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The stages of a Graphics Output Pipeline are discussed,
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comparison of the performance of the stages reveals (or
rather confirms) the *bottleneck” stage. The Splitter Tree
approach to improviog this stage's performance s
analysed, specified and implemented.
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The graphics pipeline transforms objects described in 3D world coordinates into
a picture on a 2D graphics screen. In this thesis we have dealt with the following
important stages of the graphics pipeline: clipping, Hidden Surface Elimination
{HSE) and coordipate transformations. The yiewing transiormation stage performs a
coordinate transformation from the 3D world coordinate system used to describe
our objects, to another 3D coordinate system whose origin is at the point of
observation and whose Z axis lies along the direction of view. The purpow of the
viewing transforrmation is to make the calculations involved in the next stage,
clipping, easier.

Clipping acts like a filter which only lets through those objects that
are potentially visible from the point of observation. For example objects that lie
behind the point of observation are invisible. The stages that follow clipping only
have to deal with the objects that clipping lets through and these might only
constitute a small portion of the original data base.

The next stage, the perspective transformation projects our
3D objects onto the plane of the screen. In doing that, depth information is not
destroyed because it is essential for the following stage, HSE.

We have said above that clipping only lets through those objects
that are "potentially” visible from the point of observation. This is because some
objects might hide othera. HSE determines the frontmost object for every pixel of
the screen.

The main aim of this project has been the study of the stages
of the graphics pipeline with the view of suggesting an architecture that provides a
fast implementation of the pipeline.

Chapter 1 describes the stages of the graphics pipeline
and chapter 2 formalises that description by mathematically specifying in Z the
operation that the more complicated stages of the pipeline should implement.
Chapters 3 & 4 introduce two algorithms which implement the
¢lipping and HSE operations respectively and give their CSP specifications.
Chapter 5 compares the perforance of the stages of the pipeline
and identifies the "bottleneck” stage which leads to an investigation of a method for
"widening” the bottleneck in chapter 6.
Chapter 7 mentions conclusions and suggests further work.



Chapter 1

Background : The Graphics Pipeline

This chaptier describes the purpose and function of the
main stages of the graphics pipeline and the coordinate
systems involved.



Assume a world whose objects are defined solely in terms of polygons
in some 3D coordinate system called world coordinate svstern (WC) WC is
assumed to be right handed since right handed coordinate systems are more
common than left handed ones.

We would like to show on our graphics screen the view of an imaginary
observer within our world. First of all we must transform the coordinates of our
polygons into a left handed coordinate system whose origin is at the observer’s eye
and whose Z_ axis lies along the direction of view.

The new coordinate system is called eve coordinate gystem (EC) This
transformation simpiifies the calculations invelved in later stages of the pipelite and
is called ylewing transformation. A special case of the viewing transformation is
when the Z, axis is collinear with the Z, axis and the other axes are paralel, in
other words we only transform from a right handed WC system to a left handed
EC system,




Next, we must determine what part of our world our observer cap see. His
view can be simulated by a pyramid whose apex i3 at the EC origin, is
symnmetrical about the Z_ axis and each of its four faces is perpendicular to the

plane defined by some pair of EC axes. It is called the viewing (or clinping)
pvramid. o
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e
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The process of separating the objects, or parts of objects, that lie inside the
pyramid from those that do not is called clipping, In additien to the four clipping
planes defined by the four faces of the pyramid we usually have Phither” and "yon”
clipping planes, which are perpendicular to the Z_ axis, in order to impose depth
restricions. Our 2D screen is assumed to be positioned so that its plane is
perpendicular to the Z_ axis, its four corners coincide with the four edges of the
viewing pyramid and its X, and Y, axes are parallel to and have the same
direction as X_ and 'Y, respectively.



We can express the clipping limits in terms of the distance of the screen from
the point of observation, d, half the screen size, s and the Z  cocrdinate of the
point being clipped

A
Yy Top Clipping Plane

SCreen

Let’s consider the top clipping plane shown above. For any point Plx y,_.z.)
which lies on it we can show by similar triangies that

d/s=12,/y,

U, =z, « {s/ d} = w

If a point lies below (inside) the top clipping plane then

y, (W

and if it les above (outside) the top clipping plane then

g, > u

The clipping limits for the other planes are given in appendix 2. Clipping reduces
the number of polygons that have to be processed by later stages of the pipeline.



Having determined which objects lie within the viewing pyramid, we must
next get a 2D description of them as the screen 8 a 2D device. We therefore
propct onto the plane of the screen

» Sereen

Pl Ygr 7,)

We alculate the 2D screen coordinates of P, by similar triangles

y /fd=y 7/ z

-
therefore

b = (4, / z,} m d
similarly for x

x, = (=, / 7} md.

This tansformation from the EC system to the screep goordinate svstem [SC) is
calied perspsctive transformation. X, and y, are expressed in the unite that d is
expressed in. Instead we could define them as dimensionless fractions by dividing
by &

He (g, £ 2.} ®m{d / 5) Uy £ MW

and

b
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I
*
~

(g / 2,}) = (d/ s)
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Note that

-1 € ox.y, €1

slnce - ¢ x,, u. ¢ w after clipping. Therefore x, and y, can canily be scaled to any
physical device coordinate mystem (PDC) ie. u-.e coordinate eystem used by a
physical display device (e.g. 512 x 256). We could have transforméd directly from
EC to PDC but the !ntermediate dimensionless SC system epables us to use
multiple devices with different PDC systemns’.

To add some realism to our picture we must not display those polygons,
or parts of polygons, that are obscurred by others. The operation that determines
which Is the Irontmost polygon at each point of our screen, and hence eliminates
the hidden ones, ia called Hidden Surface Elimination (HSE). It obviously requires
depth information and this is lost in the perspective transformation. We need a
depth preserving perspective transformation and an augmented SC (or PDC if we
transform directly from EC into PDC) system that includes a third coordinate 2.
In calculating g, we must make sure that planes in EC transform o planes In §C
|Park85]. The interpretation of x, and y, ia not changed.
But why didn’t we perform the HSE operation in the 3D EC system in the

first place ? The answer is that it 15 much harder [SuSp74]. In order to perform
the HSE operation in EC we would have to consider "rays® leaving the observation
point at various angles and compute which faces they Iniersect. Such trigonometric
computations would be wvery costlyy, The depth preserving perspective
trapsformation transforms an object A in EC into an object A’ in SC such that A’
viewed orthographically leoks the same as A viewed in perspective. In other words,
the perspective transformation moves the point of observation to infinity
transforming the space enclosed by the EC clipping pyramld (truncated by the
hither and yon clipping planes) into a SC cube. Hence overlap tests can be done
timply by comparing the x, and y, coordinatet of points.

Here are the stages of the graphics pipeline described in this chapter

HC |VUiewing EC CLIP EC . |Perspective SC HSE SC
Transformaet i on Transformation | (PDC) (F‘DE)

i. In our OCCAM implementation the perapetive transformation transforms
directly from EC to PDC in order to avoid the use of reals.



Chapter 2

Z Specification of two Major Grephics Operations

o this chapter we shall give the mathematical
specification in Z [285] of Clipping and Hidden Surface
Elimination (HSE) in order to make their meanings precise
before proceeding to the description of algerithms to
implemext them.



2.1. Geometrical Definitions

A point in 3D is described by its cartesian ¢oordinates

OINT: 1

«
- oo

A plape is the set of 3D pointe which satisfy a plane equation

LAKE
plane : P(POINT)
ab.cd: R

plane = {{x.y.z) : PDINT | amx + bmy + cez + d = 0 }

R line is the intersection of two non parallel planes

—LINE
line : P(POINT)

3 PLANE, : PLANE, | plane, n plane, = d¢»
1 2 1 2

line = plang, n plane,




The unrestricted set of 3D points i8 called gpace

SPACE: ]
J7 space : P{POINT)

A plane divides space intc two halfspaces. The coordinatea of all points in one
halfspace give 2 positive value when substifuted into the plare equation, whereas
the cordinates of the points in the other halfspace give a negative value

AL FSPACE: |
halfspace : P{POINT)

a.b,c.d : R

halfspace = {(x.y.z) : POINT | awx + bwy + emz + 4 > 0}

¥

halfspace = {(x.y.2} : POINT | amx + bmy + ckz + d ¢ [}

A halfine from a point p i3 a semi infinite line whose ore and only end is at p. It
is defined as the intersection of a line and a halfspace. The line must not be
paralld to the plare defining the halfspace and p must lie on this plane. The
halfline does not include p

’—HHLFLINE ]
B : POINT

halfline : P{PDINT)

3 LINE ; HALFSPACE | 1ine n helfspace = ¢»
half]line = line n halfspace
peE line

amp.x + bEp.y +cep.z + d = 0
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A line sezment consists of a starting point, an ending point and all the points
between them which lie on the line defined by these two points. We define a
line__segment as the intersection of two collinear halflines of opposite direction. 1t
is convenient to include in the line__segment either the starting or the ending point,
but not both

—LINE_SEGMENT-
start : POINT
end : POLNT
line_segment : P{POINT)

3 HALFLINE, : HALFLINE, |
py = start A p; = end

start € halfline, ~ end € halfline s

line_segrent = (halflime1 n halfiing,) v {start}

Two line___segments are connected If the start point of one of them coincides with
the end point of the other

CONKECTED

cornecked : LINE_SEGMENT ¢ LINE_SESGMENT

Y o1s1,1s2 = LINE_SEGMENT | {lsl, is2) & connecteds
| Isl.end = Is2.start

A sequence of connected line__segments is defined so that line__segments which are
adjacent in the sequence are connected

—CONNECTED_L INE_SZGMENTS
connectad_]ine_segments : P{seq{LINE_SEGHENT))

V¥ les : seq(LINE_SEGMENT)«
{1ss & connected_line_segments &
Iss™': suce: lss ¢ CONNECTED

)

11



We ehall define a polygon to consist of

i. Its edges and

ii. Its contents i.e. all the points bounded by the edges.
The edges must be pairwise gonnected and the beginning of the first edge must
coincide with the end of the last edge, in cther words the polygon must be closed,
It is got allowed for the edges to cross over each other and they must all lie in the
game plane. Here are some examples of polygons

O 4>

and esme counter examples

=/

The contents of the polygon are defined as those points from which there is "no
escape” from the polygon. In other words any "escape route® is bound to meet an
edge of the polygen.

A necessary and sufficient condition for a point p to be inside the polygon

Le. a point of no eacape, is that the number of intersections of any halfline starting
at p with the edges of the polygon be odd. A few examples will illustrate this

2 intersections (outside)

1 intersection (inside)

(outside)
0 (outside)

(inside)

12



The following Z epeclfication of a polygen encapsulates the above requlrements

—POLYGON
contents : P(POINT)

3 edges : seq{l.TNE_SEGMENT}e
{edges ¢ CONNECTED_LINE_SEGMENTS
edges{l).start = edges{bedges).end
Yij: dom(edges)l inj ®
{edges{i ). line_segment) n (edges{j).line_segment) = ¢
3 pl : PLANEe
U (i : 1..dedges « {edges{i}.lIne_segment)} C pl.plane
comtents £ {q : POINT | (3 HALFLINE | q = pae
p{halfline n (UJ {i : 1. tedges s edges(i).line_segment})) e add)}

2.2. The Clipping Operation

The clipping operation restricts objects (or the polygona that define
them) to those that lie within a certain region of space, the clipping reglon, The
clipping region can be described as the generalised Intersection of an appropriate
sequence of halfspaces. The result of clipping a polygon i8 then the intersection of
the points that He within the polygon (its contents) with the clipplng region

—CLIP: 1
p7 : POLYGON
clipping_reglon : seq{HALFSPACE)}
p! : POLYGON

¢l . contents =

M {t : 1..8clipping_region « {(clipping_reglon(i).halfspace}}
n p?.contents

The clipping region usually takes the form of a truncated pyramid, the clipping
pyramid, as deacribed in chapter 1.

13



2.3. The HSE Operation

The [ollowing specifications are generic in terms of COLOUR

[ COLOUR]

A picture contains 3D polygons of various colours. As each polygon can only have
one colour, a picture can be described by the partial function

PIC : POLYGON — COLOUR

The points that belong to some polygon of PIC are related to the colour of the
polygen that they belong to. This is a relation since some points might belong to
more than one polygon and therefore be associated with more than one colour

USP_rel : POINT &« COLOUR

USP_rel € {p : POINT ; poly : dom{PIC) | p ¢ poly. contentse
{p. PIC{polu)}}

USP_rel stands for Unhidden Surface Picture relation. We shall next derive from
USP_rel a function, USP__fun, that associates a unique colour to every point. The
colour that USP_ fun associates with a point p must be one of the colour(s) that
USP__rel associates with p, the choice being implementation dependent. For
example our OCCAM implementation associates with p the colour of the first
polygor, in the order of processing, that contains p

USP_fun : POINT —» COLOUR
dom{USP_fun) = dom{USP_rel)

USP_fun & USP_rel

The reult of performing the HSE operation wil]l be a Hidden Surface Picture
(HSP) that associates 2D coordinates to colours {our points so far have been 3D}

HSP : R x R —» COLOUR

14



The colour of a 2D pelnt (xy) is the colour of the 3D point (xX,y,8) which has the
smallest z coordinate among all 3D points whose lateral and vertical coordinates

are X and y respectively

HSP 2 {p : dom(USP_fun) |
(¥ p, : dom(USP_fun) |

Py

P %

-

h-l

Pioy T Py e P,.Z > P.2) =
({p.x.p.y}, USP_fun{p)} }

The direct comparison of the z coordinates of points with the same x and y i only
valid if a (depth preserving) perspective transformation has preceeded it {see
chapter 1). The HSE operation is then defined as follows

—HSE
pic? = POLYGON —» COLOUR

hep! : R x R —» COLOUR

: PRINT ¢ COLOUR: usp_fum : POINT —» COLCUR =

3 usp_rel :
{usp_rel = {p : POINT ; poly : dom(pic?) | p € poly.contents =

(p. pic?{polu}}}
dom({usp_fun) = dom{usp_rel)
usp_fun € usp_rel
bspl = {p : dom{usp_fun) |
v p; = dom{usp_fun) i
Py ® P A
Pi.X = P.X A
Pi-Y = P-4 * Py.2 2 p.z} »
({p.x,p.y}. usp_fun(p)} }

15



Chapter 3

A Parallel Clipping Algorithm

The objeciive of the clipping operation was described
using the Z language In section 2.2. This chapter describes
and gives a CSP trace specification of a paralle] OCCAM
[INMOB84] implementation of the Sutherland-Hodgman
polygon clipping algorithm [Suth74],

16



3.1. Description

The polygon to be clipped, the subject polygon, is represented as a pequence of
vertices; the first and the last being the same'. The vertices occur itn the order
defined by a clockwise traversal around the polygon. For example

)

is represented as (v, v, vy, v, v vy

Y

Ve

The algorithm clips the subject polygon against the first plane of the clipping
pyramid and produces a new sequence of vertices which represent the subject
polygon clipped against the first clipping plane. The process is repeated for each
plane of the clipping pyramid. The sequence of vertices coming out of the last
clipping stage represents the subject polygon clipped against the clipping pyramid.
Here is an example of the algorithm at work

CLIP against (LIP against
TOP plane RIGHT plane
— T —

£

N\

clipping pyramid
subject polygon

CLIP against

BOTTOM, LEFT, {na change}
HITHER, YON

planes

i. Repeating the first vertex as last in the representation of a polygon,
makes consideration of its edges and hence reasoning about the
polugomn, easier. In our impiementation we have avoided this duplication
by remembering the first vertex {see Rppendices 1 R 4}.

