
COLLISION DETECTION BY FOUR-DIMENSIONAL
INTERSECTIOl'i TESTING

by

Stephen Cameron

Technical Monogra.ph PRG·86
ISBN 0-902928-65-1

July 1990 J' I::. _:_::~_F'"'" .,~. ;' -', -'-~'-' ..-,-..
e.".TE

Oxford University Computink: La.boratory !

Programming Resea.rch Gro~- I
 25 FEB 20ll?11 Keble Roa.d ~
Oxford OXI 3QD ' ---- Engla.nd - --- ----- --

.-.... -~,~.". - -_:"'.::. ,{

OxF6(2,D
~-, - ~

! "'-'
,---- -

IIIIIIII1III

3033a701eW

Copyright © 1990 Stephen Cameron and the Institute of Electrical and
Electronic Engineers

O:d'ord University Computing La.bora.tory
Progra.mming Resea.rch Group
11 Keble Road
Oxford OX! 3QD
England

r· ,
: 1 ";\'·"rr'rfv Computing Lebcr?f:Jry

. ["':;' ~ rig
F;u:..J

(,,},Ivl" OX 1 :JQD

Collision Detection by Four-Dimensional

Intersection Testing'

Stephen Cameron

Abstract

The collision detection problem is easily stated: "Given two objects and
desired motions. decide whether the objects will come into collision overa.
given time span". The solution of this problem is useful, both in robotics
and other problem domains. We describe a method for solving collision de
tection that involves transforming the problem into an intersection detection
problem over space-time. We give the tbooretical basis for the solution, a..nd
describe an efficient implementation based on describing the objects and
motions constructively. We also consider the related problems of describing
the collision region, and of detecting collisions when there are a. more tbm
two moving objects.

-To appear, IEEE Tron.'latiion.'l on Robotic$ and AlJtomatton

1

INTRODUCTION

Introduction

The collision detection problem ma.y be sta.ted as: "Given two objects and
desired motions, decide whether the objects will come into collision over a.
given time spa.n". Solving this problem is useful in i15 own right, a.nd the
solution can also be used as parts of algorithms that try to generate colJjsion.
free paths. We have been especially interested in solving the collision
detection problem for robotics, but the work reported will also be of in
terest in other problem domains, such as VLSI and electronic circuit la.yout,
"Cloth·cutting", bin-packing, assembly planning, and driving numerically
controlled machines. Previous work aD this problem haJ'i mainly arisen
(rom two sources. One source has been the prolifera.tion of CAD descrip
tions of sha.pes, a.nd the desire to do more design on the computer (e.g.,
[Boy79, Mey81, Mye81, CK86J). Another source has been from algorithm
design in its own right, which emphasises the design of algorithms with low
computational complexity. Our work is rooted firmly in the former camp,
but with emphasis on the production of efficient algorithms.

There are many different algorithms for collision detection. As argued
in [Cam8S}, one class of algorithms is conceptuaJly the simplest: we choose
a number of times, {til, within our time·span of interest, and perform a.
(static) interference test at each ti. This algorithm has many adva.ntages:
it is relatively simple, it is not necessary to derive a dosed-fOnD for the
motion (access to a sampling function will suffice), and it gives good operator
feedback when used as part of simulation. However, the algorithm is not
perfect, and, in particular, it does not work well if objects come into contact.
Another method is to compute the volume swept out by the objects over
their motions, a.nd to declare a collision if these swept volumes intersect.
Again this method is intuitive but, as we shall see, the method described in
this paper i.s effectively better (except in some "special ca.<les").

[Can86} describes yet another method for coHiaion detection, in which
the problem js transformed into detecting collisions for a point in config
uration space. [LP83J. Effectively Canny considers intersection detection
between a line and six-dimensional configuration space obstacles, using al·
gebraic techniques to find the intersection regions. Configuration space is
normally associated with solutions of the collision avoidance problem (e.g.,
[LP87, 00n87, Can88l). We believe that collision detection is worthy of sep
arate study as it can often be solved far fa.<lter tha.n collision avoidance; also,
many collision avoidance schemes require a collision detector to be run tint
to generate information about the collision region (e.g., [Mye81J).

