
A CAL"CULUS OF FUNCTIONS·

FOR PROGRAM DERIVATION

by

Richard Bird

Oxforo university
Compullng Laboratory
Programming Research Group-Library
8-11 Keble Road
Oxford OX1 3QD
Oxford (O~R51 54141

Technical Monograph PRG-64

December 1987

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OXI 3QD
England

Copyright @ 1987 Rkhard Bird

Oxford Uciversity Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OX13QD
England

A Calculus of Functions for Program Derivation

R.S. Bird

Programming Research Group, Oxford University.!

1. Introduction.
This paper is about how to calculate programs. We introduce a n~

tation for describing functions, outline a calculus for manipulating function
descriptions, and prove two general theorems for implementing certain func
tions efficiently. Like useful calculi in other branches of mathematicB, tbe
calculus of functions consists of a body of knowledge expre88ed as basic alge
braic identities, technical lemmas and more general theorems. We illustrate
the calculational approach to program construction by posing and Bolving a
simple problem about coding sequences.

In presenting this work we wish to argue:
(i) that Borne, perhapB many, algorithma <:an be derived by • proceBB of

systematic calculation from their specifications;
(ii) that an appropriate framework for this activity can be baaed on

notation for describing functions, notation that is wide enough to express
both specifications and implementationsj

(iii) that an effective calculus of program derivation must be built upon
useful general theorems relating certain forOlfl of expression to common pat
terns of computation, theorems that-in the main-we still lack.

By way of motivation, we start in Section 2 by posing the problem we
want to solve. The notational framework is introduced in Section 3. In that
section we also state (mostly without proof) a number of simple algebraic
laws about functions. In Section 4 we apply these laws to our example prob
lem until we arrive at a point where a more substantial theorem is required.
This theorem is stated, together with a second theorem, in Section 5. We
believe that these two theorema are of the kind that will eventually prove
important in establishing a useful calculus for program derivation.

2. Run-length encoding.
The problem we will use to illustrate our approach is that of run-length

encoding. The idea behind run-Jength encoding is to represent a sequence
of values (usually characters) in a compact form by coding each "run" of
equal values by a pair consisting of the common value and the length of the

1 Addreu: 11 Keble Roa.d, Oxford, OXl 3QD, U.K.

1

run. For example,

code "AABCCAAA" = [('A', 2), ('B', 1), ('C', 2), ('A', 3)1

The algorithm for computing code contains no surprises or subtleties. Our
objective, however, is to derive the algorithm from its specification, using
essentially the same kind of reasoning that a mathematician might employ
in solving a problem in, say, formal integration.

To specify code, consider the inverse function, decode. A sequence of
pairs can be decoded by "expanding" each pair to a sequence of values,
and concatenating the results. Given decode, we can specify (code z) as the
shortest sequence of pairs that decodes to z.

To make this idea precise, suppose we define the generalised inverse I-I
of a function f by the equation

r'z={wlfw=z}

Using notation from [IJ (discussed further in the next section) we can now
specify cod, as follows:

code .. [0] [(0, N+)J
code = !II /. decode-'

decode = */. ezpo
ezp(a,n) = K. 0[1.. n]

The first line of the specification gives the type of code as a function from
lists of o:-values to lists of pairs, each pair consisting of an o:-value and a
positive integer. The second line says that code is the functional composi
tion of a function (!II /) that select. the shortest in a set of sequences, and
the generalised inverse of decode. The third line defines decode as the com
position ofa function (*/) that concatenates a list of lists together, and a
function (<<po) that applies ezp to every element of a list. Finally, ezp (a, n)
is obtained for a positive integer n by applying the constant-value function
K.	 to each element of the list [1 .. n], thereby giving a list of n copies of a.

We shall return to this specification in Section 4. First we need to discuss
notation in more detail, as well as introduce some of basic algebraic identities
employed in the derivation.

3.	 Notation.
Our notation i. basically that of [IJ (see also [4], [5] and 16]) with some

additions and modifications. In particular, functions are curried, so function

2

application associates to the left, and simple function arguments are written
without brackets.

