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The Formal Documentation of
a Block Storage Service

Roger Gimson

Abstract

The formal documentation for a low-level data storage service is presented. The
service allows blocks of data to be stored on behalf of clients in a distributed system.
The documentation includes both a User Manual, presenting the clients’ view of the
service, and an Implementor Manual, describing how the service may be implemented.
It is called formal documentation because, as well as informal text giving the
conventional overviews to the casual reader, it includes precise specifications of the
behaviour of the service, written in the formal specification langnage Z.

Though applied here to the example of a block storage service, the illusirated style of
documeniation can equally well be applied to describing any such system componenta.
This style has been developed as part of a projecl on designing and specifying
compenents of a distributed operating system. The monograph includes a discussion of
the design choices considered for the service, and the experience gained through its
design, implementation and documentation.
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Introduction

A distributed operating system consists of a number of separate services connected to
each other and to clients by a network. This monograph describes one such service,
the Block Storage Service. It allows clients to store and retrieve fixed size blocks of
data. The service only provides low-level data storage facilities, but can form the basis
for one or more independent higher-level file storage services.

The service is presented as a pair of manuals. The first, the “User Manual”, describes
the service as geen from the outside, by a client of the service. An abstract view of the
state of the service is given. Operations which roay be performed on the service by a
client are described in terms of changes in this abstract state.

The second, the “Implementor Marnual®, describes how the service worksinternally, A
concrete view of the state of the service is giver in terms of the componentis from
which the implementation i& composed. This concrete state has a well-defined
relationship to the abstract state described in the first manual. Each of the operations
that c¢an be performed on the service is redefined in terms of changes to the
components of the concrete state.

Apart {from presenting the design of a pariicular service, the monographis intended to
illustrate how rigor cam be introduced into the documentation of software systems. It
can also be seen as an example of how it is possible to present formal specifications of
system components in a style more familiar to the programmer. Only by achieving an
appropriate balance between formality and acceesibility of presentation can we hope
that these techniques will be more widely accepted by computing practitioners.

The final chapter is a discussion based on the experience gained by formally designing,
specifying and implementing the service.

The Block Storage Service was developed as a part of the Distribuied Computing
Software Project which began at the Oxford University Programming Hesearch Group
in 1982, The goal of the project has been to construct and publish the design of
services in a loosely-coupled disiributed operating system, bascd on the model of
autonomous clients having access to a number of shared devices.

A fundamental objective of the project has been the use of mathematical techniques
for program specification to assist the design, developmeni and presentation of
distributed system services. The formal notation used throughout has been the
specification language Z, which has been undergoing deveiopment at the Programming



Research Group over the same period. The project has therefore heen a continuing
practical test of the application of Z to system specification.

The first phase of the project resulted In the specification of a number of services,
including an earlier version of the User Manual for the Block Storage Service [1]. The
presentation has been subsequently improved into the form shown here, and an
Implementor Manual for the service has been developed. The formal notation Z, used
throughout thir document, is defined in [2-7|. A glossary of the notaticon is included
here as an appendix. Common parts of services (e.g. accounting and access control)
have been combined together into a separate document kmown as the “Cormmon
Service Framework™ (included in (8]). The descriptions presented here make use of
some definitions from that document.
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1 Introduction

The Block Storage Service provides low-level data storage facilities. Clients {typically
other services or application programs) may creale, access and destroy fixed-size
blocks of data by invocation of the pervice operations. A block idestifier, chosen by the
service, is used to identify a particular block. A unique identifier is given teo each
block, and once a block has been created its identity cannot be changed.

Blocks have a fixed expiry time, chosen by the client, and will be destroyed without
warning on reaching the given time.

The service provides limited security of access to blocks. A client may not access a
block without imowing its identity, and block identifiers are hard to gueas (since their
values are chosen from a very large set). The identity of any block is initially known
only to its creator; the service will never tell the identity of a block to any other client.
Blocks may be destroyed only by their creators, and sc security also depends on the
proper authentication of clients.

As well as operations on individual blocks, the service alse provides some operations to
help clients keep track of their block usage, and further operations for the
management of the storage provided by the service,

General features shared with other services are described in the “Common Service
Framework” (contained in [B]). They will only be summarised where appropriate in this
manval. In particular, the following types are common to all services, and will not be
defined further here:

{ Byte, UserNum, Time, Money, Report, Op ]
Implementation-specific constants are shown in italica (e.g. BlockSize). Their actual

values shonld be made available to users of a particular implementation, but are not
included here.
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2 Service state

First the individual unite of mformation which are stored by the service are considered,
then the overall abstract state of the service is presented.

2.1 DBlocks

The block storage service stores data on behalf of its ¢lients in units called blocks. A
client may submit some data, consisting of a fixed-size (BlockSize) array of bytes, to
be stored in a block.

BlockData 2 0., BlockSize-1 — Byte

Some general information is also associated with each block. The owner of the block is
the client who created it. Whenever a block is created, an expiry time must be given
by the client; it is the iime vniil which the service is obliged to store ihe block. On
reaching it, a block is said to have expired, and can be discarded by the service
without the client being notified.

The owner of the block, the time of its creation and the time of its expiry {which will
not be earlier than its creation time) together form the bleck information,

BlockInfo
owner : UserNum
created : Time

axpires : Time

created € expires

A block consista of both the block information and the data.

Block
BlockInfo
data : BlockData
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There is also a given [inite set of block identifiers.
[BlackId]
An identifier (id) will be issued by the service when a block is created. This becomes

the client’s reference to the block and any subsequent operations on the block will
require this identifier.

2.2 Overallsiate
The service state records all currently stored blocks according to their identifiers. It
also contains a finite set of new block ids which have not yet been issued. The schema

55 denotes the state of the storage service at any particular mornent.

55

blocks : BlockId = Block
newids : F Blockld

sthlocks € MaxBlocks
nenids N dom blocks = @
Nulild € (dom blocks U newids)

There is an implementation-specific limit {MaxBlocks) imposed on the total number
of blocks that can be stored at any one time. The set oi new ids never contains
identifiers of existing blocks. The service guarantees never to issue a special identity
{Nullld); this id can therefore be used by clients’ applications to indicate “no block™.

Initially, when the service is started for the first time, there are no stored blocks, and
all block ids except Nullld are potentially available for issue. This is modelled as an
operation with only a resultant (dashed) state.

InitSS .
857
blocks’ = @
nenids’ = BlockId \ {Nulild}
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3 Operation parameters

Each service operation can only be performed by an authentic client. Authentication
of clients is assumed to be perforrned outside the service (see “Common Service
Framework™ in [8]). After authentication, the clieut number is available as an implicit
parameter of every operation, and so is the time at which the operation occurs.

Explicit input and output parameters are denoted by names ending in ? for input and
! for output. Every cperation provides at least an explicit output report (report!)
indicating its cutcome.

¢Bas i cParams
clientnum : UserNum

nok : Time
report! i Report

Changes in the state of the service caused by operations all conform to the following
general schema in which the state of the service before an operation (55) is related to
that after the operation (S5’ ) and o the basic parameters of the operation.

4SS

S5
S5’
¢BasicParams

newids’ = neWids \ dom blocks’

It is a constraint on every operation that any id issued by it is removed from the set of
new ids, and 30 can never be issued again.

Sometimes the state of the storage service is left unchanged by an operation,

=55 & ASS | 655’ = @%5%
Some operations take parameters which denote a count of blocks (some number in the
range from zero up to at least the maximum number of blocks), a set of block

identifiers or a sequence of block information of limited length. The foilowing sets are
defined here for convenience.
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BlockCount 2 0..MaxCount
BlockIdSet 2 F Blockld
BlockInfoSeq 2 { s: seq BlockInfo | #s £ MaxInfos }

where
MaxCount » MaxBlocks

3.1 Blockspecific aperations

Many operations on the service apply to an existing block stored by the service, and
require the id of this block to be supplied as an input parameter by the client. A
framing schema is used to include this information in a specific operation definition.
The block stored under the given id (block) is made an implicit parameter of such
operations, An error report, introduced later, allows for the case that no block exists
with the given id.

81 ock .
ASS
block : Block
id? : BlocklId

block = blocks{id?}

Similarly, some operations create a new block and store it in the service, returning its
id as an oulput parameter. Such a block is always owned by the creating client and its
creation time is the current time (i{s expiry time and data will be given in the
particular operation definition). Its id is taken from the set of new ids. This is denoted
by another framing schema. The newly created block (newblock) is made an implicit
parameter of such operations.

tHenBlock .
ASS
newblock : Bleck
id! : Blockld

newblock.oWner = clientnum
newblock.created = now

id! € nenids

nexwblock = blocks’{id!)
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3.2 Key-linked operations

Some operations are designed to operate over a potentially large set of values (such as
all current block identifiers). Such operations are designed to allow the set in guestion
to be traversed in several operation calls. This may be necessary to limit either the size
of output parameters or the execution time of amy particular call.

In this service, some operations require the traversal of a polentially large set of ids.
xs : F Blockld

The operation itself is designed to traverse only a subset of xs, and repeated calls of it

may be necessary to construct xs as the union of the individually traversed parts. The

execution of the separate operations e related by passing a key parameter from one
call to the next, taken from the given set of all keys:

[Key]
Each such operation has an input key parameter (key?) and an output key parameter
{(key!) and affects a subset of xs (subxs). Te¢ construct xs, the client first calls the
operation with a special key StartKey:

Operstion | key? = StartKey

The client then continues to call the operation repeatedly, supplying as the new key in
each cage the key returned by the previous call. For example, the i t" call would be:

Operation | key? key, A
keyﬂ'i A

subxs = subxs,

key!
Finally, the special key EndKey will be returned to indicate that no more calls need
be made.
Oparation | key! = EndKey

At that point, providing the set xs has remained constant, and not been affected by
other operations on the service:

xs = U subxs,
I
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A key is itzell to be regarded as standing for a set of block identifiers, using some
implementation-specific representation (denoted by the function KeySet). The special
keys (StariKey and ErdKey) denote the set of no block ids and the set of all block
ids respectively.

| KeySet : Key + F Blockld

KeySet { StartKey)
KeySet ( EndKey)

a
Blockld

Each key value, passed rom one call to the next, stands for all the ids that have been
traversed so {ar (including possibly many that are not in xs).

The following framing schema is used to simplify the defipition of such key-linked
operations.

tKey ,
key? : Key

key! : Key

xS : F Blockld

subxs : F Blockld

KeySet (key?) c KeySet(key!)

subxs = {KeySet(key!) \ KeySet{key?)) n xs
1

On each key-linked call, the set of ids denoted by the output key is strictly larger than
the set denoted by the input key. Since the set of all ids is finite, this implies that
eventually the EndKey must be reached, and all potential ids traversed. The
difference between the sets associaled with the two keys indicates the subset of xs
involved in the particular call.
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4 Reports

Each service operation is specified by giving a definition of ils successful execution,
then augmenting this with the potential reasons for lack of success. The report!
output parameter of each operation indicates either that the operation succeeded or
suggests why it {ailed. In all cases, failure leaves the state of the service unchanged.

Success indicates successful completion of the operation.

Success .
report! : Report
report! = SuccessReport
R |

The total effect of a service operation is in general defined by overriding the
definition of the successful outcome of the operation by one or more error report
schemas. If the precondiiion in the error schema is satisfied, the corresponding error
report is returned. Only i the precondition is not satisfied will the operation succeed.

In each of the following cases, the state of the service remains unchanged if an error
OCccurs,

NoSuchBlock is given if there is no block stored with identity id?.

NoSuehBlock ,
=55
id? : Blockld

id? € dom blocks
report! = NoSuchBlockReport
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NoSpace indicates that a new block cannot be created when the storage capacity of
the service is [ull.

NoSpace .
=58

#blocks = MaxBlocks
repart! = NoSpaceReport

NotOwner irdicates an attempt to perform an operatior which can destroy a block by
someone other than the owner of the block.

Not Owner
=55
¢B!ack

block.owner # clientnum
report! = NotOwnerReport

BadKey indicates an input key has been provided which does not denote a valid id set.

BadKey .
=55
key? : Key

key? # dom KeySet \ {EadKey}
report! = BadKeyReport

NotHanager is given on an attempt by some other client to perform an operation that
may only be performed by the service manager.

HotHanager ;
=55

¢lientnum # Manpager
report! = NotManagerReport
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5 Service operations

On the following pages appear descriptiona of the Block Storage Service operations.
They are grouped into two sections: those that can be performed by ordinary clients,
and those that can be performed only by the service manager. Each operation
description has three parts.

The Abatract gives a procedure heading for the operation, with parameter definitions,
asg it might appear in a programming language. The corresponderce between this
procedure, and av implementation of it in a real programming language, should be
obvicus and direct. Each parameter is given a name ending with either ? for an jnput
or ' for an output. A short informal description of the operation accompanies the
procedure heading.

The Definition section mathematically defines the successful execution of the
operation. It does this by giving a schema which includes as a component every formal
parameter of the procedure heading, either explicitly or as components of included
schemas (such as report! in ASS). A short explanation accompanies the schema.

The Reporte section provides a definition of the {otal operation, including the possible
error reports that may be obtained from its invocation. The errors are specified by a
set of error schemas, as already defined, whose names are chosen to refleck the reports
they return. Schema overriding (®) is used to define an crdering of potential error
outcomes. This means that the later errors in a sequence of overrides will be
produced, § appropriate, rather than earlier ones. The successful outcome, which
appears first in the definition, will only occur if none of the error conditions are
satisfied.
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5.1 Client operations

There are eight operations the ordinary client may ask the service ko perform:

Create — create a new block and store it

Reed —  read the data of a block

Status —  obtain the status of a block

Destroy —  remove a block from the service

Replace — replace one block with another

SetExpiry — change the expiry time of a block

Getlds —  aobtain the identities of blocks currently owned
by the client

GetCount  —  obtain the number of blocks currently owned

by the client.
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CREATE
Abstract
Create (expiry? : Time;
data? : BlockDate;
id! : Blockld;
report! : Report)

A block is created to store the given data? until the given expiry? time, and is
stored by the service under the new identity id!.

