]| P;a| «P
[P/s | PNB | F(PY | i:P
| P~Q | P #Bool$ Q | pX.P

The prefixing operator — 158 used to define a process, 8 — P, which first engages in
the event s and then behaves like P. A process definition i3 guarded i it begins with
a prefix

traces{fa = P) = {s | s=<> v (s4=8 A s' € traces(P))}

STOP, is a deadlocked process which can engage in no event from its alphabet A.
The suffix denoting the alphabet is often dropped

aSTOP, = A
traces(STOP,) = {<>}

SKIPy, is a process which has terminated successfully and is defined as

SKIP, & ¥ — STOP,
oSKIP, = A provided v € A

traces(SKIP,) = {<, </>}
RUN,, is a process which is willing to engage in any of the events of the alphabet A

aRUN, = A
traces(RUNy) = A*

P | Q is the parallel combination of the two processes P and Q. Events common to
the alphabets of P and Q require simultaneous participation of both P and Q.
However, P may engage independently in those events of its alphabet which are not in
the alphabet of Q and vice versa

u(P “ Q) = oaP U aQ
treces{P [Q) =
{s | s€{oP U Q)" A slaP € traces(P) A slol € traces(Q)}

We use the deterministic choice operator (denoted by |) when we know that no first
event of P is also poasible for Q. Process R defined below offers a deterministic choice
between events s and b and subsequently behaves like either P or Q, according to
this choice

¥ Ree—P |b—0Q where @ # b
then traces{R) =
{s | s=<> V¥ (sg=e A s’ €treces{P)) v {sy=b A s’ € traces(Q))}

0 is the general choice operator, which allows the environment to choose between P
and Q. This choice i8 exercised by the environment only on the firat action by
selecting an event allowed by one and not allowed by the other. In this paper we shall
ignore the problem of non-determinism. When no first event of P i& also posaible for
Q, [reduces to the deterministic choice operator |

treces(P [Q) = traces(P) U traces{Q)
P:Q is the sequential composition of the two processes P and Q. It behaves like P
until P terminates, after which it behaves like Q. The occurrence of v at the end of P
is automatic aud is not observable externally, i.e. this ¥ does not appear in any trace

of P;Q

treces(P;Q) = {s:t | s € traces{P) A t € treces{(Q)}

6

#P is a process that behaves like an infinite sequential composition of the process P. It
is the same as

P;P:P:...

P/s (P after s)is the bebaviour of process P after it has engaged in the events of
trace s. P/s ig defined only if s € traces(P).

P\B 13 the process P with evenis in the set 8 hidden from its environment. The events
in set B donot appear in the traces of P\B. In the absence of divergence (see |[BHR])

a{P\B) = P - B
traces(P\B) = {sl{aP-B) | = € traces{P)}

For simplicity we give here a definition which ignores the problem of divergence.

f{P) is the direct image of process P under the injection f:aP—2A. The process f (P}
performs the event f(a) whenever P performas the event a

traces(f(P)) = {f*{s) | s € traces(P)}

i :P is the process derived from P by labelling all events of P by i; as a result, each
event a of P becomes i.a for the process i:P. Process labelling is defined using the
direct image operator as

i:P =f,(P}

wheref ,{x) = i.x forallx € aP
The operator * denotes the interrupt operator. P*Q behaves like P until the
occurrence of an event in 1nitials{{d}, whereupon it behaves like O

traces(P*0) = {s*t | s € traces{P) A t € traces{(Q)}

PEBool#0 is a different notation for the familiar if-then-else. If the boolean condition
Bool evaluaies to true then P¥Boo1$0 behaves like P, otherwise Q.

uX.P denotes a process defined using guarded recursion. If F{X} i a guarded
expressiol using the process name X (whose alphabet is A) then [BHR) shows that the
equation

X = F{X}
has a unique solution with alphabet A. This solution is denoted by pX:A.F(X).
Whenever the alphabet is obvious, A is dropped and it is written as uX.F{X). For
example,

pX.{b = X)

is a process which engages in an indefinitely long series of b events. It is the same as
RUN 3

traces(pX.(b — X}) = {b}"
In most of our examples we find it necessary to use arrays of processes and vse indices

in their definition. We therefore augment the earlier syntax of CSP with indexed
operators for the three operators ||, [| and &

“lnex P l [Ilnex P l ‘unex P

where inex is ap index expression such as i20, j€X, etc. We illustrate the indexed
operators by the following examples.

{),,c i:P)is the parallel combination of an infinite number of processes 0:F, 1:P,

2:P,...
(B,,0 i:Py = Q:P 1 L:P] 2:P |} ...
(0,50 i.@a — P,)is a concise notation for
0.a = Py l.a—= P za—P 10 ...
{3g<,<tp (i.8a = pli — S5KIP)}is a concise notation for the sequential composition
{(0.e = p!0 — SKIP):{l.a — p'!'1 = SKIP):...:(9.a — p!3 — SKIP)
? and ' are used for input and output communications respectively with their usual
meaning. (in?x — P)is a process which engages in the event in.y for any y
communicable as a single message on the input channel in and then behaves like P;

while (out'{x+1) — P)is a process which engages in event out .37 if the value of x
is 36 and subsequently behaves like P.

A process P with state x can be defined by a mutual recursion, in which each
equation defines P, for a different value of the state x. The subscript x may range
over a amall, large, or even infinite set. Here is a simple example, the process Count,
which counts the number of occurrences of event a and s always willing to
communicate this value on the channel out

Count & Py

P,ea—=P, | out!x =P,

3. Modelling a bank

The first example we treat is a simplified version of a system which models the
behaviour of customers in a bank. On opening an account, a customer joins a deposit
acheme run by the bank. Subsequently, the customer may deposit or withdraw money
as many times as required (overdrafts are permitted) until the account is terminated.
Four events {invest, payin, Withdraw, terminate} are required to describe the
behaviour of a customer, which is represented by process Custemer in the system.
The meaninge of these four events are

invest open an account
peyin deposit money into the account
Withdraw take money out of the account

terminate close an account

In this simplified version, we have chosen to ignore the amount that is being deposited,
or withdrawn, and the balance of the account.

Since opening an account is the obvious first action of a customer, we write the process
Customer as a guarded expression with prefix invest. The subsequent behaviour of
a customer can be expressed using guarded recursion and the process STOP

Customer @ invest — pX.(payin — X
| mithdram — X
| terminate — STOP)

A bank has many customers, each independently and concurrently interacting with the
bank. To model this, each Customer process is labelled by the name of the customer.
For example, the behaviour of a collection of three customers named s, b and ¢ is

described by

a:Customer § b:Customer Il c:Customer

Since there is no limit to the number of customers, it i3 convenient to use natural
numbers to name each of them uniquely. The indexed parallel combinater is used
below with i denoting the identity of each customer

Bank & (| 5 i:Customer)

Our model of the bank consists apparently of an infinite number of processes, all
waiting to be called into existence by the action invest. But at any given time orly a
finite number of them are actually started, one active process for each customer of the
bank who has opened an account, On closing the account, the corresponding process
stops and thereafter performs no further actions.

