
The Sliding-Window Protocol

in CSP

. !

Oxlom Umversity
Computing Laboratory
Programming Research Group-library
8-11 Kebie Road
Oxford OX. 30D
Oxford (ORA"I 54141

by

K. Paliwoda

and

J.W. Sanders

Oxford University Computing Laboratory " Programming Research Group

The Sliding-Window Protocol

in CSP

by

K. Paliwoda

and

J.W. Sanders

Technical Monograph PRG-66
ISBN 0-902928-48-1

March 1988

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OXI 3QD
England

Copyright @l988 K. Paliwoda and J.W. Sanders

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OXl 3QD
England

The Sliding-Window Protocol in CSP

K. Paliwoda and J.W. Sanders

Oxford University Computing Laboratory

Prograrnmin g Research Group

8-11 Keble Road

Oxford, OXl 3QD

Abstract

A formal specification and proof of correctness is given of the sliding
window protocol using the notation of Communicating Sequential Pro
cesses. First the stop-and-wait protocol is defined; its correetne8S, that
it forms a I-place buffer, is almost evident. Next the alternating-bit
protocol is defined and described in terms of the stop-and-wait proto
col, and its correctness deduced. Finally the sliding-window protocol
is described in terms of the alternating-bit protocol and its correctness
deduced accordingly. The protocols are refined, and implemented in
occam.

The paper has two thrusts: that modularity of a specification helps
to structure proofs about it (in this case, proofs that the protocols
implement bUffers); and that refinement in CSP leads to structured,
correct implementations in occam.

1 Introduction

There is, by now J a substantial repertoire of high-level specifications ranging
from editors to transaction-processing systems. Some of these have even
been implemented! But there appears to remain a need for intermediate
level specifications which are clear, which can be seen easily to meet their
more high-level specifications, and which admit straightforward refinements.
The difficulty involved in such examples lies in the trade-off between the
description of a design and the statement of properties it is required to
have.

In this paper we describe the sliding-window protocol (SWP), prove that
it meets the higher-level specification of a buffer, and implement it in occam.
The description, and hence the proof of correctness, is structured in terms
of the simpler alternating-bit protocol (ABP) which in turn is expressed in
terms of the sto~and-wait protocol (SAWP). We have aimed to structure
the specifications to meet the criteria imposed in the previous paragraph.
Thus once the protocols have been proved correct, the correctness of their
occam implementations can be asserted almost mechanically.

The outline of the paper is as follows. Sections 2 contains notation and
elementary properties of it. Section 3 contains the SAWP: the description
and proof that it forms a I-place buffer; and the ABP; description, proof
(structured in terms of that for the SAWP) that it forms a I-place buffer,
and implementation in occam. Section 4 contains the specification of the
SWP (structured in terms of the ABPL the proof that it forms a buffer,
and a refinement and implementation in occam.

1

2 Notation

We use the notation or esp, mostly as in [Hoare 85]. The processes we
consider participate (with a single exception) in only communication events
and so we descrihe their alphabets by depicting their channels. As usual
we identify a channel name with the sequence of values which has been
carried by that channel, and use the trace semantics of CSP to identify 8

process with the strongest predicate which holds hetween its channel names.
In doing this we write P[b/a] for predicate P with b substituted for free
variable <1, When process P refines Q (either a process or a predicate) we
write

P Bat Q.

The process combinators of CSP are as in [Hoare 85] except that we
write

P<lAI>Q

for the conditional statement which is the process P if predicate A is true
and otherwise equals process Q. Recall that \ denotes abstraction and that
* denotes the while construct.

We write square hrackets (instead of angled hrackets) in sequence com
prehension: I), [xl and [x)-t denotes repectively the empty sequence, the
singleton sequence containing %, and the sequence with head Z' and tail t;
in the latter case we also write fiTst([ZJ t)= z. All sequences are finite and
the length of I is denoted #1.

Thefunction, squash, on sequences which compresses adjacent duplicates
iB

squash[) = [)
squash[x] = Ix)

.quash([xJ-t) = squash t if x = first t

.quash([x]-I) = [x)-(squash t) if x '" first t wheret '" I I·
We use the following relations on sequences:

s5t iff sisaprefixoft
, 5" t iff s is a prefix of t at most n elements shorter
s ~ t iff s is a (not necessarily contiguous) subsequence of t.