Definition
CreateSUCCESS i |
4SS
¢NenBlock

expiry? : Time
data? : BlockData
id! : BlocklId

newblock.expires = max {now, expiry?}
nexblock.dats = data?

blocks’ = blocks U {id! - newblock}

The expiry time of the block is set to be the requested time, or lbe current time,
whichever is later. This ensures that a block cannot expire ‘before’ it has been created.
Its owner and creation times are defined (by ¢NewB1ock) to be the invoking client and
the current time respectively. The new block is stored with a unique identity.

Reports

-~

Create & (Create A Success)

& NoSpace

SUCCessS

For success, there must be enough storage space left in the service.
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READ
Abstract
Read (id? : Blocklid;
data! i BlockDate;
report! : Report)

The data is returned for the block stored with identity id?.

Definition
Reed, cess 1
=55
$81ock
id? : BlockId

data! : BlockData

data! = block.data

The service is unchanged by this operation. The data of the stored block is returned.

Reports
Read 2 (Read_, .. A Success)
@ NoSuchBlock

For suceess, the block must already be stored by the service.
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STATUS
Abstract
Status (id? : BlocklId;
owner! : UserNum;
created! : Time;
expires! : Time;
report! : Report}

Status information (owner, and times of creation and expiry) is returned for the block
stored with identity id?.

Definition

StatusSUCCESS — 1
=58
481 ock
id? : BlockId
owner! + UserNum
created! : Time
expires! : Time
owner ! = block. owner
crested! = block.created
expires! = block.expires

1

The service is unchanged by this operation. The owner, crealion time and expiry time
altributes of the stored block are returned.

Reporta
Status 2 (Status_ ... A Success)

& NoSuchBlock

For success, the block must already be stored by the service.
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DESTROY
Abstract
Destroy {id? : BlecklId;
report! : Report}

The block stored with identity id? is removed from the service.

Definition
Destroug, cess .
ASS
$Block
id? : BlockId

blecks’ = {id?} 4 blocks

1

The black is removed frem the set of stored blocks.

Reports
Destroy 2 (Destroy,  .ec * Success})
® NotQuner

@ NoSuchBlock

For zuccess, the block must already be stored by the service and the client must be the
owner of the block.
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REPLACE
Abatract
Replace (id? : Blockld;
data? : BlockData;
id! : Blockld;

report! : Report)

The block stored with identity id? is replaced by one with the given deta?. The
identity of the new block is returned.

Definition
Repl ACCqiccess —
ASS
dBlock
dNewBlock
id? : BlocklId
data? : BlackData
id! : Bleckld

nenblock.expires = blaock.expires
nenwblock.data = data?
blocks’ = {{id?} 4 blocks) U {id! * neublock}

The pew block has the same expiry as the old one, but contains the new data. Its
owner and creation times are defined (by ¢MNemBlock) to be the invoking client and the
current time respectively. The old block is removed and the new one stored under its
new identity.

Reports

A

Replace 2 (Replace A Success)
@ NotOwner

2 NoSuchBlock

SUCCess

For success, the block must already be stored by the service and the client must be the
owner of the block.
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SETEXPIRY
Abatract
SetbExpiry (id? + Blockld;
expiry? : Time;
report! : Report)

The block stored with identity i d? is changed to have the new expiry time. Its identity
is not changed.

Definition

SetExpird. ccess .

455

dB8lock

id? : BlockId
expiry? : Time

newblock : Block

newblock.owner = block.owner
newblock.created = block.created
newblock.expires = max {now, expiry?}
newblock. data block.dsata

blocks’ = blocks & {id? — newblock}

The block s replaced by one having the same identity and attributes, except that the
expiry time is changed to the given value, or the current time, whichever is later.

Reports
SetExpiry & (Setbxpiry, .oss » Success)
@ NotOuner

® NoSuchB1lock

For success, the block must already be stored by the service and the client must be the
owner of the block.
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GETIDS
Abstract
Get Ids (key? : Key;
count? : BlockCount;
key! : Keys;
idset! : BlockIdSet
raport! : Report)

Returns a set of block ids owned by the client, limited to at most count? entries. By
key-linking (see section 3.2), all ids belonging to the client can be obtained.

Definition
GEt IdssUCEESS ¥
=35
PKey
key? : Key
count? : BlockCount
key! : Key

idset! : BlockldSet

x5 1+ F Blockld
subxs : F BlockId

%xs = {x:dom blocks | blocka{x).onner = clientnum}

idset! = subxs
#idset! £ count?

The state of the service is not changed. The set of all ids to be returned (xs) is the set
of ids of blocks owned by this client. The set of ids returned in any ome cail {subxs) is
a subset of ids {as defined in ¢iey). The size of the returned set is limited to at most
count? elements. (Note that this set may be empty on any particular call even if
further ids remain to be returned).

Reporis
Getlds 2 (Getlds A Success)

® BadKey

SUCcess

For success, the input key must be valid,
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GETCOUNT

Abstract
GetCount (count! : BlockCount;
report! : Report)

The number of blocks currently owned by the client is returred.

Definition
CetCount_ rpes .
=55
count! : BlockCount

xs : F BlockId

xs = { x:dom blocks | blocks{x).owner = ¢l ientnum}

count! = Hxs

The state of the service ia not changed by this operation. The set of ids to be counted
{xs) is the set of ids of blocks owned by thie client.

Note that the count returred will include blocks which have expired but have not yet
been scavenged.

Reporta

GetCount 2 (GetCount A Success)

SICCPSS

There are 1o additional reparts for this operation.
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5.2 Manager cperations
Operations associated with the management of the service may only be performed by a
special client called the service manager.
There are {wo such operaticns apecific to the storage service:
Scavenge @ — remove expired blocks

Profile — obtain details of block usage.
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SCAVENGE
Abstract
Scavenge (key? : Keu;
key! : Keys;
count! : BlockCount;
report! : Report)

Removes a set of expired blocks from the service, returning the number removed. By
key-linking {see section 3.2), all expired blocks can be scavenged.

Definition
SCaVengE SUCCESS 1
ASS
¢Key
key? : Key
key! : Key
count! : BlockCount
Xs : F Blockld

subxs : F Blockld

xs = { x:dom blocks | blocks(x).expires < now }

count! = #subxs

blocks’ = subxs 4 blocks

The set of all ids to be scavenged (xs) is the set of ids of stored blocks which have
expired. The set of ids scavenged in any one call {subxs) is a subset of xs (as defined
in ¢Keys). The number of blocks acavenged is returned as count ! . Blocks scavenged
in this call are removed from the service.

Reports

Scavenge 2 (Scevenge

A Success)
@ BadKey

@ NotManager

Success

For success, the client must be the service manager and the input key must be valid.




User Manual 29

PROFILE
Abstract
Profile (key? : Key:
key! : Keys;
infoseq! : BlockInfoSeq:
report! : Report)

Returns a sequence of information about blocks stored in the service. By key-linking
(see section 3.2}, the information profile of all blocks can be obtained.

Definition
Profileg ccoss -
=SS
ey
key? : Key
key! : Key

infoseg! : BlockInfoSeq

%% : F Blockld
subxs : F Blockld
order : seq BlockId

xs = dom blocks

dom order = 1..#subxs

ran order = sSubxs

infoseq! = X i:dom order * blocks(order(i))fBlockInfo

{

The state of the service is not changed by this operation. The set of all block ida for
which information is to be returned {xs) is the set of all blocks stored in the service.
The subset of these ids fer which information is returned in any one call (subxs) is a
gubset of xs (as defined in ¢Key). The zequence of information returned is that of all
blocks with ids in the set subxs in some arbitrary ordering (given by order).

Reports
Profile & (Profile, . pss » Success})
& BadKey
& NotManager

For success, the client must be the service manager and the input key must be valid.
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6 Service charges

Clients will be held responsible for the expenses incurred by their use of the service.
Expenditure will be recorded, and clients will be expected to observe any limits placed
upon them (however, such limits do not form part of this service, and will be imposed
separately).

The basic parameters to an operation are supplemented by two hidden parameters
{since they do not appear in the procedural interface). These are an operation
identifier op? and the cost of executing the operation cost!.

{Params .
¢BesicParams
op? : Op

cost! : Money

There i3 a cost for each successful operation, which may have two components, Oue is
the expense of performing the operation itsell (CreateCost, ReadCost, etc.). The
other, il present, is related to the function requested by the operation. For example,
the create operation charges in advance for the storage of the given data , and the
destroy operation may give a rebate (negative cost) if the block is destroyed before ite
expiry time.

The expense of storing a block is determined by applying a fariff function to the
creation and expiry times of the block. Here i8 a typical block tariff {unction:

BlockTariff : (Time x Time} — Money

V created, expires: Time =«
BlockTariff{created, expires) =
BlockCost # {expires - crested)

where (_#* _)} : {(Money x Time) — Honey is defined appropriately.

The values of CreateCost etc. and the block tariff function itself may be varied; their
precise values at any time will be made known separately to clients.

The cost of successfully invoking any particular operation on the storage service is
defined by a tariff schema. For some operations, the cost is related to the times of
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creation and expiry of an existing or a newly created block. On destroy and replace
operations, a rebate is given to encourage explicit destruction or replacerment, rather
than letting blocks expire and be removed by the service.

SSTariff -
tParams
Block
Block’
op? = CreateOp =» cost! = CreateCost
+ BlockTariff (created’,expires’)
op? = ReadOp =¢ cost! = ReadCost
op? = StatusOp = cost! = StatusCost

op? = DestroyOp =» cost! = DestroyCost
- BlockTariff {crested, expires )
+ BlockTeriff (created, now )
op? = ReplaceOp = cost! = ReplaceCost
- BlockTariff (created, expires }
+ BlockTariff (created, now )
+ BlockTeriff (created’,expires’)
op? = SetExpiryOp=> cost! = SetExpiryCost
~ BlockTariff {(created, expires )
+ BlockTariff (creeted’, expires’)
op? = GetldsOp = cost! = GetldsCosi
ap? = GetCountOp = cost! GetCountCost
op? = ScavengeOp = cost! = ScavengeCost

] op? = ProfileOp = cost! = ProfileCost
1

]

Ii an error cccurs, a fixed amount may still be charged.
ErrorTariff & ¢Perems | cost! = ErrorCost

These two schemas combine to form an overall tariff framing achema in which the
error tariff will be charged unless the ouput report is successful.

¢SSTeriff &  Success = S5Teriff A
~Success = ErrorTariff
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T Complete service

The full definition of the complete Block Storage Service includes identification of
clients and other components which are common to many services. It depends on a
number of schemas defined in the *Common Service Framework” (in [8]).

Each separate operation in the service is given a unique operation identifier.

SSServicelps €

{Create A ¢Params | op? = CreateQp
{Read A ¢Params op? = ReadOp
(Status A ¢Parsms | op? = StatusOp

I

!

|

(Destroy A ¢Params | op? = DestroyOp
{(Replace ~ ¢Params | op? = ReplaceOp
{(SetExpiry » ¢Params { op? = SetExpiryOp
{(Getlds A ¢Params | op? = GetlidsOp
(GetCount & ¢Params | op? = GetCountOp
(Scavenge A~ ¢Params | op? = ScavengeOp
{(Profile A ¢Params | op? = ProfileOp

€ € € € € € € <€ <

Each of these operations has a tariff associated with it.

S$SBasicOps @ ¢S5STariff A SSServicelps
The full service state includes subsystems for a clock, accounting, statistics and
controlling service access. (See the “Common Service Framewcrk” for further details.)

SGState 2 S5 A Clock A Accts A Stats A Access

Service initialisation includes ipitialisation of the subsystems.
InitSS5tate &

InitSS A InitClock A InitAccts A InitStets A InitAccess

The full set of available operations includes a Null operation and those to do with the
service clock, accounting, statistics and access.
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S5A110ps &

(S5BasicOps A ASS A ¢Clock A dAccts A ¢Stats A PAccess) v
{Null A 255 A ¢Clock A dAccts A PStats A dAccess) Vv
{ClockOps A =55 A AClock A déccts A ¢Stets A dAccess) v
{(AcctsOps A =55 A ¢Clock A Adccts A ¢Stets A dAccess) v
(StatsOps A =55 A ¢Clock A =Accts A AStats A dAccess) v
(AccessOps A 355 A ¢Clock A ZAccts A =Stats A AAccess) v
(NotEnablaed A =55 A ¢Clock A =Accts A =Stats A =Access)

The complete specification of the service, including the possibility of a bad operation
pumber or a non-deterministic error in the underlying implermentation, is then defined
as follows:

SSOps &
((BadOperation A 255 A ¢Clack A =Accts A =5tats A =Access) @
(S5A110ps A ASS A AClock A AAccts A AStats A Mccess))
v

(ServiceError A =55 A ¢Clock n =Accts A =Stats A shccess)

Operations with bad operation numbers and other service errors do not change the
service state, except that the clock might tick.
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1 Introduction

This document is a guide to the implementation of the Block Storage Service, which
provides low-level data storage facilities. It assumes that the reader is familiar with the
“Block Storage Service - User Manual® which outlines the absiract specification of the
service from the point of view of an external user {normally a program running on a
client machine). In the following document, a concrete specification of a possible
implementation of the service is presented.

In order to make the implementation more understandable, it is presented in several
parts. First 3 number of subsystems are introduced in simplified form, each with
associated suboperations, which could implement various parts of the concrete service
stale. These are ther combined to give the overall concrete state, which is related to
the abstract service state.