In an implementation starting and terminating processes could be very complicated
and expensive actions; the advantage of mathematical description is that it ignores
such complication and expense. The *infinite” array of processes presents no more
conceptual difficulty than the potenitially unbounded number of calls of a procedure
in a normal programming language.

3.1 Adding Functions

In this section, we explain how the JSD step of adding functions can be carried out in
CSP. Exteading the model to meet functional requirements often results in
modification of existing processes or sometimes inclusion of new processes o meet the
functional requirements. We illustrate this by extending the model of the bank to
cater for the following two functions

(1) Whenever a customer overdraws, produce an overdraft report. Weshall
assume that the bank is generous enough to let the customers have an
unlimited overdraft.

{(2) On an enquiry specilying a customer identifier list, print balances of
all customers specified in the list.

In order to meet these requirements, process Cust omer must be rewritten to store the
current balance of a customer’s account in its state. Further the eveuts invest,
payin and Withdran now become communication events in which these are channel
names; and the amount that is being invested, paid in or withdrawn is the value that is

10
communicated

Customer & invest?x — CUST
CUST,, & {payin?y — CUST,,
| withdraw?y — CUSTx_),
| terminate — STOP)

To provide the exception reports, we need to further modify Customer by irtraducing
3 new communication event which uses channel overdraft. The process sends a pair
of values along this channel whenever the balance goes negative. The first value is the
withdrawn amount and ihe second is the subsequent balance. We use the if-then-else
operator to check the status of the balance after every nithdran.y event

Customer & invest?x — CUST,
CUST, & (payin?y — CUST,,
| withdraw?y — CUST,_ fxzyt {overdreft!{y, x-y)
— CUST,_)
| terminate — STOP)

For the second function ((Z) above) we need to include a new process L ist whose job
is to interrogate selected customers for their balance and print it out. This proceas
List will input on channel in a list L of customer account numbers for which the
balance is to be printed on channel print. List sequentially interrogates all
customer processes with account nurubers contained in the fist L. Since List has to
interrogate Customer about its balance, process Customer mneeds another
communication event report.x to send its current balance x along channel report

Customer & invest?x — CUST
CUST, & (payin?y — CUST_,,
| withdraw?y — CUST _ fxzyt (overdraft! (y, x—y)
— CUST__)
| terminate — STOP
| report!x — CUST,)

Process List uses a compound channel name i.report te input from the channel
report of the customer whose name is i

List apX.(in?L — (3, (i.report?x — print!(i, x) — S5KIP});X)

However this definition of List suffers from the problem of deadlock: a customer in

11

the list L may choose to perform the terminate event and stop before List has
input this custormer’s balance. The problem can be solved by modelling reality more
closely, taking into account the opening and closing of the bank for custemers. The
balance list is generated during the closed hours of the bank when no customer can
engage in any of the actions invest, pay-in, withdraw or terminate. Two bew events
open and close are added to the alphabet of List which is rewritten as

List & pX.(close — pY.(in?L — (3, (i.report?x — print!(i, x)
— SKIP);Y)
| open — X))

The effect of close and open on customers can be formalized by includng ancther
process OC with the following alphabet

«0C = {i.invest.x, i.payin.x, i.Withdraw.x, i.terminate,
i.report.x | iz0, x € N} U {open, close}

Process OC monitors the actions of all customers by jeintly participating in them

02 (f,,0{i.invest.x = 0
| i.payin.x = 0
| i.withdram.x — 0
| i.terminate — ¢
| i.report.x — Q)
| close — C)
g (fl,,9¢i-report.x —)
| open — Q)

(@]
i

When the bapk is open a customer may engage in any of the common events, but
when i$ is closed OC permits only the common event i.report.x for customer i.
This epsures that po customer may operate his/her account during clesed hours.
Notice that the communication event on channel averdreft is private to «Customer
and the customer process may still perform this event during closed hours. 0C runs in
parallel with the customer processes and List, and guarantees that List will not
deadlock

Bank 2 (|>,0 i:Customer) || List || oC

12
3.2 Customers with Many Accounts

The model of the bank described in the previous sections considers customers with
only one account (assuming that the same customer does not bave two different
names). In general, a customer may operate many accounts concurrently. Such a
customer may be modelled employing the same technique used in section 3 to
represent many customers in a bank, if the accounts of a customer are also identified
by a name or number, Each account of customer i is now given an identity n

ManyAccCustomer 2 (]|, n:Customer)
Process Customer remains as before while Bank (without the functions) becomes
Bank ¢ {|,,y i:HanyAccCustomer)

Note that each action of a customer now has two labels, i for the identity of the
customer and n for his/her account: the event 20.3.withdran.x corresponds to
customner with identity 20 withdrawing amount x from his/her account number 3.

4. Ruritanian Army

Jackson introduces the example of the Ruritanian Army to llustrate a form of
concurrency where the sequential behaviour of one entity has several aspects. The
ordering constraints on the evenis in its life are such that more than one Jackson
struckure diagram (refer appendix) is needed. In this section we show how the |
combinator of CSP nicely solves this problem.

4.1 FPirst Version

Jackaon presents two versions of the problem. The salient features of the firat version
are:

The Ruritanian Army has only three ranks: Private, Captain and General
On enlisting, a soldier becomes a Private and works his way up the
hierarchy. Soldiers at all ranke may need to attend courses. All scldiers
enrolled in a course complete it successfully. Promotions are given only
between courses.

13

Four events are adequate to describe the behaviour of a soldier in the Ruritanian
Army

aSoldier = {enlist, enrol, complete, promote}

A straightforward, but inelegant, definition for the process Soldier can begiven by
mutual recursion, using one equation for each of the ranks

Soldier ¢ enl ist — Private

Private £ enrol — complete —* Private | promote — Captain
Ceptain 2 enrol — complete —* Captain | promote —* General
General 2 enrol — complete — General

Naotice that a soldier can get only two promotions, which always occur between
courses. As enrol (8 a possible initial event for all three processes, Private,
Ceptain aud General, Soldier satisfies the requirement of possibly attending any
number of coursesa at all ranks.

