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A Categorical Manifesto" 

Joseph A. Goguen 

Summary 

Thill informal paper tries to motivate the use of category tbeory in computing science 
by giving heuristic guidelines for applying five basic categorical concepts: category, 
functor, natural tranllformation, adjoint, and colimit. Several examples and !lOme 
general discussion are given for each concept, and a number of references are cited, 
although no attempt has been made for completeness. Some additional categori_ 
cal concepts s.nd suggestions for further research are also mentioned. The p'per 
conclude!! with a brief discussion of some implicatioD8 for foundations. 

·Su.pported by Office of Na.val Reeultll Contlade NOOO14-85.C.M17 and NOOOI"'8~C.0450, 

NSF Gnat CCR-8707I55, a.nd a girt flOW the Sy.lew Development Foundation. 
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o Introduction 

Among the reasons why a computing scientist might be interested in category theory 
are that it can pTovide belp with the following: 

•	 Formulating definitions and rh,vrlelJ. In fields that are not yet very well clevel. 
oped, like computing science, it often seems that formulating basic concepts 
is the most difficnlt part of research. The five guidelines given below provide 
relatively explicit me8.'lures of elegance and coherence that can be helpful in 
this regard. 

•	 Carrying out proofs. Once basic concepts have been correctly formulated in a 
categorical language, it often seems that proofs "just happen": at ell.C.h step, 
there is a "natural" thing to try, and it works. Diagram chasing (see Section 
1.2) provides nice many examples of this. It could almC6t be selid that the 
purpose of category theory is to reduce all proofs to such simple calculations. 

•	 Discollering and e::ploiting rdatior13 with other jidds, Finding similar struc­
tures in different areas suggests trying to find further similarities. For example, 
an analogy between Petri nets and the >.-calculus might suggest looking for a 
closed category structure on nets (as in 1461, which seems to open an entirely 
new approach to concurrency). 

Formulating conjectures and research directions. For example, if you have 
found an interesting functor, you might be well advised to investigate it~ ad. 
joints. 

•	 Dealing w~'th abstraction and represmtation independence. In computing sci­
ence, abstract viewpoints are often better, because of the need to achieve 
independence from the often overwhelmingly complex details of how things 
are represented or implemented. A corollary of the first guideline is that two 
objects are "abstractly the same" iff they are isomorphic; see Section 1.1. 
Moreover, universal constructions (i.e., adjoints) define their results uniquely 
up to isomorphism, i.e., abstractly in just this sense. 

Category theory can aho be abused, and in several different styles. One style 
of abuse is specious generCllity, in which some theory or example is generalized in a 
way that does not actually include any new examples of genuine interest. A related 
style of abuse is categorical overkill, in which the language of category theory is used 
to describe phenomena that do not actually require any such elaborate treatment 
or t.erminology. An example is to describe II. Galois connection in the language of 
adjoint functors. 

Cat;.egory theory has been called "abstract nonsense" by both its friends and 
its foes. Perhaps what this phrase suggests to both camps is that category theory 
has relatively more form than content, compared to other areas of mathematics. 
Its friends daim this as a virtue, in contrast to the excessive concreteness and 
representation dependence of set theoretical foundations, and the relatively poor 
guidance for discovering elegant and coherent theories that they provide. Seclion 6 
diocusses this further. 



2	 CATEGORIES 

Category theory can also be used in quite concrete ways, since categories are 
after all jU8t. &not her algebraic structure, generalizing both monoids and partial 
ordtTa. (See EXlUTlple 1.4 below.) 

Tbifl note presents five guidelines for using category theory, each with some 
general discussion and some specific examples. There is no claim to originality, 
since I belieYe the underlying intuitions are shared by essentially all workers in 
catelory theory, although they have been understtuldably relnctant to place such 
dogmatic &alertioh!l in textbooks or other written documentsl . The five guidelines 
&re necessarily imprecise, &lid will seem exaggerated if taken too literally, since 
they are not objective r&cts, but rather heuristics for applying certain mathematical 
concepts. In particular, they may seem difficult to apply, or even imp06Sihle, in 
some situations, and they may need refinement in others. As a reminder that they 
sbould not be taken too dogmatically, I will call them dogmas. 

