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A Categorical Manifesto*

Joseph A. Goguen

Summary

This informal paper tries to metivate the use of category tbeory in computing science
by giving heuristic guidelines for applying five basic categorical concepta: category,
functor, natural transformation, adjoint, and colimit. Several examples and some
general discussion are given for each concept, and a number of references are cited,
although no attempt has been made for completeness. Some additional categori-
cal concepts and euggestions for further research are also mentioned. The paper
concludes with a brief discussion of some implications for foundations.

“Supported by Office of Naval Research Contracis NOOO14-85-C-0417 and NOOGI4-86-C-0450,
NSF Grant CCR-B707155, and a gilt from the System Development Foundation.
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0 Introduction

Among the reasons why a computing scientist might be interested in category theory
are that it can provide belp with the following:

* Formulating definitions and theories. In fields that are not yet very well devel-
oped, like computing science, it often seems that formulating basic concepts
iz the most difficnlt part of research. The five guidelines given below pravide
relatively explicit measures of elegance and coherence that can be helpful in
this regard.

Carrying oul proofs. Once basic concepts have been correctly formulated in a
categorical language, it often seems that proofs “just happen”: at each step,
there is a “natural” thing to try, and it works. Diagram chasing (see Section
1.2) provides nice many examples of thia. [t could almost be said that the
purpose of categary theory is to reduce all prools to such simple calculations.

Discovering and exploiting relations with other ficlds. Finding similar struc-
tures in different areas suggests trying to find further similarities. For example,
an analogy between Petri nets and the A-calculus might suggest looking for a
closed category structure on nets (as in [46], which seems to open an entirely
new approach to concurrency).

Formulating conjectures and research directions. For example, if you have
found an interesting functor, you might be well advised to investigate its ad-

joints.

Dealing with abstraclion and representation independence. In computing sci-
ence, abstract viewpoints are often better, because of the need to achieve
independence from the often overwhelmingly complex details of how things
are represented or implemented. A corollary of the first guideline is that two
objects are “abstractly the same™ iff they are isomorphic; see Section L.1.
Moreover, universal constructions (i.e., adjoints) define their results uniquely
up to isomorphism, i.e., abstractly in just this sense.

Category theory can also be abused, and in several different styles. One siyle
of abuse is specious generality, in which some theory or example is generalized in a
way that does not actvally include any new examples of genuine interest. A related
style of abuse is calegorical overkill, in which the language of category theory is used
to describe phenomena that do not actually require any such elaborate treatment
or terminelogy. An example is to describe a Galois connection in the language of
adjoint functors.

Category theory has been called “abstract nonsense” by both its friends and
its foes, Perhaps what this phrasc suggests to both camps is that category theory
has relatively more form than content, compared to other areas of mathematics.
Its frienda claim this as a virtue, in contrast to the excessive concreteness and
representation dependence of set theoretical foundations, and the relatively poor
guidance for discovering elegant and coherent theories that they provide. Seclion 6
discusses this further.
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Category theory can also he used in quite concrete ways, since categories are
after all just another algebraic structure, generalizing both monoids and partial
orders. [See Example 1.4 below.}

This note presents five guidelines for using category theory, each with some
general discussion and some specific examples. There is no claim to originality,
since [ believe the underlying intuitions are shared by essentially all workers in
categary theory, although they have been understandably relnctant to place such
dogmatic assertions in texthooks or other written documents’. The five guidelines
are necessarily imprecise, and will seem exaggerated if taken too literally, since
they are not objective facts, but rather heuristics for applying certain mathematical
concepts. In particular, they may seem difficult to apply, or even impossible, in
some gituations, and they may need refinement in others. As a reminder that they
should not be taken too dogmatically, [ will call them dogmas.

No attempt is made to be exhaustive. In particular, the technical definitions are
omitted, since the purpose of this note is motivational, and the definitions can be
found in any textbook. Thus, it is necessary to use some text in connection with this
note. Unfortunately, no existing text is ideal for computing scientists, but perhaps
that hy Goldhlatt [31] comes closest. The classic text by Mac Lane [41] is warmly
recommended for those with sufficient mathematics background, and Herrlich and
Stretker’s book [34] is admirahly thorough; see also [2] and [39].

1 Categories
The first dogma is as follows:

To each apecies of mathematical structure, there corresponds a colegory
whose objects have that structure, and whose morphisms preserve il.

