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Abstract

We present an outline of an algorithm for type-checking Z specifications
and determining appropriate error messages. The algorithm understands an
abstract syntax of Z as given by J.M. Spivey, and is similar to the omne im-
plemented in the Forsite prototype specification support environment. The
outline presented here is intended to serve as a brief introductory overview
to implementing a Z type checker, and to elucidate important and subtle
details involved in type checking Z. We do not discuss user interface or per-
formance issues such as display of error messages or representation of data
structures. 'The outline is itself described in Z.
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1 Introduction

‘We present an outline of an algorithm for type-checking Z specifications.
The purpose of this outline is to specify an overview of the algorithm for
those planning to implement a Z type checker. The specification describes
the task of checking an abstract syntax tree of a Z specification for type
correctness and determining appropriate error messages.

QOver the past ten years or 50, Z bas matured aad is now a popular language
used for software specification. A number of software development groups
who use Z have done so without automated tool support (other tban editors
equipped with Z symbols and simple cross referencing). While it might be
argued that the standardisation required for any kind of tool support for 2
would render the language inflexible and hinder its further development, it
is widely believed that tools such as parsers and type checkers are invajuable
atds In many cases.

The first automated tool set for Z to provide both syntax and type checking
was the Forsite prototype developed in 1986, The Forsite project began in
1985 under Alvey sponsorship with four collaborators: Racal Research, Sys-
tems Designers, PRG Oxford, and Surrey University. The objective was to
develop a specification support environment for Z which provided automated
syntax checking, type checking, and proof assistance. The prototype, which
did not offer any support for theorem proving but provided substantial syn-
tax and type checking, was distribnted to a small number of development
groups for B evaluation. The general opinion from these groups was that
while certain improvements (e.g., performance) were necessary, such a tool,
particularly the type checker, was essential for most industrial developmen-
tal work. At the completion of the Forsite project in March 1989 a first
attempt at an assistant for proof work had been made and the toolset had
been upgraded to take account of users’ comments. The environment is now
available for commercial development,

A recent trend among groups using Z is to build their own customised ed-
itors, parsers, and type checkers. Aiding these efforts has been the distri-
bution of BNF forms of a Z syntax definition [KSW88,SPI88b]. We would
like to further ease the difficulty of implementing a type checker for Z by
providing a specification of an algorithm for checking an abstract syntax.

A complete specification would by its nature be so extensive and detailed
as to be extremely difficult to understand as 2 first introduction ‘o the
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problem. Thus we have decided to produce an overview, rather than a
complete specification. We have developed this specification with folding in
mind - the ocutline given here is the top layer, with further details folded
below. We hope to impart a clear description of the aperational madel for
the algorithm. The details which are amitted are straightforward variations
of those which are discussed.

The style of presentation is functional, rather than state-based. The fumnec-
tional style is natural for translating the type semantics given by J.M. Spivey
[SPI38a]. Indeed, many of the functions are “transliterations” of the corre-
sponding defnitions in [SPI88a]. The specification presented here describes
an abstract operational model, directly implementable with a functional
language but suitable for implementation with an imperative language.

We first preseat some notational conventions, followed by a definition of the
abstract syniax understood by the algarithm. Section 4 describes the way
in which errors are reported, and Section 5 introduces the idea of types and
signatures. Section 6 describes environments, which serve as symbol ta-
bles. Section 7 discusses the concept of normalised declarations, the diiving
force for Z type checking. Sections B-11 give descriptions of checking vari-
ous groups of syntactic constructs, culminating in a function which checks
a complete abstract syntax tree for a Z document. Included is a description
of a unification algorithm used to infer types of expressions containing im-
plicitly instantiated generic objects, Finally we present a brief comparison
with similar work and general conclusions.

2 Notation

The notation that we use is conventional Z with certain syntactic differences,
introduced simply as a shorthand. These can be easily {automatically) tex-
tually expanded into conventional Z.

Many of the functions we define are conditional in that their value depends
on 2 hoolean expression. We use the following more recognisable form:

value = if 3
then X
else Y



to mean

(8 A value = X)
v
(-3 A nalue=Y)

We use ellipses (. . .) within a declaration or definition to indicate that
there would be additional information in the complete specification, While
we freely omit information from the body (predicate) of definitions, we do
give complete sigratures of all referenced terms. We use the data iype
seq X so frequently that we adopt the convention that for arbitrary X, Xs
is shorthand for seg X. For example, 5/Gs is defined to be seg SIG.

3 Abstract Syntax

Our ajgorithm operates on an abstract syntax tree whose structure accords
with the following syntax description. This is, with minor differences, the
abstract syntax proposed by J. M. Spivey.

[STRING]

word == STRING
decor == seg STRING

ident = Ident < word x decor >

rename )= Rename < ident X decor »

decl ::= Decl € (seq ident) X ezpr 3
| Include < sdes »
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pred = Equal € ezpr X ezpr >

| Member & ezpr X ezpr »

| Truth

| Falsity

| Not < pred »

| And « pred x pred »

| Or & pred x pred »
| Implies € pred x pred >
| Ezists & schema x pred >
| Eristsl € schema X pred »
| Forall € schema x pred >
| Spred € sdes

schema = Schemna <€ (seq decl) X pred >

optionalezpr 1= Justerpr € ezpr »
| Noezpr

expr = Ref € ident X seq ezpr »
| Number € word %

| Sezpr & sdes »

| Ert € seq ezpr »

| Comp € schema x optionalezpr >
| Power & expr >

| Tuple € seq ezpr >

| Seg € seq expr

| Product € seg ezpr ¥

| Theta @ word x decor »

| Select € expr x ident >

| Apply € ezpr x ezpr»

| Lamdda € schema X expr »

| Mu < schemna x optionalezpr »

ades = Sdes ¢ word x decor x (seq ezpr) x (seq rename) 2>



sezp ::= Texl & schema »
| Sref € sdes >
| Snot & sexp 3
| Spre < sezp >
| Sand < sezp x sexp >
| Sor < sezp x sezp >
| Stmplies < sezp X sezp >
| Sequiv < sezp X sezp >
| Project < sexp % sexp
| Hide < sezp x seq sezp »
{ Fatsemi € sexp x sezp >
{ Sexmsts € schema X sezp >
| Sforall € schema X sezp >

arm = Arm € iden! x optionalezpr 3
ths ::= Lhs « ident x seq ident »

para = Given < seg ident >
| Let € schema »
| Sdef < word X (seq ident)} X serp >
| Pred < pred >
| Define € (seq ident) x schema %
| Egeq < lhe x expr »
| Date < seg (ident x seg arm)
| Theorem < (seq ident) x (seq ezpr) x pred >

spec == seq pars

4 Exceptions and Error Messages

Intuitively, we would Like to construct functions which, when dealing with
correct 7 will calculate some value, but otherwise supply an appropriate
error message. We make the following generic definition to capture this:

Reswlt[X] == X x ERROR
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When an eror is encountered, a default value of the correct type is supplied
with the error message. This allows type checking to continue whilst trap-
ping and dealing with errors in an appropriate way. The error reports used
in this paper are described by the following data type:

ERROR := idnotfound | notvelidschema | notpowertype | bedsubstitution
| idnotdeclared | clear | badunification | bodapplication
| typevarsinpred

Use of the Result mechanism is described further in section 7.

5 ‘Types and Signatures

We model the concept of a Z TYPE with the following datatype:

TYPE := idenily < ident » — given set type
| powerty « TYPE » — power type
| productty € TYPEs » - cartesian product type
| schematy & ident + TYPE)» - schema type
| unity - error type

We can think of proper Z types for a specification as its given sets, power
sets of types, cartesian products of types, and “schema bindings” between
identifiers and types. We introduce the unity type as a “univeral error
type” for expressions which cannot be assigned a proper type because of
eITors in the specification. This type is useful for reducing cascading of
€rror messages.

User-defined data types are not included as they may be viewed as derivable
from other Z constructions (see [SPI88b]).

A major task of the type checker is to calculate a signature for each identi-
fier (including generic ones), which associates the identifier (and its generic
parameters) with its type:

GENTYPE == idents x TYPE

SIG == ident x TYPE

GENSIG == ident x (seq ident) x TYPE

Signatures make up environments, which are used to determine the variables
which are in scope for a given expression.



6 Dictionaries and Environments

The type of an expression in a specification depends on the definitions
in scope for that expression. Visibility of Z definitions is modeled using
environments which play the role of symbol tables. Environments contain
signatures which are grouped into dictionaries. A dictionary contains alist
of generic signatures. Entries with null sequences of generic parameters
Tepreseat nougeneri¢c axiomatic definitions,

DICT == ident + GENTYPE

nulldict : DICT
nulldict = @
The use of Result is illustrated below in the defivition of lookup, which

produces the generic parameters and type of any identifier stored in a given
dictionary, and a default value plus error message for any not found.

lookup : ident — DICT — Result[ GENTYPE]
V¥ ¢d : ident; dict: DICT »
lookup 1d dict =
if id € dom dict then (dict id, clear)
elge ({< >, unity), idnotfound)

To project out the first element of a Result (that is, its type) we define the
function value:

vaiue == first [ GENTYPE ,ERROR)]

Another useful dictionary operation is addsig, which adds a simple signature
to a dictionary.
eddsig : SIG — DICT — DICT
¥ id: ident; ¢t : TYPE; dict : DICT o
addsig (i,t) d = d @ (i — (<>, 1)}
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An enmronment consists of an ariomatic dictionary and a schema dicionary
(distinguishing between axiomatic and schema signatures is convenient but
not necessary):

ENV == DICT x DICT

Given sets are added to an environment simply by recording that their types
are power sets of themselves:

inslallgiven : ident — ENV — ENV

¥ givenset : ident; azdct,achemadct: DICT
installgiven givenset (azdct, schemadct) =
(addsig(givenset, powerty(idently qivenset))azdet, schemadet)

‘We name some other useful environment operations, omitting the full defi-
nitions:

azdict : ENV — DICT

schemadict : ENV — DICT

inslallgenschemasig : ENV — GENSIG — ENV

installgivens ;: ENV — P ident -+ ENV

installsigs : ENV — P SIG — ENV

installgensigs : ENV — P GENSIG — ENV

The first two project the axiomatic and schema dictionaries respectively from
an environment. The function tnstallgenschemasig adds a generic signature
to the schema dictionary. The others add collections of signatures er given
sets to an environment and would be defined in much the same way as
nstallgiven.

7 Normalised Declarations

The type checker must check each declaration with respect to its “current”
environment, and update this environment accordingly. It does this by
transforming, i.e., normalising, definitions from the Z specification into sig-
natures which it adds to the environment. Normalising a simple declaration



produces a signature which associates the declared variable with its type,
and for a schema name used as a declaration produces a list of signatures
which associate the schema variables with their types.

We first define some unseful “pseudo inverse” functions. Intuitively, these
functions behave as inverse functions provided that they are applied to values
iu the range of their counterpart, otherwise they “except” supplyisg an
appropriate error message.

Often we meed to extract the signature list from a schema type. Recall
that schernaty is a constructor for the TYPE datatype, and is therefore an
injection with a functional inverse. We extend this inverse function to give
a total function on TYPE:

invschematy : TYPE — P 5IG

Vity: TYPE »
(ty € ran schematy A invschematy ty = schematy™ ty) v

(ty = unity A inuvschemalyty = @) V
(ty ¢ (unity Uran schematy) A invschematy ty = vaiue(2, notvalidschema))

Important Notes :

1. When the type checker meets the default type unity, it is the case
that an error has previously been discovered and an error message
generated. To limit cascading of error messages initiated from a single
error, no further error messages are supplied.

