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Abstract 

In these lectures we introduce a notation and a calculus for specifying and 
manipulating computable functions over lists. The calculus is used to de­
rive efficient solutions for a number of problems, including problems in text 
processing. Although programming per se is not the main topic, we indi­
cate briefiy how these solutions can be implemented in a purely functional 
programming language. 
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1. Elementary Operations 

1.1 List Notation. A list is a linearly ordered collection of values of the 
same geDeral nature; one can talk about the first element of a list, the second 
element, and so ou. Lists are also called sequences, a term more commonly 
found in other branches of mathematics, but there is no difference between 
the concepts and we shall use the two words interchangeably. 

A finite list is denoted using square brackets and commas. For example, 
[1,2,3) is a list of three integers and [[ 'b', 'y', 'e'], ['b', 'y', Ie' II is a list of two 
elements, each element being a list of characters. The empty list is written 
as [] and a singleton list, containing just one element a, is written as raJ. 
In particular, [I J] is a singleton list containing the empty list "-' its only 
element. Lists can be infinite as well as :finite, but in these lectures we shall 
consider only finite lists. 

Unlike a set, a list may contain the same value more than once. For 
e..xample, [1,1] is a list of two elements, both of which happen to be 1, and 
is distinct from the list [lJ which contains only one element. 

The special form [m ... nJ will be used to denote the list of integers in 
increasing order from m to n inclusive. If m > n, then [m .. . n] = []. 

It was stated at the outset that lists are collections of values of the same 
general nature. What this means is that we can have lists of numbers, lists 
of characters, even lists of functions; but we shall never mix two distinct 
kinds of value in the same list. Given this restriction, the kind (or type) 
of list under consideration can be described in a simple manner. A list of 
numbers will be ,,-,signed the type [NumJ (read "-': list of Num); a list of 
characters will be ,,-,signed the type [Char], and so on. For example, [lNum]] 
describes the type of lists of lists of numbers, and [A .... B) describes the 
type of lists of functions from A to B. It is useful to extend this notation 
and write [AJ+ to denote the non-empty lists whose elements are of type A. 

In order that the above convention for naming types should work satis­
factorily, it is necessary to allow type expressions to contain type variables. 
To illustrate ,,·hy, consider the empty list [J. AI; the empty list is empty 
of all conceivable values, it possesses the type [NumJ, [Char], "-' well "-' in­
finitely many others. The resolution of this situation is to ,,-,sign [] the type 
[0], where 0 is a type variable. To assert that a value has type [0] is to say 
that it h,,-, type [A] for every possible type A. In this sense, the concept 
of a type variable is just a convenient abstraction for describing universal 
quantification over types. The device is also useful for describing generic 
functions. For example, the function id, where id x = X I possesses the type 
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Q: -+ cr. Further examples will be seen below. 
A general comment on our typographical conventions should be made at 

this point. We shall use letters G , b, C , •• " at the beginning of the alphabet 
to denote elements of lists, and letters x, y, z at the end of the alphabet to 
denote the lists themselves. On some occasions we shall want to emphasise 
that a particular list is] in fact, a list of lists. Compound symbols 2:8, ys and 
u will be used to denote lists which contain lists as elements. The names 
of functions will be written in italics, while infix operators will be written 
using special symbols of various kinds. 

Having covered most of the special notation, we shall now introduce a 
small number of useful functions and operators for manipulating lists. They 
will be described infonnally: precise definitions will be given later when the 
necessary machinery has been developed. 

1.2 Length. The length of a finite list is the number of elements it contains. 
We denote this operation by the operator #. Thus, 

#Ia" a,..... ""J = n. 

In particular. #1] = O. For m :S n we have that 

#Im ... n) =n - m+l. 

The type of # is given by 

# : 1"]-- Num. 

The operator # takes a list, the nature of whose elements is irrelevant, and 
returns a (nonnegative, integer) number; hence the above type assignment. 

1.3 Concatenation. Two lists can be concatenated together to form one 
longer list. This function is denoted by the operator * (pronounced "con­
catenate"). Thus, 

[QI, Q2, ••• , an] * [b I , b2, ••• , bmJ ;;;:; lalJ a2, ••• , an, blJ b2, ••• ,b"J 

In particular, we have 
l]-il-z=z-tt-[]=z 

for all lists 2:, so the empty list is the identity element of the operator *. 
Concatenation is also 4B8oci4tive~ we have 

z-tt-(y-tt-z) = (z-tt-y)-tt-z 
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for	 all lists x, y and z. 
A simple relationship between # and * is given by the equation 

#(x*y)=#x+#y 

for	 all finite lists x and y. 
Finally, the type of * is given by 

* :[aJ X [aJ - raj. 

Concatena.tion takes a pair of lists, both of the same kind, and produces a 
third list, again of the same kind; hence the type assignment. 

1.4 Map. The operator * (pronounced "map") applies a function to each 
element of a list. 'Ve have 

f * [a"a" ... ,an ] = [f a" fa" ... ,f ani· 

In paxticulax, f [J = [J. The type of * is given by 

* : (a - iJ) X [aJ - 1Ji1· 

Hence, in the expression f. X, the first argument f is a function with type 
Q ..... {J, and the second axgument x is a list with type raj. The result is a list 
of type [iJ]. These type variables can be instantiated to specific types. For 
example, if even: Num _ Bool is the predicate which determines whether 
a number is even, then 

even * [1 ... 4J = [false, troe,false, troe], 

has type [Booij. Here, !roe and false denote the two constants of type BooL 
As with other inftx opera.tors, the operator • is allowed to appear in 

expressions accompanied by only one of its arguments. In particular, we 
can write (f*) to denote the function of type [aJ - 1Ji], where f : a - {J, 
which takes a list and a.pplies f to every element. By the same convention, 
«(f*)*) is a function which takes a list of lists and applies (f*) to every 
element. 

There are a number of important identities concerning *. First of all, .. 
distributes through *; for all lists x and y we have 

f*(x*y)=(fu)*U*y)· 
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Second, * distributes (backwards) through functional composition: 

(I. g)o = (I.). (g.). 

We shall encounter many applications of these tWO identities in due course. 
Another :rule is that if f is an injective function with inverse /-1: then 

(10)-1 = (r'.). 

1.6 Filter. The operator <I (pronounced "filter") takes a predicate p and a 
list x and returns the list of elements of x which satisfy p. For ex.ample l we 
have 

even 0 [1. .. IOJ = [2,4,6,8,10]. 

The type of 0 is given by 

< : (0 -> BooI) x [oj -> [oj. 

Like *. the operator <I distibutes through *: for alllLts x and y we have 

p«x*y)=(pox)*(poy). 

We also have the laws 

p<Jq<lx = q<Jp<Jx 
p<lp<JX :::::: p<Jx 
p<fu = fo(p·f)ox, 

for all nmctions p, q and f and lists x. The first law (co=ntativity of filters ) 
says that filtering a list with a (total) predicate q, and then filtering the result 
with a (total.) predica.te p, gives the same answer as first filtering with p and 
then with q. The second law sa.ys tha.t (p<l) is an idempotent operation. 
The third law (co=ntativity of map and filter) says that mapping with f 
followed by filtering with p gives the same result as first filtering with p' f 
and then mapping with f. We can also express these laws using functional. 
composition: 

(po).(qo) = (q<)'(po)
 
(po). (po) = (po)
 
(po).(fo) = (fo).((p·f)o).
 

1.6 Operator precedence. In addition to the above operators we have 
also encountered, without explicitly mentioning the fact, the operation of 
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functional application. Functional application is denoted by just a spa.ce in 
formulae, and when no confusion can arise the spa.ce is sometimes omitted. 
Thus f a means f "applied to" a. Application associates to the left, so that 
f ab means (fa)b and not f(ab). 