Finallye denotes difference modulo 2, and $w denotes addition modulo
the natural number w.

2

3	 The stop-and-wait and
alterna ting-bit protocols

3.1 Buffers

A buffer is a process with input channel in and output channel out! which
accepts data on in and later delivers it on out.

~	 BUFFER ~

Figure 1: A buffer.

It does not corrupt, create nor Jose datal but imposes only a. delay during
its transmission. In reality a buffer is almOElt certainly not just a wire, but
some lower-level protocol which detects and discards corrupted messages.

The way it does this (using headers, checkbits and 80 on) is of no concern
at our present level of abstraction. For the purpose of describing a buffer,
its internal workings are completely immaterial; we specify it by the way it
relates the input sequence to the output sequence. Since the output sequence
is a prefix of the input sequence, we write

Buffer(in, out) ::: out :S in.

For a natural number n, an n-place buffer is a. buffer with capa.city n:

nBuffer(in, out) :=: out:S" in.

We shall see that the three protocols to be studied in this paper a.re all
correct in the sense that they form buffers of finite capacity.

3

3.2 The stop-and-wait protocol

A buffer may be implemented using a sender (8) and a receiver (R) at
either end of an intervening medium. If the sender transmits faster than the
receiver is able to accept, data accumulates in the medium, and some sort
of How control is necessary. The simplest protocol guaranteeing such flow
control is the stop-aud-wait protocol (SAWP).

4 s I, I: : :: :, ~~ IR ~
Figure 2: The stop-aud-wait protocol.

The sender accepts input, relays it to the medium on channel 1m and
awaits acknowledgement on channel rc; when the acknowledgement arrives
the sender repeats this cycle. The receiver accepts input from the medium
on channel rm, outputs it, and acknowledges on channel Ie. It seems evi
dent, and we shall prove it in the corollary to follow) that the value used
for acknowledgement is immateriali for convenience we suppose that the ac
knowledgement consists of the piece of data which is being acknowledged.
Thus in CSP we have

S = in?:r --+ Im!:r --+ rc?:r --+ S

R = rm?:r - out!:r --+ lc!:r --+ R.

The medium is represented by two processes, Ml and M2. This is neces
sary because messages and acknowledgements flow in opposite directions and
therefore have to be communicated via different logical channels. However
we suppose that Ml and M2 are buffers:

Ml Bat Bufferllm/in, rm/out]
M2 Bat Bufferllc/in, rc/out].

The SAWP is the parallel combination of these four processes with their
four intermediate channels concealed

SAWP ~ {SIlMIIIM21IR)\{lm,rm,lc,rc}.

4

The statement of its correctness is:

Theorem L SAWP sat IBuffer(in,out).

Proof. From. the definitions (where stacked predicates are conjoined)

we have

S sat	 1m ~l in

TC ~l 1m

Te~lin,

R sat	 out ~l rm

Ic ~1 out

Ie ~l rm,

Ml sat	 Tm ~ 1m,

M2 sat	 TC ~ Ie.

Thus

SAWP sat	 TC ~ lc ~l out ~1 rm ~ 1m ~1 in

Te ~l in

and 80 out ~l in. 0
The proof of the theorem can be strengthened to permit a.ny acknowl

edgement value in the definition above; indeed it is this more general form
which we shall need in subsequent sections. This is the content of Corollary
1.

From now on we shall omit the free Buffer variables when no confusion
can arise.

Corollary 1. The SAWP with arbitrary acknowledgements satisfies
IBuffer.

Proof. The more liberal sender and receiver are

in?x --+ Im!x --+ re?z --+ Sov

R" = rm?x --+ out!x --+ Ie!\? --+ novR~,

S"

where the	 nondeterministic choice is over all acknowledgement values O.

5

Then, as in the theorem but writing k ~1 I for 0 ~ 1- k ~ 1,

SQ Bat	 1m 51 in

#T< S;1 #Im

#TC 51 #in,

RQ Bat	 out ~1 Tm

#1, s;1 #oul

#1, S;1 #rm.

So defining SAWPo ,

SAWP", e (S",IIM11IM21IR<;»\{lm,rm,lc,T<),

we have

SAWPo Bat	 out SI Tm .$ 1m SI in
#T< S;1 #in
#T< S; #1, S;1 #oul S; #rm S; #Im S;;1 #in.

