
glz- CCPy 2

EXPLOITING PARALLELISM

in the

GRAPHICS PIPELINE

by

Theoharie A. Theoha.ris

Oxford Upiver~;ty

Computing Laboratory
Progr~mming Research Group-Library
8-11 Keble Road
Oxford OX, 3QD
Oxforo (0865) 54141

Technical Monograph PRG-54

September 1985

(published June 1986)

Oxford University Computing Laboratory

Programming Resea.rch Group
8-11 Keble Road

Oxford OXl3QD
England

Copyright © 1986 Theoharis A. Theoharis

Oxford Univel"8ity Computing Laboratory
Progra.mming Research Group
8-11 Keble Road
Oxford OXl 3QD
England

A dissertation submitted (or the degree of

Master of Science in the University of Oxford

September 1985

The stages of a Graphics Output Pipeline are discussed,
specified and implemented as an OCCAM pipeline. A
comparison of the performance of the stages reveals (or
rather confirms) the "boHJeneck" stage. The Splitter Tree
approach to improving this stage's performance is
analysed, specified and implemented.

~cbuwled........u

I would 111e ~o ex.pre•• my graUtude ~o Jail Page aJld Joe
Stoy, my .upervj.ors, for theIr belp aIld advice, Ib
SorelUJelJ for bl. u.l.talJce wUb tbe Z .pedflcatJoDB.
Profe..or Hoare alJd Richard Bird for tbelr 1flJd Jll~ere8t

III my fllludal problems alld all the {rJelld8 aDd colleague.
Jll tbe Progra.mDJ1l1g Re.earch Group for ma1JlIg tbl. a
mod colUJtruetlve and e.D)oyabJe year. The fl.DudaJ
support from the S.E.R.C. I. ad.Dowledged.

T A. 7;{eot1Q/7j

To my parent. AneholJY and Danai.

Introduction

Chapter 1: Background: The Graphics Pipeline

Chapter 2: Z Specification of two Major Graphics Operations
2.1. Geometrical Definitions

2.2. The Clipping Operation

2.3. The HSE Operation

Chapter 3: A Parallel Clipping Algorithm
3.1. Description

3.2. CSP Specification

Chapter 4: Hidden Surface Elimination Algorithm
4.1. Description

4.2. CSP Specification

Chapter 5: Performance of the Graphics Pipeline: The Bottleneck
5.1. Graphics Pipeline Performance (1)

5.1.1. Performance of Clipping

5.1.2. Performance of Coordinate Transformations

5.1.3. The Bottleneck

5.2. Graphics Pipeline Performance (2)

5.2.1. Viewing Transformation Timing

5.2.2. Perspective Transformation Timing

5.2.3. Clip Timing

&.2.4. HSE Timing

Chapter 6: Alleviating the Bottleneck by a Splitter Tree
6.1. The Splitter Tree

6.2. The Splitter Node

6.2.1. Description

6.2.2. CSP Specification

6.3. Combining the Splitter Tree with the Clipping Pipeline

6.3.1. Description

6.3.2. CSP Specification

6.3.3. The New Pipeline

6.4. Optimal Depth of the Splitter Tree

6.5. Is The Transputer Link Data Rate Adequate?

Chapter 7: Conclusions and Further Work

References

Appendix I: Picture Format

Appendix 2: Geometrical Calculations used in Clipping

Appendix 3: On the Implementation of the HSE Algorithm

Appendix 4: OCCAM Implementation

The ~~ transforms objecb! described in 3D world coordinates into
a picture on a 2D graphics screen. In this thesis we have dealt with the follOWing
important stages of the graphics pipeline: ~, lfukt.m ~ Elimination
LHSE) and coordinate transformations The ~ transformatjon stage performs a
coordinate transformation from the 3D .w.2rl.d. cOQrdinate system used to describe
our objecb!, to another 3D coordinate system whose origin is at the point of
observation and whose Z axis lies along the dtrection of view. The purpolle of the
viewing transformation is to make the calculations involved in the next stage,
dipplng1 easier.

Clipping acb! like a filter which only leb! through those objects that
are potentially visible from the point of observation. For example objects that lie
behind the point of observation are invisible. The stages that follow clipping only
have to deal with the objects that clipping leb! through and these might only
constitute a small portion of the original data base.

The next stage, the perspective transformation projecb! our
3D objecb! onto the plane of the screen. In doing that, depth information is not
destroyed because it is essential for the following stage, HSE.

We have said above that clipping only lets through those objects
that are "potentially" visible from the point of observation. This is became some
objects might hide others. HSE determines the frontmost object for every pixel of
the screen.

The main aim of this project has been the study of the stages
of the graphics pipeline with the view of suggesting an architecture that provides a
fast implementation of the pipeline.

Chapter 1 describes the stages of the graphics pipeline
and chapter 2 formalises that description by mathematically speciFying in Z the
operation that the more complicated stages of the pipeline should implement.

Chapters 3 & 4 introduce two algorithms which implement the
clipping and HSE operations respectively and give their CSP specifications.

Chapter 5 compares the perforance of the stages of the pipeline
and identifies the "bottleneck" stage which leads to an investigation of a method for
"widening" the bottleneck in chapter 6.

Chapter 7 mentions conclusions and suggesb! further work.

Chapter 1

BackgroUbd : The Graphia Pipeline

This chapter deBcrjbes the purpose and function of the
main stages of the graphks pipefjne and the coordinate
systems involved.

2

Assume a world whose objects are defined solely in terms of polygons
in some 3D coordinate system called !l2rl.d. coordinate ~ UY.C1 we is
assumed to be right handed since right handed coordinate systems are more
common than left banded ones.

We would like to show on our graphics screen the view of an imaginary
observer within our world. First of all we must transform the coordinates of our
polygons into a left handed coordinate system whose origin is at the observer's eye
and whose Z" axis lies along the direction of view.

y.z.
x.

z. J>
x.

y.

The new coordinate system is called ~ cOQrdinate ~ LE.Q). This
transformation simplifies the calculations involved in later l'itages of the pipeline and
is called ~ transformation. A l'ipecial case of the viewing transformation is
when the Z.. axis is collinear with the ZoO axis and the other axes are parallel, in
other words we only transform from a right handed we system to a left handed
EC system.

y. y.

z. z.

x. x.

3

:Next, we must determine what part of our world our observer can see. His
view can be simulated by a pyramid whose apex is at the Ee origin, is
symmetrical about the Z" axis and each of its four faces is perpendicular to the
plam defined by some pair of Ee axes. It is called the ~ fur. ~

Jm>JnilI.
Ie

\ 5 Yon1.--'
Top

I

I ~ither

Ze

,~ s
e d

X
/ 5

OF'
2 5 '

The process of separating the objects, or parts of objects, that He inside the
pyramid from those that do not is called ~ In addition to the four clipping
planes defined by the four faces of the pyramid we usually have "hither" and "yon"
clipping" planes, which are perpendicular to the Z" axis, in order to impose depth
restrictions. Our 2D screen is assumed to be positioned so that its plane is
perpendicular to the Z~ axis, its four corners coincide with the four edges of the
viewing pyramid and its Xs and Y.. axes are parallel to and have the same
direction as X" and Y" respectively.

4

z. z.

We can express the clipping limits in terms of the distance of the screen from
the point of observation, d, half the screen size l s and the Z. coordinate of the
point being clipped

Top Cl ipping Plane
\

y.

y.

d
screen

Let's consider the top clipping plane shown above. For any point P(x..,y..,z..)
which lies on it we can show by similar triangles that

dis = z.. I 1:1 ..

0'

!::Ie = ze • (s I d) = w

If a point lies below (inside) the top clipping plane then

!::I.. (!oj

and if it lies above (outside) the top clipping plane then

!::I..) W

The clipping limits for the other planes are given in appendix 2. Clipping reduces
the number of polygons that have to be processed by later stages of the pipeline.

5

Raving detennlned which objects lie within the viewing pyramid, we must
next get a 2D description of them as. the screen is a 2D device. We therefore
project onto the plane of the screen

SCreen

y.
~,. II P,.(X,.. ~.)

p.{x•• '::l",z,,)

d lis

We calculate the 2D ~ coordinates of P,. by similar triangles

ys/d=~.,/z.,

t.herefore

'l:!,. = (~. / z,,) • d

similarly for x

x~ = (x" / z,,) • d.

This transformation from the EC system to the ~ coordinate ~ LS.Q) is
called persp<>ctjve trans!o..maUon. x" and y" are expressed in the units that d is
expressed in. Instead we could define them as dimensionless fractions by dividing
by ,

'd = (I:l. / :2 ..) • (d / 5) = 'd. / ws

and

x. = (x" / Z.,) • (d / 5) = x.. / w

6

Note that

-1	 (x,.Y.,(l

sluce -101 (X.' b1. (101 after clipping. Therefore x, and y, can eaaiJy be scaled to any
~~ coordinate m1ml £fDQ) i.e. the coordinate system used by a
ph)'lical display device (e.g. 512 x 256). We could have t.ransfonned directly from
EC to POC but the IDtermediate dimensionless SC system enables UI to ute

multiple devices with dIfferent POC systems I.

To add some realism to our picture we mUit not display those polygons,
or parts of polygons, that are obscurred by others. The operation that detennines
whIch Is the frontmost polygon at each point of our screen, and hence eliminates
the bidden ones, i8 called Hidden Surface Elimination (HSE). It obviously requires
depth information and this Is lost In the perspective transfonnatJon. We need a
Wtb. preeeryjng perspective transformation and an augmented SC (or POC if we
transform directly from EC into POC) system that includes a third coordinate I,.

In calculating I, we must make sure that planes in EC transform to planes In SC
\Park85]. The interpretation of x, and Y. Is not changed.

But why didn't we perform the HSE operation In the 30 EC system in the
fU1lt place ? The answer is that 1t Is much harder ISuSp74]. In order to perform
the HSE operation in EC we would have to consider "ra)'l" leaving the observation
point at various angles and compute which faces they inlenlect. Such trigonometric
computations would be very costly. The depth preserving perspective
transformation transforms an object A in EC into an object A' in SC such that A'
viewed orthographically 1000 the same aa A vIewed in perspective. In other words,
the perspective transformation moves the point of observation to infinity
transforming the space enclosed by the EC clipping pyramid (truncated by the
hither and yon clipping planes) into a SC cube. Hence overlap tests can be done
simply by comparing the x, and Y. coordinates of points.

Here are the stages of the graphics pipeline described in this chapter

Viewing ~ CLIP I EC ,IPerspeclive SC HSE g
Transformation Transformation (POC) (PDC)

i.	 In our OCCAM implementation the perspetive transformation t.ransforms
directly from EC to POC in order to avoid the use of reals.

7

Chapter 2

Z Speeitieatiop of two Major Graphics Operations

In this chapter we shall give the rna thematicaJ
specification in Z [ZB5] of Clipping and Ridden Surface
Eliminatjon (HSE) in order to make their meanjngs precJse
before proceeding to tbe description of algoritbms to
implement tbem.

8

2.1. Geomelrical Definitions

A 1lQin! in 3D is described by its cartesian coordinates

R
Rc R

A ~ is the set of 3D pointe which satisfy a plane equation

LRNE------------------,

plane f(POINT)

a,b,C,d R

plane {(X,y,z) PDI NT 1 a_x + b.y + en + d o }

A line [s the intersection of t~o non parallel planes

L1NE-----------------,

line P{POINT)

:3 PLANE
l

PLRNEz I pI ane l n pI anez #- ¢.

line::. plane, n planez

9

The unrestricted set or 3D points is called ~

["ACE
space P(POINT)

A plane divides space into two halfspqq:;s The coordinates or all points in one
halfspace give a positive value when subst!!uted into the plane eqlJation, whereas
the cClordinates of the points in the other ha1fspace give a negative vallJe

IUSPACE-----------------...,

hal fspace f{PD!NT)
a. b, c, d R

halfspace {(x.~.Z) POI NT I a_x ... billy ... ClIl:Z ... d > O}

v

hal fspace {(x,y,Z) POI NT I alllx ... b_~ + CIi'Z ... d (O)

A ~ from a point p is a semi infinite line whose one and only end is at p. It
is defined as the intersection of a line and a halfspace. The line mlJst not be
parallel to the plane defining the halfspace and p must lie on this plane. The
halfline does not include p

iA~FLIN£---------------------~I

p POINT

halfl ine fcPD! NT)

3 U NE ; HALFSPACE 111M n helfspace 'iF ¢_

hairline = 11118 n halfspace

pEl ine

a-p.x + b.p.y +C.p.2 ... d = 0

10

A line segment consists of a starting point, an ending point and all the points
between them which lie on the line defined by these two points. We define a
line_segment as the intersection of two collinear halflines of opposite direction. It
is convenient to include in the line_segment either the starting or the ending point,
but not both

rINE_SEGMENT

start. POINT

end POINT

line_segment P(DOINT)

::I HAlFLI NE l ; HALFLI NE2 I
Pl = start" P2 = end

start € halfl inez" end € halfJ ine l ,"

1ine_segment '" (halfl ine1 n halfl inez) u {start.}~

Two line_segments are connected if the start point of one of them coincides with
the end point of the other

~CONNECTED I

connected lJNE_SEGH~NT ~ lINE_SEGMENT

V lsI. ls2 LINE_SEGMENT I (lsi. Js2) e connected'"

lsi. end = ls2.start

A sequence of connected line_segments is defined so that line_segments which are
adjacent in the sequence are connected

_ONNECTED_LINE_S~GHENTS i
connected_I ine_segments F(seq{LINE_5EGHENT»)

V I 55 seq (L I N.E_SEGMENT) '"

llss e c::onneci:ed_l ine_segments ~

Iss-1;succ: Iss!,;; CONNECTED

L _

11

We eball define a polygon to COnsist of
i. Its edges and

ii. Its contents i.e. all the points bounded by the edges.
The edges must be pairwise cODneded and the beginning of the first edge must
coincide with the end of the last edge, in other words the polygon must be ~

It is IlQ1 ~ for the edges to trQU over each other and they must all lie in the
lI.i..Dli:.~. Here are some examples of polygons

?1
and &orne counter examples

~

The contents of the polygon are defined as those points from which there is ~

~ from the polygon. In other word5 any "escape route" is bound to meet an
edge of the polygon.
A necessary and sufrlcient condition for a point p to be inside the polygon

I.e. a point of no escape, is that the number of intersections of ~ halfline starting
at p with the edges of the polygon be odd. A few examples will illustrate this

2 intersections (outside)

/ 1 intersection (inside)

~p-.v I 4 (outside) ~o (outside)
"5 (inside)

/

12

The following Z specification of a polygon encapsulates the above requirements

'OLYGON--------------------,
contents P(POINT)

3 edges: seq(LINE_SEGMENT).

(edges E CONNECTED_LINE_SEGMENTS

edges(l).start =edges(~edges).end

V l, j dom(edges) I h.j •

(edges(i). line_segment) n (edges(j). line_segment) =~

3 p I PLANE.

U {i l •• ~edges. (edges(i).llne_segment)} b pl.plane

contents Q {q : POINT I (3 HALFLlNE I q = p.

~(half1lne n (U {i : l..~edges. edges(i).line_segment}) £ odd)}

2.2. The CUpping OperatioD

The dipping operation restricts objects (or the polygons that define
them) to those that lie within a certain region of space, the ~~ The
dipping region can be described as the generallBed Intersection of an appropriate
sequence of halfspaces. The resuJt of clipping a polygon is then the intersection of
the points that lie within the polygon (its contents) with the clipping region

up'-------------------,
p7 POLYGON
c I i pp i ng_reg I on seq(HALFSPACE)
p! POLYGON

p!.contents =
n {i : l •• ~clipping_regjon. (cllppjn9-reglon(i).halfspace)}

n p7.contents

The dipping regIon usually takes the form of a truncated pyramid, the clipping
pyramid, as described In chapter 1.

13

2.3. The USE Operation

The following specifications are generic in terms of COLOUR

[COLOUR]

A picture contains 3D polygons of various colours. As each polygon can only have
one co\our, a picture can be described by the partial function

PIC POLYGON -+> COLOUR

The points that belong to some polygon of PIC are related to the colour of the
polygon that they belong to. This is a relation since some points might belong to
more than one polygon and therefore be a!!sociated with more than one colour

USP_rei: POINT H COLOUR

USPJel Q {p : POINT; poly dom(PIC) I p e poly. contents_
(p, PIC(poly)))

USP.-reI stands for Unhidden Surface Picture relation. We 5hall next derive from
USP_rei a function, USP_fun, that associates a unique colour to every point. The
colour that USP_fun associates with a point p must be one of the colour{s) that
USP_rei associate!! with p, the choice being implementation dependent. For
example our OCCAM implementation associates with p the colour of the first
polygon, in the order of processing, that contains p

USP_fun : POINT -+7 COLOUR

dom{USP_fun) = dam(USP_rel)

USP_fun ~ USP_rel

The result of performing the HSE operation will be a Hidden Surface Picture
(HSP) that associates 2D coordinates to colours (our points so far have been 3D)

HSP , R x R -+> COLOUR

14

The colour of a 2D point (x,y) is the colour of the 3D point (x,y,z) which haa the
smallest z coordinate among all 3D points whose lateral and vertical coordinates
are x and y respectively

HSP ;;;; {p dom(USPJun) I
(V PI : dom(USP_fu~)

PI 'It P "

Pl'x =- p.x "
PI" tl =: p.!:j • PI' Z > p. z) •

((P.x.p.y). USPJun(p)) }

The direct comparison of the z coordinates of points with the same x and y Is only
valid if a (depth preserving) perspective transformation has preceeded It (see
chapter 1). The HSE operation is then defined as follows

SE------------------.
pic? POLYGON -+? COLOUR

hsp! ~ x ~ -+? COLOUR

3 usP_rel POINT ~ COLOUR~ usp_fu~ POINT -+? COLOUR.

