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Collision Detection by Four-Dimensional
 
Intersection Testing'
 

Stephen Cameron 

Abstract 

The collision detection problem is easily stated: "Given two objects and 
desired motions. decide whether the objects will come into collision overa. 
given time span". The solution of this problem is useful, both in robotics 
and other problem domains. We describe a method for solving collision de
tection that involves transforming the problem into an intersection detection 
problem over space-time. We give the tbooretical basis for the solution, a..nd 
describe an efficient implementation based on describing the objects and 
motions constructively. We also consider the related problems of describing 
the collision region, and of detecting collisions when there are a. more tbm 
two moving objects. 

-To appear, IEEE Tron.'latiion.'l on Robotic$ and AlJtomatton 



1 

INTRODUCTION 

Introduction 

The collision detection problem ma.y be sta.ted as: "Given two objects and 
desired motions, decide whether the objects will come into collision over a. 
given time spa.n". Solving this problem is useful in i15 own right, a.nd the 
solution can also be used as parts of algorithms that try to generate colJjsion. 
free paths. We have been especially interested in solving the collision
detection problem for robotics, but the work reported will also be of in
terest in other problem domains, such as VLSI and electronic circuit la.yout, 
"Cloth·cutting", bin-packing, assembly planning, and driving numerically
controlled machines. Previous work aD this problem haJ'i mainly arisen 
(rom two sources. One source has been the prolifera.tion of CAD descrip
tions of sha.pes, a.nd the desire to do more design on the computer (e.g., 
[Boy79, Mey81, Mye81, CK86J). Another source has been from algorithm 
design in its own right, which emphasises the design of algorithms with low 
computational complexity. Our work is rooted firmly in the former camp, 
but with emphasis on the production of efficient algorithms. 

There are many different algorithms for collision detection. As argued 
in [Cam8S}, one class of algorithms is conceptuaJly the simplest: we choose 
a number of times, {til, within our time·span of interest, and perform a. 
(static) interference test at each ti. This algorithm has many adva.ntages: 
it is relatively simple, it is not necessary to derive a dosed-fOnD for the 
motion (access to a sampling function will suffice), and it gives good operator 
feedback when used as part of simulation. However, the algorithm is not 
perfect, and, in particular, it does not work well if objects come into contact. 
Another method is to compute the volume swept out by the objects over 
their motions, a.nd to declare a collision if these swept volumes intersect. 
Again this method is intuitive but, as we shall see, the method described in 
this paper i.s effectively better (except in some "special ca.<les"). 

[Can86} describes yet another method for coHiaion detection, in which 
the problem js transformed into detecting collisions for a point in config
uration space. [LP83J. Effectively Canny considers intersection detection 
between a line and six-dimensional configuration space obstacles, using al· 
gebraic techniques to find the intersection regions. Configuration space is 
normally associated with solutions of the collision avoidance problem (e.g., 
[LP87, 00n87, Can88l). We believe that collision detection is worthy of sep
arate study as it can often be solved far fa.<lter tha.n collision avoidance; also, 
many collision avoidance schemes require a collision detector to be run tint 
to generate information about the collision region (e.g., [Mye81J). 

In §2 we give the formal basis for four-dimensional intersection testing. 
To visualise the process, we may imagine an analogue, whereby we perform 
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collision-detection in a two-dimensional world [Abb52]. Imagine the two 
polygonal objects 6hown in figure l(a) as starting from the positions shown 
and having the velocities arrowed. Now imagine tha.t the two-dimensional 
universe that they inhabjt is, in fact, the tioor of a. 11ft1, which is moving 
vertically upward!> with some constant velocity. Then the polygons will 
sweep out prisms in three-dimensional space, as shown in figure l(b). We 
can think of the vertical dimension in this case as being a time dimension; 
tAking a. particular horizontal slice of these prisms gives the positions of the 
polygons at the corresponding time. Then, as we shall show, the polygons 
collide jf and only if the prisms intersect. Figure 1(c) shows t he union of the 
two pri5ms, and figure l(d) shows their (non-null) intersection. 

§3 describes how this problem transformation is performed within a ge
ometric modelling system called RODMOD [CASS]. §4 gives the mea.t of the 
implementation, which is ba.sed on the more genera.! routine described in 
[Ca.m89]; examples of the routine in action are given in §S. The routine haa 
a natural extension to tackle the collision detection problem when there are 
many possible pairs of objects that could collide; this is outlined in §6. Fur
ther extensions, and connections with work on other problems, are described 
in §7. 

2 Mathematical Basis 

We regard an object a.s being defined by a point set. (This is equivalent to 
assuming that we know exactly where objects are, and what t heir shape is.) 
Given an object 0, we a.ssume the existence of a location function, A, which 
is a (unction that tells us where the object is at a given time. In particular, 
A takes a time t and returns a transformation A(t) which tells us how to 
move 0 into its position at time t, and so at this time 0 occupies the point 
set 

{x I(3y)y E 0 and x = A(t)(y)} 

which we normally write a.s A(t)(O). As an example, an object which is 
at its rest position at time 0 and ha.s a constant velocity v has a location 
function that moves the point x to the point x +vt at time t. We will only 
be concerned with rjgid-body motions, but we note that most of the motions 
made by "normal" materials, including elastic deformations and fluid flows, 
un (in principle) be described by invertible, continuous location functions, 
as matter is not lost during the transformation. 

• aka. "eJeya.tor~. 
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2 MATHEMATICAL BASIS 4 

2.1 Extrusions 

The above definitions give us enough structure to formally define the extru
sion operation that we introduced informally in §l. Given an object 0 and 
corresponding location fnnction A, we define the extrusion opera.tor Ex by 

Ex(A,O) = {(x,t)lxE A(t)(O)} (1) 

An equivalent definition (for invertible transformatioDlS) is 

Ex(A,O) = {(x, t) IA(t)-I(x) E O} (2) 

Then we note tha.t object A (with loca.tion function AA) collides with object 
B (wi th location function As) if and only if 

3(x, t) x E AA(t)(A) and x E AB(t)(B) .. 

Ex(AA,A)nEx(AB,B) ¥ 0 

Le., two objects collide jf and only jftheir extrusions intersect. 
Thus extrusions give us a. ma.thematical fra.mework for considering the 

collision detection problem. However, these definitions do not tell us how 
to construet extrusioDlS. [ER83] considers the extrusion of collections of 
simple shapes, na.me1y spheres. [ST85, FS89] use a hierarchal description 
called a bintree2 to describe space-time; the bintree is constructed using an 
algorithm similar to that described in §4.1, but always continues division 
until the space-time region is full or empty. [GlaS8] uses space-time to 
perform ray-tracing of moving objects for animation, for which only samples 
of the extrusion are required. [JP88) give a construction for the boundary 
of extrusions when the location functions correspond to linear veloci ties and 
the objects are polyhedral, but in general the boundary of an extrusion may 
be quite complex. 