Thus

out ~ in

#out 51 #in j

and the result follows. 0

3.3 The alternating-bit protocol

The alternating bit protocol (ABP) ensures safe transmission of messages via
a medium which sometimes loses but never corrupts them. Again it consists
of a sender and a receiver working together as follows: having sent a message,
the sender awaits an acknowledgement. If the message gets through to the
receiver it will be output and acknowledged. If this acknowledgement reaches
the sender then the next message is sent; however if either the message or the
acknowledgement is Jost then the sender times out and sends a duplicate.
Messages are tagged by alternating bits to ensure that the receiver can
distinguish two consecutive but identical messages from a message and its
retransmitted duplicate.

If we ignore timeout (for the moment!), the choice between retransmit
ting and awaiting an acknowledgement is a nondeterministic one. In CSP
this nondetenninism is expressed:

6

S = So

S, = in?x -+ lm!z.b -+ Sz.6 where b E {O, I}

Sz.b = rc? a --+ (Sleb <1 a = b I> S•.,)

n Im!:t.b -+ 8•.6

R = R,
R, = rm?x.c -+ (out!% -+ lc!c --+ Rc:

<lctbl>

Idb ~ R,) where b E {O,I}.

This time we suppose that the media Ml and M2 are worse than for the
SAWP: they may not only delay data, but possibly lose some. Thus the
sequence of da.ta. on their output channel is 8 subsequence of the da.ta on
their input channel

rm ::J 1m
rc ~ Ie.

AB before, we now define

ABP ~ (SIIMIIIM21IR)\{lm,rm,lc,rc}

and summarize its correctness in
Theore= 2. ABP Bat 1BuJJcr.
Proof. We show that the ABP, with some changes of variable, forms

a SAWP; since the processes in Theorem 1 are determined (in the trace
semantics) by the predicates given there, the result follows. To define the
changes of variable we USe the following two further pieces of notation. A
sequence of bits is alternating if it is empty or starts with 0 and adjacent
elements are distinct

s t [] => (first s = 0
alternating(s) ~

i,i+IEdoms=>s(i)ts(i+I».

The projection functions proiectionl and proiection2 map an augmented
datum z.b to its first and second coordinates, z and b) respectively. These
ate lifted to sequences of augmented data to give functions PI and P2, defined
(for j = 1,2)

Pj(S) == S ~ proiection;.

7

We show, applying the replacement and squash notation Crom section 2
to the trace semantics oC the processes, that

(SI,pl(squash(lm))/lm]

II Rip] (squash(rm))/rm, squash(le)/ Ie]

II MIlsquash(lm)/lm]

II M2[squash(rc)/rc]

) \{lm,rm,lc,rc}

satisfies SAWPo.
Straight Cram the process definitions (and again using Btacking Cor con

junction),

S Bat	 p,(.qua.h(lm)) ~l in

alternating(.quash(P2(1m)))

#re ~' #squash(p2(lm))

#rt ~1 lin,

R Bat	 aut ~' Pl(squash(rm))

alternating (squash (1'2 (rm)))

#squash(le) ~' #aut

squash(le) ~' squash(P2(rm)),

Ml sat rm 9 1m,

M2 sat rt::;l it.

Evidently the conjuncts involving predicate alternating are true 80

S[Pl(squash(lm))/lm] Bat s"

R[Pl(squash(rm))/rm] Bat R",

BO it remains to show

.quash(rm) ~ squash(lm)

.qua.h(rc) ~ squash(le).

These a.re similar 90 we prove only the first. None oC the Cour processes
change! :z: without changing b) so it suffices to show

.qua.h(P2(rm)) ~ squash(P2(lm)).

8

But from the definition of MI

#squash(rm) ~ #squash(lm),

and from Sand R

alternating (squash(p,(lm))) A alternating(squash(",(rm»).

The desired inequality fnllows. 0
Notes. If the sender resolves always to await an acknowledgement then

the ABP deadlocks; this unsatisfactory state of affairs leads us to the refine
ment in the next-section.

If either medium resolves never to pass on data then the ABP (or any
other protocol for that matter) fai1.9; however the previous result can be
interpreted as showing that this is not the fault of the ABP which interposes
a delay of at most one between input and output. It thus follows that if the
sequence of inputs tends to infinity in length then 80 too does the sequence
of outputs.