{usPJel =: {p : POINT: poltl dom(pic?) 1 p e poly.conte~ts

(P. pic?{pollj))}

dom(usp_fun) =: dom(usp_rel)

uEp_fun ~ usp_rel

hspl =: {p dom(uspJu~) I

(V PI dom(uspJu~)

PI 'It P "

Pj'X =: p.x "

PI'Y =: p.!:j. PI'Z> p.z) •

((P.x.P.Y). usp_fu~(p)) }

15

Chapter S

A Parallel Clipping Algorithm

Tile obJedive of tile clipping operation was described
using tile Z language In se<:tion 2,2. Tills cbapter describes
and gives a CSP trace specification of a parallel OCCAM
[INM084J implementation of tile Sutllerla.nd~Hodgman

polygon dlppJng aJgoritllm [SutIl74}.

16

a.l. DelcriptioD

The polygoo to be clipped, the llIubject polygon, is represented as a Bequeoce of
verticesj the first and the last being the same l • The vertices occur in the order
defined by a clockwiM traversal around the polygon. For example

is	 represented as <v\,vZ,v3,v4.vS.v,>.~..
v,

The algorithm clips the subject polygon against the first plane of the clipping
pyramid and produces a new sequence of vertices which represent the Ilubject
polygon clipped against the first clipping plane. The process is repeated fot each
plane of the clipping pyramid. The sequeoce of vertices coming out of the last
clipping stage represents the subject polygon clipped against the dipping pyramid.
Here is an example of the algorithm at work

CLIP against CLIP against
RIGHT pi ane" TOP plane

clipping pyramid
subject polbtgon

CLIP Olga i nst
SOTTOM. LEFT. (no change)
HITHER. YON
planes

i,	 Repeating the first vertex as last in the representation or a polygon.
makes consideration of its edges and hence reasoning about the
polygon, easier. In our implementation we have avoided this duplication
by remembering the first vertex (see Appendices 1 &4).

17

But how is clipping against a plane performed? The vertices of the subject polygon
are considered In pairs (s,p) in a clockwise traversal around It. For each such pair
0,1 or 2 vertices are output to the next stage depending on the relationship between
the pair (s,p) and the clipping plane. There are four cases to be considered

clipping plane

inside Inside inside inside

/P
•

P

• p/
P•

X represent output vertices

The obvious parallel implementation of the algorithm is as a 6-stage pipeline, where
6 is the number of planes in the clipping pyramid. A stream of vertices will pass
through the pipeline. The input stream represents the subject polygon and the
stream coming out of the jlh stage represents the subject polygon after it has been
clipped against planes I ..i of the clipping pyramid

-
CLIP. CLIP. CLIP. CLIP. CLIP. CLIP.

~PLANE PLANE f---,PLANE f-, PLANE PLANEPL'lNC::
 f-
RIGHTLEFT TOP BOTTOM HITHER YON

~ -

Notice that l as far as the dipping algorithm is concerned, the clipping volume can
be of any convenient shape defined by any number of planes.

A Problem with Concave PolygolUl
Concave polYg"ons which result in two or more polygons "fter clipping, will give rise
to an

offending
edge

edge which connects the resulting polygons as shown below

-

inside

The offending edge could be removed by a modest alteration to the dipping
algorithm as described in [Suth74].

18

3.2. CSP Specification

Each stage, CLIP.PLANEp,an" , of the clipper must comply with the following
specification

right (f pi.",.. (left)

where left and right are the input and output channels of the clipping !tage
respectively and (plan.. is defined as

fp1an.. (O) = ()
fp1an.. (p)} '" ()

fpIElo".. (s,p) rest) :: (p) ~ fpl.Il""«p) ~ resl).
insidel(plane.s) & inside(plane.p)

intersedion"(s,p.plane). p) ~ fpJar.e(p)· rest),
"'inside(p]ane,s) & inside(plane.p)

interseclion(s.p,p]ane) > ~ fpJa".. (p) ~ res:').
inside(pJane.s) &"'inside(plane.p)

fpJa".. (p) ~ rest),
"'jnside(piane,s) &"'inside(plane.p)

fp1ane specifiEos recursively the relationship that must hold between the input and the
output vertices of a clipping stage.

Now assuming that each clipping stage satisfies its specification Le.

Vi! l(i,N ol
; .. CLlP,PLANfp1ar1a{,) sat right, fpla"e(,)(left)

i.	 inside(plane,p) delivers TRUE Dr FALSE depending on whether
p is on the "inside" of the clipping plane Dr not. It£. calculation is shown in
appendix Z.

ii.	 intersection(s,p,plane) delivers the coordinates of the point of
intersection of the line segment from s to p with the clipping plane. Its
calculation is shown in appendix 2.

iii.	 N is the number of clipping stages. N = 6 in the case of the
clipping pyr amid with Hither and Yon planes.

19

we can deduce the following about their combination in a pipeline (by Ll of section
4.4.4. of [Boar83J)

» \ (.. (. N CLIP.PLANEpl8t1e (ljI

sal

3 5\,52, ,SN_l • {right (fpl_lNj(SN_I) 2
5 _ (_ "·lj(SN-2) &.N 1 f pl O

Sl (fplanellj{lefl)
) .•. (A)

assuming CLIP.PLANE if; left guarded.

lemm<.

5 (f(t) & t (u =9 s (feu)

assuming f{p) (f(p A q)

proof

(u 3v. tAv=u ... (l)
(section 1.5.5. of [Hoar83])

s , f(l) (given) · •. (2)

f(l) , f(l v) (assumption) · •. (3)

ffl) , flU) (by (1) & (3» · •. (4)

5 (f(u) (b~ (2). (4) and tran5llivil~ of ()

By the above lemma and noting that fpI8n.(P) (fpl8t1e(p A q),
(A) can be simplified to

» I <.. (~tII CUP.PLANEp1en.(l!I

sal

right (fplene(NjCfplane(N_I)" (fplane(ll(left.)]

20

In other words we have proved that if the relationship specified by f~,_ holds
between the input and the output vertices of each clipping stage l then the
relationship that holds between the input and the output vertices of the
combination of all the dipping stages in a pipeline is given by the combination of
the f~J.n .. functions of aU the stages. This obviously means that the output vertices
lie on the "inside" of all the dipping planes, as desired.
This result can be instantiated to the case of the clipping pyramid

» ,,{Lm.~lGHT. TD'.SDTICl'1.HITtO. YQtl} CLIP. PLANE pl .,..,,\ d

sal

right , fy~(fHlTl£H{f8on[Jol(rnP(rR.J(;Hl(rLEFT(lert)1

21

Cbaphr4

Hidden Surface Elimination Algorithm

This chapter describes the Z-buffer Hidden Surface
Elimination (ESE) algorithm and gives its CSP
specification.

22

The Z-buffer aSE algorithm haa been chosen among the wide variety of aSE
algorithms for the fonowing reasons

i.	 It is relatively simple to implement in a language like OCCAM
that does not provide many data structures.

Ii. It fits well into our notion of the pipeline of polygons (see appendix I)
as it does not require to examine all the polygons at once. Instead
polygons are processed individually in the order they come down the
pipeline. There is no explicit depth sorting step required.

The drawback of this algorithm is that It uses a large 2D array
called Depth buffer (Z-buffer) on top of the usual Frame buffer (F-buffer) array
that is used to store the colour of the pixels. The Z-buffer is used to store a depth
value for each pixel of the screen, so its dimensions are Yresolution • Xresolution.
The algorithm consists of a Scan Converter and a Buffer Process'

running in parallel

The scan converter receives polygons in "augmented" Physkal Device Coordinates
(that include a depth value) and determines the pixels that lie within each polygon.
In addition to that it calculates the depth of the polygon at each pixel within it by
making use of its plane equation (see Appendix 3) and transmits
(eolour,x,y,depth) quadruplets to the buffer process.
The buffer process receives such quadruplets and for each of them it

takes the following action;
If the value of the Z-buffer at (x,y) is greater than depth,

it	 updates this value to depth and also updates the (x,y) position of the
F·buffer to colour,

otherwise it doe!; nothing.

i.	 The name Buffer might be misleading here. It is not a buffer in the
CSP sense but a process that controls the Z and F buffers (which are just
2D matrices).

23

This in effect means that if the previous polygon that included pixel (x,y) WaJj

further away than the current one at this pixel, then the current one hides the
previous one at (x,y) and pixel (x,y) must take its colour.
Before processing a new frame, the Z.bu(fer is initialised to the

maximum representable depth vaJue and the F·buffer to the background colour.

I:b.g kan Converter
First of all we have had to implement in OCCAM cerlain data structures

along with specialised operations on them to support the scan conversion algorithm.
These were a bucket organised Edge Table {ET) and an Active Edge Table (AET)
organised as a list. The ET has one bucket for each scanline j containing
information about the edges whose minimum y coordinate corresponds to that
licanline. The AET contains information about the edges that the current scanline
intersects. The implementation of these dala structures is described in Appendix 3.
The scan conversion algorithm is an extension of the one described in

IFole82J; it also estimates the depth of the relevant polygon at each pixel scan
converted. Rere is its description

For each polygon

~Oetermine the plane equation Coefficients a,b,c and d

~Clear the ET and AET data structures

~Con5truct the ET for the polygon's edges

.Let V be the index of the first ncn-emptld ET bucket

.Whjje (AET ~ empty) DR (V (index of last non-empty ET bucket)

••~o\le ET bucket V into the AET maintaining AET sorted on x

••For each pair of edges el.eZ in the AET

••Let Xl,XZ be the x intersections of eI and eZ ~ith scanline V
•••Compule tne depth Z of the pol\:jgon's plane at Xl, V

(Z = -(d + a.Xl + b.Y) I c)

•••Compute the depth increment Zln~ = -a I c

•••For X := Xl to X2

••••Send (polygon colour.X. V.Z> to the buffer process
••••Z := Z + Z

••Update the RET b~~remo\ling those edges ~hose y~ is equal

to V and computing the x intercept of the remaining AET edges

~ith scanl ine V + 1

••SJbbJesort the AET. in case it became out of order b6J the update
••v ,= V + 1

24

Before specifying the function of the Z-buf£er HSE algorithm
in esp, we must define two auxUliary functions

KM returns a constant matrix of the value given to it as argument. The
size of the matrix is equal to the resolution of the screen

KM : VAL ---7 MATRIX

KM (v) = [v) "I..X.--.. I~l,"'" J:l..y~_ .. l"t"",

UPDATE updates a location of a matrix. The matrix to be updated,
the location concerned and the new value are arguments of UPDATE

UPDATE MATRIX x VAL x VAL x VAL ---t MATRIX
UPDATE (H.x.'tJ,v) = M. {(x.y) H v}

The sean converter process inputs polygons on channel b and outputs the pixels
within each polygon along with their associated colour and depth on channel c, A
special kind of polygon, NEXT.FRAME.POLY, separates the polygons of one
frame from those of the next (see Appendix 1)

a(SCAN. CONVERTER) = {b. oj

SCAN. CONVERTER = b 7 poJ~~on

(c ! NEXT. fRAME. PIXEL ---7
SCAN. CONVERTER

)

~ pol~gon = NEXT. fRAME. POLY ~

(for each pixel (x.y) inside polygon
(c ! coJour(pol~gon) ---7

c 1 x -->
ely ---t
c ! deplh(polygon,x,y)

)
SCAN. CONVERTER

25

The buffer process, which is only called so because of the usual name of this HSE
algorithm, receives pixels along with their associated colour and depth values from
the SCAN.CONVERTER on channel c. A special kind of pixel,
NEXT.FRAME.PIXEL, signals the start of a new frame. Upon receipt of this
pixel the buffer process sends the F-buffer to the screen in order to be displayed
and re-initialise~ the Z and F buffers

a(BUFFER) = {c. screen)

BUFFER = c 7 colour ~ z.F

(screen ! F -?

BUFFERKH (tt'\x.CIEF'TI1I. 101(IlAO(.cp.clm.aLlJJl)

)

4:	 colour = NEXT.FRAH!::.PIXEL)0

(c 7 x -?

c 7 ~ -?

c 7 dept.h -?

BUFFEf\.p01TE(Z. ~.!l, dBplh). LPrnTE{F,~.\,I. cc leue)

~ 2(x,~)) dept.h)

BUFFERu
)

)

26

The parallel combination of the SCAN.CONVERTER and the BUFFER IS our
BSE algorithm

ZH5E ;: (SCAN. CONVERTER II 8UffE~(I"IlU£PTH). I::M(BfOCQlO..NO_CQcull) \ {c}

Since the most complicated and time consuming part of the algorithm is the scan
conversion, we could have many scan converters running in parallel by distributing
the polygons amongst them (see section 6.3.3.)

to screen

27
>1 (1 ,,\~I\'2rs:~y

::;O"··t~".Ii;;\lJ ~_G.rr)raiory

PrO~'j18rnmlng Research Group-Library
8·11 :'ebI8 Road
')<;ora OX, 3QD
')XiMQ rOI'.65) 54141

We then need a buffer proceB6, PAR.BUFF, that is capable of dealing with all the
scan converters. It only sends the F-buffer to the screen if it has received a
NEXT.FRAME.PIXEL from all the scan converters. It uses a set, S, to keep track
of those scan converters (SeC) that have sent a NEXT.FRAME.PIXEL

a(PAR.BUFF) = {screen} u {c, j j: 1..I:tSCC}

PAR. BUFFl.F.S = I liS (c i 7 colour ~

({ (screen! F----?

PAR, BUFF1O'I(It'lX.IE'THl, 101 IBFO.. QlCUlO.CD..CUIl , I .. -sec
)

(S-{;) = ¢ 1
PAR. BUFFl.r.5-{I)

)

¢ co lour = NEXT. FRAME. PIXEL :t
(c i 7 :I<: ----?

c , 7 \;I ~

c, 7 depth ~

(PAR. BUFFLF~TE(I'><'Il.dapt"), LFOATE(F.><.\l.colcud. S

¢ 2(:1<:, y) > depth :t-

PAR. BUFF l.F.S

)
)

»

PAR.BUFF can be combined with the scan converters as follows

PAR.ZHSE = «II ''\ ..'''' (e, "" Ib, VISCAN.CONVERTER»» II
PAR. BUFF(M(~x.llEPTH), IO'I(BFO..GRWlD.CD..Wl). 1. . orser) \ {c j) i: 1.• I:lSCC}

a(PAR. ZHSE) = {screen} U {b, Ii: 1., I:lSCC}

28

PerformBuc::e of the Graphics Pipeline: The Bottlenec::k

Two different models are used to compare the
performance of the stages of tbe graphics pipeline. Tbe
first is based on an extension of a performance evaluation
of ten Hidden Surface Elimination (HSE) algoritbms by
Sutherland et al {SuSp74j. Tbe second is based on code
timing ligures derived from our OCCAM implementation
of tbe pipeline using the INMOS Transputer Estimator.

29

6.1. Gr.pbies Pipeline Performapce (1)

fLJ this secUOLJ we compare the performaLJce of tbe stages
of the graphics pJpeliLJe based on the excelleLJt
performaLJce evaluatioLJ of teLJ BSE algoritbms by
Sulberland et al {SuSp74}.

[SuSp74] compare the ten HSE algorithms as follows. The operations that each
algorithm has to perform (like sorting, searching, intersection calculations etc) are
identUied and assigned a complexity factor, crOl'l depending on a crude relative
estiJmte of their time complexity. A complexity factor of 1 is assigned to very
sbnple operations (like solving a plane equation), 10 to more costly operations (like
complltlng the relationship between two segments in 2D) and 100 to very expensive
operations (like computing the intersection between an edge- and an object in 3D).

The number of times an algorithm has to perform each operation,
no' is expressed in terms of "Environment Statistics" (like the total number of
edges In the environment, the number of relevant faces (after clipping), the
resolution of the screen etc). The performance of each algorithm is the.D estimated
ae

elgorithm performance = ~op - cfopnop

The ten algorithms are compared in three environments of dirrerent complexity by
varying the values of the Environment Statistics.

