
JSD EXPRESSED IN CSP

by

K.T.Sridhar C.A.R.Hoare

Oxford University Computing I "~~

Wolfson Buildinz

Parks Road

Oxford OXl 3QD

Techn leal Monograph PRG·51

July 1985

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road
Oxfo'd OX1 3QD
England

Copyright © 1985 K.T,Sridhar1 and C.A.R.Hoarez

lSupported by a fellowship from UNDP end on leave from

NCSDCT
Tata Institute of Fundamental Research
Romi Bhabha Road
Bombay 4'00 005
India.

ZOxford University Computing Laboratory

Programming Research Group
8-11 Keble Road
Oxford OX! 3QD
England

Abstraet

System development in JSD is done by building a model of tbe real world
taking into account the time-ordering of events, and then extending tbis model
to satisfy tbe functional requirements. Tbe resulting specification is
transformed into programfl more efficiently executable on current computer
systems. We study tbe relationflhip between JSD and CSP and suggest tbat
CSP provides a tbeoretical basis for tbe concepts and metbod~ of JSD.
Constructive specifications in CSP are given for problems solved ISing JSD.
Efficient implementations for conventiona.l sequential processors may be
derived from the parallel CSP solutions using tbe a.lgebraic laws governing the
CSP operators.

1. Introduction

In the introduction to his book on System Development P), Michlel Jackson
acknowledges the influence of earlier work on communicating sequential processes.
The similarity of JSD with CSP is due to their common a.im to descI'lhe, specify,
develop and implement systems whose subject matter has a strong timE dimension.

These include embedded systems, switching systems, control systems) and all kinds of
data processing systems, both on-line and batch processing.

Michael Jackson's oook is written as a practical guide to practicing prograrumers. It
helps them to organise their thoughts, their projeds, and their teams in a more
effective fashion. The development process is split into six steps, staning with a
description of the system environment and the capture of customer requirements and
culminating in the production of e{{icient code in a particular langl1age for a
particular machine. The method involves liberal use of diagrams, and is illtlstrated by
five amusing and instructive exaruples.

A later book on Communicating Sequential Processes [H2/ takes a much more
theoretical approach. The notations are modelled on mathematical fonnuhej they are
given a mathematical definition, and they are governed by mathematical laws. No

advice is given on development steps; and although an implementation is given, it uses
a fundional programming language and cannot be recommended for OlDy practical
purpose. DiagralllS playa very subordinate role, and the examples, though numerous,

are very much smaller.

The purpose of this paper is to clarify the relationship between JSD me CSP. We
have tried to show that CSP provides a promising theoretical basis for tlJe practical
concepts and methods used in JSD. We hope that this may suggest fruitfUl directions
for research in the practical application of CSP, and that it may lead Ie> a better
appreciation of JSD and perhaps suggest further improvements.

Many of the most apparent diHerences between JSD and CSP are only superficial, and
arise from the differences described above in the orientation and target re4d.ership of
the two booe. In order to strip awa.y these superficialities we have deve:Oped CSP

solutions for each of the five examples used in PI to illustrate JSD. Such non-trivial
case studies still seem to offer the best research technique for elucidating the
similarities and differences, and the merits and defects, of proposed rn:thods for
design and development of computer programs.

This paper is designed to be self-contained, but readers familiar with CSP tudJor JSD

z

will find it much easier to foHow. The next section contains a brief review of CSP: it

describes the CSP operators used in the remainder of tbe paper, and gives their
mathematical definition in terms of the trace model [H2].

Sections 3 to 7 contain a treatment of the fjve main examples of PI. In each example
we follow Jackson's strategy of first solving a simple Ver.liOD j and then adding further
f unctions and complications. However, it is not possible to pursue all the

complications of [J] in the span of this ahorter article.

In section 8, we show how the algebraic laws of CSP can be used to transform a highly
parallel program into one with the same specification of its observable behaviour, but

which can be executed efficiently on a conventional sequential processor. This is a
more mathematical version of Jackson's recommendation for the implementation steps
in his development process. Section 9 summarises the main technical differences
between esp and JSD and the final section indicates directions for further work.

In an appendix we have given a summary of all the main notational and
terminologica.l differences between JSD and esp. A reader familiar with JSD may
wish to study the appendix first as an aid to familiarisation with CSP; other readers
are recommended to consult the appendix as an aid to understanding Jackson's book.

2.CSP

The formallsIm used in this paper are taken from [H2]. However, we make the
simplification that processes are described only in terms of traces of their behaviour,

ignoring problems of non-detenninism. This simplification is justified perhaps by the
fact that we are more interested in the specification of processes than their
implementation. Thus we merely specify that the system must not deadlock; and we

do not at this stage need to introduce such complexities as refusal Bets in order to
prove that a particular implementation avoids f>uch problema.

The behaviour of a process is described in terms of externally observable events
drawn from its alphabet. A trace of a process is a sequence of evellts it can engage in
up to some moment in time. traces (P) denotes the set of all possible traces of a
process P. in i tie1s (P) is the set of events in which P can engage right on its first
step

initiels(P) ~ {e I <e> e treces(P)}

3

The following two sections summarise the most importanL concepts and operators of

esp. For further informa.tion the reader is referred to [BHR], [HI) or [H2].

2.1 OperatioIl1'l on Traces

Since tra.ces pla.y a. crucial role in understanding the beha.viour of processes it is
necessary first to define a number of operators on traces.

A trace is denoted by a sequence of symbols (which stand for events) separated by

commas and enclosed within angular brackets. <e, b> is a trace of two events a and
b. <> denotes the empty trace. The letters 5 a.nd t are frequently used \0 stand for

traces. Ca.tenation of two traces is denoted by the symbol'" , for exa.mple

<a, b>A<C> = <a, b. c>

st A is the trace s restricted to the events in the set A

<e, b. c, e>t{a, c} = <a, C, a>

The length or ca.rdina.lity of a. trace is denoted by *'s

"<a, b. c> = 3

The first event in a non-empty trace 5 is denoted by 50' while 5' is the rest of the
trace 5 after removing 50

<a,b,c>o a
<e, b, c>' = <b.c>

The partial ordering relation 5-s;t means that 5 is a prefix (initial subsequence) of t

<a,b> -s; <e, b,c,a>

The empty trace is a prefix of all traces.

Sequential composition of traces 5 and t is denoted 5; t. A special symbol J is
introduced to sta.nd for the event of successful termination of a process, and so it can

occur only at the end of a trace. If 5 does not contain the event J, then

4

s;t = 5

(S~<J»;t :: sAt

4For any selof events A, A denotes the Bet of all possible traces obtained using the
events of the set A. Let f be a function from a set of events to another set of events,
f:A-~B. Then f* is a function from the set of traces A4 to B4

, and is defined by the

two equations

f*«» :: <>

f*«a>A s) :: <f(a»Af*(s)

2.2 CSP Operators

The syntax of the main CSP operators that we use is given below in BNF style. In the
following P and a are processes; 5 is a trace; a is '\D event; A and B are sets of
events; i iB a process label; Boo I is some boolean condition; cxP is the alpha.bet of
process P.

CSP ,,=	 e -+ P I STOP, I SKIP, I RUN,

I P HOi P 0 0 I P,O I .p

I Pis I P\B I f(P) I ;,P

I p'O I P 'Bool~ 0 I "X,p

The prefixing operator --+ is used to define a. process, a --+ P, which first engages in
the event a and then behaves like P. A process definition is guarded if it begins with
a prefix

traces(a ~ P) = {s I s=<> V (sO=a A 5 E traces(P))}

STOPA is a deadlocked procesl'! which caD engage in no event from its alpha.bet A.