Some additional suboperations and some reports are introduced which are useful for
defining the service operations. The implementations of the service operations
themselves are then defined, largely as compositions of the suboperations relating to
each of the affected subcomponents of the state. Each operation and suboperation
schema may typically be implemented as a procedure in the final program.

The implementations of some of the subsysters are then further refined in order to
show how their state can be stored on a disk, and to provide greater efficiency through
cacheing and data buffering.

The specification given here i8 still not directly implementable. A particular
programming language must be chosen by the implementor and then this design must
be transcribed Into the programming language (currently by hand).

The design assumes that the final programming language will be an imperative
language with an inherent notion of sequences of commands or operations. There is no
consideration of the use of paralleliam in the implementation. The introduction of such
parallelism at an appropriate level in the refinement of specifications of this kind is
still ap active topic of research. Our feeling is that in this particular service the
parallelism could be introduced after the level of refinernent presented here (i.e. after
the identification of the subsysiems, with associaied suboperations, into which the
concrete state can be decomposed).

A furtber simplification in the design presented here is the Jack of explicit provision for
handling faults in the underlying hardware, such as disk read/write errors.
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2 Abstract state
As a reminder of what is to be implemented, the definition of the abstract state of the

Block Storage Service, as defined in the “Block Storage Service - User Manual®, is
summarised here.

A block of data to be stored by the service is a fixed-size (BlockSize) array of bytes.
BlockData 2 0O..BlockSize-1 — Byte
Each block also has some general information attributes.

BlockInfo
owner : UserNum

created : Time
expires : Time

L created € expires

So a complete block is defined aa follows in the abstract state.

Block
BlocklInfo
data : BlockData

The overall abstract state of the service records all currently stored blocks according
to their identity from a set of block identifiers (BlockId). Unissued ids are also
recorded. There is a limit (MaxBlocks) on the number of blocks that can be stored by
the service, The null identifier (Nullld} is never issued.

55

blocks : BlockIld + Black
newids : F Blockld

#blocks s MaxBlocks
newids N dom blocks = g
Nulifd ¢ (dom blocks U newids)
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Initially there are no stored blocks, and all ids except Nullld are potentially available
for issue.

InitSs |
557
blocks’ = @
newids’ = BlockId \ {Nullld}

Some further definitions provide for block counts, sets of ids and sequences of block
information.

BlockCount g 0..MaxCount
Block IdSet 2 F Blockld
BlocklnfoSeq & { s: seq RlockInfo | #s < MaxlInfos }

where
MaxCount » MaxBlocks.
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3 Councrete state

The concrete state of the service is built up from geveral subsystems. After
introducing some basic definitions which will be used throughout, the subsystems are
specified as subcomponents of the system state with specific suboperations applicable
to each one. The state subcomponents are then combined to give the overall concrete
state.

A subsystem specification is like an abbreviated user manual. It includes a description
of the state of the subsystem, its initial siate, and the suboperations which may be used
to change the state. Each suboperation has an abstract showing how it might appear
as a procedure call in a procedural programuning language.

The overall concrete state of the implementation is obtained by conjoining the states of

the subsystems. In a subsequent section, the implementations of the service operations
are specified as combinations of the suboperations on the individual subsystems.

3.1 Basic definitions

A byte of data is implemented as 3 fixed number (ByteSize, normally eight) of bits.
By convention, these are indexed frorm zero upwards.
Bit
Byte

{0' 1}
0..ByteSige~1 — Bit

W

In this manual, we shall model data arrays as functions from fixed-size domains of
index numbers (normally from zero up to a maximum value) to bytes. It is convenient
to define some general functions to operate on these arrays.

(_upto ),
(_ from_}).
{(_at_) : {{N-=Byte) x N) — (N Byte)

f ¥ a:{N%Byte); n:N

a upto n = (0..n~1}4a
g from n = succ" ¥ a
aptn =pred"i1a




40  Block Storage Service

The functions define a new array from the beginning upto (but not including) a
certain position in the supplied array or from a given positiop to the end of the
supplied array. Additionally, it is possible to move the dotnain of an array so that it
starts i a specified offset.

Each block in the store will be identified by a block number from the set BlockNum.
This is a finite subset of the natural numbers. There are as many different block

numbers as the potential number of blocks that can be stored by the service.

I BlockNum : F N

l #BlockNum = MaxBlocks

Each block has an associated physical data-block, which holds the bulk of the data
associated with the block, and a header, which holds the remainder of the block
information. The oumber of a block will be used for identifying its associated data-
block apd header.

The physical disk layout may dictate that the block numbers are not contigucus. A
function is defined to provide the next higher block number after a given number in

the set.

L next : BlockNum -#» BlockNum

/ ¥ bn:BlockNum | bn # max BlockNum -«
F next (bn} = min {n:BlockNum | bn < n}

3.2 Data subsystem

In the concrete state, an array of data-blocks (stored on a disk, as shown later) are
used to hold the bulk of the data of the stored blocks. Each data-block can hold a
fixed amount (DataBlockSise) of bytes relating to a particular service block.

DataBlock & O0..DataBlockSise-1 — Byte
Data-blocks are indexed by the number of the block whose data they hold. The first

subcomponent of the concrete state of the service is therefore the storage for the data-
blocks.
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DataBlocks
dataBlocks : BleckNum — DataBlock

This subsystem may be in any initial state when the service is started for the first time,
so the data-blocks may take any initial values,

InitDataBlocks _
DataBlocks”
J

The suboperations applicable to this subsystem are those of getiing data from and
putting data to the store, given the relevant block number.

GetData
GetData (bn? : BlockNum; datablock! : DataBlock)

GetData
ADataBlocks

bn? : BlockNum
datablock! : DataBlock

datablock! = dataBlocks(hn?)

PutData
PutData (bn? : BlockMNum; datablock? : DataBlock)

PutData
ADataBlocks
bn? : BlockMNum
dateblock? : DataBlock

dataBlocks’ = dataBlocks @ {bn? + datablock?}
i

Unless otherwise defined, it will be assumed that for any state S, AS 2 S A 5’
Note that the GetData operation does not define a new subsystem state. This is so
that it may be conjoiced in a later service operation definition either with PutData
(which does define a mew subsystem state), or with a general schema specifying no
change in state.
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3.2 Header subsystem

It is convenient for service users to be provided with a block sige slightly larger than
an exact power of two, so that they can store additional attributes with each block,
such as a reference count for a file service. (A conventional size of 512 bytes might be
increased to 528 bytes, for example).

Siace data-blocks stored on a disk are usually a power of two in siee, not all the data
component of a service block will therefore fit into a single implemented data-block,

BlockSize > DataBlockSize
The remaining bytes (called the tag) are atored separately.

TagSize = BlockSize -~ DataBlockSise

Teg & 0..TagSize-1 — Byte
The tag is stored, along with other attributes associated with each block, in a header.
The other header attributes consist of the BlockInfo ard some extra information
required by the implementation. This includes the block id by which a client may refer

to the block and an indication of whether the block is currently being used to store
data.

Header ]
BlockInfo
tag : Teg
id : BlockId

used : Boolean

The next subcomponent of the concrete state of the service is then the storage for the
headers, indexed by the corresponding block number.

Headers
headers : BlockNum — Header
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Initially, when the service js first started, all the headers denote unused blocks.

InitHeaders
Headers”

V¥ bn:BlockNum -

headers’ {bn).used = False
1

The suboperations applicable to this subsystem are those of getting headers from and
putting them to the store.

GetHeader
GetHeader (bn? : BlockNum; header! : Header)

GetHaader .
AHeaders
bn? : BlockNum
header! : Header
header! = headers(bn?)
]
PutHeader

PutHeader (bn? : BlockNum; header? : Header)

PutHeader
AHeaders

bn? : BlockNum
header? : Header

headers’ = headers & {bn? — header?}

As in the data subsystem, only PutHeader defines a new subsyatem state.
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3.4 Bit-map subaystem
It is desirable for blocks which are available for data storage to be found without
reading too many headers (and hence making many disk accesses) during the search.
To do this, the service implementation includes a bit-map. Each bit in the map
indicates the availability of a corresponding block.

FreeBit ¢ 1 ; UsedBit 2 0

The next subcomponent of the concrete service state is therefore the bit-map.

BitlMap
L bitHap : BlackNum — Bit

Initially, when the service is first started, the bit-map shows only free (unallocated)
blocks,

InitBitMap
BitMap’

ran bitMep’ = {FreeBit}

The suboperations applicable tc this subsystem are those of allocating and freeing
bits, and of finding a block number corresponding to a free block.

AllocBit
AllocBit (bn? : BlockNum)

AllocBit
ABitMap
bn? : BlockNum

bitMep’ = bitHap & {bn? — UsedBit}
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FreeBit
FreeBit (bn? : BlockNum)

FreeBit
ABitMep
bn? : BlockNum

L bitMap’ = bitHap & {bn? ** FreeBit}

FindFreeBlock
FindFreeBlock {(bn! : BlockNum)

FindFreeBlock
ABijtHap
br! : BlockNum

bitHap{bn!} = FreeBit

This last suboperation is specified non-constructively (it doesn’t say which block
number is to be chosen from several candidates}, and would in general involve a search
through the bit-map to find a block that was marked as free. An associated error
report is introduced later to cater for the case that there are no {ree blocks.

3.6 Count subsystem

A separate count is kept of the number of service blocks owned by each client, so that
it is not necessary to scan all the block headers to extract this information.

This forms a further subcomponent of the concrete service state,

Counts
counts : UserNum — BlockCount

1

It is assumed that the number of users is sufficiently small that a count can be held for
€ach user (and hence a total function is used in the specification).
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Initially, the ¢ounts for all ¢lients are zero.

InitCounts
Counts’

ran counts’ = {0}

Suboperations allow the count for a particular user to be incremented, decremented or
inspected.

IncCount

IncCount {usernum? : UserNum)

IncCount
ACounts
usernum? : UserNum

counts’ = counts @ {usernum? — counts{usernum?) + 1}
3

DecCount
DecCount {usernum? : UserNum}

DecCount 1
ACounts
usernum? : UserNum
L, counts’ = counts @ {usernum? — counts{usernum?) - 1}
]
FetchCounnt
FetchCount {usernum? : UserMum; count! : BlockCount)
FetchCount l
ACount s

usernum? : UserNum
count! : BlockCount

count! = counts{usernum?)
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3.6 Block identifiers

The service requires the generation of unmique block identifiers. For the sake of easily
finding the block associated with a particular block id in the implementation, the block
number is encoded within the id. The id also contains a component to provide
uniqueness, since the same block number may be re-used many times for different user
blocks during the lifetime of the service.

Using the clock walue at the time of allocation gives uniqueness down to the
granularity of the clock {assuming the clock is noet allowed to run backwards!). For
this implementation it is assumed that the granmylarity is sufficiently fine that each
service operation will occur at a different time.

BlockIdParts £ BlockNum x Time

A special function is used to construct a block id from its components. This must be
invertible, but should disguise the compoaents so that a client is not tempted to make
use of the encoded information and so become dependent on this particular
implementation.

, BID : BlockldParts » 8lockld

| ran BID ¢ BlockId v {Nullld}

The range of BID is made a sparse subset of all possible block ids {and excludes the
null id). This provides an initial barrier to attempta to use arbitrary data as block ids,
and hence a limited amourt of security. It is convenient to define a partial function to
extract the block number from a block id.

I BIDN : BlockId -» BlockNum

1 BIDN = BID !4 (X (b, t) :BlockldParts « b)

A suboperation is provided to exiract the block number from the block id supplied as
input fo a service operation {an associated error report i8 introduced later to allow for

a bad id).
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GetBlockNum
GetBlockNum (1d? : BlockId; bn! : BlockNum)

GetBlackNum
id? : BlockId
bn! : BlockNum

bn! = BIDN(id?)

Another suboperation constructs a new block id for a given numbered block, using the
current time.

NewBlockId
NewBlackId (bn? : BlockMNum; id! : BlockId}

NewBlockId .
bn? : BlockNum
id! : BlocklId

now : Time

id! = BID(bn?, now)

3.7 Comistency between subsystems

There are certain comnsistency constraints which should hold between the
subcomponents in any valid concrete state. The operations as defined in this manual
should preserve these constraints. However, it is possible that disk or other operational
failures may compromise this consistency in an actual implementation. These
constraints therefore form the basis for programs which could check the integrity of
the information after a crash, and reconstruct a consistent service state.

The bit-map should reflect the usage information stored in each block header.
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BitMapConsistency
Headers
B.tHap

¥ brn:BlockNum *
headers{bn).used True
bitHap{bn) = UsedBit

1}

The counts should reflect the number of block headers currently in use by each usger.

CountConsistency
Headers
Counts

V¥ user:lUsertum -
counts{user) =
#{bn:BlockNum |
headers(bn).used
headers{bn}.owner

}

True »
user

3.8 Combined concrete state

The complete concrete service state is obtained by combining the states of the
subsystems already described, which must be consistent. The value of the service clock
i3 also made part of the combined state.

cSS

DataBlocks
Headers

BitMap

Counts
BitMapConsistency
CountConsistency
now : Time




50  Block Storage Service

The identifying number of the client invoking the operation {c1ientnum)and a report
of the outcome of the operation (report!) are common parameters to all service
operations.

$BasicParams
L clientnum : UserNum

report! ¢ Report

Each operation involves a potential change in the state of the service. The current
time will atrictly increase in value from one operaiion to the next (as required to
generate unique identifiers).

&cSS

¢S5
cS5”
¢BasicParams

now’ > now

Sometimes the complete state of the storage service (except for the current time) is left
unchanged by an operation.

5cS55 2 AcSS [ 8{eS5'\now’) = 8(cS55\nown)

Some operations leave subcomponents of the state unchanged.