No attempt is made to be exhaustive. In particular, the technical definitions are 
omit.ted, since the purpose of this note is motivational, and the definitions can be 
found in any textbook. Thus, it is necessary to use some text in connection with this 
note. Unfortunately, no existing text is ideal for computing scientists, but perhaps 
that by Goldblatt [SI] comes closest. The classic text by Mac Lane [41] is warmly 
recommended for those with sufficient mathematics background, and Herrlich and 
Stretker's book [S4) is admirably thorough; see also [2] and [S9]. 

1 Categories 

The first dogma is as follows: 

To eaeh speties 0/ mathematical structure, there correaponds a r:atcgory 
whoBe objedB have that strur:ture, and whose morphisma prtaerllt it. 

It is part of this dogma that in order to understand a structure, it is necessary to 
understand the morphisms that preserve it. Indeed, many category theorists feel 
that the morphisms are more important than the objects, since they reveal what 
the structure really is. Moreover, the category concept can be defined using only 
morpbisms. It is the bias of modern Western language and culture towards objects, 
rather tban towards relationships, that 8.98igns precedence t.o objects over morphisms 
(see 1441 for some related discussion). Now some examples to illustrate this dogma: 

1.1	 Sets. If we take sets to be objects, then their morphisms are clearly going to 
be functions. A set morphism, however, is not just a set of ordered pairs, but 
muat also specify particular source and target sets. This is consistent with 
practice in computation theory which assigns types to functions. The set the­
oretic representation of functions is an artifact of the set theoretic foundations 
of mathematics, and like all such representations, has accidental properties 
beyond those of the concept it is intended to capture. One of those properties 

J~ fu '" I 11IlOW, Lhe 111111 endl attempt 1.1 my own, given in 1191, 1oIIfbic.b (ontain. the IiI1lL four 
cuidel.iDe8livu here; Lhe present note can be seen", an expanlion of that early a.ttempt. The only 
other attempt that I kn010llf Ie due to L3..mbek and Scott [39J. who give a number of '"elog2.tls- in a 
'imiJiLr dyl.e. 
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is that any two sets of ordered pairs can be composed to yield a third. The 
category Set of sets embodies a contrary point of view, that each function hILS 
a domain in which its arguments are meaningful, and a codomain in which its 
results lUe meaningfuL (See [31] for further discussion of these points.) 

1.2	 Relations. Just as with functions, it seem.s desirable to take the view that 
the composition of relations is only meaningful within certain given domains. 
Thus, we may define a relation from a set Ao to a set Ai to be a triple 
(.40, R, Ad with R <; Ao X AI, and theu allow its composition with (Eo, S, Bl ) 

to he detined iff Al = B o. This gives rise to a category that we denote Rel, of 
which Set can be considered a subcategory. 

1.3	 Graphs. A graph G consists of a set E of edges, a set N of nodes, and 
two functions ao,B j E --+ N which give the source and target of each 
edge, respectively. Since the major components of graphs are sets, the major 
components of their morphism!! should be corresponding functions that pre­
serve the additional structure. Thus a morphism from G = (E,N,ao,B t ) to 
G' = (E'", N',a~,aD consists of two functions, f: E ........ E'" and g: N - ."I', 
such that the following diagram commutes in Sd for i = 0, 1: 

D. 
E N 

rl 19 

E'~-N' 

To show that we have a category Graph of graphs, we must show that 80 

composition of two such morphisms is another, and that a pair of identity 
functions satisfies the diagrams and also serves as an identity for composition. 

1.4	 Paths in a Graph. Given a Graph G, each path in G has a source and a 
target node in G, and two paths, p and p', can be composed to form another 
path p.p' iff the source of p' equals the target of p. Clearly this composition 
is associati ve when defined, and each node can be givell an "identity path" 
having no edges. Tbis category is denoted Pa(G). Details may be found in 
[41], [29J, [16], and many other pl3.Ces. 

