A CALCULUS OF FUNCTIONS
FOR PROGRAM DERIVATION

by

Richard Bird

Oxforg University

Computing Labaratory _
Programming Research Group-Library
8-11 Keble Road

Oxford OX1 3QD

Oxiord {0RA5) 54141

Technical Monograph PRG-64
December 1987

Oxford University Computing Laboratory
Programming Researchk Group

8-11 Keble Road

Oxford OXI3QD

England

Copyright ©) 1887 Richard Bird

Oxford Utiversity Computing Laberatery
Programming Research Group

8-11 Keble Road

Oxford ©OI13QD

England

A Calculus of Functions for Program Derivation

R.S. Bird
Programming Research Group, Oxford University.!

1. Introduction.

This paper is about how to calculate programs. We introduce a no-
tation for describing functions, outline a calculus for manipulating function
descriptions, and prove two general theorems for implementing certain func-
tions efficiently. Like useful calculi in other branches of mathematics, the
calculus of functions consists of a body of knowledge expressed as basic alge-
braic identities, technical lemmas and more general theorems. We illustrate
the calculational approach to program construction by posing and solving a
simple problem about coding sequences.

In presenting this work we wish to argue:

(i) that some, perhaps many, algorithms can be derived by a process of
systematic calculation from their specifications;

(ii) that an appropriate framework for this activity can be based on
notation for describing functions, notation that is wide enough to express
both specifications and implementations;

(iii) that an effective calculus of program derivation must be built upon
useful general theorems relating certain forms of expression to common pat-
terns of computation, theorems that—in the main—we still lack.

By way of motivation, we start in Section 2 by posing the problem we
want to solve. The notational framework is introduced in Section 3. In that
section we also state (mostly without proof) a number of simple algebraic
laws about functions. In Section 4 we apply these laws to our example prob-
lemn until we arrive at a point where a more substantial theoremis required.
This theorem 1s stated, together with a second theorem, in Section 5. We
believe that these two theorems are of the kind that will eventually prove
important in establishing a useful calculus for program derivation.

2. Run-length encoding.

The problem we will use to illustrate our approach is that of run-length
encoding. The idea behind run-length encoding is to represent a sequence
of values (usually characters) in a compact form by coding each “run” of
equal values by a pair consisting of the common value and the length of the

1Address: 11 Keble Road, Oxford, OX1 3QD, U.K.

run. For example,
code “AABCCAAA” = [(‘A",2),('B’,1),(‘C’,2),(*A’,3))

The algorithm for computing code contains no surprises or subtleties. Our
objective, however, is to derive the algorithm from its specification, using
essentially the same kind of reasoning that a mathematician might employ
in solving a problem in, say, formal integration.

To specify eode, consider the inverse function, decode. A sequence of
pairs can be decoded by “expanding” each pair to a sequence of values,
and concatenating the results. Given decode, we can specify (code z) as the
shortest sequence of pairs that decodes to z.

To make this idea precise, suppose we define the generalised inverse f~!
of a function f by the equation

fz={w|fw=2)

Using notation from [1] (discussed further in the next section) we can now
specify code as follows:

code : [a] = [(a,N1)]
code = |4/ decode™!
decode = /- expx
ezp (a,n) = K,x[l..n]

The first line of the specification gives the type of code as a function from
lista of a-values to lists of pairs, each pair consisting of an a-value and a
positive integer. The second line says that code is the functional composi-
tion of a function (|4 /) that selects the shortest in a set of sequences, and
the generalised inverse of decode. The third line defines decode as the com-
position of a function (/) that concatenates a list of lists together, and a
function (ezp*) that applies ezp to every element of a list. Finally, ezp(a, n)
ia obtained for a positive integer n by applying the constant-value function
K, to each element of the list [1.. n], thereby giving a list of n copies of a.

Woe shall return to this specification in Section 4. First we need to discuss
notatjon in more detail, as well as introduce some of basic algebraic identities
employed in the derivation.

3. Notation.
Our notation is basically that of [1] (see also [4], [5] and [6]) with some
additions and modifications. In particular, functions are curried, so function

application associates to the left, and simple function arguments are written
without brackets.

