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The stages of a Graphics Output Pipeline are discussed, 
specified and implemented as an OCCAM pipeline. A 
comparison of the performance of the stages reveals (or 
rather confirms) the "boHJeneck" stage. The Splitter Tree 
approach to improving this stage's performance is 
analysed, specified and implemented. 
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The ~~ transforms objecb! described in 3D world coordinates into 
a picture on a 2D graphics screen. In this thesis we have dealt with the follOWing 
important stages of the graphics pipeline: ~, lfukt.m ~ Elimination 
LHSE) and coordinate transformations The ~ transformatjon stage performs a 
coordinate transformation from the 3D .w.2rl.d. cOQrdinate system used to describe 
our objecb!, to another 3D coordinate system whose origin is at the point of 
observation and whose Z axis lies along the dtrection of view. The purpolle of the 
viewing transformation is to make the calculations involved in the next stage, 
dipplng1 easier. 

Clipping acb! like a filter which only leb! through those objects that 
are potentially visible from the point of observation. For example objects that lie 
behind the point of observation are invisible. The stages that follow clipping only 
have to deal with the objects that clipping leb! through and these might only 
constitute a small portion of the original data base. 

The next stage, the perspective transformation projecb! our 
3D objecb! onto the plane of the screen. In doing that, depth information is not 
destroyed because it is essential for the following stage, HSE. 

We have said above that clipping only lets through those objects 
that are "potentially" visible from the point of observation. This is became some 
objects might hide others. HSE determines the frontmost object for every pixel of 
the screen. 

The main aim of this project has been the study of the stages 
of the graphics pipeline with the view of suggesting an architecture that provides a 
fast implementation of the pipeline. 

Chapter 1 describes the stages of the graphics pipeline 
and chapter 2 formalises that description by mathematically speciFying in Z the 
operation that the more complicated stages of the pipeline should implement. 

Chapters 3 & 4 introduce two algorithms which implement the 
clipping and HSE operations respectively and give their CSP specifications. 

Chapter 5 compares the perforance of the stages of the pipeline 
and identifies the "bottleneck" stage which leads to an investigation of a method for 
"widening" the bottleneck in chapter 6. 

Chapter 7 mentions conclusions and suggesb! further work. 



Chapter 1 

BackgroUbd : The Graphia Pipeline 

This chapter deBcrjbes the purpose and function of the 
main stages of the graphks pipefjne and the coordinate 
systems involved. 
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Assume a world whose objects are defined solely in terms of polygons 
in some 3D coordinate system called !l2rl.d. coordinate ~ UY.C1 we is 
assumed to be right handed since right handed coordinate systems are more 
common than left banded ones. 

We would like to show on our graphics screen the view of an imaginary 
observer within our world. First of all we must transform the coordinates of our 
polygons into a left handed coordinate system whose origin is at the observer's eye 
and whose Z" axis lies along the direction of view. 

y.z. 
x. 

z. J> 
x. 

y. 

The new coordinate system is called ~ cOQrdinate ~ LE.Q). This 
transformation simplifies the calculations involved in later l'itages of the pipeline and 
is called ~ transformation. A l'ipecial case of the viewing transformation is 
when the Z.. axis is collinear with the ZoO axis and the other axes are parallel, in 
other words we only transform from a right handed we system to a left handed 
EC system. 

y. y. 

z. z. 

x. x. 
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:Next, we must determine what part of our world our observer can see. His 
view can be simulated by a pyramid whose apex is at the Ee origin, is 
symmetrical about the Z" axis and each of its four faces is perpendicular to the 
plam defined by some pair of Ee axes. It is called the ~ fur. ~ 

Jm>JnilI. 
Ie 

\ 5 Yon1.--' 
Top 

I 

I ~ither 

Ze 

,~ s 
e d 

X 
/ 5 

OF'
2 5 ' 

The process of separating the objects, or parts of objects, that He inside the 
pyramid from those that do not is called ~ In addition to the four clipping 
planes defined by the four faces of the pyramid we usually have "hither" and "yon" 
clipping" planes, which are perpendicular to the Z" axis, in order to impose depth 
restrictions. Our 2D screen is assumed to be positioned so that its plane is 
perpendicular to the Z~ axis, its four corners coincide with the four edges of the 
viewing pyramid and its Xs and Y.. axes are parallel to and have the same 
direction as X" and Y" respectively. 
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z. z. 

We can express the clipping limits in terms of the distance of the screen from 
the point of observation, d, half the screen size l s and the Z. coordinate of the 
point being clipped 

Top Cl ipping Plane 
\ 

y. 

y. 

d 
screen 

Let's consider the top clipping plane shown above. For any point P(x..,y..,z..) 
which lies on it we can show by similar triangles that 

dis = z.. I 1:1 ..
 

0'
 

!::Ie = ze • (s I d) = w 

If a point lies below (inside) the top clipping plane then 

!::I.. ( !oj 

and if it lies above (outside) the top clipping plane then 

!::I.. ) W 

The clipping limits for the other planes are given in appendix 2. Clipping reduces 
the number of polygons that have to be processed by later stages of the pipeline. 
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Raving detennlned which objects lie within the viewing pyramid, we must 
next get a 2D description of them as. the screen is a 2D device. We therefore 
project onto the plane of the screen 

SCreen 

y. 
~,. II P,.(X,.. ~.) 

p.{x•• '::l",z,,) 

d lis 

We calculate the 2D ~ coordinates of P,. by similar triangles 

ys/d=~.,/z., 

t.herefore 

'l:!,. = (~. / z,,) • d 

similarly for x 

x~ = (x" / z,,) • d. 

This transformation from the EC system to the ~ coordinate ~ LS.Q) is 
called persp<>ctjve trans!o..maUon. x" and y" are expressed in the units that d is 
expressed in. Instead we could define them as dimensionless fractions by dividing 
by , 

'd = (I:l. / :2 .. ) • (d / 5) = 'd. / ws 

and 

x. = (x" / Z.,) • (d / 5) = x.. / w 
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Note that 

-1	 (x,.Y.,(l 

sluce -101 ( X.' b1. ( 101 after clipping. Therefore x, and y, can eaaiJy be scaled to any 
~~ coordinate m1ml £fDQ) i.e. the coordinate system used by a 
ph)'lical display device (e.g. 512 x 256). We could have t.ransfonned directly from 
EC to POC but the IDtermediate dimensionless SC system enables UI to ute 

multiple devices with dIfferent POC systems I. 

To add some realism to our picture we mUit not display those polygons, 
or parts of polygons, that are obscurred by others. The operation that detennines 
whIch Is the frontmost polygon at each point of our screen, and hence eliminates 
the bidden ones, i8 called Hidden Surface Elimination (HSE). It obviously requires 
depth information and this Is lost In the perspective transfonnatJon. We need a 
Wtb. preeeryjng perspective transformation and an augmented SC (or POC if we 
transform directly from EC into POC) system that includes a third coordinate I,. 

In calculating I, we must make sure that planes in EC transform to planes In SC 
\Park85]. The interpretation of x, and Y. Is not changed. 

But why didn't we perform the HSE operation In the 30 EC system in the 
fU1lt place ? The answer is that 1t Is much harder ISuSp74]. In order to perform 
the HSE operation in EC we would have to consider "ra)'l" leaving the observation 
point at various angles and compute which faces they inlenlect. Such trigonometric 
computations would be very costly. The depth preserving perspective 
transformation transforms an object A in EC into an object A' in SC such that A' 
viewed orthographically 1000 the same aa A vIewed in perspective. In other words, 
the perspective transformation moves the point of observation to infinity 
transforming the space enclosed by the EC clipping pyramid (truncated by the 
hither and yon clipping planes) into a SC cube. Hence overlap tests can be done 
simply by comparing the x, and Y. coordinates of points. 

Here are the stages of the graphics pipeline described in this chapter 

Viewing ~ CLIP I EC ,IPerspeclive SC HSE g 
Transformation Transformation (POC) (PDC) 

i.	 In our OCCAM implementation the perspetive transformation t.ransforms 
directly from EC to POC in order to avoid the use of reals. 
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Chapter 2 

Z Speeitieatiop of two Major Graphics Operations 

In this chapter we shall give the rna thematicaJ 
specification in Z [ZB5] of Clipping and Ridden Surface 
Eliminatjon (HSE) in order to make their meanjngs precJse 
before proceeding to tbe description of algoritbms to 
implement tbem. 
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2.1. Geomelrical Definitions 

A 1lQin! in 3D is described by its cartesian coordinates 

R 
Rc R 

A ~ is the set of 3D pointe which satisfy a plane equation 

LRNE------------------, 

plane f(POINT)
 

a,b,C,d R
 

plane {(X,y,z) PDI NT 1 a_x + b.y + en + d o } 

A line [s the intersection of t~o non parallel planes 

L1NE-----------------, 

line P{POINT) 

:3 PLANE
l 

PLRNEz I pI ane l n pI anez #- ¢. 

line::. plane, n planez 
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The unrestricted set or 3D points is called ~ 

["ACE 
space P(POINT) 

A plane divides space into two halfspqq:;s The coordinates or all points in one 
halfspace give a positive value when subst!!uted into the plane eqlJation, whereas 
the cClordinates of the points in the other ha1fspace give a negative vallJe 

IUSPACE-----------------..., 

hal fspace f{PD!NT) 
a. b, c, d R 

halfspace {(x.~.Z) POI NT I a_x ... billy ... ClIl:Z ... d > O} 

v
 

hal fspace {(x,y,Z) POI NT I alllx ... b_~ + CIi'Z ... d ( O)
 

A ~ from a point p is a semi infinite line whose one and only end is at p. It 
is defined as the intersection of a line and a halfspace. The line mlJst not be 
parallel to the plane defining the halfspace and p must lie on this plane. The 
halfline does not include p 

iA~FLIN£---------------------~I 

p POINT 

halfl ine fcPD! NT) 

3 U NE ; HALFSPACE 111M n helfspace 'iF ¢_ 

hairline = 11118 n halfspace 

pEl ine 

a-p.x + b.p.y +C.p.2 ... d = 0 
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A line segment consists of a starting point, an ending point and all the points 
between them which lie on the line defined by these two points. We define a 
line_segment as the intersection of two collinear halflines of opposite direction. It 
is convenient to include in the line_segment either the starting or the ending point, 
but not both 

rINE_SEGMENT 

start. POINT
 

end POINT
 

line_segment P(DOINT)
 

::I HAlFLI NE l ; HALFLI NE2 I 
Pl = start" P2 = end 

start € halfl inez" end € halfJ ine l ," 

1ine_segment '" (halfl ine1 n halfl inez) u {start.}~ 

Two line_segments are connected if the start point of one of them coincides with 
the end point of the other 

~CONNECTED I
 

connected lJNE_SEGH~NT ~ lINE_SEGMENT
 

V lsI. ls2 LINE_SEGMENT I (lsi. Js2) e connected'" 

lsi. end = ls2.start 

A sequence of connected line_segments is defined so that line_segments which are 
adjacent in the sequence are connected 

_ONNECTED_LINE_S~GHENTS i 
connected_I ine_segments F(seq{LINE_5EGHENT») 

V I 55 seq (L I N.E_SEGMENT) '"
 

llss e c::onneci:ed_l ine_segments ~
 

Iss-1;succ: Iss!,;; CONNECTED


L _ 
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We eball define a polygon to COnsist of 
i. Its edges and 

ii. Its contents i.e. all the points bounded by the edges. 
The edges must be pairwise cODneded and the beginning of the first edge must 
coincide with the end of the last edge, in other words the polygon must be ~ 

It is IlQ1 ~ for the edges to trQU over each other and they must all lie in the 
lI.i..Dli:.~. Here are some examples of polygons 

?1 
and &orne counter examples 

~ 

The contents of the polygon are defined as those points from which there is ~ 

~ from the polygon. In other word5 any "escape route" is bound to meet an 
edge of the polygon. 
A necessary and sufrlcient condition for a point p to be inside the polygon 

I.e. a point of no escape, is that the number of intersections of ~ halfline starting 
at p with the edges of the polygon be odd. A few examples will illustrate this 

2 intersections (outside) 

/ 1 intersection (inside) 

~p-.v I 4 (outside) ~o (outside) 
"5 (inside) 

/ 
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The following Z specification of a polygon encapsulates the above requirements 

'OLYGON--------------------, 
contents P(POINT) 

3 edges: seq(LINE_SEGMENT). 

(edges E CONNECTED_LINE_SEGMENTS
 

edges(l).start =edges(~edges).end
 

V l, j dom(edges) I h.j •
 

(edges(i). line_segment) n (edges(j). line_segment) =~ 

3 p I PLANE. 

U {i l •• ~edges. (edges(i).llne_segment)} b pl.plane 

contents Q {q : POINT I (3 HALFLlNE I q = p. 

~(half1lne n (U {i : l..~edges. edges(i).line_segment}) £ odd)} 

2.2. The CUpping OperatioD 

The dipping operation restricts objects (or the polygons that define 
them) to those that lie within a certain region of space, the ~~ The 
dipping region can be described as the generallBed Intersection of an appropriate 
sequence of halfspaces. The resuJt of clipping a polygon is then the intersection of 
the points that lie within the polygon (its contents) with the clipping region 

up'-------------------, 
p7 POLYGON 
c I i pp i ng_reg I on seq(HALFSPACE) 
p! POLYGON 

p!.contents = 
n {i : l •• ~clipping_regjon. (cllppjn9-reglon(i).halfspace)} 

n p7.contents 

The dipping regIon usually takes the form of a truncated pyramid, the clipping 
pyramid, as described In chapter 1. 
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2.3. The USE Operation 

The following specifications are generic in terms of COLOUR 

[COLOUR] 

A picture contains 3D polygons of various colours. As each polygon can only have 
one co\our, a picture can be described by the partial function 

PIC POLYGON -+> COLOUR 

The points that belong to some polygon of PIC are related to the colour of the 
polygon that they belong to. This is a relation since some points might belong to 
more than one polygon and therefore be a!!sociated with more than one colour 

USP_rei: POINT H COLOUR 

USPJel Q {p : POINT; poly dom(PIC) I p e poly. contents_ 
(p, PIC(poly))) 

USP.-reI stands for Unhidden Surface Picture relation. We 5hall next derive from 
USP_rei a function, USP_fun, that associates a unique colour to every point. The 
colour that USP_fun associates with a point p must be one of the colour{s) that 
USP_rei associate!! with p, the choice being implementation dependent. For 
example our OCCAM implementation associates with p the colour of the first 
polygon, in the order of processing, that contains p 

USP_fun : POINT -+7 COLOUR
 
dom{USP_fun) = dam(USP_rel)
 

USP_fun ~ USP_rel 

The result of performing the HSE operation will be a Hidden Surface Picture 
(HSP) that associates 2D coordinates to colours (our points so far have been 3D) 

HSP , R x R -+> COLOUR 
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The colour of a 2D point (x,y) is the colour of the 3D point (x,y,z) which haa the 
smallest z coordinate among all 3D points whose lateral and vertical coordinates 
are x and y respectively 

HSP ;;;; {p dom(USPJun) I 
(V PI : dom(USP_fu~) 

PI 'It P " 

Pl'x =- p.x " 
PI" tl =: p.!:j • PI' Z > p. z) • 

((P.x.p.y). USPJun(p)) } 

The direct comparison of the z coordinates of points with the same x and y Is only 
valid if a (depth preserving) perspective transformation has preceeded It (see 
chapter 1). The HSE operation is then defined as follows 

SE------------------. 
pic? POLYGON -+? COLOUR
 

hsp! ~ x ~ -+? COLOUR
 

3 usP_rel POINT ~ COLOUR~ usp_fu~ POINT -+? COLOUR. 

