AN INTRODUCTION
TO THE
THEORY OF LISTS
by

Richard S. Bird

Qxtord Unlvg.;l;y fory
omputin ra
grc.r;prammgin Research Group-Library
8-11 Keble Road
Oxford OX1 3QD
Oxford (0865) 54141

Technical Monograph PRG-56

October 1986

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford 0X13QD

England

Copyright (©) 1986 Richard 8. Bird

Oxford Unlversity Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX13QD

England

An Introduction to the Theory of Lists
Richard S. Bird

Programming Research Group,
University of Oxford,

11 Keble Rd.,

Oxford OX1 3QD,

United Kingdom.

Abstract

In these lectures we introduce a notation and a caleculus for specifying and
manipulating computable functions over lists. The calculus is used to de-
rive efficient solutions for a number of problems, including problemsin text
processing. Although programming per se is not the main topic, we indi-
cate briefly how these solutions can be implemented in a purely functional
programming language.

Acknowledgements

Much of the theory presented in these lectures was developed in collaboration
with L.G.L.T. Meertens of the Centrum voor Wiskunde en Informatica,
Amsterdam, The influence of David Turner’s work on the development of
notation for functional programming has also been substantial. A particular
debt of gratitude is owed to Phil Wadler who contributed a great deal in the
way of ideas and examples. The work was supported by a grant from the
Science and Engineering Research Council of Great Britain.

1. Elementary Operations

1.1 List Notation. A Iistis a linearly ordered collection of values of the
same general nature; one can talk about the first element of a list, the second
element, and so on. Lists are also called sequences, a term more commonly
found in other branches of mathematics, but there is no difference between
the concepts and we shall use the two words interchangeably.

A finite list is denoted using square brackets and commas. For example,
{1,2,3]is a list of three integers and [[‘6’,y’,‘e’], [4% ¥, ‘€’]] is a list of two
elements, each element being a list of characters. The empty list is written
as [] and a singleton list, containing just one element a, is written as [a].
In particular, [{]] is 2 singleton list containing the empty list as its only
element. Lists can be infinite as well as finite, but in these lectures we shall
consider only finite lists.

Unlike a set, a list may contain the same value more than once. For
example, [1,1] is a list of two elements, both of which happen to be 1, and
is distinct from the list [1] which contains only one element.

The special form [m...n] will be used to denote the list of integers in
increasing order from m to n inclusive. If m > n, then {m...n] =[]

It was stated at the outset that lists are collections of values of the same
general nature. What this means is that we can have lists of numbers, lists
of characters, even lists of functions; but we shall never mix two distinct
kinds of value in the same list. Given this restriction, the kind (or type)
of list under consideration can be described in a simple manner. A list of
numbers will be assigned the type [Num] (read as: list of Num); a list of
characters will be assigned the type [Char], and so on. For example, [[Num])
describes the type of lists of lists of numbers, and [A — B] describes the
type of lists of functions from A to B. It is useful to extend this notation
and write [A]* to denote the non-empty lists whose elements are of type A.

In order that the above convention for naming types should work satis-
factorily, it is necessary to allow type expressions to contain fype variables.
To illustrate why, consider the empty list []. As the empty list is empty
of all conceivable values, it possesses the type [Numj, [Char], as well as in-
finitely many others. The resolution of this situation is to assign [] the type
[@], where @ is a type variable. To assert that a value has type [a] is to say
that it has type [A) for every possible type A. In this sense, the concept
of a type variable is just a convenient abstraction for describing universal
quantification over types. The device is also useful for describing generic
functions. For example, the function id, where id = = 7, possesses the type

a — a. Further examples will be seen below.

A genersl comment on our typographical conventions should be made at
this point. We shall use letters a, b, ¢, ...; at the beginning of the alphabet
to dencte elements of lists, and letters z, ¥, z at the end of the alphabet to
denote the lists themselves. On some occasions we shall want to emphasise
that a particular list is, in fact, a list of lists. Compound symbols zs, ys and
z3 will be used to denote lists which contain lists as elements. The names
of functions will be written in italics, while infix operators will be written
using special symbols of various kinds.

Having covered most of the special notation, we shall now introduce a
smal! number of useful functions and operators for manipulating lists. They
will be described informally: precise definitions will be given later when the
necessary machinery has been developed.

1.2 Length. The length of a finite list is the number of elements it contains.
We denote this operation by the operator #. Thus,

#lay, bz, ..., an] = .
In particular, #[] = 0. For m < n we have that
#m...al=n—-m+1.
The type of # is given by
: o] — Num.

The operator # takes a list, the nature of whose elements is irrelevant, and
returns a (nonnegative, integer) number; hence the above type assignment.

1.3 Concatenation. Two lists can be concatenated together to form one
longer list. This function is denoted by the operater - {pronounced “con-
catenate”). Thus,
[ah Az, .y aﬂ] +- [bl) b?) auny bm} = [G[, @z, ...y p, bl! bz! -“rbm]-
In particular, we have
J#z=a4(l=2
for sll lists z, 8o the empty list is the tdentity element of the operator .

Concatenation is also associative; we have

TH (yH2) = (4 y) +2

for all lists x, y and =z.
A simple relationship between # and + is given by the equation

#(zHy) = #z + #u

for all finite lists z and y.
Finally, the type of 4 is given by

+# :a] x [a] = [a]

Concatenation takes a pair of lists, both of the same kind, and produces a
third list, again of the same kind; hence the type assignment.

1.4 Map. The operator » (pronounced “map”) applies a function to each
element of a list. We have

f*[a"l!a?v"’an] = [f a1, fag,..., faq].
In particular, f[] =[]. The type of * is given by
*:{a— B)x [a] = [B).

Henece, in the expression f *+ z, the first argument f is 2 function with type
o — j,and the second argument r is a list with type |a]. The result is a list
of type [B]. These type variables can be instantiated to specific types. For
example, if even : Nurm — Bool is the predicate which determines whether
a number is even, then

even » [1...4] = [false, true, false, trug],

has type [Bool]. Here, true and false derote the two constants of type Bool

As with other infix operators, the operator # is allowed to appear in
expressions accompanied by only one of its arguments. In particular, we
can wiite {f+) to denote the function of type [a] — [§], where f:a — §,
which takes a list and applies f to every element. By the same convention,
((f*)*) is a function which takes a list of lists and applies (f*) to every
element.

There are a number of important identities concerning *. First of all, *
distribotes through + ;for all lists z and y we have

frzHy)=(fxz) 4 (Fry)

Second, * distributes {backwards) through functional composition:

(f-g) = (f+) - (g%)-

We shall encounter many applications of these two identities in due course.
Another rule is that if f is an injective function with inverse f~1, then

(f9)7 = (7).

1.5 Filter. The operator < (pronounced “filter”) takes a predicate p and a

list z and returns the list of elements of r which satisfy p. For example, we
have

even 4 [1...10) = [2,4,6,8,10].
The type of 4 is given by
<: (& — Bool} x {a] — [a].

