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Abstract 

The subject of these lectures is a calculus of functions for deriving 
programs from their specifications. This calculus consists of a range of 
concepts aIld notations for defining functious over various data types 
(including lists, trees and arrays), together with their algebraic and 
other properties. Each lecture begins with a specific problem, and the 
theory necessary to solve it is theu developed. In this way we hope to 
show that a functional approach to the problem of systematically cal
culating programs from their specifications can take its place alongside 
other methodologies. 
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1 Basic concepts 

1.0 Problem 

Consider the following simple identity: 

(al X a, X a3)+(a, X a3)+a3+1= ((1 X al +1) X a,+l)X a3+1 

This equation generalises in the obvious way to n values all a2" ., 1 an and 
we will refer to it subsequently as Horner's rule. As we shall see, Horner 's 
rule tnrns out to be quite useful in our calculus. The reason is that the inter
pretation of X and + need not be confined to the usual multiplication and 
addition operations of arithmetic. The essential constraints are only that 
both operations are associative, X has identity element 1, and X distributes 
through +. 

The problem we address in this lecture is to develop suitable notation 
for expressing Horner's rule concisely. 

1.1 Functions 

Except where otherwise stated all functions are assumed to be total. The 
fact that a function f has source type 0 and target type {3 will be denoted 
in the usual way by f : 0 -----+ p. We shall say that f takes arguments in Ct 

and returns results in {3. 
Functional application is written without brackets; thus f a means f( a). 

Functions are curried and application associates to the left, so fa b means 
(f a)b and not f( a b). Where convenient we will write fa b as an alternative 
to f a b. Functional application is more binding than any other operation, 
so f a Ell b means (f a) Ell b and not f(a Ell b). 

Functional composition is denoted by a centralised dot (.). We have 

(f. g)a = f(ga) 

Various symbols will be used to denote general binary operators, in partic
ular, $, @, and @ will be used frequently. No particular properties of an 
operator should be inferred from its shape. For example, depending on the 
context, EB mayor may not denote a commutative operation. 

Binary operators can be sectioned. This means that (Ell), (a$) and (<lla) 
all denote functions. The definitions arc: 

(Ell)ab aEllb 
(aEll) b aEllb 
(Ell b) a aEllb 
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Thus, if $ has type EEl : Q:' X {3 --+ 1', then we ha....e 

(EB) a-->I3~1 

(aEB) 13 ~ I 
(EBb) a~1 

for all a in 0 and bin (3. 
For example, one way of stating that functional composition is associa

tive is to write 
(I.). (g.) ~ ((j . g).) 

To improve readability we shall often write sections without their full com
plement of brackets. For example, the above equation can be written as 

(I.). (g.) ~ (I. g). 

The identity element of EEl : 0 X 0 ~ 0, if it exists, will be denoted by ide. 
Thus, 

aEBide~ideEBa~a 

However, the identity element of functional composition (over functions of 
type a ~ a) will be denoted by ida. Thus 

id.:. a = a 

for	 all a in o. 
The constant valued function K : 0 ~ {3 --+ 0 is defined by the equation 

K ab ~ a 

for all a in 0 and bin {3. We sometimes write Ko. as an alternative to K a. 

1.2 Lists 

Lists are finite sequences of values of the same type. We use the nota.tion [0] 
to describe the type oftists whose elements ha.ve type o. Lists will be denoted 
using square brackets; for example [1,2,1] is a list of three numbers, and 
[[1], [1,2], [1, 2, 1]] is a list of three lists of numbers. The function [ .] : a --> [aJ 
maps elements of Q:' into singleton lists. Thus 

[·]a ~ [a] 
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The primitive operation on lists is concatenation, denoted by the sign -ft. 
For example: 

[1] * [2] * [1] = [1,2,1) 
Concatenation is a.n associative operation, that is, 

x*(y*z) =(x*y)*z 

for all lists x, y and z in [oj. 
In the majority of situations (though not all) it is convenient to assume 

the existence of a special list, denoted by [] and called the empty list, which 
acts as the identity element of concatenation. Thus, 

x*[]=[]*x=x 

for all x in [a]. To distinguish this possibility, we shall let [a] denote the 
type of lists over 0 including [], and [oJ+ the type of lists over a E'~>;:cluding 

[I· Using algebraic terminology, ([0]'*,[J) is a monojd, while ([01+,*) is 
a semigroup. 

In order to specify functions over lists we need one more assumption, 
namely that ([0], *, [)) is the free monoid generated by 0 under the assign
ment [.] : a ---+ [a]. This algebraic statement is equivalent to the assertion 
that for each function f : 0 ---+ {J and associative operator m: j3 X {3 ---+ (3, 
the three equations 

hi] = ide, 
h[a] = fa 
h(x*y) = hX'fJhy 

specify a unique function h : [0] ---+ {J. In the case that i~ is not defined, the 
last two equations by themselves determine a unique fnnction h : [aJ+ {3.--I' 

Any function h satisfying the first and third equations above is, by 
definition, a homomorphism from the monoid ([0], *, [)) to the monoid 
(fJ,'fJ,ide,). The statement that ([o],*,(]) is free is equivalent to the state
ment that h is uniquely determined by its values on singletons. We shall 
discuss homomorphisms in greater detail in the next lecture. 

One simple example of a homomorphism is provided by the function 
# : [a] ---+ N which returns the length of a list. Here N denotes the natural 
numbers {O, 1, ...}. We have 

#[] o 
#[a] 1 

#(x * y) #x+#y 

Observe tha.t + is associative with identity 0, so (N, +, 0) is a monoid. 
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1.3 Bags and sets 

By definition, a (finite) bag is a list in which the order of the elements is 
ignored, Bags are constructed by adding the rule that * is commutative 
as well as associative. Also by definition, a (finite) set is a bag in which 
repetitions of elements are ignored. Sets are constructed by adding the rule 
that * is idempotent as well as commutative and associative. As we shall 
see, much of the theory developed below holds for bags and sets as well as 
lists. 

In the main we shall usc the single operator * for all three structures, 
relying on context to resolve ambiguity. However. in order to distinguish 
different uses in one and the same expression, we shall sometimes use l:!:i 

(ba.g union) for the concatenation operator on bags, and U (set union) for 
the same operator au sets. Singleton bags are denoted by laS and singleton 
sets by (a}. 

A similar algebraic statement about freeness holds for bags and sets as 
well as lists. We assume that nO's, t:!:I 1 l nis the free commutative monoid 
generated by a under the assignment l·j: a ~ laj. Similarly, ({a},U,O) 
is the free commutative and id~mpotent monoid generated by a under the 
assignment {.} : a ---+ {a}. In the case of bags this means that for each 
/ : cr ---+ fJ and associative and commutative operator E9 : f3 X fJ ---+ fJ, the 
equations 

hll ide 
hlaj = fa 
hex I!J y) hxehy 

define a unique function h : laS --t fJ. Similar remarks apply to sets, except 
that we also require EB to be idempotent. 

For example 1 the size of a bag is the number of elements it contains, 
counting repetitions. It can be defined by the equations 

#ll o 
#laj I 
#(x I!J y) #x+#y 

However, although + is associative and commutative, it is not idempotent, 
so the same equations do not define the size function on sets. 
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1.4 Map 

The operator :+ (pronounced 'map') takes a fUIlction on its left and a list on 
its right. Informally, we have 

I' [a".", .. ", a"J ~ If al,/.",··",/ a,,]. 

Formally, we specify r. by three equations 

I· [] ~ I] 
I. [a] [I a] 
I'(x*y) (/u)*(/.y) 

Thus, for I: a ~ {3 the function I. is a homomorphism from ([a], *, []) to 
([{3J, *, IJ). This function is a homomorphism on bags and sets as well as 
lists. 

An important property of '" is that it distributes (backwards) through 
functional composition: 

(/" g). ~ (/.)" (g.) 

This fact will be referred to as the C+ distributivity) rule. Its use in cal
culations is so frequent that we shall sometimes employ it without explicit 
mention. 

1.5 Reduce 

The operator / (pronounced 'reduce') takes a binary operator on its left and 
a list on its right. Informally, we ha.ve 

Ell /1aI, a" ... , a,,] ~ al Ell ." Ell . " . Ell an 

Formally, we specify ffi/, where e is associative, by three equations 

Ell / [1 ~ ide (if ide exists)
 
EIllla] ~ a
 
EIl/(x * y) ~ (Ell/x) Ell (EIl/Y)
 

If e is commutative as well a.s associative, then e/ can be applied to bags; 
a.nd if EEl is also idempotent, then e/ can be applied to sets. 

If e does not have an identity element, then we can regard ffJ/ as a func
tion of type e/ : [0]+ --+ o. Alternatively, we can invent an extra value and 
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adjoin it to o. Provided a little care is taken, so-called 'fictitious' identity 
elements can always be added to a domain. For example, the minimum 
operator 1defined by 

alb = a ifa~b 

b otherwise 

has no identity element in R (the domain of real numbers). However, the 
fictitious number 00 can be adjoined to R. The only property attributed to 
00 is that 

a!00=001a::::::a 

for all a in R U {oo}. In this way, inconsistency is avoided. 
Two llseful functions where we choose not to invent identity elements 

are given by 
head = «I 
last =::pI 

wbere the operators ¢: ('left') and ~ ('right') are defined by 

a«b = a 
a:> b = b 

The function head selects tbe first element of a non-empty list, while last 
selects the last element. Both « and ~ are associative but neither pos
sesses an identity element. Both operators are idempotent, but neither is 
commutative, so head and last are not defined on bags and sets. 

1.6 Promotion 

The equations defining!* and e/ can be expressed as identities between 
functions. They come in three groups: 

empty rules 

f. K[] = K[]0 

el 0 K[] = idol 

one-point rules 

f. 0 [oj = [oj f0 

el 0[0) = id 
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join rules 

1-· */ */ . (1-)
ffi/ . */ = ffi/· (ffi/)

The interesting rules here are the last two, since they are not simple tran
scriptions of the third equations for f .. and EEl /. A rough and ready justifi
cation of the join rule for f .. is as follows: 

I-*/[Xl,"',.·.,x,,]
 
I-(z,.*",*···*xn )
 

(I - xd * (I -",) * ... * (I - xn)
 
= */If- Xl,I-",,···,f-x,,] 
= */(I-)-[X1,"', ... ,x,,] 

A similar justification can be given for the join ru1e for EEl /. We shall refer 
to these two rules as map promotion and reduce promotion respectively. 
The nomenclature is historical and is intended to express the idea that an 
operation on a compound structure can be 'promoted' into its compom~nts. 

The map and promotion rules are often applied in sequence. Consider the 
following little calcu1ation: 

ffi / . 1- . * /.9- = map promotion 

ffi/ . * / ·1- - . 9
= reduce promotion 

ffi/ . ffi/_ ·1 - - . 9
== .. distributivity 

ffi/ . (ffi/ . I- . 9)

These three steps will, in future, be compressed into one under the name 
map and reduce promotion. 

1.7 Directed reductions 

We now introduce two more operators f (pronounced 'left-to-right reduce', 
or just 'left reduce') and .;- ('right-to-left reduce') which are closely related 
to /. Informally, we have 

ffi fe[ a" 112, , a,,] = « e ffi ad ffi 112) ffi ... ffi a" 

ffi <fe[a" a" ,a"J = a, ffi (a, ffi··· ffi (a" ffi e») 
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In particular, we have 
Ell fe [] = e 
EIli'e[] = e 

Thus, the parameter e (called the starting value or se-ed) defines the value 
of the reduction on empty lists. 