In our work we have used constructive solid geometry (CSG) as the 
method for describing three-.dimensional shapes, whereby a shape is given as 
a set-combination of simple shapes-this is a common description method 
(or solid models [RV82]. Effectively, a CSG description is equivalent to a 
Boolean function F of a number of sjmple objects ~', so that the object is 
given by 

F(Plo P2,.··, Pm) 

where F is obtained by use of the set operations of union (U), intersection 
(n) and difference (f). Given such an F we may derive the function F, 
obtained from F by replacing each three-dimensional set operation by the 

'lSimilar to a qua.dtree [Sam84] 
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corresponding (our-dimensional set operation3 • Then the following dish;. 
bution theof'£m gives us a way of simplifying the construction of extrusions: 

o Distribution Theorem 

The extrusion opera.tion distrihutes over the set opera.tions; that 
is 

Ex(A,F(P"P"" "Pm)) = 

F(Ex(A, P,), Ex(A,P,)"", Ex(A, Pm» 

Proof (for the standard set opera.tions) Let F denote the logical formula 
derived from a. set formula. F in the normal wa.y (by repladog U by V, etc,). 
Then 

(x, t) E Ex(A,F(P" P", .. , Pm)) 

... A(W'(x)E F(P"P" .. "Pm) 

... F(A(W'(x) E P" .. "A(lt'(x) E Pm) 

... F«x, I) E Ex(A, P,),,,,, (x, I) E Ex(A, Pm) 

... (x,l) E F(Ex(A,P,),Ex(A,P,) .. "Ex(A,Pm)) 

a.B required. 
The distribution theorem simplifies the construction of extrusions as it 

is often easy to write down the form of an extrusion of a. simple sha.pe p;,. 
In particular, if each Pi is a. half-space: 

Po = {x Ip,(x) :$ o} for some function Pi 

then the extruded half-spate is a.nother half-space: 

Ex(A, P,) = {(x, t) Ip, 0 A(I)-I(x) ~ OJ (3) 

where 0 denotes functional composition. One specific case that is of interest 
is when eac.h half-space of the object is linea.r, and moving with constant 
linear velocity. So if P corresponds to the half-space p(x) = n.X: +d (where. 
is the scalar product operator) and A is the loca.tion function conesponding 
to the identity transform at time 0 and a constant velocity v, we find that 
Ex(A, P) corresponds to the (four-dimensional) half-space 

vex, t) =n.x - n.vt + d (4) 

~~ntiaJly F <md j look the sa.me; they are distinguisbed for rtuons of peda.ntry. 
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We use the combination of (3) and the distribution theorem to model 
the extrusions of objects. If we have two extrusions, say 

F(P" P"", .Pm) and C(Q" Q""" Q.), 

where PI, etc., denote extruded primitives, then the objects collide if and 
only if the extrusjons intersect; that is, if 

H(P"P"""Pm,Q"Q"""Q.) '" 0 

where 

H(P""" Pm,Q"Q"" A.) = F(P"" "Pm) n C(Q",,, ,Qn) 

So we have transformed the collision detection problem into one of detect
ing whether any (Cour-dimensional) point satisfies a region given by a. set 
theoretic formula.. 

2.2 Mathematical Niceties 

The standard set operations a.re not generally used in geometric modelling 
pra.ctise, as it is possible to construct non-three-dimensional objects with 
them. Instead the (closed) regularised set operations are used; these are 
equivalent to performing a standard set operation, followed by taking the 
closure of the interior of the resultant set. (lnformally: we perform the set 
opera.tion, and stretch a tight skin over the resultant set.) These operations 
can be shown to form a Boolean algebra [TRSO), and the main problem in 
using them is that we have to be a careful when considering the boundaries 
of sets formed. However, the following result can be shown [Cam84J: 

o Distribution Theorem (for regularised sets) 

The extrusion operator Ex distributes over the (dosed) regu
larised set operations. 

Proof Here we will just give an outline proof of the theorem; details are 
to be found in [Cam84J. 

By the same argument as was used for the standard set operations, we 
find that 

(x,t) E reg(Ex(A,F(h""PmJ)) 

<> (x, t) E F(Ex(A, P,j,,,,, Ex(A, Pm)) 
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where reg is the (fom-dimensional) regularisa.tion opera.tion. Thns the resuh 
will follow if Ex(A,F(Pl, ... ,Pm)) is a. regula.r set. But F(P1, ... ,Pm) is 
regular (in three dimensions), and as A a.nd its inverse a.re both continuous 
bijections we ca.n show that Ex(A,F(Pb ... ,Pm»will be regular, provided 
tha.t the time span of interest is regular in one dimension, i.e., as long as the 
time domain fonn5 a. closed set. To see that this is a reasona.ble requirement, 
consider the extrusions of the two-dimensional. objects in figure lj if the 
extrusion is carried out over an open time interval, the 'tops' a.nd 'bottoms' 
of the extrusions will be open, a.nd so the extrusions would not be regular. 

Another property of lolwell-behaved~ geometric models is that they be 
triangulable [Req77]; effectively, that their boundaries can be described by a. 
finite number of elements. For the work reported here triangulability follows 
from the finiteness of the CSC descriptions; however it is interesting to note 
that triangulability is preserved under extrusion for the standard location 
funcHoRs [Cam84J. 

2.3 Connection with Sweeping 

As mentioned in §1, a common way of performing coHision detection is to 
compute the volume swept out by each object, and test these swept volumes 
for interference. Sweeping can be formalised by introducing the operator 
Sw, with 

Sw(A, 0) = {x 13(y, t) x = A(t)(y)} 

Comparing this equation with (1) we note that sweeping is equivalent to 
extrusion into space-time followed by a projection operation back into the 
original space, and thus that, functionally, sweeping is more complex than 
extrusion. It also explains why sweeping two moving objects and testing 
for interference is not a sufficient test for collisions between the objects; the 
objects might occupy the the same space at different times, but thls temporal 
information is suppressed by the sweeping operation. Sweeping can be made 
a sufficient test by considering the relative motions of two objects. However, 
such relative motions may be complex, and if there are many objects moving 
we may have to consider many pairs of relative motious. Using extrusion to 
solve the many-pair problem is more promising, as explained in §6. 

Given this added in-built complexity of sweeping over extrusion, it is 
interesting to specnlate on the popularity of the sweeping method. We 
postulate two reasons. Firstly, for some shapes and some motions, the swept 
volume has a particularly nice form. For example, in IdPBB83] spheres 
are rotated and translated to form volumes that can be modelled using 
torolds, cylinders and spheres. Thus for these cases a fairly conventional 
solid modeller can be used. The second reason is a lack of familiarity with 



3 IMPLEMENTATION 8 

the mathematics involved. (We hope tha.t this paper might help to alleviate 
such fears.) 

