
A CATEGORICAL MANIFESTO

by

Joseph A. Goguen

Technical Monograph PRG·12
lSBN 0-902928-54-6

MlU"Ch 1989

Oxford University Computing Laboratory
Programming R.esearcb Group
8-11 Keble Road
Oxford OXl 3QD
England

OxfOij unIVersitY
Cnrm:.HH;i!O '~~~boratory
Prog',amr;>;ng Research Group-Ubrary
8-11 l<eble Road
Oxf,,'d OX1 3QD
Oxford (0865\ 54141

•f "" .. 3 ~

':! 0 • • D • ~

0 0 il. 0 il. ..'" " '" > " .:
i'"

/
:
I
j
O
c
r
~
o

t:l

eo

...
0

1;1
.

0I
Il

0
_

"
e

j
0

S
a

."
,

a.
Q

.
g
.
1
~

-
.

o
el

l
.
.
.
.

><
g'O

Q
;g

::
!.

 ::t
l

~.

D

II
'"

"
~
~

:;
'3

"o

g
o

~
.

•
• ..

"
,

... ~
 ! ~

(
l ~. 5:"

@ -
 0> '" '" Ii ~
 • '".. .. "... •0 • •

A Categorical Manifesto"

Joseph A. Goguen

Summary

Thill informal paper tries to motivate the use of category tbeory in computing science
by giving heuristic guidelines for applying five basic categorical concepts: category,
functor, natural tranllformation, adjoint, and colimit. Several examples and !lOme
general discussion are given for each concept, and a number of references are cited,
although no attempt has been made for completeness. Some additional categori_
cal concepts s.nd suggestions for further research are also mentioned. The p'per
conclude!! with a brief discussion of some implicatioD8 for foundations.

·Su.pported by Office of Na.val Reeultll Contlade NOOO14-85.C.M17 and NOOOI"'8~C.0450,

NSF Gnat CCR-8707I55, a.nd a girt flOW the Sy.lew Development Foundation.

CONTENTS

Contents

0 Introduction 1

Cat€!gorieB 2

1.1 lsomorph.iBm 4

1.2 Diagram Chasing 5

2 Functors •
3 NatlU'ality •
• Adjoints 8

• Colimits 9

8 Further Top.lc:s 11

• Discussion 12

o Introduction

Among the reasons why a computing scientist might be interested in category theory
are that it can pTovide belp with the following:

•	 Formulating definitions and rh,vrlelJ. In fields that are not yet very well clevel.
oped, like computing science, it often seems that formulating basic concepts
is the most difficnlt part of research. The five guidelines given below provide
relatively explicit me8.'lures of elegance and coherence that can be helpful in
this regard.

•	 Carrying out proofs. Once basic concepts have been correctly formulated in a
categorical language, it often seems that proofs "just happen": at ell.C.h step,
there is a "natural" thing to try, and it works. Diagram chasing (see Section
1.2) provides nice many examples of this. It could almC6t be selid that the
purpose of category theory is to reduce all proofs to such simple calculations.

•	 Discollering and e::ploiting rdatior13 with other jidds, Finding similar struc­
tures in different areas suggests trying to find further similarities. For example,
an analogy between Petri nets and the >.-calculus might suggest looking for a
closed category structure on nets (as in 1461, which seems to open an entirely
new approach to concurrency).

Formulating conjectures and research directions. For example, if you have
found an interesting functor, you might be well advised to investigate it~ ad.
joints.

•	 Dealing w~'th abstraction and represmtation independence. In computing sci­
ence, abstract viewpoints are often better, because of the need to achieve
independence from the often overwhelmingly complex details of how things
are represented or implemented. A corollary of the first guideline is that two
objects are "abstractly the same" iff they are isomorphic; see Section 1.1.
Moreover, universal constructions (i.e., adjoints) define their results uniquely
up to isomorphism, i.e., abstractly in just this sense.

Category theory can aho be abused, and in several different styles. One style
of abuse is specious generCllity, in which some theory or example is generalized in a
way that does not actually include any new examples of genuine interest. A related
style of abuse is categorical overkill, in which the language of category theory is used
to describe phenomena that do not actually require any such elaborate treatment
or t.erminology. An example is to describe II. Galois connection in the language of
adjoint functors.

Cat;.egory theory has been called "abstract nonsense" by both its friends and
its foes. Perhaps what this phrase suggests to both camps is that category theory
has relatively more form than content, compared to other areas of mathematics.
Its friends daim this as a virtue, in contrast to the excessive concreteness and
representation dependence of set theoretical foundations, and the relatively poor
guidance for discovering elegant and coherent theories that they provide. Seclion 6
diocusses this further.

2	 CATEGORIES

Category theory can also be used in quite concrete ways, since categories are
after all jU8t. ¬ her algebraic structure, generalizing both monoids and partial
ordtTa. (See EXlUTlple 1.4 below.)

Tbifl note presents five guidelines for using category theory, each with some
general discussion and some specific examples. There is no claim to originality,
since I belieYe the underlying intuitions are shared by essentially all workers in
catelory theory, although they have been understtuldably relnctant to place such
dogmatic &alertioh!l in textbooks or other written documentsl . The five guidelines
&re necessarily imprecise, &lid will seem exaggerated if taken too literally, since
they are not objective r&cts, but rather heuristics for applying certain mathematical
concepts. In particular, they may seem difficult to apply, or even imp06Sihle, in
some situations, and they may need refinement in others. As a reminder that they
sbould not be taken too dogmatically, I will call them dogmas.

No attempt is made to be exhaustive. In particular, the technical definitions are
omit.ted, since the purpose of this note is motivational, and the definitions can be
found in any textbook. Thus, it is necessary to use some text in connection with this
note. Unfortunately, no existing text is ideal for computing scientists, but perhaps
that by Goldblatt [SI] comes closest. The classic text by Mac Lane [41] is warmly
recommended for those with sufficient mathematics background, and Herrlich and
Stretker's book [S4) is admirably thorough; see also [2] and [S9].