3.4 Refinement of the ABP

In order to implement the ABP we must refine it to remove Dondetenninism
in the sender and the media; the receiver is deterministic and need be refined
no further.

Consider first the sender. At first glance the occurrence of a timeout in
the sender seems to require the use of timed CSP . However we will be able
to prove the correctness of the protocol using untimed CSP by viewing the
length of the timeout to affect the efficiency rather than the correctness of
the protocol.

We let 0 denote a time-out event. It belongs to the alphabet of the
sender alone and may happen only as long as an acknowledgement is ex
pected but has not yet been received. (This makes 0 quite different from
the interrupt events described in [Hoare 85], pp.180 ff. which also belong to
the alphabet of the environment and may occur at any time irrespective of
the occurrence of any events in the process which is to be interrupted.)

The sender is refined, once the new event 0 is concealed, by the deter~

ministic process

S2 = So

S, in?x --+ lm!x.h --+ SI.b

SI.~ = rc?a --+ (Sle~ <:I a = b I> Sid)

10--+ lm!x.b --+ Sz.~·

9

Proof that 82 \ {O} refines the previous sender S is immediate from the law
L9 [Hoare 85], p.1l3.

In order to simulate operation of the ABP in occam, we also refine the
medium. Let us first refine the specification of MI (and similarly M2) by
a process which, after having accepted a message on its left channell either
outputs this message on its right channel or waits for another messa.ge on
its left channel. It may ignore up to k-l messages in this way} but the kth

message must be output on its right channel

M = left? ~ M".
M.,. = (right!. ~ M) n (left?y ~ M.H ,,) for 1 < n < k
MJ:,% = right!z ---t M.

Evidently M satisfies, as we supposed in the previous section,

right S:J left.

We now set

Ml = M\lm/left. rm/rightl
M2 = Mile/left, r./rightl·

Since the media are still nondeterministic we shall refine them one more step
in the next section.

3.5 Implementation in occam

For an introduction to occam see [INMOS 84] or {Jones 87J. The main struc

ture of the occam program we give for the ABP is an exact copy of its

description} in the previous section, in CSP: it consists of four processes

running in parallel and connected a.s in Figure 2:

-- declaration part

CHAN in,oot:

CHAN lm,rm,lc.rc:

DEF milli.second • 1000:

PROC mpaaal (CHAN left,right) •
, .. detine message-passing medium

PROC mpaaa2 (CHAN left,right) •

10

· .. define medium for acknowledgements

PROC sender <CHAN Im,lX)
· .. define sending part

PRClC receiver(CHAN rm.lc)
· .. define receiving part

process body
PAR

IIp.ssl(lm. rm)
mpass:Hlc •rc)
sender(lm. rc)
receiver(rm,lc)

It remains to exhibit the subprocesses defined in the declaration part of
the program and to show that they refine their counterparts in esp. Since
we are now dealing with sequential processes this is straightforward and we
shall omit detailed proofs. The main points are that in occam, while-loops
replace recursion, and variables have to be explicitly assigned all the state
information which in CSP is contained in subscripts. Bearing this in mind
we can translate the CSP specifications into occam as follows. The receiver
is

PROC receiver(CHAN rm,lc) ~

VAR compare,me8s,bit:
SEQ

compare ;- 1

WHILE TRUE

SEQ
rm? bit; mess

IF

bit <> compare

SEQ

out!mess

compare :E bit

TRUE

SKIP

11

lc! bit:

The sender is slightly more complicated, firstly because of the mutual
recursion between Sb and Ss.b and secondly because of the timeout. The
mutual recursion is translated into a nested while-loop, whereas the time
out involves two separate commands: TIME?start, which sets the value
of start to the current reading on the system's clock, and TIME? AFTER
start+lIlilli. second, which becomes true when the difference between the
current time and start is more than milli. second (these two commands
differ from the implementation described in [INMOS 84]; for an explanation
see [Jones 87], p.36).