{usPJel =: {p : POINT: poltl dom(pic?) 1 p e poly.conte~ts 

(P. pic?{pollj))}
 

dom(usp_fun) =: dom(usp_rel)
 

uEp_fun ~ usp_rel
 

hspl =: {p dom(uspJu~) I
 
(V PI dom(uspJu~) 

PI 'It P " 

Pj'X =: p.x " 

PI'Y =: p.!:j. PI'Z> p.z) • 

((P.x.P.Y). usp_fu~(p)) } 

15 



Chapter S 

A Parallel Clipping Algorithm 

Tile obJedive of tile clipping operation was described 
using tile Z language In se<:tion 2,2. Tills cbapter describes 
and gives a CSP trace specification of a parallel OCCAM 
[INM084J implementation of tile Sutllerla.nd~Hodgman 

polygon dlppJng aJgoritllm [SutIl74}. 
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a.l. DelcriptioD 

The polygoo to be clipped, the llIubject polygon, is represented as a Bequeoce of 
verticesj the first and the last being the same l • The vertices occur in the order 
defined by a clockwiM traversal around the polygon. For example 

is	 represented as <v\,vZ,v3,v4.vS.v,>.~.. 
v, 

The algorithm clips the subject polygon against the first plane of the clipping 
pyramid and produces a new sequence of vertices which represent the Ilubject 
polygon clipped against the first clipping plane. The process is repeated fot each 
plane of the clipping pyramid. The sequeoce of vertices coming out of the last 
clipping stage represents the subject polygon clipped against the dipping pyramid. 
Here is an example of the algorithm at work 

CLIP against CLIP against 
RIGHT pi ane" TOP plane 

clipping pyramid 
subject polbtgon 

CLIP Olga i nst 
SOTTOM. LEFT. (no change) 
HITHER. YON 
planes 

i,	 Repeating the first vertex as last in the representation or a polygon. 
makes consideration of its edges and hence reasoning about the 
polygon, easier. In our implementation we have avoided this duplication 
by remembering the first vertex (see Appendices 1 &4). 
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But how is clipping against a plane performed? The vertices of the subject polygon 
are considered In pairs (s,p) in a clockwise traversal around It. For each such pair 
0,1 or 2 vertices are output to the next stage depending on the relationship between 
the pair (s,p) and the clipping plane. There are four cases to be considered 

clipping plane 

inside Inside inside inside 

/P 
• 

P 

• p/
P• 

X represent output vertices 

The obvious parallel implementation of the algorithm is as a 6-stage pipeline, where 
6 is the number of planes in the clipping pyramid. A stream of vertices will pass 
through the pipeline. The input stream represents the subject polygon and the 
stream coming out of the jlh stage represents the subject polygon after it has been 
clipped against planes I ..i of the clipping pyramid 

-
CLIP. CLIP. CLIP. CLIP. CLIP. CLIP. 

~PLANE PLANE f---,PLANE f-, PLANE PLANEPL'lNC:: ..........
 f- 
RIGHTLEFT TOP BOTTOM HITHER YON 

~ -

Notice that l as far as the dipping algorithm is concerned, the clipping volume can 
be of any convenient shape defined by any number of planes. 

A Problem with Concave PolygolUl 
Concave polYg"ons which result in two or more polygons "fter clipping, will give rise 
to an 

offending 
edge 

edge which connects the resulting polygons as shown below 

- 

inside 

The offending edge could be removed by a modest alteration to the dipping 
algorithm as described in [Suth74]. 
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3.2. CSP Specification 

Each stage, CLIP.PLANEp,an" , of the clipper must comply with the following 
specification 

right ( f pi.",.. (left) 

where left and right are the input and output channels of the clipping !tage 
respectively and (plan.. is defined as 

fp1an.. (O) = () 
fp1an.. (p)} '" () 

fpIElo".. (s,p) rest) :: (p) ~ fpl.Il""«p) ~ resl). 
insidel(plane.s) & inside(plane.p) 

intersedion"(s,p.plane). p) ~ fpJar.e(p)· rest), 
"'inside(p]ane,s) & inside(plane.p) 

interseclion(s.p,p]ane) > ~ fpJa".. (p) ~ res:'). 
inside(pJane.s) &"'inside(plane.p) 

fpJa".. (p) ~ rest), 
"'jnside(piane,s) &"'inside(plane.p) 

fp1ane specifiEos recursively the relationship that must hold between the input and the 
output vertices of a clipping stage. 

Now assuming that each clipping stage satisfies its specification Le. 

Vi! l(i,N ol
; .. CLlP,PLANfp1ar1a{,) sat right, fpla"e(,)(left) 

i.	 inside(plane,p) delivers TRUE Dr FALSE depending on whether 
p is on the "inside" of the clipping plane Dr not. It£. calculation is shown in 
appendix Z. 

ii.	 intersection(s,p,plane) delivers the coordinates of the point of 
intersection of the line segment from s to p with the clipping plane. Its 
calculation is shown in appendix 2. 

iii.	 N is the number of clipping stages. N = 6 in the case of the 
clipping pyr amid with Hither and Yon planes. 
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we can deduce the following about their combination in a pipeline (by Ll of section 
4.4.4. of [Boar83J) 

» \ (.. (. N CLIP.PLANEpl8t1e (ljI 

sal 

3 5\,52, ,SN_l • {right ( fpl_lNj(SN_I) 2
5 _ ( _ "·lj(SN-2) &.N 1 f pl O

Sl ( fplanellj{lefl) 
) .•. (A) 

assuming CLIP.PLANE if; left guarded. 

lemm<. 

5 (f(t) & t (u =9 s ( feu) 

assuming f{p) ( f(p A q) 

proof 

(u .... 3v. tAv=u ... (l) 
(section 1.5.5. of [Hoar83]) 

s , f(l) (given) · •. (2) 

f(l) , f(l v) (assumption) · •. (3) 

ffl) , flU) (by (1) & (3» · •. (4 ) 

5 ( f(u) (b~ (2). (4) and tran5llivil~ of () 

By the above lemma and noting that fpI8n.(P) ( fpl8t1e(p A q), 
(A) can be simplified to 

» I <.. (~tII CUP.PLANEp1en.(l!I 

sal 

right ( fplene(NjCfplane(N_I)" (fplane(ll(left.)] 
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In other words we have proved that if the relationship specified by f~,_ holds 
between the input and the output vertices of each clipping stage l then the 
relationship that holds between the input and the output vertices of the 
combination of all the dipping stages in a pipeline is given by the combination of 
the f~J.n .. functions of aU the stages. This obviously means that the output vertices 
lie on the "inside" of all the dipping planes, as desired. 
This result can be instantiated to the case of the clipping pyramid 

» ,,{Lm.~lGHT. TD'.SDTICl'1.HITtO. YQtl} CLIP. PLANE pl .,..,,\ d 

sal 

right , fy~(fHlTl£H{f8on[Jol(rnP(rR.J(;Hl(rLEFT(lert)1 
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Cbaphr4 

Hidden Surface Elimination Algorithm 

This chapter describes the Z-buffer Hidden Surface 
Elimination (ESE) algorithm and gives its CSP 
specification. 

22 



The Z-buffer aSE algorithm haa been chosen among the wide variety of aSE 
algorithms for the fonowing reasons 

i.	 It is relatively simple to implement in a language like OCCAM 
that does not provide many data structures. 

Ii. It fits well into our notion of the pipeline of polygons (see appendix I) 
as it does not require to examine all the polygons at once. Instead 
polygons are processed individually in the order they come down the 
pipeline. There is no explicit depth sorting step required. 

The drawback of this algorithm is that It uses a large 2D array 
called Depth buffer (Z-buffer) on top of the usual Frame buffer (F-buffer) array 
that is used to store the colour of the pixels. The Z-buffer is used to store a depth 
value for each pixel of the screen, so its dimensions are Yresolution • Xresolution. 
The algorithm consists of a Scan Converter and a Buffer Process' 

running in parallel 

The scan converter receives polygons in "augmented" Physkal Device Coordinates 
(that include a depth value) and determines the pixels that lie within each polygon. 
In addition to that it calculates the depth of the polygon at each pixel within it by 
making use of its plane equation (see Appendix 3) and transmits 
(eolour,x,y,depth) quadruplets to the buffer process. 
The buffer process receives such quadruplets and for each of them it 

takes the following action; 
If the value of the Z-buffer at (x,y) is greater than depth, 

it	 updates this value to depth and also updates the (x,y) position of the 
F·buffer to colour, 

otherwise it doe!; nothing. 

i.	 The name Buffer might be misleading here. It is not a buffer in the 
CSP sense but a process that controls the Z and F buffers (which are just 
2D matrices). 
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This in effect means that if the previous polygon that included pixel (x,y) WaJj 

further away than the current one at this pixel, then the current one hides the 
previous one at (x,y) and pixel (x,y) must take its colour. 
Before processing a new frame, the Z.bu(fer is initialised to the 

maximum representable depth vaJue and the F·buffer to the background colour. 

I:b.g kan Converter 
First of all we have had to implement in OCCAM cerlain data structures 

along with specialised operations on them to support the scan conversion algorithm. 
These were a bucket organised Edge Table {ET) and an Active Edge Table (AET) 
organised as a list. The ET has one bucket for each scanline j containing 
information about the edges whose minimum y coordinate corresponds to that 
licanline. The AET contains information about the edges that the current scanline 
intersects. The implementation of these dala structures is described in Appendix 3. 
The scan conversion algorithm is an extension of the one described in 

IFole82J; it also estimates the depth of the relevant polygon at each pixel scan 
converted. Rere is its description 

For each polygon
 
~Oetermine the plane equation Coefficients a,b,c and d
 
~Clear the ET and AET data structures
 
~Con5truct the ET for the polygon's edges
 
.Let V be the index of the first ncn-emptld ET bucket
 

.Whjje (AET ~ empty) DR (V ( index of last non-empty ET bucket)
 
••~o\le ET bucket V into the AET maintaining AET sorted on x
 
••For each pair of edges el.eZ in the AET
 

••Let Xl,XZ be the x intersections of eI and eZ ~ith scanline V 
•••Compule tne depth Z of the pol\:jgon's plane at Xl, V 

(Z = -(d + a.Xl + b.Y) I c)
 
•••Compute the depth increment Zln~ = -a I c
 
•••For X := Xl to X2
 

••••Send (polygon colour.X. V.Z> to the buffer process 
••••Z := Z + Z 

••Update the RET b~~remo\ling those edges ~hose y~ is equal
 
to V and computing the x intercept of the remaining AET edges
 
~ith scanl ine V + 1
 

••SJbbJesort the AET. in case it became out of order b6J the update 
••v ,= V + 1 
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Before specifying the function of the Z-buf£er HSE algorithm 
in esp, we must define two auxUliary functions 

KM returns a constant matrix of the value given to it as argument. The 
size of the matrix is equal to the resolution of the screen 

KM : VAL ---7 MATRIX
 
KM (v) = [v) "I..X.--.. I~l,"'" J:l..y~_ .. l"t"",
 

UPDATE updates a location of a matrix. The matrix to be updated, 
the location concerned and the new value are arguments of UPDATE 

UPDATE MATRIX x VAL x VAL x VAL ---t MATRIX 
UPDATE (H.x.'tJ,v) = M. {(x.y) H v} 

The sean converter process inputs polygons on channel b and outputs the pixels 
within each polygon along with their associated colour and depth on channel c, A 
special kind of polygon, NEXT.FRAME.POLY, separates the polygons of one 
frame from those of the next (see Appendix 1) 

a(SCAN. CONVERTER) = {b. oj 

SCAN. CONVERTER = b 7 poJ~~on 

(c ! NEXT. fRAME. PIXEL ---7 
SCAN. CONVERTER 

) 

~ pol~gon = NEXT. fRAME. POLY ~ 

(for each pixel (x.y) inside polygon 
(c ! coJour(pol~gon) ---7 

c 1 x --> 
ely ---t 
c ! deplh(polygon,x,y) 

) 
SCAN. CONVERTER 

25 



The buffer process, which is only called so because of the usual name of this HSE 
algorithm, receives pixels along with their associated colour and depth values from 
the SCAN.CONVERTER on channel c. A special kind of pixel, 
NEXT.FRAME.PIXEL, signals the start of a new frame. Upon receipt of this 
pixel the buffer process sends the F-buffer to the screen in order to be displayed 
and re-initialise~ the Z and F buffers 

a(BUFFER) = {c. screen) 

BUFFER = c 7 colour ~ z.F
 

(screen ! F -?
 

BUFFERKH (tt'\x.CIEF'TI1I. 101(IlAO(.cp.clm.aLlJJl) 

) 

4:	 colour = NEXT.FRAH!::.PIXEL )0

(c 7 x -? 

c 7 ~ -? 

c 7 dept.h -? 

BUFFEf\.p01TE(Z. ~.!l, dBplh). LPrnTE{F,~.\,I. cc leue) 

~ 2(x,~) ) dept.h )

BUFFERu 
)
 

)
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The parallel combination of the SCAN.CONVERTER and the BUFFER IS our 
BSE algorithm 

ZH5E ;: (SCAN. CONVERTER II 8UffE~(I"IlU£PTH). I::M(BfOCQlO..NO_CQcull) \ {c} 

Since the most complicated and time consuming part of the algorithm is the scan 
conversion, we could have many scan converters running in parallel by distributing 
the polygons amongst them (see section 6.3.3.) 

to screen 
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We then need a buffer proceB6, PAR.BUFF, that is capable of dealing with all the 
scan converters. It only sends the F-buffer to the screen if it has received a 
NEXT.FRAME.PIXEL from all the scan converters. It uses a set, S, to keep track 
of those scan converters (SeC) that have sent a NEXT.FRAME.PIXEL 

a(PAR.BUFF) = {screen} u {c, j j: 1..I:tSCC} 

PAR. BUFFl.F.S = I liS ( c i 7 colour ~
 

( { (screen! F----?
 

PAR, BUFF1O'I(It'lX.IE'THl, 101 IBFO.. QlCUlO.CD..CUIl , I .. -sec 
) 

( S-{;) = ¢ 1
PAR. BUFFl.r.5-{I) 

) 

¢ co lour = NEXT. FRAME. PIXEL :t
(c i 7 :I<: ----? 

c , 7 \;I ~ 

c, 7 depth ~
 

( PAR. BUFFLF~TE(I'><'Il.dapt"), LFOATE(F.><.\l.colcud. S
 

¢ 2(:1<:, y) > depth :t-

PAR. BUFF l.F.S 

) 
) 

» 

PAR.BUFF can be combined with the scan converters as follows 

PAR.ZHSE = «II ''\ ..'''' (e, "" Ib, VISCAN.CONVERTER»» II 
PAR. BUFF(M(~x.llEPTH), IO'I(BFO..GRWlD.CD..Wl). 1. . orser ) \ {c j ) i: 1.• I:lSCC} 

a(PAR. ZHSE) = {screen} U {b, Ii: 1., I:lSCC} 
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PerformBuc::e of the Graphics Pipeline: The Bottlenec::k 

Two different models are used to compare the 
performance of the stages of tbe graphics pipeline. Tbe 
first is based on an extension of a performance evaluation 
of ten Hidden Surface Elimination (HSE) algoritbms by 
Sutherland et al {SuSp74j. Tbe second is based on code 
timing ligures derived from our OCCAM implementation 
of tbe pipeline using the INMOS Transputer Estimator. 
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6.1. Gr.pbies Pipeline Performapce (1) 

fLJ this secUOLJ we compare the performaLJce of tbe stages 
of the graphics pJpeliLJe based on the excelleLJt 
performaLJce evaluatioLJ of teLJ BSE algoritbms by 
Sulberland et al {SuSp74}. 

[SuSp74] compare the ten HSE algorithms as follows. The operations that each 
algorithm has to perform (like sorting, searching, intersection calculations etc) are 
identUied and assigned a complexity factor, crOl'l depending on a crude relative 
estiJmte of their time complexity. A complexity factor of 1 is assigned to very 
sbnple operations (like solving a plane equation), 10 to more costly operations (like 
complltlng the relationship between two segments in 2D) and 100 to very expensive 
operations (like computing the intersection between an edge- and an object in 3D). 

The number of times an algorithm has to perform each operation, 
no' is expressed in terms of "Environment Statistics" (like the total number of 
edges In the environment, the number of relevant faces (after clipping), the 
resolution of the screen etc). The performance of each algorithm is the.D estimated 
ae 

elgorithm performance = ~op - cfopnop 

The ten algorithms are compared in three environments of dirrerent complexity by 
varying the values of the Environment Statistics. 