The suffix denoting the alphabet is often dropped

ocSTOPA = A

traces(STOPA) = {<>}

SKIPA is a process which has terminated successfully and is defined as

SKIP, • J -+ STOP,

ocSKIPA = A provided / € A

5

tr-eces(SKIPA) = {<>, <J>}

RUNi=l is a proccse which is willing to engage in any of the events of the alphabEt A.

o:RUN R = A
trBces(RUNA) = A*

p I Q is the parallel combination of the two processes P and 0. Events common to

the alphabets of P and Q require simultaneous participation of both P and 0.
However, P may engage independently in those events of its alphabet which are not in
the alphabet of Q and vice verBa

.(P U Q) = .P U .Q

treces(P 0 Q)

{s I sE(o:P U aO)· A s~o:P e traces(P) A S~o:Q e traces(O)}

We use the deterministic choice operator (denoted by J) when we know that DO first
event of P is also possible for a. Process R defined below offers a deterministic choice
between events a and b and subsequently behaves like either P or a, according to

this choice

HRQe-+Plb-+Q wheres1b

then traces(R) =
{s I 5=<> V (50=e 1\ s' e tr-sces(P» v (so=b 1\ s' E tr-aces(O»}

U is the general choice operator, which allows the environment to ch<Xlfile between P
and O. This choice is exercised by the environment only on the first action by
selecting an event allowed by one and not allowed by the other. In this paper we shall
ignore the problem of non-determinism. When no first event of P is also possible for
Q, D reduces to the deterministic choice operator I

tr-sces(P D Q) = trsces(P) U tr-sces(O)

P;O is the sequential composHion of the two processes P and Q. It behaves like P
until P terminates. after which it behaves like Q. The occurrence of J at the end of P
is automatic and is not observable externally, i.e. this J does not appear in any trace
of P;Q

treces(P;O) {s;t I 5 E treces(P) 1\ t e trsces(O)}

6

-p is a process that behaves like an infinite sequential composition of the process P. It

is the same as

P;P;P; ...

p /s (P alter s) is the behaviour of process P after it bas engaged in the events of

trace s. Pis is defined only if 5 e traces(P).

P\B is the process P with events in the set B bidden from its environment. The events

in set B do not appear in the traces of P\B. In the absence of divergence (see [BHRI)

~(P\B) = op ­ B
traces(P\B) {s~ (~P-B) I s E traces(P)}

For simplicity we give here a definitioD which ignores the problem of divergence.

f(P) is the direct image of process P under the injection f:aP-+A. The process f(P)

performs !.he event f(a) whenever P performs the event a

traces(f(P» = {f'(s) I s E traces(P)}

j : P is the process derived from P by labelling all events of P by i ; as a result, each

event a of P becomes i. a for the process i: P. Process labelling is defined using the

direct image opera.tor as

i;P = f,(P)

wherefj(x) = i.x for all x e o:p

The operator denotes the interrupt operator. P"Q behaves like P until theA

occurrence of an event in Init ials(Q), whereupon it behaves like Q

traces(P"Q) = {s·t I s e traces(P) Ate traces(Q)}

Pl:Boo 1~Q is a different notation for the familiar if-then-else. If the boolean condition

Baa 1 evaluates to true then P{:Boo 1~Q behaves like P, otherwise Q.

J.LX.P denotes a process defined using guarded recurBion. If F(X) is a guarded

expression using the process name X (whose alphabet is A) then IBHR) shows that the
equation

7

x = F(X)

has a unique solution with alphabet A. This solution is denoted by IJX:A.F(X).
Wbenever the alphabet is obvious, A is dropped and it is written as IJX.F(X). For

example,

"x. (b --+ X)

is a process wbich engages in aD indefinitely long series of b events. It is the same as

RUN{b}

traces("X. (b --. X» = {b}"

In most of our exanlples we find it necessary to use arrays of processes and use indices
in their definition. We therefore augment the earlier syntax of CSP with indexed

operators for tbe three operators n, D and,

1I,n€"p I D,nex PI ',ne"P

where ine)(is an index expression such as i;llO, j €X, etc. We illustrate the indexed

operators by the following examples.

(11'''0 i: P) is the parallel combination of an infinite number of processes 0: P, 1: P,

2:P,...

(n"o i,P) = Q,P n 1,P n 2,P II ...

(D ,.,0 i. a - P,) is a concise notation for

0.8 ---+ Po D La ---+ PI U Z.a ---+ Pz D ...

(10.$1 <10 (i. a ---+ p! i ---+ SKIP)) is a concise notation for the sequential composition

(O.a --+ plO --> SKIP);(l.a --+ pi! --+ SKIP); ... ;(9.a --+ p l 9--+ SKIP)

? and ! are used for input and output communications respectively with their usual
meaning. (in?x ~ P) is a process which engages in the event in. y (or any y

communicable as a single message on the input channel in and then behaves like Pj
while (out! ()(+l) ---+ P) is a process which engages in event out .37 if the value o()(
is 36 and subsequently behaves like P.

8

A process P with state)(can be defined by a mutual recursion, in which each

equation defines Px for a different value of the state x. The subscript)(may range
over a small, large, or even infinite set. Here is a simple example, the process Count,
which counts the number of occurrences of event B and is always willing to
communicate this value on the channel out

Count ~ Po

PxQa--+Px+llout!x---+Px

3. Modelling a baDk

The first example we treat is a simplified version of a system which models the
behaviour of customers in a bank. On opening an account, a customer joins a deposit
scheme run by the bank. Subsequently, the customer may deposit or withdraw money
as many times as required (overdralts are permitted) until the account is tenninated.
Four events {invest, payin, withdrsl-l, terminate} are required to describe the
behaviour of a customer, which is represented by process Customer in the system.

The meanings of these four events are

i nllest open an account
peyin deposit money into the account
withdraw take money out of the account

termi nate close an account

In this simplified version, we have chosen to ignore the amount that is being deposited,
or withdrawn! and the bala.nce of the account.

Since opening an account is the obvious first action of a customer! we write the process
Customer as a guarded expression with prefix i nllest. The subsequent behaviour of
a customer can be expressed using guarded recursion and the process STOP

Customer Q invest,. IJX. (pay i n ---+ X

I wit hdraw ---+ X

I terminate""'" STOP)

A bank has many customers, each independently and concurrently interacting with the
ba.nk. To model this! each Customer process is labelled by the name of the customer.
For example! the behaviour of a collection of three customers named s! band c is
described by

9

a: Customer R b: Cust orner lie: Customer

Since there is no limit to the number of customeT'9, it is convenient to use natural
numbers to name each of them uniquely. The indexed parallel combinator i3 used
below with i denoting the identity of each customer

Bank ~ (III >-0 i: Customer)

Our model of the bank consists apparently of an infinHe number of processes, all
waiting to be called into existence by the action invest. But at any given lime only a

finite number of them are actually started, one active process for each customer of the
bank who haA opened an account On closing the account, the corresponding process
stops and thereafter performs no further actions.

In an implementation starting and terminating processes could be very complicated
and expensive actions; the advantage of mathematical description is thai it ignores
such complication and expense. The "infinite" array of processes presents no more

conceptual difficulty than the potenitially unbounded number of calls of a procedure
in a normal programming language.

3.1 Adding Functions

In this section, we explain how the JSD step of adding functions can be carried out in
CSP. Extending the model to meet functional requirements often results in
modification of existing processes or sometimes inclusion of new processes to meet the
functional requirements. We illustrate this by extending the model of the bank to
cater for the following two functions

(1)	 Whenever a customer overdraws, produce an overdraft report. We shall
aBsume that the bank is generous enough to let the customers have an

unlimited overdraft.

(2) On an enquiry specifying a customer identifier list, print balances of
all customen specified in the list.