1.5	 Substitutions. Two key attributes of a substitution are the set of variables 
for which it substitutes, and the set of variables that occur in what it substi­
tutes. Thus, substitutions naturally have source and target object!!, each a set 
of variables. Clearly there are identity substitutions for each set of variables 
(substituting each variable for itself), and the composition of substitutions is 
associative wben defined. See [19] for much more on this example; in fact, [19) 
can be used ILS a primer on category theory, motivated by just this example 
and its many applications. 
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1.6	 Automata. An automaton consists of an input set X, a slate set S, a tran­
sition function f: X x S -- X, an initial state So E S, and an output function 
g: S ...... Y. What does it mean to preserve all this structure? Since the major 
components of automata are sets, the major components of their morphisIIl8 
!lhould be corresponding functions that preserve the additional structure. Thus 
&. morphism from A = (X,S,Y,f,g) to A' = (X',S', Y',t,g') should consist 
of three functions, h: X __ X', i: S --0 S', and i: Y ---> y', such that the 
following diagrams commute in Set: 

9xxs-~s S-Y 

hx·l liii li 
X'XS'~' S'-y'

f' g' 

It must be shown that a composition of two such morphisms iB another. and 
that a triple of identities satisfies the diagrams and gerves as an identity for 
comp08ition. These chocks show that we have a category Aut of automata, 
and increase our confidence in the correctness of the definitions. See [15]. 

U	 Theories. In his 1963 thesis [4.3], F.W. Lawvere developed a very elegant ap­
proach to universal algebra, in which an algebraic theory is a category T whose 
morphismB correspond to equivalence classe!! of terms, and whose objects in­
dicate the variables involved in these terms, much as in Example 1.5 above. 
In this approach, the objects of a theory are closed under products (products 
are defined in Example 4..1 below). Although Lawvere's original development 
wu unsorted, it easily extends to the many-sorted case; [19] gives a relatively 
concrete and hopefully readable account of these ide<llJ for computing scien­
tists, with many applications, following the approach indicated in Example 
1.5 above. Lawvere theories have been extended in many other ways, includ­
ing the so-called "sketche5" by Ehresmann, Gray, Barr, Wells, and others; for 
example, see [3]. 

1.1 I8:omorphism 

One very simple, but stilll'lignificant, fruit of category theory is a general definition 
of isomorphism, suitable for any species of strncture at all: a morphism /: A -- B 
is an Isomorphism in a category C iff there is another morphism g: B -- A in C 
8UclJ that g.f = 1.40 B.IId /.9 =:: lB. In this case, the objects A and B are isomorphic. 
It is a well established principle in abstract algebra, B.IId now in other fields a8 well, 
that isomorphic objects are abstractly the same, or more precisely: 

Two objects AatJe tAe same stJ'Ucture if! they are isomorphic, and an 
"detract object- is an isomorphism class %biecu. 

This demi-dogma can be seen as a corollary of the first dogma. It provides an 
immediate check on whether or not some structure has been corree tly formalized: 
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unless it is satisfied, the objects, or the morphisms, or both, are wrOng. This 
principle is so pervllSive that isomorphic objects are very often considered the same, 
and "the X" is used instead of "an X" when X is actually only defined np to 
isomorphism. In computing science, thi.s principle guided the successful search for 
the right definition of "abstract data type" [28]. 

1.2 Diagram Chasing 

A useful way to get an overview of a problem, theorem, or proof, is to draw one 
or more diagrams that show the main objects and morphism.s involved. A diagram 
commuLe.s iff whenever p and p' are paths with the same source and tllJ'get, then 
the compositions of the morphisms along these two paths are equal. The fact that 
pasting two commutative diagrams together along a common edge yields another 
commutative diagram provides a basis for a purely diagramatic style of reasoning 
about equality of compositions. Since it is valid for diagrams in any category what­
ever, this proof sty Ie is very widely applicable', for example, it applies to substitutions 
(see Example 1.5). Moreover, it has been extended with conventions for pushouts, 
for uniqueuess of morphisms, and for certain other common situations. Often proofs 
are suggestedjust by drawing diagra~ [or what is known and what is to be proved. 
A simple example of this occurs in Example 1.3, to prove that a composition of two 
graph morphislll5 is another graph morphism. 