Notice in a left-reduce that the brackets group from the left, and in a 
right-reduce they group from the right. Since an order of association is 
provided, the operator e of a left or right-reduction ne-ed not be associative. 
In fa.ct, in a left-reduce we can have e : {J X fY -+ {J and in a rjght-reduce 
e : Q X ;3 -t {J. Thus, for a given seed e in fl, the types of fe and fe are 

fe ((3 X a --> (3) --> [aj ~ (3 
i'e : (a X (3 ~ (3) --> [aJ ~ (3 

Formally, we can define efe on lists by two equations: 

Ell fell e 

EIlfe (x * [aJ) = (Ell fe x) Ell a 

These equa.tions are different in form to previous definitions, reflecting the 
fact that (f)fe is not a homomorphism on lists. However, since every non
empty list can be express~~d uniquely in the form x *[al, these two equations 
detenrnne fIJfe uniquely. (This point is dealt with in the third lecture). A 
similar definition holds for ey.e. 

Both kinds of reduction can be applied to bags and sets provided e 
satisfies additional conditions, designed to ensure that the result of a directed 
reduction is independent of any particular representation of the bag or set. 
For (f)fe to be defined on bags we require that 

(b Ell al) Ell a, = (b Ell a,) Ell al 

for all &in {J and aI, G2 in fY. For sets we need the extra condition 

(bEll a) Ella = bElla 

Similat conditions are required for right-reductions. These remarks are given 
for completeness for we shall have li ttle occasion to apply directed reductions 
to bags or sets. 

It is convenient for some purposes to define a more restricted form of directed 
reduction in which the se-ed is omitted. Informally, we have that 

Ell f [aI, a2,···, a.) «al Ell a,) Ell 1lJ) Ell ••• $ a.
 
Ell i' [ar, a" •.. , a.J = al Ell (a, Ell··· Ell (""-1 III a.»
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Note that the type of Ea in this kind of directed reduce must be of the form 
e : a X a ---+ a. The vaJue of !II It [] is not defined unless Ea possesses a 
unique left-identity element, i.e. a vaJue e satisfying 

e!Ila=a 

for all a. IT such a value exists and is unique, we ca.rl set 

EIlf [J = e 

Similarly, Ell 1 [1 is defined only if Ell has a unique right identity element. 
There are a number of properties relating the various forms of directed 

reduction. For example, we have 

(EIl;4)· ([a]*) = EIlfa 
(EIl1)· (*[a]) = EIl1a 

Other properties will be considered in a later lecture. For the present we 
give just one illustration of the use of left-reduce. 

Recall from the first section that the right-hand side of Horner's rule 
reads 

«(1 X a, + 1) X a, + 1) X ... + 1) X aft + 1 

This expression can be written using a left-reduce: 

® h [a,.a, •... ,an} 

where the operator @ is defined by 

a®b={axb)+1 

It is interesting to compare this with another form of Horner's rule: 

(a, X a, X a3) + (a, X a3) + a3 = «a, X a, + a,) X a3 + a3 

Here, the general form of the right-hand side can be written as 

® f [a, , a" ...• an], 

where, this time, @ is defined by 

a®b={axb)+b 
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1.8 Accumulations 

With each form of directed reduction over lists there corresponds a form of 
computation called an accumulation. These forms are expressed with the 
operators fit ('left-accumulate 1

) and Yf ('right-accumulate') and are defined 
informally by 

$ 

$ 

-/lte [at. 112, 
'?fe[al,I12, 

, an] 
,an] ~ 

[e, e Ell aI, ... , (( e Ell a,) Ell a,) Ell ... Ell aft] 
[a, Ell (a, Ell· .. Ell (an Ell e), ... , a,. Ell e, e] 

Formally, we have 

Ell -fl.e [] ~ [e]
 
Ell -fl.e ([aJ * x) ~ [e]* (EIl-fl.eElla x)
 

Alternatively, we can define a left-accumulation by 

Ell -fl.e [] ~ [e] 
EIl-fl.e(x*[aJ) ~ (EIl-fl.eX)* [bEll aJ 

where b ~ last( Ell -fl.e x) 

Yet a third way of defining ffi-/fe will be given in the next section. The 
definitions of the other accumulation operators are similiar and we omit 
details. 

Observe from the above equations that ffi -/fe :t can be evaluated with n 
calculations of EEl, where n = #x. For example, the list [O!,I!, ... , n!] of the 
first (n+ 1) factorial numbers can be computed by evaluating 

Xh[1,2, ... ,n] 

This requires O( n) steps, whereas the alternative 

fact * [0,1, ... , n], 

where factk = x/[1,2, ... ,kJ, requires O(n2 ) steps. Also amusing is the 
fact that 

1 1 
-;- h [1, ... , nJ ~ [Of'"'' n!] 

Note that 

EIlfe ~ last· EIl-fl.e 

so left-reductions can be defined in terms of left-accumulations. On the 
other hand, we also have 

EIl-fl.e ~ @fje) 
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where 
x,g, a = x * [l""t x Ell a] 

Hence left-accumulations can be defined in terms of left-reductions. 

1.9 Segments 

A list y is a segment of x if there exist u and v such that x = v. ITu * y *
u = [L then y is an initial segment, and if v = [l, then y is a final sf'gment. 

The function inits returns the list of initial segments of a list, in ·increas 
ing order oflength. The function tails returns the list of final segments of a 
list, in decreasing order of length. Thus) informally, we have 

inits{aI, 02, ... , an} II], [a,], la" <12], la" <12, 0' an])0 0 0' 0 0 

0 0 0 0' 0 0 0 ,tails{a" a" 0' a"J IIa" <12, 0 an], 1<12, a3, 0 0' a,,], 0 [lJ 

The functions inits+ and tails+ are similar, except that the empty list does 
not appear in the result. 

These fout functions can be defined by a.ccumulations. For example, 

inits = (*14IJl 0[0]' 
inits+ = (*14) °loJ. 

Alternatively, we can define these functions by explicit tecursion equations. 
For example: 

tails I] lI])
 
tails(x * laJ) = (*laJ). tails x * lI])
 

The following result shows another way we can define accumulations. 

Accumulation lemma 

(EIl14e) = (EIlfe)' inits0 

(EIl14 ) = (Ellf l • 0 inits+ 

There are similar equations for right-accumulations. The accumulation 
lemma. is used frequently in the derivation of efficient algorithms fot prob
lems about segments. On lists of length n, evalua.tion of the left-hand side 
requires D(n) computations involving Ea, while the right-hand side requires 
D(n 2 ) computations. 
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The functions segs returns a. list of all segments of a list, and segs+ returns 
a list of all non-empty segments. A convenient definition is 

segs = */.tails .. . inii8 

For example, 

segs[l, 2, 3) = [[], [lJ, I], [1,2], [2J, [J, (1, 2, 3], [2, 3], [3], []] 

Notice that the empty Ust [] appears four times in 8eg8[1,2,3] (and not at 
all in segs+[l, 2, 3]). The order in which the elements of segs z appear is not 
important for our purposes and we shall make no use of it. In effect, we 
regard segs z a.s a bag of lists. This identification can be made explicit by 
introducing a 'bagifying' function 

bag = eJl ·l·S. 

which converts a list into a bag of its elements (and is the identity function 
on bags). We can then define 

bagsegs = bag . segs 

However, explicit use of bag can be avoided in many examples. Consider a 
function of the form 

P = fIJI . f • .Daysegs 

where we must have that EEl is commutative a.s well as a.ssociative. We can 
calculate 

P =	 definition of bagsegs 

fIJI ·f.·eJl ·l·S' '8egs 
map and reduce promotion 
fIJI· (fIJI ·f.·l·s)' ·segs 

= one~point rules 
fIJI .f. ·segs 

and so bagsegs can be replaced by segs. 

1.10	 Horner's rule 

Now let us return to the problem posed at the beginning. Horner's rule can 
be expressed a.s an equation 

fIJI . e/ • .tails = @re 
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where e = i4 and a @ b = (a ~ b) e e. This equation is valid provided @ 

distributes (backwards) over e, that is, 

(a Ell b) ® c = (a ® c) ffi (b ® c) 

for all a, b and c of the a.ppropriate type. This condition is equivalent to 
the assertion that the equation 

(®c) . Ell/ = Ell/ . (®c). 

holds on all non-empty lists. IT we also assume that ideJ is a Ieft~zero element 
of ®, i.e., 

id",®c=id", 

for all c, then the restriction to non~empty lists in the above assertion can 
be dropped. 

Horner's rule is proved by induction. The idea is to show that 

f = Ell/· ®/ •. tails 

satisfies the equations 

II] = e 
f(x * [aJ) fx@a 

The way to do this is to use the recursive characterisation of tails given in 
the previous section. We shall leave details to the reader. 

Horner's rule can be generalised in a number of wa.ys. We cite just two. 
First, we have 

Ell/ . ®/. ·tails+ =@f 

where a@ b = (a ® b) e b. This formulation, which was hinted at in Section 
1.8, does not require that i4 be defined. We also have 

Ell/· (®/ ·f.) • . tails =@fe 

where e::=: i~ and a@b = (a~f b)ee. This partjcularformofHorner's rule 
will be used In the next lecture. There are also forms of the rule involving 
right~reductionsand inits. 
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1.11 Application 

Let us give one application of Horner's rule. There is a famous problem, 
called the max"imum segment sum (mss) problem, which is to compute the 
maximum of the sums of all segments of a given sequence of numbers, posi
tive, negative or zero. In symbols 

mss = i/· +1'· segs 

Direct evaluation of the right-hand side of this equation requires D( n 3 ) steps 
on a list of length n. There are D( n2 ) segments and each can be summed 
in D( n) steps, giving D( n3 ) steps in all. Using Horner's rule it is easy to 
calculate an O( n) algorithm: 

mss :::;:	 definition
 

i/· +1'· segs
 
=	 defini tion of segs 

i/· +1'· *1· tails. ·inits 
map and reduce promotion 
i/· (i/· +1'· tails). ·inits 

=	 Horner's rule with a@ b = (a + b) i 0 
i I . @ fo •. inits 
accumulation lemma 
i I . @lfo 

Horner's rule is applicable because + distributes through 1, and 0 = id+. 
The result is a linear time algorithm. 

An interesting variation ofthe problem is not so well-known. It is to compute 
the maximum segment product. In symbols 

msp = i/· xl' . segs 

Since X does not distribute through 1 for negative numbers, the previous 
derivation does not work. However, we do have 

(aib)xc = (axc)i(bxc) ifc;;'O 
(a i b) x c = (a xc) I (b xc) if c " 0 

where 1takes the minimum of its two arguments. A similar pair of equations 
holds for (a 1 b) X c. These facts are enough to ensure that, with suitable 
cunning, Horner's rule can be made to work. The idea is to define EEl by 

(a], bel) <ll (,,>, 1>,) = (a, I ,,>, bel i 1>,) 
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and @ by 
(a,b)@c ~ (axc,bxc) if c;'O 

= (b xc, a xc) cthen':isc 

Then, using the observations a.bout t and ! given above, we have that 

((a" b,.) Ell (a" 1>.,)) @ c ~ ((a" 1>,) @ c) Ell (( a" 1>.,) @ c) 

and so @ distributes backwards through EEL 
Now define 

f z ~ (l/(x/. segsz), T/(x/ ..egsz)) 

A similar calculation to before shows that 

f ~ Ell/ . @-/fe 

where e ~ (1,1), and 

(a, b)@ c ~ ((a, b)@c)Ell(I,I) 

Hence we have 
msp ~ "2 . Ell/ . @-/fe 

where 11'"2 ( G, b) = b. Again this is a linear time algorithm. 

1.12 Segment decomposition 

The sequence of calculation steps given in the derivation of the mss problem 
arises frequently. Here is the essential idea expressed as a general theorem. 