Lists and sets. We shall use square brackets “[” and “|” to denote Lsts,
and braces “{” and “}” for sets. The symbol 4+ denotes st concatenation
and U denctes set union. The functions [-] and {-} return singleton lists and
sets, respectively. Thus

[la = ld]

{}a = {a}
To avoid clumsy subscripta, we shall use a° rather than K, to describe the

function that always returns the value ¢. In particular, []° denotes the
function defined by the equation

[1°a =11

A similar function for sets is used below.
We use #2z to denote the length of the list z (or the size of the set z).

Selection. Suppose f is & numeric-valued function. The binary operator
1y selects its left or right argument, depending on which has the smaller
f-value:

z, Wfz<fy

=y, ffy<fz

Unless f is an injective function on the domain of values of inierest, the
operator |; is under-specified: if £ # y but f £ = f y, then the value of
z |; y is not specified (beyond the fact that it is one of z or y}. For
example, the value

i

Tl y

“bye” |4 “all”

is under-specified since bath arguments have the same length. In order to
reason about |; for arbitrary f, it is assumed only that |; is associative,
idempotent, commutative, selective, and minimising in the sense that

flzlyyy=Ff=zlfy

Here, | is used as an abbreviation for |4, where id is the identity functicn,
and so selecta the smaller of its two numeric arguments.

The under-definedness of |; can be very useful in specifying problems in
computation. If necessary, “ties” can be resglved by imposing extra condi-
tions on f. By definition, a refinement of f is a function g that respects the

ordering on values given by f, in the sense that

fz<fy=>gz<gy

but g may introduce further distinctions. {Here, = denotes logical impli-
cation), Such refinements can always be introduced into a specification in
order to ease the task of calculation, the only requirement being that the
refinement must be recorded and must be consistent with all previous re-
finements, if any. (In both [1] and [6], refinements were recorded by using
a special symbol, either ~» or C. In the present paper, use of such signs is
avoided; instead we stay strictly in the framework of equational reasoning,
and make refinements explicit.)

Conditionals. We shall use the McCarthy conditional form (p — [, g) to
describe the function

fz, fpz

(p—19)z =
= gz, otherwise

For total predicates p we have the following well-known identity:

h-(p-—*f,g) = (p—'hf:h'g) (1)
Equation (1) is referred to as the “dot-cond” law.

Map. The operator » (pronounced “map”) takes a function on its left and
a list (or set) on its right. Informally, we have

[*[o1,01,...,80)=[f01,f a2,...,f @]

with an analogous equation holding for sets. We can specify » over lists by
the three equations

/+f =]
f +la] [f q]
[r{z4ry) = (f=a)H([*y)

These equations can also be expressed as identities between functions:

f[F = [F (2)
[l =[] (3)
Ja-tt] = A/ -(f2)» (9)

We will refer to (2) as the “map-empty” law, to (3) as the “map-single” law,
and to (4) as the “map-concat” law. Equation (4) makes use of thereduction
operator / discussed below. Similar equations hold for the definition of »
over sets. In particular, the analogue of (4) (in which + is replaced by U)
is called the “map-union” law.

[Note on syntaz. In {1] laws like the above were written with more brack-
ets. For example, the map-concat law—called “map promotion” in [1}—was
written

(74 -G} = () ((f4)%)

In the present paper we avoid these additional brackets by assuming func-
tional composition (-} has lowest precedence.]

- Another useful identity is provided by the fact that » distributes over
functional composition—the “dot-map” law:

(f-g)s = [+.g» (5)
Reduce. The reduction operator / takes a binary operator @ on its left,
and a list (or set) on its right. Informally, we have
®/[01,82,...,0] =1 D ar @D ay
More formally, we can specify @/ on non-empty lists by the equations

®/|a] =
®/(z)

(@/z)® (®/y)

For the second equation to be unambiguous we require that @ be an asso-
ciative operator (because + is). These equations can also be expressed as
functional identities (the “reduce-single” and “reduce-concat” laws):

@/] = i (6)
B/ - +/ ®/ »/* (7

i

Similarly, we can define @/ over non-empty sets by the equations

®/{e}

®/(zVy) (®/2)® (®/y)

In particular, the function level equivalent of the second equation is the
“reduce-union” law:

®/-u/ = &/ -8/ (8)

In order for the application of @/ to a set to be unambiguous, we require @
to be an asociative, commutative and idempotent operator (because U is).
For example,

®/z=0/(zUz) = (8/2)® (&/2)

and so @ must be idempotent. Since |; has these three properties, we can
reduce with it over both sets and lists. In particular, we have the “shortest-
map” law:

Lp/ e =f-lg/ (@)
Identity elements. If & has an identity element e, then we can also

define
e/fl=0/{}=-¢

Equivalenily, the “reduce-empty” laws says
&/ [I°=¢ (10)

It is often useful to invent “fictitious” identity elements for operators that
do not possess them. For example, we introduce w as the fictitious identity
elernent of | 4: thus

/{}l=w

Provided certain care is taken, fictitious identity elements can always be
adjoined to a domain (see [1] for a more complete discussion).