Like #, the operator < distibutes through + : for all li;ts z and y we have

palzity)=(paz)+(pay)
We also have the laws

pager = gapaz

papax = p4dr

pafrz = fx(p-flaz,

for all functions p, g and f and lists z. The first law (commntativity of filters)
says that filtering a list with a (total) predicate g, and then filtering the result
with a (total) predicate p, gives the same answer as first filtering with p and
then with g. The second law says that (p<) is an idempotent operation.
The third law (commutativity of map and filter) says that mapping with f
followed by filtering with p gives the same result as first filtering with p- f
and then mapping with f. We can also express these laws using functional
composition:

(pa)-(g9) = (g<)-(p9)
() (pe) = (pa)
(pa)-(fr) = (f)-(p- fla).

1.6 Operator precedence. In addition to the above operators we have
also encountered, without explicitly mentioning the fact, the operation of

functional application. Functional application is denoted by just a space in
formulae, and when no confusion can arise the space is sometimes omitted.
Thus f¢ means f “applied to” a. Application associates to the left, so that
f ab means (fa)d and not f (ab).

It is normal in mathematical notation which deploys 2 number of infix
operators to provide certain rules of precedence and association in order to
reduce the number of brackets. We shall suppose that functional application
is more binding than any other operator, so f z + y means (f z) 4y and
not f(z 4 y). It is also convenient to suppose that 4 has a low precedence,
50 f«z 4 geymeans (f«z) H (g+y) and not f*(z H# g=y)}. For the other
operators we shall put in brackets to clarify meaning. However, we shall
assume that, in the absence of brackets, operators associate to the right in
expressions. For example, f * paz means f * (paz) and not {fxp)az.

2. Reduction

2.1 The reduction operators. Most of the operations introduced in the
first section tramsform lists into other lists. The reduction operators to be
described in the present and following section are more general in that they
can convert lists into other kinds of value as well.

Thefirst reduction operator, written “/” and pronounced “reduce”, takes
an operator @ on the left and a list z on the right. Its effect is to insert ®
between adjacent elemeats of z. Thus:

@/far,az,...,e) =21 Bag D - D e,.

For the right-hand side of this equation to be unambiguous in the absence
of brackets, the operator @ must be associative. In fact, the form @/z is
only permitted when @ is an associative operator, so the grouping of terms
on the right is jirrelevant.

In the case that the second argument of { is a singleton list [a], we have
from the informal description of &/ that

&/la] = a.
Moreover, we also have
®/(z+y) = (8/2)8 (8/y)

whenever 2 and y are uon-empty lists. These two equations (the definition
of / on singletons and the distributive law) are important and will be used
frequently in what follows.

The informal definition of / given above does not prescribe a meaning
for the expression @/[]. If @ has an identity element e, then we suppose
@/} = e; otherwise @/[] is not defined. The reason for this choice is to
preserve the distributive law when either z or y is the empty list. Since

a=@/[a] = @/(le] D) = (&/[a]) @ (&/[l} =D,
and also

a=@/la] = &/([14[a])= (&/[)) & (&/[a]} = e D s,

it follows that, if defined, ®/|] must be both a left and right identity element
of @. Hence, ®&/[] can only be the (unique) identity element of &.
The type of / is given by

[ilaxa— a)x%[a] - o

Thus, in the combination &/z, the operator @ has a type of the formax ¢ —
a and z has a type of the form [a]. The combination will then have type o,

Some simple cases of reduction, indicative of the general utility of the
operator, are given in the following definitions:

sum = +/
product = X/
flatten = 4/

allp = (A/}-(p¥)
somep = (V/)-(p+)

min = |/

mar = 1/

All the operators involved in these definitions are associative and all, except
the last two, have identity elements. The identity element for + is 0, so
sum [} = 0; for multiplication the identity element is 1, so product [] = 1,
and so on. The expressions +/ and %/ correspond to the special symbols
2 and [T used in other branches of mathematics. For example,

o o= 4/fs[l..n]
Miej = X/[L...n)

The function flatten takes a list of lists and concatenates them to form a
single list. Since [] is the identity element of # we have +/[] = [].

The binary operators A and V denote the operations of logical conjunc-
tion and disjunction respectively. Accordingly, the function all takes a pred-
icate p and a list r and returns the value trueif all the elements of r satisfy
p, and folse otherwise. For example,

all even [2,4,0] = true.

The function some takes similar arguments p and x and returns true if at
least one of the elements of T satisfies p, and false otherwise. For example,

some (= 1) [2,4,6) = false.

Since
alMlrue = trueAa = a
aVfalse = falseVa = g,

it follows that all p[] = true and some p[] = false for all predicates p,

The operators T and | select the greater and lesser of their two (numer-
ical) argnments respectively. Hence mazx selects the maximum of a list of
numbers and min selects the minimum. These two operators are cousidered

further below.

2.2 Fictitious values. Neither T nor | have identity elements in the domain
of finite nnmbers, so both maz [] and min [] are undefined. Despite this, it
is often useful to be able to manipulate expressions involving terms of the
form T /r and | [z without taking special precautions to ensure r # []. The
same holds for other operators without identity elements. Provided certain
rules are observed, we can always invent a “fictitions” value to act as an
identity element of a given operator. Suppose @ is an assaciative operator,
defined aver some domain X but not possessing an identity element. Invent
a new valne ¢ and adjoin it to X. Define &' by the rules

a®d'bd = b ifa=e
= a, ifb=e
= a®b, otherwise.

The new operator @’ is associative, has identity element e, and agrees with
@ on arguments in X. For example, we can invent fictitious values ' /[] and
1’ /]] — calling them —cc and oo say — and adjoin them to the domain of
finite numbers. As long as no other properties of these fictitious elements are
assumed, we can continue to use the undecorated operators in expressions

and derivations. Care must be exercised to avoid imputing any additional
laws to the new values. For example, the law

Lla+)*z = at L/z

is only valid when restricted to the case z # [].
To give another illustration of a useful operator which has no identity
element, define < by
a€b=aq.

Since
(agbh)e=a=ag (b<€c),

the operator < is associative, and we can form « /z. The value of this
expression is the first element of the list . This is a usefu! operation and
we define

heed z =< fz.

{A similarly useful operation is
lastz =% [z,

where @ » b = b.) The operator € does not possess an identity element.
If e were an identity element, then we would have e < ¢ = a for all ¢; but
since e € a = e by the definition of <, the conclusion would be that e = @
for all a. If necessary, we can invent a fictitious value ¢ and define

ag'b = b, ifa=e
= a, otherwise.

The function €’ agrees with < on non-fictitious arguments.

2.3 Homomorphisms. There is a close relationship between reductions
" and homomorphisms on sequences. By definition, a function h defined on
finite lists is a homomorphism if there exists an associative operator § with
identity element e such that h{] = ¢ and

hzHy)=hzahy

for all lists £ and y. If k is not defined on the empty list, then & is not
required to possess an ideutity element and the above equation is asserted
for non-empty lists only.

If his a homomorphism, then A is uniquely determined by @ and the
values of h on singleton sequences. In other words, if we define f by the
equaticn

fa=nhiel,
then h is determined by & and f alone. The following lemma says that
every homomorphism can be expressed as the composition of a reduction
and a map, and every such composition is a homomorphism.

Lemma 1 [Homomorphism Lemma]. A function h is ¢ homomorphism
with respect to H if and only if h = (@f) - (f*) for some operator § and
Junction f.