In §2 we give the formal basis for four-dimensional intersection testing.
To visualise the process, we may imagine an analogue, whereby we perform

2 MATHEMATICAL BASIS 2

collision-detection in a two-dimensional world [Abb52]. Imagine the two
polygonal objects 6hown in figure l(a) as starting from the positions shown
and having the velocities arrowed. Now imagine tha.t the two-dimensional
universe that they inhabjt is, in fact, the tioor of a. 11ft1, which is moving
vertically upward!> with some constant velocity. Then the polygons will
sweep out prisms in three-dimensional space, as shown in figure l(b). We
can think of the vertical dimension in this case as being a time dimension;
tAking a. particular horizontal slice of these prisms gives the positions of the
polygons at the corresponding time. Then, as we shall show, the polygons
collide jf and only if the prisms intersect. Figure 1(c) shows t he union of the
two pri5ms, and figure l(d) shows their (non-null) intersection.

§3 describes how this problem transformation is performed within a ge
ometric modelling system called RODMOD [CASS]. §4 gives the mea.t of the
implementation, which is ba.sed on the more genera.! routine described in
[Ca.m89]; examples of the routine in action are given in §S. The routine haa
a natural extension to tackle the collision detection problem when there are
many possible pairs of objects that could collide; this is outlined in §6. Fur
ther extensions, and connections with work on other problems, are described
in §7.

2 Mathematical Basis

We regard an object a.s being defined by a point set. (This is equivalent to
assuming that we know exactly where objects are, and what t heir shape is.)
Given an object 0, we a.ssume the existence of a location function, A, which
is a (unction that tells us where the object is at a given time. In particular,
A takes a time t and returns a transformation A(t) which tells us how to
move 0 into its position at time t, and so at this time 0 occupies the point
set

{x I(3y)y E 0 and x = A(t)(y)}

which we normally write a.s A(t)(O). As an example, an object which is
at its rest position at time 0 and ha.s a constant velocity v has a location
function that moves the point x to the point x +vt at time t. We will only
be concerned with rjgid-body motions, but we note that most of the motions
made by "normal" materials, including elastic deformations and fluid flows,
un (in principle) be described by invertible, continuous location functions,
as matter is not lost during the transformation.

• aka. "eJeya.tor~.

Ii " oS

e
0

~

0

.~ •" 0 .
~

~

§
.
"

~

~

'" .. '" '" 0 f:;..

/<J
.~

2:

s 0

"" :l' 'a, " ;< ~ ~ 0

-a ~ " r.l
~

~

~

~ ~ ..
"
0

~

2 MATHEMATICAL BASIS 4

2.1 Extrusions

The above definitions give us enough structure to formally define the extru
sion operation that we introduced informally in §l. Given an object 0 and
corresponding location fnnction A, we define the extrusion opera.tor Ex by

Ex(A,O) = {(x,t)lxE A(t)(O)} (1)

An equivalent definition (for invertible transformatioDlS) is

Ex(A,O) = {(x, t) IA(t)-I(x) E O} (2)

Then we note tha.t object A (with loca.tion function AA) collides with object
B (wi th location function As) if and only if

3(x, t) x E AA(t)(A) and x E AB(t)(B) ..

Ex(AA,A)nEx(AB,B) ¥ 0

Le., two objects collide jf and only jftheir extrusions intersect.
Thus extrusions give us a. ma.thematical fra.mework for considering the

collision detection problem. However, these definitions do not tell us how
to construet extrusioDlS. [ER83] considers the extrusion of collections of
simple shapes, na.me1y spheres. [ST85, FS89] use a hierarchal description
called a bintree2 to describe space-time; the bintree is constructed using an
algorithm similar to that described in §4.1, but always continues division
until the space-time region is full or empty. [GlaS8] uses space-time to
perform ray-tracing of moving objects for animation, for which only samples
of the extrusion are required. [JP88) give a construction for the boundary
of extrusions when the location functions correspond to linear veloci ties and
the objects are polyhedral, but in general the boundary of an extrusion may
be quite complex.