Theorem 1 (Segment decomposition) Suppose Sand T are defined by 

s ~ Ell/ ·f.· segs 
T ~ Ell/ ·f.· tails 

If T can be expressed in the form T = h . @fe, tben we have 

s~ Ell/' h.·@-/fe 
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Proof 
We calculate 

S	 = given 
fIJI • f • . segs 
definition of segs 
fIJI· f.· *1· tails. ·inils 
map and reduce promotion 
fIJI· (fIJI· f • . tails). ·inils 

==	 hypothesis on T 
fIJ I . (h . @fe) • . inils 
* distributivity 
fIJI· h • . @fe' ·inits 
accumulation lemma 
fIJI· h.·@lte 

o 
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[3] Bird, R.S. and Wadler, P.L.Introduction to Functioual Programming. 
Prentice Hall International, Hemel Hempstead, UK, (1988) 

The maximum segment sum problem is well-known and is discussed in, 
among other places, 

16 



[4]	 Bentley, J .L. Programming Pearls (Chapter 7) Addison·Wesley, Read· 
ing, Mass, USA (1986) 

[5]	 Gries, D. A note on a standard stra.tegy for developing loop invariants 
and loops. Science of Computer Prograruming 2 (1982) 207·214 

The maximum product problem appears as one of M. Rem's exercises in 

[6]	 Rem, M. Small programming exercises. Science of Computer Pro

gramming (various issues) 

2 Homomorphisms 

2.0 Problem 

Given is a sequence x and a predicate p. Required is an efficient algorithm 
for computing some longest segment of x, all of whose elements satisfy p. 

2.1 Homomorphisms 

By definition, a homomorphism from a monoid (0, Ee, il!m) to a monoid 
(j3, @, i~) is a function h satisfying the two equations 

h ido, ~ iii" 
hex $ y) hX'i;hy 

Equivalently, using the map and reduction operators introduced in the first 
lecture, h is a homomorphism if 

h . $/ ~ 'i;/ . h. 

We omit the proof (by induction) tha.t these two definitions are equivalent. 
Since the map function / * is a homomorphism from monoid ([0], *, []) 

to monoid ([,8], *, []) whenever / : 0 ---. ,8, we have, as an immediate conse
quence of the second chara.cterisation of homomorphisms, that 

f.· -tt-/ ~ -tt-/. f .. 

This is just the map promotion rule of the previous lecture. Likewise, the 
reduce promotion rule is an immediate consequence of the fact that $/ is a 
homo~orplUsm. 
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Our basic assumption, namely that ([a),*, []) is a free monoid, is equiv
alent to the condition that for each monoid (,8,6), i4) there is a unique 
homomorphism h from ([aJ,*,[]) to (fJ, (I), ide)· This homo=orphism is 
determined by the values of h on singletons. That is, for each f : 0: ---. f3, 
the additional equation 

h[a] = f a 

fixes h completely. 
The following lemma gives a useful characterisation of homomorphisms 

on lists. 

Lemma 2 Every llOmomorphism on lists ca,n be expressed as the composi
tion of a reduction with a map, a,nd every such combina.tion is a homomor
phism. More precisely, suppose 

h[] ide 
h[aJ = fa 

h(x * y) hX(I)hy 

Then h ::: 6)/ .f *. Conversely, if h has this form, then h is a homomorphism. 

Proof 
The proof of the homomorphism lemma uses the following simple result 
(called the identity lemma), whose proof will not be given. 

*/. [.J. = i'ka] 

We now calculate: 

h ::: definition of id 
h . id 
identity lemma 
h· */. [.J. 
h is a homomorphism 
(I)/.h.·[.J. 

::: .. distributivity 
(1)/ . (h· [.J). 

= definition of h on singletons 
(1)/ . f. 

18 



Conversely, we reason that h = fIJI . t* is a homomorphism by calcu
lating 

h· */ ~ given form for	 h 

$/ . f· . */ 
map and reduce promotion 
$/ . ($/ . f·)· 
hypothesis 
$/. h. 

o 
Many functions on lists are homomorphisms and we shall see examples 

below. However, not all of the functions we can define in terms of homo
morphisms will themselves be homomorphisms. We shall take up this point 
in the following lecture. 

2.2 Examples 

Let us consider some examples of homomorphisms on lists. 

(1) First of all, the function # is a homomorphism: 

#~+/·Kl' 

(2) Second, the function reverse which reverses the order of the elements in 
a list is a homomorphism: 

reverse ~ */. [.J. 
where x*y = y* x. (In general, we define G) by the equation xG)y == yffiX.) 
Of course, on bags and sets, where *= *, the function reverse is just the 
identity function. 

(3) The function sort which reorders the elements of a list into ascending 
order is a homomorphism: 

sort ~ It./ . [.J. 
Here, tf:... (pronounced 'merge') is defined by the equations 

x It. [I	 x 
[I It. y	 y 
([aJ*x)It.([bJ*y) ~	 [aJ*(xlt.([bJ*y)) ifa~b 

[bl * (([aJ * x) It. y) otherwise 
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Thus, x If:.. y is the result of merging two sorted lists x and y. Since In is 
both associative and commutative, the function sort can be applied to bags. 
By defining a variant of If:.. that removes duplicates, so that the operation is 
also idempotent, we can sort sets. 

(4) Two useful homomorphisms are all and some: 

allp = /\/. p. 
somep =: vI· p* 

Here, 1\ is logical conjunction and V is logical disjunction. The function all p 
applied to a list x returns True if every element of x satisfies the predicate 
p, and False otherwise. The function somep applied to x returns True if 
at least one element of x satisfies p, and False otherwise. Since conjunction 
a.nd disjllllction are associative, commutative and idempotent operations, 
all and some can be applied to bags and sets as well as lists. 

(5) The function split; [oJ+ ~ [oj X 0, which splits a non-empty list into 
its last element and the remainder, is a homomorphism: 

split[a] ([], a) 
split(x * y) split x E9 split Y 

where we define E9 by 

(x, a) Ell (y, b) = (x * raj * y, b) 

In particular, we can define 

init = 71'"1 • split 

where ~1( U, v) = u. Unlike last (which is 71'"2 • split), the function init is not 
a homomorphism. Note that the homomorphisms described in this example 
are homomorphisms on the semigronp ([0)+ 1 *). 

Using init and last, we can define the function tails of the last lecture 
as a homomorphism 

tails = EIl/ . f. 
where 

fa = [[J,[a)J 
xs Ell ys = init xs * (last xs*) • ys 

A simple calculation shows that ide = [I]], so we have tails!J [[ J], as 
expected. 
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2.3 All applied to 

In order to be able to describe homomorphisms, such as tails, a little more 
concisely, it is useful to introduce an operator 0 (pronounced 'all applied to') 
defined by 

I]" a ~ I] 
If]' a If a] 
(Is * gs)' a (Is' a) * (gs' a) 

Less formally, we have 

If,g,···, h]" a ~ If a,g a, ... , haJ 

Thus 0 takes a sequence of functions and a value and returns the result of 
applying each function to the value. Note that (0 a) is a homomorphism. 
Note also that the notation (.] we have been using so far can be rewritten 
as lid]'. 

We can now write, for example, 

tails ~ fJJ I . II]', Iid]'l'. 

2.4 Conditional expressions 

So far, we have been using the notation 

h z	 ~ / z if p z 
::;:: 9 z otherwise 

to describe functions defined by cases. From now on, we shall also use the 
McCarthy conditional form 

h ~ (p--->/,g) 

to describe the same function. Like the operator of the previous section, 
conditional forms Call, in some situations, help to make the expression of 
homomorphisms and other functions more concise. 

There are a number of well-known laws about conditional forms
1 

the 
most important of which are: 

h'(p--->/,g) (p--->h'/,h'g) 
(p--->/,g)·h ~ (p. h ---> / • h, 9 . h) 
(p ---> f,f) / 

(Remember, all functions are assumed to be total, so these laws need no 
qualifications about definedness.) 
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2.5 Filter 

The operator <J (pronounced 'filter') takes a predicate p and a list x and 
returns the sublist of x consisting, in order, of all those elements of x that 
satisfy p. Using the new notations just introduced, we can define p<J as a 
homomorphism 

po =*1 . (p --> lid]', I]'), 

In effect, p<lX is obtained by replacing each element a of x by [aJ if p a holds, 
and [] otherwise, and then concatenating the resulting lists. Note that p<J 
can be applied to bags and sets as well as lists. 

An easy calculation shows that the following rule (which we will call 
filter promotion) holds: 

(p~) . *1 = *1 . (p~). 

Another rule, whose proof is also left to the reader, is the map-filter swap 
rule: 

p~ ·f. =f.· (p .f)o 

2.6 Cross-product 

If ED is a. binary operator, then Xe is a binary operator that takes two lists 
x and y and returns a list of values of the form a EiI b for all a in x and b in 
y _ For example: 

Ia, b] X.. [c, d, e] = [a Ell c, bEll c, a Ell d, bEll d, a Ell e, bElle] 

Formally, we define Xe by three equations: 

x X.. I] I]
 
x X.. la] = (Ella)"
 
x X.. (y* z) = (xX .. y)*(xX.. z)
 

Thus (xX e ) is a homomorphism (on lists, bags or sets) for every x. 
There are a number of useful properties of Xm- We shall state them 

without proof. 
First of all, Xe is associative if EiI is, and cOIDIDutative if EiI is. It is not, 

in general, idempotent if ED is. 
Next, [] is the zero element of Xm, that is, 

I]X.. x=xX.. I]=I] 
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for all x.
 
We also have the cross promotion rules:
 

f •• · X*I = X*I ·f ... 
$1' . X*I = X.,I· $1* 

Finally~ we have that if 0 dlstributes through e, then 

$1 . X.,I = fiJI . '1J/' 

This result says that the sum of the products is the product of the sums. 
We shall call it the cross-distributivity rule. 

The particular operator X*	 has many uses. For example, the (ilftesian 
product function cp: [[oJJ ~	 [[0]], defined by 

cp = X*I . lid]". 

takes a list of lists and returns a list of lists of elements, one from each 
component. For example, 

cp[[ a, b), [c), [d, e]] = [[a, c, d), [b, c, d), [a, c, e), [b, c, eJI 

Second, the list subs x of all subsequences of x can be defined as the homo
morphism 

subs = X*I· [[t,[idJ"]"' 

For example 

subs[a, b, cJ = X*/[[[), [al), [IJ, [bJ), [I), [c]]] 

and the expression on the right simplifies to 

[[j, [a), [b], [a, bj, [cj, [a, c), [b, cl, [a, b, cJ) 

Third, we have 

(allp ~ [idJ",[J') = X*I· (p ~ [[idJ"j",[J"). 

This technical result means that we can write all p<J in the forID. 

allp. =*1· (X*I· (p ~ [[idJ"J",[j").). 

This daunting expression will make another appearance in the next section 
but one. 
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2.7 Selection operators 

Suppose / is a numeric valued function. We want to define an operator 11 
such that 

1. 11 is associative, commutative and idempotent; 

2. 1} is selective in that 

x if Y= x or x if Y=Y 

3. 11 is maximising in that 

I(x if y) =Ix i Iy 

If / is an injective function, then the above three conditions specify 11 
completely (actually, idempotence follows from selectivity). If, however, / 
is not injective, then the value of :t 11 y is not specified when x #- y but 
/ :t = / y. For example, the value of 

[1,2] i# [3,4J 

is not determined hy the above conditions, beyond the fact that it must be 
one of[1,2] or [3,4]. 

There are two ways to resolve such under-specifications. One is to forgo 
commutativity, defining for instance a left-biased version of TI: 

x if Y xiflx~/y 

y otherwise 

This solution is not very satisfactory because the calculation of expressions 
such as 

i#/ . p < ·segs 

depends artificially on the precise order in which the function segs returns 
the list of segments of x (a feature which we said in the last lecture we would 
ignore). 