Proof. First, suppose h = (&/) - (f*). Then

h(z4y) = &/f«(z+y)
Bf((f =) H(f*y))

(®/frz)@(B/f*y)
hzdhy,

n

using the distributive laws for * and /. Furthermore, if @ has an identity
element e, then

hl=8/f«(]=8/ll=e
Hence his a homomorphism.
To prove the converse, suppose h is 2 homomorphism, so that

hiz#y)=hzahy
for some operator @. Define f by the equation
fa=nhla.

We show h = (/) - (f+) by induction on the length of sequences.
If k(] is defined, then it is the identity element of & and so

h(l=8/[}=&/f «[].
If 4tz =1, that is, z = [a] for some a, then we have
hla] = fa=&/[fa]=0/f+[d],

using the definition of / on singletons and the definition of *. In the case
#z = n, where n > 1, we can set z = y4 z, where 1 € #y,#2z < =n. By

11

induction, we can suppose hy = &/f +y and hz = @/f » z and hence
compute

h(y # z2) hydhz
(B/fxy)B(B/f*2)

&/ f * (y4z),
using the distributive Jaws for * and [/ as before. This completes the proof.

2.4 Definition by homomorphisms. Many of the functions already in-
troduced are homomorphisms. A reduction itself is 2 homomorphism and
so is a map., We have

&/ = (&/) - (id+}

where id is the identity function, and

fr=(44/)(g%)

where g is the function defined by ge = [f a].
A filter is also a homomorphism. We have

pa= ('H'/)(fp*):

where the function f, is defined by f,a = [a] if pa and f, a = [] other-
wise. This function replaces elements which satisfy p by singleton lists and
others by the empty list. The filtered sequence can then be obtained by
concatenating these lists together.

The length operator can be defined as the homomorphism

= (+/) (K1%),

where K a = ¢ for all a. Every element of the list is therefore replaced by
1 and the result is summed to give the length.
The functions head and last are homomorphisms:

head = (</) - (id*)
last = (/) (id+),

where e € b=canda>» b=0b.

Of course, not all functions on lists are homomorphisms. One useful
sufficient condition is that h is injective, i.e. h{z) = A{y) if and only if
£ = y. X h is injective, then its inverse h™! is well-defined on the range of
h. Thus, if we define & by

v@u=h(h w4 h),

then it follows that

hiz #y) R(R=Yhz)y# A=Y hy)

hzdhy

Hence his the homomorphism (/) - { f*), where, as usual, fa = h|a).

A simple application of this result is given by the function reverse which
reverses the order of the elements in a list. Clearly, reverse is injective and
is its own inverse. Hence

reverse = (&/) - (f+),

where
z & y = reverse(reverse I -4 reverse y).

An informal argument, left to the reader, shows this last expression is equal
to (y 4 2). By convention, let & and & be related by the equation

zBy=yDz.

Also, let the special symbol O denote the function which transforms values
into singleton lists so that Oa = [a] for all a. Then we can write

reverse = (4 /)-(O%)

We turn now to a more advanced application of the same idea.

2.5 Exemple: processing text. Suppose we define a tezt to be a list of
characters and a ltne to be a list of characters not containing the newline -
character NL. These classes can be intraduced as new types:

Tert = [Char]
Line = [Char)\ {NL}].

In this section we want to define a function lines which takes a text and
returns the list of lines that make up the text. The function lines is an
important component in many text-processing applications. It can be spec-
ified formally as the inverse of another function, unlines say, which inserts
nrewline characters between adjacent lines and then concatenates the result.
The defnition of unlines is as a reduction;

unlines = @/
tdy = z+4 [NL]+yp.

13

The operator @ does not have an identity elemert, so the value of uniines{]
is not defined. We therefore assign unlines the type

unlines : [Line]t — Tezt,

where [X]* denotes the non-empty members of [X]. It is easy to verify that
unlines is injective. This means lines can be completely specified by tie
single equation
lines(@/2s) = zs {1)
for all non-empty sequences of lines zs.
Since lines itself is injective, we can look for a suitable homomorphism
of the form
lines = (®/) - (f). (2)
If we succeed, then we shall have converted an implicit specification {1) into
a constructive definition (2). The synthesis is by straightforward calculation,
First we determine f. By a standard argument we have

fa = linesla)
I{ @ is not the newline character, then

lines [a] = lines(&/([a]]) = [[a]}

using the definition of / on singletons and Equation (1). For ¢ = NL we
have
lines [NL] lines([]+ [NL]#[])

lines([} @ [])
bnes((a/[[1]) @ (&/1[11)
lines(a/({], (1))
{3110
using the definition of § and Equation (1),

Putting these results together,

fa ((}(}, ife=NL,
{[a]], otherwise.

It H

1

Second, we determine ®. Since each argument of ® is a non-empty
list, we need only consider the definition of (zs # [z]) ® ([¥]# y#). Using
Equations (1) and (2) and the distributive properties of /, we have that

(zs 4 [z]) @ ([#ys) = lines(®/(zs + [])) ® lines(D/{[v] 4 ys))
= tlines((®/(zs # [])) 4 & /(ly]+ v2)).

Now,
®/(zs # (z}) (@/2s) © (&/[2}])

(®/2s) 4 [NL] 4 z,

and similarly
&/(iv] 4 ys) = y+4 [NL] + (&/ys).

Their concatenation is therefore

(@/zs) 4 [NL] + z + y + [NL] -+ (&/ys)
(®/zs) 4 [NL] 4 (&/[= 4 y]) # [NL] # (®/ ys)
(@/zs)@ (®/[z) & (D/ys)

®/(zs 4 [z 4 y] + ys).

We conclude using Equation (1) that

(zs 4+ [z]) ® ([v] #ys) = lines(®/(zs 4 [z 4 y] Hys))
= zs4 [z H y] s

Note that the above derivation actually juggles with some potentially
fictitious values. No meaning has been assigned to &/[], yet terms of the
form @/zs appear in a context where the case zs = []| is not specifically
excluded. No confusion can arise because, as we have seen in §2.2, a ficti-
tious identity element of @ can be added to the domain of values without
inconsistency.

Notice also that, unlike @, the operator @ does have an identity element,
oamely [[]]. This follows from the fact that &/[[]] =], since

®/[]=&/(a/1) =[]

It isinstructive to develop this example a little further to show how other
text processing functions can be synthesised. Define a word to be a non-
empty sequence of characters not containing the newline or space characters.
We can define the type Word by the equation

Word = [Char \ {NL,SP}}*.

In a similar spirit to before, we can seek a constructive definition of a function
words for breaking a line into words. The type of words is therefore

words : Line — [Word].

15

The function unwerds : [Word]* — Line defined by

unwords = @&/
TPy 4 [SPl+4+y

takes a sequence of words and concatenates them after inserting a space be-
tween adjacent words. The function unwords is injective, but not surjective.
For example, none of the lines [], {SP], [SP,SF], . . . and so on, are in
the range of unwords. However, if we temporarily admit the empty list as a
possible word, then wnwords becomes surjective on the augmented domain
and we can define it5 inverse in an exactly similar way as we have done for
unlines. Having done this, we can now define words by filtering out the
empty sequences. Hence

words = ((# (])9) - (®/) - (f#)

where
fa = [[L[l, ifa=SP

(la]]l, otherwise

and, as before,

(s 4+ [z]) ® ([y] H# y3) = zs 4 [z 4+ y] H y5.