It is part of thia dogma that in order to understand a structure, it is necessary to
understand the morphisms that preserve it. Indeed, many category theorists feel
that the morphisms are more important than the objects, since they reveal what
the structure really is. Moreover, the category concept can be defined using only
morphisms. It is the hias of modern Western language and culture towards objects,
rather than towards relationships, that assigns precedence to objects over morphisms
(see [44] for some related discussion). Now some examples to illustrate this dogma:

1.1 Sets. If we take sets to be objects, then their morphisms are clearly going to
be functions. A set morphism, however, is not just a set of ordered pairs, but
must also specify particular source and target sets. This i3 consistent with
practice in computation theory which assigns types to functions. The set the-
oretic representation of functions iz an artifact of the set theoretic foundations
of mathematics, and like al! such representations, has accidental praperties
beyond those of the concept it is intended to capture. One of thase properties

‘A2 far a3 I know, Lhe first sach attempt o my own, given in [19], which containa the firat four
guidelives given here; the present note can be seen as an expansion of that early aktempt. The only
other attempt that I know is dve to Lambek and Scott [39], wha give a number of “mlogans® in a
similar style.
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is that any two sets of ordered pairs can be composed to yield a third, The
category $ et of sets embodies a contrary point of view, that each function has
a domain in which its arguments are meaningful, and a codomain in whichits
results are meaningful. (See [31] for further discussion of these points.)

Relations. Just as with functions, it seemns desirable Lo take the view that
the composition of relations is only meaningful within certain given domains.
Thus, we may define a relation from a set Ay to a set A; to be a triple
(A, B, A1) with R C 45 x A, and theu allow its composition with (Bg, $, B1)
to he defined iff A; = By, This gives rise to a category that we denote Rel, of
which Set can be considered a subcategory.

Graphs. A graph G consists of a set £ of edges, a set N of nodes, and
two functions 89,8, : E — N which give the source and target of each
edge, respectively. Since the major components of graphs are sets, the major
components of their morphisms should be corresponding functions that pre-
serve the additional structure. Thus a morphism from G = (E,N,ao,al) to
G' = (E’, N',8,0]) consists of two functions, f: & — E' and ¢: N — ¥',
such that the following diagram commutes in Set for «+ = 0,1:

&
E N
f g
E T* N

To show that we have a category Graph of graphs, we must shew that a
composition of two such morphisms is another, and that a pair of identity
functions satisfies the diagrams and also serves as an identity for composition.

Paths in a Graph. Given a Graph G, each path in G has a source and a
target node in &, and two paths, p and p/, can be composed to form another
path p.p' iff the source of p' equals the target of p. Clearly this composition
is associative when defined, and each node can be given an “identity path”
having no edges. This category is denoted Pa(?). Details may be found in
|41], (29}, [18], and many other places.

Substitutions. Two key attributes of a substitution are the set of variahles
for which it substitutes, and the set of variables that oceur in what it substi-
tutes. Thus, substitutions naturally have spurce and target objects, each a set
of variables. Clearly there are identity substitutions for each set of variables
(substituting each variable for itself), and the composition of substituticns is
associative when defined. See [19] for much moare on this example; in fact, [19]
can be used as a primer on category theory, motivated by just this example
and its many applications.
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16 Automata. An autematon consists of an input set X, a state set 5, a tran-
sition function f: X x § — X, an initial state sg € 5, and an output function
§: 5§ — Y. What does it mean to preserve all this structure? Since the major
components of automata are sets, the major components of their morphisms
should be corresponding [unctions that preserve the additional atructure. Thus
a morphism from A = (X,8,Y, f,¢) to A' = (X", §'",¥", f',8") should consist
of three functions, A: X — X', t: § — §', &and 5: ¥ — Y, such that the
following diagrams commute in Set:

Xx S*f—bS S —g" Y

hxi i i 3

X'x S oo Y
I g

It must be shown that a composition of two such morphisms is another, and
that a triple of identities satisfies the diagrams and serves as an identity for
composition. These checks show that we have a category Aut of sutomata,
and increase our confidence in the carrectness of the definitions. See [15].