We shall estimate the performance of the clipping and
coordlllale transformation stages in terms of the same Environment Statistics that
jSuSp74] used to evaluate the ten ESE algorithms.

30

The Sutherland Hodgman polygon clipping algorithm is described in Chapter 3. In
our Implementation we have structured it as a six. stage pipeline, each stage
clipping against one of the six. clipping planes (see section 3.1.). A clipping stage
considers the edges of each polygon (which are derined in tenns of pairs of vertices
(s, p)) and for each such edge it does the follOWing

in_s := inside(plane.s) --determine which side of the
in_p := inside{plane.p) --clipping plane s &p lie on

case

in_s & in_p output p to next stage

J"in_s & in_p {i := intersection(s.p.plane)
output i to next stage
output p to next stage

)

in_s & J"in_p {i := intersection(s.p.plane}
output i to next stage

)

otherwise donothina

endcase

The above code fragment is executed once for each edge in the environment. E~ of
[SuSp74] is the environment statistic that stands for the total number of edges in
the environment (before clipping). Since the first clipping stage wlll consider a.1l the
edges in the environment, E~ Is the number of times the code fragment wUl be
executed. Each execution requires 2 "inside" calculations and possibly one
"intersection" calculation. Since these are both simple, each execution is assigned a
complexity factor of 10. It therefore takes 6 • 10 units of time for the first vertex
to pass through the 6-stage pIpeline (if it isn't clipped out) and then the rest of the
vertices are processed in E~ III 10 units of time. The time performance of the
clipping algorithm (i.e. the time It takes to process all the edges) is

6 • 10 + E~.lO OR
E~ • 10 units of lime since E is 1ikel!:l to be larget

31

6.1.2. Perrormanee or Coordinate Traosrorrnations
Coordinate transformations involve some arithmetic operations for each vertex
hence a complexity factor of 10. The number of vertices in the environment is the
same as the number of edg~s. However, the number of vertices that reach the
perspective transformation stage is likely to be smaller than the original number of
vertices, El , since some vertices will be filtered out by the clipper. [SuSp74] provide
another statistic, E~, (relevant number of edges) which stands for the number of
edges (vertices) that survive the clipper. The performances of the viewing and
perspective transformations are therefore

Viewing E~ • 10 unils of lime

Per sped i ve E~ • 10 unils or lime

since the viewing and perspective transformations are performed before and after
clipping reBpectively.

6.1.3. The Bottleneck
We shall compare the performance of clipping and the two coordinate
transformations against the performance of the HSE algorithms in each of the three
environments.

The values of E~ and E~ for each of the three environments ace [SuSp74]

Environment I E, E,

A 400I 800
8 20K 10K
C 4BOK 24DK

K = 103

Here is how the performances of the HSE algorithms, borrowed from [SuSp74] table
7, compare with those of clipping and the two coordinate transformations (we only
show the best and worst HSE algorithm performance for each environment)

Env I rcnment , HSE (best) I HSE (....orst)

A 140K
8 104M
C I 7.SM I

Clipping Vi e ing Perspeclive
Transr. Transf,

2.48 8K 8K 4K
628 2(JOK 200K lOOK

1500B ~.BM 4.BM 2.4M

K = I Q3

M = ! 06

B = 109

Although the comparison is crude, it is evident that RSE is the bottleneck.

32

6.2. Graphice Pipeline PerformaDOe (2)

1D. this B ection we shall estimate the "rate of flow" of
polygons t.hrough each of the stages of our OCCAM
implemen'tation of the grapmcs pipeline in order fo verify
the bottleneck and derive more accurate figures for our
implemen'tation.

The time taken by each stage of the pipeline to process a certain environment is
estimated using the INMOS Transputer Estimator. This Is a static estimator Le. it
does not consider the execution of the program. As a result we encountered
difficulties with the following constructs

i.	 WHILE loops

(the estimator considers a single execution of the loop)

ii.	 IF statements

(the estimator considers the most expensive alternative)

The first problem was solved by estimating the number of times
a loop is executed in terms of environment parameters like the number of polygons,
the resolution of the screen etc and multiplying that by the cost of a single
execution of the loop.

The solution to the second problem would involve estimating
the probabilities for each path of an IF statement, multiplying them by the cost of
the path and summing up the products. The complexity of the solution coupled
with the o~servation that most IF statements in our code are quite evenly balanced l

led us to ignore this problem.

The follOWing estmation of the timing of the stages of the
graphics pipeline assumes knowledge of the algorithms involved and their
implementation, details of which are given in chapters 3 & 4 and appendix 3.

33

The environment parameters we need in order to estimate the
number of loop executions are the following

l.Uertical screen resolution..................• Yres

2.Horizontal screen resolution• Xres

2.Depth complexity Dc

4.Tot.al number or polygons P~

S.Number of relevant. polygons .. . p.

6.Average polygon ~idth in pixels...........•.. W

7.Average polygon height in pixels
(or scan lines) ..•.......•...•. H

8.Average number or edges per polygon•..••. E

9.Average number or edges per bucket
in final Edge Table .•......... Eelf

lO.Average number of edges per bucket
in Edge Table being constructed Eetc

11.Average number of edges in the
Active Edge Table•..•..... E

SlIl

34

http:Table....�..�
http:polygon....�..��
http:�.......�...�
http:pixels...........�

Let's assume that our environment contains 1024 four·sided polygons (PL=1024,
E=4) and that half of them are clipped out l (P,.=512). Let's also say that our
screen's resolution is 500)(500 (Yres=500, Xres=500) and that we have a depth
complexity of 1 (Dc=l). Depth complexity is the average number of polygons that
cover a pixel or, equivalentlYt the average number of times that a pixel ls output
from the scan converter.
Then the average number of pixels covered by a polygon is

(Yres lit Xres _ Dc) I P, and therefore

W = H = J (Yres - Xres - Dc) 7P,
assuming no particular shape for a polygon.
Now since the edges of only one polygon occupy the Edge Table (ET) at a

time, E.H=E/B, as we only consider the ET buckets that correspond to scanlines
that our polygon intersects (there are H of them). E.H denotes the number of
edges per ET bucket once the ET has been constructed. This is different from the
average number of edges per ET bucket while the ET is being constructed, E.le•

Before inserting the first edge into the ET, the average number of edges per
relevant ET bucket is 0, before the second edge it is liB, before the third it is
2/H and before the fourth it is 3/B (maintaining our assumption that E=4).
Therefore
E." = (0 + l/H + 2/H + 3/H) I 4

= 3 I (H • 2).
E••L, the average number of edges in the Active Edge Table (AET)

(or the average number of polygon edges that a scanline intersects,provided it
intersects some), can be made equal to 2 if we assume that the majority of
polygons used for building pictures are convex

} sCAnlines

LThe assumption that half of the polygons are clipped out is borrowed
from [SuSp74].

35

Her~ are the environment parameter values that result from our
instantiation

Yres= SOO
Xres= SOO
Dc = I
P = 1024

t
P = 512

r

W = Jr-;'(Y","e"sccc."X",e"sCCC.'"""O"c')",/"-';-pc J (SOD • SOD. 1) / S12 = 22
H =W= 22
E = 4
E.H=E/ H=4/ 22= .18
E l = 3 / (H • 2) = . 07

E:.:= 2

We shall next use these parameters to estimate the number of transputer cycles,
hence the amount of time, that each of the stages of the pipeline would take to
procesB our environment (called the stage's timing). In what follows multiplications
arise from loops. The cost of the loop (in transputer cycles) given by the
Transputer Estimator is multiplied by the estimate of the number of times the loop
will be executed (which is expressed in terms of the environment parameters); both
figures are given on the program listing in appendix 4.

&.2.1. Viewing Transformation Timing
The viewing transformation's timing can be expressed as

Tv = Pt • (138 + E • 399)

= 1.8M transputer c~cles

~hich ~ouJd take .09 sec on INMOS T424-20 (INTR84].

&.2.2. Perspective Transformation Timing
Its timing is

Tp = Pr • (138 + E • 439)

= 1M transputer c~cles

~hich ~ould take .OS sec on T424-20.

Note that since the perspective transformation is performed after dipping, the
expression used for the number of polygons is Pro

36

6.2.3. Clip Timing
As we are only interested in the rate of flow through the clipping pipelille, we
should consider the timing of the first clipping stage which deals with the most
complex environment. The timing of this stage is

T = P~. (1213 + (E-1) _ 979)e
= 4.2M transputer cycles

which would lake .21 sec on T424-20.

6.2.4.. BSE Timing
Before determining the timing of the scan converter, which is the main routine of
our OCCAM implementation of the Z-buffer algorithm, we estimated the amount of
time taken by each of the auxilliary procedures it uses by means of procedure calls

CLEAR lakes Tn = 13686 transpuler c~cles (tel
INSERT.ET.EDGE T'N = 192 + 307 + (E,,~c / 2)_49 ::: Sal tc
HOUE.ET.8UCKEi. TO. RET TI"[] = 36 + E.~r.19S = 71 te
UPDATE.AET Tlf' = 34 + E...~.103 = 240 lc
8U88LESORT' = 50S tcTso
UPDATE. HI N. HAX. ET. BUCKET Ttf'1 = 54 lc

The cost of the scan converter is then given by

= Pr • (1034 + To. + (E - 2) • (139 + TIN + TI'\H) + 2 - TIN + 2 • Ttf'1 +Tsc

+ H • (44 + TI"[] + E..,,~ • (414 + W • 152) + ilf' +)}Tso

= 103H tral"lsputer c~cles

which ..oul d take S.2 sec on T424-20.

So, for our particular environment instantiation, the rate of flow through the HSE
stage is Tsc / Tc = 25 times smalJer than the next smallest rate of flow among the
other stages of the pipeline.

i. The WHll.E loops of BUBBLESORT are likely to be executed once only
since the AET will rarely be out of order.

37

Chapter 6

Alleviating the Bottleneck by • Splitter Tree

This chapter describes the Splitter Tree approach [Park80J
to allevja&-iDg the bottleneck of the graphics pipeline
Imposed by HSE. A CSP specWcatioD is given and the
optimal depth of the Splitter Tree is estimated.

38

6.1. The Splitter Tree
The performance of the bottleneck HSE stage of the graphics pipeline can be
Improved by splitting up the polygon stream coming down the pipeline into SEveral
substreams using a splitter tree [ParkSO] before the HSE stage. A number of HSE
procesaes can then process separate data in parallel

plane 8

Clipping p~,amid

(seen f,om apex)//,
, /

, /,
/,

/
,

/ ,
/ ,

/ ,
/

,
/ "- ,

plane A

Each node of the splitter tree is not much more than a clipper of the
Sutherland-Hodgman type [Suth74], except that Instead of discilrding the polygons
or parts of polygons that lie on the "outBidelt of the splitting plane, it uses the
splitting plane to separate those polygons that lie on one side of it from those that
lie on the other.
To achieve 2"-way splitting, so that 2" HSE processors

can run in parallel, we need 2"·1 splitter nodes arranged in a binary tree of depth
n. For example to achieve B-way splitting we need ~·1 = 7 splitter nodes arranged
in 3 levels.
Since the splitting algorithm is a small modification of the clipping one,

the rate of flow through splitter nodes should be much the same as the rate of
flow through clipper stages (see sections 5.2.3. and 6.4.) and therefore the splitter
tree should not impose any timing overhead (apart from an initial delay of the
polygon stream by an amount of time proportional to the number of splitter tree
levels).

Assumptions
The following conditions must hold if the splitter tree is to achieve its purpose

i.	 The polygons (or whatever our primitive objects) must be
evenly distributed about the splitting planes.

Ii.	 A new bottleneck must not be created when the outputs of the HSE
processes are put back together in order to be displayed (see diagram
of section 6.3.3.).

39

~

6.2. The Splitter Node

6.2.1. Description
A splitter node splits its input stream (which consists of polygon vertices) into two
outpul streams; the decision as to which output stream a vertex goes to depending
on which side of the node's splitting plane the vertex lies in

out 1 out2

A Sp 1i tter Node

Several splitter nodes connected together in a binary tree fashion, constitute a
splitter tree. Here is how each splitter node works. The vertices of the subject
polygon are considered in pairs (s,p) in a clockwise traversal around the polygon,
just a~ for clipping. There are 6 cases to be considered

splitting plane

sidel (de2

5

p p
5

5\ 5~ P

~ represent output vertices to channel outl
o represent output vertices to channel out2

40

5

6.2.2. CSP specif"icatioD
Each splitter node must satisfy

out! (fl pl.. (in) 1\

outZ (fZpi.. (in)
where

f1
pl

_ «» = <>
flpl_ (p» = <>
flp (s.p) ~ rest) (p) ~ f1pl«p) ~ rest).

("'sideZI(plane.s) & sidell(plare.p)

'of onplane"(plane,p»

(intersection(s,p,plane), p) ~ f1pl (p ~ rest),
sideZ{plane,s) & sidel(plane.p)

(intersection(s,p,plane» A fl I_«P> A rest).
sidel{pJane,s) &side2(plane,~)

flpl"""(P) ~ rest),
TRUE

and
(0)	 = ()r'pl.".
«p») = ()r'1"
(<so p) ~ rest) (p) ~ f 2pl {(p) ~ rest).r'1'1

<-'"siael(plane,s) & side2(plane,p)

v onplane(plane,p»

(interseetion(s,p.pJane), p) ~ f 2 ~ rest),plan.. (f
sidel(plane.s) &sideZ(plane.p)

(interseetion{s.p,plane» f2pJane«p) rest),A A

sideZ(pJane.s) & sidel(piane,p)

f2 1 «p) ~ rest).
p an. TRUE

f\l_ and f2 pl recursively specify the relationship that must hold between the
input and each of the two output6 of a splitter node.

i.	 sidel(plane,s) is a function identical to the function
inside(plane,s) of clipping; but in splitting both sides of the splitting plane are
treated equally and the name of this function is supposed to signi~, that.
side! delivers false if s is on the splitting plane. side2 is a similar function
for the other side of the splitting plane.

ii.	 onplane(plane,p) is a function which tests if a point p is on the

splitting plane by checking if p satisfies the splitting plane equation.

41

6.3. CombiDing the Splitter Tree with the Clipping pipeline

6.3.1. Description
Let's instantiate our splitter tree by assuming that it consists of only one level
whid splits about the pl~e

plane X-O

1 • , ,
,, ,,

/,
/'z." , ,

/ " , ,, ,/

X ::::: 0

y•

,,,
Cl ipping P~ramid (apex vie~)

There are two pOSSible ways of combining our one level splitter tree with the
clippiIlg pipeline; either we split and then clip or we clip and then split

SPLITTER/CLIPPeR CLIPPERlSDLJTTER

42

At first the SPLITTER/CLIPPER seems fasterj each polygon has to pass through
only six stages compared to seven in the cage of the CLIPPER/SPLIITER.
However the CLIPPER/SPLITTER is preferable for two reasons

i.	 It uses fewer clipping proCeSBeSj in this case six

compared to ten of the SPLITTER/CLIPPER.

ii.	 The SP:LITTER/CLIPPER is not really much faster. The
rate at which the SPLITTER/CLIPPER processes polygons is
determined by the speed of its splitter which deals with the most
complex:: environment. Both designs process polygons at about the same
ratej the only difference being that the SPLITTER/CLIPPER outputs
its first polygon earlier by the amount of time it takes to clip one
polygon against a plane. And this is insignificant if the polygon stream
is long.

43

6.3.2. CSP SpecifieatioD
Our clipping pipeline can be modelled by the CSP process

CLIP. PIPE = CLIPLEFT»CLIPIlIGHT»CLIPTtp»CLlPBUTTCtl»CLlPHITf£R»CLI PYCtI

Q(CLIP.PIPE) = {left. right}

(see section 3.2.).
The one level splitter tree can be modelled by the process

SPLIT. TREE = SPLITx=D

Q(SPLIT. TREE) = {in, Qutl. QutZ}

We shall now combine them in a CLIPPER/SPLITTER fashion by renaming the
righ1 channel of CLIP.PIPE to in and then hiding it as it is an internal
communication channel between the two processes

CLIP/SPLIT = (I~iih\ CLIP.P1PE II SPLIT. TREE) \ (In)

a(CLIP/SPLIT) ={Jeft. outl. QutZ}

From Eection 3.2. we know that

CLIP. PIPE sat right (fCL1p(left)

where rQ.IP = f YCtI"fHI T"tel"feoTIt:l1·fTtp"f1l1GHT·f L£n
Therefore

inn~fLlP.PIPE sat in (fCL1p(left)

Also, from section 6.2.2. we know that

SPLIT. TREE

sal

out! (f1x_o(in)

outZ (f 2 =o(in)
x

It musl therefore be the case that

(In""" CLIP.PIPE II SPLlT.TREE) \ (in)
sa~ right

out! (f\=o(fQ.IP(left»
 A

QutZ (f 2x..D(fCLIP(lefL»)

!ince .in is the only common channel of i~igi?t CLIP.PIPE and SPLIT.TREE.