=DataBlocks 2 AcSS | @lataBlocks’ = GDataBlocks
=BitMap 2 AcSS | BBitHlap”’ = BBitHap
£Count s 2 AcSS | 8Counts’ = BCounts

Initiaily, the service state is defined by the initial states of all the subcomponents.
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cInit5ss
InitDataBlocks
InitHeaders
InitBitHap
InitCounts

3.9 Relation to abstract astate

The state reflinement atep is expressed by relating the abstract uger state to the
concrete implementation state in the following abstraction relation.

Since the bit-maps and block counts can be derived from the biock headers in the
concrele state, the blocks of the abstract state can be defined entirely in terms of the
data-blocks and headers from the concrete state. The identifiers available as new
block ids in the abstract state depend only on the current clock value in {he concrete
atate.

RelS5

— 1
SS
¢SS
blocks =
{bn : BlockNum;
header : Hesder;
block : Block |
header = headers(bn)
header. .used = True
block. omnar = header. omner
block.created = header.created
block.expires = header.expires
block.data = header.tag U
{dateBlocks{bn) gt TagSize)
« header.id — block
H
newids =
{bn:BlockNum; t:Time | t > now » BID(bn,t)}
1
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4 Additional operations and reports

In order to implement the service operations it is convenient to introduce some further
suboperations, The implementation of key-linked operations is discussed, with the
introduction of related suboperations. It is also necessary to define the situations in
which errors will occur and the corresponding report values that will be returned.

4.1 Additional operations

The following additional operations make use of some of the suboperations previously
defined to perform actions that are required by several of the subsequent service
operation implementations.

A suboperation it introduced to combine the extraction of the block number from the
block id and the reading of the block header (an associated error report is introduced
later which checks that the given id matches that of the header and that the block ia
still in use). It produces the block number and the header of the block as results.

GetAttributes
GetAttributes (id? : Blockld;
bn! : BlockNum;
heeder! : Header);

GetAttributes
GetBlockNum [id?, bn!]
GetHeader [bn!/bn?, header!]

id? : BlockId
bn! : BlockNum

I hegder! : Header

(Note that we introduce the notation S(x] to have an identical meaning to the
idempotent schema renaming S[x/x] in order to provide an abbreviated reminder of
the name of a relevant parameter of the schema in question. Schema inclusion is used
here to show that GetAttributes is implemented by calls on GetBlockNum and
GetHeader.)
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A further suboperation constructs a new block id, given the number of the block to be
used. It uses this and the client’s identity to initialise the header containing the
attributes of the pewly allocated block.

NewAttribautes
NenAttributes (bn? : BlockNum;
id! : BlockId;
header! : Header)
NewAttr ibutes —
NewBlockId [bn?, 1d!]
bn? : BlockNum
id! : BlockId
header! : Header

clientnum : UserNum

header!.owner = clientnum
header!.id id!
header!.used True

4.2 Key-linked operations

Keye are used to link together related calls of a particular service operation, which in
conjunction potentially allow all the blocks in the service to be scapned. They are
implemented via an invertible function of block numbers. Intuitively, the set of blocks
denoted by a key in a key-linked operation is all those blocks with block numbers less
than that obtained from applying the function to the key. The StartKey corresponds
to the minimun block number, and the EndKey corresponds to no block number. The
fact that not all keys correspond to block numbers gives a degree of profection against
the use of arbitrary key values.

I KN : Key > BlockNum

KN(StartKey) = min BlockNum
EndKey ¢ dom KN

Keys are used to encode the starting and ending positions of scanning operations.
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These operations involve iterations in which the current block number is successively
incremented. The state information passed from one scan iteration to the nexi
therefore consists of the current block number, plus an indication of whether the ]ast
block has been reached and a count of the number of blocks scanned so far.

Scan

bn : BlockNum
1ast : Boolean
scanned : BlockCount

On each iteration, the block count is incremented and, if the last block has not been
reached, the next block number is set up.

AScan
Scan
Scan’

bn # mex BlockNum =
bn’ = next{bn)
last’ = False

bn = max BlockNum =¢
last’ = True

scanned' = scanned + 1

At the start of a scan, the scan state information is initialised using the input key (an
appropriate error is defined in the next section in case the input key is invalid).

StartScan
Scan
key? : Rey

tn = KN(key?)
last = False
scenned = 0
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On finishing a scan, the output key is defined according to the final block number,
depending on whether the last block has been reached.

EndScan
Scan”’
key! : Key

last’ = True =* key! = EndKey
last’ = False = KN(key!) = bn’

4.3  Error reports
The report! output parameter of each operation indicates either that the operation
succeeded or suggests why it failed. In all cases, failure leaves the state of the service

unchaunged.

Success indicates successful completion of the operation.

cSuccess ;
report! : Report
report! = SuccessReport
i

The total effect of a service operation is in general defined by overriding the
definition of the successful outcome of the operation by one or more error report
schemas. I the precondition in the error schema is satisfied, the corresponding error
report is returned. Ounly if the precondition is not satisfied will the operation succeed,
In each of the following cases, the state of the service remains unchanged if an etror
occurs.

NoSuchBleck is given if there is no block stored with identity id?. Il may result from
either the input of a bad block identifier (which does not correspond to any data black)
or of an identifier which derotes a block whick no longer has that id er is no longer in
use. These two cases can be separately specified as follows.
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cBadld .
=cS5
id? : Blockld
id? ¢ dom BIDN
report! = NoSuchBlockReport
1
cllismatchedId —
=SS
CetAttributes [id?, bn/bn!, header/header!]
id? : BlockId
bn ¢ BlockNum
header : Header
{header.id # id?) v (header.used = Falge)
report! = NoSuchBlockReport
1

The combiped error report is obtained by overriding one case with the other, gince it is
necessary to check for a bad id before a mismatched id can be checked.

cNoSuchBlock 2 clHismetchedld & cBadld

NoSpace indicates that a2 new block cannot be created when the storage capacity of
the service is exhausted (i.e. when a search of the bit-map shows that all blocks are in
use).

cNoSpace ®
Ec55

ran bitMap = {UsedBit}
report! = NoSpaceReport

NotOwner indicates an attempt to perform an operation which can destroy a block by
a client who does not own the block.
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cNot Owner —
=c5S
GetAttributes [id?, bn/bn!, header/header!]
id? ; Blockld
bn : BlockNum
header : Header
r keader.ouwner # clientnum
report! = NotOwnerReport y

NotManager is given iIf a management operation is attempted by a client who is not
the service manager.

cNotHanager

‘ =c55
|

clientrnum # Manager
report! = NotMagagerReport

BadKey indicates that a key value has been given as imput which does not correspond
to any block.

cBadKey
=e5S
key? : Key

key? £ dom KN
report! = BadKeyReport

In the implementation described here, no account has heen taken of potential faults in
the underlying hardware, such as bad disk blocks. Faults that are unrecoverable are
allowed for im the abstract service specification by the catch-all error report
ServiceError. In this event, the state of the service is specified tSTemain unchanged.
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5 Operation implementations

The service operations are redefined here in terms of the concrete service state, making
use of the suboperations from the subsystems. Each service operation is specified by
conjoining the suboperations which are used in its implementation (by the use of
schema inclusion).

Parameter passing between suboperations is denoted by defining some auxiliary buffer
variables in the operation schema. The correspondence between the “formal’
parameters of the suboperations and the ‘actual’ parameters of an operation
implementation i8 specified by renaming applied to each included suboperation
schema,

As in the “User Manual®, the description of each operation has three sections.

The Abstract section is included to reduce cross-reference with the “User Manual®. It
gives the procedural interface to the operation for a program running on a client
machine. This will of course need to be adapted for a particular programming
language.

The Definition section gives the formal description of the operation in terms of the
concrete state logether with informal details to aid the implementor. In general, the
operation definitions make use of some suboperations, shown as included schemas with
parameter renaming. Though there is no formal indication of the ordering amongst
these suboperations, the order in which they are presented is intended to reflect the
order in which tkey would be inpvoked in the implementation. The ordering is intended
to ensure that each variable i8 defined before it is used, so leading to a procedural
program.

The Reports aection covers error conditions to produce a formal description of the
total operation. As in the User Manual, schema overriding {®) is used to define an
orderieg of potential error outcomes. This means that the later errors in a sequence of
overrides will be produced, if appropriate, rather than earlier ones. The successful
outcome, which comes first in the definition, will caly be produced if none of the error
conditions are satisfied.
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There are eight operations the ordinary client may ask the service to perform:

Create
Read
Stetus
Destroy
Replace
SetExpiry

Getlds

GetCount

create a new block and store it
read the data of a block

obtain the siatus of a block
remove a block fromn the service
replace one block with another
change the expiry time of a bleck

obtain the identities of blocks currently owned
by the client

obtain the number of blocks currently owned
by the client.
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CREATE
Abstract
Create (expiry? : Time;
data? : BlockDats;
id! : Blockld;
report! : Report)
Definition
clreate_ . osa .

AcSS

FindFreeBlock [bn/bn!]

AllocBit {bn/bn?]

NewAttributes [bn/bn?, id!, header/header!]
PutData [bn/bn?, deteblock/datablock?]
PutHeader [bn/bn?, header/header?]
IncCount [clientnum/usernum?]

expiry? : Time
data? : BlockData
id! : BlockId
bn : BlockNum
datablock : DataBleck
header : Heeder

clientnum : UserNum

detablock = data? frgm TagSize
header.tag = data? uypto TagSize
header.created = now
header.expires = max {now, expiry?}

A free block is found, it is marked as allocated and a new header is created for it. The
expiry time of the block is set according to the given parameter. The data is split
between the header tag field and the data-block. The data and header are written to
the disk, and the block count incremented for this client.

Reports
clreate 2 (cCreate A ¢Success)

& cNoSpace

success
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READ
Abstract
Read (id? : Blockld:
data! : BloekData;
report! : Report)
Definition
CReadSUCCESS 1
=cS5S5

GetAttributes [id?, bn/bn!, header /header!]
GetData [bn/bn?, dateblock/datablack!]

id? ¢ Biockld
data! : BlockDeta
bn : BlockNum
datablock : DataBlock
header : Header

data! = header.tag U (datablock at TagSize)
3

The data Is recobstructed from the header tag field and the data-block contents.
The state of the service is not changed.

Reports
cRead 2 (cRead A cSuccess)

® cNoSuchBlock

SUCCRSS
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STATUS
Abstract
Status (id? : Blockld;
owner! : UserNum;
created! : Time;
expires! : Time;
report! : Report)
Definition
CStatUSSUCCESS
I =eS5
GetAttributes [id?, bn/bn!, header/header! ]
id? : Blockld
awner! : UserNum
created! : Time
expires! : Time
bn : BlockNum
owner ! = header. owner
created! = heeder.created
expires! = header.expires

The appropriate attributes are returned as output parameters.
The state of the service is not changed.

Reporie

cStatus £ (cStatus,, ... A cSuccess)
#® cNoSuchBlock
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DESTROY
Absatract
Destroy (id? : Blockld;
report! : Report)
Defimition
CDeStrOQSUEEESS L]
AcSS
=DataBlocks

GetAttributes (id?,bn/bn!, header /header!]
PutHeader [bn/bn?, header” /header?]
FreeBit [bn/bn?}

DecCount [clientnum/usernum?]

id? ¢ BlockId
bn : BlockNum
hesder : Header
header’ : Header

clientrum : UserNum

header”’ .used = False

The header and relevant bit in the bit-map are marked as being free and the block
count for this client s decremented.

The data-block and new id componenta of the service atate are not chaoged.

Reports
clestroy ¢ (cDestroy,, ... * cSuccess)
® cNotOuner
® cNoSuchBlock
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REPLACE
Abstract
Replace (id? : Blockld;
data? : BlockData:
id! : Blockld;
report! : Report})
Definition

cRep] aceSUCCESS 1
AcSS

=B i tHap

ECcounts

GetAttributes [id?, bn/bn!, header /header! ]
NewAttributes [bn/bn?, id!, header’ /header!]
PutData [bn/bn?, datablock/datablock?]

PutHeader [bn/bn?, header’/header?]

id? : Blockld
data? : BlockData
id! : Blockld
bn : BlockNum
datablock : DataBlock
header : Header
header”’ : Header

header’.created = now

header’ .expires = header.expires
header’ .tag = data? upto TagSize
datablock = deta? from TagSise

A new header is created for the block, including a new block identity, partly from the
old attributes apd partly from the input parameters. The expiry time remains the
same as for the old block. The new data is split between the header tag field and the
data-block, which is overwritten (since the block number remains the same).

Reports

cReplace & (cReplace A cSuecess)
& cNotOwner

® cNoSuchB1 ock

sSuccess
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SETEXPIRY
Abstract
SetExpiry {(id? : BloekId;
expiry? : Time;
report! : Report}
Definition
CoetExpiry, ccoss 3|
AcSS
=DataBlocks
=BitMap
=Counts

GetAttributes [id?,bn/bn!, header /header!]
Put Header [bn/bn?, header’ /header?]

id? : BlocklId
expiry? : Time

bn : BlockNum
header : Header
header’ : Header

header’ .omner = header.owner
header’.created = header.created
header’.expires = max{now, expiry?}

header ‘. tag = header.tag
header’.id = header.id
header ’ .used = header.used

The expiry field in the block header is changed to give the block the desired expiry
time. The rest of the header remains unchanged.

Reports
cSetExpiry & (cSetExpiry,, . ... A cSuccess)
® cNotOwner
& cNoSuchBlock
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GETIDS
Abatract
Getlds (key? : Key;
count? : BlockCount;
key! : Key:
idset! : BlockldSet
report! : Report)
Definition

This operation involves a scan of some of the block headers, The information passed
from: one scan step to the next copsists of the standard scan mformation (defined in
section 4.2), plus the accumulating id set.