2 Functors 

The second dogma says: 

To llny construction on structures of one 8pecies, say widgets, lIielding 
structure~ 0/ anoth.er species, sail whatsit8, there correspond8 a functor 
from th.e categorll of widgets to the category of whatsi's. 

It is part of this dogma that a construction is not merely a function from objects of 
one species to objects of another species, but must also preserve the essential rela.­
tionships among these objects, including their structure preserving morphisms, and 
compositions a.nd identities for these morphisms. This provides a test for whethe~or 

not the construction hllS been properly formalized. Of course, functorality doe~ not 
gUllranlet correct formulation, but it can be surprisingly helpfnl in practice. Now 
some examples: 

2.1	 Free Monoids. It is quite common in computing science to construct the 
free mouoid X' over a set X. It consists of a.ll finite strings XI ... X" from 
X, including the empty string A. This coustruction gives a functor from the 
category of sets to the category of monoids, with a function f: X --+ Y inducing 
f": X' - Y" by sending A to A, /lnd sending XI ... Xn to f{z.) ... f(x"). 

2.2 Behaviors. Given an automaton A = (X, S, Y,/,g), its behllvior is a function 
b: X' _ Y, from the monoid X' of all strings over X, to Y, defined by 
b(u) = g(f(u)), where 7 is defined by /(A) = 80 and 7(ux) = f(x,7(u)), 
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for % E X and u E X'. This wnstruction should be fun ctorial. For this, 
We need II. category of behaviors. The obvious choice is to let its objects be 
pai", (X,b: X' Y) and to let its morphisms from (X,b: X· Y) to--t ---t 

(X', 6': X'· -to Y') be pairs (h,}) where h: X _ X' and j: Y --t Y', such that 
the diagram 

bX·_y 

h1 li
I 

X'" ------;;;-- y' 

commutes in Set. Denote this category Beh &Dd define B; Aut --+ Brh by 
B(X,S,Y,/,g) == 9.] and B(h,i,j) == (h,j). That this is a functor helps to 
confirm the elegance and coherence of our previous definitions_ See [15]. 

2,3 Algebras. In the Lawvere approach to universal algebra [43], an algebra is 
II. functor from a theory T to Seol. Here, "construction" takes the meaning of 
"interpretation": the abstract structure in T is interperted (i.e., constructed) 
concretely in Set; in pllrticular, th~se functors must preserve products. 

2.4	 Forget It. If all widgets are whatsits, then there is a "forgetful functor~ 

from the category of widgets to the category of whatsits. For example, every 
group is a monoid by forgetting its inverse operation, and every monoid is a 
semigroup by forgetting its identity. In model theory, the whatsit underlying 
a widget is called a "retract." Notice that a ring (with ideutity) is a monoid in 
two diJJtrent ways, one for its additive structure and one for its multiplicitive 
structure. 

2.5	 Categories. Of course, the (small) categories also form a c:ategory, with 
functors as morphisms. It iB denoted Cat. 

2.6	 Diagrams and the Path Category Construction. The construction in 
Example ].4 of the category Pa(G) of all paths in a graph G gives rise to 
a functor Pa: Graph -- Cat from graphs to categories. Then a diagram in 
a category C, with shape a graph C, is a functor D: Pa(C) -- C. It is 
conventional to write just D: G --t C, and even to call D a "functor ,n because 
D: Pa(G) -- C is in fact fully determined by its restriction to C, which is a 
graph morphism; see Example 4.2 below. 

2.7	 Programs and Program Schemes. A non-deterministic flow diagram pro­
gram P with parallel assignments, go-to's, and arbitrary built-in data struc­
ture:s, including arbitrary functions and tests, CM be seen as a functor from 
a graph G (the program's :shape) into the category Rr:l whose objects are sets 
and whose morphisms are relations. An edge e: n -+ n' in G corresponds to 
a program statement, and the relation P(e): P{n) --t P(n') gives its seman­
tics. For example, the test "if X > 2n on natural numbers corresponds to 
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the pa,["tial identity function w -+ w defined iff X > 2, and the assignment 
"X ;= X_In correspouds to the partial function w w sending X to X-I-.0 

wben J{ > O. The semantics of P with input node n and output node n' is 
then gi ~en by the formula 

P(n,n') = U{P(p) I p' n - n' E Pa(G)). 