In our work we have used constructive solid geometry (CSG) as the
method for describing three-.dimensional shapes, whereby a shape is given as
a set-combination of simple shapes-this is a common description method
(or solid models [RV82]. Effectively, a CSG description is equivalent to a
Boolean function F of a number of sjmple objects ~', so that the object is
given by

F(Plo P2,.··, Pm)

where F is obtained by use of the set operations of union (U), intersection
(n) and difference (f). Given such an F we may derive the function F,
obtained from F by replacing each three-dimensional set operation by the

'lSimilar to a qua.dtree [Sam84]

2 MATHEMATICAL BASIS 5

corresponding (our-dimensional set operation3 • Then the following dish;.
bution theof'£m gives us a way of simplifying the construction of extrusions:

o Distribution Theorem

The extrusion opera.tion distrihutes over the set opera.tions; that
is

Ex(A,F(P"P"" "Pm)) =

F(Ex(A, P,), Ex(A,P,)"", Ex(A, Pm»

Proof (for the standard set opera.tions) Let F denote the logical formula
derived from a. set formula. F in the normal wa.y (by repladog U by V, etc,).
Then

(x, t) E Ex(A,F(P" P", .. , Pm))

... A(W'(x)E F(P"P" .. "Pm)

... F(A(W'(x) E P" .. "A(lt'(x) E Pm)

... F«x, I) E Ex(A, P,),,,,, (x, I) E Ex(A, Pm)

... (x,l) E F(Ex(A,P,),Ex(A,P,) .. "Ex(A,Pm))

a.B required.
The distribution theorem simplifies the construction of extrusions as it

is often easy to write down the form of an extrusion of a. simple sha.pe p;,.
In particular, if each Pi is a. half-space:

Po = {x Ip,(x) :$ o} for some function Pi

then the extruded half-spate is a.nother half-space:

Ex(A, P,) = {(x, t) Ip, 0 A(I)-I(x) ~ OJ (3)

where 0 denotes functional composition. One specific case that is of interest
is when eac.h half-space of the object is linea.r, and moving with constant
linear velocity. So if P corresponds to the half-space p(x) = n.X: +d (where.
is the scalar product operator) and A is the loca.tion function conesponding
to the identity transform at time 0 and a constant velocity v, we find that
Ex(A, P) corresponds to the (four-dimensional) half-space

vex, t) =n.x - n.vt + d (4)

~~ntiaJly F <md j look the sa.me; they are distinguisbed for rtuons of peda.ntry.

2 MATHEMATICAL BASIS 6

We use the combination of (3) and the distribution theorem to model
the extrusions of objects. If we have two extrusions, say

F(P" P"", .Pm) and C(Q" Q""" Q.),

where PI, etc., denote extruded primitives, then the objects collide if and
only if the extrusjons intersect; that is, if

H(P"P"""Pm,Q"Q"""Q.) '" 0

where

H(P""" Pm,Q"Q"" A.) = F(P"" "Pm) n C(Q",,, ,Qn)

So we have transformed the collision detection problem into one of detect
ing whether any (Cour-dimensional) point satisfies a region given by a. set
theoretic formula..

2.2 Mathematical Niceties

The standard set operations a.re not generally used in geometric modelling
pra.ctise, as it is possible to construct non-three-dimensional objects with
them. Instead the (closed) regularised set operations are used; these are
equivalent to performing a standard set operation, followed by taking the
closure of the interior of the resultant set. (lnformally: we perform the set
opera.tion, and stretch a tight skin over the resultant set.) These operations
can be shown to form a Boolean algebra [TRSO), and the main problem in
using them is that we have to be a careful when considering the boundaries
of sets formed. However, the following result can be shown [Cam84J:

o Distribution Theorem (for regularised sets)

The extrusion operator Ex distributes over the (dosed) regu
larised set operations.

Proof Here we will just give an outline proof of the theorem; details are
to be found in [Cam84J.

By the same argument as was used for the standard set operations, we
find that

(x,t) E reg(Ex(A,F(h""PmJ))

<> (x, t) E F(Ex(A, P,j,,,,, Ex(A, Pm))

2 MATHEMATICAL BASTS 7

where reg is the (fom-dimensional) regularisa.tion opera.tion. Thns the resuh
will follow if Ex(A,F(Pl, ... ,Pm)) is a. regula.r set. But F(P1, ... ,Pm) is
regular (in three dimensions), and as A a.nd its inverse a.re both continuous
bijections we ca.n show that Ex(A,F(Pb ... ,Pm»will be regular, provided
tha.t the time span of interest is regular in one dimension, i.e., as long as the
time domain fonn5 a. closed set. To see that this is a reasona.ble requirement,
consider the extrusions of the two-dimensional. objects in figure lj if the
extrusion is carried out over an open time interval, the 'tops' a.nd 'bottoms'
of the extrusions will be open, a.nd so the extrusions would not be regular.