Note that, although words - unwords is the identity function on non-empty
sequences of words, the function unwords - words is not the identity function
on linea. Redundant spaces are removed between words.

Finally, to complete a logical trio of functions, we can define a paragraph
- to be a non-empty sequence of non-empty lines and seek a definition of a
function paras which breaks a sequence of lines into paragraphs. The type
Parg can be defined by the equation

Parg = [Line*]t,
‘We require paras to have type [Line] — [Parg]. The function unperas, where
unparas : [Para]t — [Line],

is defined by

unparas
5 B ys

&/

zs 4 {[1] # vs,

This function takes a sequence of paragraphs and converts it to a sequence
of lines by inserting a single empty line between adjacent paragraphs and

16

concatenating the result. Like unwords, the function unparas is injective but
not surjective. Again, by temporarily admitting the empty paragraph, we
can make unparas surjective and define its inverse in the usual way. The
empty sequences can then be filtered from the result.

To summarise: the types we have introduced are

Tert = [Char]

Line = [Cher\ {NL}]
Word = [Char\{NL,SP}J*
Para = [Line*)*

The three “un-functions™ are

unlines : [Line]* — Text unlines = @nL/
unwords : [Word]* — Line unwords = ®gp/
unparas : [Paralt — [Line] unparas = @)/

Here, we have
T@h,y=zH{e]Hy.
The three inverse functions are

hnes = (®/) (fue)
words = ((#[])9) (®/)-(fsp¥)
paras = ((#[])9)-(®/)-(fip*)s
where
foa = [[LIII, ifa=0b
= [[a]], otherwise
and

(zs 4 [z]) ® ([v] + ys) = zs 4 [z H y} H 5.

These six functions have a variety of uses. We give just two. The number
of lines, words and paragraphs in a text can be counted by
countlines = # - lines
countwords # - (H/)- (wordsx) - lines
countparas = ¢ - paras - lines.

Second, we can normalize a text by removing redundant empty lines
between paragraphs and spaces between words. We have

normalize = unparse - parse
parse = ((wordsx)*)- paras - lines
unparse = unlines- unparas - ({unwordsx)=).

17

To parse a text here means to break it into lines, paragraphs and words.
The type of parse is
parse : Text — [[[Word]]]

For injective functions f and g we have

(f-g)r = ¢7'-f7
(f£)™ = (f7'4),

from which it follows that parse is injective and the definition of unparse is
correct.

2.8 Promotion lemmas. As simple consequences of the Homomorphism
Lemma of §2.3 we can derive the following useful identities. They generalise
the distributive laws of %, < and /.

Lemma 2 [Promoction]. For arbitrary function f, predicate p and associa-
tive operator & we have:

(*promotion) (f=*)-(+H/)
(«promotion) (pa)-(+H/)
(/ promotion) (&/)-(4+/)

(/) ((f4)#)
(/) ((pa)*)
(&) (&)%)

Proof. Set h = (f*)-(4/). It is an easy calculation to show that

hlz]=f*z

and also -
h(zs 4t ys) = hzs 4+ h ys.

Hence h is the homomorphism (4+/) - ((f+)*). This establishes the * -
promotion law. Similar reasoning establishes / - promotion. Finally, to prove
< - promotion, recall that (p a)is a homomorphism of the form (4/})-(f*) for
a suitable function f, the definition of which is not relevant for the present
proof. Using in turn, * - promotion, / - promotion and the distributivity of
* through composition, we have

(pe)- (/) (+#/)-(f#)-(#/)
(/) (/) - ((F4)%)
(/) - ((H/)%) - ((F+)*)
(H7) - (((47) - (F4))%)
(47} ((pa)#)

(/|

H wn

as required.

The terrn “promotion™ is used to describe these results becanse they
say that rather than mapping, reducing or filtering over one large sequence,
one can divide the sequence into shorter ones, map, reduce or filter each of
these (hence “promoting”™ the operation into the component sequences) and
collect the outcomes. For example, consider the rule

UN- () =UN- (L))

In words this says the minimum of a flattened list of lists of numbers can be
obtained by first minimising over each component list and then minimising
over the results. I one of the component lists is empty, then its minimum
will be the fictitious value co, but since 00 | @ = @ | o0 = @ the minimum
of the minimums will only be oo if all the component lists are empty.

2.7 Selection and indeterminacy. We end the section with a discussion
of two rew operators which are mainly used with reductions.

Many problems in computation can be forrnulated as optimisation prob-
lems: find the cheapest, shortest, longest or perhaps the value of greatest
profit in some given class of values. Such problems can be specified with
the help of two new operators, |y and fy. Just as (¢ | b) selects the mini-
mum of two numbers e and b, s0 (a |y b) selects either a or b according to
which is smaller: fa or fb. In the definition of |, function f has generic
type (@ = Num). The definition of (a Ty b) is analogous: it selects @ or b
depending on which is greater: fe or fb {from now on we shall ignore Ty
as it is treated in an exactly similar manner to | ;). We have

alsdb = a, ffa<fd
b, if fa> fb

The lacuna in this definition occurs in the case fa = fb. If f is an injective
function on the range of values of interest, then fa = fbonlyifa= b and
we can assign (a |y b) their common value. For example, |=]:s. However,
in the majority of practical cases the function f is not injective. To ask for
the longest or shortest sequence in a class of sequences is really an abuse
of language: there may be more than one such sequence. What is meant is
some longest or shortest sequence.

Ir developing constructive solutions to problems of optimisation, the un-
der epecification permitted by |y can be very useful, especially as we are

19

not narmally concerned with any other property of the result than that it
mhim.ues f. Accordingly, we shall allow expressions to contain occurrences
of the bperator |; when f is not an injective function. In these cases we
integpret ly as standing for |4+, where f’ is some injective function — the
precise nature of which we are not interested in — which respects the order-
ing given by f. Thatis, fa < fbimplies ffa < f'b. Ha# bbut fa= fb,
then either f'a < f'bor f'a > f'b and we do not care which, We stppose
without proof that such an extension f' exists for any f (this assumption is
related to the Axiom of Choice in Set theory).

When carrying out equational reasoning with |; we must be careful
not to ascribe any properties to |y which are not implied by the foregoing
convention. Only the following properties may be assumed:

(associativity) als(blye) = (alsb)lsec
(idempotence) alje = a
(commutativity) algb = blya
(selectivity) alyb = eitheraord
(minimality) falsb) = falfb.

At certain stages during the development of a constructive definition it
may become appropriate to exercise a choice about the value of (a |, b)
when fa= fb. Such a step is called a choice step and will be deroted by
the sign ~+. For instance, if fa = fb we can write

alyb~ra

The sign ~+ can be read as “may be refined to”. -‘Taking a-choice step is
to be regarded as imposing a further property on the injective function f
of which f is the representative. This means that any choice step must be
consistent with every previous choice step. For example, if f(1)= f(2) and
we decide, in some chain of reasoning, to impose the choicel |y 2~ 1, then
it follows that

1124172~ 14+1]72=1+1=2.
However, the following reasoning is not valid:
llj2+1lf2~b1+llj2m1+2=3.