We shall estimate the performance of the clipping and 
coordlllale transformation stages in terms of the same Environment Statistics that 
jSuSp74] used to evaluate the ten ESE algorithms. 
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The Sutherland Hodgman polygon clipping algorithm is described in Chapter 3. In 
our Implementation we have structured it as a six. stage pipeline, each stage 
clipping against one of the six. clipping planes (see section 3.1.). A clipping stage 
considers the edges of each polygon (which are derined in tenns of pairs of vertices 
(s, p)) and for each such edge it does the follOWing 

in_s := inside(plane.s) --determine which side of the 
in_p := inside{plane.p) --clipping plane s &p lie on 

case
 
in_s & in_p output p to next stage
 

J"in_s & in_p {i := intersection(s.p.plane) 
output i to next stage 
output p to next stage 

) 

in_s & J"in_p {i := intersection(s.p.plane} 
output i to next stage 

) 

otherwise donothina
 
endcase
 

The above code fragment is executed once for each edge in the environment. E~ of 
[SuSp74] is the environment statistic that stands for the total number of edges in 
the environment (before clipping). Since the first clipping stage wlll consider a.1l the 
edges in the environment, E~ Is the number of times the code fragment wUl be 
executed. Each execution requires 2 "inside" calculations and possibly one 
"intersection" calculation. Since these are both simple, each execution is assigned a 
complexity factor of 10. It therefore takes 6 • 10 units of time for the first vertex 
to pass through the 6-stage pIpeline (if it isn't clipped out) and then the rest of the 
vertices are processed in E~ III 10 units of time. The time performance of the 
clipping algorithm (i.e. the time It takes to process all the edges) is 

6 • 10 + E~.lO OR 
E~ • 10 units of lime since E is 1ikel!:l to be larget 
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6.1.2. Perrormanee or Coordinate Traosrorrnations 
Coordinate transformations involve some arithmetic operations for each vertex 
hence a complexity factor of 10. The number of vertices in the environment is the 
same as the number of edg~s. However, the number of vertices that reach the 
perspective transformation stage is likely to be smaller than the original number of 
vertices, El , since some vertices will be filtered out by the clipper. [SuSp74] provide 
another statistic, E~, (relevant number of edges) which stands for the number of 
edges (vertices) that survive the clipper. The performances of the viewing and 
perspective transformations are therefore 

Viewing E~ • 10 unils of lime
 
Per sped i ve E~ • 10 unils or lime
 

since the viewing and perspective transformations are performed before and after 
clipping reBpectively. 

6.1.3. The Bottleneck 
We shall compare the performance of clipping and the two coordinate 
transformations against the performance of the HSE algorithms in each of the three 
environments. 

The values of E~ and E~ for each of the three environments ace [SuSp74] 

Environment I E, E, 

A 400I 800
8 20K 10K 
C 4BOK 24DK 

K = 103 

Here is how the performances of the HSE algorithms, borrowed from [SuSp74] table 
7, compare with those of clipping and the two coordinate transformations (we only 
show the best and worst HSE algorithm performance for each environment) 

Env I rcnment , HSE (best) I HSE (....orst) 

A 140K 
8 104M 
C I 7.SM I 

Clipping Vi e .... ing Perspeclive 
Transr. Transf, 

2.48 8K 8K 4K 
628 2(JOK 200K lOOK 

1500B ~.BM 4.BM 2.4M 

K = I Q3 

M = ! 06 

B = 109 

Although the comparison is crude, it is evident that RSE is the bottleneck. 
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6.2. Graphice Pipeline PerformaDOe (2) 

1D. this B ection we shall estimate the "rate of flow" of 
polygons t.hrough each of the stages of our OCCAM 
implemen'tation of the grapmcs pipeline in order fo verify 
the bottleneck and derive more accurate figures for our 
implemen'tation. 

The time taken by each stage of the pipeline to process a certain environment is 
estimated using the INMOS Transputer Estimator. This Is a static estimator Le. it 
does not consider the execution of the program. As a result we encountered 
difficulties with the following constructs 

i.	 WHILE loops
 
(the estimator considers a single execution of the loop)
 

ii.	 IF statements
 
(the estimator considers the most expensive alternative)
 

The first problem was solved by estimating the number of times 
a loop is executed in terms of environment parameters like the number of polygons, 
the resolution of the screen etc and multiplying that by the cost of a single 
execution of the loop. 

The solution to the second problem would involve estimating 
the probabilities for each path of an IF statement, multiplying them by the cost of 
the path and summing up the products. The complexity of the solution coupled 
with the o~servation that most IF statements in our code are quite evenly balanced l 

led us to ignore this problem. 

The follOWing estmation of the timing of the stages of the 
graphics pipeline assumes knowledge of the algorithms involved and their 
implementation, details of which are given in chapters 3 & 4 and appendix 3. 
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The environment parameters we need in order to estimate the 
number of loop executions are the following 

l.Uertical screen resolution..................• Yres
 

2.Horizontal screen resolution ................• Xres
 

2.Depth complexity Dc 

4.Tot.al number or polygons P~ 

S.Number of relevant. polygons .. . p. 

6.Average polygon ~idth in pixels...........•.. W
 

7.Average polygon height in pixels 
(or scan lines) ..•.......•...•. H 

8.Average number or edges per polygon ....•..••. E 

9.Average number or edges per bucket 
in final Edge Table .•......... Eelf 

lO.Average number of edges per bucket 
in Edge Table being constructed Eetc 

11.Average number of edges in the 
Active Edge Table ....•..•..... E 

SlIl 
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Let's assume that our environment contains 1024 four·sided polygons (PL=1024, 
E=4) and that half of them are clipped out l (P,.=512). Let's also say that our 
screen's resolution is 500 )( 500 (Yres=500, Xres=500) and that we have a depth 
complexity of 1 (Dc=l). Depth complexity is the average number of polygons that 
cover a pixel or, equivalentlYt the average number of times that a pixel ls output 
from the scan converter. 
Then the average number of pixels covered by a polygon is 

(Yres lit Xres _ Dc) I P, and therefore 

W = H = J (Yres - Xres - Dc) 7P, 
assuming no particular shape for a polygon. 
Now since the edges of only one polygon occupy the Edge Table (ET) at a 

time, E.H=E/B, as we only consider the ET buckets that correspond to scanlines 
that our polygon intersects (there are H of them). E.H denotes the number of 
edges per ET bucket once the ET has been constructed. This is different from the 
average number of edges per ET bucket while the ET is being constructed, E.le• 

Before inserting the first edge into the ET, the average number of edges per 
relevant ET bucket is 0, before the second edge it is liB, before the third it is 
2/H and before the fourth it is 3/B (maintaining our assumption that E=4). 
Therefore 
E." = (0 + l/H + 2/H + 3/H) I 4 

= 3 I (H • 2). 
E••L, the average number of edges in the Active Edge Table (AET) 

(or the average number of polygon edges that a scanline intersects,provided it 
intersects some), can be made equal to 2 if we assume that the majority of 
polygons used for building pictures are convex 

} sCAnlines 

LThe assumption that half of the polygons are clipped out is borrowed 
from [SuSp74]. 
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Her~ are the environment parameter values that result from our 
instantiation 

Yres= SOO 
Xres= SOO 
Dc = I 
P = 1024 

t 
P = 512 

r 

W = Jr-;'(Y","e"sccc."X",e"sCCC.'"""O"c')",/"-';-pc J (SOD • SOD. 1) / S12 = 22 
H =W= 22 
E = 4 
E.H=E/ H=4/ 22= .18 
E l = 3 / (H • 2) = . 07 

E:.:= 2 

We shall next use these parameters to estimate the number of transputer cycles, 
hence the amount of time, that each of the stages of the pipeline would take to 
procesB our environment (called the stage's timing). In what follows multiplications 
arise from loops. The cost of the loop (in transputer cycles) given by the 
Transputer Estimator is multiplied by the estimate of the number of times the loop 
will be executed (which is expressed in terms of the environment parameters); both 
figures are given on the program listing in appendix 4. 

&.2.1. Viewing Transformation Timing 
The viewing transformation's timing can be expressed as 

Tv = Pt • (138 + E • 399)
 
= 1.8M transputer c~cles
 

~hich ~ouJd take .09 sec on INMOS T424-20 (INTR84].
 

&.2.2. Perspective Transformation Timing 
Its timing is 

Tp = Pr • (138 + E • 439)
 
= 1M transputer c~cles
 

~hich ~ould take .OS sec on T424-20.
 

Note that since the perspective transformation is performed after dipping, the 
expression used for the number of polygons is Pro 
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6.2.3. Clip Timing 
As we are only interested in the rate of flow through the clipping pipelille, we 
should consider the timing of the first clipping stage which deals with the most 
complex environment. The timing of this stage is 

T = P~. (1213 + (E-1) _ 979)e 
= 4.2M transputer cycles
 

which would lake .21 sec on T424-20.
 

6.2.4.. BSE Timing 
Before determining the timing of the scan converter, which is the main routine of 
our OCCAM implementation of the Z-buffer algorithm, we estimated the amount of 
time taken by each of the auxilliary procedures it uses by means of procedure calls 

CLEAR lakes Tn = 13686 transpuler c~cles (tel 
INSERT.ET.EDGE T'N = 192 + 307 + (E,,~c / 2)_49 ::: Sal tc 
HOUE.ET.8UCKEi. TO. RET TI"[] = 36 + E.~r.19S = 71 te 
UPDATE.AET Tlf' = 34 + E...~.103 = 240 lc 
8U88LESORT' = 50S tcTso 
UPDATE. HI N. HAX. ET. BUCKET Ttf'1 = 54 lc 

The cost of the scan converter is then given by 

= Pr • (1034 + To. + (E - 2) • (139 + TIN + TI'\H) + 2 - TIN + 2 • Ttf'1 +Tsc 

+ H • (44 + TI"[] + E..,,~ • (414 + W • 152) + ilf' + )}Tso 

= 103H tral"lsputer c~cles
 

which ..oul d take S.2 sec on T424-20.
 

So, for our particular environment instantiation, the rate of flow through the HSE 
stage is Tsc / Tc = 25 times smalJer than the next smallest rate of flow among the 
other stages of the pipeline. 

i. The WHll.E loops of BUBBLESORT are likely to be executed once only 
since the AET will rarely be out of order. 
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Chapter 6 

Alleviating the Bottleneck by • Splitter Tree 

This chapter describes the Splitter Tree approach [Park80J 
to allevja&-iDg the bottleneck of the graphics pipeline 
Imposed by HSE. A CSP specWcatioD is given and the 
optimal depth of the Splitter Tree is estimated. 
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6.1. The Splitter Tree 
The performance of the bottleneck HSE stage of the graphics pipeline can be 
Improved by splitting up the polygon stream coming down the pipeline into SEveral 
substreams using a splitter tree [ParkSO] before the HSE stage. A number of HSE 
procesaes can then process separate data in parallel 

plane 8 

Clipping p~,amid 

(seen f,om apex)//, 
, / 

, /, 
/, 

/ 
, 

/ , 
/ , 

/ , 
/ 

, 
/ "- , 

plane A 

Each node of the splitter tree is not much more than a clipper of the 
Sutherland-Hodgman type [Suth74], except that Instead of discilrding the polygons 
or parts of polygons that lie on the "outBidelt of the splitting plane, it uses the 
splitting plane to separate those polygons that lie on one side of it from those that 
lie on the other. 
To achieve 2"-way splitting, so that 2" HSE processors 

can run in parallel, we need 2"·1 splitter nodes arranged in a binary tree of depth 
n. For example to achieve B-way splitting we need ~·1 = 7 splitter nodes arranged 
in 3 levels. 
Since the splitting algorithm is a small modification of the clipping one, 

the rate of flow through splitter nodes should be much the same as the rate of 
flow through clipper stages (see sections 5.2.3. and 6.4.) and therefore the splitter 
tree should not impose any timing overhead (apart from an initial delay of the 
polygon stream by an amount of time proportional to the number of splitter tree 
levels). 

Assumptions 
The following conditions must hold if the splitter tree is to achieve its purpose 

i.	 The polygons (or whatever our primitive objects) must be 
evenly distributed about the splitting planes. 

Ii.	 A new bottleneck must not be created when the outputs of the HSE 
processes are put back together in order to be displayed (see diagram 
of section 6.3.3.). 
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6.2. The Splitter Node 

6.2.1. Description 
A splitter node splits its input stream (which consists of polygon vertices) into two 
outpul streams; the decision as to which output stream a vertex goes to depending 
on which side of the node's splitting plane the vertex lies in 

out 1 out2 

A Sp 1i tter Node 

Several splitter nodes connected together in a binary tree fashion, constitute a 
splitter tree. Here is how each splitter node works. The vertices of the subject 
polygon are considered in pairs (s,p) in a clockwise traversal around the polygon, 
just a~ for clipping. There are 6 cases to be considered 

splitting plane 

sidel (de2 

5 

p p
5 

5\ 5~ P 

~ represent output vertices to channel outl 
o represent output vertices to channel out2 
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6.2.2. CSP specif"icatioD 
Each splitter node must satisfy 

out! (fl pl.. (in) 1\ 

outZ ( fZpi.. (in) 
where 

f1 
pl 

_ «» = <> 
flpl_ (p» = <> 
flp ..... (s.p) ~ rest) (p) ~ f1pl .....«p) ~ rest). 

("'sideZI(plane.s) & sidell(plare.p) 

'of onplane"(plane,p» 

(intersection(s,p,plane), p) ~ f1pl ..... (p ~ rest), 
sideZ{plane,s) & sidel(plane.p) 

(intersection(s,p,plane» A fl I_«P> A rest). 
sidel{pJane,s) &side2(plane,~) 

flpl"""(P) ~ rest), 
TRUE 

and 
(0)	 = ()r'pl.". 
«p») = ()r'1" ..... 
(<so p) ~ rest) (p) ~ f 2pl .... {(p) ~ rest).r'1'1 ..... 

<-'"siael(plane,s) & side2(plane,p) 

v onplane(plane,p» 

(interseetion(s,p.pJane), p) ~ f 2 ~ rest),plan.. (f 
sidel(plane.s) &sideZ(plane.p) 

(interseetion{s.p,plane» f2pJane«p) rest),A A 

sideZ(pJane.s) & sidel(piane,p) 

f2 1 «p) ~ rest). 
p an. TRUE 

f\l_ and f2 pl ..... recursively specify the relationship that must hold between the 
input and each of the two output6 of a splitter node. 

i.	 sidel(plane,s) is a function identical to the function 
inside(plane,s) of clipping; but in splitting both sides of the splitting plane are 
treated equally and the name of this function is supposed to signi~, that. 
side! delivers false if s is on the splitting plane. side2 is a similar function 
for the other side of the splitting plane. 

ii.	 onplane(plane,p) is a function which tests if a point p is on the
 
splitting plane by checking if p satisfies the splitting plane equation.
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6.3. CombiDing the Splitter Tree with the Clipping pipeline 

6.3.1. Description 
Let's instantiate our splitter tree by assuming that it consists of only one level 
whid splits about the pl~e 

plane X-O 

1 • , , 
,, ,, 

/, 
/'z. ...." , , 

/ " , ,, ,/ 

X ::::: 0 

y• 

,,, 
Cl ipping P~ramid (apex vie~) 

There are two pOSSible ways of combining our one level splitter tree with the 
clippiIlg pipeline; either we split and then clip or we clip and then split 

SPLITTER/CLIPPeR CLIPPERlSDLJTTER 
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At first the SPLITTER/CLIPPER seems fasterj each polygon has to pass through 
only six stages compared to seven in the cage of the CLIPPER/SPLIITER. 
However the CLIPPER/SPLITTER is preferable for two reasons 

i.	 It uses fewer clipping proCeSBeSj in this case six
 
compared to ten of the SPLITTER/CLIPPER.
 

ii.	 The SP:LITTER/CLIPPER is not really much faster. The 
rate at which the SPLITTER/CLIPPER processes polygons is 
determined by the speed of its splitter which deals with the most 
complex:: environment. Both designs process polygons at about the same 
ratej the only difference being that the SPLITTER/CLIPPER outputs 
its first polygon earlier by the amount of time it takes to clip one 
polygon against a plane. And this is insignificant if the polygon stream 
is long. 
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6.3.2. CSP SpecifieatioD 
Our clipping pipeline can be modelled by the CSP process 

CLIP. PIPE = CLIPLEFT»CLIPIlIGHT»CLIPTtp»CLlPBUTTCtl»CLlPHITf£R»CLI PYCtI 

Q(CLIP.PIPE) = {left. right} 

(see section 3.2.). 
The one level splitter tree can be modelled by the process 

SPLIT. TREE = SPLITx=D 

Q(SPLIT. TREE) = {in, Qutl. QutZ} 

We shall now combine them in a CLIPPER/SPLITTER fashion by renaming the 
righ1 channel of CLIP.PIPE to in and then hiding it as it is an internal 
communication channel between the two processes 

CLIP/SPLIT = (I~iih\ CLIP.P1PE II SPLIT. TREE) \ (In) 

a(CLIP/SPLIT) ={Jeft. outl. QutZ} 

From Eection 3.2. we know that 

CLIP. PIPE sat right ( fCL1p(left) 

where rQ.IP = f YCtI"fHI T"tel"feoTIt:l1·fTtp"f1l1GHT·f L£n 
Therefore 

inn~fLlP.PIPE sat in ( fCL1p(left) 

Also, from section 6.2.2. we know that 

SPLIT. TREE
 
sal
 

out! ( f1x_o(in)
 

outZ ( f 2 =o(in)
x

It musl therefore be the case that 

(In""" CLIP.PIPE II SPLlT.TREE) \ (in) 
sa~ right
 

out! (f\=o(fQ.IP(left»
 A
 

QutZ ( f 2x..D(fCLIP(lefL»)
 

!ince .in is the only common channel of i~igi?t CLIP.PIPE and SPLIT.TREE. 
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Here is how our pipeline looks after the introduction of the splitter tree. A splitter 
tree of depth 1 is shown 

HSE HSE 
S::a;1 S::an 

Converter Converter 

Frame &Depth Buffers 

This corresponds exactly to the structure of our OCCAM program. 
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6.4. Optimal Depth of the SpUtter Tree 
In order to determine the optimal depth of the splitter tree we shall extend the 
second model we used to compare the stages of the graphics pipeline (see section 
S.2.). First of all we give the rel."tionship between the environment parameters 
before and after a split. Since the environment is divided into two equal halves by 
a spill, the area of the screen corresponding to each half of the object space (Yres 
• Xres) and the number of relevant polygons (Pr) reduce by half (assuming that 
the majority of the polygons are not cut by the splitting plane). The rest of the 
environment parameters are not affected by a !!plit. 

