
1".\\0"":

Lectures on

Constructive Functional Programming

by

R.S. Bird

OxfOrd University
Computing Laboratory
Programming Research Group-Ubrary
8-'1 Keble Road
OXford OX, 3QD
Oxford (0865) 54141

Technical Monograph PRG-69
ISBN 0-902928-51-1

September 1988

Oxford University Computing Laboratory
Programming Research Group
8-11 Koble Road
Oxford OXI 3QD
England

Copyright ©l988 R.S. Bird

Oxford University Computing Laboratory
Programming Research Group
8·11 Keble Road
Oxford OXl 3QD
England

Lectures on

Constructive Functional Programming

Richard S. Bird

Progra.mming Research Group

II Keble Rd., Oxford OXI 3QD, UK

Abstract

The subject of these lectures is a calculus of functions for deriving
programs from their specifications. This calculus consists of a range of
concepts aIld notations for defining functious over various data types
(including lists, trees and arrays), together with their algebraic and
other properties. Each lecture begins with a specific problem, and the
theory necessary to solve it is theu developed. In this way we hope to
show that a functional approach to the problem of systematically cal­
culating programs from their specifications can take its place alongside
other methodologies.

Acknowledgements

Much of the following material was developed in collaboration with
Lambert Meertens of the CWI, Amsterdam, to whom I am grateful for
both support and friendship.

I would also like to acknowledge the contributions of Roland Back­
house, Jeremy Gibbons, Geraint Jones, Andrew Kay, Ooge de Moor,
Doaitse Swierstra, and Chris Wright, all of whom have suggested im­
portant ideas or improvements. Any failure of understanding or defi­
ciencies in presentation remain, of course, my sole responsibility. De­
tailed references, including related work, are given at the end of each
lecture.

o

1 Basic concepts

1.0 Problem

Consider the following simple identity:

(al X a, X a3)+(a, X a3)+a3+1= ((1 X al +1) X a,+l)X a3+1

This equation generalises in the obvious way to n values all a2" ., 1 an and
we will refer to it subsequently as Horner's rule. As we shall see, Horner 's
rule tnrns out to be quite useful in our calculus. The reason is that the inter­
pretation of X and + need not be confined to the usual multiplication and
addition operations of arithmetic. The essential constraints are only that
both operations are associative, X has identity element 1, and X distributes
through +.

The problem we address in this lecture is to develop suitable notation
for expressing Horner's rule concisely.

1.1 Functions

Except where otherwise stated all functions are assumed to be total. The
fact that a function f has source type 0 and target type {3 will be denoted
in the usual way by f : 0 -----+ p. We shall say that f takes arguments in Ct

and returns results in {3.
Functional application is written without brackets; thus f a means f(a).

Functions are curried and application associates to the left, so fa b means
(f a)b and not f(a b). Where convenient we will write fa b as an alternative
to f a b. Functional application is more binding than any other operation,
so f a Ell b means (f a) Ell b and not f(a Ell b).

Functional composition is denoted by a centralised dot (.). We have

(f. g)a = f(ga)

Various symbols will be used to denote general binary operators, in partic­
ular, $, @, and @ will be used frequently. No particular properties of an
operator should be inferred from its shape. For example, depending on the
context, EB mayor may not denote a commutative operation.

Binary operators can be sectioned. This means that (Ell), (a$) and (<lla)
all denote functions. The definitions arc:

(Ell)ab aEllb
(aEll) b aEllb
(Ell b) a aEllb

1

Thus, if $ has type EEl : Q:' X {3 --+ 1', then we ha....e

(EB) a-->I3~1

(aEB) 13 ~ I
(EBb) a~1

for all a in 0 and bin (3.
For example, one way of stating that functional composition is associa­

tive is to write
(I.). (g.) ~ ((j . g).)

To improve readability we shall often write sections without their full com­
plement of brackets. For example, the above equation can be written as

(I.). (g.) ~ (I. g).

The identity element of EEl : 0 X 0 ~ 0, if it exists, will be denoted by ide.
Thus,

aEBide~ideEBa~a

However, the identity element of functional composition (over functions of
type a ~ a) will be denoted by ida. Thus

id.:. a = a

for	 all a in o.
The constant valued function K : 0 ~ {3 --+ 0 is defined by the equation

K ab ~ a

for all a in 0 and bin {3. We sometimes write Ko. as an alternative to K a.

1.2 Lists

Lists are finite sequences of values of the same type. We use the nota.tion [0]
to describe the type oftists whose elements ha.ve type o. Lists will be denoted
using square brackets; for example [1,2,1] is a list of three numbers, and
[[1], [1,2], [1, 2, 1]] is a list of three lists of numbers. The function [.] : a --> [aJ
maps elements of Q:' into singleton lists. Thus

[·]a ~ [a]

2

The primitive operation on lists is concatenation, denoted by the sign -ft.
For example:

[1] * [2] * [1] = [1,2,1)
Concatenation is a.n associative operation, that is,

x*(y*z) =(x*y)*z

for all lists x, y and z in [oj.
In the majority of situations (though not all) it is convenient to assume

the existence of a special list, denoted by [] and called the empty list, which
acts as the identity element of concatenation. Thus,

x*[]=[]*x=x

for all x in [a]. To distinguish this possibility, we shall let [a] denote the
type of lists over 0 including [], and [oJ+ the type of lists over a E'~>;:cluding

[I· Using algebraic terminology, ([0]'*,[J) is a monojd, while ([01+,*) is
a semigroup.

In order to specify functions over lists we need one more assumption,
namely that ([0], *, [)) is the free monoid generated by 0 under the assign­
ment [.] : a ---+ [a]. This algebraic statement is equivalent to the assertion
that for each function f : 0 ---+ {J and associative operator m: j3 X {3 ---+ (3,
the three equations

hi] = ide,
h[a] = fa
h(x*y) = hX'fJhy

specify a unique function h : [0] ---+ {J. In the case that i~ is not defined, the
last two equations by themselves determine a unique fnnction h : [aJ+ {3.--I'

Any function h satisfying the first and third equations above is, by
definition, a homomorphism from the monoid ([0], *, [)) to the monoid
(fJ,'fJ,ide,). The statement that ([o],*,(]) is free is equivalent to the state­
ment that h is uniquely determined by its values on singletons. We shall
discuss homomorphisms in greater detail in the next lecture.

One simple example of a homomorphism is provided by the function
: [a] ---+ N which returns the length of a list. Here N denotes the natural
numbers {O, 1, ...}. We have

#[] o
#[a] 1

#(x * y) #x+#y

Observe tha.t + is associative with identity 0, so (N, +, 0) is a monoid.

3

1.3 Bags and sets

By definition, a (finite) bag is a list in which the order of the elements is
ignored, Bags are constructed by adding the rule that * is commutative
as well as associative. Also by definition, a (finite) set is a bag in which
repetitions of elements are ignored. Sets are constructed by adding the rule
that * is idempotent as well as commutative and associative. As we shall
see, much of the theory developed below holds for bags and sets as well as
lists.

In the main we shall usc the single operator * for all three structures,
relying on context to resolve ambiguity. However. in order to distinguish
different uses in one and the same expression, we shall sometimes use l:!:i

(ba.g union) for the concatenation operator on bags, and U (set union) for
the same operator au sets. Singleton bags are denoted by laS and singleton
sets by (a}.