PRDC .ender (CHAN Im,rc)'
VAR ack,bit,mess.start.waitforack:
SEQ

bit:- 0

WHILE TRUE

SEQ

in? mess

1m! bit;mess

waitforack:- TRUE

WHILE waitforack

SEQ

TIME? start

ALT

rc? ack

IF

bit = ack
SEQ

waitforack:=FALSE
bit:-l-bit

bit <> ack
SKIP

TIME? AFTER start + milli.second
1m! bit;mess:

To simulate non-deterministic choice in the media we use a random
number generator written by Geraint Jones. The numbers generated are

12

in the range of 1 to 511, and the chance of a message getting through the
medium is about 50%-much worse than in acceptable transmission lines!

PROC mpassl (CHAN left,right) •
declaration part

CHAN r:

DEF k'l00:

DEF mask' NOT «NOT 0) « g):

random number generstor
PROC shift (VAR state) •

SEQ i - [1 FOR gl
state:- (state«l) /\ mask) \/ «(state»4) >< (state»8»

/\ 1):

PRDC random (CHAN c)
VAR state:
SEQ

TIME? state

state;· state \/ 1

WHILE TRUE

SEQ
shift(state)

c I state :

body

PAR

random(r)

VAR xmd.mess.bit.count:

SEQ

count;- 1
WHILE TRUE

IF

count • 1

PAR
left? bit;mess

count:-2

(1< count) AND (count < k)
SEQ

r? xmd
IF

13

xmd < 250

PAR
right! bit;meSB
count ;- 1

TRUE

PAR

left?bit;mesB

count :- count +1

count=k

PAR

right!bit;meSB
count:""! :

PROe mpasa2 is identical to fRoe mpasal except for the fact that it
handles only bits instead of both bits and messages:.

This completes the implementation.

14

I

4 The sliding-window protocol

4.1 Specification in CSP

Like the alternating-bit protocol, the sliding-window protocol (SWP) is de
signed to ensure safe transmission of data through a medium that some
times loses them; however it is able to deal with several messages Qutitand·
iog at the same time. For a detailed informal description of the SWP see
[Tbaum 81], p.148 If.; it can be summarized as follows.

Each message is tagged with a sequence number, ranging from 0 up to
some maximum. The sender is permitted to dispatch several messages with
consecutive tags whilst awaiting their acknowledgements. These messages
are said to Call within the sender's window. At the other end, the receiver
maintains a receiver'8 window consisting of a list of message tags which it
is prepared to accept. The sender's window and the receiver's window need
not have the same upper and lower limits, or even the same size; we suppose
that the size of the sender's window is wand that of the receiver is tI.

It is, of course, possible to describe the SWP from first principles (see,
for example, [Duke 87]) just as we have done for the ABP. However both
the specification and the proof that it forms a buffer are then more difficult.
Instead we choose to specify the SWP in terms of the ABP, and to deduce
its correctness accordingly.

We deal first with the case tI = w of equal window sizes. The basic idea
is to use w-many ABP's working in parallel. Then if each message in the
sender's window is being dealt with by a separate ABP, an array of these
ABP's will be able to deal with all the messages concurrently and, after BOrne
slight modifications, to mimic the behaviour of the SWP. To distinguish the
sender and receiver of the SWP from the senders and receivers of the ABP's,
we refer to the former as global and the latter as local (except in terms such
as "sender's window" and "receiver's window" which are obviously global).

In specifying the SWP we need not only the w~many ABP's (numbered
a to w -1), but two very simple processes: a distributor DIS and a collector
COL, connected to the ABP's as shown in Figure 3.

DIS takes the input stream of data and sends one message to each ABP
in turn:

DIS = Do
D. = in?:: -+ h.send!x -+ DkE91l11 where a $. h < w.

At the other end, messages are collected from the local receivers by the

15

-

O.S	

-O.lm
O..!t'nd

O.re O. 2

1.Im 1. 1
l..,end 1.Son

c.rm

O.R D.na""
O.le

1.rm

1.R 1.DaS!

LIe

<.Mn

<.R *.DlUS

.. .ie	

00'l.rc 1. 2DIS COL

: :

•. lm <. 1
•. send •.-S

".re <. 2 --

where" = W -1

Figure 3: The SWP in terms of parallel ABP's.

process COL:

COL = Co
C, l.pQ8s?z --. out!z Ch'Bl/Il where 0::; l < w.

Informally we see that the processes behave 8S follows .

• Once	 the first w messages have been distributed by the process DIS
the ABP's will refuse to accept further messages until the ones they
are currently dealing with have been acknowledged. DIS therefore has
to wait until the Otlt. ABP receives an acknowledgement for the Oth
message before it can pass on the wtlt. message, aod so on. Hence there
can never be more than w outstanding messages in the system.

