
THE LAWS OF OCCAM PROGRAMMING

by

A.W. ROl!lcoe

and

C.A.R. Ho....

Oxford University CC!'T'puting ,- _,tot2"L~~rj
Wolfscn 8u::d>;g

PJr;'s FCcJ
Oxford C" 1 3QD

Technical Monograph PRG-53

February 1986

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road
Oxford OXI 3QD
England

l~
~f

~

1

:i
3

."
"

a
~

~

c:=

_o
· 0

"
~
"

><

lIl
 ..

.
~

co
It

 II
I

_"

I:>

~
~

t:

l
~

b'
...

 9

C
l'g

a

S"
';

'" t"
'

~
 J .:l

b' l
 -~

@
) 8i i'"
 :e r

-~
 c !" ~
 50 '"

CONTENTS

Page

o. Introduction

l. The laws of occam: 6

Laws of IF 8

Laws of ALT 9

Laws of assignment 12

- Laws of SEQ 13

- Laws of PAR 14

- Laws of d€cldrat~on 18

La....s of ..1	 20

A pre-normal form: " - Syntact~c approximati.on 35

- Prov~ng additional laws 39

3. The normal form 46

Rule of substitution for €xpr€ss~ons 59

- Three more laws 61

4.	 Conclus~ons and prospects 69

Dec~ding the eqULvalence of programs 70

Improving efficiency 73

Tr~nsformat~on to a restricted syntax 76

Appendix: A slU!lIlIary of the laws of occam	 78

References	 85

The laws of occam programming

A.W. RoScoe and C.A.R. Hoare

Abstract One of the attractive featuras of occam is the large nurttler

of memorable algebraic laws which eXist relating progrems. We

investigate these laws and, by discovering a normal form for WHILE-free

programs, show that they corrpletely characterise the language's aementics.

O. Introduction

Occam LV is a language for concurrent systems, especially those

implemented on networks of communicating processora (transputers). It

has been deeigned with simplicity and elegance as major goals. One ~ay

in which this elegance manifests itself is in the large nurttler of

algebraic laws which exist between occsm programs. The ei~ of this

paper is to investigate the set of laws and to sholor how they co~letely

characterise the semantics of the language.

For Simplicity we concantrate on a SUbaet of occam: timing,

priority, vectors. constanta, replicators and named proceeses (procidures)

are omitted. Our version of Occam thus contains only the essential tore

needed to ...,rite simpla programe. We expect that our work can readily be

extended to versions of occam containing these featuras. The laws

given in this paper will carryover (with occasional IIlOdificetion) to

Isrger versions of the language. For theoretical raasons we will elsD

add a few features to the language: multiple assignment, output guards

i., alternatives and e divergent (raCing) process. In other respects we

...,ill follow the syntax and conventions introduced in LV. in particular

those regarding the parallel operator. (\IJhen writing a parallel conetruct

the programmer must declare which global variables and channels are to be

assigned to each component proceas.)

2.

A finite occam progrem is ene which is lIIH1LE-free a lt may, however,

centein the racing or diverging process .L (equivalent to WHILE trua SK1P)a

Mucn of this paper is concerned lLIith the analysis of finite progra/lls a

This is because the absence of WHILE-loops allows proof by induction ..

This restriction doas not lose us any power, however, because avary

occsm program can be identified loIith the set of its finite syntactiC

apprOXimations (a term which i6 defined precisely in the second section)a

The first section lists the majority of the lews we require a ws

seliJ ht* eech of the laws erises out of our informal understanding of how

occam conatructors work.. lIle sse how algebreic laws allOIll us to give a

precias and succinct description of eech operator a The laws given are

all congruences in the denotationel semantics for occam reported in [RJ.

The second section shows how the lellls introduced in the first section

cen transform every finite progrem to a form whoee only constructs are

If, ALT, multiple aSSignment end ..l- (tha diverging process)a Particular

attention ia peid to rsgularising the use of free and bound variables a

lIIe sse now this ",ark, together with continuity assumptions, allows us to

prove non-trivial laiolS edditional to those of the first sectiona

Even in this restricted form it is poesibla to write essentially

different programs lII'hich ere nevertheless sementicelly equi valent. The

third section identifies a number of eituatione where such equivalences

can sriee, and develop6 e normal form for finite programs a T",o normal

fDrlll prograllls are semantically equivalent if end only if they are

syntactically equivalent in a ail!'lple waya By showing how every finite

program can be transformed to normel form we have thus produced s decision

prOCedurs for the equivalence Dr erbitrary finite programS a An inrinitery

rule be sed on syntactic approxilllStion extends this to general programs.

This prove. that our set of algebraic lews (together with the infinitsry

J.

rule and BUb!9litution) ie complete 1II1th reepol:l to the given

denotational semantics. The algebraic laws thuB yield an algebraic

semantics for occam that is isomorphic to our chosen denotational

semantics.

finally loiS review the relativB merits of algebraic, denotatIon81

and other fOrms of SBlllentics, and in particular discuss possIble

applications of the algebraic laws as transformation rules.

All the laws presented in this paper are BUlMlsrieed in an

appendix.

Even though the work in this paper is cast in terms of a specific

denotationsl semantics, moat of the lawe quoted must be true in any

reasonable abstract semantics for occam. We indicate seueral places

where modifications may be required for alternative underlying eem8ntice.

The work reported in this paper owes much to the silllilar ~ork for

an abe tract vere~on of CSP (i.e. with no internal state) reported in [B-1.

4.

Notation

Throughout this paper ws will observe ths following conventions

within program terms

p,q program fragments (processes)

c conditionsl

G guarded procsss

g,h,1< guards

",f general expressions

b boolean exprsssion

u parallel daclaration

x,y,z identifiers representing variables

c,d identifiers repressnting channels

Lists of identifiers and expressions are denotad.:i..'''='''

respectillely. ~ +.1... denotes the concatenatlon of the lists ~ end::L:.

Occam syntax Ie ueually linearised as in LR-l, and we frequently use

such abbreviatIons as

4

IF b. P. (= IF (b1P1' bZPZ' b3

P3' bljP()).

i:::1 1. 1.

PossIbly empty lists of procssses, conditlonals and guarded processes

are respettillely lIJritten~, ,E..and£,. The most general form of an AlT

construct is thus ALT(.9.).

free end bouno variables

If P is some occam term and x is a variaole, we say that an

occurrence of x in P is free if it is not in the scope of any declaration

(other that'1 a parallel declaration) of x in P, and bound otherwise. (These

notions can easily be definl:?d formally.) Note thet x may occur both

free and bound in P.

free (p) denotes the Sl:?t of all variables appearing

free in P

bound (p) denotes thl'! set of all variables appaering

bound in P

LSimilar notions of free and bound occurrences can be defined for cl1anr"lalsJ

Substitution

1 f x and yare variables, then P[x/J denotes the result of

SUbstituting x for every free occurrence of y in P. If x is bound at

any point in p where there is a free y, systematic renaming of pIS

bouno variabll'!9 ie carried out.

We similarly use tne notatione

,t/x]. ~~J . .! r/xJ and .! ~.!lJf

to denote the substitution of (lists of) expressions for (equal length

lists of) variables in (lists of) expressions. Note that in general

e ["', f n> /] is distinct from

/<)(" x '> n

{'j.]-"l'nfnJ

6.

1 • The laws of aCc;am

in this section ~B visit each occam construct in t~rn, and uncover

the laws governing it. The set of laws given is not eXhaustive; we

restrict ourselves to the laws needed to tran51ate finite programs to

normal form. Other laws can be deduced from these law9, either by

elementary manipulation, or by structural induction on normal forms.

The laws we present here provide 8 clear description of the semantics

of each l:onstruct.

BeFore detailing the lelLl9, we must decide exactly what we mean

by the term "law". All our laws ha\ls the form P = ~ (p, U both being

expressions representing procsssBs). informally this must mean that P

"is essentially the seme ae" Cl. in that, to an observer who cannot detect

their internal structure, the behaviours of P and Q are indistinguishable.

Furlh13f. since ",e "'ill "'ant to use our laws to transform subcomponents of

compound progrems, P = Lj must imply that C[pJ is essentially the same as

C [a] for all contexts C [.] (progrems with a slot in ""hit:;h to place a

program segment). Since we may wish to use our laloiS to transform an

inefficient program to an observationally equival13nt efficient one. our

notion of equivalence ",ill be independent of the times et which ev13nts

occur. Thus P = a does not imply thet P and Q run at the sallie speed.

Neither, for similar reasons, does it mean that P and Q require the

same emoLJnt of store.

Halling established the broad principlas above, we hope that most

of the la",s will seem "clearly true". Nevertheless, it is helpful to have

some underlying semantics by ",hich to judge the lalMs. In our case this ie

provided by the denotational semantics for occam raported .in LRJ. All

the laws lIIe quote ere congruences of that semantice in the context

(described there) of environments loIith unbounded sets of free locations

and channels. however, all laws must be interpreted as conditional

upon both i!lides being correct occam, in the sense that neither side

contains a syntax error. we will assume tnat the evaluation of every

occam expression yields a value (even tnougn it may contain division

by zero or en uninitialised identifier). Tnus no syntactically correct

program in our restricted version of occam can contein an eXecution

error. If the language were extended to inclUde vectors the situation

Would be more difficultt and some of our laws would nave to include

exception conditions.

There are two limitations on the completely free use of our laws

in transforming occam. The first is that, with a few of our laws, it

ie possible to transform a correct program C (P] (C [.] being a context)

to an incorrect one C [u]. This is usually brought about by violating

the separation rules for PAR. The lews that can have this effect et'e

merked (~), and have been set out so that only right to left use can

bring about this difficulty. TrEise lews may thus only be used right to

left in contexts where syntactic Correctness ie preserved. The second

limitation is that it is only occam procasses that may be transformed:

the lews do not apply to guarded processes or conditionals t even when

they have the same syntax as processes. for example t the trensformation

of

AU (c?x SKIP, AU(SKlP AU(d?x SKIP))) to

ALT (c?x SKIP, ALT(d?x SKIP))

is invalid, even thought as a process, ALT SKIP P may be transformed to P.

Each law is given a name suggestive of its use, and a number.

B.

1. laws or IF

rhe IF constructor is used to select the behalliour of a program,

depending on the values or its lIariables. For this reason it will play

a vital role in our leter construction of a normal rorm.

IF takes as its arguments a number of conditionals. A conditional

is eitner a (boolean) expression and a process (b p) or an IF construct.

The rirst law permits us to unnest IFs, so thet all arguments are of

the rirst type.

(' .,) IfU;" IF(!i2)' £:3) IF(f" 12 , ~3) <IF 3SS0C>

This is not an associative la", in the usual binary sense of

'f(blc) (a f b) , c, but is analogous in the context of occam's

constructors, which can take an arbitrary finite number of arguments.

n
The second lalll expresses the fact thet in the process IF b. P., it

i=l J. J.

is the	 first (i.e. 10lilest index) boolean guard to be true that actillates

the corresponding Pi. Thus Pi only runs if b is true and eecn or
i

b, ••• b
i
_, is false.

n
(' .2) IF b. P., where b. ,b, " ••• /1 --, b _ IIbi~1lJi Pi n * *	 i 1i=1 J. J. J. i

<IF priority">

n
If the boolean guards in IF b. P. ere pairlolise disjoint, tt1en the order

i=1 J. J.

or composition is immaterial. (This is a symmetry lalll.)

n n
(' .3) IF b. P. IF for any permutation,-r of t' ... n}b"l1"(i) P'(\(i)i=1 J.	 J. i=1

provided b. II b . :;: false wheneller i 1- j, J	 --

<IF sym>

If two cccleans guard the same process, they can be amalgamated.

(1 .4) lr(b 1 p. b P" £) Ir(b, v b P, £.) "-IF - y distrib>
2 2

A false gusrd is never activated, and so can be discarded.

(1.S)! IF (false p, £} IF (Eo) L.lF - false uni t >

If none of the boo leans in IF is true, the process behaves like STOP

(i.e. it comes to a complete halt without terminating; a process

sequentislly composed with it is not allowed to start). Thus final

clauses of condi tionals which are SHiP may freely be added or deleted.

(1.6) t IF(E,. b STOP) 1F(£) <If-STOP unit>

If one branch of an IF construct is always executed, then the construct

may be replaced by thet branch.

(1.7) IF(true P) p <.if -~ unit>

The final IF law lets us deal with If constructs which are neated itS

processes rether than as conditionals.

mm
(1.8) = IF(C, IF b",b. P.) < - IF distrib>IF(.fi. bi~; bi Pi) i=1 J. J.

This la"" ""ill, of course, be used in combination ""ith <IF - aaaoc,>.

which completes the unnesting.

2. laws of ALT

The ALT constructor allows a process to offer a choice of possible

co~munication options to its environment. The AlT constructor takes as

arguments a number of guarded processes. A guarded process is either a

guard and a process (g P) or 81"1 ALT construct. As with IF t there is a

law which allows uS to "unnest" AL Ts.

10.

(2. ,) Al T(ALT(£,}, Ji) ALT~1' £2) <.ALT assoc')

This laloJ does not hal/Ii! quite such a general form es that for IF (1.1).

Howeller the general form of the La'" can be deduced from 2.1 and the

fact that All is fUlly symmetrical (see below).

The order of arguments in an ALl is immaterial.

, n
(2.2) ilL T G. All 'Ii' any permutation of [, ••• n1G1'i(i)

i=1 3. i;::1

<AL T - sym,;>

The alternative composition of no arguments is STOP (the non-terminating

prOCBSS Iolhich dOBS nothing).

(2.3) ALl() STOP .c::ALT - STOP unit>

This law is termeo a "unit" 1801 because, together loIith 2.1 and 2.2, it

says that STOP is essentially the unit or ALT.

Guards may be simple (SKIP, c?x, c!e) or heve B boolean compOnent.

ALTs with guards with boolean components may be reduced to IF combinations

of ALTs witn simple guerds by tne law

(2.4) ALT(b & g P, £) IF(b ALT(g P, .E), 4b ALT<.g,)) < boolean guard elim:>

In ott~r lIIords, a guard llIith a boolean component m~y be executed if and

only if the boolean is true.

A SKIP guard is al~ays ready, and its execution hae no effect other

than to start the process ~nich it guards. This expleins the lalol

(2.5) ALT(5i(lP ~) p "-All - SKIP identify:>

A communication guard, on the other hand, is executed only wnen the

procl!lss at the other end of the given channel is also willing. The

11.

effect is e~actly like the corresponding single communication atomic

processes

'(2.6) ALT(c?x SKIP) c?x <:input>

(2.7) ALT(c~e SKTP) c~e <. output>

if en alternative is already present in an ALT, adding it again has no

effect, since the set of alternatives available does not change,

(2.8) ALT(g P,.9) ALT(g p. 9 P,~) <. AL T idempotenc13>

In any execution of an ALT construct, it ia the first guard to

becoma ready ~hich ia executed. If more than one guard becomes ready

at the same timB, the choice of which one to execute is nondeterministic

(there is no left-la-right precedence rule as with iF). We can deduce

from this that if a guard 9 is used to guard two different processes,

then ~henever that guard becomes ready either copy may be activatsd, the

choice being invisible to the environment. The two guarded process~9

can thus be replaced with a single one. where the process is one which

nondeterministically chooses between the original pair.

(2. g) ALT(g P, g O,~) ALT(g ALT(SKIP P, SKIP O) • .E) .c. guard distrib.>

The laws abova do not quite catch the full range of equivalences

related to AL T with SKIP guards. Three more laws reflecting fairly

subtle aquivalences will be introduced in section 3, when thsy are

required. and can be better motiveted.

We need a law for relating IF and AL T. It is a very simple law,

which merely observes that the value of a boolean is unchanged by the

exe~ution of a guard that doea not input to a variable appearing in

the boolean.

12.

n n
(2. 1u) rFbALTg,P.

i",,1 J. J.
lF b ALT

~
g,

J.
(IF b P.)

L

provided no variable appearing in b is input in any g. <IF- ;l.LT distrib>

"

Perhaps surprisingly, this 18101 is the only one loIe will need

relating IF and ALT. An example of holol it can be used to deriv8 an

apparflntly more powerful lalol can be found at the and of section 2.

3. laws of assignment

hn OCcam process may assign values to its variaoles. Tha atomic

assigrment process in occam is x:=e, which evaluates the expression e,

assigns the result to the location denoted by x, and than terminates.