44

Here is how our pipeline looks after the introduction of the splitter tree. A splitter
tree of depth 1 is shown

HSE HSE
S::a;1 S::an

Converter Converter

Frame &Depth Buffers

This corresponds exactly to the structure of our OCCAM program.

45

6.4. Optimal Depth of the SpUtter Tree
In order to determine the optimal depth of the splitter tree we shall extend the
second model we used to compare the stages of the graphics pipeline (see section
S.2.). First of all we give the rel."tionship between the environment parameters
before and after a split. Since the environment is divided into two equal halves by
a spill, the area of the screen corresponding to each half of the object space (Yres
• Xres) and the number of relevant polygons (Pr) reduce by half (assuming that
the majority of the polygons are not cut by the splitting plane). The rest of the
environment parameters are not affected by a !!plit.

Here is how the environment parameteu after a split (shown primed)
relate to the ones before the !!plit

Yres' = Yres / "'I r.there 1("'1(2

Xres' = (Xres _ "'I) / 2

(so that Yres • Xres =2 • (Yres' • Xres'))

Dc' = Dc
p'=p /2
, = .,==",....=0'"-:-""'''''''"'.. • = _ _ <P/2) wll~ J(Yres~ Xres~ bc~)/Pr ~ J«(Yres Xres)/2) Dc) / =
H~ =H simIlarly
[' = E
E.v " = e:' / H~ = E / H = E.~r

E.~c ~ = 3 / (H~ • 2) = 3 / (H • 2) = E.~c

E..l ~ = E...~

Note that P~, the number of polygon!! before clipping, is irrelevant since splitting is
perform.ed after clipping.

To estimate the optimal depth of the splitter tree we reason as follow!!.
For each new layer we add to the !!plitter tree, the number of its leaves (the HBE
proce35ors) is doubled (assuming a binary splitter tree). Hence the rate of flow
througn the HBE layer is also doubled since the environment is evenly di!!tributed
about the splitting planes.

46

What's the limit t.o bow fast we can make the pipeline as a whole"! The nte of
flow through a pipeline is only as large as the smallest rate of flow o....er ill Its
stages. Bence we should only increase the depth of the splitter tree untll the rate
of flow through the aSE layer is equal to the smallest rate of flow o....er all the
other stages. We must consider therefore the rate of flow through the
transformation stages, clipping and the root node of the splitter tree which deals
with the most complex environment. We have deri....ed timings (the time taken to
process our environment Le. the inverse of the rate of flow) for the iewing and
perspective transformations as well as for clipping (Tu, Tp and Tel in section 5.2.
The timing for the first splitting node is

Tsp = P,. • (1430 + (E-l) • 1131)

= 2.5M transputer clJcles

which would take .12 sec on T424-20.

Now max(Tu,Tp,Tc,Tsp) = Teo Bence clipping has the smallest rate of now (lver aJI
the stages of our pipeline except aSE. The following graph shows the relationship
between the depth of the splitter tree and the timings of aSE (TscJ and clip (Tel.

6'

0
N

i 5
5.2

Too
~~

6~ 4

-'"o• 0

• •~..,

<: ~
0",
E 0
0
o •

3
2.6

~~
> •
o >

2

• 0~ .3
.~••g
1\

I

.2 T
6 .325

.,625 08

0..,
0

o I 2 3 4 5 6
E
~.. depth of splitter tree

Our splitter tree should therefore be of depth 5. This means 32-way splitting
requiring 32 aSE processors.

47

6.6. 1. the TraD8puter Link nata Rate Adequate ?

As in any system of parallel processont, we must ensure that the amount
of information that must be communicated between the processors can be handled
by the communication links.

Let's assume that each of our processes is running on a separate transputer,
using on-chip memory only and that we are processing an environment of the
complexity described in section 5.2. The restriction on the rate of flow of polygons
through our pipeline lmposed by the processing speed of the stages is about SOOO
(pre clipping) polygons / sec (implied in section 6.4). Does the available link data
rate a.llow this rate of flow or does It impose a stricter limit ?

The highest communication rate is likely to be required either on the link
going into the first stage of the clipper or on the links coming out of each of the
aSE Scan converters (see figure of section 6.3.3). This is because the clipper is
likely to reduce the number of polygons going down the pipeline, hence the amount
of information that has to be communicated, but the amount of information is
increased again by the HSE Scan Converters which convert the polygon descriptions
into pixels. One might ask : And how will the massive pixel outputs of all the 32
aSE Scan Converter processes be put back together in order to be displayed ? The
answ~r offered by toda)"s technology is Time Multiplexed Video Mixing of the
video outputs of the Frame Buffers (Which are Dual Ported Video RAMs). In
other words the image is put back together in video, the very last step before
beinS diaplayed. Of course the Frame Buffers must have some intelligence in order
to deal with the pixel descriptions they receive from the HSE Scan Converters as
dictated by the z..buffer alsorithm. A microprocessor and the Depth and Frame
buffers would probably be placed where BUFFER is shown below

IH~EI

lFERI

VIDEO MIX

~t~"
screen

48

Let's estimate the data rate required on the two links mentioned "hove

A.	 Clipper Inpu t Link.
We have assumed that each polygon has an average of 4 vertices (E = 4),
each described by 3 coordinates occupying a total of 48 bytes (assuming that
each coordinate is a 4 byte integer). In addition each polygon has 1 byte to
describe its colour and 1 control byte, making a total of 50 bytes / polygon.
At 5000 polygons / sec, the required data rate is 250 Kbytes / sec.

B.	 HSE Scan Converter Output Link.
Maintaining our assumption that the clipper halves the number of p()lygonE!
(see section 5.2), the 32 HSE Scan Converter processes have 2500 polygons /
sec to deal with or about 80 polygons / sec each, since we have assumed an
even distribution of polygons about the splitting planes. With an average
polygon area of 484 pixels (W = H = 22 pixels, section 5.2), each HSE Scan
Converter has to output about 40,000 pixel descriptions / sec. Each pixel
description consists of the x and y screen coordinates of the pixel occupying 2
bytes each, the depth of the relevant polygon occupying 2 bytes' and the
colour of the polygon occupying 1 byte; that makes 7 bytes I pixel
description. A data rate of 280 Kbytes / sec is thus required. (With
appropriate coding we can avoid the transmission of redundant information.
The colour value need only be transmitted once per polygon for example. We
could use data reduction if the data rate of this link was inadequate; the extra
computation needed should be taken into account in the timing estimate for
the HSE Scan Converter).

i.	 HSE takes place in image space (after the Perspective Transformation
has been performed). It therefore uses either Physical Device Coordinates or
Normalised Device Coordinates (which will be transformed into the Physical
Device Coordinate systems of several deVices). The useful range Qf such
coordinates is limited by the resolution of the screen and 2 bytes / coordinate
is more than enough to address even the highest resolution screens. The
accuracy of the z·coordinate is also assumed to be reduced to 2 bytes by the
(depth preserving) Perspective Transformation in order to decrease the size of
the Z-buffer.

49

The factors that can limit a link's data rate are

I. Transmission Time {l.l psec I (byte + control bits))

2. &heduJiug Overhead [6 cycles I communication)

3. Memory Contention between Links I Processor

4. Rendezvous delay

The average time taken by a communication is given by the estimator as
26 cydes, allowing a maximum data rate of about 770 Kbytes I sec for a 50 nsec
cycle (taking into accouut the worst case of single byte communications). This
estimate takes into account limiting factors 1. and 2. and the maximum data rate
it allows would be sufficient for our purposes if those were the only limiting
factors.

Memory Contention between links and processor is irrelevant if we
only have one process I transputer as either the process is executing and all the
memory cycles are available to it, or the process has been descheduled in order for
a communication to take place in which case the link concerned has all the memory
cycles available to it'.

If one of the two processes taking part in a communication arrives late
at the Rendezvous then the communication takes more than 26 cycles for the
proces; that arrived first. However the slowest stages of our pipeline (HSE and
CLIP) are balanced and the (fast) stages between them essentially act as buffers.
It is therefore Hkely that the slow stages will make the fast stages wait for them at
the Rende7Vous with the effect of lengthening their communication time (so that the
faster stages will run at the pace of the slowest ones) and there should be no
overall delay.

From tho.': above discussion we can conclude that the estimator's 26 cycle
communication time take8 into account the effective factors that limit the data rate
and therefore the available link data rate should be sufficient to handle the
communication between the stages of our pipeline under the assumptions we made.
Furthermore it seems that there is scope for optimising our code in order to
increase its processing capability and take advantage of the spare link data rate.

i.	 If we put more than one process per transputer· for example several
clipping stages per transputer, excluding the "bottleneck" first clipping stage of
course - then memory contention between links and processor must be taken
into account before deciding on the allocation of processes to transputers. One
can start at the fact that if all links are working flat out, they request 1
memory cycle every 325 nsec. This corresponds to 15 % of the total number of
memory cycles for a cycle time of 50 nsec. In other words there will be a
memory contention for 15 % of the memory references made by the processor.

50

Chapter T

ConclualoD8 and Further Work

Prom Operation Spec:ifieatloD8 to Algorithm SpecitieatioD8

We gained a dear idea of the dipping and hidden surface elimination
operations by specifying them in Z In chapter 2.

We then proceeded to specify algorithms which would implement
the above operations In CSP (chapters 3 & 4) and finally we coded these
algorithms in OCCAM.

Since Z and CSP are formal specification notations, we could formally
relate the specifications of the operations to the specificationa of the algoriUms by
the rules of data refinement, but this was outside the scope and time limits of this
project.

Even nl8tribution of Object Spaee Primitive.

It is an essential assumption of the splitter tree that the polygons (or other
primitives) are evenly distributed about the splitting planes, else some of the HSE
processors will be Idle.

Instead of assigning a contiguous area of object space to each HSE processor
we could assign to it arbitrary non contiguous areas by appropriate splitting. The
workload Is then likely to be more evenly spread among the HSE processors. But
would the extra splitting that this implies as well as the cost of reconstructing the
image at the other end be cost-effective '1

Real Time?

From the graph of section 6.4. it is evident that we could not hope to achieve a
rate of flow through our current pipeline of more than one frame (of the
compleXity described in chapter 5) per .2 seconds since that is the value of the
c1ipptng overhead Tc For our particular environment therefore, we have not
achieved real time performance Le. a rate of flow of at least 25 frames per
second. Our bottleneck has moved further up the pipeline to the first stage of the
dipper. If we want to further improve our timing we have to divide the clipper's
task. One possibility would be to divide our 3D polygon data base amongst several
pipelines like the one introduced in this project.

51

Tral\lputer Implementation

In order to decide how to allocate the processes that constitu te the stages of the
pipeline amongst transputers we must take into account their speed and code size.
Here are some hints (refer to diagram of section 6.3.3.). For a system with a
splitttr tree of optimal depth, we expect that the rate of flow through the HSE
layer will be equal to that through the first dipping stage and that these will be
the sLages with the smallest rate of flow of our pipeline (see chapter 6). Hence
each HSE stage as well as the first clipping stage should reside on their own
transputers to avoid any timing penalty. The pair of perspective transformation
procE'tSes that emerge from each leaf of the splitter tree could be incorporated in
the transputer of the splitter tree leaf since the leaf splitting node will be dealing
with an environment that is much simpler than the original (16 times simpler for a
splitter tree of depth 5).

We should also consider the possibility of a tertiary splitting
tree so that all the channels of a transputer are utilised by a splitter tree node.
This implies that each splitter tree node performs 3-way splitting about 2 planes.
The root node should remain a binary splitting node to avoid any timing penalty.

Suitability of OCCAM

Its features were handy in expressing the parallel combination of our algorithms
and the non-determinism involved in the "buffer" process of the HSE which has no
means of knowing which scan converter process to expect the next input from (see
diagram of section 6.3.3 and OCCAM code in appendix 4).

However OCCAM's lack of data structures meant that we ha ve
had to implement buckets and lists using LD arrays (see appendix 3).

The use of real numbers has been avoided for two reasons

i. speed
ii. unavailability

Scaling has been used instead.

52

[Fole82J Foley J.D. and A. Van Dam,
"Fundamentals of Interactive Computer Graphics",
AddLson Wesley, 1982.

jHoar83J Hoare C.A.R.,
"Notes on Communicating Sequential Processes",
Technical Monograph PRG·33, August 1983.

[INM0fl41 INMOS Lhnlted,
"OCCAM Programming Manual",
Prentice Hall Inlernationt.:, 1984.

[INTRB4] INMOS Limited,
"IMS T424 Transputer Preliminary Re{erence Manual",
August 1984.

INewm79] Newman W.M. and R.F.Sproul,
"Principles of Interactive Computer Graphics",
McGraw Hill, 1979.

[Park85[Pad. C.S.,
"Interactive Microcomputer Graphics",
Addison Wesley, 1985.

IParkBOj Packe F .1.,
"Simula tion and Expected Performance Analysis of
Multiple Processor Z-buffer Systems",

Computer Graphics 14 (ACM·SIGGRAPH),
N' 3 (July 19BO), pp. '&-56.

[Suth74] Sutherland I.E. and G.W. Hodgman,
"Reentrant Polygon Clipping",
Communications of the ACM, 17(1),
Jannary 1974, pp. 32-42.

[SuSp74j Sutherland I.E., Sproul R.F. and R.A. Schumacker,
"A Characterization of Ten Hidden Surface Algorithms",
Computing Surveys, March 1974, pp. 1-55.

[Z85] Kote" fOr a Z Handbook, Draft 1,
Programming Research Group, 1985.

5)

Appwlix 1

Picture Pormat

This appendix describes the syntax uaed in our OCCAM implementation to define
pictures In terms of polygons.
Each static picture, called frame, CODSlats of a eet of objects

descrIbed in terms of polygoDB. All polygona go through the same pipeline, 80 a
way of separating their coordinates 18 neededj for thiB realOD the special value
NEXT.POLYGON Is inserted between the coordl.oates of 8lleeeutve polygons

(polygon) <colour> {.<~>.<W>.<z>}·

<frame> (polygon) {.NEXT.POLVGON, (polygon>}

Notice that a polygon caD be empty (i.e. consist of a colour only), or consist of
only one or two vertices. Such edgy forma of polygon can reault from extreme
cases In the splitter process or incorrect input and are eventually discarded.

A sequence of frames can be used for animation. A movie is
a sequence of frames separated by the special value NEXT.FR.AME

<movie> ::= <frame> {.NEXT.FRAME. <frame>}- END

The 8pecial valUe8 are used to reset the approprIate data structures before
procesl!lng the next frame/polygon. For example the scan converter process \18e8

NEXT,POLYGON as a signal to clear the Edge Table and the Active Edge Table
before processing the next polygon. The NEXT.FRAME value can be used by the
display controller to clear the screen.

54

Geometrical Caleulations used in Clipping

A.2.1. Determining whether a Point is on the "wide" of 8 Plane

From chapter 1 we know that we can determine whether a point is on the "inside"
of a clipping plane by comparing the appropriate coordinate of the point with w (=
z•• (sId)) which can be calculated as soon as the eye coordinates of a point are
known. In our OCCAM implementation w is calculated once and for all in the
viewing transformation stage and kept as the fourth component of the coordinates
of a point [x",y.,zlI,wl.
For the hither and yon clipping planes we don't need to compare against w a.B

these planes are perpendicular to the Z. axis. Here is a summary of the condtions
that a point must satisfy in order to be on the "inside" of each of the six clipping
planes

P(x... Y... 2..)

Is lnside Ir

LEFT xe > -w

RIGHT x. (w

TOP y. (w

BOTTOM !::.I.. > -101

HITHC:R

VON
z. > ",
'. (",

z..

z.,

=

=

k]

k2

is

is

the hither cl ipping plane

the ~on clipping plane

55

A.2.2. Calculating the Intersection of 8 Line Segment ond a Plane

This only need be calculated if the line segment actually crosses the plane. The
method used is the one suggested in ISuth74]. Consider the top clipping plane and
a pair of points PI(XpYl'ZI) and P2(x2'Y2'Zz) on either side of it

P,

Let a be the ratio IPIII / IP l P 21 . Then the coordinates of I can be computed as

j = po; + a(p; - p;)

by notL'lg that P;I = a(P2 . PI)'

In order to estimate the ratio Ct for the top clipping
plane, we need a measure of the distance of P 1 and P 2 from that ;Jl2."e. (y - w) is

a suitable measure. Since this has opposite sign for PI and P2 , the ratio a is biven
by

Q :: (~l - i0oi) («(~l - w) - (~2 - 104).

a can be calculated similarly for the other clipping planes. In the case of the hither

and yen planes, the calculation of Q is simple:- since the diffe.ence bet....'e€;n the
z-coordinates of P 1 and Pz and the value of Z at the plane can be used as the
distance measure.

a can take values between 0 and 1 but in order to avoid the
use of reals in our OCCAM program, we multiply the dividend L, the eXiJre5s1on

for a by a "scale factor".
Notice that the divisor in the above expression is guaranteed to

be non·zero by the fact that PI and P 2 lie on opposite sides of the plane.