2. Notice that in the above function definition, since we extract only
the walue component from the Result, the error message is logically
superflons. We have chosen to think of this function as returning values
of its range type P 5IG when things go smoothly, while excepting
with a message together with a {default) value of the range type when
things go wrong.We could think of the function, value as having some
side-effect which deals with error messages in an appropriate way. To
be fully formal, we could have such functions return the complete
Result, rather than just the value. To simplify subsequent references
to invschematy , we have chosen to express it as having range type
that of the value, i.e., P SIG. The logically superflous information
contained in the above predicate is intended to guide the implementor,
We use this convention for all functions which possibly generate error
messages.
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Very similar to invschematy is the function invpowerty, which strips off the
P from a powerty, and excepts with unity and the error ‘notpowertype’:
invpowerty : TYPE — TYPE
Yiy: TYPE »
(ty € ran powerty A invpowerty ty = poweriy™! ty) V
{ty = unity A invpowerty ty = unity Vv
(ty ¢ (unity U ran powerty) A invpowerly ty = value( unily, notpoweriype))

For expressions representing sets, it is useful to compnte the type which
contains that set as a subset, e.g., intuitively, {z : N | z > 5} is a subset of
N, given that N is a type. {Note that the type of this expression is PP N.)
To compute this “superset” type, all that needs daing is to find the type of
the expression and then strip off the “P” :

supertype : ENV —+ ezpr — TYPE

Venv: ENV; exp: expr »
supertype env ezp = invpowerty (typeof env czp)

Note that the expression on the right might “except”, producing an error
message and returning unity as the supertype. This is as intended, but also
as intended we need not concern ourselves in this function with the resulting
erTor message - rather we proceed as if a proper type was calculated.

Important Note - The function fypeof above, yet to be defined, calculates
the type of an expression with respect to the current envirpnment. In a
more complete presentation of this algorithm, we would combine supertype,
typeof , and various other function definitions into one mutually recursive set
of axiomatic definitions. So that we can individually explain each definition,
we present them here as separate definitions. The type of the function typeof
is the same as that of superiype.
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Simpie declarations

To normalise a simple declaration consisting of “variables : expression”
such as

“a,bh 1 X", the type checker simply builds signatures associating each vari-
able with the supertype of the expressiou on the right of the colon:

| normDecl: ENV — (ran Decl) — P SIG
¥ env: ENV; idlisi : tdents; exp : ezpr »
normDecl env {Decl{idlist, exp}) =
ran{ map( A id : ident & (id, supertype env exp)idilist))

where map is the usual function used in functional programming which may
be defined: .

I, X, Y]
map (X - YY)+ (I+»X)=2(I+Y)
Vm: X =Y, I+wX;i:Ly:Yoe
() E(mapfaz) e (Az: X e{i,z)Esz Az =y)

Named schemas

Normalising a declaration consisting of a named schema with possibly some
actual parameters requires “unraveling”™ the schema to its normalised com-
ponent signatures, and then instantiating the generic parameters with the
actuals. We first define functions for the instantiation, which will alio be
useful for instantiating generic function applications, both implied as well
as explicit.

The function instant takes a list of snbstitutions, each indicating that a
generic parameter should be replaced by an actual type, together with a
type, and returns this type with the indicated substitutions. Far example,
tnstant with the substitution {(a,PN),{#,N)} and target type (ax3) yields
{PN)xN. The definjtion of instant is recursive on the structure of the target
type. The base cases are: (i}. the null substitution, in which case the target
type is left unchanged, (ii}. the target type is unity - unity is returned, and
(#i). a simple identifier target type, in which case the target is replaced by
the indicated substitution if the identifier appears in the substitution list,
or left unchanged if the identifier does nor appear in the list.
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GENPARAM == ident

instant : (GENPARAM - TYFE)— TYPE — TYPE
Vsubst : GENPARAM -+ TYPE; targetty : TYPE,;
targetid : ident; tys : TYPEs; binding : ident + TYPE o
instant {} targetty = targetly
A
tnstant subst (idently targetid) =
if targetid € dom subst then subst targetid else identty targetid
A
instant subst { powerty targetty) = powerty (instant subs! targetly)
A
instant subst (productly tys) = productty (map (instant subst) tys)
A
tnatant aubst (achematy binding) = schematy (map (instanit subst) binding)
A
instant subat unity = unity

A declaration consisting of an included schema name may contain a decora-
tion and some renames. The following two functions are useful for handling
these. The function decorvars decorates all the variables of a signature list
with a given decoration. The function renramevars renames all the variables
within a schema type according to a given list of renames. (It excepts, leav-
ing the schema type unchanged, if a new variable collides with an unchanged
original, orif a variable to be replaced does not appear in the original schema
type.) Weomit the complete definitions for these two functions:

decsrvars : P SIG — decor — P SIG
renamevars : renames — TYPE - TYPE

The function mksubst constructs a substitution list of generic parameters
paired with instantiations, to be used by instant. Actunal parametersare ex-
pressions, but mksubst constructs the substitution list nsing their supertypes.
For example, if the generic parameter is # and the actnal parameter is
{z : N | z > 5}, we treat 3 as being instantiated with N. The faunction
excepts if the numbers of the generics and the actuals supplied to it are not
equal, or if there is a repeat in the generic list.
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mksubst : ENV — GENPARAMs — ezprs — (GENPARAM - TYPE)
¥V env: ENV; gens : GENPARAMS, actuals : ecprs »
mksubst env gens actuals =
if (#actuals = #gens) A (#gens = fran gens)
then gens™! . (map (supertyeny) actuals)
else value({}, badsubstitution)

We now explain how to normalise a declaration which is a schema designator,
consisting of a name of a previously declared schema, together with optional
decoration, actual parameters, and list of renames. The type checker must
look up the undecorated schema name in the schema dictionary, decorate
the variables in the stored signature with the decoration from the inclided
schema name, rename the variables as indicated, make 2 substitution list as-
sociating the supertypes of thie actual parameter expressions with the generic
types in the schema signature, and finally, replace the generic types in the
signature with their corresponding actual types. If the schema name is not
located in the schema dictionary, the function excepts.

