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The laws of occam programming 

A.W. RoScoe and C.A.R. Hoare 

Abstract One of the attractive featuras of occam is the large nurttler 

of memorable algebraic laws which eXist relating progrems. We 

investigate these laws and, by discovering a normal form for WHILE-free 

programs, show that they corrpletely characterise the language's aementics. 

O. Introduction 

Occam LV is a language for concurrent systems, especially those 

implemented on networks of communicating processora (transputers). It 

has been deeigned with simplicity and elegance as major goals. One ~ay 

in which this elegance manifests itself is in the large nurttler of 

algebraic laws which exist between occsm programs. The ei~ of this 

paper is to investigate the set of laws and to sholor how they co~letely 

characterise the semantics of the language. 

For Simplicity we concantrate on a SUbaet of occam: timing, 

priority, vectors. constanta, replicators and named proceeses (procidures) 

are omitted. Our version of Occam thus contains only the essential tore 

needed to ...,rite simpla programe. We expect that our work can readily be 

extended to versions of occam containing these featuras. The laws 

given in this paper will carryover (with occasional IIlOdificetion) to 

Isrger versions of the language. For theoretical raasons we will elsD 

add a few features to the language: multiple assignment, output guards 

i., alternatives and e divergent (raCing) process. In other respects we 

...,ill follow the syntax and conventions introduced in LV. in particular 

those regarding the parallel operator. (\IJhen writing a parallel conetruct 

the programmer must declare which global variables and channels are to be 

assigned to each component proceas.) 



2. 

A finite occam progrem is ene which is lIIH1LE-free a lt may, however, 

centein the racing or diverging process .L (equivalent to WHILE trua SK1P)a 

Mucn of this paper is concerned lLIith the analysis of finite progra/lls a 

This is because the absence of WHILE-loops allows proof by induction .. 

This restriction doas not lose us any power, however, because avary 

occsm program can be identified loIith the set of its finite syntactiC 

apprOXimations (a term which i6 defined precisely in the second section)a 

The first section lists the majority of the lews we require a ws 

seliJ ht* eech of the laws erises out of our informal understanding of how 

occam conatructors work.. lIle sse how algebreic laws allOIll us to give a 

precias and succinct description of eech operator a The laws given are 

all congruences in the denotationel semantics for occam reported in [RJ. 

The second section shows how the lellls introduced in the first section 

cen transform every finite progrem to a form whoee only constructs are 

If, ALT, multiple aSSignment end ..l- (tha diverging process)a Particular 

attention ia peid to rsgularising the use of free and bound variables a 

lIIe sse now this ",ark, together with continuity assumptions, allows us to 

prove non-trivial laiolS edditional to those of the first sectiona 

Even in this restricted form it is poesibla to write essentially 

different programs lII'hich ere nevertheless sementicelly equi valent. The 

third section identifies a number of eituatione where such equivalences 

can sriee, and develop6 e normal form for finite programs a T",o normal 

fDrlll prograllls are semantically equivalent if end only if they are 

syntactically equivalent in a ail!'lple waya By showing how every finite 

program can be transformed to normel form we have thus produced s decision 

prOCedurs for the equivalence Dr erbitrary finite programS a An inrinitery 

rule be sed on syntactic approxilllStion extends this to general programs. 

This prove. that our set of algebraic lews (together with the infinitsry 
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rule and BUb!9litution) ie complete 1II1th reepol:l to the given 

denotational semantics. The algebraic laws thuB yield an algebraic 

semantics for occam that is isomorphic to our chosen denotational 

semantics. 

finally loiS review the relativB merits of algebraic, denotatIon81 

and other fOrms of SBlllentics, and in particular discuss possIble 

applications of the algebraic laws as transformation rules. 

All the laws presented in this paper are BUlMlsrieed in an 

appendix. 

Even though the work in this paper is cast in terms of a specific 

denotationsl semantics, moat of the lawe quoted must be true in any 

reasonable abstract semantics for occam. We indicate seueral places 

where modifications may be required for alternative underlying eem8ntice. 

The work reported in this paper owes much to the silllilar ~ork for 

an abe tract vere~on of CSP (i.e. with no internal state) reported in [B-1. 
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Notation 

Throughout this paper ws will observe ths following conventions 

within program terms 

p,q program fragments (processes) 

c conditionsl 

G guarded procsss 

g,h,1< guards 

",f general expressions 

b boolean exprsssion 

u parallel daclaration 

x,y,z identifiers representing variables 

c,d identifiers repressnting channels 

Lists of identifiers and expressions are denotad.:i..'''=''' 

respectillely. ~ +.1... denotes the concatenatlon of the lists ~ end::L:. 

Occam syntax Ie ueually linearised as in LR-l, and we frequently use 

such abbreviatIons as 

4
 
IF b. P. (= IF (b1P1' bZPZ' b3

P3' bljP()).

i:::1 1. 1. 

PossIbly empty lists of procssses, conditlonals and guarded processes 

are respettillely lIJritten~, ,E..and£,. The most general form of an AlT 

construct is thus ALT(.9.). 



free end bouno variables 

If P is some occam term and x is a variaole, we say that an 

occurrence of x in P is free if it is not in the scope of any declaration 

(other that'1 a parallel declaration) of x in P, and bound otherwise. (These 

notions can easily be definl:?d formally.) Note thet x may occur both 

free and bound in P. 

free (p) denotes the Sl:?t of all variables appearing 

free in P 

bound (p) denotes thl'! set of all variables appaering 

bound in P 

LSimilar notions of free and bound occurrences can be defined for cl1anr"lalsJ 

Substitution 

1 f x and yare variables, then P[x/J denotes the result of 

SUbstituting x for every free occurrence of y in P. If x is bound at 

any point in p where there is a free y, systematic renaming of pIS 

bouno variabll'!9 ie carried out. 

We similarly use tne notatione 

,t/x]. ~~J . .! r/xJ and .! ~.!lJf 

to denote the substitution of (lists of) expressions for (equal length 

lists of) variables in (lists of) expressions. Note that in general 

e ["', ..... f n> / ] is distinct from

/<)(" .... x '> n 

{'j.]-"l'nfnJ
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1 • The laws of aCc;am 

in this section ~B visit each occam construct in t~rn, and uncover 

the laws governing it. The set of laws given is not eXhaustive; we 

restrict ourselves to the laws needed to tran51ate finite programs to 

normal form. Other laws can be deduced from these law9, either by 

elementary manipulation, or by structural induction on normal forms. 

The laws we present here provide 8 clear description of the semantics 

of each l:onstruct. 

BeFore detailing the lelLl9, we must decide exactly what we mean 

by the term "law". All our laws ha\ls the form P = ~ (p, U both being 

expressions representing procsssBs). informally this must mean that P 

"is essentially the seme ae" Cl. in that, to an observer who cannot detect 

their internal structure, the behaviours of P and Q are indistinguishable. 

Furlh13f. since ",e "'ill "'ant to use our laws to transform subcomponents of 

compound progrems, P = Lj must imply that C[pJ is essentially the same as 

C [a] for all contexts C [.] (progrems with a slot in ""hit:;h to place a 

program segment). Since we may wish to use our laloiS to transform an 

inefficient program to an observationally equival13nt efficient one. our 

notion of equivalence ",ill be independent of the times et which ev13nts 

occur. Thus P = a does not imply thet P and Q run at the sallie speed. 

Neither, for similar reasons, does it mean that P and Q require the 

same emoLJnt of store. 

Halling established the broad principlas above, we hope that most 

of the la",s will seem "clearly true". Nevertheless, it is helpful to have 

some underlying semantics by ",hich to judge the lalMs. In our case this ie 

provided by the denotational semantics for occam raported .in LRJ. All 

the laws lIIe quote ere congruences of that semantice in the context 

(described there) of environments loIith unbounded sets of free locations 



and channels. however, all laws must be interpreted as conditional 

upon both i!lides being correct occam, in the sense that neither side 

contains a syntax error. we will assume tnat the evaluation of every 

occam expression yields a value (even tnougn it may contain division 

by zero or en uninitialised identifier). Tnus no syntactically correct 

program in our restricted version of occam can contein an eXecution 

error. If the language were extended to inclUde vectors the situation 

Would be more difficultt and some of our laws would nave to include 

exception conditions. 

There are two limitations on the completely free use of our laws 

in transforming occam. The first is that, with a few of our laws, it 

ie possible to transform a correct program C (P] (C [.] being a context) 

to an incorrect one C [u]. This is usually brought about by violating 

the separation rules for PAR. The lews that can have this effect et'e 

merked (~), and have been set out so that only right to left use can 

bring about this difficulty. TrEise lews may thus only be used right to 

left in contexts where syntactic Correctness ie preserved. The second 

limitation is that it is only occam procasses that may be transformed: 

the lews do not apply to guarded processes or conditionals t even when 

they have the same syntax as processes. for example t the trensformation 

of 

AU (c?x SKIP, AU(SKlP AU(d?x SKIP))) to 

ALT (c?x SKIP, ALT(d?x SKIP)) 

is invalid, even thought as a process, ALT SKIP P may be transformed to P. 

Each law is given a name suggestive of its use, and a number. 
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1. laws or IF 

rhe IF constructor is used to select the behalliour of a program, 

depending on the values or its lIariables. For this reason it will play 

a vital role in our leter construction of a normal rorm. 

IF takes as its arguments a number of conditionals. A conditional 

is eitner a (boolean) expression and a process (b p) or an IF construct. 

The rirst law permits us to unnest IFs, so thet all arguments are of 

the rirst type. 

(' .,) IfU;" IF(!i2)' £:3) IF(f" 12 , ~3) <IF 3SS0C> 

This is not an associative la", in the usual binary sense of 

'f(blc) (a f b) , c, but is analogous in the context of occam's 

constructors, which can take an arbitrary finite number of arguments. 

n 
The second lalll expresses the fact thet in the process IF b. P., it 

i=l J. J. 

is the	 first (i.e. 10lilest index) boolean guard to be true that actillates 

the corresponding Pi. Thus Pi only runs if b is true and eecn or
i
 

b, ••• b
i
_, is false.
 

n 
(' .2) IF b. P., where b. ,b, " ••• /1 --, b _ IIbi~1lJi Pi n * *	 i 1i=1 J. J. J. i 

<IF priority"> 

n 
If the boolean guards in IF b. P. ere pairlolise disjoint, tt1en the order 

i=1 J. J. 

or composition is immaterial. (This is a symmetry lalll.) 

n n 
(' .3) IF b. P. IF for any permutation ....,-r of t' ... n}b"l1"(i) P'(\(i)i=1 J.	 J. i=1 

provided b. II b . :;: false wheneller i 1- j, J	 -- 

<IF sym> 



If two cccleans guard the same process, they can be amalgamated. 

(1 .4) lr(b 1 p. b P" £) Ir(b, v b P, £.) "-IF - y distrib>
2 2 

A false gusrd is never activated, and so can be discarded. 

(1.S)! IF (false p, £} IF (Eo) L.lF - false uni t > 

If none of the boo leans in IF is true, the process behaves like STOP 

(i.e. it comes to a complete halt without terminating; a process 

sequentislly composed with it is not allowed to start). Thus final 

clauses of condi tionals which are SHiP may freely be added or deleted. 

(1.6) t IF(E,. b STOP) 1F(£) <If-STOP unit> 

If one branch of an IF construct is always executed, then the construct 

may be replaced by thet branch. 

(1.7) IF(true P) p <.if -~ unit> 

The final IF law lets us deal with If constructs which are neated itS 

processes rether than as conditionals. 

mm 
(1.8) = IF(C, IF b",b. P.) < ..... - IF distrib>IF(.fi. bi~; bi Pi) ..... i=1 J. J. 

This la"" ""ill, of course, be used in combination ""ith <IF - aaaoc,>. 

which completes the unnesting. 

2. laws of ALT 

The ALT constructor allows a process to offer a choice of possible 

co~munication options to its environment. The AlT constructor takes as 

arguments a number of guarded processes. A guarded process is either a 

guard and a process (g P) or 81"1 ALT construct. As with IF t there is a 

law which allows uS to "unnest" AL Ts. 
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(2. , ) Al T(ALT(£,}, Ji) ALT~1' £2) <.ALT assoc') 

This laloJ does not hal/Ii! quite such a general form es that for IF (1.1). 

Howeller the general form of the La'" can be deduced from 2.1 and the 

fact that All is fUlly symmetrical (see below). 

The order of arguments in an ALl is immaterial. 

, n 
(2.2 ) ilL T G. All 'Ii' any permutation of [, ••• n1G1'i( i)

i=1 3. i;::1 

<AL T - sym,;> 

The alternative composition of no arguments is STOP (the non-terminating 

prOCBSS Iolhich dOBS nothing). 

(2.3) ALl( ) STOP .c::ALT - STOP unit> 

This law is termeo a "unit" 1801 because, together loIith 2.1 and 2.2, it 

says that STOP is essentially the unit or ALT. 

Guards may be simple (SKIP, c?x, c!e) or heve B boolean compOnent. 

ALTs with guards with boolean components may be reduced to IF combinations 

of ALTs witn simple guerds by tne law 

(2.4 ) ALT(b & g P, £) IF(b ALT(g P, .E), 4b ALT<.g,)) < boolean guard elim:> 

In ott~r lIIords, a guard llIith a boolean component m~y be executed if and 

only if the boolean is true. 

A SKIP guard is al~ays ready, and its execution hae no effect other 

than to start the process ~nich it guards. This expleins the lalol 

(2.5) ALT(5i(lP ~) p "-All - SKIP identify:> 

A communication guard, on the other hand, is executed only wnen the 

procl!lss at the other end of the given channel is also willing. The 
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effect is e~actly like the corresponding single communication atomic 

processes 

'( 2.6) ALT(c?x SKIP) c?x <:input> 

(2.7) ALT(c~e SKTP) c~e <. output> 

if en alternative is already present in an ALT, adding it again has no 

effect, since the set of alternatives available does not change, 

(2.8) ALT(g P,.9) ALT(g p. 9 P,~) <. AL T idempotenc13> 

In any execution of an ALT construct, it ia the first guard to 

becoma ready ~hich ia executed. If more than one guard becomes ready 

at the same timB, the choice of which one to execute is nondeterministic 

(there is no left-la-right precedence rule as with iF). We can deduce 

from this that if a guard 9 is used to guard two different processes, 

then ~henever that guard becomes ready either copy may be activatsd, the 

choice being invisible to the environment. The two guarded process~9 

can thus be replaced with a single one. where the process is one which 

nondeterministically chooses between the original pair. 

(2. g) ALT(g P, g O,~) ALT(g ALT(SKIP P, SKIP O) • .E) .c. guard distrib.> 

The laws abova do not quite catch the full range of equivalences 

related to AL T with SKIP guards. Three more laws reflecting fairly 

subtle aquivalences will be introduced in section 3, when thsy are 

required. and can be better motiveted. 

We need a law for relating IF and AL T. It is a very simple law, 

which merely observes that the value of a boolean is unchanged by the 

exe~ution of a guard that doea not input to a variable appearing in 

the boolean. 



12. 

n n 
(2. 1u) rFbALTg,P. 

i",,1 J. J. 
lF b ALT 

~ 
g, 

J. 
(IF b P.) 

L 

provided no variable appearing in b is input in any g. <IF- ;l.LT distrib> 

" 

Perhaps surprisingly, this 18101 is the only one loIe will need 

relating IF and ALT. An example of holol it can be used to deriv8 an 

apparflntly more powerful lalol can be found at the and of section 2. 

3. laws of assignment 

hn OCcam process may assign values to its variaoles. Tha atomic 

assigrment process in occam is x:=e, which evaluates the expression e, 

assigns the result to the location denoted by x, and than terminates. 

As described in the introduction, we allow multiple assignments, of tha 

form ~:=~ where ~ is a list of distinct variables, and Ji is an equal-length 

list of expressions. The components of ~ are evaluated, the results 

are then all aSSigned to the locations represented by~, and the process 

then terminates. The empty multiple assignment terminates llIithout 

changing the state. 