It is normal in mathematical notation which deploys a number of infix 
operators to provide certain rules of precedence and association in order to 
reduce the number of brackets. We shall suppose that functional application 
is more binding than any other operator, so f x * y means (f x) * y and 
not fez * y). It is also convenient to suppose that * has a low precedence, 
so fox *g. y means (f ox) * (g. y) and not f 0 (x * goy). For the other 
operators we shall put in brackets to clarify meaning. However 1 we shall 
assume that, in the absence of brackets, operators associate to the right in 
expressions. For example, fop. x means f 0 (p. x) and not (f 0 p) • x. 

2. Reduction 

2.1 The reduction operators. Most of the operations introduced in the 
first section transform lists into other lists. The reduction operators to be 
described in the present and following section are more general in that they 
can convert lists into other kinds of value as well. 

The first reduction operator, written" /" and pronounced "reduce" I takes 
an opera.tor EB On the left and a list z on the right, ltos effect is to insert EB 
between adjacent elements of x. Thus: 

EB/[ah a2, .. ', an] = al EB a:z EB , .. EB an' 

For the right-hand side of this equation to be unambiguous in the absence 
of bra.ck.ets, the operator EB must be associative. In fact, the form EB/x is 
only permitted when EB is an associative operator, 50 the grouping of terms 
on the right is irrelevant. 

In the case that the second argument of I is a singleton list [a], we have 
from the informal description of $1 that 

$/[a] = a. 

Moreover, we also have 

$/(x * y) = ($Ix) $ ($/y) 

whenever x and yare non-empty lists. These two equations (the definition 
of I on singletons and the distributive law) are important and will be used 
frequently in what follows, 
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The informal definition of / given above does not prescribe a meaning 
for the eA-pression $/[ 1. H EEl has an identity aement €, then we suppose 
EIl/[ J = e; otherwise EIl/[] is not defined. The reason for this choice is to 
preserve the distributive law when either x or y is the empty list. Since 

a =EIl/[aJ =EIl/([al* [J) = (EIl/[aJ) Ell (Ell/[J) =a Ell e, 

and also 

a = EIl/[aJ =EIl/([] * [aJ) = (Ell/[J) Ell (EIl/[aJ) =e Ell a, 

it follows that, if defined, EIl/[ Jmust be both a left and right identity element 
of Ell. Hence, EIl/[] can only be the (unique) identity element of Ell. 

The type of / is given by 

/ : (a X a - a) X [a]- a. 

Thus, in the combination 61/%1 the operator ffi has a type of the form aX-a __ 

a and x has a type of the form [a]. The comhination will then have type Cl:. 

Some simple Cases of reduction, indicative of the general utility of the 
operatoI, are given in the following definitions: 

sum = +/ 
product = X/ 
flatten = */ 

allp = (II/Hp,) 
somep = (V /) . (p. ) 

min = LI 
max = i/ 

All the operators involved in these definitions are associative and all, except 
the last two, have identity elements. The identity element for + is 0, 50 

sum [] = 0; for multiplication the identity element is 1, so product [] = 1, 
and so on. The expressions +/ and X/ correspond to the special symbols 
L: and nused in other branches of mathematics. For example, 

1:.'1=l/j = +/1' [1... nJ 
D'1=l j = X /[1. .. n]. 

The function flatten takes a list of lists and concatenates them to form a 
single list. Since [J is the identity element of * we have */[} = []. 
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The binary opera.tors 1\ and V denote the opera.tions of logical conjunc­
tion and disjunction respectively. Accordingly, the function all takes a. pred­
icate p and a. list x and returns the value true if all the elements of :t satisfy 
p, and false otherwise. For example, 

all even [2,4,6] = true. 

The function some takes similar arguments p and x and returns true if a.t 
least one of the elements of x sa.tisfies p, and false otherwise. For example, 

some (= 1) [2,4,6J = false. 

Since 
al\true = truel\a = a 
a V false = false V a = a, 

it follow. that 0111' [] = true aIld some I' [J = false for all predicate' p. 
The opera.tors 1 and ! select the grea.ter and lesser of their two (numer­

ical) arguments respectively. Hence max selects the maximum of a. list of 
numbers and min selects the minimum. These two operators are considered 
further below. 

2.2 Fictitious values. Neither 1nor! ha.ve identity elements in the domain 
of finite number" '0 both max I] aIld min [] are undefined. De,pite this, it 
is often useful to be able to manipulate expressions involving terms of the 
fonn 1 It aIld ! Ix without taking ,pecial precautions to ensure x ¥ []. The 
same holds for other operators without identity elements. Provided certain 
rules are observed, we can- always invent a "fictitious'" value to act as an 
identity element of a given operator. Suppose $ is an associative operator, 
defined over some domain X but not possessing an identity element. Invent 
a new value e and adjoin it to X. Define $' by the rules 

a $' b = b, ifa=e 
a, if b = e 

= a$b, otherwise. 

The new operator (ill is associa.tive, has identity element e, and agrees with 
ffi on arguments in X. For example, we can invent fictitious values l' /[} and 
!'I[]- calling them -00 aIld 00 say - aIld adjoin them to the domain of 
finite numbers. As long as no other properties of these fictitious elements are 
assumed, we can continue to use the undecora.ted operators in expressions 
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and derivations. Care must be exercised to avoid imputing any additional 
laws to the new values. For example, the law 

L/(a+)+x=a+L/x 

is only valid when restricted to the case x " [I. 
To give another illustration of a useful operator which has no identity 

element, define -<: by 
a ~ b = a. 

Since 
(a ~ b) ~ c = a = a ~ (b ~ c), 

the operator <:: is associative, and we can form <: / x. The value of this 
expression is the first element of the list x. This is a useful operation and 
we defuJe 

head x =~/x. 

(A similarly useful operation is 

last x =::»/x, 

where a ;:» b ::= b.) The operator -< does not possess an identity element. 
If e were an identity element, then we would have e <:: a = a for all a; but 
since e <:: a == e by the definition of <, the conclusion would be tha.t e = a 
for all a. If necessary, we can invent a fictitious value e and define 

a c:e::' b	 = b, if a = e 
= a, otherwise. 

The function <.' agrees with <:: on non-fictitious arguments. 

2.3 Homomorphisms. There is a close relationship between reductions 
and homomorphisms on sequences. By definition, a function h defined on 
finite lists is a homomorphism if there exists an associative opera.tor ED with 
identity element e such that h [I = e and 

h(x*y)=hxffihy 

for all lists x and y. If h is not defi.D.ed on the empty list, then $ is not 
required to possess an identity element and the above equation is asserted 
for non-empty lists only. 



If h is a homomorphism, then h is uniquely determined by Ell and the 
values of h on singleton sequences. In other words, if we define f by the 
equation 

I a = h[aJ, 

then h is determined by Ell and I alone, The following lemma says that 
every homomorphism can be e),.-pressed as the composition of a reduction 
and a ma.p, and every such composition is a homomorphism. 

Lemma 1 {Homomorphism Lemma.]. A function h is a homomorphism 
with respect to * il and only il h = (Ell /) . (J.) lOT some operator Ell and 
/unction I. 

Proof. First, suppose h = (Ell/)' (J.). Then 

h(x*y) = EIl/I.(x*y) 
= EIl/«(J -x) * (J. y)) 
= (Ell/l -x) Ell (Ell/I. y) 
= hXEllhy, 

using the distributive laws for * and /. Furthermore, if ffi has an identity 
element e, then 

h [J = Ell/I. [J = EIl/[] = e. 