56

On the Implement.ation or the BSE Algorit.hm

A.3.I. Data Structures

The following data structures have had to be implemented in OCCAM in order to
be used by the scan converter of the HSE algorithm [Fole82]

~~ (ET), organised as an array of bucket! (one per
scanline), to contain the edges of the polygon to be scan converted

Y,e,-! FI

1,11 ~ t-D§--
Information about each edge is kept in the bucket that corresponds to the scmline
of its minimum y coordinate. The information kept for each edge is

its maximum y coordinate (YmeJ
the x coordinate corresponding to its minimum y coordinate (x",.J
its inverse slope (11m)

.A..ctiY..e: ~ L.L.b.J.g (AET), organised as a simple list, to contain the edges that
the current scanline intersects

RET

G ,I +--1 +-..

57

The ET and AET are implemented in OCCAM using a large iD array to store the
information about the edges. Another array acts as the bucket pointers for the ET.
Edges belonging to the same bncket are linked together. An integer variable points
to the first edge of the AET and the edges of the AET are also linked together

ET

V,e,-1 FI
• EDGES c
~

5
'i!
• 111~~o~... ~!======"'~---'f~---~

RET

G-
A.3.2. OperatioIiB

The following (specialised) operations on the above data structures were
implemented in order to be used by the scan converter

i. CLEAR
{lniti:::.lise the ET and the AET to empty }

ii INSERT.ET.EDGE
{Insert an edge into the appropriate bucket of the ET }

iii. MOVE.ET.BUCKET.TO.AET
{Remove a bucket of edges from l~e ET and
inse.t them into the AET without destroying the or dering of the AET
(on x.,.J }

i,. UPDATE.AET
!Update the edges of the AET before processing the
next scanline. In other words remove from the AET those edgeshose
y....~ is equal to the last scanline processed and update the x-intercept of
the rest of the edges (x""n) for the next scanline }

,. BUBBLESORT
{Used to sort the AET in case ji became Qut of order

durL'lg updating. The AET is likely to be sorted and in that case
bubblesort performs well }

5a

The following incremental calclJlo.lion:; were used in order to save time during scan
conversion

i. X-intercept of !ill Edge with the &x1 Scanline
If an edge of slope m interceptB scanline i at x

j
(y=i), it must intercept sGmHne

i... l at x, + 11m. Thi~ calculation is used in UPDATE.AET.

iLllililll Qf ~ Polygon i!..t 1M NW Pixel
The Z-buffer ESE algorithm requires that the depth of a polygon be estimated at
each of the pixels within it. This can be done by solving the equation of the
polygon's plane

alO: + b_y ... Cll':Z ... d = a

for z. But this calculation requires 1 division, 2 multiplications al'_d 2 subt:-~ctions

per pixel. Instead we observe that if the depth of a polygon at pixel (x,y) is z,
then its depth at the next pixel on the current scanline (x+l,y) is

z + «((-d -a_(x ... l) -b-!::J} I c) - «(-0 -a.:x -0':8) I c)}

z-(a/c)

A.3.4. Calculation of the Plane Equation

The plane equation of a polygon is determined using the method ~uggesttd by
Martin Newell and described in [SuSp74J.

The coefficients a,b and c of the plane equation are determined
as follows

a=I:(8, 8)) Il((z, ... z)

b=I:(ZI z) • (Xl'" x)

c=I:{X I X) lI': (!:It + 8)

>.Ihere

i th(Xl' 8" z,) is the PO]8;O;-' vertex

i == 1..~(ve~tice5 in pol!::Jscn)

j == (i+l if; (~{ve,.tjces in poll,jgon) e:se 1)

In our implementation we require that the vertices cf a polygon be copJamr and
only take into account 3 of the ve:-tkes in determining the plane coefficients.

HaVing determirled a,b and c, the d coefficient is found using
the coorcinates cf a vertex to solve the plane equation for d.

59

Appendix "

OCCAM ImplementetioQ

--	 Const.ant. Declarat.ions
DEF	 SCREEN. HEIGHT = 21. --must. be odd

SCREEH.~IDTH = 21.
HALF.SH = 10. --(SCREEN.HEIGHT I) I 2
;AlF.S~ = 10. -(SCREEN.~IDTH I) I 2
f1AX.DEPTH = max. int..

8ACK.GHD.CDLDUR = '.5',

HAX. EXPECTED = 200.

SCALE. FACTOR = 1024.

10. --Screen Si2e / 2
d 16. --distance (rOm E.C. origin to screen plane
D 20. --Distance (rom E.C. origin to ~.C. origin
KI 1. --Z=Kl is the Hit.her clipping plane (E.C.)
KZ = 30. --Z=K2 is the Yon clipping plane (E.C.)
~EXT . POLYGOH min. into
NEXT. FRAME min. int + L
END min. int + 2.
ill min.int.+3:

CHAN screen AT Screen.lndex~

-- :npuUer
PRDC I NPUTTER (CHAN DUT)=

SEQ

OUT '0': -8:-4;0: 0:7;0: 8:-4:0: NEXT. POLYGON

OUT 'J': -9:5:4: -7:7:4; 7;-7;-4: SJ-9;-4; END:

60

Viewing Transformation

-Transform from l,..,IorJd to Eye Coordinates

-and scale therr. up. SCALE. FACTOR to

--avoid use of reals.

PROC VIEWING. TRANSFORHATlON(CHAN in. out.

VALUE s.

d.

o J=

VAR x. y. z. colour, t,
SEQ

III t ,= (s II SCALE. FACTOR) / d

~)(,= 0

~~WHILE x 0 END
...,0 SEQ
~ .

"

.;:; in 7 colour
~c out! colour
gE In 7 x

X<O + 2) --While not a control value ."P- I ~ SEQ
~o 0 In?'d:Z

:;j ~ , ..., out I x. SCALE. FACTOR --Xe II SCAL~.FACTOR ... "I 8 out I ~ II' SCALE. FACTOR --Ye II SCALE. FACTOR
0'"' @
J.l a - -, ou~! (0 - z) • SCALE. FACTOR --Ze II SCALE. FACTOR. L,;H;l~"l l. (D - z) --W • SCALE. FACTOR
,c:...., %'0

; ~ n 7 x

-=-5.'... ~ out I x

~~

~"

Intersect ion

--calculate the intersection of a plane and edge.

--alpha::: ((dist.. from point PI to plane)/

(dist.. from Pl to P2)). SCALE. FACTOR

--(xi.!:JLzi) arE' t.he intersectlon coordinates

PRoe INTERSECTlON(VALUE xl, !:Jl. zl.

xZ, !:J2. z2.

aJ pha,

UAR xi. yi, zl)=

SEQ

)(:::: xl + (alpha. ((x2 - xl) / SCALE.FACTOR»

'd ::::!:Jl ... {aipna. ({~2 -!:Jl) / SCALE.FACTOR))

Z := zl + (alpha. ((z2 - zJ) / SCALE. FACTOR)):

61
OX~(.'1 0 L!n!li[~rs;tv

Co,np"ll."lg ;_uto'rqtory
P'Og'Oiliining "lesearch Group-library
9-11 KeDle q(Jad
Oxford OKI 3QD
Oxfr,rd rOHG5) 5~ 141

-- Left Cl ipper
--All incoming coordinates ere. SCALE. FACTOR

PROC ell P. LEFT	 (CHAN Ieft. right.
VALUE s, d)=

VAR	 xfirst,yfirst,zfirst. --first polygon vertex

wf i rst,

xs, ys, zs. -beginning of each edge

xp, YP. %p. --end of each edge

xi,yi,zi. --intersection coordinates

wS,wp.wi. -- w = (5 I d) • 2

FIRST-POINT, INSIDE,

SECOND, POI NT, INSIDE,

alpha.

colour,

"	 --t=s/d

SEC
t:= (s • SCALE. FACTOR) I d -calculate sid loI: SCALE. FACTOR
Xp ,= D

I
ILE xp <> END
SEQ

left 7 colour

right! colour

left 7 X5

IF
xs <= (min. int + 2) --a control value; the polygon is null

SEQ
right! xs
xp := X5 --to terminate outer loop if xs = END

TRUE
SEQ

left 7 ys; zs; ws

xfirst := xs

yfirst := ys

zfirst := zs

wfirst := ws

IF

(xs + ws) >= 0
FIRST,PDINT,INSIDE TRUE

TRUE
FIRST.POINT.INSIDE FALSE

left 7 xp

IF

xp > (min. int + 2)

left 7 YP: zp; wp

TRUE

SKIP

-~HILE xp > (min. int + 2) --Wh i Ie xp i n {NEXT. PDLYGOt(

I SEQ --NEXT. FRAME. END}

62

L

~

..4:l
~

~~
~o

~'" , ""
"'''' aii
",0

IF
(xp + wp))= 0

SECONO.POINT.INSIDE ,: TRUE
TRUE

SECOND.POINT.INSIDE ,= FALSE
IF

FIRST.POINT. INSIDE AND SECOND. POINT. INSIDE
right! xp; ~p; lp; wp

FIRST.POINT. INSIOE AND (NOT SECOND.POINT.INSIDEI
SEO

alpha := ({xs ... ws) • SCALE. FACTOR)
I (xs ... ws) - (xp'" wp»

INTERSECTION(xs,ys,zs. xp,yp,zp, alpha. xi.~i.zi)

wi ,= t • (zi I SCALE. FACTOR)

right! xi; yi: zi; wi

(NOT FIRSLPOINLINSIDE) AND SECOND. POINT. INSIDE
SEQ

alpha := «(xs ... ws) • SCALE. FACTOR)
I «xs ... ws) - (xp'" wp»

INTERSECTION(xs.ys.zs. xp,yp,Zp. alpha. xi,yi.zi)

Ioli :: t • (zi I SCALE. FACTOR)

right! xi: yi: zi; wi

right! xp; yp; zp; wp

TRUE

SKIP

xs : = xp

ys := yp

ZS : = zp

ws := wp

FIRST.POINT. INSIDE ,= SECOND. POINT. INSIDE

left. 7 xp

IF

xp) (min. tnt ... Z) --not a control ... alue
left 7 yp; ZP: wp

TRUE

SKIP

--process last edge using saved verlex

'IF

(xfirst first) >= 0
SECOND. POI NT. INSIDE: TRUE

TRUE
SECONO.POINT.INSIOE ,= FALSE

IF
FIRST. POINT. INSIDE AND SECOND. POINT. INSIDE

rignl ! xfirst; yfirst: ,first: wfirst
FIRSLPOINT.INSIDE AND (NOT SECONO.POINLINSIDE)

SEQ .

alpha := ({X5 ... ws) • SCALE. FACTOR) I

«(xs ... INs) - (xfirst ... WfJfst))

63

IHTERSECTION(xs.~s.zs, xfirst.~first,zfirst,

alpha,	 xi.~i.2i)

wi := t • (zi / SCALE. FACTOR)
right! xi; yi: zi; 1.11

(NOT FI RST. PO INT. INSIDE) AND SECOND. POI NT. INSIDE
SEQ

I
I alpha := ((xs + ws) ~ SCALE. FACTOR} /

«(xs + ..s) - (xfirst + wfirst))!
II lNTERSECTlON(xs,ys,25, xfirsLyfirst.zfirst.

alpha. xi.~i.zi)

!	
wi • = l • (2i / SCALE. FACTOR)
right xi; yi: zi: wi
right! xfirst: yfirst: zfirst; .. first

I
TRUE
. SKIP

.......r:ighl ! xp'

64

- RighI:. CI ipper"

-All incoming coordinates are _ SCRLE.FACTOR

PROC CLIP.RIGHT (CHAN left., right,
UALUE s. d)=

UAR	 xfirst.yfirsl:. zfirsl:., --first polygon verl:.ex
wf i rsl:..
xs. ys, zs, --beginning of each edge
xp. yp, zp, --end of each edge
xi,yi,zi, --intersection coordinates
WS, wp, wi, - ~ = (5 I d) _ 2

FIRST.POINT. INSIDE,
SECOND. POINT . INSIDE.
alpha.
colour,
t: --I:.=s/d

SEQ
t ,= (s • SCALE, FACTOR) I d --calculate sid. SCALE.FRCTDR
xp ,= a
~HILE xp <> END

SEQ
left 7 colour
right! colour
left 7 xs
IF

xs (= (min. inl:. + 2) --a conl:.rol value: the polygon is null
SEQ

righl:. !)(s
xp ,= xs --to terminal:.e outer Joop if xs = END

TRUE
SEQ

left 7 ys: 2S: ws
xfirst .= xs
!:if i rst ,= \,jS

zfirst := zs
wfirsl:. '''' ws
IF

{xs - ws) (= 0
FIRST.POINT.INSIDE := TRUE

TRUE
FIRST.POINT. INSIDE ,= FRLSE

left 7 xp
IF

xp > (min. int -+- 2)
left 7 YP: zp: ~p

TRUE
SKIP

WH]LE xp > (min. Int + 2) --Wh i Ie xp '" i n {NEXT. POLYGON.
SEQ --NEXT. FRAME. END)

65

IF
(xp - "p) (:: 0

SECOND. POINT. INSIDE ,= TRUE
TRUE

SECONO.POINT.INSIDE ,= FALSE

IF

FIRST. POINT. INSIDE AND SECOND. POINT. INSIDE

rig~t ! ~p; ~P; ZP: wp

FIRST,POINT.INSIDE AND (NOT SECOND. POI NT. INSIDE)
SEQ

alpha ,:: ((X5 - ws) • SCClLE.FACTOR)
/ «(xs - ws) - (xp- wp))

INTERSEClJDN(xs.~s,zs. xp.\;Ip.zp. alpha. xi,tJi.zi}

wi ,~ l • (ZI I SCALE. FACTOR)

right! xi: \;Ii zi; wi

(NOT FIRST, POINT. INSIDE) AND SECOND. POINT. INSIDE
SEQ

alpha ,= «(xs - \-IS) • SCALE. FACTOR)
/ «X5 - I-ls) - (xp- wp)}

INTERSECTJON(xs.\;Is.:zs. xp,yp,zp. alpha, xi,\;Ii,zi)

l.Ii := t. (zi / SCALE. FACTOR)

right ! xi· \;Ii; zi; w1

right xp; \;IP; ZP: I-lP

TRUE

SKIP

XS := xp

tJs ;::: blP

zs ::: zp

ws := I-lp

FIRST.POlNT.1NSIDE := SECOND.POINT. INSIDE

Ieft 7 xp

IF

xp> (min. in\. ~ 2) --not a control v2lue
left ? \;IP; zp; wp

TRUE
SKIP

--process last edge ~sing sayee vertex

IF
(xfirst - ~fjrst) (= ~

SECDNQ.POINT. INSID~ ,= TRU~

TRUE
SECDNQ.POINT. INSID~ ,= FALS~

IF
FIRST.POINT.INSIDE Ar~D SECOND.POINT. !NSIDE

rig'lt I xrirs~; ,,{Irs:: 2:i~st.: I.lrl~st

FIRS:.PO!I·~-. :I{SJDE Arc (NOT SECJ~=.PJINT. INSI~It:)

SEQ

alpha "= \(xs - ~51 • S:~~E.~~:-J~) /
(X5 - ~s) - (xrirs:. - r.::I~i't:')

lit;

INTERSECTION(xs,~s,Z5 xfirsl,~firsl,zfirsl.

alpka. xi,yi.zi)

wi ,= l • (zi / SCALE,FACTOR)
rigkl ! xi: bli: zi; wi

(NOT FIRST.POINT.INSIDE) AND SECOND. POINT. INSIDE
SEQ

alpha :: ((X5 - ws) • SCALE. FACTOR) /
(xs - ws) - (xfirst - wfirsl))

INTERSECTION(X5,YS.ZS. xfirsl.blfirsL.zfirsl.
alpha. xi.yi,zi)

wi := t • (zi / SCA~E.FACTOR)

rigkt ! xi; bll; zi; wi
right. ! xfirsl; yfirst; zfirsl: wfirst

TRUE
SKIP

right. ! xp'

67

Top Cl ipper
--All incoming coordinates are _ SCALE. FACTOR

PROC CLIP. TOP (CHAN left. right,
VALUE s. d)=

UAR	 xfirst,yfirst.:.zrirst. --first polygon vertex

wf i rst.

xs. ys. :zs, --beginning of each edge

xp,yp,:zp, --end of each edge

xi.yi.:zi. --intersection coordinates

wS,wp,wi. -- i0oi = (s I d) 1Il Z

FIRST. POINT. INSIDE.