The mutually recursive solution can be modularised by observing that the life of a
soldier has two aspects: his course career and his promotion career. These two careers
may themaelves be represented as processes evolving in parallel: process Course for
his course career and process Rank for his promotion career. Since a soldier may have
to attend many courses at any rank, process Course becomes a recursive process with
only two events in its alphabet, enrol and complete

Course 2 uX.{enrol — complete — X)

As there are only three ranks in the army, a soldier can get at most two promotions
and we reflect this by using STOP in the definiticn of Rank

Rank & promote — promote — STOP

It would be nearly correct now to describe the behaviour of a eoldier using a parallel
combination of Course and Rank as

Soldier 2 enlist — (Course [Rank)
Here the alphabeta of Course and Rank have no events in common, 8o when they

evolve in parallel, their events are arbitrarily interleaved. This fails to satisfy an
aspect of the specification met by the previous solution, namely that a soldier may be

14

promoted only between two courses and not in the middle of a course. To satisfy this
requirement, we use another process Li1fe whose alphabet is a union of the alphabets
of Course and Rank. Ifs effect is to prevent promotion from occuring between
enrolment and completion

Life 2 uX.{enrol — complete — X | promote — X}

The process Soldier can now be correctly defined as the parallel combination of the
two processes Life and Renk preceded, of course, by enlistment

Soldier & enlist — {(Life | Rank)

4.2 Second Version

In the secend version of the problem, five ranks are introduced in the army: Private,
Acting Captain, Captain, Acting General and General in that order of hierarchy. Once
again a soldier has to do courses, but he may now have to re-enro] in a course due to
unsatisfactory performance. However, the army believes that # is not mecessary to
repeat a course more than once. Finally, promotions may occur at any time.

We include another event reenrol in the alphabet of Course to describe the
requirement of repeating a course which the soldier has failed. A soldier may, after
enrolling in a course, either complete if, or re-enrol in the course and subsequently
complele i. The course career of a gsldier in this version becomes

Course 2 uX.{enrol — {complete ~— X
| reenrol — complete — X))

Since the army now has five ranks, the number of promotions that a soldier may
obtain increases to four. Process Rank of the previous version can be suitably altered
to reflect this increase in number of promoctions

Rank ¢ promote — promote — promote —* promote — STOP

Since promoticns can occur at any time, we do not require the process Life of the
previous section. Soldier is therefore apecified as

Soldier 2 enlist — (Rank | Course)

15

1t is posaible to express the solution for the second version of the problem also as a set
of mutually recursive equations. But now there are sixteen states, so sixteen equations
are necessary to specily the problem, which makes such an exercise less attractive.

4.3 Pinal Version

As a final concession to realism we recognise that a soldier’s career can bhe
prematurely terminated due to the event death. Whatever the current status of the
process Soldier, this event causes its termination. Our mode]l of the Ruritanian
Army (for either version) can be easily extended to reflect such an eventuality by
using the interrupt operator ~. We show this for the second version of Soldier

HortalSoldier 2 enlist — {{(Rank || Course)~{(death — SKIP})

Since a person becomes a soldier in the army only after enlisting, the above model
deliberately ignores the possibility of a person dying before the event enlist.

&, The Daily Racket Competition
The statement of the Daily Racket problem is reproduced from Jackson [J]

To boost circulation, the Dajly Racket plans to run a competition
open to subscribing readers. Once a reader has become a
subacriber, he may enter the competition as often as he wishes,
sending in ome or more entries on each occasion that the newspaper
publishes detfails of the competition. Each entry must be
accompanied by an entry fee. The competition iz judged periodically,
by a panel of television celebrities, and the best entries received
gince the preceding judgement are awarded Pprizes....

Some hidden rules are operated, designed to aimplily the task of the
judging panel, who are not very clever. No competitor can win more
than once; no more than one entry from each competitor is
submitted for judging in any one session of the panel. Entries which
cannot win because of these rules are not returned to the
competitors; instead the accompanying fees are retained by the Daily
Racket, and the entries are quietly ignored. The editor’s decision is
final.

16

Each participant in the competition is represented by a process Reader which
has only two events, subscribe and enter, in its alphabet. The only action of
a participant after subscribing to the publication is to keep sending entries
to the competition. Submission describes the process of submitting a single

entry

Submission & enter — SKIP

As a participant may submit any number of entries process Reader is written using
the indexed 3 operator with Submission

~

Reeder 2 subscribe —* (¢ ., i:Submission)
where each entry is indexed by its serial number i. Notice that Reader iB a
non-terminating process and the hidden rules of the competition do not
affect it in any way. The very fact that the rules are hidden indicates

that process Reader should not he aware of them.

The existence of many participants in the competition is conveniently expressed by
the indexed | combinator as

(1,50 n:Reader)
where n gives the identity of the participant.
The process Panel modela the behaviour of the panel which meets periodically and
judges eniries received and then disperses. We introduce a separate process Heet ing
to describe the behaviour of the panel during a session

Panel & maet — Meeting
During a judging session Panel receives an identification for the single chosen entry
for participant n through channel n.entry. For each participant m who has an entry
for the current session the judging activily of the panel is

n.entry?e — {n.Wwin — Meeting | n.,reject = Heeting)

where the panel awards a prize by the event win and discarde an entry by reject.
Including the event disperse to signify the conclusion of a meeting

17

Meeting & {[l,,o {n.entry?e — (n.nin — Heeting
| m.reject — Heeting})
| disperse — Panel)

We have not yet used the hidden rules of the competition in defining Pamel, and it
remains to show how the entries are communicaled to it according to these rules.
Though a reader may submit many entries between {wo judging sessions only one
entry per reader is chosen for the panel’s viewing. We use a process Clerk, one for
each Reader, to pick the entry which will be considered at the next meeling of the
panel. Initially this will be the the first entry submitted after subscribing; but later it
will be the first entry after failing to win a prize.

The process Clerk carries the cumber of the chosen entry in its state and picks an
entry i after the event i.enter which is common to the alphabets of Clerk and
Reader

Clerk 2 ([,,g i.enter = C}

Once it has chosen an entry, Clerk accepis and ignores all subsequent entries unti]
the panel meets and asks for the chosen entry. To ensure that a participant wins only
one prige in his/her lifetime, the process Clerk also needs to know of the panel’s
decision for the chosen entry. We achieve this by making

{n.win,n.reject} ¢ a{n:Clerk)

Clerk never submits an entry tc the panel after a win but it continues receiving
further entries. The behaviocur of Clerk after choosing an entry i is either to accept
and ignore a new entry, or submit the chosen entry to the panel, and take appropriate
action on the panel’s decision

C, 2 w.{{0;, j.enter = X)
| entryli = (nmin — uY.([ljao j-enter — Y}
| reject = Clerk))

Neither the process Panel nor the process Reader reflects the hidden rules. The
process Clerk which serves as a link between the papel and the participants is the
only one responsible for the hidden rules of the competition. The complete system can
now be built using the | operator with one Reader and one Clerk process for each
participant, aod a process for the panel

18
System £ (Il ,q n:{(Reader || Clerk)) [Penel

The most unrealistic aspects of this maodel are (1) there seem to be as many clerks as
readers, and (2) the readers’ act of submitting an entry occurs simultanecusly with
that of the clerk receiving it. The first problem is easily solved: in CSP parallel
composition s symmetric and associative, so the solution quoted iz identical to

{159 n:Reader) I (§,,5 n:Clerk) [Panel

Here it can be quite reasonably understoed that a single clerk might carry out all the
tasks described by an apparently unbounded array of processes.