As described in the introduction, we allow multiple assignments, of tha

form ~:=~ where ~ is a list of distinct variables, and Ji is an equal-length

list of expressions. The components of ~ are evaluated, the results

are then all aSSigned to the locations represented by~, and the process

then terminates. The empty multiple assignment terminates llIithout

changing the state.

(3.1) (> := .(. > SKIP <SKIP>

The order in which the expression/variable pairs appaar is of no

consequence.

(3.2) I •
1 '" n '> := <e li-=-1 ... n>"\ I J. i

=<)(-tr(i) \ i ••• n>:=<%(i)] i = , ••• n>

for""fl any permutation of {j ... n} <assignment sym>

The assignment of a variable's own value to itself has no effect.

3.3)! ~ +:t. := ~ + .:t.. ~:=2.	 <.identity assign~nt>

Then> will be several laws later on which show how assignment interacts

with the various constructs of the language.

4. Laws of 5EQ

The SEQ constructor runs e numoer of processes in sequence.

If it has no arguments it simply terminates.

('.') SEQ () SKIp	 tC.5EU-5KIP unit).

Dtnarwiss it runs its first argument until that terminates and then

runs the rest in sequence.

(4.2) s£u (p.!) SEQ (l=-, S(U~))	 ,,-SEQ assoc>

It is possible	 to use 4.1 and 4.2 to transform all occurrences of SEQ

\iJithin a program to binary applicetions. and in our transformation to

normal form we will always do this. Thus the remainder of our la\iJs

for 5EU are cast in binary form.

When P does not terminate immediately, S£tJ(p,Q)'s ir.itial behaviour

is just that of P. Thus SEQ distributes over both Ir and ALT in its

left argument.

('.3)
l'

SEQ	 (fr b. P .• U) = fF b. SEtJ(P., Q) ~SEU-IF distrib>
i=1].]. i=1].].

n	 n
(4.4) SEQ	 (ALT g. P., U) = ALT g. SEQ(P .• J) <. SEiJ - ~L T chstrib>* i=1].]. i=1].].

On the other hand. when P does terminate immedietely, SEQ{P.ij) oahaves

like U mooified to teke account of eny assignment by P.

14.

Thus t~e compound operator SEQ (~::! ••) can be distributed over

both If and AL T in a limited way.

(4.5)* S[Q(x:::e, fF b. P.) == {} b, r.!W) 5[Q(x:: B,P.) < assignment - IF distrib')o
... i=1 :I. :I. 1=1 :I. [~ ~"":I.

t n n

(4.6) S£Q(~:~, ALI g. P.) ALT g. wxl SEQ(x:=e, Pi)

1=1 :I. :I. i=1
1 ['...\J ~-

provided no variable which occurs in J:l. or ~ is

input in any 9 • <: assignment - AL T distrib,>

i

The sBQuential composition of two assignmenta to the same list of variables

is aa,ily combined to a single assignment.

(4.7)'* SEIJ(~:=~. A:=J) = ~:=:![~/~ £.. combine assignments;>

The seQuential composition of a pair of assignments to di ffBrant lists of

vsriablse mey be reduced to a single assignment using this law witn 3.2

and 3.J.

5. Laws of PAR

The occam paral1ul operator takas a number of processes as arguments,

and run" them concurrently, with the possibility of communication between

them. COlMlunicetion is th~ only way two parallel processes can affect

one another, so one parallel process cannot access a variable that another

one cen mOdify. No channel may be input from nor output to by mare than

one of the proceeses. In this paper (as in [j.J) we insist that each

perallel process declares which global variables it wishes to be able to

modify, end which global channels it lojishes to be allowed to input from,

output to, or use privately. In the earlisr paper this permitted the

syntactic determination of the environment in which each component process

ahould run. In this paper there is an additional rea90n; it 1W0uld be

unfortunete from the point of view of algebraic laws if tha channel and

variable alphabets of parallel procesaes were determined purely from

the syntax of the component processes. r'1any of tha most usaful trans

formations (e.g. the expansion rulee below) would became invalid,

because on changing the syntax of th:! components of PAA, alphabets might be

significantly altered. (For example, by commuting a communication

through a PAA using 5.6 or 5.7, one might apparently remove it from

ths alphabet of the corresponding process.)

The syntax of these "parallel declarations" is unimportant; a

suitable one may be found in [AJ.

A PAA command terminates as soon as all its componente have. Thus

the empty PAA terminates immediately.

(5.1)	 PAR() SKIP ':::PAR -SKIP unit>

PAA is an associative operator, providad suitable provisions are made

for alphabets.

n
(5.2)	 PAR lL;P. PAR(U, :P" Ut:(P~R U.:P.)) (n>O)

i:::1 1. 1. i:::2 1. 1.

where uf is the union of U ••• Un; .::: PAR assoc>
2

(ut claims all variables and private channels claimad by the U
i

' claima

as input (output) channels all channels occurring only as inputs (outputs)

among the U ' and claims as private channels all channela occurring both
i

80S an input and as an output among the U .)
i

As with S(q, we will always uae 5.1 and S.2 to reduce PAR to a binary

operator when transforming to normal form. Thus the rest of the lalls

deal only with that case. Firstly, PAR is symmetric, because the

order in which processes are combined in parallel is immaterial.

t6.

(5.3) PAR(U, :P" U2 :P2) PAA(U 2 :P2' U, :P,) C::::PAR sym,>=:0

If OriB of e pair of parallel pro!=eS!:IBS is 8 conditional, then the

choIce represented by that condi tional may be performed beFore the

parallel construct ii:! entered, provided the choices are exhaustive

(so that the conditional cannot stop the PAR being entered).

n n
(5.4)+ PAR{U,:f:,b1 Pi' U2 :Q) IF b. PAR(U

t
:P., U

2
:U)

1..,.1 J. J.

provided b, V ••• \I b =. true "::::PAR - IF distrib>
n

If two multiple assignments arB combined in parallel, then the effect

Is th"t of a single multiple 8ssignmanl. (Nole that the conditions on

use of variables wIthin PAR maan tilat the variables of ~ below do not

occur in J:='!> nor thosa of J; in !:~)

(5.5)+ PAR(U, :~:=~. U2 :.x::!) ~ 't- .J. := ~!. C::::PAR assignments>

If e non-terminated process is put in parallel With a terminated cna,

then only the non-terminated one cen proceed. It can perform any

action other than a colft1\unication with tha tarminated process (Which

clearly cannot agree to any communication). In this context en

assignment may be considered "terminated". because it cannot affect or

be affected by the othar process, and is free to terminate at any time.

(5.6)+ If each 9
i

haa one of the forms c?x, c~e or SKIP,

n
then PAR(U :ALT g. P., u :x:=e) = AlT g. PAR(U :P .• u :x:=e)

21 1. 1. 2 iEX i 1 i.... 1=1

where X ie the set of indicas i~t1,2, ••• , I'll such that

gi SKIP

c ~ 8 and c l::outs(U) - ins(U)D' gi 1 2

D' gi c?x and C E.ins(U,) - outs(U
2

)

c::. expansion 1 >

(ins(U) and outs(U) are respectively thl? seta of input and output

channels declaI'9d in U.)

If t~o non-terminat~d pI'ocesses are put in paI'allel with one anotheI'

then they can proceed independently on all actions except those which

reprasent communication between tham. If they agree on a communication,

this can occur as an inteI'nal (automatic) action. This expiains the

foll~ing law for expanding two ALT constructs ~n paI'allel.

n m(,.7)f J f p AL T g. P., and U All h
j

Qj' wheI'e each gi,h
j

has one of
i=' ~ ~ j""

N
the forms c?)(, cle or SKIP, ttlen PAR(U, ;P, U :Q) = All k RI" ",here the

2 r1'=1

pairs <:kr,R ,> are precisely all possibilities from the following:
r

(i) AI'	 = PAR(U,:P U :Q) and
i

,
2

k = gi = SKIP r

0' kr=gi"",c:a and c~oute(U1)-ins(U)
2

k = g. = c?x and c£ins(U)-oute(u)
0' , ,	 1 2

(ii)	 R
r

= PAR(U1 :P, U
2
:Qj) and

k = h. = SKIP , J

0' k =h.=cle and ce:outs(U)-ins(u,) , J 2

0' k = h. = c?x and ce:ins(U)-outs(u,), J	 2

(iii) R	 = SEQ(x:=e, PAR(U,:P , U :U))
r i 2 j

k = SKIP and
,
g. = de and h. = c?x and c£ine(u) ~ outs(U,), J 2

0' g. =: c?x and h. = cte and ce:ins(U,) ~ outs(u).,	 2J

..::.ex;pansion 2,.

(i) and (ii) above represent P and Q (respactively) making independent

pI'ogress. (iii) repI'esents the effecte of communication between P lind Q.

18.

6.. Laws of declaration

The construct V~R x, , •• xn:P oeclares the variables x, ••• x fer
n

use '~itr·in P. These variables are distinct From any other variables

with the same names trat "'3.y be present in the external scope. It does

not rratter whether variables are oeclared in one list or singly:

(6.1) VAR x,:(VAR x : ••• VA? Xn:P) •••) VAR)(1 J(n: P .(VAR assoc >
2

Nor does it matter in whiCh order they are declared.

(6.2) UAR x,:(VAR x :p) VAR X2:(V~R x,:P} .(VAH sym>2

If a declared variable is never used, its declaration has no effect.

(6.3) ~.~R)(: P p if x ~ frse{P) .-::::UAR slim>

One Ci'l.1'\ change the name of a bound varieble, provided the new name is

not already used For a free variable.

(6.') VIIR x:P VAn y:p[:/x] if y t F.se(p) < VAR rename>

(Note tl'1at any clashes of y with bound variables of Para dealt with

by the renaming implicit in the substitution operator.)

Generally speaking, the scope of a bound variable may be increased

without effect, provided it does not interfere with another variable

with the same name. Thus eacr, of the occam constructors has a

distribution law with declaration. The first two say that if each

component process of an IF or AL T declares the variable x, and that

variable does not clash with the booleans or guerds, then the

declaration may be moved outside the constructor.

n	 ,
(6.5)	 All g. (VAR x:Pi) = VAR x:(ALT g. Pi)

i=1 J. 1=1 J.

provided x	 is rue in no 9 <:VAR -AU distrib>
1

n	 n
(6,6)	 IF b. (VAR x:P.) = VAR x:(IF b. p,)

i=1 J. 1 1=1]. J.

provided x	 is free in no b. L.. VAR - IF dlstrib>,

Note that it 1s possible to deal with casaa whars x is only declared in

a few of the Pi' but is not free in any otller, by uelng 6.3.

Two 1a"'9 ara required for SEQ, one for each of its arguments.

(6,7) SEQ(VAR)(:P,Q) VAR x:5ELJ(P,O} if x¢rree (a) .(VAR-SEQ 1,>

(6.8) SEQ{iJ, VAR x:ll) VAR x:5EQ(P,Q) if x t- free (p) .(.VAR-SEQ 2>

The law for PAR takes into account the fact that, when a dec!aratiDn

1s moved outside the constructor, the process that uses it must nOIll

dedara the fact that it might want to USB the variable declared.

t(6.9)	 PAR(U, :(VAR x:P), U :0) VAR x: PAR(U,:P" U2:P 2),
2

provided)(il:l not free in U :P2' where U~ is U, modified to include a
2

deClaration of the variable x (in tile notation of OJ, it Ie the union

of U, and USING(VAR x»).

.(VAR -PAfl>

When a variable is used for inputting, tne effect is the same as that

of inputting to a completely new variable, and then assigning to the

original on8.

- -

20.

(6.10)	 ALT(c?::o:: p,f) VAR y: ALT(c?y SE~(x:cy,p), ~)

provided x f:. y and y is not fre8 in P or oS < input renaming>

There is no point in assigning to a variable at tha very end of its

scope t since the value given to it can have no effect.

[6.11)f	 VAR x: (":'::0::> +.x) :== (~e>+!) VAR ::o:::(y := f) <:: assignment alim '>

The final law of VAR is required to deal with uses of uninitialised

variables in expressions. Upon declaration a variable may take any

value, the choice being nondeterministic. Its value remains constant until

it is assigned or input to. Thus the value of one uninitialised variable

may be replaced by that of another, provided it has not yet been read and

the value of	 the second variable is used nOlojhere else.

(6.12)	 VAR x:P VAR x:SEQ(VAR n{;o:;:::z), p) .(, ini tialisation'>

It turns out that ~e only need one law to des 1 ~ith channel declarations:

an elimination rule analogous to (fi.3).

(6.13)	 CHAN c c :P P if none of c, ••• c appears
1 n n

free in P. <:: CHAN elim>

The reason for this simplicity is that our normal form will eliminate

.~ ~ ~

all PAR constructs, and hence all internal use of channels.

7. Laws of .L

Recall that .l.. is the divergent pro::ess WHILE true SKIP. In

practice ~his process may De consiDered broken, for not only will it

nevar interact ~ith ths outside llIorld, but IlIhat is worse the environment

can never detect this fact. (Seeing that the process is sti 11 performIng

internal actions, an observer can never discount the possibi lity that it

might still do something.) ~ divergent process can also oe regarded

as having the most undefined behaviour possible, since it forever

performs internal actions in an effort to decide what its behal,/iour

will be, but never makes any progress.

with this philosopny in mind, we postulate that th3 divergent

process is the worst possible~ Now, in general, if P's behaviour is

more predictable than that of U, wE must ragard P as better (since

whenever U will guarantee the success of some experiment, so will pl.

We ere thus forced to identify J... with all procasses that might

diverge (before doing anything else). It is quite raasonable to ma~e

this identification: in practice, e process which can either behave

correctly or diverge will probably do the former ",hile it is being

tested, but will do the latter when it is being used in earnest. Putting

it more simply, a racing program is always a programming error and "'ay De

considered broken. lue therefore choose the simplest and most convenient

lalols, which state that almost any program made from a broken component

is itself broken.

Our philosophy 9il,/es rise to a number of laws. first, a process

that can eutomatically choose to diverge must be identified withL •

(7.1)1 ALT(SKIP...L. £) ...L <:ALT-5KIP zero)

It is clear that. if the first operand of a SEU construct can diverge,

so cen the whole construct.

(7.2)* SEU(.L, P) J.. ~ SEW left zero)

If the first operand of a SE", t€rminates before interacting ",ith its

environment, divergence in the second argument yields divergence in the

whole construct.

•
•

•

~
~

~

--
¥"

.

~

~

 "
~
C

 t- c
N

 u r U
 " ~ ~ m
 " "0 V

0
~

0

,
,

e·

m
<

•
m

~

" 0
~

~

3

m ,
0

U

3
~

n

,m
m

•
~

~

e
•

,
c ,

n 0 ,
,0

e ~

m
m

~

~

0
e

"c
u

~

n
•

n
~

,•"
, •

m

0
e·

u

,
0

"
mn

~

g m

•
m

, •

~

0
~

,
e
·

~

3
0

u
0:

~

~

m

~

c
3 m

~

~

 "
e·

,
~

<

" •a
,0 ~ ~

" m • e

0
3

~

"m ~

~•
0

,n
0

c ,"
e·

,

0
<

,
•0

"•
e
·

•
, •

~

~
 , m

~

m

0
n

~

C

e
·

, 0
,"

,
m

 "

~

~ ..
 N
:<;

D

 SF
,'

I~
 t- r " '"eo c ,. " ~ ~
 "m 0" V

2. A pre-normal form

The first section introduced almost all the lallle one requires

to characterise the semantics of occaill. Unfortunately it is not

satiefactory merely to state thisj Iole must find SOlOO Iolay of demonstrating

it. This is especially true because Iole already haue a denotational

semantics; lIIe would like the lallls to yield the same equJ.ualences.

(uen if lIIe had no standard semantics to characterise, it lIIould still be

neceesary to inveetigate the structure of the classes of inter

transformable programs, because it is only this that reueels the true

pololer of a set of" laws.

As explained in the introduction, our method of demonstrating the

pOlller of our laws urlll be the discovery of a normal form for finite

programs. [very such program Iolill have a normal form equiualent (through

transformation), but tlllO normal form programs urill have the eame ualue

in the denotational semantics only if there are (at most) triuial

syntactic differences between them.