A similar algebraic statement about freeness holds for bags and sets as
well as lists. We assume that nO's, t:!:I 1 l nis the free commutative monoid
generated by a under the assignment l·j: a ~ laj. Similarly, ({a},U,O)
is the free commutative and id~mpotent monoid generated by a under the
assignment {.} : a ---+ {a}. In the case of bags this means that for each
/ : cr ---+ fJ and associative and commutative operator E9 : f3 X fJ ---+ fJ, the
equations

hll ide
hlaj = fa
hex I!J y) hxehy

define a unique function h : laS --t fJ. Similar remarks apply to sets, except
that we also require EB to be idempotent.

For example 1 the size of a bag is the number of elements it contains,
counting repetitions. It can be defined by the equations

#ll o
#laj I
#(x I!J y) #x+#y

However, although + is associative and commutative, it is not idempotent,
so the same equations do not define the size function on sets.

4

1.4 Map

The operator :+ (pronounced 'map') takes a fUIlction on its left and a list on
its right. Informally, we have

I' [a".", .. ", a"J ~ If al,/.",··",/ a,,].

Formally, we specify r. by three equations

I· [] ~ I]
I. [a] [I a]
I'(x*y) (/u)*(/.y)

Thus, for I: a ~ {3 the function I. is a homomorphism from ([a], *, []) to
([{3J, *, IJ). This function is a homomorphism on bags and sets as well as
lists.

An important property of '" is that it distributes (backwards) through
functional composition:

(/" g). ~ (/.)" (g.)

This fact will be referred to as the C+ distributivity) rule. Its use in cal­
culations is so frequent that we shall sometimes employ it without explicit
mention.

1.5 Reduce

The operator / (pronounced 'reduce') takes a binary operator on its left and
a list on its right. Informally, we ha.ve

Ell /1aI, a" ... , a,,] ~ al Ell ." Ell . " . Ell an

Formally, we specify ffi/, where e is associative, by three equations

Ell / [1 ~ ide (if ide exists)

EIllla] ~ a

EIl/(x * y) ~ (Ell/x) Ell (EIl/Y)

If e is commutative as well a.s associative, then e/ can be applied to bags;
a.nd if EEl is also idempotent, then e/ can be applied to sets.

If e does not have an identity element, then we can regard ffJ/ as a func­
tion of type e/ : [0]+ --+ o. Alternatively, we can invent an extra value and

5

adjoin it to o. Provided a little care is taken, so-called 'fictitious' identity
elements can always be added to a domain. For example, the minimum
operator 1defined by

alb = a ifa~b

b otherwise

has no identity element in R (the domain of real numbers). However, the
fictitious number 00 can be adjoined to R. The only property attributed to
00 is that

a!00=001a::::::a

for all a in R U {oo}. In this way, inconsistency is avoided.
Two llseful functions where we choose not to invent identity elements

are given by
head = «I
last =::pI

wbere the operators ¢: ('left') and ~ ('right') are defined by

a«b = a
a:> b = b

The function head selects tbe first element of a non-empty list, while last
selects the last element. Both « and ~ are associative but neither pos­
sesses an identity element. Both operators are idempotent, but neither is
commutative, so head and last are not defined on bags and sets.

1.6 Promotion

The equations defining!* and e/ can be expressed as identities between
functions. They come in three groups:

empty rules

f. K[] = K[]0

el 0 K[] = idol

one-point rules

f. 0 [oj = [oj f0

el 0[0) = id

6

join rules

1-· */ */ . (1-)­
ffi/ . */ = ffi/· (ffi/)­

The interesting rules here are the last two, since they are not simple tran­
scriptions of the third equations for f .. and EEl /. A rough and ready justifi­
cation of the join rule for f .. is as follows:

I-*/[Xl,"',.·.,x,,]

I-(z,.*",*···*xn)

(I - xd * (I -",) * ... * (I - xn)

= */If- Xl,I-",,···,f-x,,]
= */(I-)-[X1,"', ... ,x,,]

A similar justification can be given for the join ru1e for EEl /. We shall refer
to these two rules as map promotion and reduce promotion respectively.
The nomenclature is historical and is intended to express the idea that an
operation on a compound structure can be 'promoted' into its compom~nts.

The map and promotion rules are often applied in sequence. Consider the
following little calcu1ation:

ffi / . 1- . * /.9- = map promotion

ffi/ . * / ·1- - . 9­
= reduce promotion

ffi/ . ffi/_ ·1 - - . 9­
== .. distributivity

ffi/ . (ffi/ . I- . 9)­

These three steps will, in future, be compressed into one under the name
map and reduce promotion.

1.7 Directed reductions

We now introduce two more operators f (pronounced 'left-to-right reduce',
or just 'left reduce') and .;- ('right-to-left reduce') which are closely related
to /. Informally, we have

ffi fe[a" 112, , a,,] = « e ffi ad ffi 112) ffi ... ffi a"

ffi <fe[a" a" ,a"J = a, ffi (a, ffi··· ffi (a" ffi e»)

7

In particular, we have
Ell fe [] = e
EIli'e[] = e

Thus, the parameter e (called the starting value or se-ed) defines the value
of the reduction on empty lists.

Notice in a left-reduce that the brackets group from the left, and in a
right-reduce they group from the right. Since an order of association is
provided, the operator e of a left or right-reduction ne-ed not be associative.
In fa.ct, in a left-reduce we can have e : {J X fY -+ {J and in a rjght-reduce
e : Q X ;3 -t {J. Thus, for a given seed e in fl, the types of fe and fe are

fe ((3 X a --> (3) --> [aj ~ (3
i'e : (a X (3 ~ (3) --> [aJ ~ (3

Formally, we can define efe on lists by two equations:

Ell fell e

EIlfe (x * [aJ) = (Ell fe x) Ell a

These equa.tions are different in form to previous definitions, reflecting the
fact that (f)fe is not a homomorphism on lists. However, since every non­
empty list can be express~~d uniquely in the form x *[al, these two equations
detenrnne fIJfe uniquely. (This point is dealt with in the third lecture). A
similar definition holds for ey.e.

Both kinds of reduction can be applied to bags and sets provided e
satisfies additional conditions, designed to ensure that the result of a directed
reduction is independent of any particular representation of the bag or set.
For (f)fe to be defined on bags we require that

(b Ell al) Ell a, = (b Ell a,) Ell al

for all &in {J and aI, G2 in fY. For sets we need the extra condition

(bEll a) Ella = bElla

Similat conditions are required for right-reductions. These remarks are given
for completeness for we shall have li ttle occasion to apply directed reductions
to bags or sets.

It is convenient for some purposes to define a more restricted form of directed
reduction in which the se-ed is omitted. Informally, we have that

Ell f [aI, a2,···, a.) «al Ell a,) Ell 1lJ) Ell ••• $ a.

Ell i' [ar, a" •.. , a.J = al Ell (a, Ell··· Ell (""-1 III a.»

8

Note that the type of Ea in this kind of directed reduce must be of the form
e : a X a ---+ a. The vaJue of !II It [] is not defined unless Ea possesses a
unique left-identity element, i.e. a vaJue e satisfying

e!Ila=a

for all a. IT such a value exists and is unique, we ca.rl set

EIlf [J = e

Similarly, Ell 1 [1 is defined only if Ell has a unique right identity element.
There are a number of properties relating the various forms of directed

reduction. For example, we have

(EIl;4)· ([a]*) = EIlfa
(EIl1)· (*[a]) = EIl1a

Other properties will be considered in a later lecture. For the present we
give just one illustration of the use of left-reduce.