(3.1 ) (> := .(. > SKIP <SKIP> 

The order in which the expression/variable pairs appaar is of no
 

consequence.
 

(3.2) I • 
1 '" n '> := <e li-=-1 ... n>"\ I J. i 

=<)(-tr(i) \ i ••• n>:=<%(i)] i = , ••• n> 

for""fl any permutation of {j ... n} <assignment sym> 



The assignment of a variable's own value to itself has no effect. 

3.3)! ~ +:t. := ~ + .:t.. ~:=2.	 <.identity assign~nt> 

Then> will be several laws later on which show how assignment interacts 

with the various constructs of the language. 

4. Laws of 5EQ 

The SEQ constructor runs e numoer of processes in sequence. 

If it has no arguments it simply terminates. 

('.' ) SEQ ( ) SKIp	 tC.5EU-5KIP unit). 

Dtnarwiss it runs its first argument until that terminates and then 

runs the rest in sequence. 

(4.2) s£u (p.!) SEQ (l=-, S(U~))	 ,,-SEQ assoc> 

It is possible	 to use 4.1 and 4.2 to transform all occurrences of SEQ 

\iJithin a program to binary applicetions. and in our transformation to 

normal form we will always do this. Thus the remainder of our la\iJs 

for 5EU are cast in binary form. 

When P does not terminate immediately, S£tJ(p,Q)'s ir.itial behaviour 

is just that of P. Thus SEQ distributes over both Ir and ALT in its 

left argument. 

('.3) 
l' 

SEQ	 (fr b. P .• U) = fF b. SEtJ(P., Q) ~SEU-IF distrib> 
i=1 ]. ]. i=1]. ]. 

n	 n 
(4.4 ) SEQ	 (ALT g. P., U) = ALT g. SEQ(P .• J) <. SEiJ - ~L T chstrib>* i=1 ]. ]. i=1]. ]. 

On the other hand. when P does terminate immedietely, SEQ{P.ij) oahaves 

like U mooified to teke account of eny assignment by P. 
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Thus t~e compound operator SEQ (~::! •• ) can be distributed over
 

both If and AL T in a limited way.
 

(4.5)* S[Q(x:::e, fF b. P.) == {} b, r.!W) 5[Q(x:: B,P.) < assignment - IF distrib')o 
... .... i=1 :I. :I. 1=1 :I. [ ~ ~"":I.
 

t n n
 
(4.6 ) S£Q(~:~, ALI g. P.) ALT g. wxl SEQ(x:=e, Pi)

1=1 :I. :I. i=1 
1 ['...\J ~-

provided no variable which occurs in J:l. or ~ is
 

input in any 9 • <: assignment - AL T distrib,>

i 

The sBQuential composition of two assignmenta to the same list of variables 

is aa,ily combined to a single assignment. 

(4.7)'* SEIJ(~:=~. A:=J) = ~:=:![~/~ £.. combine assignments;> 

The seQuential composition of a pair of assignments to di ffBrant lists of 

vsriablse mey be reduced to a single assignment using this law witn 3.2 

and 3.J. 

5. Laws of PAR 

The occam paral1ul operator takas a number of processes as arguments, 

and run" them concurrently, with the possibility of communication between 

them. COlMlunicetion is th~ only way two parallel processes can affect 

one another, so one parallel process cannot access a variable that another 

one cen mOdify. No channel may be input from nor output to by mare than 

one of the proceeses. In this paper (as in [j.J) we insist that each 

perallel process declares which global variables it wishes to be able to 

modify, end which global channels it lojishes to be allowed to input from, 

output to, or use privately. In the earlisr paper this permitted the 

syntactic determination of the environment in which each component process 

ahould run. In this paper there is an additional rea90n; it 1W0uld be 

unfortunete from the point of view of algebraic laws if tha channel and 



variable alphabets of parallel procesaes were determined purely from 

the syntax of the component processes. r'1any of tha most usaful trans

formations (e.g. the expansion rulee below) would became invalid, 

because on changing the syntax of th:! components of PAA, alphabets might be 

significantly altered. (For example, by commuting a communication 

through a PAA using 5.6 or 5.7, one might apparently remove it from 

ths alphabet of the corresponding process.) 

The syntax of these "parallel declarations" is unimportant; a 

suitable one may be found in [AJ. 

A PAA command terminates as soon as all its componente have. Thus 

the empty PAA terminates immediately. 

(5.1 )	 PAR( ) SKIP ':::PAR -SKIP unit> 

PAA is an associative operator, providad suitable provisions are made 

for alphabets. 

n 
(5.2)	 PAR lL;P. PAR(U, :P" Ut:(P~R U.:P.)) (n>O)

i:::1 1. 1. i:::2 1. 1. 

where uf is the union of U ••• Un; .::: PAR assoc>
2 

(ut claims all variables and private channels claimad by the U
i 

' claima 

as input (output) channels all channels occurring only as inputs (outputs) 

among the U ' and claims as private channels all channela occurring both
i 

80S an input and as an output among the U .)
i 

As with S(q, we will always uae 5.1 and S.2 to reduce PAR to a binary 

operator when transforming to normal form. Thus the rest of the lalls 

deal only with that case. Firstly, PAR is symmetric, because the 

order in which processes are combined in parallel is immaterial. 



t6. 

(5.3) PAR(U, :P" U2 :P2) PAA(U 2 :P2' U, :P,) C::::PAR sym,>=:0 

If OriB of e pair of parallel pro!=eS!:IBS is 8 conditional, then the 

choIce represented by that condi tional may be performed beFore the 

parallel construct ii:! entered, provided the choices are exhaustive 

(so that the conditional cannot stop the PAR being entered). 

n n 
(5.4 )+ PAR{U,:f:,b1 Pi' U2 :Q) IF b. PAR(U 

t 
:P., U

2
:U)

1..,.1 J. J. 

provided b, V ••• \I b =. true "::::PAR - IF distrib> 
n 

If two multiple assignments arB combined in parallel, then the effect 

Is th"t of a single multiple 8ssignmanl. (Nole that the conditions on 

use of variables wIthin PAR maan tilat the variables of ~ below do not 

occur in J:='!> nor thosa of J; in !:~) 

(5.5)+ PAR(U, :~:=~. U2 :.x::!) ~ 't- .J. := ~ ... .!. C::::PAR assignments> 

If e non-terminated process is put in parallel With a terminated cna, 

then only the non-terminated one cen proceed. It can perform any 

action other than a colft1\unication with tha tarminated process (Which 

clearly cannot agree to any communication). In this context en 

assignment may be considered "terminated". because it cannot affect or 

be affected by the othar process, and is free to terminate at any time. 

(5.6)+ If each 9
i 

haa one of the forms c?x, c~e or SKIP, 

n 
then PAR(U :ALT g. P., u :x:=e) = AlT g. PAR(U :P .• u :x:=e)

21 1. 1. 2 ........ iEX i 1 i.... 1=1
 

where X ie the set of indicas i~t1,2, ••• , I'll such that
 

gi SKIP 

c ~ 8 and c l::outs(U ) - ins(U )D' gi 1 2

D' gi c?x and C E.ins(U,) - outs(U
2

) 

c::. expansion 1 > 



(ins(U) and outs(U) are respectively thl? seta of input and output 

channels declaI'9d in U.) 

If t~o non-terminat~d pI'ocesses are put in paI'allel with one anotheI' 

then they can proceed independently on all actions except those which 

reprasent communication between tham. If they agree on a communication, 

this can occur as an inteI'nal (automatic) action. This expiains the 

foll~ing law for expanding two ALT constructs ~n paI'allel. 

n m(,.7)f J f p AL T g. P., and U All h
j 

Qj' wheI'e each gi,h
j 

has one of 
i=' ~ ~ j"" 

N 
the forms c?)(, cle or SKIP, ttlen PAR(U, ;P, U :Q) = All k RI" ",here the 

2 r1'=1 

pairs <:kr,R ,> are precisely all possibilities from the following:
r 

(i) AI'	 = PAR(U,:P U :Q) and
i

, 
2

k = gi = SKIP r 

0' kr=gi"",c:a and c~oute(U1 )-ins(U )
2


k = g. = c?x and c£ins(U )-oute(u )
0' , ,	 1 2

(ii)	 R
r 

= PAR(U1 :P, U
2
:Qj) and 

k = h. = SKIP , J 

0' k =h.=cle and ce:outs(U )-ins(u, ) , J 2

0' k = h. = c?x and ce:ins(U )-outs(u,), J	 2

(iii) R	 = SEQ(x:=e, PAR(U,:P , U :U ))
r i 2 j
 

k = SKIP and
, 
g. = de and h. = c?x and c£ine(u ) ~ outs(U,), J 2

0' g. =: c?x and h. = cte and ce:ins(U,) ~ outs(u ).,	 2J 

..::.ex;pansion 2,. 

(i) and (ii) above represent P and Q (respactively) making independent 

pI'ogress. (iii) repI'esents the effecte of communication between P lind Q. 
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6.. Laws of declaration 

The construct V~R x, , •• xn:P oeclares the variables x, ••• x fer 
n 

use '~itr·in P. These variables are distinct From any other variables 

with the same names trat "'3.y be present in the external scope. It does 

not rratter whether variables are oeclared in one list or singly: 

(6.1 ) VAR x,:(VAR x : ••• VA? Xn:P) ••• ) VAR )(1 .... J(n: P .( VAR assoc >
2 

Nor does it matter in whiCh order they are declared. 

(6.2) UAR x,:(VAR x :p) VAR X2:(V~R x,:P} .( VAH sym>2

If a declared variable is never used, its declaration has no effect. 

(6.3) ~.~R )(: P p if x ~ frse{P) .-::::UAR slim> 

One Ci'l.1'\ change the name of a bound varieble, provided the new name is 

not already used For a free variable. 

(6.' ) VIIR x:P VAn y:p[:/x] if y t F.se(p) < VAR rename> 

(Note tl'1at any clashes of y with bound variables of Para dealt with 

by the renaming implicit in the substitution operator.) 

Generally speaking, the scope of a bound variable may be increased 

without effect, provided it does not interfere with another variable 

with the same name. Thus eacr, of the occam constructors has a 

distribution law with declaration. The first two say that if each 

component process of an IF or AL T declares the variable x, and that 

variable does not clash with the booleans or guerds, then the 

declaration may be moved outside the constructor. 



n	 , 
(6.5)	 All g. (VAR x:Pi) = VAR x:(ALT g. Pi) 

i=1 J. 1=1 J. 

provided x	 is rue in no 9 <:VAR -AU distrib>
1 

n	 n 
(6,6)	 IF b. (VAR x:P.) = VAR x:(IF b. p,)

i=1 J. 1 1=1 ]. J. 

provided x	 is free in no b. L.. VAR - IF dlstrib>, 

Note that it 1s possible to deal with casaa whars x is only declared in 

a few of the Pi' but is not free in any otller, by uelng 6.3. 

Two 1a"'9 ara required for SEQ, one for each of its arguments. 

(6,7) SEQ(VAR )(:P,Q) VAR x:5ELJ(P,O} if x¢rree (a) .(VAR-SEQ 1,> 

(6.8) SEQ{iJ, VAR x:ll) VAR x:5EQ(P,Q) if x t- free (p) .(.VAR-SEQ 2> 

The law for PAR takes into account the fact that, when a dec!aratiDn 

1s moved outside the constructor, the process that uses it must nOIll 

dedara the fact that it might want to USB the variable declared. 

t(6.9)	 PAR(U, :(VAR x:P), U :0) VAR x: PAR(U,:P" U2:P 2),
2

provided )( il:l not free in U :P2' where U~ is U, modified to include a
2

deClaration of the variable x (in tile notation of OJ, it Ie the union 

of U, and USING( VAR x»). 

.(VAR -PAfl> 

When a variable is used for inputting, tne effect is the same as that 

of inputting to a completely new variable, and then assigning to the 

original on8. 
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(6.10)	 ALT(c?::o:: p,f) VAR y: ALT(c?y SE~(x:cy,p), ~) 

provided x f:. y and y is not fre8 in P or oS < input renaming> 

There is no point in assigning to a variable at tha very end of its 

scope t since the value given to it can have no effect. 

[6.11 )f	 VAR x: (":'::0::> +.x) :== (~e>+!) VAR ::o:::(y := f) <:: assignment alim '> 

The final law of VAR is required to deal with uses of uninitialised 

variables in expressions. Upon declaration a variable may take any 

value, the choice being nondeterministic. Its value remains constant until 

it is assigned or input to. Thus the value of one uninitialised variable 

may be replaced by that of another, provided it has not yet been read and 

the value of	 the second variable is used nOlojhere else. 

(6.12)	 VAR x:P VAR x:SEQ(VAR n{;o:;:::z), p) .(, ini tialisation'> 

It turns out that ~e only need one law to des 1 ~ith channel declarations: 

an elimination rule analogous to (fi.3). 

(6.13)	 CHAN c c :P P if none of c, ••• c appears
1 n n 

free in P. <:: CHAN elim> 

The reason for this simplicity is that our normal form will eliminate 

.~ ~ ~ 

all PAR constructs, and hence all internal use of channels. 

7. Laws of .L 

Recall that .l.. is the divergent pro::ess WHILE true SKIP. In 

practice ~his process may De consiDered broken, for not only will it 

nevar interact ~ith ths outside llIorld, but IlIhat is worse the environment 

can never detect this fact. (Seeing that the process is sti 11 performIng 

internal actions, an observer can never discount the possibi lity that it 



might still do something.) ~ divergent process can also oe regarded 

as having the most undefined behaviour possible, since it forever 

performs internal actions in an effort to decide what its behal,/iour 

will be, but never makes any progress. 

with this philosopny in mind, we postulate that th3 divergent 

process is the worst possible~ Now, in general, if P's behaviour is 

more predictable than that of U, wE must ragard P as better (since 

whenever U will guarantee the success of some experiment, so will pl. 

We ere thus forced to identify J... with all procasses that might 

diverge (before doing anything else). It is quite raasonable to ma~e 

this identification: in practice, e process which can either behave 

correctly or diverge will probably do the former ",hile it is being 

tested, but will do the latter when it is being used in earnest. Putting 

it more simply, a racing program is always a programming error and "'ay De 

considered broken. lue therefore choose the simplest and most convenient 

lalols, which state that almost any program made from a broken component 

is itself broken. 

Our philosophy 9il,/es rise to a number of laws. first, a process 

that can eutomatically choose to diverge must be identified with ....L • 

(7.1)1 ALT(SKIP...L. £) ...L <:ALT-5KIP zero) 

It is clear that. if the first operand of a SEU construct can diverge, 

so cen the whole construct. 

(7.2)* SEU(.L, P) J.. ~ SEW left zero) 

If the first operand of a SE", t€rminates before interacting ",ith its 

environment, divergence in the second argument yields divergence in the 

whole construct. 
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2. A pre-normal form 

The first section introduced almost all the lallle one requires 

to characterise the semantics of occaill. Unfortunately it is not 

satiefactory merely to state thisj Iole must find SOlOO Iolay of demonstrating 

it. This is especially true because Iole already haue a denotational 

semantics; lIIe would like the lallls to yield the same equJ.ualences. 

(uen if lIIe had no standard semantics to characterise, it lIIould still be 

neceesary to inveetigate the structure of the classes of inter

transformable programs, because it is only this that reueels the true 

pololer of a set of" laws. 

As explained in the introduction, our method of demonstrating the 

pOlller of our laws urlll be the discovery of a normal form for finite 

programs. [very such program Iolill have a normal form equiualent (through 

transformation), but tlllO normal form programs urill have the eame ualue 

in the denotational semantics only if there are (at most) triuial 

syntactic differences between them. 