AScanlds
AScan
idset : BlockIdSet
idset’ : BlockldSet

For each relevant block header obtained from scanning the disk, the id of the block is
added to the result set only if the block is in use and it is owned by the client.

GetBlockId .
AScanlds
GetHeader [bn/bn?, header/header!]
bn : BlockNum
header : Header

clientnum : UserNum

{header.used = True) A {header.cwner = clientpum)} =
idset’ = idset v {header.id}

(header.used # True) ¥ {header.owner # clientnum) =
idset’ = idset

This scan operation is iterated as many times as necessary in order te accumulate all
ids of blocks owned by the client, starting from the initially given block number and
continuing up to either the last block header, or to a maximum number {(count?} of
returned ids, or after 2 maximum number (MaxScan) of blocks have been scanned.
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EndIdsIteration
Scanlds
count? : BlockCount

{last = True) v
(#tidset = count?) v
(scanned = MaxScan)

The service operation is then implemented by this iteration (see page 86 for definition
of the schema while operator). Initially the set to be accumnlated is empty. The final
accumulated set is returned as the result.

cletlds, . ozx —
=¢S5
AScanlds
StartScan
GetBlockld while ~Endldslteration
EndScan
key? : Key
count? : BlockCount
key! : Rey
idset! : BlockIdSet
idset =19
idset! = idset’

Reports
cGetlds & (cGetlds, A cSuccess)

e cBadKey

uccess



G8  Block Slorage Service

GETCOUNT
Abstract
GetCount (count! : BlockCount;
regort! : Report)
Definition
cGetCountsu:cess .
=55
FetchCount [elientnum/usernum?, count!]
count ! : BlockCount

clientnum : UserNum

The number of used blocks owned by the client ie returned, as determined from the
stored count information.

The state of the service remains the same.

Reports

cbetCount 2 (cGetCount A cSuccess)

SUCCesSs
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5.2 Manager operations
Operations associated with the management of the service may only be parfornied by a
special client called the service mapager.
There are two manager operations specific to the storage service:

Scavenge — remove expired blocks

Profile ~——  obtain details of block usage.
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SCAVENGE
Abstract
Scavenge (key? : Keys
key! : Key;
count! : BlockCount;
report! : Report)
Definition

This operation involves a scan of some of the block headers. The information passed
from one scan step to the next consiste of the standard scan information {defined in
section 4.2}, plus a count of scavenged blocks.

AS5canScavenge
AScan
scavenged : BlockCount
scavenged’ : BlockCount

Each block which is eligible for scavenging has its header set to indicate it is free, and
the corresponding bit-map bit is freed. The couni of blocks used by the owner of the
black is decremented. The count of scavenged blocks ia incremented.

ScavengeBlock
AcSS
=DataBlocks

AScanScavenge

GCetHeader [bn/bn?, header /header!]
PutHeader [bn/bn?, header’/hender?)
freeBit [bn/bn?]

DecCount [owner/usernum?]

bn : BlockNum
header : Header
header’ : Header
owner : UserNum

header ’.used = False
owner = header. owner
scavenged’ = scavenged + 1
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Ineligible blocks are those which are not in use or have not yet expired. For these
biocks the scavenge count and the state of the service remain unchanged.

NotExpiradBlock

L
=SS
AScanScavenge
CetHeader [bn/bn?, header /header!]
bn : BlockNum
header : Header
oK : Time

(header.used = False) v (header .expires » now)
scavenged’ = scavenged

The basic operation per block involves checking whether it has expired, and i so
scavenging it. (Note thai the GetHeader suboperation in the above two schemas need
only be invoked once in the combined checking operation).

CheckBlack & ScavengeBlock @ NotExpiredBlock

This scan operation is iterated as many times as necessary in order to scavenge all
blocks, starting from the initially given bleck number and continuing up to either the
last block header, or after a maXimum number (MaxScan) of blocks have been
scanned.

EndScavengelteration
l ScanScavenge

, {last = True) v {scerned = MaxScan)

The service operation is then implemented by this iteration (see page 86 for definition
of the schema whjle operator). Initially the count of scavenged blocks is zero. The
final scavenge count is returned as the result.
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cScavenge, s .
AcSS
AScanScavenge
StartScan
CheckBlock while -EndScavengelteration
EndScan
key? : Key
key! : Key
count! : BlockCount
scavenged = 0
count! = scavenged’
1
Reporta
cScavenge 2 (cScavenge_ ... * cSuccess)

® cBadKey
@ cNotlanager
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PROFILE
Abstract
Profile (key? : Key:
key! : Keys
infoseq! : BlockInfoSeq;
report! : Report)
Defmmition

This operation involves a scan of same of the block headers. The information passed
from ome scan step to the next consists of the standard scan information (defined in
section 4.2), plue the accumulating information sequence.

AScanlInfo
AScan
infoseq : BlockInfoSeqg
infoseq’ : BlockInfoSeq

For each block whose header is scanned, the relevant header information is appended
onto the sequence of block information only if the block is in use.

GCetBlockInfo
58
AScanInfo

GetHeader [bn/bn7, header /header!]
bn : BlockNum

header : Header

(header .used = True) =+

infoseq’ = infoseq  <headerfBlockinfo>
(hesder.used # True) =

infoseq’ = infoseqg

This scan operation is iterated as many times as necessary in order to accumulate all
the block information, starting from the initially given block number and continuing up
to either the last block header or after a maximum number {MaxScan) of blocks have
been scanned.
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Endinfolteration
Scaninfo

(last = True) v (scanned = MaxScan)

Note that in order to ensure that the output sequence is not teo long:
MaxScan s MaxInfos

The service operation is then implemented by this iteration {see appendix for definition
of the schema while operator). Initially the sequence to be accumulated is empty.
The final accumulated sequence is reburned as the result.

cPrafile g ooc ,
=55
AScanlds
StartScan
GetBlockInfo while ~EndInfeolteraticn
EndScan
key? : Key
key! : Key
infoseq! : BlockInfoSeq
infoseq =
infoseq! = infoseq’ :

Reports
cProfile & {cProfile A cSuccess)
@ cBadKey

@ cNotManager

success
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6 Complete service

This section provides a combined definition of the operations of the implemented Block
Storage Service. It does not include details of the implementation of service
components, such as access control and accounting, which are incorporated from the
“Common Service Framework™.

Both in the abstract and the concrete model of the service, the basic paramcters are
supplemented by two hidden parameters, an operation identifier (op?) and the cost of
executing the operation {cost!).

¢Params .
¢BasicParams
op? : Op
cost! : Honey

Since all charges for this service depend only on the operation parameters, and not
directly on the concrete state of the service, the definition of the ¢55Tar i ff framing
schema given in the “User Manual” does not require further elaboration for the
implementation.

The implemented service operations can then be brought together into a single
definition as follows.

A

cBasicOps &

(¢55Tariff A

{cCreate A ¢Parems | op? = CreateOp Yy v
{cRead A ¢Params | op? = ReadOp Y v
(cS5tatus A ¢Params | op? = StatusOp Y v
(cOestroy A ¢Parems | op? = DesiroyOp y v
(cReplace A ¢Parems | op? = ReplaceOp ) v
(cSetExpiry A ¢Params | op? = SetExpiryOp ) v
{cGetlds A ¢Params | op? = GetldsOp ) v
(cGetCount A ¢Params | op? = GetCountOp ) v
(cScavenge A ¢Params | op? = ScavengeOp ) v
{cProfile A ¢Params | op? = ProfileOp ¥)
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7 Disk Iayout and cacheing

In this section, some refinements are made to the subsystems that have been presented
so far. Siuce the permanent state of the service is to be stored on disk, it is necessary
to describe the implementation of headers and bit-maps in terms of physical disk
blocks. Together with the data-blecks, these then comprise the layout of information
on the disk itself,

The specifications of the header and bit-map subsystems presented earlier can be
considered as the intermediate abstract states and operations for which concrete
implementations are now provided.

7.1 Header blocka
Typically, 3 number of block headers can be contained in each block stored on disk, 8o

a header-block will consist of an array of block headers indexed by their position in the
block.

HeadersPerBlock = DiskBlockSize div HeaderSize

HeaderBlockPos 2 O..HeadersPerBlock-1
HeaderBlock 2 HesderBlockPos — BlockHeader

Header-blocks are given numbers from the set HeaderBlockNum, which must be large
enough to allow headers to be stored for the maximum oumber of blocks in the

service.

| HeaderBlockNum : F N

l MaxBlocks < w#HeaderBlockNum * HeadersPerBlock

Two functions indicate the header (identified by its header-block mumber and position
within that header-block) associated with any particular numbered data-block. The
exact definition of these functions depends on the chosen layout of blocks on the disk,
and is not given here. However, each block must be associated with a different beader.
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HBN : BlockNum — HeaderBlockNum
HBP : BlockNum — HeaderBliockPos

¥ bnl, bn2:BlockNum | bnl # bn2 -
{HBN{bnl} # HBN{bnZ)}) v (HBP(bml) # HBP(btn2)}

The headers subcomponent of the concrete service state is represented by the storage
for the header-blocks, indexed by the corresponding header-block number.

HeaderBlocks
L headerBlocks : HeaderBlockNum — HeaderBloeck

Initially, when the service is first started, sll the header-blocks confain headers
denoting unused blocks.

InitHeaderBlocks
HeaderBlocks’

V¥ bn:BlockNum

hesderBlocks’ {HBN{bn) ) {HBP(bn)).used = False
|

The representation relation between the abstract Headers and the concrete
HeaderBlocks is as follows.

Rel Headers
Headers
HeaderBiocks

headers = & bn:BliockNum «
headerBlocks(HBN(bn)} (HBP(bn)}

— |

A header buffer is also introduced as an additional state component, to hold a gingle
header-block with a parficular number, for the duratien of a service operation only.

HeaderBuffer -
hnum : HeaderBlockNum
hbtock : Headerfilock
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The suboperatiors on the headers subsystem are implemented in terms of these new
state components.

GetHeader
CetHeader (bn? : BlockNum; header! : Header)

cGetHeader :
AHeaderBlocks
HeaderBuf fer
bn? : BlockNum
header! : Header
hnum = HBN{bn?)
hblock = headerBlocks{hnum)
header! = hblock(HBP(bn?))
1

PatHeader
PutHeader (bn? : BlockNum: header? : Header)

cPutHeader )
AHeaderBlocks

HeaderBuffer

bn? + BlockNum

header? : Header

hblock” ; HeaderBlock

hnum HBN{bn?}
hblock” hblock @ {HBP{bn?) Y header?}
headerBlocks® = headerBlocks @ {hnum — hblock’}

i}

When putting a new header, it must have the same header-block number as the
exiating header-block in the buffer. This allows a new header-block to be formed by
simply replacing the appropriate header component, leaving the rest of the header-
block unchanged. This constraint is et in the service operation implementations,
where each put is preceded by a get for the same black number.
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7.2 Map biocka and cache

The bit-map showing block usage is stored within several physical blocks on the disk,
Many bite are contained in each map-block, each bit being indexed by its position in
the block.

BitsPerBlock DiskBlockSize ®* ByteSise

HapBiockPos 2 G.. BitsPerBlock-1
MapBlock 2 HapBlockPos — Bit

Map-blocks are given numbers from the set MapBlockNum, which must be large
enough to allow bits to be stored for the maximum nuinber of blocks in the service.

| MapBlockNum : F N

' MaxBlocks < #MapBlockNum #* BitsPerBlock

Two functions indicate the bit (identified by its map-block number and position within
that map-block) associated with apy particular numbered data-block. The exact
definition of these functions depends on the chosen layout of physical blocks on the
disk, and is not giver here. However, each block must be asgociated with a different bit
in a map-block.

MBN : BlockNum —3 HapBlockNum
HBP : BiockNum — MapBlockPos

¥ bnl, bn2:BlockNum | bnl # bn2 -«
{HBN(bnl) # MBN(bnZ}) v (MBP(bnl) # MBP{bnZ}))

The bit-map subcomponent of the concrete service state is represented by the storage
for the map-blocks, indexed by the corresponding map-block number.

HapBlocks '
L mapBlocks : HapBlockNum — HapBlock
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Initially, when the service is first started, all the map-blocks dencte free blocks.

InithapBlocks ;
MapBlocks’

¥ mbn:HapBlockNum *
ran mapBlocks’'{mbn) = {FreeBit}

In order to optimise the use of the bit-map, particularly to allow rapid identification of
{ree blocks when allocating new blocks, the concrete service state includes a cache for
a single map-bleck (it is called a cache here, rather than a buffer, since it persists
between one service operation and the next). The cache holds the map-block and its

map-block pumber.

HapCache .
mnum  : MapBlockNum
mbloek : HapBlock

Initially, the cache holds a copy of the lowest numbered map-block, which is all “free’.

InitHapCache |
MapCache’

mnum’ = min MapBlockMum
ran mblock’ = {FreeRit}

The representation relation between the abstract BitMap and the concrete
MapBlocks apnd MapCache is as follows. The cached map-block overrides the
corresponding map-block stored on disk.

RelBitHap |
BitHap

HapBlocks

MapCache

bitflap = X bn:BlackNum -
{mapBlocks & {mnum > mhlock})(MBN{bn}){MBP(bn))
1
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The suboperations on the bit-map subsystem are implemented in terms of these new
state components.

An additional suboperation is introduced for use in the following two suboperations
which allocate or free the bit associated with a particular block. Given the number of
a block whose corresponding bit is to be altered, this suboperation checks whether the
bit is to be found in the cached map-block or not. If not, the cached map-block is
flushed to disk and the relevant map-block obtained from disk. [n either case, the the
bit is set to the requested value in the finally cacked map-block.