Lists and sets. We shall use square brackets "[" and "I" to denote lists,
and braces "{" and "}" for sets. The symbol * denotes list concatenation
and U denotes set union. The functions [.] and {o} return singleton lists and
sets, respectively. Thus

[,1 a = [a]
{.}a = {a}

To avoid clumsy subscripts, we shall use aO rather than Kg to describe the
function that always returns the value a. In particular, []O denotes the
function defined by the equation

[J"a = [J

A similar function for sets is used below.
We use #z to denote the length of the list z (or the size of the set z).

Selection. Suppose f is a numeric-valued function. The binary operator
1, selects its left or right argument, depending on which has the smaller
I-value:

z 1, II = z, If I z < I II
= II, if I II < I z

Unless f is an injective function on the domain of values of interest, the
operator 1, is under-specified: if z # II but I z = I II, then the value of
z 1, II is not specified (beyond the fact that it is one of z or II). For
example, the value

"bye" 1* "all"

is under-specified since both arguments have the same length. In order to
reason about 1/ for arbitrary f, it is aBBumed only that l, is associative,
idempotent, commutative, selective, and minimising in the sense that

l(zl,II)=/ z 1l11

Here, 1 is used as an abbreviation for lid, where id is the identity function,
and so selects the smaller of its two numeric arguments.

The under-definedn... of 1, can be very useful in specifying problems in
computation. If neceBBary, Uties" can be resolved by imposing extra condi~

tions on I. By definition, a refinement of I is a function 9 that r.spects the

3

ordering on values given by /, in the sense that

Ix</y=?gx<gy

but 9 may introduce further distinctions. (Here, =? denotes logical impli
cation), Such refinements can always be introduced into a specification in
order to ease the task of calculation, the only requirement being that the
refinement must be recorded and must be consistent with all previous re
finements, if any. (In both [lJ and [6J, re5nements were recorded by uaing
a special Bymbol, either or ~. In the present paper, use of such signs is
avoided; instead we stay strictly in the framework of equational reasoning,
and make refinements explicit.)

Conditionals. We shall use the McCarthy conditional form (p -+ I, g) to
describe the function

(p-+I,g)x	 = Ix, Ifpx
= 9 x, otherwise

For total predicates p we have the following well-known identity:

h'(p-+I,g) = (p-+h'l,h'g)	 (1)

Equation (1) is referred to 88 the "dot-condO law.

Map. The operator 0 (pronounced "map") takes a function on its left and
a list (or set) on its right. Informally, we have

1 0 [a" a2, ... , an] = [I alol a2,".'/ an]

with an analogous equation holding Cor sets. We can specify * over lists by
the three equations

1 0 [J = []

10 [a] = !f a]
lo(x*y) Uox)*Uoy)

These equations can also be expressed as identities between functions:

1 0 • [)" = [J" (2)

10.[.J = [']'1 (3)

1 0 '*/ = */'Uo)o (4)

4

We will refer to (2) as the "map-empty· law, to (3) as the "map-single" law,
and to (4) as the "map-concat" law. Equstion (4) makes use of the reduetion
operator I discussed helow. Similar equations hold for the definition of •
over sets. In particular, the analogue of (4) (in which -tt is replaced by u)
is called the "map-union" law.

[Note 0" sy"ta". In [IJ laws like the above were written with more brack
ets. For example, the map-concat law---called "'map promotion" in [I)-was
written

(t.). (-ttl) = (*I)' ((t.).)