Another property of lolwell-behaved~ geometric models is that they be
triangulable [Req77]; effectively, that their boundaries can be described by a.
finite number of elements. For the work reported here triangulability follows
from the finiteness of the CSC descriptions; however it is interesting to note
that triangulability is preserved under extrusion for the standard location
funcHoRs [Cam84J.

2.3 Connection with Sweeping

As mentioned in §1, a common way of performing coHision detection is to
compute the volume swept out by each object, and test these swept volumes
for interference. Sweeping can be formalised by introducing the operator
Sw, with

Sw(A, 0) = {x 13(y, t) x = A(t)(y)}

Comparing this equation with (1) we note that sweeping is equivalent to
extrusion into space-time followed by a projection operation back into the
original space, and thus that, functionally, sweeping is more complex than
extrusion. It also explains why sweeping two moving objects and testing
for interference is not a sufficient test for collisions between the objects; the
objects might occupy the the same space at different times, but thls temporal
information is suppressed by the sweeping operation. Sweeping can be made
a sufficient test by considering the relative motions of two objects. However,
such relative motions may be complex, and if there are many objects moving
we may have to consider many pairs of relative motious. Using extrusion to
solve the many-pair problem is more promising, as explained in §6.

Given this added in-built complexity of sweeping over extrusion, it is
interesting to specnlate on the popularity of the sweeping method. We
postulate two reasons. Firstly, for some shapes and some motions, the swept
volume has a particularly nice form. For example, in IdPBB83] spheres
are rotated and translated to form volumes that can be modelled using
torolds, cylinders and spheres. Thus for these cases a fairly conventional
solid modeller can be used. The second reason is a lack of familiarity with

3 IMPLEMENTATION 8

the mathematics involved. (We hope tha.t this paper might help to alleviate
such fears.)

3 Implementation

In our implementation, which is pa.rt of a solid modelling sys tern called ROB

MOD [CABSI, sha.pes are entered as expressions, that describe the sha.pes in
terms of para.meterised simple shapes (such as blocks a.nd cylinders), to
gether with rigid-body transforma.tions, joint parameters (fOT mechanisms),
and set operations. These descriptions are read by a pa..n;er that converts
them into a tree structure, whose leaf nodes reference instances of simple
shapes, and whose branch nodes either represent transform a.tions or binary
set operations. For simplicity we ma.y imagine these trees to be equivalent
to trees without the transformation nodes, i.e., whose hranch nodes denote
only binary set operations, and whose leaf nodes include the appropriate
transformation together with the simple shape.

We have used the construction paradigm to denote location functions
also. A ROBMOD expression oftype motion is made up of a cha.in of primHive
motion commands, together with the times for which each is applicable. For
example, the expression

rest until 0 vel 1 2 3 until 5 vel 0 1 1 until 10 rest

denotes a motion that is at rest until time 0 and aIter time 10, the velocity
(1,2, J) between times 0 and 5, and the velocity (0, 1, 1) between times 5 and
10. This effectively gives us the derivative of the location function; to fix
a particular function we specify that a motion corresponds to the identity
transformation at time O. This syntax was used for convenience only; other
syntax could easily be used in its place (such as specifying via points).

To attach a motion expression to a given shape, we make a R08MOD
worm expression4 by connecting a shape expression to a motion expression.
The colHsion detection function is given two worms as input, together with a
time-bound over which to test for collisions. (The time-bound is not strictly
necessary, as will be expla.ined in §4.J.) In turn, each worm is presented
internally as a bina.ry shape tree, together with a list of primitive motion
components for that shape. These inputs are further converted into a single
binary tree wbose branch nodes are set operations and whose lea.f nodes
correspond to four-dimensional half-spaces. The rest of thjs section gives
the procedure for generating this tree, and §4 gives the procedure for testing

.-"::;0 clLiled bCC<1U8e we C<1Jl im<1gine the corresponding utrusions &8 "worms" in spiSC~

time

3	 IMPLEMENTATION 9

whether this tree corre5ponds to the nun set (and thus whether the objects
collide within the given time bounds).