Homomorphisms. Functions of the form &/ - f+ describe homomor-
phisms over lists (or sets), and are discussed in [1] (see also [3]). There
are three particular homomorphisms that will be needed below: generalised
conjunction, filter, and cartesian product.

(i) Generalised conjunction. For a boolean-valued function p we define all p
by the equation
allp=~n/-px

where A denotes logical conjunction. Thus (all p z) returns true if every
element of the list (or set) z satisfies p, and false otherwise. One simple law
(“all-and”) is

all(pag) = allpAadllyg (11)

(ii) Filter. The operator < (pronounced “filter”) is defined for sets by the

equation
pa=u/-(p—~ {L{})=
Thus, (p <) is a homomorphism on sets. A similar equation holds for lists.
In effect, (p 9 z) returns the subset of elements of z that satisfy p. This
subset is obtained by replacing each element a of z by {a} if p ¢ holds, or
{ } if p a does not hold, and taking the union of the resulting set of sets.
The “filter-union” law says that

pa-U/ = U-(po= (12)

The following proof of this result shows the way we shall lay out the steps
of a calculation:

pa-u/
= definition of <

W-(p— {h{)) -0/

= map-union (4)

- - ((p = {5 { 1))+

= reduce-union (8)

U - xe((p— {1 {1))+

= dot-map (5)

- ((p = {1 {1)9)+

= definition of ¢
W - (p 9+
as required. O
For total predicates p and ¢, we have the “and-filter” law:
(pAg)a = pagqa (13)

Another identity (“reduce-cond”) involving < is as follows. Suppose @
has identity element e, then

@/-(p—f,e)* = @/ -[+-pa (14)

Here is the proof:

®/-f*-pd
= definition of ¢
®/-f*-+H/ (p—[LII)
= map-concat (4)
8-/ (f+)*-(p— [[].[]°)*
= reduce-concat (7)
8/ -@/+-(f¢)*-(p— [,[I°)
= dot-map (5)
&/-(&/-(f+)-(p = [LII)=
= dot-cond (1)
&/ (p— o/ -fx-[,& f+[])*
Now we argue that
&/ f*-[]
map-single (3)
&/-[]-f
= reduce-single (6)

/

H

and alsc that
&/ f*1]
= map-empty (2)
a/-[]°
= reduce-empty (10)
eo

completing the calculation. O

(iii) Cartesian product. The third homomorphism is a function ep {short for
“cartesian product”) with type

cp =i [{a}] = {[a]}

Thus, the cartesian product of a list of sets is a set of lists. Informally we
have

cp [SI;SZV"!SH]: {[311331---:%] | aijJ'}

Formally we can define cp as the homomorphism

cp =+« ([14)s

SH°T={cHy|zeS; yeT}
Note that +° is an associative operator. For example, we can calculate
cp [{a, b}, {c},{d, e}]
++°/{{al, (81}, {[c]}, {[4], [¢]}]

{[a], (8]} +>{[e]} +°{1d], []}
{[al ¢y d]) [41 c, 3], [b, ¢, d], [b, e, d]}

Two identities involving ¢p are the “cp-single” and “cp-cond” laws:
(= () (15)
ep(p—1,{}) = (allp—cp-/+,{}°) (16)

In effect, the first law says that the cartesian product of a list of singleton
sets is a singleton set, while the second law says—in part—that if any set
in the argument list is empty, then so is the cartesian product.

Generalised inverse. The generalised inverse of a function f is defined
by
fla={b|fb=a)

The “dot-inverse” and “map-inverse” laws are

(f-9)™" = uf g7t ry! (17)
(/97" = ep- SN (18)

We give a proof of (17):
(f-9)'a

= definition of inverse

{61/ (gb)=a}

= set theory

U/{{dlgb=c}|/c=a}

= definition of inverse

U/{g7te|fec=a}
= definition of *

U/gt#{c|fc=q}

= definition of inverse
/gt xf1a

as required. O

Partitions. Finally, we introduce a special case of generalised inverse.
By definition, a partstion of a list z is a decomposition of £ into contiguous
segments. A proper partition is a decomposition into non-empty segments.
The (infinite) set of partitions of = is just (++/)~'z. The function parts,
where

parta = all (# []) - (/)"

returns the (fnite) set of proper partitions of a sequence. Two theorems
about parts are given in Section 5.