A normal form must therefore exactly capture our ideas about

denotational equiualence. This gives rise to a number of interrelated

problems, all of" lIIhich need to be solved before we have a normal form.

a) We need to characterise a procese' behaviour as a communicating

agent. In othar words, Iole must identi fy a unique Iolay of representing

each possible pattern of communication a process migM exhibit. for

example, if U, and U are suitable parallel declarations, the processes
2

AU(C?X d?y, d?y c?x) and

PAA(U, :c?x. U :d?y)

2

are equivalent, and therefore have the eeme normal form.

24.

0) ws need to cnaracterlse. relative to its communicating behaviour,

the IMays in IIInich a process aSSigns to its variables. For e)lample,

the follollling pair of programs have the same effect on the final state

and so have the Same normal form:

x:=3 ano VflRy:SE.Q(y:=3, Z:=2, x:=y, y:=6)

There are important distinctions that nead to be made Oetumen processes

at the Doundary betlJeen (a) ano (0). Considar the tlllO processes

PAP(U,:c!1, U :ALT(d?X STOP, c?x d?x))
2

and a7~ (U and U are suitably chosen).

1 2

Both precesses have exactly the sarna communicating behaviDur (they

input along channel d), and IIIhen they terminate they have the same effect

on their free variable x. HOlllever, the first process is strictly lass

deterministic than the aecond: it is not obliged to terminate successfully;

IMren conposed in sequence lIIith another process the second process need not

be started.

c) The use of bound variaolas needs to be regularisad. In IIIriting a

program. one often has a lot of freedom in the usa of bound variables:

not only in IMhere they are declared, but also in whether to declara a

new variable Or re-use an old one. for e)lample. the follOWing pair of

equivalert programe must have the same normal form.

SEL.i(c?x, c?x, dh)

and VAR y,z:SE.t.J{c?y, c?z, X:=2, d!z).

fin essential aid to the solution of (a) and (b) above ia a calculus

for decidi.ng the equivalenca of e)lpressions. For example, 2 + 2 4=~,

and (x mod 3) + (x + 1 mod 3) + (x + 2 mod 3) =: 3. Often we need to

decide such equivalences in the context of the booleans representing

t~e facts already kno~n about the variables involved. ror example

tne programs

iF

xmOd2=O

,,(x!2)f 2

xmod2=1

,,(x+1)/2)j2- 1

and cl x

are equivalent, because of the equivalences of "x" \I,Iith "(x/2) f 2" and

"«x+1)/2), 2 - 1" in the respective (boolean) contexts.

Because thi 5 issue, though important, is not really relevant to the

algebraic properties of occam, we !,Mill abstract alllay From it. Spacifically,

\I,Ie \I,Ii11 assume a kno\l,lledge of all true facts of the form

b 1 F= b, for boolean expressions b, and b
2

meaning "in all states I<Jhere b, is satisfied, so is b ". Thus our later
2

complB'teness rB'sulLs are relative to this knowledge.

Our approach has the advantage of not tying us to a particular

syntax and semantics for the space of expressions. We do, hO\l,lever,

make frequent demands on the syntax and semantics of axpress ions

representing booleans, the good behaviour of expressions under substitution

for their variables, and the fact that all expressions in occam are

evaluated without side-effects and ... ithout fear of non-terminatiorl (even 27/0l).

The discovery of a full normal form 1S rather difficult. We

therefore introduca an intermediate form to act as a conceptual arid

technical bridge. This will essentially solve the problems descrl~ed

in (b) and (c) above. as ..,ell as simplifying the most difficult problem,

26.

whict'l is the one described in (a). The intermediate form is I:alled

If/ALT form, because it eliminates all uses df SEQ and PAR. It has

a single parameter: a list of free variables.

W9 ,,"ill say that a pr~am is in ~ - If/Il.L T form if it has one of

the following forms.

1.. the wholly undefined, divergent process.

-x;=e a multiple (simultaneous) a55~gnment to 881:h free
~

variable of ~ (the parameter of the form).

o
I, b. P. where each Pi is ~- If/ALT and the b partition true

i",1 J. J. i

(i.e. b, .. '0' vb:! true, and b. /'I. b. :::: false
n-- 'J--

whenever i , j). No variable free in the whole

program is in any bound(Pi).

n
VAR Jt 1 , •• "lt :ALT 9. P. where 88t:h Pi is ~ - If/Al T, each 9 has one

m i=l 3. 3. i

of the forms SKIP, de or C?X " [x1, ••• , x 1 are the
j m

(all distinct) variables used in guards of the third

type. They are disjoint from each bound (Pi) and from

the components of~. lt can appear free in gi Pi only
j

if gi has the form c?x • No variable in ~ or free in
j

the Whole program may be in any bound (Pi).

VAR It:P where x t:. free(p) but)(is not a component of J:;"

P is ~ -If /Il.LT.

Note that all assignments in If/ALT programs are final (i.e. occur

at the end of a program's run, just before it terminates) ano made only

to free variables. Il.lso, because of the way a fresh bound variable is

created for every input, no variable that contains a value relevant to

the program is overwritten until this final assignment. 1 t is the

introduction of multiple assignments that allows us to reduce the assign

ments in every program to this form. Not only do they bring symmetry

by removing the order of asslgnments y but by allo.ling sut::h assignl'l'Ell'1ts as

-(x,y> ;= .c(y,x)

they will allow us to eliminate all aSSignments to bound variables.

Bound variables are of two types. The ones that ere bot::lared as

inputting variables are used only for input and subsequent use in

expressions. Variables declared in programs of the final type (VAR x:p)

can never be given a "proper" value (since they are neither input to nor

assigned to). They are thUS, purely and simply, uninitialised variables,

which contain a nondaterministically chosen constant value throughout the

life of p. Thus, in practice, all programs of this form would be regarded

as erroneous.

The follOWing is the main theorem of this section.

Theorem'. If ~ contains all the free veriables that the finite program P

ever inputs or assigns to, then there is an,!; - If/All program p I such that

free(P') ~ free(p) \J~ and P=P' ie provable from the laws presented in

section' •

The proof of" this theorem is that every such program cen be trans

formed tO~-If/ALT using the said laws. A strategy for performing this

transformation is set out below.

The first step is to transform all SELJ and PAR constructs to binary

applications « SEQ -SkIP unit) (4.1), <PAR - SKIP unit)- (5.1), < SEW assoc) (4.2).

<PAR assoc>(S.2»). ALT constructs are then unnesteo ("ALT assoc>(2.1),

"ALT !Iym>(2.2) and the boolean components of guards removed

(",All !Iym'>(2.2).<boolean guard elim>(2.4)). IF constructs are then

unnested "'IF assoc>('.l).

The rest of the strategy is recursive. We deal in turn with nch

form a program migM take.

2B.

The atomic processes are all strai~htfor~ard:

STOP ell () .(ALT- STOP unit>(2.3)

SKIP !.:;~ <SKIP) (3.1). <identity assignment> (3.3)

>::=8 L.assign'llsnt sym";;>(3.2),~'~~ ['/x]
":::identity assignment> (3.3)

t!e ALT(c!e ~:=~) <:cutput >(2.7), <SKIP> (3.1),
<: identity assignment> (3.3)

VARy;IiLT(c7y X:=X fY/x]), IIJhere y is not a component of xt?x,. ... l,.
<input> (2.6). <: input renaming> (6.10).

<identity assignment> (3.3),
<.SKlP>(3.1). <assignment sym')(3.2),
""combine assignments> (4.7).

(Recall that, in IF/~LT, no free variables may be used for inputting.)

c

If the program P has the form IF b. p., 1Il8 recursively transform

i=1 1. 1.

each Pi t04-IF/ALT, makin~' sure (vi<l L. VAR rename >(6.4» that the

bound variables of the resulting p:-ograms do not collide with free(P).

It only remains to make sure that the b partition true « IF - STOP unit> (1.6),
i

< IF priority> (1.2)) and transform any SlOP tnus introauced to ALl ()

(,,"ALT-SWP unit>(3.3)).

c
If the program P has the fprm ALl g. P .• we recursi\lely transform

i=l ~ ~

each Pi to~- IF/AU P l (making sure that bound (Pi')" free(P) = ¢).
i

Une then applies,," input rE'naming> (6.1 [I) to each of the input gi in turn

(choosing a suitable \lariable), and <V/o\R assoc')(6.1) to collapse the

VARx's thus created to a single declaretion. lhe resulting program

looks like

c, ,VARx, •••• ,x :ALT g.
m 1=1 ~ i

"'here, if gi = SKIP or c~e, gi I ::::: gi and Pi" = pI and if gi = r;?x

then g. I = c?x. and p." = SEQ(x:=x., P. ') for some j. The only thing
J.) J.) J.

left to do is to transform all the P." of tha second type to,
x-Ir/ALT. This is done by first transforming x:=x. to ~,:~[Xj/xJ .,d
~ J

then applying the procedure set out under SEQ below.

If the program has the form SEU(P,O) we recursively transform P

and U to~-Ir/ALT programs pI and QI. We then apply the following

racursive procedure Which, given pi and Q' in~-lr/ALT, transforms

SEU(P',Q') to~- If/ALT. The first step is to ensure (using.(VAR rename> (5.4)

if necessary) that free(P') n bound(QI) = ~ and vice-versa.

If pI J... then SEU(P' ,QI) =.L <SEQ left zero> (7.2)

If pi fr b. P then SEQ(pl,ql)

i=1 3. J.

Fr b. SEQ (P .• iJl) ('"SEQ-IF distrib') (4.3)i each
i:::::1 3. 3.

SEO(Pi,QI) is daalt lIJith recursively.

,
If pi = VAR x,"'x :~LT g. p., then because free(QI)n bound(pl) =~,

m J.=' J. J.

the declaration can be moved outside the SEQ (.c. VAR assoc >(5.'),

<:: VAR - SEQ1 > (5.7) so that the program looka like

,
VAR x, ••• x :SEQ(ALT g. P., 0 1)

m i=' J. 3.

We then apply" SEQ-AlT distrib') (4.4) to obtsin

,
VAR x1 •••x ;ALT g. SEQ(P" U')

m 1=1 J.

and finally deal with the SEQ(Pi,QI) recursively.

If pi = VAR x:P". then because x f/: free(U), the declaration can'

be moved outside tha SEQ "'VAR-SEQ1>(6.7); ",e then appeal to recursion.

Tha program 1IJ1ll then have the form VARy:R. If y is not free in R its

declaration can be removed with .c.VAR elim">(6.3).

If pi == ~:~~ we need to deal with ~ach case of ~. separately.

If Q' ~ ..L , then SEO(~:=:!;, U·) == ...L "'SEGi right zero >(7.3).

If Q' ::z t:==.!. then SEGi(~::::::~, 0') == ~::;! ~Q <. combine assign~nts>(4.1).

If Q' :::: IIARy:Q", then because of y ¢ free (~:"".2) we heve

SEQ (!.: ==! , Gil) ::::: IIARy:SEQ(~:""~, Oil) and can then appeal to recursion.

The program "'111 then have the form VARy:R. If y is not free in R

then apply ",VAR-el1m>(6.3}.

n
If Q I IF D. Q•• then, oy <assignment-IF distrib)O(4.S) we have

i~1 1 ~

SEQ(~:~, Q ') r"F b. r"x1 SEO(x:::::e, iJ.).
i==1 ~ L~ ~

llJe then daal with the SEQ(~::::::.!, 01) racursively, noting that the

b ~.i5J partitlon true, beCause the b do.1 i

If Q' ::::: liAR x ••• xm:ALT 9 0i' the first step (noting that
1 i

X ... xl" free (x:=e) "" ~) is to move the declaration outside
{ , lid

thB SEll to obtain

n
liAR x ... xm:SEQ(!::~, ALI 9. Q.).

1 i::::' ~ ~

Because the input variabl!!s of the gi are the x ' none of which appear
j

in ~:~. we can use <: aesignrrent - Al T distrlo> (4.6) to gel t

n
liAR x, ••• x :ALT g. SEQ(x:==e, Q.)

m i:::::1 ~ -.... ~

and then appeal to recursion.

Nots that this procedure for reducing SEQ(P,Q), with p.O already

In;:.- IF/AlT, is guaranteed to terminate because every recureive call

8trictly simplifiee one of tha two arguments, leaving the other one

unchanged.

• •

If we wish to transform VARy:P to ~ - IF /Al T, the first step is to

use <.VAf-l rename> (5,4) if necessary to ensure that y is not a component

of x, We then recursively transform P to an~ + <C.y> - TF/AlT program pI,

Choosing a variable z that is distinct from y and does not appear in P,

lIle use ..!initialisation>(6,12),<VAR-SEQ 1';> (5,7), <.VAR sym>(6,2)

and <identity assignment >0.3) to obtain

VARZ:(VAfly:5£Q(!.+£n::::!.+.(Z»), pI)

Ws then apply the procedure for reducing sequential compositions of

IF/AlT programs to reduce this to

VARz:(VARy:pn) IIlhere ptl is~+<.y> IF/ALT,

Observe that the only places y can appear in p" are on the left hand

sides of the final multiple assignments, because the transformation from

5£Q«!.+,,-y)::::2;+<C.Z»,P') to P" replaces all others by Za (This is

easy to prova by structural induction on pl.) We can therefore make

rspeated use of <..VAR- ALT distrib')(6 a5), <VAR- IF distrib')(6,6),

..(VAR sym> (6,2). ,(,VAR assoc> (6,1) to shift the declaration VARy down

to the leaves of pll, It can be eliminated from those of the form

VARy:..L by ,(,VAR elim>(6,J), and leaves of the form VARy:~+<.y>:=~+<.f>

are transformed to t.:=~ by <assignment eiim';>(6 a11) and <VAR elilfl,,>(6.3).

The resulting program is then just VARz:P , where P is the program obtained

•from p" by deleting all assignments to y. If z is not free in p lire make

use of .c:.VAR elim> (6 a3). In any case we are left with our desired

x-IF/AlT program, in which lIle note that y is not free.
~

If a program has the form CHAN c ",l: :p. we first recursively
1 n

transform P to an~-IF/ALT program P', Now any oCl:urrences of I:"""c
n

within CHAN c"a .. cn:pl (other than their declaration) are syntactically

32.

incorrect - for P I contains no PAR constructs and so there is no place

for i.nternal communications on these channels. Since we have

postulated that all programs are syntactically correct. ~e can infer

thetnone of c, •••• ,c appears free in Pl. Thus <CHAN slim> (6.13)n

is ~plicable.

The only cese that remains is that of PAR. It ie important to

nole that none of the clausss WII have so far dealt with have introduced

II PAR construct (SEQ, on the other hand, was introduced by ALl and VAAl.

Thus the procedure we have already set up will work when given II program

not containing any PAR constructs.

If we ere given II program of the form PAR(U, :P, U
2
:Q), the first

etep ie to rscursively transform P inloa-If!ALT pI and Q into

~-If/AlT QI where~, and~2 are respectively the components of ~

declared in LJ and U • (That this transformation is possible follolils

1 2

from the correctness of PAR(U,:P, U :Q).) PAR(U,:P', U :QI) is then

2 2

trensformed to~-lf/AlT using the recursive procedure set out below.

The first step is to make sure the bound vilriable sets of pI and Q' ere

diejoi1"tt from free(PAR(u,:PI, U :Q')) and the components of..5. If
2

either pI or QI is L, loiS cen apply <PAR zero}o(7.4) (and perhsps

<:PAR eym) (5.3» to obtain ...L

n
If P' ia If b, P., then since the b. partition true we cen apply

1=1 1 1-

("PAR - If distrib) (5.4) to obtain

n
Ifb. PAR (U,:P., U,:Q').

i::::' 1 1

lUe then recursively reduce each PAR(U,:P U :l.I').
i

,
2

. n
If [JI 18 IF b. Q" then lola apply <: pAR sym)(S.3) and then the above.

1::::1 1

If p' is \jARy:P" then sInce, by construction. y is not frae in U :O ' ,2

we can use <::'\jAR-PAR)(6.9) to obtain

VARy:PAR(U,• :P", U ll4')2

•where U, is U, Io'ith Y "sdded"; lIIe then appeal to recursion. If 0' is

VARy:Q" we apply <PAR sym>(5.3) and the above. As before, if y is not

frse in tha resulting bOdy, ita declaratlon can be removed by <\jAR elim>(6.3).