Recall from the first section that the right-hand side of Horner's rule
reads

«(1 X a, + 1) X a, + 1) X ... + 1) X aft + 1

This expression can be written using a left-reduce:

® h [a,.a, •... ,an}

where the operator @ is defined by

a®b={axb)+1

It is interesting to compare this with another form of Horner's rule:

(a, X a, X a3) + (a, X a3) + a3 = «a, X a, + a,) X a3 + a3

Here, the general form of the right-hand side can be written as

® f [a, , a" ...• an],

where, this time, @ is defined by

a®b={axb)+b

9

1.8 Accumulations

With each form of directed reduction over lists there corresponds a form of
computation called an accumulation. These forms are expressed with the
operators fit ('left-accumulate 1

) and Yf ('right-accumulate') and are defined
informally by

$

$

-/lte [at. 112,
'?fe[al,I12,

, an]
,an] ~

[e, e Ell aI, ... , ((e Ell a,) Ell a,) Ell ... Ell aft]
[a, Ell (a, Ell· .. Ell (an Ell e), ... , a,. Ell e, e]

Formally, we have

Ell -fl.e [] ~ [e]

Ell -fl.e ([aJ * x) ~ [e]* (EIl-fl.eElla x)

Alternatively, we can define a left-accumulation by

Ell -fl.e [] ~ [e]
EIl-fl.e(x*[aJ) ~ (EIl-fl.eX)* [bEll aJ

where b ~ last(Ell -fl.e x)

Yet a third way of defining ffi-/fe will be given in the next section. The
definitions of the other accumulation operators are similiar and we omit
details.

Observe from the above equations that ffi -/fe :t can be evaluated with n
calculations of EEl, where n = #x. For example, the list [O!,I!, ... , n!] of the
first (n+ 1) factorial numbers can be computed by evaluating

Xh[1,2, ... ,n]

This requires O(n) steps, whereas the alternative

fact * [0,1, ... , n],

where factk = x/[1,2, ... ,kJ, requires O(n2) steps. Also amusing is the
fact that

1 1
-;- h [1, ... , nJ ~ [Of'"'' n!]

Note that

EIlfe ~ last· EIl-fl.e

so left-reductions can be defined in terms of left-accumulations. On the
other hand, we also have

EIl-fl.e ~ @fje)

10

where
x,g, a = x * [l""t x Ell a]

Hence left-accumulations can be defined in terms of left-reductions.

1.9 Segments

A list y is a segment of x if there exist u and v such that x = v. ITu * y *
u = [L then y is an initial segment, and if v = [l, then y is a final sf'gment.

The function inits returns the list of initial segments of a list, in ·increas
ing order oflength. The function tails returns the list of final segments of a
list, in decreasing order of length. Thus) informally, we have

inits{aI, 02, ... , an} II], [a,], la" <12], la" <12, 0' an])0 0 0' 0 0

0 0 0 0' 0 0 0 ,tails{a" a" 0' a"J IIa" <12, 0 an], 1<12, a3, 0 0' a,,], 0 [lJ

The functions inits+ and tails+ are similar, except that the empty list does
not appear in the result.

These fout functions can be defined by a.ccumulations. For example,

inits = (*14IJl 0[0]'
inits+ = (*14) °loJ.

Alternatively, we can define these functions by explicit tecursion equations.
For example:

tails I] lI])

tails(x * laJ) = (*laJ). tails x * lI])

The following result shows another way we can define accumulations.

Accumulation lemma

(EIl14e) = (EIlfe)' inits0

(EIl14) = (Ellf l • 0 inits+

There are similar equations for right-accumulations. The accumulation
lemma. is used frequently in the derivation of efficient algorithms fot prob­
lems about segments. On lists of length n, evalua.tion of the left-hand side
requires D(n) computations involving Ea, while the right-hand side requires
D(n 2) computations.

11

The functions segs returns a. list of all segments of a list, and segs+ returns
a list of all non-empty segments. A convenient definition is

segs = */.tails .. . inii8

For example,

segs[l, 2, 3) = [[], [lJ, I], [1,2], [2J, [J, (1, 2, 3], [2, 3], [3], []]

Notice that the empty Ust [] appears four times in 8eg8[1,2,3] (and not at
all in segs+[l, 2, 3]). The order in which the elements of segs z appear is not
important for our purposes and we shall make no use of it. In effect, we
regard segs z a.s a bag of lists. This identification can be made explicit by
introducing a 'bagifying' function

bag = eJl ·l·S.

which converts a list into a bag of its elements (and is the identity function
on bags). We can then define

bagsegs = bag . segs

However, explicit use of bag can be avoided in many examples. Consider a
function of the form

P = fIJI . f • .Daysegs

where we must have that EEl is commutative a.s well as a.ssociative. We can
calculate

P =	 definition of bagsegs

fIJI ·f.·eJl ·l·S' '8egs
map and reduce promotion
fIJI· (fIJI ·f.·l·s)' ·segs

= one~point rules
fIJI .f. ·segs

and so bagsegs can be replaced by segs.

1.10	 Horner's rule

Now let us return to the problem posed at the beginning. Horner's rule can
be expressed a.s an equation

fIJI . e/ • .tails = @re

12

where e = i4 and a @ b = (a ~ b) e e. This equation is valid provided @

distributes (backwards) over e, that is,

(a Ell b) ® c = (a ® c) ffi (b ® c)

for all a, b and c of the a.ppropriate type. This condition is equivalent to
the assertion that the equation

(®c) . Ell/ = Ell/ . (®c).

holds on all non-empty lists. IT we also assume that ideJ is a Ieft~zero element
of ®, i.e.,

id",®c=id",

for all c, then the restriction to non~empty lists in the above assertion can
be dropped.

Horner's rule is proved by induction. The idea is to show that

f = Ell/· ®/ •. tails

satisfies the equations

II] = e
f(x * [aJ) fx@a

The way to do this is to use the recursive characterisation of tails given in
the previous section. We shall leave details to the reader.

Horner's rule can be generalised in a number of wa.ys. We cite just two.
First, we have

Ell/ . ®/. ·tails+ =@f

where a@ b = (a ® b) e b. This formulation, which was hinted at in Section
1.8, does not require that i4 be defined. We also have

Ell/· (®/ ·f.) • . tails =@fe

where e::=: i~ and a@b = (a~f b)ee. This partjcularformofHorner's rule
will be used In the next lecture. There are also forms of the rule involving
right~reductionsand inits.

13

1.11 Application

Let us give one application of Horner's rule. There is a famous problem,
called the max"imum segment sum (mss) problem, which is to compute the
maximum of the sums of all segments of a given sequence of numbers, posi­
tive, negative or zero. In symbols

mss = i/· +1'· segs

Direct evaluation of the right-hand side of this equation requires D(n 3) steps
on a list of length n. There are D(n2) segments and each can be summed
in D(n) steps, giving D(n3) steps in all. Using Horner's rule it is easy to
calculate an O(n) algorithm:

mss :::;:	 definition

i/· +1'· segs

=	 defini tion of segs

i/· +1'· *1· tails. ·inits
map and reduce promotion
i/· (i/· +1'· tails). ·inits

=	 Horner's rule with a@ b = (a + b) i 0
i I . @ fo •. inits
accumulation lemma
i I . @lfo

Horner's rule is applicable because + distributes through 1, and 0 = id+.
The result is a linear time algorithm.