In the present paper we avoid these additional brackets hy assuming func
tional composition (.) has lowest precedence.I

Another useful identity is provided by the fact that. distributes over
functional composition-the "dot.map" law:

(t.g). = f··g· (5)

Reduce. The reduction operator I takes a binary operator (Il on its left,
and a list (or set) on its right. Informally, we have

(Il/[a., "" ... , ...1= a. (Il a. (Il ... (Il an

More formally, we can specify (ilIon non-empty lists by the equations

(Il/la] = a
(Il/(z * y) = ((Il/z) (Il ((Illy)

For the second equation to be unambiguous we require that EEl be an asso
ciative operator (because * is). These equations can also be expressed as
functional identities (the "reduce-single" and "reduce--concat" Jaws):

(Ill· [,1 = id (6)

(Il/·*I = (Il/'(Il/' (7)

Similarly, we can define EB / over non-empty sets by the equations

(Il/{a} = a

(Il/(z U y) = ((Il/z)(Il ((Illy)

5

In particular, the function level equivalent of the second equation is the
"reduce-union" law:

ffJ/· ul = ffJ/· ffJI •	 (8)

In order for the application of e/ to a set to be unambiguous, we require EB
to be an associative, commutative and idempotent operator (because u is).
For example,

ffJ/z = ffJ/(z u z) = (ffJ/z) ffJ (ffJ/z)

and so e must be idempotent. Since !! has these three properties, we can
reduce with it over both sets and lists. In particular, we have the "shortest
map" law:

L* I . (J.). = f·· L* I	 (9)

Identity elements. If EB has an identity element e, then we can also
define

ffJ/[J= ffJ/{} = e

Equivalently, the "reduce-empty" laws says

ffJ/· [I' = e'	 (10)

It is often useful to invent "fictitious" identity elements for operators that
do not possess them. For example, we introduce w as the fictitious identity
element of L*: thus

L*IO = w

Provided certain care is taken, fictitious identity elements can always be
adjoined to a domain (oee [IJ for a more complete discussion).

HOInomorphlsms. Functions of the form ffJI .f. describe homomor
phisms over lists (or sets), and are discu..ed in [11 (s.. also [3]). There
are three particular homomorphisms that will be needed below: generalised
conjunction, filter, and cartesian prcxluct.

(i) Generalised conjunction. For a boolean-va.Iued function p we define all p
by	 the equation

all p = /\1 . p'

6

where 1\ denotes logical conjunction. Thus (all p x) returns true if every
element of the list (or set) z satisfies p, and false otherwise. One simple law
("all-and") is

all (p 1\ q) = all p 1\ all q (11)

(ii) Filter. The operator ~ (pronounced "filter") is defined for sets by the
equation

p~=u/.(p~ {-},{}O)'

Thus, (p <l) is a homomorphism on sets. A similar equation holds for lists.
In effect, (p ~ z) returns the subset of elements of z that satisfy p. This
subset is obtained by replacing each element a of z by {a} if p a holds, or
{ } if p a does not hold, and taking the union of the resulting set of sets.

The "filter-union" law says that

p ~.u/ = u;'(p~). (12)

The following proof of this result shows the way we shall layout the steps
of a calculation:

p ~.u/

=: definition of <l

u/. (p ~ {-},{}O) •. u/

map-union (4)

u/ . u/ . ((p ~ {.), { }O).).

reduce-union (8)

u/ . u/ • .((p ~ {-}, { }O).).

dot-map (5)

u/ . (u/. ((p ~ {-}, { }O).).

definition of <l

u/·(p~).

as required. D

For total predicates p and q, we have the "and-filter" law:

(pl\q)~ = P~'q~ (13)

Another identity ("reduce-cond") involving <l is as follows. Suppose ED
has identity elemen t e, then

(fJ/·(p~f,eO). = (fJ/'f"p~ (14)

1

Here is the proof:

fIJ/'/"p<J
definition of <J

fIJI· / •. * I. (p --+ ['), []O).
= map-concat (4)

fIJI· *1· (I.) •. (p --+ [.J, [JO).
= reduce-concat (7)

fIJI· fIJI' .(1.) •. (p --+ [.J, [)O).
dot-map (5)

fIJI· (fIJI· (I.) . (p --+ [.), [JO)).
dot-cond (1)

fIJI· (p --+ fIJI· / •. [.J, fIJI· / •. [)0)*

Now we argue that
fIJ/·/·, [.)