SECOND. POINT. INSIDE,

sl pha,

colour.

t,	 --t~s/d

SEQ
t : = (sIKSCALE. FACTOR) I d --calculate sid. SCALE. FACTOR
:X~ : = 0
~HILE xp () END

SEQ

left 7 colour

right! colour

lert 7 X5

IF

xs	 (= (min. int + 2) --a control value; the polygon is null

SEQ
right! X5

xp : = X5 --to terminate outer loop if xs = END
TRUE

SEQ

left 7 ~s: zs; i0oi5

xfirst := xs

yfirst:=ys

zfirst := Z5

wfirst := i0oi5

IF

(ys - ws) (= 0

FIRST,PoINT.INSIDE .= TRUE

TRUE

FIRST.POINT.INS1DE := FALSE

left 7 xp

IF

xp > (min. int + 2)

left 7 yp; :zp; wp

TRUE

SKIP

~HILE xp > (mil'. int .. 2) --~;nile xp "'In {NEXT. POLYGON,
SEQ	 --NEXT,FRAHE, END)

68

IF
(yp - Oolp) (= 0

SECOND. POI NT. INSIDE := TRUE
TRUE

SECOND. POINT. INSIDE ;= FALSE
IF

FIRST. POINT. INSIDE RNO SECOND. POI NT. INSIDE
right! XP: YP: Zp: ~p

fIRST.POINT.INSIDE AND (NOT SECOND.POINT.INSIDE)
SEQ

alpha := ({ys - ws) • SCALE. FACTOR}
J «y9 - ws) - (yp - wp»

I NTERSECTION{xs, ys. 25, xp,yp,zp, alpha. xi,yi.zi)

wi "= t ~ (zi I SCALE. FACTOR)

right. ! xi; yl; zi; wi

(NOT FIRST.POINT.INSIDE) AND SECOND. POI NT. INSIDE
SEQ

alpha := ({~s - ws) • SCALE,FACTOR)
/ «ys - ws) - (yp- !olp)

INTERSECTJON(xs.'::!s,ZS, xp.yp,zp, alpha. xi,yLzi)
WI ,= t. • (zi / SCALE. FACTOR)

right ! xi; yl; zi; -;

right xp; IdP; zp; -p

TRUE

SKIP

xs ;= xp

\dS := \:!P

zs ,= zp

1-15 ,= .. p

FIRST.POINT, INSIDE == SECOND. POINT. INSIDE

Ili'ft 7 xp

IF
xp) (min. int. + 2' -not. a cont.rol value

left. 7 yp; ~P; wp
TRUE

SKIP
--process last edga uSIng saved vert.ex
IF

(8flrsl - Oolfirsl) (= 0
SECOND. POI NT. INSIDE := TRUE

TRUE
SECOND. POI NT. INSIDE := FALSE

IF
FIRST.POINT.INSID:: AI~u SE:OND.PQU;T.INSiDE

right! xflrst.; yfi~5t.: zfirst.: __ first.

FIRST.POINT. INSIDE AND (kOT SECOND.POINT. INSIDE)
SEQ

alpha := ((~s - ~s) • SCALE.FRCTOR)

(~5 - ~5) - (~first. - ~first.))

'"

INTERSECTION(xs.ys.zs. xrirst.yfirst.zfirst.
alpha. xi.yi.zi)

wi := t • (zi I SCALE. FACTOR)
right! xi; yi, zi: wi

(NOT FIRST.POINT.INSIDE) AND SECOND.PDINT.INSIDE
SEQ

alpha := «(ys - ws) _ SCALE. fACTOR) I

«ys - ws) - (yfirst - wfirst)

INTERSECTION(xs,ys,zs. xfirst,yflrst.zfirst.
alpha. xi.yi.zi)

wi := t • (zi I SCALE. fACTOR)
right! xi; !,li; zi: wi
right! xrirst; yfirst; zfirst; wrlrst

TRUE
SKIP

right! xp:

70

Botlo," Cl i pper
-All incoming coordinal:.es are. SCALE. FACTOR

PROC CUP.BOTTOH (CHAN left:.. righI:.,
UALUE 5, d)=

VAR	 xfirsl:..~firsl:.,zfirsl:., --firsl:. pol~gon verl:.ex

...n rsl:..

xs. 6'5, 25, --beginning of each edge

xp. 6'p, 2p, --end of each edge

xi.~i,2i, --inl:.ersecl:.ion coordinal:.es

"'5p, ... i, -- ~ = (5 I d) • z

FIRST.POINT. INSIDE,

SECOND. POINT . INSIDE,

alpha.

colour,

1:.: -- I:. sid

SEQ

I:. := (s.SCALE. FACTOR) I d --calcuJal:.e sid. SCALE. FACTOR

xp : = 0

WHI LE xp 0 END

SEQ

lefl:. 7 colour

righl:. ! colour

lefl:. 7 xs

IF

X5 (= (min. lnt + 2) --8 conlrol value; .lhe pDl~gDn is nJlj
SEQ

righl ! X5

xp : = xs --lo lerminate ouler loop if xs = END
TRUE

SEQ

left 7 ',,'5: 25: ...5

xfirst := xs

\:Ifl rst := ~s

zflrst := zs

... first:=~s

Ii""

(\::IS + ~s))= 0

FIRST.POINT.INSIDE ,= TRUE

TRUE:

FIRST.POINT. INSIDE := FALSE

left 7 xp

IF

xp > (min. inl + 2)

lefl 7 ~p: zp; ... p

TRUE

SKI P

WHILE xp > (IT'lin. i.nt + 2) --w;.,: Ie xp "'in {NEXT.PO_YGON.
SEQ --NEXT,FRAHE, END}

71

IF

(yp .. wp) >= 0

SECDND.POINT.INS1DE := TRUE

TRUE

SECOND. POINT. INSIDE .= FALSE
IF

FIRST. POINT. INSIDE AND SECOND.POINT.INSID~

right! xp; yp; ZP: wp

FIRST.POINT.INSIDE AND (NOT SECOND.POINT.INSIDE)

SEQ
alpha :: «Y5 + ws) • SCALE. FACTOR)
/ ((>IS + 1-15) - (YP+ I-lp»)

INTERSECTlON{xs,YS,25. XP.yp,zp, alpha. xi,yi,zi)

l..Ii :::: l:. III {zi / SCALE. FACTOR}

right! xi: yi; zi; w\

(NOT FIRST.POIHT.INSlDEI AND SECOND. POINT. INSIDE
SEQ

alpha := «(~5 + ws) III SCALE. FACTOR)
/ (ys .. \-ls) - (YP .. wp))

INTERSECTION(xs.ys.ZS, xp,yp,zp, alpha. xi,yi,zi)

\-Ii := t III (zi / SCALE.FACTOR)

right! xi; yi; zi; looJi

right! xp; '::!P; zp; I-lp

TRUE

SKIP

xs := xp

!dS := YP
2S :::: zp

ws :;:: \.lp

FIRST.POINT.INSIDE := SECOND.POINT.INSID~

left? xp

IF

xp) (min. int .. 2) --not a control value
left? yp; zp; wp

TRUE
SKIP

--process last edge using saved vert~x

IF
(~rirst + ~flrst))= 0

SECOND.POINT.INSIDE := TRUE
TRUE

SECONe.POINT.INSIDE := FR~SE

IF
FIRST.POINT. INSIDE A~D SECOND.POINT. JNSIDE

right! xfirst; Iolfirst: zfirst.; ~rirst

FIRST.POINT. INSIDE AND (NOT SECOND. POINT. INSIDE)
SEC

alpha := {(~s .. ~s) • SCA~E.fR:TOR) /

((",s .. ~s) - (!,Jfirst:irst.))

12

INTERSECTION(xs,ys,zs, xfirsl.yfirsl,zfirsl,
alpha, xi.yi.zi)

~j ;= l • {zi I SCALE. FACTOR}
right. ! xi; yi; zi; Io-li

(NOT FIRST. POINT. INSIDE) AND SECOND.POINT.INSIDE
SEQ

alpha := (ys + Io-Is) • SCALE. FACTOR} /
((ys + Io-Is) - (yfirst. + Io-Ifirsl))

INTERSECTION(xs,ys,zs, xfirsl,yfirst.,zfirst.,

alpha. xi.yi,zi)

10-1 := l • (zi I SCALE. fACTOR)

r ght. ! xi; Y i; z 1; ~ i

r ght. ! xfirst.; yfirst.; zfirst.; Io-Ifirst.

TRUE
SKIP

r j ght ! xp:

7)

Hi lher CI i pper
--All incoming coordinales are _ SCALE. FACTOR

PROC CLIP. HITHER (CHAN left, right.
UALUE s, d,

K l= --2=K is lhe hilher clipping plane:

VAR xflrst.blfirst 2first --first pol~gon vertex
~first,

XS,dS ,2S. --beginning of each edge

XP,dp,2P, --end of each edge

)(i,'Ji. 2 i. --intersection coordinales

~S,..Ip, ~i,

FIRST,POINT. INSIDE,

SECOND. POINT. iNSIDE.

alpha.

colDur.

I,
k,

SEQ
k ::: K _ SCALE. FACTOR --AI I coordinates are: • SCALE. FACTOR; so scale: ~ too
l ::: ':s 1Il SCALE. FACTOR) / d
xp ::: 0
WHI LE xp 0 END

SEQ
left? colour

right! colour

left 7 xs

I'
X5 <:: (min. lnt + 2) --8 conlrol v;;due; the: polygon is nul:

SEQ
right! xs
xp ::: xs -lo terminale ouler loop if xs :: END

TRUE
SEQ

left 7 ~S: 2S; ~s

xfirst := xs

yfirst ys

2fjrst .- 2S

~fjrst := ~s

IF

(2S - k J)= 0

FIRST. PO! NT. INSlDE TRUE

TRUE

FjRST.PDjNT.INSlDE FALSE

left? xp

IF

xp) (min. int + z)

left 7 ~p; 2p. wp

iRU£

74

SKIP
WHILE xp > (mIn. int. + 2) -Wh i J e xp .. i n {NEXT. PO~..vGON,

SEQ --NExT. FRAME. END}
IF

(zp - k) >= 0
SECOND. POI NT. INSIDE TRUE

TRUE
SECOND.POINT. INSIDE FALSE

TF
FJRST.POlUT.INSIDE AND SECOND. POl NT. INSIDE

right. ! xp; YP: 2p; wp
FIRST.PO]NT. HiS10E AND (NOT SECOND.POINT. INSIDE)

SEQ
alpha = {(zs - k) • SCALE. FACTOR)
/ ((zs - k) - (zp - k))

INTERSECTlON(xs.ys.zs. xp.YP.zp. alpha. xi,yi.zi}

~i ;= t • (zi / SCALE. FACTOR)

fight! xi: yl: zj, wi

(NOT FIRST.POINT.lNSIDE) AND SECOND POI~H.INSIDE

SEQ
alpha := {(zs - k) • SCALE. FACTOR)
/ ((Z5 - k) - (zp - k))

INTERSECTION(x~.~s.2s. XP.yp.Zp, alpha. xi.yi.zl)

wi .= t • (~i / SCA~E.FACiOR)

fight xi; yl: 21 ; "i

fight xp; yp; zp: "P

TRUE
SKIP

xs : = xp

ys . = yp

ZS : = zp

wp := I-IS

FIRST.POINT.INSIDt: SECOND. POINT. jNSI8E

lert7xp

IF

xp) (min. inl + 2) --not a control value
left:. 7 YP. 2p; ~p

TRUE
SKIP

--prDcess last edge using saved vertex
IF

(zr ifSt - k) >= 0

SECOND. POI NT. INSIDE TRuE

TR"UE
SECOND. POI NT. INSIDE "A'--S:::

IF

FIRST.POINT. INSIDE AND SECOND. POI NT. INSID:::

right! X:lfst: yflfSl: zflrst: ~flrst

FIRST.POINT-INSIDE AND (NOT SECOND. POINT. INSIDE)

SEQ

75

alpha := ((zs - k) • SCAL£.FA~TOR)

I ({zs - k) - (zfirst -k)

INTERSECTION (xs. '"IS. zs. xf I rst. ~f j rst, zr i rsL
alpha. xi,yi,zi)

wi := t • (zi I SCALE. FACTOR)
right! xi: yi. zi; "'i

(NOT FIRST.P01NT.INSlDE) AND SECOND.POIN~.)NSlDE
SEQ

alpha := {(zs - k) • SCALE FACTOR)
I «(zs - k) - (::"first -k)}

INTERSECTION(xs,ys.zs. xrirst,yfirst. zflrst.
alpna. xi,y;.zl)

"'
 • (Zl I SCALE. FACTOR)

r ig!-ll:. xi: '"Ii: z i· "1

right ! xfirsL: >Jfirst; zfjrst; ... r i r st
TRUe

SKIP
right ! xp:

7t

Yon CI i pper

--~:H I incoming coordinates are _ SCALE. FACTOR

PROC CLIP. YON (CHAN left, right..

UALUE s. d.

K)= --:z==K is t.he yon cl ipping plane

UAR	 x[irst.y[irs~.2rjrst. --first. polygon vertex

..[irst.

XiS. ys. 2S. --begInning of ea~n edge

xp. yp. 2p. --end of each edge

xi. !:Ii, 2 •• --int.erse~t.ion coordlnat.es
.. s ...p ... i.

FIRST. POI NT. I NSI DE.

SECOND. POI NT. I NS IDE.

alpha.

colour,

t,
k.

SED
k : == K • SCALE. FACTOR --AI I coordinates are _ SCALE. FACTOR: so scal e k too
t. : == (s • SCALE. FACTOR) / ,

xp : == 0

WHILE xp <> END

SED

left. 7 colour

rignt. ! colour

left. 7 xs

IF

xs <== (min. int + 2) --a cont.rol value: the polygon is null

SED
rigrL ! xs

xp .= xs --t.o t.erminat.e outer loop i: xs END
TRUE

SEQ

Ieft. 7 !::is; zs;
 "" xfirst. ,- x"

\,jfirst.

zf j rst. "' 20

.. : I rst.

~
. _ .. s

IF

(:zs - k) <== 0

FIRST.POPH. INSIDE TRJ::
I;:<,E

Fir<ST.PC:~-;-. INS;~::: fA~S::

Ie:: ? Y.p

Ie

)(p) (m i.-" ir,~ ... 2)

!e:t. 7 ~P: n. lo;p
";"RJ::

77

SKIP
WHILE xp) (min. int. + z) -Whi Ie xp in {NEXT.POLYGON,

SEQ --NEXT. FRAME. END}
IF

(zp - k) <= 0
SECOND,POINT.INSIDE ._ TRUE

TRUE

SECOND. POINT. INSIDE FALSE

IF

FIRST.POINT.INSIDE AND SECOND.POINT.INSIDE

~ight. ! xp; ~p; ZP: wp

FIRST.POINT.INSIDE AND (NOT SECOND. POI NT. INSIDE)

SEQ

alpha := (25 - kj • SCALe. FACTOR)

/ «(25 - k) - (zp - k))

INTERSECTION(xs.\:Is,ZS. xp,yp,ZP. alpha. xi.yi.Zl)
lOi ;:;:: t. IIIl (zl / SCALE. FACTOR)
right! I<i; \:Ii: 2i; I-li

(NOT FIRST.POINT.INSIDE) AND SECOND.POINT.INSIDE

SEQ

alpha ::: «2S - k) • SCALE. FACTOR)

/ ({Z5 - k) - (zp -k»

INT~RSECTIQN(xs.ys.zs, XP.YP.ZP. alp~a. xi,yi,Zl)

wi := t. • (21 / SCALE. FACTOR)

right! xi; yi: 21: wi

right. ! xp; YP: zp; ~p

TRU~

SKIP
><5 :=)(P

!:,IS : = !::IP

zs := zp

I.-JS ::: I.-Jp

FIRST.POINT.INSIDE SECOND. POINT. INSID~

left 7 xp

IF

xp) (min. Int ~ Z) --not 2 control value

ieft 7 ~p: 2p: ~p

TRUE

SKIF

--process last edge using saved ve,tex
iF

(zfIrst - k) <= 0 ~
S~:ONC.POl~T. INSID~ TRu~

TRUE
SE:OND.PO:NT.INSID~ FAL..SE

IF
FIRST. POINT. [NSID~ AND S~CONC.PO:i';T .lijSJD~

rlg.... t ! x(Irst; ~first.; zrirst.: w:jrst
!"i"2ST.POINT. INSIDE AND (NOT SECOND.PDINT.INSIOc)

S::J.