An interesting variation ofthe problem is not so well-known. It is to compute
the maximum segment product. In symbols

msp = i/· xl' . segs

Since X does not distribute through 1 for negative numbers, the previous
derivation does not work. However, we do have

(aib)xc = (axc)i(bxc) ifc;;'O
(a i b) x c = (a xc) I (b xc) if c " 0

where 1takes the minimum of its two arguments. A similar pair of equations
holds for (a 1 b) X c. These facts are enough to ensure that, with suitable
cunning, Horner's rule can be made to work. The idea is to define EEl by

(a], bel) <ll (,,>, 1>,) = (a, I ,,>, bel i 1>,)

14

and @ by
(a,b)@c ~ (axc,bxc) if c;'O

= (b xc, a xc) cthen':isc

Then, using the observations a.bout t and ! given above, we have that

((a" b,.) Ell (a" 1>.,)) @ c ~ ((a" 1>,) @ c) Ell ((a" 1>.,) @ c)

and so @ distributes backwards through EEL
Now define

f z ~ (l/(x/. segsz), T/(x/ ..egsz))

A similar calculation to before shows that

f ~ Ell/ . @-/fe

where e ~ (1,1), and

(a, b)@ c ~ ((a, b)@c)Ell(I,I)

Hence we have
msp ~ "2 . Ell/ . @-/fe

where 11'"2 (G, b) = b. Again this is a linear time algorithm.

1.12 Segment decomposition

The sequence of calculation steps given in the derivation of the mss problem
arises frequently. Here is the essential idea expressed as a general theorem.

Theorem 1 (Segment decomposition) Suppose Sand T are defined by

s ~ Ell/ ·f.· segs
T ~ Ell/ ·f.· tails

If T can be expressed in the form T = h . @fe, tben we have

s~ Ell/' h.·@-/fe

15

Proof
We calculate

S	 = given
fIJI • f • . segs
definition of segs
fIJI· f.· *1· tails. ·inils
map and reduce promotion
fIJI· (fIJI· f • . tails). ·inils

==	 hypothesis on T
fIJ I . (h . @fe) • . inils
* distributivity
fIJI· h • . @fe' ·inits
accumulation lemma
fIJI· h.·@lte

o

1.13 References

Much of the foregoing theory is introduced in

[1] Bird, R.S. An introduction to the theory of lists. Logic of Program­
ming and Calculi of Discrete Design, (edited by M. Broy), Springer­
Verlag, (1987) 3-42.

An earlier account, using somewhat different syntactic conventions, is in

[2] Meertens, L.G.L.T Algorithmics -	 towards programming as a mathe­
matical activity. Proc. CWI Symp. on Mathematics and Computer
Science, CWI Monographs, North·Holland, 1 (1986) 289-334.

An alternative treatment of some of the concepts, stressing the use of
the map and reduction operators in functional programming, is in the recent
textbook

[3] Bird, R.S. and Wadler, P.L.Introduction to Functioual Programming.
Prentice Hall International, Hemel Hempstead, UK, (1988)

The maximum segment sum problem is well-known and is discussed in,
among other places,

16

[4]	 Bentley, J .L. Programming Pearls (Chapter 7) Addison·Wesley, Read·
ing, Mass, USA (1986)

[5]	 Gries, D. A note on a standard stra.tegy for developing loop invariants
and loops. Science of Computer Prograruming 2 (1982) 207·214

The maximum product problem appears as one of M. Rem's exercises in

[6]	 Rem, M. Small programming exercises. Science of Computer Pro­

gramming (various issues)

2 Homomorphisms

2.0 Problem

Given is a sequence x and a predicate p. Required is an efficient algorithm
for computing some longest segment of x, all of whose elements satisfy p.

2.1 Homomorphisms

By definition, a homomorphism from a monoid (0, Ee, il!m) to a monoid
(j3, @, i~) is a function h satisfying the two equations

h ido, ~ iii"
hex $ y) hX'i;hy

Equivalently, using the map and reduction operators introduced in the first
lecture, h is a homomorphism if

h . $/ ~ 'i;/ . h.

We omit the proof (by induction) tha.t these two definitions are equivalent.
Since the map function / * is a homomorphism from monoid ([0], *, [])

to monoid ([,8], *, []) whenever / : 0 ---. ,8, we have, as an immediate conse­
quence of the second chara.cterisation of homomorphisms, that

f.· -tt-/ ~ -tt-/. f ..

This is just the map promotion rule of the previous lecture. Likewise, the
reduce promotion rule is an immediate consequence of the fact that $/ is a
homo~orplUsm.

17

Our basic assumption, namely that ([a),*, []) is a free monoid, is equiv­
alent to the condition that for each monoid (,8,6), i4) there is a unique
homomorphism h from ([aJ,*,[]) to (fJ, (I), ide)· This homo=orphism is
determined by the values of h on singletons. That is, for each f : 0: ---. f3,
the additional equation

h[a] = f a

fixes h completely.
The following lemma gives a useful characterisation of homomorphisms

on lists.

Lemma 2 Every llOmomorphism on lists ca,n be expressed as the composi­
tion of a reduction with a map, a,nd every such combina.tion is a homomor­
phism. More precisely, suppose

h[] ide
h[aJ = fa

h(x * y) hX(I)hy

Then h ::: 6)/ .f *. Conversely, if h has this form, then h is a homomorphism.

Proof
The proof of the homomorphism lemma uses the following simple result
(called the identity lemma), whose proof will not be given.

*/. [.J. = i'ka]

We now calculate:

h ::: definition of id
h . id
identity lemma
h· */. [.J.
h is a homomorphism
(I)/.h.·[.J.

::: .. distributivity
(1)/ . (h· [.J).

= definition of h on singletons
(1)/ . f.

18

Conversely, we reason that h = fIJI . t* is a homomorphism by calcu­
lating

h· */ ~ given form for	 h

$/ . f· . */
map and reduce promotion
$/ . ($/ . f·)·
hypothesis
$/. h.

o
Many functions on lists are homomorphisms and we shall see examples

below. However, not all of the functions we can define in terms of homo­
morphisms will themselves be homomorphisms. We shall take up this point
in the following lecture.

2.2 Examples

Let us consider some examples of homomorphisms on lists.

(1) First of all, the function # is a homomorphism:

#~+/·Kl'

(2) Second, the function reverse which reverses the order of the elements in
a list is a homomorphism:

reverse ~ */. [.J.
where x*y = y* x. (In general, we define G) by the equation xG)y == yffiX.)
Of course, on bags and sets, where *= *, the function reverse is just the
identity function.

(3) The function sort which reorders the elements of a list into ascending
order is a homomorphism:

sort ~ It./ . [.J.
Here, tf:... (pronounced 'merge') is defined by the equations

x It. [I	 x
[I It. y	 y
([aJ*x)It.([bJ*y) ~	 [aJ*(xlt.([bJ*y)) ifa~b

[bl * (([aJ * x) It. y) otherwise

19

Thus, x If:.. y is the result of merging two sorted lists x and y. Since In is
both associative and commutative, the function sort can be applied to bags.
By defining a variant of If:.. that removes duplicates, so that the operation is
also idempotent, we can sort sets.

(4) Two useful homomorphisms are all and some:

allp = /\/. p.
somep =: vI· p*

Here, 1\ is logical conjunction and V is logical disjunction. The function all p
applied to a list x returns True if every element of x satisfies the predicate
p, and False otherwise. The function somep applied to x returns True if
at least one element of x satisfies p, and False otherwise. Since conjunction
a.nd disjllllction are associative, commutative and idempotent operations,
all and some can be applied to bags and sets as well as lists.

(5) The function split; [oJ+ ~ [oj X 0, which splits a non-empty list into
its last element and the remainder, is a homomorphism:

split[a] ([], a)
split(x * y) split x E9 split Y

where we define E9 by

(x, a) Ell (y, b) = (x * raj * y, b)

In particular, we can define

init = 71'"1 • split

where ~1(U, v) = u. Unlike last (which is 71'"2 • split), the function init is not
a homomorphism. Note that the homomorphisms described in this example
are homomorphisms on the semigronp ([0)+ 1 *).

Using init and last, we can define the function tails of the last lecture
as a homomorphism

tails = EIl/ . f.
where

fa = [[J,[a)J
xs Ell ys = init xs * (last xs*) • ys

A simple calculation shows that ide = [I]], so we have tails!J [[J], as
expected.