= map-single (3)

fIJI· [.)./

= reduce-single (6)

/
and also that

fIJI· / •. [Jo
map-empty (2)

fIJI. []O
reduce-empty (10)

eO

completing the calculation. 0

(iii) Cart,";an product. The third homomorphism is a function cp (short for
ucartesian product") with type

cp:: [{a}) --+ {[an

Thus, the cartesian product of a list of sets is a set of lists. Informally we
have

cp [S" S" ... ,S.I = {[ai, a" .. . , ..) I aj f Sj}

Formally we can define cp as the homomorphism

cp = *°1· ([.J.).

8

S*OT= {z*y I z eS; yeT}

Note that *0 is an a.ssociative operator. For example, we can calculate

cp [{a,6},{e},{d,e}]
*o/[{[a], [6]}, {Ie]}, {[d], [e]}]

= {[a],lb]} *O{[e]} *0 {[dj, [e]}
= {[a, e, d], [a, e, e], [6, e, d], [6, e, d]}

Two identities involving cp are the "cp-single" and "cp-cond" laws:

ep·Oo = {.} (15)
ep' (p --+ /, nO)o = (all p --+ ep '/0, nO) (16)

In effect, the first law says that the cartesian product of a list of singleton
sets is a singleton set, while the second law says-in part-that if any set
in the argument list is empty, then so is the cartesian product.

Generalised inverse. The generalised inverse of a function I is defined
by

ria = {61/6 = a}

The "dot-inverse" and .<Imap-inverse" laws are

(/. g)-I u/ • go·-I /-1 (17)
(/0)-1 ep ./-1 0 (18)

We give a proof of (17):

(/. g)-I a
definition of inverse

{6 I /(g 6) = a}
== set theory

u/{{6 I 9 6 = e} 1/ c = a}
definition of inverse

U/{g-I e 1/ e = a}
== definition of *

u/g-Io{e 1/ e= a}
definition of inverse

U/g-I o/-I a

as required. 0

9

Partitions. Finally, we introduce a special case of generalised inverse.
By definition, a partition of a list % is a decomposition of z into contiguous
segments. A proper partition is a decomposition into non-empty segments.
The (infinite) set of partitions of % is just (*/)-1%. The function parta,
where

parIs = all (# []). (*/)-1

returns the (finite) set of proper partitions of a sequence. Two theorems
about parts are given in Section 5.

4. Calculation of code.
Using the identities given in the previous section, we can now begin to

calculate an algorithm for lode. The derivation is almost entirely mechani
cal: at each step--with one or two minor exceptions-there is only one law
that can be applied.

lode
= definition of code

!"1. decode- 1

= definition of decode
!"I' (*1' e%p.)-1

= dot-inverse (17)
!"I _ul _(e%p.)-I. _(*/)-1

= reduce-union (8)
!,,;. !"I' _(e%p.)-I. _(*/)-1

= dot-map (5)
!"I· U"I' (e%p.)-I) "(*/)-1
introduction of /
!" 1-I. _(*/)-1

where

/ =!"I. (e%p.)-1

The purpose of this last step is just to name the subexpression that will he
the focus of future manipulation.

Before calculating I, we first consider the function e%p-1 that will arise
during the calculation. This function has values given by

e%p-l%={(a,n)le%p(a,n)=%)

For the set on the right to be non~emptYI we require that z is a non-empty
list of duplicated values (Recall that n must he a positive integer). Suppose

10

we define
nedup z (x 'I []) 1\ dup x
dup x = all(=headx)x
rep z (head x, #x)

where head x returns the first element of the non-empty list x. It then follows
that

exp-1x = (nedup x --+ {repx},{})

or l expressed at the function level, that

exp-l = (nedup --+ {-}. rep, {}O)

This equation is needed below.
Now we return to calculating f:

f
definition of f

L# /. (exp_)-l
map-inverse (18)

L# /. cp· exp-l_
definition of exp-l

L# / . cp· (nedup --+ {.} . rep, { }O)_
cp-cond (16)

L# / . (all nedup --+ cp • (0 . rep)_, { }O)
dot-cond (1)

(all nedup --+L*/' cp· (0· rep)_,)*/' {}O)
= dot-map (5), and introducing w as the identity of)*