If pi is~, ;:;:~, ard QI is ~2:~2 then, noting that Ue elemente of.!, and ~2

are disjoint slbsets of those of~, lIle can apply <.PAR assiQnnents>(5.5),

",identity assignment) (3.3) and (assignment sym')(3.2) to obtein sDlIlthing

of the form ~l:;:~.

n

if pi is VAR y, ••• Ym:fH gi Pi and 0' is ~2 :;: ~2' then by construction

none of Y""Ym appaar free in U :O', so the VAR may be moved outeide2

the PAR, using ",-VAR assoc '>(6.') and <'VAR -PAR'> (6.9) (thereby cnanging

•U, to U" say). Wa can then usa <eJiCpansion , > (5.6) to transform it to

sOMething of tna form

•VAR y, • .,y : ALT g. PAR(U,: P., U lQ').
m i(.)(~ ~ 2

The Yi that no longer appear es input varieblas among tha gj still

•appear in the declsration and in U,. Tney are removed by first moving

tham inside tha AU «VAR euoc >(6.1), <!JAR aym> (6.2). ",,\jAR - ALT dietrib >(6.5)

•and tnen insida tha PARs "'-VAR - PAR'>(6.9), removing them from U,

(Obtaining U" aay). Because these variables ere free in no remaining Pi.

we can finally delsta thCilir declarations uein9~\jAR elim>(6.3). lihen

we nave recursively traneformed the resulting PAR(U,':P U :Ql), the
i

,
2

lIlhole program ie ~ - IF/AL T•

34.

n
The symmetric case (pI :::~1::::.!1' Q' = VAR y, ••• y :ALT g. lJ.) is dealt, ,rn i :::1

with by the above, after applying "PAR sym>(5.:3).

n

The only remaining cese is when P' = VAR Y ••• y :ALT 9 Pi and

1 m i=1 i

t

Q' ::: VAR :ALT h. lJ •• The same type of strategy as above, using
2, ..• 2

s i:::1 ~ J.

~e)(pans1on 2>(5.7), will transform PAR(U,:P', U :QI) to something of
2

the form

VAR AL T Rix, ...)(~
N

1=1
k1

where there is some P1 (O~ M{N) sucll that l' i' M implies k is SKIP
i

and R is VAR yi:SEQ(yi::::si,Ri) whareRl. is~-IF/ALT; M<i'-N implies R
i i

is 2;-rF!ALT. It Can further be guaranteed that the xl are precisely

the (dlstinct) variables used for input among tile k (1) M), and that no
i

xi or yl occurs in any R except the one obviously corresponding to it.
j

(The first M guarded processes result from communicatione between P' and

Q', the rest from independent action by either pI or QI.)

Dbgerving that no R (, ~ i !,.r'1) has any occurrence of PAR, we can
i

safely transform them to~- IF/ALT. Thie having been done the whole program

is in ~-IF/AL T, as rltquired, after perhaps some renaming of bound variabies.

(Care is required over this last point because lLIe have no reason for

supposing that the programs R are in any aense "simpler" than the
i

complete progrem. lt is therefore vital that this transformation does not

introduce a PAR and eo make use of the recursive procedure we are

currently defining.)

This completes the description of tile procedure for transforming

PAR(U,:P, U :Q) to..?;-IF/ALT. Since that lLIas tile last clause of the
2

main procedure, we have elsa completed the description of how to transform

a general program to IF /AL T.

Syntactic a pproxil'llation

finite programs are relatively aasy to reaeon about algebraicillly,

but do not tend to be very useful in practice. fortunately there ilre

techniques which allow us to apply our resulta on finite programa to

general programs: syntactic approximation allollle uS to identify every

progranl with a sut of finite ones.

The concept of syntactic approximation ie quite well known (SilS,

for example, ~~) and has been applied to CSP in similar circumetances

to ours ~§l. It gives a pre-order (in our case a partial order) on th8

syntax of a language. The order is a liery simple one, baeed on ths

ideas that replacing part of a progrem by the least defined program (in

our esse ...l... pr oduces an approximation, and that unfolding a rscuraion

(in our casa a WHILE loop) produces an approximation.

Through most of this psper we make no Formal distinction between

tha tsxt of a program and its value (semsntics). Howaver whan considering

syntactic approximation it is necessary to make a claar distinction: we

will thereFore place quotes (rpl) round any program that ie to ba

considered as a syntactic object, and continue to uee unadorned programs

(p) for the corresponding aemantic values. It is important to note that

p", a does not imply r p' '" r ql. so the clauses balow may not bit colltinad

with our existing lawe (which arB all semantic).

"rQlWe will writs r p' if rpl ie a syntectic approximation to r O'.

The following clausee define " for our version of occam.

36.

1'"' r,1) ...L ~ p

2) p p
r '" r '

3) rp' ~ rQ, • rl.l' E= r R, 9 r p',I'"R'

1"" 1 r .,n

4) f\ rp~ "rQ~ ===9 5E~ P. ~ SEQ Q.

i=l J. J. 1=1 J. 1=1 J.

n
rn , I"n ,

5) t/p~ ~ "-°l ~ PAR Ui:P. ~ PAR U.:Q.
i=1 J. 1=1 J. 2.

r n 1 r n "Ar, c f'" " 6)" IfC.{.IfC.C." C. ~
1=1 1. J. 1=' J. 1=1 J.

,~ ... , .3 I'" " r n r n7)"
./\ [;1 ~ Gi ~ ALT G. {, AL T G "

2 11.::1 i",1 1=1

r, f'", I'" ,I'" ,
8) P ~ Q" VAR)(, •• oXn:P ~ VAR)(,' ••xn:Q

r , ,. ,
I'"p'~ ,9) r Q ~ CHAN C, ... cn:P ~ CHAN c, ••• Cn:Q

10) I'"Ir(b 5EQ(P,WtHLE b p) -Ib 5KIPJ~rWHrLE b P'. ,

* ClausBs (6) and (7) require the definition of auxiliary relations

~ C and ,g on (respectively) conditionals and guarded processes.

These satisfy

, ,I'" ., r..,
b P ~c r b 0'

n n
12) 1\ r C~ tt,.c "C ." ~rlfC~.t:.c r;r C.! 1

") p ~ ~ ~

, 21=1 1- ' 1=1 J. ... 21=1

13) "'p',,-rq, ~ r g p'~.9rg q'

n r , r n , r n 1
'4) II , ';:9 G' ----" ALT G. ,,9 ALT G.'

1=1 Gi '" J.---' 1=1 J. ... 1=1 J.

Formally, (~, -f-C, ~g) is the smallest triple of relations satisfying

(1 -14). '" is a partial order on the syntax of our language. (Thi5

can fail for other languages if they have more general Forms of

recursion; one can have distinct pieces of syntax r"p' and r-cj' SUCh that

I"p' ~ f"q' and I'"Gj'" ~rp', e.g. J-lP.}.Jq.p and J-lq.J.lP'J..lq.P.) It is important

to remember that , is a purely syntactic relation, and that it is not

permissible to use the above clauses in conjunction with our laws (WhiCh

preserve semantics rather than syntax).

FlN(r-P'), the set of pIS finite syntactic approximations, is

defined to be f-O' II"Q' ~ I"p' and 1'"0' is finite}. It is easy to write

down an equivalent definition of FIN(r p') that is a straightforllJard

recursion on syntax. Typical clauses are given belolLl (the only moderately

difficult one being wHILE).

" ,1
FIN(I'"~;=•.~e) [,

.L. 2;:=!!j

FIN(I'"C?x') ['1.' I r c?x'1

FTN(SEQ P.') {r-J.71 v fl'"f~~ ,L', ArQ~ € FIN(r p .'»)

i=1 J. i=1 1 1

r1 , r- , L.L n
FlN(rWHlLE b p') [, IF(bL, -:b.l.) ,IF(b ,..,b SI<.IP)j

,
u [, IF(b SEQ(O" °), ., b J...) ,

2

rlF(b S£Q(O" (2)' -,b SKIPJI

r Q,' E.FlN(r p'), r o; e FIN(ruJHILE b p')1

(The last clauae, which is cirCUlar, is easily seen to have a unique

solution.)

Any finite, non divergent, behaviour of a program has required only

finitely many iterations of any loop. It is therefore possible to unwind

the program that many times, obtaining a finite syntactic apprOXimation

which exhibits the !!ame behaviour. Of course, any non divergent behaviour

38.

possible for a syntactic approximation will also b~ possible for the

original process. Intuitively, there is thus a close relationship

betwean the behaviour of a process and those of its finite syntactic

approl(imations. To understand this relationship properly we need to

go bacl< to our underlying !'lemantic model.

The denotational semantics of j).J map each prOcess into a domain with

a partial order according to which one process is greater than another

if it is better defined, or more predictable. If P and q are processes,

we \Oin lOrite pJ; U (q is more determinlSbc than p) if the semantic

value of P is less than that of Q for all environments wi.th unbounded

sets l)r free locations and channels, and states ... here unused locations

ars mapped to error. P '.:t..I is aquivalent to

P : ALT(5KIP P, SKIP ~).

This law simply says that every behaviour of Q is also possible for P;

thus in observing iJ loIe cannot be SlJre that we are not looking at P. f

induces a natural partlal order on occam terms (factored under the

equivalence induced oy the domain).

The follololing three lemmas express the formal properties loIe will

require of syntactic approximations. The first one is easy to prove

(in the denotational ssmantics)by structural induction.

Lemma 1 If f"p14("Q", then P,=O.

Of course, the converse to LemlT1a 1 does not hold.

The second lemma is easy to prove using a combination of

structursl induction and mathematical induction (the latter for WHILE

loops).

~ (

r-,r, (,')0 •FIN(rp '> is (Under ~) a directed set 1.E!. if Q, , Q £ FIN P •
2

r,,'~r,)there is 90ma rQ'€.FIN(l"P') with I"W,' ~ 1"'(0" and "'2 - Li •

lemmas 1 and 2 tell us that the semantic values of the elemants of FIN(l" p1)

are themselves CI directed set under G The last, and most important,

of our lePl1118s, sho"'s just holol this set characterises the semantics of p.

It, also, is proved using a combination of structural and mathematical

induction.

Lemma J [Q Ir Q'E:FlN(rp1)1 is a directed set (under G) with least

upper bound P (I.e. U [Q I',' E FIN('P')1 • pl·

Later lIIe wi 11 take advantage of this strong way in which the

semantic value of a process is determined by its syntactic apprOXimations.

proving addi tional laws

One very useful consequence of Lemma :3 above is thet, if we want to

prove a new algebraic lalol. it loJill usually bB sufficient to prove it for

finite programs. For example, consIder the lalol

5EU(P, 5EQ(Q,R)) SEQ(SEQ(P,Q),R).

This (the conventional binary associative law of SECJ) is not trivially

deducIble from our existing IaloJs, even though it is semantically true.

HOIIJever, suppose loJe have provad it for all finite P, I), R. (We will

Shortly do this.) Then, using lemma 3, loJe have for general P, q, ~:

5ELJ(P,S[I)(U ,R) u {rlrr'EFIN(rSEQ(p.SEi.J(U)R)' 1
Now because the few elements F of the first set IoJhich are not of the

form SEU(P' ,5Ei.J (U' ,R I» are easily proved (using the laws) equivalent

to ones that are, using the laloJs, e.g.

40.

3EU(P,.1.) "" S£LJ(P.5EU(J... ...L» this is equal to

U[SEQ(Pl.5EQ(Q',R'» lrp,'c: fINCI"P').

r Jj " E: fIN«("Q'). r R.'€ fIN(R'}"\ •

By our assumption that the result holds for finite processes this in

turn is equal to

u(SEQ(S[tJ(P',Ll1),R'>1 r p "€: rINC r p1).

("ot' £. flN(r U'), "'R" € flNC r ,IO?'>1

LJ [r I'r' E r"(5£0("0(P,Q),R)') I

SEQ(SEL;i(P,U),R).

Since we arB in the procass of setting up pOlojerful machinery for

dealing with finite programs (for example Theorem 1) there are

advantages in only having to prove nel.! laws for them. In parlicular,

it is enough to prove them for IF/ALT programs (since, by Thaor·efll 1,

every flnite program is equivalent to onE! in Ir/ALT). As an illustration

of the teCtlniqu8s one can employ to prove laws for IF /AL T programs, we

"'ill complete the proof of tt'e SEU associativity law given above. By

virtue of what WB have already established, the following proposition

"'ill suffice.

Proposition If P,l.I,R ara all~-Ir/ALT, then

SEU(P,SEU(Q,R)) 5[O(SEQ{P,~),R).

Proof we use 9tructural induction on the triple (P,U,R). Supposa

the result holds for ell simpler triples (P',Q',R'). ((pl,QI"I'l') is

simpler than (P,iJ,R) if each of its components is a (not neces9arily

proper) syntactic subcomponent of the corre9ponding component of (P,Cl,R),

except possibly for changes of variables not in~. At least one must

be a proper sUbcomponent.)

Ir P =..l... the result is trivial by applications or .(SEU len zero)(7.2).

n
H P = IF b. Pi- we have

i=1 1

n
SEQ(P,5EuJC",.R» = IF b. SEQ(P., 5EU(""R» .(5E1..I-IF distrib> (4.3)

i=1 1 1

n
= IF b. SEU(5EO(P!,O),R) (by induction)

i=l 1

n
SEQ(IF b. SEU(P .• Q),R) <:5EQ - IF distrib ,>(4.3)

i=1 ~ 1

n
SEQ(5EO\~1 b Pi' Q), R) ,",SEQ -IF distrib') (4.3)

i

SEQ(SEQ(P,Q), R) as required.

lr P = VARx:P' we rirst ensure (via .(VAR rename';>(6.4» that x

is not in rree(Q)Urree(R), and then

SEO(P,SEO(O.R» = VARX:SEO(pl.SEQ(~,R» <:VAR-5E01> (6.7)

VARx:SEO(5EO(P',Q),R) (induction)

SEQ(5EQ(P,Q),R) .(VAR - 5El,J 1 ';> (6.7) twice.

n

lr P = VARx" •• x :ALT g. p. one combines the techniques or the previous

m i::::1 1 1

t",o cases (ueing <:.SEO-ALT distrib> (4.4) rather than <:SEQ-IF distrib>(4.3».

H P :::: ~:=~ "'1'1 need to daal with the individual cases or 0 separately.

H 0 = ..L the result is trivial by <:5EO lert zero>(7.2} and

<:SEQ right zero> (7.3),

n
H Q = IF b. Q. then

i::::1 1 1

n
SEQ(P,SEO(Q ,R» 5E~(x:=e, IF b SEQ(U., R»

... i::::1 i ~

<: 5EQ- IF distrib >(4.3)

rF b.[~J SEU(x:=e. 5EU(Q.,R»)
i=1 ~ ~

<:. assignment - IF distrilJ > (4.5)

42.

n
b. ~/xl SEL.I(SEl.i(x:=e, Q.), R)J.L..u ... _ J." i=1

(induction)

SEQ(IF b.~/XJ SEJ(x:",-F.l, Q.), R)
i=1 J.L.... J.

~5EQ - IF distrib) (4.3)

SE~(S(Il(x~=e. Inr	 b. ~.), R)
....... 1=1 J. 1.

<assignment -	 IF distrib'> (4.5)

SEQ(SE~(~,~), R) •

If Q =:- VARx:Q' the result may be established (after possible renaming of

bound variables) by <cVAR - SEQ 1,2> (6.7, 6.8) and induction.

n

If Q = VARx,' •• x :ALT g. iJ.' the result follollJs using the techniques

m 1=1 1].

of the previous two clauses, using <SEW - AL T di strlb > (4.4) in place of

<SEL.j-Ir distrib)(4.3) and <.assignment- ALI distrib)(4.6) in place of

<assignment- IF distrlb) (4.5).

If Q =!==;.t' lIIe need to consider each case of f-l separately. If R = ...L.

the result follollJs simply from <SEQ right zero,> (7.:3) and ","combine assignments>

(4.7). If R == ~:==!
,

we have

5ED(P,5"(O,<))	 = 2:'=(£:~2\} [~(J <comt:line assignments >(4.7)

=~:=i'~t'I.!~J
by properties of	 substitution

S£!..l(S£L.i(P.L.i). R) <.comt:line assignments>(4.7).