3 Implementation 

In our implementation, which is pa.rt of a solid modelling sys tern called ROB

MOD [CABSI, sha.pes are entered as expressions, that describe the sha.pes in 
terms of para.meterised simple shapes (such as blocks a.nd cylinders), to
gether with rigid-body transforma.tions, joint parameters (fOT mechanisms), 
and set operations. These descriptions are read by a pa..n;er that converts 
them into a tree structure, whose leaf nodes reference instances of simple 
shapes, and whose branch nodes either represent transform a.tions or binary 
set operations. For simplicity we ma.y imagine these trees to be equivalent 
to trees without the transformation nodes, i.e., whose hranch nodes denote 
only binary set operations, and whose leaf nodes include the appropriate 
transformation together with the simple shape. 

We have used the construction paradigm to denote location functions 
also. A ROBMOD expression oftype motion is made up of a cha.in of primHive 
motion commands, together with the times for which each is applicable. For 
example, the expression 

rest until 0 vel 1 2 3 until 5 vel 0 1 1 until 10 rest 

denotes a motion that is at rest until time 0 and aIter time 10, the velocity 
(1,2, J) between times 0 and 5, and the velocity (0, 1, 1) between times 5 and 
10. This effectively gives us the derivative of the location function; to fix 
a particular function we specify that a motion corresponds to the identity 
transformation at time O. This syntax was used for convenience only; other 
syntax could easily be used in its place (such as specifying via points). 

To attach a motion expression to a given shape, we make a R08MOD 
worm expression4 by connecting a shape expression to a motion expression. 
The colHsion detection function is given two worms as input, together with a 
time-bound over which to test for collisions. (The time-bound is not strictly 
necessary, as will be expla.ined in §4.J.) In turn, each worm is presented 
internally as a bina.ry shape tree, together with a list of primitive motion 
components for that shape. These inputs are further converted into a single 
binary tree wbose branch nodes are set operations and whose lea.f nodes 
correspond to four-dimensional half-spaces. The rest of thjs section gives 
the procedure for generating this tree, and §4 gives the procedure for testing 

.- ...."::;0 clLiled bCC<1U8e we C<1Jl im<1gine the corresponding utrusions &8 "worms" in spiSC~ 

time 
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whether this tree corre5ponds to the nun set (and thus whether the objects 
collide within the given time bounds). 

The procedure for deriving tbe tree, given a. single motion component, 
is straightforward: 

1.	 The leaf nodes in the shape tree correspond to complete simple shapes. 
We first rewrite each simple shape into an appropriate combination of 
half-spaces-for exa.mple, a block is replaced by the intersection of six 
linear half-spa.ces. 

2.	 The shape tree is now extruded--effectively, by extruding each primi
tive (using (3» and replacing each three-dimensional set operation by 
its four-dimensional version. (In fact, in ROBMOD the second operation 
is a null step, as there is a single set operation node, regardless of the 
dimensionality.) 

3.	 This gives Uti an extrusion defined for all time. To limit the time to 
the time span of interest, say tl ~ t ~ th, we inter6ec:t this extruded 
shape tree with the intenection of tbe two linear half-spaces -t ~ -tl 
and t ~ tho 

Example Consider the block given by -1 ~ x,'fJ,z $. 1 moving with 
velocity (1,1,1) for 0 $. t ~ 10, and at rest otherwise. Then the complete 
extru6ion is given by the union of 

1.	 The intersection of the seven half-spaces -1 :S % I Y, Z $. 1 and t ~ O. 

2.	 Tbe intersection of the eight half-space6 t - 1 '$ %, Y, Z ~ t + 1, t ~ (J 

and t ~ 10. 

3. The intersection of the seven half-spaces 9 ~ x, y, Z $. 11 and t ~ 10. 

To con6truct a CSG de6cription witb multiple time component6, say tt < 
t2 < ... < tn, we find the extrusion over each component 6eparateIy, bound 
the tree between ma.x(tl, t;) and mineth, ti+d (1 '$ i < n), and then take the 
set union of the extrusion trees to get the total extrusion. Thi6 gives U6 a 
binary tree that completely specifies each WOnD; these are then intersected 
(symholically) to represent the entire region of space-time for wbich the 
objects overlap. (An alternative approach is to identify the time spans 
over which botb objects have constant velocities, and to run the colli6ion 
detection proceSB separately for ea.ch time span. This i6 the approacb u6ed 
in §4.3.) 
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In OUT current ROBMOD implementation we restrict ourselves to generat
ing only linear four-dimensional half-spaces. This is done simply by consid
ering only polyhedral approximations to shapes, moving through motions 
which are composed of linear velocity segments. Thus we actually rewrite, 
say, a cylinder as the intersection of a number of (three-dimensional) linear 
half-spaces, and extrude all the half-spaces using (4). 

4 Null Set Detection 

We now have a. four-dimensional intersection set, specified by a Boolean 
tree, and we want to see whether the set is empty. This can be regarded 
as a set satisfiabHity problem: does there exist a (four-dimensional) point 
~hat satisfies the set given by this Boolean formnla? Several techniques 
exist for solving the intersection problem in three or fewer dimensions, and 
many of these techniques are amenable to tackling the four-dimensional 
problem. We will follow the general approach detailed in [Cam89], giving 
the modifications required for our particular geometric domain. Effectively, 
the algorithm is split into three stages, which operate in cascade to provide 
an efficient solution to the problem. These stages are: 

1. A pre-processing	 stage, based on reasoning about approximations to 
snbtrees. This stage is called the S-bound preprocessing stage. 

2. A divide-and~conqner stage, whereby the problem is dynamically split 
into a number of simpler problems to rednce the computational com
plexity. 

3. A generate-and-test stage, at which tbe exact geometry of the problem 
is considered. 

The purpose of the cascade is to reduce the overall time cost of the algorithm, 
by using relatively cheap processing to solve the 'easy' parts of the problem 
and only passing onto the further stages the parts that are still in doubt. 
Here, a "'part" means a rectangnlarS regiou of space-time in which we search 
for a point in the intersection set. Note that, for simplicity, we have not 
implemented the reduudancy-based routine described in [Ca.m89]. 

In order to follow the development of this algorithm, and to improve the 
presentation, we describe the S-bound preprocessing stage last. 

~We we 'rectangulu' lo imply a. product set of dosed interva.ls, i.e., an a.ligned rectangle 
in two dimensions, a. box in three, etc. 
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4.1 Divide-and-Conquer 

Th.e input to this stage is a eSG description, plus a rectangular region of 
space-time within which to searcb fOT evidence of non-nullity. (Finding such 
evidence implies that the extrusions overlap and so that the objects collide.) 
In our original implementation a bounding region of space was computed 
for each object by enclosing the object at everyone of tbe points in time 
at which the velocity changes; the space-time region wa.a then generated 
by intersecHng the space regions for the two objects, and adding the time 
bounds given to the clash function. In the current implementation the 
space-time region is given directly by the S-bound preprocessing step (as 
described in §4.3). 