Having exercised a choice, the consequences must be followed consistently.

The major use of selection functions occurs in conjunction with reduc-
tion. For example, T4 /z¢ returns some longest sequence in the list of se-
quences 3. We shall see many examples in due course. As an extension to
the minimality law we have

f-UeD=UN-(f*.

For f = # this law expresses the formal equivalence of the English phrases
“the length of the shortest” and “the minimum of the lengths™.

3. Directed reduction and recursion

3.1 Left and right reduction We now introduce two more reduction op-
erators: 4 (pronounced “right-reduce”) and -4 (pronounced “left-reduce”).
They are closely related to the reduction operator /, but each takes three
arguments: an operator &, a value ¢ and a list z. They can be described by
the equations

(@4-e)a1, a2, . ..,¢q)
($+E)[ali [~ PR an]

In particalar, we have

a1 @le;d(--(anBe)))
(((e®a1) ®az) - B an).

(@+e)[)
(@+e) (]
The -operator @ used in a left or right reduction need not be associative, so
the brackets in the above equations are necessary. Indeed, the type of &
may not even take the form o X @ — e. The types of 4 and 4 aze given

by

o ¢ ((axB~B)x)= [a] = p

4 ((Bxa—B)xp)—[a] - B.
Tn the expression (@¢-e)z, the operator @ has type a X § — f, the value e
has type § and z has type [a]. The expression then has type 5. Analogous
reasoning applies to the combination (#-p¢)z. Note that (@ «Le) and (@ He)
are both functions with type [e] — 5.

Why do we need two more reduction operators? There are a number of
answers to this question. First, the directed reductions can be regarded as
“implementations” of the operator / in which the order of computation is
completely specified. If @ is associative with identity e, then certainly

®/ = (B+e) = (@pe),

€
€.

21

so undirected reductions can be expressed as directed reductions in two ways
at least. In this sense, the directed reductions reflect a naive policy of sequen-
tial evaluation and can be translated directly into a suitable programming
language. This point is amplified below.

The second, and more pragmatic answer is that many more functions can
be described by directed reductions than by /. For example, the function
(f+*) cannot be defined in terms of /, but we do have

(f&) = (&H)D)
wherea @z = [f o] - z.

Furthermore, although every homomorphism can be expressed as a directed
reduction (see §3.4), many functions which are not homomorphisms tan be
defined as directed reductions. For example, consider the function prefiz
which takes a predicate p and a list as arguments and returns the longest
initial segment of z all of whose elements satisy p (problems about segments
will be discussed in §4). Thus,

prefiz evenl2,4,1,8] = [2,4].
The function prefiz is not a homomorphism, but we do have

prefiz p = (@+(1),

where
adz [a] # =z, ifpsa

[l otherwise.

To llustrate this definition, consider

P"'Eﬁi even [2'.- 4$1r81

Il

20e(la@Eal))
(2] 4+ [4] - []
[2,4]

Further examples of directed reductions will be seen in due course.

3.2 Recursive characterisation. From the informal definition of (&+-€)
we have
(@ee)[] = e
(®deXa] #+2) = ad(Pdez

for all elements a and lists z. Since every non-empty list can be expressed
uniquely in the form [a] 4+ x, these two equations characterise the behaviour

22

of (@+¢) completely. Putting it another way, we can regard f = (@+le) as
the solution of the recursive equations

Il
f([a] +2)

In these equations the value of f[] is specified directly, and the value
J([a] #1) is specified in terms of a and fz. Thus f is determined in-
crementally from “right to left”. This explains the direction of the arrow in
the sign &. The progress of computation is essentially “recursive” (literally:
to go backwards).

In the case of a left-reduction (@®-he), the informal description gives

(@e)()
(®Fe) (z 4 [a])

for all cand z. (Recall that fonctional application is more binding than
any other operator and so the right band side of the last equation is read
as ({(@-ke)z) @ a.) Hence (B+e) processes lists from “left to right”. The
progress of computation is therefore essentially “iterative”.

We shall now show that the function (G-e) can also be characterised
by the recursive equations

(@4e)] = e
@He) (el +2) = (@hoa)s.

~ The first equation is immediate, so it is only necessary to show that the
second one holds. We do this by induction on the length of z. For the
empty list [], we reason

(@fe)[a) = eda = (B+H(e®)]

For the case z 4 [b), we reason inductively

(@pe)([a) + (= + b)) (@-pe)([a] # 2z + (b))
(@-pe)la] H2)BD
(@h(eda))z ol
(@-(e @ a))(z 4 [b]),

using the associativity of 4+ and the second defining equation for (&-fe).

[

ad fz

e
(Bpe)r@a

i

23

1t follows that f = (@-f+¢) can be regarded as the solution of the recursive
equations

f = ge
gel] = e
ge(la]#z) = gleda)z

We see therefore that both left and right reductions can be characterised
by recursive equations of the same general form. In this form, a furction f
on lists is defined by (i) giving the value of F[] directly; and (i) specifying
f([a] # =) in terms of fz. Every list, of any type whatsoever, is either empty
or of the form [a] 4 z for unigue values of @ and z, so these two schemes are
sufficient to characterise functions over (finite) lists. This style of recursive
definition is a feature of functional programming languages (see 5] and {7]).

In functional programming the operation of concatenation is not pro-
vided as primitive. Instead, there is given a primitive operator “:” (pro-
nounced “cons”) which inserts a value into a list as a new first element.
Thus, we have

a:z=|e]+z.

The type of “:” is given by
;) rax [o] = [a].

Since
[@1,82,..-,87) = a1 : (az : (.. .(an: [])),

every list, of any type whatsoever, can be constructed by inserting its ele-
ments successively into the empty list (hence the reason for the name “cons”
which is an abbreviation for the word “construct”).

We can define 4 in terms of cons by

zhy=(oy

for all lists z and y. From this equation the cost of evaluating z H y is
proportional to the length of z, assuming a “:” operation has unit cost.
There are a number of reasons why cons is taken as the primitive op-
eration for lists in functional programming. One is that every non-empty
list can be expressed in the form (or “pattern”) e : z in exactly one way,
so that one can define an arbitrary recursive function by a scheme based
on the patterns [] and e : z. On the other hand, a non-empty list can be
expressed in the form z # y in many ways and this can lead to ambiguity in

24

a definition (unless, of course, the function is a2 homomorphism). Another
reason concerns questions of efficiency to which we now briefly turn.

3.3 Efficdiency considerations. With the introduction of the directed
reduction operators we have begun to approach the question of what can
reasonably be expected in the way of systematic computation by a machine.
Although we shall not go into details of the underlying mechanisms, it is
appropriate at this point to say something about the amount of time and
space required to carry out the evaluation of a directed reduction. Most
often, we shall solve a problem by a directed reduction and it is necessary
to have some appreciation of the gains in efficiency thereby obtained.
First, let us consider a right-reduction (@+e)z. If the list z has length
n, then the definition of ¢ suggests that the evaluation of (@ +e)x requires
n applications of the operator @. However, not every computation with
a right-reduction must necessarily begin at the right hand end of the list
and traverse backwards to the head. To illustrate this point, consider the
function prefir(< 3) which selects the longest initial segment of a list of
numbers, all of whose elements are less than 3. We have prefiz(< 3) =
(@[]}, where
ez

ag:z, fa<d
[, otherwise.

