On the

Refinement Calculus

by
Carroll Morgan, Ken Robinson
and Paul Gardiner

Technical Monograph PRG-70
ISBN 0-902928-52-X

October 1988

Oxdord University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford 0X1 3QD

England



Copyright (© 1988 Carroll Morgan, except where indicated otherwise for
individual articles.

Programming Research Group

Oxford University Computing Laboratory
8~11 Keble Road

Oxford 0X1 3QD

UK




CONTENTS 3

Contents

Introduction 5

The specification statement
Carroll Morgan T

Specification statements and refinement
Carroll Morgan and Ken Robinson 31

Procedures, parameters, and abstraction: separate con-
cerns
Carroll Morgan 58

Data refinement by miracles
Carroll Morgan 72

Auxiliary variables in data refinement
Carroll Morgan 79

Data refinement of predicate transformers
Paul Gardiner and Carroll Morgan 86

Data refinement by calculation
Carroll Morgan and Paul Gardiner 103



4 CONTENTS
Laws of program refinement: a summary
Carroll Morgan 135

References 147

Authors’ addresses 151



INTRODUCTION 5

Introduction

The refinement calculus is a notation and set of rules for deriving programs
from their specifications. It is distinguished from earlier methods {though
based on them) because the derivations are carried out within a single “pro-
gramming” language: there is no separate language of specifications.

That does not mean that specifications are executable; it means rather
that “not all programs are executable® [2]. Some are written too abstractly
for any cornputer to execute, and they are the opposite extreme to those
which, though executable, are too complex for any human to understand.
Program dertvation is the activity that transforms one into the other.

This refinement calculus is distinguished from some other “wide spec-
trum” approaches (e.g., [9, 17]) by ite origine and scale: it is a simple pro-
gramming language to which specifications have been added. The extension
is modest and unpredjudiced, and one can sit back to see where it leads.
So far, it has uncovered “miracles” [35, 41, 33|, novel techniques of data
refinement [3, 40, 13, 36|, a simpler treatment of procedures [34, 6, 39], and
“conjunction” of programs {32, 13, 36].

R.-J. Back [3] first extended Dijkstra’s language of guarded commands
with specifications, and is still active [4, 6, 5]. Joe Morris also does signif-
jcant research in this area [41, 40]. This document collects only the work
done at Oxford. The three approaches are strongly related, though not iden-
tical: Back does not have miracles; neither Back nor Morris use program
conjunction; both of those authors address the calculus at a more theoretical
level than we do.

Our work was motivated by the quickening interest at Oxford in devel-
oping programs from Z specifications (18, 38, 48], and it was surprising (to
some) that we do it by adding Z to a programming language rather than by
adding programming constructs to Z.

The specification statement introduces specification to Dijkstra’s lan-
guage of guarded commands, and explores the consequences: increased ex-
pressive power, the new prominence of the refinement relation, miracles, and
a surprising factorisation of that language into smaller pieces.



6 INTRODUCTION

Specification statements and refinement gives our first collection of “laws
of refinement”. (They appear again in Laws of program refinement: a sum-
mary, where they have been simplified by program conjunction |36].)

Procedures, parameters, and abstraction: separate concerns shows how
specifications in a programming language allow the copy rule of ALGOL 60,
once again, to give the meaning of procedures. A side effect of that is the
parametrization of program fragments which are not procedures.

Data refinement using miracles and Auxiliary variables in data refine-
ment describe small aspects of data refinement, independently of the refine-
ment caleulus. The former uses the Gries and Prins data refinement rule
(16] in order to be self contained.. Data refinement is dealt with more gen-
erally in Data refinement of predicate transformers and Data refinement by
celeulation. The first gives a more theoretical, the second a rmore practi-
cal expesition of the way data refinement and the refinement calculus can
interact.

Laws of program refinement: a summary collects for reference some laws
used in practical derivations. No effort haa been spent on their completeness.

A reasonable overview can be gained by reading Specification statements
and refinement and Data refinement by calculation.

There is some overlap between the papers: the introduction to Speci-
fication statements and refinement repeats material from The specification
statement; Auridiary variables in data refinement amplifies a section of Data
refinement by ealculation; and various laws of program refinement appear in
three places: in Specification statements and refinement, as an appendix to
Data refinement by caleulation, and finally in Laws of program refinement:
¢ summary. The last of those is the latest and most comprehensive.

Carroll Morgan
July 1988



The specification statement

Carroll Morgan

Abstract

Dijkstra's programming langnage is extended by specification atate-
ments, which specify parts of a program “yet to be developed.” A
weakest precondition semantica is given for these statements, so that
the extended lauguage has a meaning as precise as the original

The goal is to improve the development of programs, making it
more as it should be: manipulations within a single calculus. The
extension does thisn by providing one semantic framework for speci-
fications and programs alike — developments begin with a program
{(a single specification statement), and end with a program (in the
executable language). Aund the unotion of refinement or satisfaction,
which normally relates a specification to its possible implementations,
is antomatically generalised to aci between apecificationa and between
programs aa well.

A surprising consequence of the extension is the appearance of mir-
acles: program fragments that do not satisfy Dijkstra’s Law of the
Ezeluded Miracle. Uses for them are suggested.

Categories and Subject Descriptors: D.2.1 [Software Engineer-
ing|: Requirements/Specificatione— Methodologics; D.2.2 [Software
Engipeering): Tools and Techniques— Top-down programming; D.2.4
|Software Engineering]: Program Verification—Correctness proofs;
F.3.1 [Logics and Meanings of Programs): Specifying and Verify-
ing and Reasoning about Programs—Pre- and post-conditions, Speci-
fication technigues

General Terms: Theory, Verification

Additional Keywords and Phrases: Program refinement, procedu-
ral abstractiou, development calculus, weakest preconditions, guarded
commands, miracles

® Appeared in TOPLAS 10, 3 (July 1988). ©Copyright 1988 by Association for Com-
puting Machinery.



] THE SPECIFICATION STATEMENT
1 Introduction

Dijkstra in [12] introduces the weakeat precondition of a program P with
respect to a postcondition post; following [20] we will write this P < post >.
In this style, a specification of a program P is written

pre=> P < post > .

This means “if activated in a state for which pre holds, the program P must
terminate in a state for which pest holds.”

In traditional top-down developments, we build algorithmic structure
around a collection of ever-decreasing program fragments “yet to be imple-
mented,” and at any stage we have specifications for those fragments. Thus
one finds the dictions

P,

where pre => P < post >.

The letter P stands for the missing fragment, and the where clause gives
its specification. But in cur approach, we write instead

ipre, poat]; (1)

We write the specification itself at the point to be occupied by its imple-
mentstion. More significantly, by giving a weakest precondition semantics
to [pre, post], we make this intermediate stage (1) into a program — albeit
an abstract one.

Program development we see az analogous to solving equations: one
transforms an abstract program intc a concrete one, just as one transforms
a complex equation {e.g., 2 — z — 1 = D) into a simple equality (e.g.,
z =(1++5)/2). For such formulz, the manipulations are mediated by the
relation of implication: the simple equality implies the complex equation.



Specification statements 9

The abstract-to-concrete transformation of programs is mediated by a
relation C of refinement, which is defined so that P C Q means “any spec-
ification satisfied by P is satisfied by @ also.” This relation can appear
between abstract programs (specifications), between concrete programs, or
between one and the other. As we write

-z~ 1=0 « =218
so we will write with complete rigor

: [ —z-1=0] C z:=h'§£.

An unexpected consequence of our extension is the introduction of ab-
stract programs that do not obey Dijkatra’s Law of the excluded miracle.
These correspond to specifications that have no concrete solution, just as
negative numbers stand for insoluble equations in elementary arithmetic (“3
from 2 won’t go”). An example is the statement |true, false|; we will see that
the following holds:

true = [true, false] < faloe > .

But just as negative numbers simplify arithmetic, miracles simplify program
derivation.

QOur overall contribution is uniformity: we place program development
within reach — in principle — of a single calculus. We expect this to be
useful not only at the level of small intricacies, but in the larger scale also.
Modules, for example, can be written using specification statements instead
of concrete constructions: thus we have specifications of modules. Because
of the generality of our approach, any structuring facility offered by the
target programming language is offered to specifications also.

2 Specification statements

We introduce the syntax and weakest precondition semantics of specification
statements, moving from simple to more general forms.



10 THE SPECIFICATION STATEMENT

2.1 The simple form

The simple specification statement [pre, post| comprises two predicates over
the program variables #. Informally, it means “assuming an initial state
satisfying pre, establish a final state satisfying post.” Its precise definition
is (using 2 for “is defined to he”)

Definition 1 [pre,pest] <R > = prea(VF. post = R) v

For example, assumning ¥ is just the single variahle z, we have

[true,z = 1] < R >
true A(Yz. z=1=> R)
R[z\1)].

1l

The substitution [z\1] denotes syntactic replacement of z by 1 in the usual
way.

2.2 Confining change

We allow the changing of variables to be confined to those of interest. For
any subvector @ of &, the statement & : [pre, post] has the following informal
meaning:

assuming an initial state satisfying pre, establish a final state
satisfying post while changing only variables in @.

The precise definition of @ : [pre, post] is
Definition 2 & : [pre,post] < R> = preA (V. post == R) Q

The only change from definition 1 is that the vector of quantified variables
is now @ rather than ¥. Taking ¥ to be “z,y”, we have

z:[true,z=y|< R >
true A (Vz.z =y => R)
R[z\y}.

it



Specification statements 11

Since (z := y} < R > equals R{z\y] also, we have shown that z : [true,z =
y} and z := y have the same meaning. If we allow both z and y to change,
this i1s no longer true:

T,y : [tree,s=y|< R >
true A(Vz,y.2=y = R}
(Vy- Rz\y]).

The statement z,y : [true,z = y| can set y to z, z to y, or hoth z and y to
some third value.

2.3 Referring to the initial state

Occurrences of O-subscripted variables w; in post refer to the values held
by those variables initially. We reserve O-subscripta for this purpase, and
assume that they do not occur as ordinary variables in programs. We now
have the following informal meaning for @ : [pre, post|:

asguming an initial state satisfying pre, change only variahles in
1 to establish pest, in which O-subscripted variables refer to the
values those variables held initially.

The precise definition appears below. In practice, however, we usually
apply the simpler version given in lemma 1 following.

Definitlon 3
@t [pre,post] < R> 2 pre A (Y &. post[i\f] = R)[F\7]

where [ is some fresh vector of variables.
Q

The use of fresh variables f in definition 3 is only to aveid interference with
possible occurrences of & in R, which are rare in practice. Usually we can
apply the simpler construction below:



12 THE SPECIFICATION STATEMENT

Leronma 1 If B contasns no 0-subscripted variables,
@:[pre,post| < R > = pre A (V& post = R)[w\¥]

Proof: Immediate from definition 3.
o

Notice thatif post contains no &, then both definition 3 and lemma 1 reduce
to definition 2.

For example, taking ¥ to be “z, y” as before we have from lemma 1

z:|true,x =z+ W] <R >

true A(¥z. =10+ yo = R)[0, 0\2,¥]
R[z\z0 + yol[%o0, yo\z, y]

R(z\z +y].

I

nol

2.4 The implicit precondition

We allow the omission of the precondition in a specification statement. The
informal meaning of @ : [post] is

assuming it is possible to do so, change only variables in @ to
establish post, in which O-subscripted variables refer to the values
those variables held initially.

The mesning is given syntactically — we make the missing precondition
explicit:

Definition 4 ©:[post] = @:|{(3@ o post))[t\F], post] Q

For example, we can write

m: [ <m <k for m: [l<h, 1< m<h]
and 4 [a[s]=v] for i: [((3i ¢ a)[F]=1v), a[i]=v]
The first statement places m between | and k; the second locates an index

1 of value v in array a. If in either case the result is not achievable (e.g., if
! exceeds k, or v does not occur in a), the statement can abort.



The implementation ordering 13

2.5 Generalised assignment

We generalise assignment by giving the following meaning to the statement
z :® e, for any binary relation &:

assuming it is possible to do s0, assign to r a value bearing the
relation © to the expression e, where occurrences of r in ¢ refer
to its initial value.

Ordinary assignment statements are now the special case in which @ is “=",
But we can alse write, for example,

£ :€Es for tf possible, choose z from s
and n:<n for decrease n.

The definition is given syntactically:
Definition 8 z:0e 2 z:[z0 ¢z\z) 0

With this definition, our abbreviations above become respectively

z:|zeq (that is, £ : [s # {},z € 3])
and n:[n < ng|.

The syntax for generalised assignment was suggested {(long ago) by Jean-
Raymond Abrial.

3 The implementation ordering

For programs P and @, we give P C @ the informal meaning: “every
specification satisfied by P is satisfied by @ also.” This means that Q i5s an
acceptable replacement for P. Our precise definition is

Definition 6 P C Q iff for all predicates R,
P<R>=>Q@<R>.
V)



14 THE SPECIFICATION STATEMENT

The following theorem shows definition 6 to have the property we require:

Theorem 1 If pre = P < post > and PC Q, then also
pre = Q < post > .

Proof: Since P C @, we have P < post >=> Q < post >. The result
follows immediately.

Q
As an example of refinement between programs, let P be
if 2lz = z:=zdiv2
§ 3z = z:=zdiv3
f,
and let Q be

if 2]z — z:=zdiv2
[ ~(2|]z) = z:==zdiv3
£,

where 2|z means “2 divides z exactly”, and div denotes integer division. We
have P C @ because

P<R> = (2|z v 3|z) A
2]z = R[z\zdiv2]) A
(38| = R[z\z div3])

and
@<R> = 2|z = R[z\zdiv2]) A
(-(2!z) = R[z\z div3]).

Thus P < R >= @ < R > for any R. But @ differs from P in that @ will
alwaysterminate, even when z = 7. And Q is deterministic: if z = 6, Q will
establish z = 3. In spite of these differences, @ s an acceptable substitute



Suitability of the definitions 15

for P, and that is why we can implement P as IF 2|z THEN =z := =div 2
ELSE z:= zdiv 3 END.

We now state the well-known but crucial fact that the program con-
structors are monotonic with respect to C; only this ensures that refining
a fragment (say P above) “in place,” in some larger program, refines that
larger program overall.

Theorem 2 If F(P) is a program containing the program fragment P, and
for another program fragment Q we have PC Q, then

F(P)C F(Q)
Proof: Structural induction, over the program constructers “”, “if°, and

“do”.
<

4 Suitability of the definitions

We now show the suitability of cur definitions by proving that
pre = P < post > iE [pre, post]C P.

In fact, we prove a stronger result, dealing with the general form of section
2.3.

In long formulee, we will sometimes “atack” conjunctions for clarity, writ-
ng

this .
( that ) for (this A that).

Qur theorem is a consequence of the following two lemmas,

Lemma 2 If € and i partition the vector ¥ of program variables, then

pre A v =1y = W [pre, post] < post A€ = g >



16

THE SPECIFICATION STATEMENT

Proof: Here we must use definition 3 rather than lemma 1, since the post-

condition contains %;. We have

{pre A ¢ = ) => @ : [pre, post] < post A & = il >
if by definition 3,

post

(pre A ¥ = &) => pre A (Vﬁ':. poat[l';b\j_"] 2 = o

=g

if i)'=i'b=>(Vﬁ'1- post|F\F) = PO )[f\a’]

TR P R (Vié. post[i\f] = E’m‘ )[f\ﬁo]

=
g o V. post > PO
tf V= tg = . pos d= i

tf  since ¥, @ partition ¥
true.

Lemma 3 IfpreaAv =ty => P < post A i = tg> then

W |pre,post| C P

where © and ¥ partition the program variebles v.




Suitability of the definitions

Proof:

hence

hence
hence

hence

Aence

pre A== P < postAd=iip>

by distributivity of = over weakest preconditions,

|4
AT=thgA |V E "m,, =R
preAti= 1 (u i= i

= P<R>

pre AT=mA (V. post = R)lu\ip) = P <R >
preAT=tpA(VE. poat=> R)=>P< R >

since pre and P < R > do not contain &,
pre AV . post = R)[\F]=> P < K>

by lemma 1,
@ [pre,postl < R>=> P < R>.

17

Since R was arbitrary, we conclude from definition 8 that & : [pre, post] C P
as required.

<

Those two lemmas give us our theorem immediately:

Theorem 3 If &, i partition the program variables ©, then

if and only ¢f

preAd =t =P < postAi=ip>

% : [pre, post]C P.

Proof: “If” follows from lemma 2 and theorem 1; “caly if” is lemma 3
exactly.

<



18 THE SPECIFICATION STATEMENT
5 Using specification statements

For illustration we take the simplest of examples: we are given an array
a[0..N — 1] and must find an index ¢ at which the value v occurs. And we
may assume there is such an 1. The program is

I‘:[ogid\!] @)

alt]=v

This ¢ a program, though abstract, and perhaps we can execute it directly
(see furtber below). But [or now, we assume not — and so we “solve” it,
refining it to statements we can execute.

First we use definition 4, rewriting

i: [(3 P0< i< NAali]=v), Of['.]':iv] (3)
We take as invariant

0<i< N
(35.i<i<NAg[jl=v)

-~

Iy =

The variant is N — {. With these and theorem 3, we can prove that (3)

C 1 {(3i0<i<NAafi|=v), Iny;

doafi] #v —
. Inv <t
* alil]#v > Inv
od

Notice that the fragments “to be developed” are written in-line, and that
the above mixture of abstract and concrete is still a program. The first
component we can refine to 1 := 0, and the second we can refine tot ;== 14 1.
For illustration, we show the second refinement in more detail: by theorem
3 we need

0<i<N
(Fj. i< <NAaff]=v) — =it <t < N
ali] # v T UEYTIN @sici< NAail=v)

i =1

)



Using specification statements 19

By the semantics of assignment [12], the consequent is

w<i+l< N
(F5.i+1 <5< NAagljl=1v).

That follows easily from the antecedent.

Having our development, we may wish to collect it and others intoa small
“database module,” based on arrays. As is typical in modern programming
languages, the implementation

t:=0;

doali]#v — s:=v+1ad
would be hidden within the “implementation part” of the module. What
should appear in the definition part? We suggest (using the syntax of
Moadula-2 [49])

module Database;

export Find, N;
const N =7;
var g: array [0.N — 1] of 7;

procedure Find(v: 7, vari: [0.N - 1]};

begin
i [ogmﬂ]
’ ali]=v

end Find

end Database

This s not informal. Except for the “7,” the module contains only construc-
tions whose semantics are known precisely. Now a programmer wishing to
implement (2) can do so directly, using the copy rule of Algol-60 (suitably
extended for modules). He just writes Find(v,1), whose meaning is given
hy substituting the procedure body from the definstion module. This is
discussed further in [34].

Thus we show that our approach applies not only to small constructions,
and in particular that it supports the view that the “definition module”
specifies the “implementation module.”



20 THE SPECIFICATION STATEMENT

6 Miracles

In [12] it is stated that for all programs P,
P < false > = false. (4)
This is no longer true: we have for example

[true, false] < false >
true A (V4. false = false)
= true.

1l

The statement [true, false] is called a miracle, because it implements any-
thing: wehave for all R that P < R >=> [true, false] < R >, and so for any
P whatsoever,

P C [true, false].

Although [true, false] implements anything, it cannot itself be imple-
mented by anything free of miracles. This ig because “P is free of miracles”
implies by (4) that P < false >= false, and so taking R = false in definition
6, we have [true, false] L P.

A program which cannot be rid of miracles is infeasible in the following
precise way:
Definition 7 We say thet a program P s feasible iff
P < falge > = falge.
Otherwise st 15 infeasible, or miraculous. ©
Clearly, all programs free of specification statementa are by (4) feasible:

indeed, they are “implementations” already. For specifications, however, we
have the following

Theorem 4 @ : [pre, post] is feasible iff

pre => (3@ o post))[w\¥].

Proof: Definitions 3, 7, and predicate calculus.
Q



Guarded commaunds are miracles 21

Miracles can arise “accidentally” in program development if we make an
incorrect design step; this is discussed in more detail in [25] and [37]. For
the present, we take a trivial example: we (mistakenly) want to implement
z : [z = 0] a8 a sequential composition whose second component is z := y.
That is, we want to solve the following formula for P:

z:[£=0] [ Piz=y (5)
By theorem 3, we have {5)
if t=2Ay=pw=>(Pjz:=9)<r=0Ay=gy>

iff by sequential composition
t=pAy=p=>FP<r=yg<z=0Ay=y>>

iff t=mpAy=pw=>P<y=yw=0>

tff by theorem 3 again
z : [true,y = D] [ P

We have found our solution P, showing unconditionally that
z: [x=0] C 2z:[truc, y=0]; z:=y

In fact, the above shows that z : [true, y = 0] is the most general solution of
{5), and so we take it as representative of them all, calling it “the” solution.
This development technique, in which formulae like (5) are so solved, is the
subject of [25].

But, after all, the statement z: [¢true | y = 0] is infeasible; and the im-
portance of the example is ita illustration of that consequence of mistaken
design steps. The formula (5) is not insoluble, but we cannot develop exe-
cutable code from its eolution.

7 Guarded commands are miracles

Miracles are a strict extension of our programming capabilities — clearly,
since they cannot be executed. We now show how close miracles are, never-
theless, to being in the original language.



22 THE SPECIFICATION STATEMENT

A guarded command has the syntactic form
B P,

where B is a boolean expression and P is the command guarded. Originally,
these occurred only within if and do constructions. Here we give meaning
to guarded commands standing alone.

Informally, we say that a “naked” guarded command cann¢t be executed
unless its guard is true. More precisely, we have

Definition 8 (B—+P)<R> = B=>P<R> Q@

If B is true, then B — P behaves like P. But if B is false, we consider
B — P to be miraculous: we may as well, since in this case we cannot
execute it to check.

Thus we have a compact notation for miracles: they are naked guarded
commands whose guards are not identically true. For exarnple, our first
miracle [¢rue, false] can be written for any program P

folae — P.
The following theorem shows that in fact every miracle can be written this

way. We have

Theorem 5 For any program P, feasible or not, there is ¢ guard H and o
Jeasible program Q such that

P=B—-Q
Proof: We take

B = -P < falze >
Q = #fB—- PA1fi

Definition 7 shows that Q is feasible, and definition 8 shows that the equality
holds.
<@



Guarded commands are miracles 23

We can also define also a non-determinijstic composition | and & “guard-
less if " achieving correspondence with the original meaning of these con-
structs. We have

Definition 9 For any programs P and @, the program P | Q is defined
(P]Q)<R> = P<R>AQ<R>.
Q

Definition 10 For any program P, the program if P fi 15 defined
ifPfic<cR> = -P<false> AP<R>.
o

Definition 9 is simple non-determiniatic choice; in fact

PlQ = i true—> P [ true— Q8.

Definition 10 s an extension of Dijkstra’s language (necessarily, since
it is not monotonic with respect to C; it ia in fact the “+” operator of
[25]). Nevertheless, the meaning that definitions 8, 9, and 10 give to the if
construction if (li. B; — P;) B i exactly as befare. We bave

Theorem 6 If P; are feasible programs, then
(. Bi=»P)AB<R>= (Vi.B)A(Ai. B; = Pi <R >).
Proof: Let P be ([i. B; — P;). By definitions 9 and 10,

P<B>= (M. Bi=>Pi<R>) (6)
Hence hecause the P; are feasible,
—P < false > = =(Ai. Bi=> falze) = (vi. B). (7
The result now follows from {6), {7), and definition 10.

V)

Unfortunately, we must note in conclusijon that because the construction
if --- fi is not monotonic, we have in general

PCQ does not imply ifrPpfiC if QA

This limits ita use in program development.