(all nedup --+L*/· cp' {.} _ .rep.,wO)
= cp-single (15)

(all nedup --+h/' {.}. rep_,wO)
reduce-single (6)
(all nedup --+ rep_, WO)

11

HavinR calculated I, we continue with the calculation of code:

code
= calculation so far

L* /-/< _(*/)-1
= calculation of /

L* /- (all n.dup ---> rep<,w") < _(*/)-1
= reduce-cond (14)

L* /- (rep<) < -all n.dup <1_(*/)-1
shortest-map (9)

rep < - L* / -all n.dup <I _(*/)-1
definition of n.dup; all-and (ll); and-filter (13)

rep < - L* /- all dup <1'011 (# []) <1.(*/)-1
= definition of parts

rep < • L* /. all dup . parts

We ha.ve shown that

cod. % = rep < L* /all dup <I parts %

In worda l code % can be obtained by taking the shortest partition of % into
non-empty segments of duplicated values, and representing each segment by
its common value and its length. Expressed this way, the derived equation
seems entirely reasonable, and might even have served as the specification
of the problem. Unlike the original specification, the new definition of cod.
is executable. The set parts % contains a finite number of elements (in fact,
2n- 1 elements, if n > 0 is the length of %), and these can be enumerated,
filtered, and the shortest taken. What we now need is a faster method for
computing expressions of the above form, and for this we need to consider
various algorithms for computing partititons.

5. Algorithms for partititons.
Expressions of the form

Ltlall p <I parts %

arise in a number of applications. For example, in Borting by natural
merging, the input is first divided into runs of non-decreasing values. The
fUDction runs which does this division can be expressed in the form

runs % =L* / all nond« <l parts %

12

This reads: the shortest partititon of z, all of whose components are non
decreasing sequences.

Similarly, the problem of filling a paragraph (see [2]) can b. expressed
as a problem about partitions:

fill m ws =L w jail (fits m) ~ parts ws

This reads: the least wasteful (according to the waste function W) partition
of a sequence of words ws, all of whose component segments (or Cllines") will
fit on a line of given width m.

There are numerous other examples (including, of course, code). This
leads to the question: can we find ways of computing solutions to problems
of the form

LI fall p ~ parts z

efficiently?

The Greedy algorithm. Here is a "greedy· algorithm for computing a
partititon:

greedy p z [), If z = []
[y] * greedy p (z ~ y), otherwise
where y =i#jp~inits+z

In this algorithm, the expression inits+ z denotes the list of non-empty initial
segments of z, in increasing order of length, and (z ---,. y) is the sequence that
remains when the initial segment y of z is deleted from z. The operator ----r

is specified by the equation

(u*.)~u=.

for all sequences u and v.
It is easy to see that, at each step, the greedy algorithm chooses the

longest non-empty initial segment y of the remaining input z that satisfies
the predicate p. In order for greedy to make progress, it is necessary to
suppoee that p holds for [] and every singleton sequence at least. In this
way a non-empty portion of the input is "consumed" at each step.

There is a useful condition on p which enables the next segment y to be
computed efficiently. Say p is prefix-closed if

p(z*y) => pz

13

In words, if p holds for a sequence, then it holds for every initial segment of
the sequence (including [D. If p is prefix-closed, then there exists a derivative
function 6 such that

P (% * [all = p %/18 a %

For example, with p = dup we have

8 a %= (% = [IlV(a = head%)

and with p = non dec we have

8 0%= (% = [Il V (laBt %<:; a)

where last x returns the last element of a non-empty sequence x.
If p is prefix-closed, we can formulate the following version of the greedy

algorithm:

greedy p % = Bhunt [] %

Bhunt y []

Bhunt y ([a] * %)
= []

Bhunt (y * [an %,

[y] * shunt [al %,

if <5 a y
otherwise

This version is linear in the number of S-calculations.
A related condition on p is that of being sutJix-closed, Le.

p(%*y)*py

If p is both prefix- and suffix-closed, then p is said to be segment-closed.
For example, both dup and nondup are segment-closed. The suffix-closed
condition arises in one of the theorems discussed below.