1 Categories

The first dogma is as follows:

To eaeh speties 0/ mathematical structure, there correaponds a r:atcgory
whoBe objedB have that strur:ture, and whose morphisma prtaerllt it.

It is part of this dogma that in order to understand a structure, it is necessary to
understand the morphisms that preserve it. Indeed, many category theorists feel
that the morphisms are more important than the objects, since they reveal what
the structure really is. Moreover, the category concept can be defined using only
morpbisms. It is the bias of modern Western language and culture towards objects,
rather tban towards relationships, that 8.98igns precedence t.o objects over morphisms
(see 1441 for some related discussion). Now some examples to illustrate this dogma:

1.1	 Sets. If we take sets to be objects, then their morphisms are clearly going to
be functions. A set morphism, however, is not just a set of ordered pairs, but
muat also specify particular source and target sets. This is consistent with
practice in computation theory which assigns types to functions. The set the­
oretic representation of functions is an artifact of the set theoretic foundations
of mathematics, and like all such representations, has accidental properties
beyond those of the concept it is intended to capture. One of those properties

J~ fu '" I 11IlOW, Lhe 111111 endl attempt 1.1 my own, given in 1191, 1oIIfbic.b (ontain. the IiI1lL four
cuidel.iDe8livu here; Lhe present note can be seen", an expanlion of that early a.ttempt. The only
other attempt that I kn010llf Ie due to L3..mbek and Scott [39J. who give a number of '"elog2.tls- in a
'imiJiLr dyl.e.

3

is that any two sets of ordered pairs can be composed to yield a third. The
category Set of sets embodies a contrary point of view, that each function hILS
a domain in which its arguments are meaningful, and a codomain in which its
results lUe meaningfuL (See [31] for further discussion of these points.)

1.2	 Relations. Just as with functions, it seem.s desirable to take the view that
the composition of relations is only meaningful within certain given domains.
Thus, we may define a relation from a set Ao to a set Ai to be a triple
(.40, R, Ad with R <; Ao X AI, and theu allow its composition with (Eo, S, Bl)

to he detined iff Al = B o. This gives rise to a category that we denote Rel, of
which Set can be considered a subcategory.

1.3	 Graphs. A graph G consists of a set E of edges, a set N of nodes, and
two functions ao,B j E --+ N which give the source and target of each
edge, respectively. Since the major components of graphs are sets, the major
components of their morphism!! should be corresponding functions that pre­
serve the additional structure. Thus a morphism from G = (E,N,ao,B t) to
G' = (E'", N',a~,aD consists of two functions, f: E E'" and g: N - ."I',
such that the following diagram commutes in Sd for i = 0, 1:

D.
E N

rl 19

E'~-N'

To show that we have a category Graph of graphs, we must show that 80

composition of two such morphisms is another, and that a pair of identity
functions satisfies the diagrams and also serves as an identity for composition.

1.4	 Paths in a Graph. Given a Graph G, each path in G has a source and a
target node in G, and two paths, p and p', can be composed to form another
path p.p' iff the source of p' equals the target of p. Clearly this composition
is associati ve when defined, and each node can be givell an "identity path"
having no edges. Tbis category is denoted Pa(G). Details may be found in
[41], [29J, [16], and many other pl3.Ces.

1.5	 Substitutions. Two key attributes of a substitution are the set of variables
for which it substitutes, and the set of variables that occur in what it substi­
tutes. Thus, substitutions naturally have source and target object!!, each a set
of variables. Clearly there are identity substitutions for each set of variables
(substituting each variable for itself), and the composition of substitutions is
associative wben defined. See [19] for much more on this example; in fact, [19)
can be used ILS a primer on category theory, motivated by just this example
and its many applications.

•	 CATEGORIES

1.6	 Automata. An automaton consists of an input set X, a slate set S, a tran­
sition function f: X x S -- X, an initial state So E S, and an output function
g: S Y. What does it mean to preserve all this structure? Since the major
components of automata are sets, the major components of their morphisIIl8
!lhould be corresponding functions that preserve the additional structure. Thus
&. morphism from A = (X,S,Y,f,g) to A' = (X',S', Y',t,g') should consist
of three functions, h: X __ X', i: S --0 S', and i: Y ---> y', such that the
following diagrams commute in Set:

9xxs-~s S-Y

hx·l liii li
X'XS'~' S'-y'

f' g'

It must be shown that a composition of two such morphisms iB another. and
that a triple of identities satisfies the diagrams and gerves as an identity for
comp08ition. These chocks show that we have a category Aut of automata,
and increase our confidence in the correctness of the definitions. See [15].

U	 Theories. In his 1963 thesis [4.3], F.W. Lawvere developed a very elegant ap­
proach to universal algebra, in which an algebraic theory is a category T whose
morphismB correspond to equivalence classe!! of terms, and whose objects in­
dicate the variables involved in these terms, much as in Example 1.5 above.
In this approach, the objects of a theory are closed under products (products
are defined in Example 4..1 below). Although Lawvere's original development
wu unsorted, it easily extends to the many-sorted case; [19] gives a relatively
concrete and hopefully readable account of these ide<llJ for computing scien­
tists, with many applications, following the approach indicated in Example
1.5 above. Lawvere theories have been extended in many other ways, includ­
ing the so-called "sketche5" by Ehresmann, Gray, Barr, Wells, and others; for
example, see [3].

1.1 I8:omorphism

One very simple, but stilll'lignificant, fruit of category theory is a general definition
of isomorphism, suitable for any species of strncture at all: a morphism /: A -- B
is an Isomorphism in a category C iff there is another morphism g: B -- A in C
8UclJ that g.f = 1.40 B.IId /.9 =:: lB. In this case, the objects A and B are isomorphic.
It is a well established principle in abstract algebra, B.IId now in other fields a8 well,
that isomorphic objects are abstractly the same, or more precisely:

Two objects AatJe tAe same stJ'Ucture if! they are isomorphic, and an
"detract object- is an isomorphism class %biecu.