24 THE SPECIFICATION STATEMENT
8 Positive applications of miracles

By definitions 7 and 6, miracles refine only to other miracles — and hence by
Dijkstra’s law never to programs. Thus if a specification everall is miraculous
(we can check using theorem 4), the development is doomed.

In VDM, where specifications are written as predicate pairs like ours, the
check for miracles is the “implementahility test” [26, p. 134]. In Z [18], [38],
[48], where specifications are single predicates corresponding to our implicit
form of section 2.4, miracles cannot be written: definition 4 and theorem 4
show that single predicate specification statements are always feasible.

From a feasible beginning, miracles can arise through mistaken refine-
ment tactics, As shown in section 6, the “improper division” of z := 0 by
T ;= y gives the miraculous z: [true , y = 0]. If we recognise the miracle
then, we could stop there and try some other tactic; if we don’t, we’ll be
stuck later. But the rules for such divisien (the weakest prespecification of
(25]) are simpler now that soundness has been delegated to the unimple-
mentable miracles: there is less need for “applicability conditions.”

There is other potential for the deliberate use of miracles. Consider the
following assignment, in which f is some function hard to calculate but easy
to invert:

z:= f(c) (8)
And suppose in a variahle y we might have the desired answer already.
We can make the following refinements, in whicb both right hand sides are
miracles:

z:=f(c) E c=["y)>z:=y (9)

z:=f{c) T c#[y)—z:=/(c) (10)
Neither (9) not (10) can be implemented on its own. Case {9) can be exe-
cuted only when y does contain the desired answer already; case (10) can be
executed only when it doesn’t. But their | combination is not miraculous,
and can always be executed:

(c=/tW)—>z=9) A7) > 2= f(e) (11)
Since PC @ and P T R implies P C Q[ R (easily shown from definitions 6

and 9), we have refined (8) to (11). Such developments are treated also in
(1] and {43).



Positive applications of miracles 25

Another application is as follows, Ordinarily we limit the syntax of our
concrete programming language so that miracles cannot be written in it: no
specifications can appear, nor naked guarded commands. If we relax this
restriction, allowing naked guarded commands, then operational reasoning
suggests a backtracking implementation. For example, consider the following
backtracking strategy for finding the position i of a value v in an array
a[0.N — 1]:

Choose 1 at random from the range 0..N — 1, and evaluate a[i]=
v. If equality holds, then terminate; otherwise, backtrack and
try again.

We have this refinement:
i: [a[i] = v

C if
=0 i:=N-1,
a[i] = v — skip
fi

We are using the generalised if--. ff of section 6, which here allows abortion
if its body is miraculous; and the body is miraculous only when no branch
of the alternation can avoid the miraculous behaviour to follow. In this
context if - -- fi resembles the “cut” of Prolog, allowing failure (preventing
backtracking) if no solution is found within (beyond). If there is a successful
branch, however, the implernentation is obliged to find it: only then can it
execute the second statement — which we could syntactically sugar, writing
force a[§) = v. Note that the first statement can be written i: [0< 1 < N].

A third opportunity for exploiting miracles is in novel proof rules. We
introduce for a moment the weaker relation < between programs, which
bolds if for all predicates R

P<R>AQ<true>=> Q< R>
This is simply partial correctness. Now in the style of VDM we can consider

a loop invariant to be a statement, rather than an assertion: any number
of iterations of the loop body must refine the invariant statement 7. The



26 THE SPECIFICATION STATEMENT

advantage is that we have easy reference to the initial state; our development
law is

H I € I, 6—>5§
and X < [, force -G

then X < JI; doG — Sod

We “explain” this rule as follows (but it is proved using weakest precondition
semantics}]. The first condition requires preservation of the effect of I by
one more execution of the body G — §. If G holds, the body behaves like
S; but if G fails (and therefore we should not execute §), the first condition
still holds because G — § in that case is miraculous, refining anything
(and akip in particular).

Similar reasoning applies to the second condition. For the result, we
argue informally that

X
I, foree-G

1A

LA

by induction over the first condition
I, G- 8§; -G — §; forece-G

1A

INdoG— Sod

Take for example the following program, in which we calculate the sum
8 of an array a indexed by 0 <1 < N,

¥ = an:[s=(Zi{:05i< N:alt])}

I = gn:[s=(Li:0<¢{<n:a[i]JAO0<L i< N]
G = n#&N

§ = s,ni=es+an|,n+1

Because I T &, n = 0,0 (this is the initialisation), and because we can prove
the conditions hold (using definitions and theorem 3), we have by our rule
above

X I don#N —58,1:=58+a[n],n+10d

<
< 8,n:=0,0
don#N —+a,i:=s+a[n],n+1o0d



Positive applications of miracles 25

Another application is as follows. Ordinarily we limit the syntax of our
concrete programming language so that miracles cannot be written in it: no
specifications can appear, nor naked guarded commands. If we relax this
restriction, allowing naked guarded commands, then operational reasoning
suggests a backtracking implementation. For example, consider the following
backtracking strategy for finding the position 1 of a value v in an array
al0.N - 1]:

Cboose 1 at random from the range 0..N ~1, and evaluate alf] =
v. If equality holds, then terminate; otherwise, backtrack and
try again.

We have this refinement:
i: [e[t) = v]

C if
1:=0[---[¢:=N-1;
a[i] = v — skip
fi

We are using the generalised if - - - fi of section 6, which here allows abortion
if its body is miraculous; and the body is miraculous only when no branch
of the alternation can avoid the miraculous behaviour to follow. In this
context if --- fi resembles the “cut” of Prolog, allowing failure (preventing
backtracking) if no solution is found within (beyond). If there is a successful
branch, however, the implementation is ohliged to find it: only then can it
execute the second statement — which we could syntactically sugar, writing
force a[i] = v. Note that the firat statement can be written i: [0< i < N].

A third opportunity for exploiting miracles is in novel proof rules. We
introduce for a moment the weaker relation < between programs, which
holds if for all predicates R

P<R>AQ<true>=> Q@< R>
This is simply partial correctness. Now in the style of VDM we can consider

a loop invariant to be a statement, rather than an assertion: any number
of iterations of the loop body must refine the invariant statement f. The



26 THE SPECIFICATION STATEMENT

advantage is that we have easy reference to the initial state; our development
law is

If I < I, G—§
and X < I; force~G

then X < I; doG— Sed

We “explain” this rule as follows (but it is proved using weakest precondition
semantics). The first condition requires preservation of the effect of J by
one mote execution of the body G — §. If G holds, the body behaves like
S; but if G fails (and therefore we should rot execute S}, the first condition
still holds because G — § in that case is miraculous, refining anything
(and skip in particular).

Similar reasoning applies to the second condition. For the result, we
argue informally that

X
I, force—G

1A

[Fa

by induction over the firat condition
ILG—8; ---+;G — 8, force—-G

1A

I do G —- Sad

Take for example the following program, in which we calculate the sum
& of an array a indexed by 0 < 1 < N.

X = g [8=(T7:0<4{<N:afi])]

I = gn:s=(Li:0<i<n:afi])A0< i< N}
G = n#N

§ = an=a+an),n+1

Becauge I C #,n := 0,0 (this is the initialisation), and because we can prove
the conditions hold (using definitions and theorem 3), we have by our rule
above

X I don#N —s,i:=2+a[n|,n+1od
g,n:=0,0;

don# N —s,i:=s5+aln],n+10d

A IA



Conclusion 27
9 Conclusion

We have extended Dijkstra’s programming Janguage with a construct allow-
ing sbstract programs, as predicate pairs, to be written within otherwise
conventional “concrete” programs. The advantages are:

¢ Program development takes on the character of solving equations —
well-established in mathematica generally, The transformation from
abstract to concrete occurs within a single semantic framewaork.

« Aslambda-expressions allow us to write functions without names (rather
than the laboured “f where f{z) = ...") so we can write specifica-
tions directly, avoiding “P where ... = P < --- >." Instead of a
lambda calculus, this leads to a refinement calculus.

¢ We gain miraclesas an artefact of our extension, and there is increasing
evidence that they sirnplify the development process. In [37] it is
shown that applicability conditions for refinement can be simplified
— or even removed altogether — because mistaken development steps
simply lead to miracles from which eventually progress must cease.
Also in [1], [25], [41], and more recently [43] it is argued that miracles
simplify the theory, In [33} it is shown that miracles allow proof of
certain data-refinements that were not provahle previously.

e The lack of distinction between abstract and concrete programs allows
their treatment as procedures to be made more uniform, in the senge
of ALGOL-60: a procedure call, whether abstract or not, is equivalent
to ite text substituted in-line. This and the resulting treatment of
parameters is explored in [34].

» The programmet’s repertoire is increased by providing easy access to
non-constructive idioms, for example: i: ja[i] = v] finds the index i of
value v (n array a; m: [I < m < A| chooses m between [ and A,

» A ready connection is made with state-based specifications such as
those of Z [18], [38], [48], allowing their systematic development into
code.

A refinement calculus would be a collection of laws, each proved directly
from weakest precondition definitions. They could be used, without further



28 THE SPECIFICATION STATEMENT

proof, in program developments — just as one uses a table of integrals in
engineering. For example, one such law is

Assignment law: w: [post[w\E][w\v], post]
C w=F

It is easily proved from definitions 3 and 6. A comprehensive collection of
such laws is given and demonstrated in practice in [37)].

Such a development style would be very close to VDM [26], where spec-
ifications are predicate pairs just as here. But Jones does not base VDM on
the weakest precondition calculus, nor does be present a general refinement
relation operating uniformly between all programs whether abstract or con-
crete {(although be could do so). Anotber difference is our use of classical
logic rather than the logic of partial functions [26], [8]. Jones does not treat
miiracles.

In the Z specification technique, specifications are given as single pred-
icates corresponding to our “implicit preconditions”. Thus where we write
n: [0 <n < ng for “decrease n, but not below 0,” in Z one would write

(omitting types)

n,n
0<n'<n

In Z there is no commitment to a fixed state {our ¥); deliberately not,
because this gives it the Aexibility needed to build large specifications from
their smaller components. Examples of large-scale Z specifications can be
found in [18]. But when algorithmic structures are introduced — i.¢., once
development begins — this lack of commitment becomes a hindrance.

Therefore one aim of cur work is to provide a development method specif-
ically for Z, by identifying the two specifications above then using the weak-
est precondition calculus to reach a concrete program. Another approach to
Z development — derived from ours — is given in [27].



Acknowledgements 29

10 Acknowledgements

Back [4] first embedded specifications within programs usging the weakest
precondition calculus. His specifications — like those of Z — consist of one
predicate only, and so he cannot take advantage of miracles. More recently
Morris [41] presents independently the same extension of Back’s work as
we do; we have had useful discussions since discovering each other. Our
refinement relation CC is the same as theirs.

Meertens [30] also has developed these ideas, using predicate pairs, but
gave them a different meaning: (in our notation) he defines

([pre,post] < R > = pre => (3 7. post)
A (VT.post = R)

But Meertens’ definition does not have the property of lemma 2, which we
consider to be fundamental; in general, for Meertens

[pre, post] < post > F# pre,

Hehner [20] uses predicate pairs for specifications as we use specification
statements, but he does not integrate the approach hy giving thema weakest
precondition semantics. He also uses the refinement ordering .

The earliest example of a formulation like ours for the weakest precon-
dition of a specification seems to be Hoare's [22], where it is given as the
axiomatic meaning of procedure calls. But he did not separate abstraction
from procedure calling, as we have done (and discuss further in [34]). In [14,
p- 153] also the definition can be found, again coupled to procedure calls.

The idea of using pre- and post-conditions to describe program behaviour
is widespread, and its use in VDM is notable. In fact our approach is very
close to VDM, and I hope identical in spirit. Jones does not however make
his specifications “first-class citizens” as we do. An advantage of Jones’s
natural deduction style is perhaps its appeal to the wider audience of prac-
tising programmers, just as natural deduction in logic is so-called because
it’s more “natural.” But we prefer the increased freedom of the axiomatic
approach directly (in logic, too): it offers more scope to the experienced
user, who can construct new laws {meta-theorems) to suit his taste and
skill.



30 THE SPECIFICATION STATEMENT

{25] provided the direct inspiration for treating specifications as pro-
grams; there similar results are obtained in the relational calculus. Miracles
appear as partial relations, but are not discussed in detail.

Most recently, Nelson [43] has integrated specifications and programs,
but his ordering over these objects differs from ours. In particular, it does
not allow the reduction of non-determinism — an essential idea in program
development. He discusses miracles at some length.

Much of this work was done in collaboration with Ken Robinson. I thank
Rick Hehner, Joe Morris, Doaitse Swierstra, membera of IFIP 2.1, and the
referees for their very useful comments.



Specification statements and refinement

Carroll Morgan Ken Robinson

Abstract

We discunas the development of executable programa from atate-
based specifications written in the language of first-order predicate
calculus. Notable examples of such specifications are those written
using the techniques Zand VDM; but our interest will be in the rigor-
ous derivation of the algorithms from which they deliberately abstract.
This is of course the role of a development method.

Here we propose a development method based on specification state-
menis with which aspecificationa are embedded in programs — atanding
in for developments “yet to he done.” We show that specification state-
ments allow deacription, development, and execation to be carried out
within a single language: programs/specifications become hybrid con-
atructions in which hoth predicates and directly executable operationa

can appear.
The use of a single language — embracing both high- and low-leve]
constructs — has a very considerable influence on the development

style, and it ia that influence we will discusa: the specification state-
ment i8 described, its associated caleulus of refinement is given, and
the use of that calculns is illuatrated.

1 Introduction

In the Z [18, 38, 48] and VDM [26] specification techniques, descriptions
of external behaviour are given by relating the “before” and “after” values
of variables in a hypothetical program state. It is conventions] to assume

“Appeared in IBM Jnl. Res. Dev. 81(5) (Sept. 1987). ©®Copyright 1987 by Interna-

tional Business Machines Corporation.

31



32 SPECIFICATION STATEMENTS AND REFINEMENT

that the external aspects are treated by designating certain variables as
containing initially the input values, and certain others as containing finally
the output values. As development proceeds, structure is created in the
program — and the specifications, at that stage more “abstract algorithms,”
come increasingly to refer to internal program variables as well. For example,
we may at some stage wish to describe the operation of taking the square-
root of some integer variable n; adopting the convention that n refers to the
value of that variable after the operation, and ng to its value before, this

description could be written:
2

n=np (1)
Ordinarily, we would call the above a spectfication, because “conventional”
computers do not execute (i.e., find a valuation making true) arbitrary for-
mulaa of predicate logic (logic programming languages deal only with a
restricted language of predicates).

Twonotable features of our specification (1) above are its non-determinism
and that it is partial. It is non-deterministic in the sense that for some ini-
tial values ng (e.g., 4) there may be several appropriate final values n (2
in this case). It is partial in the sense that for some initial values (e.g., 3)
there are no appropriate final values. We will see below that our proposed
development method makes this precise in the usual way (e.g., of [12]): the
non-determinism allows an implementation to return either result {either
consistently or even varying from one execution to the next); and the im-
plementor can assume that the initial value is a perfect square, providing a
program whose behaviour is wholly arbitrary otherwise.

In presenting a development technique, we are not ignorant of the fact
that VDM already has (or even is) one; rather we are concentrating our
attenijon on Z, where development has been less well worked out. In this our
aim is most definitely to propose a light-weight technique — as Z is itself —
in which existing material is used as mucbh as possible. Dijkstra's language
[12] therefore was chosen as the target, because it has a mathematically
attractive and above all simple semantic basis, and because it includes non-
determinism naturally.

The key to a smooth development process — the subject of tbis paper —
is we believe the integration of description and execution in one language.
This is not achieved, as is so often proposed, by restricting our language to
those specifications which are executable, and thus treating specifications



Introduction 33

as programs; instead we extend the language to allow ourselves to write
programs which we cannot see at first how to execute: in effect we treat
programs as specifications. It is precisely the lack of semantic disiinction
between the two that allows finally our smooth transition from abstract
description to executable algorithm.

We will assume some familiarity with Dijkstra’s weakest pre-condition
concept and its associated guarded command programming language [12].

1.1 Weakest pre-conditions and specifications

In [12], Dijkstra introduces for program P and predicate R over the program
variables, the weakest pre-condiison of R with respect to P; he writes it

wp(P, R)

This weakest pre-condition is intended to describe exactly those states from
which execution of P is guaranteed to establish R, and Dijkatra goes on to
develop a small language by defining for its every construct precise syntactic
rules for writing wp(P, R) as a predicate iteelf. For example, the meaning
of assignment ir this language is defined as foliows for variable z, expression
F, and post-condition R:

wp(“z := E", R} = R[z\E]

The potation [z\E] here denotes syntactic replacement in R of z by E in
the usual way (avoiding variable capture etc.). Thus

wp(“z:=2-17, z 2 0}

z > 0}z\z -1

E::l))lz\o ] )
z>0

We can specify a program P by giving both a pre-condition (not neces-
sarily weakest) and a post-condition; our pre-condition and post-condition
predicates we will usually call pre and poat:

pre = wp(P, post) (3)



34 SPECIFICATION STATEMENTS AND REFINEMENT

Informally, this is read “if pre is true, then execution of P must establish
post”; formally, we regard the above as admitting only program texts P for
which it is valid. Either way, it is a specification in the sense that it directs
the implementor to develop a program with the required property.

Our point of divergence from the established style (3) is to write instead
[pre , post]C P (4)

We take {3) and (4) as identical in meaning, but in (4) the constituents are
exposed more clearly: [pre , post] is the specification; C is the relation of

refinement; and P is the program to be found. Thus we will read (4) as “the
specification [pre , post] is refined by P.”

The principal advantage of the alternative style is that [pre , post] can
take on a meaning independent of ite particular use in (4) above: we will
give it a weakest pre-condition semantics of its own. It is just this which
removes the distinction between specification and program — not that they
both are executable, but that they both are predicate transformers, being
suitable first arguments to wp(, ). Programs are just those specifications
which we can execute directly.

The refinement relation C is likewise generalised, and we do this imme-
diately below.

1.2 Refinement

In (4) we have introduced an explicit symbel “C” for refinement, and we
now give its precise definition (as given e.g., in [20]}:

Definitlon 1 For programs P and Q, we say that P is refined by Q, written
P C Q, iff for all post-conditions post:

wp(P, post) = wp(Q, pest).

We justify the ahove informally by noting that any occurrence of P
in a (proved correct) program is justified by the truth of wp(P, post} at



Introduction a5

that point, for some predicate pest. No matter what post it is, the relation
P C Q gives us wp(Q, post) as well, so that @ is similarly justified: thus Q
can replace P. Operationally, P C Q whenever Q resolves non-determinism
in P, or terminates when P might not.

This refinement relation is independent of the notion of apecification, and
can be evaluated for any two constructs whose weakest pre-condition sernan-
tics are known. For example, we have in the guarded command language of
12]

ifa<b — a:= a—1%
l 82a ~ b:=4-a
i

C fagsb-—+a=a-b
[ agd— b:=14-a
fi

The first program is non-deterministic, executing either branch when a = &;
the second program is a proper (4.e., non-identical) refinement of it because
this non-determinism has been removed. Such refinement relations between
programs allow us to implement the non-deterministic program above in
more conventional (deterministic) languages; we transcribe the deterministic
refinement as follows:

IF a<=b THEN a:= a-b
ELSE b:= b-a
END

1.3 Specification statements
From section 1.2 above, we can see that in formal terms we should have
ipre , post]| C P iff for all B

wp([pre , post], R) = wp(P, R) (5)

But for this to have meaning, we must define its antecedent; as in the defini-
tion (2) above for assignment statements, we will express wp([pre , post], R)



36 SPECIFICATION STATEMENTS AND REFINEMENT

as a syntactic transformation of the predicate B. We do this below, moving
from simple to more general cases.

1.4 The simple case

In the simplest case we have two predicates pre and post each over the
program variables in a single state. We have

Definition 2 Let the vector of currently declared program variables be ¥;
Jor any predicates pre, post, and R, we define

up(|pre, post], R) = preA(Vv. post => R)
<@

Note that our quantifiers always extend in scope to the first enclosing paren-
theses (V.:--). As indicated, we will use ¥ to refer to the vector of all pro-
gram wariables, and will not concern ourselves very much with how they are
declared.

Section 2 discusses the consistency of definition 2 and formula (5); here
we will justify the definition only informally. We regard [pre, post] as a
statement, and its first component pre describes the states in which its ter-
mination is guaranteed; thus pre is a necessary feature of our desired weakest
pre-condition, and in fact appears as the first conjunct there. But the weak-
est pre-condition must guarantee more than termination: it must ensure
that on termination, B holds. From the second component of [pre, post],
we know that post describes the states in which it terminates — and so we
require only that in all states described by post the desired R holds as well:
this is the second conjunct.

We now continue with some notational extensions and abbreviations.

1.4.1 Confining change

We allow a list of variables @, in which appear all the variables which the
statement can change; variables not in # must retain their initial values.
The precise definition of @ : [pre, post] is



Introduction 37

Definition 3 Let the vector of currently declared program variables be v,
and let & be a sub-vector of ¥, for any predicates pre, post, and R, we

define
wp(it : [pre,post], R) = pre (Y@ . post = R)
v

The only change from definition 2 is that the vector of quantified variables
is now i rather than ¢. Taking for example ¥ to be “z, ", we have

wp(z : [true,z = y|, R)
truen(Vz.z=y=> R)
R[z\y].

Since also wp(z := y, R) = R|z\y], we have shown “z : [true,z = y|” and
Yz := y” to have the same meaning.

fl

1.4.2 Initial values

So far, we can apecify only that a certain relationship (e.g., post) i8 to hold
between the final values of variables. We now adjust our definiticn 8o that
O-subscripted variables in the second component of a specification statement
can be taken as referring to the fnitfal values of variables.

Definition 4 Let the vector of currently declared program varisbles be ¥,
and let © be a gub-vector of ¥; let pre and R as before be arbitrary predicates,
and let post be e predicate referring optionally to O-subscripted variables oy
as well. We define

wp(i : [pre, post], R) = pre A (V@ . post = R)[ip\7]
— provided R containg no O-subacripted variables .

v

By our definition we have reserved the use of O-subscripts to denote initial
values, and so must forego their use for other purposes: this is why R



38 SPECIFICATION STATEMENTS AND REFINEMENT

-

should contain no %. It i3 possible, however, to take the view that in R
slso the variables iy refer to initial values; this leads in fact to the weakest
pre-specification of Hoare and He [25]. Josephs [27] has investigated this,

We note that if post does not refer to initial values, then definition 4
reduces to definition 3.

The substitution [tp\¥] may require renaming of the bound variables @,
but this is often unnecessary; for example, taking ¢ to be “z,y” as before,
we have

wp(z : [true, 2 = T + yo|, R)

trae A{V2z .z =20+ yo = R)[2o, Yo\, ]
R[z\z0 + yol[z0, o\, y]

R[z\z + ¢

HoH o

This is of course wp{z := z + y, R), as one would hope.

1.4.3 Implicit pre-conditions

If the pre-condition is omitted, we will supply a default condition for it as
follows:

Definition 5 Let the vector of currently deciared program variables be @,
and let @ be ¢ sub-veckor of U; let post be a predicate referring optionally to
0-subscripted variables &), We define

©: [post] abbreviates ©: [(3& e post)[i0\V], post]

<

Thus the ¢mplicit pre-condition is simply “it is possible to establish the post-
condition”. This is exactly the view taken in Z specifications generally, where
only a single predicate is given; in our criginal square-root example {1) —
writing it n: [n® = ng] — the implicit precondition is (I n . n? = ng)[ro\n]
which we can simplify to (3 & . k? = u). That is, termination is guaranteed
only if n is a perfect square.