The procedure for deriving tbe tree, given a. single motion component,
is straightforward:

1.	 The leaf nodes in the shape tree correspond to complete simple shapes.
We first rewrite each simple shape into an appropriate combination of
half-spaces-for exa.mple, a block is replaced by the intersection of six
linear half-spa.ces.

2.	 The shape tree is now extruded--effectively, by extruding each primi
tive (using (3» and replacing each three-dimensional set operation by
its four-dimensional version. (In fact, in ROBMOD the second operation
is a null step, as there is a single set operation node, regardless of the
dimensionality.)

3.	 This gives Uti an extrusion defined for all time. To limit the time to
the time span of interest, say tl ~ t ~ th, we inter6ec:t this extruded
shape tree with the intenection of tbe two linear half-spaces -t ~ -tl
and t ~ tho

Example Consider the block given by -1 ~ x,'fJ,z $. 1 moving with
velocity (1,1,1) for 0 $. t ~ 10, and at rest otherwise. Then the complete
extru6ion is given by the union of

1.	 The intersection of the seven half-spaces -1 :S % I Y, Z $. 1 and t ~ O.

2.	 Tbe intersection of the eight half-space6 t - 1 '$ %, Y, Z ~ t + 1, t ~ (J

and t ~ 10.

3. The intersection of the seven half-spaces 9 ~ x, y, Z $. 11 and t ~ 10.

To con6truct a CSG de6cription witb multiple time component6, say tt <
t2 < ... < tn, we find the extrusion over each component 6eparateIy, bound
the tree between ma.x(tl, t;) and mineth, ti+d (1 '$ i < n), and then take the
set union of the extrusion trees to get the total extrusion. Thi6 gives U6 a
binary tree that completely specifies each WOnD; these are then intersected
(symholically) to represent the entire region of space-time for wbich the
objects overlap. (An alternative approach is to identify the time spans
over which botb objects have constant velocities, and to run the colli6ion
detection proceSB separately for ea.ch time span. This i6 the approacb u6ed
in §4.3.)

4	 NULL SET DETECTION 10

In OUT current ROBMOD implementation we restrict ourselves to generat
ing only linear four-dimensional half-spaces. This is done simply by consid
ering only polyhedral approximations to shapes, moving through motions
which are composed of linear velocity segments. Thus we actually rewrite,
say, a cylinder as the intersection of a number of (three-dimensional) linear
half-spaces, and extrude all the half-spaces using (4).

4 Null Set Detection

We now have a. four-dimensional intersection set, specified by a Boolean
tree, and we want to see whether the set is empty. This can be regarded
as a set satisfiabHity problem: does there exist a (four-dimensional) point
~hat satisfies the set given by this Boolean formnla? Several techniques
exist for solving the intersection problem in three or fewer dimensions, and
many of these techniques are amenable to tackling the four-dimensional
problem. We will follow the general approach detailed in [Cam89], giving
the modifications required for our particular geometric domain. Effectively,
the algorithm is split into three stages, which operate in cascade to provide
an efficient solution to the problem. These stages are:

1. A pre-processing	 stage, based on reasoning about approximations to
snbtrees. This stage is called the S-bound preprocessing stage.

2. A divide-and~conqner stage, whereby the problem is dynamically split
into a number of simpler problems to rednce the computational com
plexity.

3. A generate-and-test stage, at which tbe exact geometry of the problem
is considered.

The purpose of the cascade is to reduce the overall time cost of the algorithm,
by using relatively cheap processing to solve the 'easy' parts of the problem
and only passing onto the further stages the parts that are still in doubt.
Here, a "'part" means a rectangnlarS regiou of space-time in which we search
for a point in the intersection set. Note that, for simplicity, we have not
implemented the reduudancy-based routine described in [Ca.m89].

In order to follow the development of this algorithm, and to improve the
presentation, we describe the S-bound preprocessing stage last.

~We we 'rectangulu' lo imply a. product set of dosed interva.ls, i.e., an a.ligned rectangle
in two dimensions, a. box in three, etc.