For example, suppose the schema § is :

_S[X, Y]
a: X;
b:PY

and the type checker encounters the declaration:
S{1, 2}, P N|[s\a]
The following steps should be taken:
» Look up S in the schetna dictionary. This should give the generic type,
(< X,Y >, schematy{(a, X),(b,P ¥Y)}).
» Decorate the schema variables giving {(a", X),(#',P Y)}.
® Rename the schema variables as directed making the schematype {(s, X), (", P ¥}
s Make a substitution list: X — N, Y — PN.
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¢ Apply the substitution, yielding schematy {(s,N),(¥,PN)}

This is the task of the function NermiInclude. It uses a function:
| assignvars : GENTYPE — TYPE

to assign type variables to any generic parameters which have not been
instantiated. This is described further in the section on unification.

nominclude : ENV — (ran Include) — P SIG

VYemw : ENV : wd : word; dcr : decor : actuals : ezprs; newnames : renames o
(norminclude env Include( Sdes (wd der actuals newnames)) =
if (ezception # clear) then value(D, schemanotdedared))
else assignvars (gens, invschematy (instant subst renamedly))
where

gens ; GENPARAMSs; genty, decoratedty, renamedty : TYPE;
exception : ERROR; subst : seq (GENFPARAM x TYPE)

| ({gens, genty), exception) = (lookup (ident(wd, <>)) (schemadict env))
A decorty = schematy(decorvars (invschematy genty) der)
A renamedty = renamevars newnames decoratediy

A subst = mksubst env gens actuals

The function nerminclude defined above is quite useful - we shall see it again
when we deal with schemas as ordinary expressions.

We end this section by giving tbe function normdec!, which normalises an
arbitrary declaration. From the previously defined functions, we see that
for a simple declaration, normdec! produces a list associating each variable
on the left with the supertype of the expression on the right, and for an
included schema name it produces a list consisting of the unraveled schema
component signatures, properly decorated, renamed and instantiated:

normdec! : ENV — decl — P SIG

Venv: ENV; d:decl »
(d € (ran Decl) A normdecl env d = normDecl env d)
V (d € (ran Include) A normdec] env d = norminclude env d)
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8 Types of Expressions

Much of the work of the type checker consists of calculating the types of
expressions with respect to a current environment. We examine in detail
the most interesting and for obstruse of these calculations - that of asim-
ple reference to an identifier, a schema expression, a set comprehersion,
and a theta term. We devote the next section to describing the typeof a
function application and the unification involved in inferring implicit actual
parameters for generic functions.

A reference to an identifier (Ref < ident x seq expr ») consists o its
name and a possibly empty list of actual parameters. The type of the
identifier is the type found in the axiomatic dictionary for the name, with
the generic parameters replaced by the supertypes of the actnal parameters.
The function typeofRef given below calculates the type of a referencee to
an ideni, with a sequence of ezpr, possibly empty, as actual parameters.
(I the actual parameters are not explicitly given, the type returned is the
original generic type for the identifier. This is sorted out elsewhere by the
type checker. As the Ref will be part of a larger syntactic structure type
inference may be possible.) The function excepts if the identifier i not
found in the axiomatic dictionary of the current emvironment. Exceptions
may also be generated by mksubst if the actual and generic parametes are
not consistent.

typeofRef : ENV — ident — ezprs —+ TYPE
Vernw: ENV; id : ident; ezps : exprs »
typeofRef env id ezps =
if exception # clegr then value(unity, sdnotdeclared)
else assignvars (gens, instant (mksubst env gens ezps) gentype)
where
gens : GENPARAMs; gentype : TYPE; exception: ERROR
| {(genparams, gentype), exception) = lookup id {azdict enn)

A schema designator may appear as an expression (Sezpr € sdes ). For
example, if TABLE were defined as a (generic) schema, then its occumence
in the declaration, tab: TABLE[SYMBOL] is as a schema desigrator
with actual parameter SYMBOL. The type of such a schema expresion
is intnitively the powerset of the schema type of the normalised signatures
of the designated schema comporents, properly instantiated, renamed and
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decoratel. The function normlnclude, defined previously, handles these
matters. Thus typeofSexp defined below is nicely concise:

typeofSexp : ENV — sdes - TYPE
Yenv: ENV; sd : sdes o

typeofSezp env sd =
powerty (schematy (normInclude env { Include ad)))

In order to describe how to caleulate the type of a set comprehension ex-
pression

Comp & schema X oplionalezpr 3, we must first introduce the rotion of
adapting an environment with new declarations. The function edapt up-
dates an environment by installing normalised signatures of declarations. It
uses installsigs (a function introduced in section 6) to add the generalised
union of the normalised signatures of declarations to an environment:

adapt : ENV — decls = ENV

VYenv: ENV; deca : decls »
adapt env deca
installsigs env ran(U(map (normdecl env) decs))

The type of a set comprehension expression is the powerset of the type of
its “defizing term” with respect to the current environment adapted with
the contained declarations. If the defining term is not explicitly given, it ie
taken to be the charactaristic tuple of the variables in the declaration. The
way in which this characteristic tuple is built is described in [SPI88b].We
do not give the full definition of a tuple-building function here. However,
its declaration is:

| mkchartuple : decls — ezpr

Since the function mkchartuple can be used to make the defining term of a
comprehension, when determining the type of a set comprehension we need
only consider the case where the optional expression is present. This is done
by the function typeofComp:
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typeofComp : ENV — (schema x ezpr) - TYPE
Venu: BNV, decs : decls : pre : pred; exp : expr o
( typeofComp env (Sehemna(decs, pre), ezp) = powerty (typeof newenv ezp)
A (pre, newenv) € groundpreds
where
newenv : ENV | newenv = adapt env decs

)

Important Note - The set groundpred, discussed in section 10, describes a
notion of predicates being type correct with respect to an environment. We
just note here that the predicate above about groundpreds is “universally
true”, but error messages may be generated through its “side effects”.

A theta expression (Theta € word X decor ») consists of a name aud a
decoration. To determine the type of a theta expression, the type checker
retrieves the variables from the schema type stered in the schema dictiovary
for the undecorated schema name, decorates these variables with the given
decoration, determines the types of these decorated variables for the cur-
rent envircnment (hence these decorated variables must be in scope), forms
normalised signatures associating the undeccrated variables with the types
of their decorated version, and finally, returns the schema type over these
pormalised signatures.