Introduction 39

1.4.4 Generalised assignment

The assignment statement z := ¥ establishes the post-condition * = F
while changing only £ — it has the same meaning, therefore, as the specifi-
cation statement r: [z = E[z\zg]] (in which the renaming [z x;] is necessary
because occurrences of z in E are initial values). Exploiting this, we define
below a generalised assignment statement in which the binary relation = of
ordinary assignment can be replaced by any binary relation desired.

Definition 8 If “a® is g binary relation symbol, then for any variable z
and ezpression E,

z:4F abbreviates z: [z 4 E[z\z)]].
@

Thus we have that

z:< z decreases z; and that
m:E & chooses a member m from the set &.

Note that in the second case, our implicit pre-condition is “the set s is not
empty”:

m:c s
= m: [m€ 4
= m: [(m' e m'cs) , mes]
= m: [s#{}, mes

This abbreviation was suggested by Jean-Raymond Abrial.

1.4.5 Invariants

Often a formula appears as a conjunct in both the pre- and the post-
conditions, thus making it an invartant of the statement. The following
convention, suggested in [20], allows us to write it only once; we abbreviate
lpre Al , I A post] by

[pre . I, poat|



40 SPECIFICATION STATEMENTS AND REFINEMENT

Thus [pre , I, post]C Q iff

preAl = wp(Q, I A post).

‘The sbove convention is useful when developing loops, as we will see in
section 3.

2 The refinement theorems

The following theorems justify our choice of semantics for the specification
statement. {Their full proofs may be found in [35].) The first theorem shows
that for every specification there is a specification statement that satisfies it
trivially.

Theorem 1 If & and © partition the vector ¥ of programn variables, then
Jor any predicates pre and post

preAT =% = wp(&@ : [pre, post], post A & = &)

Proof foutline): The resuit follows by straightforward application of def-
inition { and predicate calculus, except for the possible oceurrences of 0-
subacripted variobles in post A & = fy. Since these are not program varn-
ables {we never declare e.g. o in a program), we can avoid the problem by
a systematic renaming, proving instead that

preAT =% = wp( b : [pre, post], post[W\T] A T = )

Thig technigue 19 vaed also in the proof of theorem 8 in section 5.1, given in

Jull,
v

T'he consistency mentioned in section 1.4 follows easily from the above, tak-
ing # = ¥ and post free of ty; clearly other specialisations are profitable as
well.

The complementary problem is refining further a given specification
atatement; the following theorem shows how this can be done.



The refinement calculus 41

Theorem 2 If @ and 4 partition the program variables ¥, and if
preAd =1 = wp( P, post A & = i)

then
@ : [pre, post]C P

Proof (outline): The proof again simply applies definitions, this time defi-
nitions 1 and {; the O-subscripts are avoided as before.
<

To surnmarise: theorem 1 shows that &: [pre , post] is always g solution
to the specification (of P):

preAv =1 = wp(P, post A € = 1)

Theorem 2 shows it to be more general than any other solution; thus overall
we have that is it the moat general solution.

3 The refinement calculus

We now move to our main concern. With the definitions of section 1 we
can mix specifications and executable constructs freely, and program de-
velopment becomes a process of transformation within the one framework.
But this is only the beginning — the definitions supply the “first princi-
ples” from which more specialised techniques spring, and we car use these
derived lawa of refinement directly in our development of programs. Each
law is designed to introduce a particular feature into our final program,
and the process overall comes to resemble the natural deduction style of for-
mal proof, where our goals are not axioms but rather directly executable
constructs (the Vienna Development Method [26] has a similar flavour).

We will present the laws in the form

before-refinement

ide-condition
after-refinement Fige-conauty




42 SPECIFICATION STATEMENTS AND REFINEMENT

and by this we mean: “if stde-condition is universally valid, then
before-refinement C after-refinement”

Often, there is no side-condition — this indicates that the stated refinement
always obtains.

3.1 Strengthening the specification

Generally speaking, refnement sirengthens a specification, and it is charac-
teristic of our refinement calculus that no check is made against strengthen-
ing a specification too much (a notable difference from VDM). The advan-
tage of this is simplicity of the laws (law 11 provides a striking example);
a disadvantage is that unproductive refinement steps may go longer unno-
ticed. But there is no danger of invalidity resulting from over-strengthened
specifications, for we will see tbat they can never provably be refined to
executable code.

There is a simple feasibility teat that can be applied to any specification,
and itsfailure predicts the failure of the refinement process: we simply check
that the apecification satisfies Dijkstra’s Law of the Ezcluded Miracle [12, p.
18] (paraphrased)

“For all executable programa P,

wp( P, [alee) = false®

If the specification failed this law, then so would any refinement of it; and
since no ezecutable program fails the law, we are forced to conclude that
such a specification can never be refined to an executable program. For
specifications, direct calculation yields tbat #: |pre , post] is feasible iff
pre = (31 . post)[i\%). This was first pointed out by Robinson [47).

The essence of our advantage is therefore that our laws do net force us
implicitly to apply a feasibility test at their every application: very often
the correctness of a development step is obvious. Further discussion on this
topic can be found in [35].



43

The refinement calculus
Our first two lawa deal with weakening the pre-condition and/or strength-
ening the postcondition of a specification.

Law 1 Weakening the pre-condition; the new gpecification iz more robust

than the old (i.e., st terminates more often):

: [pre , post] .
: [pre' , post} pre = pre

El

L

v

Forexample, n: [ >0, n=ng~1] C n: [n 20, n=1ng—1].

Law 2 Strengthening the post-condition; the new specification allows less

choice than the old:

: [pre , post]

Tpre , poot] pre=> (V& o post' = post) [\ 7]

e

8

v

For example, n: [true , n 2 0] C n: [true , n > 0]
It is worth noting that a special case of law 2 occurs when ¢ and @ are

the same; then we have for the side-condition
pre =—=> (V¥ & post' = post) |ip\ ¥

Renaming ¥ to % throughout, this is equivalent to
pre[d\d] —> (V5 o post' => poat) [\T][A\&]

which we may simplify to

pre[i\w] = (V¥ o post' = post)
The quantifier ¥ ¥ can be discarded since the antecedent contains no ¥, and
propositional calculus then gives us as our special case the appealing

pre[T\&| A post' = post



44 SPECIFICATION STATEMENTS AND REFINEMENT

Law 3 Restricting change; the new specification can change fewer variables
then the old:

@,z: [pre , post]|

@: [pre , post]

<

For example, z,y: [z = yo] C 2: [z = yo|.

In law 4 below , we use the compact aymbols |[ and ||, instead of the
mare conventional begin and end, to delimit the scope of local variable
declarations,

Law 4 Introducing fresh local variables (where “fresh” means not otherwise
occurring free):

: [pre , post|

_ 7 ia a fresh variable
[var x; @,z [pre, post| ||

v

For example, /: |f =naY C |[vard; [,i [f=al]]].

3.2 Introducing executable constructs

The following laws allow us to introduce constructs from our target pro-
gramming language.

Law 5 Iniroducing abort:

: [false , post]
abort

V4

Since abort C P for any P, we can by transitivity of C have any program
as the target of law 5. Thus for any predicate difficult(rn), we still bave the
easy refinement n: (8 <0An >0, difficelt(n))] T n:=1T.



The refinement calculus 45

Law 6 Introducing skip:

a: [post[w\F] , post]
skip

Q@

I
'E'.'

For example, z,y: [z =y, z = yo]

Law 7 Introducing assignment:

: [post[t’h,i’r\i, E] , paat]
@:=FE

Q@

For example, z: [true , s =29+ y] C z:=z+y.

The next two laws are the weakest pre-specification and weakest post-
specificetion constructions of Hoare and He [25], with which one can *divide”
one specification A hy another B, leaving a specification @ such that

AC @B {(law 8: weakest pre-specification)
A C B Q@ (law 9: weakest post-specification)

Law 8 Introducing sequential composition (weakest pre-specification):

@: [pre, post|
@ [pre, wp(P, poet)]; P

@ [true] C P

<

The side condition w: [true] C P can be read “P changes only @”. For
example, we have

x,y: [true, z=y+1]



46 SPECIFICATION STATEMENTS AND REFINEMENT

Law 9 Introducing sequential composition (weakest post-specification):

#: [pre , post]
pre , mid|;
mid , post]

mid, post contain no free fy

|
[
Q

For example,

z: [true , z=g+1]

C z: ftree, z=y|;
jr=y, z=y+1]

Law 9 can be generalised to the case in which variablea iy do appear
(as shown in [32]); in that case, one has effectively supplied in mid the first
component of the sequential composition. For our larger example to follow
(section 4), we need only the simpler version.

In laws 10 and 11, we use a quantifier-like notation for generalised
disjunction and alternation: if J for example were the set {1..n}, then
(Vi:1 G)) would abbreviate Gy v ---V Gy, and If {[] i .G; — §;) fi would
abbreviate

If Gl — Sl
u .

H Gpn — S,
f

Law 10 Introducing alternation (1f ):

#: (pre A(Vi:1.G)), post]
If ([¢:7.G,— @: [preA G;, post]) &

V)

The predicate pre is that part of the pre-condition irrelevant to the case
distinction being made by the guards G;: it is passed on to the branches of



Square root 47

the alternation. For example, taking pre to be true, we have
yi[x=0vz=1,z+y=1]

ifz=0 — yp: [z=0, z+y=1)
Jz=1—> y:|z2=1,z+yg=1]
fi

In

N

Hfr=0— y:
lz=1 - y:
i

]
o -

Law 11 Introducing iteration (do):

W: [true , inv , S(Vi: 1 .G))]

do
{ i1 .G;— @: [Gi, inv, 0= ver < varo))
od

v

The predicate inv is of course the loop invariant, and the expression var is
the variant. We use varg to abbreviate var[¥\ ).

An example of law 11 ia given in section 4; for now, we note that iny can
be any predicate and var any integer-valued expression. Surprisingly, there
are no side-conditions — a bad choice of inv or var or indeed G; simply
resuits in a loop body from which no executable program can be developed
(see the remarks in section 3.1).

Law 11 is proved 1n section 5.

4 An example: square root

For an example, we take the square-root development of [12, pp. 61-65]; but
our developtnent here will be deliberately terse, because we are illustrating
not how to find such developments (properly the subject of a whole book),
but rather how experienced programmers could record such a development.



48 SPECIFICATION STATEMENTS AND REFINEMENT

4.1 Specification

We are given a non-negative integer ag; we must set the integer variable rt
to the greatest integer not exceeding ,/ag, where the function / takes the
non-megative square root of its argument.

4.2 Specification

= |ye)

|z] — the “floor® of £ — is the greatest integer not exceeding z.

4.3 Refilnement

We assume of course that / is unavailable to us, and proceed as follows
to eliminate it from our specification; we eliminate | | also. “Stacked”
predicates denote conjunction.

= |V
= rt: [rt = ! ] definition 8
= rt: [sg20, rt={/3q! | definition 5
= rt: [ 20, rt < /3¢ < st +1] definition of | |

0<rt

' o3 < ag < (1t +1)° law 2

C st |ag2>0
4.4 Refinement

Using laws 4 and 2, we introduce a new variable ru, and strengthen the
post-condition; our technique will be to approach the result from above (ru)



Square root 49

and below (rf):

C |[varru.
0<rt
rt,ruz |ag > 0, i3 < ag < ru?
rtt+l=ru

I

We now work on the inner part.

4.5 Refinement

Anticipating use of # + 1 # ru as & loop guard we concentrate on the
0<rt<ru

remainder of the post-condition, using law 9 with mid = rt? < gg < ra?

to proceed:
D<rt<ru .
C rt,ru: lag 20, rt253q<ruz]’ (6)
<
D<rt<ru 2_rt<ru:
i, ru: et? < gq < yul ’ ri* < ag < ru
= rt+1=ru

Using Jaws 1 and 7, we can show that for the first component of the
sequential composition above — establishing mid, to become the loop in-
variant — we have

Cri,ru:= 0,8¢+1

We now concentrate on the second component.

4.6 Refinement

We now introduce the loop, rewriting the second component of the sequential
composition (6) to bring it into the form required by law 11; writing fnv



50 SPECIFICATION STATEMENTS AND REFINEMENT

now for our mid above, we have
= i, ru: [true , inv, ri+ 1= ru]
and then by 11, with variant ru — rt, we proceed

C dor+1#ru —
rirw [rE+1F ru, iny, 0< ru—rt < rug — rig)
od

4.7 Refinement

For the loop body, we use law 4 again to intreduce a local variable rm to
“chop” the interval ri.ru in which the result lies:

C | var rm;

rt,ru, rm: [rt+ 1# ru
H

We first choose rm between rt and ru, using law 9 then law 3 twice to
develop:

, v, 0< ru — 1t < rug — rig)

C o [rt+1Fru, dnv, rf <rm < ru;
ré,ru: [rt <rm <rv,inv, 0 < ru—rt<rug— rig)

Then with laws 1 and 7, we quickly dispose of the first component, deciding
to make our choice of rm divide the interval evenly:

Crm:= (rt+ ru)div2

We proceed with the second component.

4.8 Refinement

The natural case analysis is now to conmsider rm® < sg versus rm® > ag

accordingly, with law 10, we so divide our task and immediately apply law



Square root 51

3 to each case; we have

rt < rm < ru

2 .
C ifrm* <sg — rt.[ rm? < og

, v, 0< m—rt<ruo—ftu]

i< rm < ry

2 .
| rm® > sq — rt.[ rm? > g

fi

, v, 0< ru—rt<ruo—rt0]

For the first branch, we have by law 7
Crt:= rm
For the second branch, we have similarly

Cru:= rm

This completes our development.

4.9 Consolidation: the implementation

Developments in this style generate a tree structure in which children collec-
tively refine their parents; to obtain the program “neat,” we simply flatten
the tree. For the square root program, the result is as follows:

|[ var ru;
ri,ru:= 0,80+ 1,
dort+1#ru —

|[ var rm;
rm = (rt + ru)div2;
if rm? <aq -+ rt:= rm
} rm*>s8 — ru=rm
fi

il
od

)

It 1is to be stressed that this congolidated presentation 15 not to be carried
off aa the only relic of our development. The development itself must remain



52 SPECIFICATION STATEMENTS AND REFINEMENT

a3 a record of design steps taken and their justifications (and in industrial
practice, of who took them!). Mistakes will still be made, and corrections
applied; only when a complete record is kept can we make those corrections
reliably, without introducing further errors — and learn from the process.

5 Derivation of laws

In this section we will prove the laws 2 and 11 of section 3. We do this for
several reasons: to reassure the reader, who may doubt their validity; to
demonstrate the use of the weakest pre-condition formula for specifications;
and to suggest that the collection of laws can easily be extended by similar
proofs.

5.1 Proof of law 2

Law 2 allows us to strengthen the post-condition of a specification; in sim-
plest terrns, this means replacing post by post’ as long as we know that
post’ = post. The side-condition is weaker than this, however: it takes both
the pre-condition and ¢hanging variables into account, making the law more
widely applicable.

In the proof below, we will assume that free-standing formulae are closed
— that is, that their free variahles are implicitly quantified (universally). It
is this that will allow us to rename variables when necessary.
Theorem 3 Proof of law 2: if the following side-condition holds
pre == (Vi o post' = post) [\V]
then so does this refinement:

@ [pre , post] C @: [pre, post’]

Proof By theorem £, we need only show

pre A ¥ = g => wp(: [pre , post’|, post A i = to)



Derivation of laws 53

Since in definilion { the predicate R must not contasn tp, we rename those
above to ¥ (we may do this because the formula ta closed); we must show

pre A ¥ = ¥ = wp(@: [pre , post’], post A T = @)
Definition § is now applied; we must show
pre AT =0 = pre A (VI ® post’ => post A G = i) |6\ 7]

Clearly we can remove the conjunct pre in the consequent, because it occurs
in the antecedent; we can remove & = U; because @ and the quantified ¥ are
disjoint, and ¥ = v, appears in the antecedent. It remains to prove

pre AT =% => (VYT * post' = post) [iv\ 7]

And this follows directly from the side-condition.
V)

5.2 Proof of law 11

We will deal with the following restricted version of law 11, in which we
consider a single guard only and take v and i the same; we must show

ftrue , inv , ~guard]

do
guard — [guard , dnv , 0 < var < varg)
od

Our proof is based on the loop semantics given in [12]; we will show that for
k21
fnv A (guard = var < k) => Hi(inv A ~guard) &)
From this will follow
nv
inv A (guard = (3k > 1 & var < k))
(3% >1 » invA (guard = var < k)
(3k » Hyftnv A —guard))
wp(do---od, inv A ~guard)

yon o

Thus by theorem 1 we will have as required that

[fnv , invA —guard] C do---0d



54 SPECIFICATION STATEMENTS AND REFINEMENT

It remains therefore to prove (7), and this we will do by induction over
k. We note first that Hp = inv A ~guard, and continue by direct calculation
(writing pre’ for pre|¥\#'] etc., and Hy for Hy(invA —guard)):

H
guard

= Hyv guerd A inv
(Y7 o invAO< var < varg = Hp)[tp\ 7

= H.v guard A inv
- e (V&' o inv' AD < var' < var = HY)

< (—guard Ainv) v (guard A inv A ver < 1)
= inv A (guard = var < 1)
Our inductive step now concludes the argument:

Hyp1

Hov gquard A inv
- (V7' o inv'AD < var! < var = HY)

guard A inv

& Hyv . iny'
0 Y9 e inv' AD < var' < ver = ,'v .
guard’ => var' < k

guard A tnv
< HOV( var < (k+1) )
= inv A (guard = var < (k4 1))
AV

The puzeling thing about law 11 is that it has no side-condition, whereas
one might expect to find the condition

guard A snv = 0 < var

But closer inspection reveals that whenever the above formnla fails, the loop
body is infeasible: it must terminate (since guard A inv holds initially) and



Conclusion 55

must establish 0 < var < O (since 0 £ var holds initially). By the law of
the excluded miracle (see [12]), no executable program can do this — the
refinement, though valid, i barren.

For the practising developer, perhaps the side-condition should be ex-
plicit; indeed, law 11 can be rewritten this way, with the 0 < var dropped
from the post-condition of the loop body. For the historical record of our
development however, we want to prove the very minimum necessary —
and feasibility is of no interest. There would be no program, and hence no
record, if a feasibility check would have failed.

6 Conclusion

We have claimed that the integration of specifications and executable pro-
grams improves the development process. In earlier work [35], the point
was made that all the established techniques of refinement are of covrse still
applicable; their being based on weakest pre-condition semantics sutomat-
ically makes them suitable for any construct so given meaning. Indeed an
immediate but modest application of this work 1s our writing for example
“choose € from s” directly in our development language as “e :€ 4.

The refinement calculus is a step further. We are not claiming that it
makes algorithms easier to discover, although we hope that this will be so;
but it clearly does make it easier to avoid trivial mistakes in development
and to keep & record of the steps taken there. A professional approach to
software development must record the development process, and it must do
so with mathematical rigor. We propose the refinement calculus for that at
least.

Another immediate possibility is the systematic treatment of Z “case
studies” as exercises in development, and we hope to learn from this. (There
are a large number of case studies collected in [37].) Such systematic devel-
opment is already underway for example at the IBM Laboratoriesat Hursley
Park, UK [44].

The techniques of data refinement, in which high-level data structures
(sets, bags, functions ...) are replaced with structures of the programming



56 SPECIFICATION STATEMENTS AND REFINEMENT

language (arrays, trees ...}, fit extremely well into this approach. Also fa-
cilitated is the introduction of procedures and functions into a development:
the hody of the procedure is simply a apecification statement “yet to be
refined,” and the meaning of procedures can once more be given hy the el-
egant copy rule of Algal-60. These ideas are explored in [32] and [47], and
we hope tp puhlish them more widely.

7 Acknowledgements

It ia clear our approach owes its direction to the steady pressure exerted by
the work of Abrial, Back, Dijkstra, Hoare, and Jones. More direct inspi-
ration came from the weakest pre-aspecification work of Hoare and He [25],
who provide a relational model and a calculus for development; they strongly
advocate the calculation of refinernents as an alternative to refinements pro-
posed then proved. Robinson [47] has done earlier work on the refinement
calculus gpecifically.

We believe the earliest emhedding of specifications within Dijkatra’s lan-
guage of weakest pre-conditions to be that reported in Back’s thesis {4], and
ta him we freely give the credit for it. His descriptions are single predicates,
rather that the predicate pairs we use here, and he gives a very clear and
comprehensive presentation of the resulting refinement calculus. Our work
extends hie in that we consider predicate pairs, as does VDM, but — unlike
VDM — we do not require thoge pairs always to describe feaaible apecifica-
tions. Because of this, we obtain a significant simplification in the laws of
our refinement calculus.

In [30] L. Meertens explores similar ideas, and we are grateful to bim for
making us aware of Back’s work.

We have henefited from collahoration with the IBM Laboratory at Hurs-
ley Park; the joint project [44] aims to transfer research results directly from
university to development teams in industry.

Morris [41] independently has taken a similar approach to ours {even
to allowing infeasible prescriptions); we recommend his more abstract view,
which complements our own.



Acknowledgements 57

To the referees, and to Stephen Powell of IBM, we are grateful for their
helpful suggestions.



Procedures, parameters, and abstraction:
separate concerns

Carroll Morgan

Abstract

The notions of procedures, parameters, and absiraction are by con-
vention treated together in methods of imperative program develop-
meut. Rules for preserving correctness in such developments can be
complex.

We show that the three concerns can be separated, and we give
simple rules for each. Crucial to this is the ability to embed specifi-
calton — representing abstraction — directly within programs; with
this we can use the elegant copy rule of ALGOL-80 to treat procedure
calls, whether abstract or not.

Our contribution is in simplifying the use of the three features,
whether separately or together, and in the proper location of any dif-
ficulties that do arise. The alizsing problem, for example, is identified
es a “loes of monotonicity” with respect to program refinement,

Keywords: Programming methodology; procedure call; parameters;
specification; aliasing.

Introduction

In developing imperative programs one identifiea points of procedural ab-
straction, where the overall task can be aplit into subtasks each the subject

Appeared in Sci. Comp. Prog. 11 (1988) ©Copyright 1988, Elsevier Science Publishers
B.V. [Nortk Holland)

58



Procedure calil 59

of its own development subsequently. Integration of the subtasks is ac-
complisbed ultimately by parametrized procedure calls in the target pro-
gramming language. We argue here that these concerns — procedures,
parametrization, and abstrection — can be separated, and that the result is
of practical utility.

Abstraction identifies a coherent algorithmic activity that can be split
from the main development process; conventionally, a procedure call is left
at the point of abstraction, and its necessary properties become the speci-
fication of the procedure body. Instead, we leave the specification itself at
the point of abstraction, with no a priers commitment to a procedure call.

Procedure call we treat as simple substitution of text for a name, not
caring whether we substitute programming language code {as we would in
the final program) or a specification {as we would in a high-level design).

Parametrization we treat as a substitution mechanism that can be ap-
plied uniformly to specifications or to program language code, whether or
not a procedure call occurs there.

The aim is to give a simple orthogonal set of rules for treating each
concern. Existing practice is in most cases easily realised by appropriate
combinations of the rules; but the independence allows greater freedom than
before.