The Leory algorltJun. Here is another algorithm for computing parti
tions:

leery f p %

= I], if % = []
= if j{[yl * leery f p (% ~ y) I y f P ~ initB+%} otherwise

This algorithm is a little more "careful" than the greedy algorithm (whence
the name «leery"). At each stage, some initial segment y of x is chosen so
that (i) y satisfies p; and (ii) f ([y] * yB) is as small as possihle, where yB is
the result of adopting the same strategy on the rest of the input. Unlike the

14

greedy algorithm, the leery algorithm will not necessarily chao.. the longest
initial segment of z satisfying p at each stage.

The direct recursive implementation of leery is inefficient, since values of
leery on tail segments of % will be recomputed many times. Instead, leery is
better implemented by a dynamic-programming scheme that computes and
stores the results of applying leery to all tsil segments of the input. In mak
ing a decision about the next component of the partition, these subsidiary
results are then available without recomputation. We shall not, however,
formulate the efficient version of leery here.

We now state two theorems about the greedy and leery algorithms. For
the first, we need the following definition.

Definition 1 A function f, from sequences to numbers, is said to be prefix
stable if

f z ~ f V {} f ([a] * z) ~ f ([oj * V)

for all a, z, and y. Equivalentlv, f is prefix-stable if

1/ /. ([01*)' = ([aJ*)·l/ /

for all a.

Theore= 1 (The Leery Theore=) Iff is prefix-stable, then

1/ / all p <1 parts z = leery f p z,

provided p holds for [I and all singleton sequences.

Proof. We shall need the following recursive definition of parts:

parts [] = {[I}
parts % u/subpart• • inits+ z if x 'I [I

where subparts V = ([V]*). parts (z - V)

We omit the proof that this definition of parts satisfies the specification

parts = all ('I [ll. (*/)-1

Let 9 be defined by
9z =1t1 all p <1 parts %

The theorem is proved by showing that (J satisfies the recursive definition of
leery. There are two cases to consider:

15

Case % = []. The derivation of

8[] = [J
is straightforward and is omitted.

Case % i [I. In the csse % f. [], we argue

Lr I all p " p.rts %

definition of p.rts

Lr I all p" U/subparts • inits+ %

=	 filter-union (12); reduce-union (8)
Lr I Lr I' (.11 p") • subparts. inits+ %
dot-map (5)
Lr!Ur!·.1I p".subp.rts). inits+%

= introduction of h
Lr Ih. inits+%

where
h y = Lr!.11 p" subp.rts y

We continue by calculating h (note that h depends on %):

Lr 1.11 p" subp.rts y
= definition of subp.rts

Lr I all p" ([y]*). p.rts (% - y)
= property of all

Lr I(p y ---> ([yl*) ••11 p "p.rts (% ~ y), { }}
=	 dot-cond (1)

(p y --oLr l([y]*) ••11 p "p.rts (% ~ y), Lf I{})
prefix-stability
(p y ---> [yJ* Lr!.11 p" p.rts (% ~ y), LII{ })

=	 definition of 8
(py---> [y)*8(z-y),Lr!{})

Finally, if we substitute the derived definition of h into the derived equation
for 8 and apply the reduce-cond law, we obtain

8% =	 Lr!4>.p"inits+%
where 4>y = [yJ * 8(% ~ y)

In othEr words, 8 satisfies the recursive definition of leery, completing the
proof of the theorem. 0

16

Perhaps the simplest useful example of a prefix-stable function is the
length function #. Another example is the function +/ that sums a list of
numbers. However, prefix-stability is too strong a condition to be satsfied
by commonly useful optimisation functions. Fortunately there is a weaker
condition that can be artificially strengthened to give prefix-stability.

Definition 2 A function f I from sequences to numbers, 's said to be weakly
prefix-stable if

f x ~ f y '* f ([a] * x) ~ f ([oj * y)

for all x, yond a.

For example, the function (t /) (where i selects the greater of its two
numeric arguments) is weakly prefix-stable, but not prefix-stable.