The second problem is solved by changing the action enter in oReader to
sendentry (leaving the event enter to stand for receipt of the entry by the process
Clerk), and then by interposing a process which models the postal service. The new
reader is defined

NReader & f(Reader)
where f{subscribe) = subscribe
f{i.enter) = i.sendentry for iz0

The post office can be modelled by a standard buffer, which storea in ite state the
sequence of undelivered entries

2 P,
P & (D, ,5p n.i.sendentry — P)
P

A
a

.o 8 {llp, ;50 m.j.sendentry = P goqy s
[n.i.enter = P_)

The systemis now
(l,,0 n:NReader} | PO | (1,5 n:Clerk) [Panel

In practice, the mail service can reorder the messages it receives and deliver them in
an order different from that in which they were posted. In practice also the clerk will
have to rejct any entries sent before but received after the specified closing date for
each panel meeting. A sclution to these problems can be formulated in CSP, but
imtroduction of the mail service also introduces non-determinism, a complexity we
have decided to avoid in this paper.

19
5.1 Adding Fanetions

In this section we extend the processes of the previous section to include
the functions added to the system in [J]. Inevitably, we need tc modify the
processes by extending their alphabet and sometimes we even introduce new
processes.

The simplest function to be added to the system is the one corresponding to
(1) Acknowledge each entry received

Either Reader or Clerk (or both) can be extended to provide this function. We do it
for Reader by adding the event ack to Submission

Submission & enter — ack — SKIP
Reader ¢ subscribe — (300 i :Submission)

If entriea and acknowledgements are buffered, this simple solution is inadequate. The
next two functions to be added require the introduction of new processes that store
information in their state

(2) On request, list the number of entries for each reader received eo far.

(3) Print the total number of entries for each week and the cumulative total
over the weeks along with the current week number.

Since a count of the number of entries is to be kept for these two functions, the
processeg introduced should participate in the event i.enter of Reader. For
function (2), each Reader process has another process ReaderSum which storee in ita
state the cumulative count of entries sent by this reader. The "on request” part of thia
function is captured by the fact that ResderSum sends the value on channel out
whenever ita environment is willing to accept it

ReaderSum & RSUM,
RSUM, & (([;,o i.enter — RSUH_,,)
| out!x — RSUM.)

For function (3) we use a process WeekSum which sgtores three values in its
state, the week number {w), cumulative sum of entries across weeks (x) and
the total number of entries received in the current week from all readers

26

{¢). HeekSum also participates in the enter event, but we now need two
labels as qualifiers for this event: m ({for readers) and i (for the entries of
reader n). The printing of the values is caused by the event weekend

HeekSun

Sum“ 1¥.,C

Sumy 0,0
{(Heekend — print!{w, x+c,c) — Sum, 41, x+c.0

n

) (0, 20 M. l.enter = Sum, . _.4))
We finally add two more functions
{4) Print all entries chosen each week for the panel’s viewing.
(5) The panel should produce a list of i results.

Printing of the list of chosen entries on a channel | ist is the responsibility of a new
eavesdropping process L, which listens to communications on the channel entry as
they pass between the Clerk process and the Penel. These events therefore occur
with the participation of three processes; this is in full accordance with the definition
of the || combinator in CSP, though it is not a feature to be lightly included in a
programmiag language

ol = {r;\.'éntr;g;lw | n, iz0}
L= (Iln.nzﬂ n.entry.i — list!{n,i) — L)

The reports required from the panel are got by extending the alphabet of Penel to
include communication events which use channels Hinlist and rejestlist to list
the winning and rejected entries respectively. The values output are the identity of the
reader azd serial number of the entry. A simple change to Meet ing provides the
required reports

Meeting @ (.5 {n.entry?e —
{(n.Rin = minlist!{n, e} = Yeeting
| n.reject = rejectlist!{n,e) — Heeting))
| disperse — Panel)
Panel a meet — Meeting

The systern after the addition of all the above functions becomes

(Nysp n: (Readar | Clerk] ReaderSum)) | Panel B L § HeekSum

21
8. Widget WareHouse System

This example develops a system for the allocation of product stock to customer orders
of the Widget Warehouse Company. The problem statement from |J]

The company’s customers order products from the company, often by
telephone but sometimes by other means such as mail or personal visit to
the company’s warehouse. There is a company rule that separate orders are
required for separate products...

Customers sometimes amend their orders, changing the quantity or the
requested delivery date. Occasionally a customer may cancel ar order.

The company employs a clerk whose job is to deal with the customers and
to allocate the available stock to outstanding orders. This clerk has access
to information about the available stock of each product. This enquiry is
usually answered with reasonable reliability... We will be developing only
the sales system, handling customer orders.

Jackeon presents two solutions to this problem, a non-automated and ac automated
system. Here we shall present only the automated version where we include processes
for orders, products and to perform allocation of stock. We introduce a simplification
by ignoring amendment of requested delivery dates.

Consider the possible events in the life of an order placed by a customer. After being
placed, it may be amended or cancelled; and if the product is allocated to the
customer’s satisfaction it may then be delivered. We choose four events for the
procese Order

place place an order for a product
amend amend the quantity of an order
cancel cancel the order

deliver deliver the order

Since allocation of an order depends on the size of the order, it is necesary to store
this value as the state of the process that models the behaviour of an order. Of the
four events in the alphabet of Order, we model placing and amending as
communications of the relevant quantity

22

place.x place an order of size x
amend y amend an order to size y

A very simple definition of Order may be given without saying anything about the
allocation or delay due to unavailability of stock

Order 2 place?x — ORD,
ORD, 2 (amend?y — OI'\’I))r
| esncel — STOP
| deliver — STOP)

Since the company deals with many customers and each customer places orders for
many products we shall use two labels, p (for product) and ¢ (for customer), with
process Order

p:c:0rder order for product p by customer ¢

We have, for ease of presentation, restricted orders to one per product per customer.
But our soution can be easily extended to multiple orders by using another label i
for the ith order for product p by customer c.