4. Calculation of code.

Using the identities given in the previous section, we can now begin to
calculate an algorithm for code. The derivation is almost entirely mechani-
cal: at each step—with one or two minor exceptions—there is only one law
that can be applied.

code
= definition of code
La/ - decode™?
= definition of decode
Lp /- (4] - ezpe)~!
= dot-inverse (17)
L/ -0/ - (ezpe)t ¢ (H/) !
= reduce-union (8)
L/ La/ *-(ezpe) ™t (/)7
= dot-map (5)
L/ (L] - eape)™) #-())
= introduction of f
/- f=-(H)7
where
f=lg/ (expx)?
The purpose of this last step is just to name the subexpression that will be
the focus of future manipulation.
Before calculating f, we first consider the function ezp™! that will arise
during the calculation. This function has values given by

ezp~'z = {(a,n) | exp (a,n) =z}

For the set on the right to be non-empty, we require that x is a non-empty
list of duplicated values {Recall that n must be a positive integer). Suppose

10

we define

nedupz = (z#£[|JAdupz
dipz = all(=headz)2
rep z = (head z,#z)

where hegd x returns the first element of the non-empty list z. It then follows
that
1

ezp~lz = (nedupz — {repz},{ })

or, expreseed at the function level, that

exp™! = (nedup — {-} - rep, { }°)

This equation is needed below.
Now we return to calculating f:

f
= definition of f
L/ (ezpx)!
= map-inverse (18)
L/ cp-exp™ls
= definition of ezp~!
L/ cp- (nedup — (-} - rep, {}°)+
= c¢p-cond (18)
l# / . (d“ nedup —+cpr ({'}) I'Cp)*,{ }o)
= dot-cond (1)
(all nedup —la/ep-({-}- "CP)*, l#/ { }D)
= dot-map (5), and introducing w as the identity of |4
(allnedup — |y / cp-{}* reps, w®)
= cp-single (15)
(all nedup — |4 /- {-}- rep*,u®)
= reduce-single (6)
(all nedup — repr, w®)

11

Having calculated f, we continue with the calculation of code:

code
= calculation so far
L/ f ()
= calculation of f
L# /- (all nedup — reps,w®) = -(H#/)"!
= reduce-cond (14)
La [+ (reps) = -all nedup < -(H/)!
= shortest-map (9)
repe. |4 /- all nedup a-(4/)7?
= definition of nedup; all-and (11); and-filter (13)
reps- |4/ all dup a-all (# []) a-(4/)?
= definition of parts
rep*- |4 /- all dup - paris

We have shown that
code x = rep* |4 /all dup dparta x

In words, code 2 can be obtained by taking the shortest partition of z into
non-empty segments of duplicated values, and representing each segment by
its common value and its length. Expreased this way, the derived equation
seemns entirely reasonable, and might even have served as the specification
of the problem. Unlike the original specification, the new definition of code
is executable. The set parts = contains a finite number of elements (in fact,
2" ! elements, if n > O is the length of 1), and these can be enumerated,
filtered, and the shortest taken. What we now need is a faster method for
computing expressions of the above form, and for this we need to consider
various algorithms for computing partititons.

5. Algorithma for partititona.
Expressions of the form

lyfallpapartsx

arise in a number of applications. For example, in sorting by natural-
merging, the input is first divided into runs of non-decreasing values. The
function rurs which does this division can be expressed in the form

runs £ =4 /all nondecaparta x

12

This reads: the shortest partititon of z, all of whose components are non-
decreasing sequences.

Similarly, the problem of filling a paragraph (see [2]) can be expressed
as a problem about partitions:

Al m ws = w /all (fits m) < parts we

This reads: the least wasteful (according to the waste function W) partition
of a sequence of words we, all of whose component segments (or “lines™) will
fit on a line of given width m,

There are numerous other examples (including, of course, code). This
leads to the question: can we find ways of computing solutions to problems
of the form

ly/alipapartsz
efficiently?