2 Procedure call

We return to the simple view, taken in the ALGOL-80 (revised) report [42],
that procedure calls are to he understood via a copy rule: a program that
calls a procedure is equivalent to one in which the procedure nameis replaced
by the text of the procedure body. In the examples to follow, we declare
{parameterless) procedures using

procedure name = body



60 PROCEDURES, PARAMETERS, AND ABSTRACTION

With the copy rule, therefore, we have the equality indicated in the following
example:

procedure Inc = z:=z+1 = z:=0;
z:=z+ 1;
=0 write z (1}
Ine;
write z

The technique has impeccable credentials; it is for example strongly (and
deliberately) related to the following one-point rule of predicate calculus:

(Vzez=T=P) = P[z\T]

We write quantifications within parentheses () which delimit their scope, and
use a spol e to separate the binding variable from the body. In the formula
above, T is some term not containing z free, P a predicate, and P[z\ T} the
result of replacing z by T in P. We assume that the substitution [z\ T] is
defined so that it avoids variable capture; similar care is needed with the
copy rule.

But the copy rule gives the meaning only of programs written entirely in
a programming language. In contrast, the modern “step-wise” approach to
program development introduces hybrid programs in which names denote
program fragments “yet to be implemented”. One understands the effect of
these fragments in terms of their specification — abstracting from the detail
of implementation — uging rules specifically for procedure call such as those
given in [22], {14], and [15]. The simple copy rule cannot be applied, for
there is not yet program text to copy.

In [22], for example, one finds a Rule of adaptation, in the style of the
rules of [21], with which procedures specified by pre- and post-conditions
can be proved to have been used correctly in a calling program. There is
also given in [22] a Rule of substitution for dealing separately with the effects
of parameter passing. In the more recent [15] and [14], combined rules treat
procedures — as specifications — with their parameters, all at once.

Here we reverse the trend, not only retaining the earlier view [22], which
geparates procedure calling (adaptation) from parameter passing (substitu-
tion), but also splitting procedure call from procedural abstraction. For



Procedural abstraction 61

procedure calls, therefore, we retain only the copy rule of ALGOL 60 (42,
47.33]:

...the procedure body ...is inserted in place of the procedure
staternent ...I[ the procedure is called from a place outside
the scape of any non-local quantity of the procedure body, the
conflicts between the identifiers inserted through this process
of body replacement and the identifiers whose declarations are
valid at the place of the procedure statement ... will be avoided
tbrough suitable systematic changes of the latter identifiers.

3 Procedural abstraction

We take the axiomatic view; a procedural abstraction i1s described by a
predicate pair comprising a pre-condition and a post-conditien, both built
(mainly) from program variables. We write such specifications using the
notation [pre, post]. In the style of [12] a program P satisfies such a specifi-
catjon iff

pre = wp(P, post) ()

Paraphrasing [12, p. 16], we say that

pre characterises a set of initial states such that activation of
the mechanism P in any one of them will certainly result in
a properly terminating happening leaving the system in a final
state satisfying poast.

But we adopt a different style [35] (similarly [4], [41]), writing more
directly but equivalently

[pre,post] C P (3)

This we read “the specification [pre, post] is satisfied by P”. And we make

specifications “first-class citizens”, giving their semantics in the same way
as all other programming constructs are defined in [12)].



62 PROCEDURES, PARAMETERS, AND ABSTRACTION

Definition 1 Let pre, post, and R be predicates over the program variables
v. We define the weakest pre-condition of the specification [pre, post] with
respect to the post-condition R as follows:

wp([pre, post], R) = preA (Vv.post=> R)
<

In that definition and below, single letters v refer to a vector of variables
(possibly singleton). Definition 1 ia discussed in detail in [41] and [35); tbe
latter allows a more general form in which post can refer to the initial state
as well.

For the present, we give an informa! justification of definition 1: we
regard [pre,post| as a statement, and its first component pre describes the
initial states in which its termination is guaranteed; this is the first con-
junct. Its second component post describes the final states in which that
termination occurs, and so we require also that in all atates described by
post the desired R holds as well; this is the second conjunct.

We now define the relation “is satiafied by® - that is, T — as in [4], [41],
[35], [20):

Definition 2 For programs or specifications Pl and P2, we say that P1 1s
satisfied by P2, or equivalently that P2 refines P1, iff for all post-conditions
R we have

wp(P1, R) = wp(P2, R)

We write this P1LC P2.
V]

With definitions 1 and 2 we can prove that (2) and (3) are equivelent
(see [35]). That equivalence allows us to take [pre, post] as the trivial and
most general solution for P in (2). Further, definition 1 agrees with the Rule
of adaptation [22] and with the procedure call rule [14, 12.2.1] in the special
case where the abstraction is in fact a procedure.

But we are not necessarily linking procedure call and procedural abstrac-
tion: procedure call is useful even when the procedure body is executable




Procedural abstraction 63

We assume below that a and b are fixed.

[6? — dac > 0,022 + bz + ¢ = 0]

C [52 —dae > 0, z = —bEYPT—dac ax “"‘] (standard mathematics)

C [6% — 4ae > 0, 22 = b? — 4ac]; (sequential composition)
z:= {z-b)/2a

T procedure Sgrt = (b7 — 4ac > 0, 2? = b% — 4ac|;  (copy rule)
Sert;
z:=(z—b)/2a

Figure 1: Development of quadratic-solver

code; and procedural abstraction is useful even if the implementation ulti-
mately is “in-line”. Consider the example of figure 1, in which we introduce
a parameterlesa procedure Sgrt. There we use specifications [pre , post] as
fully-fledged program constructs, as indeed definition 1 allows us to do.

The conclusion of this exercise would be to refine the remaining specifi-
cation, but the fact that it is the body of a procedure is now irrelevant:

[Ii2 — 4ae > 0,2 = $7 — 4ac]

C z:=+ —4ae

Thus we see that by allowing procedural abstractions — specifications
— to mingle with ordinary program constructs, we can with the copy rule
accommodate calls to procedures for which we do not yet have theexecutable
code. The specification itself is the text we copy, and definition 1 gives
meaning to the result.



64 PROCEDURES, PARAMETERS, AND ABSTRACTION

4 Parameters

Parameters used to adapt a general program fragment to a particular pur-
pose — whether or not that fragment is a procedure. Historically, proce-
dures and parametrization are closely linked, and parameter passing means
“parametrizing a procedure call”,

Apparently the simplest example of parametrization is ordinary textual
substitution. When substituting into programs, much the same rules apply
&s for substitution into formulae: only global (compare free) occurrences of
r are affected; and capture of ! must be avoided by systematic renaming
of local (compare bound) variables. And if we are replacing a variable hy a
term, then that variable cannot appear on the left of :=.

In example (1), we could use substitution to write instead

y =0
y=y+t1
write y
= y:=0 (parametrization)
(z:=z+ 1)[z\y];
write y

= procedure fnc 2 z:=z+1; {copy rule}
y:=0
Inc[z\y];
write y

In the final step above, the subatitution suggests — intentionally — supply-
ing an actual parameter y for a formal parameter z in the call of procedure
Inc. But in the previous step, we see [z\y] as a simple substitution.

That style of parametrization, known as call by name, i3 unfortunately
not as simple as it appears. Not only is it difficult to implement {requiring
“thunke”), but it can be difficult to reason about, as well. 1f the actual
parameters passed lead to distinct names within the procedure for the same
variable, then the parametrization may lose the crucial property of mono-
tonicily: we won't have that P1 C P2 implies P1[z\T] C P2[z\T].




Parameters 65

That phenomenon is known as aliasing, and is traditionally associated
with procedure call; writers on program development advise us to avoid it.
Because of aliasing, call by name (and similarly call by reference: Pascal’s
var) must be used with care. But, in fact, aliasing loses monotonicity — and
that is why we should avoid it. We can separate the problem from procedure
call.

Below we show by example that aliasing loses even equality (trivially,
monotonicity also): we have

(z:=0; y:=1) = (y:=1 z:=0)

but
(z =0 y:=1)[z\y]
= y:=0 yg:=1
= yg:=1
# y:=0
= y=Ly:=0
= (y:=1 z:=0)[z\y]

In the following sections, we define “substitution by value”, “by result”,
and “by value/result”; and we prove that, unlike simple substitution, they
are monotonic.

4.1 Substitution by value

For any program P, we write the substitution by value in P of term T for
variable z as follows:

Plvalue z\T)

For simplicity in the following sections, we use the notation P < B >
for wp(P, R) (following {20]).

Definition 3 Substitution by value; if x does not cccur free in R, then
Plvalue z\T|<R> = P <R>[z\T]



66 PROCEDURES, PARAMETERS, AND ABSTRACTION

Note that the substitution on the right above is ordinary substitution into
the predicate P < B >: the weakest precondition is calculated first, then
the substitution is made. That convention applies everywhere below.

Substitution by value can be implemented with the well-known call by
value technique of assignment to an snonymous local variable. It is easily
shown that for any program P, variable z, term T, and fresh local variable
!, we have

Plvalue z\ T}

= begin var I;
l=T;
Plz\i]

end

That implementation, by using ordinary substitution only in a restricted
way, avoids the problems we encountered above. First, since the variables
! are fresh and distinct, there is nc aliasing; second, since the replacing
expressions are variables rather than general terms, there is no difficulty
when the replaced variables occur on the left of :=,

But our main interest is in monotonicity:

Theorem 1 Substitution by value 18 monotonic: sf P C Q then
Plvalue z\T] C Qjvalue z\T|

Proof: Immediate from definitions 3, 1 and the monotonicity (over =) of
substitution into predicates: if for predicates X and Y we have X = Y,
then for any variable v and term T we have also X[v\T] = Y [v\T}.

@

4.2 Substitution by result

For any program P, we write substitution by result in P of variable y for
variable z as follows:

Plresult z\y|



Parameters 67

This is a more restricted form of substitution than substitution by value,
because we substitute a variable y rather than a term T. It is defined as
follows:

Definition 4 Subststution by regult: if x doeg not oceur free in R, then

Plresult z\y| < R> = (VzeP < Riy\z]>)

Substitution by result can be implemented by the call by result technique
of assignment from an anonymous local variable. It can be shown that for
any program P, variable z, tern T, and fresh local variable !, we have

Plresult z\y|

= begin var;
Pl=\l};
yi=1
end

For monotonicity, we have

Theorem 2 Substitution by result is monatonic: +f P T Q then
Plresult z\y] C @Q[result z\y|

Proof: Immediate from definition 4, as for theorem 1.
Q

4.3 Substitution by value/result
Faor any program P, we write the substitution by value/result in P of term
y for variable r as follows:

Pf{value result z\y]

Substitution by value/result is a combination of the two substitutions above,
and is well-behaved in the same way. We have



68 PROCEDURES, PARAMETERS, AND ABSTRACTION

Definitlon 5 Substitution by value/result: if x does nol occur free in R,
then

Plvalue result z\y| < R> = P < Rl|y\z]> [z\y]
%

Theorem 3 Substitution by volue /result is monotonic: if P T Q then
Plvalue result z\y] C Q[value result z\y]

Proof: Immediate from definition 5, as for theorem 2.
<

The equivalent program fragment is given by

Plvalue result z\ T

= begin var /;
L=y
Plz\1];
y:=1
end

4.4 Apparent limitations

Each of the definitions 3, 4, 5 contains the limitation “if z does not occur
free in R”. Thus with them we cannot calculate

(v == z)[value 2\0] < 2 =0 > (4

It’s clear that the weakest precondition in (4) above should be z = 0. But
calculation (using definition 3 erroneausly) reveals instead

(y:=z)value z\0]| < z =0 >

(v :=2)<z=0> [z\0]

= (z=0)[z\0]
= (0=0)
= frue

We avoid such problems by extending definitions 3-5 uniformly.



Parameters 69

Definition 6 If the substitution type sub iz value, result, or value re-
sult, we have

Plsub z\T| < R> 2 Plz\i][sub\T|<R>

where | 15 a fresh variable, not appearing in P, T, x, or R.

Q

The monotonicity properties persist, and for (4) we now have

(y == z)[value z\0] < z=0>
(y :=l)[value NO]<z=0>
(y =) <x=0>[\0]

(z = 0)(n\a]

(z =0)

nmi ki

A second limitation is that we have not treated multiple parametrization.
For example, we cannot calculate

(y := z + 1)[value z,result y\z, 2| {(5)

We use the normal notation for multiple substitutions: in the ahove, z re-
places z by value and y by result.

We proceed as for simple (multiple) substitutions: for formula P, distinct
variables z, y, and terms T, U we know that

Plz,y\T, U] = P[\l[p\m][\T][m\ U]}

for fresh variables ! and m. Our definition is therefore

Definition 7 For any substitution types subl and sub2, distinct variables
x and y, and terms T, U we have

P(subl z,sub2 y\T,U| = Plz\l][y\m]jsubl I\ T|[sub2 m\U]

where 1, m are fresh variables,
v



70 PROCEDURES, PARAMETERS, AND ABSTRACTION

The definition is easily generalised to more than two simultaneous substitu-
tions. In (5) above, we now proceed

(y == z + 1){value z,result y\z,z] < R >
(m =1 + 1)[value !\z][result m\z] < R >
(Ym.(m :=1+1)[value I\z] < R[2z\m] >)
(Vm.(m:=1+4+1) < R[z\m][}\z] >)

(VY m. R[x\m][m\I + 1}[I\z])

Rl2\z +1]

t:=2+1<R>

It

i no

Hence the program fragment increments z, as expected.

4.5 Real limitations

Unforturately, we cannot treat the general cases of “suhstitution by name”
or even “substitution by var”. As we have seen, simple substitution (i.e.,
by name) does not respect equality of programs modulo wp unless severe
restrictions are made on ite use. Those very restrictions, whatever they
might be!, are necessary to achieve monotonicity and can be studied as
such. With monotonicity, they can be treated as were the substitutions in
section 4 above.

Finally, note that in multiple result parametrization an apparent aliasing
can occur if two actual parameters are the same, as in [result z,y\z,z].
The effect of this must agree with that of multiple assignments 2,z .= z,y
and multiple simple subatitutions [z, z\z,y]: usually, they are considered
syntactzcally invalid.

5 Conclusion

Rules for parametrized procedural abstraction are complex. We have argued
that they are simplified by considering parametrization, procedure call, and
specification separately. The result is a mere uniform and orthogonal treat-
ment, in which difficulties are properly located: aliasing for example shown
to be a non-monotonic construction.

1They vary from writer to wriler.



Acknowledgements 71

Combined rules, such as those of {14] and {22], can be derived from ours,
1t is the program developer’s choice whether to use them, or the more basic
rules here, or perhaps some other combination especially relevant to his
problem.

The separation we bave achieved relies essentially on the embedding of
specifications witbin programs: only this allows ALGOL’s copy rule to give
the meaning of procedure calls independently of tbe level of abstraction in
the procedure body.

We have not treated the call-by-name and call-by-reference parameter
passing techniques because they do not fit easily into the standard axiomatic
framework of [21] and [12]. In [46, pp. 160-161], for example, call-by-name is
treated in a slightly augmented logic in which one can state as a precondition
that aliasing is not to occur. That sbortcoming of the standard approach,
however, we separate from procedures; as we have shown, the real problem
is that in general

P=upp @ # Plz\T|=g @Qz\T].

That is, equality as predicate transformers “=,," is too coarse for these

substitutions.

6 Acknowledgements

The work here depends on the original ideas of Hoare [22} and Gries and
Levin [15] for the axiomatic treatment of procedure parameters. I believe
Back [4] to have been the first to generalise wp in a way similar to ours
[35]. He uses single predicates, however, rather than pairs as we do, thus
foregoing the advantage of miracles [37].

1 am grateful for the very thorough comments of the referees.



Data refinement by miracles

Carroll Morgan

Abetract

Data refinement is the transformation in a computer program of one
data type to another, Usnally, we call the original data type “abstract”,
and the fnal data type “cancrete”. The concrete daia type is said to
represent the abstract.

In spite of recent advances, there remain obvious data refinemeunts
that are difficult to prove. We give such a refinement; and we present
a new technique that avoida the difficulty.

Our innovation is the use of program fragments that do not eat-
isfy Dijkstra’s Law of the excluded miracle. These of course can never
be implemented, and so they mnust be eliminated before the final pro-
gram is reached. But in the intermediate stages of development, they
simplify the caleulations.

Eeywords: Programming methodology; data refinement; weakest
preconditions; laws of programming.

1 Introduction

Data refinement is increasingly becoming a central feature of the modern
programming method. Although it is a long-established technique, well-
explained for example in [26], it is still developing. Recently it has been
extended ([45], {19], {16] and elsewhere) to allow a larger class of refinements
than had before been thought desirable. In this paper, we extend it slightly
further.

YAppeared in Jnf. Proc. Leti. £6(5} (Jan. 1988). ©Copyright 1988, Elsevier Science
Publishers B.V, (North-Holland)

72



An abstract program 73

Given two program fragments A and C, we say that C refines A iff: C
terminates whenever A does; and every result of C is also a possible result
of A. ln many cases the abstract fragment is a block (or module} using
some local (or hidden) variable &, say, and the concrete fragment is to use ¢
instead. The technique of deta refinernent allows the algorithmic structure
of the abstract fragment to be carried over into the concrete fragment: that
is, if we apply data refinement to the components of the abstract fragment,
replacing thermn one-by-one with concrete components, then the concrete
fragment refines the abstract fragment overall.

We exhibit an “obvious” refinement, in which the abstract algorithmic
structure js reproduced in the concrete program, but whose corresponding
components cannot be data-refined using existing techniques. The inade-
quacy is due to the required data refinement’s being valid only in certain
conditions rather than universally. Furthermore, these conditions cannot be
expressed in terms of the abstract variables.

Dijkstra’s law of the excluded miracle [12, p. 18] states
For all programs P, wp(P, false) = false.

Recent work has suggested that derivation of programs is simplified if mira-
cles — statermnents not satisfying the above — are allowed in the intermediate
development stepe {[41], [t], [35], [43]). We demonstrate a specific applica-
tion of miracles by showing that they allow conditional data refirement to
proceed even when the condition involves concrete variables. The price paid
is that some reasoning is then necessary at the concrete level so that the
miracles — which can never be executed — are eliminated.

We use the weakest precondition calculus of Dijketra ([12], [14]) and its
associated programming language.

2 An abstract program

Figure 1 containes a program for summing a bag of integers. Bag comprehen-
sions are indicated by “< - -- =7, and “+" is bag (as well as integer) addition.
We assume also that variable baghas size N. The statement z: € & stores in



74 DATA REFINEMENT USING MIRACLES

var bag:bag of Integer;
sum : Integer;
summed : bag of Integer;

sum, summed 1= 0, <> ;
do summed # bag —
[ varz: Integer;
z:€ (bag — summed);
sum 1= gsum + I;
summed := summed+ <z »~
I
od

Figure T: Summing a bag of integers

the variable z an arbitrary element of bag b; it is defined

wp(z:€ b, R) =2 (b#~<-)A(Vz:z€b:R)

3 Adificult data refinement

We now transform the abstract program of figure 1 into a concrete program,
replacing the bags bag and summed by an array ¢ and an integer n. An
abstraction invariant will provide the link between the two; it is

0<n< N
A begg=<i:i€0.N-1:a[i]» (1)
A summed =<i:i€0.n—1:6[i]>

We now use the formulation from [16] for proving a data refinement
correct, paraphrased below:

An abstract fragment A is data-refined by a concrete fragment
¢ under abstraction invariant I iff the following holds:

I Awp(A, true) = wp(E, ~wp(A, -I)) (1)




Miraculous programs i

With (1) and our chosen abstraction invariant f, we can show the fol-
lowing data refinementas:

Absiract Consrele
summed :=—~<> n:=0
summed # bag nE N
z:€ (bag — summed) z = a[n]

But we cannot data-refine summed ;= summed+ < z >, for to do s0 we
would need € satisfying

I A wp{summed := summed + < z >, true)
= wp(C, ~wp(summed = summed + < £ >, =I))

(2)

1t can be shown that no assignment to n satisfies (2); in patticular,
C = “n:=n+1" doesnot.

4 Miraculous programs

We introduce tbe guarded command as follows, for condition G and state-
ment S:

w{G— S, R) = G= wp(S, R)

Guarded commands can never' be implemented by real programs, because
they violate Dijkstra’s law. Like complex numbers, they can appear during
calculation, but must be eliminated if a rea] (compare implemented) solution
is to be reached. The worst offender is false — skip, because we have
wp(felse — skip, R} = true, for any R.

Nevertheless, the following statement does satisfy requirement (2):

(n#N A a[n]=z) — n:=n+1 (3)

! ..well, hardly ever: only when the guard is truc.



76 DATA REFINEMENT USING MIRACLES
5 Eliminating miracles

Although guarded commanda viclate the law of the excluded miracle, they do
obey other laws (distributivity of conjunction, for example). In particular,
we have the following:

Law 1 Assignment can be distributed through guarding:

v:i=ezp;, B8
= —wp(v:= ezp, ~B) — v:i=exp; S

Proof: For all postconditions R, we have

wp(“v := ezp; B — 8 , R)

def(ezp) A (B = wp(S, R))|v\ezp]

def(ezp) A (Bfv\ezp] = wp(S, R)[v\exp])

{def(exp) = B(v\exp|) = (def(exp) A wp(S, R)[v\ exp])
wp(~wp(v := ezp, ~B) — v :=exp; 5, R)

o

(end of law)

With law 1, we can eliminate the miracle; we have in the concrete loop
body:

1:= ala];
mm = sum + z;
mn#EN A a[n]=2z) — a:=n+1

But this equals

£:= a[n];
(n#N A a[n|=2z) — sum:= som+x;
n:= n+1

For our final step, we note that
~wp(z = ala], ~(n # N A afa] = 2))

=(0<n < NA-(n# NAa[n]= a[n]))
true

(Tl




Conclusion 77

var a:array [0.N—1] of Integer;
sum : Integer;
n: [0.N];
sum, n = 0,0
don#N —
|| var z: Integer;
z:= a[n];
sum = sum + T;
n:=n+1
i
od

Figure 2: Summing an array of integers

With this, and law 1 again, we reach the promising

tree —  z:= a[nj;
sum = gum 4 I;
n=n+1

But (true — S) = S for all § (another law), and sc the guard can be
eliminated altogether. We are left with the concrete program of figure 2.

6 Conclusion

In our example, a proof of correctness of the concrete operation a:=n 41
requires the precondition a[n] = z, which cannot be expressed solely in
terms of the abstract variables. Hence the proof method of [16] cannot be
used. Allowing concrete variables in the precondition is not the solution, for
that would destroy our ability to reason at the abstract level independently
of possible representations.

1t is possible to rearrange our example program, and then to data-refine
as a whole the compound staterment

z: € {bag — summed);
summed ;= summed+ < z »



78 DATA REFINEMENT USING MIRACLES

In this case concrete variables in preconditions are no longer necessary. But
then those two staterments must always appear adjacent: a severe restriction,
We would have lost the important technique of distributing data refinement
through program structure.

Guarded commmands are useful also when stating rules for algorithmic
refinement, in many cases making them simpler by widening their applica-
bility. Mistaken refinements — normally prevented by failure of an applica-
bility condition — instead are allowed to proceed, but generate ®infeasible”
programs from which the guards cannot be eliminated. The disadvantage
of this is that such mistakes can go long unnoticed; but the overwhelming
advantage is the decreased proof ohligation faced by the developer {37].

Guarded commands were first introduced by Dijkstra [12], who used
them only within alternation and iteration constructs. As explained in [35],
we “discovered” miracles while extending Dijkstra’s language to accommeo-
date embedded specifications.