In order to allocate stock it i necessary to have access to the stock status information
which may itself be modelled as a process Product (one per product p). Current
stock status is stored in the state of Product. The environment communicales
delivery of fresh stock to this process through channel fresh. Product sends the
current stock status to its environment on channel stock, and then expects input on
channel supply of the quantity of iterns taken from stock

Product 2 P,
P, 2 (stock!x — supply?y = P,
| fresh?q — P_,.)

To link the product with the order we now design an allocator process, a separate one
for each product the company supplies. Depending on the stock availability process
Allocator may either delay an order or allocate the quantity requested for. With the
addition of the allocator process, the simple model of an order given earlier becomes
inadequate, as the following three events (common with the allocator process) must be
added to oOrder

23

allocate allocation of an order
delay delay an order due to unavailability of stock
howmuch . x communication event by which allocator process

finds out the size of the order
Process Order is rewritten for interaction with the allocator process

Order ¢ place?x -+ ORD,
ORD, 2 (emend?y -+ ORD,
| cancel — STOP
| hommuch!x — (allocste — deliver — STOP
| delay — ORD,))

Notice that the above model of an order has introduced a constraint on customers:
once allocated a customer is forbidden irom cancelling or amending an order. Finally,
the allocator process {one per product) may be written as

Allocator £ "I'X'(I]CECP (c.howmuch?x — stock?y —
(c.allocate — supply!x — X)
kyzxt
{c.deley — supply!0 — X))}

where Cp is the set of all customers. Allocator guarantees that process Product
will not have any inconsistent values {such a8 negative values) of stock status.
Whenever it delays an order, Allocator sends the value O to Product as the
quantity supplied. The complete system for this version is

System & (IlpeF‘r. celp p:e:Order) | (H,.p- p:(Proeduct | Allccator))
where Pr is the set of all products supplied by the company and Cp is the set of all
customers.
6.1 Adding Functions

To the solution of the previous section we shall add the following function

For a specified product-id, list the names of all customers who have
outstanding orders for that product, and, against the name of each such

24

customer, the total quantity onlatanding. An order is outstanding if it has
been placed but not yet allocated or cancelled.

To praovide this listing a new process Productl jst which communicates with Order
to obtain the ordered quantity is added to the system. Once again we are forced to
modify Order to communicate the quantity along channel size to ProductlList

Order & place®x — ORD,
ORD, 2 (amend?y — ORD,
| cancal — STOP
| honwmuch!x — (allocate — deliver — STOP
| delay — ORD,)
| size!x — ORD,)

The process for listing all customer orders for a given product is

Praductlist 2 pX.{in?p = (3_, (p.c.size?™ — print!(c,x)
— SKIP});X}

where L is the list of all customers with outstanding orders for product p. This raises
the problem: how doea this process discover which customers are in the list L? Jackson
solves the problem by assuming that the information 18 made available in some
underlying data base. We can model this by an eavesdropping process, which
participates i the events

{place.x, concel, deliver, send.L}

and stores a set B of all customere who have ocutstanding orders, i.e. placed an order
but not yet cancelled or delivered it. This process Spy also cutpuis a serialieed list L
of the set B on channel send whenever required

Spy & 55

Sg 2 (I le.place.x = Sy o
| c.cancel — Sp_
| c.deliver = Sy _ (.,
| send!1ist(B) — S5g})

where 1ist(B) is a merialised list of the set B. Process ProductList is rewritien to

25

communicate with the process Spy to obtain the list of customers with outstanding
orders

ProductList & uX.{in?p —p.send?L —
(1., (p.c.size?x = print!{c,x) —* SKIP}};X}

The system with the addition of this function becomes

System 2 (§_ .pr, ccp Pic:Order)
(I cpr p:(Product 1 Allocator I Spy)} I ProductList

where Pr is the set of all products supplied by the company and Cp is the set of all
customers.

The procesa ProductList is still unsatisfactory as it suffers from a deadlock problem
gimilar to the function process List used in the bank example. A sclution may be
formulated along the same lines as in section 3.1.

7. Elevator Problemn
Problem statement from Jackson [J]

The Hi-Ride Elevator Company is installing elevators in a small building of
gix floors. At each floor, except the top floor, there is a button which users
can press to summon an elevator to take them upwards; at each floor,
except the ground floor, there is a similar button for downwards travel.
Inside each elevator there are six buttons marked with floor numbers.
There is a pair of doors at each floor, and another pair on each elevator.
The elevators are raised and lowered by cables which are wound and
unwound by motors positioned above the top floor. At each floor, in each
elevator shaft, there is a sensor operated by a2 small wheel attached to the
elevator;: when the elevator is within 15 cms of the home position at that
floor, the sensor is depressed by the wheel and closes an electrical switch...

The computer system will schedule the travel of the elevators according to
the users’ requests for service, and will produce commands for the motors
and the lights which are associated with the buttons. In the usual way,
when a button is pressed, the associated light muat be turned on.

26

We shall represent buttone and lift as processes in the system. Comnsider the process
But t on. Once the button is depressed, the light is to be turned on and is to be turned
off when the request has been gerviced. In addition to these three events, depress,
lighton and 1ightoff, the process Button also communicates with the lift process
sending the value 1 when the button has been pressed, 0 otherwise

Button 2 pX.{1ift!0 — X
| depress — lighton — lift!l — Ffightoff — X}

Note thaithe light goes off automatically when the lift reads the value I.

There are three kinde of buttons in the system: buttons on floors which control the
upward motion of the lift, buttons on floors which contro! the downward motion of the
lift and buttons inside the elevator. We can use the process naming operator with the
obvious labels {u, d, e} to denote these three types of buttons in the system. The
corresponding processes are

u:Button processes for buttons on floors controlling npward motion of elevator
d:Button processes for buttons on floors controlling downward motion of elevator
e:Button processeg for buttons inside the elevator

These processes have to be further qualified by the floor they relate to - buttons inside
the elevalor also correspond to a particular floor. We shall use another label i where
i is the floor number. For n floors, and

for 1 ¢ i <n itu:Button
for 1 <i g n i:d:Button
for 1<i gn ite:Button

Buttons inside the elevator can be further distinguished by the elevator within which
they are located. We ghall for the moment ignore the second elevator and develop a
solution for a single elevator system. Initially we simplify the problem by ignoring the
buttons inside the elevator, and sacrifice efficiency by assuming that the elevator
always travels from the ground floor to the top floor and back servicing any requests
in intermediate floors.

27
7.1 Perpetual Motion: No Bnttons inside Elevator

Cousider the behaviour of the elevator in any of the intermediate floors. Impending
arrival at a floor is detected by the sensor in the elevator shaft and the corresponding
event is stfloor. After communijcation with the floor button the elevator decides
whether to stop at the floor or not

Floor & atfloor — floorbutton?x — SKIP $x=0% (halt — dir
— SKIP)

After a delay it starts the motor by the event dir which sets the motor polarity
according to the chosen direction of motion. We have ignored the events of opening
and closing the doors.