This avproach originated in Burstall [SJ. Techniques that allow programs to 
have BY1l('12: as well as semantio are described in [16)1; A program scheme is 
a functor P: G T into a Lawvere theory T uenriched" with a partial order-0 

structure on its morphism sets T(A, B) (the reader familiar with 2-ca.tegories 
should notice that this makes T a 2-category). Semantics for statemfnte then 
arises by giving a CuucteT A: T ....... Rd, that is, an interpretation for T. also 
called aT-algebra. The sernauties of a program is then computed by the above 
formula for the composition P.A: G Rei. There geems to be much more-0 

reJiearch that could be done in this area. For example, [241 give!!. an inductive 
proof principle for collections of mutually recursive procedures, and it would 
be int.eresting to consider other program constructions in a similar ~tting. 

3 Naturality 

The third dogma says: 

To t.'ad natural rdalt'onship bdwt.'t.'rl two j1.l.nc!ors F, G : A -. B com~· 

sponds a naturaL transjormation F =) G (or pt.'rhaps G ::> F). 

Although this looks like a mere definition of the phrase "natural relationship," it can 
nevertheless be very useful in practice. It is also interesting that this concept was 
the historical origin of category theory, since Eilenberg and Mac Lane [11] used it 
to formalize the notion of an equivalence of homology theories (whatever they are), 
and then fOllnd that for this definition to make sense, they had to define functors. 
and for functors to make sense, they had to define categories. (This history also 
explains wh) homology theory so often appears in categorical texts, and hence why 
so many of them are ill-9uited for computing scientists.) Now some example9: 

3.1	 HOIDomorphisms. A£, already indicated, in the Lawvere approach to uni­
versal algebra [43], algebra:! appear as functors, and so we should expect ho­
momorphisms to appear as natural transformations; and indeed, th~y do. 

3.2	 Natu.al Equivalence. A natural tran!!.formation '1: F :::::? G i!!. a natural 
equivalence iff ea.ch fjA: FA -0 C A is an isomorphism. Thi9 is the natu­
ral notion of isomorphism for functors, and is equivalent to the existence of 
v: G .:::::> F such that 1'.'1 = I, and fj.L' = Ie. Thi!!. concept specializes to is0­
morphism of algebras, aud i!!. also exa.ctly the concept that motivated Eilenberg 
and Mac Lane. 

~Ollly the <lriginal1912 toaferellce v~J"lIion con~ajnB thi! d~linition. 
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3.3	 Data Refinement. A graph with its nodes labelled by types and its edges 
labelled by function symbols can be seen as an impoverished I..awvere the­
ory that bas no equations and no function symbols that take mare than one 
argument. However, such theories still admit algebras, which are functors 
into Set, and homomorphisrruI, which of course are natural transformations. 
These algebras can be viewed as data representatiDns for the basic data types 
and functions of a programming l8.llguage, and their homomorpllisJrul can be 
viewed as ddla refinements. Considered in connection with the basic program 
cOll9truction operations of a language, this leads to some geuera.l techniques 
for developing correct prograIIl.'l [35]. It would be interesting to extend this 
to more expressive forms of Lawvere theory (SUCh as many-wrted theories or 
sketches), and to the more general data representations studied in the abstract 
data type literature (e.g., [28, 9]). 

3.4	 Program Homomorphis1Jl8. Since Example 2.7 suggests that programs are 
functors, we should expect to get a kind of program homomorphism from a 
naLural transformation between programs. Indeed, Burstall [5) shows that a 
wea.k form of Milner's program simulations [47) arises in just this "Way. [16] gen­
eralizes this to programs with different shapes, and maps from edges to paths, 
by defining a homomorphism from Po : Go -+ C to PI : G t -- C to consist 
of a. functor F: Go -- Pa{Gt} and a natural transformation 1]: Po -+ F.Pt ; 

some theory and applications are also given, including techniques for proving 
correctness, termination, and non-trivial equivalences hy unfolding programs 
into equivalent infinite trees. 

4 Adjoint. 

The fourth dogma says: 

A~y canonical construction from 1lJ1'dgets to whatsits is an adjoint of 
another functor, from whatsils to 1lJ1"dgets. 