UpdateMap
Updatelap (bn? : BlockNum: val? : Bit)

Updat eflap .
HMapBlocks
Maplache
bn? : BlockNum
val? : Bit

nenmblock : HapBlock

mnum’ = HBN(bn?}
mnum’ = maum =
mapBlocks’ = mapBlocks
newmblock = mblock
mrum’ # mnum =
mopBlocks’ = mapBlocks ® {mnum — mblock}
newmblock = mapBlocks(mnum’}
mblock’ = newmblock @ {MBP(bn?) — val?}

AllocBit
AllocBit (bn? : BlockNum}

cAllocBit
Updetettap [bn?, val/val?]
bn? : BlockNum
val : Bit

L val = UsedBit
1
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FreeBit
FreeBit (bn? : BlockNum)

cFreeBit
UpdateMap [bn?, val/val?]
bn? : BlockNum

val : Bit

val = FreeBit

A further operation is introduced to find the block number of a free block. The cached
map-block is searched firat for a free bit. Only if none is found will the map-blocks on
disk be used, This could involve a scan of all the map-blocks at the next lower level of
refinement of the implementation.

FindFreeBlock
FindFreeBlock {bn! : BlockNum)

cFindFreeBlock
AMapBlocks
AMapCache

bn! : BlockMum

FreeBit € ran mblock =%
HBN(bn!) = mnum
mblock{MBP{bn'}) = FreeBit

FreeBit ¢ ran mblock =%
mapBlocks{MBN{bn!)) (MBP(bn!)) = FreeBit

The comresponding error report, which indicates that there are no free blocks on the
disk, also has to be refined in terms of the map-blocks and cache.
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cNoSpece,
£cS55
=MapBlocks
=Maplache

FreeBit ¢ ran mblock
V¥ brn:BlockNum -

FreeBit € ran mapBlocks(NMBN(bn})
report! = NoSpaceReport

Clearly, only one scan of the disk would be required to either produce this error
report, or to identify a free block. Therefore the schemas FindFreeBlock and
cNoSpace would be implemented by the same code.

7.2 Disk layout

1t is assumed that the Block Storage Service is to be implemented on a random access
permanent storage device (such as a magnetic disk) which may be modelled as an
array of fixed size blocks. Fach disk block may be used to store a data-block, a
header-block or a map-block.

DiskBlock ::= DiskData <<DataBlock>> |
DiskHeader <<HesderBlock>> |
DiskMap <<MapBlock>>
The disk blocks are numbered consecutively up to the capacity of the disk.

DiskBlockNum £ O0..MaxDiskBlocks-1

Disk
| diakBlocks : DiskBlockNum — DiskBlock

The number of blocks on the disk must be sufficient to hold all the required blocks of
the service.

MaxDiskBlocks 2 uBlockNum + ®#HeederBlockNum + #MapBlockNum
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The layout of the different kinds of blocks on the disk is given by the mappings from
the specific block numbers to the disk block numbers. The layout is not specified in
greater detail here, as it will depend on a particular disk design, but clearly the
different kinds of block must occupy disjoint areas of the disk.

DLayout : BlockNum > DiskBlockNum
HLayout : HeaderBlockNum = DiskBlockNum
HlLayout : HMapBTockNum * DiskBlockNum

disjoint <ran DLayout, ran HLayout, ran HLayout>

The contents of the disk are simply the contents of the specific kinds of block placed in
the appropriate locations according to the Jayout maps.

DiskContents
Disk
DataBlocks
HeaderBlocks
MapBlocks

diskBlocks =
DLayout™! 3 dataBlocks 3 DiskDets u
HLagout_l ¢ headerBlocks 3 DiskHeader U
|1Lagou't‘1 s+ mapBlocks s DiskMap
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8 Implementation correctness

It would be important to show that the implementation of the Block Storage Service as
described in this manual correctly implements the view presented in the user manual.

In order to do this, each state refinement step expressed as an abstraction relation,
whether of the whole service or of one of its subsystems, must be considered in turn.

For each one it must be shown that there exists a concrete state that represents each
abstract state. For service initialisation, the concrete initial state must be shown to
correspond to a valid abstract initial state. For each operation, it must be shown that
the concrete operation may be applied whcnever the abstract operation may be
applied, and that it will then produce a result satisfying the ahsiract specification.

However, the implementations of the operations contained in this manual have not so
far been proved correct in this respect. The mapual must therefore be looked upon as
an illustration of a style of implementation specification, rather than as containing a
proven implementation design.
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Appendix: Iterating schernas

If P i3 a schema which represents an operation on a state schera S (having undashed
and dashed components representing the state before and after the operation), aad B

is a schema representing a predicate defined on S, iteration over P can be defined as
follows.

Let
E4) 2 S AS" ] 8BS =65
Iy a4 =B A =%
1., 2 (BAP) 1, Y i:N
then

PHhI]gB & IOVIIVIZV"‘
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6.2
6.3
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1 lotroduction

The design and documentation of the Block Storage Service has been developed in
stagea over the duration of the project. The history of this development is summarised
in the next section.

The subsequent sections look at the design choices and the documeniation from the
point of view of both the user and the implementor of the service, corresponding to the
two manuals contained in the previous chapters. Alternative design choices are
discussed for exch of the two levels of abstraction, and some comments made on the
way in which the manuals have been presented.

This chapler concentrates on the experience gained from the specification and
implementation of the Block Stcrage Service in particular. Some general improvements
in manual style, and the introduction of the Common Service Framework to provide
the definjtion of common service characteristics, are both discussed in “The
Specification of Network Services? [8].

2 History of development

2.1  Original design

The original design of the user interface lo the Block Storage Service was developed,
and specified in Z, by Carroll Morgan and Roger Gimson. This led to the production
of the first User Manual for which many of the conventions of presentaiion shown here
were first devised. It is this design which was presented as part of a monograph at the
end of the first stage of the project [1}.

2.2 [mplementation

Having designed the user’s view of the service, and produced a User Manual, an
implementation was designed and coded by Carroll Morgan without further use of
formal techniques. The objective at this stage was to get something working so that
the feasibility of the user interface could be assessed. In any case, no formal
refinements of significant size had been undertaken at that stage in the development of
the Z notation.
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The implementation (written in Modula-2 running on an LSI-11) was found to be
adequate, and is still essentially unchanged. The service provides data storage
facilities for spooled laser printer output, and a certain amount of backup storage, for
members of the Programming Research Group to this day.

2.8 Impiementor manunal

In the second part of the project, it was decided to produce an Implementor Manual
for the Block Storage Service that reflected the existing implementation. Though this
is not the recommended methodology {after all, one of the main objectives of the use of
formal specification methods is to more clearly express design choices at an absiract
level before producing any code), it allowed implementation design decisions o be
assumed while the presentation and structure of the specification in the mabual were
considered.

The Implementor Manual has been through two earlier versions before the form
presented in the previous chapter was evolved. Jonathan Bowen produced the first
version, which was then rewritten and extended by Roger Gimson. Changes have
largely been motivated by the wish to structure the design into separately
understandable subaysiems, so giving the implementor firm guidelipes to the atructure
of the final code.

Though the design eesentially reflects the structure of the existing implementation, it
was found that the suboperations on the components of the service state didn’t
necessarily correspond to routines in the existing code. If time had permitied, it would
have been an interesting exercise to rewrite the code to conform to the manyal.

3 Design of the user interface

The desigh of a low-level data storage service was chosen in order to keep the
complexity of the service under control, while providing a basis for the inplementation
of higher-level facilities. Such a separation is not novel in itself (see, for example, the
Amoeba system [9]), thongh the design turned out to imcorporate some unusual
characteristics.
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3.1 Limited life

The initial design choices were greatly influenced by a model of a dry-cleaning service,

originally proposed by Tony Hoare as a suitable study of an existing human-oriented
service.

The idea of enforcing a fixed lifetime on the data arose from that study. A dry-
cleaning service will dispose of any clothes that have been left for cleaning but not
been claimed after a suitably long period. By this analogy we mitigated the fear that
users would object if their data suddenly vanished at some point in the future.

Clearly the storage media implementing any particular service will not last forever —
but users are conventicnally happier thinking that their data will remain there
indefinitely until they explicitly force change.

In practice, lifetimes have been used in two distinct ways. For temporary data, such as
spocled printer output, a short lifetime is used (of perhaps one or two days), so that
data will normally expire rather than be explicitly destroyed. For permanent data,
such as backup storage, a medium or long lifetime is used (from a few months to a
year or more}; occasionally an archive program will be ueed by a client to explicitly
destroy data which is ©:o longer required, and exteud the expiry time of data to be
retained.

3.2 Immutability

The initial design also embodied the idea that stored blocks were immutable. Any
given block identifier could only ever refer to the ‘same’ stored data. There is no
operation which can change the data associated with a particular identifier.

Particularly in a shared service, the property of immutability is very valuable since it
allows a user to be sure that an identifier that they hold can only refer to a particular
data item, irrespective of operations being performed by other users. It presents the
same kinds of advantages and disadvantages as in the manipulation of data structures
in purely functional programming languages.

In some applications with tree-structured data, such as directories of files, aa
underlying immutable implementation imposes the condition that any change to a leaf
of the structure also changes the complete path back to the root. For balanced
structures, this introduces a penalty of at worst logarithmic complexity. It may also
have the disadvantage of requiring all references to the data to be channelied through
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the single root node.

However, immutability does, for example, provide a natural way to do check-pointing.
Assuming the components of the structure are not destroyed {or do not etpire}, a
spapshob of a complete tree structure may be held as a single reference to the root.

To ensure strict immutability, and if the expiry time of a block is considered 23 part of
its value, the service operation which changes the expiry time should also change the
identity of the block. This was not done in the implemented system, maizly from a
wish to be able to change the lifetime of a tree-structured object, like a file, without
rewriting all its non-leaf nodes.

3.3 Tags

At one stage in the initial design, the ‘tag’ part of the data in a block (tbat part which
extends the size of a block to be slightly larger than a conventional disk block) was
distinguished in the user interface, so that its value was provided separately in a block
creation operation, ard could be returned as part of a status operation. This
distinction was dropped as being too ‘implementation-inspired”.

Later discussions about implementing other services on top of the Block Storage
Service raised the possibility of making the tag mutable. It could then be used, for
example, for storing a reference count to the block without having to change the
associated block id. This would be a relatively straightforward change to both the
gpecification and implementation of the service, though it would introduce the need for
further operations to set and get the tag field.

3.4 Hey-linked operations

One place where implementation issues do intrude more than they might is in the ‘key-
linked’ operations. These arise from the wish to make each service operation
correspond directly to a single network procedure call, which for practical reasons is
limited in duration and size of parameters. Since these operations are required to
return sets or sequences of potentially large size, and could take correspondingly long
to execute, they each return only a part of the desired set or sequence.

This partitioning could be hidden from the user at a higher level by defining a single
operation which would be implemented by the appropriate sequence of key-linked
operations, and which would construct the whole of the resultant parameter. However,
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it might be misleading to define this single higher-level operation as an atomic
operation on the state of the service; at least the current formulation correctly
describes the effect of other user operations interleaved between the components of a
key-linked sequence.

3.5 Lifetime vs. expiry

The user interface design presented in this monograph differs from the first phase
design in some small but significant ways.

The definition of the lifetime of a block as an interval from the creation time has been
replaced by explicit definition of the expiry time. The latter makes it possible to
ensure that a set of blocks all have the same expity time, whereas iu the former this
could vary according to the time of invocation of an operation. This means that, when
implementing a higher-level data structure from blocks, there can be a simple invariant
that all the constituent blocks will exist for as long as the higher-level structure exists.

3.6 Manager operations

Another difference from the initial design is that the scavenge operation has been
made an explicit manager operation, rather than ar asynchronous internal operation
of the service. This corresponds to a change made to the implementation which
allowed the scavenging to be invoked as an explicit operation.

The profile operation was also added as another manager operation. The normal
setvice user does not need to be aware of these operations. However, they do form a
legitimate part of the user interface, if only for the special nser who is the manager.

3.7 Scavenging

There is still a debatable point of design concerning scavenging. As the service is
presented here, a block is still accessible until it is scavenged, even though it may have
passed its expiry time.

In the first version of the design, with scavenge as an asyuchronous internal operation,
the implementor was given some freedom of choice. The scavenge could be considered
to occur immediately before an access was atiemnpted, resulting in no access te such
blocks, or $o occur sometime later, meaning such blocks might be accessible.
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There may be a good case for forcing blocks to disappear as soon as they reach their
expiry time, so that, for example, it is known that if one block in a higher-level data
structure has expired they all must have expired. This can be achieved in the current
design by simply including, as part of the test in the error schema NoSuchBlock, a
check as to whether the block is past its expiry time.

3.8 Structured parameters

Some service operations return structured data items as results. For example, Get Ids
returns a set of black ids, while Prof i 1e returns a sequence of block information. In
the latter case, a set cannot be used because each piece of block information is not
necessarily unique (it contains owner and creation and expiry fimes, but not the unique
block id) 8o replicated entries are significant. A bag might have been a more accurate
abstract specification for this parameter, but wauld have had a less obvious concrete
representation.

As it turned out, the implementation described in the {oregoing Implementor Manual
would have guaranteed uniqueness of each piece of block information, since it relies on
each block having a different creation time. However, building this fact ipto the User
Manual would unnecessarily limit the choice of implementations.

The representation of structured parameters is briefly discussed in [8].

4 TPormat of the User Mannal

The overall design of the User Manual follows that of a typical manual for a library of
system calls, with an introductory overview of the system followed by detailed
descriptions of each of the operations that can be jnvoked on the system. The use of a
formal notation ensures that the user’s view of the system is made much more explicit
than is wsval in ioformal manuals, ihough without introducing unnecessary
implementation detail.