1.7 Theorles. In his 1963 thesis [43], F.W. Lawvere developed a very elegant ap-
proach to universal algebra, in which an algebraic theary is a category T whose
morphisms correspond to equivalence classes of terms, and whose objects in-
dicate the variables involved in these terms, much as in Example 1.5 above.
In this approach, the objects of 2 theory are closed under products (products
are defined in Example 4.1 below). Although Lawvere’s original development
was unsorted, it easily extends to the many-sorted case; [19] gives a relatively
concrete and hopefully readable account of these ideas for computing scien-
tiats, with many applications, following the approach indicated in Example
1.5 above. Lawvere theories have been extended in many other ways, includ-
ing the so-called “sketches” by Ehresmann, Gray, Barr, Wells, and others; for
example, see (3].

1.1 Isomorphism

One very simple, but still significant, fruit of category theory is a general definition
of somorphism, suitable for any speciea of strncture at all: a morphism f: A — B
is ap lsomorphism in a category C iff there is another morphism g: B - Ain C
such that g.f = 14 and f.¢ = L. In this case, the objects A and B are isomorphic.
It is a well established principle in abstract algebra, and now in other fields as well,
that isomerphic objects are abstractly the same, or more precisely:

Two objects have the same structure iff they are wsomorphic, and an
“abstract object” v» an isomorphism class of obyects.

This demi-dogma can be seen as a corollary of the first dogma. It provides an
immediate check on whether or not some structure has been correc tly formalized:
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unless it is satisfied, the objects, or the morphisms, or both, are wrong. This
principle is so pervasive that issmorphic objects are very often considered the same,
and “the X” is used instead of “an X” when X is actually only defined np to
isomorphism. In computing science, this principle guided the successful search for
the right definition of “abstract data type® [28].

1.2 Diagram Chasing

A usefyl way to get an overview of a problem, theorem, or proof, is toc draw one
or more diagrams that show the main objects and morphisms invelved. A diagram
commules iff whenever p and p’ are paths with the same scurce and target, then
the compositions of the morphisms along these two paths are equal. The fact that
pasting two commutative diagrams together along a common edge yields another
commutative diagram provides a basis for a purely diagramatic style of reasoning
about equality of compositions. Since it is valid for diagrams in any category what-
ever, this proof sty le is very widely applicable; for example, it applies to substitutions
(see Example 1.5). Moreover, it has been extended with conventions for pushouts,
for uniqueuess of morphisms, and for certain other commen situations. Often proofs
are suggested just by drawing diagrams for what is known and what is to be proved.
A simple example of this occurs in Example 1.3, to prove that a composition of twe
graph morphisms 1s another graph morphism.

2 Functors

The second dogma says:

To any conslruclion on siructures of one species, say widgets, yielding
structures of another species, say whaisits, there corresponds o functor
from the category of widgels to the calegory of whatsits.

It is part of this dogma that a construction is not merely a function from objects of
one species to objects of another species, but must also preserve the essential rela-
tionships among these objects, including their structure preserving morphisms, and
compositions and identities for these morphisms. This provides a test for whetheror
not the construction has been propetly formalized. Of course, functorality does not
guerantee correct formulation, but it can be surprisingly helpfnl in practice. Now
some examples:

2.1 Free Monoids. It is quite common in computing science to construct the
free mouoid X* over a set X. It consists of alt Anite strings 2;..7, from
X, including the empty string A. This coustruction gives a functor from the
category of sets to the category of monoids, with a function f: X —+ Y inducing
f*: X* — ¥~ by sending A to A, end sending zy...z, to f{z,)...f(zn).

2.2 Behaviors. Given an autematon 4 = (X, S,¥, [ g), its behavier is a function
b: X* — Y, from the monoid X" of all strings over X, to Y, defined by
b(u) = g(f(v)), where [ is defined by f(A) = eg and f(uz) = f(z, f(y)),
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for £ € X and u € X", This construction should be functorial. For this,
we need a category of behaviors. The obvious choice is to let its objects be
pairs (X,b: X* — ¥) and to let its morphisms from (X,8: X' — Y) to
(X', ¥: X" — Y') be pairs (h, §) where h: X — X' and 5: ¥ — Y', such that
the diagram

Xx* Y

h'{ 7
)

Xrt b! Y!

commutes in Set. Denote this category Beh and define B : Aut — Bed by
B(X,8,Y,f,9) = ¢.f and B(A,i,5) = (h,7). That this is a functor helps to

confirm the elegance and coherence of our previous definitions. See [15].