17



But how is ¢lipping against a plane performed? The vertices of the subject polygon
are considered In pairs (s,p) in a clockwise traversal around It. For each such pair
0,1 or 2 vertices are output to the next stage depending on the relationship between
the pair (s,p) and the clipping plane. There are four cases to be considered
clipping plape
ins de Inside inside inside

/p
8 T P

)

L=

X represent gutput vertices

The cbvious paraliel implementation of the algorithm is as a 6-stage pipeline, where
G is the number of planes in the clipping pyramid. A stream of vertices will pass
through the pipeline. The input stream represents the subject polygon and the
stream coming out of the i*" stage represents the subject polygon after it has been
clipped against planes 1..i of the clipping pyramid

CLIP. CLIP. CLIP. CLIP. CLIP. CLIP,
—+ FLANT » PLANE [— PLANE — PLANE | PLANE |}—#| PLANE —
LEFT RIGHT TaP BOTTOM HITHER YON

Notice that, as far as the clipping algorithm is concerned, the clipping volume can
be of any convenient shape defined by any number of planes.

A Problem with Concave Polygons
Concave polygons which result in two or more polygons after clipping, will give rise
to an edge which connects Lhe resulting polygons as shown below

e

oifending — 7

edge

inside

The oflending edge could be removed by a modest alteration to the clipping
algorithm as described in {Suth74].

18



3.2. CSP Specificetion

Each stage, CLIP.PLANE_,__ , of the clipper must comply with the foliowing
specification

right(fp (left)

iane

where left and right are the input and output channels of the clipping stage

respectively and [, is defined as

Motana(€3) =0
Tl = O
fotane (€8 P> " rest) = (p> ~ f,((p> * rest).

inside'{plane.s) & inside(plane,p)

¢ intersection''(s.p.plane), p > * }'le(
rinside{plane, s) & inside{plane,p)
¢ intersection{s,p,plane) > ~ fp]ana(<P) ~ res-},
inside{plane,s} R ~“inside{plane.p)
{<p> "~ rest),
~inside(piane,s) B »inside{plane, p)

(p> " rest),

1]

=f

plane

foiane SPecifies recureiveiy the relationship that must hold between the input and the
output vertices of a clipping stage.
Now assuming that each clipping stage satisfies its specification i.e.

Yoi LGN o CLIPLPLANE, oy sat right € Fp oy (left)

1. inside(plane,p) delivers TRUE or FALSE depending on whether
p is on the ”inside” of the clipping plane or not. Its calculation is shown in
appendix 2.
il. intersection(s,p,plane) delivers the coordinates of the point of
intersection of the line segment from s to p with the clipping plane. Its
calculation is shown in appendix 2. '
jii. N is the number of clipping stages. N = 6 in the case of the
clipping pyramid with Hither and Yon planes.

19



we @an deduce the following about their combination in a pipeline (by L1 of section
4.4.4 of [Hoar83|)

> L<= 1 (=N CLIP‘pLﬁNEpIaﬂe(l)
sat
3 55 sy = (right € F ey (55) B

Sy € rplln-(N—l)(sN-Z) £

81 € [y panery{187E)
)

.{A)
assuming CLIP.PLANE is left guarded.
lemms
s¢f{t) & t¢u =3 s f(u)
assuming f(p} ¢ f{p ~ q)
proof
tL¢u = JAvae t~ ~v=zuy Lo (L
{secticn 1,5.5, of [HoarB3})
s § f{t) (given) . {2)
F{LY ¢ it ~ v) (assumption) L (3)
L) ¢ flu) {by {1} & (3)} e (8)
s ¢ {u) {by (2}, (4) and transitivity of )

By the above lemma and noting that [, () < f,...(P ~ q),
(A} can be simplified to

CLIP.PLANE

» 1 ¢=3 (=N plene{i]

sat

right < T ignany i Fpionern-nye - (fpnn.n)“e“”

20



In other words we have proved that if the relationship specified by f .., holds
between the input and the output wvertices of each clipping stage, then the
relationship that holds between the input and the output vertices of the
combination of all the clipping stages in a pipeline is given by the combination of
the f_,,., functions of all the stages. This obviously means that the output vertices
lie on the ®inside” of all the clipping planes, as desired.

This result can be instantiated to the case of the clipping pyramid

P .o e T sortom g vony CETPLPLANE )

sat

right ¢ Fyoy!fyngr{ Toommm (e TRion (Mg 1eft]]

2l



Chapter 4

Hidden Surface Elbmination Algorithm

This chapter describes the Z-buffer Hidden Surface
Elimination (HSE) algorithm and gives Jits CSP
specification.

22



The Z-buffer HSE algorithm has been chosen among the wide variety of HSE
algorithms for the following reasons

i. It ie relatively simple to implement in a language like OCCAM
that does not provide many data structures.

fi. It fits well into cur notion of the pipeline of polygons (see appendix 1}
as it does not require to examine all the polygons at cnce. Instead
polygons are processed individually in the order they come down the
pipeline. There is no explicit depth sorting step required.

The drawback of this algorithm is that It uses a large 2D array
called Depth buffer (Z-buffer) on top of the usual Frame buffer (F-buffer) array
that is used to store the colour of the pixels. The Z-buffer is used to store a depth
value for each pbtel of the screen, so its dirmensions are Yresclution = Xresolution.
The algorithm consists of a Scan Converter and a Buffer Process'
running in parallel

|

SCAKN CONVERTER

!

BUFFER

l to screen

The scan converter receives polygons in "augmented” Physical Device Coordinates
(that include a depth value) and determines the pixels that lie within each pelygon.
In addition to that it calculates the depth of the polygon at each pixel within it by
making use of its plane equation (see Appendix 3) and trasmits
(eolour,x,y depth) quadruplets to the buffer process.
The buffer process receives such quadruplets and for each of them it
takes the following action;

If the value of the Z-buffer at {x,y) is greater than depth,

it updates this value to depth and also updates the (x,y) position of the

F-buffer to colour,

otherwise it does nothing.

i. The name Buffer might be misleading here. It is not a buffer in the
CSP sense but a process that controls the Z and F buffers {which ire just
2D matrices).

23



This in effect means that if the previous polygon that included pixel (x,y) was
further away than the <urrent one at this pixel, then the current one hides the
previous ope at {X,y) and pixel (x,y) must tzke its colour.

Before processing 2 new frame, the Z-buffer is initialised to the

maximum representable depth value and the F-buffer to the background colour.

The %an Converter

Firset of all we have had to implement in OCCAM certain data structures

along with specialised operations on them to suppart the scan conversion algorithm.
These were a bucket organised Edge Table {ET) and an Active Edge Table (AET)
organsed as a list. The ET has one bucket for each ecanline, confaining
information about the edges whose minimum y coordinate corresponde to that
scanliie, The AET contains information about the edges that the current scanline
intersects, The implementation of these data structures is described in Appendix 3.
The scan conversion algorithm is an extension of the one described in

[Folef?; it also estimates the depth of the relevant polygon at each pixel scan
converted. Here is its description

For each polugen

w0etermine the plane equaticn coefficients a,b.c and d
wClear the ET and AET data structures

wlonstruct the ET for the polygon's edges

wlel Y be the index of the first ncn-empty ET bucket

wHhije (AET = empty) DR {Y ¢ index of last non-empty ET bucket}
mwbove ET bucket Y into the AET maintaining AET sorted on x
mxfor each pair of edges el,e2 in the AET
mulet ¥1, X2 be the x intersections of el znd e2 wilh scanline Y
muCompute the cdepth 2 of the polygon’s piane at X1, ¥
(2 = -{(d + axX! + b=mY} / ¢)
walompute the depth increment Z = -2/ ¢
weFor X := X1 to X2
mxumSend {pplygon colour.X.Y.Z2> to the buffer process
wmmn? = 2 v T
mmlpdate the AET by removing those edges whose y,. s equal
ta ¥ and computing the x intercept of the remaining AET edges
with scanline Y + |
mnbibblescrt the AET, in cese it became out of order by the update
==Y = Y + 1

24



Before specifying the function of the Z-buffer HSE algorithm
in CSP, we must define two auxilliary functions

KM returns a constant matrix of the value given to it as argument. The
size of the matrix is equal to the resolution of the screen

KM : VAL — MATRIX

KM (v) = [v] ) semsabatiom. 521 Yemsolubion

UPDATE updates a location of a2 matrix. The matrix to be updated,
the location concerned and the new value are arguments of UPDATE

UPDATE : MATRIX x VAL x VAL x YAL — MATRIX
UPDATE {M,x,y,v) = M e {{x,y> » v}

The scan converter process imputs polygons on channel b and outputs the pixels
within each polygon along with their associated colour and depth on channel ¢ A
special kind of polygon, NEXT.FRAME.POLY, separates the polygons of one
frame from those of the next {see Appendix 1)

a(SCAN. CONVERTER) = {b,c}

SCAN.CONVERTER = b 7 pelygon
{ {c ! NEXT.FRAME.PIXEL —
SCAN, CONVERTER
)
4 palygon = HEXT,FRAME,POLY %
{Far each pixel (x,y) inside polygon
{e | calour(polygen) —_
cl x -
c!ly —
e | depth{polygon. x.y)
}
)
SCAN. CONVERTER
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The buffer process, which is only called so because of the usual name of this HSE
algorithm, receives pixels aleng with their asscciated colour and depth values from
the SCAN.CONVERTER on channel ¢ A special kind of pixel,
NEXT.FRAME.PIXEL, eignale the start of a new frame. Upon receipt of this
pixel the buffer process sends the F-buffer to the screen in order to be displayed
and re-initialises the Z and F buffers

a{BUFFER) = {c,screen)

BUFFER“— =c 7 colour —
{ (screen | F —
BUFFLRKH{MX.EWI. KH{BACX CROLNT COLCUR )

)

4 colour = NEXT.FRAMC,PIXEL ¥
[c 7 x -
c 7y —

c 7 depth —
{ EUFFER‘.FWTE(I.K.g,d:pLh), WPORTE{F, .y, e0 laur)

4 2ix,y) > depth }
BUFFER_,

}
)
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The parallel combination of the SCAN.CONVERTER and the BUFFER s our
HSE algorithm

ZHSE = (SCAN. CONVERTER | BUFFERy my oepmiey . kcancx crouno_cooery ) 2

Since the most complicated and time consuming part of the algorithm is the scan
conversion, we could have many scan converters running in parallel by distributing

!

SCAN, CONVERTER

the polygons amongst them (see section 6.3.3.)

)

SCAN. CONVERTER

PAR. BUFF

J’ to screen
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We then need 2 buffer process, PAR.BUFF, that ig capable of dealing with all the
pcan converteras. [t only sends the F-bulfer to the screen if it has received a

NEXT.FRAME.PIXEL from all the scan converters. It uses a set, 5, to keep track
of those scan converters (SCC) that have sent a NEXT.FRAME.PIXEL

a{PAR.BUFF) = {screen} u {c, | i:1..uSCC}

PAR.BUFF, ¢ s = | 45 ( ¢, 7 colour —
( { (screen ! F —
)PHP.. BUFF gy ot EPTH) . K4 (BACK, GROUND, CTLOUR} 1. wSCE
€5-{iY=¢%
PAR. BUFFI,F_S-{: }
)
4 colour = NEXT.FRAME.PIXEL ¥
(c, ? » -
c, ?y -
c, 7 depth —
{ PAR. BUFF ppate(z, x, y. depthd . PORTELF, =y, colour). §

4 2(x.y) > depth ¥
PAR. BUFFI_F.S
)

)
)

PARBUFF can be combined with the scan converters as follows

PAR.ZHSE = ((Il .., ece {c, > (b, 5> (SCAN.CONVERTER))}) ||
PQR'BUFFKH(MX.DEPTH], K#{BAOX, GROLND, COLOLR) . 1. .msez ) L€ !i:1..=8CC}

a{PRR. 2HSE) = {screen} u {b, | i:1..a5CC}
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Performance of the Graphics Pipeline : The Bottleneck

Two different models are used ¢$o compare the
performance of the stages of the graphics pipeline. The
first is based oo am extension of a performance evajuation
of ten Hidder Surface Elimination (HSE) algorithms by
Sutheriand et al {SuSp74]. The second is bzsed on code
timing {igures derived from our OCCAM implementation
of the pipeline using the INMOS Transputer Estimator.
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5.1. Graphics Pipeline Performance (1)

In this sectlon we compare the performance of the stages
of the @graphics plpeline based on the excellent
performance evaluation of ten HSE algorithms by
Sutherland et al [SuSp74].

[5:8p74] compare the ten HSE algorithms as follows. The operations that each
algorithm has to perform (like sorting, searching, intersection calculations etc) are
identilied and assigned a complexity factor, Cf.,- depending on a crude relative
egtimite of their time complexity. A complexity factor of 1 is assigned to very
simple operatione (like solving a plane equation), 10 to more costly operations (like
compiting the relationship between two segments in 2D) and 100 to very expensive
operations (like computing the intersection between an edge and an object in 3D).