7 Acknowledgements

The connection between infeasible specifications and guarded commands was
pointed out by Tony Hoare, who together with He Jifeng and Jeff Sanders
demonstrates in [24] that the standard relational model of programs can
give a very elegant formulation of data refinement. They show easily that
data refinement is a correctness-preserving technique and that it distributes
through the ordinary program constructors. Infeasibility occurs naturally
within their work as relations whose domains are partial.

The work reported here falls within the larger context of joint research
with Jean-Raymond Abrial [1], Paul Gardiner, Mike Spivey, and Trev Vick-
ers; I am grateful to British Petroleum for supporting our collaboration.

I am grateful also to the painstaking and perceptive referees, and to
Jean-Raymond Abrial, Paul Gardiner, David Gries, and Jeff Sanders. Their
suggestions have improved the paper significantly.



Auxiliary variables in data refinement

Carroll Morgan

15 February 1988

Absetract

A set of local variahles in a program is auxiliary if ite members
occur only 1n assignments to members of the same set. Data refinement
transforms a program, replacing one set of local variables by another
set, In order to move towards a more efficient representation of data,

Most techniques of data refinement give a direct transformation.
But there ia an indirect technigne, nsing auxiliary variables, that pro-
ceeds in several stages. Usually, the two techniques are considered
separately,

It is shown that the several stages of the indirect technique are
themselves ppecial cases of the direct, thus onifying the separate ap-
proaches, Removal of auxiliary variables is formalised incidentally.

Keywords: Programming methodology, auxiliary variables, data
refinement, weakest preconditions, program transformation.

Introduction

Data refinement transforms a program so that certain local variables —
called abstract — are replaced by other local variables — called concrete.
Usually the abstract variables range over mathematically abstract values,
such as sets, functions ete. The concrete variables take values more efficiently

represented in a computer, such as arrays.

°To appear in Inf. Proc. Letf. (©Copyright Elsevier Science Publishers B.V. (North

Holland)

79



80 AUXILIARY VARIABLES IN DATA REFINEMENT

There are many formalisations of data refinement, all more or less equally
powerful. In each a rule is given for producing the concrete statements that
correspond to given abstract ones. We call suchb methods direct.

An indirect but equally effective approach uses auxiliary variables. First,
the conerete variables are introduced in parallel with the abstract variables
they ultimately replace. The program is tben “massaged” (i.e., algorrth-
mically refned} to make those abstract variables auxiliary. Then they are
removed.

Our contribution is to show that the auxiliary variable technique is a
special case of the direct technique: in fact, it is 8 composition of direct
data refinementa. That brings tbe two styles together, and a more uniform
view is gained.

2 The direct technique

Data refinement is described in [23, 26, 16]. An invariant is chosen that
relates the abstract variables to the concrete variables, and it applies to
the whale transformation. Using tbe invariant, each abstract statement is
replaced directly by a concrete staternent. We use a recent formulation,
taken from [40, 13].

Definitlon 1 Direct data refinement: Let A (C) be the abstract {concrete)
statement, a (¢} the abstract (concrete) variables, and I the invariant. Then
we say that

4 is data-refined to C by (I,e,¢)

if for all predicates ¢ not containing concrete variables ¢

(Fa:TAwp(A, ¢)) = wp(C,(Te::Iné)).
<

We agsume that the concrete variables ¢ do not appear in the abstract
program 4.



The auxiliary variable technique 81
3 The auxiliary variable technique

This use of auxiliary variables is described in [29], [46, Ch.5], and [12, pp.64—
65]. An invariant is chosen, as above. Concrete variables are added to the
program: their declarations are made in parallel with the existing abstract
declarations; and abstract statements are extended so that they maintain
the invariant. For example, an abstract assignment a ;= AE, where the
expression AFE involves abstract variables, is extended to a,c := AE, E by
an assignment to the concrete variables. The new expression E may contain
variables of either kind, as long as the new statement preserves the invariant
I

I=> wp('a,c:= AE E’,I). (1)

In the next step, the program is algorithmically refined to make the
abstract variables auxiliary in this sense;

Definition 2 Auziliary variables: A set of local variables is auxiliary if the
only executable statements in which ite members appear are assignments to
members of the same set.

Qo

Thus abstract variables must be eliminated from expressions E above and
from the guards of alternations and iterations. Finally, the abstract variables
are removed from the program entirely; what remains is a data refinement
of the original.

4 The correspondence

First, we relate the data refinement (I, g, ¢) to the compaosition of two other
data refinements.

Lemma 1 Composition of data refinements: Let € be the empty list of
variables. If A is data-refined to M by (I,¢,¢) and M to C by (true, a,€),
then A is data-refined to C by (1,4, ¢).



82 AUXILIARY VARIABLES IN DATA REFINEMENT
Proof: Note that empty quantifications (e :: - -+) are superflucus. From
the asgsumption and Definition 1, we have for all ¢ not containing ¢
I'Awp(A,¢) = wp(M,IA4), (@)
and for all ¢ (not containing &)
(a5 wp(M,$)) = wp(C,(Ta = 9). (3)
Now we have for all ¢ not containing ¢

(3a::TAruwp(4,d))
henece (Fo 2 wp(M,IAd)) from (2)
hence wp(C,{Ja = T A $)) from (3)

That establishes data refinement by (I, s, ¢).
Q@

The correspondence is this: the data refinement (I, €, ¢) corresponds to
the intreduction in parallel of the concrete variables, while preserving I;
and the data refinement (true,s,€) corresponds to the elimination of the
auxiliary variables a. We support that view with the following two lemmas.

Lernma 2 Introducing concrete variables: A isdata-refined to M by (I, ¢,¢)
if

1. for all ¢ not containing ¢, wp(4,¢) = wp(M,¢); and

2. TAwp(A,tree) = wp(M,I).

Proof: For all ¢ not containing ¢,

IAwp(A,¢)
hence TAwp(A,¢) A wp(A,true) wp calculus
hence wp(M, ¢) A wp{M,I) assumptions
hence wp(M,I A ¢) wp calculus



The correspondence 83

Assumption 1 of Lemma 2 states that M, over abstract variables, ia an
algorithmic refinement of A. Assumption 2 states that the invariant, inking
a and ¢, is maintained provided A terminates. The example (1) in section
3 s an instance of this.

Lemma 3 Eliminating auziliary variables: M is data-refined to C by (true, a, &)
if for all ¢ not containing a,

1. wp(M,¢) = wp(C,¢); and
2. wp(M, #) contains no a.

Proof: For all ¢
(3a::wp(M,¢))

henee (3a:wp(M,(Ta::¢))) wp calenlus
hence wp(M,(3a :¢)) assumption 2
henee wp(C,(Ta = ¢)) assumption 1

<

Assumption 1 of Lemma 3 statea that €, over concreie variables, is an
algorithmic refinement of M. Assumption 2 states that in M final values of
¢ do not depend on initial values of a — that is, a is auxiliary.

As a final illustration, we apply (3) when o is not auxiliary. Taking
¢ := a for M, we must find C such that for all ¢

(Fa:ame) = wp(C,(Ta i ¥)). (4
But there can be no such €, since
falae
iff wp(C,e =0Ac #Q) excluded miracle
iff wp(C,(Fac=0))Awp(C,(Ta:: c7#0)) wyp calculus
if (Ba::a=0A(Faua#0) assumption
iff true

Therefore that data refinement cannot succeed; such failures underlie the
soundness of the method.



84 AUXILIARY VARIABLES IN DATA REFINEMENT

Note that a variable that appears auxiliary in one place might not he
auxiliary in another. For example, in 2 = a 4+ 1; «--; ¢ := @ we can
transform the first statement to skip (indeed, that transformation is always
possible). But (3) cannot succeed on the second statement: overall, the
transformation still fails.

5 Conclusion

We have shown that the two stages of the auxiliary variable technique are
data refinementa themselves (Lemmas 2, 3), and we have confirmed that
the overall result is a data refinement also (Lemma 1). In passing, we have
formalised the removal of auxiliary variables.

Data refinement increasingly seems more than a technique for refin-
ing data. The transformation (true,a,¢) — removing auxiliary variables
@ — has long been used in programming generally. And the transforma-
tion (1,¢, ¢) introduces new variables ¢ which might remain in the program,
affording an alternate representation of the structure a.

The transformation (I, €,£), applied to the exported operations of a mod-
ule, allows their preconditions to be strengthened (by assuming I); it is
successful (compare the failure of (4)) only if each operation establishes /
finally. Thus data refinement can also formalise the strengthening of the in-
variant within a module, though no variables are added or removed. Finally,
algorithmic refinement (“massaging”) is a special case of that: (true, e, ¢e).

Definition 1 is slightly more general than [40]: without restriction, we
allow free variables in  that do not necessarily appear in 4 or ¢. That allows
us our empty lists of variables: (I, ¢,¢) is an extreme example. [t also allows
invariants that refer to global variables unaffected by the transformation.

Wehave not discussed the effect of our transformations on guards nor on
initialisations. Details are in [40), in [13] where a more theoretical and gen-
eral approach is taken, and in [36] where it is shown how the transformations
allow data refinements to be ealculated in practice.



Acknowledgements 85
Acknowledgements

I thank Cliff Jones and Edsger W. Dijkstra for the auxiliary variable tech-
nique, the former also for reference [29], and Richard Bird, members of IFIP
WG 2.3, and the referee for constructive criticism.



Data Refinement of Predicate Transformers

P.H.B. Gardiner® C.C. Morgan

29 February 1988

Abstract

Data refinement is the systematic substitution of one data type for
another in a program. Usually, the new data type is more efficient than
the old, bat aleo more complex; the purpose of the data refinement in
that case is to make progress in a program design from more abstract
to more concrete formulations.

A particnlarly simple definition of data refinement is possible when
programs are taken to be predicate transformers in the sense of Dijk-
stra. Central to the definition is a function taking absiract predicates
to concrete ones, and this fanetion — a generalisation of the abstrac-
tien function — therefore is a predicate transformer as well

Advantages of the approach are: proofs about data refinernent are
simplified; more general techniques of data refinemeut are suggested;
and a style of program development is encouraged in which data re-
fipements are calculated directly without proof obligation.

1 Introduction

In many situations, it is more simple to describe the desired result of a task
than to describe how a task should be performed. This is particularly true
in computer science. Computer programs are very complex, both in their

“Supported by British Petrolenm Ltd.
9Submitted to Theor. Comp. Sec.
9Copyright © 1988, Paul Gardiner and Carroll Morgan.

86



Introduction 8’7

operation and in their representation of information. Yet the task a program
performs is often simple to describe.

More confidence in a program’s correctness can be gained by describing its
intended task in a formal notation. Such specifications can then be used as a
basia for a provably correct development of the program. The development
can be conducted in small steps, thus allowing the unavoidable complexity
of the final program to be introduced in manageable pieces.

The process, called refinement, by which specifications are transformed into
programs has received much atudy in the past. In particular [23][12][26] have
laid down much of the theory and have recognised two forms of refinernent.
Firstly, algorithmic refinement: where one makes more explicit the way in
which a program operates, usually introducing an algorithm where before
there was just & statement of the desired result. And secondly, data re-
finement: where one changes the structures for storing information, usually
replacing some abstract structure that is easily understood, by some more
concrete structure that is more efficient.

More recently the emphasis has turned towards providing & uniform the-
ory of program development, in which specifications and progrsms have
equal status. Such a theory is needed to provide the proper setting both
for further theoretical work on refinement and for conducting refirement in
practice. This goal has been achieved in [4, 41, 35, 37| by extending Dijk-
stra’s language of guarded commands with a specification statement, The
extended language, by encompassing both programs and specifications, re-
duces in theory the process of modular program development to program
transformation. [41, 35, 37) cover only algerithmic refinement. Inthis paper
we carry on in the same style to include data refinement, and thus give a
more complete framework for software development. [40] has made a similar
extension.

An important part of our approach is the use of predicate transiormers, as
in {12], which seem to have several advantages over the relations used in
[25]. One is that predicate transformers can represent & form of program
conjunction not representable in the relational model. This ferm of con-
junction behaves well under data refinement and can be used to simplify
the application of data refinement to specifications. Also, since recursion
can be re-expressed in terms of conjunction, this good behaviour aliows rea-
soning about recursion without assuming bounded non-deterrninism — an



88 DATA REFINEMENT OF PREDICATE TRANSFORMERS

unwanted assumption in a theory of programs which includes specifications.
But probably the greatest advantage of using predicate transformers is that
the theoretical results are so easily applied in practice. In particular, we use
a predicate transformer to represent the relationship between abstract and
concrete states of a data refinement, and this predicate transformer can be
used to calculate directly the concrete program from the abstract program.
The calculation maintains the algorithmic structure of the program and adds
very little extra complication. Moreover, these calculations do not have any
“applicability conditions”. No extra proof of correctness is necessary.

2 Predicate transformers

Following [12], we model programs as functions taking predicates to predi-
cates. We blur intentionally the distinction hetween predicates and the sets
of statessatisfying them, and therefore we think also of programs as taking
sets of (final) states to sets of (initial) states. In any case, for program P
and predicate v, called the postcondition, the application of P to ¢ is writ-
ten P 4 and yields a predicate ¢, called the weakest precondition of ¢ with
respect to P. We say that P transforms ¢ into ¢. This predicate ¢ is the
weakest one whose truth initially guarantees proper termination of P in a
state satisfying ¢ (finally). The expression P4 can also be read simply as
“P establishes ¢™.

The purpose of predicates in the model is to specify sets of states. For this
reagon, when giving the meaning of a program as a predicate translormer,
we will consider only predicates whose free variahles are drawn from the
program's set of state variables. We will call this set of state variables
the program’s alphabet {written aP), and call the predicates whose free
variables are drawn from a given set of variables z “the predicates on z".
Thus, a predicate transformer P can be defined by giving the value of Py
for all predicates ¢ on aP. Of course, we will have to take care not to apply
predicate transformers outside their domains.

For clarity, we will sometimes distinguish between program texts and their
corresponding predicate transformers, writing [ 7] for the predicate trans-
former denoted by the program text T.



Algorithmic refinement of predicate transformers 89

We define an order < on predicates as follows
$<v iff Fé=>¢
The order < permits least upper and greater lower bounds of collections of
predicates ¢; for which we write respectively
ML and A i
Also the order has a top and bottom
T and L

which correspond to true and falge.

The order on predicates is promoted to predicate transformers in the usual
way; for predicate transformers P and @ such that aP = aQ:

PLC Q <off for all predicates p on aP, P < Q ¢

This promoted order has least upper and greatest lower bounds as well as a
top and bottom element, and they satisfy the following equations:

(LP) ¢ =\_'.’(P-' )
(P ¢ = n(P: ¢)
l¢=1
Te¢=T

All the predicate transformers P we will consider are monotonic: for any
predicates ¢ and ¢, ¢ < o will imply P ¢ < P 4.

3 Algorithmic refinement of predicate transform-
ers

In general, one mechanism is tefined by another exactly when every spec-
ification satisfied by the first is satisfied also by the second. For predicate
transformers we take specifications and satisfaction as follows: a specifica-
tion is a predicate pair [pre, post] comprising the initial assumptions pre



90 DATA REFINEMENT OF PREDICATE TRANSFORMERS

and the firal requirement post; and a program P satisfies {pre, post] exactly
when

pre=> P post

It is noweasy to show that P is refined by @ exactly when P C Q.

4 Data refinement of predicate transformers

During sgorithmic refinement, local variables are usually introduced. And
when considering the external behaviour of a program, we ignore the effect
it has on its local variables. This gives us a new degree of freedom in
refining such programs: we can replace local variables by new ones, so long
as the overall effect on the global variables is preserved. This is called data
refinement.

The following syntax is used to hide {make local) a list of variables z:
l[varz| 1o P]

The predicate | states the injtialisation of z, and P is the program within
which the variables £ may be used. This construct is used only if the alpha-
bet of P contains z. The alphabet of the result is that of P with z removed.
The meaning of the construct ia as follows: for any predicate  on (aP —z)

llfvarz| Te P)|J$ & (Vz o I=[P]¥)

We now define data refinement. Let us suppose we wish to replace the list
of varisbles a (the abstract variables) in

[vara{1e P]|

by some other list of variables ¢ (the concrete vatiables), and let the variables
of aP, other than ¢, be g (the global variables}). We choose any predicate
transformer rep that takes predicates on the variables a, g to predicates on
the variables ¢, 9. Then for programs P and P!, we write P < P’ to mean
that P is data-refined by P'.



Data refinement of predicate transformers o1

Definttion 1
P<P' iff repoPC Plorep

where the operalor o is functional composition fof predicate tranaformers).

We will see that for data refinement to be well behaved, we must restrict
our choice for rep. We choose rep satisfying the following two properties:

o rep is monotonic: (Vaed =>¢) > (Ycorep ¢ = rep o);

o rep is V-distributive: rep (V ¢i) =V (rep ¢)

Note that strictness is a special case of V-distribution (ie. rep L = 1).
Note also that this form of monotonicity is stronger than the usual. Further
properties that follow from these are proven below. In these proofs and
others we will make use of the fact that the two lists of variables d and ¢
are, by definition, disjoint and so the variables a do not occur free in the
predicates on g.

Lemma 1 If ¢ 18 a predicate on g, then

rep ¢ < 6

proof:
—¢=>(Vaesp=2>1) gince a i not free in ¢
—¢=>(rep p=rep 1) monotonicity of rep
> (repg=>1) strictness of rep
—p=>—rep ¢ predicate calculus
rep ¢ = ¢ predicate calculus

@

Lemxma 2 If ¢ ts a predicate on a,g and ¢ ia a predicale on g, then

(rep @) A Y < rep(d A ¢)



92 DATA REFINEMENT OF PREDICATE TRANSFORMERS

proof;
v=>(Vaedp=>dAy) gince a is not free in ¢
Y = (rep ¢ = rep(d A o)) monotonicily of rep
(rep @) A = rep(¢ A o) predicate calculus
Q@

In subsequent sections we will discusa a particularly convenient choice for
rep, and will show how to calculete suitable P'. For now, we give the fun-
damental theorem of data refinement:

Theorem 1 If for suitable rep (as defined above) we have shown that P <
P!, then

{vara |l e P]|C |{varc|rep I o P']|
proof: Let v be any predicate on g, then

[l[vara}leP]]¢

=(VaeI={P]y) semantics
<(Yeerep I= rep [P]Y) monotonicily of rep
< (Ve rep I=>[P]rep o) hypothesis
< (Veerep I [P4) lemma 1 and monatonicity of P'
=[|[vare|rep o P Jo semantics

5 The programming language

The programming language is the syntax with which we describe predicate
transformers. Here we will use Dijkstra’s language [12] with several exten-
sionas,



The programming language 93

5.1 Extensions

All of the predicate transformers P which can be described by Dijkstra’s
original language satisfy the following properties:
strictness P1 = 1;
monotonicity ¢ < ¢ implies P ¢ < P ¢};
A-distributivity P (Av;) = A(P ¢,], for any non-empty family {4;};
’ ¥

continuity P (\:’ ¥:) = v(P ¥,), for any chain {;};.

We will see that some of these properties fail in cur extended language.

The first extension was given in section 4 above: the introduction of lo-
cal variables |[var « | I » P]|. It preserves strictness, monotonicity, A-
distributivity, and continuity.

The second extension is the specification. It is written [pre,post] (as in
section 2, but here we add it to the programming language). The meaning
of this construct depends on the alphabet. It is defined for alphabet z as
follows:

Definition 2 For any predicate ¢ on z,

[ [pre, post] J[¢ 2 pre A (Vz e post = ¢)

Specifications are monotonic and A-distributive, but [T, L] is not strict, and
[T, T] is not continuous (take any chain {¢;}; with V¢ = T but ¢y # T
1

for any ).

The third extension is conjunction of programs, written } P; for any family
i
{Pi}i of programs. Its meaning is given as follows:

Definltion 3

[[%P-']I = ulA]



94 DATA REFINEMENT OF PREDICATE TRANSFORMERS

Thus the conjunction of a family of programs is the worst program that is
better than each member of the family. Conjunction preserves atrictness,
monotonicity, and continuity, but not A-distributivity: consider

[T’ ﬂb] I[Ts -"4’] ]]('ob A _"f))

Conjunction is an important counterpart of the specification, since the spec-
ification as it stands in definition 2 does not allow the post-condition to
refer to the state before execution. Using conjunction and specification to-
gether, we can rectify this problem. For example, the assignment statement
n:=n+1 can be expressed as {(n =4, n =7 + 1].

1

This completes the extension of Dijkstra’s language. We can now see that the
only property retained from the original language is monotonicity, since each
of the other properties is violated by at least one of the program constructors.

5.2 Generalisations

Having accepted the loss of strictness, continuity and A-distributivity, we are
able to make other generalisations of the language. Cheice and guarding
need not be restricted to use within the do---od and if - - - f conatructs.
They can instead be defined as language constructs in their own right,

Definitlon 4 Chotce: For any family {P;} of programs we define their
choice as follows:

a1 = sl

Definition 5 Guarding: For predicate G and program P, we define the
guarded command G — P as follows:

[6— Ply 2 G=>[Ply
Definitlon 6 Recursion: We must constder progrem contexts, which denote

functions from predicate trensformers to predicate trengformers. If C is a
program context and P a program, then C(P) 1s a program also. The context



Distribution of data refinement a5

C should be thought of as a program siructure into which program fragments
{for example, P) can be embedded. We have

[sXeC(X) = 8xC]
where fix takes the least fired poini of a function (from predicate trensform-

ers to predicate transgformers in this case).

With these definitions, we can if we wish define the conventional if -.- fi
and do --- od constructors as appropriate combinations. We have

Definition T Alternation:

i.f G1 "-*Pl
I :

[ Go—Pa
fi

18 an abbreviatton for

(§ Gi— Pi)]|- (v Gi) — abort
=1 ¥

Definition 8 Meration:

do G4 — P
[ :

I] Gun — P,
od

18 an abbreviation for

WX e (] 6= P X) 1 (y 6) — skip)

6 Distribution of data refinement

After theorem 1, the most important property of data refinement is that it
distributes through the algorithmic constructors of our programming lan-
guage. Only then can one carry over the algorithmic structure of the ab-
stract program onto the concrete program. We prove this distribution for
each constructor below:



96 DATA REFINEMENT OF PREDICATE TRANSFORMERS

Lemma 1 Sequential composition: If P < P' and Q < Q' then P; @ <
P Q

proof:
repc [P; Q]
= repo [P]o ﬂq]l gemantics
C[P]erepc(Q] hypothesis
C[Ple[Q]orep hypothesris and monotonicity of P!
=[P Q'] orep gemantica
<@

Lemma 4 Shkip: skip < skip

proof:

rep o [ekip]]

=repo ld semantics
= rep property of Id
= Id o rep property of Id
= [skip] o rep semantics

v

Lemma 5 Abori: abort X abort

proof:

rep o [abort]

=repo Ll semantics
=1 strictneas of rep
=lorep property of L
= [abort] o rep semantics



Distribution of data refinement a7

Termma 6 Guarding: To deal uith guarded commands we unll need another
function from abstract predicates to concrete predicates.