In order to meet these requirements, process Customer must be rewritten to store the
current balance of a customer's account in its state. Further the eveots invest I
payin and I-lithdral-l now bec0me communication events in which these are channel
names; a.nd the amount that is being invested, paid in or withdrawn is the value that is

10

communicated

Customer.Q invest?x ---t CUST",

CUS T)(.Q (pay i n?y --+ CUST x-+¥

I withdraw?y --+ CUST
X

_
y

I terminate -+ STOP)

To provide the exception reports, we need to furtber modify Customer by introducing
a new communication event which uses channel overdraft. The process sends a. pair
of values along this cbannel whenever the balance goes negative. The first value is the
withdrawn amount and the second is the subsequent balance. We use the if·then·else
operator to dl.eck the status of the balance after every ... i thdrslol. y event

Customer ~ invest?x --+ CUSTx

CUST x Q (payin?y -+ CUST:o;+y

I ... i thdralol?Y ---+ CUSTx-y f:)(~y} (overdraft! (y. x-y)

--+ CUST

X
_

y
)

terminate -+ STOP)

For the second functioD ((2) above) we need to include a new process List whose job
is to interrogate selected customers for their balance and print it out. This process

List will input on channel ina list L of customer account numbers for which the
balance is to be printed on channel pr i nt. List sequentially interrogates all
customer processes with account numbers contained in the list L. Since List has to

interrogate Customer about its balance l process Customer needs another
communication event report. x to send its current balance)(along ch annel report

Customer ~ invest?x CUST x

CUST x ~ (pay i n?y CUSTX"'y

I withdraw?y CUST ... _
y

i:x~Yl (overdraft! (y, x-y)

..... CUST X-y)

terminate STOP

report!x CUSTx)

Process List uses a compound channel name i. report to input from the channel

report of the customer whose name is i

List Q IJX.(in?L ('IEL(i.report?x print!(i,x) SKIP»;X)

However this definition of List suffers from the problem of deadlock: a customer in

11

the list L may choose to perfonn the terminate event and stop before List bas
input tbis customer's balance. The problem can be solved by modelling reality more
closely, taking into account the opening and closing of the bank for customers. The

balance list is generated during the closed hours of the bank when DO cu~tomer can
engage in any of the actions invest, pay-in, withdraw or terminate. Two new events
open and close are added to the alphabet of List which is rewritten as

Li st a: I-IX. (c 1ase -+ I-IY. (i n?L -+ (II ~L (i . report?x -+ pr i nt !(i. x)

--+ SKIP) ;Y)

I open --+ X»

The effect of close and open on customers can be formalised by including another

process OC with the following alphabet

o;OC = {i. invesLx, i .payin.x. i .withdraw.x. i .terminate.

i.report.x I i~O, x e N}U {open. close}

Process OC monitors the actions of all customers by jointly participating in them

oc Q 0

o Q (D,~o(i. invest.x -. 0

I i.payin.x --+ 0

I i.l-lithdra~.x --+ 0

I i.terminate --+ 0

Ii. report. x --+ 0)

close --+ C)

C Q (DI~o(i.report.x --+ C)

I open ---t 0)

When the bank is open a customer may engage in any of the common events, but
when it is closed OC permits only the common event j. report. x for customer i.

This ensures that no customer may operate hisfher account during closed hours.
Notice that the communication event on channel overdreft is private to aCustomer

and the customer process may still perform this event during closed hours. OC runs in
parallel with the customer processes and List, and guarantees that List will not

deadlock

Bank Q (al~o i:Customer) II List IIOC

12

3.2 Customers with Many Accounts

The model of the bank described in the previous sections considers customers with
only one account (assuming that the same customer does not bave two different
names). In general, a customer may operate many accounts concurrently. Such a
customer may be modelled employing the same technique used in section 3 to
represent ma.ny customers in a. bank, if the accounts of a customer are also identified
by a name or number. Each account of customer i i9 now given a.n identity n

ManyAccCustomer Q (lIn~O n:Customer)

Process Customer remains as before while Bank (without the functions) becomes

Bank ~ (11,>'0 i : ManyAccCustomer)

Note that each action of a customer now has two labels, i for the identity of the

customer and n for hisfher account: the event 20.3. wit hdraw. x corresponds to
customer with identity 20 withdrawing amount x from hisfher account number 3.

4. RnritanilUl Army

Jackson introduces the example of the Ruritanian Army to illustrate a form of
concurrency where the sequential behaviour of one entity has several aspects. The
ordering constraints on the events in its life are such that more than one Jackson
.structure diagram (refer appendix) is needed. In this section we show how the II
combinator of CSP nicely solves this problem.

4.1 First Version

Jackson presents two versions of the problem. The salient features of the first version
are:

The Ruritanian Army has only three ranks: Private, Captain and General.
On enlisting! a soldier becomes a Private and works his way up 'he
hierarchy. Soldiers at all ranks may need to attend courses. All soldiers
enrolled in a course complete it successfully. Promotions are given only
between courses.

13

Four events are adequate to describe the behaviour of a soldier in the Ruritanian

Anny

aSoldier = {enl ist, enrol. complete, promote}

A straightforward, but inelegant, definition for the process So 1dl er can be given by

mutual recursion, using one equation for each of the ranks

Soldier ~ enl ist ~ Private

Private Q enrol ~ complete ~ Private I promote --+ Captain

Captain a: enrol --+ complete --+ Captain I promote --+ General

Genera 1 Q enrol --+ complete --+ General

Notice that a soldier can get only two promotions, which always occur between

courses. As enrO 1 jg a. possible initial event for all three processes, Pr i vate,
Capta (n and Genera I, So 1d i er satisfies the requirement of possibly attending any
number of courses at all ranks.

The mutually recursive solution can be modularised by observing that the life of a

soldier has two aspects: h~ course career and his promotion career. These two careerg
may themselves be represented as processes evolving in parallel: process Course for
his course career and process Rank for his promotion career. Since a soldier may have

to attend many courses at any rank. process Course becomes a recursive process with
only two events in its alphabet, enro land comp 1et e

Course a: IlX. (enrol ---i> complete ---i> X)

As there are only three ranks in the anny. a soldier can get at most two promotions
and we reflect this by using STOP in the definition of Rank

Rank ~ promote ---i> promote ---i> STOP

It would be nearly correct now to describe the behaviour of a soldier using a parallel

combination of Course and Rank as

Soldier Q enlist ---i> (Course II Rank)

Here the alphabets of Course and Rank have no events in common, so when they
evolve in parallel, their events are arbitrarily interleaved. This fails to satisfy an

aspect of the specification met by the previous solution, namely that a soldier may be

14

promoted only between two courses and not in the middle of a course. To satisfy this
requirement, we use another process Life whose alphabet is a. union of the alphabets
of Course and Rank. Its effed is to prevent promotion from occuring between
enrolment and completion

Life ~ ~X.(enrol ~ complete ~ X I promote ~ X)

The process So 1d i er can now be correctly defined as the parallel combinatiOD of the
two processes L i f e and Rank preceded, of course, by enlistment

Soldier ~ enlist ~ (Life II Rank)

4.2 Second Version

In the second version of the problem, five ranks are introduced in the army: Private,
Acting Ca.ptain, Captain, Acting General aDd General in that order of hierarchy. Once
again a soldier has to do courses, but be may now have to re-enrol in a course due to
unsatisfactory performance. However, the army believes that it is not necessary to
repea.t a. course more than once. Finally, promotions may occur at any time.

We include another event reenrol in the alphabet of Course to describe the

requirement of repeating a course which the soldier has failed. A soldier may, after
enrolling in a COUl"Se, either complete it, or re-enrol in the course and SUbsequently
complete iL The COUl"Se career of a soldier in this version becomes

Course Q ~X.(enrol ~ (complete ~ X

I reenrol ~ complete ~ X)

Since the army now has five raDks, the number of promotions that a soldier may
obtain increases to four. Process Rank of the previous version can be suitably altered

to refled this increase in number of promotions

Rank ~ promote --t promote ~ promote --t promote -+ STOP

SiDce promotioDs caD occur at any time, we do Dot require the process L i f e of the
previous SectiOD. Soldier is therefore specified as

Soldier Q: enl ist --t (Rank 0 Course)

15

It is possible to express the solution for the second version of the problem also as a set
of mutually recursive equations. But now there are sixteen states, so sixteen equations
are necessary to specify the problem, which makes 8uch an exercise less attractive.

4..3 Pinal VeJ'8ion

As a final concession to realism we recognise that a soldier's career can be
prematurely terminated due to the event death. Whatever the current status of the
process So 1d i er, this event causes its termination. Our model of the Ruritanian

Army (for either version) can be easily extended to reflect such an eventuality by
using the interrupt operator We show this for the second version of So 1d I erA.