The number of times an algorithm has to perform each operatien,
o B expressed in terms of "Environment Statistics® (llke the total number of
dpges fn the environment, the number of relevant faces (after clipping), the
resolution of the screen etc). The performance of each algorithm is then estimated
ap

n
e

elgorithm performance = I Mgy ® Cf g,

The tn algorithme are compared in three environments of different complexity by
varying the values of the Environment Statistics,

We shall estimate the performance of the clipping and
coordirate transformation stages in terms of the same Environment Statistics that
[BuSp74) used to evaluate the ten HSE algorithms.
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The Sutherland Bodgman polygon clipping algorithm is described in Chapter 3. In
our Implementatiom we have structured it as a six stage plpeline, each stage
clipping against ome of the six clipping planes (see section 3.1.). A clipping stage
considers the edges of each polygon (which are defined in terms of pairs of verticea
(s, p)) and for each such edge it does the following

in_s := inside{plane.s} ——~determine which side of the
in_p := inside{piane,p) ~~clipping plane s K p lie on
case
in_s R in_p : output p to next stage
“in_s R in_p : {i := intersection(s.p.plane)
output i to next stage
output p to next stage
}
in_s & »in_p : {i := intersection(s,p,plane}
output i to next stage
}
otherwise : donothing
endcase

The above code fragment is executed once for each edge in the environment. E, of
[SuSp74] is the environment statistic that stands for the total number of edges in
the environment (before clipping). Since the first clipping stage will consider all the
edges in the environment, E, is the number of times the code fragment will be
executed. Each execution requires 2 “inside® calculations and possibly one
"intersection” calculation. Since these are both simple, each execution is aseigned a
complexity factor of 10. It therefore takes 6 = 10 units of time for the first vertex
to pass through the 6-stage plpeline (if it isn't clipped out) and then the restof the
vertices are processed in E, w 10 units of time. The time performance of the
clipping algorithm (i.e. the time It takes to process all the edges) is

Ex 10 + E =10 OR
E, =10 units of time since E, is likely to be large
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6.1.2. Performance of Coordinate Transformations

Coordinate transformations involve some arithmetic operations for each vertex
hence a complexity factor of 10. The number of vertices in the environment iz the
same as the number of edges. However, the number of vertices that reach the
perspective transformation stage is likely to be smaller than the original number of
vertices, E,, since some vertices will be filtered out by the clipper. [SuSp74] provide
another statistic, B, (relevant number of edges) which stands for the number of
edges (vertices) that survive the clipper. The performances of the viewing and
perspective transformations are therefore

Vienwing . E, = 10 units of time
Perspective : E = 10 units of time

since the viewing and perspective transformations are performed before and after
clipping respectively.

5.1.3. The Bottleneck
We shall compare the performance of clipping and the two coordinate
transformations against the performance of the HSE algorithms in each of the three
environments.

The values of E, and E_ for each of the three environments are [SuSp74]

Environment ‘ E, [ E,
A 800 400
B 20K 10K
C 480K 240K

K = 107

Here is how the performances of the HSE algorithms, borrowed from [SuSp74] table
7, compare with those of clipping and the twe coordinate transformations (we only
show the best and worst HSE algorithm performance for each environment)

Envirecnment Ferspective

HSE (best) I HSE (morst) l Clipping | Viewing

Transf. Transf.
al 140K 2.4B BK aK 4K
B 1.4M B2B 200K 200K 100K
C 7.5M 15008 4, 8™ 4. BM 2.4M

K = |03
M o= 106
B = 109

Althoush the comparison is crude, it is evident that HSE is the bottleneck.
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5.2. Graphics Pipreline Performance (2)

In this section we shall estimate the Prate of flow® of
polygons through each of the stages of our OCCAM
implemen€ation of the graphics pipeline ip order to verify
the bottleneck and derive more accurate figures for our
implemen #ation.

The time taken by each stage of the pipeline to process a certain environment is
estimated using the INMOS Transputer Estimator. This is a atatic estimator ie. it
does not consider the execution of the program. As a result we encountered
difficulties with the following constructs

i. WHILE loops
(the estirnator considers a single execution of the loop)

il. IF statements
(the estimator considers the most expensive alternative)

The first problern was solved by estimating the number of times

a loop is executed in terms of environment parameters like the number of pdygons,
the resolution of the screen etc and multiplying that by the cost of a single
execution of the loop.

The solution to the second problem would involve estimating

the probabilities for each path of an IF statement, multiplying them by the cost of
the path and summing up the products. The complexity of the solution coupled
with the obgervation that most IF statements in our code are qulte evenly bzlanced,
led us to ignore this problem.

The following estmation of the timing of the stages of the

graphics pipeline assumes knowledge of the algorithma involved and their
implementation, details of which are given in chapters 3 & 4 and appendix 3.
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The environment parameters we need in order to estimate the

number of loop executions are the following

l.Vertical screen resolution............ NN
2.Horizontal screen resclution.................
2

2 Depth complexity.....ooveieiinirninnnnns
4. Total number of polugons.....vviiinenarnnnnns
5. Number of relevant polygorms..................
B. Rverage polygon width im pixels. ..,.........

7.Average polygon height in pixels
[or scamlimes)........ccuvuuns

B.Average number of edges per polygon..........

9.Average number aof edges per bucket
in final Edge Table...........

10.Average number of edges per bucket
in Edge Table being constructed...........

lI.Average number of edges in the
Active Edge Table.............
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http:Table....�..�
http:polygon....�..��
http:�.......�...�
http:pixels...........�

Let’s assume that our environment contains 1024 four-sided polygons (P,=1024,
E=4) and that half of them are clipped out' (P _=512). Let's also say that our
screen’s resolution is 500 x 500 {Yres=500, Xres=500) and that we have a depth
complexity of 1 {Dc=1). Depth complexity is the average number of polygons that
cover a pixel or, equivalently, the average number of times that a pixel Is output
from the scan converter.
Then the average number of pixels covered by a polygon is
(Yres w Xres x Dc) / P_ and therefore
W = H = J[Yres = Xres w D) /P
assuming no particular shape for a polygon.
Now since the edges of cnly one polygon occupy the Edge Table (ET) at a
time, E,.,=E/H, as we cnly consider the ET buckets that correspond to scanlines
that our polygon intersects (there are H of them). E_ denctes the number of
edges per ET bucket once the ET has been constructed. This is different from the
average number of edges per ET bucket while the ET is being constructed, E,, ..
Before inserting the first edge intc the ET, the average number of edges per
relevant ET bucket s 0, before the second edge it is 1/H, before the third it is
2/H and before the fourth it is 3/H ({maintaining our assumption that E=4).
Therelore
E,=0+1H +2/H+3/H)/4

=3/ (H=2)
E,... the average number of edges in the Active Edge Table (AET)
{or the average number of polygon edges that a scanline intersecis,provided it
intersects some), can be made equal to 2 if we assume that the majerity of
polygons used for building pictures are convex

7
Y

P
4
LY
5
AY

Va

—

—
N
d

scanlines

1. The assumption that hal{ of the polygons are clipped out is borrowed
from |SuSp74].
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Here are the environment parameter values that result from our
instantiation

Yres= 500

Xres= 500

fc =1

P, = 1024

P’ =512

W =/ (Yres w Xres w Oc) / P =/ (500 » 500 = 1} / 512 = 22
H =H =22

E =4
En=E/H=4/722=.1B
EL=3/ {(H»2) =.07
E =2

B

We shall next use these parameters to estimate the number of transputer cycles,
hence the amount of time, that each of the stages of the pipeline would take to
process our environment (called the stage's timing). In what follows multiplications
arise from loops. The cost of the loop (in transputer cycles) given by the
Transputer Estimator is multiplied by the estimate of the number of times the loop
will be executed (which is expressed in terms of the environment parameters); both
figures are given on the program listing in appendix 4.

6.2.1. Viewing Transformation Timing
The viewing transformation’s timing can be expressed as

T, =P, % (138 + E x 399)

= 1.BM transputer cycles
which would take .09 sec on [NMOS T424-20 [INTRB4].

5.2.2. Perspective Transformation Timing
Its timing is

Te =P = (138 + E x 439)
= IM transputer cycles

which would take .05 sec on T424-20,

Note that since the perspective transformation is performed after clipping, the
expression used for the number of polygons is P_.
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5.2.3. Clip Timing
As we are only interested in the rate of flow through the clipping pipeline, we
should consider the timing of the [irst clipping stage which deals with the most
complex environment. The timing of this stage is

Tl: = F"_ x (1213 + (E-!) w 979)
= 4.Z2M transputer cycles
which would take .21 see ap T424-20.

6.2.4. HSE Timing

Belore determining the timing of the scan converter, which is the main routine of
our QCCAM implementation of the Z-buffer algorithm, we estimated the amount of
time taken by each of the auxilliary procedures it uses by means of procedure calls

CLEAR takes 13686 transputer cycles {ic)

T =

=8
INSERT. ET.EDGE «o T =192 « 307 4 (B, / 2)=48 = 501 te
MOVE.ET.BUCKET . TO.RET T =36+ Earx185 = 71 tc
UPDATE. AET ©o T =34+ ELx103 = 240 tc
BUBBLESORT! .o Tgy =505 te
UPDATE.MIN.MAX . ET.BUCKET .. Ty = 34 tc

The cost of the scan converter is then given by
Tee =P % (1034 + Tg + (E - 2) w {139+ T+ T + 2 % Ty + 2w Ty +
+Hw (44 + Tp + E % (414 + H w 152) + T« T)}

= 103M transputer cycles
which would take 5.2 sec on T424-20.

So, for our particular environment instantiation, the rate of flow through the HSE
stage is Ty / T, = 25 times smaller than the next smallest rate of flow among the
other stages of the pipeline.

i. The WEILE loops of BUBBLESORT are likely to be executed ocnce only
since the AET will rarely be out of order.
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Chapter 8

Alleviating the Bottleneck by a Splitter Tree

This chapter describes the Splitter Tree approach [Park80]
to alleviating the bottleneck of the graphics pipelize
imposed by HSE. A CSP specification is given and the
optimal depth of the Splitter Tree is estimated.
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8.1. The Spiitter Tree

The performance of the bottleneck HSE stage of the graphics pipeline can be
Improved by splitting up the polygon stream coming down the pipeline into several
gubstreams using 2 splitter tree [ParkB0| before the HSE stage. A number of HSE
processes can then process separate data in parallel

Split about Clipping pyramid
plane A \\(seen from apex),’
\; ~ 4
A e
Split about Split about S //
plane B plane B - plane B
’ N
/ \ v N
- N
s Y
. N
plane A '

Each node of the splitter tree is5 not much more than a clipper of the
Sutherland-Hodgman type |Suth74), except that instead of discarding the polygons
or parts of polygons that lie on the “outside® of the splitting plane, it uses the
splitting plane to separate those polygons that lie on one side of it from those that
lle on the other.

To achieve 2™-way splitting, so that 2" HSE processcrs

can run in parallel, we need 2"-1 splitter nodes arranged in 2 binary tree of depth
n. For example to achieve §way splitting we need 2°-1 = 7 aplitter nodes arranged
in 3 levels.

Since the splitting algorithm is a small maodification of the clipping one,

the rate of {low through splitter nodes should be much the same as the rate of
flow through clipper stages (see sections 5.2.3. and 6.4.) and therefore the splitter
tree should not impose any timing overhead (apart from an initial delay of the
polygon stream by an amount of time proportionai to the number of splitter tree
levels).

Assumptions
The following conditions must hold if the eplitter tree is to achieve its purpose
i. The polygons {or whatever our primitive objects) must be
evenly distributed about the splitting planes.
ii. A new bottleneck must not be created when the cutputs of the HSE
processes are put back together in order to be displayed (see diagram
of section €.3.3.).
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6.2. The Splitter Node

6.2.1. Deacription

A splitter node splits its input stream (which consists of polygon vertices) into two
outpul streams; the decision as to which outpul stream a vertex goes to depending
on which side of the node's splitting plane the vertex lies in

j

SPLIT

plane

« W
out] out2
A Splitter Node

Several splitter nodes connected together in a binary tree fashion, constitute a
splitter tree. Here is how each splitter node works. The vertices of the subject
polygen are considered in pairs (s,p) in 2 clockwise traversal around the polygon,
just ae for clipping. There are 6 cases to be considered

splitting plane

sidel | side?

&

/ N\ T T

8 P

x represent output vertices te channei outl
O represent output vertices to channel cut?
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6.2.2. CSP specification
Each splitter node mmust satisfy

outl € f1 0 (i) a
out? ¢ szl“ {in)

where
plun- ((>)
! - (<p>) =
T i ($S.P " rest) = <p> % !l (€EY ° rest),
(vside2'{plane.s) B sidel'(plare.p)
v onplane''{plane, p))
= (intersecticn{s, p,plane), p> * flp,an_(: “ rest),
sideZ{plane. s) & sidel(plane,p}
= Cintersection(s,p,plane)> ~ f! ael<P> " rest),
sidel(plane.s} & s:deZp(p lane. 5}
= plw((p) - rest),
TRUE
and
pllnI ((>)
pllﬂc ((P))
2 slane {({s.p> " rest} = <p> " fzpl.n_(<p) - rest),
(vsidel(plene,s) B sideZ(plane p)
v onplane{plane.p})
= {intersection(s,p.plane}, p> fzplm_(; " rest}.
sidel{plane.s) & sideZ(plane.f)
= {intersection{s,p,plane)> = f'zpjm(qb) "~ rest},
sideZ{plane,s) R sidel{piane, f}
= pllnl(<P) " rest),
TRUE
fl, e and £ plana TecUreively specify the relationship that must hold between the

input and each of the two autputs of a splitter node.

i. sidel(planes) is a function identical to the function
inside(plane,s) of clipping; but in splitting both sides of the splitting pline are
treated equally and the name of this function is supposed to signify that.
sidel delivers false if & is on the splitting plane. side2 is a similar function
for the other side of the splitting plane.
ii. onplane(plane,p) is a function which tests if a point p is on the
splitting plane by checking il p satisfies the splitting plane equation.
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8.3. Combining the Splitter Tree with the Clipping pipeline

6.3.1. Description
Let’s instantiate our splitter tree by assuming that it consiste of only one level
which splita about the pla\me X=0

.4 /s
~ *"a -
~ s
N 4
S| A%
~. e Y
g » €
~
// N
’ ~
Vs ~
// \ N
. plane X=) N

Clipping Pyramid (apex vied)

Thete are two possible ways of combining our one level splitter tree with the
clipping pipeline; either we gplit and then clip or we clip and then split

!