A normal form must therefore exactly capture our ideas about 

denotational equiualence. This gives rise to a number of interrelated 

problems, all of" lIIhich need to be solved before we have a normal form. 

a) We need to characterise a procese' behaviour as a communicating 

agent. In othar words, Iole must identi fy a unique Iolay of representing 

each possible pattern of communication a process migM exhibit. for 

example, if U, and U are suitable parallel declarations, the processes
2 

AU(C?X d?y, d?y c?x) and
 

PAA(U, :c?x. U :d?y)

2

are equivalent, and therefore have the eeme normal form. 
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0) ws need to cnaracterlse. relative to its communicating behaviour, 

the IMays in IIInich a process aSSigns to its variables. For e)lample, 

the follollling pair of programs have the same effect on the final state 

and so have the Same normal form: 

x:=3 ano VflRy:SE.Q(y:=3, Z:=2, x:=y, y:=6) 

There are important distinctions that nead to be made Oetumen processes 

at the Doundary betlJeen (a) ano (0). Considar the tlllO processes 

PAP(U,:c!1, U :ALT(d?X STOP, c?x d?x))
2


and a7~ (U and U are suitably chosen).

1 2 

Both precesses have exactly the sarna communicating behaviDur (they 

input along channel d), and IIIhen they terminate they have the same effect 

on their free variable x. HOlllever, the first process is strictly lass 

deterministic than the aecond: it is not obliged to terminate successfully; 

IMren conposed in sequence lIIith another process the second process need not 

be started. 

c) The use of bound variaolas needs to be regularisad. In IIIriting a
 

program. one often has a lot of freedom in the usa of bound variables:
 

not only in IMhere they are declared, but also in whether to declara a
 

new variable Or re-use an old one. for e)lample. the follOWing pair of
 

equivalert programe must have the same normal form.
 

SEL.i(c?x, c?x, dh) 

and VAR y,z:SE.t.J{c?y, c?z, X:=2, d!z). 

fin essential aid to the solution of (a) and (b) above ia a calculus 

for decidi.ng the equivalenca of e)lpressions. For example, 2 + 2 4=~, 

and (x mod 3) + (x + 1 mod 3) + (x + 2 mod 3) =: 3. Often we need to 



decide such equivalences in the context of the booleans representing 

t~e facts already kno~n about the variables involved. ror example 

tne programs 

iF 

xmOd2=O 

,,(x!2)f 2 

xmod2=1 

,,(x+1)/2)j2- 1 

and cl x 

are equivalent, because of the equivalences of "x" \I,Iith "(x/2) f 2" and 

"«x+1 )/2), 2 - 1" in the respective (boolean) contexts. 

Because thi 5 issue, though important, is not really relevant to the 

algebraic properties of occam, we !,Mill abstract alllay From it. Spacifically, 

\I,Ie \I,Ii11 assume a kno\l,lledge of all true facts of the form 

b 1 F= b, for boolean expressions b, and b
2 

meaning "in all states I<Jhere b, is satisfied, so is b ". Thus our later
2

complB'teness rB'sulLs are relative to this knowledge. 

Our approach has the advantage of not tying us to a particular 

syntax and semantics for the space of expressions. We do, hO\l,lever, 

make frequent demands on the syntax and semantics of axpress ions 

representing booleans, the good behaviour of expressions under substitution 

for their variables, and the fact that all expressions in occam are 

evaluated without side-effects and ... ithout fear of non-terminatiorl (even 27/0l). 

The discovery of a full normal form 1S rather difficult. We 

therefore introduca an intermediate form to act as a conceptual arid 

technical bridge. This will essentially solve the problems descrl~ed 

in (b) and (c) above. as ..,ell as simplifying the most difficult problem, 
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whict'l is the one described in (a). The intermediate form is I:alled
 

If/ALT form, because it eliminates all uses df SEQ and PAR. It has
 

a single parameter: a list of free variables.
 

W9 ,,"ill say that a pr~am is in ~ - If/Il.L T form if it has one of 

the following forms. 

1.. the wholly undefined, divergent process. 

-x;=e a multiple (simultaneous) a55~gnment to 881:h free 
~ 

variable of ~ (the parameter of the form). 

o 
I, b. P. where each Pi is ~- If/ALT and the b partition true 

i",1 J. J. i 

(i.e. b, .. '0' vb:! true, and b. /'I. b. :::: false 
n-- 'J-- 

whenever i , j). No variable free in the whole 

program is in any bound(Pi ). 

n 
VAR Jt 1 , •• "lt :ALT 9. P. where 88t:h Pi is ~ - If/Al T, each 9 has one 

m i=l 3. 3. i 

of the forms SKIP, de or C?X " [x1, ••• , x 1 are the 
j m 

(all distinct) variables used in guards of the third 

type. They are disjoint from each bound (Pi) and from 

the components of~. lt can appear free in gi Pi only
j 

if gi has the form c?x • No variable in ~ or free in
j 

the Whole program may be in any bound (Pi). 

VAR It:P where x t:. free(p) but)( is not a component of J:;" 

P is ~ -If /Il.LT. 

Note that all assignments in If/ALT programs are final (i.e. occur 

at the end of a program's run, just before it terminates) ano made only 

to free variables. Il.lso, because of the way a fresh bound variable is 

created for every input, no variable that contains a value relevant to 

the program is overwritten until this final assignment. 1 t is the 

introduction of multiple assignments that allows us to reduce the assign

ments in every program to this form. Not only do they bring symmetry 



by removing the order of asslgnments y but by allo.ling sut::h assignl'l'Ell'1ts as 

-(x,y> ;= .c(y,x) 

they will allow us to eliminate all aSSignments to bound variables. 

Bound variables are of two types. The ones that ere bot::lared as 

inputting variables are used only for input and subsequent use in 

expressions. Variables declared in programs of the final type (VAR x:p) 

can never be given a "proper" value (since they are neither input to nor 

assigned to). They are thUS, purely and simply, uninitialised variables, 

which contain a nondaterministically chosen constant value throughout the 

life of p. Thus, in practice, all programs of this form would be regarded 

as erroneous. 

The follOWing is the main theorem of this section. 

Theorem'. If ~ contains all the free veriables that the finite program P 

ever inputs or assigns to, then there is an,!; - If/All program p I such that 

free(P') ~ free(p) \J~ and P=P' ie provable from the laws presented in 

section' • 

The proof of" this theorem is that every such program cen be trans

formed tO~-If/ALT using the said laws. A strategy for performing this 

transformation is set out below. 

The first step is to transform all SELJ and PAR constructs to binary 

applications « SEQ -SkIP unit) (4.1), <PAR - SKIP unit)- (5.1), < SEW assoc) (4.2). 

<PAR assoc>(S.2»). ALT constructs are then unnesteo ("ALT assoc>(2.1), 

"ALT !Iym>(2.2) and the boolean components of guards removed 

(",All !Iym'>(2.2).<boolean guard elim>(2.4)). IF constructs are then 

unnested "'IF assoc>('.l). 

The rest of the strategy is recursive. We deal in turn with nch 

form a program migM take. 
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The atomic processes are all strai~htfor~ard: 

STOP ell ( ) .(ALT- STOP unit>(2.3) 

SKIP !.:;~ <SKIP) (3.1). <identity assignment> (3.3) 

>::=8 L.assign'llsnt sym";;>(3.2),~'~~ ['/x] 
":::identity assignment> (3.3) 

t!e ALT(c!e ~:=~) <:cutput >(2.7), <SKIP> (3.1), 
<: identity assignment> (3.3) 

VARy;IiLT(c7y X:=X fY/x ]), IIJhere y is not a component of xt?x ....,. ... l ......,. 
<input> (2.6). <: input renaming> (6.10). 

<identity assignment> (3.3), 
<.SKlP>(3.1). <assignment sym')(3.2), 
""combine assignments> (4.7). 

(Recall that, in IF/~LT, no free variables may be used for inputting.) 

c
 
If the program P has the form IF b. p., 1Il8 recursively transform
 

i=1 1. 1.
 

each Pi t04-IF/ALT, makin~' sure (vi<l L. VAR rename >(6.4» that the 

bound variables of the resulting p:-ograms do not collide with free(P). 

It only remains to make sure that the b partition true « IF - STOP unit> (1.6),
i 

< IF priority> (1.2)) and transform any SlOP tnus introauced to ALl ( ) 

(,,"ALT-SWP unit>(3.3)). 

c 
If the program P has the fprm ALl g. P .• we recursi\lely transform 

i=l ~ ~ 

each Pi to~- IF/AU P l (making sure that bound (Pi')" free(P) = ¢).
i 

Une then applies,," input rE'naming> (6.1 [I) to each of the input gi in turn 

(choosing a suitable \lariable), and <V/o\R assoc')(6.1) to collapse the 

VARx's thus created to a single declaretion. lhe resulting program 

looks like 

c, ,VARx, •••• ,x :ALT g. 
m 1=1 ~ i 



"'here, if gi = SKIP or c~e, gi I ::::: gi and Pi" = pI and if gi = r;?x 

then g. I = c?x. and p." = SEQ(x:=x., P. ') for some j. The only thing
J. ) J. ) J. 

left to do is to transform all the P." of tha second type to, 
x-Ir/ALT. This is done by first transforming x:=x. to ~,:~[Xj/xJ .,d 
~ J 

then applying the procedure set out under SEQ below. 

If the program has the form SEU(P,O) we recursively transform P 

and U to~-Ir/ALT programs pI and QI. We then apply the following 

racursive procedure Which, given pi and Q' in~-lr/ALT, transforms 

SEU(P',Q') to~- If/ALT. The first step is to ensure (using.(VAR rename> (5.4) 

if necessary) that free(P') n bound(QI) = ~ and vice-versa. 

If pI J... then SEU(P' ,QI) =.L <SEQ left zero> (7.2) 

If pi fr b. P then SEQ(pl,ql)

i=1 3. J.
 

Fr b. SEQ (P .• iJl) ('"SEQ-IF distrib') (4.3)i each 
i:::::1 3. 3.
 

SEO(Pi,QI) is daalt lIJith recursively.
 

, 
If pi = VAR x,"'x :~LT g. p., then because free(QI)n bound(pl) =~, 

m J.=' J. J. 

the declaration can be moved outside the SEQ (.c. VAR assoc >(5.'), 

<:: VAR - SEQ1 > (5.7) so that the program looka like 

, 
VAR x, ••• x :SEQ(ALT g. P., 0 1 )
 

m i=' J. 3.
 

We then apply" SEQ-AlT distrib') (4.4) to obtsin 

, 
VAR x1 •••x ;ALT g. SEQ(P" U' ) 

m 1=1 J. 

and finally deal with the SEQ(Pi,QI) recursively. 

If pi = VAR x:P". then because x f/: free(U ), the declaration can' 

be moved outside tha SEQ "'VAR-SEQ1>(6.7); ",e then appeal to recursion. 

Tha program 1IJ1ll then have the form VARy:R. If y is not free in R its 

declaration can be removed with .c.VAR elim">(6.3). 



If pi == ~:~~ we need to deal with ~ach case of ~. separately.
 

If Q' ~ ..L , then SEO(~:=:!;, U·) == ...L "'SEGi right zero >(7.3).
 

If Q' ::z t:==.!. then SEGi(~::::::~, 0') == ~::;! ~Q <. combine assign~nts>(4.1). 

If Q' :::: IIARy:Q", then because of y ¢ free (~:"".2) we heve 

SEQ (!.: ==! , Gil) ::::: IIARy:SEQ(~:""~, Oil) and can then appeal to recursion. 

The program "'111 then have the form VARy:R. If y is not free in R 

then apply ",VAR-el1m>(6.3}. 

n 
If Q I IF D. Q•• then, oy <assignment-IF distrib)O(4.S) we have 

i~1 1 ~ 

SEQ(~:~, Q ') r"F b. r"x1 SEO(x:::::e, iJ.).
i==1 ~ L~ ........ ~ 

llJe then daal with the SEQ(~::::::.!, 01) racursively, noting that the 

b ~.i5J partitlon true, beCause the b do.1 i 

If Q' ::::: liAR x ••• xm:ALT 9 0i' the first step (noting that
1 i
 

X ... xl" free (x:=e) "" ~) is to move the declaration outside
{ , lid .......
 
thB SEll to obtain 

n 
liAR x ... xm:SEQ(!::~, ALI 9. Q.).

1 i::::' ~ ~ 

Because the input variabl!!s of the gi are the x ' none of which appear
j
 

in ~:~. we can use <: aesignrrent - Al T distrlo> (4.6) to gel t
 

n 
liAR x, ••• x :ALT g. SEQ(x:==e, Q.) 

m i:::::1 ~ -.... ~ 

and then appeal to recursion. 

Nots that this procedure for reducing SEQ(P,Q), with p.O already 

In;:.- IF/AlT, is guaranteed to terminate because every recureive call 

8trictly simplifiee one of tha two arguments, leaving the other one 

unchanged. 
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If we wish to transform VARy:P to ~ - IF /Al T, the first step is to 

use <.VAf-l rename> (5,4) if necessary to ensure that y is not a component 

of x, We then recursively transform P to an~ + <C.y> - TF/AlT program pI, 

Choosing a variable z that is distinct from y and does not appear in P, 

lIle use ..!initialisation>(6,12),<VAR-SEQ 1';> (5,7), <.VAR sym>(6,2) 

and <identity assignment >0.3) to obtain 

VARZ:(VAfly:5£Q(!.+£n::::!.+.(Z»), pI) 

Ws then apply the procedure for reducing sequential compositions of 

IF/AlT programs to reduce this to 

VARz:(VARy:pn) IIlhere ptl is~+<.y> IF/ALT, 

Observe that the only places y can appear in p" are on the left hand 

sides of the final multiple assignments, because the transformation from 

5£Q«!.+,,-y)::::2;+<C.Z»,P') to P" replaces all others by Za (This is 

easy to prova by structural induction on pl.) We can therefore make 

rspeated use of <..VAR- ALT distrib')(6 a5), <VAR- IF distrib')(6,6), 

..(VAR sym> (6,2). ,(,VAR assoc> (6,1) to shift the declaration VARy down 

to the leaves of pll, It can be eliminated from those of the form 

VARy:..L by ,(,VAR elim>(6,J), and leaves of the form VARy:~+<.y>:=~+<.f> 

are transformed to t.:=~ by <assignment eiim';>(6 a11) and <VAR elilfl,,>(6.3). 

The resulting program is then just VARz:P , where P is the program obtained 

•from p" by deleting all assignments to y. If z is not free in p lire make 

use of .c:.VAR elim> (6 a3). In any case we are left with our desired 

x-IF/AlT program, in which lIle note that y is not free. 
~ 

If a program has the form CHAN c ",l: :p. we first recursively
1 n 

transform P to an~-IF/ALT program P', Now any oCl:urrences of I:"""c 
n 

within CHAN c"a .. cn:pl (other than their declaration) are syntactically 
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incorrect - for P I contains no PAR constructs and so there is no place 

for i.nternal communications on these channels. Since we have 

postulated that all programs are syntactically correct. ~e can infer 

thetnone of c, •••• ,c appears free in Pl. Thus <CHAN slim> (6.13)n
 

is ~plicable.
 

The only cese that remains is that of PAR. It ie important to 

nole that none of the clausss WII have so far dealt with have introduced 

II PAR construct (SEQ, on the other hand, was introduced by ALl and VAAl. 

Thus the procedure we have already set up will work when given II program 

not containing any PAR constructs. 

If we ere given II program of the form PAR(U, :P, U
2
:Q), the first
 

etep ie to rscursively transform P inloa-If!ALT pI and Q into
 

~-If/AlT QI where~, and~2 are respectively the components of ~
 

declared in LJ and U • (That this transformation is possible follolils

1 2


from the correctness of PAR(U,:P, U :Q).) PAR(U,:P', U :QI) is then

2 2

trensformed to~-lf/AlT using the recursive procedure set out below. 

The first step is to make sure the bound vilriable sets of pI and Q' ere 

diejoi1"tt from free(PAR(u,:PI, U :Q')) and the components of..5. If
2


either pI or QI is L, loiS cen apply <PAR zero}o(7.4) (and perhsps
 

<:PAR eym) (5.3» to obtain ...L 

n 
If P' ia If b, P., then since the b. partition true we cen apply

1=1 1 1-

("PAR - If distrib) (5.4) to obtain 

n 
Ifb. PAR (U,:P., U,:Q').

i::::' 1 1 

lUe then recursively reduce each PAR(U,:P U :l.I').
i

, 
2

. n
If [JI 18 IF b. Q" then lola apply <: pAR sym)(S.3) and then the above. 