4	 NULL SET DETECTION 11

4.1 Divide-and-Conquer

Th.e input to this stage is a eSG description, plus a rectangular region of
space-time within which to searcb fOT evidence of non-nullity. (Finding such
evidence implies that the extrusions overlap and so that the objects collide.)
In our original implementation a bounding region of space was computed
for each object by enclosing the object at everyone of tbe points in time
at which the velocity changes; the space-time region wa.a then generated
by intersecHng the space regions for the two objects, and adding the time
bounds given to the clash function. In the current implementation the
space-time region is given directly by the S-bound preprocessing step (as
described in §4.3).

This region and the intersection tree could be passed straight to the rou
tine given in §4.2, but for reasons of computational efficiency we interpose a
divide-and-conquer stage, which replaces our single problem by a number of
smaller problems. The mechanism involved is discussed in detail in [Cam891 1

and we only give brief details here.

1.	 Given a region of space-time R, and a tree, T, we measure the com
plexity of T, and decide whetber to continue to the generate-and-te5t
routine (§4.2), or to divide the problem up.

2,	 To divide the problem we split the region R into a number of subregions
{R,:}, with the subregions covering R. Then, for each 14, we make a
simplified copy of the intersection tree T j , using the technique discussed
below. The region/tree pairs (Rj, Ti) are then recursively evaluated
(slep 1).

3.	 The entire problem terminates whenever any subproblem discovers
that the intersection set is non-null, or when all the subproblems have
reached the generate-and-test stage.

Note that the space requirement of this process is proportional to the maxi
mum depth of subdivision, and not to the total number ofregions examined.

As each ofour regions are aligned, rectangular boxes (in four-dimensions),
then a simple strategy for splitting tbe regions is to split each box into six
teen parts by bisection along each coordinate axis. This is, in fad, the
strategy that we have adopted, as it seems to work well; however a number
of heuristics could be invoked to try to balance the size of the subproblems
generated; [Woo86J gives examples of such heuristics in a three-dimensional
situation.

The simplification strategy is based on the observation that if the bound
ary of a half-space does not pass through a region, then the corresponding

4 NULL SET DETECTION 12

leaf can be removed. For our convex balf-spaces and convex polyhedral re
gions, we can check whether the boundary intersects the region simply by
computing the half-space function at the region extreme points. It is worth
noting that we may often discover that a region Simplifies to a null region, or
a completely (uti region (proving non-nullity without having to consider the
boundary intersections), or a region with only one or two half-space bound
aries passing through it. In the latter case an efficient closed-form solutions
erists, namely by treating the simplified tree as defining a formula of the
propositional logic, and testing whether it is a contradiction.

Example A sphere of radius 4 has centre at (5,5,5) at time 0, and moves
with velocity (1,1, 1). A cube of sIdes 4 is centred at (44.54,5) at time 0,
and moves with velocity (0,0,1). To test whether any collision occurs in
o~ x, y, z, t S 64 we consider the intersection of the 7 extruded half-space;

(z - 5 - t)' + (y - 5 - t)' + (z - 5 - t)' :S 16
42 S ::c :$ 46
52:Sy:S56
3Sz-t~7

The division mechanism qnickly decides that only the space-time that is
bounded by 40 < ::c < 48, 52 < Y < 56, 44 < z < 52 and 42 < t < 46
contains a.ny points of interest, and goes ou to pass 8 regions of width 4 to
the next stage for further investigation. Thill means tha.t only approxima.tely
0.01 % of the original hypervolume is explored in detail.

Calculation of the computational complexity of this process is difficult,
as the worst-case analysis is, experimentally, extremely pessimistic, and it
is difficult to characterise a set of more realistic cases to give a measure
of the expected complexity; however our analysis does suggest that the ex
pected complexjty is not worse than O(n2) [Cam89J. We can also apply
some heuristics to speed up the process, such as relating our measure of
'complexity' of a tree to the size of the region. In our implementation we
measure the complexity of a tree by its nnrober of leaf nodes, and decide to
'conquer' instead of 'divide' if the complexity is smaller tha.n K(d), where d
is the number of division steps already performed. In our implementation
we use K(d) = 2d +6 (0 ~ d ~ 6). If the region size becomes very small we
assume that the intersection hypervolume is so small that it can be ignored.
In practise, this has never happened.