The Greedy algorithm. Here is a “greedy” algorithm for computing a
partititon:

greedy p x R iz =]
= [y] 4+ greedy p (z — y), otherwise

where y =14 /painitstz

In this algorithrm, the expression inits* z denotes the list of non-empty initial
segments of £, in increasing order of length, and (z— y) is the sequence that
remains when the initial segment y of z is deleted from z. The operator —
is specified by the equation

(zHv)—u=v

for all sequences u and v.

It is easy to see that, at each step, the greedy algorithm chooses the
longest non-empty initial segment y of the remaining input z that satisfies
the predicate p. In order for greedy to make progress, it is necessary to
suppose that p holds for [| and every singleton sequence at least. In this
way a non-empty portion of the input is “consumed” at each step.

There is a useful condition on p which enables the next segment y to be
computed efficiently. Say p is prefiz-closed if

plzHy)=>psz

13

In words, if p holds for a sequence, then it holds for every initial segment of
the sequence (including []). If p is prefix-closed, then there exists a derivative
function § such that

plzH(a])=pzrAdacz
For example, with p = dup we have
Saz=(z=[])V (o= headz)
and with p = nondec we have
Saz=(z=[])Vv(last z < a)

where last z returns the last element of a non-empty sequence z.
If p is prefix-closed, we can formulate the following version of the greedy
algorithm:

greedy p z = shunt|]z
shunt y [] =
shunty ([6] ++z) = shunt(yH[a))z, f bay
= |y] + shunt [a]z, otherwise

This version is linear in the number of §-calculations.
A related condition on p is that of being suffiz-closed, i.e.

plzHy)=>py

If p is both prefix- and suffix-closed, then p is said to be segment-closed.
For example, both dup and nondup are segment-closed. The suffix-closed
condition arises in one of the theorems discussed below.

The Leery algorithm, Here is another algorithm for computing parti-
tions;

leery fpz
= (I, if z=]
= Y/{y\tleery fp(z —y) |y e painitstz} otherwise

This algorithm is a little more “careful” than the greedy algorithm (whence
the name “leery”). At each stage, some initial segment y of z is chosen so
that (i) y satisfies p; and (ii) f ([¢] H ye) is as small as possible, where ys is
the result of adopting the same strategy on the rest of the input. Unlike the

14

greedy algorithm, the leery algorithm will not necessarily choose the longest
initial segment of z satisfying p at each stage.

The direct recursive implementation of leery is inefficient, since values of
leery on tail segments of z will be recomputed many times. Instead, leery is
better implemented by a dynamic-programming scheme that computes and
stores the results of applying leery to all tail segments of the input. In mak-
ing a decision about the next component of the partition, these subsidiary
results are then available without recomputation. We shail not, however,
formulate the efficient version of leery here.

We now state two theorems about the greedy and leery algorithms. For
the frst, we need the following definition.

Definition 1 A function f, from sequences to numbers, 15 said to be prefix-
stable §f

fz<fye [(a]42)<f(la]+y)
for all ¢, z, and y. Equivalently, [is prefiz-stable if
L/ - ([a]4)* = ({a]4+) 1;/
for ail a.
Theorem 1 (The Leery Theorem) If f is prefiz-stable, then
ly/allpapartsz =leery f pz,
provided p holds for || and all singleton sequences.

Proof. We shall need the following recursive definition of parts:

ports [] {n
partsx = \U/subparts + inits* x if #]
where subparts y = ([y|4) * parts (z — y)

We omit the proof that this definition of parts satisfies the specification

parts = all (1) - (4/)!

Let ¢ be defined by
Oz =|;/all p<parts z

The theorem is proved by showing that ¢ satisfies the recursive definition of
leery. There are two cases to consider:

15

Case z =[], The derivation of

8] = {}

is straightforward and is omitted.