4.1 Errors

The specification of behaviour under error conditions is also covered in detail, though
not at the expense of cluttering the description of the successful behaviour of an
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operation. The specification of error conditions, formalised in the ‘Reports’ section of
each operation description, has changed between the first version of the manual and
that presented here. Schema overriding ia now used to explicitly define the order in
which errors may be detected. In some cases, such ordering is essential. For example, it
is necessary to check whether a block exists before its ownership can be checked.

4.2 Common framework

The introduction of the “Common Service Framework? has also made a difference to
the presentation. Parameters which can be considered implicit to every operation have
been separated, including identifications of the client, operation and service involved in
a particular call. The combination of the individual operation specifications into an
overall specification for the whole service, including subsystems common to other
services, now forms the final part of the manual.

5 Design of the implementation

The implementation described here ia simple, but it has been found to be adequate for
the straightforward applications it has supported over the three years it has been in
use.

5.1 Lack of concarrency

One major simplification in the implementation is the lack of provision for concurrent
execution of service operations. Though the user interface is specified as if each
operation were atomic, this does not necessarily force the implementation to be
sequential, provided that the effect of executing two service operations ‘in parallel’ is
equivalent, a3 far as the user is concerned, to executing first one then the other (in
either order).

A sequential implementation means that the time taken o execute any one operation
should be strictly limited to ensure that other users are not kept waiting for too long.
For example, this is one reason for defining a limit on the number of blocks scannped in
key-linked operations.
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5.2 Pault handling

Another simplification in the implementation described here is that no account has
been taken of potential faults in the underlying hardware, such as bad disk blocks,
Faults that are unrecoverable {for example, cannot be cured by re-reading the disk
block) are allowed for in the absiract service specification by the catch-all error report
ServiceError. In this event, the state of the service i8 specified to remain unchanged.

An implementation which caters for such errors must ensure that any charges in the
concrete state made prior to the detection of the fault are recoverable, or at least do
not lead to an inconsistent concrete state or changed abstract state. In practice, this
can often be achieved through appropriate choice of the order of execution of
suboperations, and simply abandoning further calls on detection of the fault.

8.3 Disk layout

The implementation does not specify in detail how the various blocks of information
should be laid out on the disk. This would depend on the characteristics of a
particular disk drive. However, it will generally be a good idea, in order to rednce disk
arm movement, to place the data, header and bitmap disk blocks assocciated with a
stored service block in the same area of the disk.

In the actual implementation produced as part of the project, the disk format conaisted
of 32 blocks per track, with 16 tracks per cylinder. One disk block could hold up to 8
headers, or 4096 bits of a bit-map. The chosen layout allocated the first 4 blocks of
each track to hold headers relating to the remaining 28 blocks used for data. Every 8
cylinders, the last block of a track was used for a bit-map (instead of data} relating o
all the service blocks stored on those cylinders.

54 Cousistency and crash recovery

The criteria given for consistency within the implementation, showing how the bit-map
and count information should be consistent with the header information, would imply
the restoration of this consistency after any service crash.

Craahes are not modelled explicitly in the manuals. They can be considered as periods
during which all service calls will return an error report. There is no allowance for the
loss of information which might have occurred during the crash, the service state being
defined to remain unchanged for such errors. On rebooting the service after the crash,
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the specified consistency censtraints are assumed to be re-established.

In the actual implementation, the count information Is held in memory, and so must be
recomputed by scanning the complete disk. (It is assumed that crashes will be
infrequent, as has been the case in practice.)

The bitmaps stored on disk should also be recomputed while scanning the headers. In
fact the actual implementation used a somewhat looser notion of consistency than
apecified here. For a specific service block, the header might be marked ‘used’, but the
bitmap indicates ‘free’, in which case the header is believed and the bitmap is corrected
on an attempt to access that block. Alternatively, the header might be marked ‘free’,
but the bitmap indicates ‘used’, in which case the block becomes temporarily
unavailable for further allocation. A utility program can be executed occasionally to
restore full consistency and recover such unusable resources.

This extra complexity was intended to allow faster rebooting after a crash (the count
information was deemed to be unavailable, and a scan of the whole disk avoided). In
hindsight, crashes are so infrequent that the simpler consistency criteria specified in
the Implementor Manua! would have been adequate.

8 Format of the Implernentor Manual

The Implementor Manual went through three distinct forms in an attempt to
provide 1 sufficiently readable presentation.

6.1 Initinl versions

In the first version, the concrete state was developed explicitly as a number of separate
refinement steps from the abstract siate given in the User Manual. The operations,
however, were defined as monolithic schemas on the concrete state alone, which made
them rather large and difficult to understand.

In the second version, the concrete state was introduced directly as a number of
subcomponents, including those relating to disk layout and cacheing. The operations
were composed from suboperations involving the separate state subcomponents. Only
towards the end of the manual was there a description of how the concrete state
related to the abstract state. In this version, the number of subcompopents of the
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concrete state made it difficult to remember what was affected by a particular
suboperation forming part of a service operation description.

6.2 Current version

{n the third form, aa presented here, a balance was struck between the two previous
versions. Two levels of abstraction were used. The concrete state is introduced as a
few subsystems at an intermediate level of abstraction (such as those for headers and a
single large bit-map), and related to the abstract state. The service operations are
composed from suboperations iavolving these mtermediate subsystems. Then the
intermediate subsystems are refined one stage further to include details of disk layout
and bit-map blocks and cacheing.

The refinement of each intermediate subsystem can be understood on its own, without
reference to the overall bebaviour of the service. In this sense, the format of the
presentation more closely follows the use of abstraction and abstract data types
(corresponding to the subsystems} in conventiona] system design.

6.3 Correctiess concerns

However, none of the versions of the implementor manual have been oriented towards
the requirementa for proving the correctness of the implementation. Indeed, there has
not been aufficient time within the project to attempt such a proof for a service of even
this moderate complexity (though a simpler one haa been completed [10]).

It therefore remains an open question as to whether the strictures necessary to allow a
proof to be completed would enforce a futher change in implementation specification
style. It is quite poseible that the proof would be easier to carry out if associated with
the application of smaller refinement steps. However, it is not clear whether an
implementor would benefit from seeing these details in the manual.
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Appendix A

Index of formal definitions

The following index lists the page numbers on which each formal name ig defined in
the text. Those names which are defined twice correspond to duplicated entries in the
User and Implementor Manuals. Names which have a special symbol (4, ¢, 2, c)asa
prefix are listed after the corresponding base name.
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AllocBit 44 EndInfolteration 74
cAllocBit 81 EndScan 55
cBadld 56 EndScavengelteration 71

BadKey 16 ErrorTariff 31
cBadKey 57 FetehCount 46
cBasicOps 75 FindFreeBlock 45
¢Bas i cParams 11,50 cFindFreeBlock 82

Bit 39 FreeBit 45

BitMap 44 cFreeBit 82
=BitHMep 50 GetAttributes s2

BitMaplonsistency 49 GetBlockld 66

Block 9,37 GetBlockInfo 73
¢B1ack 12 GetBlockNum 48

BlockCount 12,38 GetCount 26

BlockData 9,37 cGetCount 63

BlockldParts 47 CetCount oo 26

BlockldSet 12,38 cGetCount | one 68

BlackInfo 9,37 CetData 41

BlackInfoSeq 12,38 CetHeader 43

Byte 39 cGetHeader 78

CheckBlock 71 Getlds 25

CountConsistency 43 cGetlds 67

Counta 45 Getlds,  coce 25
=Counts 5D cCetlds_ .. 67

Create 19 Header 42
cCreate 60 HeaderBlock 76

Create oos 19 HeaderBlockPos 76
cCreate,_, oo 60 HeaderBlocks 77

DataBlock 40 HeaderBuffer 77

DataBlocks 41 Headers 42
=DateBlocks 50 IncCount 46

DecCount 46 InitBitHap 44

Destroy 22 InitCounts 46
cDestroy 63 InitDataB1ocks 41

Destroy, .cess 22 InitHeaderBlocks 77
cDestroy_, . cesa 63 InitHeaders 43

Disk 83 InitMapBlocks 30

DiskBlock 23 InitMapCache 80

DiskB1ockNum 83 InitSs 10, 38

DiskContents 84 clnitss 51

Endldsiteration 67 InitSSState 32




¢ey
HapBlock
MepBlockPos
MapBlocks
HapCache
c¢Mismatchedid
NewAt tributes
¢NewBtock
NewBlockId
NoSpace
cNoSpsace
cNoSpace,
NoSuchBlock
cNaSuchBlock
NotExpiredBlock
NotHanager
cNotHerager
Not Owner
cNotOwner
¢Params
Profile
cProfile
Profile
cProfile,, . cecs
PutData
PutHeader
¢PutHeader
Read
cRead
ReadSUEEESS
CReadSLII:L',ESE
RelBitHap
RelHeaders
RelSS
Replace
cReplace
Replace

success

success

30,

14
79
78
79
80
56
53
12
48
16
56
83
15
56
71
16
57
16
57

29
74
29
74
41
43
78
20
61
20
61
80
77
51
23
64
23

cReplace
SS

SUCCess

AcSS
=e55
SSAl10ps
S$SBasiclps
SS0ps
S§SServicelps
SSState
SSTeriff
$S5S5Tariff
Scan
AScan
AScanlds
AScanInfo
AScanScavenge
Scavenge
cScavenge
ScavengeBlock
Scevenge
cScavenge, ess
SatExpiry
cSetExpiry
Set EXp i MYcuccess

SuUccess

cSetExpiry,  coss
StertScan
Status
¢Status
Status
CStatussu::ess
Success
cSuccess

Teg
Updatelap

SUCCess
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64
10, 37
11
11
45
50
50
33
32
33
32
32
31
31
54
54
66
73
70
28
72
70
28
72
24
65
24
65
54
21
62
21
b2
15
55
42
81



Appendix B

Gloesary of T notation

A glossary of the Z mathematical and schema potation used in this monograph is
included here for easy reference. Readers should note that the definitive concrete and
abstract syntax for Z is available elsewhere [6].




Z Reference Glossary
Mathematical Notation
1. Definitions and declarations.

Let x, x, be identifiers, t, t, be terms and
T, T, be sets.

[Ty, T, ] Introduction of given sets.

x 2t Definition of x as syntactically
equivalent to t.

x 1= xq <<t 23] L ] x <<t >>
Data type definition (the <<t>>
ferms are optional).

x: T Declaration of x as type T.

xq! LFER T, [List of declarations.

Hys o n Xt T Declarations of the same
type: @ ¢y : T, T,

2. Logic.

Let P, Q be predicates and D declarations.

~ P Negation: “not P*.
PAaQ Conjunction: P and Q°.

Pvd Disjunction: P or Q™
2 ~(-P A -0).
P =0 [Implication: “P implies 0" or
%f P then Q™ 2 ~Pv Q.
P & 0 Equivalence: *P is logically
equivalent to 0*:
2 (P=s0Q) A{Qd=P).
true Logical constant.
false § ~frue

¥ D « P Universal quantification:
“lot all D, P holds™.
Existential quantification:
“there exists [} such that P™.
3, D + P Unique existence: “there exists
a unique D such that P7.
¥DIP:Q = (VD - P = Q).
ADIP-Q 9 (3 D+ F a0

3D-P
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P uherg D [ Q@ Where clause:
¢3inplia-P

P where x,8ty:.;x,2t, Whereclause:
P holds, with the syntactic
definition(s) defined locally.

DFP Theorem: 2 FV D + P.

3. Seta.

Let 5, T and X be sets; t, t, terms; P a
predicate and D declarations.

t; = t; Equality between terms,

t; # t; Inequality: 2 -v(t1= to).

t €5 Set membership: “t is an elemeat
of 5™,

t ¢S5 Non-membership: ¢ ~(t € §),
Empty set: 8 { x:X | faise }.
SeT Set inclusion:
g (Vx:S5+x€eT),
SeT Strict set inclusjon:

sSeTAS#T,
{ty, to o, 1, ) The set containing
t;,ty ..and t.
{D | Pt} Thesetof t'ssuch that given
the declarations D, P holds.
{D|P} GivenDax :T;s-ix,:T

ni

& {DIPe{xy,.x )}
{D+t} 24D ) true « t}.
(t;, t2 ., t) Ordered p-tuple
of ty,ty .. and t .

T, X T, % . xT, Cartesian product:
the set of all n-tuples such that
the i th comporent is of type T .

PS5 Powerset: the set of all subsets
of S.
P S Non-empty powerset:
2 PS \ {e}.
FS Set of finite subsets of 5:
2 {7: P S | Tis{ipite}.
F, 5 Non-empty finite set:
2 FS\ {8].
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SnT Set intersection: given 5, T: P X,
g {x:X | x€5 A xeT}.
SuT Set union: given $, T: P X,
£ {x:X | x€5 v x€T},
Set difference: given 5, T: P X,
2 {x:X | x€5 A x€T}.
n ss Distributed set intersection:
given 55: P (P X),
2 {x:X | (¥S$:55 *+ x€5S)}.
U sSs Distributed set union:
given 55: P (P X),
g {x:X | {3S5:95 + x€5)}.
45 Size (number of distinct
elements) of a finite set.
ul | P - t Arbitrary choice from the
set{D | P =t}
pD =t 2 uD} true-t

SAT

4. Relations.

A relation ia modelled by a set of ordered
pairs hence operators defined for sets can
be used on relations. Let X, Y, and Z be
sets; x:X; y:Y; and R:X & Y.

X © Y The set of relations from X to Y:
2P (X xY).
xRy x ig related by R to y:
2 (x,y) €R. (Ris often
underlined for clarity.)
x — y Maplet: 2 (x, y).
dom R The domain of a relation:
2 {x:X | Iy:¥Y - xR y}.
ran R The range of a relation:
2 {y:Y | Ix:X » xRy}
Ry # R,  Forward relational composition:
givenRy: X & Y; Ry: Y e I,
& {x:X: z:Z | Fy:¥Y -
x Riy A yRyz}.
Ry e R,  Relational composition:
2 R; 8 Ry
R7! Inverse of relation R:

2 {y:Y: x:X | xRy}l

idX Identity function on the set X:
2 {x:X » x+—x}.