Hence h is a. homomorphism. 
To prove the converse, l!iuppose h is a homomorphism, so tha.t 

h(x*y)=hxEllhy 

for some opera.tor €B. Define f by the equa.tion 

I a = h[a]. 

We show h = (Ell/)' (J.) by induction on the length of sequences. 
If h [] is defined, then it is the identity element of Ell and so 

h [] = EIl!l) = Ell/I. []. 

H #x = 1, that is, x = ia] for Bome Q, then we have 

h [a] = I a = EIl/[f a] = Ell/I. [a], 

using the definition of / on 'ingleton' and the definition of •. In the case 
#x = n, where n > 1, we can set x = y*z, where 1 ~ #V,#z < n. By 
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induction, we can suppose h y = ffi/ f • y and h z = fIJI f * z and hence 
compute 

hey * z) = h y ffJ h z 
= (ffJ/f* y)ffJ (ffi/f+Z) 
= ffi/f*(y*z), 

using the distributive laws for * and / as before. This completes the proof. 

2.4 Definition by homomorphisms. Many of the functions already in· 
traduced are homomorphisms. A reduction itself is a homomorphism and 
so is a map. We have 

ffi/ = (ffil)·(id*) 

where id is the identity function, and 

f* = (*/)'(g*) 

where 9 is the function defined by 9 a = [f a]. 
A filter is also a homomorphism. We have 

p<= (*/)'(1.*), 

where the function f. is defined by f. a = lal if p a and f. a = [] other­
wise. This function replaces elements which satisfy p by singleton lists and 
others by the empty list. The filtered sequence can then be obtained by 
concatenating these lists together. 

The length operator can be defined a.s the homomorphism 

# = (+/). (N, *), 

where l{c a =c for all a. Every element of the list is therefore replaced by 
1 and the result is summed to give the length. 

The functions hea.d and last are homomorphisms: 

head = (<t:/l . (id*) 
last = (>1). (id*), 

where a <. b =a and a ;:::}> b = b. 
Of course, not all functions on lists are homomorphisms. One useful 

sufficient condition is that h is injective, Le. hex) = hey) if and only if 
x = y. If h is injective, then its inverse h-1 is well~defined on the range of 
h. Thus, if we define ffi by 

u ffi v =h(h- l 
U * h- l v), 



then it follows that 

h(x * y) = h{h-I{h x) * h-1 {h y)) 
= hXlfJhy 

Hence h is the homomorphism (1fJ/)' U*), where, as usual, fa = h [a]. 
A simple application of this result is given by the function reverse which 

reverses the order of the elements in a list. Clearly, reverse is injective and 
is its own inverse. Hence 

reverse = (1fJ/)' U*), 

where 
it ffi y = reverse( reverse x * reverse y). 

An informal argument, left to the reader, shows this last expression is equal 
to (y*,). By convention, let Sl and iB be related by the equation 

x iB y = y IfJ x. 

Also, let the special symbol 0 denote the function which transforms values 
into singleton lists 50 that 0 a = [aJ for all a. Then we can write 

reverse =(* /). (o*) 

We turn now to a more advanced application of the same idea. 

2.5 Example: processing text. Suppose we define a text to be a list of 
characters and a line to be a list of characters not containing the newline ­
character NL. These classes can be introduced as new types: 

Text = [CharJ 
Line = [Char \ {NL}]. 

In this section we want to define a function lines which takes a teA'""t and 
returns the list of lines that make up the text. The function lines is an 
important component in many text-processing applications. It can be spec­
ified formally as the inverse of aJlother function, unlines sa.y, which inserts 
newline characters between adjacent lines and then concatena.tes the result. 
The definition of unlines is as a reduction: 

"nlines = IfJ / 
xSly = x*[NL]*y. 
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The operator EEl does not have an identity element, so the value of unlines [] 
is not defined. We therefore assign unlines the type 

unlines: [Line]+ --t Text, 

where [XJ+ denotes the non-empty members of IX). It is easy to verify that 
unlines is injective. This means lines can be completely specified by the 
single equation 

lines{Ell/u) : XS	 (I ) 

for	 all non-empty sequences of lines 2:8. 

Since lines itself is injective, we can look for a suitable homomorphism 
of the form 

lines: (0/) . (1-).	 (2) 

If we succeed, then we shall ha.ve converted an implicit specification (1) into 
a constructive definition (2). The synthesis is by straightforward calculation. 

First we determine J. By a standard argument we have 

fa: lines [al 

If a is not the newline character 1 then 

lines [a] : lines{ Ell I [[a]]) : Ila]] 

nBing the defulition of I on singletons and Equation (1). For a: NL we 
have 

lines [NL] = lines([ 1* INL] * [)) 
: lines{ I] Ell I))
 
: lines« Ell III ]]) Ell (Ell III ]])
 
: lines{ Ell I I[ ]. []])
 
:	 II],l]], 

using the defu>ition of Ell and Equation (1). 
Putting these results together I 

fa	 : [[]'(lJ, ifa:NL, 
: [Ia]], otherwise. 

Second, we determine	 ®. Since each argument of @ is a. non-empty 
list, we need only consider the defu>ition of (u * [x)) 0 (Iy]* ys). Using 
Equations (I) and (2) and the distributive properties of I, we have that 

{u * [x]) 0 ([y] * ys)	 : lines{Ell/{u * [x))) 0 lines(Ell/([y] * ys)) 
: lines«Ell/{u*[x)))* Ell/([y]*ys)). 



Now, 
ffi/{xs * Ix]) = (ffilxs) ffi (ffi/!x]) 

= (ffilxs) * [NL] *x, 

and similarly 
ffi/{[yJ * ys) = y* [NL] * (ffi/ys). 

Their concatenation is therefore 

(ffilxs) * INL] * x * y * [NL] * (ffi/ys) 
= (fIJlxs) * [NL] * (fIJ/ix * y]) * [NL] * (ffi/ys) 
= (ffil xs) ffi (ffi Ifx * y]) ffi (ffil ys) 
= fIJ/{xs * [x * y] * ys). 

We conclude using Equation (l) that 

(xs* Ix]) ® ([y] * ys)	 = lines{ffi/{xs* Ix * yJ -tt ys)) 
= xs*lx*y]*ys. 

Note that the above derivation actually juggles with some potentially 
fictitious values. No meaning has been assigned to ffi/l], yet terms of the 
form ffi/xs appear in a context where the case xs = [] is not speciJicaJly 
excluded. No confusion can arise because, as we have seen in §2.2, a ficti­
tious identity element of ffi can be added to the domain of values without 
inconsistency. 

Notice also that. unlike EB. the operator @ does have ~ identity element, 
namely [[ n. This follows from the fact that ffi/[[ J] = [], since 

®/[] = ®/{ ffi/[[ J]) = [[ ]]. 

It i6 instructive to develop this example a little further to show how other 
text processing functions can be synthesised. Define a word to be a non­
empty sequence of characters not containing the newline or space characters. 
We can deJine the type	 Word by the equation 

Word = [Char \ {NL, Spw. 

In a. similar 6pirit to before, we can seek a constructive definition of a function 
words for breaking a line into words. The type of words i6 therefore 

words : Line _ [Word]. 
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The function unwords : [WordJ+ ~ Line defined by 

unword, = fJ! I 
x fJ! y = x * [SP) * y 

takes a. sequence of words and concatenates them after inserting a space be­
tween adjacent words. The function unwoT'ds is injective, but not surjective. 
For example, none of the lines [I, [SP], [SP, SPJ, ... and so on, are in 
the range of unwords. However, if we temporarily admit the empty list as a 
possible word, then untDoms becomes surjective on the augmented domain 
and we can define its inverse in an e.:<actly similar way as we have done for 
u.nlinea. Having done this, we can now define words by filtering out the 
empty sequences. Hence 

words = «;l [J)<). (0/)' (f.) 

where 
fa = [[], []J, if a = SP 

= [[aJI, otherwise 

and, as before, 

(u * [x]) 0 ([yJ * y,) =u * [x *yJ * y'. 