1::::1 1 



If p' is \jARy:P" then sInce, by construction. y is not frae in U :O ' ,2

we can use <::'\jAR-PAR)(6.9) to obtain 

VARy:PAR(U,• :P", U ll4')2

•where U, is U, Io'ith Y "sdded"; lIIe then appeal to recursion. If 0' is 

VARy:Q" we apply <PAR sym>(5.3) and the above. As before, if y is not 

frse in tha resulting bOdy, ita declaratlon can be removed by <\jAR elim>(6.3). 

If pi is~, ;:;:~, ard QI is ~2:~2 then, noting that Ue elemente of.!, and ~2 

are disjoint slbsets of those of~, lIle can apply <.PAR assiQnnents>(5.5), 

",identity assignment) (3.3) and (assignment sym')(3.2) to obtein sDlIlthing 

of the form ~l:;:~. 

n
 
if pi is VAR y, ••• Ym:fH gi Pi and 0' is ~2 :;: ~2' then by construction
 

none of Y""Ym appaar free in U :O', so the VAR may be moved outeide2

the PAR, using ",-VAR assoc '>(6.') and <'VAR -PAR'> (6.9) (thereby cnanging 

•U, to U" say). Wa can then usa <eJiCpansion , > (5.6) to transform it to 

sOMething of tna form 

•VAR y, • .,y : ALT g. PAR(U,: P., U lQ'). 
m i(.)( ~ ~ 2 

The Yi that no longer appear es input varieblas among tha gj still 

•appear in the declsration and in U,. Tney are removed by first moving 

tham inside tha AU «VAR euoc >(6.1), <!JAR aym> (6.2). ",,\jAR - ALT dietrib >(6.5) 

•and tnen insida tha PARs "'-VAR - PAR'>(6.9), removing them from U, 

(Obtaining U" aay). Because these variables ere free in no remaining Pi. 

we can finally delsta thCilir declarations uein9~\jAR elim>(6.3). lihen 

we nave recursively traneformed the resulting PAR(U,':P U :Ql), the
i

, 
2

lIlhole program ie ~ - IF/AL T• 
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n 
The symmetric case (pI :::~1::::.!1' Q' = VAR y, ••• y :ALT g. lJ.) is dealt, ,rn i :::1 

with by the above, after applying "PAR sym>(5.:3). 

n
 
The only remaining cese is when P' = VAR Y ••• y :ALT 9 Pi and
 

1 m i=1 i 

t
 
Q' ::: VAR :ALT h. lJ •• The same type of strategy as above, using
2, ..• 2 

s i:::1 ~ J. 

~e)(pans1on 2>(5.7), will transform PAR(U,:P', U :QI) to something of
2

the form 

VAR AL T Rix, ... )(~ 
N 

1=1 
k1 

where there is some P1 (O~ M{N) sucll that l' i' M implies k is SKIP
i 

and R is VAR yi:SEQ(yi::::si,Ri) whareRl. is~-IF/ALT; M<i'-N implies R
i i 

is 2;-rF!ALT. It Can further be guaranteed that the xl are precisely 

the (dlstinct) variables used for input among tile k (1) M), and that no 
i 

xi or yl occurs in any R except the one obviously corresponding to it.
j 

(The first M guarded processes result from communicatione between P' and 

Q', the rest from independent action by either pI or QI.) 

Dbgerving that no R (, ~ i !,.r'1) has any occurrence of PAR, we can
i 

safely transform them to~- IF/ALT. Thie having been done the whole program 

is in ~-IF/AL T, as rltquired, after perhaps some renaming of bound variabies. 

(Care is required over this last point because lLIe have no reason for 

supposing that the programs R are in any aense "simpler" than the 
i 

complete progrem. lt is therefore vital that this transformation does not 

introduce a PAR and eo make use of the recursive procedure we are 

currently defining.) 

This completes the description of tile procedure for transforming 

PAR(U,:P, U :Q) to..?;-IF/ALT. Since that lLIas tile last clause of the
2 

main procedure, we have elsa completed the description of how to transform 

a general program to IF /AL T. 



Syntactic a pproxil'llation 

finite programs are relatively aasy to reaeon about algebraicillly, 

but do not tend to be very useful in practice. fortunately there ilre 

techniques which allow us to apply our resulta on finite programa to 

general programs: syntactic approximation allollle uS to identify every 

progranl with a sut of finite ones. 

The concept of syntactic approximation ie quite well known (SilS, 

for example, ~~) and has been applied to CSP in similar circumetances 

to ours ~§l. It gives a pre-order (in our case a partial order) on th8 

syntax of a language. The order is a liery simple one, baeed on ths 

ideas that replacing part of a progrem by the least defined program (in 

our esse ...l... pr oduces an approximation, and that unfolding a rscuraion 

(in our casa a WHILE loop) produces an approximation. 

Through most of this psper we make no Formal distinction between 

tha tsxt of a program and its value (semsntics). Howaver whan considering 

syntactic approximation it is necessary to make a claar distinction: we 

will thereFore place quotes (rpl) round any program that ie to ba 

considered as a syntactic object, and continue to uee unadorned programs 

(p) for the corresponding aemantic values. It is important to note that 

p", a does not imply r p' '" r ql. so the clauses balow may not bit colltinad 

with our existing lawe (which arB all semantic). 

"rQlWe will writs r p' if rpl ie a syntectic approximation to r O'. 

The following clausee define " for our version of occam. 
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1'"' r,1 ) ...L ~ p 

2) p p
r '" r ' 

3) rp' ~ rQ, • rl.l' E= r R, 9 r p',I'"R' 

1"" 1 r .,n
 
4) f\ rp~ "rQ~ ===9 5E~ P. ~ SEQ Q.
 

i=l J. J. 1=1 J. 1=1 J.
 

n 
rn , I"n , 

5) t/p~ ~ "-°l ~ PAR Ui:P. ~ PAR U.:Q.
i=1 J. 1=1 J. 2. 

r n 1 r n "Ar, c f'" " 6)" IfC.{.IfC.C." C. ~ 
1=1 1. J. 1=' J. 1=1 J. 

,~ ... , .3 I'" " r n r n7)" 
./\ [;1 ~ Gi ~ ALT G. {, AL T G " 

2 11.::1 i",1 1=1 

r, f'", I'" ,I'" ,
8) P ~ Q ......" VAR )(, •• oXn:P ~ VAR )(,' ••xn:Q 

r , ,. ,
I'"p'~ ,9) r Q ~ CHAN C, ... cn:P ~ CHAN c, ••• Cn:Q 

10) I'"Ir(b 5EQ(P,WtHLE b p) -Ib 5KIPJ~rWHrLE b P'. , 

* ClausBs (6) and (7) require the definition of auxiliary relations 

~ C and ,g on (respectively) conditionals and guarded processes. 

These satisfy 

, ,I'" ., r.., 
b P ~c r b 0' 

n n 
12) 1\ r C~ tt,.c "C ." ~rlfC~.t:.c r;r C.! 1 

") p ~ ~ ~ 

, 21=1 1- ' 1=1 J. ... 21=1 

13) "'p',,-rq, ~ r g p'~.9rg q' 

n r , r n , r n 1
'4) II , ';:9 G' ----" ALT G. ,,9 ALT G.' 

1=1 Gi '" J.---' 1=1 J. ... 1=1 J. 



Formally, (~, -f-C, ~g) is the smallest triple of relations satisfying 

(1 -14). '" is a partial order on the syntax of our language. (Thi5 

can fail for other languages if they have more general Forms of 

recursion; one can have distinct pieces of syntax r"p' and r-cj' SUCh that 

I"p' ~ f"q' and I'"Gj'" ~rp', e.g. J-lP.}.Jq.p and J-lq.J.lP'J..lq.P.) It is important 

to remember that , is a purely syntactic relation, and that it is not 

permissible to use the above clauses in conjunction with our laws (WhiCh 

preserve semantics rather than syntax). 

FlN(r-P'), the set of pIS finite syntactic approximations, is 

defined to be f-O' II"Q' ~ I"p' and 1'"0' is finite}. It is easy to write 

down an equivalent definition of FIN(r p') that is a straightforllJard 

recursion on syntax. Typical clauses are given belolLl (the only moderately 

difficult one being wHILE). 

" ,1
FIN(I'"~;=•.~e) [ ,

.L. 2;:=!!j 

FIN(I'"C?x') ['1.' I r c?x'1
 
FTN(SEQ P.') {r-J.71 v fl'"f~~ ,L', ArQ~ € FIN(r p .'»)


i=1 J. i=1 1 1 

r1 , r- , L.L n
FlN(rWHlLE b p') [ , IF(bL, -:b.l.) ,IF(b ,..,b SI<.IP)j 

, 
u [, IF(b SEQ(O" ° ), ., b J...) ,

2

rlF(b S£Q(O" (2)' -,b SKIPJI 

r Q,' E.FlN(r p'), r o; e FIN(ruJHILE b p')1 

(The last clauae, which is cirCUlar, is easily seen to have a unique 

solution. ) 

Any finite, non divergent, behaviour of a program has required only 

finitely many iterations of any loop. It is therefore possible to unwind 

the program that many times, obtaining a finite syntactic apprOXimation 

which exhibits the !!ame behaviour. Of course, any non divergent behaviour 
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possible for a syntactic approximation will also b~ possible for the 

original process. Intuitively, there is thus a close relationship 

betwean the behaviour of a process and those of its finite syntactic 

approl(imations. To understand this relationship properly we need to 

go bacl< to our underlying !'lemantic model. 

The denotational semantics of j).J map each prOcess into a domain with 

a partial order according to which one process is greater than another 

if it is better defined, or more predictable. If P and q are processes, 

we \Oin lOrite pJ; U (q is more determinlSbc than p) if the semantic 

value of P is less than that of Q for all environments wi.th unbounded 

sets l)r free locations and channels, and states ... here unused locations 

ars mapped to error. P '.:t..I is aquivalent to 

P : ALT(5KIP P, SKIP ~). 

This law simply says that every behaviour of Q is also possible for P; 

thus in observing iJ loIe cannot be SlJre that we are not looking at P. f 

induces a natural partlal order on occam terms (factored under the 

equivalence induced oy the domain). 

The follololing three lemmas express the formal properties loIe will 

require of syntactic approximations. The first one is easy to prove 

(in the denotational ssmantics)by structural induction. 

Lemma 1 If f"p14("Q", then P,=O.
 

Of course, the converse to LemlT1a 1 does not hold.
 

The second lemma is easy to prove using a combination of 

structursl induction and mathematical induction (the latter for WHILE 

loops). 



~ ( 

r-,r, (,')0 •FIN(rp '> is (Under ~ ) a directed set 1.E!. if Q, , Q £ FIN P • 
2 

r,,'~r,)there is 90ma rQ'€.FIN(l"P') with I"W,' ~ 1"'(0" and "'2 - Li • 

lemmas 1 and 2 tell us that the semantic values of the elemants of FIN(l" p1) 

are themselves CI directed set under G The last, and most important, 

of our lePl1118s, sho"'s just holol this set characterises the semantics of p. 

It, also, is proved using a combination of structural and mathematical 

induction. 

Lemma J [Q Ir Q'E:FlN(rp1 )1 is a directed set (under G) with least 

upper bound P (I.e. U [Q I',' E FIN('P')1 • pl· 

Later lIIe wi 11 take advantage of this strong way in which the 

semantic value of a process is determined by its syntactic apprOXimations. 

proving addi tional laws 

One very useful consequence of Lemma :3 above is thet, if we want to 

prove a new algebraic lalol. it loJill usually bB sufficient to prove it for 

finite programs. For example, consIder the lalol 

5EU(P, 5EQ(Q,R)) SEQ(SEQ(P,Q),R). 

This (the conventional binary associative law of SECJ) is not trivially 

deducIble from our existing IaloJs, even though it is semantically true. 

HOIIJever, suppose loJe have provad it for all finite P, I), R. (We will 

Shortly do this.) Then, using lemma 3, loJe have for general P, q, ~: 

5ELJ(P,S[I)(U ,R) u {rlrr'EFIN(rSEQ(p.SEi.J(U)R)' 1 
Now because the few elements F of the first set IoJhich are not of the 

form SEU(P' ,5Ei.J (U' ,R I» are easily proved (using the laws) equivalent 

to ones that are, using the laloJs, e.g. 
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3EU(P,.1.) "" S£LJ(P.5EU(J... ...L» this is equal to 

U[SEQ(Pl.5EQ(Q',R'» lrp,'c: fINCI"P').
 

r Jj " E: fIN«("Q'). r R.'€ fIN(R'}"\ •
 

By our assumption that the result holds for finite processes this in
 

turn is equal to
 

u(SEQ(S[tJ(P',Ll1),R'>1 r p "€: rINC r p1).
 

("ot' £. flN(r U'), "'R" € flNC r ,IO?'>1
 

LJ [r I'r' E r"(5£0("0(P,Q),R)') I
 
SEQ(SEL;i(P,U),R).
 

Since we arB in the procass of setting up pOlojerful machinery for 

dealing with finite programs (for example Theorem 1) there are
 

advantages in only having to prove nel.! laws for them. In parlicular,
 

it is enough to prove them for IF/ALT programs (since, by Thaor·efll 1,
 

every flnite program is equivalent to onE! in Ir/ALT). As an illustration
 

of the teCtlniqu8s one can employ to prove laws for IF /AL T programs, we 

"'ill complete the proof of tt'e SEU associativity law given above. By 

virtue of what WB have already established, the following proposition 

"'ill suffice. 

Proposition If P,l.I,R ara all~-Ir/ALT, then 

SEU(P,SEU(Q,R)) 5[O(SEQ{P,~),R). 

Proof we use 9tructural induction on the triple (P,U,R). Supposa
 

the result holds for ell simpler triples (P',Q',R'). ((pl,QI"I'l') is
 

simpler than (P,iJ,R) if each of its components is a (not neces9arily
 

proper) syntactic subcomponent of the corre9ponding component of (P,Cl,R), 

except possibly for changes of variables not in~. At least one must
 

be a proper sUbcomponent.)
 



Ir P =..l... the result is trivial by applications or .(SEU len zero)(7.2). 

n 
H P = IF b. Pi- we have 

i=1 1 

n 
SEQ(P,5EuJC",.R» = IF b. SEQ(P., 5EU(""R» .(5E1..I-IF distrib> (4.3) 

i=1 1 1 

n 
= IF b. SEU(5EO(P!,O),R) (by induction) 

i=l 1 

n 
SEQ(IF b. SEU(P .• Q),R) <:5EQ - IF distrib ,>(4.3)

i=1 ~ 1 

n 
SEQ(5EO\~1 b Pi' Q), R) ,",SEQ -IF distrib') (4.3)

i 

SEQ(SEQ(P,Q), R) as required. 

lr P = VARx:P' we rirst ensure (via .(VAR rename';>(6.4» that x 

is not in rree(Q)Urree(R), and then 

SEO(P,SEO(O.R» = VARX:SEO(pl.SEQ(~,R» <:VAR-5E01> (6.7) 

VARx:SEO(5EO(P',Q),R) (induction) 

SEQ(5EQ(P,Q),R) .( VAR - 5El,J 1 ';> (6.7) twice. 

n
 
lr P = VARx" •• x :ALT g. p. one combines the techniques or the previous
 

m i::::1 1 1
 

t",o cases (ueing <:.SEO-ALT distrib> (4.4) rather than <:SEQ-IF distrib>(4.3». 

H P :::: ~:=~ "'1'1 need to daal with the individual cases or 0 separately. 

H 0 = ..L the result is trivial by <:5EO lert zero>(7.2} and 

<:SEQ right zero> (7.3), 

n 
H Q = IF b. Q. then
 

i::::1 1 1
 

n 
SEQ(P,SEO(Q ,R» 5E~(x:=e, IF b SEQ(U., R» 

... i::::1 i ~ 

<: 5EQ- IF distrib >(4.3) 

rF b.[~J SEU(x:=e. 5EU(Q.,R»)
i=1 ~ .... ... ~ 

<:. assignment - IF distrilJ > (4.5) 
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n 
b. ~/xl SEL.I(SEl.i(x:=e, Q.), R)J.L..u ... _ J." i=1 

(induction) 

SEQ(IF b.~/XJ SEJ(x:",-F.l, Q.), R)
i=1 J.L.... ...... J. 