This region and the intersection tree could be passed straight to the rou
tine given in §4.2, but for reasons of computational efficiency we interpose a 
divide-and-conquer stage, which replaces our single problem by a number of 
smaller problems. The mechanism involved is discussed in detail in [Cam891 1 

and we only give brief details here. 

1.	 Given a region of space-time R, and a tree, T, we measure the com
plexity of T, and decide whetber to continue to the generate-and-te5t 
routine (§4.2), or to divide the problem up. 

2,	 To divide the problem we split the region R into a number of subregions 
{R,:}, with the subregions covering R. Then, for each 14, we make a 
simplified copy of the intersection tree T j , using the technique discussed 
below. The region/tree pairs (Rj, Ti) are then recursively evaluated 
(slep 1). 

3.	 The entire problem terminates whenever any subproblem discovers 
that the intersection set is non-null, or when all the subproblems have 
reached the generate-and-test stage. 

Note that the space requirement of this process is proportional to the maxi
mum depth of subdivision, and not to the total number ofregions examined. 

As each ofour regions are aligned, rectangular boxes (in four-dimensions), 
then a simple strategy for splitting tbe regions is to split each box into six
teen parts by bisection along each coordinate axis. This is, in fad, the 
strategy that we have adopted, as it seems to work well; however a number 
of heuristics could be invoked to try to balance the size of the subproblems 
generated; [Woo86J gives examples of such heuristics in a three-dimensional 
situation. 

The simplification strategy is based on the observation that if the bound
ary of a half-space does not pass through a region, then the corresponding 
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leaf can be removed. For our convex balf-spaces and convex polyhedral re
gions, we can check whether the boundary intersects the region simply by 
computing the half-space function at the region extreme points. It is worth 
noting that we may often discover that a region Simplifies to a null region, or 
a completely (uti region (proving non-nullity without having to consider the 
boundary intersections), or a region with only one or two half-space bound
aries passing through it. In the latter case an efficient closed-form solutions 
erists, namely by treating the simplified tree as defining a formula of the 
propositional logic, and testing whether it is a contradiction. 

Example A sphere of radius 4 has centre at (5,5,5) at time 0, and moves 
with velocity (1,1, 1). A cube of sIdes 4 is centred at (44.54,5) at time 0, 
and moves with velocity (0,0,1). To test whether any collision occurs in 
o~ x, y, z, t S 64 we consider the intersection of the 7 extruded half-space; 

(z - 5 - t)' + (y - 5 - t)' + (z - 5 - t)' :S 16 
42 S ::c :$ 46 
52:Sy:S56 
3Sz-t~7 

The division mechanism qnickly decides that only the space-time that is 
bounded by 40 < ::c < 48, 52 < Y < 56, 44 < z < 52 and 42 < t < 46 
contains a.ny points of interest, and goes ou to pass 8 regions of width 4 to 
the next stage for further investigation. Thill means tha.t only approxima.tely 
0.01 % of the original hypervolume is explored in detail. 

Calculation of the computational complexity of this process is difficult, 
as the worst-case analysis is, experimentally, extremely pessimistic, and it 
is difficult to characterise a set of more realistic cases to give a measure 
of the expected complexity; however our analysis does suggest that the ex
pected complexjty is not worse than O(n2 ) [Cam89J. We can also apply 
some heuristics to speed up the process, such as relating our measure of 
'complexity' of a tree to the size of the region. In our implementation we 
measure the complexity of a tree by its nnrober of leaf nodes, and decide to 
'conquer' instead of 'divide' if the complexity is smaller tha.n K(d), where d 
is the number of division steps already performed. In our implementation 
we use K(d) = 2d +6 (0 ~ d ~ 6). If the region size becomes very small we 
assume that the intersection hypervolume is so small that it can be ignored. 
In practise, this has never happened. 
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4.2 Generate-and-test 

The generate-and-test routine is our general routine that checks for nullity. 
More sophisticated routines can be devised (e.g., (RV89]), but as the divide
and-conquer mechanism ensure5 that the problems given to our routine are 
bounded in size, we have chosen to go for simplicity, and follow the approach 
given in [Cam89]. Th.is involves generating a sufficient set of test points (in 
space-time) and checking these points to see if a.ny is imide the intersection 
set. To generate the point set, we go though a loop: 

1.	 For every triple of half-spaces referenced by the tree, find their inter
section. In the general case, this will be a line through space-time. 

2. Intersect every line with every half-space. (We do not, of course, need 
to intersect with a.ny of the triple from wh.ich this line was formed.) 
This gives a number of potential edge segments; if the intersection 
polytope is non-null, some of these edge segments wHi lie inside or on 
the intersection set. 

3. For every edge segment, classify the mid-point. 

This algorithm thus requires O(n") point classifications. In a non-regularised 
set system, it would be sufficient to classify a point by evaluating the half
space functions at the point, and combine the Boolean truth values using 
f\ where we see set intersection, etc. Classification in this case is a linear 
time process, and so the total complexity of this stage is O(nS). However, 
in a regularised system we have to take the neighbourhood of the points into 
account6 • Our choice of points to test--the mid-points of potential edges~ 

is significant here. as we can then take a cro6s~section to the line at the 
test point. This reduces the problem to evaluating the intersection of three 
planes in three-dimensions, which is isomorphic to the problem of classifying 
a vertex in three-dimensions. In turn, tills can be solved by considering 
the edges surrounding the vertex (which are the intersections of pairs of 
the original tripl~ of half-space boundaries, together with the cross-section 
hypersurface), and using neighbourhood classification techniques directly on 
these. (Compare tills with classifying an edge in three dimensions, by taking 
a cross-section perpendicular to the edge to reduce it to a two-dimensional 
classification problem.) Eventually the classification problem is reduced to 
testing a number of points, each of which can be tested using the logic 
formula approach above. Details are given in appendix A. 

VU8Lttg reguluilled !lela is essentiAl if we wish to deal reliably wilh objecL8 in contllC\. 
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4.3 S-bollnds 

The test for a null inte!!;ection given above works, and works well, but it is 
dumb 1n the way that it computes the initial space-time bound to consider. 
To illustrate this, imagine a pair of unit cubes, aligned with some world 
coordinate axes, with the first cube starting at the origin and moving with 
velocity (1,1,1) for a length of time T, and the second starting at (2,0,0) 
and moving with the same veloclty--then the hypervolume considered will 
be 8(T4), whereas in a coordinate frame moving with velocity (1,1,1) both 
cubes would be fixed, and the hypervo!ume considered wonld be aCT). In 
practise this is not too much of a drawback, as the divide-and-conquer algo
rithm would quickly prove luge regions of space-time null, as they would be 
entirely outside one or other of the extrusions. However, S-bounds provide 
a. way of focusing the attention of the algorithm; they also help to remove 
so-called redundant primitives from consideration [Cam89]. 