4	 NULL SET DETECTION 13

4.2 Generate-and-test

The generate-and-test routine is our general routine that checks for nullity.
More sophisticated routines can be devised (e.g., (RV89]), but as the divide
and-conquer mechanism ensure5 that the problems given to our routine are
bounded in size, we have chosen to go for simplicity, and follow the approach
given in [Cam89]. Th.is involves generating a sufficient set of test points (in
space-time) and checking these points to see if a.ny is imide the intersection
set. To generate the point set, we go though a loop:

1.	 For every triple of half-spaces referenced by the tree, find their inter
section. In the general case, this will be a line through space-time.

2. Intersect every line with every half-space. (We do not, of course, need
to intersect with a.ny of the triple from wh.ich this line was formed.)
This gives a number of potential edge segments; if the intersection
polytope is non-null, some of these edge segments wHi lie inside or on
the intersection set.

3. For every edge segment, classify the mid-point.

This algorithm thus requires O(n") point classifications. In a non-regularised
set system, it would be sufficient to classify a point by evaluating the half
space functions at the point, and combine the Boolean truth values using
f\ where we see set intersection, etc. Classification in this case is a linear
time process, and so the total complexity of this stage is O(nS). However,
in a regularised system we have to take the neighbourhood of the points into
account6 • Our choice of points to test--the mid-points of potential edges~

is significant here. as we can then take a cro6s~section to the line at the
test point. This reduces the problem to evaluating the intersection of three
planes in three-dimensions, which is isomorphic to the problem of classifying
a vertex in three-dimensions. In turn, tills can be solved by considering
the edges surrounding the vertex (which are the intersections of pairs of
the original tripl~ of half-space boundaries, together with the cross-section
hypersurface), and using neighbourhood classification techniques directly on
these. (Compare tills with classifying an edge in three dimensions, by taking
a cross-section perpendicular to the edge to reduce it to a two-dimensional
classification problem.) Eventually the classification problem is reduced to
testing a number of points, each of which can be tested using the logic
formula approach above. Details are given in appendix A.

VU8Lttg reguluilled !lela is essentiAl if we wish to deal reliably wilh objecL8 in contllC\.

4 NULL SET DETECTION 14

4.3 S-bollnds

The test for a null inte!!;ection given above works, and works well, but it is
dumb 1n the way that it computes the initial space-time bound to consider.
To illustrate this, imagine a pair of unit cubes, aligned with some world
coordinate axes, with the first cube starting at the origin and moving with
velocity (1,1,1) for a length of time T, and the second starting at (2,0,0)
and moving with the same veloclty--then the hypervolume considered will
be 8(T4), whereas in a coordinate frame moving with velocity (1,1,1) both
cubes would be fixed, and the hypervo!ume considered wonld be aCT). In
practise this is not too much of a drawback, as the divide-and-conquer algo
rithm would quickly prove luge regions of space-time null, as they would be
entirely outside one or other of the extrusions. However, S-bounds provide
a. way of focusing the attention of the algorithm; they also help to remove
so-called redundant primitives from consideration [Cam89].

4.3.1 Overview of S-bounds

The binary tree representing the intersection set contains information abont
the relative constraints hetween the half-spaces due to the root node of the
tree, and thus the relative constraints betweeu subtrees. S-bonnds give us
a way of organising these constraiuts, so that we can quickly reason about
which parts of the tree are mutually contradictive. S-bounds are described
in detail in ICam89]. An S-bound system is defined by a class of bounds,
together with two operators n and U. The bounds are subsets of space--in
this case ;R4-that a.re chosen to be easily described and manipulated. The
operators must satisfy the rules:

AnB 2AnB AUB 2AUB

for all bounds A and B. ROBMOD uses rectangular boxes, aligned with the
world coordinate system, as three-dimensional S-bounds (3DSBs), and then
the operators are given by An B = An B, and AU B is the smallest aligned
box that contains AuB. Both of these operators can be implemented in unit
time by simply taking the maximum and minimum of pairs of coordinates
that define the corners of the box. Given a tree, an initial set of bounds
is generated by setting the bounds at the leaf nodes to be supersets of the
relevant primitive shapes, and n (the uuiversal set) elsewhere. Such a set of
bounds has the S-bounds property, namely that the set given by each subtree
need not be evaluated outside of its appropriate bound. The real power of
S-bounds lies in the fact that we can then rewrite the bound set using the
set of rewrite rules in figure 2 to get a new, smaller set of bounds with the