Here is how the environment parameteu after a split (shown primed) 
relate to the ones before the !!plit 

Yres' = Yres / "'I r.there 1("'1(2
 

Xres' = (Xres _ "'I) / 2
 
(so that Yres • Xres =2 • (Yres' • Xres'))
 

Dc' = Dc 
p'=p /2 
, = .,==",....=0'"-:-""'''''''"'.. • = _ _ <P/2) wll~ J(Yres~ Xres~ bc~)/Pr ~ J«(Yres Xres)/2) Dc) / = 
H~ =H simIlarly 
[' = E 
E.v " = e:' / H~ = E / H = E.~r
 
E.~c ~ = 3 / (H~ • 2) = 3 / (H • 2) = E.~c
 

E..l ~ = E...~
 

Note that P~, the number of polygon!! before clipping, is irrelevant since splitting is 
perform.ed after clipping. 

To estimate the optimal depth of the splitter tree we reason as follow!!. 
For each new layer we add to the !!plitter tree, the number of its leaves (the HBE 
proce35ors) is doubled (assuming a binary splitter tree). Hence the rate of flow 
througn the HBE layer is also doubled since the environment is evenly di!!tributed 
about the splitting planes. 
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What's the limit t.o bow fast we can make the pipeline as a whole"! The nte of 
flow through a pipeline is only as large as the smallest rate of flow o....er ill Its 
stages. Bence we should only increase the depth of the splitter tree untll the rate 
of flow through the aSE layer is equal to the smallest rate of flow o....er all the 
other stages. We must consider therefore the rate of flow through the 
transformation stages, clipping and the root node of the splitter tree which deals 
with the most complex environment. We have deri....ed timings (the time taken to 
process our environment Le. the inverse of the rate of flow) for the .... iewing and 
perspective transformations as well as for clipping (Tu, Tp and Tel in section 5.2. 
The timing for the first splitting node is 

Tsp = P,. • (1430 + (E-l) • 1131)
 
= 2.5M transputer clJcles
 

which would take .12 sec on T424-20.
 

Now max(Tu,Tp,Tc,Tsp) = Teo Bence clipping has the smallest rate of now (lver aJI 
the stages of our pipeline except aSE. The following graph shows the relationship 
between the depth of the splitter tree and the timings of aSE (TscJ and clip (Tel. 
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Our splitter tree should therefore be of depth 5. This means 32-way splitting 
requiring 32 aSE processors. 
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6.6. 1. the TraD8puter Link nata Rate Adequate ? 

As in any system of parallel processont, we must ensure that the amount 
of information that must be communicated between the processors can be handled 
by the communication links. 

Let's assume that each of our processes is running on a separate transputer, 
using on-chip memory only and that we are processing an environment of the 
complexity described in section 5.2. The restriction on the rate of flow of polygons 
through our pipeline lmposed by the processing speed of the stages is about SOOO 
(pre clipping) polygons / sec (implied in section 6.4). Does the available link data 
rate a.llow this rate of flow or does It impose a stricter limit ? 

The highest communication rate is likely to be required either on the link 
going into the first stage of the clipper or on the links coming out of each of the 
aSE Scan converters (see figure of section 6.3.3). This is because the clipper is 
likely to reduce the number of polygons going down the pipeline, hence the amount 
of information that has to be communicated, but the amount of information is 
increased again by the HSE Scan Converters which convert the polygon descriptions 
into pixels. One might ask : And how will the massive pixel outputs of all the 32 
aSE Scan Converter processes be put back together in order to be displayed ? The 
answ~r offered by toda)"s technology is Time Multiplexed Video Mixing of the 
video outputs of the Frame Buffers (Which are Dual Ported Video RAMs). In 
other words the image is put back together in video, the very last step before 
beinS diaplayed. Of course the Frame Buffers must have some intelligence in order 
to deal with the pixel descriptions they receive from the HSE Scan Converters as 
dictated by the z..buffer alsorithm. A microprocessor and the Depth and Frame 
buffers would probably be placed where BUFFER is shown below 

IH~EI 

lFERI 

VIDEO MIX 

~t~" 
screen 
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Let's estimate the data rate required on the two links mentioned "hove 

A.	 Clipper Inpu t Link. 
We have assumed that each polygon has an average of 4 vertices (E = 4), 
each described by 3 coordinates occupying a total of 48 bytes (assuming that 
each coordinate is a 4 byte integer). In addition each polygon has 1 byte to 
describe its colour and 1 control byte, making a total of 50 bytes / polygon. 
At 5000 polygons / sec, the required data rate is 250 Kbytes / sec. 

B.	 HSE Scan Converter Output Link. 
Maintaining our assumption that the clipper halves the number of p()lygonE! 
(see section 5.2), the 32 HSE Scan Converter processes have 2500 polygons / 
sec to deal with or about 80 polygons / sec each, since we have assumed an 
even distribution of polygons about the splitting planes. With an average 
polygon area of 484 pixels (W = H = 22 pixels, section 5.2), each HSE Scan 
Converter has to output about 40,000 pixel descriptions / sec. Each pixel 
description consists of the x and y screen coordinates of the pixel occupying 2 
bytes each, the depth of the relevant polygon occupying 2 bytes' and the 
colour of the polygon occupying 1 byte; that makes 7 bytes I pixel 
description. A data rate of 280 Kbytes / sec is thus required. (With 
appropriate coding we can avoid the transmission of redundant information. 
The colour value need only be transmitted once per polygon for example. We 
could use data reduction if the data rate of this link was inadequate; the extra 
computation needed should be taken into account in the timing estimate for 
the HSE Scan Converter). 

i.	 HSE takes place in image space (after the Perspective Transformation 
has been performed). It therefore uses either Physical Device Coordinates or 
Normalised Device Coordinates (which will be transformed into the Physical 
Device Coordinate systems of several deVices). The useful range Qf such 
coordinates is limited by the resolution of the screen and 2 bytes / coordinate 
is more than enough to address even the highest resolution screens. The 
accuracy of the z·coordinate is also assumed to be reduced to 2 bytes by the 
(depth preserving) Perspective Transformation in order to decrease the size of 
the Z-buffer. 
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The factors that can limit a link's data rate are 

I. Transmission Time {l.l psec I (byte + control bits)) 

2. &heduJiug Overhead [6 cycles I communication) 

3. Memory Contention between Links I Processor 

4. Rendezvous delay 

The average time taken by a communication is given by the estimator as 
26 cydes, allowing a maximum data rate of about 770 Kbytes I sec for a 50 nsec 
cycle (taking into accouut the worst case of single byte communications). This 
estimate takes into account limiting factors 1. and 2. and the maximum data rate 
it allows would be sufficient for our purposes if those were the only limiting 
factors. 

Memory Contention between links and processor is irrelevant if we 
only have one process I transputer as either the process is executing and all the 
memory cycles are available to it, or the process has been descheduled in order for 
a communication to take place in which case the link concerned has all the memory 
cycles available to it'. 

If one of the two processes taking part in a communication arrives late 
at the Rendezvous then the communication takes more than 26 cycles for the 
proces; that arrived first. However the slowest stages of our pipeline (HSE and 
CLIP) are balanced and the (fast) stages between them essentially act as buffers. 
It is therefore Hkely that the slow stages will make the fast stages wait for them at 
the Rende7Vous with the effect of lengthening their communication time (so that the 
faster stages will run at the pace of the slowest ones) and there should be no 
overall delay. 

From tho.': above discussion we can conclude that the estimator's 26 cycle 
communication time take8 into account the effective factors that limit the data rate 
and therefore the available link data rate should be sufficient to handle the 
communication between the stages of our pipeline under the assumptions we made. 
Furthermore it seems that there is scope for optimising our code in order to 
increase its processing capability and take advantage of the spare link data rate. 

i.	 If we put more than one process per transputer· for example several 
clipping stages per transputer, excluding the "bottleneck" first clipping stage of 
course - then memory contention between links and processor must be taken 
into account before deciding on the allocation of processes to transputers. One 
can start at the fact that if all links are working flat out, they request 1 
memory cycle every 325 nsec. This corresponds to 15 % of the total number of 
memory cycles for a cycle time of 50 nsec. In other words there will be a 
memory contention for 15 % of the memory references made by the processor. 
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Chapter T 

ConclualoD8 and Further Work 

Prom Operation Spec:ifieatloD8 to Algorithm SpecitieatioD8 

We gained a dear idea of the dipping and hidden surface elimination 
operations by specifying them in Z In chapter 2. 

We then proceeded to specify algorithms which would implement 
the above operations In CSP (chapters 3 & 4) and finally we coded these 
algorithms in OCCAM. 

Since Z and CSP are formal specification notations, we could formally 
relate the specifications of the operations to the specificationa of the algoriUms by 
the rules of data refinement, but this was outside the scope and time limits of this 
project. 

Even nl8tribution of Object Spaee Primitive. 

It is an essential assumption of the splitter tree that the polygons (or other 
primitives) are evenly distributed about the splitting planes, else some of the HSE 
processors will be Idle. 

Instead of assigning a contiguous area of object space to each HSE processor 
we could assign to it arbitrary non contiguous areas by appropriate splitting. The 
workload Is then likely to be more evenly spread among the HSE processors. But 
would the extra splitting that this implies as well as the cost of reconstructing the 
image at the other end be cost-effective '1 

Real Time? 

From the graph of section 6.4. it is evident that we could not hope to achieve a 
rate of flow through our current pipeline of more than one frame (of the 
compleXity described in chapter 5) per .2 seconds since that is the value of the 
c1ipptng overhead Tc For our particular environment therefore, we have not 
achieved real time performance Le. a rate of flow of at least 25 frames per 
second. Our bottleneck has moved further up the pipeline to the first stage of the 
dipper. If we want to further improve our timing we have to divide the clipper's 
task. One possibility would be to divide our 3D polygon data base amongst several 
pipelines like the one introduced in this project. 
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Tral\lputer Implementation 

In order to decide how to allocate the processes that constitu te the stages of the 
pipeline amongst transputers we must take into account their speed and code size. 
Here are some hints (refer to diagram of section 6.3.3.). For a system with a 
splitttr tree of optimal depth, we expect that the rate of flow through the HSE 
layer will be equal to that through the first dipping stage and that these will be 
the sLages with the smallest rate of flow of our pipeline (see chapter 6). Hence 
each HSE stage as well as the first clipping stage should reside on their own 
transputers to avoid any timing penalty. The pair of perspective transformation 
procE'tSes that emerge from each leaf of the splitter tree could be incorporated in 
the transputer of the splitter tree leaf since the leaf splitting node will be dealing 
with an environment that is much simpler than the original (16 times simpler for a 
splitter tree of depth 5). 

We should also consider the possibility of a tertiary splitting 
tree so that all the channels of a transputer are utilised by a splitter tree node. 
This implies that each splitter tree node performs 3-way splitting about 2 planes. 
The root node should remain a binary splitting node to avoid any timing penalty. 

Suitability of OCCAM 

Its features were handy in expressing the parallel combination of our algorithms 
and the non-determinism involved in the "buffer" process of the HSE which has no 
means of knowing which scan converter process to expect the next input from (see 
diagram of section 6.3.3 and OCCAM code in appendix 4). 

However OCCAM's lack of data structures meant that we ha ve 
had to implement buckets and lists using LD arrays (see appendix 3). 

The use of real numbers has been avoided for two reasons 

i. speed 
ii. unavailability 

Scaling has been used instead. 
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Appwlix 1 

Picture Pormat 

This appendix describes the syntax uaed in our OCCAM implementation to define 
pictures In terms of polygons. 
Each static picture, called frame, CODSlats of a eet of objects 

descrIbed in terms of polygoDB. All polygona go through the same pipeline, 80 a 
way of separating their coordinates 18 neededj for thiB realOD the special value 
NEXT.POLYGON Is inserted between the coordl.oates of 8lleeeutve polygons 

(polygon) <colour> {.<~>.<W>.<z>}· 

<frame> (polygon) {.NEXT.POLVGON, (polygon>}

Notice that a polygon caD be empty (i.e. consist of a colour only), or consist of 
only one or two vertices. Such edgy forma of polygon can reault from extreme 
cases In the splitter process or incorrect input and are eventually discarded. 

A sequence of frames can be used for animation. A movie is 
a sequence of frames separated by the special value NEXT.FR.AME 

<movie> ::= <frame> {.NEXT.FRAME. <frame>}- END 

The 8pecial valUe8 are used to reset the approprIate data structures before 
procesl!lng the next frame/polygon. For example the scan converter process \18e8 

NEXT,POLYGON as a signal to clear the Edge Table and the Active Edge Table 
before processing the next polygon. The NEXT.FRAME value can be used by the 
display controller to clear the screen. 
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Geometrical Caleulations used in Clipping 

A.2.1. Determining whether a Point is on the "wide" of 8 Plane 

From chapter 1 we know that we can determine whether a point is on the "inside" 
of a clipping plane by comparing the appropriate coordinate of the point with w (= 
z•• (sId)) which can be calculated as soon as the eye coordinates of a point are 
known. In our OCCAM implementation w is calculated once and for all in the 
viewing transformation stage and kept as the fourth component of the coordinates 
of a point [x",y.,zlI,wl. 
For the hither and yon clipping planes we don't need to compare against w a.B 

these planes are perpendicular to the Z. axis. Here is a summary of the condtions 
that a point must satisfy in order to be on the "inside" of each of the six clipping 
planes 

P(x... Y... 2.. ) 

Is lnside Ir 

LEFT xe > -w 

RIGHT x. ( w 

TOP y. ( w 

BOTTOM !::.I.. > -101 

HITHC:R 

VON 
z. > ",
'. ( ", 

z.. 

z., 

= 

= 

k] 

k2 

is 

is 

the hither cl ipping plane 

the ~on clipping plane 
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A.2.2. Calculating the Intersection of 8 Line Segment ond a Plane 

This only need be calculated if the line segment actually crosses the plane. The 
method used is the one suggested in ISuth74]. Consider the top clipping plane and 
a pair of points PI(XpYl'ZI) and P2(x2'Y2'Zz) on either side of it 

P, 

Let a be the ratio IPIII / IP l P 21 . Then the coordinates of I can be computed as 

j = po; + a(p; - p;) 

by notL'lg that P;I = a(P2 . PI)' 

In order to estimate the ratio Ct for the top clipping 
plane, we need a measure of the distance of P 1 and P 2 from that ;Jl2."e. (y - w) is 

a suitable measure. Since this has opposite sign for PI and P2 , the ratio a is biven 
by 

Q :: (~l - i0oi) ( «(~l - w) - (~2 - 104). 

a can be calculated similarly for the other clipping planes. In the case of the hither 

and yen planes, the calculation of Q is simple:- since the diffe.ence bet....'e€;n the 
z-coordinates of P 1 and Pz and the value of Z at the plane can be used as the 
distance measure. 