The alternative is to let 11 stand for 1/" where r is an injective func
tion, the precise nature of which we are not interested in, that respects the 
ordering on values given by f, that is, 

I x < I Y implies !' x < !' Y 

24 



If necessary to ease a calculation, we can always introduce refiDements of f 
(i.e. a function that respects the ordering of f but may introduce further 
distinctions), provided such refinements are consistent with all previous ones. 

One particular refinement of i # is especially useful and we impose it at 
the outset. We shall assume that * distributes through i #' in other words: 

x*(yi#z) = (x*y)j#(x*z) 
(xi#y)*z = (x*z)j#(y*z) 

Such a refinement arises if, for example, we always select the lexicographi
cally least sequence as the value of x i # Y when #x =' #y. 

Since we mainly do calculations at the function level, we would like to 
write the above distributive rules in the form 

(x*)· i#/ = i#/' (x*). 
(*x)'i#/ = i#/'(*x)' 

The missing piece which enables the two forms to be connected (without 
restricting ourselves to non-empty lists) concerns the fictitious value w = 

i#/[]. This is not the empty list, but a very short list satisfying #w = 
-00. In other words, we want to suppose that w is the zero element of 
*. This decision can be couched in algebraic language: we suppose that 
([aJ,*,i#,[],w) is a ,emiring. In general, a semiring (S,x,+,idx,id+) 
is a set S closed under two associative operations X and +, with + also 
commutative, such that X distributes over +. Moreover, the identity element 
of + is the zero element of x. 

Let us put these a.ssumptions to work in a short calculation: 

i#/' al/p< 
:;::: daunting expression for all p<J from Section 2.7 

i#/' */. (x*/· (p ~ [lid]"]", []").). 
reduce promotion 

i#/' 0#/' x*/· (p ~ [lid]"j",[]").). 
:::: semiring assumption and cross-distributivity 

i#/' (*/. i#/" (p~ [lid]"]", []").).
* distributivity 

i#/' (*/. (i#/' (p~ [[id]"]",[]")')' 
= conditionals 

i#/' (*/. (p ~ i#/' [lid)"]", i#/' []").). 
empty and one-point rules 
i#/' (*/. (p ~ [id]",K~).). 
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\Ve shall use this result in the next section. 

2.8 Solution 

The problem Wf! started the lecture with was to compute the longest segment 
of a list, all of whose f!lements satisfied some given property p. In symbols, 
we want to compute f" where 

f = T#/ . aI/po ·segs 

Let us calculate: 

T#/ . aI/po ·segs 
segment decomposition
 
T#/' (T#/' aI/po . tails)• . inits
 

= result at end of last section
 
T#/ . (T#/' (*/ . (p ~ [id]',Kw )')" tails) • . inits 
Horner's rule with x@a= (x * (pa ~ [a),w» T# I] 
T#/ . @f[]" inits 

::=	 accumulation lemma
 

T#/ . @,14[]
 

Finally, we can simplify x @ a to 

x@ a = (p a ~ x * [a), (J) 

This is a linear time algorithm (in the number of calculations of p). 
The derivation of the above program might seem a little elaborate, bring

ing in cross-products, semirings, fictitious elements and so on, just to crack 
a small walnut. The central aspect, namely that 

T#/' aI/po. tails 

can be expressed as a left-reduction, can be established quite quickly by an 
induction proof, one that avoids all talk of zero elements of concatenation. 
However, we have succeeded in avoiding induction, used only equational 
reasoning, brought in a second application of a useful rule, and introduced 
some more concepts and notations. 
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2.9 References 

Further discussion of some of the operators introduced above is in: 

[1]	 Bird, R.S. A calculus of functions for program derivation. PeDe. In~ 

stitute of Declarative Programming, University of Texas, USA, 1987. 
(Also available as a Programming Research Group Monograph PRG
64, Oxford, UK.) 

An extensive discussion of homomorphisms on trees, lists, bags and sets 
is in: 

[2]	 Backhouse, R. An exploration of the Bird-Meertens formalism. (Un
published draft), Dept. of Computer Science, Groningen University, 
The Netherlands. (1988) 

3 Left reductions 

3.0 Problem 

Given is a list of lists of numbers. Required is an efficient algorithm for com
puting the minimum of the maximum numbers in each list. More s1lccinctly, 
we want to compute 

minimax = LI . i 1* 
as efficiently as possible. 

3.1 General equations 

So far, we have mainly seen examples of homomorphisms. It is instructive 
to determine the conditions under which a general set of equations 

h[] = e 
h[a] = fa 

h(x * y) H(x, y,f x,f y) 

determines a unique function h, not necessarHy a homomorphism. After all, 
such sets of equations constitute the basic means for specifying functions on 
lists. 

Consider the equations 

h'[] (I],e) 
h'[a] = ([a],f a) 
h'(x * y) hi x €El hI Y 
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where $ is defined by 

(x,n) Ell (y.v) ~ (x * y, H(x,y, n, v» 

If h' is a well-defined function, then so is h. We have 

h = 11"2 • h' 

where ",(a, b) ~ b. 
In order to determine the conditions under which the above equations 

determine h', let {J be the smallest set of values such that 

1. ([],e) is in {3; 

2. «(aJ,! a) is in {3 for all a in a; 

3. (x, u) Ell (y, v) is in {3 whenever (x, n) and (y, v) are. 

Now, by our basic assumption, h' is uniquely determined if ({3, $, ([], e» is 
a monoid. Translating the monoid conditions (associativity, and existence 
of an identity) into conditions on e and H, we must therefore have: 

1. H(x,[],n,e) ~ n 

2. H(!], x, e, n) ~ n 

3. H(x * y,z, H(x, y,n, v), w) ~ H(x. y * z, n,H(y,z,., w)) 

These three conditions (the consistency conditions) determine the properties 
that H and e must satisfy in order for the equations for h to determine h 
completely. 

Let us consider one example. Take e = [J and 

H(x,y,u,v) = (u = x ---+ U * v,u) 

Here we use the McCarthy conditional form on the right. We leave the 
verifica.tion of the first two conditions on e and H to the reader. For the 
third condition, the expression H(x * y, z, H(x, y, u, v), w) reduces to 

(u = x A v = Y ---+ U * v * w, 
u = x A v '# y ---+ U * v, 
u '# x A u = x * y ---+ U * w, 
n i- x Ani- x * y ---> n) 
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On the other hand, the expression H(z, y * z, u,H(y,z, v, w» reduces to 

(u == z /\ Y = Y --+ U * v * W, 

u;::: z /\ v:f:. y --+ U * v, 
u # x ~ u) 

These two expressions are Dot equal unless we have that 

u=xVu'lx*y 

for all (x,u) in p. This condition is equivalent to #x;;' #u for all (r,u) in 
{J and is satisfied if 

#!a';;l 

for all a. In particular, if we take 

! = (p ~ [.],[),) 

for an arbitrary p, then everything is all right. With this definition of f, 
the value of h z is just the longest initial segment of x all of whose elements 
satisfy p. In symbols: 

h = T#/· al/po. inits 

As a last point, we show that h is not a homomorphism. For concreteness 
take p = even, the predicate that determines whether a number is even. 
Suppose 

h(x*y)=hxEllhy 

for some operator Ell. Since h[2, 1] = 2,h[4] = [4], and h[2] = [2], we have 

h[2, 1, 4] = h[2, 11 Ell h[4] 
[2] Ell [4] 

=	 h[2] Ell h[4] 
h[2,4] 

This is a contradiction, since h[2, 1,4] = [2] and h[2,4] = [2,4]. 

3.2 Left reductions 

We defined the directed reductions in the first lecture, but the pattern of the 
equations does not follow those laid down in the previous section. We really 
need to give an alternative definition in order to justify that, for exa.mple, 
mpe is a well-defined function. 
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In the monoid view of lists, the formal definition of fBfe is 

$ fe [] e 

$ fe [a] e$a 

$ fe (x * y) $ fe' y where e':::;: $ fe x 

Equivalently, setting f e :::;: ffJfe, we have 

f e[] e 

f era] :::;: eE»a 

fe(x*y) f(Jex)y 

~Ne leave to the reader to check that the above equations satisfy the consis
tency conditions of the previous section. 

There is an instructive alternative way of seeing that fBfe is well-defined. 
Define h by 

hi] ~ id 
h[a] ($a) 

h(x * y) hy·hx 

For E» : {J X a -+ fJ we have that h is a homomorphism 

h : ([a]' *, []) ~ ((J ~ (J, ., id~) 

Now we have 
$ fe z ~ hz e 

and so efe is a well-defined function. 
The above reasoning justifies the well-definedness of -/+e but does not 

explain why the construct is important. The basic reason why left reductions 
are important (and similar remarks apply to right reductions) is as follows. 

Consider a set of equa.tions of the form 

!I] e 

f(x * [aJ) F(a,x,Jx) 

We claim that 
f~"'2·$fe' 

where 
e' ~ ([j, e)
 
(x,u)$a ~ (z*[a],F(a,x,u))
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In brief, every set of equations of the above form can be expressed in terms 
of a. left reduction. Conversely, we have 

$ fe [] = e 
$fe(x*[a]) = ($ fe x) $ a 

so an arbitrary left reduction can be expressed in the same way. 
The above discussion can be summarised in terms of the different ways 

we can view lists. The monoid view of lists is to say that every list is either 
(i) the empty list; (ii) a singleton list; or (iii) the conca.tenation of two (non~ 

empty) lists. The primary mechanism for defining functions with this view 
is the homomorphism. Another view of lists is that every list is either (i) 
the empty list; or (ii) of the form x * [aJ for some list x and value a. The 
primary mechanism in this case is the left reduction. 

Yet a third view of lists is that every list is either (i) the empty list; or 
(ii) of the form {a] * x for some a and list x. The primary mechanism here is 
the right reduction. In the majority of functional programming languages, 
it is this third view that prevails. One of the reasons concerns the possibility 
of defining functions on infinite lists, a reason that we will not go into here. 
Fortnnately, we can define left reductions with this view as well. We have 

$ fell = e 
1 

$ fe([a] * x) E9-/+ lx where e = eE9a e 

We leave the verification of this fact to the reader. 

3.3 Loops 

In the functional approach to program derivation, the final product of a 
calculation is an expression denoting a mathematical function. This expres
sion still has to be translated into a specific programming language in order 
for it to be executable by computer. One obvious candidate is a functional 
programming language, such as ML or Miranda l . However, there is no rea
son why the final expression should not be translated into a conventional 
imperative language. For example, a left reduction can easily be translated 
into a loop. Using hopefully straightforward notation, the value E9 -/+e x is 
the result delivered by the following imperative program: 

I[ var a; a := e; 

1 Miranda is a trademark of Research Software Ltd. 
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for b in x 
do	 a := a oplus bi 
return a ] I 

Here, the 'generator' b in x successively assigns to b the elements 
of x in order from left to right. 

3.4 Left-zeros 

Both the imperative and flfictional implementations of left reductions re
quire that the argument list be traversed in its entirety. Such a traversal 
can be cut short if we recognize the possibility that an operator may have 
left-zeros. By definition, w is a left-zero of ED if 

wEDa==w 

for all a. An operator may have none, one or many different left-zeros. If w 
is a left-zero of ED, then 

ff}fwz =w 

for all x. Since 

ff} fe (z * y) = ff} fe' y where e' = ff} fe z 

it follows that 
ff} fe (z * y) = ff} fe z 

whenever the right-hand side is a left-zero of ED. In words, evaluation of a 
left-reduction can be terminated on encountering a left-zero. 
Suppose lzerom is a predicate that determines whether its argument is a 
left-zero of ED. Using hopefully equally straightforward notation as before, 
we then have that EEl -/+e x can be evaluated by the program. 