MortalSoldler ~ enl ist ---+ «Rank ~ Course)A(death ---+ SKIP»)

Since a person becomes a soldier in the army only after enlisting, the above model

deliberately ignores the possibility of a person dying before the event en 1 is t.

6. The Daily Racket Competition

The statement of the DaHy Racket problem is reproduced from Jackson PI

To boost circulation, the Daily Racket plans to run a competition
open to subscribing readers. Once a reader has become a
subscriber, he may enter the competition as often as he wishes,

sending in one or more entries on each occasion that the newspaper
publishes details of the competition. Each entry must be
accompanied by an entry fee. The competition is judged periodically,
by a panel of television celebrities, and the best entries received

since the preceding judgement are awarded prizes....

Some hidden rules are operated, designed to simplify the task 01 the
judging panel, who are not very clever. No competitor can win more

than oncej no more than one entry from each competitor is
submitted for judging in anyone session of the panel. Entries which
cannot win because of these rules are not returned to the
competitors; instead the accompanying fees are retained by the Daily

Racket, and the entries are quietly ignored. The editor's decision is

final.

16

Each participant in the competition is represented by a process Reader which
has only ~wo events, subscribe and enter, in its alphabe~. The only action of
a participant after subscribing to tbe publication is to keep sending entries
to tbe competition. Subm i 55 i on describes the process of submitting a single
entry

Submission a: enter --+ SKIP

As a participant may BU bmit any number of entries process Reader is written using
the indexed I operat or with Subm i 55 i on

Reader ~ subscribe -+ ('I~O i:5ubmission)

where each entry is indexed by its serial number i. Notice that Reader is a
non-terminating process and tbe hidden rules of the competition do not
affect it in any way. The very fact that the rules are hidden indicates

that process Reader should not be aware of tbem.

The existence of lIlany participants in the competition is conveniently expressed by
the indexed II combinator as

(nn>-.O n:Reader)

where n gives the identity of the participant.

The process Pane 1 models the behaviour of the panel which meets periodically and
judges entries received and then disperses. We introduce a separate process Meet i n9
to describe the behaviour of the panel during a session

Panel ~ maet ~ Meeting

During a judging session Pane1 receives an identification for the single chosen entry
for participant n through channel n.entry. For each participa.nt n who has an entry
for the current session the judging activity of the panel is

n.entry?e (n.Hin ~ Meeting I n.reject Meeting)

where the panel awards a prize by the event Hi n and discards a.n entry by rej ect .
InclUding the event disperse to signify the conclusion of a meeting

17

Meeting ~ (On~O (n.entry?e ~ (n.~in ~ Meeting

I n.reject --+ Meeting»)

disperse -+ Panel)

We have Dot yet used the hidden rules of the competition in defining Panel, and it

remains to show how the entries a.re communicated to it according to these rules.
Though a reader may submit many entries between 'WQ judging sessions only one
entry per reader is chosen for the panel's viewing. We use a process (1 erk, one for
each Reader, to pick the entry which will be considered at the next meeting of the
panel. Initially this will be the the first entry submitted after subscribing; but later it

will be the first entry after failing to wiD a prize.

The process C1 erk carries the [lumber of the chosen entry in its state and picks an

entry i aiter the event i .enter which is common to the alphabets of (1 erk and

Reader

Clerk Q (U,~o i.enter --+ C,)

Once it has chosen an entry, Clerk accepts and ignores all subsequent entries until
the panel meets and asks for the chosen entry. To ensure that a participant wins only

one prize in hisfher lifetime, the process Cl erk also needs to know of the panel's
decision for the chosen entry. We achieve this by making

{n.win,n.reject} .. cr(n:Clerk)

Clerk never submits an entry to the panel after a win but it continues recelVlDg
further entries. The behaviour of Clerk after choosing an entry i is either to accept
and ignore a new entry, or submit the chosen entry to the panel, and take a.ppropriate
action on the panel's decision

C, Q IlX.(Oj;'O j.enter --+ X)

I entry! j --+ (win --+ lJY.(Unlo j.enter ~ Y)

reject -+ Clerk))

Neither the process Panel nor the process Reader reflects the hidden rules. The

process Clerk which serves as a link between the panel and the participants is the
only one responsjble for the hidden rules of the competition. The complete system can
now be built using the 8 operator with one Reader a.nd one Cl erk process for each
participant, aud a process for the panel

18

System ~ (Iln~o n: (Reader II Clerk)) ~ Panel

The most unrealistic aspects of this model are (1) there seem to be a.B many clerks as
readers, and (2) the readers' act of submitting an entry occurs simultaneously with
that of the clerk receiving it. The first problem is easily solved: in CSP parallel
composition is symmetric and associative, so the solution quoted is identical to

(nn~O n:Reader) n (In~o n:Clerk) D Panel

Here it can be quite reasonably understood that a single clerk might carry out all the

tasks described by an apparently unbounded array of processes.

The second problem is solved by changing the action enter in aReader to
sendentry (leaving the event enter to stand for receipt of the entry by the process
C1 erk), and then by interposing a process which models the postal service. The new

reader is defined

NReader a; f (Reader)

where f(subscrrbe) = subscribe

f(i .enter) = i.sendentry for i)'O

The post office can be modelled by a standard buffer, which stores in its state the
sequence of undelivered entries

PO ~ P<~

P<> S! (On, ';::0 n.i.sendentry --. P<n.I»

P<n.I>~!i Q <om'J;::o m.j.sendentry --. P<n.,),-s-<m.J>
I n. i .enter --. P)s

The system is now

(Dn;::o n:NReader) D PO ~ (In;::o n:Clerk) n Panel

In practice, the mail service can reorder the messages it receives a.nd deliver them in

an order different from that in which they were posted. In practice also the clerk will
have to re~ct any entries sent before but received after the specified closing date for
each panel meeting. A solution to these problems can be formulated in esp, but

introduction of the mail service also introduces non-determinism1 a complexity we
ha.ve decided to avoid in this paper.

19

6.1 Adding Pnndions

In tbis section we extend the processes of the previous section to include
the functions added to the system in [J]. Inevitably, we need to modify the

processes by extending their alphabet and sometimes we even introduce Dew

processes.

The simplest function to be added to the system is the one corresponding to

(I) Acknowledge each entry received

Either Reeder or Clerk (or both) can be extended to provide this function. We do it
for Reader by adding the event eck to Subm i 56 i on

Submission Gl: enter -+ ack -+ SKIP

Reader ~ subscribe -+ (1 1,>--0 i:Submission)

If entries and acknowledgements are buffered, this simple solution is inadequate. The
next two functions to be added require the introduction of new proceese8 that store
information in their state

(2) On request, list the number of entries for each reader received so far.

(3) Print the total number of entries for each week and the cumulative total

over the weeks along wHh the current week number.

Since a count of the number of entries is to be kept for these two functions, the
processes introduced should partidpate in the event j. enter of Reader. For
function (2), each Reader process has another process ReaderSum which sk>res in its
state the cumulative count of entries sent by this reader. The "on request" part. of this

function is captured by the fact that ReaderSum sends the value on channel out
whenever ita environment is willing to accept it

ReaderSum " RSUMO

RSUMI(.Q « Di ~o i. enter -+ RSUMI(+l)

lout! x -+ RSUM)

For function (3) we use a process l.JeekSum which stores three values in its

state, the week number (w), cumulative sum of entries across weeks (x) and
the total number of entries received in the current week from all readers

20

(c). l.leekSum also participa.tes in the enter event, but we now need two
labels as qualifiers for this event: n (for readers) and ; (for the entries of
reader n). The printing of the values is caused by the event I-leekend

l.leekSulIl ~ Suml.O.O

Sum"... x,c Q (l-leekend ---+ print! (1-1, x+c, c) -+ Sum.,+l.x+c.O

I (nn.I~O n. i.enter -+ Sumlol • x.::;.-l))

We finally a.dd two more (unctions

(4) Print all entries chosen each week (or the panel's viewing.