20

2.3 All applied to

In order to be able to describe homomorphisms, such as tails, a little more
concisely, it is useful to introduce an operator 0 (pronounced 'all applied to')
defined by

I]" a ~ I]
If]' a If a]
(Is * gs)' a (Is' a) * (gs' a)

Less formally, we have

If,g,···, h]" a ~ If a,g a, ... , haJ

Thus 0 takes a sequence of functions and a value and returns the result of
applying each function to the value. Note that (0 a) is a homomorphism.
Note also that the notation (.] we have been using so far can be rewritten
as lid]'.

We can now write, for example,

tails ~ fJJ I . II]', Iid]'l'.

2.4 Conditional expressions

So far, we have been using the notation

h z	 ~ / z if p z
::;:: 9 z otherwise

to describe functions defined by cases. From now on, we shall also use the
McCarthy conditional form

h ~ (p--->/,g)

to describe the same function. Like the operator of the previous section,
conditional forms Call, in some situations, help to make the expression of
homomorphisms and other functions more concise.

There are a number of well-known laws about conditional forms
1

the
most important of which are:

h'(p--->/,g) (p--->h'/,h'g)
(p--->/,g)·h ~ (p. h ---> / • h, 9 . h)
(p ---> f,f) /

(Remember, all functions are assumed to be total, so these laws need no
qualifications about definedness.)

21

2.5 Filter

The operator <J (pronounced 'filter') takes a predicate p and a list x and
returns the sublist of x consisting, in order, of all those elements of x that
satisfy p. Using the new notations just introduced, we can define p<J as a
homomorphism

po =*1 . (p --> lid]', I]'),

In effect, p<lX is obtained by replacing each element a of x by [aJ if p a holds,
and [] otherwise, and then concatenating the resulting lists. Note that p<J
can be applied to bags and sets as well as lists.

An easy calculation shows that the following rule (which we will call
filter promotion) holds:

(p~) . *1 = *1 . (p~).

Another rule, whose proof is also left to the reader, is the map-filter swap
rule:

p~ ·f. =f.· (p .f)o

2.6 Cross-product

If ED is a. binary operator, then Xe is a binary operator that takes two lists
x and y and returns a list of values of the form a EiI b for all a in x and b in
y _ For example:

Ia, b] X.. [c, d, e] = [a Ell c, bEll c, a Ell d, bEll d, a Ell e, bElle]

Formally, we define Xe by three equations:

x X.. I] I]

x X.. la] = (Ella)"

x X.. (y* z) = (xX .. y)*(xX.. z)

Thus (xX e) is a homomorphism (on lists, bags or sets) for every x.
There are a number of useful properties of Xm- We shall state them

without proof.
First of all, Xe is associative if EiI is, and cOIDIDutative if EiI is. It is not,

in general, idempotent if ED is.
Next, [] is the zero element of Xm, that is,

I]X.. x=xX.. I]=I]

22

for all x.

We also have the cross promotion rules:

f •• · X*I = X*I ·f ...
$1' . X*I = X.,I· $1*

Finally~ we have that if 0 dlstributes through e, then

$1 . X.,I = fiJI . '1J/'

This result says that the sum of the products is the product of the sums.
We shall call it the cross-distributivity rule.

The particular operator X*	 has many uses. For example, the (ilftesian
product function cp: [[oJJ ~	 [[0]], defined by

cp = X*I . lid]".

takes a list of lists and returns a list of lists of elements, one from each
component. For example,

cp[[a, b), [c), [d, e]] = [[a, c, d), [b, c, d), [a, c, e), [b, c, eJI

Second, the list subs x of all subsequences of x can be defined as the homo­
morphism

subs = X*I· [[t,[idJ"]"'

For example

subs[a, b, cJ = X*/[[[), [al), [IJ, [bJ), [I), [c]]]

and the expression on the right simplifies to

[[j, [a), [b], [a, bj, [cj, [a, c), [b, cl, [a, b, cJ)

Third, we have

(allp ~ [idJ",[J') = X*I· (p ~ [[idJ"j",[J").

This technical result means that we can write all p<J in the forID.

allp. =*1· (X*I· (p ~ [[idJ"J",[j").).

This daunting expression will make another appearance in the next section
but one.

23

2.7 Selection operators

Suppose / is a numeric valued function. We want to define an operator 11
such that

1. 11 is associative, commutative and idempotent;

2. 1} is selective in that

x if Y= x or x if Y=Y

3. 11 is maximising in that

I(x if y) =Ix i Iy

If / is an injective function, then the above three conditions specify 11
completely (actually, idempotence follows from selectivity). If, however, /
is not injective, then the value of :t 11 y is not specified when x #- y but
/ :t = / y. For example, the value of

[1,2] i# [3,4J

is not determined hy the above conditions, beyond the fact that it must be
one of[1,2] or [3,4].

There are two ways to resolve such under-specifications. One is to forgo
commutativity, defining for instance a left-biased version of TI:

x if Y xiflx~/y

y otherwise

This solution is not very satisfactory because the calculation of expressions
such as

i#/ . p < ·segs

depends artificially on the precise order in which the function segs returns
the list of segments of x (a feature which we said in the last lecture we would
ignore).

The alternative is to let 11 stand for 1/" where r is an injective func­
tion, the precise nature of which we are not interested in, that respects the
ordering on values given by f, that is,

I x < I Y implies !' x < !' Y

24

If necessary to ease a calculation, we can always introduce refiDements of f
(i.e. a function that respects the ordering of f but may introduce further
distinctions), provided such refinements are consistent with all previous ones.

One particular refinement of i # is especially useful and we impose it at
the outset. We shall assume that * distributes through i #' in other words:

x*(yi#z) = (x*y)j#(x*z)
(xi#y)*z = (x*z)j#(y*z)

Such a refinement arises if, for example, we always select the lexicographi­
cally least sequence as the value of x i # Y when #x =' #y.

Since we mainly do calculations at the function level, we would like to
write the above distributive rules in the form

(x*)· i#/ = i#/' (x*).
(*x)'i#/ = i#/'(*x)'

The missing piece which enables the two forms to be connected (without
restricting ourselves to non-empty lists) concerns the fictitious value w =

i#/[]. This is not the empty list, but a very short list satisfying #w =
-00. In other words, we want to suppose that w is the zero element of
*. This decision can be couched in algebraic language: we suppose that
([aJ,*,i#,[],w) is a ,emiring. In general, a semiring (S,x,+,idx,id+)
is a set S closed under two associative operations X and +, with + also
commutative, such that X distributes over +. Moreover, the identity element
of + is the zero element of x.

Let us put these a.ssumptions to work in a short calculation:

i#/' al/p<
:;::: daunting expression for all p<J from Section 2.7

i#/' */. (x*/· (p ~ [lid]"]", []").).
reduce promotion

i#/' 0#/' x*/· (p ~ [lid]"j",[]").).
:::: semiring assumption and cross-distributivity

i#/' (*/. i#/" (p~ [lid]"]", []").).
* distributivity

i#/' (*/. (i#/' (p~ [[id]"]",[]")')'
= conditionals

i#/' (*/. (p ~ i#/' [lid)"]", i#/' []").).
empty and one-point rules
i#/' (*/. (p ~ [id]",K~).).

25

\Ve shall use this result in the next section.