4.3.1 Overview of S-bounds 

The binary tree representing the intersection set contains information abont 
the relative constraints hetween the half-spaces due to the root node of the 
tree, and thus the relative constraints betweeu subtrees. S-bonnds give us 
a way of organising these constraiuts, so that we can quickly reason about 
which parts of the tree are mutually contradictive. S-bounds are described 
in detail in ICam89]. An S-bound system is defined by a class of bounds, 
together with two operators n and U. The bounds are subsets of space--in 
this case ;R4-that a.re chosen to be easily described and manipulated. The 
operators must satisfy the rules: 

AnB 2AnB AUB 2AUB 

for all bounds A and B. ROBMOD uses rectangular boxes, aligned with the 
world coordinate system, as three-dimensional S-bounds (3DSBs), and then 
the operators are given by An B = An B, and AU B is the smallest aligned 
box that contains AuB. Both of these operators can be implemented in unit 
time by simply taking the maximum and minimum of pairs of coordinates 
that define the corners of the box. Given a tree, an initial set of bounds 
is generated by setting the bounds at the leaf nodes to be supersets of the 
relevant primitive shapes, and n (the uuiversal set) elsewhere. Such a set of 
bounds has the S-bounds property, namely that the set given by each subtree 
need not be evaluated outside of its appropriate bound. The real power of 
S-bounds lies in the fact that we can then rewrite the bound set using the 
set of rewrite rules in figure 2 to get a new, smaller set of bounds with the 
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Let T denote a general node of the tree, L(T) its left child, 
R(T) its right child, peT) its parent, and (J(T) its bound. 
Then we have the following rules: 

Upward Rule: H T is a branch node, set peT) +-- I3(T)nS 
where 

(J(L(T) n (J(R(T))} { n }
S ~ (J(L(T» U (J(R(T) if T is a U node 

{ (J(L(T» I 

Downward Rule: IT T is not the root node, set I3(T) +-

(J(T) n (J( peT)) 

Figure 2: Upward and Downward rules for S-bounds. 

S-bound property, where the Upward rnle is first applied in a boUom-up 
manner thronghou t the tree, followed by the Downward rule in a top-down 
manner, and repeating. As shown in [Cam89], this procedure converges 
quickly for three-dimensional intersection deteUion problems, and leM6 to 
significant computational savings as we can often demonstrate that entire 
snbtrees ca.n be replaeed by the null set, and thus need not be explored in 
detail. 

4.3.2 S-bounds in Four Dimensions 

When we discnssed the problem with the standard divide-and-conquer algo
rithm we mentioned that the hypervolume to be considered can grow large jf 
we bound t he space relative to a moving frame. For the same reason, simply 
extending S-bounds to be rectangular regions of space-time is not as efficient 
as it might be. Thus we have decided to use a slightly more complicated 
S-bounds system for om four-dimensional intersection detection work, by 
choosing S-bounds that more exactly bound the extrusions. 

Formally, our four-dimensional S-bounds (4 DSBs) consist of the union 
of a number of convex polytopes in space-time, with the polytopes not OVer
lapping in time. In particular, we split the problem up along the time 
dimension into a number of time spans, [ti, liH], so that both objects are 
moving with constant velocities over each time span. (Thus if the objects 
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have m and n motion components, there will be at most m + n time spans 
to consider.) Further, we choose the operators n and U so that the 4DSBs 
have a relatively simple form; each 4DSB is the extrusion of a 3DSB with 
the same motion as the corresponding object, except at the root node, where 
the 4DSB is the unevaluated intersection of the 4DSBs of its children. To see 
why this permits simple combination operations, com;jder two 4DSBs ofthi5 
form, namely (A, PI) and (A,fh). Then we can see (by considering the spa
tial and temporal dimensions separately) that (A,flt)D(A,fh.) =: (A,flto/h.) 
gives a suitable definition of the four-dimensional operators (where 0 is one 
of n or L.J), using the standard three-dimensional aligned box operators. So, 
within the subtrees for ea.ch object l we can effectively use only the three
dimensional combination operators, and ignore the motions. 

Matters are only slightly more complicated at the root node. We need 
to be able to intersect two rectangular regions of space-time moving with 
arbitrary linear velocities, and express the result as tbe intersection of two 
new recta.ngular regions of spa.ce-time, ea.ch moving with the same velocity 
as before. (We do not have to consider a U operation here, as the root node 
is always an intersection node for collision detection.) We have computed 
a closed-form solution for this problem, which is detailed in appendix B. 
Note that when we consider this root node we may (and often do) generate 
a sma.LIer time-bound than that originally given. In terms of the p.xample 
of figure I, this would be equivalent to pla.cing a bounding rectangle around 
the triangle, and solving exactly for the spa.ce-time in which the rectangle 
bound and the square overlap. This by itself is not sufficient to prove that 
the triangle and the square overlap, but it does limlt the search space for 
our divide-and-conquer algorithm. 

Example Consider the example from §4.1. The original R.OHMan bound
ing procedure considers a space-time region of dlmensjons 4 x 4 X 68 X 64. 
Applying the closed-form solution to rectangular S-bounds jn this case gives 
a space-time region of dimensions 2 X 2 X 4 x 2 instead! 

5 Examples 

Figure 3(a) shows a snapshot of a pair of composite objects, which are 
under motions that cause a collision. The two sets of objects are an au
tonomous vehicle, which is carrying a palleted load and is moving straight 
forward, and a line of trays, two of which are carrying loads and which 
are moving in a directiou perpendicular to the motion of the vehicle (sup
ported from an invisible overhead rail). In terms of geometric complexity, 
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,d, ~@ 
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!J,~ 
Cb) 

~~ 
Cc) 

Figure 3: Vehicle Moving in a. Straight Line 

the composite objects are described by 19 and 10 primitive sha.pes in the 
esc descriptions, which require about 150 linear half-spaces to describe. 
Figures 3(b) and (c) show two later snapshots, with the former showing a 
collision between a loaded tray and the load of the vehicle. The collision de
tection routine was asked to search for clashes over a time span of length 20; 
the S-bound sta.ge correctly identified a subspan of length 1.33 as being of 
interest, and found a witness to the collision (a point in space-time at which 
the collision was occurring) in 0.55 of CPU time (ou a SUN 3/260 without a 
floating point accelerator). To illustrate the usefulness of the S-bound stage 
here, note that only 5 of the 29 original primitives survived the S-bound 
stage after 2 Up /Down passes7 , reducing the bypervolume to be considered 
by a factor of 20. (These figures are for Hlustration only; in practise the 
regions discarded by the S-bonnd stage would have otberwise been quickly 
discarded by the division stage.) 