This demi-dogma can be seen as a corollary of the first dogma. It provides an
immediate check on whether or not some structure has been corree tly formalized:

1.2 Diagram Chasing	 5

unless it is satisfied, the objects, or the morphisms, or both, are wrOng. This
principle is so pervllSive that isomorphic objects are very often considered the same,
and "the X" is used instead of "an X" when X is actually only defined np to
isomorphism. In computing science, thi.s principle guided the successful search for
the right definition of "abstract data type" [28].

1.2 Diagram Chasing

A useful way to get an overview of a problem, theorem, or proof, is to draw one
or more diagrams that show the main objects and morphism.s involved. A diagram
commuLe.s iff whenever p and p' are paths with the same source and tllJ'get, then
the compositions of the morphisms along these two paths are equal. The fact that
pasting two commutative diagrams together along a common edge yields another
commutative diagram provides a basis for a purely diagramatic style of reasoning
about equality of compositions. Since it is valid for diagrams in any category what­
ever, this proof sty Ie is very widely applicable', for example, it applies to substitutions
(see Example 1.5). Moreover, it has been extended with conventions for pushouts,
for uniqueuess of morphisms, and for certain other common situations. Often proofs
are suggestedjust by drawing diagra~ [or what is known and what is to be proved.
A simple example of this occurs in Example 1.3, to prove that a composition of two
graph morphislll5 is another graph morphism.

2 Functors

The second dogma says:

To llny construction on structures of one 8pecies, say widgets, lIielding
structure~ 0/ anoth.er species, sail whatsit8, there correspond8 a functor
from th.e categorll of widgets to the category of whatsi's.

It is part of this dogma that a construction is not merely a function from objects of
one species to objects of another species, but must also preserve the essential rela.­
tionships among these objects, including their structure preserving morphisms, and
compositions a.nd identities for these morphisms. This provides a test for whethe~or

not the construction hllS been properly formalized. Of course, functorality doe~ not
gUllranlet correct formulation, but it can be surprisingly helpfnl in practice. Now
some examples:

2.1	 Free Monoids. It is quite common in computing science to construct the
free mouoid X' over a set X. It consists of a.ll finite strings XI ... X" from
X, including the empty string A. This coustruction gives a functor from the
category of sets to the category of monoids, with a function f: X --+ Y inducing
f": X' - Y" by sending A to A, /lnd sending XI ... Xn to f{z.) ... f(x").

2.2 Behaviors. Given an automaton A = (X, S, Y,/,g), its behllvior is a function
b: X' _ Y, from the monoid X' of all strings over X, to Y, defined by
b(u) = g(f(u)), where 7 is defined by /(A) = 80 and 7(ux) = f(x,7(u)),

6	 2 FUNCTORS

for % E X and u E X'. This wnstruction should be fun ctorial. For this,
We need II. category of behaviors. The obvious choice is to let its objects be
pai", (X,b: X' Y) and to let its morphisms from (X,b: X· Y) to--t ---t

(X', 6': X'· -to Y') be pairs (h,}) where h: X _ X' and j: Y --t Y', such that
the diagram

bX·_y

h1 li
I

X'" ------;;;-- y'

commutes in Set. Denote this category Beh &Dd define B; Aut --+ Brh by
B(X,S,Y,/,g) == 9.] and B(h,i,j) == (h,j). That this is a functor helps to
confirm the elegance and coherence of our previous definitions_ See [15].

2,3 Algebras. In the Lawvere approach to universal algebra [43], an algebra is
II. functor from a theory T to Seol. Here, "construction" takes the meaning of
"interpretation": the abstract structure in T is interperted (i.e., constructed)
concretely in Set; in pllrticular, th~se functors must preserve products.

2.4	 Forget It. If all widgets are whatsits, then there is a "forgetful functor~

from the category of widgets to the category of whatsits. For example, every
group is a monoid by forgetting its inverse operation, and every monoid is a
semigroup by forgetting its identity. In model theory, the whatsit underlying
a widget is called a "retract." Notice that a ring (with ideutity) is a monoid in
two diJJtrent ways, one for its additive structure and one for its multiplicitive
structure.

2.5	 Categories. Of course, the (small) categories also form a c:ategory, with
functors as morphisms. It iB denoted Cat.

2.6	 Diagrams and the Path Category Construction. The construction in
Example].4 of the category Pa(G) of all paths in a graph G gives rise to
a functor Pa: Graph -- Cat from graphs to categories. Then a diagram in
a category C, with shape a graph C, is a functor D: Pa(C) -- C. It is
conventional to write just D: G --t C, and even to call D a "functor ,n because
D: Pa(G) -- C is in fact fully determined by its restriction to C, which is a
graph morphism; see Example 4.2 below.

2.7	 Programs and Program Schemes. A non-deterministic flow diagram pro­
gram P with parallel assignments, go-to's, and arbitrary built-in data struc­
ture:s, including arbitrary functions and tests, CM be seen as a functor from
a graph G (the program's :shape) into the category Rr:l whose objects are sets
and whose morphisms are relations. An edge e: n -+ n' in G corresponds to
a program statement, and the relation P(e): P{n) --t P(n') gives its seman­
tics. For example, the test "if X > 2n on natural numbers corresponds to

7

the pa,["tial identity function w -+ w defined iff X > 2, and the assignment
"X ;= X_In correspouds to the partial function w w sending X to X-I-.0

wben J{ > O. The semantics of P with input node n and output node n' is
then gi ~en by the formula

P(n,n') = U{P(p) I p' n - n' E Pa(G)).