CLIP gy
) )
SPLIT,, CLIPg
CLIP e || CL1Paon CLIPgp

M ) L

CLIPg || CLIP CLIPggrron

L ¥ i

CLIPovvan| | CL1Pgorron CLIPy s
v 1 1
CLIPyner| | CLIPiynen CLIP g,
_ 4 2 v
CLIPyg | CLIP,, SPLIT,.,

i) ¥ ¥ pN

SPLITTER/CLIPPER CLIPPER/SPLITTER
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At first the SPLIT'TER/CLIPPER seems faster; each poiygon has to pass through
only six stages compared to seven in the case of the CLIPPER/SPLITTER.
However the CLIPPER/SPLITTER is preferable for two reasons

i. It uses Fewer clipping processes; in this case six
compared to ten of the SPLITTER/CLIPPER.

ii. The SPLYTTER/CLIPPER is not really much faster. The

rate at which the SPLITTER/CLIPPER processes pclygois is
determined by the speed of its splitter which deals with the most
complex environment. Both designs process polygons at about the same
rate; the only difference being that the SPLITTER/CLIPPER autputs
its first polygon earlier by the amount of time it takes to clip one
polygor, against a plane. And this is insignificant if the polygon stream
is long.
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8.3.2, CSP Specification
Our cdipping pipeline can be modelled by the CSP process

CLIP.PIPE = CLIP g »CLIPG o D CLIP D CL I CLIP, e CLIP g,
a(CLIP.PIFE) = {left,right}

(see eection 3.2.).
The one level splitter tree can be modelled by the process

SPLIT,TREE = SPLIT,_,

a(SPLIT.TREE} = {in. outl. out2}
We shall now combine them in a CLIPPER/SPLITTER fashion by renaming the

right channel of CLIP.PIPE to in and then hiding it as it iz an internal
commumication channel between the two processes

CLIP/SPLIT = “Eﬂ CLIR.PIPE || SPLIT.TREE) \ {in)

a{CLIP/SPLIT) = {ieft, outl, ocutZ}

From tection 3.2. we know that

CLIP.PIPE sat right ¢ fpp{left)

where fop = Fyoeefunest Feoronel e Trien et
Therefore

inn-?ltELIF‘.PIF’E sat in { fgplleft)
Also, from section 6.2.2. we know that

SPLIT. TREE
sat

outl ¢ fly(in} =
out? ¢ £ _,{in)

It must therefore be the case that
i P, . {
e (lnrthL PIPE || SPLIT.TREE} \ {in}

outl § £ (faplleft))
out2 § £ p{f plleft))

since jnis the only common channel of i%igh-)t CLIP.PIPE and SPLIT.TREE.
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Here is how our pipeline looks after the introduction of the splitter tree.

tree of depth 1 is shown

lwc

Viewing
Transformation

EC

CLIP

SPLIT

NV AW

Perspective Ferspective
Transformation Transformation

sC SC
HSE HSE
Szan Scan

Converter Converter

| L

Frame B Depth Buffers

This corresponds exactly to the structure of our QCCAM program.

A splitter



6.4. Optimal Depth of the Splitter Tree
In order to determine the optimal depth of the splitter tree we shall extend the
second model we used to compare the stages of the graphice pipeline (see eection
5.2.). First of all we give the relationship between the environment parameters
before and after a split. Since the environment is divided into two equal halves by
a epll, the area of the screen corresponding to each half of the object space (Yres
® Xres) and the number of relevant polygons (P ) reduce by half (assuming that
the majority of the polygons are not cut by the splitting plane). The rest of the
environment parameters are not affected by a split.

Here is how the environment parameters after a split (shown primed)
relate to the ones before the split

Yres*

Yres / % where 1{¥{2

fres = (Xres » ¥} / 2
{so that Yres % Xres = 2 x (Yres® = Xres“))

be™ = De

Pr=P /2

W= J(Yres™ w Xres™ = 0c™)/P.~ = J{{{Yres u Xres)/Z) w Dc} 7 (P72} =
WY = M similarly

i*=E

fu = EY/H =E/ H=

£, =3/ (H‘nZ}-E!/ W2 =

Fant” = Euat

Note that P,, the number of polygons before clipping, is irrelevant since splitting is
performed after clipping.

To estimate the optimal depth of the splitter tree we reason as follows.
For each new layer we add to the splitter tree, the number of its leaves (the HSE
procesors) I8 doubled (assuming 2 binary eplitter tree). Hence the rate of flow
through the HSE layer is also doubled since the environment is evenly distributed
about the splitting planes.

46



What’s the limit to how fast we can make the pipeline as a whole? The nte of
flow through a pipeline is only as large as the smallest rate of flow over all Ita
gtages. Hence we should only increase the depth of the splitter tree until the rate
of flow through the HSE layer is equal to the smallest rate of flow over :ll the
other stages. We must consider therefore the rate of flow through the
transformation stages, clipping and the root node of the splitter tree which deals
with the most complex environment. We have derived timings (the time taken to
process our environment ie. the inverse of the rate of flow) for the viewing and
perspective transformations as well as for clipping (T, T, and T} in sectin 5.2.
The timing for the first splitting node is

Tep = P o (1430 + (E-1) = 1131)
= 2.5M transputer cycles
which would take .12 sec on T424-20.

Now max{T,,T, T, Tg) = T.. Hence clipping has the smallest rate of flow cver all
the stages of our pipeline except HSE. The following graph shows the relationship
between the depth of the splitter tree and the timings of HSE (Ty) and clip {T¢}.

(2

)

Th24-20
U

(inverse of rate of flow
hat

depth of spllitter tree

Time to procesa environment (sec) on

Our splitter tree should therefore be of depth 5. This means 3Zway splitting
requiring 32 HSE processora.
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6.5.1s the Traneputer Link Data Rate Adequate ?

As in any system of parallel processors, we must ensure that the amount
of information that must be communicated between the processors can be handied
by the communication linke.

Let’s assume that each of our processes is running on a separate transputer,
using on-chip memory only and that we are processing an environment of the
complexity described In section 5.2. The restriction on the rate of flow of polygons
through our pipeline imposed by the processing apeed of the stages iz about 5000
(pre clipping) polygons / sec (implied in section 6.4). Does the available link data
rate allow this rate of flow or does it impose a stricter limit 7

The highest communication rate is likely to be required either on the link

going into the first stage of the clipper or on the links coming out of each of the
HSE Scan converters (see figure of pection €.3.3). This iz because the clipper is
likely to reduce the number of poiygons going down the pipeline, hence the amount
of information that has to be communicated, but the amount of information is
increised again by the HSE Scan Converters which convert the polygon descriptions
into pixels. One might ask : And how will the massive pixel outputs of all the 32
HSE Scan Converter processes be put back together in order to be displayed 7 The
answer offered by today’s technology is Time Multiplexed Video Mixing of the
video outputs of the Frame Buffers (which are Dual Ported Video RAMs). In
other worde the image is put back together in video, the very last step before
being diaplayed. Of course the Frame Buffers must have some intelligence in order
to deal with the pixel descriptions they receive from the HSE Scan Converters as
dictated by the Zbuffer algorithm. A microprocessor and the Depth and Frame
buffers would probably be placed where BUFFER is shown below

BSE HSE
BUFFER [BUFFER

VIDLO MIX

timer

BCreeqn



Let's estimate the data rate required on the two links mentioned above

A. Clipper Input Link.
We have assumed that each polygon has an average of 4 vertices (E = 4),
each described by 3 coordinates occupying a total of 48 bytes {assumirg that
each coordinate is a 4 byte integer). In addition each polygon has 1 byte to
describe its colour and 1 control byte, making a total of 50 bytes / polygon.
At 5000 polygons [ sec, the required data rate is 250 Kbytes / sec.

B. HSE Scan Converter Outpul Link.

Maintaining ©ur assumption that the clipper halves the number of peygons
(see section 5.2), the 32 HSE Scan Converter processes have 2500 polygons /
sec to deal with or about B0 polygons [ sec each, since we have assumed an
even distribution of polygons about the splitting planes. With an average
polygon area of 484 pixels (W = H = 22 pixels, section 5.2}, each HSE Scan
Converter has to output about 40,000 pixel descriptions / sec. Each pixel
description consists of the x and y screen cocrdinates of the pixel occupying 2
bytes each, the depth of the relevant polygon occupying 2 bytes' and the
colour of the polygon occupying 1 byte; that makes 7 bytes [ pixel
deacription. A data rate of 280 Kbytes / sec is thus required. (With
appropriate coding we can avold the transmission of redundant information.
The colour value need only be tranamitted once per polygon for example. We
could ugse data reduction if the data rate of this link was inadequate; the extra
computation needed should be taken intc account in the timing estimate for
the HSE Scan Converter).

i. HSE takes place in image space (after the Perspective Transformation

has been performed). It therefore uses either Physical Device Coordinites or
Nermalised Drevice Coordinates (which will be transformed intc the Physical
Device Coordinate systems of several devices). The useful range o such
coordinates is limited by the resolution of the screen and 2 bytes [ coerdinate
is more than enough to address even the highest resolution acreemz. The
accuracy of the gz-coordinate is also assumed to be reduced to 2 bytes by the
(depth preserving) Perspective Transformatior in order to decrease the size of
the Z-buffer.
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The factors that can limit a link’s data rate are

I. Transmission Time (1.1 psec / {byte + control bits))
2. Scheduling Overhead (6 cycles / communication)

3. Memory Contention between Links / Processor

4. Rendezvous delay

The average time taken by a communication is given by the estimator as
26 cyles, allowing a maximum data rate of about 770 Kbytes / sec for a 50 nsec
cycle (taking into accouut the worst case of single byte communications). This
estimate takes into account limiting factors 1. and 2. and the maximum data rate
it albws would be sufficient for our purpeses if those were the only limiting
factors.

Memory Contention between links and processor is irrelevant if we
anly have one process / transputer as either the process is executing and all the
memory cycles are available to it, or the process has been descheduled in order for
a communication to take place in which case the link concerned has all the memory
cycles available to it'.

If ene of the two processes taking part in a communication arrives late

at the Rendegvous then the communication takes more than 26 cycles for the
process that arrived first. However the slowest stages of our pipeline (HSE and
CLIP) are balanced and the (fast) stages between them essentially act as buffers.
It ia therefore likely that the slow stages will make the fast stages wait for them at
the Rendezvous with the effect of lengthening their communication time (so that the
faster stages will run at the pace of the slowest ones) and there should be no
overall delay.

From the above discussion we can conclude that the estimator’s 26 cycle
commimication time takes into account the effective factors that limit the data rate
and therefore the available link data rate should be sufficient to handle the
communication between the stages of our pipeline under the assumptions we made.
Furthermore it seems that there is scope for optimising our code in order to
increass its processing capability and take advantage of the spare link data rate.

i. If we put more than one process per transputer - for example several
clipping stages per transpuler, excluding the "bottieneck” first clipping stage of
course - then memory contention between links and processor must be taken
intc account before deciding on the aliocation of processes to transputers. One
can start at the fact that if all links are working flat out, they request 1
memory cycle every 325 nsec. This corresponds to 15 % of the total number of
memory cycles for a cycle time of 50 nsec. In other words there will be a
memory conteation for 15 % of the memory references made by the processor.
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Chapter T

Conclusions and Purther Work

Prom Operation Specifications to Algorithm Specifications

We galned a clear idea of the clipping and hidden surface elimination
operations by specifying them in Z in chapter 2.

We then proceeded to specily algorithms which would implement
the above operations in CSP (chapters 3 & 4) and finally we coded these
algorithms in OCCAM.

Since Z and CSP are formal apecification notations, we could formally
relate the apecifications of the operations to the specifications of the algoritims by
the rules of data reflnement, but this was outside the scope ard tlme limita of this
project.

Even Distribution of Object Space Primitives

It = an essential assumption of the splitter tree that the polygons (or other
primitives) are evenly distributed about the splitting planes, else some of the HSE
processors will be idle.

Instead of assigning a contiguoua area of object space to each HSE procesor
we could asslgn to it arbitrary non contigucus areas by appropriate splitting. The
workload iz then likely to be more evenly spread among the HSE processom. But
would the extra splitting that this implies as well as the cost of reconstructihg the
image at the other end be cost-effective ?

Real Time ?

From the graph of section 64. it is evident that we could not hope to achieve a
rate of flow through our current pipeline of more than one frame jof the
complexity described in chapter 5) per .2 seconds since that is the value of the
clipplng overhead T.. For ocur particular environment therefore, we have not
achieved real time performance ie. a rate of flow of at least 25 frames per
second. Qur bottleneck has moved further up the pipeline to the firat stage of the
clipper. If we want to further improve our timing we have to divide the dipper’s
task. One possibility would be to divide our 3D polygon data base amongst several
pipelines like the one introduced in this project.
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Tramputer Implementation

In order to decide how to allocate the processes that constitute the stages of the
pipeline amongst transputers we must take into account their speed and code size.
Here are some hints (refer to diagram of section 6.3.3.). For a system with a
splitter tree of optimal depth, we expect that the rate of flow through the HSE
layer will be equal to that through the first clipping stage and that these will be
the slages with the smallest rate of flow of our pipeline (see chapter 6). Hence
each HSE stage as well as the first clipping stage should reside on their own
tranaputers to avoid any timing penalty. The pair of perspective transformation
proceses that emerge fram each leaf of the splitter tree could be incorporated in
the trangputer of the splitter tree leal since the leaf eplitting node will be dealing
with an environment that is much simpler than the original (16 times simpler for a
splitter tree of depth 5).
W: should also consider the possibility of a tertiary spliitting

tree s that all the channels of a transputer are utilised by a splitter tree node.
This implies that each splitter tree node performs 3-way splitting about 2 planes.
The 1ot node should remain a binary splitting node to avoid any timing penalty.

Suitability of OCCAM

Its feitures were handy in expressing the parallel combination of our algorithms
and the non-determinism involved in the "buffer” process of the HSE which has no
means of knowing which scan converter process to expect the next input from (see
diagram of section 6.3.3 and OCCAM code in appendix 4).

However OCCAM’s lack of data structures meant thal we have
had to implement buckets and lists using LD arrays (see appendix 3).

The use of real numbers has been avoided for two reasons

i. speed
fi. unavailability

Scaling has been used instead.
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Appeadix 1

Pictwre Format

This appendix describes the syntax ueed in our OCCAM Implementation to define
picturss In terms of polygons.

Each static picture, called frame, consiats of a set of objects

described In terms of polygons. All polygons go through the same plpeline, 80 a
way of separating thelr coordinates ls needed; for this reason the spechal value
NEXT.POLYGON is inserted between the coordinates of pucceasive polygons

<polygond ::= {calourd> {, (x>, {y>, (223"
{framed ::= {polygon> {,NEXT.POLYGON, {poiygon>}"

Notice that a pelygon can be empty (ie. consist of a colour only), or consbst of
only one or two vertices. Such edgy forms of pelygon can result from extreme
cases In the splitter process or incorrect input and are eventually discarded.

A sequence of frames can be used for animatlon. A movle is

a sequence of frames separated by the speclal value NEXT.FRAME

<movied ::= {(framed { NEXT.FRAME, <framed}" END

The special values are used to reset the approprlate data structures before
procesing the next frame/polygon. For example the scan converter process uses
NEXTPOLYGON as a signal to clear the Edge Table and the Active Edge Table
before procesalng the next pelygon. The NEXT.FRAME value can be used by the
display controller to clear the screen.