(5) The panel should produce a list of its results.

Printing of the list of chosen entries on a channel) i st is the responsibility of a new
eavesdropping process L, which listens to communications on the channel entry <1.8

they p<Ul8 between the Clerk process and the Penel. These events therefore occur

with the participation of three processes; thi.e i.e in full accordance with the definition
of the n combinator in esp, though it is not a feature to be lightly included in 3

progranuronglanguage

<,~,

or:L = {n.entey.hl n.i~O}

L s; (fn.l *0 n. ent ry. i -+ list 1(n, i) ---+ L)

The reports required from the panel are got by extending the alphabet of Pene I to
include cClmmunication events which uee channels ~ i n1 ist and rej eet 1 i st to list
the winning and rejected entries respectively. The valuee output are the identity of the
reader ali.d serial number of the entry. A simple change to Meet in9 provides the
required reports

Meet ing Q (On*O (n.entry?e -+
(n.~in ---+ ~Inlist!(n,e) -+ Meeting
I n.reject ---+ rejectlist!(n,e) ~ Meeting»

disperse ---+ Panel)
Pane 1 Q meet -+ Meet ing

The system after the addition of all the above functions becomes

<HMO n:(Readar a Clerk I ReaderSum» I Panel I L I UeekSum

21

6. Widget W ueHouse System

This example develops a system for the allocation of product stock to customer orders
of the Widget Warehouse Company. The problem statement from lJ]

The company's customers order products from the company, often by
telephone but sometimes by other means such as mail or personal visit to
the company's warehouse. There is a company rule that separate ordeI'fl are

required for separate products...

Customers sometimes amend their orders, changing the quantity or the

requested delivery date. Occasionally a customer may cancel an order.

The company employs a clerk whose job is to deal with the cllstomeI'fl and
to allocate the available stock to outstanding orders. This clerk has access
to information about the available stock of each product. This enquiry is

usua.lly answered with reasonable reliability... We will be developing only

the sales system, handling customer orders.

Jackson presents two solutions to this problem, a non·automated and an automated
system. Here we shall present only the automated version where we include processes
for orders, products and to perform allocation of stock. We introduce a simplification

by ignoring amendment of requested delivery dates.

Consider the possible events in the life of an order placed by a customer. After being

placed, it may be amended or cancelledj and if the product is allocated to the
customer's satisfaction it may then be delivered. We choose four events for the

process Order

place place an order for a product

amend amend the quantity of an order

cance1 cancel the order

del iver deliver the order

Since allocation of an order depends on the size of the order, it is neCe88ary to store
this value as the state of the process that models the behaviour of an order. Of the

four events in the alphabet of Order, we model placing and amending as

communications of the relevant quantity .

22

place.x place an order of size x
amend, y amend an order to size y

A very simple definition of Order may be given without sa.ying anything about the
allocation or delay due to unavailability of stock

Order ~ p 1Bce?)(~ ORO.

ORO. Q (amend?y ~ ORD
y

I cancel -+ STOP

I del iver -+ STOP)

Since the company deals with ma.ny customers and each customer places orders for
many products we shall use two labels, p (for product) a.nd c (for customer), with
process Order

p: c: Order order for product p by customer c

We have, for ease of presentation, restricted orders to one per product per customer.
But our solution can be eaBily extended to multiple orders by using another label i

for the itb order for product p by customer c.

In order to allocate stock it is necessary to have access to the stock status information
which may itself be modelled as a process Product (one per product p). Current
stock status is stored in the state of Product. The environment communicates

delivery of fresh stock to this process through channel fresh. Product sends the
current stock status to its environment on channel stock, and then expects input on

channel SlJPP 1y of the quantity of items taken from stock

Product ~ Po
Px Q (stock!)(--t supply?y --+ P

X
- y

,I fresh?q --t Px+q)

To link the product with the order we now design an allocator process, a separate one
for each product the company supplies. Depending on the stock availability process
A11 ocator may either delay an order or allocate the quantity requested for. With the
addition of the allocator process, the simple model of an order given earlier becomes
inadequate, as the following three events (common with the allocator process) must be
added to tJOrder

23

allocate alloca.tion of an order

delay delay a.n order due to unava.ila.bili~ of stock

hOloo<lmuch.x communication event by which allocator process
finds out the size of the order

Process Order is rewritten for interaction with the alloca.tor process

Order ~ p 1ace?x -+ ORDx
ORD)(~ (amend?y -+ ORDy

I cance 1 -+ STOP
I hO'"4much! x --+ (a11 ocate --+ de 1 i ver --+ STOP

I delay -+ ORD,)

Notice tha.t the above model of a.n order has introduced a. constra.int on customers:
once a.lloca.ted a. customer is forbidden from cancelling or a.mending an order. Finally,
the a.llocator process (one per product) ma.y be written as

Allocator e IJ.X. <Dct[p (c.holoolmuch?x --+ stock?y --+

(c.allocate -+ 5upply!x -+ X)
ty.x~

(c.deley -+ 5upply!O -+ X»)

where Cp is the set of all customers. A11 oeator gua.ra.ntees that process Product
will not have any inconsistent values (such as negative values) of stock status.
Whenever it delays an order, A11 ocator sends the value 0 to Product as the
quanti~ supplied. The complete system for th i s version is

System ~ (1I pIPr , CICp p:c:Order) U (U pEPr p:(Product n Allocator»

where Pr is the set of all products supplied by the company and Cp is the set of all
customers.

6.1 Adding Fonrlions

To the solution of the previous section we shall add the following function

For a specified product*id, list the names of all customers who have
outstanding orders for that produ"d, and, against the name of ea.ch such

24

customer, the total quantity ontstanding. An order is outstanding if i\ haa
been placed but not yet allocated or cancelled.

To provide this listing a. new process ProductL i 5t which communicates with Order
to obtain the ordered quantity is added to the system. Once again we are forced to
modify Order to communicate the quantity along channel s; ze to ProductL i st

Order Q plece?x ~ ORDx

ORDx Q (amend?y ~ GRD

t
I cancel ~ STOP
I hOHmuch!x (allocate del iver STOP

I delay -+ ORD.>
size!x ORO),)

The prace!!.! for listing all customer ardera for a given product is

ProductList a IJ.X.(in?p --+ (lclL(P.c.size?x --+ print!(c,x)

-+ SKIP»,X)

where L is the list of a.ll customers with outstanding orders for product p. This raises
the problem: how does this process discover which customers are in the list L? Jackson

solves the problem by assuming that the information is made available in some
underlying data base. We can model this by an eavesdropping process, which
participatell in the events

{place.x, cancel, del iver, send.L}

and stores a set B of all customers who have oul;standing orders, i.e. placed a.n order
but not yel cancelled or delivered it. This process Spy also outputs a serialised list L
of the set 8 on channel send whenever required

5py Q So
58 Q: (~cfCp(c.place.x --+ 58 U {c)

I c.cancel --+ 58 - <c)

I c.del iver --+ 58 - <c}

I send! I ist(B) -+ 58»

where list (B) is a serialised list of the set B. Process ProductL i s t is rewritten to

2S

communica.te with the process Spy to obtain the list of customers with outsta.nding

orders

ProductList ~ ~X.(in?p p.send?L

(ICtL(P.c.size?x --+ print!(c,x) --+ SKIP»;X)

The system with the a.ddition of this function becomes

System a. (RpEPr-. CtCp p:c:O,..der)
II U plPr p:(Pr-oduct DAllocator n Spy» a ProductList

where Pr is the set of a.ll products supplied by the company and Cp 15 the set of all
customers.

The process ProductL i st is still unsa.tisfactory as it Buffers from a deadlock problem

similar to the function process List used in the bank example. A solutioll may be
Cannula.ted along the same lines as in section 3.1.

7. Elevator Problem

Problem sta.tement from Ja.ckson PI

The Hi-Ride Eleva.tor Company is installing elevators in a small building of
six floors. At each floor, except the top floor, there is a button which useI'8
can preBB to summon an elevator to take them upwardsj at each floor,
except the ground floor, there is a similar button for downwards travel.