Here, a : z is used in preference to [¢] 4 z. Using the recursive charac-
terisation of «& as the basis, we can “unfold” the computation of prefiz(<
3)[1...100] in the following way:

prefiz(< 3)(1...100] (@<[D[1...100]
16 (L[](2--.100]
1: (@[Df2...100]
1: (2@ (& [D[3...100])
L:2: (@« [])[3.-.100]
1:2: (36 (@])4... 100)
1:2:]
1

12

(1,2]

The length of this derivation is proportional to the length of the resulting
list, not the length of the original list. In othet words, the number of &
operatiors actually carried out is 3 not 100. The crucial fact which enables
the calculation to be shortened is that for ¢ > 3 we have a @ z = (] for

25

all lists z. Since the value of z is not required, it need not be calculated.
This strategy of symbolic evaluation combined with the policy of performing
only those calculations necessary to determine the result is known as lazy
evaluation. Lazy evaluation can be programmed into 2 mechanical evaluator
quite easily (see [5]), though we shall not go into details.

Here is another, more dramatic example. Consider (€ «e)z, where
e & b=a. We have

(€ «e)2...100] 1€ (< 4e)[2...100]

1

t

so the computation terminates after only one step.

Now let us turn to left-reductions. The situation here is different from
right-reduction in that, when processing lists from left to right, all the el-
ements do have to be considered in order for the result to be returned.
Consider, for instance, the symbolic evaluation of {€ -#0)(1,2,3], where
a € b = a. This evaluation is based on the recursive characterisation of -
by the equations

(®-pe)(]
(@e)(a: z)

For the specific example, we have:

(€ 40)1,2,3] = (€ -4(0<1))2,3
(< £0)[2,3]

(€ (0 < 2))(9]
(& +0)[3]

(€ 40 <3)]
(< 40)(]

0.

i

(®p(e®a))s

o

In this evaluation the complete list is traversed before the answer is returned.
To summarise these observations: right-reductions can be more time
efficient than left-reductions; this happens when values of the operator con-
cerned do not always depend on the full evalnation of the right-hand argu-
ments. Such an operator is said to be non-strict (in its right argument).
The reverse situation can occur with space efficiency. Left-reduction can
be more efficent in the amount of space required to carry out the computa-
tion. Compare the evaluations of (++-0)[1,2,3] and (+-40)[1,2,3]. For the

26

former we have:

{(++0)[1,2,3] 14 (+40)[2,3]
14 (2 + (+40)3])

1+ (24 3+ (+4-0)(])
= 1+(24+(34+0))

= 14(2+3)

= 145

= 6.

In this computation the sizes of the intermediate expressions grow in pro-
portion to the length of the original list. This is an important measure
because the sizes of the intermediate expressions refiect the amount of space
which would have to be available to a meckanism in order to carry out the
computation.

On the other hand, we can compute:

(+-40)[1,2,3) (+-4(0 +1))(2,3]
= (++1)[213]
= (++(1+2))3)
= (++43)3]
= (+-(3+3))]
= {+46)]
= 6,

and the size of the intermediate expressions never grows beyond a constant
amount. The inner calcnlations are performed as they arise: this is safe be-
cause - js a strict function, demanding complete evalnation of its arguments
to determine the result.

In general, it is better to use right reduction when the operator concerned
is non-strict and left reduction when it is strict. For example, when the
operatoris one of 4, A, or V, we nse right reduction; and when it is one
of +, T, or |, we use left reduction.

This concludes a brief treatment of efficiency issues. In describing the
symbolic evaluation of expressions, we have outlined the main method by
which functional programming languages are implemented. For further de-
tails the reader should consult [5] or [7]. Since we wish to present problems,
derivations and solutions at a higher level of abstraction than is provided
by specific constructs in particular programming languages, it is left to in-
formed readers to develop for themselves the connections between directed
reductions and programs in conventional or functional languages.

27

3.4 Duality and specialisation. We state without proof two useful results
concerning the relationship between the various forms of reduction.

Lemma 3 [Duality] For all & and e we have
(Defe) = (G-pe) - reverse,
where a®b= b a.

Lemma 4 [Specialisation] Fvery homomorphism can be defined as either a
left or a right reduction. More precisely,

(©)- (f+) = (@e¢) = (@),

where
a®b

a®b

faOb
a® fb

(]

We give just one illustration of the specialisation lemma. Consider the
function
lines = (®/) - (f*)
of §2.5, where
fa [[]:[]]s ifa=NL
([6]), otherwise

and
(zs 4 [2]) @ ([y] 4 y8) = zs 4 [2 H y] + ys.

Seta @zs = fa®zs. Since ®[] = [[]], we have by specialisation that
tines = (S£([]]).

It remains to simplify the definition of ®. First, if ¢ = NL, then

FNL ® ([x] # z8)
[, (N ® ([z] 4 =s)
[[[7 =] 4 2s
{{]l]-H—[x]-H-ﬂ

6@ (z:zs)

|| T I R

using the relation a : z = [a] % z and the definition of f and &.

28

Second, if a # NL, then

a®(z:25) = [[al]]® ([¢] + 29)
=[]+ [[a]]) ® ([z] 4 =s)
= [+ [la] 4 z] 4 25
= (a:z):zs
Hence we obtain
a®(z:z8) [J:z:28, ifa=NL

Hon

(a:x):zs, otherwise.

3.6 Accumulation. We end the discussion on directed reductions by in-
troducing another operator —» (pronounced “accemulate”) which is closely
related to left-reduction. Examples of its use will feature in the next sec-
tion. Like -4 the operator —f» takes an operator @, a value ¢ and a list z
as arguments. Its effect is described by the equation

(@—ellay,az,...,a0) = [6,e P ey, (ePa1) Bag,...,((e® a1) - Ban)]

The coperator —f+ encapsulates a common patters of computation in which
a sequente ¢y, €1, . . ., ¢y is defined in terms of a given sequence a;,az,..-,6,
and a starting value e by a reccurrence relation of the form

e
ex@op (0<kan)

Cp
Cr41

We have

[cos€1y---s€n) = (B—fpe)[ar,...,an).
For example, the list 0!,1!,...n! of factorial numbers can be defined by the
expression

(x—#+1)[1...n].

This expression can be evalvated more efficiently than the alternative
fac*[0...n],

where fack = x/[1...k]. The former requires just » multiplications to
generate the list, while the latter requires n(n — 1)/2 multiplications.
In general,
(@-+e) = last - (@),

29

so every left-reduction can be defined in terms of an accumulation. More
interesting is the fact that an accumulation can be defined as a left-reduction.

We have
(@—fpe) = (@+le])

where
z®a=1z+[lastz & a.