The proof of the following lemma, due to A.W. Roscoe, is given in an
Appendix.

Lemma 1 Suppa.. f :: [a] --+ Q is weakly prefix·stable, where a contains
a countable number 0/ elements} and Q denotes the rationals. Then there
exists a prefix-stable function g :: [a) --+ Q that refines f.

By using Lemma 1t we can therefore apply the Leery theorem in the case
of a weakly prefix-stable function f.

For the second theorem we need the following definition.

Definition 3 A function f, from sequences (of seqences) to numbers, is
greedy if both the following conditions hold for all z, y. z and s:

f ([x * yJ * s) < f ([z] * [y] * s)

f Uz*yJ*[zJ*s) <f([zJ*[y*zJ*s)

The first greedy condition says that shorter partitions have a smaller
f·value than longer ones; the second condition says that, for partitions of
equal length, the longer the first component, tbe smaller is its f-value.

Theore:rn 2 (The Greedy Theore:rn) If f is prefix-stable and greedy, and
p is sutfiz-closed, then

!/ / all p ~ parts z = greedy p x

provided p holds for all singleton sequences.

17

ProDI. We show leery 1 p = greedy p. Abbreviating leery 1 p by 8, it suffices
to prove that

1 (I:r * yl * 8z):s 1 ([:r] * 8(y * z))

for all:r, y and z, with equality only in the esse y = I]. In words, the longer
the next component of the partition, the smaller is its I-va)ue.

The proof is by induction on the length of y. The base case, #y = 0, is
immediate. For the induction step, consider the value of 8(y * z). There
are	 two possibilities: either

8(y*z) = [y*zd*8(z,) (case A)

for some ZI I' [] and z" such that z = ZI * Z, and p (y * zIl holds; or

8(y * z) = [y,] * 8(1h * z) (case B)

for some Yl I' [] and Y2, such that y = Yl * 1h and p Yl holds; (This case
includes the possibility that 1h = [].)

In case A, we reason that p ZI holds, since P is suflix-closed, and so by
definition of 8,

1 (8z) :s 1 ([ZI] * 8z,)
Hence

1([:r*y)*8z)
:s prefix-stability

1 ([z * yJ * [zd * 6z,)
<	 second greedy condition

1 ([:r] * Iy * ZI] * 6z,)
case A
1 ([:r] * 8(y * z))

as required.
In case B, we reason

1 ([:r * yJ * 8z)
case B:

1([:r*y'*1hJ*8z)
:s induction hypothesis, as #1h < #!I

1 ([:r * y,] * 6(1h * z))
<	 first greedy condition

1 ([:r] * [VI] * 8(1h * z))
case B

1 ([:r] * 8(y * z))

18

The length function # satisfies the first greedy condition, but not tbe
second. AB with prefix-stability, there is a weaker version of the greedy
condition that is sufficient to enable the Greedy theorem to be used.

Definition <& Say / i8 weakly greedy i/ the greedy eondition8 hall when <
is replaced by ~.

Le=a 2 A weakly greedy /unctionhu a greedy refinement:

Proof. Let / be weakly greedy. Define g by the rule

g %8 < g Y8 if (J %8 < / Y8) V (J %8 = / Y811 #head %8> #head Y8)

It is clear that g respects the ordering of / and is greedy. 0

6.	 Application.
We give one application of the Greedy theorem. Since dup is suffix-closed

(in fact, segment-closed), and # is weakly greedy, we bave that

code = rep * ·greedy dup

is a solution to the problem of run-length encoding.

Acknowledgement8 Much of the calculus presented above was developed
in collaboration with Lambert Meertens of the CWI, Amsterdam! to whom
I am grateful for both support and friendship. I would like to thank Bill
Roscoe, of the PRG, Oxford, who supplied the proof of Lemma 1 at a
moment's notice. I am also grateful to Carroll Morgan and Tony Hoare
for many enjoyable discussions on the proper role of refinement in a purely
functional calculus.

Reference.