Althou@h this can he seen as just a definition of ucanonical construction,» it can 
be very useful in prl'lctice. The essence of an adjoint is the tmiver8al property that 
is satisfied by its value objects. This property says that there iB a unique mor­
phism sa.tisfying a certain condition. It is worth noting that any two (.. ight, or left) 
adjoints to a given functor are naturally equivalent, i.e., adjointnes~ determines a 
construction uniquely up to isomorphism. Now some examples 

4.1	 Products <lind Sums. One nice achievement of category theOlry is to give 
general defintions for previously vague terms like uproductn and "sum» (al­
though sum!! are usually called ucoproductsn). For example, the Cartesian 
product of sets is a functor Set x Set -+ Set. The general definitions make 
Bense in any category C, and characterize the construction uniquely (up to 
isomorphism) if it exists. Let Li.: C -+ C.x:C be the Udiagonal" functor, sending 
an object G in C to the pair (G,G), and sending a morphism c G __ G' in 
C Lo (e,c): (G,G) (G',G') in Cxc. Then C has products iff 6. has a right ----0 
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adjoint ~ and has surru iff .6. has a left adjoint. This is a beautifully simple way 
to formalize mathematical conceptS' of basic importlUlce that were previously 
only understood informally (due to Mac Lane [40]). 

4.2	 Fr~bies. Another beautifully simple formalization gives a general definition 
of "{tee" constructions: they are the left adjoints of forgetrul functors. For 
example, the path category functor Pa: Graph ........ Cat of Example 2,6 is left 
adjoint to the forgetful functor Cat -+ Graph, and thus may be said to give 
the free (ategory over a graph. 

4.3	 Minhnal Realization. An automaton (X, S, Y, I, 9) i8 reachable iff it, func­
tion 7: .1' S is surjective. Let A denote the subcategory of A"t whose-0 

obj«ts are reachable and whose morphisffiS (i,j,k) have i surjective. Then 
the restriction B: A -+ Beh of B; A~t -+ Beh to A h8.ll a right adjoint 
which gives the minimal realization of fl. behavior (151. Since right Mjoints 
are uniquely determined, this provides a r:onvenient abstract characterization 
of minimil.! realization. Moreover, this characterization extends to, and even 
suggests, more general minimal realization situations. 

4.4	 Syntax and Semantics. One of the more spectacular adjoints is that be­
tween syntax and 8emantir:s for algebraic theories, again due to Lawvere in bis 
thesis [431. 

4.5	 Cartesian Closed Categories. A Cartesian closed category has binary 
products, and a right adjoint to each fundor sending A to A x B. It is re-­
mlU"kable that this concept turns out to be essentially the (typed) A-calculus; 
see [39]. This connection has been used, for example, as a basis for the ef­
ficient compilation of higher order functional languages [81. An advantage is 
that optimization techniques can be proved correct by using purely equational 
reasoning. 

5 Colirnits 

The fifth dogIlla say.!!: 

G1'\len a category of widgetlJ, the operation 0/ p~Wng a system 0/ widgd.l 
logether to form some s~per-widget corresponds to taking the colimit of 
the diagram o/widgets that shows hoVJ to interconnect them. 

At least for me, this dogma fir:s! appeared in the context of General Systems Theory 
[23J. It is worlh remarking that, generalizing Example 4.1, colimits over the dia.­
grams of a fixed shape G (a graph) give a functor that is right adjoint to a (suitably 
generalized) diagonal functor. Now some examples: 

5.1	 Putting Theories together to IIlake Specifir:ations. Complexity is a fun_ 
damental problem in programming methodology: large programs, and their 
large specifications, are very difficult to produce, to understand, to ge~ right, 
and to modify. A basic strategy for defeating complexity is to break large 
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synems into smaller pieces that can be understood separately, and that when 
put back together give the original system. If successful, this in effect "takes 
the logarithm" of the complexity. In the semantics of Clear [5. 7], specifi­
cations are represented by theories, in essentially the 8ame Ilense as Lawvere 
(but many.sorted, and with signatures), and specifications are put together 
by colimits in the category of such theories. More specificaUy, the application 
of a generic theory to an actual is computed by a pw~hout. QBJ [12], Eqlog 
[25), and FOOPS [26J extend this notion of generic module to functional, logic 
(i.e" relational), and object oriented programming, respectively It ha.s even 
been applied to Ada [18]. 