Instead of terminating when any point of collision is found, the routine 
can also be asked to find an earliest witness (a point when the collision 
starts). This is done by ordering the division stage of tbe routine so that 
the 'earliest' regions are examined first, and only termina.ting when the 
routine is sure that the earliest point has not been missed. As this involves 
a search over time it is slower than just finding any witness, although iu this 
particular case the extra time required is small; the same example consumed 
0.6s of CPU time. As a final extension, we can ask the routine to find all 
the edges in the skeleton of tbe common collision region. In this case there 
is no way of terminating early; for the same example this process took 15.9s 
of CPU time. The morale here is that a simple yes/no answer is normally 
far easier to obtain! 

1A simple exLension af 'he a.rgument6 in [eY] show that lhe faur-dimensional S-ballnds 
mU5t converge in a linear nllmber af passes. 
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The example a.bove only considered single motion components. In fig
ure 4 we show the same objects as before, hut now the trays have been 
lowered,60 tha.t the only part of the vehicle that a tray can only pass over is 
the centre section. The trays are moving with constant velocity, as before: 
the vehicle moves forward «a)), stops«b) and (c)). and then moves forward 
«d)), allowing a. tra.y to move over itself in the process. It thus avoids colli~ 

sians (but only just). The routine is able to check this; indeed, the S-bound 
sta.ge is sufficient here (after two Up-Down passes), as the paths and the 
objects happen to be aligned with the spatial axes. To make the problem 
harder we can run the same test, but with all the spa.tial axes skewed with 
respect to the "natural" axes defined by the problem. Even in this case 
checking for a collision took 4.1s; with the S-bound stage passing on a 11 
leaf tree to the divide-and-conquer stage for one of the 3 time spam, and 
providing 5 leaf trees for the other two time spans. 

6 The Multiple Objects Problem 

Up to now we have been considering the problem of finding collisions be
tween only one pair of objects. If many objects are moving, we will wish to 
detect collisions between any pair of objects over a time span. A simple way 
of performing this is to consider each possible pair of objects separately. In 
many c<u;es this is quite a sensible stra.tegy, <u; we may wish to only test for 
collisions between certain pairs. For example, if we have a robot ma.nipula
tor we ca.n often ignore the possibility of collisions between adjacent !.inks. 
However in the general case of n objects we will have 8(n2 ) possible object 
pairs to consider. Using extrusions it is possible to minimise any duplication 
of effort, using the scheme given below. We follow the order that we used in 
the description of the case of a single pair of objects: the theoretical basis; 
the divide-a.nd-conquer mechanism; and the use of S-bounds. 

6.1 Theoretical Basis 

We ha.ve n moving objects, say 01, ° 2 ,..• ,on, with each Oi having a location 
function 11.;_ To tell wllether any pair colHde, we need to determine whether 
Ej n Ej t- 0 for i t- j, where Ei = Ex(Aj,O I )' But this will follow if the 
union of these Ei n Ej's is non-null, Le., if 

l!J{E,] # 0 
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where I:!;l is a new n-ary set operation, defined by 

I±I{X;} ", U X; n X. 
i# 

(For completeness, we define I:!;l to return 0 if it has less than two argument 
sets.) Then to consider whether there are intersections between any pair 
from {Ei}, we form a. single esc tree for each E" and then combine these 
as children of one l:J node. This opera.tion bas spa.ce and time complexity 
linear in the size of the extrusions. 

6.2 Divide-and-Conquer 

Given a. composite esc tree, with a. l:J opera.tion a.t the root node, the 
division process of §4.1 ca.n he used with little modifica.tion. That is, starting 
with a tree and region of space-time, we need to he a.ble to simplify the tree 
with respect to the region. Comparing the individual half-spaces a.t the 
leaves works exactly as befoTej to rewrite the tree, we need only additional 
rewrite rules for the I:!;l operation. These are given by the identities: 

.IfX;",0 l!J;{X;}", l!Ji~;{X;} 

• If any pair of Xi'S are equivalent to {} l!J;{X;} ", n 

The latter case yields proof of intersection. 
The conquer stage is also very similar to before. We just form candidate 

lines in space-time by taking triples of half-spaces; split these using other 
half-space boundaries to form candidate edgesj and consider the interior of 
these edges as points to check. Again, as each point is tested by considering a 
number oflogical formulae this step is easily extended to take the l:J operator 
into account. 

Of course there is an extra penalty for considering n objects at once, 
instead of tWOj the size of tbe tree considered is bigger (by a factor of n/2). 
Assuming a division strategy that reduces the problem into subproblems of ,bounded size then the effect of this increased size is to increase the division 
time only; depending on the statistical distribution of the primitives, this 
can be expected to increase only slightly worse than linearly [Cam84]. 

6.3 S-bounds 

The use of S-bounds in the many-pairs case is not as straightforward. The 
presence of the l:J operatl:?r at the root node of the tree changes the effective 
topology of the expression into a graph, as it is possible to find many paths 
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from the root node to any leaf. However, the rewrite rules that make S
bounds efficient are defined on tree structures. 

So to consider the properties of S-bounds a.bout the l!J operator, we 
should rewrite the ~ as an equivalent tree. For example, 

1;tJ1E], E" E3 } " (E1 n E,) u (E, n E3 ) u (E3 n E,). 

We note that the subtrees £1 n E2 , etc., look like the entire tree in the case 
of a. Bingle pair of objects, and so if we were to concentrate our attention on 
one such subtree we could use the operators described there (including the 
special n operation). Also, jf we apply the Upward rule at the root node (a 
U operation) we obtain a bound on the entire tree: this bound will be bigger 
tha.n that of any of the subtrees, and so a subsequent application of the 
Downward rule about the root node will have no effect on the bounds of the 
subtrees E 1 n E2, etc. Thus each subtree is, effectively, an island, which will 
receive no useful information from a.ny of the other subtrees. This suggests 
a way for dealing with S-bounds about a ~ operator, withQut producing the 
expanded tree. 

1.	 Let the entire tree be l!HE,}. Associate with each node in each Ej an 
array of three-dimensional aligned boxes. To start the process, form 
three-dimensional S-bounds by considering just each Ej, placing the 
resul t for each node in every element, and set the four-dimensional 
bound for the l!J node to be n. 

2.	 For every pair 1 :5 i < j :5 n, apply the 4DSB processing for the 
implicit subtree E; n Ej. This is done by using the scheme of §4.3.2, 
using the bounds in the jth array elements from Ei' and vice versa. 
When we are satisfied with the bounds formed, add the (implicit) 
bound of Ej n Ej to that of the ~ operator. 