1.	 Bird, R.S. An introduction to the theory oflists. Logic 0/ Programming
and Calculi 0/ Di8crete Design, (edited by M. Broy), Springer-Verlag,
(1981) 3-42.

2.	 Bird, R.S. Transformational programming and the paragraph problem.
Science 0/ Computer Programming 6 (1986) lSS-189.

19

3. Bird, RS. and Hughes, RJ.M. The alpha-beta algorithm: an exercise
in program transformation. Inf. Proc. Letter. 24 (1987) 53-57.

4.	 Bird, RS. and Meertens L.G.L.T Two exercises found in a book on
algorithmics. Program SpeciMation and Transformation (edited by
L.G.L.T Meertens), Nortb-Holland, (1987), 451-458.

5.	 Bird, RS. and WadIer, P. An Introduction to Functional Programming
Prentice-Hall (to be published Spring-1988).

6.	 Meertens, L.G.L.T Algorithmics - towards programming a mathe
matical activity. Prot. OWl Symp. on Mathematics and Computer
Science, CWI Monographs, North-Holland, 1 (1986) 289-334.

Appendix: Proof of Lemma 1

The proofof Lemma 1 is by constructing an injective weakly prefix-stable
function g. Such a function must also be prefix-stable. We argue this by
contradiction. Suppose the implication

9 ([al* 0) ~ g([al*y) => gx ~ gy

fails to hold. In such a case

9 ([al * 0) $ 9 ([a] * y) 1\ go> 9 Y

for Borne a, z and y. By assumption, 9 is weakly prefix-stable, 80 the above
assertion implies

g([al*x) ~ g([al*y)l\g([a)*y) ~ g([a}*x)

However, since 9 is injective, it roHows that % = Y which contradicts the
hypothesis.

To construct 9, we suppose the finite sequences of [a] are enumerated in
such a way that z precedes [a1* % for all a and z. Let this enumeration be
denoted by {:to, x" .. .}. Furthermore, to avoid a subsequent appea to the
Axiom of Choice, let {I'o, q" ...} be some fixed enumeration of the (positive
and negative) rationals Q.

For the base case in the inductive construction of g) arbitrarily define
9 :to "" O. Note that :to "" []. Assume, by way of induction, that

9 %0,9 %1, ••• ,9 2;"-1

have so far been defined and that these distinct values satisfy all that is
required of g. To determine 9 Z;, we partition {:r; I i < i} into three sets,
any of which may be empty:

A = {:r;Jj<i/\!:r;<!Z;}
B = {zjli<i/\!:r;=!z;}
C = {:r;li<i/\!zj>!z;}

Because 9 preserves the ordering of!, the rational values assigned to 9 for
arguments in A must precede those assigned to 9 for arguments in B, which
must in turn precede those for arguments in C.

Suppose Xi = [4] * %Jr:. By the given enumeration of sequences, we have
k < i. Define the following two subsets of B:

B, = {Ia] * z/ I g:q < 9 Z.}
B. = {Ial * Z/ I 9 Z/ > 9 Z.}

For Z f HI and Yl B: we have 9 z < 9 y, since--by induetion-g is injective
and weakly prefix-stable on the values already defined. We now cboose 9 Z;
to be the rational q, of least index in the given enumeration of QI such that
q is greater than every element of g. (A U B,) and less than every element
of 9 • (C U B,). By construction we have, for i < i, that

!Zj<!z;~gZj<9Z;

!Zj>!z;~gZj>gz;

so the extended definition of 9 respects the ordering of !. We must also
show that the extension of 9 maintains weak prefix-stablility. Supposing
Z; = lal * z. and Zj = [a] *:q, where i < i, we need to show

g:q<gZ. ~ g:r;<9Z;
gZj>gz. ~ gZj>9Z;

Since! is weakly prefix-stable, and 9 respects!, we have

! Z; < ! Zj ~! z. <! z/ ~ 9 z. < 9 Z/

Thus,
gZ/<gZ. ~ gz/<gZ.II!Z;?'!Zj

=> g%j < gx"

by definition of 9 z;. The proof of the second part is similar. This completes
the induction, and the proof of the lemma. 0

21