2.8 Solution

The problem Wf! started the lecture with was to compute the longest segment
of a list, all of whose f!lements satisfied some given property p. In symbols,
we want to compute f" where

f = T#/ . aI/po ·segs

Let us calculate:

T#/ . aI/po ·segs
segment decomposition

T#/' (T#/' aI/po . tails)• . inits

= result at end of last section

T#/ . (T#/' (*/ . (p ~ [id]',Kw)')" tails) • . inits
Horner's rule with x@a= (x * (pa ~ [a),w» T# I]
T#/ . @f[]" inits

::=	 accumulation lemma

T#/ . @,14[]

Finally, we can simplify x @ a to

x@ a = (p a ~ x * [a), (J)

This is a linear time algorithm (in the number of calculations of p).
The derivation of the above program might seem a little elaborate, bring­

ing in cross-products, semirings, fictitious elements and so on, just to crack
a small walnut. The central aspect, namely that

T#/' aI/po. tails

can be expressed as a left-reduction, can be established quite quickly by an
induction proof, one that avoids all talk of zero elements of concatenation.
However, we have succeeded in avoiding induction, used only equational
reasoning, brought in a second application of a useful rule, and introduced
some more concepts and notations.

26

2.9 References

Further discussion of some of the operators introduced above is in:

[1]	 Bird, R.S. A calculus of functions for program derivation. PeDe. In~

stitute of Declarative Programming, University of Texas, USA, 1987.
(Also available as a Programming Research Group Monograph PRG­
64, Oxford, UK.)

An extensive discussion of homomorphisms on trees, lists, bags and sets
is in:

[2]	 Backhouse, R. An exploration of the Bird-Meertens formalism. (Un­
published draft), Dept. of Computer Science, Groningen University,
The Netherlands. (1988)

3 Left reductions

3.0 Problem

Given is a list of lists of numbers. Required is an efficient algorithm for com­
puting the minimum of the maximum numbers in each list. More s1lccinctly,
we want to compute

minimax = LI . i 1*
as efficiently as possible.

3.1 General equations

So far, we have mainly seen examples of homomorphisms. It is instructive
to determine the conditions under which a general set of equations

h[] = e
h[a] = fa

h(x * y) H(x, y,f x,f y)

determines a unique function h, not necessarHy a homomorphism. After all,
such sets of equations constitute the basic means for specifying functions on
lists.

Consider the equations

h'[] (I],e)
h'[a] = ([a],f a)
h'(x * y) hi x €El hI Y

27

where $ is defined by

(x,n) Ell (y.v) ~ (x * y, H(x,y, n, v»

If h' is a well-defined function, then so is h. We have

h = 11"2 • h'

where ",(a, b) ~ b.
In order to determine the conditions under which the above equations

determine h', let {J be the smallest set of values such that

1. ([],e) is in {3;

2. «(aJ,! a) is in {3 for all a in a;

3. (x, u) Ell (y, v) is in {3 whenever (x, n) and (y, v) are.

Now, by our basic assumption, h' is uniquely determined if ({3, $, ([], e» is
a monoid. Translating the monoid conditions (associativity, and existence
of an identity) into conditions on e and H, we must therefore have:

1. H(x,[],n,e) ~ n

2. H(!], x, e, n) ~ n

3. H(x * y,z, H(x, y,n, v), w) ~ H(x. y * z, n,H(y,z,., w))

These three conditions (the consistency conditions) determine the properties
that H and e must satisfy in order for the equations for h to determine h
completely.

Let us consider one example. Take e = [J and

H(x,y,u,v) = (u = x ---+ U * v,u)

Here we use the McCarthy conditional form on the right. We leave the
verifica.tion of the first two conditions on e and H to the reader. For the
third condition, the expression H(x * y, z, H(x, y, u, v), w) reduces to

(u = x A v = Y ---+ U * v * w,
u = x A v '# y ---+ U * v,
u '# x A u = x * y ---+ U * w,
n i- x Ani- x * y ---> n)

28

On the other hand, the expression H(z, y * z, u,H(y,z, v, w» reduces to

(u == z /\ Y = Y --+ U * v * W,

u;::: z /\ v:f:. y --+ U * v,
u # x ~ u)

These two expressions are Dot equal unless we have that

u=xVu'lx*y

for all (x,u) in p. This condition is equivalent to #x;;' #u for all (r,u) in
{J and is satisfied if

#!a';;l

for all a. In particular, if we take

! = (p ~ [.],[),)

for an arbitrary p, then everything is all right. With this definition of f,
the value of h z is just the longest initial segment of x all of whose elements
satisfy p. In symbols:

h = T#/· al/po. inits

As a last point, we show that h is not a homomorphism. For concreteness
take p = even, the predicate that determines whether a number is even.
Suppose

h(x*y)=hxEllhy

for some operator Ell. Since h[2, 1] = 2,h[4] = [4], and h[2] = [2], we have

h[2, 1, 4] = h[2, 11 Ell h[4]
[2] Ell [4]

=	 h[2] Ell h[4]
h[2,4]

This is a contradiction, since h[2, 1,4] = [2] and h[2,4] = [2,4].

3.2 Left reductions

We defined the directed reductions in the first lecture, but the pattern of the
equations does not follow those laid down in the previous section. We really
need to give an alternative definition in order to justify that, for exa.mple,
mpe is a well-defined function.

29

In the monoid view of lists, the formal definition of fBfe is

$ fe [] e

$ fe [a] e$a

$ fe (x * y) $ fe' y where e':::;: $ fe x

Equivalently, setting f e :::;: ffJfe, we have

f e[] e

f era] :::;: eE»a

fe(x*y) f(Jex)y

~Ne leave to the reader to check that the above equations satisfy the consis­
tency conditions of the previous section.

There is an instructive alternative way of seeing that fBfe is well-defined.
Define h by

hi] ~ id
h[a] ($a)

h(x * y) hy·hx

For E» : {J X a -+ fJ we have that h is a homomorphism

h : ([a]' *, []) ~ ((J ~ (J, ., id~)

Now we have
$ fe z ~ hz e

and so efe is a well-defined function.
The above reasoning justifies the well-definedness of -/+e but does not

explain why the construct is important. The basic reason why left reductions
are important (and similar remarks apply to right reductions) is as follows.

Consider a set of equa.tions of the form

!I] e

f(x * [aJ) F(a,x,Jx)

We claim that
f~"'2·$fe'

where
e' ~ ([j, e)

(x,u)$a ~ (z*[a],F(a,x,u))

30

In brief, every set of equations of the above form can be expressed in terms
of a. left reduction. Conversely, we have

$ fe [] = e
$fe(x*[a]) = ($ fe x) $ a

so an arbitrary left reduction can be expressed in the same way.
The above discussion can be summarised in terms of the different ways

we can view lists. The monoid view of lists is to say that every list is either
(i) the empty list; (ii) a singleton list; or (iii) the conca.tenation of two (non~

empty) lists. The primary mechanism for defining functions with this view
is the homomorphism. Another view of lists is that every list is either (i)
the empty list; or (ii) of the form x * [aJ for some list x and value a. The
primary mechanism in this case is the left reduction.

Yet a third view of lists is that every list is either (i) the empty list; or
(ii) of the form {a] * x for some a and list x. The primary mechanism here is
the right reduction. In the majority of functional programming languages,
it is this third view that prevails. One of the reasons concerns the possibility
of defining functions on infinite lists, a reason that we will not go into here.
Fortnnately, we can define left reductions with this view as well. We have

$ fell = e
1

$ fe([a] * x) E9-/+ lx where e = eE9a e

We leave the verification of this fact to the reader.