Algebras. In the Lawvere approach to universal algebra [43], an algebra is
a functor from a theory T to Set. Here, “construction” takes the meaning of
“interpretation”: the abstract structure in T is interperted (i.e., constructed)
coneretely in Sel; in particular, these functars must preserve products.

Forget It. I all widgets are whatsits, then there is a “forgetful functor”
from the category of widgeta to the category of whatsits. For example, every
group is & monaid by forgetting its inverse operation, and every monoid is a
semigroup by forgetting its identity. In maodel theory, the whatsit underlying
a widget is called a “retract.” Notice that a ring {with ideutity) is a monoid in
two different waya, one for its additive structure and one far its multiplicitive
structure.

Categories. Of course, the (small) categories also form a category, with
functors as morphisms, It is denoted Cat.

Diagrams and the Path Category Construction. The construction in
Example 1.4 of the category Pe(G) of all paths in a graph G gives rise to
a functor Pa: Graph — Cat from graphs to categories. Then a diagram in
a category C, with shape a graph G, is a functor D : Pa(G) — €. Tt is
conventional to write just : G — C, and even to call D a “funcior,” because
D:Pa{G) — C is in fact fully determined by its restriction to G, which is a
graph morphism; see Example 4.2 below.

Programs and Program Schemes. A non-deterministic low diagram pro-
gram P with parallel assignments, go-to’s, and arbitrary built-in data struc-
tures, including arbitrary functions and tests, can be seen as a functoer from
& graph & (the program’'s shape} into the category Rel whose objects are sets
and whose morphisms are relations. An edge e: n — n' in & corresponds to
a program statement, and the relation P(c): P(n) — P{n') gives its seman-
tics. For example, the test “if X > 2” oa natural numbers corresponds to



the partial identity function w — w defined iff X > 2, and the assigament
“X :— X — 1" correspouds to the partial function w — w sending X to X — 1
when X > 0. The semantics of P with input node n and sutput node n' ia
then given by the formula

P(n,n') = U{P(p) | p: n — ' € Pa(G)).

This approach originated in Burstall [5]. Techniques that allow programs to
have #yataz as well as semantics are described in [16]*: A program scheme is
a [unctor P:G — T into a Lawvere theory T “enriched” with a partial order
structure on its morphism sets T(A, B) (the reader familiar with 2-categories
should uotice that this makes T a 2-category). Semantics for statements then
arises by giving a fuuctor A: T — Rel, that is, an interpretation for T, also
called aT-algebra. The semautics of a program is then computed by the above
forrmu la for the compasition P.A: G — Rel. There seems to be much more
resear ch that could be done in this area. For example, [24] gives an inductive
proof principle for collections of mutually recursive procedures, and it would
be interesting to consider other program constructions in a similar sstting.

3 Naturality

The third dogma says:

To each natural relationship belween two functors F,G . A — B corre-
sponds o natural transformation F = G {or perhaps G = F).

Although thislooks like a mere definition of the phrase “natural relationship,” it can
nevertheless be very useful in practice. It is also interesting that this concept was
the Listorical origin of category theory, since Eilenberg and Mae Lane (1] used it
to formalize the notion of an equivalence of homology theories (whatever Lhey are),
and then found that far this definition to make sense, they had to define functors,
and for funictors to make sense, they had to define categories. [This history alsa
explains why homalogy theory so often appears in categorical texts, and hence why
so many of them are il}-suited for computing scientists.}) Now some examples:

3.1 Homomorphisms. As already indicated, in the Lawvere approach to uni-
versal algebra [43], algebras appear as functors, and so we should expect ho-
momorphisms to appear as natural transformations; and indeed, they do.

3.2 Natural Equivalence. A natural transformation n: F = G is a natural
equivalence iff each ngs: FA — CA i3 an iscmorphism. This is the natu-
ral notion of isomorphism for functors, and is equivalent to the existence of
v:G = F such that v.9p = 1f and n.1r = 1. This concept specializes to iso-
motphism of algebras, aud is alsg exactly the concept that motivated Eilenberg
and Mac Lane.