I [	 vax a; a := e;
 
for b in x while not lzero(a)
 
do a := a opluB b;
 
return a ] I
 

Before seeing an application of this idea we need a simple yet powerful result. 
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Lemma 3 (Specialisation) Every homomorphism on lists can be expressed 
as a left (or also a right) reduction. More precisely, 

$/ . f. = 0fe 

where e =~ and 
a0b=a$fb 

We omit the simple proof. 

3.5 Minimax 

Let us return to the problem of computing 

minimax = !I . f!. 

efficiently. Using the specialisa.tion lemma, we ca.n write 

minimax = 0-?oo 

where 00 is the identity element of !I, and 

a0x = a!(T/x) 

Since! distributes through 1we have 

a0x= t/(a!).x 

Using the specialisation lemma. a second time, we have 

a 0 :t = EBa -?-oo x 

where -00 is the identity element of 1 and 

b$ac=bT(a!c) 

Now, a is a left-zero of EBa (and so, by the way, is 00), and -00 is a. left-zero 
of 0. This means we can implement (minimax xs), where xs is a list of lists, 
by the loop 

I [	 var a; a:= infinity;
 
for x in xs ~hile a <> -infinity
 
do a := a odot x·
 
return a ] I
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where the assignment a : = a odot x can be implemented by the loop 

I [	 vax b; b:= -infinity;
 
for c in x vhile b <> a
 
do b := b max (a min c);
 
a := b ] I
 

3.6 The alpha-beta algorithm 

\Ve now generalise the minimax problem to trees. Consider the data-type 

tree ::~ Tip numlFork [tree] 

The syntax of this declaration is that of the functional language Miranda, 
and it is also employed in the notation of Bird and \Vadler (reference [2] 
of Lecture 1). It says that (Tipn) is a tree for each number n, and that 
(Fork ts) is a tree whenever ts is a sequence of trees. The primitive functions 
Tip and Fork are called the constructors of the type tree. 

We wish to calclliate an efficient algorithm for computing a function 
eval : tree --+ num, where 

eval( Tip n) n 

eval(Fork Is) TI( -eval) * Is 

Here we use the notation - f for the function defined by (-na = -(J a). 
Using the specialisation lemma on the right-hand side of the second 

equation for eval, we obtain 

eval(Forkts) ~ Ell f-oo Is 

where 
a Ell t = aT (-eval t) 

We now expand this last equation by considering the two possible forms for 
a tree t: 

a Ell (Tipn) ~ aT(-n)
 
a Ell (Fork Is) ~ aT(-(T/(-eval)*ts))
 

The last equation can now be simplified using the laws 

-(ap) ~ (-a)H-b) 
aT(blc) ~ (aTb)HaTc) 
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We obtain 
a e (Fork ts) = LI(an. eoal. ts 

After using the * distributivity law, the right-hand side of this equation is 
also a candidate for specialisation. We have 

a e (Fork ts) = @a f~ ts 

where 
b @a t = b L (a r eoal t) 

Furthermore, since 

eoalt = ooL(-ooreoalt) 
== 00 @-oo t 

we have -without inventiveness - reduced the problem of calculating eval t 
to that of evaluating b @a t for values of a and b. 

Let us now expand the definition of b@a t in a simBar way as we did fur 
a E» t. We obtain 

b@a(Tipn) = bLearn) 
b@a(Forkts) b I (a r (rl( -eval). ts)) 

In oder to simplify the right-hand side of this last equation) w€ need the 
dual distributive law 

b L(a r c) = (bL a) t(b Lc) 

and the fact that evaluation of b @a t is required only for values of a and b 
satisfying a = a! bj in other words, for a ~ b. In such a case w€ have 

bLearc)=at(bLc) 

by commu tativity of !. 
We then obtain 

hla (Fork ts) = a t(U( bl) • (-eval). ts) 

Using specialisation yet a third time, we obtain 

b@a (Fork I.') = eb fa I.. 
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where 
a<ll. t =aT (b!(-evalt)) 

At this point, the seemingly endless succession of expansion and specialisa
tion steps can be stopped. A short calculation using the given properties of 
-, T and! yields 

o <IlfJ t = -( -a) @(-fJ) t 

Introducing 
bval a fJ t = fJ @a t 

and putting the resulting equations together, we obtain 

eval t bval(-oo)oot 
bval a fJ (Tip n) = fJ!(aTn) 
bval a fJ (Fork ts1 <Il fJ fa Is 

a' <Il fJ t = -bval( -fJ)(-o')t 

Finally, we bring on the left-zeros. We only need to observe that {3 is a 
left-zero of (f}{3. This follows from the definition of e{3 and the absorbtive 
law 

fJT(fJhl=fJ 

Incorpora.ting this optimisation yields the alpha-beta algorithm. 

The various axioms concerning (T,!, -, 00, -(0) used in the above derivation 
are precisely those of a Boolean algebra. 

3.7 References 

An alternative, and arguably less satisfactory, treatment of the alpha-beta 
algorithm occurs in 

[1]	 Bird, R.S. and Hughes, R.J.M. The alpha-beta algorithm: an exercise 
in program transformation. Information Processing Letters, 24 (1987) 
53-57. 

The importance of the purely algebraic notion of left-zeros and its conse
quences for optimisation was discussed in 

[2]	 Meertens, L. First steps towards the theory of Rose trees. (Unpub
lished draft), CWI, Amsterdam, 1988. 

This paper also contains another treatment of the alpha- beta algorithm. 
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4 Arrays 

4.0 Problem 

Given is an array x with elements in the set {OJ 1}. Required is an efficient 
algorithm for compnting the area of the largest rectangle (i.e., contiguous 
Bubarray) of x, all of whose elements are 1. 

4.1 Binoids 

Suppose Q is a set of values closed under two partial operations +and x 
such that: 

(i) + and x are associative1 in the sense that each of the equations 

(a+b)+c ~ a+(b+c) 
(axb)xc ~ ax(bxc) 

hold whenever both sides of the equation are defined; 

(ii) + and X satisfies the further equation 

(a + b) x (c +d) ~ (a xc) + (b x d) 

whenever both sides are defined. (We shill refer to this property by 
saying that + abides with x. The reason for this choice of name will 
appear shortly.) 

There is no standard terminology for such an algebraic structure so, for the 
sake of a name, we shall call it a binoid. Here are four examples of binoids. 

Example 1. Let E9 : C\' X C\' -+ 0 be associative a.nd commutative. Then E9 
abides with itself, and so (C\', $, $) is a binoid. 

Example 2. Recall that the operator < is defined by a < b ~ a. Note that 
< is associative but not commutative. Nevertheless, the structure (0, <, <) 
is a binoid. Since both sides of 

(a< b)< (c< d)~ (a < c)< (b< d) 

reduce to a, we have that < abides with itself. Similarly, (a,~, ~) is a 
binoid, where a :;:$> b :::: b. 
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Example 3. The structure (0', >, <) is a binoid. We have that both sides 
of 

(a:» b) ¢: (c:» d) ~ (a ¢: c):» (b ¢: d) 

reduce to b. 

Example 4. Define the partial operator. by the equation 

a • b = a provided a = b 

The operator. is associative because 

(ao bloc ~ ao(boc) 

whenever both sides are defined, that is, when all three values are the same. 
Let 1Il : 0 X 0 --+ 0 be some associative operator. We claim that (0', ED l .) 

is a binoid. We have 

(a Ell b) 0 (c Ell d) ~ (a 0 c) Ell (b 0 d) 

whenever both sides are defined. The right-hand side is defined just in the 
case that a = c and b = d. Its value is then a ED b. The left-hand side 
is defined just in the case that a ED b = c ED d and its value is then a ED b. 
Notice that the left-hand side can be defined without the right-hand side 
being defined. 

4.2 Arrays 

The type of arrays with elements from 0' will be denoted by 101. This 
type is specified by a free algebra generated from elements of a under the 
assignment 1·1 : 0' - 101 which maps elements of 0 to singleton arrays. The 
constituents of this algebra are: 

(1) Two operators e (pronounced 'above') and Ql (pronounced 'beside') 
snch that (101, e, $) forms a binoid. The abide property 

(x e y) $ (u e v) ~ (x h) e (c $ d) 

can be pictured as 

(~I;) ~ G::) 
(The name abide is an abbreviation of 'above-beside'.) 
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(2) Two functions height and width with types 

height, width: Jol --. N+ 

where N+ denotes the positive integers. Informally, height returns 
the number of rows in the array, and width the number of columns. 
These functions are are such that x ep y is defined just in the case 
that height x == height y, and :z; e y is defined just in the case that 
tnidth x = width y. Moreover, we 1ave 

height laJ = 1 
height(x e y) = height x + height y 
height( x ~ y) = height x • height y 

width lal 1 
width(x e y) = width x • width y 

width(x ~ y) = width x + width y 

where. is the operator described in Example 4 above. 

hi displayed examples we shall use round brackets to indicate arrays. For 
example, the array 

123)

4 5 6(789 

has height and width 3. It is the array described by the formula 

(Ill ~ 121 ~ 131) e (141 ~ 151 ~ \61) e (171 ~ 181 ~ 191) 

as well as many others. 
By definition, a row vector is an array of unit height, and a column 

vector is an array of unit width. 
Note, finally, that we choose not to define the concept of an empty array. 

4.3 Map 

We shall use the same symbal. for mapping over arrays as for mapping over 
lists. Suppose f '0 --. f3. Then f. , 101 --. 1f31 is the array homomorphism 
defined by the three equations: 
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1* lal II al 
I*(xey) (f*x)e(f*y) 
I*(xh) (f *X) $ (f * y) 

Note that 
height(f * x) 
width(f * x) 

= 
= 

height x 
width x 

The * distributive law 
(f . g)* = 1* . g* 

is valid for arrays as well as lists. 

4.4 Reduce 

Given two operators $,0: a X 0" _ 0, we can define a reduction operator 
(Ell, @)/ for arrays by three equations: 

(EIl,@)/lal = a
 
(EIl,@)/(xey) ((EIl,@)/x)EIl ((EIl,@)/y)
 
(EIl,@)/(xh) = ((EIl,@)/x)@((EIl,@)/y)
 

For these equations to be consistent we require that (a, $, 0) forms a binoid. 
Note tha.t the operator $, which replaces the 'above' operator -G, comes first 
in the reduction, and the operator 0, which replaces the 'beside' operator 
$, comes second. 

For example, (+, +)/ sums the elements in an array of numbers, and 
(V 1 V)/ determines whether there exists a true entry in an array of booleans. 
Both + and V are commutative and associative operators, so the binoid 
condition is satisfied. 

As further examples of array reductions, we have 

height = (+,0)/. K1* 
width = (o,+)/·K1* 
area (+,+)/. K1* 

where _ was defined in Example 4 above. We also have 

area x = height x X width x 
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The top-left element of an array is given by 

top/eft = «, <)/ 

Similarly, we can define reductions that return each of the other corner 
elements. Examples 2 and 3 a.bove show that the binoid condition is satisfied. 

The identity function on arrays is given by 

id = (e,~)/. 1'1' 

The companion function 

tT = (~,e)/. 1'1' 

defines the operation of array transposition. A simple but important fact is 
that tr is its own inverse, that is, 

tr·tr::::;:id 

We shall prove this fact below. 
Finally, notice that when reducing over a row or column vector one of 

the operators in a reduction is redundant. Accordingly, we shall write fI7 / 

for reduction over vectors. The notation is the same as for reducing over 
lists, but the ambiguity is not harmful since row and column vectors can be 
regarded as lis ts. 