Inside each elevator there are six buttons marked with floor numbeI'8.
There is a pair of doors at each floor, and another pair on each elevator.
The elevators are raised and lowered by cables which are wound and
unwound by motors positioned above the top floor. At each floor, in each
elevator shaft, there is a sensor operated by a small wheel attached to the

elevator: when the elevator is within 15 cms of the home position at that
floor, the sensor is depressed by the wheel and closes an electrical switch...

The computer system will schedule the travel of the elevators according to

the users' requests for service, and will produce commands for the motoI'8
and the Ugh ts which are associated with the buttons. In the usua.l way,

when a button is pressed, the associated light must be turned on.

26

We shall represent buttoos and lift as processes in the system. Consider the process
But t on. Once the button is depressed, the light is to be turned aD and is to be turned
off when the request has been serviced. In addition to these three events, depress,
1 i ght on and 1 j ghtoff , the process But ton also communicates with the lift process
sending the value 1 when the button has been pressed, 0 otherwise

Button!:l IlX.(l ift!O -+ X

I depress -+ 1 ighton -+ 1ift!l -+ 1ightoff -+ X)

Note thaUhe light goes off automatically when the lift reads the value 1.

There are three kinds of buttODS in the system: buttons on floors which control the
upward motion of the lift, buttODS on floors which control the downward motion of the
lift and buttons inside the elevator. We can use the process naming operator with the
obvious h,bels {u, d, e} to denote these three types of buttons in the system. The

corresponcling processes are

u: Button processes for buttons on floors controlling upward motion of elevator
d: Button processes for buttons on floors controlling downward motion of elevator
e: Button processes for buttons inside the elevator

These processes have to be further qualified by the floor they relate to - buttons inside
the elevator also correspond to a particular floor. We shall use another label i where

i is the floor number. For n floors , and

for 1 ~ i < n i :u:Button

for 1 < i • n i : d: But ton
for 1 ::;; i • n j:e:Button

Buttons inside the elevator can be further distinguished by the elevator within which
they are located, We shall for the moment ignore the second elevator and develop a

solution for a single elevator system. Initially we simplify the problem by ignoring the
buttons inside the elevator, and sacrifice efficiency by assuming that the elevator
always travels from the ground floor to the top floor and back servicing any requests
in intermediate floors.

27

7.1 Perpetual Motion: No Buttons inside Elevator

Consider the behaviour of the elevator in any of the intermedia.te floors. Impending

arrival at a. floor is detected by the sensor in the elevator shaft and the corresponding
event is at floor. After communication with the floor button the elevator decides
whether to stop at the floor or not

Floor Q stfloor -+ floorbutton?x -+ SKIP fx=Ot (halt -+ dir
-+ S~IP)

After a. delay it starts the motor by the event dir which seta the motor polarity
a.ccording to the chosen direction of motion. We have ignored the events of opening

and closing the doors.

For the intermediate floors we can define two processes UpHsrd I and DownHsrd I

using direct image opera.tors with the process Fl oar

Up ard I = f u ' 1 (F 1oar) for 1 < i < n

Do m04srd , = fd,,(Floor) for 1 < i < n

The alphabet transformations for the functions f U, I and f d. I are:

fU>I(floorbutton.x) = I.u.l ift.x fd,,(floorbutton.x) = i.d.l ift.x

fu,,(dir) = up fd,j(dir) = dQl.04n

fu,,(atfloor) = atfloor fd.,(atfloor) = atfloor

fu.,(halt) = halt fd,,(halt) = halt

The behaviour of the lift at the top and ground flooIl'! is slightly different as it always
stops at these two floors and reverses direction j and is described by process

TerminalFloor

TerminalFloor Q atfloor -+ floorbutton?x -+ halt -+ dir ~ SKIP

The processes corresponding to the behaviour of the lift at the ground and top floors

can be defined from Term i na 1Floor using the direct image operators f u,' and f d, I

setting i = 1 and i = n respectively

Ground = f u . 1(TerminalFloor)

Top = fd.n(TerminalFloor)

28

One comple\.e motion of the elevator where it starts from the ground floor, travels to
the top floor servicing a.ny requests on the wa.y and returns back can be described in
terms of ib.e processes defined earlier and sequential composition

UpDo~nL i ft ~ Ground; ('1<, <nUpward I) ; Top: ('1 <: I <nDownl-lsrdn_, +1)

We can now construct an elevator which relentlessly keeps going up and down
irrespective of the existence or absence of requests

Elevator S *(UpDownLift)

This rUDS in parallel with the external buttons, whicb control its stopping at each floor

System a Elevator I ExtButtons
ExtButtons 9 (Ihil<n j:u:Button) n (nl<l~n i:d:Button)

7.2 Perpetual Motion: Buttons inside Elevator

If we now introduce buttoDs within the elevator, the definitions of the various
proceSSes remain similar in spirit to those given earlier except that at each floor two
buttons have to be checked: one on the floor and one inside the elevator. Floor and
Term ina 1Fl oor have to be suitably altered by introducing another communication

event elevbutton.y

Floor ~ atfloor ~ floorbutton?x ~ elevbutton?y ~

SKIP tx=y=O' (halt --+ dir --+ SKIP)
TerminalFloor ~ stfloor ~ floorbutton?x ~ elevbutton?y ~

halt ---+ dlr ~ SKIP

The alphabet transformations fu" and f d" have to be augmented to include
elevbutton.y while the transformations for the other events in the alphabet remain
the same as before

fu,,(elevbutton.y) = i,e,llft.y f d" (elevbutton. y) = i.e. lift. y

The processes Ground, Top, Upward, and Downward, are defined similar to the
earlier versions but using the new definitions of Floor and Term i na 1Floor.
UpDownLift and Elevator also remain as before, but use the new definitions of the
processes describing floor behaviour. Process Elevator now runs in parallel with

29

Buttons which is itself a parallel combination of all the three types or button
processes in the 8ystem

System Q Elevator I Buttons

Buttons ~ ExtButtons I (h!'il~n j :e:Button)

ExtButtons ~ (nl~l<n i:u:Button) I (Il<l~n i:d:Button)

7.3 Elevator Syatem

The next attempt at a. solution to the elevator problem should eliminate the
inefficiency introduced by unnecessary travel to ~p and bottom floors. In tb.is &ecHon

we only indicate how this may be done without pretlenting a solution.

The elevator is to Donually wait at the ground floor, If there is a request from any of
the floors above, the elevator journeys upwards to service the request. On any
occasion during its upward travel the elevator may reverse direction and move
downwards if it finds that there are no pending requests in any of the floors above.
Similarly, during its downward travel it may reverse direction and move upwards if
there are no pending reque8ts in the floors below and there is a request (rom one of
the (loors above.

With these additional requirements, the elevator has to poll the buttons above (or
below) the current floor to choose the direction of motion. The behaviour of the
elevator at the intennediate floors and the ground floor can be split mto a polling
process and a floor process. As it is to normally wait at the ground flOOT, it need not
do any polling at the top floor.

A solution for the .9ingle elevator system along the lines indicated loses much of the
simplicity and elegance of the solutions presented in the earlier two sections. This is
perhaps inevitable for we are trying to represent a real life situation where local
decisions must be made on the ba3i.s of global information. A 1lO1ution with
centralised, instead of distributed, control seems more suitable.

For a two elevator system, PI suggest.9 a solution in tenus of "promises" by an elevator
to .gervice all requests between the current floor and, the top floor or ground floor
depending on direction of travel. The complications of an efficient solution for a single
elevator system deter us from attempting such a solution in esp.

30

8. hnplementation

Since most of our solutions have a large number of processes that do very little
computingl it would be highly uneconomical to provide dedicated proces8ore for each

process in Ibe solutions. Hence the issue of providing efficient implementations, on a
conventional sequential processor, of these parallel solutions becomes important.