This avproach originated in Burstall [SJ. Techniques that allow programs to
have BY1l('12: as well as semantio are described in [16)1; A program scheme is
a functor P: G T into a Lawvere theory T uenriched" with a partial order-0

structure on its morphism sets T(A, B) (the reader familiar with 2-ca.tegories
should notice that this makes T a 2-category). Semantics for statemfnte then
arises by giving a CuucteT A: T Rd, that is, an interpretation for T. also
called aT-algebra. The sernauties of a program is then computed by the above
formula for the composition P.A: G Rei. There geems to be much more-0

reJiearch that could be done in this area. For example, [241 give!!. an inductive
proof principle for collections of mutually recursive procedures, and it would
be int.eresting to consider other program constructions in a similar ~tting.

3 Naturality

The third dogma says:

To t.'ad natural rdalt'onship bdwt.'t.'rl two j1.l.nc!ors F, G : A -. B com~·

sponds a naturaL transjormation F =) G (or pt.'rhaps G ::> F).

Although this looks like a mere definition of the phrase "natural relationship," it can
nevertheless be very useful in practice. It is also interesting that this concept was
the historical origin of category theory, since Eilenberg and Mac Lane [11] used it
to formalize the notion of an equivalence of homology theories (whatever they are),
and then fOllnd that for this definition to make sense, they had to define functors.
and for functors to make sense, they had to define categories. (This history also
explains wh) homology theory so often appears in categorical texts, and hence why
so many of them are ill-9uited for computing scientists.) Now some example9:

3.1	 HOIDomorphisms. A£, already indicated, in the Lawvere approach to uni­
versal algebra [43], algebra:! appear as functors, and so we should expect ho­
momorphisms to appear as natural transformations; and indeed, th~y do.

3.2	 Natu.al Equivalence. A natural tran!!.formation '1: F :::::? G i!!. a natural
equivalence iff ea.ch fjA: FA -0 C A is an isomorphism. Thi9 is the natu­
ral notion of isomorphism for functors, and is equivalent to the existence of
v: G .:::::> F such that 1'.'1 = I, and fj.L' = Ie. Thi!!. concept specializes to is0­
morphism of algebras, aud i!!. also exa.ctly the concept that motivated Eilenberg
and Mac Lane.

~Ollly the <lriginal1912 toaferellce v~J"lIion con~ajnB thi! d~linition.

8	 4 ADJOINTS

3.3	 Data Refinement. A graph with its nodes labelled by types and its edges
labelled by function symbols can be seen as an impoverished I..awvere the­
ory that bas no equations and no function symbols that take mare than one
argument. However, such theories still admit algebras, which are functors
into Set, and homomorphisrruI, which of course are natural transformations.
These algebras can be viewed as data representatiDns for the basic data types
and functions of a programming l8.llguage, and their homomorpllisJrul can be
viewed as ddla refinements. Considered in connection with the basic program
cOll9truction operations of a language, this leads to some geuera.l techniques
for developing correct prograIIl.'l [35]. It would be interesting to extend this
to more expressive forms of Lawvere theory (SUCh as many-wrted theories or
sketches), and to the more general data representations studied in the abstract
data type literature (e.g., [28, 9]).

3.4	 Program Homomorphis1Jl8. Since Example 2.7 suggests that programs are
functors, we should expect to get a kind of program homomorphism from a
naLural transformation between programs. Indeed, Burstall [5) shows that a
wea.k form of Milner's program simulations [47) arises in just this "Way. [16] gen­
eralizes this to programs with different shapes, and maps from edges to paths,
by defining a homomorphism from Po : Go -+ C to PI : G t -- C to consist
of a. functor F: Go -- Pa{Gt} and a natural transformation 1]: Po -+ F.Pt ;

some theory and applications are also given, including techniques for proving
correctness, termination, and non-trivial equivalences hy unfolding programs
into equivalent infinite trees.

4 Adjoint.

The fourth dogma says:

A~y canonical construction from 1lJ1'dgets to whatsits is an adjoint of
another functor, from whatsils to 1lJ1"dgets.

Althou@h this can he seen as just a definition of ucanonical construction,» it can
be very useful in prl'lctice. The essence of an adjoint is the tmiver8al property that
is satisfied by its value objects. This property says that there iB a unique mor­
phism sa.tisfying a certain condition. It is worth noting that any two (.. ight, or left)
adjoints to a given functor are naturally equivalent, i.e., adjointnes~ determines a
construction uniquely up to isomorphism. Now some examples

4.1	 Products <lind Sums. One nice achievement of category theOlry is to give
general defintions for previously vague terms like uproductn and "sum» (al­
though sum!! are usually called ucoproductsn). For example, the Cartesian
product of sets is a functor Set x Set -+ Set. The general definitions make
Bense in any category C, and characterize the construction uniquely (up to
isomorphism) if it exists. Let Li.: C -+ C.x:C be the Udiagonal" functor, sending
an object G in C to the pair (G,G), and sending a morphism c G __ G' in
C Lo (e,c): (G,G) (G',G') in Cxc. Then C has products iff 6. has a right ----0

9

adjoint ~ and has surru iff .6. has a left adjoint. This is a beautifully simple way
to formalize mathematical conceptS' of basic importlUlce that were previously
only understood informally (due to Mac Lane [40]).

4.2	 Fr~bies. Another beautifully simple formalization gives a general definition
of "{tee" constructions: they are the left adjoints of forgetrul functors. For
example, the path category functor Pa: Graph Cat of Example 2,6 is left
adjoint to the forgetful functor Cat -+ Graph, and thus may be said to give
the free (ategory over a graph.

4.3	 Minhnal Realization. An automaton (X, S, Y, I, 9) i8 reachable iff it, func­
tion 7: .1' S is surjective. Let A denote the subcategory of A"t whose-0

obj«ts are reachable and whose morphisffiS (i,j,k) have i surjective. Then
the restriction B: A -+ Beh of B; A~t -+ Beh to A h8.ll a right adjoint
which gives the minimal realization of fl. behavior (151. Since right Mjoints
are uniquely determined, this provides a r:onvenient abstract characterization
of minimil.! realization. Moreover, this characterization extends to, and even
suggests, more general minimal realization situations.