~5EQ - IF distrib) (4.3) 

SE~(S(Il(x~=e. Inr	 b. ~.), R) 
....... 1=1 J. 1.
 

<assignment -	 IF distrib'> (4.5) 

SEQ(SE~(~,~), R) • 

If Q =:- VARx:Q' the result may be established (after possible renaming of 

bound variables) by <cVAR - SEQ 1,2> (6.7, 6.8) and induction. 

n
 
If Q = VARx,' •• x :ALT g. iJ.' the result follollJs using the techniques
 

m 1=1 1 ].
 

of the previous two clauses, using <SEW - AL T di strlb > (4.4) in place of 

<SEL.j-Ir distrib)(4.3) and <.assignment- ALI distrib)(4.6) in place of 

<assignment- IF distrlb) (4.5). 

If Q =!==;.t' lIIe need to consider each case of f-l separately. If R = ...L. 

the result follollJs simply from <SEQ right zero,> (7.:3) and ","combine assignments> 

(4.7). If R == ~:==! 
, 

we have 

5ED(P,5"(O,<))	 = 2:'=(£:~2\} [~(J <comt:line assignments >(4.7) 

=~:=i'~t'I.!~J 
by properties of	 substitution 

S£!..l(S£L.i(P.L.i). R) <.comt:line assignments>(4.7). 

If R = VARx, ••• xm:>lLT Q R , then after possibly renaming x ••• x to
i i 1 m 

avoid clashes with free(p) V free(~) we have 



n 
SEQ(P,SElJ(U,R» '= VARx,' •• :-; :SEu()(:=e, SEQ(x::=f, ALT g. R.)) 

m .. - ...... 1=1 J. J. 

.(VAR e:-;pansion>(6.1), <VAR - SEL,j 2 >(6.8) 

VARx, ••• 1< :I\lr g. Cr/l<J ~/XJ SEU(x:=e, SEtJ(x:=f, R.)
m i=1 1. L.... [..... ...,...- ..... "'"' J. 

<assignment - ALT distrib> (4.6) twice 

n 

VJ\RJC,' •• J( :Al T gi ~ ~/~J SE"(5"l!:'"~, ,?:;:=.!,), Ri } 
m i=1 

(induction and properties of substi tution) 

n 
VARx,""x :ALT 5EW(XP"fr&/). R,)gi ~~/~~] -- ....L~Jm i=1 J. 

':::combine assignments> (4.7) 

VARx ••• x :SECl(X:=fl·§!/x] • A~ T g. R.)
1 m ........ [... i=1 J. J. 

.cassignment - AL T distrib') (4.6) 

VARX1 ••• X",:SEQ(5EQ(~;=~. ~:-=J:), 11) 

<combine assignments >(4.7) 

5EQ(SEq(P,~), R) 

<VIIR expansion>(6.1), .(VAR- 5EQ 2>(6.8) 

If R = IF b R the same argument as above applies, onlyi i 

.(assignllBnt-lF dislrib>(4.5) is used in place of.(assignment-ALT distrib)(4.6). 

The case of R = VARx:R' is eesy. 

This completes the proof. 

other laloJ!:I can be proved in much the same lIIay (often rather more easily). 

Some examples are given below. 
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a)	 5£Q(SKIP, p) S£Ij(p, SKIP) p 

bj 5£U{P, tF b. LJ.) fr b. S£14(P. 0.)
i",1 ~ ~ 1=1 1. 1. 

if b," ••• 1/ b ~ true and no variable in any b is altered by P. 
n	 i 

, )	 P,l,R(U
1

:P, U
2

:5KIP) Pol."(U,:P) p 

provided U declares all global variables and channels used by P,1
 

and U declares none of them,

2 

Not all proofs of new laws go along these lines. Some may require the 

Full power of a normal form, while some can be derived directly. As an 

eJt:C\mple of direct derll/ation we here prove a law relating IF and AL T 

that is apparently more pOllJerfui than the law <IF _ AL T distrib> (2.10) 

we alrei'ldy have. 

c m m
 
ALT 9 (IF b. P .. ) Ir b (ALT g. P .. )


ii=1 j=1 J J.J j:d j 1=1 1. J.J 

providirlg b,v ••• vb true and no variable input in a 9 appears
m i 

in a <: AL T - If distrib >'bj' 

This says that, providing the eXBcution of the guards gi always 

leads to the evaluation of the same conditionals, the value of which is 

not affected by the gi' then the conditional choict> may be brought 

outside, 

To derive this law we first establish the following law as a lemma: 

n n
 
IF n. P. ::: IF b.* (IF b.* P.)


i",1 3. 3. i",1 1 1 3. 

•where b '" "1°1 " •• , /\ I b _ /\ b.,i	 i 1



*
n
The right hand side may be transformed to l~1 b i Pi by repeated use or 

<:1\- If distrib) (1.8),..(IF assoc)(1.1) and<:IF sym>(1.3). It ill 

then equivalent to the left hand side by <IF priority)(1.2). 

The proof of <All-IF distrib>is as fallows. 

n m
 
ALI g. IF b. P ..
 
i=1 1 j=1 J 1 J
 

n m
 
IFb,v .... "b (ALTg.IFb.P .. )
 

m i=1 J. j=1 J J. J
 

(by .,(IF-true unit> (1.7), as b,v ... V'b :: true)
m 

m n m
 
IF b (ALI 9. IF b. P .. )


k1<=1 1=1 1 j=l J J.J
 

(by(IF- v dislrib>(1.4»
 

m * * n m *
 
IF b (IF b (All g. IF b. P ))

k k ijk=1 1=1 1 j=1 J 

where b.,* = ., b,"' ••• 1\1b _t b (by lemma)
i i 

m* *1'1 .m* 
IF b (IF b All g. (IF b (IF b. P .. »)

k k kk=l 1=1 1 j::1 J J.J 

(by.,(IF-ALT dislrib>(2.10), since no variable input 

in a 9 appears in a b )
1 j 

m * ... n m *
 
IFbk(IF ~LT 9i (!F bk 1\ b * P ))
bk j ij

k=1 1",1 J=1 

(by <'1\- IF dislrib)(l.B) and <IF assoc>(1.1» 

m * * n * IF b (IF b ALT g. IF b Po ) 
K=l k k i=1 1. k 1. k

(by<lF -~unit>{1.5) and.(.IF-sym>{1.3) 

since b * A b ~ = false when j I. k)
k J - 

m * * n
 
IF b (If b (All g. P. »

k k k1=1 1. 1.k=1 

(by <IF-ALT distrib>(2.lO)) 

m n
 
IF ALT 9 P. (oy the lemma)


1 kk=1 i=1 1 
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J. The normsl farm 

~e cannot claim that IF/ALT is a normal farm since even though it 

has a far more restricted syntax than general occam, it is still possible 

to have equivalent programs with essantial1y different syntax. This is 

because ita construction did not take account of many of the equivalences 

that can arise between IF constructs, betwsan ALT constructs, or as a 

consequence of <IF - ALT distrib) (2.10), tha law which relates the hm. 

The following examplas illustrate soma non-trivial forms of equivalance 

that ars not recogniaed by reduction to IF /ALT. After each example we 

indicate tha way in which our normal form will solve the problem 

illustrated. 

a) It ia possible to have ciause5 in IF constructs that are never 

executed, becsuse tha associated boolsans must always evaluate to falsa. 

Some such cases are obvious, as when ~ ie itself one of the booleans, 

but SOJllEl are more subtla, as in 

If If 

Jl. rrod 2:::1 x mod 2::: 1 

If Q 

X ::: a 
p 

x # 0 

o 

where, in the lefthend proceas, one of ths boolaans in the innar IF is 

always false because of its context. 

In the normal form all such clausas will ba aliminated from 

conditionals by using "IF-false unit)(1.5). Difficulties such as 

thosa poeed by the above example will be avoided by making sure that 



any boolean appearing within the "scope" of another is stronger than ita 

n 
The above example also illustrates the point that if, in l!, b Pi'

i 

any of Pi is a condi tional, then it may be unfolded usIng 

< '" -lr distrib > (1 a6), etc. The normal form never has one Ir directly 

as th3 argument of another. 

b) It is so!tE!times possiole to make a conditlonai choice before it is 

strictly required, and always possible to introduce a meaningless choice 

(bet~een two identical processes). Consider the process 

IF 

x = 0
 

ALT(c:l p)
 

x>O
 

ALT(clO Q)
 

x<O
 

STOP
 

This has essentially different beheviours dependIng on x ~O or 

x.( 0 (it either can communicate or not): this conditional choice is 

therefore unavoidBbis a On the other hand, the choice bet",een x = 0 and 

x>O can be postponed to (at least) the next step: it is only the 

value communicated down c that is at stake, and it is possIble to 

construct a single expreesion thst takes the correct value in all 

states ",ith x~O. If b,e,f are expressions, we "'ill use the notation 

e{b}f for the expression that takes value e if b is "true" and f 

if b is "false". (We do not specify its value for other values of b.) 

Tt-e pro~ram "bove may be transformed to 

IF 

, ~O
 

ALT(cl(11=X'=O*O) lr(x.=O P, x~O Q»
 
,<0 

STOP 
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by B combination of substltution of expressions, .cIF" sym>('.J),
 

.L..J--1F" dislrib> (1.8) and <ALT-If d19trib) (tha derived lew proved
 

at thil end of Section 2).
 

In our normal Form only strictly necessary choices will be ~adB, 

end these will be made as late as possible. 

c) There are 88V8ral llJays in whlell apparently different ALl
 

constructe can give the sallE effect. For example,
 

ACT
 

c1'
 
P and ALT(C?X p.~) 

SKIP 

ALT(c7x PI j;) 

arB equivalent. 

If the communication option of the first process is taken up, 

the en~ironment cannot tell it is not operating the second (for exactly 

the same option ia present there). IF that option ia not oFFered or 

not takan up, the first proces9 quickly transForms itself' (by the 

operation or tha SKIP gUBrd) to the second. 

Tha above equelity Cannot be proved from our edsting lalols, since 

(aa Ille halle elready stated) the lallls of ALl are not yet complete. 

Wil 1oIi11 shortly develOp the further lallls needed to Counter this type 

of eqwlIslence. 

d) If, at some point, a program can output several different 

expressions on the eame channe1. 0 r assign several di Ffere nt expressions 

to the 99m8 veri9ble, some subtle difficulties appear. (Such behaviour 

can easl1y ariae in occam because of nondeterminism.) A pair of 



A9. 

expre9sione may, as the state varias, Bo.tlet1mss evaluate to the sarna 

value and 90metimes to di fferent values. For example 

ALT 

c:o 

p 

cHx mod 2) , 
is clear 1y aqui\lslent to 

" (x/llOd2)=0
 

ALT
 

c:O 

AL T 

SKIP 
p 

SKIP, 
(x mod 2) I:- 0
 

ALT
 

c:O 

p 

c :1 , 
since, if (x ",od 2) ::: 0, corrmunicating a een lead dOllln either brench 

of the first program. 

In our normal form we will insist that if t~o expressions are 

both a\lailable a9 outputs on the 8ame channel, or for assignment to 

ths seme variable, then they..!!!!. different. (In no stats ",here they 

are ","aluated do they taKe the 9ame value.) 

[lien this rQ strietion Is not ",nough: consider the followIng 

Pair of processes a 
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ALT ALT
 

SKIP SKIP
 

)(:=0 x:=x mod 2
 

Sl<lP 51( I P
 

x::::1 )1;:=1- (x mod 2)
 

They are clearly equivalent, even thougn there is no one-ta-one 

matching between the pairs of expressions that appear in them. Just 

because, in every state, tos sets to"S and Lx mod 2, 1 - (x mod 2)1 
are the 9amB, does not mean that there is any uniform equivalence 

between the individual expressions. In the normal form ...,e are forced 

to accept only one of tnesB representations; lila choose the left hand 

one by insisting that pairs of expressions [8,,8 1output on tne same
2

channel or assigned to the same variable be ordered. This means that 

in all states Where thsy are evaluated, €I, (say) is always strictly 

larger than 8 " (The linear order chosen is of little consequence,
2 

provided it is expressibls in the language. We lIJill assurTIi! the 

identification of all posaibla expression values lIIith distinct integers.) 

For a convincing constructlon of a normal form it is not enough 

merely to llet a felll types of equivalence that can arise and sholll how 

to deal with them. This approach can never tell us that there are no 

more (even more subtie) equivalences lIJaiting to be discovered. Instead 

we must construct a normel form sxplicitly around tne semantic 

properties of programs: it should be obvioU9 that different normal 

form programs are different gemanticslly. A good example is "full 

di9junctive normal form" for propositional formulae. There is an obvious 

and close correspondence betllJeen ths syntex of full d.n.~. formulee and 

the underlying gemantics (functions from truth assignrTli!nt s to [true, false1). 

An occam process can be thought of as acting in steps: a step is 

either a single communication or the act of successful termination. 



Tha nor mel form ""ill cherscterise trs first step of a procese' 

bahevlour using the hlghast lavels of syntax. and rely On inner 

levels to deal ~ith subsaquent steps. Tnere are three essentially 

different waye in which the flrst step can be influenced. 

(i) It can depend on tne values of the program'a variablea. This 

type of choice 1s typified by IF conatructs. 

(it) I t can depend on internal decisions by the procesa tnat are 

nondeterminiatic and invisible to the envIronment. Trs purast form 

of thie is in .IllT constructs wi th SKIP guards1 for example 

AlT(SKIP P, SKIP Q) is a process that is frae to behave like P or 

like Q, the choice depending nsither on the environment nor on the 

program's variables. 

(iii) An occam procass can offer its anvironmant a cnoice of 

communicatlone: its firet step bahaviour than depends on the choice 

made by tha environment. This choice might be at the level of 

cnooeing \IInet to output to the process along a particular channel. 

or of choosing (vie an AlT with communication guards) which chennel 

to conrnunicate on. 

To deacribe a process' firat step behaviour we "ill thus use 

three ievals of synta,ll(: assantially one for each varIety of cno1c8. 

The normel form has two parameters. The first is a boolean 

expression representing all facts known about the process' free 

variables. Tnis is necessary because, as ~as shown in example (a) 

above, it Is necessary to take account at inner levels of conditionals 

already passed through. The othar parameter, Inherited from IF/ALT, 

is a list of free variables. 
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To keep our individual definitions as sirTllle as possible we 111111 

defire two sorts of program mutually. A b,~- normal form program 

hag cDnditlonal choice (type (1) above) at ita outermost level, while 

8 b,~- ALT pattern has a mi;w;ture of the otnsr two. 

Definition A b,~- normal form is a progrBIII of the form 

, 
IF b.	 P .• 

i=1	 J. 3. 

whets the tl partition tit for no i is til == false, and the Pi Brei 

distinct b I~- AL T patterns.
i 

(ALT patterns, perhaps with different booiean perameters, are distinct 

if thet cannot be reconciled to a s1ngle choica, as lIIas done in 

example (tI) abo\ls. A formal definition of this notion llIill be supplied 

later.) 

An ALT pattern will be a way of Characterising the behaviour of 

a process whose general shape of first-slap behaviour is the same for 

ell permitted initial velues of ite free veriablee. This "shape" is 

determined by looking et the renge of first step behaviours open to 

the procees. 

There are four essentially di fferent things a process Can do on 

its f!rat step: 

(i)	 it diverges; 

(il)	 it cOll'lmunicatea with its environment (and goes On to its second 

stEip) ; 

(ill)	 it stope because, even though it has not terminated, it cannot 

ague ~ith its environment on any communication; 

(iv)	 it terminatea in some etata. 