This result shows why the number of @ operations ¢can be reduced from
O(n?) to O(n), where n is the length of the argument list.
Alternatively, we can characterize —f» by two recursive equations:

(@el] = [d
(@—pea:z) = [+ (@(da).

From the point of view of efficiency, this definition is superior to the def-
inition as a left-reduction. Under a strategy of lazy evaluation using the
recursive definition as a basis, elements of the result list can be produced
before the argument list is completely traversed.

4. Segments and Partitions

4.1 Definitions. The object of the present section is to derive computa-
tionally efficient solutions for a number of problems about segments. A list
y is said to be a segment of ¢ if there exist v and v such that z = v 4 y H v.
A list ¥ is an tnitial segment of z if there exists a v such that z = y 4+ v,
and a final segment if there exists a ¢ such that z = u # y.

The function inits returns the list of initial segments of a Iist, in increas-
ing order of length. The function teils returns the list of final segments of a
list, in decreasing order of length. Thus

inits[ay, az,. .., ¢,) [[e]slas, @al, . .. 5 [@1, @2, .« - oy @]
tails[ar, ez,...,a,) = [[a1,02,...,84],[a0,03,...,85),...,]]

Since both functions are injective, they can be defined formally as homo-
morphisms; using the specialisation lemma, they can therefore be defined as
directed reductions. We shall do this directly. Since inits([a] # 1) consists,
in order, of {] and the list of initial cegments of # in which each element is
prefixed by @, we have

inits{]
intis([a] + z)

[N+ ([a]) * inits x.

30

Solving this recursion gives

inits = (@+[[]),

where
ae@®xs = [[]] # (o] #)} * zs.

Arnalogots reasoning gives

tails(} = [(]]
taids(z #[a]) = (+ [a])»teilsz 4 [[]],
and so
tails = (@-A[[1)),
where

2@ a = (4 [a}) » 224 [[]]-

We shall make use of the recursive characterisation of fails below.
The bllowing simple result, whose proof is omitted, relates the function

- to 4.
Lemma 5 For all @, e and lists z we have

{@—fbe)z = (@-pe) * inits x.

The function segs returns a list of all segments of a given list. We shall
define

segs £ = +/tails » inits .

For example,

segs(1,2,3] = [[]: [1]$”v [1'!2}1 [2]1 [1,(2.2,3],(2,3], [3]’ 0l

The order in which the segments appear in this list is not important for our
purposes and we shall make no use of it. Notice that the empty list occurs
more thar once in the result.

4.2 Segment decomposition The following theorem canr be used as the
startingpoint in the derivation of efficient solutions to a number of problems
about segments.

31

Theorem 1 [Segment Decompostion] Suppese § and T' ere defined by

Sz
Tz

&ffxpasegsz
&/f+patailsz.

Then Sz = @ /T » inits z.

Proof. The proof is by straightforward calculation. We have

Sz &ffepasegsz
@/ f «pa(4+/tails * inits 1) (defn.segs)
@/ f *(H/(pa)+ tails + inits z) {< promotion)

B/(4/(f+) % (pa)» tails s inits z) (* promotion)
@/(Bf)« (f+) % (pa)+ tails » initsz {/ promotion)
B/((&/)-(f)-(pa)- tails) + initsz (#,- distrib.)
@/T »inits z (defn. T)

Corollary 1 Suppose T = (@ €) for some opervior ® end value e. Then
S=(8/) (@)
Proof. Immediate, using the above relationship between —f+ and 4.
It follows from this corollary that if @ and ® have constant cost, then
5 z can be computed in O(n) steps, where n = #z.

The following lemma gives a sufficient condition for T to be expressible
as a left reduction.

Lemma 8 Suppose Tz = &/ f » tails 5, where f = (@ e). If @ distributes
through &, i.e.
(a®b)@c=(e®¢c)D (6D),

then T = (©—e), where

a@b=(c@b)De
Proof. It is easy to show T[] = e. We prove T(z 4 [a]) = (TzQ) D e.
Solving these equations gives the required result. To establish the equation,

observe that if f = (@ e), then

fr(Hrfa)wzs = (Ba)x fuzs

32

for all lists (of Lists) zs. Furthermore, if @ distributes through @, thep
©/(®a) x zs = (@a)(B/zs).

Using these results, together with the recursive characterisation of tails, we
can thereiore compute

T(z 4 [a]) @/ f * tails(z 4 [a])

@/ f * ((# [o]) » tasls z 4 [[]])
B/ ((®a) * f * tails = 4 [e])
(@/(@a)+ frtaillsz) e
(Ra)(D/f+tailsz)Pe
(Tz@a)Be

fl

H

This completes the proof.

This result can be illustrated by solving a problem of Gries. The problem
is to compute the minimum of the sums of ail segmente of a given list of
positive and negative numbers: in symbols,

minsum £ =} /(+/) » segs z.

Direct calculation from this expression requires O(n?) steps, where n = #z.
There are O(n?) segments of z and each can be summed in O(r) steps. As
the minimum of the sums ¢an be computed in O(n?) steps, there are O(n?)
steps in total. However, it is easy to derive a linear time algorithm. Since
(+/) = (++0) and + distributes through |, we have from the work above
that

minsum = (1/) - (0—4>0),

wherea Qb= (a+8)]0.

4.3 Extremal problems. A common problem is to find some longest seg-
ment of a list satisfying a given property p. In text processing, for example,
we may want to take the longest initial segment of a List of words which will
fit on a line of given width. By repeating this process with the remaining
words on subsequent lines, it is possible to solve the problem of formatting
text. This problem will be discussed in more detail later on.

Let us consider the problem of computing the functions

Sz = Ta/pasegss
Iz = Ta/painitsz
Tr = Tg/patailsz

33

It will be assumned throughout that p holds for the empty list at ieast, so
there is always a well-defined (and, indeed, urique in the case of I and T)
solution for any given list . Assuming O(n*) steps are required to determine
whether p holds for a list of length n, the time required to compute § z is
Q(n**?) steps, where n = #z. Our purpose is to examine useful conditions
which can be irnposed on p to reduce this estimate.
We mention three such conditions. A predicate p on lists will be called

prefiz-closed if

plzHy)=pz
for all z and y (here, = denotes logical implication). Similarly, p is called
suffiz-closed if

p(z3ty) = py.

Finally, p is segment-closed if it is both prefix and suffix-closed; that is,

plzHy)=>pzApy.

for all = and y. The terminology is appropriate since it is easy to show that
a segment-closed predicate holds for all segments of z whenpever it holds for
z.

Each of the three classes of predicates is closed under the operations of
conjunction and disjunction. One can also show that p is prefix-closed if
and only if

painits z = inits(Tg /p ainits).

A similar characterisation holds for suffix-closed predicates.
We now state without proof two results concerning these properties.

Lemma 7 If p is prefis-closed, then T = (5[]}, where
z@a =14 [patails(z H[a])
Consequently, § = (T4/)- (@[]}

The second part of the lemma follows from the Corollary to the Seg-
ment Decomposition Theorem. To see what this result buys in the way of
increased efficiency, suppose

(@ [Nz =lz0,21,. -, 7al;

where n = #z. Let |, = #z;. To compute z;4; from z; requires p to be
applied in succession to lists of lengths [; +1,{;,...;41. If p requires O(n*)
steps for a iist of length #, then the jth step requires

l_,;+l

5«

=l

steps. Summing over j leads to the result that S z can be computed in
O(n**1) steps.