4.4	 Syntax and Semantics. One of the more spectacular adjoints is that be­
tween syntax and 8emantir:s for algebraic theories, again due to Lawvere in bis
thesis [431.

4.5	 Cartesian Closed Categories. A Cartesian closed category has binary
products, and a right adjoint to each fundor sending A to A x B. It is re-­
mlU"kable that this concept turns out to be essentially the (typed) A-calculus;
see [39]. This connection has been used, for example, as a basis for the ef­
ficient compilation of higher order functional languages [81. An advantage is
that optimization techniques can be proved correct by using purely equational
reasoning.

5 Colirnits

The fifth dogIlla say.!!:

G1'\len a category of widgetlJ, the operation 0/ p~Wng a system 0/ widgd.l
logether to form some s~per-widget corresponds to taking the colimit of
the diagram o/widgets that shows hoVJ to interconnect them.

At least for me, this dogma fir:s! appeared in the context of General Systems Theory
[23J. It is worlh remarking that, generalizing Example 4.1, colimits over the dia.­
grams of a fixed shape G (a graph) give a functor that is right adjoint to a (suitably
generalized) diagonal functor. Now some examples:

5.1	 Putting Theories together to IIlake Specifir:ations. Complexity is a fun_
damental problem in programming methodology: large programs, and their
large specifications, are very difficult to produce, to understand, to ge~ right,
and to modify. A basic strategy for defeating complexity is to break large

10 5	 COLIMITS

synems into smaller pieces that can be understood separately, and that when
put back together give the original system. If successful, this in effect "takes
the logarithm" of the complexity. In the semantics of Clear [5. 7], specifi­
cations are represented by theories, in essentially the 8ame Ilense as Lawvere
(but many.sorted, and with signatures), and specifications are put together
by colimits in the category of such theories. More specificaUy, the application
of a generic theory to an actual is computed by a pw~hout. QBJ [12], Eqlog
[25), and FOOPS [26J extend this notion of generic module to functional, logic
(i.e" relational), and object oriented programming, respectively It ha.s even
been applied to Ada [18].

5.2	 Graph Rewriting. Another important problem in computing science is to
find models 0/ computation that are suitable for massively parallel machines.
A successful model should be abstract enough to avoid the implementation
details of particular machines, and yet concrete enough to serve as an interme·
dilte target language for compilers. Graph rewriting provides one promising
area within which to search for such models [37,27,131, and colimits seem
to be quite useful here [10,52,38]. Graph rewriting is also important for the
u"ijication grammars that are now popular in linguistics [53, 19] There seem
to be many opportunities for Curt her research in these areas.

5.3	 Initiality. The simplest possible diagram is the empty diagram. Its colimit is
!IJI initial object, which has a unique morphism to any object. Like any adjoint,
it is determined uniquely up to isomorphism, so any two initial objects in a
category are isomorphic. [t is also worth mentioning that universality can be
reduced to initiality (in a comma category), and hence so can colimits.

5.4 Initial	 Model Semantics. It seelM remarkable that initialit.y is so very
useful in computing science. Beginning with the formalization of abstract
syntax as an initial algebra [17], initiality has been applied to <LI1 increasing
r8llge of fundamental concepts, including induction and recurs ion [30, 45],
al:6tract data types [28], computability 145], and model theoretic :temantics Cor
functional [12], logic (i.e., relational), combined functional and relational, and
constraint logic [25] programming languages. The latter is in teres ting because
it involves initiality in II. category of model extensions, i.e., 01 rnorphisms,
rat.her than just models. In general, this research can be seen as formalizing,
generalizing, and smoothing out, the classical Herbrand Universe construction
[33], and it seems likely that much interesting work remains to be done along
thue lines.

Research in General Systems Theory also suggests a dual dogma, that the ~ehavt·or

of a sysLem is given by II. limit construction [23). For example, this can be used
to justify the formula in Example 2.7, and to explain the sense of ~ullification~ in
so-called unification grammars [19J.

II

6 Further Topics

Although they are particularly funda.IDentaJ, the five dogmas given above far from
exhaust the richneB8 of category theory. This section mentions some further cate­
gorical constructions, about each of wbicb one might express surprise at how many
examples there a.re in computing science.

6.1	 Conuna Categories. Comma categories are another bASic construction that
first appeared in Lawvere's thesis [43]. They tend to arise when morphisIIl8 are
used as objects. Examples 1.3, 2.2, 5.3, and 5.4 in this paper can all be seen as
comma. categories. Viewing a category 8S a comma category makes available
«(or example) some very general results to prove the existence of limits and
c<llirnits [21J.

6.2	 2-Categories. Sometimes morphisms not only have their usual composition,
identity, source and target, but also serve as objects for some other, higher_
level, morphisms. This leads to 2-categories, of which the category Cat oCca.t.
egories is the canonical example, with natural transforrnations as rnorphisms
oC ib morphisms. This concept was mentioned in Example 2.7, and is also
used in [20], [22], [35], [50] and other places.

6.3	 MODoidal CategorJes. There are many cases wbere a category has anatural
notion of multiplication that is not the usuaJ Cartesian product but neverthe­
1es9 enjoys many of the same properties. The category of Petri nets stlldied in
[46] has already been mentioned, and [14) suggests that monoidal cBttgories
may pro,ide a generaJ approach to understanding the relationships among the
many diHerent theories of concurrency.