Note that, although words· unwords is the identity function on non-empty 
sequences of words, the function unwords 'words is not the identity function 
on linea. Redundant spaces are removed between words. 

Finally, to complete a logical trio of functions, we can define a paragraph 
to be a non~empty sequence of non-empty lines and seek a definition of a 
function paras which breaks a sequence of lines into paragraphs. The type 
Para can be defined by the equation 

Paro = [Line+]+. 

We require paras to have type [LineJ ~ [Parol. The function unparas, where 

unparos: [Paro)+ ~ [LineJ, 

is defined by 
unparas = fJ! I 
u fJ! ys = xs * [[]J * y', 

This function takes a sequence of paragraphs and converts it to a sequence 
of lines by inserting a single empty line between adjacent paragraphs and 
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conca.tena.ting the result. Like unwords, the function unparas is injective but 
not surjective. Again, by temporarily a.dmitting the empty paragraph, we 
can make unparas surjective and define its inverse in the usual way_ The 
empty sequences can then be filtered from the result. 

To summarise: the types we ha.ve introduced are 

Text = IChar] 
Line = IChar \ {NL}] 

Word = IChor \ {NL,SP}]+ 
Para = ILine+]+ 

The three "un·functionsn are 

unline" ILine]+ T""t unlines = $NL/ 
untoords IWord]+ Line unword! = $sp/ 
unpara8 !Paraj+ [Line] unparas = $[J/ 

Here, we have 

x $. y = x * [a] * y. 

The three inverse functions are 

line. = (Iii/)' (fNL<) 
word! = ((;£ I]).), (Iii/Hfsp<) 
paras = ((;£[]).)·(Iii/)·(fW), 

where 
fb a = [[],[J], if a =b 

= [[aJ], otherwise 

and 

(:os * Ix]) Iii (ly] * y.) = :os * Ix * yJ * y•. 

These six functions ha.ve a. variety of uses. We give just two. The number 
of lines, words and paragraphs in a. text can be counted by 

countlines = #. lines 
countwords = #. (* /) .(words <) . lines 
COtmtpa1'118 = #. paras . lines. 

Second, we can normalize a. text by removing redundant empty lines 
between paragra.phs and spa.ces between words. We have 

nonnalize = unparse· parse 
par.. = ((words<)<) . paras . lines 

unpa..e = unlines· unparas . (( unwords<)* ). 
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To parse a text here means to break it into lines, paragraphs and words. 
The type of parse is 

parse : Text _ [[[ Word]]] 

For injective functions f and 9 we have 

(j. g)" = g_1. /-1 
(jo)-I = (j-I o), 

from which it follows that parse is injective and the definition of unparse is 
correct. 

2.6 Promotion lemmas. As simple consequences of the Homomorphism 
Lemma of §2.3 we can derive the following useful identities. They generalise 
the distributive laws of *1 ~ and /. 

Lemma 2 [Promotion]. For arbitrary function f, predicate p and associa­
tive operator EEl we have: 

(0 promotion) (jo).(*/) = (*/).«(jo)o) 
(~promotjon) (p~).(*/) = (*/)'«p~)o) 

(/promotion) «(11/)-( */) = «(II/). «(11/)0). 

Proof. Set h =(jo)· ( * /). It is an easy calculation to show that 

h[xJ=/u 

and also 

h(xs * ys) =h xs * h ys. 

Hence h is the homomorphism (*/). «(10)0). This establishes the 0 ­

promotion law. Similar reasoning establishes / - promotion. Finally, to prove 
~ - promotion, recall that (p ~) is a homomorphism of the form ( *IH/0) for 
a suitable function I, the definition of which is not relevant for the present 
proof. Using in turn, * - promotion, / - promotion and the distributivity of 
* through composition, we have 

(p<H */)	 = (*/H/o), (*/) 
= (*/)-(*/)'(Uo)o) 
= (*/). «*/)0)' «(10)0) 
= (*/H« */)-(/0))0) 
= (*/).«p~)o) 



as required. 

The term "'promotion" is used to describe these results because they 
sa)T that rather than mapping1 reducing or filtering over one large sequence, 
one can divide the sequence into shorter ones, map, reduce or filter each of 
these (hence "'promoting" the operation into the component sequences) and 
collect the outcomes. For example, consider the rule 

OIl-( *Il = oIl-(O IH 

In words this says the minimum of a Battened list of lists of numbers can be 
obtained by first minimising over each component list and then minimising 
over the results. If one of the component lists is empty, then its minimum 
will be the fictitious value 00, but since 00 ! a = a ! 00 = a the minimum 
of the minimums will only be 00 if all the component lists are empty. 

2.7 Selection and indeterminacy. We end the section with a discussion 
of two DeW operators which are mainly used with reductions. 

Many problems in computation can be formulated as optimisation prob­
lems: ftnd the cheapest, shortest, longest or perhaps the value of greatest 
profit in some given class of values. Such problems can be specified with 
the help of two new operators, 11 and i I' Just as (0 1 b) .elects the mini­
mum of two numbers 0 and b, so (0 11 b) selects either 0 or b according to 
which is smaller: f 0 or f b. In the definition of 1" function f has generic 
type (a _ Num). The definition of (0 i I b) is analogous: it selects 0 or b 
depending on which is greater: f 0 or f b (from now on we shall ignore i I 
as it is treated in an exactly similar manner to 1/), We have 

011 b	 = 0, if f 0 < f b 
= b, if f 0 > f b. 

The lacuna in this definition occurs in the case f 0 =f b. If f is an injective 
function on the range of values of interest, then f 0 = f b only if 0 =b and 
we can ..sign (0 11 b) their common value. For example, 1=1",. However, 
in the majority of practical cas.. the function f is not injective. To ask for 
the longest or shortest sequence in a class of sequences is really an abuse 
of language: there may be more than one such sequence. What is mea.nt is 
"orne longest or shortest sequence. 

In developing constructive solutions to problems of optimisation, the un· 
der specification permitted by 11 can be very useful, especially as we are 
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not,nmmally concerned with any other property of the result than that it 
mipi.'Wt"es f. Accordingly, we shall allow expressions to contain occurrences 
of:,:the hperator 1f when f is not an injective function. In these cases we 
in.et 1f as standing for If'l where f' is some injective function - the 
prease nature of which we are not interested in - which respects the order­
ing given by I. That is, I a < I b implies f' a < f' b. If a # b but I a = I b, 
then either I' a < I' b or I' a > f' b and we do not care which. We suppose 
without proof that such an extension f' exists for any f (this assumption is 
related to the Axiom of Choice in Set theory). 

When carrying out equa.tional reasoning with 1f we must be careful 
not to ascribe any properties to 1f which are not implied by the foregoing 
convention. Only the following properties may be assumed: 

(associativity) a!f(b!fc) : (a!f b)!f c 
(idempotence) a !f a : a 
( commutativity) a!f b : b !f a 
(selectivity) a !f b = either a or b 
(minimali ty) I(a!fb) : I a!f b. 