Y = - (rep )

We then have the following result for guarded commands. If P < P' then
(G — P) < ((rep G) — P")

proof:
rep [G — P] ¢
=rep (G=[P] ¥) semantics
=rep (- GV[P] ¥ predicate calculus
= (rep =~ G) ¥ (rep [P] ¥) V-distributivily of rep
=— (¥ G) V (rep [P] ) definition of Tep
= (7ep G) = (rep [P] ¥) predicate colculus
< (7ep G) = ([P'] rep ¢) hypothesis
=[(vep G) — P'] rep ¢ semantics
<

Lermnma T Chotee: If for cach § P; < P! then |]P.- =< I]P.'

proof:
repo [ I] P ]
= :'CP © (':'ﬂP-]D semantics
C M(repo [F) monotonicity of rep
c I‘:‘I(HP"E o rep) hypothesis
= (P o rep property of 1
= |]P.' Jorep semantics
i
Q

Lemma 8§ Conjunction: If for each € P; < P} then } P; 2 1 P}
0 i



98 DATA REFINEMENT OF PREDICATE TRANSFORMERS

proof:
repo [ Pi]
= repo (U[A]) gemantice
=U(repe [A]) v-distributivity of rep
C u(fPi e rep) hypothegia
= (UfPi]) o rep property of L
= [ P]orep semantica
H
@

Lemma 9 Recursion: We first promote data refinement to program con-
texts: we say that C < C' ezactly when for all pairs of pragrams P and P’
such that P < P', we have C(P) < C'(P') as well. The result for recursion
18 then as follows:

IC < (', then

(BX o C(X)) X (pX o C'(X))

proof: The Knaster-Tarski theorem asserts the existence of an ordinal ~
such that fix F = F7 1, where

X=X

Fatl X =F(F* X)

FrxX=u (Fp x)
By

Hence, it is sufficient to prove [C]T L < {C']" L for all 4. This can be
proven by induction. The base case follows from Lemma 5, the step case
follows from C =< ¢! and the limit case follows from Lemma 8. @

7 Data refinement of specifications

In the preceding section, we showed that data refinement can he performed
piecewise {a term we horrow from [40]), thus maintaining the algorithmic




Data refinement of specifications 99

structure of a program. We now consider the pieces lying within the struc-
ture.

There are two constructs to consider, the specification and the assignment.
In fact, we can ignore the assignment statement since it is readily trans-
formed into a simple specification.

The following theorems provide a method for calculating the data refinement
of specifications, and show that this method produces the most general data
refinemnent.

In both theorems we will, again, write a for the list of abstract variables, ¢
for the list of concrete variables, g for the remaining (global) varisbles and
rep for the representation predicate transformer.

Theorem 2
{pre, post] < [rep pre,rep post|
proof: Let ¢» be any predicate on g, a, then

rep [ [pre,post] } ¢

= rep (pre A (Vg,a e post = ¢)) semantics
< (rep pre) A rep (Y g,a » post = ¢) monotonicily of rep
< (rep pre) A (Vp,a o post = o) lemma 1
< (rep pre) A (Vg,c o rep post = rep ) monotonicily of rep
= [ [rep pre,rep post] | rep ¢ gemantics

@

Theorem 3 If|[pre, post] <X P then [rep pre,rep postj = P.

proof; Let ¢ be any predicate on g, ¢, then

[ [rep pre,rep post] ¢
= (rep pre) A (Vyg, ¢ ® rep post = ) semantics

< {(rep pre) A (Vg,a ® post = v z) properiies of V
¥ g,corep s=>¢

< rep (pre A (Vg,a e post = v z)) lemma £
Yg,corep s=>¥



100 DATA REFINEMENT OF PREDICATE TRANSFORMERS

=re re, post v z semantics
pllprepost]] v .2

< thesi

- P (rCP Vg,:or}; >y Z) hﬂpa ens

=P v rep z) v-distributivity of rep

Y g,corep =29
<Py praperties of V and monotonicity of P

8 Data refinement in practice

So far we have given no indication as to how one chooses a suitable repre-
sentation transformer rep. In fact, there may be many classes of program
transformation that can be supported by the theory of the proceeding sec-
tions. We can, though, cite one example that proves very useful in practice.
Thia definition of rep, which is described below, gives the same form of
data refinement as that in [16], [40] and also, under the name of downward
simulation, in [24].

When performing data refinement, one always intends that the abstract and
concrete states should correspond in some way. This correspondence can be
expressed as a predicate over the two sets of state variables. From such a
predicate (I say) the representation transformer can be defined as follows.

repd = (JasIAg)

It is easy to verify that this choice of rep has the required properties (i.e.
monotonicily and vV —distributivity}.

727 also has a simple form.

o= (Vaelg)

Now that we have a definition for rep with such a simple form, we can see how
easily data refinementsa can be calculated. The two simple transformers, rep
and 7p can be applied directly to the predicates of any abstract program
80 as to calculate a concrete refinement. In the abstract program all the
pre and post conditions of specifications are replaced by their image under




Conclusions 101

rep and the guards by their image under ¥2p thus leaving the algorithmic
structure unchanged. The reault is guaranteed correct by the thecrems of
the previous sections.

9 Conclusions

We have presented the familiar technique of data refinement in the novel
context of predicate tranaformers. In doing so we have drawn on other re-
cent work In program development: the factoring of Dijkstra’s language into
smaller piecea (Definitions 7 and 8); the use of recursion in practice rather
than iteration as the basis for unbounded computations in Dijksira’s lan-
guage [11i; and the mixing of specification and program [4, 41, 35,37]. And
in Definition 3 we give a further factorisation: with program conjunction,
the technique of “logical® variables is formalised. All of this comes together
to promote a style of program design in which steps are made by calculation
rather than via proof obligations.

It is clear, though, that proof cannot be avoided altogether! In practice,
the necessary truths of predicate calculus are drawn on when strengthening
postconditions and weakening preconditions — and virtually nowhere elge.
In this respect perhaps the proofs have moved rather than disappeared.
Their confinemnent though makes the other rules easier to apply in practice.
Certainly they are easier to remember: the formulation of data refinement
in theorem 2 is simpler than any other of which we are aware.

Using predicate transformers as a model, rather than the relations of [24],
affords several advantages. One is that the dependence on continuity is more
easily broken. That allowed us to extend the work of [24] so that it applies to
a language that includes constructs for specification as well as programming.
Ancther advantage is the ease with which the theoretical results are applied
in practice. Both these advantages are related to our conjunction, which
can not be represented in the relational model. Conjunction simplifies the
expression of specifications in our language; and this, in turn, permits the
very simple rnethod of refinement calculation. In contrast, the method of
calculation in [24], although theoretically simple, gives rise to very large and
unwieldy expressions in practice.

Our relaxing of Dijkstra’s “healthiness® conditions has left us only with



102 DATA REFINEMENT OF PREDICATE TRANSFORMERS

monotonicity: continuity, strictness, and A-distributivity are gone. That is
similar to [41], where continuity and strictness are dropped so that tbe guard
and choice symbols can be given meaning as operators in their own right.
We too proposed this in [35], but have taken the process further, dropping
also A-distributivity, so that we can define the conjunction operator which
is the key to simplifying the calculation of data refinements.

Our results are potentially more general than those of {40], since we recognise
how the abstraction condition is, itself, applied as a predicate transformer,
and base all are proofs on two properties of it. By doing this we make the
structure of the proofs more explicit, and also leave open the possibility
of finding other predicate transformers with these properties which can,
therefore, also be used for data refinement.

We also prove several results that [40] does not. Theorem 1 forms the
important link between data refinement of local variables and operational
refinement. Theorem 3 shows that our method of calculation yields the
weakest program that is a data refinement of the original and thus that no
loss of choice is incurred by calculation.

10 Acknowledgements

An early description of data refinement appeared in [23], and it later was
made part of the Vienna Development Method [26]. Specifications were
embedded within programs by {4], who also treated data refinement. The
first connection between data refinement and weakest preconditions was
made by [4], though it had been earlier presented by [12] as a technique
based on auxiliary variables. { [31] explains the connection between these.)
Most recently, [40] has given the same formulation as section 8§ above, and
hie work has improved ours in several ways.

Our own work owes much to collaboration with Jean-Raymond Abrial and
Mike Spivey who have been a constant source of new and exciting ideas.
Much of our contact with other researchers has been made possible by the
generosity of British Petroleum Ltd.



Data refinement by calculation

Carroll Morgan P.H.B. Gardiner"

9 July 1988

Abstraet

Data refinement ia the systematic substitution of one data type for
another in a program. Usually, the new data type is more efficient than
the old, but possibly more complex; the purpose of the data refinement
in that case is to make progress in program construction from more
abstract to more concrete formulations.

A recent trend in program construction is to calculate programs
from their specifications; that contrasts with proving that a given pro-
gram satisfies some specification. We investigate to what extent the
trend can be applied to data refinement.

1 Introduction

In [3], Back proposed an extension of Dijkstra’s calculus [12] where specifi-
cations and programs are given equal status during program construction.
Later interest in apecifications generally has led quite recently to further
work on such constructions [41, 35, 37, §, 34, 6, 39]. The atyle is now known
as the refinement calewlus.

Characteristic of any calculus is that it is used for caleulation, not juat
description. The refirement calculus, therefore, should allow programs to

*Supported by British Petrolenm Ltd.
®Submitted to Acta Informatica.
°Copyright © 1988, Carroll Morgan and Paul Gardiner.

103



104 DATA REFINEMENT BY CALCULATION

be calculated from their specifications. It does indeed allow presentations in
which each intermediate design follows from a previous design according to
some law of refinement. That contrasts with the more well-known style in
which intermediate designs are first proposed and then proved to follow from
their antecedents. Our hope is that constructions in the refinement calenlus
will proceed more smoothly, and that proof obligations will be reduced. That
is the point of & calculus, and it can be observed elsewhere: for example, in
the differential calculus one uses laws of differentiation, not proofs from first
principles. For differentiation, the process is now mechanical. In the integral
calculus, we have laws too — but there, as in the refinement caleulus, success
i# not guaranteed.

Data refinement is a special case of refinement: one replaces an abstract
type by & more concrete type in a program while preserving its algorithmic
structure. Abstract operations are similarly replaced by corresponding con-
crete operationa. It is a well-established technique, with its own specialised
proof rules [23, 26).

Our principal contribution is to draw data refinement into the calcula-
tional style: we show how to calculate data refinements rather than prove
them. Our emphasis here is on practice, in contrast to our earlier [13}:
this paper gives applications of that theory, though for convenience we have
presented afresh some proofs which are corollaries by specialisation of [13].
Recent work by Morris [40] addresses the same concerns that we do.

In passing we formalise logical constants, long used in program deriva-
tion, but not until now treated rigorously. Their use in programs loses the
property of conjunctivity, another of Dijkstra’s healthiness laws [12]. {The
law of the excluded miracle, and continuity, have already been abandoned
[35, 41, 43, 11].)

This work relies on the idens of the refinernent calculus, reviewed in
Sections 2 and 3 below. More detail can be found in [35, 37, 41, 4].



Refinement 105
2 Refinement

We consider Dijkstra’s programming language [12], whose meaning is given
by predicate transformers. For any program P, we write [ P] for its meaning;
and that meaniog is a function from (desired) final assertions to (necessary)
initial ones:

For any formula 4 over state variables, and program P, [Pl ia
the weakest formula whose truth in an initial state ensures that
activation of P will lead to a final atate in which ¢ is true.

Thus we write [P]y for Dijkstra’s wp(P,v).

2.1 Algorithmic refinement

A program P is algorithmically refined by another P whenever every apeci-
fication satisfied by P is satisfied by P' also. We restrict our specifications,
however, to formulae ¢ = [Py which state “the program P musi be such
that its activation in a state in wbich ¢ is true will lead to a statein which
1 18 true.” We do not, for example, specify time or space constraints,

Definition 1 Algorithmic refinement: Program P is algorithmically refined
by program P’ precisely when, for all formulae ¢ and ¥ over the program
variables,

¢ = [P]¢ implies ¢ = [P'Iy.

We write P  P' for tbat relationship.
<

The following is an easy consequence of Definition 1, and is what we will
use in practice:

Lemma 1 Algorithmic refinement: For programs P and P, we have P C
P' precisely when



106 DATA REFINEMENT BY CALCULATION

[Pl¢ = [Py for all formulae 1 over the program variables.

Proof: For f, note that ¢ = [Py and [Pl¢ = [Py imply ¢ => [P']v as
required; for only if, take ¢ to be [Py itself.
<

We assume that in Lemma 1 we may limit our choice of formulae ¢ to
those containing only variables free either in P or P’ or both.

2.2 Data refinement

Data refinement arises as a special case of algorithmic refinement. A pro-
gram P is data-refined to another program P’ by a transformation in which
some so-called abstract data-type in P is replaced by a concrete data-type
in P'. The overall effect is an algorithmic refinement of the block in which
the abstract data type is declared.

For that, we add local variables to Dijkstra’s language in the following
(standard) way:

Definition 2 Local variebles: For (list of} variables {, formula I (the ini-
tialisation), and program P, the construction

ivar 1|1 P]|

is a local block in which the local variahles [ are introduced for the use of
program P; they are first assigned initial values such that I holds. We
define, for + not containing {,

[[[varZ|IeP]]¢

b

(VI « I [Pl)
O

Note that the scope of quantifiers i3 indicated explicitly by parentheses
(¥---); the spot » reads “such that”,

Where a postcondition ¢ doea contain the local variable I, Definition 2
can be applied after systematic change of the local { to sorne fresh I'. We
assume therefore that such clashes do not occur.



Refinement 107

Where appropriate, we consider {ypes to be simply sets of values, and
will write ||var: T|Je P]|for |[var{|{{ € TAI)e P]|; thus avariable
is initialised to some value in its type. And if I is just irue we may omit it,
writing |[ var I » P|| or || var {: T e P]| as appropriate.

Now data-refinement transforms an abstract block |[ var ¢ | [+ P)| to
a concrete block |[ var ¢ | /' « P'||. We assume that the concrete variables
¢ do not occur in the abstract program I and P, and vice versa. The
transformation has these characteristics:

1. The concrete block algorithmically refines the abstract block:
[vara|IeP]| C |[vare]|I's P'].

2. The abstract variable detlarations var a are replaced by concrete vari-
able declarations var ¢.

3. The abstract initialisation I is replaced by a concrete initialisation I'.

4. The abatract program P, referring to variables a but not ¢, is replaced
by a concrete program P! referring to variables ¢ but not a; moreover,
the algorithmic structure of P is reproduced in P’ (see below).

The four characteristics are realised as followa. An abstrgction invariant
Al is chosen which links the abstract variables a and the concrete variables
c. It may be any formula, but nsually will refer to ¢ and ¢ at least. (See
Section 4.1 below for a discussion of the impracticality of choosing false as
the abstraction invariant.) The concrete initialisation I' must be such that
I'= (3a » AInl). For the concrete program we define a relation < of
data-refinement:

Definition 3 Dats refinement: A program P is said to be data-refined by
another program P', using abstraction invariant Af, abstract variables a
and concrete variables ¢, whenever for all formulae ¢ not containing ¢ free
we have

(32 « AIA[P]Y) = [P']{(3a & AIAD)

We write this relation P <47, P', and omit the subscript 47,4, When it is
understood from context.

Qo



108 DATA REFINEMENT BY CALCULATION

Definition 3 is appropriate for two reasons. The first is that it guarantees
characteristic 1, as we now show.

Theorem 1 Soundness of data-refinement: If I' = (Ja e AIAI) and
P < P then

[[var a |[Te P]| C |[varc|I's P'||

Proof: Consider any 1 not containing a or ¢ free. We have
[llvarafseP] ¥

(Va o I=[P]y) Definition 2
(Ve,a » I=[Pl¥) ¢ not free in above

Il

= (Ve,a o AIAI= AIA[P]y)

= (Yco (Ja e AIA)=>(Ja e ATA[PlY))

= (Veceo I'=(3a o AIA[P}Y) assumption
= (Yceo I's[Pl(3a ¢« AIAY) assumption; Definition 3
= (Ve o I'= [Py) monotonicity; @ not free in ¢
= [ljvare|I's P']| [y Definition 2

The second reason our Definition 3 iz appropriate is that it distributes
through program composition. This is shown in [40, 13}, and we refer the
reader there for details. Here, for illustration, we treat sequential composi-
tion; alternation and iteration are dealt with ir Sections 4 and 6 below.

Lemma 2 Data-refinement distributes through sequential composition: If
P < P'and @ < Q' then (P; Q) < (P, Q).

Proof: Let 1 be any formula not containing ¢. Then
(3¢ o AIA[P; Q]¥)

= (Ja o AIA[PKIQ]¥)) semantics of “;”
> [P](@a « AIA[Q]¥) P<p
=> [P']([Q1(3a » AIAY)) Q < Q'; monotonicity

[P; QT(Ja o AIAY) semantics of “;"




Language extensions 109

It is the distributive property illustrated by Lemma 2 that accounts
for characteristic 4 above: if for example P is P;; Py; -+ P, then we can
construct P! with P < P’ simply by taking P' = P{; P}; --- P} withP; < P!
for each €. It is in this sense that the structure of P is preserved in /. We
will see in Section 4 below tbat this carries through for alternations and
iterations also.

3 Language extensions

We extend Dijkstra’s language in two ways. With the specification statement
we allow specifications and executable program fragments to be mixed, thus
promoting a more uniformm development style. With program conjunction
we make more rigoroua the use of sao-called logical constants, which appear
in specifications but not in executable programas.

3.1 Specification statements

A specification statement ia a list of changing variablea called the frame
(say w), a formula called the precondition (say pre), and a formula called
the postcondition (say post). Together they are written

w: [pre , post].

Informally this construct denotes a program which,

if pre is true in tbe initial state, will establish pest in the firal
state by changing only variables mentioned in the list w.

For the precise meaning, we have



110 DATA REFINEMENT BY CALCULATION

Definition 4 Specification statement: For formulae pre, post over the pro-
gram variables, and list of variables w,

[ w: Ipre , post] J¢ = pre A (Vw o post = o)

AV

The symbol = is read “is defined to be equal to”.

Specification statementa allow program development to proceed at the
level of refinement steps C rather than directly in terms of weakest pre-
conditions, and are discussed in detail in [35, 37]. They are similar to the
descriptions of [4] and the prescriptions of [41]. For now we extract from
the above works a collection of refinement laws, given in the appendix to
this paper. We illustrate their use with the following small program devel-
opment:

“asgign to y the absolute value of z”

y: [true , y =|z]]
=y (z<0)vi{z=20), y=|z|]

C Law 13
fr<0—y: 2250, py=|z
lzz0—y:[z>0,p=]z
fi

{1
/]

=ifz<0—y:[-z=|z| , y=|z|]
lz20—yfz=|z , y=|2|]
fi

C Law 12 twice
fz<O0—pi=-2
Jz>20—y:i=x2
fi




Langnage extensions 111
3.2 Program conjunction

Given a program P we write the generalised program conjunction of P over
some variable ¢ as [[ con i e P]|. We call it conjunction because that new
program is a refinement C of the original program P for all values of the log-
scal constant §. For example, coneider the statement z: [z =14, z=17 + 1],
and suppose our variables range over the natural numbers. Its generalised
conjunction over i refines all of the following:

[z=0, z=1]
=1, z=2
o [z=2, z=13|

Each of those programs deals with a specific value of z, and can abort for all
others. Yet, as Definition 5 will show, that generalised conjunction equals
the statement z := z + 1, which ia guaranteed to terminate,

Definitlon 5 Program conjunclion: For program P and variable i not free

in ¢,
[I[con ie P ]2 (3i « [Ply)

@

As in Definition 2, systematic renaming can deal with occurrences of ¢ in ¢,
Thus for the example above we can calculate

[ consei:{z=1i, z=1i+1]] [¢

= (s e [i:[z=%,z=9+1]]¢) Definition 5
= (@7 ez=iA(VYz e z=i{+1=>4)) Definition 4
= (I3 e z=iA¢[z\i+1])

= ole\f + 1][i\z]

= ¢[z\z+1] ¢ not free in ¢

= [z:=z+1]¢



112 DATA REFINEMENT BY CALCULATION

The notation [z\f + 1] indicates syntactic replacement of z by 1 + 1 with
any changes of bound variable necessary to avoid capture.

Variables declared by con we call logical constants. They usually appear
in program developments where some initial value must be fixed, in order
to allow later reference to it. For example in the Hoare style [21], we might
write “find a program P, changing only z, such that {z = X} P{z = X +1}".
Here the upper case X makes use of a convention that such variables are
not to appear in the final program: it is not z := X + 1 that is sought, but
z =z + 1. We would just write

[conXez: z=X, z=X +1]]],

it being understood that we are looking for a refinement of that. Since
our final programming language does not allow declarations con, we are
forced touse refinements whose effect ia to eliminate X. We do not need an
upper-case convention.

It is interesting that program conjunction is the dual of local variable
declaration (compare Definitions 2 and 5); thus logical constants are in
that sense dual to local variables. It is shown in [13] that data refinement
distributes through program conjunction.

4 Data refinement calculators

In Section 2 we defined the relation < of data-refinement between two state-
ments § and §'. We gave there also a sufficient relation bet ween the abstract
initialisation / and the concrete initialisation 7'.

In this section we show how the extensions of Section 3 allow us to
calculate data-refinements §' and J' which satisfy the sufficient relations
sutomatically. Following [28], we call these techniques ealculators.

For the rest of this section, we will assume that the data-refinement is
given by

abstract variables: c
concrete variables: €
abstraction invariant: AJ



Data refinement cakulators 113

Moreover, we assume that the concrete variables ¢ do not appear free in the
abstract program.

4.1 The tnitialisation caleulator

For concrete imitialisation I' to data-refine the abstract [ we know from
Theorem 1 that I' = {3a e AI A [I) is sufficient; therefore we define I' to
be {Ja e AT AT} itself. Law 5 {appendix) shows that we lose no general-
ity, since any concrete initialisation J*, where I' = {Ja ¢ AIA [}, can be
reached in two stages: first replace I by the calculated (Ja ¢ Al A[); then
strengthen that, by Law 5, to I’,

If Al is false, tben the calculated I' will be false also; indeed, Law 5
allows a refinement step to false initialisation directly. That is valid, though
impractical, for the following reason: Definition 2 shows that the resulting
program is miraculous:

[ var I | false s P || Jfalse = true.

It can never be implemented in a programming language. {And that is why
programming languages do not have empty types.)

4.2 The specification calculator

Lemma 3 to follow gives us a calculator for the data-refinement of any
abstract statement of the form a,z: [pre , post|, where a and z are dis-
joint {and either may be empty). Lemma 4 shows that taking that data-
refinement loses no generality. The two results are combined in Theorem 2,
Finally, we give as a corollary a calculator for statements b, z: [pre , post]
wbere b is a subset of a; that is an abstract statement which may require
some abstract variables not to change.

Lemyma 3 Validity; The following data-refinement iz always valid:

a,z: [pre, post]



114

DATA REFINEMENT BY CALCULATION

< e,z [(3a « ATApre) , (3a o AT A post))

Proof: We take any formula ¢ containing no free ¢, and proceed as follows:

%

(3a » ATA[a,z: [pre, post] J¢)
(Ja o ATApreA(Va,z o post = ¢)) Definition 4
(3a e ATApre)A(Ve,a,2 o post =) ¢ not free in post, ¥
(Sa e ATApre)A(Ye,z,8a o ATApost = AT A o)
(Ba e ATAprelA(Ve,z @ (Ja o ATApre)= (D2 o AIAY))
fe,z: [(3a » ATApre) , (Ja o ATApost)|](Fa « ATAY)

Lemma 4 Generality: For all programs CP, if a,z: [pre , post] < CP

then

e.z: [(3o @ ATApre]) , (3a o AfApost)] C CP

Proof: We take any ¢/ containing no free s, and proceed as follows:

4 4

le,z: [(3a o ATApre) , (3a o Al A post)] ¢

(Ha o Al A pre) Definition 4
A(Ve,z o (3a o AJ A post) = ¢)

(3o Al A pre) ¢ not free in post,
A(Ya,z ® post => (Ve o Al = ¢)) a not free in ¢

(3a e ATApreA(Va,z o post = (Ve o AT = ¢)))

(30 o« AIA[a,z: [pre, post]](Vec » AI = ¢)) Definition 4
[CP]{(3a o ATA(Ve » AT=¢)) assumption, Definition 3
1cPly a not free in v, monotonicity

We now have the specification calculator we require: Lemma 3 states
that it 4s a data refinement; Lemma 4 states that any other data-refinement



of the abstract specification is an algorithmic refinement of the calculated
one. We summmarise that in Theorem 2:

Theorem 2 The spccification calculater; For all programs CP,
a,z: [pre, post] < CP

if and only if
¢,z: [(3a o AIApre) , (3a o AlApost)]] T CP

Proof: From Lemmas 3 and 4.
<

Note that the quantifications (Ja---) ensure that the abstract variables a
do not appear in the concrete program.