a can take values between 0 and 1 but in order to avoid the 
use of reals in our OCCAM program, we multiply the dividend L, the eXiJre5s1on 

for a by a "scale factor". 
Notice that the divisor in the above expression is guaranteed to 

be non·zero by the fact that PI and P 2 lie on opposite sides of the plane. 
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On the Implement.ation or the BSE Algorit.hm 

A.3.I. Data Structures 

The following data structures have had to be implemented in OCCAM in order to 
be used by the scan converter of the HSE algorithm [Fole82] 

~~ (ET), organised as an array of bucket! (one per 
scanline), to contain the edges of the polygon to be scan converted 

Y,e,-! FI 

1,11 ~ t-D§--
Information about each edge is kept in the bucket that corresponds to the scmline 
of its minimum y coordinate. The information kept for each edge is 

its maximum y coordinate (YmeJ 
the x coordinate corresponding to its minimum y coordinate (x",.J 
its inverse slope (11m) 

.A..ctiY..e: ~ L.L.b.J.g (AET), organised as a simple list, to contain the edges that 
the current scanline intersects 

RET

G ,I +--1 +-.. 
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The ET and AET are implemented in OCCAM using a large iD array to store the 
information about the edges. Another array acts as the bucket pointers for the ET. 
Edges belonging to the same bncket are linked together. An integer variable points 
to the first edge of the AET and the edges of the AET are also linked together 

ET 

V,e,-1 FI 
• EDGES c 
~ 

5
'i! 
• 111~~o~... ~!======"'~---'f~---~ 

RET 

G-
A.3.2. OperatioIiB 

The following (specialised) operations on the above data structures were 
implemented in order to be used by the scan converter 

i. CLEAR 
{lniti:::.lise the ET and the AET to empty } 

ii INSERT.ET.EDGE 
{Insert an edge into the appropriate bucket of the ET } 

iii. MOVE.ET.BUCKET.TO.AET 
{Remove a bucket of edges from l~e ET and 
inse.t them into the AET without destroying the or dering of the AET 
(on x.,.J } 

i,. UPDATE.AET 
!Update the edges of the AET before processing the 
next scanline. In other words remove from the AET those edges .....hose 
y....~ is equal to the last scanline processed and update the x-intercept of 
the rest of the edges (x""n) for the next scanline } 

,. BUBBLESORT 
{Used to sort the AET in case ji became Qut of order 

durL'lg updating. The AET is likely to be sorted and in that case 
bubblesort performs well } 
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The following incremental calclJlo.lion:; were used in order to save time during scan 
conversion 

i. X-intercept of !ill Edge with the &x1 Scanline 
If an edge of slope m interceptB scanline i at x 

j 
(y=i), it must intercept sGmHne 

i... l at x, + 11m. Thi~ calculation is used in UPDATE.AET. 

iLllililll Qf ~ Polygon i!..t 1M NW Pixel 
The Z-buffer ESE algorithm requires that the depth of a polygon be estimated at 
each of the pixels within it. This can be done by solving the equation of the 
polygon's plane 

alO: + b_y ... Cll':Z ... d = a 

for z. But this calculation requires 1 division, 2 multiplications al'_d 2 subt:-~ctions 

per pixel. Instead we observe that if the depth of a polygon at pixel (x,y) is z, 
then its depth at the next pixel on the current scanline (x+l,y) is 

z + «((-d -a_(x ... l) -b-!::J} I c) - «(-0 -a.:x -0':8) I c)} 

z-(a/c) 

A.3.4. Calculation of the Plane Equation 

The plane equation of a polygon is determined using the method ~uggesttd by 
Martin Newell and described in [SuSp74J. 

The coefficients a,b and c of the plane equation are determined 
as follows 

a=I:(8, 8)) Il( (z, ... z)
 

b=I:(ZI z) • (Xl'" x)
 

c=I:{X I X) lI': (!:It + 8)
 
>.Ihere 

i th(Xl' 8" z,) is the PO]8;O;-' vertex
 
i == 1..~(ve~tice5 in pol!::Jscn)
 
j == (i+l if; (~{ve,.tjces in poll,jgon) e:se 1)
 

In our implementation we require that the vertices cf a polygon be copJamr and 
only take into account 3 of the ve:-tkes in determining the plane coefficients. 

HaVing determirled a,b and c, the d coefficient is found using 
the coorcinates cf a vertex to solve the plane equation for d. 
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Appendix "
 

OCCAM ImplementetioQ
 

--	 Const.ant. Declarat.ions 
DEF	 SCREEN. HEIGHT = 21. --must. be odd 

SCREEH.~IDTH = 21. 
HALF.SH = 10. --(SCREEN.HEIGHT I) I 2 
;AlF.S~ = 10. -(SCREEN.~IDTH I) I 2 
f1AX.DEPTH = max. int..
 
8ACK.GHD.CDLDUR = '.5',
 

HAX. EXPECTED = 200.
 
SCALE. FACTOR = 1024.
 

10. --Screen Si2e / 2 
d 16. --distance (rOm E.C. origin to screen plane 
D 20. --Distance (rom E.C. origin to ~.C. origin 
KI 1. --Z=Kl is the Hit.her clipping plane (E.C.) 
KZ = 30. --Z=K2 is the Yon clipping plane (E.C.) 
~EXT . POLYGOH min. into 
NEXT. FRAME min. int + L 
END min. int + 2. 
ill min.int.+3: 

CHAN screen AT Screen.lndex~ 

-- :npuUer 
PRDC I NPUTTER (CHAN DUT)= 

SEQ
 
OUT '0': -8:-4;0: 0:7;0: 8:-4:0: NEXT. POLYGON
 
OUT 'J': -9:5:4: -7:7:4; 7;-7;-4: SJ-9;-4; END:
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Viewing Transformation
 
-Transform from l,..,IorJd to Eye Coordinates
 
-and scale therr. up. SCALE. FACTOR to
 
--avoid use of reals.
 

PROC VIEWING. TRANSFORHATlON(	 CHAN in. out.
 
VALUE s.
 

d. 

o J= 

VAR x. y. z. colour, t, 
SEQ
 

III t ,= (s II SCALE. FACTOR) / d
 
~ )( ,= 0
 

~~WHILE x 0 END 
...,0 SEQ 
~ . 

" 

.;:; in 7 colour 
~c out! colour 
gE In 7 x 

X<O + 2) --While not a control value ."P- I ~ SEQ 
~o 0 In?'d:Z 

:;j ~ , ..., out I x. SCALE. FACTOR --Xe II SCAL~.FACTOR ... "I 8 out I ~ II' SCALE. FACTOR --Ye II SCALE. FACTOR 
0'"' @
J.l a - -, ou~! (0 - z) • SCALE. FACTOR --Ze II SCALE. FACTOR. L,;H;l~"l l. (D - z) --W • SCALE. FACTOR 
,c:...., %'0 

; ~ n 7 x
 
-=-5.'... ~ out I x
 
~~
 
~"
 

Intersect ion 

--calculate the intersection of a plane and edge.
 
--alpha::: ( (dist.. from point PI to plane)/
 

(dist.. from Pl to P2) ). SCALE. FACTOR
 
--(xi.!:JLzi) arE' t.he intersectlon coordinates
 

PRoe INTERSECTlON(	 VALUE xl, !:Jl. zl.
 
xZ, !:J2. z2.
 
aJ pha,
 
UAR xi. yi, zl)=
 

SEQ
 
)( :::: xl + (alpha. ((x2 - xl) / SCALE.FACTOR»
 
'd ::::!:Jl ... {aipna. ({~2 -!:Jl) / SCALE.FACTOR))
 
Z := zl + (alpha. ((z2 - zJ) / SCALE. FACTOR)):
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-- Left Cl ipper 
--All incoming coordinates ere. SCALE. FACTOR 

PROC ell P. LEFT	 (CHAN Ieft. right. 
VALUE s, d)= 

VAR	 xfirst,yfirst,zfirst. --first polygon vertex
 
wf i rst,
 
xs, ys, zs. -beginning of each edge
 
xp, YP. %p. --end of each edge
 
xi,yi,zi. --intersection coordinates
 
wS,wp.wi. -- w = (5 I d) • 2
 

FIRST-POINT, INSIDE,
 
SECOND, POI NT, INSIDE,
 
alpha.
 
colour,
 

"	 --t=s/d 

SEC 
t:= (s • SCALE. FACTOR) I d -calculate sid loI: SCALE. FACTOR 
Xp ,= D 

I
ILE xp <> END 
SEQ
 

left 7 colour
 
right! colour
 
left 7 X5
 

IF 
xs <= (min. int + 2) --a control value; the polygon is null 

SEQ 
right! xs 
xp := X5 --to terminate outer loop if xs = END 

TRUE 
SEQ 

left 7 ys; zs; ws
 
xfirst := xs
 
yfirst := ys
 
zfirst := zs
 
wfirst := ws
 
IF
 

(xs + ws) >= 0 
FIRST,PDINT,INSIDE TRUE 

TRUE 
FIRST.POINT.INSIDE FALSE
 

left 7 xp
 
IF
 

xp > (min. int + 2)
 
left 7 YP: zp; wp
 

TRUE
 
SKIP 

-~HILE xp > (min. int + 2) --Wh i Ie xp .... i n {NEXT. PDLYGOt(

I SEQ --NEXT. FRAME. END} 
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~ 

..4:l 
~ 

~~ 
~o 

~'" , "" 
"'''' aii 
",0 

IF 
(xp + wp) )= 0 

SECONO.POINT.INSIDE ,: TRUE 
TRUE 

SECOND.POINT.INSIDE ,= FALSE 
IF 

FIRST.POINT. INSIDE AND SECOND. POINT. INSIDE 
right! xp; ~p; lp; wp 

FIRST.POINT. INSIOE AND (NOT SECOND.POINT.INSIDEI 
SEO 

alpha := ({xs ... ws) • SCALE. FACTOR) 
I (xs ... ws) - (xp'" wp» 

INTERSECTION(xs,ys,zs. xp,yp,zp, alpha. xi.~i.zi)
 

wi ,= t • (zi I SCALE. FACTOR)
 
right! xi; yi: zi; wi
 

(NOT FIRSLPOINLINSIDE) AND SECOND. POINT. INSIDE 
SEQ 

alpha := «(xs ... ws) • SCALE. FACTOR) 
I «xs ... ws) - (xp'" wp» 

INTERSECTION(xs.ys.zs. xp,yp,Zp. alpha. xi,yi.zi)
 
Ioli :: t • (zi I SCALE. FACTOR)
 
right! xi: yi: zi; wi
 
right! xp; yp; zp; wp
 

TRUE
 
SKIP
 

xs : = xp
 

ys := yp
 

ZS : = zp
 
ws := wp
 

FIRST.POINT. INSIDE ,= SECOND. POINT. INSIDE
 
left. 7 xp
 
IF
 

xp ) (min. tnt ... Z) --not a control ... alue 
left 7 yp; ZP: wp
 

TRUE
 
SKIP
 

--process last edge using saved verlex

'IF 

(xfirst ...... first) >= 0 
SECOND. POI NT. INSIDE: TRUE 

TRUE 
SECONO.POINT.INSIOE ,= FALSE 

IF 
FIRST. POINT. INSIDE AND SECOND. POINT. INSIDE 

rignl ! xfirst; yfirst: ,first: wfirst 
FIRSLPOINT.INSIDE AND (NOT SECONO.POINLINSIDE)

SEQ .
 
alpha := ({X5 ... ws) • SCALE. FACTOR) I
 
«(xs ... INs) - (xfirst ... WfJfst)) 
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IHTERSECTION(xs.~s.zs, xfirst.~first,zfirst, 

alpha,	 xi.~i.2i) 

wi := t • (zi / SCALE. FACTOR) 
right! xi; yi: zi; 1.11 

(NOT FI RST. PO INT. INSIDE) AND SECOND. POI NT. INSIDE 
SEQ

I 
I alpha := ((xs + ws) ~ SCALE. FACTOR} / 

«(xs + ..s) - (xfirst + wfirst))! 
II lNTERSECTlON(xs,ys,25, xfirsLyfirst.zfirst. 

alpha. xi.~i.zi) 

!	 
wi • = l • (2i / SCALE. FACTOR) 
right xi; yi: zi: wi 
right! xfirst: yfirst: zfirst; .. first 

I 
TRUE 
. SKIP 

.......r:ighl ! xp' 
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- RighI:. CI ipper"
 
-All incoming coordinates are _ SCRLE.FACTOR
 

PROC CLIP.RIGHT (CHAN left., right, 
UALUE s. d)= 

UAR	 xfirst.yfirsl:. zfirsl:., --first polygon verl:.ex 
wf i rsl:.. 
xs. ys, zs, --beginning of each edge 
xp. yp, zp, --end of each edge 
xi,yi,zi, --intersection coordinates 
WS, wp, wi, - ~ = (5 I d) _ 2 

FIRST.POINT. INSIDE, 
SECOND. POINT . INSIDE. 
alpha. 
colour, 
t: --I:.=s/d 

SEQ 
t ,= (s • SCALE, FACTOR) I d --calculate sid. SCALE.FRCTDR 
xp ,= a 
~HILE xp <> END 

SEQ 
left 7 colour 
right! colour 
left 7 xs 
IF 

xs (= (min. inl:. + 2) --a conl:.rol value: the polygon is null 
SEQ 

righl:. ! )(s 
xp ,= xs --to terminal:.e outer Joop if xs = END 

TRUE 
SEQ 

left 7 ys: 2S: ws 
xfirst .= xs 
!:if i rst ,= \,jS 

zfirst := zs 
wfirsl:. '''' ws 
IF 

{xs - ws) (= 0 
FIRST.POINT.INSIDE := TRUE 

TRUE 
FIRST.POINT. INSIDE ,= FRLSE 

left 7 xp 
IF 

xp > (min. int -+- 2) 
left 7 YP: zp: ~p 

TRUE 
SKIP 

WH]LE xp > (min. Int + 2) --Wh i Ie xp '" i n {NEXT. POLYGON. 
SEQ --NEXT. FRAME. END) 
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IF 
(xp - "p) (:: 0 

SECOND. POINT. INSIDE ,= TRUE 
TRUE
 

SECONO.POINT.INSIDE ,= FALSE
 
IF
 

FIRST. POINT. INSIDE AND SECOND. POINT. INSIDE
 
rig~t ! ~p; ~P; ZP: wp 

FIRST,POINT.INSIDE AND (NOT SECOND. POI NT. INSIDE) 
SEQ 

alpha ,:: ((X5 - ws) • SCClLE.FACTOR) 
/ «(xs - ws) - (xp- wp)) 

INTERSEClJDN(xs.~s,zs. xp.\;Ip.zp. alpha. xi,tJi.zi}
 
wi ,~ l • (ZI I SCALE. FACTOR)
 
right! xi: \;Ii zi; wi
 

(NOT FIRST, POINT. INSIDE) AND SECOND. POINT. INSIDE 
SEQ 

alpha ,= «(xs - \-IS) • SCALE. FACTOR) 
/ «X5 - I-ls) - (xp- wp)} 

INTERSECTJON(xs.\;Is.:zs. xp,yp,zp. alpha, xi,\;Ii,zi)
 
l.Ii := t. (zi / SCALE. FACTOR)
 
right ! xi· \;Ii; zi; w1
 

right xp; \;IP; ZP: I-lP 

TRUE
 
SKIP
 

XS := xp 

tJs ;::: blP
 
zs ::: zp
 
ws := I-lp
 

FIRST.POlNT.1NSIDE := SECOND.POINT. INSIDE
 
Ieft 7 xp
 
IF
 

xp> (min. in\. ~ 2) --not a control v2lue 
left ? \;IP; zp; wp 

TRUE 
SKIP 

--process last edge ~sing sayee vertex 

IF 
(xfirst - ~fjrst) (= ~ 

SECDNQ.POINT. INSID~ ,= TRU~ 

TRUE 
SECDNQ.POINT. INSID~ ,= FALS~ 

IF 
FIRST.POINT.INSIDE Ar~D SECOND.POINT. !NSIDE 

rig'lt I xrirs~; ,,{Irs:: 2:i~st.: I.lrl~st 

FIRS:.PO!I·~-. :I{SJDE Arc (NOT SECJ~=.PJINT. INSI~It:)
 

SEQ
 
alpha "= \(xs - ~51 • S:~~E.~~:-J~) / 
(X5 - ~s) - (xrirs:. - r.::I~i't:') 

lit; 



INTERSECTION(xs,~s,Z5 xfirsl,~firsl,zfirsl. 

alpka. xi,yi.zi) 

wi ,= l • (zi / SCALE,FACTOR) 
rigkl ! xi: bli: zi; wi 

(NOT FIRST.POINT.INSIDE) AND SECOND. POINT. INSIDE 
SEQ 

alpha :: ((X5 - ws) • SCALE. FACTOR) / 
(xs - ws) - (xfirst - wfirsl)) 

INTERSECTION(X5,YS.ZS. xfirsl.blfirsL.zfirsl. 
alpha. xi.yi,zi) 

wi := t • (zi / SCA~E.FACTOR) 

rigkt ! xi; bll; zi; wi 
right. ! xfirsl; yfirst; zfirsl: wfirst 

TRUE 
SKIP 

right. ! xp' 
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Top Cl ipper 
--All incoming coordinates are _ SCALE. FACTOR 

PROC CLIP. TOP (CHAN left. right, 
VALUE s. d)= 

UAR	 xfirst,yfirst.:.zrirst. --first polygon vertex
 
wf i rst.
 
xs. ys. :zs, --beginning of each edge
 
xp,yp,:zp, --end of each edge
 
xi.yi.:zi. --intersection coordinates
 
wS,wp,wi. -- i0oi = (s I d) 1Il Z
 

FIRST. POINT. INSIDE.
 