One possible approach is to use a parallel programming language such as OCCAM [In]
implemented on a conventional sequential processor. [n principle it is possible to
implement our processes as OCCAM processes though an optimisation phase seems to

be required to reduce the number of processes. In fact the bank and a part of the
elevator exa.mples have been implemented in OCCAM from the JSD solutions [Fl.

But a more general solution would be to use the theoretical framework of CSP to
obtain an efficiently implementable version of the parallel one by algebraic
transformations. The laws governing the various CSP operators IH2) can be used to do
these algebraic transformations to reduce parallel systems to ones written using
mutual recursion, which can be implemented efficiently on a conventional sequential
processor. [n this section, we pursue the algebraic transformation approach to derive a
solution using mutual recursion starling from a highly parallel one. The example

chosen is the first version of the Ruritanian Anny problem (section 4.1).

We use the following two laws defined on the n operator for the algebraic
transformations (Section 2.3.1, [H2])

H x E ~P - aQ. y E aQ - aP and z E aP n aQ. then

Ll Ix --+ P) II (z --+ Q) = x --+ (P n (z --+ Q»
L2 Iz --+ P) II (z --+ Q) = z --+ (P II Q)

Consider tb.e distributed version of the solution given in section 4.1

Soldier ~ enl ist ---J (Life II Rank) and
Rank g promote promote ---J STOP
life g ~X. (enrol complete ---J X

! promot e ---J X)
= (enrol ---J complete ---J life I promote -+ life)

For the two proce~sesl i f e and Rank
{enrol,complete} l;;; aL.fe - e:tRank and promote e e:tlife n e:tRenk

31

Let Po a Soldier
= (enl ist --+ (Life BRank»

= enl ist -+ PI

where Pi a Life n Rank

Expanding Pl' we have
Pi :::: (enrol ~ complete --+ Life I promote --+ Life)

n (promote --+ promote --+ STOP) (definition)

= enrol ~ «complete --+ Life) g (promote --+ promote --+ STOP»
I promote -+ (Life U (promote -+ STOP» (Ll,L2)
enrol ~ complete -+ (Life ~ Rank)
I promote -+ (Life I (promote --+ STOP» (LI)

:: enrol ~ complete ---to PI I promote -+ P2 (definition)

PZOLifeO (promote --+ STOP)

(enrol --+ complete --+ Life I promote --+ Life)

H (promote --+ STOP)

:::: enrol -+ «complete --+ Life) 0 (promote -+ STOP»

I promote -+ (Life I STOP{prclIlcte»	 (LI,L2)
::: enrol -+ complete -+ (Life n (promote -+ STOP»

I promote -+ (Life n STOP{pro,"ote» (LI)
enrol -+ complete -+ Pz \ promote -+ P3 (definition)

P3 Q	 Life II STOP{prol7lote}
(enrol -+ complete -+ Life I promote ~ Life) a STOP{prornote}

= enrol ---+ ((comp1ete ~ Life) n STOP{promote» (LI)
enrol ~ complete ~ (Life n STOP{prolllote}) (LI)
enrol ---+ complete ~ P3 (definition)

We have now obtained the following four equMions starling from the parallel solution

Po = enlist ~ Pi

Pi = enro 1 ---+ complete ~ Pi I promote ~ P
z

Pz = enrol ---+ complete ~ Pz I promote ~ P3

P3 = enrol ---+ complete ~ P3

Not surprisingly these four equations are identical to the mutual recursive version of
the solution presented in section 4.1 with

Po =	 Soldier, Pi = Private, Pz = Captein and P3 Genera 1

32

As a. slightly more difficult exercise we derive a.n efficienlly implementable solution of
the final version of Ute Ruritanian Army (section 4.3), where the event deeth i8
included. The event death can be added to the first version of the Ruritanian Army

problem as

MortalSoldier • enlist -< «Life I Rank)"(deelh -. SKIP»

In addition 10 lawe Ll and L2 we use the following law governing the ... operator and
prefixing [&dio. 5.4, [H2J)

La (x,6 -. P(x»"(l = (l 0 (x,6 -. (P(x)"(l»

We obtain five equations (or Mort alSo Id Ier a.nd we give below the derivation of ODe

of these equations, P1"

Lei	 O. death -. SKIP and

Po Q MortalSoldier = enl ist ---f Pi

where	 P, = (Life I Rank)"O

In the earlier deriva.tion we have already shown that
Life n Rank = (enrol ---f complete ---f (Life I Renk)

I promote ---f (Life I promote ---f STOP»
Using the above we have

Pt = (enrol ---f complete ---f (Life n Rank)
I promote -. (Life I promote -. sTOP»~O

= 0 n (enrol -. (complete -. Life n Rank)AO
I promote ~ (Life B promote ~ sTOP)AO) (1.3)

00 (enrol -> (0 0 complete -> (Life I Rank)'D)
I promote ~ (Life a promote ~ sTOP)AO) (1.3)

o D (enrol ~ (0 n complete ~ P I promote ~ Pz) (definition)t

where Pz isde:fmed as (Life I promote ~ sTOP)AO. Processes Pz and P3 maybe
derived in a. similar (asbioD. The five equatioDs (or Marte 1So1d ier are

Po = en list ~ P1

P1 = 0 D (enrol ~ (0 D complete -. P1) promote Pz)

Pz = 0 D (enrol -. (0 n complete -. Pz) promote ----to P3)

P3 = 0 n (enrol -. (0 D complete -. P3)

o = death -. SKIP

33

Of course, these are very simple examplesj yet even so, the derivation of a.

correct sequential program is a non-trivial calculation, for which some
mechanical aid or check would be desirable. More substantial e:xamples,
perhaps involving arrays of processes, may present even greater difficulty
in formal derivation of sequential programs from parallel ones.
Jackson describes by example some practical techniques, but their theoretical
counterparts are left for future re&earch.

9. Comparison with JSD

Before we make a general comparison of CSP and JSD we outline the few changes we
have made to the examples tackled in PJ.

The bank exa,DJple has no changes. Our second version of the Rurita.nian Army
(section 4.2) is slightly different from that of [J]. In [J] a soldier comple~ a. couree
irrespective of whether his performance has been satisfactory or Dot. In the laUer
case, he re-enrols in the same course. Jackson's structure diagram for the soldier's
course career is

34

The possible null action in the iteration COURSE results in the following equivalent
CSP definition

IlX. «enrol -+ complete X)

o(enrol -+ complete -+ reenrol -+ complete -+ X»

However tb.is leads to Don-determinismj to avoid this, in our velllioD, a. soldier
completes a course only if he is successful in it.

In the other three examples we have not introduced any changes to the problems
except that our solution for the elevator problem is not complete. In most of the
examples Jackson solves more variations of the problem and introduces more
functions. The shorter length of this article does Dot permit us to tackle all his
variations. Some of the other issues that we have not addressed include timing
cons tra.inta, priority, etc.

The conciseness and expressive power of the CSP notation lead. to shorter solutions
which, it may be argued, are more easily undentandable only to those sympathetic to

mathematical notations. The majority of the target readership of Jackson's book may
find his diagrams (structure diagrams) and English·like notation (structure text) more
appealing. In view of this, there perhaps is a case to introduce some of the more useful
CSP operators as new box types in structure diagrams, so that larger systems
indudingparallelism can be described pictorially.

The level of abstraction employed by us in giving constructive specifications is
somewhat higher than that used by Jackson. Consequently we have been able to
ignore levels of processes (refer appendix) and different varietie8 of process
connections (refer appendix). Both of these concerns become more relevant in the
later stages of design and implementation.

Jackson introduces the notion of marsupial entity (refer appendix) to describe an
entity tha.t is derived from the structure of another entity with many instances of the
marsupial existing in the sytem. The parallel and process naming operators together
give a formal representation of this notion. This formalisation substantiates the
relevance and importanc.e of marsupial entities in system development.

The rich set of laws governing the CSP operators provides us a tool to formally derive
efficiently implementable versions of our constructive specifications.