4.5 Promotion 

The one-point and join (or promotion) rules for lists have counterparts in 
the theory of arrays. (There is no analogue of the empty rule because we 
have not defined the concept of an empty array.) These rules are: 

one-point rules 

f. ·1·1 = I·'· f 
(fIJ, ®)/ . 1·1 = id 

join rules 
f.· (e,~)/ = (e'~)/'f" 
(fIJ,®)/' (e,~)/ = (fIJ, ®)/. (fIJ, ®)/. 

We also have two further join rules, called the transpose rules: 
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transpose rules 

I', (~,e)/ = (~,&)/. 1** 
(Ell,@)/· (~,e)/ = (@,Ell)/·(Ell,ri)/. 

Notice in the last rule tha.t the order of the operators in the outer reduction 
is reversed. These six rules can be proved by induction, using the definitions 
of * and / over arrays. 

To illustrate these rules, we calculate: 

tr . tr = defini tion of tr 
(~, &)/·1+ . (~,e)/· 1·1. 
ma,p transpose rule 
(~, &)/. (~,e)/ . 1·1** . 1·1. 
reduce transpose rule 
(e,~)/. (~,e)/. ·1·1" ·1·1. 

= * distributivity 
(e,~)/· ((~,e)/ ·1·1' '1-1)' 

= map one-point rule 
(e,~)/· ((~,e)/ ·1·1 . 1·1). 

= reduce one-point rule 

(e,~)/· 1·1
=	 definition of id 

id 

4.6 Zip 

Let us return for the moment to lists. For each binary operator E& : 0. X f3 i-Jo 

we define a partial operator Ym (pronounced 'zip with EEl') informally by the 
equation 

[a" 02, . .. ,a,,] y" [!>t, 1>" ..• , b.J = [a, Ell!>t,02 Ell 1>" ••• ,a" Ell b.] 

Thus, x y" y is defined only in the case that #x = #y. The type of y" is 
given by 

y" : [0] X [ill ~ [-r] 
Among the many properties that Ym enjoys is the fact that YEil is associative 
if e iSj similarly, for commutativity and idempotence. 

Formally, we can specify Ym by three equations: 

[] y" []	 [J 
[a] y" [b] = [a Ell b] 
(x*y)y,,(u*v) (xy" u) * (yy", v) 
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The third equation is asserted only under the conditions that #x = #u and 
#y = Iv. It is, of course, just the condition that YIB abides with *. 

The same operator can be defined on arrays (and, indeed, on many other 
data structures). We have 

lal Y.. lbl = la Ell bl 
(xay)Y.. (uav) (xy.. u)a(yY.. v) 
(x$y)Y.. (u$v) = (xy.. u)$(YY.. v) 

The last two equations require that x is the same shape as ti, and y is the 
same shape as v. So, '9 abides with YIB' and so does cp. 

Some useful examples of this operator are as follows. First, the function 

rows = (a, Y.)/ . 11'11' 
converts an array into a column vector whose entries are row vectors, one 
for each row of the array. For example: 

rowsO ~ n=u~::n 
Similarly, the function 

cols = (Y", $)/ . 11·1\. 
converts an array into a row vector, each entry being a column vector. 

The related functions
 

listrows = (*, Y*)/ . [[.n.
 
listcols = (y*,*)/. [[·n.
 

each convert a.n array into a list of lists. The function listrows turns an array 
into a list of rows, each row being a list of entries from a row of the array. 
The function listcols turns the array into a list of columns. We have 

height = #. listrows 
width = #. listcols 

Other pairs of identities one can establish are the following: 

listeols listrows . tr 
listrows Iistcols . tr 

(Ell, ~)/ EIl/ . ~/ •. listrows 
(Ell, ~)/ ~/ . EIl/' . listcols 
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4.7 Directed reductions 

There are a number of different issues involved in setting up the idea of 
directed reductions on arrays. First of all, there is the question of how 
many operators should take part in a reduction: one or two. Second, there 
is the question of how many directions one might wish to identify as being 
useful. 

We shall adopt the following solutions to these questions. Each directed 
reduction will involve a single operator, and we focus on two legitimate 
directions: top-down (top reductions), and left-right (left reductions). We 
shall use the notation EElt for a top-reduction, and e+ for a left reduction. 
(Since top reductions work downwards, we use a downward arrow, and since 
left reductions work rightwards we use a rightward arrow.) 

The effect of a top reduction is illustrated by 

123)
EIlt 4 5 6 = ((1E1l4)EIl7 (2 Ell 5) Ell 8 (3 Ell 6) Ell 9 ) ( 7 8 9 

Thus e t x produces a single row as its result. Similarly, 

1 2 3) ((1 Ell 2) Ell 3) 
EIl+ 4 5 6 = (4 Ell 5) Ell 6( 7 8 9 (7 Ell 8) Ell 9 

so e -1+ x produces a single column. 
Two basic examples of the directed rednctions are provided by the fol~ 

lowing alternative definitions of rows and cols: 

rows = (H)· 1·1
cols = (<>i)· 1·1

One consequence of the given forms of directed reductions is that if we 
compose 

(EIli) . (@+) 

in sequence, then the result is a singleton array. To extract this value, 
suppose we define the: 101 -> 0 by 

the lal = a 

44 



Now we can state the fact that every general reduction can be expressed as 
the composition of two directed reductions: 

(Gl,0)/ ~ the· (Glt)· (0+) 
(Gl,0)/ ~ the· (0+)· (Glt) 

We have not yet given the formal definitions of these two new reduction 
operators. We give the equations for a top reduction: 

(Glt)lal ~ lal
 
(Glt)(z" lal) ~ lb Gl al where b ~ the(Gl t x)
 
(Glt)(z $g) ~ (Gltx)$(Glty)
 

4.8 Accumulations 

Reasonably enough, corresponding to the top and left reduction operators 
are the top and left accumulation operators. These are denoted, respectively, 
by EBf and $it. Their effect is illustrated by the following examples: 

123) (1 2 3)(Glt) 4 5 6 ~ 1Gl4 2Gl5 3Gl6 
( 7 8 9 (1 Gl 4) Gl 7 (2 Gl 5) Gl 8 (3 Gl 6) Gl 9 

1 2 3) (1 1 Gl 2 (1 Gl 2) Gl 3 ) 
(Gl1\» 4 5 6 ~ 4 4Gl5 (4Gl5)Gl6

( 7 8 9 7 7Gl8 (7Gl8)Gl9 

Thus, if ED : a X 0" - 0", then 

Glf,Gl1\>: 101 ~ 101 

Left accumulations on arrays are related to left accumulations on lists by 
the equation 

listrows . (Gl1\» ~ (Gl.,/\)•. listrows 

Similarly, 
listcots . (Glf) ~ (Gl.,/\)' . listcots 

The formal definition of EDf is given by the equations 

Gl 'I' lal lal
 
$ Hz e lal) (Gl t x) e Ib Gl al where b ~ oottomleft(Gl 'I' x)
 
Glt(X<l>Y) ~ (Gltx)$(Glty)
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The function bottomleft (which returns the bottom~left corner of an array) 
is defined by 

bottomleft = (;P, <.) / 

In order to relate array a.ccumulations to arra.y reductions, in the way that 
list accumulations were related to list reductions in the first lecture, we need 
to consider the array analogues'of inits and tails. This we do next. 

4.9 Tops and bottoms 

There are four reasonable ways of dissecting an array: we shall call them 
tops, bottoms, lefts and rights. Two of them are illustrated by the following 
examples: 

lefts 0~ n= (( non0~ n) 
1 2 3 

123 123 

tOPS(456)= ( 456 
789 (123

456 
789 

The essential points here are that lefts and rights each return a single row, 
while tops and bottoms each return a single column. 

We can give the definition of lefts and tops in terms of accumulations: 

lefts = ($*)' coz.. 
tops = (at)· rows 

These equations should be compared to the definition 

inits+ = (*1)· [.J. 

of Lecture 1. 

As one might expect, there is a multitude of relationships between the vari
ous forms of array reductions, array accumulations, and the four dissection 
functions introduced above. In particular 1 we have the 
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orthogonal reduction rules 

{Ell1o)O . lefts = lefts· (Ell1o) 
(Ell+)o . tops tops . (Ell+) 

- plus a. further two equations obtained by replacing lefts by rights and 
tops by bottoms. 

We also have another group of rules: 

orthogonal accumulation rules 

{Ellf)O . lefts = lefts· (Ellf) 
{Ell*)o . tops tops· (Ell*) 

- plus a further two rules obtained in the same way as before. 
Finally, we have the analogues of the accumulation lemma of Lecture 1. 

Accumulation lemma 

{Ell1o)O . tops rows' (Ellf) 
(Ell+)o . lefts cols . (Ell*) 

4.10 Horner's rule 

The alert reader might at this point be wondering if there is an analogue 
of Horner's rule that works for arrays. Since tails corresponds to bottoms 
(and also to rights), the expression to be simplified in the array version of 
Horner's rule is 

(Ell' Ell)/ . {0,0)/0' bottoms 

It turns out that the conditions we need are: (i) that ® distriubtes (back
wards) through EEl; and (ii) E9 abides with 0. The first condition is the same 
as in the case of Horner's rule for lists, but the second condition is new. IT 
these two conditions are met, then 

(Ell,Ell)/· (0,0)/0' bottoms ={0,0)/'@>1o 

where @ is defined (as in the version of Horner's rule for non-empty lists) 
by 

a@>b={a0b)Ellb 
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\Ve shall illustrate Horner's rule rather than give a formal proof. Consider 
the array 

x= un 
The left~hand side of Horner's rule applied to :z: gives 

((1@3@5)0(2@4@6))$((3@5)0(4@6))$(506) 

Using the fact that e abides with 0, we can write this in the form 

((1@3@5)$(3®5)$5)0((2@4@6)$(4@6)$6) 

Now, since ~ distributes over (I), we can write the above expression in the 
form 

((1 @3) $3) ® 5) $ 5) 0 ((2 ® 4) $ 4) ® 6) $ 6) 

Using the definition of@, this simplifies to 

«(1@3)@5) 0 (2@4)@ 6) 

and thus to 
(0,0)/(@±X) 

where x is the original array. We shall see an application of this form of 
Horner's rule in the last section. 

4,11 Rectangles 

By definition, a rectangle of an array :z: is a contiguous subarray of x. Thus, 
rectangles are to arrays as segments are to lists. In this section we put 
the four dissection functions together in order to define the rectangles of an 
array. 

First of all, we give some arrays of arrays that will prove useful. The 
top-lefts (topls) of an array is defined by 

topls = (e, $)/ . tops> . lefts 
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For example: 

C2 3) 

1 

topls456 = 
789 ~ ~ 

4 
7 

2
1 

2
1 
4 5 
1 2
 
4 5 
7 8 

1 2 3 

1 2 3 
456 
1 2 3 
456 
789 

Similarly, we have the bottom-rights (botrs) defined by 

botrs = (e, ~)/ . bottoms• . rights 

The horizontal-segments (Meg.) are defined by 

Megs = (e, ~) / . bottom.. . tops 

and the vertical-segments ('llsegs) by 

vsegs = (e, ~)/ . rights• . lefts 

We can put these functions together to define the rectangles of an array: 

rects = (e,~)/· botr.. · topls 

Thus, reets returns an array whose elements are the rectangles of a given 
array. We shall see in the next section that there are various equivalent ways 
to define rects; in particular, 

rects = (e, ~)/ . Meg.. . • segs 

defines exactly the same function. 

4.12 BRTL rules 

It is an inevitable consequence of the extra dimensionality provided by arrays 
that the number of possible algebraic identities goes up by a multiplicative 
factor. Too many identities are almost as much a problem in program cal
cula.tion as too few. In this section we describe, in effect, no fewer than ten 
a.dditional equations. Fortunately, they come in logical groupings. 

We start with the fact that
 

(e, ~)/ . top.. . lefts = (e, ~)/ . lefts • . tops
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There are three a.dditional equations of this kind: we can replace tops by 
bottoms and lefts hy rights. 