7B

alpha := ((zs - k) • SCALE. FACTOR)
/ ((zs - k) - (zfirst. - k})

I NTERSECTl ON (xs. ys. zs, xf i rst.. l,jf i rsL zf i rst..
alpha. xi.yi.zi)

~i := t. ..: (zi I SCALE. FACTOR)
right. ! xi; l,ji; zi; ~i

(NOT FIRST.POINT.INSIDE) AND SECOND. POINT. INSIDE
SEQ

alpha := «(zs - k) • SCALE. FACTOR)

I ((zs - k) - (zfirst. -k»)

INTERSECTION(xs.l,js.zs. xfirst..l,jfirst..zfirst..
alpha. xi.~i.zi)

~i := t. • (zi I SCALE.FA:TOR)
right. ! xi; ~i; zi: ~i

right. ! xfirst; yfirst.: zfirst; wfjrst
TRUE

SKIP
right! xp:

79

-- Sp lit. t.er (Split.s about. plane X = 0)

--Rll incoming coordinat.es are '"sCAIE.FACTOR

PRJC X.SPLiTTER(CHAN in.oull.oulZ,

UALUE s.d)=

liAR	 xfirst..yfirsL.zfirsl. --first. pO]t,lgon vertex

I.'f i rst.

XS.id S . Z5 , --beginning of each edge

XI=.idP,ZP. --end of each edge

XI. id1. Zl • --int.ersect.lon coordinat.es

.. s. I.'p. l"I i .
F1RST. POllf;-. LEFT.

FIRST.POINi.ON.PLANE.

SECOND. POINT. LEFT.

SECOND.POINT.ON.PlANE.

al pha.

colour,

l'

s::a
t ::: (s ~ SCALE. FACTOR) / d

XP ::: 0

fHILE xp <> END

SEQ

l~ 7 colour

oull ! colour

out.Z ! colour

in 7 xs

IF

xs (::: (min. int + 2) --a cont.rol value: the pol::,;:m is null
S~Q

r-
oull I xs

out2 ! xs

xp := xs --t.o t.erminate outer loop If xs END

! ' TRu:::
SEQI,	 In ? idS; ZS; 1,,15

XflfSt := xs
I
I l:/firsl := l:/S

zfirst := ZS

I.'first .::: I"IS

iF ~
xs < 0

SEQ
FIRST.?O;NT.~EFT := TF-J~

FIRST.PQ;NT.'J:\.::J:.-q:r:::= :'"H'_S:::
xs > 0

80

o
~
j
~

1;\
o

,,"
1;1
" ~

~~
,~

~~

~~
"0

SEQ
FIRST.POINT.LEFT .= FALSE
FIRST.POINT.ON.PLANE := FALSE

TRUE

SEQ

FIRST.POINT.ON.PLANE := TRUE

FIRST. POINT. LEFT := FALSE

in 7 xp

IF

xp > (min. inc ... Z) --not a control value

in 7 ldP; zp; p

i
TRUE

SKIP
H1LE xp > (min. inc ... Z) --~hi Ie xp ~in {NEXT,POLYGON.

SEa --NEXT. FRAME. END}

I
IF

xp (0
: SED
II SECOND. POINT. LEFT :: TRUE

SECOND.POINT.ON.PLANE := FALSE

xp > 0

SEQ

SECOND.POINT.LEFT := FALSE

I SECOND.POINT.DN,PLANE := FALSE
. TRUE

SEQ

SECOND.POINT.DN.PLANE := TRU~

SECOND. POINT. LEFT := FALSE

IF

SECOND.POINT.ON.PLANE

SEQ

outl ! xp; ~p; zp; p

QutZ ! xp; ~p; zp; p

SECOND. POINT. LEFT AND (FIRST.PD1NT.ON.rLANE O~

FIRST. POINT. LEFT)
out J ! xp; ldP; zp; I-lp

(NOT FIRST.POINT.LEFT) AND (NOT SECOND.POINT.L:FT)
outZ ! xp; YP: zp; wp

FIRST.POINT.LEFT AND (NOT SECOND.POINT.LEFT)
SEQ

alpha := ((-xs) • SCALE. FACTOR) / (xp - xs)
INTERSECTION(xs,ys.zs, Xp,yP.2p. alpha. xi,yi,Zl)
wi := t • (zi / SCALE. FACTOR)
out! ! Xi yi: zj; wi
out2! Xl; yi: 2i; wi
out2 I xp: yp: zp; o-tp

(NOT FIRST.POINT.LEFT) AND SECOND. POINT. LEFT
SEQ

alp~a ;= (xs • SCA~E.FACTOR) / (X5 - xp)
1~:ERSE:TION xs.ys.zs, Xp,yp.2p. alpha. x .yi. zi)
WI = t • {z / SCA~E.FACTORj

cutl ! xi, y Zl; wi

61

outZ ! xi; yi: zi: wi
outl ! xp; yp; zp: wp

xs :::: xp
ys :::: yP
zs :::: zp
ws :::: wp
FIRST.POINT.LEFT = SECOND. POINT. LEFT

I F1RST.POINT.ON.PLANE := SECOND.POINT.ON.PLANE
lin? ,.:p

I IF
xp) (min. int .. 2) --not a control value

in ? yp; zp; '-lp
TRUE

I
I SKIP
--process last ~dge using saved vertex

IiF
I xf i rst < 0

SEQ
SECOND. POINT. LEFT :::: TRUE
SECOND.Poi~T.ON.PLANE :::: FALSE

xf i rst > 0

SED

SECOND. POINT. LEFT := FALSE
SECOND.POINT.ON.PLANE := FALSE

TRUE
SEQ

SECOND. POINT. ON. PLANE := TRUE
SECOND.POIN-.LEFT .= FA~SE

SECOND.POINT.ON.PLAN[
SED

outl ! xfirst; yfirst; zfirst; wfjrst
out2 ,.:first; yfirst: zfirst; ..,first

SECOtm.POINT.LEFi AND (FIRST.POINT.:JN.PLANE OR ~ FIRST.POINT.LEFT)
out! ! xfirst: ~rirst; zfirst; '-lfirst

(NOT FIRST.POINT.LEFT) AND (NOi SE[DND.POINT.L~FT)

oul2 xfirst; yfirsl; zfirst; ..,first

FIRST.POINT.LEFT AND (NOT S~COND.POINT.LEFT)

SEQ
al?ha := { -xs} • S:A~~.FA:TOR) / (Xfl~st - xs)
INTERSECTION(xs.ys.zs xfirst,yfirst.zflrst,
alpka. xi.yi,zi)

.., i :::: t If. (zi / SCALE. FACTOR)
out! xi. yi· zi; '-ll
out2 ! xi: ~:. z i; "i

::2.

•
•

~
~

~
~

~

~
~

"w

X
N

~

~

,
~

•.-
~

~	
...:

~
•

Z

c
~

~
~

"
"-

,
~

"
0

~

~
	

D

~
~

z
O?

•
O? •c

0
•

0 U

0
~

~

W

~
~

U

~

N

~

U

x

GO
N

GO

"
D

	
"
-

.;
W

~

z	

~

GO	
W

N

~
•c

~

GO "
" •c

~

.;
U

~

~

U

~

~

~

~
~

N

N

~

	
'0

"-	
'"'

•
~

N

~

W

• ~

,
...:

•
z

-

N

~

~

Z

.
0

	
 '"

~

"
u ~

•
•
~

x
x	

a. 0
x

•
...:

w

~

 m

N

L
W

L

• '"
:;;

N

~

~
~

~

'" ~

0	
"-

~

0
~

0
~

0 •
X

..
z	..

"-
"

0
0

0
0

~

w
"

0

D

~

	

-"
Z

~
~

o
0

-
-
-
~

Perspective TransFormation
--Transform from E~e to Screen Coordinates.
--preserving depth information
--and Descale Coordinates / SCALE. FACTOR
--(~ includes SCALE. FACTOR)

PRO: PERSDECTIUE.TRANSFDRHATJON(CHAN in.out):
UAR x. y. z, w, colour:

rf
SEQ

x ,= 0

HIlE x () END

SEQ
o.J in 7 colour
~
H I out! colour

in 7 x1;\
o [WHILE x) (min. in!:. + Z)

SEQ
0'- in7 y ;z; ..

1:1 @;" I out I {(x", HAL..F.Sl-J) I ..) + HALF.SW --Xs
~ ~~ {(y", HALF.SH) I ..) + HALF.SH ---Ys

,,"

Uut !
:z:. U	 out ! z I SCALE. cACTDR --25

in 7 xL~ut! x

Data Structures (ET,AET) and Operations
-- used by the Scan Converter of the HSE algorithm

~
_ Reset Data Structure for next polygon

~ PRO: CLEAr« VAR ET[] .e RET.
~	 rirstrree)=

gal
"_ 0 SEQ~'"

" --Clear Edge TableoS" SEQ i=[O	 FOR SCREEN HEIGHT]"'~ $[;] ET[i] : = ~1i..
~ .
H~
~

--Clear Aclive Edge Table..
+''::iJ ~::- := NIL
"'" --Resel Edge Poinler00
off

_____firslrree := 0
~

84

-Copy edge data into EDGES arra!:,!
--Auxilljar!:,! of I~SERT.ET

PRQC PUT (VAR EDGES! I.
f i rstfr12e.

VALUE ymax,xmln,m)=

SEQ
EDGESjfirstfree] := !:,!max
firstfree ::: firstfree'"
EDGES[firstfree] := xmin
fjrstfree := flrstfree ...
EDGES[firstf·ee] := m
firstfree : = fir-stfree
EDGES[firstfreeJ := NIL
firstfree ::: firstrree'"
EOGES[firstfree] := NIL
firstfree := firstfree ... 1:

25

--insert an edge Into the appropriate bucket of the edge table
--maintaining order on (x, slope) withIn buckel.
--Auxilliary of INSERT.ET.EDGE

e:	 INSERT. ET (UAR ET[).
EDGES I J.
f i rstr ree. r VALUE scanl ine. --indicates appropr late bucket
!dmax,xmin,m)= --edge to be inserted

\J~R ET.PTR, PR:::U.E:T.PTR. laslfree:
, SeQ

PREV.ET.PTR :=N1L
.I ::T.PTR:= ET[scanline] --beginning of bucket for this scanl ine

I' 0IFET.PTR N'L
--Special case bucket is empty

SEQ

I
ET[scanline) := firstfree

~ I PUT(EDGES,first.free,ymax,xmin.m)

~ ~RU~
• SeQ
~ ~ --Find appropriate place for insertion
.:; "'{3IH1LE (EDGES[ET PTR + 1J < MIn) AND (EDGES[tT.PTR + 3J 0 NJ:-)
-- ~ SEQ
.E,. ~ PRC:U ET.PTR = ET.PTR
~'I

~

~~ ET.PTR = EDGES[E~.PTR + 3J
~ i lastfree := firsHree
~'l PUT(cD~ES,fjrstrree,y~ax,xmin,m)
gI IF

(EDGES[ET.PTR + 1J (xmin) ORlj ((EDGES[ET.PTR + IJ 0 xmin) AND IEDGES[ET.PTR + 2] (mil
I --Insert after the current bucket eoge

SEQ
EDG'::S[last free 3) := EDGES[ET.PTR + 3]
=:D~::S[:::T.PTR ... 3] . = 1astfree

iR...E
--Insert before c~rrent bucket edge
SoQ

ED~~S[lastrreE ... 3~ := ET.PTR
IF

PREu.ET.PTR = NI~

--becomes first bucket edge; spec i a i case
ET[scanllne] lastfree

TRUE

L ED::;ES[PREU.ET.PTR + 3J I astfree:

86

--Deterll'line slope of edge. shorten if required and insert into ~T

ROC INSERT.ET.EJJGE(UALUE xl.~l,
x2. y2.
x3, y3.

OAR ET[],
EDGES I],
f i rstrree)::

--x coordinates are _SCALE. FACTOR

'

~
~

~

..;
u
":;1:1
~I

N!
~I
~

~
u

UAR xmjn,~min.xmax.ymax,m;

IF
~l :: ~2

--Horizontal edge. needs no processing

SKIP
TRUE

SEQ
IF

~J > \::,12
SEQ
~min ,= ~2

xmln ,:: x2

b'max ,:: ~l

xmax ::: xl

~1 (\dZ
SEQ

b'min ,:: ~l

xmin ,:: xl

~max ,:. !:IZ
xmax ':' x2

--Calculate (1/ slope) _ SCALE. FACTOR in m

m ::: {xmax - xmin) / (~max - ~min)

IF
(~1 (yZ) AND (~2 < ~3)

--Shorten edge; (x2, !:I2) is not a local maximum/minimum
ymax ,:: ymax - 1

(yl > y2) AND (1::12 > ~3)

--Shorten edge
SED

!:Imin
xmin

~min + 1
xmin +'m

TRUE

--Don't shorten edge (x2,~2) is a local minimum/maximum
SKIP

1NSERT. E T (ET. EDGES. f i rsHree. blm i 1'1, ymax. xm i n, m);

87

-- --Insert en edge into the AET maintaining order on x
--RuxilliarW of HOUE.ET.8UCKET.TO.AET

PROt INSERT. ArT (VAR AET.
EDGES [].

VALVE EDGE)=

UAR x. AET.PTR. PREU.AET.PTR:
SEQ

IF

AET = NIL

--First edge of AET; special case
SEQ

AET •= EDGE

EDGES[EDGE + 4J .= NIL

TRUE
SEQ

x .= EDGES[EDGE + 11

AET. PTR •= AET

PREU.RET.PTR := NIL
~HILE «EDGES[AET.PTR + 1J < x)

~~I AND (EDGES[AET.PTR'" 4J <> NIL)

r:iJ~ SEQ

~ PREV.AET.PTR = AET.PTR
"l;~ RET.PTR = EDGES(AET.PTR + 4J

EDGES[AET.PTR ... 1] < x
--Insert after current AET edge
SEQ

EDGESIEDGE + 4J .= EDGES[AET.PTR + 4J
EDGES[AET.PTR + 41= EDGE

TRUE
--Insert before current RET edge
SEQ

EDGES[EDGE + 4) .= AET.PTR
IF

PREU.AET.PTR = NIL
--8ecomes firt edge of RET; specia] case
AE- .= EDGE

TRUE
EDGES[PREV.AET.PTR + 4J .= EDGE.

88

Move a buc=kEt or edges [rom the ET to the AET,
--Keeping the AET sorted on x.

~ rROC MOUE. ET. BUCKET. TO. AET (UAR	 EDGES[].
AET.
BEGINNING.Of.BUCKET):::

o LEAR EDGE,
~ SEQ
o .!QGE :'= 8EG1NNING.OF.8UCKET ~
""~~ "'I WHILE EDGE () NIL
~S'Jf!) ~ SEQ
~;< ~I JNSERT.F.::T(AET.EDGES,EDGE)
3 Z DL-. EDGE, '= EDGE:S[EDGE + 3)

BEGINNING.OF.SUCKET :::: NIL: --remove buc~et from ET

--Remove an edge from the AET

--Auxi 11 i a'~ of UPDATE. AET

PROC REMOVE. Ht:::T (UAR AET,
EDGES [].
PREU. EDGE.

UALUE EDGE):

IF

PREU. EDGE ~ NIL

AET ,: EDGESIEDGE • 4]

TRUE

EDGES[PREU.EDGE + 4]: EDGES[EDGE + 4],

s.,

Updete the AET
--b~ rB~oving those edges for which ~ax = scan} ine and

~

--celculating the x intercept of the rest of t~e edges
--for the next scanline.~

'ROC LI'lJATE. RET (VPR	 RET,

EDGES!].

VALUE scanline)=

VAR EDGE. PREV, EDGE,

i SEQ
PREV.EDGE ,= NIL

DGE ,= AET
ILE EDGE <> NIL

SEQ

IF

EDGES[EDGE ~ 0] = scanline

--remove this edge from the AET

REMOVE.AET(AET. EDGES, PREV. EOGE. EDGE)

• TRUE

SEQ
r:~

--update the x intercept of this edge!;l1;l
z" EDGES[EDGE • II ,= EDGES[EDGE • 1] • EDGES[EDGE • 2]

PREV.EDGE ,= EDGE
EDGE ,= EDGES[EDGE • 4],

90

- -Swep two '1dges. Auxilliery or BUBBLESORT.
PROC SW<P. EDGES (VAR EDGES [].

VALUE EDGE!.
EDGEZ)=

VAR TE"'[3],

SEQ

SEQ ,=[0 FOR 3)

TEMP[,] .= EDGES[EDGEI + I]

SEQ '=[0 FOR 3J

EDGES[EDGE! + 'J .= EDGES[EDGEZ + I]

SEQ ,=[0 FOR 3)

EDGES[EDGEZ + '] .= TE"'[I].

-- Sorl AET on x, using bubblesorl

PROC BUBBLESORT (VAR	 AET.