SECOND. POINT. INSIDE,
 
sl pha,
 
colour.
 
t,	 --t~s/d 

SEQ 
t : = (sIKSCALE. FACTOR) I d --calculate sid. SCALE. FACTOR 
:X~ : = 0 
~HILE xp () END 

SEQ
 
left 7 colour
 
right! colour
 
lert 7 X5
 

IF
 
xs	 (= (min. int + 2) --a control value; the polygon is null 

SEQ 
right! X5 

xp : = X5 --to terminate outer loop if xs = END 
TRUE 

SEQ
 
left 7 ~s: zs; i0oi5
 

xfirst := xs
 
yfirst:=ys
 
zfirst := Z5
 

wfirst := i0oi5 

IF
 
(ys - ws) (= 0
 

FIRST,PoINT.INSIDE .= TRUE
 
TRUE
 

FIRST.POINT.INS1DE := FALSE
 
left 7 xp
 
IF
 

xp > (min. int + 2)
 
left 7 yp; :zp; wp
 

TRUE
 
SKIP 

~HILE xp > (mil'. int .. 2) --~;nile xp "'In {NEXT. POLYGON, 
SEQ	 --NEXT,FRAHE, END) 
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IF 
(yp - Oolp) (= 0 

SECOND. POI NT. INSIDE := TRUE 
TRUE 

SECOND. POINT. INSIDE ;= FALSE 
IF 

FIRST. POINT. INSIDE RNO SECOND. POI NT. INSIDE 
right! XP: YP: Zp: ~p 

fIRST.POINT.INSIDE AND (NOT SECOND.POINT.INSIDE) 
SEQ 

alpha := ({ys - ws) • SCALE. FACTOR} 
J «y9 - ws) - (yp - wp» 

I NTERSECTION{xs, ys. 25, xp,yp,zp, alpha. xi,yi.zi)
 
wi "= t ~ (zi I SCALE. FACTOR)
 
right. ! xi; yl; zi; wi
 

(NOT FIRST.POINT.INSIDE) AND SECOND. POI NT. INSIDE 
SEQ 

alpha := ({~s - ws) • SCALE,FACTOR) 
/ «ys - ws) - (yp- !olp) 

INTERSECTJON(xs.'::!s,ZS, xp.yp,zp, alpha. xi,yLzi) 
WI ,= t. • (zi / SCALE. FACTOR) 

right ! xi; yl; zi; -;
 
right xp; IdP; zp; -p
 

TRUE
 
SKIP
 

xs ;= xp 

\dS := \:!P
 

zs ,= zp
 

1-15 ,= .. p
 

FIRST.POINT, INSIDE == SECOND. POINT. INSIDE
 
Ili'ft 7 xp 

IF 
xp ) (min. int. + 2' -not. a cont.rol value 

left. 7 yp; ~P; wp 
TRUE 

SKIP 
--process last edga uSIng saved vert.ex 
IF 

(8flrsl - Oolfirsl) (= 0 
SECOND. POI NT. INSIDE := TRUE 

TRUE 
SECOND. POI NT. INSIDE := FALSE 

IF 
FIRST.POINT.INSID:: AI~u SE:OND.PQU;T.INSiDE 

right! xflrst.; yfi~5t.: zfirst.: __ first. 

FIRST.POINT. INSIDE AND (kOT SECOND.POINT. INSIDE) 
SEQ
 

alpha := ((~s - ~s) • SCALE.FRCTOR)
 
(~5 - ~5) - (~first. - ~first.))
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INTERSECTION(xs.ys.zs. xrirst.yfirst.zfirst. 
alpha. xi.yi.zi) 

wi := t • (zi I SCALE. FACTOR) 
right! xi; yi, zi: wi 

(NOT FIRST.POINT.INSIDE) AND SECOND.PDINT.INSIDE 
SEQ
 

alpha := «(ys - ws) _ SCALE. fACTOR) I
 
«ys - ws) - (yfirst - wfirst)
 

INTERSECTION(xs,ys,zs. xfirst,yflrst.zfirst. 
alpha. xi.yi.zi) 

wi := t • (zi I SCALE. fACTOR) 
right! xi; !,li; zi: wi 
right! xrirst; yfirst; zfirst; wrlrst 

TRUE 
SKIP 

right! xp: 
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Botlo," Cl i pper 
-All incoming coordinal:.es are. SCALE. FACTOR 

PROC CUP.BOTTOH (CHAN left:.. righI:., 
UALUE 5, d)= 

VAR	 xfirsl:..~firsl:.,zfirsl:., --firsl:. pol~gon verl:.ex
 
...n rsl:..
 
xs. 6'5, 25, --beginning of each edge
 
xp. 6'p, 2p, --end of each edge
 
xi.~i,2i, --inl:.ersecl:.ion coordinal:.es
 
"'5 ....p, ... i, -- ~ = (5 I d) • z
 
FIRST.POINT. INSIDE,
 
SECOND. POINT . INSIDE,
 
alpha.
 
colour,
 
1:.: -- I:. sid
 

SEQ
 
I:. := (s.SCALE. FACTOR) I d --calcuJal:.e sid. SCALE. FACTOR
 
xp : = 0
 
WHI LE xp 0 END
 

SEQ
 
lefl:. 7 colour
 
righl:. ! colour
 
lefl:. 7 xs
 
IF
 

X5 (= (min. lnt + 2) --8 conlrol value; .lhe pDl~gDn is nJlj 
SEQ 

righl ! X5 

xp : = xs --lo lerminate ouler loop if xs = END 
TRUE 

SEQ
 
left 7 ',,'5: 25: ...5
 

xfirst := xs
 
\:Ifl rst := ~s
 

zflrst := zs
 
... first:=~s
 

Ii""
 
(\::IS + ~s) )= 0
 

FIRST.POINT.INSIDE ,= TRUE
 
TRUE: 

FIRST.POINT. INSIDE := FALSE
 
left 7 xp
 
IF
 

xp > (min. inl + 2)
 
lefl 7 ~p: zp; ... p
 

TRUE
 
SKI P 

WHILE xp > (IT'lin. i.nt + 2) --w;.,: Ie xp "'in {NEXT.PO_YGON. 
SEQ --NEXT,FRAHE, END} 
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IF
 
(yp .. wp) >= 0
 

SECDND.POINT.INS1DE := TRUE
 
TRUE
 

SECOND. POINT. INSIDE .= FALSE 
IF
 

FIRST. POINT. INSIDE AND SECOND.POINT.INSID~
 

right! xp; yp; ZP: wp
 
FIRST.POINT.INSIDE AND (NOT SECOND.POINT.INSIDE) 

SEQ 
alpha :: «Y5 + ws) • SCALE. FACTOR) 
/ ((>IS + 1-15) - (YP+ I-lp») 

INTERSECTlON{xs,YS,25. XP.yp,zp, alpha. xi,yi,zi)
 
l..Ii :::: l:. III {zi / SCALE. FACTOR}
 
right! xi: yi; zi; w\
 

(NOT FIRST.POIHT.INSlDEI AND SECOND. POINT. INSIDE 
SEQ 

alpha := «(~5 + ws) III SCALE. FACTOR) 
/ (ys .. \-ls) - (YP .. wp)) 

INTERSECTION(xs.ys.ZS, xp,yp,zp, alpha. xi,yi,zi)
 
\-Ii := t III (zi / SCALE.FACTOR)
 
right! xi; yi; zi; looJi
 

right! xp; '::!P; zp; I-lp
 
TRUE
 

SKIP
 
xs := xp 

!dS := YP 
2S :::: zp 

ws :;:: \.lp
 

FIRST.POINT.INSIDE := SECOND.POINT.INSID~
 

left? xp
 
IF
 

xp ) (min. int .. 2) --not a control value 
left? yp; zp; wp 

TRUE 
SKIP 

--process last edge using saved vert~x 

IF 
(~rirst + ~flrst) )= 0 

SECOND.POINT.INSIDE := TRUE 
TRUE 

SECONe.POINT.INSIDE := FR~SE 

IF 
FIRST.POINT. INSIDE A~D SECOND.POINT. JNSIDE 

right! xfirst; Iolfirst: zfirst.; ~rirst 

FIRST.POINT. INSIDE AND (NOT SECOND. POINT. INSIDE) 
SEC
 

alpha := {(~s .. ~s) • SCA~E.fR:TOR) /
 
((",s .. ~s) - (!,Jfirst ....:irst.))
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INTERSECTION(xs,ys,zs, xfirsl.yfirsl,zfirsl, 
alpha, xi.yi.zi) 

~j ;= l • {zi I SCALE. FACTOR} 
right. ! xi; yi; zi; Io-li 

(NOT FIRST. POINT. INSIDE) AND SECOND.POINT.INSIDE 
SEQ 

alpha := (ys + Io-Is) • SCALE. FACTOR} / 
((ys + Io-Is) - (yfirst. + Io-Ifirsl)) 

INTERSECTION(xs,ys,zs, xfirsl,yfirst.,zfirst.,
 
alpha. xi.yi,zi)
 

10-1 := l • (zi I SCALE. fACTOR)
 
r ght. ! xi; Y i; z 1; ~ i
 
r ght. ! xfirst.; yfirst.; zfirst.; Io-Ifirst.
 

TRUE 
SKIP 

r j ght ! xp: 
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Hi lher CI i pper 
--All incoming coordinales are _ SCALE. FACTOR 

PROC CLIP. HITHER (CHAN left, right. 
UALUE s, d, 

K l= --2=K is lhe hilher clipping plane: 

VAR xflrst.blfirst 2first --first pol~gon vertex 
~first, 

XS,dS ,2S. --beginning of each edge
 
XP,dp,2P, --end of each edge
 
)( i,'Ji. 2 i. --intersection coordinales
 
~S,..Ip, ~i, 

FIRST,POINT. INSIDE,
 
SECOND. POINT. iNSIDE.
 
alpha.
 
colDur.
 
I, 
k, 

SEQ 
k ::: K _ SCALE. FACTOR --AI I coordinates are: • SCALE. FACTOR; so scale: ~ too 
l ::: ':s 1Il SCALE. FACTOR) / d 
xp ::: 0 
WHI LE xp 0 END 

SEQ 
left? colour
 
right! colour
 
left 7 xs
 

I' 
X5 <:: (min. lnt + 2) --8 conlrol v;;due; the: polygon is nul: 

SEQ 
right! xs 
xp ::: xs -lo terminale ouler loop if xs :: END 

TRUE 
SEQ 

left 7 ~S: 2S; ~s
 

xfirst := xs
 
yfirst ys
 
2fjrst .- 2S
 

~fjrst := ~s
 

IF
 
(2S - k J )= 0
 

FIRST. PO! NT. INSlDE TRUE
 
TRUE
 

FjRST.PDjNT.INSlDE FALSE
 
left? xp
 
IF
 

xp ) (min. int + z)
 
left 7 ~p; 2p. wp
 

iRU£
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SKIP 
WHILE xp > (mIn. int. + 2) -Wh i J e xp .. i n {NEXT. PO~..vGON, 

SEQ --NExT. FRAME. END} 
IF 

(zp - k) >= 0 
SECOND. POI NT. INSIDE TRUE 

TRUE 
SECOND.POINT. INSIDE FALSE 

TF 
FJRST.POlUT.INSIDE AND SECOND. POl NT. INSIDE 

right. ! xp; YP: 2p; wp 
FIRST.PO]NT. HiS10E AND (NOT SECOND.POINT. INSIDE) 

SEQ 
alpha = {(zs - k) • SCALE. FACTOR) 
/ ((zs - k) - (zp - k)) 

INTERSECTlON(xs.ys.zs. xp.YP.zp. alpha. xi,yi.zi}
 
~i ;= t • (zi / SCALE. FACTOR)
 
fight! xi: yl: zj, wi
 

(NOT FIRST.POINT.lNSIDE) AND SECOND POI~H.INSIDE 

SEQ 
alpha := {(zs - k) • SCALE. FACTOR) 
/ ((Z5 - k) - (zp - k)) 

INTERSECTION(x~.~s.2s. XP.yp.Zp, alpha. xi.yi.zl)
 
wi .= t • (~i / SCA~E.FACiOR)
 

fight xi; yl: 21 ; "i
 
fight xp; yp; zp: "P
 

TRUE 
SKIP
 

xs : = xp
 
ys . = yp
 
ZS : = zp
 
wp := I-IS
 

FIRST.POINT.INSIDt: SECOND. POINT. jNSI8E
 
lert7xp
 
IF
 

xp ) (min. inl + 2) --not a control value 
left:. 7 YP. 2p; ~p 

TRUE 
SKIP 

--prDcess last edge using saved vertex 
IF 

(zr ifSt - k) >= 0
 
SECOND. POI NT. INSIDE TRuE
 

TR"UE 
SECOND. POI NT. INSIDE "A'--S:::
 

IF
 
FIRST.POINT. INSIDE AND SECOND. POI NT. INSID:::
 

right! X:lfst: yflfSl: zflrst: ~flrst
 

FIRST.POINT-INSIDE AND (NOT SECOND. POINT. INSIDE)
 
SEQ 
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alpha := ((zs - k) • SCAL£.FA~TOR) 

I ({zs - k) - (zfirst -k) 

INTERSECTION (xs. '"IS. zs. xf I rst. ~f j rst, zr i rsL 
alpha. xi,yi,zi) 

wi := t • (zi I SCALE. FACTOR) 
right! xi: yi. zi; "'i 

(NOT FIRST.P01NT.INSlDE) AND SECOND.POIN~. )NSlDE 
SEQ 

alpha := {(zs - k) • SCALE FACTOR) 
I «(zs - k) - (::"first -k)} 

INTERSECTION(xs,ys.zs. xrirst,yfirst. zflrst. 
alpna. xi,y;.zl) 

"'
 • (Zl I SCALE. FACTOR)
 
r ig!-ll:. xi: '"Ii: z i· "1 

right ! xfirsL: >Jfirst; zfjrst; ... r i r st 
TRUe 

SKIP 
right ! xp: 
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Yon CI i pper
 
--~:H I incoming coordinates are _ SCALE. FACTOR
 

PROC CLIP. YON (CHAN left, right..
 
UALUE s. d.
 

K)= --:z==K is t.he yon cl ipping plane
 

UAR	 x[irst.y[irs~.2rjrst. --first. polygon vertex
 
..[irst.
 
XiS. ys. 2S. --begInning of ea~n edge
 
xp. yp. 2p. --end of each edge
 
xi. !:Ii, 2 •• --int.erse~t.ion coordlnat.es 
.. s ...p ... i.
 
FIRST. POI NT. I NSI DE.
 
SECOND. POI NT. I NS IDE.
 
alpha.
 
colour,
 
t, 
k. 