•	 The local receivers, together with COL, behave like a global receiver
which accepts messages in any order up to w ahead of the last mes
sage output, stores them until they form a consecutive sequence, and
outputs the whole sequence in correct order. In short, they behave
like a global receiver with window size v = w.

16

Since these points are important in our understanding of the SWP it is
hardly surprising that their proof is central to its verification. But first We
must formally define the SWPI

The media remain 8.8 for the ABP and we set, for 0 S; i < w, (observe
that we must rena.me the input and output channels)

i.ABP '" (i.Slli.M1I1i.M2l1i.RJli.eend/in.i.pa•• /out]

\ {i .Im, i .rm, i.lc, i.rc}.

Then the SWP with equal window sizes is

SWP'" (DlS II II i.ABPIICOL)\Chan
O~i<tlI

where

Chan '" U{i .•endIO";i<w)UU{i.pa"IO~i<w).

4.2 Proof of Correctness

The correctness of the SWP with equal window sizes is summarized in
Theorem 3. When v = w, SWP sat (w + 2)BufJer.
Proof. To ha.ndle the set of channels {i.send I0 ~ i < w} we write send

for the sequence of events i.x (which written in full are events i.send.x)
in which DIS enga.ges. Thus Pl(send) is the sequence of index numbers of
ABP's with which DIS communicates, and P2(send) is the sequence of values
communicated to them.

We call a sequence cyclic if, for some n, it is a prefix of the sequence
[O,I,"',UJ -1] concatenated with itself n times:

eyclie(.) '"	 3n:N·.,.;[O.I,···.w-l]·.

From the definitions of DIS and COL,

DlS sat p,(send) ~! in	 (1)

eyclie(pIi send)).	 (2)

COL sat	 out ~l ",(pa.s) (3)
eycl;e(p! (pa••)). (4)

From Theorem 2

'Vi: O.. (w -1)·i.pa.. ,.;! i .•end	 (5)

17

hence

#pass ~tlI #send. (6)

From (2), (4) and (5) we deduce

pass ~ send

which from (6) gives

h(P.") :sW ",(send). (7)

Finally (3), (7) and (1) give

(Jut <"'+2 . _ In

as required. 0
We have considered the SWP with window size v = w. The case v > w

can be ignored as it means that the receiver is prepared to accept messages
further than w ahead of the one last received, even though the sender can
never transmit such messages.

The remaining case 1 ~ v < w is treated by inserting a governor) GOV,
as shown in Figure 4.

GOV records the trailing edge t of the receiver's window and the set K of
indices in it which have been acknowledgedj it ignores messages transmitted
more than v ahead. of t and increments the trailing edge when a sequence of
consecutive acknowledgements warrants it. Of course all these calculations
are modulo w, so we have to be careful in specifying intervals in the circle
o .. IV - Ij we do it as follows. To say that index 1 lies more than v ahead
of the trailing edge t is to assert

A (! alw v < t)" (t alw v < i:S t)
V

(t < t alw v)" (t alw v < i < w V O:S i ~ t).

To say that k is in excess of u by no more than v is to assert

B" (.alwv<.),,(O:Sk<.alwvv.<Ie<w)
V

(. < .EIlwv)" (. < k:S .alwv).

18

-

a./m

a.send O.S
O.te

1.Im
l.send l.S

1.rc

".lm
•.und ••S

•. re

G
0
Y

-

D.nm 0

O.ne O. 2

D.rm

O.le
O.R D.nas!

l.nm l.rml.
1.fl(J..!sl.R

1.nc Liel.

:

•. nm "'.rm'.
•.R ..n4""

•. nc .,le•
where ... = UI - 1

Figure 4: Configuring the receiver's window.

Now we can express the governor

GOY "" G.-I,ll

Gt,K ==:: ~ i.nc?a --+ i.tela -+ Ga,L

O:::;i<w

~
~ i.lm?a--+ (G"K

O::;i<w <JA I>
i.nm!a --+ Gt,K)

where 0 ~ 1 < w; K E P(O .. w - 1); L = {n E K I B} is the set of indices
above u which have been acknowledged; and u is the maximum value in K
below which there are no gaps in acknmvledgement-it is computed, using
the ... notation for while loops from [Hoare 85], p.186, by

(I Ell. 1 E K) • (u:= u Ell. 1).