We canclude this section with a corollary of Lemma 3; it calculates the
data-refinement of an ahstract specification in which not all variables are
changing. In itz proof we are able to reason at the higher level of the
relations C and <; weakest preconditions are not required.

This corollary is the first occasion we have to use logical constants in
data refinement. Like local variables, logical constants are boundin a pro-
gram; and it is the con declaration which binds the abstract variables ¢ in
Corollary 1, since the quantification (35 -+ ) alone may leave some abstract
variables free.

Corollary 1 For any subset {(not necessarily proper) b of the abstract vari-
ables a, the abstract specification b,z: [pre , pest| is data-refined by

|[ con a e
e,x: [ATApre, (3b o AI A post)
I

Proof: Let b and y partition a, and let B and Y partition A correspond-
ingly. Then



116 DATA REFINEMENT BY CALCULATION

b,z: [pre , post]

Law 9
[[con Y o b,y,z: [preAy=Y , postAy= Y]]

=< Lemma 3

[[con Y e
e,z: [(Qb,y @« ATApreny=Y) , (3b,y o AT A postAy=7Y)]

I

[[con ¥ »
e,z: [(3b o ATApre)[y\Y], (38 o AIA post)[y\ Y]

1

= Law 8

|[con g e
c,z: [(3b o ATApre), (3b o AIA past)]

I

= Law 6

|[con a e
e,z: [AI Apre, (b o AIA post)]

I

4.3 The guard calculator

We saw in Corollary 1 that the specification calculator introduces con a and
existentially quantifies over changing abstract variables only. For guards,
changing nothing, we would expect that quantification to be empty. We
have

Theorem 3 The guard caleulator: If 5; < S for each 1, then the following
refinement is valid:

f{lie Gi— 5;) 8



The “mean” module 117

< |lconae
i ([§oATA G — S A
H

Proof: For any ¢ not containing ¢, we have

(Qa e« ATA[H(Jie G:— 5) 8 ]¢)

definition [if - - - fi])
(Ha e ATA(VieG)A(Aie G = [S])
(Fa e (VieATAG)A(Ai®AlA G = AT A[Si]¥))

= (Ga e (VieATAG)A(Ai® ATA G = (a o AIA[STY))
=> since 5; < 5}
(B3a e (VieATAGIA{Ai ¢« ATAG; = [8]](3a & ATAY)))
= [[[comae--]|[(38 e« AFAY)
Q
A similar construction is possible for do --- od, but in this general

setting it is better to use if --- fl and recursion. There are special cases for
do, however, and they are discussed in Section 6.

5 Example of refinement: the “mean” module

We can present a data refinement independently of its surrounding program
text by collecting together all the statemnents that refer to the abatract vari-
ables or to variables in the abstraction invariant. Such a collection is called
a module, and we can confine our attention to it for this reason: statements
which do not refer to abstract variables, or to the ahstraction invariant, are
refined by themselves and we need not change them.

Consider the module of Figure 1 for calculating the mean of a sample of
pumbers. We write hag comprehensions hetween brackets <>, and use 3~ &
and #5 for the sum and size respectively of bag §. The operator + is used
for bag addition. The statement error is some definite error indicstion, and
we assume that error < error. The initialisation is & € bag of BReal



118 DATA REFINEMENT BY CALCULATION

module Calculator =
var b:bag of Real:

procedure Clear = b ;=< ;
procedure Enter (value r) 2 8= b+ <r >
procedure Mean (resnlt m) =

oA« v m:=3 b/#b

[ 6 =<> — error

fi

end
Figure 1: The “mean” module

The module is operated by: first clearing; then entering the sample
values, one at a time; then finally taking the mean of all those values.

For the data refinement, we represent the bag by its sum s and size n at
any time.

abstract variables: &
concrete variables: an
abstraction invariant: s=3 bAn =#b

We data-refine the module by replacing the abstract variables b by the
concrete variables s,n and applying the calculations of Section 4 to the
initialisation and the three procedures. Stacked formulae below denote their
conjunction.

« For the initialisation, we have from Section 4.1 for the concrete initial-
isation
b € bag of Real
35 e s=3b
n==d#b%



The “mean” module 119

8 € Real
= n € Natural
n=0=>s=0

e For the procedure Clear, we have from Section 4.2

b ==

b: [true, b ==<>]

=< Lemma 3

s=2b
- (Elb . ‘:_Eb)  13b e n=gb

=#b b ==
C Law 1
s,n: [true, s=0AR=0]
C Law 12
&,n =00

e For the procedure Enter, we have from Section 4.2

b:=b4+ <r >
=|{conBeb: [}=B, b=B+<r=]|
=< Lemma 3
|e=ELB =T (B+<r>)
|[ con B e s, n: n=#B ' n=#(B+~<r>) 1
C Laws 12,7

an =s+rn+1
e For Mean we have first that from Section 4.2
m =3 b/#b

m: [#b#0, m=3b/#b
Corollary 1 (noting the quantification is empty)

1A

[con b e

#b#£0  m=3 b/#b
s=Yb, =%
n=#b n=#b

m, s, n




120 DATA REFINEMENT BY CALCULATION

C Laws 10,2, 3,1

[[com d em: [n#0, m=s/n]]|
€ Laws 12, 7

m:=afn

Then we conclude from Theorem 3 that

Ho#<> o m:=1 b/#b
] b =<> — error

fi
<[[conbe

b#<

iflsa=b [+ m:=g/n
n = ##b
b =<

lle=%X% |- error
n=7dH#b

fi

I

To make further progress with Mean, we need to eliminate the abstract
variable b from the guards; then Law 7 applies. That is assisted by the
following lemma (which is generally applicable to the refinement of alterna-
tions, whether or not they occur within data refinements):

Lemma 5 Refining guards: Given the conditions

1. VieG)= (Vie Gl
2. (Vie G) = (Gl = G;) for each i

the following refinement is valid:

f{lfeGi- S B C H(lieG—-S)8

Proof: By Lemma 1 and [if --- fi] we must show for all formulae ¢ that



The “mean” module 121

(Vie G)IA(AieGi=>[S]¥)
> (Vie GDA(Aie Gl = [S]v)

That follows by propositional calculus from assumptions 1 and 2 above.
V]

We have immediately the following corollary:
Corollary 2 Weakening guards: The following refinement is valid for any

formula X:
H(ffe GiAX = 8) 88 C if(lie G;— S;) i

v

Now we can continue the refinement of Mean:

C Lemma 5, Law 7
Unt0—om:=2g/n
[ » =0 — error

fi

In Figure 2 we give the resulting data refinement for the whole module.

To see the need for the initialisation, consider this alternative definition
of Clear:

procedure Clear 2
HbE<- o bi=<>
[ & ==> — skip
fi

That is semantically identical to the original, in Figure 1, but might be
cheaper overall if the operation b :=~<> were expensive. Its calculated data
refinement is



122 DATA REFINEMENT BY CALCULATION

module Caleulator &
var s: Real; n: Natural;

procedure Clear = 8,8 :=0,0;
procedure Enter(value r) = s, n:=s8+n,n+1;
procedure Mean(result m) =

fn#£0 o m:=3s/n

[ n=0 — error

fi

initially n =0=s=0
end

Figure 2: The “mean” module, after data refinement

procedure Clear =
fn£0 —s5,r:=00
| »=0 — skip
fi

That would not work correctly if used immediately after an initialisation,
say, of s = 1 A n = 0! So our stated initialisation is necessary, after all; note
however that since initialisations can always be strengthened {Law 5}, we
could use the simpler s = 0 if desired,

6 Specialised techniques

Now we specialise the techniques of Section 4: we consider guards, functional
data-refinement, and the use of auziliary variabies.



Specialised techniques 123

6.1 Data-refining guards

We have peen that data refinement takes an abstract guard G to aconcrete
guard G A AI, where Al is the abstraction invariant. The occurrences of
abstract variables in this concrete guard must then be eliminated. We use
Lemma 5 for that; we replace each of the calculated guards G; A AI by the
guard (Ve o AI = G;), which does not contain a free. By that lemma, we
must show

1. (VieGiAAl=> (Vie(Va ¢ Al = G)))
2. (Vie GiAAL) = ((Ya o AI= G))=> GiA Al) for each s
The validity of 2 is evident; and by rewriting 1 we can see that it requires

only that the data-refined disjunction of the abstract guards implies the
disjunction of the concrete guards. Thus we have the following

Lemma 8 Data refinement of alternations: Given abstraction invariant
Al abstract guards G, and abstract statements §;, let the concrete guards
G! and cancrete statements §; be such that

1. Gi=(Va ¢ AI=> G))

2. 5;%S]
Then provided (Ja ¢ AIA(Vie G;)) = (V1 e G!), the following data
refinement is valid:

if(lie Gi—8)8 X H(ie Gl — S &

@

For iterations the result is the same: we use the recursive formulation

do (i Gi— S)od 2 (gPelf (JieGi—S; P)
I ~(VieG)— skip
£)

and hence must determine the conditions under which



124 DATA REFINEMENT BY CALCULATION

if(Jie AIAG;— S;; P)
l] AN —l(Vi. G.)‘—'Bkip
fi

C i (Ji e G- Sf; P)
] -(Vie G — skip
fi

As before we have defined G! to be (Va o Al = G;). Straightforward ap-
plication of Lemma 5 gives us

Lemma T Data refinement of iterations: Under the same conditions as
Lemma 6, the following refinement is valid:

do(fie Gi— S;) od < do ([i » G! — 8)) od

Our choice of G/ is used also in [40], where those two rules are proved
from first principles (that is, from Definition 3). We have shown therefore
how that technique is an instance of our Theorem 3.

6.2 Functional refinement

In many cases, the abstraction invariant is functionel in the sense that for
any concrete value there js at most one corresponding abstract value. In
[26], for example, this is the primary form of data-refinement considered.

Functional abgtraction invariants can always be written as a conjunction

e = AF(c)
Cl(¢)

where AF we call the abstraction function and CI the concrete invarient;
the formula CI of course contains no occurrences of abstract variables a.
We assume that CI{¢) implies well-definedness of AF at ¢.




Specialised techniques 125

Functional data-refinements usually lead to simpler calculations. First,
the concrete formula (3a ® AJ A ¢) — where ¢ is pre or post in theabstract
specification — is simplified:

(Fa e AIAQ)

= (Fa s (a=AF()ACI{c)NA)
CI(c) A ¢[a\AF(c)]

Thus in this case data-refinerment calculations are no more than simple sub-
stitutions. Note also that the resulting concrete formula contains no free
abstract variables, and this allows any |[ con a ¢ --.]| to be eliminated
immediately. We have this corollary of Theorem 2:

Corollary 3 Functional data-refinement: Given an abstraction invariant
a = AF({c) A CI{e), the following data-refinement is always valid:

a,z: [pre, post|

< e,z [Pfe[d\AF(c)] post[a\AF(c)]

CI(c) ’ CI(c)

Moreover, it 18 the most general.
<

A second advantage is in the treatment of guards, as is shown also in
[40]. We replace as before G; by G; A AI, which becomes

Gin(a = AF(c)) A CI{c)
= Gi[a\AF ()] A (e = AF(e)) A CI{c)
Now by Corollary 2, we can eliminate the conjunct ¢ = AF(¢) immediately,
and hence the enclosing |[ con g » ---]| as well. (And we can eliminate the

CI(c), but that is optional: it contains no a.) So we have the following
result for the functional data-refinement of alternations:



126 DATA REFINEMENT BY CALCULATION

Lemma 8§ Functional data-refinement of alternations: Given abstraction
invariant (e = AF(c)) A CI(c}, abstract guards G;, and abstract statements
5y, let concrete guards G and concrete statements S} be such that

1. G!'= Gila\AF(c)] A Ci{c)
2. 548!

Then the following data refinement is always valid

iflieGi— S)A < H(JieGl—~S) A

The same remarks apply to iteration [and again, the conjunct CI(c) is
optional in the concrete guards):

Lermnma 9 Functional date-refinement of iterations: Under the same con-
ditions as Lemuna 8, the following data refinement is valid

do (i e G;— 5)od < do (i e G} — S5/) od
©

6.3 Auxiliary variables

A set of local variables is auztliary if its members occur only in statementa
which assign to members of that set. They can be used for data refinement
as follows,

There are three stages. In the first, an abstraction invariant is cho-
sen, relating abstract variables to concrete. Declarations of those concrete
variables are added to the program, but the declarations of the abstract
variables are not removed. The initialisation is strengthened so that it im-
plies the abstraction invariant; every guard is strengthened by conjoining
the abstraction invariant; and every assignment statement 1s extended, if
necessary, by assignments to concrete variables which maintain the the ab-
straction invariant.



Specialised techniques 127

In the second stage, the program is algorithmically refined so that the
abatract variables become auxiliary. In the third stage, the (now) auxiliary
abstract variables are removed (their declarations too), leaving only the
concrete — and the data-refinement is complete.

That technique was proposed by [29], and a simple example is given in
[12, p.64]. It is a special case of our present technique, as we now show.
Suppose our overall aim is the following data-refinement:

abstract variables: a
concrete variables: c
abstraction invariant: AFJ

We decompose this into two data-refinements, applied in succession. In the
first, there are no abstract variables;

abstract variables: (none)
concrete variables: ¢
abstraction invariant: AJ

Clearly this removes no declarationa, and from Definition 3 requires for
§ =< 8' (remembering that the quantification {(Ja e :--} is empty) only
that for all ¢ not containing ¢ free, we have

ATA[SIw = [S)(ATA &)
That is precisely the first stage explained informally ahove.

The second stage remains: it is only algorithmic refinement. For the
third stage, we use the following data refinement in which there are no
concrete variables:

abstract variables: a
concrete variables: (none)
abstraction invariant: true

From Definition 3, here for § < §' we must show that for all formulae ¢

@a o [SW) = [$1(Ea « ¢)



128 DATA REFINEMENT BY CALCULATION

And this holds only when the abstract variables & are auxiliary.

We illustrate the auxiliary technique with two lemmas, derived from our
genera!l rules for data refinement:

Lernma 10 Iniroducing concrete variables while maintaining the invariant:
Let the abstract variables be none, the concrete variables be ¢, and the
abstraction invariant AI. Then for abstract expression AE and concrete
expression CE, we have

a=AFE <a,c:= AE,CE
provided Al = [a,¢:= AE,CE]AL
Proof:

AlAla:= AE]¢

= AI A [a\AE] by semantics of :=
= [a,e:= AE, CE]JAI A ¢[a\AE] by assumption
= Alla, e\AE,CE]| A y[a\AE] by semantics of :=
= All[a, \AE,CE| A ¢[a, \AE, CE] since ¢ contains no ¢
=[a,c:= AE,CE|{AI A ¥) by semantics of :=

<

Lemma 11 Eliminating aunliary varicbles; Let the abstract variables he
a, the concrete variables he none,and the abstraction invariant true. Then

1. ¢ := AF < skip
2,¢e=CE=<¢:=CFE

provided CE contains no occurrence of a.
Proof: For 1 we have

(Fa o [a:= AE[Y)



Specialised techniques 129

=(Je » ¢[a\AE]) by semantics of :=
= (Ja e ¢) predicate calculus
= [skip](3a « ¥)

For 2 we have

{3a e [[c := CE]¥)
=(Je » ¢[c\CE]) by semantics of :=
=(3a o ¢)[c\CE] since CE contains no a
=fec:=CE](Ja ¢ ¢)

(Note that in case 2 we did not assume that 4 contained no ¢.)
Y

If the abstract statement is a specification a: [pre, post], then in the
first stage we replace it by a,c: [pre A Al , post A AI]. If by the third
stage (after algorithmic refinement) we still have a specification — say
a,¢: [pre', post'], then the removal of ¢ as an auxiliary variable leaves
ve with ¢: {(Fa o pre') , (3a e post’)]

Let us as a final illustration try to remove a variable which is not anxil-
lary: we take the data-refinement as for the third stage, and suppose that
¢ = a¢ % CP for some concrete program CP. We expect this to fail, zsince &
is clearly not auxiliary in ¢ :== a. Now we have for all constants n that

true
=(Je e c=1n) predicate calculus
=(Je » (c=n)e\a]) renaming bound variable ¢ to a
=(3a o [jc:=a](c=n)) by semantics of :=
= [CP](3a & c=1n) by assumption
=[CP]{c= 1)

Since the above holds for any n, we have that CP always establishes both
¢ = 0 and ¢ = 1. Because no executable program can de this, we have
shown that there is no such CP — as hoped, a cannot be eliminated from
¢ := a. But what if we write ¢ := a a3 a specification? In that case, we
have



130 DATA REFINEMENT BY CALCULATION

¢c=a

= ¢: true, ¢ = a]

1A

Corollary 1 (noting the quantification is empty)
|[ com a e e: [true, c=a]]|

So here we have a data-refinement, after all. But that is consistent with the
above in the following way: there is no executable program CFP (whether
containing a or not) such that ¢: [true , ¢ = a| C CP. Thus the [[con a e
-« ]| still cannot be eliminated.

In [31] the auxiliary variable technique is presented independently of the
refinement calculus.

7 Conclusions

Our calculators for data refinement make it possible in principle to see that
activity as the routine application of laws. The example of Section 5 is a
demonstration for a simple case. It is important in practice, however, to
take advantage of the specialised techniques of Section 6; otherwise, the
subsequent algorithmic refinement will simply repeat the derivation of the
techniques themselves, again and again.

That subsequent algorithmic refinement is in fact a lingering problem.
In many cases, particularly with larger and more sophisticated refinements,
the refined operations present fearsome collections of formulae concerning
data structures for which we do not have an adequate body of theory. Their
subsequent manipulaticns in the predicate calculus resemble programming
in machine code. Fortunately, there is work on such theories (and their
calculi, for example [10]), and we see little difficulty in taking advantage of
them.

Our work on data refinemnent has heen aided and improved hy collabo-
ration with Morris and Back, who present their work in [40] and [4] respec-
tively. We extend Morris's approach by our use of logical constants (which,
however, he has discovered in another context [39]). A second extension is




Acknowledgernents 131

our “if and only if” result in Theorem 2. That is necessary, we feel, for
a data refinernent to be called a calculator: P < @ is a caleulator only if
taking @ loses no generality. And Morris retains some restrictions on ab-
straction invariants which we believe are unnecessary. Conversely, Morris’s
specialised alternation calculator [40, Theorem 4] improves ours (Lemma 6)
by introducing a miracle as the refined program [33]; his rule needs no proof
obligation. Our work extends Back’s by our emphasis on calculation, and
our use of logical constants.

8 Acknowledgements

We are grateful to have had the opportunity to discuss our work with Ralph
Back and Joe Morris, and for the comments made by members of IFIP WG
2.3. Much of our contact with other researchers has been made possible by
the generosity of British Petroleum Ltd.

9 Appendix: refinement laws

Below is a collection of laws which can in principle take most spetification
statements through a series of refinements into executable code. We have
not tried to make them complete. “Executable code” means program text
which does not include either specification statements or logical constants.

“In principle” means that these basic rules, used alone, will in many cases
give refinement sequences which are very long indeed — rather like calcu-
lating derivatives from first principles. But with experience, one collects a
repertoire of more powerful and specific laws which make those calculations
routine.

Some of the laws below are equalities = ; some are proper refinements C .
In all cases they have been proved uging the weakest precondition semantics
of the constructs concerned.

Section 9.2 contains notes relating to the laws of Section 9.1.



See Note 1.

See Note 2.

See Note 3.

132 DATA REFINEMENT BY CALCULATION

9.1 Laws of program refinement

Most of these laws are extracted from [37], retaining only those used in this
paper. Logical constant laws have been added.
1. Weakening the precondition: If pre = pre then
w: [pre, post] C w: [pre’, posi]
2. Strengthening the posteondition: I post’ = post then
w: [pre, post] T w: [pre, post|
3. Assuming the precondiiion in the postcondition:
w: [pre, (Jw o pre) Apost] = w: [pre, posi

4. Introducing local variabies: If  does not appear free in pre or post,
then

w: [pre, post] C |[var z{Te w,z: [pre, post]]|

5. Stremngthening the inittalisation: If I' = I, then
|[varz [T S]| C |[varzil'e S]]

6. Introducing logical constants: If z does not appear free in post, then
w: [(z o pre) , post] = |[con z e w: [pre, postl]|

7. Eliminating logical constants: If = does not appear free in P, then

leonz o P]| = P

8. Renaming logical constants: I y is disjoint from w, and does not occur
free in pre or post, then

|[con z & w: [pre, post]]|
= |[eon y & w[z\y]: [pre[z\y], post{z\y]]]|



Refinement laws 133
9. Expanding the frame: If z and y are fresh variables, disjoint from each
other, then

w: [pre, post] = |[cony e w,z: [preAz =y, postAz = y]]|

10. Contracting the frame: If w and z are disjoint, then

w,z: [pre, post] T w: [pre, post|

11. Introducing skip:

w: [post, post] C skip

12. Introducing ssgignment: If E is an expression, then See Note 4.

w: {poat{w\E], post] C w:=F

13. Introducing alternation:

w: [preA(Vie G;), post
= ([ie G;— w: [preAG;, post)) fi

9.2 Notes

1. Law 3 applies when information from the precondition is needed in the
postecondition. We use it below to derive a stronger version of Law 2:

I (3w e pre) A post') = post, then
w: [pre , post|
C by Law 2 and the assumption
w: [pre, (3w e pre) A post]
C by Law 3
w: [pre, post’]

2. Usually Law 6 is used to introduce an equality into the precondition
which “saves an initial value for later.” That is summarised in the
following derived law:



134 DATA REFINEMENT BY CALCULATION

If y is disjoint from w, and does not occur free in pre or pest,
then

w: [pre, post|
C by Law 1
w: [(Gy & z=yApre) , posi]
C by Law 6
[con y & w: [z =yApre, post]]|
3. Logical constants, introduced by con, are variables which we can use

during program development but not in final programs, Usually they
are used to fix initial values, as in

[conX ez [z=X, 2=X+1}]|
by Law 12
[[econ X e z:=z+1]|

by Law 7
z:=z+1

N

I

Since the keyword con is does not occur in our executable program-
ming language — just as specification statements do not — it must
be eliminated (using Law 7 as above) during the development process.
Thus logical constants never appear in the final program, since they
cannot be declared there.

4. Law 12 is usually applied together with Laws 10 and 1, as in the
following derived rule:

If the variables w and z are disjoint, £ is an expreasion, and
pre = post[w\ E], then

w,x: [pre , post]

C by Law 10
w: [pre, post]

C by Law 1 and the assumption
w: [post[w\ E] , posi]

C by Law 12

w:=F



Laws of program refinement:
a summary

Carroll Morgan

1 December 1987

1 Introduction

In Section 2 below is a collection of laws which can in principle take most
specification statements through a senes of refinements into “executable
code.” Erecuteble code means program text which does not include either
specification statements or logical constants (see below).