From t.hese four equations we can generate four more. Two of them are: 

(e,$)/. vsegs>' tops = (e,$)/· tops>' vsegs 
(e, $)/ . hsegs> . lefts = (e, $)/ . lefts • . hsegs 

The two addi tional ones are obtained by replacing tops by bottof1L'J and lefts 
hy rights. 

FinaJly\ to the above eight there can now be added: 

(e,$)/. botrs>· topls = (e,$)/. vsegs>' hsegs 
(e,$)/· vsegs>' hsegs = (e,$)/' hsegS*· vsegs 

That gives ten. A good way to remember these identities, particularly the 
last two, is to see that the relative order of bottoms (B) and tops (T), and 
the relative order of rights (R) and lefts (L) remain unchanged throughout 
all the equations. For example, the last two rules can be captured with the 
ab breviations 

BR . TL = RL· BT 
RL . BT = BT· RL 

Similar abbreviations hold for the other rules. 
For a sample proof we shall tackle the fifth equation. For convenience, 

we introduce the additional abbreviations: f) for (9,~)/ and V for vsegs. 
The following chain of equational reasoning is given without comments. 

O· V • . T = o. (0 . R• . L)• . T 
= O·O.·R •• ·L.·T 

O·O·R •• ·L.·T 
= o. R. ·0· L• . T 

O· R. ·0· T • . L 
= O·O·R •• · T.·L 
= o. O•. R •• . T • . L 
= o. (0 . R• . T)• . L 

o. (0 . T • . R)• . L 
~ o. O•. T •• . R• . L 
~ o ·0· T •• . R.· L 
= o· T.· O· R• . L 
~ O· T.· V 
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4.13 Rectangle decomposition 

Let us now turn to the problem of compnting R, where 

R = (Ell, EIl)/ . f • . reets 

We want to show that if 

B = (Ell, EIl)/ . f • . bottoms 

can be expressed in the form 

B = g . (@t) 

for suitable 9 and @, then R can be expressed in the {ann 

R = (EIl,EIl)/' h•. rows· (@t) 

where h is defined by 

h = (Ell, EIl)/ . g• . vsegs 

The advantage of this expression for R is that if h (which is essentially a 
problem about the segments of a list) can be computed in linear time, and 
if values of @> can be computed in constant time, then R can be computed 
in time proportional to the number of elements in the given array. 

We shall need the following observation about rects: 

reds = ODe definition of reds 
(e, ~)/ . vsegS* . hsegs 

= definition of hscgs 
(e, ~)/ . vsegS* . (e, ~)/ . bottoms• . tops 

= map and reduce promotion 
(e,~)/ . ((e,~)/· vsegS*' bottoms).· tops 

= BRTL rule 
(e,~)/· ((e,~)/· bottoms.' vsegs).· tops 

51 



Now we argue: 

R = observation 
(El,El)/' f • . (<>,$)/' ((<>,$)/' bottoms., osegs)•. tops 

= map and reduce promotion 
(El,El)/· ((El,El)/' f.· (<>,$)/' bottoms.· osegs)• . tops 
promotion rules 
(El,El)/' ((El,El)/' ((El,El)/' f.· bottoms).· osegs).· tops 

::=: assumption on B 
(El,El)/ . ((El,El)/· (g. (@i»" osegs)•. tops 

::=: * distributivity 
(El,El)/' ((El,El)/· g" (@i)" vsegs).· tops 

::=: orthogonal reduction rule 
(El,El)/' ((El,El)/' g" osegs· (@i»" tops
 

= • distributivity; h = (El, El)/ . g• . osegs
 
(El,El)/ . h.· (@i)" tops
 

::=: accumulation lemma 
(El,El)/ . h.· rows· (@t) 

4.14 Application 

At long last we are in a position to make progress on the problem posed at 
the beginning of this lecture. The problem is to compute R, where 

R = r/ . area• . filled • . bog . reets 

given that R is applied to arrays whose elements are 1 or O. 
The function bag is defined by 

bag = ('", '")/ . l·j. 

Since we have not defined the filter operation on arrays (and cannot reason
ably do so if the result is to be an array), we must first make a bag out of 
the array of rectangles in order to filter out those rectangles we do not want. 

The predicate filled can be defined by 

filled = (A, A)/ . (= 1). 

The area of a rectangle can be defined by 

area = (+,+)/. K,. 
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In fact, we can make a convenient simplification and eliminate the filter 
from the specification of R. Define a modified addition operator ED by the 
equation 

a Ell b ~ 0 if a~OVb~O 

~ a + b otherwise 

This operator is both associative and commutative. If we define 

area' ~ (Ell,Ell)/ 

then it is easy to show, provided :z; is an array over {O,l}, that 

areal x	 :::;: area x, if filled x 
= 0 otherwise 

Thus we can eliminate the filter, and reformulate the probleIIl as one of 
computing R, where 

R ~ (j. j)f. (Ell, Ell)/' . rects 

For an array filled with zeros, the new version of R returns zero (while the 
previous version returned -oo)j otherwise the functions are the same. 

The new form of R is such that we can try to apply the rectangle de
composition theorem of the previous section. This means that we have to 
express 

B ~ (j, j)f. (e,e)/.· bottoms 

in the form 
B ~ 9 . (@It) 

for suitable g and @. 

A good place to sta.rt is to try and use Horner's rule. Fortunately, the 
first condition of Horner's rule, namely that $ distributes through f, is easily 
seen to be satisfied. Unfortunately, the second condition, which is that $ 

abides with f, is not satisfied. 
All is not lost, because we have not yet used the fact that we are only 

considering arrays over {D, I}. The first crucial observation is that, provided 
x is an array over {D,l}, we have 

(Ell, Ell)/x ~ widthx x (e,l)/x 

The restriction on x is necessary to ensure that the reduction (el, l)/x is 
well-defined. The abide condition I namely that 

(aEllb)l(CElld)~(alc)e(bld) 
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is only valid when at least one of a, b, c, d is zero, or all are non-zero and 
equal. If this condition is true of the elements of x (i.e. all non-zero elements 
are equal in value), then th€ abide condition is satisfied. For such an x we 
therefore have 

B(x) = width X (T, n/(Ea, 1)1. bottoms x 

Furthermore - and this is the crUX - under the same assumption about 
the elements of x, we have that 1 abides with 1. This gives us Horner's rule. 

We can summarise the above observations in the following way. Define 

gx = width x xlix 

and 
a@b=(aEab)Tb 

Equivalently, we can define @> by 

a®b :::::	 0 if b = 0 
a+b otherwise 

Then, provided x is an array over {O, 1}, we have 

(T, T)/(Ea,Ea)/' bottoms x = g(@t x ) 

A formal proof of this result can be given by induction and is left to the 
reader. 

Now, using re<:tangle decomposition, we obtain 

R = TI . h• . rows· (®t) 

where 
h = TI . g• . vsegs 

We can reformulate h as a function on lists. Replace rows in the expression 
for R by listrows, and vsegs in the definition of h by segs. We then have 

h = TI ·f.· segs 

wh€re 
fx=#xx1I x 

The new definition of h has a simple intuitive interpretation. Think of 
a sequen<:e x of nonnegative numbers as representing a histogram. The 
function h then computes the largest rectangular area under the histogram 
x. In the final lecture we shall show how to compute h in linear time. Since 
® is <:omputable in constant time, it then follows that R <:an be computed 
in time proportional to the number of entries in the array. 
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4.15 References 

The largest filled rectangle problem was invented as a. generalisation of a. 
similar probleIll. ahout largest filled squares. This largest filled square prob
lem was posed and solved in 

[1]	 Gries, D. A note on a standard strategy for developing loop invariants 
and loops. Science of Computer Programming 2 (1982) 207-214 

After solving the largest filled rectangle problem, the author learnt of an
other solution (expressed as a five-pass algorithm) described in 

[2]	 Dean Brock, J. Finding the largest empty rectangle on a grated surface. 
Peoe. 4th Annual Symp. on Theoretical Aspects of Computer Science, 
Passau, W. Germany - in LNCS, No. 247, Springer-Verlag, Berlin, 
(1987) 66-75. 

5 Trees 

(Note: The m.aterial of this section is the result of joint work with Jeremy 
Gibbons of the PRG, Oxford. For reasons of space. most of the ideas are 
sketched only briefly. A fuller account will appear elsewhere.) 

5.0 Problem 

Define a hea.p to be a labelled binary tree t with the property tha.t for each 
subtree t' of t, the label of t' is a number which is no greater than the 
labels of all subtrees of t'. Required is an efficient algorithm for converting 
a sequence of numbers :r: into a heap whose inorder traversal is x. 

5.1 Trees 

The type of labelled binary trees (henceforth, just called trees) with labels 
from 0 will be denoted by (0). This type is specified by a free algebra 
generated from elements of 0 under the assignment {.} : Q -+ (a) which 
maps elements of 0 to singleton trees. The constituents of this algebra are: 

(1)	 Two partial operations L (pronounced 'under') and \ (pronounced 
'over') such that L associates with \. in the sense that 

(xjy)\z=xj(y\z) 

whenever both sides are defined. 
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(2) Two predicates noleft and noright such that x I y is defined just in 
the case that noleft y holds, and :z: \. y is defined just in the case that 
noright x holds. Moreover, we suppose that 

noleft (a) = True 
noleft( x I y) = False 
noleft( x \ y) = noleft x 

noright (a) = True 
noright(x I y) = noright y 
noright(x \ y) = False 

Another way of putting these conditions is to say that noleft :z: holds just in 
the ca.ses that x is a singleton tree, or x is of the form (a) \. y. Similarly, 
noright x holds just in the cases that :z: is a singleton tree, or x is of the form 
y I (a). It follows that the expression 

xly\z 

is well-defined just in the case that y is a singleton tree. 
Let us relate these operations on trees to the usual pictures. For example, 

the tree 
«a) I (b) \ (c») I (d) \ (e) 

can be drawn in the following way: 

Y\
 
(\8 

88 
On the other hand, the tree 

(a) I (b) \ «c) I (d) \ (e») 

can be pictured as follows: 
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t\

0/\

00
 

We have not yet defined the notion of an empty tree. If we wish to have 
such a tree, then we can denote it by ( ) and suppose that ( ) is the unique 
left identity of j and the unique right identity of \. Thus 

(}jx = x 
x\() = x 

for all non-empty trees x. We also suppose that x j ( ) and () \ x are 
undefined, for otherwise 

xi () \ y) # (x j (}n y 

and so j and \ no longer associate. 

5.2 An alternative view 

An alternative, and more common, view of labelled binary trees is in terms 
of a ternary constructor Bin. This view is captured in the type declaration 

trcco ::= Nil IBin (trecol a (tree 0) 

(The syntax used here is that of the funetionallanguage Miranda; it is also 
used in the text l3] cited in Lecture 1.) This declaration defines a tree to 
be either the empty tree Nil, or a tree Bin x a y with left subtree x, label a, 
and right subtree y. 

We can move from the ternary view to the binary view by using the 
equivalences 

Nil - () 
Bin x ay " x j (al' y 
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A slightly different view of trees excludes tbe empty tree. This view recog
nises trees as being of one of tbe following forms: 

(a) 
x L (a> 
(a) \ y 

xL(a)\y 

The advantage of viewing labelled binary trees in terms of two partial binary 
operators, rather tban a single total ternary operator, is primarily that we 
can set up the notion of reduction on trees in a simple manner. However, 
each view of trees has its advantages and disadvantages, so we shall employ 
whichever is the more convenient in a given situation. 