For the intermediate floors we can define two processes Upward, and Downward,
using direct image operators with the process Floor

Upwerd, = f, (Floor) for 1 < i <n
Downward, = f, (Floor) for 1 <i <n

The alphabet transformations for the functions f,,, and f, , are:

fu,l(floorbutton.x) = j.u. lift.x Fdjl(ﬂoorbutton.x) = j.d.lift.x
f,. (dir) = up f,i{dir}) = down

f,. (atfloor) = etfloor f,, {atfloor) = stfloor

f,, (halt) = halt f,, {halt) = halt

The behaviour of the It at the top and ground floars is slightly different as it always
gtops at these two floors and reverses direction, and is described by process
TerminalFlcor

TerminaglFloor £ etfloor — floorbutton?x — halt — dir — SKIP

The processes corresponding to the behaviour of the lift at the ground and top floors

can be defined from TerminalFloor using the direct image operators f, , and f, |

1
setting i = 1 and i = n respectively

Ground = f, ;(Termina!Floor)
Top = f, (TerminalFloor)

28

One complete motion of the elevator where it etarts from the ground floor, travels to
the top floor =ervicing any requests on the way and returns back can be described in
terms of the processes defined earlier and sequential composition

UpDomnlift & Ground;({ |1<,<nUpHar‘d, Y:Top:('1<.<nD°“”“ardn-|+1)

We can now construct an elevator which relentlessly keeps going up and down
irrespective of the existence or absence of requests

Elevator ¢ *({UpDownlLift)
This runs in parallel with the external buttona, which control its stopping at each floor

System = Elevator | ExtButtons
ExtBuitons & (Ilsntn i:usButton) | (|1<|Sn i:d:Button)

7.2 Perpetual Motion: Buttons inside Elevator

If we now introduce buttons within the elevator, the definitions of the wvaricus
processes remain similar in spirit to those given earlier except that at each floor two
buttons have to be checked: one on the floor and one inside the elevator. Floor and
TerminalFloor have to be suitably altered by introducing another communication
event elevbutton.y

Floor ¢ etfloor — floorbutton?x — elevbutton?y —
SKIP fx=y=0% (halt — dir — SKIP)
TerminalFlocr & atfloor — floorbutton?» — elevhuttonTy —
halt — dir — SKIP

The alphabet transformations f, , and f; , have to be augmented to include
elevbutton.y while the transformations for the other eventa m the alphabet remain
the same as before

f_, (elevbutton.y) = i.e. lift.y fy (elevbutton.y) = i.e.lift.y

The processes Ground, Top, Upward, and DoWwnward, are defined similar to the
earlier versions but using the new definitions of Floor and TerminalFloor.
UpDownLift and Elevator alsc remain as before, but use the new definitions of the
processes describing floor behaviour. Process Elevetor now runs in paraiiel with

29

Buttons which is itsell a parallel combination of all the three types of button
processes in the system

System ¢ Elevator [Buttons
Buttons 2 ExtButtons | (., i:e:Button)
ExtButtons £ ([, ., i:u:Button) R (M. ., i:d:Button)

7.3 Elevator System

The next attempt at a soclution to the elevator problem should eliminate the
inefficiency introduced by unnecessary travel to top and bottom floors. In this section
we only indicate how this may be done without presenting a solution.

The elevator is to normally wait at the ground {loor. If there is a request from any of
the floors above, the elevator journeys upwards to service the request. On any
occasion during its upward travel the elevator may reverse direction and move
downwards if it finda that there are no pending requests in any of the floors above.
Similarly, during its downward travel it may reverse direction and move upwards if
there are no pending requests in the floors below and there is a request from one of
the floors above.

With these additional requirements, the elevator has to poll the buttons above (or
below) the current floor to choose the direction of motion. The behaviour of the
elevator at the intermediate floors and the ground floor can be split into a polling
process and a floor process. As it is to normally wait at the ground floor, it need not
do any polling at the top floor.

A solution for the single elevator system along the lines indicated loses much of the
simplicity and elegance of the solutions presented in the earlier two eeclions. This is
perbaps inevitable for we are trying to represent a real life situation where local
decisions must be made on the basia of global information. A solution with
centralised, instead of distributed, control seems more suitable.

For a two elevator system, [J] suggests a solution in terms of "promises” by an elevator
to service all requests between the current floor and, the top floor or ground floor
depending on direction of travel. The complications of an efficient solution for a single
elevator system deter us from attempting such a solution in CSP.

30
8. Implementation

Since most of our solutions have a large number of processes that do very little
computing, it would be highly unsconomical to provide dedicated processors for each
process in the solutions. Herce the issue of providing efficient implementations, on a
conventional sequential processor, of these parallel solutions becomes important.

One possible approach is to use a parallel programming language such as QCCAM |[ln]
implemented on a conventional sequential processor. In principle it is possible io
implement our processes as OCCAM processes though an optimisation phase seems to
be required to reduce the number of processes. In fact the bank and a part of the
elevator examples have been implemented in OCCAM from the JSD solutions [F].

But a more general solution would be to use the theoretical framework of CSP to
obtain an efficiently implementable version of the parallel one by algebraic
transformations. The laws governing the various CSP operators [H2] can be used to do
these algebraic transformations to reduce parallel systems to ones written using
mutual recursion, which ¢an be implemented efficiently on a conventional sequential
processor. In this section, we pursue the algebraic transformation approach to derive a
solution using mutual recursion starting from a highly parallel one. The example
chosen is the first version of the Ruritanian Army problem (section 4.1}.

We use the following two laws defined on the [| operator for the algebraic
transformations (Section 2.3.1, [H2])

¥ xe€oP -~oll, ye€old-of and 2z € «P N o, then

Ll{ix=P)| (z—= Q)
L2iz—-P) I (z = Q)

x 2 (P)] (z = 0))
z— (P Q)

Counsider the distributed version of the solution given in section 4.1

Soldier 2 enlist — (Life | Renk} and
Rank ¢ promote — promote — STOP

Life

[+

pX. {enrol — complete — X
| promate — X)
(enrol — complete — Life | promote — Life)

For the two processesLife and Rank
{EHr‘oLcomp'Iete} C obLife - oRank and promote € olLife {1 oRenk

31
Let Pg & Soldier
= {enlist = (Life | Rank))
= enlist = P,
where P, & Life | Renk

[1}]

Expanding P;, we have
P, = (enrol — complete — Life | promote — Life)

I {promote — promote — STOP) {definition)
= enrol — ({complete — Life) | {(promete — promote — STOP))
| promote — (Life | (promote — STOP)) (LL,L2)
= enrol — complete = {Life || Rank)
| promote — (Life | (promote — STOP)) (L1)
= enrol — complete — P, | promote — P, (definition)