“In principle” means that these basic rules, used alene, will in many cases
give refinement sequences which are very long indeed — rather lke calcu-
lating derivatives from first principles. But with experience, one collects a
repertoire of more powerfu] and specific laws which make these calculations
routine.

Some of the laws below are equalities = ; some are proper refinements C |
In all cases they have been proved using the weakest precondition calculus
of Dijkstra, as explained in [12], [14], and [7). This means in particular that
specification statements too have a weakest precondition semantics.

Section 3 contains notes relating to the laws of Section 2. Section 4
presents a smnall example. Section 5 gives some useful abbreviations, and
Section 6 some examples of derived laws, Section 7 gives weakest precondi-
tion semantics for the language extensions.

®Taken from [32].

135



136 LAWS OF PROGRAM REFINEMENT
2 Laws

1. Weakening the precondition: If pre = pre' then

w: [pre, post] T w: [pre , posy

2. Strengthening the postcondition: If post’ = post then

w: |pre, post)| T w: [pre, post']

See Note 1. 3. Assuming the precondition in the postcondition:

w: [pre, (Jw & pre) A post] = w: [pre, posl|

See Note 2. 4. Introducing local variables: If 2 does not appear free in pre or post,
then

w: [pre , post] = |[varz | e w,z: [pre, post]|

5. Strengthening the initialigation: If I' = I, then

|[varz |7 e8]} C [[varz|['e 5]

6. Ezparting the nitialisation:

[[varz [ (dz » INATeS)| = |[varz |I'e b [I', I]; S|

See Note3. 7. Renaming local variables: I y is disjoint from w, and does not occur
{ree in pre or post, then



Laws 137

llvar z | T » w: [pre, post]]
= |[var y | I[z\y] ® w[z\y]: [pre[z\y] , post[z\y]])|
8. Introducing logical constants: If z does not appear free in post, then  See Notes 4, 5.

w: [(3=x o pre) , post] = |[comn z & w: |pre, post]]|

9. Eliminating logical constants: If 2 doee nat appear free in P, then See Note 6.

[[con z « P]| = P

10. Renaming logical constants: If y is disjoint from w, and does not occur
free in pre or post, then

[[comn x e w: [pre, post]]|
= |[com y & wz\y]: [prefz\g] , post[z\y]]]|

11. Ezpanding the frame: If z and y are fresh variables, disjoint from each See Notes 7, 8.
other, then

w: [pre, post] = |[cony e w,z: [prenz =y, postrnz=y]]|

12. Contracting the frame: If w and z are disjoint, then

w,z: [pre, post] C w: [pre, posi

13. Introducing skip:

w: [post, post] C skip



138

14.

15.

See Note 10. 16.

17.

See Notes 11, 12. 18.

3

LAWS OF PROGRAM REFINEMENT

Introducing abort:

w: |false , post] = ahart

Introducing essignment: If E is an expression, then See Note 9.

w: [postiw\E|, poat)| C w.=E

Introducing sequential composition:

w: [pre, post] C w: [pre, mid]; w: [mid, posi]

Introducing alternation:

w: [pren(Vie G;), posi]
= if(Jse Gi— w: [prenG;, post]) B

Introducing iteration:

w: [inv, invA-(Vie G

C do
(lie Gi— |[conv e w: [intA GiAv=FE, invA0< E < v]][}
od

The predicate inv is the invariant; the expresaion F is the integer-
valued variant; and the logical constant v is fresh.

Notes

. Law 3 applies when information from the precondition is needed in the

postcondition. We use it below to derive a stronger version of Law 2:

I ((3w = pre) A post') = post, then



w: [pre, post]
C by Law 2 and the assumption
w: [pre, (3w o pre) A post']
C by Law 3
v [pre, post’]

. In setting out derivations we allow the following abbreviation to Law

4

w: [pre , posi]
C varz

w, z: [pre , post]

Note 4 is similar.

. We say “digjoint” rather than “distinct” because we allow variable
names to stand for vectors of variables as well.

. In setting out derivations we allow the following abbreviation to Law
B:

w: [(z e pre) , post

C conz
w: [pre , post)

Note 2 is similar; Note 5 givea an example.

. Usually Law 8 ia used to introduce an equality into the precondition
which “saves an initial value for later.” This is summarised in the
following derived law:

If y is disjoint from w, and daes not occur free in pre or post,
then
w: [pre, post|
C by Law 1
w: [(3y » =yA pre) , posi|
C cony
w: [z = yA pre, posi|



140

LAWS OF PROGRAM REFINEMENT

. Logical constants, introduced by con, are variables which we can use

during program development but not in final programs. Usually they
are used to fx initial values (but see Note 7}, as in

[con X e 2: [z=X, z=X+1]]|
C by Law 15

|[con X & z:=z+1]]
C by Law 9

r:=z+4+1

Since the keyword con does not occur in our executable programming
language — just as epecification statements do not — it must be elim-
inated (using Law 9 as above) during the development process. Thus
logical constants never appear in the final program, since they cannot

be declared there.

. The idiom |[con y e w,z: [preAz =y, posi]]|, where post refers to

y (that is, to the initial value of z), is so commen that we adopt the
following convention:

If a specification statement containe O-subscripted variables
— &ay zo — in its postcondition, then equalities £ = zg
are assumed in sts precondiiton together with an enclosing
declaration |[con zq e ---]| of 2o as a logical constant.

We will reserve O-subscripts for variables used in this way.

. With the convention of Note 7, the right-hand side of Law 11 can be

simplified to

w,z: [pre, postA T = zg|

. Law 15 is usually applied together with Laws 12 and 1, as in the

following derived rule:

If the variahles w and z are disjoint, F is an expression, and
pre = post|w\ E}, then

w,z: [pre, posi|



Notes 141

C by Law 12
w: [pre, posi]

C by Law 1 and the assumption
w: [post{w\E] , post

C by Law 15
w:=F

10. Often Law 16 will introduce logical constants which are not the simple
equalities of Note 7. Consider for example the following:

[com X e 2: [z =X, £=logsin X]]|
C by Law 18
[con X
£ [r=X, z=18inX];
z: [z =sinX , £ = logsin X]|
Il
C by Note 9 twice
[[con X e z:=sginz; z:=logz}|
C by Law 9
z:=6n2; z:=logz

11. With the convention of Note 7, the right-hand side of Law 18 can be
simplified to

do
(lie Gi— w: [invA G;, invAQ < E < Ey])
od

The O-subscripted czpression Ey is obtained by O-subscripting all its
free variables.

12. The inequality in this rule can be seen by taking {nv and G — a single
guard — both false.



142 LAWS OF PROGRAM REFINEMENT
4 An example

Below we present a derivation of a greatest common divisor algorithm. The
steps taken are large, as an experienced developer would make them.

To save space, we will on occasion indicate with a dagger t+ the part

of a program that is to be refined in the next step. In that case the text
surrounding the refined part will not be repeated in subsequent steps.

z,y: 2> 1Ay 21, z=ged(z, )]

C by Note 7, Law 10
|[con X, Y e
z>1
>1
ny ]2y sr=ed(X,Y)|
v=Y
I
E byLaw 1, Law 2
z>1 z>1
y=1
5 y21 ' ged(z,y) =ged (X, Y)
ged(z,y) =5‘:d(x: Y) t=y
C by Law 18, Law 1, Note 7
[ z>1
z>y=21 v=21

doz>y =23 1rd(e,y) =ged (X, Y) * ged(z,y) = ged (X, ¥)

0<z+y<z+3o

z>1
y>z21 v=1
ged(z,y) = ged (X, Y) * ged(z,y) =ged(X, Y)
O<z+y<zm+tw

y>z—zy

od

C by Note 7, Note 9




Abbreviations 143

doz>y —z2:
y>zx > y:
od

-y
y—«z

5 Abbreviations

The following notations abbreviate commonly occuring idioms.

5.1 Generalised assignment

If “4” is a binary relation aymbol, then w : 4 E for some expresion E,
abbreviates

w: [wa Eflw\w

The variable w' is fresh, not appearing in F.

For example, ¢: € s abbreviates ¢: [s £ {}, e € 5]

5.2 Invarianis

For predicates pre, tnv and posi we have

pre  post ]
. y s

w: [pre, inv, post] abbreviates w: [mn iny

Thie allows for example the rule for iteration introduetion (Law 18, Note 8)
to be written

w: [true , tnp, =(Yie Gi)]

C do
{ite Gi— w: [Gi, inv, 0L E < Ey})
od



144 LAWS OF PROGRAM REFINEMENT
6 Derived laws

In this section we give some examples of derived laws.

6.1 Introducing assignment

This law applies directly to a specification whose postcondition contains
O-subscripted variables (that is, refers to initial values):

If pre => post{w\e|[vy\v], where the variable(s} v are those ap-
pearing O-subscripted (free) in post, then

w,z: [pre, post] C wi=c¢

6.2 TIntroducing skip

This law also applies directly to a specification whose postcondition contains
O-subacripted variables:

If pre => post[w)\ v], where the variable(s) v are those appearing
O-subscripted (free) in post, then

w: [pre, post] C skip

6.3 Introducing initial assignments

This law introduces an assignment statement before a given specification.

If w is disjoint from %, then for any expression E

w,z: [pre[w\E], post{wo\Fy|
C w:=F,
w,z: [pre, posi|



8.4 Introducing final assignments

This law introduces an assignment statement after a given specification.

If w is disjoint from z, then for any expression E

w, z: [pre, posi]

C w,x: [pre, postjw\E]|];

w =

6.5 Removing invariants

This law allows an invariant to be removed from a specification whenever it
contains no changing variables.

If w does not occur free in inv, then

w: [pre, inv, pest] C w: [pre, post

7 Semantics of the extensions

7.1 Local variables

For variable x, program P, and postcondition R not containing z free,
lllvarz | I « PR = (V2 » I = [P]R)

7.2 Logical constants

For variable x, program P, and postcondition R not containing z free,

ll[conz » P]|}JR = (3z o [P]R)



146 LAWS OF PROGRAM REFINEMENT

T.3 Specifications

For variable w, predicates pre and post, and postcondition R,

fw: [pre, post][R = pren (Yw o post= R)



REFERENCES 147

References

(1] J.-R. Abrial. Generalised substitutions. 26 Rue des Plantes, Paris
75014, France.

[2] J.-R. Abrial, P.H.B. Gardiner, C.C. Morgan, and J.M. Spivey. A formal
approach to large software construction. 1988.

(3] R.-J. Back. On the correctness of refinement stepa in program develop-
ment. Report A-1978-4, Department of Computer Science, University
of Helsinki, 1978.

{4 R.-J. Back. Correctness preserving program refinements: Proof the-
ory and applications. Tract 131, Mathematisch Centrum, Amsterdam,
1980.

(5] R.-J. Back. A calculus of refinemnet, for program derivations. Report
Ser.A 54, Departments of Information Processing and Mathematics,
Swedish University of Abo, Abo, Finland, 1987.

[6] R.-J. Back. Procedural abatraction in the refinement calculus. Report
Ser.A 55, Departments of Information Processing and Mathematics,
Swedish University of Abo, Abo, Finland, 1987.

|7} R. Backhouse. Program construction and verification. FPrentice-Hall,
1986.

|8] H. Barringer, J.H. Cheng, and C.B. Jones. A logic covering undefined-
ness in program proofs. Aeta Informatica, 21:251-268, 1584,

(9] F.L. Bauer, M. Broy, R. Gnatz, W. Hesse, and B. Krieg-Briickner.
A wide spectrum language for program development. In $rd
Int. Symp. Programming, Paris, pages 1-15, 1978.

[10] R.S. Bird. An introduction to the theory of lists. Technical mone-
graph PRG-56, Programming Research Group, 8-11 Keble Road, Ox-
ford OX1 3QD, U.K., October 1986.

[11] H. Boom. A weaker precondition for loops. Trans. Prog. Lang. Sya.,
4:668-677, 1982.

(12] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, 1976.



148 REFERENCES

(13] P.H.B. Gardiner and C.C. Morgan. Data refinement of predicate trans-
formers. Submitted to Theoretical Computer Science. Reprinted in this
collection.

[14] D. Gries. The Setence of Programming. Springer, 1981.

{15] D. Gries and D. Levin. Assignment and procedure call proof rules.
Trans. Prog. Lang. Sys., 2(4), October 1980.

[16] D, Gries and J. Prins. A new notion of encapsulation. In Symp. Lan-
guage Issues in Programming Environments. SIGPLAN, June 1985.

(17] 3.V. Guttag, J.J. Horning, and J.M. Wing. Larch in five easy pieces.
Technical Report 5, Digital Systems Research Center, July 1985.

(18] 1.J. Hayes. Specification Case Studies. Prentice-Hall, 1087.

[19] J.F. He, C.A.R. Hoare, and Sanders J.W. Data refinement refined.
Programming Research Group, Oxford.

[20] E.C.R. Hehner. Thke Logic of Programming. Prentice-Hall, London,
1984,

[21] C.A.R. Hoare. An axiomatic basis for computer programming. Comm.
ACM, 12(10):576-580, 583, October 1969.

(22] C.A.R. Hoare. Procedures and parameters: An axiomatic approach. In
E. Engeler, editor, Lecture Notes +n Mathematics 188. Springer, 1971.

(23] C.A.R. Hoare. Proof of correctness of data representations. Acta In-
Sformatica, 1:271-281, 1972.

[24] C.AR. Hoare, J.F. He, , and J.W. Sanders. Prespecification in data
refinement. Inf. Proc. Lett., 25(2), May 1987.

[25] C.A.R. Hoare and J.F. He. The weakest prespecification. Fundamenta
Informaticae, IX:51-84, 1986.

.B. Jones. Systematic Software Developmeni using . Prentice-
26] CB. 1] S ic Soft Devel ing VIDM. Prenti
Hall, 1986.

[27] MB. Josephs. Formal methods for stepwise refinement in the Z speci-
fication language. Programming Research Group, Oxford.



REFERENCES 149

(28] M.B. Josephs. The data refinement calculator for Z specifications. Inf.
Proc. Lett., 27:29-33, 1988,

[29] P. Lucas. Two constructive realizations of the block concept and their
equivalence. Technical Report TR 25.085, IBM Laboratory Vienna,
1968.

(30| L. Meertens. Abstracto 84: The next generation. In Annual Conf.
ACM, 1979.

[31] C.C. Morgan. Auxiliary variables in data refinement. Accepted by Inf
Proc. Lett. Reprinted in this collection.

(32] C.C Morgan. Software engineering course notes. In draft.

[33] C.C. Morgan. Data refinement using miracles. JInf Proc. Lett.,
26(5):243-246, January 1988. Reprinted in this collection.

[34] C.C Morgan. Procedures, parameters, and abstraction: Separate con-
cerns. Science of Computer Programming, 11, 1988. Reprinted in this
collection.

[35] C.C. Morgan. The specification statement. Trans. Prog. Lang. Sys.,
10(3), July 1988. Reprinted in this collection.

[36] C.C. Morgan and P.H.B. Gardiner. Data refinement by calculation.
Submitted to Acta Informatica. Reprinted in this collection.

(37] C.C Morgan and K.A. Robinson. Specification statements and refine-
ment. [BM Jnl. Res. Dev., 31(5), September 1987. Reprinted in this

collection.

[38] C.C Morgan and B.A Sufrin. Specification of the UNIX filing system.
IEEE Trans. Soft. Eng., SE-10(2), March 1984.

[39] J.M. Morris. Invariance theorems for recursive procedures. In draft,
(40] J.M. Morris. Laws of data refinement. Submitted to Acta Informatica.

[41] J.M. Morris. A theoretical basis for stepwise refinement and the pro-
gramming calculus. Seience of Computer Programming, 9(3):258-306,
December 1987.



150 REFERENCES

[42] P. Naur (Ed.). Revised report on the algorithmic language Algol 60.
Comm. ACM, 6(1):1-17, January 1963.

[43] G. Nelson. A generalization of dijkstra’s calculus. Technical Report 186,
Digital Systems Research Center, April 1987,

(44] J.E. Nicholls and Sgrensen I.H. Collaborative project in software devel-
opment. IBM Hursley Park and Programming Research Group Oxford.

[45] T. Nipkow. Non-deterministic data types. Acta Informatica, 22:629—
661, 1986.

(48] J.C.Reynolds. The Craft of Programming. Prentice-Hall, London, 1981.

[47] K.A. Robinson. From specifications to programs, Department of Com-
puter Science, University of New South Wales, Australia.

[48] J.M. Spivey. Understanding Z: a Specification Language and its Formal
Sementics. Cambridge University Press, 1388.

[49] N. Wirth. Programming in Modula-£. Springer, 1982,



AUTHORS’ ADDRESSES 151
Authors’ addresses

Paul Gardiner and Carroll Morgan Programming Research Group, 8—
11 Keble Road, Oxford OX1 3QD, UK.

Ken Robinson DPept. of Computer Science, University of New South Wales,
P.O. Box 1, Kensington 2033, Australia.

and
Ralph Back Dept. of Computer Science, Abo Akademi, Lemminkiinengatan
14, SF—20500 Abo, Finland.

Joe Morris Dept. of Computing, Glasgow University, Glasgow G12 8QQ,
U.K.



OXFORD UNIVERSITY COMPUTING LABORATORY
PROGRAMMING RESEARCH GROUP
8-11 Keble Road, Oxford OX1 3QD, England

Technical Monographs to September 23, 1988
PRG-2 Outline of a Mathematjcal Theory of Computation

by Dana Scott. November 1970, 24 p., £0.50

PRG-3 The Lattice of Flow Diagrams
by Dana Scott. November 1970, 57 p., £1.00

PRG-5 Data Types as Lattices
by Dana Scott. September 1976, 65 p., £2.00

PRG-6 Toward a Mathematical Semantics for Computer Languages
by Dana Scott and Christopher Strachey. August 1971, 43 p., £0.60

PRG-9 The Text of OSPub
by Christopher Strachey and Joseph Stoy. July 1972, 2v. 126, 151 p, £3.50

PRG-10 The Varieties of Programming Language
by Christopher Strachey. March 1973, 20 p., £0.50

PRG-17 Report on the Programming Notation 3R
by Andrew P. Black. August 1980, 58 p., £2.30

PRG-18 The Specification of Abstract Mappings and their Implementation as B+ Trees
by Elizabeth Fielding. September 1980, 74 p. + Appendix, [1.30

PRG-20 Partial Correctness of Gommunicating Processes and Protocols
by Zhou Chao Chen and C.A.R. Hoare. May 1981, 23 p., £1.75

PRG-22 A Model for Communicating Sequential Processes

by G.A.R. Hoare. June 1981, 26 p., £1.30

PRG-23 A Calculus of Total Correctpess for Communicating Processes
by C.A.R. Hoare. April 1981, 31 p,, £1.75

PRG-26 The Consistency of the Caleulus of Total Correctness for Communicating Sequential
Processes

by Zhou Chas Chen. February 1982, 38 p., £1.80

PRG-29 Specifications, Programs and Implementations
by C.A.R. Hoare. June 1982, 29 p., £1.75

PRG-32 The Lispkit Manual
by Peter Henderson, Geraint A. Jones and Simon B. Jones. 1983. 2v. 127, 136 p..
£4.00 for botb volumes

PRG-34 Abstract Machine Support for Purely Functional Operatiug Systems



PRG-36

PRG-37

PRG-38

PRG-39

PRG-40

PRG-42

PRG-44

PRG-45

PRG-46

PRG-47

PRG-48

PRG-49

PRG-50

PRG-51

PRG-52

'RG-53

by Simon B. Jones. August §983, 33 p. + Appendix, £1.75

The Formal Specification of a Conference Organising System
by Tim Clement. August 1983, 52 p. + Appendix, £1.75

Specification-Oriented Semantics for Communicating Processes
by E.R. Olderog and C.A.R. Hoare. February 1984, 81 p., £1.50

Making Nets Abstract and Structured and Nets and their ReJation to CSP
by Ludwik Czaja. January/June 1984, 23, 26 p., £1.30

uFP - An Algebraic VLSI Design Language
by Mary Sheeran. Ph.D. thesis November 1983, 139 p., £2.50

The Design and Implementation of Programming Languages
by John Hughes. Ph.D. thesis July 1983, 130 p. + Appendix, £2.50

A Range of Operating Systema Written in a Purely Functional Style
by Simon B. Jones. February 1985, 44 p., £1.30

The Weakest Prespecification
by C.A.R. Hoare and He Jifeng. June 1985, 60 p., £0.85

Laws of Programming - A Tutorial Paper

by C.A.R. Hoare, He Jifeng, 1.J. Hayes, C.C. Margan, J.W. Sanders,
L.H. Segrensen, J.M. Spivey, B.A. Sufrin, A.W. Rascoe.

May 1985, 43 p., £2.35

Specification Case Studies
by Ian Hayes. July 1985, 68 p., £2.50

Specilying the CICS Application Programmer’s Interface
by lan Hayes, July 1985, 82 p., £3.10

CAVIAR: A Case Study In Specification
by Bill Flinn and Ib Holm Sgrensen. July 1985, 46 p., £2.00

Specification Directed Module Testing
by lan Hayes. July 1985, 30 p., £0.90

The Distribirted Computing Software Project
by Roger Gimson and Carroll Morgan. July 1985, 85 p., £4.00

JSD Expressed inm CSP
by K.T. Sridhar and ¢'.A.R. Hoare. July 1985, 40 p.. £1.45

Algebraic Specification and Proof of Properties of Communicating Sequential
Processes
by C.A.R. Hoare and He Jifeug. November 1985, 72 p.. £0.90

The Laws of Occam Programming
hy A.W. Roscoe and C.A.R. Hoare. February 1986. 86 p., £2.50



PRG-54

PRG-55

PRG-56

PRG-57

PRG-58

PRG-59

PRG-60

PRG-61

PRG-62

PRG-63

PRG-64

PRG-65

PRG-66

PRG-6T

PRG-68

Exploiting Parallelism in the Graphics Pipeline
by Theoharis A. Theohariz. June 1986, 101 p., £2.50

Functional Programming with Side—Effects
by Mark B. Josephs. Ph.D. thesis, June 1986, 101 p., £3.00

Az Introduction to the Theory of Lists
by Richard . Bird. October 1986, 28 p., L1.50

The Pursuit of Deadlock Freedom
by A.W. Roscoe and Naiem Dathi. November 1986, 38 p., £1.50

Formal Methods Applied to a Floating Point Number System
by Geoff Barrett. January 1987, 47 p., £1.60

Not yet allocated

The Formal Specification of a Microprocessor Instruction Set
by Jonathan Bowen. January 1987, 72 p., £2.00

The Specification of Network Services
by Jonathan Bowen, Roger Gimson, Stig Topp-Jergensen. August 1587,
100 p., £2.60

The Formal Documentation of a Block Storage System
by Roger Gimson. August 1987, 112 p., £2.90

Specifying System Implementations in Z
by Jonatban Bowen, Roger Gimson, Stig Topp-Jergensen. February 1988,
88 p., £2.60

A Calculus of Functions for Program Derivation
by Richard S. Bird. December 1987, 21 p., £1.00
An Introduction to CSP

by J.W. Sanders. 1988, 29 p., £1.20

The Sliding-Window Protocol in CSP
by K. Paliwoda, J.W. Sanders. 1988, 26 p., £1.20

Two Papers on CSP
by A.W. Roscoe. 1988, 80 p., £2.20

Z: Grammar and Concrete and Abstract Syntaxes
by Steve King, Ib Holm Sgrensen, Jim Woodcock. 1988, 48 p., £1.60