This has the consequence, described in [SPI88b], that the types come from
the current environment and ot from the schema. So, for a schema S, ihere
is no guarantee that #5 € §. For a fuller description, see [SPI88b],

Decorating a single variable is straightforward:

decvar : decor — ident — ident
Y oldder, newder : decor; name : word o

decvar newder (Ident(name, oldder)) = Ident(name, oldder ™ newder))

Retrieving the variables from the undecorated schema name can be achieved
by treating the schema name as if it were an included declaration, and ex-
tracting them from the normalised signature. If the types of any of the
decorated versions of the variables is unity, the function initiates an excep-
tion. Again we see normInclude used in the definition of typeofTheta:
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lypeofTheta : ENV — (word X decor) — TYPE
Yenv : ENV; name : word; der : decor »
typeofTheta env (name, der} =
if unity € newsig then velve(unity, notinscope)
else schematy newsig
where newsig : SIG; origvars : idents

| origvars =

A newsig =

Moving row from specific kinds of expressions to expressions in general, the
function typeof defined below produces the type of any arbitrary expression
with respect to a given environment. Note that the function typeof would
be mutually recursive with groundpreds and superty:

ypeof : ENV — ezpr — TYPE

A typeof env (Ref(id, aetugls)) = typeofRef env id actuals
A typeof env (Sezp(sd)) = typeofSezp env sd
A typeof env (Comp(schematerm, opezp)) =
typeofComp env (schematerm, opezp)
A typeof env (Theta(name, der)) = typeofThets env (neme, der)

This may be extended to cover all other Z expressions in the same manner
as those described here.

9 Schema Expressions

A schema expression (sezp) consists of either a set of declarations together
with a predicate {typically expressed with the box notation), or some “log-
ical” combination from the schema calculus of schema expressions (e.g., 8
A T). The type checker unravels such schema expressions, producing nor-
malised sgnatures associating component variables with their types.

dom(nerminclude env Fnclude(Sdes(name, <>, <>, <>)))

(A var :ident o (var,typeof env (decvar der var))) (joriguars|)
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For a schema expression consisting of a set of declarations together with a
predicate { Text € schemg ), the function normTert normalises the dec-
larations and checks the predicate with respect to the current envircoment
adapted with the normalised declarations:

normTezt : ENV — schema — P SIG

¥ decs : decls; pre : pred »
norm Tezxt env (Schema(decs, pre)) = newsigs
A (pre, installsigs env newsigs) € groundpred
where newsigs : SIGS | newsigs = map normdecl decs

A schema expression can reference another schema (for example, the rght
hand side of T = §[a\z; b\y]is a reference to schema 5 with z and y re-
pamed to a and }). Normmalising such a schema expression (Sref < sdes )
simply involves treating the reference as an included schema declaration:

norwmSref : ENV — sdes — S5IGS
Yenuv: ENV, sd: sdes »

normSref env sd = normlInclude env sd

In order to normalise logical combinations of schema expressions the type
checker simply groups together the component normalised signatures. Check-
ing that the resulting list of signatures contains no collisicns is left to the
function normsezp, which is mutually recursive with normTezt, normSref
and the other specific schema normalising functions (see below).

A representative logical combination of schema expressions is “schema and”
(Sand < sezp X sexp 3 )

normSand : ENV — (sezp x sexp) — P SIG

Y enu: ENV,; sezp,sexp; : sezp »
normSand env seTp; sexpr =
(normsezy env sezp; ) U (normsezp env sezp;)

The definitions for the other schema expression normalising functions, vhich
are all variants of the ones given above. The gegeral function normsezp
given below takes an arbitrary schema expression and produces a normalised
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signature list. It must ensure that there are no “collisicns”, i.e., redeclared
variablesin this list. The function rmcollisions checks a set of signatures
for collisions, generating an appropriate error message for each one. Any
variables with colliding signatures will be assigned tbe type unity to allow
type checking to continne. We omit complete definitions for these functions:

I mcollisions . §SIGs — SIGs

normaezp : ENV — sezp — §1Gs

A normeezp ( Text(schematezt)) = rmeollisions(normTezt env schematest)
A normsezp env (Sref (schemades)) = rmceollisions(normSref env schemades)
A normsezp env (Sand(sezp, sexpz)) = rmcollisions( normSand env (sezy,, sezp; )}

Here, wedo not give details of checking all schema operations. The general
approach is the same, with the following guidelines. Schema guantification,
hiding, projection and precondition all have the effect of hiding some of the
components of their argument schemas. The components being hidden must
accur in the argument schema and have the same type as in the schema.
The type of the schematerm is the type of the original schema, but without
the bindings of the hidden components.

The sequential composition, §3 T, is well-typed when the dashed variables
of § match exactly the undashed variables of T. The resulting schema has
a type consisting of the bindings of all the undashed variables of § and the
dashed variables of T,

10 Unification

The type system of Z depends only on the signatures in the environment
and not on any of the constraints, and it is therefore decidable!. However,
because of the presence of generic definitions which may be used without ex-
plicit instantiation, type expressions may require unification to see whether
terms are correctly typed. The process of unification takes two {possibly

'The foliowing acconnt of nnification in Z and the unification algorithm itself are de-
rived from the work of Mike Spivey, Thanks.
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generic} ty pes and discovers which (if any) instantiations of the generic para-
maters would make these types match exactly. Z requires that we must be
able to find exactly one such instantiation, and that no generic parameters
be left uninstantiated.

For instance,
2=3

is badly ¢yped. The empty set is a generic coastant having generic type
[X)PX. Since it is set-valued, there is no value for X that can umify
the type of & with N, the type of the right-hand side. In this case, no
instantiation would work.

Spivey[SPI88b] gives examples using the function first which gives the first
of a pair of objects. first has generic type [X, Y] P((X x ¥) x X). The
expression:

first(D, 3 €FN

is correctly typed since we can determine that first must be instantiated
with PN and N, and the empty set with N. However, the expression:

first(3,9) =3

is incorrectly typed. This time the problem is that there are too many pos-
sible unifiers - the types of the occurances of @ and first cannot be uniquely
determined. This situation can always be resclved by explicit instantiation
of the unknown parameters.