If R = VARx, ••• xm:>lLT Q R , then after possibly renaming x ••• x to
i i 1 m

avoid clashes with free(p) V free(~) we have

n
SEQ(P,SElJ(U,R» '= VARx,' •• :-; :SEu()(:=e, SEQ(x::=f, ALT g. R.))

m .. - 1=1 J. J.

.(VAR e:-;pansion>(6.1), <VAR - SEL,j 2 >(6.8)

VARx, ••• 1< :I\lr g. Cr/l<J ~/XJ SEU(x:=e, SEtJ(x:=f, R.)
m i=1 1. L.... [..... ...,...- "'"' J.

<assignment - ALT distrib> (4.6) twice

n

VJ\RJC,' •• J(:Al T gi ~ ~/~J SE"(5"l!:'"~, ,?:;:=.!,), Ri }
m i=1

(induction and properties of substi tution)

n
VARx,""x :ALT 5EW(XP"fr&/). R,)gi ~~/~~] --L~Jm i=1 J.

':::combine assignments> (4.7)

VARx ••• x :SECl(X:=fl·§!/x] • A~ T g. R.)
1 m [... i=1 J. J.

.cassignment - AL T distrib') (4.6)

VARX1 ••• X",:SEQ(5EQ(~;=~. ~:-=J:), 11)

<combine assignments >(4.7)

5EQ(SEq(P,~), R)

<VIIR expansion>(6.1), .(VAR- 5EQ 2>(6.8)

If R = IF b R the same argument as above applies, onlyi i

.(assignllBnt-lF dislrib>(4.5) is used in place of.(assignment-ALT distrib)(4.6).

The case of R = VARx:R' is eesy.

This completes the proof.

other laloJ!:I can be proved in much the same lIIay (often rather more easily).

Some examples are given below.

44.

a)	 5£Q(SKIP, p) S£Ij(p, SKIP) p

bj 5£U{P, tF b. LJ.) fr b. S£14(P. 0.)
i",1 ~ ~ 1=1 1. 1.

if b," ••• 1/ b ~ true and no variable in any b is altered by P.
n	 i

,)	 P,l,R(U
1

:P, U
2

:5KIP) Pol."(U,:P) p

provided U declares all global variables and channels used by P,1

and U declares none of them,

2

Not all proofs of new laws go along these lines. Some may require the

Full power of a normal form, while some can be derived directly. As an

eJt:C\mple of direct derll/ation we here prove a law relating IF and AL T

that is apparently more pOllJerfui than the law <IF _ AL T distrib> (2.10)

we alrei'ldy have.

c m m

ALT 9 (IF b. P ..) Ir b (ALT g. P ..)

ii=1 j=1 J J.J j:d j 1=1 1. J.J

providirlg b,v ••• vb true and no variable input in a 9 appears
m i

in a <: AL T - If distrib >'bj'

This says that, providing the eXBcution of the guards gi always

leads to the evaluation of the same conditionals, the value of which is

not affected by the gi' then the conditional choict> may be brought

outside,

To derive this law we first establish the following law as a lemma:

n n

IF n. P. ::: IF b.* (IF b.* P.)

i",1 3. 3. i",1 1 1 3.

•where b '" "1°1 " •• , /\ I b _ /\ b.,i	 i 1

*
n
The right hand side may be transformed to l~1 b i Pi by repeated use or

<:1\- If distrib) (1.8),..(IF assoc)(1.1) and<:IF sym>(1.3). It ill

then equivalent to the left hand side by <IF priority)(1.2).

The proof of <All-IF distrib>is as fallows.

n m

ALI g. IF b. P ..

i=1 1 j=1 J 1 J

n m

IFb,v "b (ALTg.IFb.P ..)

m i=1 J. j=1 J J. J

(by .,(IF-true unit> (1.7), as b,v ... V'b :: true)
m

m n m

IF b (ALI 9. IF b. P ..)

k1<=1 1=1 1 j=l J J.J

(by(IF- v dislrib>(1.4»

m * * n m *

IF b (IF b (All g. IF b. P))

k k ijk=1 1=1 1 j=1 J

where b.,* = ., b,"' ••• 1\1b _t b (by lemma)
i i

m* *1'1 .m*
IF b (IF b All g. (IF b (IF b. P .. »)

k k kk=l 1=1 1 j::1 J J.J

(by.,(IF-ALT dislrib>(2.10), since no variable input

in a 9 appears in a b)
1 j

m * ... n m *

IFbk(IF ~LT 9i (!F bk 1\ b * P))
bk j ij

k=1 1",1 J=1

(by <'1\- IF dislrib)(l.B) and <IF assoc>(1.1»

m * * n * IF b (IF b ALT g. IF b Po)
K=l k k i=1 1. k 1. k

(by<lF -~unit>{1.5) and.(.IF-sym>{1.3)

since b * A b ~ = false when j I. k)
k J -

m * * n

IF b (If b (All g. P. »

k k k1=1 1. 1.k=1

(by <IF-ALT distrib>(2.lO))

m n

IF ALT 9 P. (oy the lemma)

1 kk=1 i=1 1

46.

J. The normsl farm

~e cannot claim that IF/ALT is a normal farm since even though it

has a far more restricted syntax than general occam, it is still possible

to have equivalent programs with essantial1y different syntax. This is

because ita construction did not take account of many of the equivalences

that can arise between IF constructs, betwsan ALT constructs, or as a

consequence of <IF - ALT distrib) (2.10), tha law which relates the hm.

The following examplas illustrate soma non-trivial forms of equivalance

that ars not recogniaed by reduction to IF /ALT. After each example we

indicate tha way in which our normal form will solve the problem

illustrated.

a) It ia possible to have ciause5 in IF constructs that are never

executed, becsuse tha associated boolsans must always evaluate to falsa.

Some such cases are obvious, as when ~ ie itself one of the booleans,

but SOJllEl are more subtla, as in

If If

Jl. rrod 2:::1 x mod 2::: 1

If Q

X ::: a
p

x # 0

o

where, in the lefthend proceas, one of ths boolaans in the innar IF is

always false because of its context.

In the normal form all such clausas will ba aliminated from

conditionals by using "IF-false unit)(1.5). Difficulties such as

thosa poeed by the above example will be avoided by making sure that

any boolean appearing within the "scope" of another is stronger than ita

n
The above example also illustrates the point that if, in l!, b Pi'

i

any of Pi is a condi tional, then it may be unfolded usIng

< '" -lr distrib > (1 a6), etc. The normal form never has one Ir directly

as th3 argument of another.

b) It is so!tE!times possiole to make a conditlonai choice before it is

strictly required, and always possible to introduce a meaningless choice

(bet~een two identical processes). Consider the process

IF

x = 0

ALT(c:l p)

x>O

ALT(clO Q)

x<O

STOP

This has essentially different beheviours dependIng on x ~O or

x.(0 (it either can communicate or not): this conditional choice is

therefore unavoidBbis a On the other hand, the choice bet",een x = 0 and

x>O can be postponed to (at least) the next step: it is only the

value communicated down c that is at stake, and it is possIble to

construct a single expreesion thst takes the correct value in all

states ",ith x~O. If b,e,f are expressions, we "'ill use the notation

e{b}f for the expression that takes value e if b is "true" and f

if b is "false". (We do not specify its value for other values of b.)

Tt-e pro~ram "bove may be transformed to

IF

, ~O

ALT(cl(11=X'=O*O) lr(x.=O P, x~O Q»

,<0

STOP

48.

by B combination of substltution of expressions, .cIF" sym>('.J),

.L..J--1F" dislrib> (1.8) and <ALT-If d19trib) (tha derived lew proved

at thil end of Section 2).

In our normal Form only strictly necessary choices will be ~adB,

end these will be made as late as possible.

c) There are 88V8ral llJays in whlell apparently different ALl

constructe can give the sallE effect. For example,

ACT

c1'

P and ALT(C?X p.~)

SKIP

ALT(c7x PI j;)

arB equivalent.

If the communication option of the first process is taken up,

the en~ironment cannot tell it is not operating the second (for exactly

the same option ia present there). IF that option ia not oFFered or

not takan up, the first proces9 quickly transForms itself' (by the

operation or tha SKIP gUBrd) to the second.

Tha above equelity Cannot be proved from our edsting lalols, since

(aa Ille halle elready stated) the lallls of ALl are not yet complete.

Wil 1oIi11 shortly develOp the further lallls needed to Counter this type

of eqwlIslence.

d) If, at some point, a program can output several different

expressions on the eame channe1. 0 r assign several di Ffere nt expressions

to the 99m8 veri9ble, some subtle difficulties appear. (Such behaviour

can easl1y ariae in occam because of nondeterminism.) A pair of

A9.

expre9sione may, as the state varias, Bo.tlet1mss evaluate to the sarna

value and 90metimes to di fferent values. For example

ALT

c:o

p

cHx mod 2) ,
is clear 1y aqui\lslent to

" (x/llOd2)=0

ALT

c:O

AL T

SKIP
p

SKIP,
(x mod 2) I:- 0

ALT

c:O

p

c :1 ,
since, if (x ",od 2) ::: 0, corrmunicating a een lead dOllln either brench

of the first program.

In our normal form we will insist that if t~o expressions are

both a\lailable a9 outputs on the 8ame channel, or for assignment to

ths seme variable, then they..!!!!. different. (In no stats ",here they

are ","aluated do they taKe the 9ame value.)

[lien this rQ strietion Is not ",nough: consider the followIng

Pair of processes a

50.

ALT ALT

SKIP SKIP

)(:=0 x:=x mod 2

Sl<lP 51(I P

x::::1)1;:=1- (x mod 2)

They are clearly equivalent, even thougn there is no one-ta-one

matching between the pairs of expressions that appear in them. Just

because, in every state, tos sets to"S and Lx mod 2, 1 - (x mod 2)1
are the 9amB, does not mean that there is any uniform equivalence

between the individual expressions. In the normal form ...,e are forced

to accept only one of tnesB representations; lila choose the left hand

one by insisting that pairs of expressions [8,,8 1output on tne same
2

channel or assigned to the same variable be ordered. This means that

in all states Where thsy are evaluated, €I, (say) is always strictly

larger than 8 " (The linear order chosen is of little consequence,
2

provided it is expressibls in the language. We lIJill assurTIi! the

identification of all posaibla expression values lIIith distinct integers.)

For a convincing constructlon of a normal form it is not enough

merely to llet a felll types of equivalence that can arise and sholll how

to deal with them. This approach can never tell us that there are no

more (even more subtie) equivalences lIJaiting to be discovered. Instead

we must construct a normel form sxplicitly around tne semantic

properties of programs: it should be obvioU9 that different normal

form programs are different gemanticslly. A good example is "full

di9junctive normal form" for propositional formulae. There is an obvious

and close correspondence betllJeen ths syntex of full d.n.~. formulee and

the underlying gemantics (functions from truth assignrTli!nt s to [true, false1).

An occam process can be thought of as acting in steps: a step is

either a single communication or the act of successful termination.

Tha nor mel form ""ill cherscterise trs first step of a procese'

bahevlour using the hlghast lavels of syntax. and rely On inner

levels to deal ~ith subsaquent steps. Tnere are three essentially

different waye in which the flrst step can be influenced.

(i) It can depend on tne values of the program'a variablea. This

type of choice 1s typified by IF conatructs.

(it) I t can depend on internal decisions by the procesa tnat are

nondeterminiatic and invisible to the envIronment. Trs purast form

of thie is in .IllT constructs wi th SKIP guards1 for example

AlT(SKIP P, SKIP Q) is a process that is frae to behave like P or

like Q, the choice depending nsither on the environment nor on the

program's variables.

(iii) An occam procass can offer its anvironmant a cnoice of

communicatlone: its firet step bahaviour than depends on the choice

made by tha environment. This choice might be at the level of

cnooeing \IInet to output to the process along a particular channel.

or of choosing (vie an AlT with communication guards) which chennel

to conrnunicate on.

To deacribe a process' firat step behaviour we "ill thus use

three ievals of synta,ll(: assantially one for each varIety of cno1c8.

The normel form has two parameters. The first is a boolean

expression representing all facts known about the process' free

variables. Tnis is necessary because, as ~as shown in example (a)

above, it Is necessary to take account at inner levels of conditionals

already passed through. The othar parameter, Inherited from IF/ALT,

is a list of free variables.

52.

To keep our individual definitions as sirTllle as possible we 111111

defire two sorts of program mutually. A b,~- normal form program

hag cDnditlonal choice (type (1) above) at ita outermost level, while

8 b,~- ALT pattern has a mi;w;ture of the otnsr two.

Definition A b,~- normal form is a progrBIII of the form

,
IF b.	 P .•

i=1	 J. 3.

whets the tl partition tit for no i is til == false, and the Pi Brei

distinct b I~- AL T patterns.
i

(ALT patterns, perhaps with different booiean perameters, are distinct

if thet cannot be reconciled to a s1ngle choica, as lIIas done in

example (tI) abo\ls. A formal definition of this notion llIill be supplied

later.)

An ALT pattern will be a way of Characterising the behaviour of

a process whose general shape of first-slap behaviour is the same for

ell permitted initial velues of ite free veriablee. This "shape" is

determined by looking et the renge of first step behaviours open to

the procees.

There are four essentially di fferent things a process Can do on

its f!rat step:

(i)	 it diverges;

(il)	 it cOll'lmunicatea with its environment (and goes On to its second

stEip) ;

(ill)	 it stope because, even though it has not terminated, it cannot

ague ~ith its environment on any communication;

(iv)	 it terminatea in some etata.

The "shape" of a process' first stEp will be a mixture of

possibilities from the above. NOndeterminism within the process,

and the many choices open to the environment, mean that any mixture

of these containing at least one of [i,iii,iV} is possible. (It

is impossible to construct a process that commUnicatES in every

circumstance. This is because any process can be faced with an

environment that ""ill not agree to any communication.) Recall,

however, that we havs ChOSEn to ioentify all processes that can

diverge~ Thus.L ,,"ill be a b,~ - AL T pattern, anD all others will

be divergence-free on their first steps.

The other b,~ - AL T patterns are essentially just lists of the

possibls combinations from (ii), (iii) and (iv) above~

Definition The program P is a bt~- ALT pattern iff it is ill!::l§.r .L or

N
VAR y" •• ~, Yn: ALT

i",,1
g.

J.
P.

J.

,,"here there are integers K, L ,,"ith O!f. K(: L ~ Nand K< N such that

, "i~K implies that 9 has one of the forms C?Yj and de, and that
i

Pi is a b,~ -normal form. All input channeis are distinct,

and the (distinct) variables used in input guards are

precisely Y1' ' •• 'Yn (none of which is a component of ~).

y j is not free in gi Pi unless 9 "" c?y j. If c!e and elf
i

are two dIfferent 9 then bl=e<f or bl=f<e~ For each i,bound(Pi)
i

is disjoint from fres(P), [Y1' ••• , Yn\ and the components of .=:;.

K<.i~L implies g. is SKIP and P. is fill 9. p. where the X. (K<i~L)
J. J. JEX J J J.i

are incomparable subsets of (1, •••• K} with the property that

if 9 = cle and gs "" C:f (both outputs on the same channel),
r

then s£\ ~rE:\~ (The sets X and V are said to be incomparable

if X~Y and vfx.)

54.

L <: l{.N implies gi is SKIP and Pi Is !':=~i ILIners, if lEI denotesij

the jth expression in the vector ..!Ii' ILIB ahJays have

b F B.. orb);:8ij >Skj orbFBij<Skj'" Furthermore,Bkj

if i ., k, tMere eXists some j lLIith b F 8 .. ., lEI .•

'J

~J kJ

Clearly the first K guards correspond to the JJrocess' possible

COllVllunications, the naxt L-K to tha minimal combinations of

COrmlunlcations it cen choose to accept from (but not terminate), and

the final N-L to its possible finel states (aftar termination). The

condihon K<N asserts that the process must be able either to terminate

.£!. to stop ..

The reasons for demanding that expressions output on one channel, or

assigned to the S8me \lariabls, be uniformly ordered have already been

explained. Most of the other constructions should be reasonably clear

except possibly the construction of the section K< i ~ L.

This section is present to identify those environments lLIith ILIhich

the process might deadlock (i.e. stop becsuse it cannot agree any

corrmunication lLIith the environment). Obssrve that the process is free

to execute any of the corresponding SKIP guards (gi for iE [K+', •••• L1

and cen only deadlock if it does execute one of these guards. Tr,us

deadlock can occur if and only if the environment offers to cOflllllunicate

on a set of channels disjoint from one of the sets represented by the

Pi (l<<:i~L).