54



Geometrical Cealeulations used in Clipping

A.2.1, Determining whether a Point is on the "Inside” of a Plane

From chapter 1 we know that we can determine whether 2 point is on the "izside”
of a clipping plane by comparing the appropriate ccordinate of the point with w (=
¢, = (s/d)) which can be calculated as soon as the eye coordinates of a point are
known. In our OCCAM implementation w is calculated once and for all i the
viewing translormation stage and kept as the fourth ¢omponent of the coordnates
of a point [X,,¥Z.W]

For the hither and yon clipping planes we don’t need to compare against w as
these planes are perpendicular to the Z, axis. Here is a2 summary of the conditions
that a point must satisfy in order to be on the "inside” of each of the six clipping
planes

P(x, Yy 20}
Is Inside 1f
LEFT o P M
RIGHT S
TCP Y, ¢ W
BOTTOM U, » W
HITHER zZ, 7 K, z, = k, is the hither clipping plane
YON z, €& ¥ z, = k, is the yon clipping plane
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A.2.2. Cgleulating the Intersection of a Lire Segment and a Plane

This only need be calculated if the line segment actually crosses the plane. The
method used is the one suggested in [Suth74). Consider the top clipping plane and
a pair of points P (x,,y,,2,) and P,(x,y;2,) on either side of it

Let o be the ratio |P\Il / [P,P,] . Then the cocrdinates of I can be computed as

— —
T=F

— —
«alP, - F)
- Po— —
by noting that P\l = ofP, - P,).
In order to estimate the ratic o for the top clipping
plare, we need a measure of the distance of P, and P, from that plans, [y - w) is

a suitable measure. Since this has opposite sign for P, and P,, the ratio a is given
by

e = (y - W)/ {{y - w)- gy - W)

a can be calculated similarly for the other clipping planes. In the case of the hither
and yon planes, the calculation of a is simpler since the difference betwesn the
z-coordinates of P, and P, and the value of 2 at the plane can be used as the
distance measure,
a can take values between 0 and 1 but in order to aveid the
use of reals in our OCCAM program, we multiply the dividend in the expression
for o by a "scale factor™.

Nofie that the divisor in the above expression is guaranteed to
be nonzero by the fact that P, and P, lie on opposite sides of the plane.
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On the Implementation of the HSE Algorithm

A.3.1, Data Structures

The following data structures have had to be implemented in OCCAM in order to
be used by the scam converter of the HSE algorithm [Fole82|

Edre Table (ET), organised as an array of buckets {one per
scanline), to contain the edges of the polygon to be scan converted

Yres-1

o

c

-

~—t

]

3

@
] .—__;.I Yna | X [ 1/ M| @ ol —_—
b

Information about each edge is kept in the bucket that corresponds to the scanline
of its minimum y coordinate. The information kept for each edge is

- its maximum y ccordinate (y, )
- the x coordinate corresponding to its minkmum y coordinate (x,, )

- its inverse slope (1/m)

Active Fdge Table (AET), organised as a simple list, to contain the edges that
the current scanline intersects
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The ET and AET are implemented in OCCAM ueing a large 1D array to store the
information about the edges. Ancther array acts as the bucket pointers for the ET.
Edges belonging to the same bncket are linked together. An integer variable peints
to the firet edge of the AET and the edges of the AET are also linked together

ET

Yres-1
o EDCES
o
= 1 1
§ Ynar | Xun | 1/m| REXT| NEXT
Q ET ¢ AET| -~ " °

1 I T

0 .. eage

AET

A.3.2. Operations

The following (specialised) operations on the above data

struciures  were
implemented in order to be used by the scan canverter

. CLEAR
{Initizlise the ET and the AET to empty }

i INSERT.ET.EDGE
{Insert an edge into the appropriate bucket of the ET }

ii. MOVE.ET.BUCKET.TO.AET
{Remove a bucket of edges from the ET and
insert them into the AET without destroying the ordering of the AET
(on %,,) }

. UPDATE.AET
{Update the edges of the AET before processing the
next scznline. In other words remove from the AET those edges whose
¥ 15 €quzl to the last scanline processed and update the X-intercept of
the rest of the edges (x_, ) for the next scanline }

v. BUBBLESORT
{Used to sort the AET in case i became out of crder

during updating. The AET is likely to be sorted and in that case
bubblesort performs well }
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The following incrernental calculations were used in order to save time during scan
conversion

i. X-intercept of an Edge with the Next Scanline
If 2n edge of slope m intercepts scanline i at x (y=i}, it must intercept sanline
i+1 at x, + 1/m. This calcuiation is used in UPDATE.AET.

ii.Depth of 2 Polvgon at the Next Pixel

The Z-buffer HSE algorithm requires that the depth of a polygon be estimaied at
each of the pixels within it. This can be done by solving the equation of the
polygon’s plane

axx + bwy + cxz + d = (
for z. But this calculation requires 1 division, 2 multiplications and 2 subiractions
per pixel. Instead we observe that if the depth of a polygon at pixel (xy] is 2,
then its depth at the next pixel cn the current scanline {x+1,y) is

2+ ({{-d —am{x+!} —bmy} / c) - {{-a —axx -bxy) / c))} =

z-ia/ )

A.3.4. Caleulation of the Plane Equation

The plane equation of a peolygon i= determined using the method suggested by
Martin Newell and described in [SuSp74].

The coefficients a,b and c of the plane equation are determined
as follows

a=5S{y, —u)xr(z +2z)
b=2I (2, -z} = (x +x)}
e =T (O, =)o {u + )
Where .
{x,.4,.2,} ig the i*" polygon vertex

l..nlvertices in polugen)
{i+} 3if { ¢ a{vertices in polygon) e.se 1)

In our implementation we require that the vertices of a polygon be coplane and

only take into account 3 of the vertices in determining the plane coefficients,
Having determined 2,b and ¢, the d coefficient is found using

the coordinates ef a wvertax to solve the plane equation for d.
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Appendix 4

OCCAM Implementstion

—- Constant Declarations

DEF SCREEN.HEIGHT = 21, —nmust be odd
SCREEN.WIDTH = 21,
HALF. SH = 10,  ——{SCREEN.HEIGHT - 1) / 2
4ALF.SH = 10, —(SCREEN,WIDTH - 1)/ 2
HAX.DEPTH = max. int,
BACK.GND.COLOUR = 'ms’,
MAYX.EXPECTED = 200
SCRLE.FACTOR = 1024,
s = 10, —Screen Size / 2
d = 1B, —distance from E.C. origin to screen plane
b = 20, —Distance from E.C. origin to W.C. origin
Kl =1, ——2=Kl is the Hither clipping plane {E.C.}
K2 = 30. --2=K2 is the Yon clipping plane (E.C.}
NEXT.POLYGON = min, int,
HEXT.FRAME = min.int + I,
END =min,int + Z,
HIL = min.int + 3:

CHAK screen AT Screen. Index:

—- inputter
PROC INPUTTER (CHAN OUT)=
SEQL
wr L "0 =8:-4:0; 0:7;0; B:-4:0; NEXT.POLYGON
T t *I*: -8:.5:4; -7.7:4; 7,-7,-4; 5;-9;,-4; END:
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t

B Inumber of times executed:P
(CEX Jeost per exec.iI38 transp, cycles

(n

— Viewing Transformation

—Transform from Worid to Eye Coordinates
—and scale them up = SCALE.FACTOR to
——avoid use of reals,

PROC VIEWING. TRANSFORMATION( CHAN in, out.

VALUE s,
d.
D )=
VAR %, u. z. colour, t:
SEQ
L := (s % SCALE.FACTOR} / d
wx := 0
WHILE x <) END
SEQ
in ? colour
out ! colour
in 7 ox
[WHILE x > (min,int + 2} -~While not a contrel value
SEQ
R o in ? g: 2
i b out ! x = SCALE.FACTOR --Xe » SCALT, FACTOR
[ cut ! y = SCALE.FACTOR --Ye = SCALE.FACTOR
29 cut ! (D - z)} = SCALE.FACTOR —Z2e = SCALE.FACTOR
FH  out! t=(D-2) ——W w SCALE.FACTOR
L L in? x

— .
out ! x

— Intersection

-—calculate the intersection of a plane and edge.
-—aipha = { {dist. from point Pl to plane}/
- {dist. from Pl to P2} )= SCALE.FACTOR

——{xi,yi,zi) are the intersection cogrdinates

PROC INTERSECTION( VALUE x!, y!. zl.
xe, yZ. ZE,
alpha, '

VAR xi, yi, zi)=

SEQ
xi = %l + {alphas ® ({x2 - x!} / SCALE.FACTOR})Y
ui :=yl + {aipha = ({y2 - yl} / SCALE.FACTQOR})
21 1= 2zt + (alpha = ({22 - z!) / SCALE.FACTOR)):
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— left Clipper
—All incoming ceordinates sre m SCALE.FACTOR

PROC CLIP.LEFT (CHAN left, right,

VALLE s, d)=
VAR xfirst,yfirst,zfirst, —first polygon vertex
wf irst,
xS, Ys, 25, —~beginning of each edge
XP, YP, ZP. —end of each edpe
xi,gi,zi, —intersection coordinates
WS, WP, Wi — n={s/ d =2

FIRST.POINT, INSIDE,

SECOND, POINT, INSIDE

alpha,

colour,

ke —t=s/4d

SEC
t:= {s m SCALE.FRCTOR) / d —caleulate s/d » SCALE.FACTOR
w = [
[WILE =xp <> ENO
SEQ
left 7 colour
right ! colour

left 7 xs
IF
xs <= {min.int + 2) ——a control value; the polygon is null
SEQ
right ! xs
Xp 1= XS —to terminate ouvter loop if xs = END
TRUE
SEQ
left 7 ys; zs; ws
xfirst := xs
] ufirst := ys
2first 1= zs
wfirst := us
1F

(xs + ws) >= 0

FIRST.POINT. INSIDE := TRUE
TRUE
FIRST,POINT, INSIDE -= FALSE
left 7 xp
IF
xp > {min.int + 2)
left ? gp: zp; wp
TRUE
SK1P
THHILE xp > {min,int + 2] —4While xg «~in {NEXT.POLYGOHN
SEQ --NEXT,FRAME, END}

62



br3
NEXsE-T
CEX3979

NEX: P
CEX: 1!

IF
{xp + wp) >=10
SECOND,POINT. INSIDE :
TRUE
SECOND.POINT. INSIDE := FALSE

TRUE

IF
FIRST.POINT, INSIDE AND SECOND.POIMT. INSIDE
right ! xp; up; zp; wp
FIRST,POJNT. INSIDE AND (NOT SECOND.POINT.INSIDE}
SEQ
alpha = {{xs + wus) w» SCALE.FACTOR)
/ ({xs + us) - (xp+ wp))

INTERSECTION(xs, ys, zs. xp,yp,zp. alpha, xi,yi,zi)
wi =t w {(2i / SCALE.FACTOR)
right | xi; yi: zi; wi
(NOT FIRST.POINT.INSIDE) AND SECOND.POINT.INSIDE
SEQ
alpha := {(xs + ws) » SCALE,FACTOR)
7 {ixs + us) - (xp+ wp))

INTERSECTION{xs.ys, zs, xp.yp,zp. alpha, xi.yi.zi)
wi = t = (zi / SCALE.FACTOR)
right ! xi; yi: zi; wi
right ! xp; yp; zp; wp
TRUE
SKIP
xp
up

xS
ys
zs zp
WS = Wp
FIRST.POINT. INSIDE := SECOND.POINT. INSIDE
left 7 xp
IF
xp > (min.int + 2} --noct & contrel value
left ? up; zp; wp
TRUE
SKIP
——process last edpe using saved vertex
IF
(xfirst + wiirst) >= D
SECOND.PDINT. INSIDE
TRUE
SECOND,PDINT. INSIDE := FALSE

TRUE

IF
FIRST.POINT. INSIDE AND SECOND.POTNT.INSIDE
rignt | xfirst; gfirst; =2first: afirst
FIRST.POINT. INSIDE AND (NOT SECONQ, POINT. INSIDE}
SFQ
alpha := {{xs + ws} w SCALE.FACTOR) /
((xs + ws) - (xfirst + wfirst))
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| right | xp:

INTERSECTION{xs.ys.zs, xfirst.yfirst.zf irst,
gipha, xi,yi,zi)

Wi =t = {z! / SCALE.FACTOR)
right ! xi; ygi: zi; W
{NOT FIRST.POINT.INSIDE) AND SECOND.POINT. INSIDE
SEQ
alpha := ((xs + ws) x SCALE.FACTOR) /
{({xs + we) - {xfirst + wfirst))

INTERSECTIQN(xs, ys, zs, x[irst,yfirst,zfirst.
alpha. xi,yi.zi)

Wi =t = (zi / SCALE.FRZTOR)

right ! xi; pi: zi; wi

right | xlirst; yfirst; zfirst; wlirst
TRUE
. SKIP



== Right Clipper
—Al1 incoming coordinates are = SCALE.FARCTOR

PROC CLIP.RIGHT (EHAN left, right,

UALLE s, d)=

VAR xfirst,yf irst,zfirst, --first pelygon vertex
wfirst,
xS, 4s, 28, —-beginning of each edge
Xp. WP, ZP, ——end of each edge
xi, yi,zi, --intersect ion coordinates
WS, WP, Wi, — W= (s5/d) =z

FIRST.PQINT . INSIDE,

SECOND,POINT. INSIDE,

alpha,

colour,

t: —_— t =5 / d

SEQ
t := {s » SCALE,FACTOR) / d —-calculate s/d » SCALE. FACTOR
xp = §
HHILE xp <> END
SEQ
left ? colaour
right ! colour

left 7 =s
IF
xs ¢= {min.int + 2} --3 control value; the polygon is nu!l
SEQ
right ! xs
Xp 1T X& --to terminate cuter loop if xs = END
TRUE
SEQ
left ? us: 25: ws
xfirst i= xs
Jfirst := ys
zfirst := zs
wliirst := ws
IF

{xs — ws) (= C
FIRST.POINT. INSIDE :
TRUE
FIRST.PSINT. INSIDE :
left ? xp
IF
xp > {min.int + 2)
left ? gp: zp: wp
TRUE
SKIP
WHILE xp > (mim.int + 2) ——Mhile xp ~in {NEXT.PILYGON,
SEQ —-NEXT.FRAME, END}

TRUE

FALSE
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IF

(xp - wp) =0

SECOND. POINT. INSIDE

TRUE
SECOND,PCOINT, INSIDE := FALSE

I

FIRST.PODINT. INSIDE AND
right | =p; ys;

St

a

Zp; WP
FIRST.POINT, INSIDE AND (NCT SECOND.PGINT.INSTDE}

TRUE

SECOND,POINT. TNSIDE

alpbha := {{xe - ws) w STALE.FACTOR)
{{xs - ws) - {xp- wp})

/

INTERSECTIDN(xs. ys, zs

i

= Low (z) / SCALE

right ! xi;
{NOT FIRST PQINT,INSIDE} AND SECOND.PQINT.INSIDE

SEQ
alpha := {{xs - ws) & SCALE. FACTDR)
£ {{x=s = mg) - {xp- wp})

yi:

INTERSECTION{ xs
wi =t o= {zi/
right ! xi: yi;:
right | xp; yp
TRUE
SKIFP
xXE 1= xp
us = up
zZs = zZp
WG 1T WP
FIRST.POINT. INSIDF =
left ? xp
IF

xp » {min.int ~ Z)

lelt ? yp: zp:

TRUE
SK

1F

wp

--process last edge using

IF

IF

{(x[irst — wfirst) ¢= 0
SECOMD.PDINT. INSIDE

TRUE

SECOND.POINT. TRSIDE

FIRST.POINT. INS1DE AND

Zi: W

ys. 28,

XP.yp. Zp.