5.2	 Graph Rewriting. Another important problem in computing science is to 
find models 0/ computation that are suitable for massively parallel machines. 
A successful model should be abstract enough to avoid the implementation 
details of particular machines, and yet concrete enough to serve as an interme· 
dilte target language for compilers. Graph rewriting provides one promising 
area within which to search for such models [37,27,131, and colimits seem 
to be quite useful here [10,52,38]. Graph rewriting is also important for the 
u"ijication grammars that are now popular in linguistics [53, 19] There seem 
to be many opportunities for Curt her research in these areas. 

5.3	 Initiality. The simplest possible diagram is the empty diagram. Its colimit is 
!IJI initial object, which has a unique morphism to any object. Like any adjoint, 
it is determined uniquely up to isomorphism, so any two initial objects in a 
category are isomorphic. [t is also worth mentioning that universality can be 
reduced to initiality (in a comma category), and hence so can colimits. 

5.4 Initial	 Model Semantics. It seelM remarkable that initialit.y is so very 
useful in computing science. Beginning with the formalization of abstract 
syntax as an initial algebra [17], initiality has been applied to <LI1 increasing 
r8llge of fundamental concepts, including induction and recurs ion [30, 45], 
al:6tract data types [28], computability 145], and model theoretic :temantics Cor 
functional [12], logic (i.e., relational), combined functional and relational, and 
constraint logic [25] programming languages. The latter is in teres ting because 
it involves initiality in II. category of model extensions, i.e., 01 rnorphisms, 
rat.her than just models. In general, this research can be seen as formalizing, 
generalizing, and smoothing out, the classical Herbrand Universe construction 
[33], and it seems likely that much interesting work remains to be done along 
thue lines. 

Research in General Systems Theory also suggests a dual dogma, that the ~ehavt·or 

of a sysLem is given by II. limit construction [23). For example, this can be used 
to justify the formula in Example 2.7, and to explain the sense of ~ullification~ in 
so-called unification grammars [19J. 
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6 Further Topics 

Although they are particularly funda.IDentaJ, the five dogmas given above far from 
exhaust the richneB8 of category theory. This section mentions some further cate­
gorical constructions, about each of wbicb one might express surprise at how many 
examples there a.re in computing science. 

6.1	 Conuna Categories. Comma categories are another bASic construction that 
first appeared in Lawvere's thesis [43]. They tend to arise when morphisIIl8 are 
used as objects. Examples 1.3, 2.2, 5.3, and 5.4 in this paper can all be seen as 
comma. categories. Viewing a category 8S a comma category makes available 
«(or example) some very general results to prove the existence of limits and 
c<llirnits [21J. 

6.2	 2-Categories. Sometimes morphisms not only have their usual composition, 
identity, source and target, but also serve as objects for some other, higher_ 
level, morphisms. This leads to 2-categories, of which the category Cat oCca.t. 
egories is the canonical example, with natural transforrnations as rnorphisms 
oC ib morphisms. This concept was mentioned in Example 2.7, and is also 
used in [20], [22], [35], [50] and other places. 

6.3	 MODoidal CategorJes. There are many cases wbere a category has anatural 
notion of multiplication that is not the usuaJ Cartesian product but neverthe­
1es9 enjoys many of the same properties. The category of Petri nets stlldied in 
[46] has already been mentioned, and [14) suggests that monoidal cBttgories 
may pro,ide a generaJ approach to understanding the relationships among the 
many diHerent theories of concurrency. 

6.4	 Indexed Categories. A strict indexed category is just a Cunctor B"P ---+ Cat. 
[54J shows that there are rnany such categories in computing science, and gives 
some general theorems abont them, including simple sufficient conditions Cor 
completeness of the associated "Grothendieck" category. Maggi [50J applies 
indexed categories to programming languages, and in particular shows how to 
get a kind of higher order module facility Cor languages like ML. (Non-strict 
indexed categories are significantly more complex, and have been applied in 
Coundational studies 15IJ.) 