I t is clear that tr,e set of such environments lLIould not be changed

by intrOducing an additional option lLIith a largsr set of p'S communications

than one of the Pi (l«i~L). becausa ILIhenever it can deadlock, so cen Pi.

This is why lLIe only record minimal accsptences. or in other words. ILIhy we

insist that the Xi (I< <: i~ L) are incomparable.

55.

On the other hend processes with different sets of minimal

acceptances aTe observably different. This is clear when we note

that, given two different collections of incomparable subsets of

~, •••• K1, one must contain an element X that is not a superset

of any element of the etheTe Thus there is a set of channels (tne

co~lement of t hose represented by X) that the environment can offer

which one process can deadlock on but not the other.

Note that the lIJhole set [9" ••• , 9k1 or the empty set can

appear ae minimal acceptances, but that if one of them does appear then

it is the only minimal acceptance (i.e. L = K+ 1). The first of these

happens When the process Can fail to terminate but there is no

communication it can ai ther accept or refuse. The second occurs

"'hen the process has the option of deadlocking completely: getting into

e nonterminated state where no communication is possible.

All output 5 along the same chennel always appear together in the

minimal acceptances because we assume that the en ironment, like occam

processes, does not have the power of selectie input on a channel.

Thus we do not discriminate between a process thet offers to output

one of t",o values on e channel nondeterministically and one thet offers

the choice to the en ironment, even if this last idea were operationally

reasonable. No environment we allow is equipped to obsere such

distinctions. The minima! acceptancee are thus essentially sets of

channels, and 50 in constructing them we must identify all guards

corresponding to the same channel. (This problem does not arise with

input channels b8cause these are all, by assumption, distinct in tl.l T

patterns.)

The list of communications (1 <i<K) needs to be represented

independently of the minimal acceptaNces because not all communicatiONS

56.

need appear in a minimal acceptance set. Indeed, it is possible to

have communications but no minimal acceptances at all, as in

ALT(c?~ SKIP, SKIP SKIP).

Notice that each communication guard gi is alweys fallowed by

the same process Pi' whether it appears in the communication section

or the minimal acceptances section. This is because our semantic model

(chosen because it expresses the weakest equivalenCe required for mast

practical correctness issues) does nat distinguish between processes

on the grounds of what communications can be observed aFter the reFusal

of speciFic sets. For example, lIje regard the tlijO processes

a) ALT end b) All

SKIP SKIP

All ALT

c?x c?X

c?x c?x

d?x d?x

c?x c?x

SKIP SKIP

All All

c?x c?x

STOP STOP

c?X

c?x

as equivalent, sven though they have difFerent possible behaviours

once the refusal of "d" has been observed and an input has been made

on channel c.

A Finer model (i.e. 01'18 identiFying less processes) might

necessitate different processes eFter diFFerent instances of a guard.

I t might also be necessary to include more acceptances tt'lan just the

minimal OMS in order to accorrmodate this type of distinction.

We can extract from each b.~ - ALI pattern an abstract shape

for the behaviour it represents. I t is either ..L or a triple, whose

first component is a set of directed channels, the output channels

having a multiplicity. Its second component is a set of inco~arable

subsets of the channels. The final component is a set of k-tuple~ of

positive integers, where k is the length of 2';' For each i £ r, "', k1
the set of !th components of these tuples has the form 2 •••• , nt"

i
1

for some n
i
~ D. For example, if ~ = <l(" •••• x k '> the tuole .(', 3, •••• 2 >

means "assign the smallest of x,'s expressions to it. the third smallest

of x 's expressions to it, •••• and the second smallest of xk's expressions
2

to it". Note that the second and third components of the triple cannot

both be empty.

Recall that the bi,t.-ALI patterns Pi making up the normal form
n

program.IF b, P. must be distinct, in that for no i and j can IF(b, P., b. P.)
J.=1 J. 3. 1 J. J J

be transformed into a b v b ,!.- ALT pattern. We define ALT patterns
i j

to be distinct if tney nave different abstrect snapes. Note tnat this

correSponds 1011311 to our objective of having tne outar condi tional ~n the

normal form determine tne shape of first step behaviour. It is easy to

see that tllJO nOn-.L AL I patterns fail to be distinct if and only if

there are straightforward permutations of tne communications, minilllal

acceptances end terminations of the first that match the second (elcept

for names of input variables and tne various expressions. but preserving

order of expressions). If sucn a set of permutations exists we will call

them a matching of tne t",o ALI patterns.

Definition

N
Lilt p = VAR Xl' ... , , : AU Pim

1=1
9 i

",!tn K.(i"-L, g. = SKIP and P. = ALI g. P,
J. 1 jH J J

i

and L<if-N 9" Q1 = SKIP and Pi
~:=~i

• •

58.

,.
•and l.l'" VAR Y1' ••• , Y ALT hi 01
m 1=1

loIith I(~ i "l ~ hi SKIP and Q. ;;: All h O.
1. j(Yi J J

•
al1dL<i~N

•
~h. SKIP and Q.,. , ~:=.!i

.. '*
be respectively band b .~-ALT patterns. If N=N , m=m , K: K

and L = L" a matching of P and Q is a quadrup Ie < 'V, "6',;0' }' > of

bijection. Y, [" .,., m}--.>r, ... , m}. ~'{" ... , Kl--.>f" , K1
;' t L1----;>f+l, L1' T 'LL+', '1 ~[L+', "}K ."

such that

a) if 9 C?X then
1 j "~(i) C:?YV(j) ;

if 9;[.
 de then C18• for some 8• "t(i) =

•if 91 = C~8, 9 j = c:f, h3'(1) = c~e

..
and h~(j) = elf, then b 1= B <f iff b 1= e <f •

bJ !'(i) = t'6(J) Ij ",,1
c:) if the jth components of 9. and f ,' are respectively denoted 8 ..

....]. J. J

and f;[.j then

b F Bij" e kj ~ b* F fj(i)j < fY(k)j

b F 9 1j = ekj~ b* F fY(i)j "" f:r(k)j

b 1= Sij >8 kj ~ b* 1= 'j(i)j > fT(k)j •

Th1s completes our definition of the normal form. Our objective

when constructing the normal form lLI8S that two such progrems would

only be semantically equivalent if they were ~yntactically equivalent

1.n some obvious way. There are three ways 1,-, which two b.l;. - normal form

programs can be semantically equivalent.

59.

(i) The operators ALT and If (with disjoint booleans) are symmetric,

Thus their arguments can be permuted \IIithout changing the

semantics of a normal form program,

(ii)	 The names of bound variables may be changed.

(ill)	 Any ElxprBssi on can be raplaced by another one which is equivalent.

In the case of expressions output on channels or assigned to

variables this expression only needs to hold in the context of the

strongest enclosint; boolean.

Programs that are equivalent for reasons (1) and (ii) above are readily

proved equivalent using the la\ll9. Programs that are equivalent for the

third raason are proved equivalent by the following rule.

Rule	 of substitution for expressions

a)	 If e is any expreasion appearing in the program P and Fe"" e',

then provided P', a progralfl in lIIhich 50"' €! occurrence of e has

been replaced by e , is corract, P '= pl.'

b)	 If b ~ e e' then IF b AL T(cle P, E,) If b ALT(c:e' P, ~).

oj	 If b F e e' then If b)(::::e:r IF b)(:=e'.

In fact (1), (li) end (iii) (and combinations thereOf) Bre th~ only

ways in which a pair of b,~-norl!lal fDrm prDgrams can be semantically

equivalent, We thus fotll\ally define equivalence of normal forll\s as

followe.

60.

n
Defir>ition a) The b,A- normal form programs lI, b Pi and

i
n'
IF b'. p'. are egui alent if and only if n=n' and there is a bijection

i=1 3. 3.

.,.... :[1, n"!........:,. E, ... , nl such that, for each i 1== b = b~(i)
J i

and P is equivalent (as an ALi pattern) to P (.)'
i fr 3.

b) The b,3. ALI patterns P and (J are egui alent if and only if either

they are both....L I EE.

N
VAR x,. ... , x , ALT gi Pin i=1

with K<'i'-L ~ g. = SKIP and Pi = ALT g. P.
3. j£Xi J J

"d L <'i ~ N ~ gi SKIP and P,, =
~
x =e-1

N

!:i= VAR Y1' , Yn: ALT hi 0i

1=1

\>lith K<.i~L ==;- h. = SKIP and I), = ALT h. Q.
3. 3. jo!'!'i J J

and L':::::i~N h. = SKIP and Q. = x:==f.~
3. 3. --~

and there is a matching (\).'t ,,P. T) between them such that b t= e = f

whenever e (from p) end (from I) apoear "at the same point" (i.e ..

gi = c:e and h~(i) == c:f, or e = e ij and and 5 uch that
f = r,-r;l~ ~

1 ~ i ~K i~ lies that Pi is equillalent to "" XnV]Q~(i) L
/<Y~(l), Y~(n»

as a b. J; - normal form ..

Theorem 2

The b.~ -normal form programs P and iJ ha e IF b P and IF b U

semantically equillalent in the senSB of [RJ if and only if they are

equivalent.

We cannot give a datailed proof of this important result here

since it dapends so crucially on the details of the denotational

semantics, which have not been described in this paper. The folloloJing

is an outline of the proof of the "only if" part. (The "if" part

being much easier ..)

n n'
So suppose P ~ tI, b Pi' i:i :: rI1 b'i Qi and 1F b P and IF b U

i

are semantically equivalent. It is possible to recover the abstract

shape of a process' first step behaviour from its semantics. Hence

for every state satisfying b, P and Q must have identical shapes of

first step behaviour. NoloJ the distinctness of the ALI patterns maldng

up P and CJ means that the eets of booleans tb" •••• b ' and n

{b'1' ...• b'n'1 both partition the states satisfying b according to

these shapes. From this we can deduce that n = n l and that there is a

bijection <T" [1. ... , n\ ~r n~ SUCh that for each 1 ~ i ~ n,

i J:= b b';"(i) and either Pi == Q$(i) ~..L or there is a matchingi

b£JtloJeen Pi and l{,-(i)" In the latter case it is easily shown that the

matChing in fact yieldS an equivalence once induction has been useo to

deal with lower levels.

Three more laloJs

There is an important gap that needs to be filled: the last three

laws of ALT. They all concern SKIP guards in AL T constructs: the

situation where the process is given an option that it can choose

invisibly and automatically. In particular, they shOW what sort of

equivalences arise between the type of nondeterministic processes these

give rise to. I n studying these laws the reader should bear in mind our

philosophy that nondivergent processes are equivalent if they have the

same communications, minimal acceptances and terminations, and if their

poseible behaviours after each communication are equivalent. These laws

62.

more than any otht!r5	 depend on the lUay our semantic model treats non

determinism, and ... auld probably need to be revised in other :systems.

The first law says that if the process communicates, the environment

is not intsrested in ~hether this occurred before or after a SKIP guard.

(2.1 1) ALT(SK1P	 ALT(9, p,.s,), 92 Q, ~2)

ALT(SKIP ALT(9, P, 92 q, ~1)' ~2)

provided 81 thaI' g,	 c?x and 9 C?y
2

c~e and 9 df <.:AL T - SKIP sym>.2!. 91 2

The fact that the process on the left hand side has a communication on

the same channel as 9 within the inner ALT ensures that both processes
2

have the 5ams minimal acceptances. The fact that, in the case

9, = cle and 9 = elf. e need not equal f. expresses the fact that the
2

enviro~m8nt is not capable of inputting selectively on channel c.

Tile second law allows us to aliminate nested JILTs with SKIP gu~rds.

It says that if an AlT can SKIP to a second AlT, IOJhich in turn can SKIP

to P, then all other options in these ALTs are in exactly the same

position: they might be offered, or might be ignored in ravour ef P.

(2.12) AlT(SKIP	 Al T(SKIP P, £,,), ~2) ALT(SKIP P, ~" .92)

<Al T - SKIP reduction>

The final lalOJ depends on the fact that we are only interested in

~ acceptance sets. Thus the foilolOJing two processes lOJith the same

communication options (and subsequent behaviours) are equivalent:

(2.13)	 ALT(SKIP ALT(f,l)t SKIP ALT(~" ~2)' ~3)

= Al T(SKIP AL T(~,), ~2' Ji 3)
.(convexity>

The left hand process can SKIP to twa options, one of which is a

subset of the other. If one of the lists £, and £2 contains a SKIP

guard the equivalence is quite Ilasy to see. If neither doea it is

clear that both processes have exactly the same possible communications,

and furthermore any environment which can deed lock with either can

deadlock with SKIP ALT(£,) or some SKIP option within.E.3.

we nOIll have enough laws to completely capture the semantics of

our version of occam. There is one e)(ception: the cese of uninitialised

variables. The nondeterminism introduced by these is of a particularly

difficult kind. Given that any instance of ona of these is erroneous,

it is notarth putting a great deal of effort into their study. Any

use of such a variable by a program will show up in its IF - ALT fou.

We lIIill thus not attempt to transform any further an IF- AL T program

lIIith the "uninit Ldised variabla" construct ithin it. (Notica that we

have not included the possibility of uninitialised variables withIn normal

form programs, since no bound variable is ever read until it has be~n

input to.)

Given H-eorem 2 abova, the following theorem sholo!s thet we ha\l8

achieved our objective of completely characterising the semantics of

finite programs.

Theorem 3 If the list..A conteins avery free variable that the finite

program P ever inputs or assigns to, and if P never evaluates an

uninitialised variable, than there is a~• .3,- normel form program pI

such that free(P'}s free(P)v~ and P = pI Is provable from our !aillS

and the rule of substi tution for e)(pressions.

8y virtue of Theorem 1 it is sufficient to prove this for tha case

when P is 8n~- rF/ALT program.

64.

The proof of Theorem 3 takes very much the same form as that of

Theorem 1: it is a recursive procedure for transforming If" b p to

b,~- normal form, where P is an ~ - IF/AL T program without uninitialised

variables. Indeed in some lIIays the proof is rather simpler than

Theoren " since it dD~S not need such a complex structure of nested

recursions. (The reason for this is that IF/ALI and normal form share

ths property that syntectic structure corresponds closely to e)(ecLJtion

or-der: tl1ings at 111911 syntactic levels are executed first.)

Theorems 2 and 3 together give us a relative completeness result:

relative to the knowledge we ere assuming about expressIons, our

algebraic laws are complete with respect to deciding the equiualence of

finite programs. Recall the relation P G [) introduced in the second

section, meaning "0 is more deterministic than P". This lOjas formally

defined

Pi;Q 5 P ALT(SKIP P, SKIP Q).

It is therefore (relatively) decidable for finite programs using our laws.

It is a fact that, provided the set of "basic ualues" that

expreSSions can take is finite, the finite programs are finite in the

lattice-theoretic Sense of the latord. In other words, if D is a directed

set of processes (under ~), P is finite and UD ~ P, then there is SOIfE

QED euch that 0 ~ p. Thus the follolating theorem is an easy corollary to

Lemma 3.

Theorem 4 If P and Q are t~o occam programs with the property

(~) v"""p t1 €. FIN(rp'). 3r"01'~FIN(rOl). p'GQ'

then P~Q. If the underlying set of basic values is finite, (;;:..) holds

if and only if P!; Q.

Since P = GI is equivalent to P!;Q and P ;lQ, Theorem 4 proves the

soundness and, in the finite set of values case, completeneas of the

following infini t ary rule for decidIng equivalence.

In finitary rule 1 Suppose P and Q are such that

vt'p" £. FIN(rp') ~ 3 rQ"E: rIN(rO'). pl£ O'

and VU"£.FIN('-q'). :3,'-P"£FIN(t'P'). Q'l:;P'

then we mey infer p = Q.

This rUle, togetner with our laws and the rule of substitution

for BKpressions is enough to completely characterise the aemantica Df

occam if the set of values is finita.

Our use of an infinitary rula, ""nich requires an apparently infinite

amount of ""ork to verify its preconditions, appears undeairable. indeed

for any particular finite value set it ""ill be poseibla to give a co~lete

finitary rule based on the fact tnat, aince any program only containa

finitely many variables, it can be regarded as e finite etate machine

(With a huge number of states). However any euch rule would be inelegant

and be i~ossible to apply in practice because of the prohibitive amount

of case cnecking required. Indeed our infinitary rule may well be more

practical. since it will be poseibla to veri fy its precondi tione by

induction in many applicatione.