The type checker must report an error if either (i) the types assigned so far
indicate that a conflict has arisen, or (ii) at a time when all generic types
should have been assigned actual parameters some of them remain uninstan-
tiated. The time for deciding {ii} is when ar “=" or “€”, or any relational
operator is encountered. It is not possible to accrue type information over
several expressions contairing different occurances of some generic cbject.
For instance, the expression:

(first(@,3) = 3) A (D € FN})

does not determize the type of first, or indeed of the first occurance of &.
This is because the two occurances of the empty set are treated as separate
instances and both must be completely instantiated.
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Unification works by assigning type variables to generic types and trying to
calculate a unique instantiation of these variables. We extend our definition
of type to reflect this:

TYPE := udenity < ident >» - given set type
| powerty < TYPE > - power type
| productty < TYPEs > — cartesian product type
| achematy < ident + TYPE)}» - schema type
| verty € name > — type variable
| unity — efror type
Example

As an example, consider how the following expression would be type checked:
G:{S.‘PN|S=®I@}

As noted above, the three occurances of @ are all different and here we
number them just to emphasize the point:

01={S:PNIS=QQOQ3}

The generic type of @ is [X] P X. For each occurance of the empty set we
form its type using a type variable, taking care to use fresh variables each
time. Choosing the type variable « we can say that the type of the left-hand
side is Pa:

g]!PC!

‘We must unify this with the type of the set romprehension term. So now
consider the term {§ : PN | § = @; o @3}, Tb type check a set we add
its declarations (in this case, § : PN) to the environment. In this extended
environment we must check the predicate § = @5, which involves unifying
the type of § with the type of &). We will need a new type variable, 3,
with which to represent the type of the second occurance of the empty set.
With this we know that:

S:PN
and

@,:P3
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Qur aim is to unify the two types. This is easily achieved with 4 equal toN.
With this substitution the types of both sides of the relational expression
§ = @ are completely and naniquely defined as required.

The defining term of the set expression is @3 and using another new variable
we represent its type as Py. And so for the whole set comprehension,

{§:PN|S=02;023}:PPy

and it is PP  that we must finally unify with P . This tells us that ¢ must
be equal to P+, but there is no unique way to give values to a and 4. So
the expression is incorrectly typed because it does not contain encugh type
information.

Functions

As shown above, unification may be necessary for any two terms related
by some relational operator. At the beginning of this section we gave an
example where a function application gave rise to a type error. Function
application is anotber form of expression where unification may be required.
Here we consider how the type checker should deal with a function applica-
tion.

A function in 2 is just a set of ordered pairs, and so will have type P(X xY')
for some X and Y, possibly containing generic parameters. A function
application is a term consisting of the function name and the argument to
which it is applied. The whole expression is well typed if the argument has a
type unifiable to X, and its type is ¥ {possibly with suitable instantiation).

Examples of possible situations arising from function application:

e first(3,1) This is a well-typed term with all generic parameters fully
instantiated. This instance of the functior first has type P{{N x N) x
N). The argument has type N x N and the type of the whole term is
N.

e first($2,3) Using a type variable, o, we can represent the type of this
ocenrance of first as P({(Pa) X N) x a). The argument has type
(Pa) % N and the type of the whole term is (P a). The presence of
a type variable is acceptable at this stage because in a wider context
the function application term may well be related to some other term
which gives us more information. For instance, if the context were
first(,3) € FN then we could unify a with N and all would be well,
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e first(3, @) Using type variable, 3, first has type P{N x P 3) x N} and
the argument has type N x P 3. Tbe ounly possibility for the type of
the whole term is N. But this has no reference to the type variable,
A, which would get left behind, forever uninstantiated. So we can tell
that, whatever its context, the function application cannot be correctly
typed.

To deal with all these possibilities the type checker can behave in the follow-
ing way when dealing with a function application. First, find the type of the
function (which is possibly generic and of the form P(X x ¥) ). Find the
type, Z, of the argument and unify this with X'. Then use the information
gained from the unification to instantiate X and Y. There may be type
variables left in both X and Y. Type variables left in 1" are permissible at
this stage because they may be given values by the wider context. However,
type variables left in X which do not alsc appear in Y have no possibility
of instantiation and a type error should be reported.

An algorithm for unification

A guccessful unification will return a (possibly empty) set of substitutions
assigning actual types to type variables. A substitution is represented as a
partial injection:

SUBST == word v+ TYPE
In fact, the result is defined as belonging to the following type:

OPTSUBST ::= just & SUBST »
| nothing

which allows nothing to be returned when a type conflict is discovered. The
function ynopt projects the substitution from an QPTSUBST:

unopt : OPTSUBST -+ SUBST

Y3 : SUBST » unopt (just s) = ¢
To aid the description of the unification process we declare, but do not fully
define the following useful functions:

| applysub : SUBST — TYPE —» TYPE

Given a substitution and a type the function applysub applies the substitu-
tion tothe type, yielding a new type.
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tyvars : TYPE — P word

The function tyvars gives the set of type variable names which occur within
a given type.

| order: TYPE — TYPE

The function onder is used when dealing with schema types. It forms a
sequence of all the types bound within the schema type, the order being the
lexicographical order of the identifier pames. Finally, we have already used
the function

| assignvars : GENTYPE — TYPE

whick, for each uninstantiated generic parameter in a generic type assigns
a fresh type variable, thus converting a generic type to a type with type
variables which were not previously in use.