P, 2 Life | {promote — STOP)
= {(eprel — complete — Life | promote — Life)
H {promote — STOP)
= enrol — ((complete — Life) | (promote — STOP)}

| promote — (Life | STOP . qnctey) (L1,L.2)
= enrol — complete — {(Life | (promote — STOP))
| proemote — (Life | STOP , patey) (L1)
= enrol — complete — P, | promate — Py (definition)

P3 2 Life II STOP{promote}
= {(enrol — complete — Life | promote — Life) [STOP{promote}

= enrol — ({comptete — Life} | STOP,_ ,,niey) (L1)
= enrol — complete — (Life | S5TOP., omoted) (L1)
= enrol — complete — Py (definition)

We have now obtained the following four equations starting from the parallel solution

Py = enlist = Py

P, = enrol — complete — P, | promote — P,
P, = enrol — complete = P, | promote — Py
Py = enrol — complete — Py

Not surprisingly these four equations are identjcal to the mutual recumive version of
the solution presented in section 4.1 with

Pq = Soldier, Py = Private, P, = Captein and P5 = Geners)

32

As a slightly more difficult exercise we derive an efficiently implementable solution of
the final vemsion of the Ruritanian Army (section 4.3), where the event death is
included. Tie event death can be added to the first version of the Ruritanian Army
problem as

HortalSoldier & enlist — ({Life | Rank)~(deeth — SKIP))

-

In addition to laws L1 and L2 we use the following law governing the * operator and

prefixing (Section 5.4, [H2])
L3 (x:B = P{x))*Q =00 (x:B = {(P(x)~0Q))

We obtain five equations for MortslSoldier and we give below the derivation of one
of these equations, P,.

Let D& death — SKIP and
Py @ HortalSoldier = enlist — P,

where P, = {Life] Rank)“D

In the earlier derivation we have already shown that
Life § Rank = {(enrol — complete — (Life | Renk)
| promote — (Life | promote — STOP))
Using the above we have
Py = (enrol — complete — {Life [Rank)
| promote = {Life 0 promote — STOP})-D
D] {enro] — {complete — Life | Rank)-D

| promote — (Life | promete — STOP)“D) (L3)
=D{ {enrol — (D] complete — {Life | Rank)"D)
| promote — {Life | promete — STOP)*D) (L3)

D[(enrol — (D [complete — P, | promote — P;) (definition)

where P, is defined as {Life | promote — STOP)“D. Processes P, and Py may be
derived in 3 similar fashion. The five equations for fortelSoldier are

PCI = enlist — Pl

Py D[(enrcl — (D] complete = P} | promote — Fj)
P, = D (enrol — (D 1 complete — Pz} | promote — P4)
Py = D[(enrol — (D |l complete — P3)

D = desth — SKIP

33

Of course, these are very simple examples; yet even so, the derivation of a
correct sequeniial program i8 a mnon-trivial calculation, for which some
mechanical aid or check would be desirable. More substantial examples,
perhaps involving arrays of processes, may present even greater difficulty
in formal derivation of sequential programs from parallel ones.
Jackson describes by example some practical techniques, but their theoretical
counterparts are left for future research.

9. Comparison with JSD

Before we make a general comparigon of CSP and JSD we outline the few changes we
have made to the examples tackled in {J].

The bank example has no changes. Our second version of the Ruritasian Army
{section 4.2) is slightly different from that of [J]. In [J] a soldier completes a course
irrespective of whetber his performance has been eatisfactory or not. Ip the latter
case, he re-enrols in the same course. Jackson’s structure diagram for the soldier’s
course career is

o]

]

I ENROL | | COMPLETE l ,POSSI!LE HE.P!LITI

34

The possible null action in the iteration COURSE results in the {ollowing equivalent
CSP definition

pX. ({enro]l — complete — X)
0 (enrol — complete — reenrol — comgpiete — X))

However this leads to non-determinism; to avoid this, in our version, a soldier
completes 3 course only if he is succesaful in it.

In the other three examples we have not introduced any changes to the problems
except that our solution for the elevator problem is not complete. In most of the
examples Jackson solves more variations of the problem and introduces more
functions, The shorter length of this article does not permit us to tackle all his
variations. Some of the other issues that we have not addressed include timing
constraints, priority, etc.

The concieness and expressive power of the CSP notation lead to shorter solutions
which, it may be argued, are more easily understandable only to those sympathetic to
mathematical notations. The majority of the target readership of Jackson’s book may
find his diagrams (structure diagrams) and English-like notation (structure text) more
appealing. In view of this, there perhaps is a case to introduce some of the more useful
CSP operators as new box types in structure diagrams, so that larger systems
including parallelism can be described pictorially.

The level of abstraction employed by us in giving conatructive specifications is
somewhat higher than that used by Jackson. Consequently we have been able to
ignore levels of processes (refer appendix} ard different varieties of process
connections (refer appendix). Both of these concerns become more relevant in the
later stages of design and implementation.

Jackson introduces the notion of marsupial entity (refer appendix) to describe an
entity that is derived from the structure of another entity with many instances of the
marsupial existing in the sytem. The parallel and process naming operators fogether
give a formal representation of this notion. This formalisation substantiates the
relevance and importance of marsupial entities in system development.

The rich set of laws governing the CSP operators provides us a tool to formally derive
efficiently implementable versions of our constructive specifications.

35
10. Further Work

One of the advantages of a specification is that it helps a designer to formulate and
experiment with the design of his system. It becomes possible to make design decisiona
ope at a time in a rational sequence starting with a simple atructure and adding details
to it. The benefits of such an approach are enhanced if the initial formulation remains
upaltered and subsequent decisions just add to it. The solution of the Ruritanian
Army problem is a good example of such an approach.

The other examples given here show that we have failed to meet this goal (particularly
in the elevator problem). The use of trace descriptions, perhaps in a mixed atyle of
epecification [H3, O], might be of help in achieving this goal. The rewriting of
constructive specifications for adding functions (as done in this paper) may be avoided
by a suitable formalisation of the state vector connection in CSP. Perhaps the nae of
non-determinism to postpone decisions might lead to more elegant solutions, eapecially
for the elevator problem.

Yet another problem with CSP is the intrusion of deadlock at an early atage in the
specification. Further work should also be directed at techniques to avoid deadlock
and establish its absence,

The extension of the suggested algebraic transformation approach, for deriving
efficient implementations of distributed programs, to more complicated examples
involving arrays of processes needs further study. Some form of mechanicil aid may
be needed.

36
APPENDIX

In this sppendix we discuss the notational and terminological differences
between CSP and JSD to aid readers familiar with only one of the two.