1t snould be noted that tnere is no chance of 8 complete finitary

rule when the value space is infinite. ror eKample we could take our

value epace to be the integers (with the truth values elltJedded eOllllhOlll).

We rastrict the language of eKpressiona to the co~arison and boohan

operations (including 1: t- see Example b of this section), + and -.

This means that the facts b F b lIIe aI'S assuming ara in principle1 2

66.

decidable,1 end so add nothing to the rflal pOlller of our syatem. A

complete finitary rule for this language would allOlll us to decide the

halting of erbi trary register mschine programs; this is lIIell-knollln

to ba impossible. (We have taken csre here to ensure that an

unscrupulous user could not make use of ths calculus of expressions

to reason about the lsrge scsle structure of programs. It lIIould of

courSE be completely outside the spirit of our style of proof system

for hill aver to do this.)

Unfortunately Infinitary rule 1 ss it stands is not strong enough

to give us s complete system IIIhen the set of basic values is infinite.

Suppose the value space is the integers, and consider the fallowing pair

of programs.

If WHILE yfo

,~O SEQ

SEQ and y:=y - 1

Jl:=Jl+ y x:=x +'

y:=o

,<0

.L

These are equivalent, but the rule does not prove this because the

left hanQ program is finite but is not waaker thsn any finite syntactic

approximation to the right hand program. This is bacause, aa the

initial state variee, the number of itarations of the WHILE loop varies

unboundedly.

There are several methods of extending our rule to cope lIIith this

problem, all of which are essentially lIIays of considering programs

restricted so that we only need lIIorry about a finite set of values at a time.

1.	 The tneory of these e:-:pressions reduces to that of Prestlurger

arithmetic (see, for exampl~ iF]).

67.

It is quite easy to restrict normal form programs to finite

sets of values. Given any list of variables oX and finite set of constant

. 2
8;l\prs5sJ.ons F. it is easy to construct a boolean b; which is true if

and only if every element of oX is in Fa All loiS have to do is to

F .
introduce extra conditions of the form t:r J.nto the conditionals of

the normal form, II.llth an "escape" clause of .J... •

Definition

n
a) If P = IF b. p. is a b,x- normal form program and F is a finite

i=1 ~ 3. ...,

set of constant expressions we define p,l. F to be

IF(,b
F ..L, (b~ b,) P,H, •••. , (b;", qJ PnJ. F)X _ _

where J'. is the list of all variables appearing free in p.

n
b) If P = ALT g. Pi is a b,x-ALT pattern and F is a finite set of

1=1 ~

constant expressions we define PJ.F to be the program in which J. F is

applied to each normal form appearing after a communication or within

a minimal acceptance.

(Note that P~F need not be a normal form program if P is, since the

clausee in the IF
s

might be false or not all distinct.)

The following lemma expresses the important properties of the P!F.

Lemma 4 Suppose P is a normal form program and that every value is

expressed by some constant e;l\pression, then t,oIe have:

a) {;~F IF is a finite set of constant expreSSions}

is directed (under!;;) with limlt p.

2. A constant expression is one which contains no variables.

68.

b) "or each r, if 0 is a directed set of processes with

UD;J~lF, then there is some ~E:J with]~P~F.

'JJe car associate a set of these "ultra-finite" prOc;rSr:'15 with each

occam program P as follows.

pc) {P'~F\F is a finite set of constant expressions and

~, is a normal fOrm equivalent of some

~'''€FIN(P)~.

lemmas J and 4 now combine to prove the soundness and completeness of

the following rule.

Infinitary rule 2 Suppose the programs P and] are such that

Ye' ef(p)·'3 Q' E..F(~). p'<;:q'

and Y]IEJ(Q)."3 PIE-Y(P). L.'Gp'

then P = Q.

cJJB have now completed our Characterisation of the semantics of

occam. The algebraic laws, infinitary rule '2 and the rule of

substitution in expressions provide a sound and complete system for

decidin~ the equivalence of programs. Unfortunately, infinitary rule 2

is lik,,1y to be much harder to use in practice than infini tary rule 1.

The facts that it relies on transformation to normal form and uses two

separate types of appro:.<:imation mean that its hypotheses wi 11 be much

harder to prove by induction than those of the earlier rule. There

may be ~lternative rules that are not so problamatic; in particular

it shoulc be possible to eliminate the need to transform every program

to normal form. This is a topic for future research.

4. Conclusions and prospects

In the first section of this paper we saw tha--:: al:;ebraic laws

provide a novel but precise Framework For describing ano deFining

occam. The completeness of this description was shown by the rest

of the paper. This approach can also be used to good eFFect with other

well constructed languages: this is illustrated in /Jawil, where a

simple sequential languaqe (Oijkstra' s lanE,uage of guarded commands LV)

is considered.

The algEbraic approach to programming language semantics has

SEveral Features to recommend it. Laws do not require the construction

of complex mathematical models. Each group of laws is Fairly selF

containEd and usually Easy to understand. Thay are very modular:

changE Which, with denotational semantics, would require alterations to

thE mathematical model and consequent revision of Every semantic clause,

may well require the altaration of only one or two laws.

NeVErtheless, the algebraic laws can give rise to complex and

unexpected intErations, leading to a dan~er that too many programs will

be equatEd. It is thereForE desirable to describE thE languagE by an

independent semantic technique (for example denotational) and prove that

this is congruent to the algebraic semantics. Such a prooF will prcbably

Follow similar lines to ours: a demonstration that all laws preserve

thE semantics, the construction of a normal form, and a prooF that two

diFferent normal form programs have difFerent denotations. Note that

in our case it would have been very difficult to construct the normal

form without knowing the structure of the denotational model.

Algebraic laws alone only allow us to prove one occam program

equal to another. They do not hElp in proving a program correct with

70.

respect to some specificatior expressed in tErms of a more abstract

description of its intended beheviowr. Correctness proofs might be

based on concepts such as satisfactiof' (~) [H}. the weakest pre

condition DJ or l1oar8 lo~ic J!.frj}. 'JJ8 eXp8ct that these methods

will te based more usually on the dEnotational than the algebraic

descriJtion of occ~[;". howevp.r the laws may well be useful for

transforming a program after it has been developed, or for making a

prDgrG~ more amenable to somE proof technique.

~e conclude that even though the algebraic and denotational

semantics characterise exactly the same equivalence over occam, they

are in some sense complementary. Each has a lot to offer to the other.

t,evertheless, thare are a rumber of practic~l applications for

the laws described in this paper: proving programs equivalent to one

another, transforming programs to make them more efficient, and

transfDr~ing programs to a restricted syntax for special applications.

In ttle :hree following subsections we examine their potential for these

app li cat ions.

Deciding the equivalence of programs

n-:e most obvious application of the law5 is in deciding whether or

not a given pair of finite programs ere equivalent. Sections 2 l'lnd :3

have develo;Jed a procedure for doinr; tr,is. Tris is a clear cancidate

for automation. The cnly parts cf this procedure that are not

immediately susceplial" to practical implementation are those that rely

on the assumption of facts about fDc-pressions. For some languages of

expressions it will be possible in general to decide thEse facts

(though perhaps not very efficiently), and in any reasonable larguage

there should be wide classes of pairs of expressions whose equivalence

is decidal:Jle. t:ven in the absence of a cO'llplete procedure for

decidir.Q expressions it will beposaiole to automatically tr8nsform

eact' finite prograll' tc ncrmal form (except perhaps for the inclu5io~

of some false branches in I, statements). In such circumstances

the procedure might be ate Ie to deciae the ec;uivalence of a Qiven

pair of progra~s, and would in all other cases reduce tre question

of their Ec;uivalenca to 2 boalean expression. It might be appropriate

to make such a program interactive, allo~ing it to interrogate its

user on cifFicult. facts concerning expressions.

V,uch of the complexity of the normal form can be attributed to

the potential nondeterminis," of occam programs. we have seen various

ways in which prograrPs can behave unpredictably: the normal form

needs enou~h structure to characterise all of these. In fact trans

formation to normal Form will be an excellent way of <lnalysing the

nonceterminism of pr-ograms.

In many practical ceses tre program will be deterministic, in

that it cannot diverge and never has any choice over what to communicate

or what to assign to its fr-ee variables. For these programs, and

deterministic sec tions of others, much of the structure of our nor~al

form will be redundant. I f we wish to store end manipulate nonTlal rorm

programs in computers it will be worthwhile Investigating this and other

topics to discover how they can be made more compact.

A useful system For handling practical progrem equivalence

questiofls must be able to deal with prugra'lls containing loops. Un

fortunately, in decidinr; the equivalence of any pair of pro;;rams involving

UHILE loops, it is necessary to compare infinitsly many pairs of their

finite syntactic approximations, As explainec in the pr-evious section,

any reasonable complete system is bound to be somatimes infinitary.

72.

However it is certain H'.at by extElndinc; our set of laws and rules,

and by the use of inductive methods, we can develop systems that

will require the use of infinitary rules a r;ood deel less ofter'.

It is thus likely thet we oan oevelop oractical finitary proof

techniques which arB applicable to many pairs of programs involvirg

'~'h 1 LiC.

;, typical m~thOd woulG involve attemptinr;;. ta transform programs

to some standard form, for example the norrr,al form with the introduction

of lOOJS in some tightly defined way5. The incompletenes5 of slich a

method would appear sither from the impo5sibility of transforming every

prograr;l to standard form, or beCause the stendard form was not a true

normal form.

fer :such techniques we will probaoly need to ciscov8:L a nU'f:ber of

algebr~ic l2ws involving JJHIlL:. w8 t-ave not needed <l"y of these so

far. because finite programs contain no loops. Five examplCJs are given

below, each of which is easily oerived From our existing systems.

(Each requires an application of lnfinitary rule 1 and induction.)

(Wl) IJJHlE b P If(b SEl,I(i=', ,--,HILE b ;:J), , b SKIP) L...'J:HILE expansion;;.

(W:) wHILE b, (WHILe b2 p) u.,'HILE b v b Ir(b P, true ..L) <:'JHIlE combination>
1 2 2

(w3) wl-'LE b P == IF(o '.JhIL'L true 1=, .., b SKIP)

if no veriable appearing in b is input or assigned to by P

-(infinite loop>

('.1J4) '.•;HILE true ~:=~- .(.divergent loop,;>.L

(W5) ~HILE b 5E~(P,_i)

lr(b :'ECJ(P. 'JJ~ILE b SEi..J(l<,P),li), ,b SKIP)

if no variable appearing in b is input or aSSigned to in J

.(.LJHILE reordering '>

In addition to laws in this familiar style, it may also be necessary

to use more explicitly directed transformations towards particular

standard forms. Fer example thE follo ing may be useful if ths

target is a state - [;lachine liKe pro<;:ram. Note that an extra variable

is introduced as a flag.

(',lJ6) WHILE b	 VAR x:

5EO	 SEW

p	 x:=false

Q	 uJHILExllb

IF

,
SEW

Q

x:=false

~,

5EO

p

x: =tr ua

if	 x is not "free in the left hand side.

<loop factorisation,,>

Ho....ever there is little hope that the above six laws, or any

reasonable extension of them, ill be adequate for every problem likely

to be encountered in practice.

I mprovinq err iciency

The second possible practical application of algebraic laws is

for transforming programs to Improve their efficiency in some way.

That this is possible reflects the fact that the laws, while preserving

all essential abstract correctness properties, do not imply equal

efficiency on either side. Occam £ives extra scope for this becaus~ it

is a parallel language: one can improve a program nat only by reducing

~

o
~ :r

~. C

T• o • • " m

" o c u · ~

o
m

~

~
 "m o o

~

CT

~
~

 •
• o D
 C o

~

o
C

T

o

w

• o :;
<;

T

I

o

~
 • 3 o c ? o

CT

3 o o

0

m

e o m

o o m

o
o

e·

o "e·

<

m • 3 • m • •~

3 m
 • •" o ~

e
· • m •CT

~

~

~

o o o m • o o m

~

o c
o " • U
 o " ~

e·

o c • " ~~

3
~

o "
• m •u " o o m

o

m < m

o • o ~
o

~

~

~

m
 • m D

 c m

o ~

e
· o u " o o m • • o "

• " •
•

T
I

e·

~

~
~

m

o
~

e·
m

< m " • o o • e
·

e.

o •
U " o o m • • o " •

~

<o
o

c o " ~ • o o

£ m

CT

o o o

o < m
 • o

~

~

o o 3 U
 o • e· e·

u o " o o
m

o "

o o

~

o o • £ m " m 0

~
o

:'.
o "3

o o • ~• o •~" c o
e
· o o

~

~

" 3 o ~

o o "3 o ~

~
o

o " o o

e·

0

u o • •o

o
m

" o 3

o o m

o o o

~

~

~

o
o £ o

o o o
o

~o • o

o

:r

~

~

e
· • o o < m "

m
C

T o

0

e
·

o

o o o o•
~

u "o 3 o " o

o c
~

e
·

o "
o o ~

~

~

CT

CT

o "
m x o

m
o

£
o , o

o •
o

m

t(
C

T o

o
<

 o "

o <

~ e
· • U " o <
 o m

o ~

~

~
 "
o • m

m

o o

o
T

I

~

£ o
o

o
CT

" o o m • • o •
" m m

T

I o o § c o

o o o m

~

o o o o e
·

~

~

~
o • m

o o CT

o o o c " " m o o m

o

w
.

~

~

~

C
T

~

~

~

~

0

~

~

0

~

e
·

~

3
.

~

~

~

o o o o

u " o " o 3

e
· "m

o ~
om • "o u m ., ~

ro

o o o
o o • c • o

0
 m

o :" m

e·

o c "
e·

o "

SEU(P" •••• Pm) =

CHKN co' Cm:~rlR(Uo:~' U, :P" •••• Um:P~)

where J = SEJ

c lx
o 1

c !x o ,

c 7)(
m 1

c 7x m ,

acd P' VAR)(1 ••• x

5U

c _,7)(1

, , ,

r

c _, ?x
r n

P,

c lx
r 1

c, !x,

U claims Co for output, c for input and)(1 ••• x as variables.
o m n

For r E" [1 •••• , mt, U claims c 1 for input, c for output and alll J r r- r

variablas and channels used by P except x ••• x, •
r 1

This transformation sets up a ring in which the values of the

variables shared between the Pi are passed around in sequence. It

would be easy to devise a version of this transformation in which the

network created was a straightforward pipeline. (This would be in

sequence with another simple process for managing the final values of

76.

X1 ••• Xno) Note that no Pi can start up until Pi-1 has terminated:

it i9 this that makes tl-e transformation so general. but it also

makes the resulting parallal program useless as it stands. After

performing this transformation one would seek to introduce more

useful ~arallalism by transforming the Pi in ways that remove the

temporal d£lpendence between actions in different Pj. Useful laws

for this include ~aseignment - ALT distrib:> (4.6) and simple derived

laws slJ~h as

S(~{~:=~, elf) S£Q{c:rf§j J, X:=8) ",assignment-output sym,,>r 2!.

SE~(~:=~, c?y) SEGI(c?y, 2!.::~J provided y is nat free in ~:=.;.

",assignment-input sym,,>

Unfortunately the corresponding law of input/output syrrflletry

5EQ(c?)(1 d~e) SEQ(d!s, c?x)

provided x does not appear 1n e

is ~ true as it etands. Nevertheless it is a substitution that

cBn be made in a number of contexts where at least one of c and d is

used for internal communication.

Trensformetion to a restricted syntax

The final easily identified practical application for the laws

is tne transformation of general occam programs into restricted subsp-ts

of tne language. This paper has shown just how successfully this can be

done: we have transformed every finite program to a normal form to

lIJhich it usually bears no syntactic or structural resemblance. It seems

unlikely that the normal form is one into which we would choose to

transform programe for execution, but our work gives hope that trans

form8tion into other, more useful forms might be tractable.

41'1 important application of this idea is likely to be in VlSI

design. Occam is a natural language for specifying and describing

systems such as vlsl ciI'cuits. The way in which these circuits are

built up in a structured way out of interacting mOdules and sLbmodules

corresponds •.' lIdl to the use of nested paI'allel constI'ucts in Occam.