The "shape" of a process' first stEp will be a mixture of 

possibilities from the above. NOndeterminism within the process, 

and the many choices open to the environment, mean that any mixture 

of these containing at least one of [i,iii,iV} is possible. (It 

is impossible to construct a process that commUnicatES in every 

circumstance. This is because any process can be faced with an 

environment that ""ill not agree to any communication.) Recall, 

however, that we havs ChOSEn to ioentify all processes that can 

diverge~ Thus.L ,,"ill be a b,~ - AL T pattern, anD all others will 

be divergence-free on their first steps. 

The other b,~ - AL T patterns are essentially just lists of the 

possibls combinations from (ii), (iii) and (iv) above~ 

Definition The program P is a bt~- ALT pattern iff it is ill!::l§.r .L or 

N 
VAR y" •• ~, Yn: ALT 

i",,1 
g. 

J. 
P. 

J. 

,,"here there are integers K, L ,,"ith O!f. K(: L ~ Nand K< N such that 

, "i~K implies that 9 has one of the forms C?Yj and de, and that
i 

Pi is a b,~ -normal form. All input channeis are distinct, 

and the (distinct) variables used in input guards are 

precisely Y1' ' •• 'Yn (none of which is a component of ~). 

y j is not free in gi Pi unless 9 "" c?y j. If c!e and elf
i 

are two dIfferent 9 then bl=e<f or bl=f<e~ For each i,bound(Pi)
i 

is disjoint from fres(P), [Y1' ••• , Yn\ and the components of .=:;. 

K<.i~L implies g. is SKIP and P. is fill 9. p. where the X. (K<i~L) 
J. J. JEX J J J.i 

are incomparable subsets of (1, •••• K} with the property that 

if 9 = cle and gs "" C:f (both outputs on the same channel),
r 

then s£\ ~rE:\~ (The sets X and V are said to be incomparable 

if X~Y and vfx.) 
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L <: l{.N implies gi is SKIP and Pi Is !':=~i ILIners, if lEI denotesij 

the jth expression in the vector ..!Ii' ILIB ahJays have 

b F B.. orb);:8ij >Skj orbFBij<Skj'" Furthermore,Bkj 

if i ., k, tMere eXists some j lLIith b F 8 .. ., lEI .• 

'J 

~J kJ 

Clearly the first K guards correspond to the JJrocess' possible 

COllVllunications, the naxt L-K to tha minimal combinations of 

COrmlunlcations it cen choose to accept from (but not terminate), and 

the final N-L to its possible finel states (aftar termination). The 

condihon K<N asserts that the process must be able either to terminate 

.£!. to stop .. 

The reasons for demanding that expressions output on one channel, or 

assigned to the S8me \lariabls, be uniformly ordered have already been 

explained. Most of the other constructions should be reasonably clear 

except possibly the construction of the section K< i ~ L. 

This section is present to identify those environments lLIith ILIhich 

the process might deadlock (i.e. stop becsuse it cannot agree any 

corrmunication lLIith the environment). Obssrve that the process is free 

to execute any of the corresponding SKIP guards (gi for iE [K+', •••• L1 

and cen only deadlock if it does execute one of these guards. Tr,us 

deadlock can occur if and only if the environment offers to cOflllllunicate 

on a set of channels disjoint from one of the sets represented by the 

Pi (l<<:i~L). 

I t is clear that tr,e set of such environments lLIould not be changed 

by intrOducing an additional option lLIith a largsr set of p'S communications 

than one of the Pi (l«i~L). becausa ILIhenever it can deadlock, so cen Pi. 

This is why lLIe only record minimal accsptences. or in other words. ILIhy we 

insist that the Xi (I< <: i~ L) are incomparable. 
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On the other hend processes with different sets of minimal 

acceptances aTe observably different. This is clear when we note 

that, given two different collections of incomparable subsets of 

~, •••• K1, one must contain an element X that is not a superset 

of any element of the etheTe Thus there is a set of channels (tne 

co~lement of t hose represented by X) that the environment can offer 

which one process can deadlock on but not the other. 

Note that the lIJhole set [9" ••• , 9k1 or the empty set can 

appear ae minimal acceptances, but that if one of them does appear then 

it is the only minimal acceptance (i.e. L = K+ 1). The first of these 

happens When the process Can fail to terminate but there is no 

communication it can ai ther accept or refuse. The second occurs 

"'hen the process has the option of deadlocking completely: getting into 

e nonterminated state where no communication is possible. 

All output 5 along the same chennel always appear together in the 

minimal acceptances because we assume that the en .... ironment, like occam 

processes, does not have the power of selecti ....e input on a channel. 

Thus we do not discriminate between a process thet offers to output 

one of t",o values on e channel nondeterministically and one thet offers 

the choice to the en .... ironment, even if this last idea were operationally 

reasonable. No environment we allow is equipped to obser ....e such 

distinctions. The minima! acceptancee are thus essentially sets of 

channels, and 50 in constructing them we must identify all guards 

corresponding to the same channel. (This problem does not arise with 

input channels b8cause these are all, by assumption, distinct in tl.l T 

patterns. ) 

The list of communications (1 <i<K) needs to be represented 

independently of the minimal acceptaNces because not all communicatiONS 
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need appear in a minimal acceptance set. Indeed, it is possible to 

have communications but no minimal acceptances at all, as in 

ALT(c?~ SKIP, SKIP SKIP). 

Notice that each communication guard gi is alweys fallowed by 

the same process Pi' whether it appears in the communication section 

or the minimal acceptances section. This is because our semantic model 

(chosen because it expresses the weakest equivalenCe required for mast 

practical correctness issues) does nat distinguish between processes 

on the grounds of what communications can be observed aFter the reFusal 

of speciFic sets. For example, lIje regard the tlijO processes 

a) ALT end b) All 

SKIP SKIP 

All ALT 

c?x c?X 

c?x c?x 

d?x d?x 

c?x c?x 

SKIP SKIP 

All All 

c?x c?x 

STOP STOP 

c?X 

c?x 

as equivalent, sven though they have difFerent possible behaviours 

once the refusal of "d" has been observed and an input has been made 

on channel c. 

A Finer model (i.e. 01'18 identiFying less processes) might 

necessitate different processes eFter diFFerent instances of a guard. 

I t might also be necessary to include more acceptances tt'lan just the 

minimal OMS in order to accorrmodate this type of distinction. 



We can extract from each b.~ - ALI pattern an abstract shape 

for the behaviour it represents. I t is either ..L or a triple, whose 

first component is a set of directed channels, the output channels 

having a multiplicity. Its second component is a set of inco~arable 

subsets of the channels. The final component is a set of k-tuple~ of 

positive integers, where k is the length of 2';' For each i £ r, "', k1 
the set of !th components of these tuples has the form 2 •••• , nt" 

i
1 

for some n
i 
~ D. For example, if ~ = <l(" •••• x k '> the tuole .(', 3, •••• 2 > 

means "assign the smallest of x,'s expressions to it. the third smallest 

of x 's expressions to it, •••• and the second smallest of xk's expressions
2 

to it". Note that the second and third components of the triple cannot 

both be empty. 

Recall that the bi,t.-ALI patterns Pi making up the normal form 
n 

program.IF b, P. must be distinct, in that for no i and j can IF(b, P., b. P.)
J.=1 J. 3. 1 J. J J 

be transformed into a b v b ,!.- ALT pattern. We define ALT patterns
i j 

to be distinct if tney nave different abstrect snapes. Note tnat this 

correSponds 1011311 to our objective of having tne outar condi tional ~n the 

normal form determine tne shape of first step behaviour. It is easy to 

see that tllJO nOn-.L AL I patterns fail to be distinct if and only if 

there are straightforward permutations of tne communications, minilllal 

acceptances end terminations of the first that match the second (elcept 

for names of input variables and tne various expressions. but preserving 

order of expressions). If sucn a set of permutations exists we will call 

them a matching of tne t",o ALI patterns. 

Definition 

N 
Lilt p = VAR Xl' ... , , : AU Pim 

1=1 
9 i 

",!tn K.(i"-L ......, g. = SKIP and P. = ALI g. P, 
J. 1 jH J J

i 

and L<if-N 9" Q1 = SKIP and Pi 
~:=~i 
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,.
•and l.l'" VAR Y1' ••• , Y ALT hi 01
m 1=1
 

loIith I( ~ i "l ~ hi SKIP and Q. ;;: All h O. 
1. j(Yi J J 

•
al1dL<i~N

• 
~h. SKIP and Q.,. , ~:=.!i 

.. .. .. '* 
be respectively band b .~-ALT patterns. If N=N , m=m , K: K 

and L = L" a matching of P and Q is a quadrup Ie < 'V, "6',;0' }' > of 

bijection. Y, [" .,., m}--.>r, ... , m}. ~'{" ... , Kl--.>f" , K1 
;' t .... L1----;>f+l ...., L1' T 'LL+' ...., '1 ~[L+', "}K ."
 

such that
 

a) if 9 C?X then 
1 j "~(i) C:?YV(j) ;
 

if 9;[.
 de then C18• for some 8• "t(i) = 

•if 91 = C~8, 9 j = c:f, h3'(1) = c~e 

.. .. .. .. 
and h~(j) = elf, then b 1= B <f iff b 1= e <f • 

bJ !'(i) = t'6(J) Ij ",,1 
c:) if the jth components of 9. and f ,' are respectively denoted 8 .. 

.... ]. ..... J. J
 

and f;[.j then
 

b F Bij" e kj ~ b* F fj(i)j < fY(k)j 

b F 9 1j = ekj~ b* F fY(i)j "" f:r(k)j 

b 1= Sij >8 kj ~ b* 1= 'j(i)j > fT(k)j • 

Th1s completes our definition of the normal form. Our objective
 

when constructing the normal form lLI8S that two such progrems would
 

only be semantically equivalent if they were ~yntactically equivalent
 

1.n some obvious way. There are three ways 1,-, which two b.l;. - normal form
 

programs can be semantically equivalent.
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(i) The operators ALT and If (with disjoint booleans) are symmetric, 

Thus their arguments can be permuted \IIithout changing the 

semantics of a normal form program, 

(ii)	 The names of bound variables may be changed. 

(ill)	 Any ElxprBssi on can be raplaced by another one which is equivalent. 

In the case of expressions output on channels or assigned to 

variables this expression only needs to hold in the context of the 

strongest enclosint; boolean. 

Programs that are equivalent for reasons (1) and (ii) above are readily 

proved equivalent using the la\ll9. Programs that are equivalent for the 

third raason are proved equivalent by the following rule. 

Rule	 of substitution for expressions 

a)	 If e is any expreasion appearing in the program P and Fe"" e', 

then provided P', a progralfl in lIIhich 50"' €! occurrence of e has 

been replaced by e , is corract, P '= pl.' 

b)	 If b ~ e e' then IF b AL T(cle P, E,) If b ALT(c:e' P, ~). 

oj	 If b F e e' then If b )(::::e:r IF b )(:=e'. 

In fact (1), (li) end (iii) (and combinations thereOf) Bre th~ only 

ways in which a pair of b,~-norl!lal fDrm prDgrams can be semantically 

equivalent, We thus fotll\ally define equivalence of normal forll\s as 

followe. 
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n 
Defir>ition a) The b,A- normal form programs lI, b Pi and

i 
n' 
IF b'. p'. are egui .... alent if and only if n=n' and there is a bijection

i=1 3. 3. 

.,.... :[1, n"!........:,. E, ... , nl such that, for each i 1== b = b~(i)
J i 

and P is equivalent (as an ALi pattern) to P (.)'
i fr 3. 

b) The b,3. ALI patterns P and (J are egui .... alent if and only if either 

they are both....L I EE. 

N 
VAR x,. ... , x , ALT gi Pin i=1 

with K<'i'-L ~ g. = SKIP and Pi = ALT g. P. 
3. j£Xi J J 

"d L <'i ~ N ~ gi SKIP and P,, = 
~ 
x =e-1 

N
 
!:i= VAR Y1' .... , Yn: ALT hi 0i
 

1=1
 

\>lith K<.i~L ==;- h. = SKIP and I), = ALT h. Q. 
3. 3. jo!'!'i J J 

and L':::::i~N h. = SKIP and Q. = x:==f.~ 
3. 3. --~ 

and there is a matching (\).'t ,,P. T) between them such that b t= e = f 

whenever e (from p) end (from I) apoear "at the same point" (i.e .. 

gi = c:e and h~(i) == c:f, or e = e ij and and 5 uch that 
f = r,-r;l~ ~ 

1 ~ i ~K i~ lies that Pi is equillalent to "" XnV ]Q~(i) L 
/<Y~(l) ...., Y~(n» 

as a b. J; - normal form .. 

Theorem 2 

The b.~ -normal form programs P and iJ ha .... e IF b P and IF b U 

semantically equillalent in the senSB of [RJ if and only if they are 

equivalent. 



We cannot give a datailed proof of this important result here 

since it dapends so crucially on the details of the denotational 

semantics, which have not been described in this paper. The folloloJing 

is an outline of the proof of the "only if" part. (The "if" part 

being much easier .. ) 

n n' 
So suppose P ~ tI, b Pi' i:i :: rI1 b'i Qi and 1F b P and IF b U

i 

are semantically equivalent. It is possible to recover the abstract 

shape of a process' first step behaviour from its semantics. Hence 

for every state satisfying b, P and Q must have identical shapes of 

first step behaviour. NoloJ the distinctness of the ALI patterns maldng 

up P and CJ means that the eets of booleans tb" •••• b ' and n 

{b'1' ...• b'n'1 both partition the states satisfying b according to 

these shapes. From this we can deduce that n = n l and that there is a 

bijection <T" [1. ... , n\ ~r ..... n~ SUCh that for each 1 ~ i ~ n, 

i J:= b b';"(i) and either Pi == Q$(i) ~..L or there is a matchingi 

b£JtloJeen Pi and l{,-(i)" In the latter case it is easily shown that the 

matChing in fact yieldS an equivalence once induction has been useo to 

deal with lower levels. 

Three more laloJs 

There is an important gap that needs to be filled: the last three 

laws of ALT. They all concern SKIP guards in AL T constructs: the 

situation where the process is given an option that it can choose 

invisibly and automatically. In particular, they shOW what sort of 

equivalences arise between the type of nondeterministic processes these 

give rise to. I n studying these laws the reader should bear in mind our 

philosophy that nondivergent processes are equivalent if they have the 

same communications, minimal acceptances and terminations, and if their 

poseible behaviours after each communication are equivalent. These laws 
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more than any otht!r5	 depend on the lUay our semantic model treats non

determinism, and ... auld probably need to be revised in other :systems. 

The first law says that if the process communicates, the environment 

is not intsrested in ~hether this occurred before or after a SKIP guard. 

(2.1 1 ) ALT(SK1P	 ALT(9, p,.s,), 92 Q, ~2) 

ALT(SKIP ALT(9, P, 92 q, ~1)' ~2) 

provided 81 thaI' g,	 c?x and 9 C?y
2 

c~e and 9 df <.:AL T - SKIP sym>.2!. 91 2 

The fact that the process on the left hand side has a communication on 

the same channel as 9 within the inner ALT ensures that both processes
2 

have the 5ams minimal acceptances. The fact that, in the case 

9, = cle and 9 = elf. e need not equal f. expresses the fact that the
2 

enviro~m8nt is not capable of inputting selectively on channel c. 

Tile second law allows us to aliminate nested JILTs with SKIP gu~rds. 

It says that if an AlT can SKIP to a second AlT, IOJhich in turn can SKIP 

to P, then all other options in these ALTs are in exactly the same 

position: they might be offered, or might be ignored in ravour ef P. 

(2.12) AlT(SKIP	 Al T(SKIP P, £,,), ~2) ALT(SKIP P, ~" .92 ) 

<Al T - SKIP reduction> 

The final lalOJ depends on the fact that we are only interested in 

~ acceptance sets. Thus the foilolOJing two processes lOJith the same 

communication options (and subsequent behaviours) are equivalent: 

(2.13)	 ALT(SKIP ALT(f,l)t SKIP ALT(~" ~2)' ~3) 

= Al T(SKIP AL T(~,), ~2' Ji 3 ) 
.( convexity> 



The left hand process can SKIP to twa options, one of which is a 

subset of the other. If one of the lists £, and £2 contains a SKIP 

guard the equivalence is quite Ilasy to see. If neither doea it is 

clear that both processes have exactly the same possible communications, 

and furthermore any environment which can deed lock with either can 

deadlock with SKIP ALT(£,) or some SKIP option within.E.3. 

we nOIll have enough laws to completely capture the semantics of 

our version of occam. There is one e)(ception: the cese of uninitialised 

variables. The nondeterminism introduced by these is of a particularly 

difficult kind. Given that any instance of ona of these is erroneous, 

it is not ....arth putting a great deal of effort into their study. Any 

use of such a variable by a program will show up in its IF - ALT fou. 