20uly the <tiginal 1972 conference version contains this definition.
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3.3 Data Refinement. A graph with its nodes lahelled by types and its edges
labelled by function symbols can be seen as an impoverished Lawvere the-
ory that bas no equations and no [unction symhols that take more than one
argument. However, such theories still admit algehras, which are functors
into Set, and homomorphiams, which of course are natural transfermations.
These algebras can be viewed as data representations for the basic data types
and functions of a programming language, and their homomorplisms can be
viewed as data refinements. Considered in connection with the basic program
comstruction operations of a language, this leads to some geueral techniques
for developing correct programas [35]. It would be interesting to extend this
to more expressive forms of Lawvere theory {such as many-sorted theories or
sketches), and to the more general data representations studied in the abstract
data type literature (e.g., {28, 9]).

3.4 Program Homomorphisms. Since Example 2.7 suggests that programs are
functars, we should expect to get a kind of prograin homomorphism from a
natural transformation between programs. Indeed, Burstall [5] shows that a
weak form of Milner’s program simutations [47] arises in just this way. [16] gen-
eralizes this to programs with different shapes, and maps from edges to paths,
by defining a homomorphism from Fy: Go — C ta P : Gy — € to consist
of a functor F: Go — Pa(G)) and a natural transformation 5 : Py — F.Py;
some theory and applications are also given, including techniques for proving
correctness, termination, and non-trivial equivalences hy unfolding programs
into equivalent infinite trees.

4 Adjoints
The fourth dogma says:

Any canonrical construction from undgets to whalsits is an adioint of
anpther functor, from whatsils to widgets.

Although this can he seen as just a definition of “canorical canstruction,” it can
be very useful in practice. The essence of an adjoint is the universal property that
is satisfied by its value objects. This property says that there is 3 unique mor-
phism satisfying a certain condition. It is worth noting that any twoe [right, or left)
adjoints to a given functor are naturally equivalent, ie., adjointness determines a
construction uniquely up to isomorphism. Now some examples

4.1 Products and Surms. One nice achievemnent of category theory is to give
general defintions for previously vague terms like “product” and “sum” (al-
though sumsa are ysually called “coproducts”). For example, the Cartesian
product of sets is a functor Set x Set — Set. The general definitions make
sense in any category C, and characterize the construction uniquely (up to
isamorphism) if it exists. Let A: C — CxC be the “diagonal” functer, sending
an object C in C to the pair (C,C), and sending a marphiam ¢ : € — C' in
Cuo(c,e): (€, C) = (€',C") in CxC. Then C has products iff A has a right



adjoint, and has sums iff A has a left adjoint. This is a heautifully simple way
to formalize mathematical concepts of basic importance that were previousiy
only understood informally {due to Mac Lane [40]).

4.2 Freebies. Another beautifully simple formalization gives a general definition
of “free” constructions: they are the ieft adjoints of forgetful functors. For
example, the path category functor Pa: Graph — Cat of Example 25 is left
adjoint to the forgetful functor Cet — Grapk, and thus may be said to give
the free category over a graph.

4.3 Minimal Realizatlon. An automaton (X,5,Y, f,g) is reachable iff itz fune-
tion f: X* — S is surjective. Let A denote the suhcategory of Aut whose
objects are reachable and whose morphisms (i, 7, k) have 1 surjective. Then
the restriction B: A — Beh of B: Aut — Beh to & has a right adjoint
which gives the minimal realization of a behavior [15]. Since right adjoints
are uniquely determined, thia provides a convenient abstract characterization
of minimmal realization. Moreover, this characterization extends to, asd even
suggests, more general minimal realization situations.

4.4 Syntax and Semantics. One of the more spectacular adjoints is that be-
tween syntax and semanties for algebraic theories, again due to Lawvere in his
thesis [43).

4.5 Cartenian Closed Categaries. A Cartesian closed category has binary
products, and a right adjoint to each functor sending 4 to AxX B. It is re-
markable that this concept turns out to be essentially the {typed) A-calculus;
see [39). This connection has been used, for example, as a basis for the ef-
ficient compilation of higher order functional languagea [B]. An advantage is
that op timization techniques can be proved correct hy using purely equational
reasoning.

5 Colimits
The fifth dogna says:

Given a category of widgets, the operation of putling o syatem of widgels
logether to form some super-widget corresponds to taking the colimit of
the diagram of widgets that shows how to snterconnect them.