6.4	 Indexed Categories. A strict indexed category is just a Cunctor B"P ---+ Cat.
[54J shows that there are rnany such categories in computing science, and gives
some general theorems abont them, including simple sufficient conditions Cor
completeness of the associated "Grothendieck" category. Maggi [50J applies
indexed categories to programming languages, and in particular shows how to
get a kind of higher order module facility Cor languages like ML. (Non-strict
indexed categories are significantly more complex, and have been applied in
Coundational studies 15IJ.)

6.5	 Kleisli Categories. Another way to generalize Lawvere theories is UJ view
an arbitrary adjunction as a kind of theory. So-celled monads (or triples)
are an abstraction of the necessary structure, and the Kleisli category over
a monad gives the category oC Cree algebras [41J. Again, there are surpri!lingly
many examples. [19] (in effect) takes the Kleisli category itself as a lheory,
and then shows that many different problems of unificalion (that is, ofsolving
systems of equations) can be naturaJly formulated as finding equalizers in
Kleisli categories. Moggi [49] uses Kleisli categories to get an abstract notion
of "complltation" which gives rise to many interesting generalizations oC the
)..calculus.

12	 7 D/SCUSS/ON

6.6	 Topoi. A profound generalization of the idea that a theory is a category
sppears in the topos notion developed by Lawvere, Tierney, and others. In a
sense, this notion captures the essence of set theory. It also has a relationships
to algebraic geometry, computing science, and intuitionistic logic [31,2,36].

7 Discussion

The traditional view of foundations requireB giving a system of axioms, preferably
first order, that assert the existence of certain primitive objects with certain prop­
erties, &nd of certain primitive constructions on objects, such that all objects of
interest. can be constructed, and all their relevant properties derived, within the
system. The axioms should be as self.evident, as few in number, and as simple, as
pOSBihle, in order to nurture belief in their consistency, and to make them as easy
to use as possible. This approach is inspired by the classical Greek account of plane
geometry.

The best known foundation for mathematics is set tbeory, which has success­
fully constructed all the objects of greatest interest in contemporary mathematics.
It has, however, failed to provide a commonly agreed upon set of simple, self-evident
axioms. For example, classical formulations of set theory (such as Zermello-Frankel)
have been under vigorous attack by intuitionists for nearly eighty years. More re­
cently, there has been debate about whether the Generalized Continuum Hypothesis
is ""true," following the originally startling proof (by Paul Cohen) that it is inde­
pendent of other, more widely accepted axioms of set theory. Still Ulore recently,
there has been debate about the Axiom of Foundation, which asserts that there is no
infinite sequence of sets 81, 81, 83, ... such that each 8.+1 is an element of 8;. In fact,
Aczel 11] and others have used an Anti-Foundation Axiom, which positively asserts
the existence of such sets, to model various phenomena in computation, including
conununicating processes in the sense of Milner [48]. I think it is fair to sa.y that most
mathematicians no longer believe in the heroic ideal of a single generally accepted
foundation for mathematics, and that many no longer believe in the possibility of
finding "unshakable certainties" [4J upon which to fonnd all of matheIDatics.

Set theoretic foundations have also failed to account for mathematical practice in
certain areas, such as category theory itself, and moreover have enconraged research
into areas that have little or nothing to do with mathematical practice, such as large
cardinals. (Mac Lane [42] gives some lively discussion of these issues, and [32J gives
an overview of various approaches to foundations.) In any case, attempts to find
a minimal set of least debatable concepts upon which to erect mathematics have
little direct relevance to computing science. Of course, the issne no longer seems as
urgent as it did, because no new paradoxes have been discovered for a long time.

This note has tried to show that category theory provides a number of hroadly
useful, and yet surprisingly specific, guidelines for organising, generalising, and dis-.
covering analogies among and within varions branches of mathematics and its ap­
plications. I now wish to suggest that the existence of such guidelines can be seen
to support an alternative, more pragmatic view:

Foundations should provide general concepts and tools that re vt:al the

13 REFERENCES

structures 01 the lIarious areu 01 mathematics and its applications, u
tlJell as rdationJIhips among them.

In a 6eld which is not yet very well developed, such as computing science, where it
often seems that getting the definitions right is the hardest task, foundations in this
new sense are much more useful, since they can suggest which research diredions are
most fcuitful, and can test the results of research using relatively explicit measures
of elegance and coherence. The successful use of category theory for such purposes
suggests that it provides at least the beginning of such a foundation.

References

[I}	 Peter Aczel. Non- Well-Founded Sds. Center for the Study of Language and
IrlformatioD, Stanford University, 1988. CSLI Lecture Notes, Volume 14.

[2\	 Michael Barr and Charles Wells. Toposes, Triples Ilnd Theories. Springer_
Verlag~ 1984. Grundlehren der mathematischen WissenBChaIter, Volume 278.

13]	 Michael Barr and Charles Wells. The formal description of data types us­
ing sketches. In Michael Main, A. Melton, Michael Mislove, and D. Schmidt,
editors. Mathematical Foundations 01 Programming Language Sernantie8.
Springer.Verlag, 1988. Lecture Notes in Computer Science, Volume 298.

[4]	 Luit.zen Egbertus Jan Brouwer. Intuitionistische betrachtungen fiber den for­
malisIfius. Koninilijie Aiademie lIan wdensehappen te Amsterdam, Proceed­
ings 0/ tlte sedion ollJeienees, 31:374-379, 1928. In From Frege Co Godd, Jean
van Heijenooct (editor), Harvard Univenity Preas, 1967, pages 49()..492.

[5)	 Rod BUl"9tall. An algebraic description ofprogrlUI19 with assertions, verification.
and simulation. In J. Mack Adams, John Johnston, and Richard Star', editora,
ProuedmglJ, Con/erenec on Proving Assertiotl1l about Prograrru, pagw 7-14.
Asaocia~ion for Computing Machinery, 1972.