The end result of this processing is a total (four-dimensional) hound at the 
root (~) node, plus a set of n bounds for each uode of each Ej, with the jth 
set of hounds at Ei corresponding to possible interactions with Ej. 

It will be noted that we have considered the interactiou of all 6(n 2 ) 

pairs of objects by this process. We regard this as a necessary evil, whose 
effect we are trying to minimise. It is possible to produce had-cases in which 
each object could, conceivably, collide with every other object, and 80 our 
routiue must, in such cases, be prepared to consider all such pairs of objects. 
However, we believe that most real-life situations are much better behaved, 
and that only a few pairs of objects might collide. Cn such cases the S-bounds 
can decide, not only which pairs might collide, but also give bounds on the 
region of space-time in which each collision occurs, and even which parts of 
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each object could be involved in the collisions. Such 'normal' situa.tions will 
result in most of the bounds crea.ted being 0. Further, it 115 possible to disa.ble 
any furtber consideration of collisions between certain pairs of objects (e.g., 
adjacent links in a. robot structure) by setting the relevant S-bounds to 0; 
this effedively prunes the releva.nt pair from the eSG description. 

So once we have crea.ted these S-boundl5 we need to use them within 
the divide-and-conquer mechanism. Here we suggest two schemes. The 
first , which would work well if only a. few pairs of objects a.re shown to 
be capable of colliding, simply identifies those pairs (from the S-bounds) 
and then tackles each pair separately (as in §4). This scheme is spa.ce
efficient, as we ca.n process ea.ch pair when their S-bounds are considered 
without storing the S·bounds further. However, we are then performing the 
divide-and-conquer process many times. To avoid this we can use the second 
8cbeme. which is based on §6.2, but where we treat the union of tbe array of 
S-bounds stored at each lea/node as an outer bound for that node, and take 
these bounds into account during the division process8. This is done by 
ignoring any leaf node whose total S-bound does not intersect the region of 
interest; as the division process proceeds, the regions of interest get smaller, 
and so more leaf nodes are (on average) pruned out. Further, a.t the conquer 
stage we can take the S-bounds into account during the point classification 
stage. 

The second scheme is likely to be more efficient than the first when there 
are a large number of possible collision regions between a large number of 
pairs of objectsj however tbe organisational complexity of the scheme in
creases. Intermediate approaches are possible; instead of forming the exact 
union of tbe S·bounds in the array (as a list of S-bounds), we could form 
an approximation to the union, using U instead of U. Again. the relative 
advantages of these approaches is heavily in.fl.uenced by the geometrical do
main; the intermediate approach is likely to work well if the possible collision 
regions for each object are localised (in space-time). 

Another approacb that is likely to be useful for the many-pairs case is 
to build up a hierarchy of approximations to the objects. For example, in ,[FT87] a11st of approximations to the shape of objects is used. with the later 
approximations being finer than the earlier approximations. We may think 
of the early approximations as shells around the objects; their algorithm iui· 
tially considers the relationships between the outer shells, and when these 
get 'too close' the current shell is 'broken' and the next approximation used. 
Thus a variable resolution is used in the models, depending on the distances 

'We can, without loss of generality, consider only leaf nodes as the bounds Cormed lI.n 

mODoh;lllic decreasing in size as we work do .....n the CSG trees. 
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between different objects. To use this idea we would have to build a series 
of coarse S-bouncls for each approximation, and to use different lev{'ls of 
approxima.tions for different pa.irs of moving objects. In fact we may also 
regard the S-bounds in the esc tree as naturally forming an approxima
tion hierarchy, although then with snb-components of objects rather than 
separate objects. 

7 Summary 

We have introduced a formalism that allows us to model objects in motion 
by subsets of space-t1me, and explained how the topological properties of 
the objects and motions a.ffect the extrusions formed. Extrusions can 
be used to transform the collision detection problem into an intersect.ion 
detection problem in space-time. The problem transformation is general, 
but takes on a particularly easy form when the objects are described as 
a set-combination of half+spaces. An implementatiou of the method has 
been developed for the case when the objects are polyhedral and moving 
with linear motions. The implementation uses a preprocessing step (based 
on S-bounds) which determines interesting regions of space-time in which to 
search for collisions. This step also identifies which parts of each object could 
be involved in collisions, and hence simplifies the size of the interspction 
detection problems. It should be noted that the preprocessing step is easily 
extended to deal with other geometries, as we only need bounds on the sizes 
of regions. It could also be used with other forms of shape de~criptions, for 
example, B-reps [RV82] where an S-bound is stored with every boundary 
feature, although then it is more difficult to identify which subcomponents 
of the objects might be involved in collisions. As a special case we could use 
a three-dimensional modeller to test for collisions between two-dimensional 
objects. 

The ou tput of the preprocessing step is processed by a divide-and-conquer 
mechanism. This is based on splitting the original problem into a number of 
simpler problems, each of which is finally tackled using a generate-and-test 
routine. Of these stages only the 'generate' step is difficult to generalise 
to a.rbitrary shapes and motions, as we used knowledge of the properties of 
linear equations to produce our set of points to test. 

In use t he preprocessing step is seen to be efficient at selecting regions 
of space-time to test, at least for objects moving with linear motions. We 
conjecture that th" preprocessing will also work well for general motions if 
we select bounds that are the extrusions of a simple shape (sllch as spheres 
[Cam89]) moving with the centre of mass of the objects; this will involve a 
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more complicated bound combination strategy as we will then, effectively, 
have to solve the collision detection problem for spheres. 

Hmany objects are moving we may wish to consider many potential pairs 
of objects in collision. This can be tackled under the same framework by a. 
slightly more complicated preprocessing system that identifies which object
pairs are of interest. The remainder of the processing can be performed 
(potentially in parallel) by a simple extension to the divide-a.nd-conquer 
framework. Althongh for n objects there are 8(n:J) object pairs that could 
collide, the a.dvantage of our approa.ch is tha.t we can share much of the 
processing, as the extrusions for ea.ch object are the same regardless of which 
other object is potentially involved in a. collision. This is not the case foc, 
say, the swept volume metbod for collision detection, in which the relative 
motions between objects bas to be used. 