R' The relation R composed with
iteell k times: given R : X > X,
RO2id X, R""' 2 R' o R.

R" Reflexive transitive closure:
2 U {n:N «R"}.

R* Non-reflexive transitive closure:
2 U {n:Ny + R},

R{S}H Relational image: given S: P X,

2 {y:¥ | Ix:5 - xRy}.
Domain restriction to 5:
given 5: P X,
2 {x:X; y:Y | xS A xRy},
Domain subtraction:
given 5: P X,
2 (X \S) 4R
RPT Range restriction to T:
given T: P Y,
Q{x:x; U:Y I ng A UET}‘
RBPT Range subtraction of 1:
given T: P Y,
sRP (YNT).
_R_ Infix relation declaration (often
underlined in use for clarity).

S 4R

S 4R

5. Functions.

A function is a relation with the property
that for each element in its domain there is
a unique elerent in its range related to it.
As functiops are relations all the operators
for relations also apply to functions.

X + Y  The set of partial functions from
XtoY;
2 {f: XY | Vx:domf~
(Jyy=Y+x f y)
X — Y  The set of total functions from

XtoY:
2 {f: XY | dom f =X}



X » Y  The set of partial injective {one-

to-one) functions from X to Y:

2 {f : Xx»Y |¥y:ran f*

(3, x : X+ Fx=y}.

The set of total injective

functions from X to Y:

2 (X Y) N (XY

The set of partial surjective

functions from X to ¥:

2 {f: XY | ran f=Y}.

The set of total surjective

functions from X to ¥:

g (xm»Y) n(X—2Y)

The set of total bijective

(injective and surjective)

functions from X to ¥:

e (X-=»Y) n (X Y),

The set of finite partial

functions from X to ¥:

2 {f: XY |

fefF (X xY)}

4 >0-mx» Partial functions.

—»»»-»>» Total [unctions.

-»>0-2 8 Finite functions.

fief; Functional overriding: given
£,y XY,
2 (dom fp 4 ) U fp.

f_ Prefix function declaration
{default il no underlines used).

{_f _) Inofix function declaration {often
underlined in use for clarity).

X Y
X - Y
X =Y

X » Y

X s Y

_f Postfix function declaration.
ft The function f applied to t.
f(t) 2 ft.

AD | P » t Lambda-abstraction:
the function that, given an
argument x of type X such
that P holds, the result is t.
GivenDax T . i %t T,
a2 {DIP«{xrx,) 2t}

AD +t 2 AD{ true+t
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8. Numbers.

Let m, n be natural numbers.

N The set of natural numbers
(non-negative integers).

N, The set of strictly positive
natural mumbers: 2 N\ {0},

F 4 The set of integers (positive,

zero and negative).

succ n  Successive ascending natural
number.

pred n  Previous descending natural
pumber: 2 suce”ln.

m+n Addition: & succ” m.

m-n Subtraction: & pred" m.

m*n Multiplication: 2 {_+m)" 0.

m div n Integer divigion.
m mod n Modulo arithmetic.
m Exponentiation: 2 (_%*m)" 1.
m<n Less than or equal, Ordering:
_§_ 2 succ”.
m<n Less than, Strict ordering:
e mgnAm#EnN,
Greater than or equal: 2 ngm.
Greater than: 2 n<m.
m..n Range: & {k:N|msk ~kgn}.
min S Minimum of a finite set;
for 5: F; M, min5 € 5 A
(¥ x:5 ¢« x 2 min S).
max S Maximum of 2 finite set;
forS: Fy N, mex5 € § A
{(¥x:5 » x § max S).

= 3
v oW
3 3

7. Orders.

partial_order X
The set of partial orders on X:
2 {R:XOX | ¥x,y z:X*
xRx a
xRy A yRx = x=y A
xRy s yRz = xRz}
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total _order X
The set of total orders on X:
2 {R:partial_order]¥x, y: X
xRy v yRx}.
monotonic X <y The set of functions
from X to X that are monotonic
with respect to the order <, on X:
a{f:X-»X|V¥x, yX-~
x <y y = f(x} <, fy)}.

8. Sequences.

Let a, b be elements of sequences, A, B be
sequences and m, n be natural numbers.

seq X The zet of sequences whase
elements are drawn from X:
s {A:N-»YX |
dom A = 1..8A}.
19 The empty sequence @.
seq; X  The set of non-empily sequences:
2 seg X \ {<O}
{ag, .., 8
e {1—a;, ., n—a }.
{ay, =, 8> Kby, .. by
Concatenation:
2 <ay, ., 8, by, .., b2,
OTA=ATO = A
The first element of a
non-empty sequence:
A¥ O = head A = A(1).
The final element of a
non-empty sequence;
A ¥ O =+ last A = A{®A).
All but the head of a sequence:
tail(<x> " A) = A.
front A All but the 1ast of a sequence:
freat (AT <x>) = A,

head A

last A

tail A

rev <{ay, a;, ., 8,2  Reverse:
g {a,, -, 8z 8,
rev O = O,

T /AA Distributed concatenation:

given AA : seq(seq(X)},
2 AA{1Y T . TAA(HAA)Y,
TrO = O
3/AR Distributed relational
composition:
given AR : seq (X & X,
& AR(1) 1 .. 3 AR(HAR),
/0 = id X,
&/AR Distributed overriding:
given A : seq (X B Y},
2 AR(1) @ .. & AR(®AR),
/O = B,
squash f Convert a {inite function,
f: N-# X, Into a sequence by
gquashing its domain. That s,
squash @ = <D,
and if ¥ # @ then
squash f =
{FLi Y)Y " squash({i}dq f)
where i = min{dom f}.
Index restriction:
2 squash{S qA).
Sequence restriction:
g sgquash(ADT).
disjoint AS Pairwise disjint:
given AS: seq (P X),
& (Y i, j:dom AS « i¥j
= AS(i} nAS{j) = 8).
AS partitions S
2 disjoint AS A
U ran AS = S.

S14

ALT

A jn B Contiguous subsequence:
2 (3C,D: seq X *
CTATD = 8).
9. Bags.
bag X The set of bags whose elements

are drawn fromX: 2 X = N;
items s The bag of items contained in

the sequences: & {x:rans-

x—#{i:doms|s{t)=x}}



Schema Notation
Schema definition: a schema groups
together some declarations of variables and
a predicate relating these variables. There
are two ways of writing schemas: vertically,
for example

S

x : N
y : seq N

x g By
1

or horizontally, for the same example
S 2 x: N; y: seq N | xs8y |.
Use in signatures after ¥, A, {.}, etc.:
(VS « y # ) 5 (Vo:N; y- seq N |
xg#y + y#d).

Schemas as types: when a schema name S is
used as a type it stande for the set of all
objecta described by the schema, {S}. For
example, w: 5 declares a variable » with
componenta x (of type N) and y (of fype
seq M)such that x s #y.

Projection functions: the component names
of a schema may be used as projection (or
selector) fumctions. For example, given
w: S, H.xis Ws x component and W.y is
ita y component; of course, the following
predicate holds: w.x < #u.y. Additionally,
given W : X 5, w3 (A5.x) is a function
X+ N, etc.

8s The tuple
schema’s variables: for example,
65 is (x,y). Where there is
no nsk of ambiguity, the 8 is
sometimes omitted, so that just
“S” is written for “(x, y)".

formed from a

pred 5  The predicate part of a schema:

eg. pred S is x < #y.
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Inclusion A schema S5 may be included
within  the declarations of a
schema T, in which case the
declarations of 5 are merged
with the other declarations of T
(variables declared im both S
and T must be of the same type)
and the predicatesof 5 and T
are conjpined. For examplie,

T
1
5
z : N
z <X
]
is
T
X, z: N
y : seq M
X £ 8y A Z <x
1

SIP The schema S with P conjoined
to its predicate part. E.g.,
(S | x>0) is

[ x:N;y:seg N | xgtty A x>0 |,

S5 D The schema S with the
declarations D merged with the
declarations of 5. For example,
{S ; z:N) is
[, z:N; y:seq M | xguy ].

S[new/old]  Renaming of components:
the schema $ in which the
component old has been
renamed to new both in the
declaration and at ifs every free
occurrence in the predicate. For
example, 5{z/x] is
[ z:M; y:seq N | z £ 8y ]
and S[y/x, x/y] is
[ y:N; =:seq N | y < ax ].
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In the second case above, the
renaming is simultaneous.

Decoration Decoration  with  prime,
subscript, superscript, etc;
systematic renaming of the
components declared in the
schema. For example, $* is
[x":N;y':seqN | x"s#y’].

-5 The schema S with its predicate
part negated. Eg., S is
[x:N; y:seg N | ~{xgay)].

SAT The schema formed {rom
schemas S and T by merging
their declarations (see inclusion
above) and conjoining (and-ing)
their predicates. Given T 2 [x:
N: z: PN | x€z],SATils

x : N
y : seq N
z: FN

X § #Hy A x € 2
]

SVT The schema formed from
schemas S and T by merging
their declarations and disjoining
(or-ing) their predicates. For
example,S V T js

% : N
y : seq N
z: PN

x € By vV x € z

S =T The schema formed from
schemas S and T by merging
their declarationa and taking
pred 5 = pred T as the

predicate, Eg.,5 =* T is

x : N
y: seq N
z: PN

XSHQED)(EZ
J

The schema formed from
schemas § and T by merging
their declarations and taking
pred S & pred T as the
predicate, Eg.,5 & T is

x N
y: seq N
z: PN

X £ #ty & x € z

SN vy, vz s V)

Hiding: the schema S with the
variabies Vi Yz and v,
hidden: the variables liated are
removed from the declarations
and are existentially quantified
in the predicate. Eg., 5 \ x is
[y:seq N| (Elx:N'xSﬂg)]. (We
omit the parentheses when only
one variable is hidden.) A
schema may be specified instead
of a list of variables; in this case
the variables declared in that
schema  are  hidden. For
example, (S A T)\S is

z : PN

(3 x: M; y: seq N -
X € Wy A X € 2)




5 r (Vlr VZ’

SRS )

Projection: The schema 5 with
any variabies that do not occur
in the list vy, vp, -., v, hidden:
the variables removed from the
declarations are existentially
quantified in the predicate. E.g.,
(SAT)N(x, y) is

x : N
y : seq N
(3z: PN:

x £ By A x € 7)

}

As for hiding above, we may
project a single variable with no
parentheses or the variables in a
schema.

The {ollowing coaventions are used for
variable names in those schemas which
represent operations on some state:

undashed

dashed (“' ")

unn

ending in

ending in *!”

The following

state before,

state after,

inputs to (arguments for),
outputs from (results of)
the operation,

schema operations only

apply to schemas following the above
conventions.
pre S Precondition: all the state after

components (dashed) and the

outputs (endipg in “!"} are
hidden. E.g. given
S T
x?, 5, 8°, y!' : N
s" =s5~x? Ayl =5
1

pre S ia

post S

SeT
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—
x?, s : N
(3s’, y' : N-»
s’ = a-x? Ayl = =)
)

Postcondition: this is similar to
precondition except all the state
before components (undashed)
and inputs (ending in “?") are
hidden.  (Note that this
definition differs from some
others, in which the
“postcondition® is the predicate
relating all of initial state,
inputs, outputs, apd final state.)

Overriding:
2(SA-preT)VT.

For example, given S above and
T

—
x?, s, 8" : N

s < x? Ag’' =8

SeTis

x?, s, s', yl : N

(s’ = s-x?ayl =5 A
~{3s': N-

s < x?7As5° = g))
v (s <x?Ag =5)

which simplifies to

[ P —
x?, s, s, yl : N

(8" =sx? Ayl =5 a
s 2 M7}V

(s <« x? A g’ = g}
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Schema
consider an intermediate state
that is both the final state of the
operation S and the initial state
of the operation T then the
composition of 5 and T is the
operation  which relates the
initial state of S to the final
state of T  through the
intermediate state. To form the
composition of S and T we take
the state-after components of S
and the state-before components
of T that have a basename” in

composition: if we

common, rename both to new
variables, take the achema which
is the “and” (A) of the resulting
schemas, and hide the new
variables. Eg., 5 ¢ T is

x?,8, s’, y!' : N

(350:“.
Sp = 8-x Ayl =8 A
sg < x? A 8’ = sy)

basename is the name with

any decoration [“'®, “1® “?®
etc.) removed.

S >> T  Piping: this schema operation is
similar to schema composition;
the difference is that, rather than
identifying the state after
components of 5 with the state
before components of T, the
output components of S {ending
in “!”) are identified with the
input components of T (ending
in “?"} with the same basename.

The following conventions are used for
prefixing of schema nanes:

change of before to after state,
no change of state,

framing schema for definition of
further operations.

%45

For example

AS & S AS’

=5 & AS | €S = @s’
¢ =2 AS | y=y

Spp 2 ¢S5 | x'=0

Other Definitions

Axiomatic definition: introduces global
declarations which satisfy one or more
predicates for use in the entire document.

! declaration(s)

l predicate(s)

or horizontally: DI P
Generic  constant: introduces generic

declarations parameterised by sets A, B,
ete. which satisfy the given predicates.

=-_[ A’ B‘ .__] =%
declaration(s)
predicate(s)
]
Generic schema  definition: introduces

generic schema parameterised by sets A, B,
etc. When used subsequently, the schema
should be instantiated (e.g. S[X, Y, .1}

S{AB L] ——
declaration(s)

predicate(s)
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