.FACTOR}

xp, yp, 2p

SCALE, FACTOR)

Zi: WL

Zp: WP

alpha, xi,yi.zi)

alpha, xi,yi.zi}

SECOND,POINT. INSIDE

--not @ control

Savec veriex

TRUZ

FALSZ

value

SECOND.POINT. INSIDE

rignt | =first: yfirss; zlirst; wli-st
FIRST.PDINT, INSICE ARZ {NOT SEZONT,POINT, INSITE}
SEQ
alphe "= ({xs - w3} » SCZ_£. 732709,
({xs - ws) - (xfirsy - wiirsel)
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INTERSECTION{xs, ys.2s. xfirst,yfirst, zfirst,
alpha. xi,ygi.zi)

Wi = t & {zi / SCALE.FACTOR)
right ! xi; yi: zi; Wi
{NOT FIRST.POINT.INSIDE) AND SECOND.POINT, INSIDE

SER
alpha := ({xs - ws) » SCALE.FACTOR) /
[{xs - ws) - (x[irst - wlirst))

INTERSECTION{xs.ys,zs, xfirst,yfirst, zfirst,
alpha, xi.yi,zi)

Wi ==t = {zi / SCALE,FACTOR)
right ! xi; gi; zi: Wi
right | xfirst; ufirst; zlirst: wWwlirst
TRUE
SKIe
right | =p:



— Top Clipper

—All incoming caoordinates are » SCALE.FACTOR

PROC CLIP.TOP (CHAN left,
VALLE s, d)=

UAR xlirst,ylirst, zlirst,

right,

—rlirst polgygon vertex

wlirst,
x5, S, 25, —beginning of each edge
P, Up, 2P, —-end of each edge
xi,yi,.zi, ——intersection coordinates
WS, WP, Wi, — w=1(s/ d) =2z
FIRST.POINT. INSIDE.
SECOND.POINT. ITNSIDE
alpha,
colour,
t: —t=s5/4d
SEQ
t := {sxSCALE.FACTDR} / d ~—calculate s/d » SCALE, FACTOR
x = 0
WHILE xp <> END
SEQ
jelft 7 colour
right ! celour
lelft ? xs
IF
x5 <= {min.int « 2} --a control value; the polygon is rull
SEQ
right ! xs
Xp 1= K§ --to terminate outer lgop if xs = END
TRUE
SeEQ
lelt 7 ys: zs; ws
xfirst := x5
gfirst := ys
zfirst i= zs
wiirst := ws
1F
{ys - ws) <= 0
FIRST.POINT, INSIDE := TRUE
TRUE
FIRST.POINT. INSIDE := FALSE
left ? xp
1F
xp > {(min.int + 2)
left 7 yp: zp; wp
TRUE
SKIP

HWHILE xp > {mir.int + 2)

SEQ

——hnile xp -in {NCX7.POLYGOHN,
--NEXT.FRAME, END}
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IF
lup — wp) <=0

SECOND.PDINT. INSIDE := TRUE
TRUE
SECOND.POINT, INSICE := FALSE
iF

FIRST.POINT. INSIDE RND SECONC.POINT. INSIDE
right | xp; yp: zp; «p
FIRST.PDINT, INSIDE AND {(NOT SECOND.PDINT. INSIDE)
SEQ
alpha := {{ys - ws) » SCALE.FRCTOR)
/7 {{ys - ws} = {up = wp})

INTERSECTION{xs,yus, 2. xp,yp,2zp, alpha. xi,yi.zi)

wi c= t » (zi / SCALE.FACTOR)
right | =i: ygi: 2i; Wi
(NOT FIRST.POINT,INSIDE} AND SECOND.POINT.INSIDE
SEQ
alpha = {{ys - ws) * SCALE,FACTOR)
/£ {{ys ~ ws) - {yp— wp})}

INTERSECTION (x5, ys, zs, xp,yp.2zp, aslpha, xi,yi.zl)

wi =t = (zi / SCALE.FARCTOR)

right ! xi; gi; zi; wi
right ! xp: ygp: zp; wp
TRUE
SKIP
Xp
up
zp

XS$
us :
Z5 «
W& = wp
FIRST.POINT. INSIDE := SECOND.PDINT.INSIDZ
left ? xp
1F

xp > (min.int + 2: —not & control value
left 7 yp; zp; WP
TRUE
SKIP
--process last edga using saved vertex
IF

L L LI | I |

{ufirst - wlirst) <= 0
SECOND,POINT.INSIDE := TRUE
TRUE
CECOND.POINT. INSIDE : = FALSE

IF
FIRST.POINT.INSIDEZ AHG SEZOND.POIGT. INSIDE
right ! xfirst; ufi=st:; zlirst: wlirst
FIRST.POINT.INSIGE AND {NOT SECOND.POINT. [NSIDE)
St
alcha : =

{{us — ws) » SCALE.FARCTOR) /
({ys - ws) -

{gfiret - wfirst)}

g



INTERSECTION(xs,ys,zs. xfirst,yfirst, zf irst,
alpha, xi.yi.zi)

wi =t » {zi / SCALE.FACTOR)
right | xi; ygi; zi: wWi
{(NOT FIRST.POINT,INSIDE) AND SECOND,FOINT.INSIDE
SEQ
alpha := ((ys - ws) x SCALE.FACTOR) /
{{ys — ws) - (yfirst - wfirst))

INTERSECTION (xs,ys, zs. xfirst,yfirst, zfirst,
alpha, xi.ygi,zi)

wi == t w (zi / SCALE.FACTOR)
right | xi; yi; zi; wi
right | xfirst; yfirst; zfirst; wfirst
TRUE
SKIP
right ! xp:
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— Botkom Clipper
—All incoming coordinates are ® SCALE.FACTOR

PROC CLIP.BOTTOM (CHAN left, right,

UALLUE s, d)=
UAR xfirst,yfirst,zfirst, --first polygon vertex
wlirst,
XS, Ys, s, —beginning of each edge
xP. Yp. 2P, —end of each edge
xi.ygi,zi. ——intersection coordinates
WS, WP, Wi, — u={s/ d}) =z

FIRST,POINT . INSIDE,
SECOND.PDINT.INSIDE,

alpha,

colour,

k: —t=s/4d

SEQ
t := {swSCALE.FACTOR) / d -—calculate s/d = SCALE. FACTOR
xp := 0
WHILE xp (> END
SEQ
Jeft 7 colour
right ! eolaur

left 7 xs
IF
xs (= {min.1int + 2} ——2 contrel value; the polggor is nmill
SEQ
right | xs
Xp = X8 —-to terminate outer lcop if xs = END
TRUE
SEQ
left 7 ys: zs: us
xfirst := xs
yf[rst :=ys
zfirst := zs
wfirst := ns

Ir
(ys + ws) >= 0
FIRST.POINT. INSIDE :
TRU:
FIRST.POINT. INSIDE := FALSE
left ? =p
IF
xp > (min.int + 2)
left ? gp: zp: wp
TRUE
SKIP
WHILE xp > (min.int + 2} —-Khile xp «in {NEXT.PO.YGON,
SEQ —-NEXT.FRAME, E=ND}

TRUE
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1F
{yp + wp) =10

SECOND.POINT, INSIDE := TRUE
TRUE
SECOND,POINT. [NSIDE := FALSE

IF
FIRST.PODINT. INSIDE AND SECOND.PQINT. INSTDE
right ! xp; yp; zp; wp
FIRST.POINT.INSIDE AND (NOT SECOND.POLNT.INSIDE}
SEQ
alphe := {{ys + ws) w» SCALE.FACTOR}
/ {{ys + ws} — (up+ wp})

[NTERSECTION{xs, ys. zs. xp,up.zp., alpha. xi,yi zi}
Witz bt ok {zi / SCALE.FACTOR)
right | xi; gi; zi; wi
(NOT FIRST.POINT.INSIDE) AND SECOND.POINT. INSIDE
SEQ
alpha := ((ys + ws) = SCALE,FACTOR)
/ {{ys + us) - (gp + wp))

[NTERSECTION({xs.ys.2zs, xp.up.zp., alpha. xi,ui.zi)
wi :=t m {zi / SCALE.FACTOR)

right | xi; gi: 2i; wi

right | xp; yp; 2p; wp

x5 1= Xp
gs 1= yp
28 = Zp
WS iz Wp
FIRST.POINT.INSIDE -= SECOND.POINT. INSIDZ
left ? xp
IF
xp » {min.int + 2} —nat a control value
left ? yp; 2zp: wWp
TRUE
SKIP
--process Jast edge using saved vertex
1F
{gfirst + wiirst) >= 0
SECOND.PDINT.INSIDE :
TRUE
SECONC.POINT. INSIDE := FALSE

i

TRUE

IF
FIRST.POINT.INSIDE AND SECOND.™DINT.INSIDE
rignt ! xfirst; yfirst: 2first; wiirst
FIRST,PCINT, INSIDE AND (NOT SECDND.POINT, [NSIDE)
SEQ
alpha := {{ys + ws} » GCAE.FAITOR) /
({ws + ws) — (yFirst + Wwfirst}y

Pz



INTERSECTION(xs.ys, 25, xfirst.yfirst. zfirst
alpha, xi,yi,zi)

wi =t w {(zi / SCALE.FACTOR}
right ! xi; ygi: zi; wi
(NOT FIRST.POINT.INSIDE) AND SECOND.POINT. INSIDE

SEQ
alpha := {{ys + ws) w SCALE.FRCTOR} /

({ys + ws) - (yFirst + wlirst})

INTERSECTION {xs,.ys,zs, =first,yfirst, zfirst
alpha, xi,pi.zi)

wi = t w {zi / SCALE.FACTOR)
right | xi; ygi: 2i; wi
right | xFirst; yfirst; zfirst; wfirst
TRUE
SKIP
right ! xp:

73



—  Hither

Clipper

-—All incoming coordinates are = SCALE. FACTOR

PROC CLIF.HITHER (CHAN left. ripht.

VALUE s.d,
K )= ——2=K is the hither clipping plane
UAR xlirst, ylirst. zfirst. --lirst polygon vertex
wlirst,
XS, 4s, 25, —beginning of each edge
xp. 4P, 2P, --end ol each edge
xi,yi, 21, --intersect ion coordinates
WS, AP, Wi,
FIRST.POINT. INSIDE,
SECOND.POINT. INSIDE,
alpha,
colour,
L,
'Y
SEQ
k := K = SCALE,FACTOR —A!] coardinates are » SCALE. FACTOR;
b := s w SCALE.FACTOR} / d
xp =0

HHILE xp <> END

SEQ

left 7 colour
right | colour

sa scale k too

left ? xs
Ir
xg <= {min.int + 2) -—5 control value; Lhe polygon is nul]
SEQ
rignt ! xs
Xp = XS —to terminate outer loop if xs = ENO
TRUE
SEQ
left 7 ys: 2s. ws
xfirst i= xs
ulirst := ys
zlirst := zs
Wwiirst := ws
I
(ze -~ k; >= 10
FIRST.POINT, INSIDE = TRUEZ
TRUE
FIRST.POINT, INSIDE := FALSE
left 7 xp
IF
xp » {min, int + 2)

left ? yp; 2p. wp

TRUE

e



SKIP

WHILE =p » {(min,int + 2) —HWhile xp «in (NEXT.POLYGON,
SEQ --NEXT.FRAMZ, END)
IF
(zp - k) >=10
SECOND.POINT. INSIOE := TRUE
TRUE
SECOND,PQINT. INSIOE := FALSE
TF

FIRST. POIMT. INSIDE AMD SECOND,POINT.INSIDE
right ! xp: yp: 2zp: wWp
FIRST.PDINT. INSTOE AND (HOT SECOND, POINT. INSIDE)
SEQ
alpha = {{2s5 - k) = SCALE.FARCTOR}
/o({zs - k) ~ (zp - k))

[NTERSECTION{xs,ys, zs, xp,up.zp. alpha, xi,yi.zi)
wios=t = {zi / SCALE.FACTOR)
right | xi; yi; 2i, wi
{NOT FIRST.POINT. INSIDE} AND SECOND.POINT. INSIDE
SEQ
alpha := {{2s - k) = SCALE.FACTOR)
/o {{zs - k) - {2p - k))

INTERSECTION{xe.ys. zs, xp.yp.2p. alpha. xi,yi.zi)
wi .= bt = (=i / SCALE.FAZTOR)
right ! xi; yi: zi; wi
right ! xp: yp: zp: wp
TRUE
SKIP
= )(P
= up
Zzs 1= zp
HEN
FIRST.POINT.INSIDz .= SECOND,POINT, INSIDE
left 7 xp
IF
xp ) (min int + 2) --not a control value
left ? up, zp; wp
TRUE
SKIP
--process last edge using saved vertex
IF
(zfirst = k) >= 0
SECOND, POINT.INSIDE := TRUE
TRUE
SECOND.PQINT. IKSIDE -= FRLS

[}

IF
FIRST.POINT, INSIDE AND SECZOND.POINT. INSIDZ
right | xfirst; yfirst; zfirst: wiirst
FIRST.POINT.INSIDE AND (NQT SECOND.POINT, INSIOZ}
SEQ
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alpha := ({zs - k) » SCALE.FAZTOR)
/ {izs — k} - (=zfirst -k}}

INTERSECTION(xs,ys, zs. x[irst,yfirst, zlirst,
alpha. xi,yi,zi)

wi = b ow {zi / SCALE.FRCTOR)
right V' xi: gi, zi; wi
(NOT FIRST.POINT. IRSIDEY AND SECOND. POINT, INSIDE
SEQ
alpha := ({z5 - k) = SCALE.FACTOR)
/ {{zs ~ k) - (=First -k))

INTERSECTION(xs,ys. zs. x[irst,yfirst, zfirst,
alpna. xi,gi.z1)

Hio:=t ¢ {z1 / SCALE.FACTOR)
right I oxi; yi; zi: wi
right ' xfirsl; ufirst; 2first; wlirst
TRUZ
SKIP
right | xp:



—  Yon

—-all incoming coordinates are » SCALE.FACTOR

Clipper

PROC CLIP.YON (CHAN left, right,
VALUE s, d.