A system i developed in JSD in terms of entities specifying their actions. Entities
are analogous to processes of C8P and actions are the events in the alphabet of a
CSP process. For example, the JSD solution for the bank problem (section 3} would
consider an entity type CUSTOMER with four actions INYEST, PAY-1IN, HITHDRAK and
TERMINATE.

Jackson wes structure diagrams and structured fext to describe JSD entities while

we give a process description using CSP operators. The entity CUSTOMER may be
described by the following structure diagram

CUSTOMER

MOVEMENT

In the abdove tree diagram the branch nodes represent processes and the leaf nodes
represent actions. Some of the nodes (called boxes) are marked by an asterisk or
circle. A box is a sequence if all its children are unmarked with the left to right order
of the ctild boxes indicating sequential composition. In the above diagram CUSTOMER
is a sequence with three parts INYEST, CUSTOMER~BODY and TERHINATE. A box is an
iteration i its child box is marked with an asterisk at the upper right corner;
CUSTOMER-BODY is an iteration with sero or more occurrences of HOYEHENT. If circles
are used instead of asterisks to mark the child boxes thenr the parent box is a
selection. MOVEHMENT is a selection, with one occurrence of either HITHDRAH or
PAY-IN for every occurrence of it. A null action for a selection is indicated by

37

marking (as in the structure diagram of section 9} one of the child boxes with a dasb.
The above diagram may be compared with the equivalent CSP definition of process
Customer

Customer 2 invest — pX.{payin — X
| withdraw — X
| terminate — STOP)

Structured text is a textual notation for entity structures. It is a transcribed form of
the structure diagram which is more convenient for inserfing operations, and
conditions for selections, iterations and is used in the later steps of JSD.

1. Process Connections

Jackson uses two types of connections between processes: the data séream connection
and the state vector connection. We have found the synchronous communication of
CSP adequate as a process connection for the example problems treated in this paper.

The data stream connection of JSD is simply a buffered communication channel
between two processes. read and write statements are used to transmit and receive
information from a data stream. The data stream connection can be specified
whenever required in CSP notation by placing a buffer process belween two
communicating processes as shown in section 5 for inserting the postal service.

In the state vecior connection of JSD, one procesas inspects the stale of another
process. The state information carried by a process includes the values of all local
variables and the text-pointer (wbich is analogous to program counter). The
inspected process does pot participate in this form of communication. The initiative
for the communication [ies entirely with the inspecting process, and consequently
neither process gets blocked on a state vector inspection. To avoid prohlems with
consistency of the values obtained in such a process connection, Jackion imposes
restrictions on the points at which the inspected process may update its state.

This form of process connection is somewhat like read-only store sharing and it is well
kuown that sharing is not easy to model in CSP [H1, H2]. We do net attempt to
accommodate the state vector connection within the notational framework of CSP.
Again, due to the higher level of abstraction, we have not felt the need for this form of
process connection in CSP for the examples treated in this paper; it is possible that

38

state-vector imspection would help in treating the more elaborate wversions of the
elevator problem, which we have omitted.

2. Level 0 and Level 1 Proceases

JSD uses two (or more) levels of processes; real world processes which are abstract
descriptions of the real world are at level 0; while the model processes which will
eventually be run on a machine are at level 1 or higher. The leve] 0 processes are said
to be external to the aystem boundary. The JSD model processes at level 1 invariably
follow a structure which is broadly similar to their counterparts at level @ but is more
complicated. The primary concern in JSD regarding these two levels is the type of
proceas cognection used. The higher level of abstraction at which the CSP
descriptions are given permit us to not use levels of processes.

3. Marsupial Entity

In Jackson’s terminology a marsupial entity i3 one wbich must be created to express
concurrency in the activities of another entity. In this sense it behaves like a marsupial
animal ®which spends the first part of its existence in its mother’s pouch and later
emerges to lead a life of ita own.” There does not seem to be any need to introduce
marsupial processes initially, but they are usually created in the later phases of JSD.

The bank example can be used to illustrate the need for marsupial entities. To show
that a customer may have many accounts, we may modify the structure of entity
CUSTOMER to (we give below the equivalent CSP process definition instead of a
structure diagram)

pY. (invest — pX.(payin — X | withdran — X | terminate — Y))
But this imposes an unrealistic constraint: a customer can open a second account only
after terminating the first whereas in fact a customer can concurrently operate many
accounts. A singie Jackson structure diagram cannot show this concurrency. To
reflect this concurrency it becomes necessary to introduce another entity ACCOUNT
with a gtucture equivalent to the CSP process

invest — pX.(payin — X | withdraw — X | terminate — STOP)

The structure of CUSTOMER is now modified by Jackson to {equivalent CSP process

39
definition given)
pX.{invest = X | payin — X | Wwithdran — X | terminate — X)

A customer may engage in any of the four actions. But for each account of a customer
the ordering constraints are specified by the marsupial entity ACCOUNT. The
relationship between the two structure diagrams for ACCOUNT and CUSTOMER is left
informal in JSD.

We have already shown (section 3.2) how the parallel combinator and process naming
operator may be used to describe a customer with many accounts in CSP without
modifying the original proceas Customer ar intraducing a new process Account.
These two operators provide a formalisation of the notion of marsupial entities
without dispensing with it. In fact the CSP process Custamer (section 3} is the same
as tbe JSD marsupial entibly ACCOUNT. The counterpart of the JSD parent entity
CUSTOMER is RUN,, where A = olustomer. Since

PIRUN, = P where A = oP (section 2.2.1 and 2.3.1, [H2])

we need not explicitly represent the counterpart of the JSD parent entity.

40
References

[BHR| Brookes S., Hoare C.A.R.and Roscoe A.W., A Theory of Communicating
Sequertial Processes, JACM, July 1984,
(F] Feather AH,, OCCAM as a Design Notation in JSD Method,
M.Sc, Dissertation, Oxford University Computing Laboratory, 1983.
[H1] Hoare CA.R., Notes on Communicating Sequential Processes, PRG-33,
Technica Monograph, Oxford University Computing Laboratory, 1983.
[H2| Hoare C.A.R., Communicating Sequential Processes,
Prentice-Hall International, 1085.
{H3] Hoare CA.R., Programs are Predicates, Philosophical Transactions
of the Royal Society, London, Vol. A 312, 1984.
[In] OCCAM, Inmos Ltd, Prentice-Hall International, 1985 {also David May,
SIGPLAN Notices, April 1983).
[J] Jackson M., System Development, Prentice-Hall International, 1983.
[O] Olderog E.R., Specifications Oriented Programing in TCSP, to appear in
Logics ard Models for Verifications and Specification of Concurrent
Systems, K.R.Apt (ed.), Springer Verlag.