At certain stages during the development of a constructive definition it 
may become appropriate to exercise a choice about the value of (a !f b) 
when I a : f b. Such a step is calied a choice step and will be denoted by 
the sign --. For instance, if fa = f b we can write 

a!f b~ a 

The sign "'" can be read as "may be refined to". -Taking a -choice step is 
to be regarded as imposing a further property on the injective function r 
of which f is the representative. This means that any choice step must be 
consistent with every previous choice step. For example, if 1(1) = 1(2) and 
we decide, in some chain of reasoning, to impose the choice 1 1,2 -- 1, then 
it follows that 

1 !f 2 +1 !f 2 ~ 1 +1 !f 2 = 1 + 1 : 2. 

However, the following reasoning is not valid: 

1!f2+1~2~1+1!f2~1+2:3. 

Having exercised a choice, the consequences must be followed consistently. 



The major use of selection functions occurs in conjunction with reduc­
tion. For example, 1"# / u returns some longest sequence in the list of se­
quences :r.s. We shall see many examples in due course. As an extension to 
the minimality law we have 

f· (If /) = (l/). (f.). 

For f = II this law expresses the formal equivalence of the English phrases 
"the length of the shortest" and "the minimum of the lengths". 

3. Directed reduction and recursion 

3.1 Left and right reduction We now introduce two more reduction op­
erators: +(pronounced "right-reduce") and +(pronounced "jelt-reduce"). 
They are closely related to the reduction operator /, but each takes three 
arguments: an operator €£l, a value e and a list x. They can be described by 
the equations 

($+.)[a" a" ,an] = a, $ (a, $ (.. ·(an $.J)) 
($+.)[al,a" ,an] = ({{_$Ul)$U,)"·$un ). 

In particular, we have 
($+.)[] = e 
($+.) [] = •. 

The -opera.tor e used in a left or right reduction need not be associative, so 
the brackets in the above equations are necessary. Indeed, the type of e 
may not even take the form a X a_a. The types of + and + are given 
by 

+ : «a X fl-fl) X fl) - [a] -fl 
+ : «fl X a - fll X fl) - [a1- fl· 

In the expression {$+.)>:, the operator $ has type a X fl _ fl, the value e 
has type fl and >: has type [al. The expression then has type fl. Analogous 
reasoning applies to the combination {$+_)",. Note that ($+') and ($+_) 
are both functions with type [a] - fl. 

Why do we need. two more reduction operators? There are a number of 
answen to this question. First, the directed reductions can be regarded as 
"implementations" of the operator / in which the order of computation is 
completely specified. If €a is associative with identity e, then certainly 

$/ =($+-) =($+-), 
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50 undirected reductions can be expressed as directed reductions in two ways 
a.t least. In this sense, the directed reductions reflect a nai ve policy of sequen­
tial evaluation and can be translated directly into a suitable programming 
la.nguage. This point is amplified below. 

The second, and more pragmatic answer is that many more functions can 
be described by directed reductions than by /. For example, the function 
(10) cannot be defined in terms of /, but we do have 

(10)	 = (ffi+[]) 
where a ffi x = [J aJ *x. 

Furthermore, although every homomorphism can be expressed as a directed 
reduction (see §3.4), many functions which are not homomorphisms can. be 
defined as directed reductions. For example, consider the function prefix 
which takes a predicate p and a list x as arguments and returns the longest 
initial segment of x all of whose Elements satisy p (problems about segments 
will be discussed in §4). Thus, 

prefix e.en[2,4,1,8J =[2,4J. 

The function prefix is not a homomorphism, but we do have 

prefixp = (ffi+[]), 

where 
affix	 = laJ*x, ifpa 

= [J, otherwise. 

To illustrate this definition 1 consider 

prefix e.en[2,4,1,8] = 2 ffi (4 ffi (1 ffi (8 ffi [J))) 
= [2J*[4J*IJ 
= 12,4J 

Further examples of directed reductions will be seen in due course. 

3.2 Recursive characterisation. From the informal definition of ce+e) 
we ha.ve 

(ffi+e)[J = e 
(ffi+e)([aJ*x) = affi(ffi+e)x 

for aJl elements a and lists x. Smce e'Very non·empty list can be expressed 
uniquely in the form [aJ * %, these two equations c.hara.cterise the behaviour 
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of «(3;+.) completely. Putting it a.nother way, we ca.n regard f = (EIl+.) as 
the solution of the recursive equa.tions 

fl] = • 
1([aJ*x) = aElllx 

In these equations the value of I [J is specified directly, and the value 
I([a] *,) is specified in terms of a a.nd I x. Thus I is determined in­
crementally from "right to left". This explains the direction of the arrow in 
the sign f. The progress of computation is essentially "recursive" (literally: 
to go hackwards). 

In the case of a left-reduction (EIl+'), the informal description gives 

(EIl+e)[J = e 
«(3;+e)(x * [aJ) = (EIl+e)x Ell a 

for all a a.nd x. (Recall that functional application is more hinding tha.n 
any other opera.tor and so the right hand side of the last equa.tion is rea.d 
as «(3;+.)x) Ell a.) Hence «(3;+e) processes lists from "left to right". The 
progress of computation is therefore essentially "iterative". 

We shall now show that the function (EIl+e) ca.n also be characterised 
by the recursive equations 

«(3;+e)[J = e 
«(3;+e)([aJ*x) = (EIl+(eEll a))x. 

The first equation is immedia.te, so it is only necessary to show that the 
second oae holds. We do this hy induction on the length of x. For the 
empty liot [J, we reason 

(EIl+e)[aJ = e (3; a = «(3;+(e Ell a»[]. 

For the case x * [b], we reason inductively 

«(3;+e)([a]*(x*[b]))	 = (EIl+e)([a]*x*[b]) 
= (EIl+e)([aJ*x)(3;b 
= (EIl+(eEll a)) x EIlb 
= (EIl+(e Ell a))(x * [b]), 

using the associativity of * a.nd the second defining eqnatlon for (EIl+e). 



23 

It follows that I = (ffi+e) can be regarded as tbe solution of tbe recursive 
equations 

I = ge 
9 e [] = e 

ge([a]*x) = g(effia)x 

We see therefore that both left and right reductions can be characterised 
by recursive equations of the same general fonn. In this form, a function f 
on lists is defined by (i) giving the value of 1[1 directly; and (ii) specifying 
1(la] * x) in terms of Ix. Every list, of any type whatsoever, is either empty 
or of the form. [a] * x for unique values of a and x, so these two schemes axe 
sufficient to characterise functions over (finite) lists. This style of recursive 
definition is a feature of functional programming languages (see [51 and [7]). 

In functional programming the operation of concatenation is not pro­
vided as primitive. Instead, there is given a primitive operator ":" (pro­
nounced "consn

) which inserts a value into a list as a new first element. 
Thus, we have 

a: x = [a] * x. 

The type of ":" is given by 

(:) : a X [a] ..... [a]. 

Since 
[a"a" ... ,an]= a,: (a,: (... (an : []))), 

every list, of any type whatsoever, can be constructed by inserting its ele­
ments successively into the empty list (hence the reason for the name "cons" 
which is an a.bbreviation for the word "'construct"). 

We can define * in terms of cons by 

x*y=(:+y)x 

for all lists :t and y. From this equation the cost of evaluating x * y is 
proportional to the length of x, assuming a ":" operation has unit cost. 

There are a number of reasons why cons is taken as the primitive op­
eration for lists in functional programming. One is that every non-empty 
list can be expressed in the form (or "'pattern") a : :t in exactly one way, 
so that one can define an arbitrary recursive function by a scheme based 
on the patterns [] and a : x. On the other hand, a non-empty list can be 
expressed in the form :t * Y in many ways and this can lead to ambiguity in 
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a definition (unless, of course, the function is a. homomorphism). Another 
reason concerns questions of efficiency to which we now briefly turn. 