35

10. Further Work

One of the advantages of a specification is that it helps a designer to formula.te and
experiment with the design of his system. It becomes possible to make desigu decisioDs
one at a time in a rational sequence starting with a simple structure and adding details
to it. The benefits of such an approach are enhanced if the mitial formulation remains
unaltered and subsequent decisions just add to it. The solution of the Ruritanian

Anny problem is a good example of such an approach.

The other examples given here show that we have failed to meet tbis goal (particularly
in the elevator problem). The use of trace descriptions, perhaps in a mixed style of
specification [H3, 0], migM be of help in achieving this goal. The rewriting of
cODstructive specifications for adding functions (as done in this paper) may be avoided
by a suitable formalisation of the state vector connection in esp. Perhaps the use of

non-detenninism to postpone decisions might lead to more elegant solutions, especially
for the elevator probLem.

Yet another problem with CSP is the intrusion of deadlock at an early stage in the
specification. Further work should also be direc\ed at techniques to avoid deadlock
and establish its absence.

The extension of the suggested algebraic transformation approach) for deriving
efficient implementations of distributed programs, to more complicated examples
involving arrays of processes needs further study. Some form of mechanical aid may

be needed.

36

APPENDIX

In this appendix we discU85 the nota.tional and tenninological differences
between CSP and JSD to aid readers fa.miliar with only one of the two.

A system is developed in JSD in terms of entities specifying their actions. Entities
are analogous to processes of CSP and actions are the events in the alphabet of a

CSP procESS. For example, the JSD solution for the bank problem (section 3) would
consider aD. entity type CUSTOMER with fOUf actions INVEST, PAY-IN, ~ITHDRAI.J and
TERMINATE.

JackaoD wea strudure diagrams and structured lexe to describe JSD entities while
we give a process description using CSP opera.tors. The entity CUSTOMER may be
described by the following structure diagram

In the above tree diagram the branch nodes represent processes and the leaf nodes
represent actions. Some of the nodes (called boxes) are marked by an asterisk or

circle. A box is a sequence if all its childrell are unmarked with the left to right order

of the child boxes indicating sequential composition. In the above diagram CUSTOMER

is a seq-uence with three parts lNVEST, CUSTOMER-BODY and TERMINATE. A box is an

iteration if its child box is marked with an asterisk at the upper right corner;

CUSTOMER-BODY is an iteration with rero or more occurrences of MOVEMENT. If circles
are used instead of asterisks to mark the child boxes then the parent box is a

selection. MOVEMENT is a selection, with one occurrence of either IJITHDRAIJ or
PAY-IN for every occurrence of it. A null action for a selection is indicated by

37

marking (as in the structure diagram of section 9) one of the child boxes with a. dasb.
The above diagram may be compared with the equivalent CSP definition of process

Customer

Customer 9 invest --+ !lX. (payin --+ X

I withdraw --+ X

I terminate -+ STOP)

Structured text is a textual notation for entity structures. It is a transcribed form of
the structure diagra.m whicb is more convenient for inserting operations, and
conditions for selections, iterations and is used in the later steps of JSD.

1. Process Connerlioll8

Jackson uses two types of connections between proce68es: the data stream connection
and the state vector cODnection. We have found the synchronous communication of
CSP adequate 38 a process connection for the example problems treated. in this paper.

The data stream cODnection of JSD is simply a buffered communication channel
between two processes. read and write statements are used to transmit and receive
information from a data stream. The data stream connection can be specified
whenever required in esp notation by placing a buffer process b€tween two
communicating processes as shown in section 5 for inserting the postal service.

In the state vector connection of JSD, one process inspects the state of another
process. The state information carried by a process includes the values of all local
variables and the text-pointer (wbich is analogous to progra.m counter). Tbe
inspected process does not participate in this form of communication. The initiative
for the communication lies entirely with the inspecting proceB8, a.nd consequently
neither process gets blocked on a state vector inspection. To avoid problems with
consistency of the values obtained in such a process connection, Ja.ckaon imposes
restrictions on the points at which the inspected process may update its state.

This form of proce9S connection is somewhat like read·only store sharing and it is well
known that sharing is not easy to model in esp [HI, H2J. We cIo nol attempt to
accommodate the state vector connection within the notational framework of esp.
Again, due to the higher level of abstra.ction, we have not felt the need for this fonn of
proce5S connection in esp for the examples treated in this paper; it is possible that

38

state-vector inspection would help in treating the more elaborate versions of the
elevator problem, which we have omitted.

Z. Level 0 end Levell PrtX:esses

JSD uses two (or more) levels of processesj real world processes which are abstract
descriptions of the real world are at level OJ while the model processes which will
eventually be run on a. machine are at level lor higher. The level 0 processes are said
to be external to the system boundary. The JSD model proces8eS at level 1 invariably
follow a structure which is broadly similar to their counterparts at level 0 but is more
complicated. The primary concern in JSD regarding these two levels is the type of
process connection used. The higher level of abstraction at which the CSP
descriptionJI are given permit us to not use levels of processes.

3. Muplal Elltit,'

In Jackson's terminology a marsupial entity is one which must be created to express
concurrency in the activities of another entity. In this sense it behaves like a marsupial
animal "which spends the first part of its existence in its mother~8 pouch and later
emerges to lead a life of its own." There does not seem to be any need to introduce
marsupial processes initially, but they are usually created in the later phases of JSD.

The bank example can be used to illustrate the need for marsupial entities. To show
that a customer may have many accounts, we may modify the structure of entity
CUSTOMER to (we give below the equivalent CSP process definition instead of a
structure diagram)

llY.(invest -. IlX.(peyin X I withdraw X I terminate -. Y)

But this imposes an unrealistic constraint: a customer can open a second account only
after terminating the first whereas in fact a customer can concurrently operate many
accounts. A singie Jackson structure diagram cannot show this concurrency. To
reflect this concurrency it becomes necessary to introduce another entity ACCOUNT

with 8 stucture equivalent to the CSP process

in est -. IlX.(peyin X I withdrew X I terminate STOP)

The structure of CUSTOMER is now modified by Jackson to (equivalent CSP process

39

definition given)

~x. (invest ~ X 1 payin -+ X I I-lithdraw -+ X I terminate -+ X)

A customer may engage in any of the four actions. But for each account of a. customer
the ordering constraints are specified by the marsupial entity ACCOUNT. The
relationship between the two strudure diagraDlB for ACCOUNT aod CUSTOMER is left
informal in JSD.

We have already shown (sectlon 3.2) how the parallel combinator and process naming
operator may be used to describe a customer with many accounts in CSP without
modifying the original process Customer or introducing a new process Account.
These two operators provide a formalisation of the notion of marsupia.l entities
without dispensing with it. In (act the CSP process Customer (section 3) is the same
as the JSD marsupial entity ACCOUNT. The counterpart of the JSD parent entity
CUSTOMER is RUN~ where A = cxCustomer. Since

P!RUNA=P where A = O:P (,eclioD 2.2.1 aDd 2.3.1, IH2])

we need not explicitly represent the counterpart of the JSD parent entity.

40

References

[BHRI Brookes S., Hoare C.A.R. and Roscoe A.W., A Theory of Communicating
Sequential Processes, JACM, July 1984.

[F] Feather A,a" OCCAM as a Design Notation in JSD Method,
M.&::. Dissertation, Oxford University Computing Laboratory, 1983.

[HI] Hoa.re C.A.R., Notes on Communicating Sequential Processes, PRG-33,
Technical Monograph, Oxford University Computing Laboratory, 1983.

[HZ] Hoare C.A.R., Communicating Sequential Processes,
Prentice-Hall International, lQ85.

IR3] Hoare GA.R., Programs are Predicates, Philosophical Transactions
of the Royal Society, London, Vol. A 312, 1984.

[InJ OCCAM, InmoB Ltd, Prentice-Hall International, 1985 (also David May,
SIGPLAN Nolice,_ April 1983).

[J] Jackson M" System Development, Prentice-Halllnternational, 1983.
[01 Olderog E.R. , Specifications Oriented Programing in TCSP, to appear in

Logics and Models for Verifications and Specification of Concurrent
Systems, K.R.Apt (ed,), Springer Verlag.