To include GOV we must relabel the channels of the media i.Ml and
1.M2 (which were originally {i.lm, i.tm} and {i.le, i.te} respectively): for

19

O~i<wweset

i.MI' '" i.MI[i.nm/i.im],

i.M2' '" i.M2[i.nc/i.rc]

and we also let

Aj -E': {i .lm, i .nm.i.rm, i.re} i.nc, i.lc, i.pas" i.send}.

The SWP with receiver's window size I $ v < w is defined by

SWPG '" DIS II GOY II II (i.S II i.MI' /I i.M2' II i.R) /I COL

O~i<w

\U{A;!O$i<w}

We must now show that, since GOY either copies or ignores messages,
its behaviour in parallel with the media is indistinguishable from that of the
media alone.

Theorem 4. SWPG sat (w + 2) BaO'er.
Proof. From the definitions of GOY and i.MI' we Bee

GOY sat i.nm ~ i.lm

i.M]' sat i.rm ~ i.nm,

hence

GOY /I i.MI' sat i.rm ~ Um.

U sing this as the medium in Theorem 2 we deduce

Vi: 0 .. (w - I)· i.pass $' i.send

hence

pass ~UI' send

and so

h(pass) $W h(send).

From the definitions of COL and DIS we have

oat $' h (pass)

h(send) $' in.

20

We conclude that

out ~l+w+l in. 0

Note. The usual way of explaining the SWP employs tags which are
natural numbers (not just bits)j indeed this is where the terms sender's
window and receiver's window come from. We have not needed to employ
such tags, but can always reconstruct them from our description (where
their ghost appears in the indices of the ABp1s and their alternating ta.gs),
or even rephrase it in terms of them. However we think the present approach
is simpler.

4.3 Refinement

The description of the SWP given above relies solely on the use of local
information. The following refinement increases its efficiency by making use
of global information about the sequence of acknowledgements.

Since messages are output and acknowledged strictly in order, f(Jrward
jumps in the sequence of acknowledgements received by S can arise only
if some acknowledgements have been lost; since COL guarantees tha.t the
intermediate messages must have been output, the sender's window can
be advanced accordingly. The design described in the previous section,
however, waits until duplicate acknowledgements have been generated (by
the sender timing out) to do 80.

This unnecessary delay can be avoided by modifying process GOV to
give a new process FILL. Recall that GOV relays acknowledgements from
i.nc to i.rc, incrementing the trailing edge and updating K. We now wish
FILL, whilst still doing that, to fill in gaps between a new acknowledgement
and the highest received so far.

The set of indices which have received an BCknowledgement, now contain
no gaps and so the set K in GOV can be suppressed. However FILL must
relay acknowledgements of the correct parity: if Ie < i then the parity of the
bits being filled in coincides with the parity of acknowledgement i; otherwise
acknowledgements of the parity 0pP05ite to the itll must be filled in until
w - 1 when the original parity must be used until i. Thus (using the same

21

,--

D.send O.s
O.lm

D.re

1.send 1.S

1.lm

1.re

*.send o.S

*.lm

*.re

F

I

L

L

~

O.nm o.

D.M o. 2

D.rm

O.R
D.flOSS

D.le

1.nm 1.rmI.
1."ass1.R

1.ne 1.le1.

:

*.nm *.rmo. 1

*.ne *.leo.
o.R *.flOSS

where * = w - 1

Figure 5: Filling gaps in acknowledgement.

predicate A as in the definition of GOV)

FILL F loll-I

~F, ~ i.nc?a ---to Xli
O~i<1U

~
~ i.lm?a---to (F,

O~j<1U <lA f>
i.nm!a ---to F ..)

where

x.	 (k # i) • (k:= k EB w I ~ k.rc!a ~ SKIP) gF;
<lk<if>
(k # w) 0 (k:= k EB w I ~ k.rc!l e a -> SKIP)g

(k1'i)'	 (k:=kEBwl~k.rc!a->SKIP)gF;.

22

The refined version, SWPF , of the SWP is defined

SWPy "" DIS II FILL II II (i.s II i.MI' II i.M2' II i.R) II COL
O$i<w

\ U{Ai 10:5 i < w}.

where again

Ai == {i.lm, i.nm.i.rm, i.re, i.ne, i.le, i.pcss, i.send}.