3.3 Efficiency considerations. With the introduction of the directed 
reduction operators we have begun to approach the question of what can 
reasonably be expected in the way of systematic computation b)' a machine. 
Although we shall not go into details of the underlying mechanisms, it is 
appropriate at this point to say something about the amount of time and 
space required to carry out the evaluation of a directed reduction. Most 
often, we shall solve a problem by a directed reduction and it is necessary 
to have some appreciation of the gains in efficiency thereby obtained. 

First, let us consider a right-reduction (ffJ+e)%. IT the list %has length 
n, then the definition of + suggests that the eva.J.nation of (ffi +e)% requires 
n applications of the operator $. However, not every computation with 
a right-reduction must necessarily begin a.t the right hand end of the list 
and traverse backwards to the head. To illustrate this point 1 consider the 
function prejiz(< 3) which selects the longest initial segment of a list of 
numbers, all of whose elements are less than 3. We have prejiz(< 3) = 
(13l+[J),where 

a$z = a:z, ifa<3 
= [], otherwise. 

Here, a: z is used in preference to [a] *z. Using the recursive cha.rac­
terisation of + as the basis, we can "unfold" the computation of pre~(< 
3) [1 ... 100] in the following way: 

prejiz« 3)[1. .. 100] = (ffJ+[])[1. .. 100) 
= 1 ffJ (ffJ+fJ)(2 100] 
= 1:(l3lf[])[2 100] 
= 1: (2 ffJ (ffJ+[])[3 100)) 
= 1:2:(ffJ+[])[3 100] 
= 1: 2: (3 ffJ (ffJ+[])[4 ... 100]) 
= 1: 2: [] 
= 1: [2J 
= [1,2] 

The length of this derivation is proportional to the length of the resulting 
list, not the length of the original list. In other words, the number of ffJ 
operations actually carried out is 3 not 100. The crucial fact which enables 
the calculation to be shortened is that for a ~ 3 we have a $ z = [] for 
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all lists x. Since the value of x is not required, it need not be calculated. 
This strategy of symbolic evaluation combined with the policy of performing 
only those calculations necessary to determine the result is known as lazy 
evaluation. Lazy evaluation can be programmed into a mechanical evalu.ator 
quite easily (see [5]), though we shall not go into details. 

Here is another, more dramatic example. Consider (<: +e)x, where 
a <: b = a. We have 

(4: +<)[1. .. 100J = 14: (4: +<)[2 ... 100] 
= 1, 

so the computation terminates after only one step. 
Now let us tum to left-reductions. The situation here is different from 

right-reduction in that, when processing lists from left to right, all the el­
ements do have to be considered in order for the result to be returned. 
Consider, for instance, the symbolic evaluation of (4: +0)[1,2,3]' where 
a <: b = a. This evaluation is based on the recursive characterisation of + 
by the equations 

(6l+<)[J = < 
(6l+e)(a:x) = (6l+«6la))x 

For the specific example, we have: 

(4: +0)[1,2,3] = (4: +(04: 1))[2,3J 
= (4: +0)[2, 3J 
= (4: +(04: 2))[3] 
= (4: +0)[3J 
= (4:+(04:3))[1 
= (4: +O)[] 
= 0. 

In this evaluation the complete list is traversed before the answer is returned. 
To summarise these observations: right-reductions can be more time 

efficient than left-reductions; this happens when values of the operator con­
cerned do not always depend on the full evaluation of the right-hand argu­
ments. Such an operator is said to be non-strict (in its right argument). 

The reverse situation can occur with space efficiency. Left·reduction can 
be more efficent in the amount of space required to ca.rry out the computa­
tion. Compare the evaluations of (++0)[1,2,3] and (++0)[1,2,3]. For the 
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former 'We have: 

(++0)[1,2,3] = 1+ (++0)[2,3J 
= 1+ (2 + (++0)[3]) 
= 1+ (2 + (3+ (++O)[])) 
= 1+(2+(3+0)) 

1+ (2 + 3) 
= 1 +5 
= 6. 

In this computation the sizes of the intermediate expressions grow in pro­
portion to the length of the original list. This is an important measure 
because the sizes of the intermediate expressions reflect the amount of space 
which would have to be available to a mechanism in order to carry out the 
computa.tion. 

On the other hand, we can compute: 

(++0)[1,2,3] = (++(0+ 1))[2,3] 
= (++1)[2,3] 
= (++(1 + 2))[3] 
= (++3)[31 
= (++(3 + 3))[] 

(++6)[] 
;;;; 6, 

and the size of the intermediate expressions never grows beyond a constant 
amount. The inner calculations are performed as they arise: this is safe be­
cause + is a strictfunctiOD, dema.nding complete evaluation afits arguments 
to determine the result. 

In general, it is better to use right reduction when the operator concerned 
is non-strict and left reduction when it is strict. For example, when the 
operator is one of * ,A, or V, we use right reduction; and when it is one 
of +, 1, or 1, we use left reduction. 

This concludes a brief treatment of efficiency issues. In describing the 
symbolic evaluation of expressions, we have outlined the main method by 
which functional programming languages are implemented. For further de­
tails the reader should consult [5] or [7J. Since we wish to present problems, 
derivations and solutions at a higher level of abstraction than is provided 
by specific constructs in particular programming languages, it is left to in­
formed readers to develop for themselves the connections between directed 
reductions and programs in conventional or functional languages. 
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3.4 Duality and specialisation. We state without proof hvo useful results 
concerning the relationship between the various forms of reduction. 

Lemma 3 [Duality] For all Ell and e we have 

(EIl+e) = (6)+e). reverse, 

wh""" aif,b = bEll a. 

Lemma 4 [Specialisation] Every homomorphism can be defined as either a 
left or a right reduction. More precisely, 

(0f)' (j.) =(EIl+e) =(0+e), 

where 
aEllb = fa0b 
a 0 b = a0 f b. 

We give just one illustration of the specialisation lemma. Consider the 
function 

lines = (0f)· (j.) 

of §2.5, where 
fa = [[],[]], if a = NL 

= [[a]], otherwise 

and 
(u* [x]) 0 ([y] * ys) =u* [x *yJ * ys. 

Set a Ell xs =	 fa 0 xs. Since 0f[] = [[]], we have by specialisation that 

lines = (Ell +[[]]). 
It remains to simplify the definition of e. First, if a = NL, then 

aEll(x:xs)	 = fNL0([<1*xs) 
= [[],[]]0 ([x] *xs) 

= [[]] * [[J * xl * u 
= [[ll*[x]*xs 
= [): x: xs, 

using tbe relation a : x = tal * x and tbe defulltion of f and 0. 
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Second, if a ;f NL, then 

a (jJ (x : xs)	 = [[a]] 0 ([x] * xs) 
= [[] * [[aJJ) 0 ([x] * xs) 
= []*[[a]*x]*xs 
= (a:x):xs. 

Hence we obtain 

a(jJ(x:xs) = []:x:xs, ifa=NL 
= (a::t): xs, otherwise. 

3.5 Accumulation. We end the discussion on directed reductions by in· 
traducing another operator -1ft (pronounced "accumulate"") which is closely 
related to left-reduction. Examples of its use will feature in the next sec­
tion. Like + the operator -1ft takes an operator $, a value e and a list oX 

as arguments. Its effect is described by the equation 

((jJ+e)[a" a" ..• , an] = Ie, e (jJ a" (e (jJ a,) (jJ a" . .. , ((e (jJ a,) ... (jJ an)]. 