SED 
k : == K • SCALE. FACTOR --AI I coordinates are _ SCALE. FACTOR: so scal e k too 
t. : == (s • SCALE. FACTOR) / ,
 
xp : == 0
 
WHILE xp <> END
 

SED
 
left. 7 colour
 
rignt. ! colour
 
left. 7 xs
 
IF
 

xs <== (min. int + 2) --a cont.rol value: the polygon is null 

SED 
rigrL ! xs 

xp .= xs --t.o t.erminat.e outer loop i: xs END 
TRUE
 

SEQ
 
Ieft. 7 !::is; zs;
 "" xfirst. ,- x"
 
\,jfirst.
 
zf j rst. "' 20
 

.. : I rst.
 

~ 
. _ .. s
 

IF
 
(:zs - k) <== 0 

FIRST.POPH. INSIDE TRJ:: 
I;:<,E 

Fir<ST.PC:~-;-. INS;~::: fA~S:: 

Ie:: ? Y.p
 

Ie
 
)(p ) (m i.-" ir,~ ... 2)
 

!e:t. 7 ~P: n. lo;p 
";"RJ:: 
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SKIP 
WHILE xp ) (min. int. + z) -Whi Ie xp .... in {NEXT.POLYGON, 

SEQ --NEXT. FRAME. END} 
IF 

(zp - k) <= 0 
SECOND,POINT.INSIDE ._ TRUE
 

TRUE
 
SECOND. POINT. INSIDE FALSE
 

IF
 
FIRST.POINT.INSIDE AND SECOND.POINT.INSIDE
 

~ight. ! xp; ~p; ZP: wp
 

FIRST.POINT.INSIDE AND (NOT SECOND. POI NT. INSIDE)
 
SEQ
 

alpha := (25 - kj • SCALe. FACTOR)
 
/ «( 25 - k) - (zp - k))
 

INTERSECTION(xs.\:Is,ZS. xp,yp,ZP. alpha. xi.yi.Zl) 
lOi ;:;:: t. IIIl (zl / SCALE. FACTOR) 
right! I<i; \:Ii: 2i; I-li 

(NOT FIRST.POINT.INSIDE) AND SECOND.POINT.INSIDE
 
SEQ
 

alpha ::: «2S - k) • SCALE. FACTOR)
 
/ ({Z5 - k) - (zp -k» 

INT~RSECTIQN(xs.ys.zs, XP.YP.ZP. alp~a. xi,yi,Zl)
 
wi := t. • (21 / SCALE. FACTOR)
 
right! xi; yi: 21: wi
 
right. ! xp; YP: zp; ~p
 

TRU~ 

SKIP 
><5 := )(P
 

!:,IS : = !::IP
 

zs := zp
 

I.-JS ::: I.-Jp 

FIRST.POINT.INSIDE SECOND. POINT. INSID~
 

left 7 xp
 
IF
 

xp ) (min. Int ~ Z) --not 2 control value
 
ieft 7 ~p: 2p: ~p
 

TRUE
 
SKIF 

--process last edge using saved ve,tex 
iF 

(zfIrst - k) <= 0 ~ 
S~:ONC.POl~T. INSID~ TRu~ 

TRUE 
SE:OND.PO:NT.INSID~ FAL..SE 

IF 
FIRST. POINT. [NSID~ AND S~CONC.PO:i';T .lijSJD~ 

rlg.... t ! x(Irst; ~first.; zrirst.: w:jrst 
!"i"2ST.POINT. INSIDE AND (NOT SECOND.PDINT.INSIOc) 

S::J. 
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alpha := ((zs - k) • SCALE. FACTOR) 
/ ((zs - k) - (zfirst. - k}) 

I NTERSECTl ON (xs. ys. zs, xf i rst.. l,jf i rsL zf i rst.. 
alpha. xi.yi.zi) 

~i := t. ..: (zi I SCALE. FACTOR) 
right. ! xi; l,ji; zi; ~i 

(NOT FIRST.POINT.INSIDE) AND SECOND. POINT. INSIDE 
SEQ
 

alpha := «(zs - k) • SCALE. FACTOR)
 
I ((zs - k) - (zfirst. -k»)
 

INTERSECTION(xs.l,js.zs. xfirst..l,jfirst..zfirst.. 
alpha. xi.~i.zi) 

~i := t. • (zi I SCALE.FA:TOR) 
right. ! xi; ~i; zi: ~i 

right. ! xfirst; yfirst.: zfirst; wfjrst 
TRUE 

SKIP 
right! xp: 
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-- Sp lit. t.er (Split.s about. plane X = 0)
 
--Rll incoming coordinat.es are '"sCAIE.FACTOR
 

PRJC X.SPLiTTER(	 CHAN in.oull.oulZ,
 
UALUE s.d )=
 

liAR	 xfirst..yfirsL.zfirsl. --first. pO]t,lgon vertex
 
I.'f i rst.
 
XS.id S . Z5 , --beginning of each edge
 

XI=.idP,ZP. --end of each edge
 

XI. id1. Zl • --int.ersect.lon coordinat.es 

.. s. I.'p. l"I i . 
F1RST. POllf;-. LEFT.
 
FIRST.POINi.ON.PLANE.
 
SECOND. POINT. LEFT.
 
SECOND.POINT.ON.PlANE.
 
al pha.
 
colour,
 

l'
 

s::a 
t ::: (s ~ SCALE. FACTOR) / d
 
XP ::: 0
 

fHILE xp <> END
 
SEQ 

l~ 7 colour
 
oull ! colour
 
out.Z ! colour
 
in 7 xs
 
IF
 

xs (::: (min. int + 2) --a cont.rol value: the pol::,;:m is null 
S~Q 

r- 
oull I xs
 
out2 ! xs
 
xp := xs --t.o t.erminate outer loop If xs END 

! ' TRu::: 
SEQI,	 In ? idS; ZS; 1,,15 

XflfSt := xs 
I 
I l:/firsl := l:/S 

zfirst := ZS 

I.'first .::: I"IS 

iF ~ 
xs < 0 

SEQ 
FIRST.?O;NT.~EFT := TF-J~ 

FIRST.PQ;NT.'J:\.::J:.-q:r:::= :'"H'_S::: 
xs > 0 
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o 
~ 
j 
~ 

1;\ 
o 

,," 
1;1 
" ~ 

~~ 
,~ 

~~ 

~~ 
"0 

SEQ 
FIRST.POINT.LEFT .= FALSE 
FIRST.POINT.ON.PLANE := FALSE
 

TRUE
 
SEQ
 

FIRST.POINT.ON.PLANE := TRUE
 
FIRST. POINT. LEFT := FALSE
 

in 7 xp
 
IF
 

xp > (min. inc ... Z) --not a control value
 
in 7 ldP; zp; .... p
 

i
TRUE 

SKIP 
H1LE xp > (min. inc ... Z) --~hi Ie xp ~in {NEXT,POLYGON. 

SEa --NEXT. FRAME. END} 

I 
IF 

xp ( 0 
: SED 
II SECOND. POINT. LEFT :: TRUE
 

SECOND.POINT.ON.PLANE := FALSE
 
xp > 0
 

SEQ
 
SECOND.POINT.LEFT := FALSE 

I SECOND.POINT.DN,PLANE := FALSE 
. TRUE 

SEQ
 
SECOND.POINT.DN.PLANE := TRU~
 

SECOND. POINT. LEFT := FALSE
 
IF
 

SECOND.POINT.ON.PLANE
 
SEQ
 

outl ! xp; ~p; zp; p
 
QutZ ! xp; ~p; zp; p
 

SECOND. POINT. LEFT AND (FIRST.PD1NT.ON.rLANE O~ 

FIRST. POINT. LEFT) 
out J ! xp; ldP; zp; I-lp 

(NOT FIRST.POINT.LEFT) AND (NOT SECOND.POINT.L:FT) 
outZ ! xp; YP: zp; wp 

FIRST.POINT.LEFT AND (NOT SECOND.POINT.LEFT) 
SEQ 

alpha := ((-xs) • SCALE. FACTOR) / (xp - xs) 
INTERSECTION(xs,ys.zs, Xp,yP.2p. alpha. xi,yi,Zl) 
wi := t • (zi / SCALE. FACTOR) 
out! ! Xi yi: zj; wi 
out2! Xl; yi: 2i; wi 
out2 I xp: yp: zp; o-tp 

(NOT FIRST.POINT.LEFT) AND SECOND. POINT. LEFT 
SEQ 

alp~a ;= (xs • SCA~E.FACTOR) / (X5 - xp) 
1~:ERSE:TION xs.ys.zs, Xp,yp.2p. alpha. x .yi. zi) 
WI = t • {z / SCA~E.FACTORj 

cutl ! xi, y Zl; wi 
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outZ ! xi; yi: zi: wi 
outl ! xp; yp; zp: wp 

xs :::: xp 
ys :::: yP 
zs :::: zp 
ws :::: wp 
FIRST.POINT.LEFT = SECOND. POINT. LEFT 

I F1RST.POINT.ON.PLANE := SECOND.POINT.ON.PLANE 
lin? ,.:p 

I IF 
xp ) (min. int .. 2) --not a control value 

in ? yp; zp; '-lp 
TRUE 

I 
I SKIP 
--process last ~dge using saved vertex 

IiF 
I xf i rst < 0 

SEQ 
SECOND. POINT. LEFT :::: TRUE 
SECOND.Poi~T.ON.PLANE :::: FALSE 

xf i rst > 0
 
SED
 

SECOND. POINT. LEFT := FALSE 
SECOND.POINT.ON.PLANE := FALSE 

TRUE 
SEQ 

SECOND. POINT. ON. PLANE := TRUE 
SECOND.POIN-.LEFT .= FA~SE 

SECOND.POINT.ON.PLAN[ 
SED 

outl ! xfirst; yfirst; zfirst; wfjrst 
out2 ,.:first; yfirst: zfirst; ..,first 

SECOtm.POINT.LEFi AND (FIRST.POINT.:JN.PLANE OR ~ FIRST.POINT.LEFT) 
out! ! xfirst: ~rirst; zfirst; '-lfirst 

(NOT FIRST.POINT.LEFT) AND (NOi SE[DND.POINT.L~FT) 

oul2 xfirst; yfirsl; zfirst; ..,first 

FIRST.POINT.LEFT AND (NOT S~COND.POINT.LEFT) 

SEQ 
al?ha := { -xs} • S:A~~.FA:TOR) / (Xfl~st - xs) 
INTERSECTION(xs.ys.zs xfirst,yfirst.zflrst, 
alpka. xi.yi,zi) 

.., i :::: t If. (zi / SCALE. FACTOR) 
out! xi. yi· zi; '-ll 
out2 ! xi: ~:. z i; "i 
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Perspective TransFormation 
--Transform from E~e to Screen Coordinates. 
--preserving depth information 
--and Descale Coordinates / SCALE. FACTOR 
--(~ includes SCALE. FACTOR) 

PRO: PERSDECTIUE.TRANSFDRHATJON( CHAN in.out): 
UAR x. y. z, w, colour: 

rf
SEQ
 

x ,= 0
 
HIlE x () END
 

SEQ 
o.J in 7 colour 
~ 
H I out! colour 

in 7 x1;\ 
o [WHILE x ) (min. in!:. + Z) 

SEQ 
0'- in7 y ;z; .. 

1:1 @;" I out I {(x", HAL..F.Sl-J) I .. ) + HALF.SW --Xs 
~ ~~ {(y", HALF.SH) I .. ) + HALF.SH ---Ys 

,," 

Uut ! 
:z:. U	 out ! z I SCALE. cACTDR --25 

in 7 xL~ut! x 

Data Structures (ET,AET) and Operations 
-- used by the Scan Converter of the HSE algorithm 

~ 
_ Reset Data Structure for next polygon 

~ PRO: CLEAr« VAR ET[] .e RET. 
~	 rirstrree)=

gal
"_ 0 SEQ~'" 

" --Clear Edge TableoS" SEQ i=[O	 FOR SCREEN HEIGHT]"'~ $[;] ET[ i] : = ~1i.. 
~ . 
H~
~ 

--Clear Aclive Edge Table.. 
+''::iJ ~::- := NIL 
"'" --Resel Edge Poinler00
off 

_____firslrree := 0 
~ 
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-Copy edge data into EDGES arra!:,! 
--Auxilljar!:,! of I~SERT.ET 

PRQC PUT (VAR EDGES! I. 
f i rstfr12e. 

VALUE ymax,xmln,m )= 

SEQ 
EDGESjfirstfree] := !:,!max 
firstfree ::: firstfree'" 
EDGES[firstfree] := xmin 
fjrstfree := flrstfree ... 
EDGES[firstf·ee] := m 
firstfree : = fir-stfree 
EDGES[firstfreeJ := NIL 
firstfree ::: firstrree'" 
EOGES[firstfree] := NIL 
firstfree := firstfree ... 1: 
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--insert an edge Into the appropriate bucket of the edge table 
--maintaining order on (x, slope) withIn buckel. 
--Auxilliary of INSERT.ET.EDGE 

e:	 INSERT. ET (UAR ET[). 
EDGES I J. 
f i rstr ree. r VALUE scanl ine. --indicates appropr late bucket 
!dmax,xmin,m )= --edge to be inserted 

\J~R ET.PTR, PR:::U.E:T.PTR. laslfree: 
, SeQ 

PREV.ET.PTR :=N1L 
.I ::T.PTR:= ET[scanline] --beginning of bucket for this scanl ine 

I' 0IFET.PTR N'L 
--Special case bucket is empty
 
SEQ
 

I 
ET[scanline) := firstfree 

~ I PUT(EDGES,first.free,ymax,xmin.m) 

~ ~RU~
• SeQ 
~ ~ --Find appropriate place for insertion 
.:; "'{3IH1LE (EDGES[ET PTR + 1J < MIn) AND (EDGES[tT.PTR + 3J 0 NJ:-) 
-- ~ SEQ 
.E,. ~ PRC:U ET.PTR = ET.PTR 
~'I 

~

~~ ET.PTR = EDGES[E~.PTR + 3J 
~ i lastfree := firsHree 
~'l PUT(cD~ES,fjrstrree,y~ax,xmin,m) 
gI IF 

(EDGES[ET.PTR + 1J ( xmin) ORlj ((EDGES[ET.PTR + IJ 0 xmin) AND IEDGES[ET.PTR + 2] ( mil
I --Insert after the current bucket eoge 

SEQ 
EDG'::S[ last free 3) := EDGES[ET.PTR + 3] 
=:D~::S[:::T.PTR ... 3] . = 1astfree 

iR...E 
--Insert before c~rrent bucket edge 
SoQ 

ED~~S[lastrreE ... 3~ := ET.PTR 
IF 

PREu.ET.PTR = NI~ 

--becomes first bucket edge; spec i a i case 
ET[scanllne] lastfree 

TRUE
 
L ED::;ES[PREU.ET.PTR + 3J I astfree:
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--Deterll'line slope of edge. shorten if required and insert into ~T 

ROC INSERT.ET.EJJGE( UALUE xl.~l, 
x2. y2. 
x3, y3. 

OAR ET[], 
EDGES I ], 
f i rstrree):: 

--x coordinates are _SCALE. FACTOR 

' 

~ 
~ 

~ 

..; 
u 
":;1:1 
~I 

N! 
~I 
~ 

~ 
u 

UAR xmjn,~min.xmax.ymax,m; 

IF 
~l :: ~2 

--Horizontal edge. needs no processing 

SKIP 
TRUE 

SEQ 
IF 

~J > \::,12 
SEQ 
~min ,= ~2 

xmln ,:: x2 

b'max ,:: ~l 

xmax ::: xl 

~1 ( \dZ 
SEQ 

b'min ,:: ~l 

xmin ,:: xl 

~max ,:. !:IZ 
xmax ':' x2 

--Calculate (1/ slope) _ SCALE. FACTOR in m 

m ::: {xmax - xmin) / (~max - ~min) 

IF 
(~1 ( yZ) AND (~2 < ~3) 

--Shorten edge; (x2, !:I2) is not a local maximum/minimum 
ymax ,:: ymax - 1 

(yl > y2) AND (1::12 > ~3) 

--Shorten edge 
SED 

!:Imin 
xmin 

~min + 1 
xmin +'m 

TRUE 

--Don't shorten edge (x2,~2) is a local minimum/maximum 
SKIP 

1NSERT. E T (ET. EDGES. f i rsHree. blm i 1'1, ymax. xm i n, m); 
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-- --Insert en edge into the AET maintaining order on x 
--RuxilliarW of HOUE.ET.8UCKET.TO.AET 

PROt INSERT. ArT (VAR AET. 
EDGES [ ]. 