At first glance the insertion of FILL may seem to destroy the indepen
dence of the ABP's and with it the validity of the proof of correctness of
SWPy. The reason for this illusion is perhaps the fact that (cf. GOV)

(FILL II i.M2')\{ i.ne}

does not refine

i.M2

(since the former can fill in outputs which the Ia.tter lost). But we should not
expect it to-only in the context of the rest of the protocol do we envisage
replacing the latter with the former. Indeed

Theorem 5. SWPy Bat SWP.
Proof. Recall, for 0 ~ i < w, the definitions of i.MI' and i.M2', and let

c .. == {i.lm, i.nm, i.rm, i.le, i.ne, i.re}.

From its definition

FILL Bat eyclie(pl(re))
nm ~ 1m
(ne:5 1 re) V (re:5 1 ne).

Thus from the definition of i.MI,

(FILL II i.MI')\{i.nm) Bat i.Ml.

Now by the proof of Corollary I,

(FILL II i.Slli.MI'lli.M2'lli.R) \ (Ci U {z : Chan IPl(Z) -I i})
Bat
i.pcss ~1 i.send.

23

In other words FILL combined with a single ABP is as good as the ABP on
its own:

(FILL II i.Slli.MI'lli.M2'lli.R) \ (C i U {% : Chan I p,(%) # i})

sal

i.ABP.

Using the standard laws of CSP and the fact that FILL, DIS and COL are
all deterministic,

SWPF

(DlSIIFILLII II (i.Slli.MI'lli.M2'lli.R)IICOL)\ U{A.. I O:<=; i < w)
DSi<w

sat
(DISII II (FILLlli.Slli.MI'lli.M2'lIi.R)\ U{C,. 10:<=; i < w}IICOL)\Chan

OSi<",

sat

(DIS II II i.ABP II COL) \ Chan

DSi<w

=

SWP,

and this completes the proof. 0

4.4 Implementation in occam

We choose to implement the SWP without the benefit of the modifications
of the previous section; indeed the following program implements the SWP
with equ.al window sizes. As before, the main structure of the occam imple
mentation is identical to that of the asp description.

PROGRAM swp

-- declaration part

DEF w=4: -- w stands for sender's window size

CHAN in:

CHAN out:

CHAN send[w] ,pass[w]:

PROC dis =

24

· .. define distributing process

PROC abp(VALUE i,CHAN aend,paBa) •
· .. include alternating bit protocol

PROC col =

· .. define collecting process

-- process body
PAR

dis
PAR i=[O FOR w-l]

abp(i,aend[i] ,paBB[i])

col

The processes dis and col are both very simple:

PROC diB •
distributes messages to individual abp's

VAX mess:

SEQ

WHILE TRUE

SEQ h' [0 FOR w-l]

SEQ

in? mess

send[h]! mess:

PROC col •
collects messages from abp's

VAR mess:

SEQ

WHILE TRUE

SEQ 1· [0 FOR w-l]

SEQ

pass [1]? mess

out! mess:

Apart from a minor change to the header our sliding-window protocol is
ready to run!

25

5 Acknowledgements

The idea that the SWP might he viewed as several ABP's conununicating
and acknowledging in parallel was communicated to us by Carroll Morgan
and we gratefully acknowledge this. Geraint Jones, Tony Hoare and Jeremy
Jacob made invaluable suggestions after reading drafts and Andrew Kay
helped with occam code.

Part of the research was supported by the Science and Engineering Re
search Council of Great Britain.

References

[Duke 87] R. Duke, 1. Hayes and G. Rose, Verification of a cyclic retrans
mission protocol, preprint, 1987.

[Hoare 85] C.A.R. Hoare,Communicating Sequential Proces8es, Prentice
Hall International, 1985.

[INMOS 84] INMOS Ltd.,ouam Programming Manual, Prentice-Hall Inter
national, 1984.

[Jones 87) G. Jones, Programming in
tional, 1987.

toccam', Prentice-Hall Interna

[Tbaum 81] A.S. Tanenbaum, Computer Networks, Prentice-Hall Interna
tional, 1981.

[Hayes 87] 1. Hayes (editor), Specification Case Studies, Prentice-Hall In
ternational, 1987.

26