The operator -1ft encapsulates a common pattern of computation in which 
a sequence Co, el, ... I en is defined in terms of a given sequence Gl, G2, ... ,an 
and a starting value e by a reccurre.nce relation of the form 

co = e 
<'+' = <. (jJ a.+, (0 < k < n) 

We have 

[<O'<""',<nJ = ((jJ+e)[a" ... ,an}. 

For example, the list O!, I!, ... n! of factorial numbers can be defined by the 
expression 

(X+1)[1 ... n]. 

This expression can be evaluated more efficiently th.an the alternative 

lac * [0 .. . n], 

where lac k = xIII. .. k]. The former requires just n multiplication' to 
generate the list, while the latter requires n(n -1)/2 multiplications. 

In general, 
((jJ+e) = last· ((jJ+e), 
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so every left~reduction can be defined in terms of an accumulation. More 
interesting is the fact that an accumulation can be defined as a left-reduction. 
We have 

(ffi+e) = (0+le)), 

where 

x 0 a = x * Ilast x ill al. 
This result shows why the number of EEl operations can be redul:ed from 
O(n') to O(n), where n is the length of the argument list. 

Alternatively, we can characterize + by two recursive equations: 

(ill+e)[ I = Ie] 
(ffi+e)(a:x) = le)*(ffi+(effia)x. 

From the point of view of efficiency, this definition is superior to the def­
inition as a left-reduction. Under a strategy of lazy evaluation using the 
recursive definition as a basis, elements of the result list can be produced 
before the argument list is completely traversed. 

4. Segments and Partitions 

4.1 Definitions. The object of the present section is to derive computa­
tionally efficient solutions for a number of problems about segments. A list 
y is said to be a. segment of it if there exist u and v such that x = u * y * v. 
A list Y is an initial segment of x if there exists a v such that x = y* v, 
and a final segment if there exists a u such that x = u * y. 

The function inits returns the list of initial segments of a list, in increas~ 

ing order of length. The function tails returns the list of finaJ segments of a 
list, in decreasing order of length. Thus 

inits[a"a" ... ,anJ = IIJ,la,],[a"a,],···,la"a" ... ,anll 
tails[al' a2,··., an] = [[a}, a2, . .. , an], [a2, a3, ... , an], ... , []] 

Since both functions are injective, they can be defined formally as homo­
morphisms; using the specialisation lemma, they can therefore be defined as 
directed reductions. We sha.1l do this directly. Since inits([a] *x) consists, 
in order, of [] and the list of initial segments of x in which each element is 
prefixed by a, we have 

inits [] = nJJ 
inits(lal*x) = nlJ*([a]*)*initsx. 
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Solving this recursion gives 

inits = ($+[[ J]), 

where 

a $ x. = [[]] * ([a] *).x•. 

Analogous reasoning gives 

tails [ ] = [[ lJ 
tails(x * [aD = (* [aD <tails x * [[]], 

and 50 

tails = ($+[[J]), 

where 

""$ a = (* [aD *".* [I]]· 
We shall make use of the recursive characterisation of tails below. 

The following simple result, whose proof is omitted, rela.tes the function 
+ to+. 

Lemma 5 Far all Ee, e and lists z we have 

($+e)x = ($+e). inits x. 

The function segs returns a list of all segments of a. given list. We shall 
define 

segs z = */tails * inits x. 

For example, 

.eg.[l, 2, 3] = [[], [1], [], [1, 2J, [2], [], [1,2,3]'[2,3], [3J, []] 

The order in which. the segments a.ppear in this list is Dot important for our 
purposes and we shall make no use of it. Notice tha.t the empty list occurs 
more than once in the result. 

4.2 Segment decomposition The following theorem can be used as the 
starting point in the derivation of efficient solutions to a number of problems 
about segments. 
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Theorem 1 [Segment Deeompostion] Suppose Sand T are defined by 

Sx = ffJ/loposegsx
 
Tx = ffJ/lopotailsx.
 

Then S x = ffJ/T 0 inits x. 

Proof. The proof is by straightforward calculation. vVe have 

Sx	 = ffJ/ lop 0 segs x 

= ffJ/ lop 0 (*/tails 0 inits x) (defn.segs) 
= ffJ/10 ( */(po) 0 tails 0 inits x) ( 0 promotion) 
= ffJ/( */(10) 0 (po) 0 tails 0 inits x) (0 promotion) 
= ffJ/(ffJ/lo (10) 0 (p 0) 0 tails 0 inits x (/ promotion) 
= ffJ/« ffJ/l· (10) . (p 0) • tails) 0 inits x (0,. distrib.) 
= ffJ/T 0 inits x (defn. T) 

Corollary 1 Suppose T = (0+e) lOT some operator 0 and value e. Then 

S = (ffJ/l· (0+e). 

Proof. Immediate, using the above relationship between + and +. 
It follows from this corollary that if EB a.nd ® have consta.nt cost, then 

5 x ClUl be computed in O(n) steps, where n =#x. 
The following lemma gives a sufficient condition for T to be expressible 

as a left reduction. 

Lemma 6 Suppose Tx = ffJ/ 10 tails x, where I = (0+e). 110 distributes 
through ffJ, i.e. 

(affJb) 0e =(a0 e)ffJ (b0e), 

then T = (0+e), where 

a0b=(a0b)EBe. 

Proof. It is easy to show T [] = e. We prove T(x * [aJ) = (T x 0 a) EB e. 
Solving these equations gives the required result. To establish the equation, 
observe that if I = (0+e), then 

10 ( * [aJ)o xs = (0a) 0 I 0 xs 
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for all lists (of lists) xs. Furthermore, if 0 distributes through ffi, then 

ffi/(0a) _ xs = (0a)(ffi/xs). 

Using these results\ together with the recursive characterisation of tails, we 
can therefore compute 

T(x * [aJ) = ffi/ f - tails(x * [aJ) 
= ffi/ f - (( * [aJ)- tails x * [[]]) 
= ffi/«(0a) _ f _ tails x * [eJ) 
= (ffi/(0a)_f_tailsx)ffi e 
= (0a)(ffi/f-tailsx)ffi e 
= (T x 0 a) ffi e. 

Thi!i completes the proof. 

This result can be illustrated by solving a problem of Gries. The problem 
is to compute the minimum of the sums of all segments of a given list of 
posi tive and negative numbers: in symbols, 

minsum x =l/(t/)- seg... 

Direct calcula.tion from this expression requires Oen3) steps, where n = Ix. 
There are O(n') segments of x and each can be summed in O(n) steps. As 
the minimum of the sums can be computed in O(n2 ) steps, there are Oen3 ) 

steps in total. However, it is easy to derive a linear time algorithm. Since 
(t f) = (++0) and t distributes through l, we have from the work above 
that 

minsum = (i/)· (0+0), 

where a0b = (atb) l 0. 

4.3 Extremal problems. A common problem is to find some longest seg­
ment of a list sa.tisfying a given property p. In text processing, for example~ 

we may want to take the longest initial segment of a list of words which will 
fit on aline of given width. By repeating this process with the remaining 
words OD subsequent lines) it is possible to solve the problem of formatting 
text. This problem will be discussed in more detail later on. 

Let us consider the problem of computing the functions 

Sx = l#/p4segsx
 
Ix = i#/p4initsx
 
Tx = i#/p4tailsx
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It will be assumed throughout that p holds for the empty list a.t lea.st, so 
there is always a well· defined (and, indeed, unique in the case of I and T) 
solution for any given list x. Assuming O(nk ) steps are required to determine 
whether p holds for a list of length n, the time required to compute S x is 
O(nk+2 ) steps, where n =#x. Our purpose is to examine useful conditions 
which can be imposed on p to reduce this estimate. 