VALVE EDGE )= 

UAR x. AET.PTR. PREU.AET.PTR: 
SEQ
 

IF
 
AET = NIL
 

--First edge of AET; special case 
SEQ
 

AET •= EDGE
 
EDGES[EDGE + 4J .= NIL 

TRUE 
SEQ
 

x .= EDGES[EDGE + 11
 
AET. PTR •= AET
 
PREU.RET.PTR := NIL 
~HILE «EDGES[AET.PTR + 1J < x)
 

~~I AND (EDGES[AET.PTR'" 4J <> NIL)
 

r:iJ~ SEQ
 
~ PREV.AET.PTR = AET.PTR
"l;~ RET.PTR = EDGES(AET.PTR + 4J 

EDGES[AET.PTR ... 1] < x 
--Insert after current AET edge 
SEQ 

EDGESIEDGE + 4J .= EDGES[AET.PTR + 4J 
EDGES[AET.PTR + 41= EDGE 

TRUE 
--Insert before current RET edge 
SEQ 

EDGES[EDGE + 4) .= AET.PTR 
IF 

PREU.AET.PTR = NIL 
--8ecomes firt edge of RET; specia] case 
AE- .= EDGE 

TRUE 
EDGES[PREV.AET.PTR + 4J .= EDGE. 
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Move a buc=kEt or edges [rom the ET to the AET, 
--Keeping the AET sorted on x. 

~ rROC MOUE. ET. BUCKET. TO. AET (UAR	 EDGES[]. 
AET. 
BEGINNING.Of.BUCKET )::: 

o LEAR EDGE, 
~ SEQ 
o .!QGE :'= 8EG1NNING.OF.8UCKET ~ 
""~~ "'I WHILE EDGE () NIL
~S'Jf!) ~ SEQ 
~;< ~I JNSERT.F.::T(AET.EDGES,EDGE)
3 Z DL-. EDGE, '= EDGE:S[EDGE + 3) 

BEGINNING.OF.SUCKET :::: NIL: --remove buc~et from ET 

--Remove an edge from the AET
 
--Auxi 11 i a'~ of UPDATE. AET
 

PROC REMOVE. Ht:::T (UAR AET, 
EDGES [ ]. 
PREU. EDGE. 

UALUE EDGE ): 

IF
 
PREU. EDGE ~ NIL
 

AET ,: EDGESIEDGE • 4]
 
TRUE 

EDGES[PREU.EDGE + 4]: EDGES[EDGE + 4], 

s., 



Updete the AET 
--b~ rB~oving those edges for which ~ax = scan} ine and 

~ 

--celculating the x intercept of the rest of t~e edges 
--for the next scanline.~ 

'ROC LI'lJATE. RET (VPR	 RET,
 
EDGES! ].
 

VALUE scanline )= 

VAR EDGE. PREV, EDGE, 

i SEQ 
PREV.EDGE ,= NIL 

DGE ,= AET 
ILE EDGE <> NIL
 
SEQ
 

IF
 
EDGES[EDGE ~ 0] = scanline
 

--remove this edge from the AET
 
REMOVE.AET(AET. EDGES, PREV. EOGE. EDGE)

• TRUE
 
SEQ
r:~ 

--update the x intercept of this edge!;l1;l
z" EDGES[EDGE • II ,= EDGES[EDGE • 1] • EDGES[EDGE • 2] 

PREV.EDGE ,= EDGE 
EDGE ,= EDGES[EDGE • 4], 
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- -Swep two '1dges. Auxilliery or BUBBLESORT. 
PROC SW<P. EDGES (VAR EDGES []. 

VALUE EDGE!. 
EDGEZ )= 

VAR TE"'[3],
 
SEQ
 

SEQ ,=[ 0 FOR 3)
 
TEMP[,] .= EDGES[EDGEI + I]
 

SEQ '=[0 FOR 3J
 
EDGES[EDGE! + 'J .= EDGES[EDGEZ + I]
 

SEQ ,=[ 0 FOR 3)
 
EDGES[EDGEZ + '] .= TE"'[I].
 

-- Sorl AET on x, using bubblesorl 

PROC BUBBLESORT (VAR	 AET.
 
EDGES [ ] )=
 

VAR UNSQRTED. EDGE!. EDGEZ. 
SEQ 

IF 
((AET = NIL) OR (EDGES[AET + 4) = NIL)) 

--Trivially sorled 
SKIP
 

TRUE
 
~ 
~ SEQ 

UNSDRTED •= TRUE
 
WHILE UNSQRTED
 

~ 

~ 
o• SEQ 
~ UNSQRTED .= FALSE 
~ 

EDGE! •= AETo .... EDGEZ .= EDGES[AET + 4] 
WHILE EDGE2 <> NIL 

'" 
~ 

SEQ....
IF•o 

o EDGES[EDGEI + I] > EDGES[EOGEZ + IJ 
SEQ 

SWAP.EDGES(EDGES.EDGE1.EDGEZ) 
UNSDRTED .= TRUE 

TRUE 
SKIP 

EDGE! • = EnGEZ 
I	 EDGE2 :::. EDGES [EOGE2 -+ 4]: 
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= --Updat.e indices of first. and last. non-empt.\d ET bucket.s 
PROC UPDATE.HIN.HAX.ET.Y (UAR MIN.ET. Y, HAX.ET.Y, 

UALUE V):: 

"I 

IF
 
Y < HIN.ET.Y
 

MIN.ET.Y ::: Y
 
Y) HAX.ET.Y
 

HAX.ET. Y ::: Y
 
f5 TRUE
 
o~KIP 
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I 

--The Scan Converter Process
 
--Assumes vI.v2 ... vn represent~tion of polygons(vi lth vertex)
 

PROC SCAN. CONVERTER (CHAN	 IN. 
TO. BUFFER. 

VAR	 ETl]. 
AET. 
EDGES [ J. 
f i rstfree )= 

URR colour,	 --polygon colour 
xl. 611, 21. --polygon vertices
 
x2. 612, 22.
 
x3, 613. z3.
 
keepx I. keepl:/l, keep21,
 
keepx2.keepy2,keep22.
 
a, b,c, d. --plane coefficients
 
MIN.ET.V. MRX.ET.V. --first/last non-empty bucket in ET
 
Y. --current scanline
 
EDGE. --used to traverse RET
 
X.START. X.FINISH. --used in scan conversion
 
Z. Z. INC --depth and depth increment 

SEQ
 
CLEAR(ET.RET. firstfree)
 
x3 ,= 0
 

[WHILE (xl () END) AND (x2 () END) AND (x3 () END)
 
SED
 

MIN.ET.V:=O 
MAX.ET.Y ,: SCREEN.HEIGHT - I 
IN 7 colour 
IN 7 xl 
IF 

xl ( (min. int + 3)
 
TO. BUFFER! xl --Empty Polygon; ignore
 

TRJE
 
SEQ
 

IN 7 \:11: zl
 
IN 7 x2
 
IF
 

x2 ( (min. int + 3) 
TO. BUFFER ! x2 --One vertex polygon; ignor~ 

TRUE 
SED
 

IN7y2;z2
 
IN 7 x3
 
IF
 

x3 ( (min. int + 3) 
TO.BUfFER ! )(3 --T~o vertex polygon; ignore 

TRUE 
SED 

IN 7 613; z3 
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keepxl : =:: xl 
keepl./I : = 1:11 
keepzl ; = zl 

11 
keepxZ : = )(2 
keepyZ ;:::: 1,12 
keepz2 : = 22 
--determine plane equation from first 3 vertices: 
--assume they are not collinear 
a := «((ldl-y2}_(zl+z2» ... «y2-..,3).(:z2+23) 

«1,13-1,11 ).(23"1-21») 

b := «(zl-z2).(xl+xZ» + «z2-z3).,(xZ+x3» 

\ 
+ «z3-zl).,{x3+xl») 

:= «(xl-x2).(yl+\dZ» ... {(x2-x3}li!(y2+\d3) 
({x3-xl )If{\,I3+yl)))I ~ 

_d:= « «-a).xl) - (blfyl») - (cJlzl)) 

--construct Edge Table rWHILE )(3 > (min. ii'll + 2) 
--Terminates ~hen a control value is met 
--at the end of a pol ygon 

.; 

8 
H 

1:i 
0 

H'" '" 
" ;; 

@ 
0 

0< 

1:i 
Z ,'" @ 

1:i 

zi 

SED 

INSERT.ET.EDGE(xllfSCALE.FACTOR,yl.
 
xZ.SCALE.FACTOR,yZ.x3.SCALE.FRCTOR,y3.
 
ET.EOGES.firstfree)
 

UPDATE.MIN.MAX.ET.Y (MIN.ET.Y. MAX.ET.Y. "2) 

xl : =:: x2 
\:11 ;= \:12
 
21 := 22
 
x2 := x3
 
\:12 ;= \:13
 
22 : = 23
 
1N 7 ",3
 
IF 

x3 )= (min. int + 3) --If not a control value 
SEQ 

IN7", 
IN 7 23 

TRU~ 

SKIP ~ 
INSERT.ET.EDGE(xl.SCALE.FRCTOR. ~l.
 

xZ.SCALE. FRCTOR, ~Z, keap,x J..SCALE. FACTOR. keep\:j 1.
 
ET. EDGES. r i rstfree)
 

U;:IDATE.t1lN.MAX.ET.Y (MIN.ELY. HAX.Ei.Y. ~2) 
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INSERi.ET.EDGE(x2.SCA~E.FA:ToR.~2. 

keepxl.SCALE.FACTOR.keep~l, 

keepx2~SCALE.FACToR.keep~2. 

ET.EOGES.flrstfree) 

I UPOATE.HIN.HAX.ET.V (HIN.cT.V. MRX.ET.V. 'e,,"1) 

I D'.= ~HN.ET.Y 
~HILE (Y (= MAX,ET.Y) DR {A~T (> NIL) 

SEQ 
HouE. ET. BUCKET. TO. At:T(EDGES. AET. ET[Y]j 
-- --use AET to process this scanl ine 

UDGE : = AET 

--assume c <> 0, i r c = 0 the pol~gon 

--IS paral lei to the Z-ax:s and appears 
--as a I ine; such pol~gons are not processed 

fWHTLE {(EDGE 0 NIL) AND (c <> 0»)

I I SEQ
X.START := EOGES[ED~~ • I} / SCA~E.FA:TOR 

EDGE := EDGES[EDGE • 4) 
X.FINISH ;= EDG~S[EDGE • 1) / SCA~E."A:TDR""'" EDGE := EDGES[EDGE • 4J~ 
--calculate depth.SCALE.FACTOR at (X. START, Y)11

~ Z .; II II-d) - (a.X.START)) - Ib.V) )",-, 
o

• 
~I 

~. • SCALE. FACTOR) / c 

~ --calculate (depth Increment).SCA~E.~A:TDK 

~ Z. INC := ((-a) ~ SCALE. FACTOR) / c 
'0 

I 
~HILE X.START <= X.FINISH 
~Q 

TO.BUFrER I colour; X.START; Y;:1:0 X.STARI := X.START ~ 1 
t;i~ 2 ;= 2 + Z. INC 
'00 

UPDATE.AET(AET.EDG~S,Y) 
SUS8LESORT(AET,EOGES) 

F0'; V + 1 

x3 = N~XT.PDLYGoN 

I -
SEQ 

TO. BUFFER ! NEXi.POLYGoN c-_____________________ ~ C~EAR(ET.AET.:lrs::ree) 

I jX2 "- NEXT. FRA,~E 
~ SEQ
 
'I T" B",r::.'-F-R ' N-X- -"'''M- --c 1 Z an d r ~ ~ ~
 -- ,L1. . ::.. I.~K,-j:::' ear ~ cu:rers 

CLEAR(ET.AET.firstfree) 
r-lrR~£ --x3 = ENGL! --~eimlf'late 6u:fer Froce£s 
_I TC.8~~FER I END: 
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-- --The Buffer Process &auxi lliaries 

--clear 2 and F buffers prior lo processing nexl frame
 
--auxi lliary of lhe Buffer Process
 

PROC CLEAR. BUFFERS (UAR	 2. BUFFER!]. 
F.BUFFER!] ); 

UAR i, j:
 

SEQ [;[0 FQR SCREEN. HEIGHT]
 
SEQ j;[ 0 FQR SCREEN. WIDTH]
 

SEQ
 
Z.BUFFER[(i.SCREEN.WIDTH) + j] := HAX,DEPTH 
F.BUFFER[(i.SCREEN.WIDTHj + j] := BACK.G~D.COLOUR: 

--display lhe scene slored in lhe F-buffer
 
-auxi lliary of lhe Buffer Process
 

PROC OISPLAY (UAR F.BUFFER[])= --UAR in order lo save copying lime 
UAR l: 
SEQ i=[O FQR SCREEN.HEIGHT] 

SE"
 
l := «(SCREEN. HEIGHT - 1) - i) w SCREEN. WIDTH
 
SEQ j=[O FOR SCREEN. WIDTH]
 

screen! F.BUFFER[l + jJ
 
screen! 'wN': 'wC': EndBuffer:
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PROC BUFFER (CHAN I HI, I H2. 
U~ 2. BUFFER[]. 

F. BUFFER[ J )= 

VAR colourl. colourZ. x, y. ;C' 

SEQ
 
CLEAR. BUFFERS ( 2. BUFFER, F, BUFFER)
 
INl 7 colour!
 
INZ 7 colour2
 
WHILE (colour! (> END) DR (colourZ () END)
 

AU 
(colour] ) (min. iT'll oj. 2}) & INI 7 x; Y; % 

SEQ 
IF 
Z~BUFFER[(~SCREEN.WIOTH) "" xl ) z 

PAR 
2. BUFFER[(y.SCREEN. WIDTH) xl zoj. := 

F.8UFFER[(y.SCREEN.WIDTH) xl := colour!oj. 

TRUE 
SKIP
 

IN 1 ? colour!
 

(colourZ) (min. inl oj. 2» & INZ 7 x; Y; Z 

SEQ 
IF 

Z. 8UFFER[(~SCREEN.WIDTH) oj. xl) z 
PAR 

Z.8UFFER[(y.SCREEN.WIDTH) xl :: 2oj. 

F.BUFFER[(~SCREEN.WIDTH) oj. x] := colourZ 
TRUE 

SKIP 
1NZ 7 colourZ 

(colour) ~ NEXT.POLVGON) AND (colour2 = NEXT.POLYGON) &SKiP 
SEQ 

INI 71::o1ourl
 
1HZ 7 colourZ
 

(colour1 : NEXT. FRAME) AND (colourZ = NEXT. FRAME) &SKIP 
SEQ
 

01 SPLAY(F. BUFFER)
 
CLEAR,BUFFERS(2, BUFFER, F,SUFFER)
 
INl 7colourl
 
1HZ 7 colour2
 

(colourl = END) AND (colour2 ::: END) & SKIP 
SKIP --Terminate 

01 SPLAV(F, SUF"R), 
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VI'lR ETl [SCREEN. HEIGHT]. 
ET2[SCREEN.HEIGHTJ. 
EDGESl [MAX. EXPECTED]. 
EDGES2[MAX. EXPECTED]. 
(Irstfreel.
 
firstfree2.
 
eETl.
 
eET2.
 
2.BUFFER[SCREEN.HEIGHT • SCREEN. WIDTH).
 
'.BUFFER[SCREEN.HEIGHT • SCREEN. WIDTH).
 

CHAN cl. c2. c3. c4. cS. eG. c7. cB. c9. etO. ell. el2. c13. c14: 

--THE PIPELINE 

PAR 
INFUTTER(cl) 

VI E~I NG. TRANSFORMATl ON (el. c2. 5. d. OJ 

CLIP. LEFT (cZ. c3. 6. d) 

CLIP. RI GHT(c3. 04. 5. d) 

CLIP.TOP{c4.cS,s,d) 

CLIP.BOTTOM(cS.c6.5.dj 

CLIP.HITHER(c6.c7.s.d.KI) 

CLIP.YON{c7.cB.s.d.KZ) 

X.SP~ITTER{c8.c9.clO.s.d) 

PERSCECT!VE. TRANSFORMATION(cS.cll) 

PERSPECTIVE.TRANSFORMATION(cIO.cI2j 

SCAN.CDNVERTER{ ell. c13. £T 1. AET 1. EDGES 1, f i rstf ree 1) 

SCAN.CDNVERTER(c12.c14.ET2.AET2.EOGES2.firstfree2} 

BUFFER{c13.c14.2.BUFFER,F.BUFFER) 
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