Case z # [|. In the case z # [], we argue

where

ly/oll papartsz
= definition of parts
Ly /all p QU subparts * inits* z
= filter-union (12); reduce-union (8)
L/ lf/ % (all p<) % subparts » inits* z
= dot-map (5)
Ly/(Ls/ - oll p a-subparts) * inits* x
= introduction of A
Ly /b % initatz

hy=|s/all pasubparts y

We continue by calculating & (note that k depends on z):

Ly /all p 2 subparts y

definition of subparts

Ly /all pa([y]4) » parta (z —~ y)

property of all

Ly/(py— ((y]+) % ell paparts(z—y),{})
dot-cond (1)

(py—ls/(y]4+)+ all paparts (z—~y), L, /{})
prefix-stability

(py— [yt 1y /ellpaparts(z—y),1s /{})
definition of 8

(py —[y]#8(z—y), L, /{})

Finally, if we substitute the derived definition of h into the derived equation
for 8 and apply the reduce-cond law, we obtain

bz = |;/¢*painitstz
where ¢y = [y| +8(z —y)

In other words, # satisfies the recursive definition of leery, completing the
proof of the theorem. O

16

Perhaps the simplest useful example of a prefix-stable function is the
length function #. Another example is the function +/ that sums a list of
numbers. However, prefix-stability is too strong a condition to be satsfied
by commonly useful optimisation functions. Fortunately there is a weaker
condition that can be artificially strengthened to give prefix-stability.

Definition 2 A function f, from sequences to numbers, 15 said to be weakly
prefix-stable tf

fz<[y=>71([a]tz)<[([a] H)
for allz, y and a.

For example, the function (T /) (where 1 selects the greater of its two
numeric arguments) is weakly prefix-stable, but not prefix-stable.

The proof of the following lemma, due to A.W. Roscoe, is given in an
Appendix.

Lemma 1 Suppose f :: [a] & @ 18 weakly prefiz-stable, where o contains
a countable number of elements, and @ denotes the rationals. Then there
exists a prefiz-stable function g :: [a] - Q that refines f.

By using Lermma 1, we can therefore apply the Leery theorem in the case
of a weakly prefix-stable function f.
For the second theorem we need the following definition.

Definition 3 A function f, from sequences (of seqences) to numbers, is
greedy if both the following conditions kold for all z, y, z and s:

f ({z 4yl +8) < ([=] +[y] + o)
f [z g] 4[] 4+ 8) < [([2] # [y + 2] + 8)

The first greedy condition says that shorter partitions have a smaller
f-value than longer ones; the second condition says that, for partitions of
equal length, the longer the first component, the smaller is its f-value.

Theorem 2 {(The Greedy Theorem) If f is prefiz-stable and greedy, and
p 18 suffiz-closed, then

lyfallpapartsz = greedy p =z

provided p holds for all singleton sequences.

17

Proof. We show leery f p = greedy p. Abbreviating leery f p by 8, it suffices
to prove that

S (= # y] 4 62) < f ([z] # 6(y 4 2))

for all z, y and z, with equality only in the case y = []. In words, the longer
the next component of the partition, the smaller is its f-value.

The proof is by induction on the length of y. The base case, #y =0, is
immediate. For the induction step, consider the value of 8(y 4+ z). There
are two possibilities: either

0y +z2) = [yv+alH0(z) (case A)
for some 2; # [] and 2, such that z = z; 4 2 and p (y + 2) bolds; or
Oy +z) = [n]Ho(nz2) (case B)

for some y; # [] and y,, such that y = 1 H y; and p y1 bolds; (This case
includes the possibility that y2 = [].)

In case A, we reason that p z holds, since p is suffix-closed, and so by
definition of 8,

£(02) < 1 (2] 4 02)

Hence
/ ([z 4+ y] + 02)
prefix-stability
J ([z)+ [21] #02)
< second greedy condition

1 ([2] 4 ly+ 2]+ 02)
= case A

1 (12) 46y + 2))

A

as required.
In case B, we reason

/([+y) +82)
= case B:
S ([z + 5+] 4 62)
< induction hypothesis, as #y; < #y
S ([z + 0]+ 0(ys + 2))
< first greedy condition
I ([z] 4 (] + 0(y2 + 2))
= case B

S ([=] +8(y + 2))

18

The length function # satisfies the first greedy condition, bul not the
second. As with prefix-stability, there is a weaker version of the greedy
condition that is sufficient to enable the Greedy theorem to be used.

Definition 4 Say f is weakly greedy if the greedy conditions holl when <
14 replaced by <.

Lemma 2 A weakly greedy function has a greedy refinement.
Proof. Let f be weakly greedy. Define g by the rule

gT8 < gys if (fze<fys)v(fzs=/[ysA#head z8 > #head ys)
It is clear that ¢ respects the ordering of f and is greedy. I

6. Application.
We give one application of the Greedy thecrem. Since dup is suffix-closed
(in fact, segment-closed), and # is weakly greedy, we have that

code = rep * -greedy dup
is a solution to the problem of run-length encoding.