At least for me, this dogma first appeared in the context of General Systems Theory
[23]. It ia worh remarking that, generalizing Example 4.1, colimils over the dia-
grams of a fixed shape G (a graph) give a functor that is right adjaint to a (snitably
generalized} diagonal functor. Now some examples:

5.1 Putting Theories together to make Specifications. Complexity isa fun-
dament al problem in programming methodology: lazge programs, and their
large specifications, are very difficult to produce, to understand, to get right,
and to modify. A basic strategy for defeating complexity is to hresk large
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sysiens into smaller pieces tbat can be understood separately, amd that when
put back together give tbe original system. [f successful, this in effect “takes
the logaritbm™ of the complexity. In the semantics of Clear [&, 7|, specifi-
cations are represented by theories, in essentislly the same sense as Lawvere
(but many-sorted, and with signatures), and specifications are put together
by colimits in tbe category of such thecries. More specifically, the application
of a generic theory to an actual is computed by a pushout. QBJ [12], Eqlag
(28}, and FOOPS [26] extend this noticn of generic module to [unctianal, logic
{ie., relational), and object oriented programming, respectively. It has even
been applied to Ada [18].

5.2 Graph Rewriting. Ancther important problem in computing science is to
find models of compulation that are suitable for massively parallel machines.
A successful model should be abstract encugh tc avoid the implementation
details of particular machines, and yet concrete enough te serve as an interme-
diste target language for compilers. Graph rewriting provides enie promising
area within which to search for such medels [37, 27, 13], and colimits seem
tobe quite useful here [10, 52, 38]. Graph rewriting is alsc important for the
unification grammars that are now popular in linguistics [53, 19] There seem
to be many opportunities for further research in these areas.

5.3 Initiality. The simplest possible diagram is the empty diagram. Its colimit is
an iniliof object, which has a unique morphism to any object. Like any adjoint,
it is determined uniquely up to isomorphism, sc any twe initial objects in a
category are isomorphic. [t i3 also worth mentioning that universality can be
reduced to initiality (in a comma categary}, and hence so can cclimits.

5.

[

Initial Model Semantice. Mt seemas remarkable that initialivy is so very
useful in computing science. Beginning with the formalization of abstract
syntax as an initial algebra [17], initiality has been applied to an increasing
range of fundemental concepts, including induction and recursion [30, 45,
abstract data types [28], computability [45], and model theoretic semantics for
functional [12], logic (i.e., relational), combined functional and rel ational, and
constraint logic [25] programming languages. The latter is interes ting because
it involves initiality in a category of model extensions, i.e., of mmorphisms,
rather than just models. In general, this research can be seen as formalizing,
generalizing, and smoocthing cut, the classical Herbrand Universe construction
(33, and it seems likely that much interesting work remains to be done along
these lines.

Research in General Systems Theory also suggests a dual dogma, that the behavior
of a sysiem is given by a limit construction [23]. For example, this can be used
ta justify the formula in Example 2.7, and to explain the sense of *unification™ in
so-called unification grammars [19].
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6 Further Topics

Although they are particularly fundamental, the five dogmas given asbove far from
exhaust the richoess of category theory, This section mentions some furiher cate-
gorical constructions, about each of which one might express surprise at how many
examples there are in computing science.

6.1

6.2

6.3

6.4

6.5

Comra Categorfes. Comma categories are another basic construction that
first appeared in Lawvere’s thesis [43]. They tend to arise when morphisma are
used as objects. Examples 1.3, 2.2, 5.3, and 5.4 in this paper can all be seen as
tomma categories. Viewing a category as a comma category makes available
(for example) some very general results to prove the existence of Jimits and
colimits 21].

2-Categories. Sometimes morphisms not only have their usual compaosition,
identity, source and target, but alse serve as objects for some other, higher-
level, morphisms. This leads to 2-categories, of which the category Cat of cat-
egories is the canonical example, with natural transformations as morphisms
of its morphisms. This concept was mentioned in Example 2.7, and is also
used in [20], [22], [35), [50] and ether places.

Monoidal Categorles. There are many cases where a calegory has anatural
notion of multiplication that is not the usual Cartesian product but neverthe-
less enjoys many of the same properties. The category of Petri nets atudied in
[46] bas already been mentioned, and [14] suggests that monoidal categories
may provide a general approach to understanding the relationships among the
many diflerent theories of concurrency.