The following function, unify, finds the unifying substitution (if any).
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wnify : SUBST — (GENTYPE x GENTYPE) — QPTSUBST
Ys:SUBST, n:wond;, t,u: TYPE; 1: IDENT; t{,ul : TYPEs»
(unify s (varty n, 1) =
if n € dom sthen (unify s ((s n),t))
else (if n € uuthen nothing
else just((s; (applysub{n — wu}))U {n — uu})
where uu = applysub st
)
A
unify 3 (¢, varty n) =
if n € dom s then (unify s (t,{sr)}))
else (if n € uuthen nothing
else just((s; (applysub{n — un}])}U {n - wu})
where uu = applysubst
)
A
unify s (identty s, identty i) = just s
A
unify 8 (powerly t, powerty ) = unify st u
A
unify s (productty {}, productty {}) = just s
A
unify s (productty < t > "tl, productty < u > ~ul) =
if 38 = rothing then naothing
else unify (unopt ss) (productty th){ productty ul)
where ss —unify sty
A
unify s (schematy t, sehematy 1) =
if (dom #) = (dom ) then unify s (order (schematy t), order (schematy «})
else nothing
A
unify s (unity, t) = 3
A
unify s (t, unity) = 3
A
. . . for all other cases return nothing
)

With this function we can type check a function application term:
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typeofApply : ENV — (ezpr % ezpr) — TYPE
Yenuv: ENV; s, t:ezprs
typenfApply env (s,t) =
if (sub = nothing) then value(unity, badunification)
else (if (tyvars ss) C (tyvors
#j then £t
else value(unity, badapplication)
where 43 = applysub (unopt sub) stype A
tt = applysub (unopt sub) tiype

whe1)-e stype, ttype : TYPE; sub: SUBST |
stype = typeof env s A
tiype = typeof env t A
sub = unify @ (stype, ttype)

11 Predicates

The type checker must make sure tbat all predicates are correctly typed.
We have represented this by the requirement:

(p,env) € groundpreds

for a predicate, p, and envircnment, env,

A predicate is correctly typed with respect to an environment if all its con-
stituent terms and predicates are correctly typed. As discussed in the pre-
vious section, unification may be necessary, and all type variables must at
this stage be assigned actual types by the unification process. The fallowing
feuction to apply unification and check for the presence of type variables
will be of use:
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unifypred : (TYPE x TYPE) — TYPE

Ys,t: TYPE »
unifypred(s, t) =

if (tyvars s3) = (tyvars tt) = @ then ss

else value (typevarsinpred, unity)

where sub : SUBST; ss,8t : TYPE |
sub = unify {} (s,t) A
53 = applysub sub s A
it = applysub sub ¢

We can now define the set groundpreds:
groundpreds : P(pred x ENV)

V1,12 expr; pl,p2 :pred: env: ENV o
(Equal{tl,12), env) € groundpreds &
unifypred({typeof t1 env), (typeof t2 env)) € TYPE

A

(Member(t1,12), env) € groundpreds <

unifypred( powerty (typeof t1 env),(typeof t2env)) € TYPE

)

(Implies(pl, p2}, env) € groundpreds &

((p1), env) € groundpreds A (p2), env) € groundpreds)

A

(Truth, env) € groundpreds)
A Vs

The idea is that the test for membership of groundpreds is always satisfied
(since unifypred always returns a type), but performing the check would have
the side effect of generating appropriate error messages where necessary.

For a guantification, the predicates are checked in an environment updated
with the signatures of the quantified variables. Eg:

¥ decs ; decls: pl,p2 : pred; env: ENV o
(Forall( Schema(d, pl), p2), env) € groundpreds &
((p1,newenv) € groundpreds A {p2, newenv) € groundpreds)

where
neweny : env | newenv = installsigs env | J(ran(map normdec! decs))
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A schema reference used as a predicate is correctly typed if all the com-
ponents of the schema are currently in scope and have the same types as
in the schema. The predicate part of the schema paired witb the current
environment must also be a memher of groundpreds.

12 The Document

A 2 specification iz stractured as a sequence of paragraphs, each being a
declaration (of a schema, given sets, axiomatically defined constants, syn-
tactic equivalences, or data types), a predicate (indicating a constraint), or
theorem. To check a spedification, the type checker checks each paragraph
with respect to a current environment, adapting this current environmert for
those paragraphs introducing declarations. The first paragraph is checked
with respect to a primitive environment corresponding to the Z library. The
final result of the type checker after checking a type correct document i an
environment containing the definitions which are in scope at the top level
of the document.

We examine here paragraphs introducing simple axiomatic definitions, schema
definitions, and syntactic equivalences. Finally, we produce the fupction
which pulls everything together by checking the entire document.

A simple nongeneric axiomatic definition consists of a set of declarations
together with a predicate. The function nstalllet returns the current en-
vironment adapted with normalised declarations, and checks the predicate
with respect to this adapted environment:

installlet - ENV — (decls X pred) — ENV

Yenv: ENV; decs: decla; pre: pred o
installlet env (decs, pre) = neweny

A (pre, newenn) € groundpred
where neweny : ENV | newenv = adapt env decs

A syntactic equivalence definition, which may be generic, equates an iden-
tifier with an expression. The functicn installEgeq determines the type of
an expression with respect to the current enviroument with the generic pa-
rameters added as given sets, and installs the resulting generic signature
associating the identifier with the type of the expression into the current
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environment:

installEgeq : ENV — ((ident x GENPARAMs) X expr) — ENV
Yenv: ENV; id : ident; gens : GENPARAMs; exp : expr »

installEqeq enwv ((id, gena), exp) =
instellgensig env (id, gens, (typeof (instaligivens env gens) ezp))

A schema definition, which may be generic, consists of a name which is
an undecorated identifier, possibly some generic parameters, and a body
which is a schemna expression. The function instaliSdef normalises a schema
expression with respect to the current environment to which has been added
the generic parameters as given sets, and then installs the resulting generic
schema signature associating the given name with the schema type of the
normalised signature into the current environment:

installSdef : ENV — (word x GENPARAMs X sezp) - ENV

Yenv: ENV; wd : word; gens : GENPARAMS,; sezpr : sezp »

installSdef env (wd, gens, sexpr) = installgenschemasig env
(Ident(wd, <>), gens, normSezp (installgivens env gens) sezpr)

Given functions to check each particular sort of paragraph we can define
instaliparg which handles an arbitrary paragraph:

instalipera : ENV -+ para — ENV

A instalipars env (Given(ids)) = installpivens env (ran ids)

A snstallpars env ( Let(Schema(decs, pre))) = installlet env (decs, pre)