EDGES [])=

VAR UNSQRTED. EDGE!. EDGEZ.
SEQ

IF
((AET = NIL) OR (EDGES[AET + 4) = NIL))

--Trivially sorled
SKIP

TRUE

~
~ SEQ

UNSDRTED •= TRUE

WHILE UNSQRTED

~

~
o• SEQ
~ UNSQRTED .= FALSE
~

EDGE! •= AETo EDGEZ .= EDGES[AET + 4]
WHILE EDGE2 <> NIL

'"
~

SEQ....
IF•o

o EDGES[EDGEI + I] > EDGES[EOGEZ + IJ
SEQ

SWAP.EDGES(EDGES.EDGE1.EDGEZ)
UNSDRTED .= TRUE

TRUE
SKIP

EDGE! • = EnGEZ
I	 EDGE2 :::. EDGES [EOGE2 -+ 4]:

91

= --Updat.e indices of first. and last. non-empt.\d ET bucket.s
PROC UPDATE.HIN.HAX.ET.Y (UAR MIN.ET. Y, HAX.ET.Y,

UALUE V)::

"I

IF

Y < HIN.ET.Y

MIN.ET.Y ::: Y

Y) HAX.ET.Y

HAX.ET. Y ::: Y

f5 TRUE

o~KIP

92

I

--The Scan Converter Process

--Assumes vI.v2 ... vn represent~tion of polygons(vi lth vertex)

PROC SCAN. CONVERTER (CHAN	 IN.
TO. BUFFER.

VAR	 ETl].
AET.
EDGES [J.
f i rstfree)=

URR colour,	 --polygon colour
xl. 611, 21. --polygon vertices

x2. 612, 22.

x3, 613. z3.

keepx I. keepl:/l, keep21,

keepx2.keepy2,keep22.

a, b,c, d. --plane coefficients

MIN.ET.V. MRX.ET.V. --first/last non-empty bucket in ET

Y. --current scanline

EDGE. --used to traverse RET

X.START. X.FINISH. --used in scan conversion

Z. Z. INC --depth and depth increment

SEQ

CLEAR(ET.RET. firstfree)

x3 ,= 0

[WHILE (xl () END) AND (x2 () END) AND (x3 () END)

SED

MIN.ET.V:=O
MAX.ET.Y ,: SCREEN.HEIGHT - I
IN 7 colour
IN 7 xl
IF

xl ((min. int + 3)

TO. BUFFER! xl --Empty Polygon; ignore

TRJE

SEQ

IN 7 \:11: zl

IN 7 x2

IF

x2 ((min. int + 3)
TO. BUFFER ! x2 --One vertex polygon; ignor~

TRUE
SED

IN7y2;z2

IN 7 x3

IF

x3 ((min. int + 3)
TO.BUfFER !)(3 --T~o vertex polygon; ignore

TRUE
SED

IN 7 613; z3

9J

keepxl : =:: xl
keepl./I : = 1:11
keepzl ; = zl

11
keepxZ : =)(2
keepyZ ;:::: 1,12
keepz2 : = 22
--determine plane equation from first 3 vertices:
--assume they are not collinear
a := «((ldl-y2}_(zl+z2» ... «y2-..,3).(:z2+23)

«1,13-1,11).(23"1-21»)

b := «(zl-z2).(xl+xZ» + «z2-z3).,(xZ+x3»

\
+ «z3-zl).,{x3+xl»)

:= «(xl-x2).(yl+\dZ» ... {(x2-x3}li!(y2+\d3)
({x3-xl)If{\,I3+yl)))I ~

_d:= « «-a).xl) - (blfyl») - (cJlzl))

--construct Edge Table rWHILE)(3 > (min. ii'll + 2)
--Terminates ~hen a control value is met
--at the end of a pol ygon

.;

8
H

1:i
0

H'" '"
" ;;

@
0

0<

1:i
Z ,'" @

1:i

zi

SED

INSERT.ET.EDGE(xllfSCALE.FACTOR,yl.

xZ.SCALE.FACTOR,yZ.x3.SCALE.FRCTOR,y3.

ET.EOGES.firstfree)

UPDATE.MIN.MAX.ET.Y (MIN.ET.Y. MAX.ET.Y. "2)

xl : =:: x2
\:11 ;= \:12

21 := 22

x2 := x3

\:12 ;= \:13

22 : = 23

1N 7 ",3

IF

x3)= (min. int + 3) --If not a control value
SEQ

IN7",
IN 7 23

TRU~

SKIP ~
INSERT.ET.EDGE(xl.SCALE.FRCTOR. ~l.

xZ.SCALE. FRCTOR, ~Z, keap,x J..SCALE. FACTOR. keep\:j 1.

ET. EDGES. r i rstfree)

U;:IDATE.t1lN.MAX.ET.Y (MIN.ELY. HAX.Ei.Y. ~2)

94

INSERi.ET.EDGE(x2.SCA~E.FA:ToR.~2.

keepxl.SCALE.FACTOR.keep~l,

keepx2~SCALE.FACToR.keep~2.

ET.EOGES.flrstfree)

I UPOATE.HIN.HAX.ET.V (HIN.cT.V. MRX.ET.V. 'e,,"1)

I D'.= ~HN.ET.Y
~HILE (Y (= MAX,ET.Y) DR {A~T (> NIL)

SEQ
HouE. ET. BUCKET. TO. At:T(EDGES. AET. ET[Y]j
-- --use AET to process this scanl ine

UDGE : = AET

--assume c <> 0, i r c = 0 the pol~gon

--IS paral lei to the Z-ax:s and appears
--as a I ine; such pol~gons are not processed

fWHTLE {(EDGE 0 NIL) AND (c <> 0»)

I I SEQ
X.START := EOGES[ED~~ • I} / SCA~E.FA:TOR

EDGE := EDGES[EDGE • 4)
X.FINISH ;= EDG~S[EDGE • 1) / SCA~E."A:TDR""'" EDGE := EDGES[EDGE • 4J~
--calculate depth.SCALE.FACTOR at (X. START, Y)11

~ Z .; II II-d) - (a.X.START)) - Ib.V))",-,
o

•
~I

~. • SCALE. FACTOR) / c

~ --calculate (depth Increment).SCA~E.~A:TDK

~ Z. INC := ((-a) ~ SCALE. FACTOR) / c
'0

I
~HILE X.START <= X.FINISH
~Q

TO.BUFrER I colour; X.START; Y;:1:0 X.STARI := X.START ~ 1
t;i~ 2 ;= 2 + Z. INC
'00

UPDATE.AET(AET.EDG~S,Y)
SUS8LESORT(AET,EOGES)

F0'; V + 1

x3 = N~XT.PDLYGoN

I -
SEQ

TO. BUFFER ! NEXi.POLYGoN c-_____________________ ~ C~EAR(ET.AET.:lrs::ree)

I jX2 "- NEXT. FRA,~E
~ SEQ

'I T" B",r::.'-F-R ' N-X- -"'''M- --c 1 Z an d r ~ ~ ~
 -- ,L1. . ::.. I.~K,-j:::' ear ~ cu:rers

CLEAR(ET.AET.firstfree)
r-lrR~£ --x3 = ENGL! --~eimlf'late 6u:fer Froce£s
_I TC.8~~FER I END:

95

-- --The Buffer Process &auxi lliaries

--clear 2 and F buffers prior lo processing nexl frame

--auxi lliary of lhe Buffer Process

PROC CLEAR. BUFFERS (UAR	 2. BUFFER!].
F.BUFFER!]);

UAR i, j:

SEQ [;[0 FQR SCREEN. HEIGHT]

SEQ j;[0 FQR SCREEN. WIDTH]

SEQ

Z.BUFFER[(i.SCREEN.WIDTH) + j] := HAX,DEPTH
F.BUFFER[(i.SCREEN.WIDTHj + j] := BACK.G~D.COLOUR:

--display lhe scene slored in lhe F-buffer

-auxi lliary of lhe Buffer Process

PROC OISPLAY (UAR F.BUFFER[])= --UAR in order lo save copying lime
UAR l:
SEQ i=[O FQR SCREEN.HEIGHT]

SE"

l := «(SCREEN. HEIGHT - 1) - i) w SCREEN. WIDTH

SEQ j=[O FOR SCREEN. WIDTH]

screen! F.BUFFER[l + jJ

screen! 'wN': 'wC': EndBuffer:

96

PROC BUFFER (CHAN I HI, I H2.
U~ 2. BUFFER[].

F. BUFFER[J)=

VAR colourl. colourZ. x, y. ;C'

SEQ

CLEAR. BUFFERS (2. BUFFER, F, BUFFER)

INl 7 colour!

INZ 7 colour2

WHILE (colour! (> END) DR (colourZ () END)

AU
(colour]) (min. iT'll oj. 2}) & INI 7 x; Y; %

SEQ
IF
Z~BUFFER[(~SCREEN.WIOTH) "" xl) z

PAR
2. BUFFER[(y.SCREEN. WIDTH) xl zoj. :=

F.8UFFER[(y.SCREEN.WIDTH) xl := colour!oj.

TRUE
SKIP

IN 1 ? colour!

(colourZ) (min. inl oj. 2» & INZ 7 x; Y; Z

SEQ
IF

Z. 8UFFER[(~SCREEN.WIDTH) oj. xl) z
PAR

Z.8UFFER[(y.SCREEN.WIDTH) xl :: 2oj.

F.BUFFER[(~SCREEN.WIDTH) oj. x] := colourZ
TRUE

SKIP
1NZ 7 colourZ

(colour) ~ NEXT.POLVGON) AND (colour2 = NEXT.POLYGON) &SKiP
SEQ

INI 71::o1ourl

1HZ 7 colourZ

(colour1 : NEXT. FRAME) AND (colourZ = NEXT. FRAME) &SKIP
SEQ

01 SPLAY(F. BUFFER)

CLEAR,BUFFERS(2, BUFFER, F,SUFFER)

INl 7colourl

1HZ 7 colour2

(colourl = END) AND (colour2 ::: END) & SKIP
SKIP --Terminate

01 SPLAV(F, SUF"R),

97

VI'lR ETl [SCREEN. HEIGHT].
ET2[SCREEN.HEIGHTJ.
EDGESl [MAX. EXPECTED].
EDGES2[MAX. EXPECTED].
(Irstfreel.

firstfree2.

eETl.

eET2.

2.BUFFER[SCREEN.HEIGHT • SCREEN. WIDTH).

'.BUFFER[SCREEN.HEIGHT • SCREEN. WIDTH).

CHAN cl. c2. c3. c4. cS. eG. c7. cB. c9. etO. ell. el2. c13. c14:

--THE PIPELINE

PAR
INFUTTER(cl)

VI E~I NG. TRANSFORMATl ON (el. c2. 5. d. OJ

CLIP. LEFT (cZ. c3. 6. d)

CLIP. RI GHT(c3. 04. 5. d)

CLIP.TOP{c4.cS,s,d)

CLIP.BOTTOM(cS.c6.5.dj

CLIP.HITHER(c6.c7.s.d.KI)

CLIP.YON{c7.cB.s.d.KZ)

X.SP~ITTER{c8.c9.clO.s.d)

PERSCECT!VE. TRANSFORMATION(cS.cll)

PERSPECTIVE.TRANSFORMATION(cIO.cI2j

SCAN.CDNVERTER{ ell. c13. £T 1. AET 1. EDGES 1, f i rstf ree 1)

SCAN.CDNVERTER(c12.c14.ET2.AET2.EOGES2.firstfree2}

BUFFER{c13.c14.2.BUFFER,F.BUFFER)

98

o
0

0

0
0

0

C
l
O

O
O

O

0
0

0
0

0
0

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0

_

_
 0

=
=

0
....

1-410..... 1
-4

0
0

.................. O

D

...........
1

-4

..........
0

0
0

.......................
C

l
O

D

.......................
0

0

....
....

.....

OXFORD UNIVERSITY COMPUTING LABORATORY

PRG-2

PRG-3

PRG-5

PRG·6

PRG-9

PRG-I0

PRG·17

PRG·18

PRG-20

PRG·22

PRG-23

PRG-26

PRG·29

PRG-J2

PRG·34.

PROGRAMMING RESEARCH GROUP

8-11 Keble Road, Oxford OX! 3QD, England

Technical Monographs to May 1986

Outline of a Mathematical Tbeory of Computation
by Dana ScoH. Novt'mbt'r 1970, 2(p., £0.50

Tht:' Lattire of Flow Diagrams
by Dana Scott. November 1970, 57 p .• .f1.00

Data Types aB Latth'es
by Dana Scott. September 1976, 65 p., £2.00

Toward 3 Mathemati('a! Semanti('s for Compllter LlI.lJ.!:"uagr,$
by Dana Scott and Christopht'r Strachey. Angtlst J911, 43 p., £0.60

Tnt' Texf of OSPub
by Cbristopher Str;u-hey and Jost'ph Stay. July 1972, 2v. 126,151 po. £J.50

TIle Varieties of Programming Lallguagl"
by Chrif'topher Strarhey. March 1973, 20 p.. £0.50

R('port OIl the Programmirlg Nota/ioll JR
by Andrew P. Black. Augnst 1980, 58 p.. £2.30

Tile Sper-ificatiOJl of Abstract Ma1-'l'in/{s and their [flJpkrru'utatiofJ a.~ B+ nees
by Elij';abeth Fielding-. September 1980, H p, + Appt'udix, £1.JO

Partial Corre<tness of GommuJJiratiug Process('s anti Protor-(J!"
by Zbou Chao Chl'lI and C.A.R. Hoare, May 1981. 23 JL ,L'1 75

A Model for COJIlJJHlllicatiJig S,'qut'nti;-J Prorl'ssrs
by C.A.R. Hoare. JUlie 1981. 26 p., .n_30

A Cakulus of Total Correctness flJr CommuJli('ating Proce.<;ses
by C_A.R. Hoare. April 1981,31 p., £1.75

The Consistency of tbe Cakulu.~ of Total Correduess for Communi("f!.ting Seque!ltial
Pro("esrl('s
by Zhou Chito Chen. Ft'bnmry 1982. JS p .. £ 1.80

Specifications, Programs alld ImpJemclJtatiolJ:j
by C.A.R. Hoare. Junt' 1982, 29 p., £1.75

Tbe- Lispkit Manual
by Pt'ter Henderson. Geraillt A. Jone~ and Simon B. JOIle~. IGSJ. 2v .. J27. 136 p.,
£(.00 for both volumes

AtJstract M3cniJle Support for Purdy Functional O]JeratilJI5 S'yste-ms
by Simon B, JOlles. Augu.~t 1983.33 p. + ApPf'udix, £1.7[,

100

PRG·36 The Form;;J Sp«ificatjon of a Gonfeu'u('(' Or~ani$iug Sy~'.em

by Tim Clfment. August 1983,52 p. + Appendix, £1.75

PRG·37 Spe6ficatj~1J-Ori('ntedSemantics for GommULlicating Processes
by E.R. Olit-rog and G.A.R. Hoare. Febnlivy 1984, 81 p .. £UiO

PRG·38 Makin~ Nets Ahstr3('t and Structult-d and Nets ewd tbeir Relatiou to GSP
by LudwikCzaja. Jauuary/June 1~84, 23, 26 p., £1.30

PRG-39 pFP· An .Algebraic VLSI Design Language
by Mary Sheeran. Ph.D. the~i~ November 1983, 13~ p .. £2.50

PRG·40 The DesigJCJ IWd Implementation of ProgramllliIJg LH.ugllIlKe:;
by John H1Jghe;l . Ph.D. thesis July 1983, 130 p. + Appenrhx. £2.50

PRG-42 A Range oiOperatin~ Systems Written iu a Purely Functjolliil Style
by Simon E. Jones. Frbruary HI85, 44 p., £1.30

PRG·44 Tbe Weak~t PrespecificatioIJ
by G.A.R. Hoare and He Jifeng. June 1985, 60 p., £0.85

PRG-45 Laws of Pr-Q~ramming • A Tutorial Paprr
by C.A.R. Hoare, He Jifeng, I.J. Hayes. C.C. MOfKaD, J.W. Sa.uders,. I.H SOfcllBeu, J.M.
Spivey, B.A. Suffin. A.W. Roscoe.
May 1985, l3 p., £2.35

PRG-46 Sp«ificatio~ Case Studies
by Ian Hayls. July 1985, (i8 p., £2.50

PRG-"'7 Spf'{:ifying the GIGS Application Prog-rammer'll Interface
by Ian HaYf~. July 1985, 82 p., £3.10

PRG·48 CAVIAR; .1'1 Gas{' Study in SperificatiolJ
by Bill Flinn. and rb Holm SprenM'll. July HI85, 4G p., £2.00

PRG-49 Specjfi('ati(Jo~ Directed Module Testin~

by Ian Hay-t:l. July 1985, 30 p., £0.90

PRG·50 The Distrib~tcd GomplJtin~ Software Proje(,t
by Roger Gillaon and Garroll Morgan. July H185, 85 p" £4.00

PRG-51 JSD ExpreEt.'-{'d in asp
by K.T. Sri dhar and C.A.R. Hoare. July H185. 40 p., £1.45

PRG·52 AIKebraic SjiN:ifica'iou and Proof of PW[I{'rties of ComIllJlIli('atilJg SequelJ'ial Pro('esses
by G.A.R. Iloare and He Jifeng. November 1')85. n p., .L'O.~O

101