5.3 Map and reduce 

The next move, which should be familiar by DOW, is to define the map and 
reduction operators for trees. The definition of. is given by three equations: 

f * (a) = Va) 
f*(xLy) V*x)LV*y) 
f*(x\y) = V*x)\V*y) 

For reduction we need two operators m and 0 such that ED associates with 
@. We then define 

(e,@)/(a) a
 

(e,@)/(xLy) = «e,@)/x)e«e,@)/y)
 
(e,@)/(x\y) «e,@)/x) @(e,@)/y)
 

These equations define reduction over non-empty trees. IT, in addition, m 
has a unique left identity element e, and e is also the unique right identity 
element of 0, then we can set 

(e,@)/O = e 

Let us now consider some examples of reduction. 

(1) The label of a tree is given by 

label = (~, «:.)/ 
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The operator> associates with <, for both sides of 

a::> (b <:: c) = (a::> b) <:: c 

simplify to b. Note, however, that -< does not associate with A>, that is, 

a <:: (b::> c) i (a <:: b)::> c 

Here, the left-hand side reduces to a, but the right-hand side reduces to c. 

(2) The inorder traversal of a tree is defined by 

inorder = (*,*)/. [.j. 

(3) The size of a tree is defined by 

size = (+,+)/. K,. 

(4) The function member x, which determines whether x appears as a label 
in a given tree, is defined by 

member x = (V, V)/· (= x). 

In the examples above there is only one operator in the reduction, and this 
operator is associative. The reduction is well-defined because an associative 
operator associates with itself. Moreover, each operator possesses a.n identity 
element (which is therefore the unique left and right identity element of the 
operator), and so each of the above functions is defined on the empty tree. 

Here are some examples where the operators in a reduction are not the 
same. 

(5) The depth of a tree is defined by 

depth = (Ell, iii)/ . K,. 

where the operator E9 is defined by 

aEllb=(l+a)ib 

and, as usual, am b = bEB a. Neither E9 nor mis associative, but nevertheless 
EB associates with m. The proof of this fact is left to the reader. 
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(6) A similar function is heaporder, defiued by 

heaporder ~ ($, ffi)/ . [.]* 

where e is defined by 

x $ ([aJ * y) ~ [a] * (x It\ y) 

We leave to the reader the proof that e associates with i, and that [1 is 
the unique left identity of ED (and therefore the unique right identity of i). 
Thus, we have 

heaporder() ~ {] 

An alternative definition of heaporder can be based on the ternary view of 
trees: 

heaporder ( ) ~ [ ] 
heaporder(x j (a) \ y) ~ [aJ * (heaporderx It\ heapordery) 

By definition, a tree x is a heap if heaptree x holds, where 

heaptree = nondec . heaporder 

Here, nondec is a predicate that determines whether a sequence is in non
decreasing order. An alternative definition of heaptree is given by the equa
tions: 

heaptree ( a) 
heaptree (x j y) 
heaptree( x \ y) ~ 

True 
heaptree x /\ heaptree y /\ label x 
heaptree x /\ heaptree y /\ label y 

~ label y 

~ label x 

5.4 Accumulations 

Let us now very briefly consider accumulations on trees. There are two kinds: 
upwards (or towards the root) and downwards (or towards the leaves). For 
reasons of space we consider only the first kind. 

An upwards accumulation (on non-empty trees) is denoted by A, and 
takes a pair of operators ($,@) as its left argument, and a tree x as its 
right argument. The result is a tree of the same shape as x. The function 
up ~ ($,0)A is defined by the equations: 

up(a) (a)
 
up(xj(a) upx j (b $ a)
 
up(a) \ y) ~ (a 0 c) \ up y
 

up(x j (a) \ y) up x j (b $ a 0 c) \ up y
 
where b ~ label( up x) and c = label( up y) 
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For example, the function	 subtrees with type 

subtrees: (0) ~ «0») 

can be defined by 
subtrees ~ (I, \)1. .(-» 

The expression subtrees x evaluates to a tree of exactly the same sha.pe as x 
but whose labels are the subtrees of x. In particular, 

label * subtrees x ::;: x 

We shall use this result below. 

The accumulation lemma for trees states that 

(Ill, "')1. ~ (Ill, '" )/> . subtrees 

The expression on the left can be computed in time linear in the size of the 
tree, whereas the expression on the right takes quadratic time in the worst 
case. 

For example, the function 

treesizes = size* . subtrees 

can be re-expressed as 

treesizes ~ (+,+)1. ·K.> 

and therefore can be computed in linear time. (We leave the reader to 
formulate and prove the necessary subsidiary identity that enable the second 
definition of treesizes to be calculated from the first.) 

5.5 Building a heap 

The problem stated at the beginning was to build a heap whose inorder 
traversal was a given sequence. We are required, therefore, to construct a 
function heap satisfying the equations 

inorder( heap x) = x 
heaptree( heap x) ~ True 

for all lists x. In words, the first equation says that heap is a right-inverse 
of inorder 1 w bile the second says that heap must return a tree satisfying 

61 



the heap condition. Note that inorder is surjective, but not injective. For 
example, both the treBS 

(1) \ «1) \ (2» and (1),1 (i)\ (2) 

produce the inorder traversal [1,1,2]. Moreover, both treBS are heaps, so 
the specification of heap does not determine the function uniquely. Indeter
mina,cy arises because there is a choice as to the relative placement of equal 
values. 

To determine a constructive definition of heap, we can look for a solution 
of the form 

heap ~ <I!/ .!* 
In other words, we can look for a definition as a homomorphism over lists. 
Using the specification of heap, it is possi ble to calculate the values of f and 
ffi. We obtain that f:::: (.) and that e is determined by the equation 

(xj(a)\Y)<I!(uj(b}\v) ~	 xj(a)\(Y<I!(uj(b)\v» ifa< b 
«x j (a) \ y) <I! u) j (b) \ v otherwise 

together with the condition that () ::: ide. We leave to the reader the proof 
that this definition of heap meets its specification. 

In this solution, indeterminacy is resolved by placing equal values to 
the left. More precisely, suppose we define the right-spine of a tree by the 
equation 

rspine~(>,*)/·[.J* 

Informally, the right-spine of a tree is the sequence of labels obtained by 
starting at the root and proceeding along the right branches to the rightmost 
tip. Then our definition of heap is such that rspine(heapx) is a sequence in 
strictly increasing order. 

5.6 Solution as a left reduction 

The definition of heap as a homomorphism does not prescribe an order 
of computation. To obtain a sequential algorithm we can specialise the 
definition to a left reduction: 

heap ~ @f() 
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where z ® b = 'X e / b. Simplification yields: 

() 0 b	 = (b) 
(xj(a)\Y)0b	 = xj(a}\(Y0b) if a < b 

= «xj(a)\y)j(b) otherwise 

A pictorial interpretation of ® is as follows. IT x is the heap 

aJ 

then x 0 b will be the heap

1'...
 
a; 

b 

~ 
.+1' 

a"~+I 

l" 
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where j is defined by the condition Clj < b ~ Clj+l. 

The running time of this algorithm is O(N2), where N is the length of 
the argument. Each element b may be compared with every label in the right 
spine, and the right spine can increase by one in length at each step. A more 
efficient algorithm can be obtained by comparing b with labels in the right 
spine, starting with the rightmost label and proceeding to the root. The 
amount of processing done at each step is then proportional to the change 
in length of the right spine. This gives a linear time algorithm for building 
the hea.p. To implement the idea we need a change in representation. 

Consider the function cut defined informally by the equation 

cut(Xt \ (x, \ (... \ xn))) = [Xl,X" ... ,xn] 

where each Xj is such that noright Xj holds. Thus, cut takes an arbitrary 
tree and returns a sequence of trees obtained by removing every right branch 
along the right spine. It is easy to check that cut is a bijective function. If 
we define 

paste = \ 10 
(a definition involving a truly horrendous juxtaposition of arrows) then cut 
and paste are inverse functions, that is, 

cut· paste = id[(al] 

paste· cut = id(a) 

To implement the change in representation, we can modify the definition of 
heap by writing 

heap = paste· 0f[ I 
where 0 is specified by the equation 

(cutX) 0 b = cut(x ~ b) 

Putting it another way, if 0 and ® are related by the above equation, then 

cut . ~f() =0fcut () 

and so, by applying paste to both sides, we get the new equation for heap. 
To complete the change in representation, it remains to synthesise a 

constructive definition of 0 from its specification. Omitting details, we can 
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calculate that 

[] 0 b ~ [(b)] 
([zj(a)] -1tx.<}0b ~ [xl (a)J -1t (x.< 0 b) if a < b 

[paste([z j (a)] -1t x.<) j (b)] otherwise 

This effects the change in representation but, in order to achieve the desired 
increase in efficiency, we still need to change the order in which the elements 
of the left-hand argument of 0 are processed. 

5.7 Prefix and snffix 

Let us introduce four new operators on lists. They are ..J ('take prefix'), -, 
('drop prefix'), L ('take suffix') and i ('drop suffix'). Each operator takes 
a predicate on the left and a list on the right. The definitions of p ..J x and 
p L x are: 

P _Jx ~ T#/all po init.< z 
pLz ~ T#/allpotailsz 

Both operations can be implemented efficiently so that the number of cal
culations of p equals one more than the number of elements in the result. 

The remaining two operators are defined by the equations: 

(p...J z) -1t (p -, z) ~ z 
(prz)-1t(pLz) ~ z 

Thus p -, x is what remains when p ..J x is removed from x. A similar 
statement holds for p r x. 

We state without proof the following lemma. 

Lemma 4 Let x be a sequence and p a predicate such that p *x is non
increasing (taking False < True). Then 

p..Jx=pix 

where Ii is the negation of p. 

5.8 A linear algorithm 

We can now use the newly introduced operators in the construction of a 
linear time algorithm for our problem about building a heap. Recall that, 
currently, we have 

heap ~ paste· 0f[) 
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where 

paste = ~f(} 

and 

I] 0 b {( b)I 
(l x /(a)l*xs)0b = Ix I (a)1 * (XS0 b) if a < b 

Ipaste([x I (a)1 * xs) I (b)J otherwise 

Using the operators ~ and I, we can rewrite the definition of 0 in the form 

xs 0 b = (p,..J xs) * [paste(p, --, xs) I (b)1 

where the predicate Pb is defined by 

p,(x I (a» = (a < b) 

Since, by the heap assumption, pr, * x.s is non-increasing, we have that 

XS 0 b = (jib r xs) * [paste(p, L xs) I (b)] 

With the new definition of 0, the function heap can be computed in linear 
time. 

5.9 Application 

The representation of sequences by heaps has a number of uses, of which we 
give just one brief illustration, The problem that arose in the last lecture, 
namely to compute the area of the largest rectangle under a histogram, can 
be formulated as a function 

mra = i / . area* . segs 

where 
area x = #x xLix 

We claim without proof that the function mra can be written in the form 

mra =(j, ill . area'• . subtrees· heap 

where 
area' x =: size x x label x 
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Now, suppose we define 

areas = area/• . subtrees 

Using the results about subtrees cited above, we can then calcula.te 

areas x	 = size. subtrees x yx label * subtrees x 
= «+,+)).K, *X)Yx x 

Thus areas can be computed in linear time. It follows that 

mra = (T, T) / . areas . heap 

can also be cOIllputed in linear time. 

5.10 References 

The idea of using heaps to solve certain problems about segments can be 
found in 

[1]	 De Moor, O. and Swierstra, D. The low segment problem. Presenta
tion at WG2.1, Rome, March 1988. 

The largest rectangle under a histogram is a generalisation of Problem 40 in 

[2]	 Rem, M. Small programming exercises. Science of Computer Pro
gramming. 1987. 

Rem's probleIIl is to compute the size of the largest square under a his
togram; in syIIlbols, 

1/· #* . p.' seys, 

where p x = c!/x " #x.) 
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