We lIIill thus not attempt to transform any further an IF- AL T program 

lIIith the "uninit Ldised variabla" construct .... ithin it. (Notica that we 

have not included the possibility of uninitialised variables withIn normal 

form programs, since no bound variable is ever read until it has be~n 

input to.) 

Given H-eorem 2 abova, the following theorem sholo!s thet we ha\l8 

achieved our objective of completely characterising the semantics of 

finite programs. 

Theorem 3 If the list..A conteins avery free variable that the finite 

program P ever inputs or assigns to, and if P never evaluates an 

uninitialised variable, than there is a~• .3,- normel form program pI 

such that free(P'}s free(P)v~ and P = pI Is provable from our !aillS 

and the rule of substi tution for e)(pressions. 

8y virtue of Theorem 1 it is sufficient to prove this for tha case 

when P is 8n~- rF/ALT program. 
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The proof of Theorem 3 takes very much the same form as that of 

Theorem 1: it is a recursive procedure for transforming If" b p to 

b,~- normal form, where P is an ~ - IF/AL T program without uninitialised 

variables. Indeed in some lIIays the proof is rather simpler than 

Theoren " since it dD~S not need such a complex structure of nested 

recursions. (The reason for this is that IF/ALI and normal form share 

ths property that syntectic structure corresponds closely to e)(ecLJtion 

or-der: tl1ings at 111911 syntactic levels are executed first.) 

Theorems 2 and 3 together give us a relative completeness result: 

relative to the knowledge we ere assuming about expressIons, our 

algebraic laws are complete with respect to deciding the equiualence of 

finite programs. Recall the relation P G [) introduced in the second 

section, meaning "0 is more deterministic than P". This lOjas formally 

defined 

Pi;Q 5 P ALT(SKIP P, SKIP Q). 

It is therefore (relatively) decidable for finite programs using our laws. 

It is a fact that, provided the set of "basic ualues" that 

expreSSions can take is finite, the finite programs are finite in the 

lattice-theoretic Sense of the latord. In other words, if D is a directed 

set of processes (under ~), P is finite and UD ~ P, then there is SOIfE 

QED euch that 0 ~ p. Thus the follolating theorem is an easy corollary to 

Lemma 3. 

Theorem 4 If P and Q are t~o occam programs with the property 

(~) v"""p t1 €. FIN(rp'). 3r"01'~FIN(rOl). p'GQ' 

then P~Q. If the underlying set of basic values is finite, (;;:..) holds 

if and only if P!; Q. 



Since P = GI is equivalent to P!;Q and P ;lQ, Theorem 4 proves the 

soundness and, in the finite set of values case, completeneas of the 

following infini t ary rule for decidIng equivalence. 

In finitary rule 1 Suppose P and Q are such that 

vt'p" £. FIN(rp') ~ 3 rQ"E: rIN(rO'). pl£ O' 

and VU"£.FIN('-q'). :3,'-P"£FIN(t'P'). Q'l:;P' 

then we mey infer p = Q. 

This rUle, togetner with our laws and the rule of substitution 

for BKpressions is enough to completely characterise the aemantica Df 

occam if the set of values is finita. 

Our use of an infinitary rula, ""nich requires an apparently infinite 

amount of ""ork to verify its preconditions, appears undeairable. indeed 

for any particular finite value set it ""ill be poseibla to give a co~lete 

finitary rule based on the fact tnat, aince any program only containa 

finitely many variables, it can be regarded as e finite etate machine 

(With a huge number of states). However any euch rule would be inelegant 

and be i~ossible to apply in practice because of the prohibitive amount 

of case cnecking required. Indeed our infinitary rule may well be more 

practical. since it will be poseibla to veri fy its precondi tione by 

induction in many applicatione. 

1t snould be noted that tnere is no chance of 8 complete finitary 

rule when the value space is infinite. ror eKample we could take our 

value epace to be the integers (with the truth values elltJedded eOllllhOlll). 

We rastrict the language of eKpressiona to the co~arison and boohan 

operations (including 1: t- see Example b of this section), + and -. 

This means that the facts b F b lIIe aI'S assuming ara in principle1 2 
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decidable,1 end so add nothing to the rflal pOlller of our syatem. A
 

complete finitary rule for this language would allOlll us to decide the
 

halting of erbi trary register mschine programs; this is lIIell-knollln
 

to ba impossible. (We have taken csre here to ensure that an
 

unscrupulous user could not make use of ths calculus of expressions
 

to reason about the lsrge scsle structure of programs. It lIIould of
 

courSE be completely outside the spirit of our style of proof system
 

for hill aver to do this.)
 

Unfortunately Infinitary rule 1 ss it stands is not strong enough
 

to give us s complete system IIIhen the set of basic values is infinite.
 

Suppose the value space is the integers, and consider the fallowing pair
 

of programs.
 

If WHILE yfo
 
,~O SEQ
 

SEQ and y:=y - 1
 

Jl:=Jl+ y x:=x +'
 
y:=o
 

,<0
 
.L
 

These are equivalent, but the rule does not prove this because the
 

left hanQ program is finite but is not waaker thsn any finite syntactic
 

approximation to the right hand program. This is bacause, aa the
 

initial state variee, the number of itarations of the WHILE loop varies
 

unboundedly.
 

There are several methods of extending our rule to cope lIIith this 

problem, all of which are essentially lIIays of considering programs 

restricted so that we only need lIIorry about a finite set of values at a time. 

1.	 The tneory of these e:-:pressions reduces to that of Prestlurger
 
arithmetic (see, for exampl~ iF]).
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It is quite easy to restrict normal form programs to finite 

sets of values. Given any list of variables oX and finite set of constant 

. 2
8;l\prs5sJ.ons F. it is easy to construct a boolean b; which is true if 

and only if every element of oX is in Fa All loiS have to do is to 

F .
introduce extra conditions of the form t:r J.nto the conditionals of 

the normal form, II.llth an "escape" clause of .J... • 

Definition 

n 
a) If P = IF b. p. is a b,x- normal form program and F is a finite 

i=1 ~ 3. ..., 

set of constant expressions we define p,l. F to be 

IF( ,b
F ..L, (b~ .... b,) P,H, •••. , (b;", qJ PnJ. F)X _ _ 

where J'. is the list of all variables appearing free in p. 

n 
b) If P = ALT g. Pi is a b,x-ALT pattern and F is a finite set of 

1=1 ~ ..... 

constant expressions we define PJ.F to be the program in which J. F is 

applied to each normal form appearing after a communication or within 

a minimal acceptance. 

(Note that P~F need not be a normal form program if P is, since the 

clausee in the IF 
s 

might be false or not all distinct.) 

The following lemma expresses the important properties of the P!F. 

Lemma 4 Suppose P is a normal form program and that every value is 

expressed by some constant e;l\pression, then t,oIe have: 

a) {;~F IF is a finite set of constant expreSSions} 

is directed (under!;;) with limlt p. 

2. A constant expression is one which contains no variables. 
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b) "or each r, if 0 is a directed set of processes with 

UD;J~lF, then there is some ~E:J with ]~P~F. 

'JJe car associate a set of these "ultra-finite" prOc;rSr:'15 with each 

occam program P as follows. 

pc) {P'~F\F is a finite set of constant expressions and 

~, is a normal fOrm equivalent of some 

~'''€FIN(P)~. 

lemmas J and 4 now combine to prove the soundness and completeness of 

the following rule. 

Infinitary rule 2 Suppose the programs P and] are such that 

Ye' ef(p)·'3 Q' E..F(~). p'<;:q' 

and Y]IEJ(Q)."3 PIE-Y(P). L.'Gp' 

then P = Q. 

cJJB have now completed our Characterisation of the semantics of 

occam. The algebraic laws, infinitary rule '2 and the rule of 

substitution in expressions provide a sound and complete system for 

decidin~ the equivalence of programs. Unfortunately, infinitary rule 2 

is lik,,1y to be much harder to use in practice than infini tary rule 1. 

The facts that it relies on transformation to normal form and uses two 

separate types of appro:.<:imation mean that its hypotheses wi 11 be much 

harder to prove by induction than those of the earlier rule. There 

may be ~lternative rules that are not so problamatic; in particular 

it shoulc be possible to eliminate the need to transform every program 

to normal form. This is a topic for future research. 



4. Conclusions and prospects 

In the first section of this paper we saw tha--:: al:;ebraic laws 

provide a novel but precise Framework For describing ano deFining 

occam. The completeness of this description was shown by the rest 

of the paper. This approach can also be used to good eFFect with other 

well constructed languages: this is illustrated in /Jawil, where a 

simple sequential languaqe (Oijkstra' s lanE,uage of guarded commands LV ) 

is considered. 

The algEbraic approach to programming language semantics has 

SEveral Features to recommend it. Laws do not require the construction 

of complex mathematical models. Each group of laws is Fairly selF 

containEd and usually Easy to understand. Thay are very modular: 

changE Which, with denotational semantics, would require alterations to 

thE mathematical model and consequent revision of Every semantic clause, 

may well require the altaration of only one or two laws. 

NeVErtheless, the algebraic laws can give rise to complex and 

unexpected intErations, leading to a dan~er that too many programs will 

be equatEd. It is thereForE desirable to describE thE languagE by an 

independent semantic technique (for example denotational) and prove that 

this is congruent to the algebraic semantics. Such a prooF will prcbably 

Follow similar lines to ours: a demonstration that all laws preserve 

thE semantics, the construction of a normal form, and a prooF that two 

diFferent normal form programs have difFerent denotations. Note that 

in our case it would have been very difficult to construct the normal 

form without knowing the structure of the denotational model. 

Algebraic laws alone only allow us to prove one occam program 

equal to another. They do not hElp in proving a program correct with 
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respect to some specificatior expressed in tErms of a more abstract 

description of its intended beheviowr. Correctness proofs might be 

based on concepts such as satisfactiof' (~) [H}. the weakest pre

condition DJ or l1oar8 lo~ic J!.frj}. 'JJ8 eXp8ct that these methods 

will te based more usually on the dEnotational than the algebraic 

descriJtion of occ~[;". howevp.r the laws may well be useful for 

transforming a program after it has been developed, or for making a 

prDgrG~ more amenable to somE proof technique. 

~e conclude that even though the algebraic and denotational 

semantics characterise exactly the same equivalence over occam, they 

are in some sense complementary. Each has a lot to offer to the other. 

t,evertheless, thare are a rumber of practic~l applications for 

the laws described in this paper: proving programs equivalent to one 

another, transforming programs to make them more efficient, and 

transfDr~ing programs to a restricted syntax for special applications. 

In ttle :hree following subsections we examine their potential for these 

app li cat ions. 

Deciding the equivalence of programs 

n-:e most obvious application of the law5 is in deciding whether or 

not a given pair of finite programs ere equivalent. Sections 2 l'lnd :3 

have develo;Jed a procedure for doinr; tr,is. Tris is a clear cancidate 

for automation. The cnly parts cf this procedure that are not 

immediately susceplial" to practical implementation are those that rely 

on the assumption of facts about fDc-pressions. For some languages of 

expressions it will be possible in general to decide thEse facts 

(though perhaps not very efficiently), and in any reasonable larguage 

there should be wide classes of pairs of expressions whose equivalence 



is decidal:Jle. t:ven in the absence of a cO'llplete procedure for 

decidir.Q expressions it will beposaiole to automatically tr8nsform 

eact' finite prograll' tc ncrmal form (except perhaps for the inclu5io~ 

of some false branches in I, statements). In such circumstances 

the procedure might be ate Ie to deciae the ec;uivalence of a Qiven 

pair of progra~s, and would in all other cases reduce tre question 

of their Ec;uivalenca to 2 boalean expression. It might be appropriate 

to make such a program interactive, allo~ing it to interrogate its 

user on cifFicult. facts concerning expressions. 

V,uch of the complexity of the normal form can be attributed to 

the potential nondeterminis," of occam programs. we have seen various 

ways in which prograrPs can behave unpredictably: the normal form 

needs enou~h structure to characterise all of these. In fact trans

formation to normal Form will be an excellent way of <lnalysing the 

nonceterminism of pr-ograms. 

In many practical ceses tre program will be deterministic, in 

that it cannot diverge and never has any choice over what to communicate 

or what to assign to its fr-ee variables. For these programs, and 

deterministic sec tions of others, much of the structure of our nor~al 

form will be redundant. I f we wish to store end manipulate nonTlal rorm 

programs in computers it will be worthwhile Investigating this and other 

topics to discover how they can be made more compact. 

A useful system For handling practical progrem equivalence 

questiofls must be able to deal with prugra'lls containing loops. Un

fortunately, in decidinr; the equivalence of any pair of pro;;rams involving 

UHILE loops, it is necessary to compare infinitsly many pairs of their 

finite syntactic approximations, As explainec in the pr-evious section, 

any reasonable complete system is bound to be somatimes infinitary. 
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However it is certain H'.at by extElndinc; our set of laws and rules,
 

and by the use of inductive methods, we can develop systems that
 

will require the use of infinitary rules a r;ood deel less ofter'.
 

It is thus likely thet we oan oevelop oractical finitary proof
 

techniques which arB applicable to many pairs of programs involvirg
 

'~'h 1 LiC. 

;, typical m~thOd woulG involve attemptinr;;. ta transform programs
 

to some standard form, for example the norrr,al form with the introduction
 

of lOOJS in some tightly defined way5. The incompletenes5 of slich a
 

method would appear sither from the impo5sibility of transforming every
 

prograr;l to standard form, or beCause the stendard form was not a true
 

normal form.
 

fer :such techniques we will probaoly need to ciscov8:L a nU'f:ber of
 

algebr~ic l2ws involving JJHIlL:. w8 t-ave not needed <l"y of these so
 

far. because finite programs contain no loops. Five examplCJs are given
 

below, each of which is easily oerived From our existing systems.
 

(Each requires an application of lnfinitary rule 1 and induction.)
 

(Wl) IJJHlE b P If(b SEl,I(i=', ,--,HILE b ;:J), , b SKIP) L...'J:HILE expansion;;. 

(W:) wHILE b, (WHILe b2 p) u.,'HILE b v b Ir(b P, true ..L) <:'JHIlE combination>
1 2 2 

(w3) wl-'LE b P == IF(o '.JhIL'L true 1=, .., b SKIP)
 

if no veriable appearing in b is input or assigned to by P
 

-(infinite loop>
 

('.1J4) '.•;HILE true ~:=~- .(.divergent loop,;>.L 

(W5) ~HILE b 5E~(P,_i)
 

lr(b :'ECJ(P. 'JJ~ILE b SEi..J(l<,P),li), ,b SKIP)
 

if no variable appearing in b is input or aSSigned to in J
 

.(.LJHILE reordering '>
 



In addition to laws in this familiar style, it may also be necessary 

to use more explicitly directed transformations towards particular 

standard forms. Fer example thE follo .... ing may be useful if ths 

target is a state - [;lachine liKe pro<;:ram. Note that an extra variable 

is introduced as a flag. 

(',lJ6) WHILE b	 VAR x: 

5EO	 SEW 

p	 x:=false 

Q	 uJHILExllb 

IF 

, 
SEW 

Q 

x:=false 

~, 

5EO 

p 

x: =tr ua 

if	 x is not "free in the left hand side. 

<loop factorisation,,> 

Ho....ever there is little hope that the above six laws, or any 

reasonable extension of them, .... ill be adequate for every problem likely 

to be encountered in practice. 

I mprovinq err iciency 

The second possible practical application of algebraic laws is 

for transforming programs to Improve their efficiency in some way. 