The main limjtation of the routine described. here is in tenns of the shapes 
and motions it can consider. However the ability to deal with linea.r motions 
is useful for cartesian mechanisms and robots, vehicles, and the end-effector& 
of general robots under cartesian control. General rotations, such as those 
affected by the body of an anthropomorphic robot, do cause practical diffi
culties. Most of the routine is easily extended, with the real problem being 
performing the final null object detection tests (§4.2), which must generate 
a sufficient set of points to be sure of collisions. Effectively, if you double 
the number of different types of surfaces tbat have to be considered then the 
number of ways of generating test points goes up by a large factor, whereas 
the extensions to the other stages scale linearly. This effect is well·known 
within the geometric modelling community. A partial solution might be 
to ~apt Canny's algoritbm [Can86] as a solution to the null object detec
tion problem, either by using his quaternion mapping to encode rotations 
as polynomial half-spaces, or by calling his routine in the hard cases with 
the vertices and surfaces within the regions given by the divide-and-conquer 
mechanism. Canny's implementatiou combines 'traditional' hand-encoded 
programming (to describe the configuration space obstacles) with computer 
algebra techniques (to find the roots of the polynomials). For a truly general 
solution, in terms of the coverage of surface and rotation types, we believe 
that we will need further advances in computer algebra and theorem prov· 
iog, in order to write routines that can automatically handle the new surface 
types as they are added. 
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Appendix 

A Neighbourhood Computation in Four Dimen
sions 

1.	 The neighbourhood 1s input as a Boolea.n function (eSC tree) over a. 
number oflinear half-space passing through a. common point a.nd all 
containing the line direction i. By sorting the normals to the half
spaces we can indentify any multiple references to a half-space or its 
complement, and so express the Boolean function as a function of a 
unique set of normals {Pi} for 1 ~ i ~ n. In turn by forming an 
orthonormal basis {I, € l, €2, e3} a.nd expressing each Pi as (0, Pi) we 
convect the neighbourhood into the equivalent three-dimensional case 
of number of planes passing through the origin. 

2.	 If n .::; 2, or if n = 3 and the {Pi} are linearly independent then 
the Jogic~based approach suffices [Ca.m89J. (Linear dependence is eas
ily checked by generating the basis vectors €j from the Pi using the 
Gramm-Schmidt process.) 

3.	 If n = 3 but the {Pi} lie in a plane, the following is useful. ConBider 
the Boolean function and count for how many of the 8 possible inputs 
it can return true. If the answer is 0 or greater than 2 then we can be 
sure whether the neighbourhood is empty or not, as there are exactly 
2 spatially redundant cases. 
(In practise steps 1-3 take care of the vast majority of cases.) 

4.	 Otherwise, if all the {pd lie in a plane consider a. new set of 2n test 
points of the form {±Pi X nL where X is the vector product operator 
and n is the normal to the common plane. Each test point must be 
amenable to the logic-based approach. 

5. Similar]y,	 if the {Pi} span three dimensions consider test points of 
the form {±pi X p,}. This is equivalent to testing a general vertex 
in three-dimensions by crawling along all possible edges leading from 
that vertex, and testing those recnrsively. 

B Special Form of the n Operator 

The routine to he described takes two S-bounds, each consisting of a spatial 
(rectangular) bound movjng with COnstant velocity, and computes two new 
spatial bounds that tightly enclose the intersection, together with a new 
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time-spa.n [t" th] over which they are valid. We may obtain a. null tjme-spaJ\, 
which indica.tes that the space-time bound is null, and thus that the objects 
cannot collide (in this time-span). The algorithm proceeds as follows: 

1.	 Compute the new time-span, [til th], by considering the intersection of 
the spa.tial bounds. 

2.	 By considering each spatial dimension separately, compute the new 
spa.tial bounds. 

Note tha.t if the objects ha.ve the same velocity, then the temporal bound 
is unaffected, and the change in spa.tial bound is equivalent to that for the 
three-dimensional S-bound system. 

Computing [t,. th] Let q be one of the spatial parameters (x, y or z). 
Then if we ignore the other spatial parameters we are given four relationships 
between q and t, of the form 

ut+aSq$ut+a vt+b:<;q:<;vt+iJ 

(tI, Q, b and fJ are obtained directly from the 3DSHs, and u and v are the 
velocity components.) Solving these inequalities for t giVe6 b- a ~ (u-v)t ~ 

fJ-a. [t,. thJ is formed by taking the intersection of the three intervals formed 
in this way, together with [tL. tH]' (A null time interval causes a. null set to 
be returned, signifying a provably null region.) 

Computing the Spatial Bound8 For each spatial component q, we ef
fectively compute bounds on q at each of t[ and th. and then "push" the 
four spatial bounds to touch these bounds. The bound a.t th is given by 
qh $ q ~ Qh, where qh = max(uth +a,,,th +b),Qh = min(uth +a,vth+!3). 
and we can obtain similar ex'pressions for the bounds at tj, ql and Q,. (Note 
that, by our choice of t, and tho qh ~ Qh and ql :$ Q,.) Then we need 
to choose values for the new spatial bounds, [a', a'] and [b', ,01, so that the 
relevant space-time bounds (ut +al ~ q ~ ut +a', etc.) contain the inter
section region. This is satisfied by setting a' = min(q, - uti, qh - uth), which 
simplifies to 

a' = max(a,b+min((v-u)',,(v-u)'.)) 

0' = min(o,il+max((v-u)',,(v-u)'.)) 

with similar expressions for b' and /3'. (To derive these forms, apply the 
affine transformations q _ q - ut and q _ q - vt in turn. Note that we a.re 
guaranteed to have a' ~ «, etc.) 
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q~ "t+b q~11/+fJ 

'> < )C t ~ 'h 

" V ;;/q=tit+a , t=:t, 

q=ut+a: 

Figure 5: Example of a projection in q-t space 

An example is given in figure 5, in which the dashed region shows the 
intersection of the six bounds, but for which a. reduction in the size of the 
bounds is not possible (along this spatial dimension). If one of the temporal 
bounds were to lie along the dashed line instea.d, a reduction in size wonld 
be possible. 

Optimal Fit ting of the Final Region The final region is the intersec
tion of the two4DSBs, together with a. time bound, [tl, th]' We need to find a 
single redangular bound around this region, to be passed to the divide-and
conquer routine. However, we are at liberty to measure the velocities with 
respect to any frame we choose when selecting this frame. This is equivalent 
to applying an affine transform to the space-time diagra.ms, or fitting an op
timal parallelogra.m region around the projection of each parameter q. In 
fact, if we choose to measure with respect to a frame moving with velocity 
to in the direction above, and noting that the intersections of the left-most 
and right-most bounds in q cannot be redundant (as otherwise we could 
choose better boundlS). then we first see that choosing 'Ill outside the range 
between u and v cannot give a optimal fit. So consider 'Ill = Au +(1- A)v 
for >.. E [0,1]. Then we can show that the sides of the parallelogram are ~c 
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apart (measured in the q direction). where 

<l.P ~(" - a) +(1- ~)(t1- b) 

and so we are best choosing between w = u or w = V' (unless either is 
optimal, in which ca.se so is any such w). Notice that this is not necessarily 
the same as choosing to regard one of the objects as fixed: we decide which 
object to "fix" in each spatial dimension separately. 