In specifying such systems we aI'e likely to use fairly straightforw~rd

types of occam. which will make transformation easier. In particular

the set of expression valuas is llkely to be much restricted (perhaos

allOWing only the 8001ean values 0 and 1).

Let uS suppose that we know that particular types of occam

program are direct.ly implementable in silicon by some eutometed system.

Then to imDlementa.~ircuit speclfiad in OCcam it will be sufficient to

transform it to one of thesa implementable subsets of occam. Because

all our transformations are provably correct, the resulting chip design

is guaranteed to be a correct implementation of the original

specification.

An essential prerequisite for this work will be the definition of

the directly imp~ementable subsets of occam. An obvious candidate is

some stylised representation of a finite-state machine. Others will

clearly involve parallelism and communication. The handshakan

communication of occam can be implemented directly on silicon by

asynchronous design rulesj and for larger circuits this is an effective

method for avoiding problems of clock skew. For smaller circuits with

highly regular communications, the occam handshake can sometimes bs

replaced by a clocked synchronous transfer.

78.

Appendix: A summary of the laws Df occam

a) The camplete set of laws

Laws of IF

(1.1)	 !F(£" IF(£'2)' &3) = IF\S" 5.2 ' £3) <IF assoc,.

,
(1.2)	 IF b, P, If, b.• P., where b. * 'b, /I.'.'" ,bi _ 1 Ab ii=1).). 1=1).).).

"'IF priority>

n ,
(1.3) IF b. P. IF b-rr(i) Pi\(i) for any permutation 1I of ~ ••• n1

i=1). .1. i=1
provided b. 1\ b. = false whenever i t- J''J---

",IF sym>

(1 .4) IF(b, P, b
2

P, E;) = If(b, \of b
2 P t oS) <IF - " distrlb'>

(1.5). rF(fals8 P, So) = IF (oS) ~.IF -~ 'Jnit '>

(1.6)! lr~, b STOP) = J fC,S,) <,iF - STOP unit '>

(1 .7) Ir(~ p) = P .t:. IF - tr-ue unit>

m m

(1. 8) rF(C, b IF b. P.) = IF(C, IF b b. P.) <" -IF distrib)

... i=1).). i=').).

Laws of	 AL T

(2.1)	 ALT(ALT(~1)' £2) ALlCE,. ~2) ",ALI assDc>

n

(2.2) All G. A~T G,,-(i) Ii" any permutation of (1 ... n J

i=1). i=1

<AU - sym>

(2.3) ALT() STOP	 ~AL T - STOP unit>

(2.4) ALT(b lr.	 9 P,.9,) IF(b ALT(g p. ~), .,b ALT(~» .,('boolean 9uard slim>

(2.S) ALT(SI<::IP	 p) = P <ALT - SKIP identity"

(2.6) ALT(c?x SKIFJ = c?x	 Linput)

(2.7) ALT(c~e SKIP) = cte	 ",output ,.

(2.8) ,ilL T(g P,	 G) = ALT(g P, 9 P,~) .cAU idempctence"
~

(2.9) ALT(g P,	 9 J,~) = ALT(g ALT(SKIP P, SKIP Q),~) -(guard dLstrib>

n
(2.10) IF	 b ALT g. P. IF bACT 9. (IF b P.) provided no variable appearing

i=7 ~ ~ h,,1 ~ ~
in be is input in any gl

<IF -ALT distrib>
(2.11)	 ALT(SKIP ALT(g, P, 51)' g2 LJ, ~2)

= ALT(SKIP ALT(g1 P, 9 0 , £,), ~2)
2

provided ~ 9, c?x and g2 ~ c?y

c~e and 9	 = c:r '(ALT-SKIP sym>.2E. 9, 2

(2.12) ALT(SKIP ALT(SKIP P, £1)' £2) ALT(SKIP P, ~1' ;:2)

*" .cAL T - SKIP reduction>

(2.1:3)	 ALT(SKIP ALT(E1)' SKIP ALT(E" ~2)']3)

= ALT(SKIP ALT<'~1)' ~2'£3) <convexity>

Laws of assignment

(3.1)	 .(. > ;= <..,. SKIP "SKIP '> ------:

(3.2) "Xi 1i =	 1 ••• n). := "ai\i =, ... n) /~
=<X-n"(i)Ii ••• n>:=..<•.,"_(!)Ii::: l' ••• n>

ror -rr any permutation of {1 '" n1 <C!SSi9nmen~/

(3.3); x -to y := e + y = x := e <.. identi ty BssignlTlBnt>........ -....

80.

Laws of 5D

(4.1) SE~{) = SKIP <S(ij-SKIP unit>

(4.2) m(p,.<:,) = SEO(P, SEO(,<;,)) ..(SEQ aSSDe '>

nIe n
(4.3) 5[~(IF b. P., Q) i~~ 5£(1(1='1' J) ,,(SE\.l- IF distrib')b11=1 J. J.

Ie n

(4.4)	 SEQ{ALT g. P., Q) = ACT g. 5E~(P., ~) .(,SEW - All distrib>

i=1 J. 3. 1=1 1 J.

(4.5)* 5£Q(x:=e, Fr b. P.) = tr b.r!/15£~(X:",e,P.) ~assignmBnt-IF distrib">
..., - 1=1 1 J. 1<:::1 J. L J!, 1.

(4,6). S[(.I(x:=e, Ij~T g. P.) = A~T g.r~/",l SEJ(x:""€l, P.)
....... 1=1 J. 1. 1=1 J.L.." -.... 3.

prQvided no variable which occurs in 25-. or~ is

input in any g1. ",assignment - AL T distrib')

:\"-	 = "=f [el.] ~C(Jmbine assignments ":>(4,7) 5EQ{~::~, ~:=•.O,r..

Laws of PAR

(5.,)	 PAR() = SKIP c:.PAR - SKiP unit >

n • n
(5.2)	 PAR U. :P, = PAR(U,:P" U dPAB U.:P.» (n >0)

1=1 1. 1=2 J. J.

where U* is the union of U U -<PAR aSSDe>
z n

(5.3)	 PAR(U, :P" U2:PZ) PAR(U :P2' U1 :P,) <PAR sym»
2

n	 n
(5.4)'	 PAR(U,:IF b. P., U :Q) IF b. PAR(U,:P., U,:D)2i=.1 3. 3. !=, 1 3.

provided b, .., •• , v b =: true .::::PAR - IF distrib;>n

(5.5)* PAFI(U , :)(:=8, U,:y:=f) !. + J:. := !!.. +..! ,,-PAR assignments>........ -.

81.

(S.6)t U sac! g. lidS &f"Ie of t h
,.. rot 5~.,

n

then P,~R(U,:~LT 91 Pi' U2:~:==3.) = ~LT 9i PAR(U,:P i , U2:~:=~)
~:=1 1£X

where X is the set of indices ie:t1,2, ••• , n} such that

g. = SKIP
~ bJ>-- I,

0' c E.outs(u,) - ins(U)
9 , <~~el and 2

0' g., = c?x and C €ins(u,) - outs{U2).

.:::: expansion 1 >

m
(5.7)* If P = ACT g. P" and;~ = All h :lj' IdtlSFE eacl.,.-gi,I'j lii!l'5 Oile·o-fj1=1 ~ 1 j=l

N
the forms c?x, r 'e Br 5'Ii=l, then PAR(LJ, :P, U :i..J) All k R ,

2 r=1 r r

where the pairs ":::::kr,R '" are precisely all possibilities from
r

the following:

(1) R, PAR(U, :P , U :cJ) and
i 2

k, = g. =LSKIP ,h:~>
0' k, 9

1
=L..,gle and ceouts(u,)-ins(L

2
)

0' k, 9 =/C?X and cE:ins(u,)-outs(U)1 2

(ii) R PAR(U, :P, U :U) and
r 2 j

k, h. = SKIP)

h; }~e~
2

'nd c£outs(U)-ins(u,)"' k,

h =1:1X and cdns(u)-outs(u,)
j 2"' k,

(iii) Rt' = 5EQ(x:=e, PI\R(U,:P , U :CJ))
i 2 j

k < SKIP am- (bl\)C \:{() Soc L("

"I...:h (";l,\, '

9 ~de and h =~C?)(and c€ins(u) n outs(U,)
i j 2

,
=1c?X and ={ete and C6ins(U,)n outs(U).9i h j 2"

~e)(pansion 2 >

\

\

Laws of declaration

(6.1) V~'! x,:(VAR x : ••• VAil Xn:P) •••) = V;\'l x x :P <VAR assoc>2 1 n

(6.2) VllR x, : (Vllfl x
2

:p) = VPI'I XZt{UAR x, :p) ",-VA"! sym>

(6.3) \';R x:P = P if x¢frea(r::) -<.V"R 81im >

(6.') 'JAP. x:P = VAR y:P Pix] if y f:. free(P) < Vr;R rename>

(6.5)
n
~LT
i=1

9
i

(VAR x:P
i

) = VAR
n

x:(ALT
i=1

9. P.)
~ ~

(6.6)

provided x

,
IF b

i
(VAR

L='

is free

x:P
i

)

in no 9
i

,
UriR X:(IF

i='

b i Pi)

.:::. VAR - AL T distr ib">

provided x is free in no b
i

""VAR - IF distrib-'"

(6.7) 5E1J(VAR x:P,'J) VilR X:SEU(P,c.J) if x ¢ frEe (u) ~VAR-5E[J'>

(6.8) SEU(P. \jAR x:1J) v;l.R X:SEQ(P,U) if x ":free (p) ",-UAR - SEJ Z>

(6.9) PArt(U,:(VAR x:p), U
2

:Cl) = VPlR x: PAR(ut: P,. U
2
:PZ)'

provided x is not free in uZ:P ' where uf is U, modified to
Z

include a declaration of the variable x (in tr'E! notation of ffiJ .

it is the unIon of U, and USING(VAR x)). <VAI1-PAR-,..
(, 'l)

(0," \
(6.10] AL T(C?X P,.9,) VAR y, ALTt?y 5EJ(n=y,P),.!<)

provided x ~ y and y is not free iry' P or ..9. <input renaming,>

b)
(6.11]f VAR x: (...:.x') y) := (.£e> + f) VAR x:(y := f) <assignment elim)

~ ~ - ~

(5 6 '2) \jAR x: P VAR x:SE~(VAR z:(x:=z), p) .£initialisation>

(6.13) [HAil: c, ... Cn:P P if none of c c appears
1 n

Free in P. LeHAN elim>

Laws	 of .J...

(7.1)f ALT(SK IP-L,.,9.) ...L .(.'ILT-SKIP zero,:>"

(7.2)f SU(..1..- 9 p) ...L <,S[:., left zero '>"

(7.3)f S[L;~::=~, -L) ..l. <,::iE ... right zero>"

(7.4)1 PAR(U,:...L, U
2

:P)	 l..PAR zero>"...L

b)	 Some derived laws

(01)	 SEr:(P, SE'J(i.:l,R» SEQ(SELJ(P,Q),R) (SEQ binary assoc)

n m m n
(D:?)	 lILT g. (IF b.P .. »)=lFb. (ALT g. P ..)

i=1 1. j=' J 1.J j=' J i=' 1. ~J

providing b v ••• v b == true and no variable input in a gi
1 m

appears in a b .• ""AlT - IF di9trib')
J

(D3)	 SE<J(SKIP, p) SEJ{P, SKIP) p (SU -SKIP unit)

n n
(04)	 SU(P,.IF b. L1.) IF b. SEJ(P, U.)

1.=' 1. ~ i=1 1. 1.

ifb,V ••• Vb = true and no variable in any b is

n i

altered by P. (SEQ - IF right distrib)

(05)	 PAR(U, :P, U :SKlP) PAR(U, :p) = P
2

provided U, declare9 all global variables and channels

used by P, and U declares none of them (PAR - SKIP unit)
2

(DoS) S(l«~:=&, elf) SEQ(CH~<lS.J, J:;:=!) ,,-assignment-output 9ym>

(07)	 SELJ(=.:=.;:, e?y) = SU(c?y, .!:=~)

provided y is not free in .!:=2,' ""assignment-input sym>

r
E

C

L

~

~

~

~

~

e
·

<c

~

e
·

E
:

L
£

~
 a

I M

I c;
~

 a
'" ~

I ,
I r

<

0 "e·

0
~

rr

m

M

D

If
<

0 " e· 0

rr
 "

~
r
r

 ,
IT

 n

rr

~

0

rr

m

M

T
I

L

>i:

~M

rr

0
~

~

iE r M

C;;

0
"

0
rr

rr

T

I
T

I
rr

T

I 0 • " e· 0
~

e
·

0 rr

T
I o.
 '" r M
 rr

m

f-
T

I m

0 " e· 0 ~

e·

0 IT

F

I r C
c If T
I

~
 ~

 " E iE r M

~

TI

E
 2;
 i.,

M

e· • e·

0

0 "0

e· • e
·

0

.J

rr

~
r
r

<

IT

rr

n :-
T

I <

~

T
I <

~

LC

~

~

J rr

IT

.::0

IT

T
I

m

"
"

rr

T

~

1\

E

I ~

r

o > • e· ~ 0 m

~

~

D

e·

J rr

'i! "
, IT

e
· <

0

" e
·

0 ~

e·

0 • 0 e·

~

0 m

~

~

D

rr

" E: 2;

r

T
I I[f-

n "<c iE r
~

0

"
0

~

~

~

~

e
·

"
n

0
~

T

I
n

0
m

0

0
IT

X

IT

~

3

T
I

"
~

rr

0

IT

~

IT

e·

0
0

0
IT

0

0

"
IT

T

I
0

e
·

e
·

0 ~
 "

T
I V

V

~

e
·

IT

0 V

IT

0 V

Rp-fer-enc;es

[Arrj] Apt, K.R" Franc8z, rJ. and dB Roever-. uJ.p. A proof system

for comm.micating sequential pr-ocesses. ,c.C~ Tr-ans. ICrogram

Lang. Syst. 2, 3 (July 1980) 359-3B5.

[8]	 Brookes", 5.J. A model for communicating sequential pr-OCEsses.

Oxfor-d U~iver5ity D.Phil. thl?-sis (1983). (.t\vailable as e

Carnegie-!'1ellon Univer-sity teChnical r-epor-t.)

fjJJ	 Dijkstra, [.W. A discipline of pr-ogr-amming. Dr-entice-Hell

('976) •

8]	 FiSher, A. For-mal number theor-y and computability. Oxford

Logic Guides 7, G.U.F. (1982).

LQ}	 Guessar icn, 1. .t\lgebr-aic semantics. Spr-inger- L~,CS Vol. ;19

(1981).

Cry	 Hoare, C .. A.R. CommunicatIng sequential procasses. Pr-8nLce

Hall (1985).

LV	 IN(i;05 Ltd. The occam progr-amming manuaL prantice-Hall:19B4).

,[ia'oli]	 Hoare. C .. .1..R., He. Jifeng, r<ayes, l.J., r~or-gan. C.C., 5anjer-s,

J.'.IJ., Spr~ns8n, l,H., SpiveYl J.f'1., SuFr-in, B.A. and Roscoe, !\.w.

Laws of	 p~ogramming: a tutorial paper-. Oxford University

Cornputi ng Labotalor-y techniCal monograph PRG-45 (19A5).

[R]	 AO!lcoe, A,JJ. Denotalional semantics for- occam. L'ersion \a)

in Proceedin9s of the July 19811 SeminaL on ConcurLency.

SpLingar U,CS Vol. 197 (1985).

version (b) to appear as a P,;C monogr-aph, Oxford University

Computing Laboratory.

The semantics referred to in this ~aper is that of version

(b). Tre only si~nificant oiffer9nces bet~een these

papers are in the treatment of unInitialised variables and

in mwitiple out~uts on the same channel: version (a)

distioguishes between ';LT(SKH' el1, S..:rr:: el2) ar.d

ALT(cl1 SKlr::, c~2 :,KIr), but versic'1 (b) L:oes not.

1\

<::
..

<-
::

b

~

':l
=

/2J

\\

~

rd

J
;,!

r

V

'-
c

--
P

L
...

c
G

~

r-
rJ

\\

-J
'I »
~

r

!I
-;

I<

r\

-v
II

r-

I
-
-
,

~

~,
J "

I
_

_
"

r .