6.5	 Kleisli Categories. Another way to generalize Lawvere theories is UJ view 
an arbitrary adjunction as a kind of theory. So-celled monads (or triples) 
are an abstraction of the necessary structure, and the Kleisli category over 
a monad gives the category oC Cree algebras [41J. Again, there are surpri!lingly 
many examples. [19] (in effect) takes the Kleisli category itself as a lheory, 
and then shows that many different problems of unificalion (that is, ofsolving 
systems of equations) can be naturaJly formulated as finding equalizers in 
Kleisli categories. Moggi [49] uses Kleisli categories to get an abstract notion 
of "complltation" which gives rise to many interesting generalizations oC the 
)..calculus. 
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6.6	 Topoi. A profound generalization of the idea that a theory is a category 
sppears in the topos notion developed by Lawvere, Tierney, and others. In a 
sense, this notion captures the essence of set theory. It also has a relationships 
to algebraic geometry, computing science, and intuitionistic logic [31,2,36]. 

7 Discussion 

The traditional view of foundations requireB giving a system of axioms, preferably 
first order, that assert the existence of certain primitive objects with certain prop­
erties, &nd of certain primitive constructions on objects, such that all objects of 
interest. can be constructed, and all their relevant properties derived, within the 
system. The axioms should be as self.evident, as few in number, and as simple, as 
pOSBihle, in order to nurture belief in their consistency, and to make them as easy 
to use as possible. This approach is inspired by the classical Greek account of plane 
geometry. 

The best known foundation for mathematics is set tbeory, which has success­
fully constructed all the objects of greatest interest in contemporary mathematics. 
It has, however, failed to provide a commonly agreed upon set of simple, self-evident 
axioms. For example, classical formulations of set theory (such as Zermello-Frankel) 
have been under vigorous attack by intuitionists for nearly eighty years. More re­
cently, there has been debate about whether the Generalized Continuum Hypothesis 
is ""true," following the originally startling proof (by Paul Cohen) that it is inde­
pendent of other, more widely accepted axioms of set theory. Still Ulore recently, 
there has been debate about the Axiom of Foundation, which asserts that there is no 
infinite sequence of sets 81, 81, 83, ... such that each 8.+1 is an element of 8;. In fact, 
Aczel 11] and others have used an Anti-Foundation Axiom, which positively asserts 
the existence of such sets, to model various phenomena in computation, including 
conununicating processes in the sense of Milner [48]. I think it is fair to sa.y that most 
mathematicians no longer believe in the heroic ideal of a single generally accepted 
foundation for mathematics, and that many no longer believe in the possibility of 
finding "unshakable certainties" [4J upon which to fonnd all of matheIDatics. 

Set theoretic foundations have also failed to account for mathematical practice in 
certain areas, such as category theory itself, and moreover have enconraged research 
into areas that have little or nothing to do with mathematical practice, such as large 
cardinals. (Mac Lane [42] gives some lively discussion of these issues, and [32J gives 
an overview of various approaches to foundations.) In any case, attempts to find 
a minimal set of least debatable concepts upon which to erect mathematics have 
little direct relevance to computing science. Of course, the issne no longer seems as 
urgent as it did, because no new paradoxes have been discovered for a long time. 

This note has tried to show that category theory provides a number of hroadly 
useful, and yet surprisingly specific, guidelines for organising, generalising, and dis-. 
covering analogies among and within varions branches of mathematics and its ap­
plications. I now wish to suggest that the existence of such guidelines can be seen 
to support an alternative, more pragmatic view: 

Foundations should provide general concepts and tools that re vt:al the 



13 REFERENCES 

structures 01 the lIarious areu 01 mathematics and its applications, u 
tlJell as rdationJIhips among them. 

In a 6eld which is not yet very well developed, such as computing science, where it 
often seems that getting the definitions right is the hardest task, foundations in this 
new sense are much more useful, since they can suggest which research diredions are 
most fcuitful, and can test the results of research using relatively explicit measures 
of elegance and coherence. The successful use of category theory for such purposes 
suggests that it provides at least the beginning of such a foundation. 
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