VAR xfirct.yfirst. 2l irst,

wiiTset,

x£, ys, s

K )=

—-Tirst poiygon verbex

—z=K is the yon clirping plare

——beginning of eazn edge

——end of each edge

—intersection coordinates

POINT.IKSIDE,

(s = SCALE.FACTOR) / ¢

%P, UP. ZP.
xi,wi,zi,
WE, WP, Wi
FIRST.
SECORD.POIRT.INSIDE,
alpha,
colour,
4
le:
SEQ
k := K » SCALE.FACTOR
t o=
xp =0
WHILE xp <> END
SEQ

left ? colour
gnt ! coleur

ri
le

IF

ft ? xs

xs ¢= {min.int + 2)

SEQ
rigri
Xp .=
TRU=
SEQ

x5

pad=1

left 7 us:

xfirst

ufirst :
zfirst
wiirst

IF

--a control value

—-All coordinates are = SCALE.FACTUR. so sciie k too

the polygon is null

—to terminate outer loop if xs = END

Z5; WS
xs
ys
25
WS

(ze - k) <=0

FIRST.PQINT. INSIDE

TRUZ

FIRST.POINT.IKSIOE

left 7 xp

=

xp > {min,int » 2}
left 7 yp: zo. wp

TRJE
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SKIP

WHILE xp > (min,int + 2) —HWhile xp ~in {NEXT.POLYGON,
SEQ --NEXT.FRAME, END}
IF
{zp - k) <=0
SECOND, PDINT. INSIDE := TRUE
TRUE

SECOND.POINT. INSIDE := FALSE

IF
FIRST.POINT.INSIOE AND SECOND.POINT. INSIOE
right ! xp: up: zp: wWp
FIRST.POINT. INSIDE AND (NDT SECOND.POINT, INSICE)
SEQ
alpha := {{2s - k) » SCALE.FACTOR)
/o {{zs - k} - {zp - k)]

INTERSECTION(xs,ys.2s. Xp.yp.zp, @lpha. xi.ygi.z1)
wi := bt w {zi / SCALE.FACTOR)
right | xi: gi: 2i: wWi
{NOT FIRST.POIKT.INSIDC) AND SECOND,POINT.INSIDE
SEQ
alpha = ({zs - k} » SCALE.FACTOR)
/ {zs - k) - {zp ~k})

INTERSECTION(x5. ys. zs, xp.yp.zZp. alphe, xi.yi.z1)
wi =t w {21 / SCALE.FACTOR)
rignt ! xi; gi: zi: owi
right | xp: up: zp: wp
TRUE
SKIP
= xp
= gp
= zZp
WS T wp
T.POINT. INSIDE := SECOND.POINT. INSIDE
left 7 xp
IF
xp > {m:n,.int + 2) --not & control value
ieft 7 yp: zp: wp
TRUE
SKIF
--pracess last edge using saved vertex
iF
(2first - k) <=0
SZZONC.POIRT. INSIDE := TRUE
TRUZ
SZCONG.POINT.INSIDE := FALSE
IF
FIRST.POINT. INSIDE AND SECONC.POINT, INSIDE
rigat | xilrst: yfirst; 2first: wi;rst
FiRST, POINT. INSIDE AND (NOT SECORD.POINT, INSIDZ}

54
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alpha := ({2zs - k) » SCALE.FARCTOR})
/ ((zs - k) = {zfirst - k})

INTERSECTION{xs,us.2zs, xfirst, yfirst, zfirst
alpha, xi,yi,zi)

wi ==t w {21 / SCALE.FRCTOR}
right ! xi; gi; zi; wi
(NOT FIRST.POINT.INSIDE) AND SECOND,PCINT.INSIDE
SEQ
alpha := ((zs - k) » SCALE.FRCTOR)
/ ({zs - k) - (zfirst -k})

INTERSECTION(xs, ys. 25, xfirst,yfirst, zfirst
alpha, xi.ygi,zi)

wi =t w {zi / SCALE.FRZTOR}
right 1 xi; yi; zi: wi
right ! xfirst; yfirst; zfirst; wfirst
TRUE
SKIP
right ! xp:
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— Splitter (Splits about plane X = 0)
--fll incoming coordinates are "SOALE.FACTOR

PRIC X.SPLITTER{ CHAN in,outl.outZ,
VALUE 5 .d )=

VAR xfirst.yfirst.zfirst, —first polygon vertex
wiirst,
x%, Y5, 25, —-—begirming of each edge
xE. gp, ZF, —end of each edge
xi,yl.z1, —-intersectien coordinates
W5, WP, Wi,

F1RST.POINT,LEFT,
FIRST.POINT, ON,PLANE.
SECORD. POINT.LEFT.
SECONO.POINT. O, PLANE,

alpha,
colour,
[
s2Q
t := (s w SCALE.FACTOR) / 4
xp = 0
HILE xp <> END
SEQ
in 7 colour
| out! ! colour
i outZ | coiour
in ? xs
[F
! xs <= (min.int + 2) —-a control value: the polgzon is null
S=4
out]l | xs
|—_ aut?2 | xs
‘ | xXp = XS —-to terminate outer loop 1f x5 = END
i TRUZ
j | SeQ
i N ? ye; 2S; WS
‘ xf1rst 1= x5
| ‘ ufirst 1= ys
‘ z2first 1= 2s
‘ wliret -= ws
iF
| } xs ¢ 0
‘ SEQ
‘ ‘ FIRST.PODINT.LEFT = TRUZ
FIRST.POINT.OK.PUANT = TALSE

i , xs » 0

8



CEX s IH30D

N IPI

Niux 3 E-I
CEX: 1131

SEQ
FIRST.POINT.LEFT := FALSE
FIRST.POINT.ON.PLANE := FALSE
TRUE
SEQ
FIRST.POINT.ON.PLANE := TRUE
FIRST.PDINT.LEFT := FALSE

in 7 xp
IF
xp > {min,int + 2} --not a centroi value
in ? up; zp: wp
TRUE
SKIP
RHILE xp > {(min.int + 2} ——Hhile xp «in {NEXT.POLYGON.
SeQ --NEXT.FRAME, END}
IF
xp ¢ D
CED
SECOND.POINT,LEFT - = TRUE
SECOND.POINT. ON.FLANE := FALSE
xp > 0
SEQ
SECOND.POINT.LEFT := FALSE
SECOND.POINT. 0N, PLANE := FALSE
TRUE
SEQ
SECOND.POINT.ON.PLANE := TRUZ
SECOND.POINT.LEFT := FALSE
1F
SECOND., POINT. ON, PLANE

SEQ
out] | xp: gp: 2zp: WP
outZ | xp; up:i zp: WP
SECOND.POINT.LEFT AND (FIRST.POINT.ON.FLANE OR
FIRST.POINT.LEFT)
out] | xp; yp; zpi Wp
(NOT FIRST.POINT.LEFTj AND {NOT SECOND.POINT.L:ZFT)
owt? ! xp; up: zp: wp
FIRST.POINT.LEFT AND (NOT SECOND.POINT.LEFT)
SEQ
alpha = ({-xs) = SCALE.FACTOR} / (xp - ==}
INTERSECTION{xs, s, 25, xp,yp,2p. alpha, xi,ui.z1)
wi =t w {zi / SCALE.FAZTOR)
autl | xi; yi: zi: wi
outd ! x1; yir o zi; Wi
outZ | xp: yp; 2Zp; WP
(NOT FIRST.POINT.LEFT} AND SECOND,POINT.LEFT
SEQ
alpha := {xs = SCALE.FACTOR) / {(xs - xp)
INTERSECTION{xs. us. 25, xp,yp.2p. alpha. xiygi.zi)
Wi =t = (z¢ / SCALE.FARCTOR)

cutl | xi, gi: zi; wi

g1




[ out? | xi; gi: zi: Wi
| aut] ' xp: up: zZP: WP

X$ 1= Xp
| ys 1T yp
zs == zp
WS 1= WP

FIRST.POINT.LEFT := SECOND.POINT.LEFT
FIRST, POINT,ON.PLANE := SECOND.PJINT, ON,PLANE
in ? xp
IF
xp > {min.int + 2} --not a control value
in ? yp: zp: wp
TRUE
SKI1P
_—-process last edge using saved vertex
IF
xfirst < 0
SEQ
SECOND,POINT.LEFT := TRUE
SECOND, POINT, ON.PLARE := FALSE
xfirst > 0
SED
SECONG.PQINT.LEFT := FALSE
SECOND. POINT.ON_PLANE := FALSE
TRUE
SEQ
SECOND.POINT,ON.PLANE := TRUE
SECOND.POINT LEFT .= FALSE

J SECOND.POINT. ON. PLANE

SED
L out! ! xfirst; ulfirst; zfirst; wlijrst
outZ ! xfirst; ylfirst; zfirst: wfirst

|

SECOND, POINT_LEFT AND (FIRST.POINT.ON.PLRRE OR
FIRST.POINT.LEFT)

outl | xfirst; gfirst; zfirst; wfirst

(NDT FIRST.POINT.LEFT) AND (KO SECOND.POINT.LEFT)
out? ! xfirst; yfirst; zfirst; wfirst

FIRST.PQINT.LEFT AND (NOT SECOND.PQINT.LEFT)
SEQ
alpha := {.-xs) = STALE.FRITOR) / (xli-st - xs5)
INTERSECTION{xs.ys.2zs. x[irst,ylirst.zfirst,
alpha, xi.yi,zi)

| Wi =t % (zi / SCALE.FACTOR}
i outl } oxi. wi: zi: wi
out? | xi; yi: zi: wi

(¢85
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outZ ! xfjrst; yfirst: zfirst; wfirst

(NOT FIRST.PDINT.LEFT} AND SECOND.POINT.LEFT

SEQ
alpha := (x5 = SCALE.FACTOR} / (xs - xfirst)

INTERSECTION(xs.ys, zs, =first,yfirst,zfirst,
alpha, xi,yi,zi)

wi o=t o (21 / SCALE.FACTOR)

out! | xi; yi; zi: wWi

out? ! xi; yi; zi: wi

outl | xfirst; yfirst: zfirst; wfirst
out 1 | xp
| gutZ | xp:




— Perspective Transformation

~—Transform from Eye to Screen Coordinates,
——preserving depth information

~--and Descale Coordinates / SCALE.FRCTOR
—{w includes SCALE.FACTOR)

PROC PERSPECTIVE. TRANSFORMATION( CHAN im,out)=
VAR x, y, z, w. colour

SEQ
x := [
[WHILE x <» END
SeQ
® in 7 colour
ey out ! colour
g ip ? x
© WHILE = 2 (min.int + 2}
" SED
E (.8 in ? o, Z; MW
=] PPEA out ! {(x = HALF_SW} / w) + HALF.SW  ~—Xs
= ﬁ"g]' out ! {{y * HALF.SH) / w) + HALF.SH --¥g
zo out ! z / SCALE.TACTOR —Zs
in 7 x
— T out ! ox

=500)

cost: 13686 tc (incl, call

forgoREEN, HEIGHT

-— Data Structures (ET,RET) and Operations
—— used by the Scan Converter of the HSE algorithm

-~ Reset Data Structure for nexbt poiygon

|

PROS CLERR{UAR ETI].
AET,

firstfreel}=

SEQ
--Clear tdge Table
SEQ i=[0 FOR SCREEN_HEIGHT)
ET[i] := KIL
~-Clear Active Edge Table
A7 = NIL
—-Reset Edge Pointer
firstfree := 0

8i



—Copy edge data into FOGES array
——fAuxilliary of INSERT.ET

PROC PUT (VAR EDGES[].
firstfree,
VALUE ymax, xmin, m )=

SEQ

EDGES]Mirstfree] := ymax
lirstfree : = lirstfree + |
EDGES[firstfree] := xmin
firstfree := firsifree + 1
EDGES[I’irstf*ee] = m
[irstfree : = lirstfree ~ |
EDGES[firstfree] := NIL
[irstfree := firstfree + |
EOGES[firstfree} := NIL
Firstfree := firstfree + 1:



cost:;307 te {inel, call)

—— —Insert an edge into the appropriste bucket of the edge Lable
—maintaining order on (x,slope) within bucket.

—PRuxilliary of INSERT.ET.EDGE

[PRC: INSERT.ET (WER ET[].

EDGES[].
firstfree

VALUE scanline. -—ind:icates approprizte bucket
gmax, xmin, m }= —-edge to be inserted

VAR ET.PTR, PRzV.ET.PTIR. lastfree
520
PREV.ET.PTR :=NIL

: ET.FIR := ET[scanline) --beginning of bucke: for Lthis scanline
IF

— ET.PTR = NIL

—-Special case bucket is empty
SEQ
ET{scanline] := firstfree
PUT(EDGES, firstfree, ymax, xmin, m)
TRUE
SEQ
~-Find appropriate place for imsertion
WHILE (FDGES[ET.PTR + 1] < xmin} AND (EDGES[ET.PTR + 3] <> NIt}
SeQ
PRCV.ET.PTR := ET.PTR
A ET.PTR := EDGES[ET.PTR + 3)

NEX:EetC/Z

ﬁ lastfree = firstfree

PUT(EDGES, firstfree, ymax, xmin, m}
IF
{EDGESTET.PTR + 1] < xmin} OR

] {(EDCES[ET.PTR + 1] = xmin) AND (EOGES[ET.PTR + 2} < m))

——insert after the current bucke:t edge
SEQ
FDGES[lastfree + 3) := EDCGES[ET.PTR + 3]
ZDGES[ET.PTR « 3] .= lastfree
TRuUz
--Insert befere current bucket edoge
5z10
EDSEZS[lastiree + 3] := ET.PTR
IF
PREV.ET.PTR = NIL
--bacomes {irst bucket sdge; speciai case
ET[scanline] := lastfree
TRUZ
EDSES(PREV.ET.PTR + 3] = lastfree:




cost1192 te (incl, call)

— --Determine slope of edge. shorten if required and insert into

2z, y2.
x3, w3.

VAR ET[],
EDGES[],
firstfree)=

VAR xmim, ymin, xmax, ygmax, m:

IF
gyl = g2
—-Horizonkal edge, needs no processing
SKIP
TRUE
SEQ
1F
yl > w2
SEQ
gymin := g2
xmin = x2
ymax = yl
xmax = x]
| yl ¢ g2
520
! gmin := yl
! xmin 1= x|
ymax := 2

xmax = x2
-—Calculate {1 / slope} * SCALE.FACTOR in m
m = {xmax - xmin) / (ymax - gmin)
1F

(yl ¢ w2) AND (g2 < 43)

ymax = ymax ~ |
{gl > u2) AND (g2 > y3)
—Shorten edge

SEQ
ymin := gmin + 1
xmin ;= xmin +'m

TRUE

SKIP
INSERT,ET(ET,EDGES, firstfree, ymin, ymax, xmin, m}:

T’RDC INSERT.ET, EDGE( VALUE x1,4l, --x coordinates are aSCALE.