A installpara env ( Eqeq(Lhs(id, gens), ezp)) = tnstallEgeq env ((id, gens), ezp)
A installpars env (Sdef(wd, gens, sezpr)) = installSdef env (wd, gens, sezpr)

Checking the entire document

To check the entire document, the type checker checks each paragraph in
turn - with the first paragraph checked with respect %0 a primitive envi-
ronroent corresponding to a library. The result of this checking (ignoring
side effect error messages) is an environment of signatures which has been
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incrementally counstructed after each paragraph. We are now ready to define
a function which checks the syntax tree for an entire Z document. Its prim-
itive environment would typically be one corresponding to the conventional
Z library, but it could be arbitrary (indeed, the Z library environment it-
self could be generated with the null environment). The function checkspec
checks a document with respect to an arbitrary (library) ervironment:

checkspec : ENV — spec —+ ENV

V primenv : ENV; doc: seq para e
checkspec primenv @ = primenv A
checkspec primeny doc = checkspec (installpara primeny (head doc)) (tail doc)

13 Related Work

Peter Hancock has defined a type checker for the functional language Mi-
randa in Miranda itselff HAN8T). He represents success and failure with a
defined type reply. This type is used for functions which may succeed or
fail, returning a “proper value” upon success or a special value FAILURE
upon failure. However, 1a recognition that error-handling code tends to ol
scure the code for correct cases, in [HANB7] Hancock Las chosen to give
an abridged version which does not provide any error messages indicating
the reason for failure. In Miranda, the only object that can appear as the
right half of a2 declaration is a type, 60 there is no notion of normalising 2
declaration - a major task for a Z type checker.

C. Sennett has produced a Z specification of a Z type checker, which has
been implemented at RSRE[SEN87]. He presents a model for a type checker
wlich operates in parallel with a one pass parser. The complete specifics-
tion consists of a set of schema operations defined for syntactic constructs
individvally presented to the type checker as they are parsed. For certain
constructs {e.g., the # term), his model deviates from the type semantics
given in [SPI88a). This is in contrast to our abridged specifiation of a type
checker which checks a complete abstract syntax tree according to the type
semaatics of [SPI88a).

Two other type checking systems have evolved from the Programming Re-
search Group, Oxford. One has been produced by Mike Spivey and is known
as Fuzz. Fuzz obtains its input by extracting the formal text from a LATEX
input file. Spivey provides a set of LATEX macros with which to write Z
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text, It uses the type system described in [SPI88a] for type matching, but
also uses type abbreviations when computing the type of expressions. This
allows more meaningful error reporting, reflecting the way in which objects
have been defined. Fuzz initially loads a “prelude” containing the mathemat-
ical tool-kit definitions of [SPI88b], which can be extended or substituted
if required. Fuzz is written in C, can work on PCs and is commercially
available.

Bernard Sufrin has produced an ML parser and type checker for Z known as
zebme. He is currently producing a modular ML system known as Aippe which
can be used as a front end to processing Z in many different applications.
The programs use ascil input (which can be supplied directly or translated
from other forms, such as QED output). They can take input from a file,
or be used interactively. The current environment c¢aa he interrogated to
find the types of particular identifiers or expressions. A standard Z library
database is provided for zebra. Again, this can be altered or other databases
used as required. The syntax understood by the systems is different from (in
general, more permissive than) that of [SPIZ8b]. For instance, generic data
type definitions are permitted. Also, the type system is somewhat different
with overloading supported and objects treated in [SPI8Sb] as generic sym-
bols here viewed as functions. For example: following [SPI88b] the relation
symbol « would be an infix generic symbol with type:

= [X, Y] PP(X x Y)
2ebra gives the type as:
—e (XL YIP((PX)x(PY) X (PP(X x T)))

The use of “psendotypes” allows the user to nominate certain sets to be
treated as much like types as possible, making reported types more recog-
nisahle to the user.
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14 Conclusions

The model of a Z type checker that we present can be summarised as follows:

For a Z abstract syntaz tree, the type checker produces an environmen! of
stgnatures, These signatures indicate the generic parameters {if any) end
type of each wvariable in scape at the top most level of the tree, The iype
checker builds the environment incrementally, stariing with an environment
corresponding to o predefined fibrary, and then checking each parngraph rode
of the tree tn turn to eztend the environment accordingly.

The key to incorporating new declarations into ar environment s a nolion
of normalising declarations into signatures associating variables with their
types. For a simple declaration introducing a variable draum from an ezpres-
sion represending a set, a signature s formed by associating the variable with
the type of the expression with the P removed. For a schema name used as
a declaration, the normalised signature list consists of the normalised com-
ponent sigrigtures.

The determnination of the type of an erpression is recursive on the strucdure
of the expression. The type of @ schema czpression, also recursively colcu-
lated from its atructure, involves normalising the schema expression into its
component signatures, FEachk of these calculations may require checking a
predicate with respect to an environment adepled with new declarations,

Error diagniostics are genemted as side effects os the type checker wvisits each

node.

Because the complete algorithm is very diverse with a high degree of mutual
recursion, a single fully comprehensive specification would by its complex
nature not reveal a clear introductory overview of the approach. Specifying
how to check every possible form of expression would involve a good deal
of repetition of the techniques used. We have therefore chosen to present
an abridged version directed at those wanting an introduction to the prob-
lem of implementing a Z type checker. The various expressions chosen for
explanation are intended to form a representative sample, covering the ba-
sic functions of the type checker, and some of the less abvious details too.
Thus we have presented an “underspecification”, with details included ei-
ther because they are essential for presenting the model (e.g., rormalising
declarations), or because they are interesting in their own right (e.g., the &
term).
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Our original implementation of the type checker for the Forsite prototype
represented a transliteration of the formal definitions of [SPI88a] into the
language ML, using functions very similar to those described here. Since ours
was the first effort to build a type checker for Z based on its denotational
semantics, we chose to focus on functional correctness. Little attention was
paid to implementation issues such as performance, but even so, the pro-
totype system provided a useable type checker which indicated what could
be achieved if the prototype system were to be developed into a carefully
engineered product.
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