‘We give one illustration. Let nodups z denote the property that list z
contains no repeated elements, If the only available comparison test is the
test for equality, the computation of nodups requires O(n?) steps on a list
of length n. Direct calculation of

Ta [nodups a segs z

therefore requires O(n*) steps. However, nodups is prefix-closed, so using
the algorithm implicit in the above result we can bring the time down to
O(n?) steps.

The aext lemma shows how to decrease the time still further.

Lemma 8 Suppose p is segment-closed, holds for all singleton seguences,
and satisfies
Plz#[a]}=pzAgaz

for some suitable predicate . Then T = (@[]}, where
z@®a=(Tg/gaatailsz) 4 [a]
Consequently, 5 = (T4 /) - (@ {])-

It can be shown that if ¢ is computable in O(n*) steps, then S r can be
computed in O(n*+1) steps.
To illustrate this result, consider the nedups problem again. The predi-

cate nodups is segment-closed and holds for all singleton sequences. More-

over,

nodups(z 4 [2]) = nodups z A all(# a)z

Since all(# a)r can be computed in O(n) steps, where n = #z, we have
that T4 /nodups < segs z can be computed in ((n?) steps.

35

4.4 Partitions. A partition of a list z is a decomposition of z into non-
empty segments. In symbols, zs is a partition of z if

H/zs =z Aall(# [])zs.

The function parts returns a list of all possible partitions of . In this
subsection we state without proof an important theorem for solving problems
of the form

ly/allpaparts z

for snitable f and p. We first give two illustrations of why this problem is
important in practice.

Text-formaiting. Suppose £ is a list of words (see §2.5 for the relevant defi-
nitions used in this example). An important problem in text processing is to
format text into lines of given width m, ensuring as many words as possible
are on each line (adjacent words being separated by at least one space). A
list z will fill a line of width m just in the case that m > #unwordsz. Define

fitsmz = m > #unwords £,
The problem of formatting text can be described as an optimisation problem
format T =|yau. [all(fits m) 4 parts z,

where waste is a suitable measure of the badness of a given way of breaking
text into lines. This problem was considered in [1], where the following
definitions of waste weve examined:

wastel = (1/)-(whitespace me)
waste2 = (+/)- (whitespace m=*),

where whitespace m r = m — #unwords z.

Sorting by merging. A list of numbers can be sorted by first partitioning
the list into ordered segments {called runs) and then merging the runs. The
function

runs r =|4 /all ordered < parts =

determines the optimal way to partition the sequence prior to merging. Ia

fact, if £ @ y denotes the ordered list which results when = and y are merged,
then

sortr = ®/runs «

36

specifies the complete sorting procedure.

For suitably restricted f and p, the problem of computing

lfalipapartsz

can be solved by 2 “greedy” algorithm which computes the solution incre-
mentally by taking as much of z at each stage as it can. We define

greedypzr = [], ifz =]
(2] + greedy p(z \ =), otherwise
wherez’ =fg /patnitsz

For ax initial segment z’ of z, the value of 2\ 2’ is the final segment which
remains when z’ is removed from z. For suitable p we shall see how to
compute x’ quickly, so the greedy algorithm can be very efficient.

‘We need two conditions on f to relate the greedy algorithm to the par-
tition problem. Say a function f : [[a]] = Num is stable if

fzs < fys= f([z] 4 28) < f([2] 4)

for all lists zs, ys and z.
Furthermore, say f is greedy if

F([z 4y 4 2] 4+ 28) < f(lz + 9] 4 [2) H# 28) < f([z] H [y 4 2] 4+ 25)

for all x,y, r and zs.
One proof of the following result can be found in [1].

Theorem 2 [The Greedy Theorem for Partitions| Suppose p is segment-
closed and holds for oll singletons. Suppose f is stable and greedy. Then

ly/allpaparisz ~+ greedypz.

Notice the refinement step ~+. The theorem does not state that the
greedy algorithm gives the only optimal way of partitioning z, but just one
optimal way. Moreover, the conditions on f are such that knowledge of f is
not required for execution of the algorithm.

Two obvious applications of the theorem are to the problems of for-
matting text and sorting by merging. For the first, the predicate fits m
is segment-closed and waste? can be shown to satisfy the hypothesis on f.
For the second, the predicate ordered is segment-closed and the function #

37

is stable and greedy. Both problems can therefore be solved by a greedy
algorithm.

There temains the problem of computing

te/painitsz

quickly, since this is crucial to the success of the greedy algorithm. We state
without proof a final lemma which addresses this problem. In the statement
we use the function prefiz mentioned in §3 aud a related function take which
selects initial segments of a list with given length: take n z takes the initial
segment of z of length n.

Lemma 9 Jf p is prefiz-closed and p = q - (@-f€), then
T4 fpainits z = take(#y~ 1)z
where y = prefiz g((d-—4se)z).
To illustrate this result, recall that
fitsmz =m > #unwords

From §2.5 we have # - unwords = (@/) - (#*), where n@®m =n+m + 1.
By the specialisation lemma, we have (&/) : (#%) = (®@-f€), where ¢ is the
identity element of @, so e = =1, and n ® w = n + #w + 1. It follows that

fitsm = (m >) - (®+e).

As (fits m) is prefix-closed, the lemma is applicable and reduces the cost of
calculating

Ta/fitsmainits
to O{m) steps.

4.5 Conclusions. We hope we have shown encugh of the theory of lists
to convince the student of its mathematical depth and elegance, as well as
its usefnlness in deriving solutions to practical problems. There are many
subjects we have not touched on: the theory of subsequences, permutations,
arrays (lists of lists}, and infinite lists to name just a few. There are other
kinds of greedy theorem for other kinds of problems about lists. Even having
disposed of lists, there remains trees, bags and sets for which a similar generic
theory is appropriate.

38

References

. Bird. R.S. Transformational programming and the paragraph problem.

Science of Computer Programming 6 (1986) 159.189.

Bird, R.S. The promotion and accumulation strategies in transforma-
tional programming. ACM. Trens. on Prog. Lang. and Systems 6
{1984) 487-456. Addendum Ibid 7 (1985).

. Bird, R.S. and Hughes, R.J.M. The alpha-beta algorithm: an exercise

in program transformation. Inf. Proc. Letters (to appear 1936).

Bird, R.S. and Meertens L.G.L.T Two exercises found in a book on
algorithmies. Proe. TC2 Conference on Program Specification and
Tronsformation, Bad Tolz, W. Germany 1936 (to appear Springer
LNCS 1986).

. Bird, R.S. and Wadler, P. An Introduction to Functional Programming

Prestice-Hall (to be published 1987).

. Meertens, L.G.L.T Algorithmics - towards programming as a mathe-

matical activity. Proc. CWI Symp. on Mathematics and Computer
Science, CWI Monographs, North-Holland, 1 (1986) 289-334.

. Tumer, D. Recursion equations as a programming language. Func-

tional Prograraming and tts Applicetons, Cambridge University Press,
Cambridge, U.K. 1982.