Acknowledgemenits Much of the calculus presented above waa developed
in collaboration with Lambert Meertens of the CWI, Amsterdam, to whom
I am grateful for both support and friendship. I would like to thank Bill
Roscoe, of the PRG, Oxford, who supplied the proof of Lemma 1 at a
moment’s notice. I am also grateful to Carroll Morgan and Tony Hoare
for many enjoyable discussions on the proper role of refinement in a purely
functional calculus.

References

1. Bird, R.S. An introduction to the theory of lista. Logic of Programming
and Calenls of Discrete Design, (edited by M. Broy), Springer-Verlag,
(1987) 3-42.

2. Bird, R.S. Transformational programming and the paragraph problem.
Science of Computer Programming 6 (1986) 155-189.

19

3. Bid, R.8. and Hughes, R.J.M. The alpha-beta algorithm: an exercise
in program transformation. Inf. Proc. Letters 24 (1987) 53-57.

4. Bird, R.S. and Meertens L.G.L.T Two exercises found in a book on
algorithmics. Program Specification and Transformation (edited by
L.G.L.T Meertens), North-Holland, (1987), 451-458.

5. Bid, R.S. and Wadler, P. An Introduction to Functional Programming
Prentice-Hall (to be published Spring-1988).

6. Meertens, L.G.L.T Algorithmics - towards programming as a mathe-
metical activity. Proc. CWI Symp. on Mathematics and Computer
Science, CWI Monographs, North-Holland, 1 (1986) 289-334.

Appendix: Proof of Lemma 1

Theproof of Lemma 1 is by constructing an injective weakly prefix-stable
function ¢. Such a function must also be prefix-stable,. We argue this by
contradiction. Suppoese the implication

g([a] H2)< g(a] Hy)=>g9z< gy

fails to hold. In such a case

glajH2)<g([a] Hy)rgz>gy

for some a, z and y. By assumption, g is weakly prefix-stable, 8o the above
assertion implies

9 ([a} + z) < g ([a]) A g ([a] Hy) < g ([a] =)

However, since ¢ is injective, it follows that z = y which contradicts the
hypothesis.

To construct ¢, we suppose the finite sequences of (] are enumerated in
such a way that z precedes [a] H z for all a and z. Let this enumeration be
denoted by {xo, 21,...}. Furthermore, to avoid a subsequent appea to the
Axiom of Choice, let {g, ¢1,...} be some fixed enurneration of the (positive
and negative) rationals Q.

For the base case in the inductive construction of g, arbitrarily define
g To =0. Note that zp = []|. Assume, by way of induction, that

§%70,9%1,...,8§ 5-1

have so far been defined and that these distinct values satisfy all that is
required of g. To determine g z;, we partition {z; | < 7} into three sets,
any of which may be empty:

A = {g|i<iAfz <[z}
B = {g|i<infz=f=z}
C = {Ijlj*(‘l-/\f:j)f:,'}

Because g preserves the ordering of f, the rational values assigned to g for
arguments in A must precede those assigned to g for arguments in B, which
must in turn precede those for arguments in C,

Suppose z; = [a] + 1;. By the given enumeration of sequences, we have
k < 1. Define the following two subsets of B:

By = {[eJH=u|gn<gu}
By = {[e]H=| gz > gz}

For z€ B, and y ¢ B; we have ¢ z < g y, since—by induction—g¢ is injective
and weakly prefix-stable on the values already defined. We now choose ¢ z;
to be the rational g, of least index in the given enumeration of @, such that
g is greater than every element of ¢ * (4 U B;) and less than every element
of g #+ (C U B;). By construction we have, for j < 1, that

fri<fzi=>gzi<gx
fri>fzi=>g> 9z

so the extended definition of ¢ respects the ordering of f. We must also
show that the extension of § maintains weak prefix-stablility. Supposing
z; = [a] # z; and z; = {a] # 5, where ; < 1, we need to show

ga<gn = gn<gxy
g >9% = L >9%

Since f is weakly prefix-stable, and g respects f, we have

fri<fzi=[n<fa=>gm<gy

Thus,
g <gzn > gu<gnuAfn>fz
= g:,-<g.t,-,

by definition of g ;. The proof of the second part is similar. This completes
the induction, and the proof of the lemma. O

21