[6J	 Rod Burstall and Joseph Goguen. Putting theories together to make specifica­
tions. In Raj Reddy, editor, Proccedings, Fiflh lnternalioDal Joint Conlercnce
on Artificial lntr:lligence, pages 1045-1058. Department of Computer Science,
Carnegie-Mellon University, 1971.

[7]	 Rod Burlltall and J0geph Goguen. The semantics of Clear, a specification lan­
guage. In Dines Bjorner, editor, Proceedings, 1979 Copenhagen Winter Sc.hool
on Abstrad Software Specification, pages 292-332. Springer-Verlag, 1980. Lec­
ture Notes in Computer Science, Volume 86.

[8]	 Pierre-Luc Cuden. Calegorial CombinaCors, Sequential Algorithrru, .nd JUnc­
tional Programming. Pitman and Wiley, 1986. Research NOte8 in Theoretical
Computar Science.

19]	 Hana-Dieter Ehrich. On the theory of specification, implementation IUId pat&bl­
eterization of abstract data t.ypes. Journal 01 tAe Association lor CQmputing
Machi_"" 29:206-227, 1982.

14	 REFERENCES

[10]	 Hartmut Ehrig. Introduction to the algebraic theory of graph grammars. In
V. Claus, Hartmut Ehrig, and Gregor Rozenberg, editors, CrapA Gramtu's
ud th.eir Application to Compvter Science and Biology, pages l-{i9. Springer­
Verlag, 1979. Lecture Notes in Computer Science, Volume 73.

[11]	 Samuel Eilenberg snd Saunders Mac Lane. General theory of natural equiva­
lences. Ttara.ac,ions of the Amcrican Mathematical Society, 58:231-294, 1945.

II'Z}	 Kokichi Futatsugi, Josepb Goguen, Jean·Pierre Joua.nnaud, and J Olle Meseguer.
Principlell of OBJ'Z. In Brian Reid, editor, Proceedings, leth ACM Symposium
011 Principle. of Programming Laragvages, pages 52-86. Association for Com­
puting Machinery, 1985.

[13]	 J.R.W. Glauert, K. Hammond, J.R. Kennaway, G.A. Papadopoulos, and M.R.
Sleep. DACTL: Some introductory papers. Technical Report SYS-C88-08,
School of Information Systems, University of East Anglia, 1988.

114)	 Joseph Goguen. TowlU'dll a general understanding of the semantics of con­
current computation. Given u a lecture at ICOT Workshop on Concurrent
Programming, 5 December 1988, Tokyo, Japan; paper in preparation.

(151	 Jceeph Goguen. Realization is univeUlIl. Mathematical System Theory, 6:359­
374, 1973.

1161 JQlW!ph Goguen. On bomomorphisms, correctness, termination. unfoldments
and equivalence of Bow diagram programs. Journal of Compvter arad System
Stienee., 8:333--365,1974. Original version in Proceedirags, 197t IEEE Sympo­
.ism ora SVlitch.ing and A'Ulomala, pages 52.-60; contains an additional section
on program echemes.

(17)	 JQlW!pb Goguen. Semantiu ot computation. In Er-nest G. Manes, editor, Pro­
ceeding., First lrafernafional Symposivm on Category TAeory Applied tu Com­
pdafion and Control, P88e8 234-24Q. University of Massachusetts at Amherst,
1974. Also, Lecture Notes in Computer Science, Volume 25, Springer- Verlag,
1975, pages 151-163.

181	Joseph Goguen. Reusing and interconneeting software components. Comp'Uter,
19(2):16-28, FebrulU'y 1986. Also reprinted in Tvtorial: Software Reuability.
Peter Freeman, editor, JEEE Computer Society Pre59, 1987, pages 251-263.

1

1191	 Josepb Goguen. What is unification? - a categorical view of substitution,
equation .and solution. In Maurice Nivat and H8lIsan Ai"t-Kaci, editors, Reso·
Mio" of Equatioft81 ira Algebraic Structvres. Academic Press, to appear, 1989.
Also, Technical Report SRI-CSIr88-2R2, SRI International, Computer Science
Lab, August 1988.

1201 Joseph Goguen .and Rod Burstal!. CAT, a l:Iy9tem for the structured elahoration
of correct progrlUTlS Crom structured specifications. Technical Report Technical
Report CSL-118, SRI Computer Science Lab, October 1980.

15 REFERENCES

[21J	 Joseph Goguen and Rod Bursta..ll. Some fundamental algebraic tools for th~

semantiC!! of computation, part 1: Comma categories, colimits, signatures a.nd
theories. T"~oreti,al Computer Science, 31(2):175-209, 1984.

[221	 Joseph Goguen and Rod BurstalL Some fundamental algebraic tools for the
semantics of computation, part 2: Signed and abstract theories. Thwreh"e41
Comput~ S,it.nce, 31(3):263-295, 1984.

[23]	 Joseph Goguen and Susanna Ginali. A categorical approach to general systems
tbeory. In George Klir, editor, Applied Gcneral Sy,dt.ms Rctcarcla, pages 257­
270. Plenum, 1978.

[24]	 Joseph Goguen and Jos~ Meseguer. Correctness of recursive parallel non­
deterministic flow programs. JOlJ,rnal of Computer and System Sciences,
27(2):268-290, October J983. Earlier version in Proceedings, Gonferenee on
Matltetnatieal Foundations of Computer Science, 1977, pages 580-595, Springer.
Verlag Lecture Notes in Computer Science, Volume 53.

{251	 Joseph Goguen 8.lld J~ Meseguer. Models and equality for logical program­
ming. In Hartmut Ehrig, Giorgio Levi, Robert Kowalski, and Ugo Montanari,
editors. Proceedings, 1987 TAPSOFT, pages 1-22. Springer-Verlag, 1987. Lec­
ture Notes in Computer Science, Volume 250.