Indexed Categories. A strict indexed category is jusi a functor BF — Cat.
(54} shows Lhat there are many such calegories in computing science, and gives
some gerneral theorems abont them, including simple sufficient conditions for
completeness of the associated “Grothendieck® category. Moggi [50] applies
indexed categaries to programming languages, and in particular shows how to
get a kind of higher order module facility for languages like ML, (Nop-strict
indexed categories are significantly more complex, and have been applied in
foundational studies [51}.)

Kleisli Categories. Another way to generalize Lawvere theories is to view
an atbitrary adjunction as a kind of theory. So-celled monads {or triples)
are an abstraction of the necessary siructure, and the Kleisli category over
a monad gives the category of free algebras [41]. Again, there are surprisingly
many examples. [19] (in effect) takes the Kleisli category itsell as a theory,
and then shows that many different problems of unification (that is, of solving
systems of equations) can be naturally formulated as finding equalizers in
Kleisli categories. Moggi [49] uses Kleisli categories to get an abstract notion
of “cornputation” which gives rise to many interesting generalizations of the
M-caleulus.
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6.6 Topoi. A profound generalization of the idea that a theory is a category
sppears in the tepos notion developed by Lawvere, Tierney, and others. In a
sense, this notion captures the essence of set theory. It also has a relationships
to algebraic geometry, computing science, and intuitionistic logic [31, 2, 36).

7 Discussion

The traditional view of foundations requires giving a system of axiorms, preferably
firat order, that assert the existence of certain primitive objects with certain prop-
erties, and of certain primitive constructiona on objects, such that all objects of
interest can be constructed, and all their relevant properties derived, within the
system. The axioms should be aa self-evident, as few in number, and as simple, as
poseihle, in order to nurture belief in their consistency, and to make them as easy
to use as possible. ‘This approach is tnapired by the classical Greek account of plane
geometry.

The best known foundation for mathernatics is set tbeory, which has succeas-
fully constructed all the objects of greatest interest in contemnporary mathematics.
It has, however, failed to provide a commonly agreed upon set of simple, self-evident
axioms. For example, classical formulations of set theory (such as Zermello-Frankel)
have been under vigorous attack by intuitionista for nearly eighty years. More re-
cently, there has been debate about whether the Generalized Continuum Hypothesis
is “true,” following the originally atartling proof (by Paul Cohen) that it is inde-
pendent of other, more widely accepted axioms of set theory. Still mmore recently,
there has been debate about the Axiom of Foundation, which asserts that there is no
infinite sequence of sets §1, 53, 53, ... such that each S,4; is an element of §;. In fact,
Aczel [1] and others have used an AntiFoundation Axiom, which positively asserts
the existence of such sets, to model various phenomena in computation, inciuding
communicating processes in the sense of Milner [48]. 1 think it is fair to say that most
mathematicians no longer believe in the heroic ideal of a single generally accepted
foundation for mathematics, and that many no longer believe in the possibility of
finding “unshakable certainties” [4] upon which to fonnd all of mathemnatics.

Sel theoretic foundationa have also failed to account for mathematical practice in
certain areas, such as category theory itself, and moreover have enconraged research
into areas that have little or nothing to do with mathematical practice, such as large
cardinals, (Mac Lane [42] gives some lively discussion of these issues, and [32] gives
an overview of various approaches to foundations.) In any case, attempts to find
a minimal set of least debatable concepts upon which to erect mathematica have
little direct relevance to computing science. Of course, the issne no longer seems as
urgent as it did, because no new paradoxes have been discovered for a long time.

This note has tried to show that category theory provides a number of hroadly
useful, and yet surprisingly specific, guidelines for organising, generalising, and dis-
covering analogies among and within varions branches of mathematics and its ap-
plications. I now wish to suggest that the existence of such guidelines can be seen
to support an alternative, more pragmatic view:

Foundatlions should provide general concepts and tools thal reveal the



REFERENCES 13

Blructures of the varigus areas of mathematice and its applications, as
well as relationships among them.

In a feld which is not yet very well developed, such as computing science, where it
often seems that getting the definitions right is the hardest task, foundations in this
new sense are much moare useful, since they can suggest which research directions are
most fruitful, and can test the results of research using relatively explicit measures
of elegance and coherence. The successful use of category theory for such purposes
suggests that it provides at least the beginning of such a foundation.
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