We mention three such conditions. A predicate p on lists will be called 
prefix-closed if 

p(x*y) => px 

for all x and y (here, :::::} denotes logical implica.tion). Similarly, p is called 
suffix-closed if 

p(x*y)=>py. 

Finally, p is segment-closed if it is both prefix and suffix-closed; that is, 

p(x*y) => px Apy. 

for all x and y. The terminology is appropriate since it is ea,.c;y to show that 
a segment-closed predicate holds for all segments of x whenever it holds for 
x. 

Each of the three classes of predicates is closed under the operations of 
conjunction and disjunction. One can also show that p is prefu-closed if 
and only if 

p. init.< x = inits(i# Ip. inits x). 

A similar characterisation holds for suffix-closed predicates. 
We now state without proof two results concerning these properties. 

Lemma 7 Ifp is prefix-closed, then T =(ElI+[J), where 

x Ell a =i# Ip. tails(x * [aJ) 

Consequently, S = (i# f) . (ElI+ IJ). 

The second part of the lemma follows from the Corollary to the Seg­
ment Decomposition Theorem. To see what this result buys in the way of 
increa.sed efficiency, suppose 

(ElI+[])x = [XO,Xl, ... ,XnJ, 



where n = #x. Let 1, == #Xj. To compute xi+! from Xj requires p to be 
kapplied in succession to lists of lengths 1j + 1, tj , .. . 1i+1' If p requires O(n ) 

steps for a list of length n, then the jth step requires 

Ij+1

Li' 
1=lj+l 

steps. Summing over j leads to the result that 5 x can be computed in 
O(nk+l) steps. 

We give one illustration. Let nodups x denote the property that list x 
contains DO repeated elements. If the only available comparison test is the 
test for equality, the computation of nodups requires O(n2 ) steps on a list 
of length n. Direct calculation of 

Till nodups < segs x 

therefore requires O(n") steps. However, nodups is prefix-closed, so using 
the algorithm implicit in the above result we can bring the time down to 
O(n3 ) steps. 

The next lemma shows how to decrease the time still further. 

Lemma 8 Suppose p is segment-closed, holds for all singleton sequences, 
and satisfies 

p(x -tt-[aJ) = px II q ax 

for some suitable predicate q. Then T = ((1l+[J), where 

x Ell a =(Tlllq a< tailsx)-tt- raj 

Consequently, S =(Til /). (EIl+[]). 

It cMbe shown that if q is computable in O(n') steps, then S x can be 
computed in O(nH1 ) steps. 

To illustrate this result, consider the nodups problem again. The predi­
cate nodlJps is seg:rnent-closed and holds for all singleton sequences. More­
over, 

nOOups(x -tt- [aJ) = nodups x II all(;< a)x 

Since all(;tf a)x can be computed in O(n) steps, where n = ix, we have 
that Til lnodups < seqs x can be computed in O(n') steps. 
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4.4 Partitions. A partition of a list x is a. decomposition of x into non­
empty segments. In symbols, xs is a partition of x if 

*/xs = xllall(;I- [])xs. 

The function parts returns a list of all possible partitions of x. In this 
subsection we state without proof an important theorem for solving problems 
of the form 

LJ/allpoparts x 

for suitable f and p. We first give two illustra.tions of why this problem is 
important in practice. 

Text-formatting. Suppose x is a list of words (see §2.5 for the relevant defi­
nitions used in this example). An important problem in text processing is to 
format text into lines of given width m, ensuring as many words as possible 
are on each line (adjacent words being separated by at least one space). A 
list x will fill a line of width m just in the case that m ~ #unwords:. Define 

fit<; mx = m 2: #unwords x. 

The problem of formatting text can be described a.s an optimisation problem 

format x =L~~t. / all(fit<; m) 0 parts x, 

where waste is a suitable measure of the badness of a giveD way of breaking 
text into lines. This problem was considered in (1), where the following 
definitions of waste were examined: 

waste1 = (T /) . (whitespace m.) 
waste2 = (+ /) . (whitespace m.), 

where whitespace m x =m - #unworns x. 

Sorting by merging. A list of numbers can be sorted by first paxtitioning 
the list into ordered segments (called runs) and then merging the runs. The 
function 

runs x = L# / all ordered 0 parts x 

determines the optimal way to partition the sequence prior to merging. In 
fact, if x ® y denotes the ordered list which results when x and y are merged, 
then 

sort x = @/runs x 
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specifies the complete sorting procedure. 

For suitably restricted f and p, the problem of computing 

!! fall p<parn x 

can be solved by a "greedy" algorithm which computes the solution incre­
mentally by taking as much of x at each stage as it CaIl. We define 

greedy p x = [], if x = [] 
= [x1 * greedy p (x \ x'), otherwise 

where x' =j# Ip <l inits x 

For an initial segment x' of X, the value of x \ x' is the final segment which 
reqlains when x' is removed from x. For suitable p we shall Se€ how to 
compute x' quickly, so the greedy algorithm can be very efficient. 

We need two conditions on f to relate the greedy algorithm to the par­
tition problem. Say a function f : [[a]] ~ Num is stable if 

fxs ~ fys =? f([x]*xs) ~ f([xl*ys) 

for all lists u, ys and x. 
Furtbermore, say f is greedy if 

f([x*y* x] * xs) ~ f([x *y] * [x) *xs) ~ f([x] * [y * x] *xs) 

for	 all x,y, z and zs. 
One proof of the following result can be found in [1). 

Theorem 2 [The Greedy Theorem for Partitions] Suppose p is segment­
closed and holds for all singletons. Suppase f is stable and greedy. Then 

!! fall p < parn x ""' greedy p x. 

Notice the refinement step ""'. The theorem does not state that the 
greedy algorithm gives the only optimal way of partitioning x, but just one 
optimal way. Moreover, the conditions on f are such that knowledge of f is 
not required for execution of the algorithm. 

Two obvious applications of the theorem are to the problems of for­
matting text and sorting by merging. For the first, the predicate fits m 
is segment-closed and waste2 can be shown to satisfy the hypothesis on f. 
For the second, the predicate ordered is segment-closed and the function # 
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is sta.ble and greedy. Both problems can therefore be solved by a. greedy 
algorithm. 

There remains the problem of computing 

f#/p<initsx 

quickly, since this is crucial to the success of the greedy algorithm. We state 
without proof a final lemma which addresses this problem. In the statement 
we use the function prejiz mentioned in §3 aud a related function take which 
selects initial segments of a list with given length: take n x takes the initial 
segment of x of length n. 

Lemma 9 If p is prefix-closed and p =q. (ffi+e), then 

f#/p<initsx = take(#y-1)x 

where y = prejiz q«ffi+e)x). 

To illustrate this result, recall that 

fits m x = m ~ #unworn. x 

From §2.5 we have #. unworn. = (ffi/)' (#*), where n ffi m = n +m + 1. 
By the specialisation lemma, we have (ffi/)' (#*) = (0+e), where e is the 
identity element of ffi, so e = -1, and n 0 w = n + #w + 1. It follows that 

fits m = (m ~). (0+e). 

As (fits m) is prefix-closed, the lemma is applicable and reduces the cost of 
calculating 

f#/fits m < inits x 

to O(m) steps. 

4.5 Conclusions. We hope we have shown enough of the theory of lists 
to convince the student of its mathematical depth and elegance, as well as 
its usefulness in deriving solutions to practical problems. There a.xe many 
subjects we have not touched on: the theory of subsequences, permutations, 
arrays (lists of lists), and infinite lists to name just a few. There a.xe other 
kinds of greedy theorem for other kinds of problems about lists. Even ha.ving 
disposed of lists, there remains trees, bags a.:od sets for which a similar generic 
theory is appropriate. 
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