[261	 Joseph Goguen and Jos~ Meseguer. Unifying object-oriented and relational
progrlUTlming, with logical semantics. In Bruce Shriver and Peter Wegner, edi­
tors, Research Directions in Object-Oriented Programming, pages 417-477. MIT
Press, 1987. Preliminary version in S/GPLAN No~ice8, Volume 21, Number 10,
pages 153-162, October 1986.

127]	 Joseph Goguen and Jose Meseguer. Software for the rewrite rule machine.
In Proceedings, International Conference on Fifth Generation Compiler Sys­
tems 1988, p~es 62&-637. Institute for New Generation Computer Technology
(ICOT), 1988.

[28J	 Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract data types.
Technical Report RC 6487, IBM T.J. Watson Research Center, Octoher 1976.
Appears in Current 7rends t"n Programming Methodology, IV, Raymond Yeh,
editor, Prentice-Hall, 1978, pages 80-149.

[291	 Joseph Goguen, James Thateher, Eric Wagner, and Jesse Wright. A junction
between computer science BJld category theory, I: Basic concepts and txamples
(pazt 1). Technical report, IBM Watson Research Center, Yorktown Heights
NY, 1973. Research Report RC 4526.

[30J	 Joseph Goguen, Jame9 Thateher, Eric Wagner, and Jesse Wright. Initial algebra
semantiCli BJld continuous algebras. Jotirnal of the Association for C~mpu~i,.g

M,uhin~'lI, 24(1):68-95, January 1977.

131J	 Robert Goldblatt. Topoi, the Categorial Anal,,,,,, of Logic. North-HollBJld,
1979.

16 REFERENCES

[32]	 William S. Hatcher. Foundation, of Mathemafic8. W.B. Saunders, 1968.

[33]	 JlloCques Herbr8.Dd. Recherches sur la theorie de la demonstration. Travau:z: de
la SOt:ll.tl. des Scit:nu8 d des LeUre8 de Varsovie, Classt: Ill, 33(128), 1930.

[34.J	 Horst Herrlich and George Strecker. Cdegorll Theory. Allyn and Bacon, 1973.

135J	 C.A.K. Hoare and JiCeng He. Natural transformations and data refinement,
1988. Programming Research Group, University oC Oxford.

[86]	 Mutm Hyland. The effective topos. In A.S. Troelstra and van Dalen, editors,
T~e Brouwer SlIm,oaium. North-Holland, 1982.

[871	 Robert Keller and Jceeph Fasel, editors. Proceeding8, Graph Redudion Work­
.Aop. Springer-Verla,g.1987. Lecture Notes in Computer Science, Volume 279.

[381	 Richard Kennaway. On 'On graph rewriting!!'. TAeoreficd Compufer Science,
52:37-58, 1987.

[39}	 Joa.chim Lambek 8.bd Peter Scott. IntrodQdion to Higher Order Categon'C4J
Logie. Cambridge University Pres!l. 1986. C&mbridge Studies in Advanced
Mal.bematica, Volume 7.

140J	 Saunders Mac Lane. Duality for grOUP!!. Proceeding8, National Aeademll of
Scienu8, U.S.A., 34.:263-267, 194.8.

f41J	 Saunder!! Mac Lane. Categoriu for the Working Mathematician. Springer.
Verlag. 197L

14.2}	 Saundef!l Mac Lane. To the greater health oC mathematics. Mathematical
Inlelligeneer. 10(3):17-20, 1988. See also Mathematical Intdligent:er 5, No. 4.,
pp. 53-55, 1983.

143]	 F. William Lawvere. Functorial semantics of algebraic theories. ProceedingiJ,
NAliond AcademJ of Scient:u, U.S.A., 50:869-872, 1963. Surnrnary of Ph.D.
Thesis, Columbia University.

[44.J	 Humbert.o Maturana and Francisco Varela. The 7he of Knowledge. Sh&mbhala,
1987.

[451	 JoR Meseguer and Joseph Goguen. Initiality, induction and computability. In
Maurice Nivat and John Reynolds, editors, Atgdraic Methods -in Scmantit:,.
pages 4.59--541. C&mbridge University Pres!!, 1985.

[46J	 Jos' Meseguer 8.bd Ugo Montanari. Petri net!! are monoids: A new algebraic
Coundation for net theory. In Proceeding8, S,Impo,ium on Logic in Computer
Scienu. IEEE. 1988. Full version in Technical Report SRI-CSL-8B-3. Comput.er
Science Laboratory. SRI International. January 1988; submitted LO Information
t1n4 Computation.

[47]	 Robin Milner. An algebraic definition oCsimulation between prograJJl9. Techni·
cal Report CS-205, StanCord University, Computer Science DepartmenL, 1971.

17 REFERENCES

[48J	 Robin Milner. A CalculWJ of Communicating S7/stems. Springer-Verlag, 1980.
Lecture Notes in Computer Science, Volume 92.

[491	 Eugenio Maggi. Computationallambda--calculus and monads. TechnicaiReport
ECS-LFCS-88-66, Laboratory for Foundations or Computer Science, University
of Edinburgh, 1988.

[501	 Eugenio Maggi. A category-theoretic account of program modules, 19a9. Lab­
ofaLory for Foundations of Computer Science, University of Edinburgb.

[51J	 Robert Pare and Peter Johnstone. Jndezed Categories and their Application.8.
Springer-Verlag, 1978. Lecture NoLes in Ma.thema.tics, Volume 661.

[521	 Jean Claude R80Ult. On graph rewritings. Theoretical Computer Scientt, 32:1­
24, 1984.

[~I	 Stuart Shieber. A" Introduction to Unifiel1tion.Bl18ed Approaches to GrQmmar.
Center for the Study of Langua.ge and lnfonnation, 1986.

[54]	 Andnej Tarlecki, Rod Burstall, and Joseph Goguen. Some funda.mental al ­
gebraic tools for the semantics of computa.tion, part 3: Indexed calegoriea.
Theoretical Comp'Uter S,iencr, 1989. To appear.