-—Shorten edge: (%2, 42} is net a local maximum/minimum

T

FACTDOR

--Don't shorten edge (x2,u2) is a loczl minimum/maximum



— —Insart an edge into the AET maintaining order on x
—Auxilliary of MOVE.ET,BUCKET,TO0.AET
PROC INSERT.AET {UAR AET,
EDGES[].
VALUE EDGE )=

UAR x, AET.PTR, PREV.AET.PTR:
SEQ
IF
RET = NIL
—First adge of AET; special case
SEQ
BET = EDGE
EDGES[EDGE + 4] := NIL
TRUE
SEQ
=x += EDGES[EDGE + {]
AET.PTR := AET
PREV.AET.PTR := NIL
WHILE ({EDGES[AET.PTR + 1] < x}
B | AND (EDGES[AET.PTR + 4] <> NIL})
-l
«

<) SEQ
5 PREV.AET.PTR : = AET.PTR
= PET.PTR := EDGES[AET.PTR + 4]

EDGES[RET.PTR + 1] ¢ x
-——Insart after current RET edge

SEQ

EDGES[EDGE + 4] := EOGES[RET.PTR + 4]
EDGES[ARET.PTR + 4] := £0GE

TRUE
——Insert before current AET edge
SEQ
EQGES{EDGE + 47 := AET.PTR
IF

PREV.ARET,.PTR = NIL
--Becomes firt edge of AET; spec:ial case
AE™ := EDGE

TRUE
EDGES[PREV.RET.PTR + 4] := EDGE:

Bg



costtd6 te (incl, call)

[J] x'betf
CEX3:195

— Move a buckel of edges from the ET to the AET,
-~Keeping the AET sorted on x,

ROC MOVE.ET, BUCKET. TO.RET (VAR EDGES[].
AET,
BEGINNING. OF . BUCKET )=

VAR EDGE:
EQ
_EDGE : = BEGINNING. OF . BUCKET

WHILE EDCE ¢ NIL
SEQ

™

L EDGE - = EDGES[EDGE + 3]
BEGINNING. OF . BUCKET := NIL:

—— -—Remove an edge from the AET
-—Auxillia-y of UPDATE.RET

PROC REMOUE.HZT (VAR AET,
EDGES]],
PFREY. EOGE,
WALLE EDGE )=

IF
PREU,EDGE = NIL
RET := EDGES{EDGE + 4]
TRUE

INSERT . ET(AET, ECGES, EDGE)

——remove bucket from ET

EDGES[PREV.EDGE + 4] := EDGES[EDGE + 4]:



— Update the RET
—by removing those edges for whlch ymax = scanline and
—calculating the x intercept of the rest of the edges
~—for the next scanline,

R0C UPDATE, AET (VAR AET,
EDGES] ).
VALUE scanline )=

te [incl, eall)

VAR EDGE, PREV.EDGE
SEQ

PREV.EDGE := NIL
DGE := AET
WHILE EDGE <> NIL

cost

EDGESIEDGE + 0] = scaniine
——remove this edge from the AET
REMOVE. RET{RET, EDGES, PREV. EOGE, EDGE )

-
TRUE
f-i_sé SEQ
23] —update the x intercept of this edge
=0

EDGES{EDGE + 1] := EDGES[EDGE + 1] + IDGES[EDGE + 2]
PREV.EDGE := EDGE
EOGE := EDGES{EOGE + 4):
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coati505 te (inel, call)

— —Suep two edges. Puxilliesry of BUBBLESORT.

PROC SWAP_EDGES (VAR EDGES(],

VALUE EDGE1.
EDGEZ )=
VAR TEMP[3]:
SEQ
SEQ i=[0 FOR 3]
TEMP[i] := EDGES[EDGEI + i)

SEQ i=[0 FOR 3]
EOGES(EDGE! + i]

SEQ i=[0 FOR 3]
EDGES{EDGEZ + i] :

TEMP[1]:

-~ Sort AET on x, using bubblesort

[PROC BUBBLESORT (VAR AET,

EDGES[] )=
VAR UNSORTED, EDGE !, EDGEZ:
SEQ
IF

((RET = NIL) DR (EDGES[AET + 4] = NIL))

--Trivially serted
SKIP
TRUE
SEQ
LUNSORTED := TRUE
WHILE UNSORTED
SEQ
UNSORTED := FALSE
EDGEY := AET
EDGEZ := EDGES[AET + 4)
WHILE EDGEZ <> NIL

EDGES[EDGEZ + I]

SEQ
1F
EDGES[EDGEL + 1) > EDGES[EDGEZ + 1]
SEQ
SWAP. EDGES (EDGES. EDGE ) , EDGEZ)
UNSORTED := TRUE
TRLE
SKIP
EDGE! := EDGE2
EDGEZ := EDGES{EDGEZ + 4]
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cost

- ~-Update indices of First and last nom-empty ET buckels
PRIC UPDATE, MIN.MAX.ET.Y (URR MIN,ET,Y, MAX.ET.Y,
VALUE Y)=

IF
Y C MIN.ET.Y
MIN.ET.Y := ¥
¥ > MAX.ET.Y
MAX.ET.Y := ¥
TRUE

SKIP :

P2



—The Scan Converter Process
—Assumes v],vZ,..vn rapresentation of polygons{vi = Ith vertex)

PROC SCAN. CONVERTER {CHAN IN,

T0. BUFFER,
VAR ET[].

AET,

EDGES[ ).

firstfree )=

UAR colour, --polygon colour

=1, yl,zl, —polygon vertices
2.yl 22,
x3, y3. 23,

keepxl, keepyl, keepzl,

keepx?, keepy?, keepzl.

a,b,c.d, ==plane coefficients

MIN.ET.Y. MAX.ET.Y, ——first/least non—empty bucket in ET
Y, ——current scanline

EDGE, ——used to traverse AET

X.START, X.FINISH, —-used in scan conversion

2, 2.INC : —depth and depth increment

SEQ
CLERR(ET.AET, firstfree)
x3 := D
WHILE {xl ¢> END) AND (=2 <> END) AND {x3 <> END)
SEQ
MIN. ET.Y -
MAX.ET.Y -
IN 7 colour
IN 7 x|
1F
x! ¢ (min.int + 3)
TO.BUFFER | x! —~Empty Polygon: ignore
TRUE
SEQ
IN 7 gl: 21
IN 7 x2
iF

0
SCREEN.HEIGHT - 1

o

=2 { {min.int + 3}
T0.BUFFER ' x2 -—0ne vertex polygon; ignore
TRUE
SEQ
IN 7 92; z2
1IN 7 =3
IF
x2 ¢ (min,int + 3}
TO.BUFFER | x3 —--Two vertex polygon; igrore
TRUE
SEQ
IN 7 y3; =23
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keepx] := x1
keepyl = y!
keepzl := 2!
keepxZ := x2
keepy? = y2
keepz2 := z2

—determine plane equation from first 3 vertices:
—assume they are nat ceollinear

a = {({yl-u2)m(zl+22}) + ((y2-y3)w(22+23))

+ ({y3-yl }=(23+21}})

o

c= (({z1-z2)m(xI+x2}) + {(z2-23)a({x2+x3))
{{z3-z1)m{x3+x1)})

+

(¢}

sz (({=x1-x2)m{yl+y2)) + {(x2-x3F}u(y2+y3})
{({x3—x1}m{y3+yl}})

+

NEX ¢ Pr GEX1 1034

NEX;E-2 CEX:IdQ

d := ({ ({-a)wxl} - {(bmyl}) - (cmzl}}

—construct Edge Table
—{WRILE x3 > {min.int + 2)
- ——Terminates ~hen a2 contro] value is met
——at the end of 2 polygen
SEQ

INSERT.ET, EDGE (] «SCALE, FACTOR, y!,
x2mSCALE. FACTOR, y2, x3wSCALE. FACTOR, w3,
ET, EDGES.firstfree)

UPDATE. MIN.MAX.ET.Y (MIN.ET.Y, MAX.ET.Y, u2)

x2
uZ
z2
x3
y3

i= 23
IN 7 x3

x
™~y
0 auononn

x3 >= (min,int + 3} --1F not a control value
SEQ
IN 7 3
IN 7 23
TRUE
SKIP
INSERT.ET.EDGE (x ) «SCALE, FACTCOR, yi,
xZwSCALE . FACTOR, y2, keapx | xSCALE. FACTUR, keepy!.
ET.EDGES. firstfree)

UPDATE MIK, MAY. ET.Y (MINET.Y, MAX.ET.Y, 2}

i



INSERT.ET. EOGE { x2xSCALE. FACTOR, 42,
keepx |xSCALE. FACTOR, keepyl.
keepxxSCALE, FACTOR, keepy?
ET.EDGES.Tirstlree)

UPDATE. MIK.MAX.ET. Y (MIN.ET.Y, MAX.ET.Y. keepyl)

HEXtH  GEX:!4

S .= MIN,ET.Y
FLRRILE (Y <= MAX.ET.Y) DR {AZT <> NIL)
SEQ
MOVE.ET,BUCKET. TO. RET(EDGES. RET, ET[Y]]
-- —-uwse PAET to process this scanline
—{:EDSE = RET
——assume ¢ <> 0, if ¢ = 0 the polygon
—-—15 parallel Lo the Z-ax:is and appears
—as a line; such polygons are nob processed

[WRILE {{EDGE <> NIL) AND (c <> 0))
SEQ
X.START := EDGES{E03E + 1] / SCA_E.FACTOR
EOGE := EQGES[E0GE + 4]
X, FINISH := EDGES{EQGE + 1] / SCALE.FAZTOR
EDGE := EDGES[ZDGE + 4]
—calculate deptrwSCALE.FACTOR at (X.START,Y)
2 := ({ {{-d) - (amX.START)} - (bmY) )
» SCALE.FACTOR) / ¢

CEX1 414

aeb

NEX B

—-calculate (depth increment}wSCRZ.FRITOR
2.IRC := ({-2) = SCALE.FRCTOR} / ¢
[WHILE X.START <= X.FINISH
SEQ
& TO.BUFFER | colour; X.START: Y, 2
= X.START := X.START + 1
Al Z2:= 2 + 2.IRC
ATE. AET{AST, EOGES, Y1)
BLESORT(AET, EDGES)
=Y 4+ ]

x3 = NZXT,POLYGON
szl
TO.BUFFER ! NEXV.POLYSON
CLEAR(ET. AT, firsifree)
=3 = NEXT.FRAME

— S0

‘ TO.BJFFER | NEXT.SRAME —-clesr 2 and F Buffers
CLERR{ET, AT, firstfree)
TRUE  -—x3 = END

L -~terminate Buifer Frogcees

| TC.BUFFER | END:
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— —The Buffer Process R auxilliaries

—clear £ and F buffers prior te processing next frame
—auxilliary of the Buffer Process

PROC [LEAR.BUFFERS (VAR 2.BUFFER[].
F.BUFFER[] )=

VAR i, j:
SEQ i=[0 FOR SCREEN.HEIGHT]
St j=[0 FOR SCREER.WIDTH]
SEQ
2.BUFFER( { i=SCREEN. HIDTH} + j]
F.BUFFER[ { i=SCREEN, NIDTH) + j]

MAY. DERTH
BACK. GNO. COLOUR:

-- --display the scene stored in the F-buffer

—auxilliary of the Buffer Process
PROC DISPLAY (VAR F.BUFFER[))= —UAR in order tc save copying Lime
UAR t:
SEQ i={0 FOR SCREEN.HEIGHT]
SEQ

bt := ((SCREEN.HEIGHT - 1) - i) » SCREEN.WIDTH
SEQ j={0 FOR SCREEN.WIDTH]

screen ! F BUFFER[L + j]
screen | "wN'; 'w(C’; EndBuffer:

%



PROC BUFFER (CHAK INt, INZ,
UM 2.BUFFER[}.
F.BUFFER[] )=

VAR colourl, ecolourZ2, x, y. z:
SEQ
CLEAR. BUFFERS{2.BUFFER, F.BUFFER}
IN1 ? colourl
INZ2 ? colour?
WHILE {(colowurl ¢> END} DR (coiourZ <> END)

ALT
(colour 1> (min.int + 2}) B INl ? x; y; 2z
SEQ
IF
Z.BUFFER[ {ymSCREEN, WIOTH) + x] > 2
PAR
Z2.BUFFER[ {mSCREEN. HIDTH) + x] := =z
F.BUFFER] (ySCREEN, WIDTH} + x] := colour]
TRIE
KIP
INl ? colourl
(calourZ > (min.int + 2}} & INZ ? x; u; z
SEQ
IF
2. WFFER[ (umSCREEN. WIDTH} + x] > z
PAR
2. BUFFER[ {ywSCREEN. WIDTH) + x] := =2
F. BUFFER[ {ymSCREEN.WIDTH) + x] := colpur2
TRIE

«IP
INZ 7 colour2

{colourl = NEXT.POLYGON} AND (colourZ = NEXT.POLYGDN) & SKIF
SEQ
INl 7 eolour]
IN2 7 eolour?

{colourl = NEXT.FRAME) AND (colour? = NEXT.FRAME) B SKIP
SEQ
DISPLAY(F,BUFFER)
CLEAR.BUFFERS{2,BUFFER. F.BUFFER)
IN! ?Pecolouri
INZ 7 colour2

(colourl = END) AND (calourZ = END) & SKIP
SKIP —Terminate
DISPLAY{F,BUFFER):
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VAR ET1[SCREEN, HEIGHT],
ET2[SCREEN. HEIGHT],
EDGES1[MAX. EXPECTED],
EDGES2 [MAX. EXPECTED],
firstfireel,
firstfreeZ,
RETL,
PET2,
2.BUFFER| SCREEN,HE1GHT w SCREEN.WIDTH].
* BUFFER[SCREEN.HEIGHT = SCREEN,WIDTH]:

CHAN c¢1, ¢2, c3, o4, 5, cB. 7, cB. c8, cll, cll, cl12, c13, cl4:
—THE  PIPELINE
PAR
TNRUTTER (c1)
UIEAING. TRANSFORMATION(c!, 2.5, d, D}
CLIP.LEFT(c2,c3, &, d}
CLIP.RIGHT(c3, c4, 5. d)
CLIP.TOP(c4.cS, s, d}
CLIP,BOTTOM{cS, B, 5, d)
CLIP.HITHER{cB. c7, 5. d. K1}
CLIF.YON{c?.cB.s. d.KZ)
X.SPITTER(cB.cS.cl0, 5, d)
PERSPECTIVE. TRANSFORMATION(cS, c11)
PERSPECTIVE. TRANSFORMATION{c10,¢12)
SCAN.CONVERTER{c!l,cl13,ET1,AET1, EDGES!, firstfreel)
SCAN,.CONVERTER(c)Z. cl4,ET2. AETZ, EDCESZ. firstfree2)

BUFFER{c13, cl4, 2. BUFFER,F, BUFFER})
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SAMPLE OUTPUT
PENETRATING POLYGDNS

I
111
I 0
ITrir - 00
111710000
111110000
[T III0000
11110000
DO 11000000
00000Y000000
0000000000000
1111
Il
I
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