3.3 Loops

In the functional approach to program derivation, the final product of a
calculation is an expression denoting a mathematical function. This expres­
sion still has to be translated into a specific programming language in order
for it to be executable by computer. One obvious candidate is a functional
programming language, such as ML or Miranda l . However, there is no rea­
son why the final expression should not be translated into a conventional
imperative language. For example, a left reduction can easily be translated
into a loop. Using hopefully straightforward notation, the value E9 -/+e x is
the result delivered by the following imperative program:

I[var a; a := e;

1 Miranda is a trademark of Research Software Ltd.

31

for b in x
do	 a := a oplus bi
return a] I

Here, the 'generator' b in x successively assigns to b the elements
of x in order from left to right.

3.4 Left-zeros

Both the imperative and flfictional implementations of left reductions re­
quire that the argument list be traversed in its entirety. Such a traversal
can be cut short if we recognize the possibility that an operator may have
left-zeros. By definition, w is a left-zero of ED if

wEDa==w

for all a. An operator may have none, one or many different left-zeros. If w
is a left-zero of ED, then

ff}fwz =w

for all x. Since

ff} fe (z * y) = ff} fe' y where e' = ff} fe z

it follows that
ff} fe (z * y) = ff} fe z

whenever the right-hand side is a left-zero of ED. In words, evaluation of a
left-reduction can be terminated on encountering a left-zero.
Suppose lzerom is a predicate that determines whether its argument is a
left-zero of ED. Using hopefully equally straightforward notation as before,
we then have that EEl -/+e x can be evaluated by the program.

I [vax a; a := e;

for b in x while not lzero(a)

do a := a opluB b;

return a] I

Before seeing an application of this idea we need a simple yet powerful result.

32

Lemma 3 (Specialisation) Every homomorphism on lists can be expressed
as a left (or also a right) reduction. More precisely,

$/ . f. = 0fe

where e =~ and
a0b=a$fb

We omit the simple proof.

3.5 Minimax

Let us return to the problem of computing

minimax = !I . f!.

efficiently. Using the specialisa.tion lemma, we ca.n write

minimax = 0-?oo

where 00 is the identity element of !I, and

a0x = a!(T/x)

Since! distributes through 1we have

a0x= t/(a!).x

Using the specialisation lemma. a second time, we have

a 0 :t = EBa -?-oo x

where -00 is the identity element of 1 and

b$ac=bT(a!c)

Now, a is a left-zero of EBa (and so, by the way, is 00), and -00 is a. left-zero
of 0. This means we can implement (minimax xs), where xs is a list of lists,
by the loop

I [var a; a:= infinity;

for x in xs ~hile a <> -infinity

do a := a odot x·

return a] I

33

where the assignment a : = a odot x can be implemented by the loop

I [vax b; b:= -infinity;

for c in x vhile b <> a

do b := b max (a min c);

a := b] I

3.6 The alpha-beta algorithm

\Ve now generalise the minimax problem to trees. Consider the data-type

tree ::~ Tip numlFork [tree]

The syntax of this declaration is that of the functional language Miranda,
and it is also employed in the notation of Bird and \Vadler (reference [2]
of Lecture 1). It says that (Tipn) is a tree for each number n, and that
(Fork ts) is a tree whenever ts is a sequence of trees. The primitive functions
Tip and Fork are called the constructors of the type tree.

We wish to calclliate an efficient algorithm for computing a function
eval : tree --+ num, where

eval(Tip n) n

eval(Fork Is) TI(-eval) * Is

Here we use the notation - f for the function defined by (-na = -(J a).
Using the specialisation lemma on the right-hand side of the second

equation for eval, we obtain

eval(Forkts) ~ Ell f-oo Is

where
a Ell t = aT (-eval t)

We now expand this last equation by considering the two possible forms for
a tree t:

a Ell (Tipn) ~ aT(-n)

a Ell (Fork Is) ~ aT(-(T/(-eval)*ts))

The last equation can now be simplified using the laws

-(ap) ~ (-a)H-b)
aT(blc) ~ (aTb)HaTc)

34

We obtain
a e (Fork ts) = LI(an. eoal. ts

After using the * distributivity law, the right-hand side of this equation is
also a candidate for specialisation. We have

a e (Fork ts) = @a f~ ts

where
b @a t = b L (a r eoal t)

Furthermore, since

eoalt = ooL(-ooreoalt)
== 00 @-oo t

we have -without inventiveness - reduced the problem of calculating eval t
to that of evaluating b @a t for values of a and b.

Let us now expand the definition of b@a t in a simBar way as we did fur
a E» t. We obtain

b@a(Tipn) = bLearn)
b@a(Forkts) b I (a r (rl(-eval). ts))

In oder to simplify the right-hand side of this last equation) w€ need the
dual distributive law

b L(a r c) = (bL a) t(b Lc)

and the fact that evaluation of b @a t is required only for values of a and b
satisfying a = a! bj in other words, for a ~ b. In such a case w€ have

bLearc)=at(bLc)

by commu tativity of !.
We then obtain

hla (Fork ts) = a t(U(bl) • (-eval). ts)

Using specialisation yet a third time, we obtain

b@a (Fork I.') = eb fa I..

35

where
a<ll. t =aT (b!(-evalt))

At this point, the seemingly endless succession of expansion and specialisa­
tion steps can be stopped. A short calculation using the given properties of
-, T and! yields

o <IlfJ t = -(-a) @(-fJ) t

Introducing
bval a fJ t = fJ @a t

and putting the resulting equations together, we obtain

eval t bval(-oo)oot
bval a fJ (Tip n) = fJ!(aTn)
bval a fJ (Fork ts1 <Il fJ fa Is

a' <Il fJ t = -bval(-fJ)(-o')t

Finally, we bring on the left-zeros. We only need to observe that {3 is a
left-zero of (f}{3. This follows from the definition of e{3 and the absorbtive
law

fJT(fJhl=fJ

Incorpora.ting this optimisation yields the alpha-beta algorithm.

The various axioms concerning (T,!, -, 00, -(0) used in the above derivation
are precisely those of a Boolean algebra.

3.7 References

An alternative, and arguably less satisfactory, treatment of the alpha-beta
algorithm occurs in

[1]	 Bird, R.S. and Hughes, R.J.M. The alpha-beta algorithm: an exercise
in program transformation. Information Processing Letters, 24 (1987)
53-57.

The importance of the purely algebraic notion of left-zeros and its conse­
quences for optimisation was discussed in

[2]	 Meertens, L. First steps towards the theory of Rose trees. (Unpub­
lished draft), CWI, Amsterdam, 1988.

This paper also contains another treatment of the alpha- beta algorithm.

36

4 Arrays

4.0 Problem

Given is an array x with elements in the set {OJ 1}. Required is an efficient
algorithm for compnting the area of the largest rectangle (i.e., contiguous
Bubarray) of x, all of whose elements are 1.

4.1 Binoids

Suppose Q is a set of values closed under two partial operations +and x
such that:

(i) + and x are associative1 in the sense that each of the equations

(a+b)+c ~ a+(b+c)
(axb)xc ~ ax(bxc)

hold whenever both sides of the equation are defined;

(ii) + and X satisfies the further equation

(a + b) x (c +d) ~ (a xc) + (b x d)

whenever both sides are defined. (We shill refer to this property by
saying that + abides with x. The reason for this choice of name will
appear shortly.)

There is no standard terminology for such an algebraic structure so, for the
sake of a name, we shall call it a binoid. Here are four examples of binoids.

Example 1. Let E9 : C\' X C\' -+ 0 be associative a.nd commutative. Then E9
abides with itself, and so (C\', $, $) is a binoid.

Example 2. Recall that the operator < is defined by a < b ~ a. Note that
< is associative but not commutative. Nevertheless, the structure (0, <, <)
is a binoid. Since both sides of

(a< b)< (c< d)~ (a < c)< (b< d)

reduce to a, we have that < abides with itself. Similarly, (a,~, ~) is a
binoid, where a :;:$> b :::: b.