That this is possible reflects the fact that the laws, while preserving 

all essential abstract correctness properties, do not imply equal 

efficiency on either side. Occam £ives extra scope for this becaus~ it 

is a parallel language: one can improve a program nat only by reducing 
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SEU(P" •••• Pm) = 

CHKN co' ..... Cm:~rlR(Uo:~' U, :P" •••• Um:P~) 

where J = SEJ 

c lx
o 1 

c !x o , 

c 7)(
m 1 

c 7x m , 

acd P' VAR )(1 ••• x
 

5U
 

c _,7)(1
 

, , , 

r 

c _, ?x 
r n 

P, 

c lx
r 1 

c, !x, 

U claims Co for output, c for input and )(1 ••• x as variables. 
o m n 

For r E" [1 •••• , mt, U claims c 1 for input, c for output and alll J r r- r 

variablas and channels used by P except x ••• x, • 
r 1 

This transformation sets up a ring in which the values of the 

variables shared between the Pi are passed around in sequence. It 

would be easy to devise a version of this transformation in which the 

network created was a straightforward pipeline. (This would be in 

sequence with another simple process for managing the final values of 
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X1 ••• Xno ) Note that no Pi can start up until Pi-1 has terminated: 

it i9 this that makes tl-e transformation so general. but it also 

makes the resulting parallal program useless as it stands. After 

performing this transformation one would seek to introduce more 

useful ~arallalism by transforming the Pi in ways that remove the 

temporal d£lpendence between actions in different Pj. Useful laws 

for this include ~aseignment - ALT distrib:> (4.6) and simple derived 

laws slJ~h as 

S(~{~:=~, elf) S£Q{c:rf§j J, X:=8) ",assignment-output sym,,>r 2!. ......... 

SE~(~:=~, c?y) SEGI(c?y, 2!.::~J provided y is nat free in ~:=.;. 

",assignment-input sym,,> 

Unfortunately the corresponding law of input/output syrrflletry 

5EQ(c?)(1 d~e) SEQ(d!s, c?x)
 

provided x does not appear 1n e
 

is ~ true as it etands. Nevertheless it is a substitution that 

cBn be made in a number of contexts where at least one of c and d is 

used for internal communication. 

Trensformetion to a restricted syntax 

The final easily identified practical application for the laws 

is tne transformation of general occam programs into restricted subsp-ts 

of tne language. This paper has shown just how successfully this can be 

done: we have transformed every finite program to a normal form to 

lIJhich it usually bears no syntactic or structural resemblance. It seems 

unlikely that the normal form is one into which we would choose to 

transform programe for execution, but our work gives hope that trans

form8tion into other, more useful forms might be tractable. 



41'1 important application of this idea is likely to be in VlSI 

design. Occam is a natural language for specifying and describing 

systems such as vlsl ciI'cuits. The way in which these circuits are 

built up in a structured way out of interacting mOdules and sLbmodules 

corresponds •.' lIdl to the use of nested paI'allel constI'ucts in Occam. 

In specifying such systems we aI'e likely to use fairly straightforw~rd 

types of occam. which will make transformation easier. In particular 

the set of expression valuas is llkely to be much restricted (perhaos 

allOWing only the 8001ean values 0 and 1). 

Let uS suppose that we know that particular types of occam 

program are direct.ly implementable in silicon by some eutometed system. 

Then to imDlementa.~ircuit speclfiad in OCcam it will be sufficient to 

transform it to one of thesa implementable subsets of occam. Because 

all our transformations are provably correct, the resulting chip design 

is guaranteed to be a correct implementation of the original 

specification. 

An essential prerequisite for this work will be the definition of 

the directly imp~ementable subsets of occam. An obvious candidate is 

some stylised representation of a finite-state machine. Others will 

clearly involve parallelism and communication. The handshakan 

communication of occam can be implemented directly on silicon by 

asynchronous design rulesj and for larger circuits this is an effective 

method for avoiding problems of clock skew. For smaller circuits with 

highly regular communications, the occam handshake can sometimes bs 

replaced by a clocked synchronous transfer. 
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Appendix: A summary of the laws Df occam 

a) The camplete set of laws 

Laws of IF 

(1.1)	 !F(£" IF(£'2)' &3) = IF\S" 5.2 ' £3) <IF assoc,. 

, 
(1.2)	 IF b, P, If, b.• P., where b. * 'b, /I.'.'" ,bi _ 1 Ab ii=1 ). ). 1=1).). ). 

"'IF priority> 

n , 
(1.3) IF b. P. IF b-rr(i) Pi\(i) for any permutation 1I of ~ ••• n1 

i=1 ). .1. i=1 
provided b. 1\ b. = false whenever i t- J''J--- 

",IF sym> 

(1 .4) IF(b, P, b
2 

P, E;) = If(b, \of b
2 P t oS) <IF - " distrlb'>
 

(1.5). rF(fals8 P, So) = IF (oS) ~.IF -~ 'Jnit '>
 

(1.6)! lr~, b STOP) = J fC,S,) <,iF - STOP unit '>
 

(1 .7) Ir(~ p) = P .t:. IF - tr-ue unit>
 

m m
 
(1. 8) rF(C, b IF b. P.) = IF(C, IF b .... b. P.) <" -IF distrib)

... i=1).). ..... i=' ).).
 

Laws of	 AL T 

(2.1)	 ALT(ALT(~1)' £2) ALlCE,. ~2) ",ALI assDc>
 

n
 
(2.2) All G. A~T G,,-(i) Ii" any permutation of (1 ... n J 

i=1 ). i=1 

<AU - sym> 

(2.3) ALT( ) STOP	 ~AL T - STOP unit> 



(2.4) ALT(b lr.	 9 P,.9,) IF(b ALT(g p. ~), .,b ALT(~» .,('boolean 9uard slim> 

(2.S) ALT(SI<::IP	 p) = P <ALT - SKIP identity" 

(2.6 ) ALT(c?x SKIFJ = c?x	 Linput )

(2.7) ALT(c~e SKIP) = cte	 ",output ,. 

(2.8) ,ilL T(g P,	 G) = ALT(g P, 9 P,~) .cAU idempctence" 
~ 

(2.9) ALT(g P,	 9 J,~) = ALT(g ALT(SKIP P, SKIP Q),~) -(guard dLstrib> 

n 
(2.10) IF	 b ALT g. P. IF bACT 9. (IF b P.) provided no variable appearing

i=7 ~ ~ h,,1 ~ ~ 
in be is input in any gl 

<IF -ALT distrib> 
(2.11)	 ALT(SKIP ALT(g, P, 51)' g2 LJ, ~2) 

= ALT(SKIP ALT(g1 P, 9 0 , £,), ~2)
2
 

provided ~ 9, c?x and g2 ~ c?y
 

c~e and 9	 = c:r '(ALT-SKIP sym>.2E. 9, 2 

(2.12) ALT(SKIP ALT(SKIP P, £1)' £2) ALT(SKIP P, ~1' ;:2) 

*" .cAL T - SKIP reduction> 

(2.1:3)	 ALT(SKIP ALT(E1)' SKIP ALT(E" ~2)' ]3) 

= ALT(SKIP ALT<'~1)' ~2'£3) <convexity> 

Laws of assignment 

( 3.1)	 .(. > ;= <..,. SKIP "SKIP '> ------: 

(3.2) "Xi 1i =	 1 ••• n). := "ai\i =, ... n) /~ 
=<X-n"( i)Ii ••• n>:=..<•.,"_( !)Ii::: l' ••• n> 

ror -rr any permutation of {1 '" n1 <C!SSi9nmen~/ 

(3.3); x -to y := e + y = x := e <.. identi ty BssignlTlBnt>........ -.... ..... ....
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Laws of 5D 

(4.1) SE~{) = SKIP <S(ij-SKIP unit> 

(4.2) m(p,.<:,) = SEO(P, SEO(,<;,)) ..( SEQ aSSDe '> 

nIe n
(4.3) 5[~(IF b. P., Q) i~~ 5£(1(1='1' J) ,,(SE\.l- IF distrib')b11=1 J. J.
 

Ie n

(4.4)	 SEQ{ALT g. P., Q) = ACT g. 5E~(P., ~) .(,SEW - All distrib> 

i=1 J. 3. 1=1 1 J. 

(4.5)* 5£Q(x:=e, Fr b. P.) = tr b.r!/15£~(X:",e,P.) ~assignmBnt-IF distrib"> 
..., - 1=1 1 J. 1<:::1 J. L J!, ........... 1.
 

(4,6). S[(.I(x:=e, Ij~T g. P.) = A~T g.r~/",l SEJ(x:""€l, P.) 
....... 1=1 J. 1. 1=1 J.L.." -.... 3.
 

prQvided no variable which occurs in 25-. or~ is
 

input in any g1. ",assignment - AL T distrib')
 

:\"-	 = "=f [el.] ~C(Jmbine assignments ":>(4,7) 5EQ{~::~, ~:=•.O .... ...,r..

Laws of PAR 

(5., )	 PAR( ) = SKIP c:.PAR - SKiP unit > 

n • n
(5.2)	 PAR U. :P, = PAR(U,:P" U dPAB U.:P.» (n >0) 

1=1 1. 1=2 J. J. 

where U* is the union of U U -<PAR aSSDe> 
z n 

(5.3)	 PAR(U, :P" U2:PZ) PAR(U :P2' U1 :P,) <PAR sym»
2 

n	 n
(5.4)'	 PAR(U,:IF b. P., U :Q) IF b. PAR(U,:P., U,:D)2i=.1 3. 3. !=, 1 3. 

provided b, .., •• , v b =: true .::::PAR - IF distrib;>n 

(5.5)* PAFI(U , :)(:=8, U,:y:=f) !. + J:. := !!.. +..! ,,-PAR assignments>........ -. ......
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(S.6)t U sac! g. lidS &f"Ie of t h 
,.. rot 5~., 

n 

then P,~R(U,:~LT 91 Pi' U2:~:==3.) = ~LT 9i PAR(U,:P i , U2:~:=~) 
~:=1 1£X 

where X is the set of indices ie:t1,2, ••• , n} such that 

g. = SKIP 
~ bJ>-- I, 

0' c E.outs(u,) - ins(U )
9 , <~~el and 2 

0' g., = c?x and C €ins(u,) - outs{U2). 

.:::: expansion 1 > 

m 
(5.7)* If P = ACT g. P" and;~ = All h :lj' IdtlSFE eacl.,.-gi,I'j lii!l'5 Oile·o-fj1=1 ~ 1 j=l 

N 
the forms c?x, r 'e Br 5'Ii=l, then PAR(LJ, :P, U :i..J) All k R ,

2 r=1 r r 

where the pairs ":::::kr,R '" are precisely all possibilities from 
r 

the following: 

(1 ) R, PAR(U, :P , U :cJ) and
i 2

k, = g. =LSKIP ,h:~> 
0' k, 9

1 
=L..,gle and ceouts(u, )-ins(L

2
) 

0' k, 9 =/C?X and cE:ins(u, )-outs(U )1 2 

(ii) R PAR(U, :P, U :U ) and 
r 2 j 

k, h. = SKIP) 

h; }~e~ 
2 

'nd c£outs(U )-ins(u, )"' k, 

h =1:1X and cdns(u )-outs(u, )
j 2"' k, 

(iii) Rt' = 5EQ(x:=e, PI\R(U,:P , U :CJ ))
i 2 j 

k < SKIP am- (bl\)C \:{( ) Soc L(" 

"I...:h (";l,\, ' 

9 ~de and h =~C?)( and c€ins(u ) n outs(U,)
i j 2 

, 
=1c?X and ={ete and C6ins(U,)n outs(U ).9i h j 2" 

~e)(pansion 2 > 

\ 

\ 



Laws of declaration 

(6.1 ) V~'! x,:(VAR x : ••• VAil Xn:P) ••• ) = V;\'l x x :P <VAR assoc>2 1 n 

(6.2) VllR x, : (Vllfl x
2 

:p) = VPI'I XZt{UAR x, :p) ",-VA"! sym> 

(6.3) \';R x:P = P if x¢frea(r::) -<.V"R 81im > 

(6.' ) 'JAP. x:P = VAR y:P Pix] if y f:. free(P) < Vr;R rename> 

(6.5 ) 
n 
~LT 
i=1 

9
i 

(VAR x:P
i 

) = VAR 
n 

x:(ALT 
i=1 

9. P.) 
~ ~ 

(6.6) 

provided x 

, 
IF b 

i 
(VAR 

L=' 

is free 

x:P
i 

) 

in no 9
i 

, 
UriR X:(IF 

i=' 

b i Pi) 

.:::. VAR - AL T distr ib"> 

provided x is free in no b 
i 

""VAR - IF distrib-'" 

(6.7) 5E1J(VAR x:P,'J) VilR X:SEU(P,c.J) if x ¢ frEe (u) ~VAR-5E[J'> 

(6.8 ) SEU(P. \jAR x:1J) v;l.R X:SEQ(P,U) if x ":free (p) ",-UAR - SEJ Z> 

(6.9) PArt(U,:(VAR x:p), U
2

:Cl) = VPlR x: PAR(ut: P,. U
2
:PZ)' 

provided x is not free in uZ:P ' where uf is U, modified to
Z 

include a declaration of the variable x (in tr'E! notation of ffiJ . 

it is the unIon of U, and USING(VAR x)). <VAI1-PAR-,.. 
(, 'l )

(0," \ 
(6.10] AL T(C?X P,.9,) VAR y, ALTt?y 5EJ(n=y,P),.!<) 

provided x ~ y and y is not free iry' P or ..9. <input renaming,> 

b) 
(6.11]f VAR x: (...:.x') .... y) := (.£e> + f) VAR x:(y := f) <assignment elim)

~ ~ - ~ 

(5 6 '2) \jAR x: P VAR x:SE~(VAR z:(x:=z), p) .£initialisation> 

(6.13) [HAil: c, ... Cn:P P if none of c c appears
1 n 

Free in P. LeHAN elim> 



Laws	 of .J... 

(7.1 )f ALT(SK IP-L,.,9.) ...L .(.'ILT-SKIP zero,:>" 

(7.2)f SU(..1..- 9 p) ...L <,S[:., left zero '>" 

(7.3)f S[L;~::=~, -L) ..l. <,::iE ... right zero>" 

(7.4)1 PAR(U,:...L, U
2

:P)	 l..PAR zero>"...L 

b)	 Some derived laws 

(01)	 SEr:(P, SE'J(i.:l,R» SEQ(SELJ(P,Q),R) (SEQ binary assoc) 

n m m n 
(D:?)	 lILT g. (IF b.P .. »)=lFb. (ALT g. P .. ) 

i=1 1. j=' J 1.J j=' J i=' 1. ~J 

providing b v ••• v b == true and no variable input in a gi
1 m 

appears in a b .• ""AlT - IF di9trib') 
J 

(D3)	 SE<J(SKIP, p) SEJ{P, SKIP) p (SU -SKIP unit) 

n n 
(04)	 SU(P,.IF b. L1.) IF b. SEJ(P, U.) 

1.=' 1. ~ i=1 1. 1.
 

ifb,V ••• Vb = true and no variable in any b is
 
n i 

altered by P. (SEQ - IF right distrib) 

(05)	 PAR(U, :P, U :SKlP) PAR(U, :p) = P
2 

provided U, declare9 all global variables and channels 

used by P, and U declares none of them (PAR - SKIP unit)
2 

(DoS) S(l«~:=&, elf) SEQ(CH~<lS.J, J:;:=!) ,,-assignment-output 9ym> 

(07)	 SELJ(=.:=.;:, e?y) = SU(c?y, .!:=~) 

provided y is not free in .!:=2,' ""assignment-input sym> 
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The semantics referred to in this ~aper is that of version 

(b). Tre only si~nificant oiffer9nces bet~een these 

papers are in the treatment of unInitialised variables and 

in mwitiple out~uts on the same channel: version (a) 

distioguishes between ';LT(SKH' el1, S..:rr:: el2) ar.d 

ALT(cl1 SKlr::, c~2 :,KIr), but versic'1 (b) L:oes not. 
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