37

Example 3. The structure (0', >, <) is a binoid. We have that both sides
of

(a:» b) ¢: (c:» d) ~ (a ¢: c):» (b ¢: d)

reduce to b.

Example 4. Define the partial operator. by the equation

a • b = a provided a = b

The operator. is associative because

(ao bloc ~ ao(boc)

whenever both sides are defined, that is, when all three values are the same.
Let 1Il : 0 X 0 --+ 0 be some associative operator. We claim that (0', ED l .)

is a binoid. We have

(a Ell b) 0 (c Ell d) ~ (a 0 c) Ell (b 0 d)

whenever both sides are defined. The right-hand side is defined just in the
case that a = c and b = d. Its value is then a ED b. The left-hand side
is defined just in the case that a ED b = c ED d and its value is then a ED b.
Notice that the left-hand side can be defined without the right-hand side
being defined.

4.2 Arrays

The type of arrays with elements from 0' will be denoted by 101. This
type is specified by a free algebra generated from elements of a under the
assignment 1·1 : 0' - 101 which maps elements of 0 to singleton arrays. The
constituents of this algebra are:

(1) Two operators e (pronounced 'above') and Ql (pronounced 'beside')
snch that (101, e, $) forms a binoid. The abide property

(x e y) $ (u e v) ~ (x h) e (c $ d)

can be pictured as

(~I;) ~ G::)
(The name abide is an abbreviation of 'above-beside'.)

38

orthogonal reduction rules

{Ell1o)O . lefts = lefts· (Ell1o)
(Ell+)o . tops tops . (Ell+)

- plus a. further two equations obtained by replacing lefts by rights and
tops by bottoms.

We also have another group of rules:

orthogonal accumulation rules

{Ellf)O . lefts = lefts· (Ellf)
{Ell*)o . tops tops· (Ell*)

- plus a further two rules obtained in the same way as before.
Finally, we have the analogues of the accumulation lemma of Lecture 1.

Accumulation lemma

{Ell1o)O . tops rows' (Ellf)
(Ell+)o . lefts cols . (Ell*)

4.10 Horner's rule

The alert reader might at this point be wondering if there is an analogue
of Horner's rule that works for arrays. Since tails corresponds to bottoms
(and also to rights), the expression to be simplified in the array version of
Horner's rule is

(Ell' Ell)/ . {0,0)/0' bottoms

It turns out that the conditions we need are: (i) that ® distriubtes (back­
wards) through EEl; and (ii) E9 abides with 0. The first condition is the same
as in the case of Horner's rule for lists, but the second condition is new. IT
these two conditions are met, then

(Ell,Ell)/· (0,0)/0' bottoms ={0,0)/'@>1o

where @ is defined (as in the version of Horner's rule for non-empty lists)
by

a@>b={a0b)Ellb

47

where j is defined by the condition Clj < b ~ Clj+l.

The running time of this algorithm is O(N2), where N is the length of
the argument. Each element b may be compared with every label in the right
spine, and the right spine can increase by one in length at each step. A more
efficient algorithm can be obtained by comparing b with labels in the right
spine, starting with the rightmost label and proceeding to the root. The
amount of processing done at each step is then proportional to the change
in length of the right spine. This gives a linear time algorithm for building
the hea.p. To implement the idea we need a change in representation.

Consider the function cut defined informally by the equation

cut(Xt \ (x, \ (... \ xn))) = [Xl,X" ... ,xn]

where each Xj is such that noright Xj holds. Thus, cut takes an arbitrary
tree and returns a sequence of trees obtained by removing every right branch
along the right spine. It is easy to check that cut is a bijective function. If
we define

paste = \ 10
(a definition involving a truly horrendous juxtaposition of arrows) then cut
and paste are inverse functions, that is,

cut· paste = id[(al]

paste· cut = id(a)

To implement the change in representation, we can modify the definition of
heap by writing

heap = paste· 0f[I
where 0 is specified by the equation

(cutX) 0 b = cut(x ~ b)

Putting it another way, if 0 and ® are related by the above equation, then

cut . ~f() =0fcut ()

and so, by applying paste to both sides, we get the new equation for heap.
To complete the change in representation, it remains to synthesise a

constructive definition of 0 from its specification. Omitting details, we can

64

calculate that

[] 0 b ~ [(b)]
([zj(a)] -1tx.<}0b ~ [xl (a)J -1t (x.< 0 b) if a < b

[paste([z j (a)] -1t x.<) j (b)] otherwise

This effects the change in representation but, in order to achieve the desired
increase in efficiency, we still need to change the order in which the elements
of the left-hand argument of 0 are processed.

5.7 Prefix and snffix

Let us introduce four new operators on lists. They are ..J ('take prefix'), -,
('drop prefix'), L ('take suffix') and i ('drop suffix'). Each operator takes
a predicate on the left and a list on the right. The definitions of p ..J x and
p L x are:

P _Jx ~ T#/all po init.< z
pLz ~ T#/allpotailsz

Both operations can be implemented efficiently so that the number of cal­
culations of p equals one more than the number of elements in the result.

The remaining two operators are defined by the equations:

(p...J z) -1t (p -, z) ~ z
(prz)-1t(pLz) ~ z

Thus p -, x is what remains when p ..J x is removed from x. A similar
statement holds for p r x.

We state without proof the following lemma.

Lemma 4 Let x be a sequence and p a predicate such that p *x is non­
increasing (taking False < True). Then

p..Jx=pix

where Ii is the negation of p.

5.8 A linear algorithm

We can now use the newly introduced operators in the construction of a
linear time algorithm for our problem about building a heap. Recall that,
currently, we have

heap ~ paste· 0f[)

65

where

paste = ~f(}

and

I] 0 b {(b)I
(l x /(a)l*xs)0b = Ix I (a)1 * (XS0 b) if a < b

Ipaste([x I (a)1 * xs) I (b)J otherwise

Using the operators ~ and I, we can rewrite the definition of 0 in the form

xs 0 b = (p,..J xs) * [paste(p, --, xs) I (b)1

where the predicate Pb is defined by

p,(x I (a» = (a < b)

Since, by the heap assumption, pr, * x.s is non-increasing, we have that

XS 0 b = (jib r xs) * [paste(p, L xs) I (b)]

With the new definition of 0, the function heap can be computed in linear
time.

5.9 Application

The representation of sequences by heaps has a number of uses, of which we
give just one brief illustration, The problem that arose in the last lecture,
namely to compute the area of the largest rectangle under a histogram, can
be formulated as a function

mra = i / . area* . segs

where
area x = #x xLix

We claim without proof that the function mra can be written in the form

mra =(j, ill . area'• . subtrees· heap

where
area' x =: size x x label x

66

Now, suppose we define

areas = area/• . subtrees

Using the results about subtrees cited above, we can then calcula.te

areas x	 = size. subtrees x yx label * subtrees x
= «+,+)).K, *X)Yx x

Thus areas can be computed in linear time. It follows that

mra = (T, T) / . areas . heap

can also be cOIllputed in linear time.

5.10 References

The idea of using heaps to solve certain problems about segments can be
found in

[1]	 De Moor, O. and Swierstra, D. The low segment problem. Presenta­
tion at WG2.1, Rome, March 1988.

The largest rectangle under a histogram is a generalisation of Problem 40 in

[2]	 Rem, M. Small programming exercises. Science of Computer Pro­
gramming. 1987.

Rem's probleIIl is to compute the size of the largest square under a his­
togram; in syIIlbols,

1/· #* . p.' seys,

where p x = c!/x " #x.)

67