4 NULL SET DETECTION 15

Let T denote a general node of the tree, L(T) its left child,
R(T) its right child, peT) its parent, and (J(T) its bound.
Then we have the following rules:

Upward Rule: H T is a branch node, set peT) +-- I3(T)nS
where

(J(L(T) n (J(R(T))} { n }
S ~ (J(L(T» U (J(R(T) if T is a U node

{ (J(L(T» I

Downward Rule: IT T is not the root node, set I3(T) +-

(J(T) n (J(peT))

Figure 2: Upward and Downward rules for S-bounds.

S-bound property, where the Upward rnle is first applied in a boUom-up
manner thronghou t the tree, followed by the Downward rule in a top-down
manner, and repeating. As shown in [Cam89], this procedure converges
quickly for three-dimensional intersection deteUion problems, and leM6 to
significant computational savings as we can often demonstrate that entire
snbtrees ca.n be replaeed by the null set, and thus need not be explored in
detail.

4.3.2 S-bounds in Four Dimensions

When we discnssed the problem with the standard divide-and-conquer algo
rithm we mentioned that the hypervolume to be considered can grow large jf
we bound t he space relative to a moving frame. For the same reason, simply
extending S-bounds to be rectangular regions of space-time is not as efficient
as it might be. Thus we have decided to use a slightly more complicated
S-bounds system for om four-dimensional intersection detection work, by
choosing S-bounds that more exactly bound the extrusions.

Formally, our four-dimensional S-bounds (4 DSBs) consist of the union
of a number of convex polytopes in space-time, with the polytopes not OVer
lapping in time. In particular, we split the problem up along the time
dimension into a number of time spans, [ti, liH], so that both objects are
moving with constant velocities over each time span. (Thus if the objects

5 EXAMPLES 16

have m and n motion components, there will be at most m + n time spans
to consider.) Further, we choose the operators n and U so that the 4DSBs
have a relatively simple form; each 4DSB is the extrusion of a 3DSB with
the same motion as the corresponding object, except at the root node, where
the 4DSB is the unevaluated intersection of the 4DSBs of its children. To see
why this permits simple combination operations, com;jder two 4DSBs ofthi5
form, namely (A, PI) and (A,fh). Then we can see (by considering the spa
tial and temporal dimensions separately) that (A,flt)D(A,fh.) =: (A,flto/h.)
gives a suitable definition of the four-dimensional operators (where 0 is one
of n or L.J), using the standard three-dimensional aligned box operators. So,
within the subtrees for ea.ch object l we can effectively use only the three
dimensional combination operators, and ignore the motions.

Matters are only slightly more complicated at the root node. We need
to be able to intersect two rectangular regions of space-time moving with
arbitrary linear velocities, and express the result as tbe intersection of two
new recta.ngular regions of spa.ce-time, ea.ch moving with the same velocity
as before. (We do not have to consider a U operation here, as the root node
is always an intersection node for collision detection.) We have computed
a closed-form solution for this problem, which is detailed in appendix B.
Note that when we consider this root node we may (and often do) generate
a sma.LIer time-bound than that originally given. In terms of the p.xample
of figure I, this would be equivalent to pla.cing a bounding rectangle around
the triangle, and solving exactly for the spa.ce-time in which the rectangle
bound and the square overlap. This by itself is not sufficient to prove that
the triangle and the square overlap, but it does limlt the search space for
our divide-and-conquer algorithm.

Example Consider the example from §4.1. The original R.OHMan bound
ing procedure considers a space-time region of dlmensjons 4 x 4 X 68 X 64.
Applying the closed-form solution to rectangular S-bounds jn this case gives
a space-time region of dimensions 2 X 2 X 4 x 2 instead!

5 Examples

Figure 3(a) shows a snapshot of a pair of composite objects, which are
under motions that cause a collision. The two sets of objects are an au
tonomous vehicle, which is carrying a palleted load and is moving straight
forward, and a line of trays, two of which are carrying loads and which
are moving in a directiou perpendicular to the motion of the vehicle (sup
ported from an invisible overhead rail). In terms of geometric complexity,

5 EXAMPLES 17

,d, ~@

Ca)

!J,~
Cb)

~~
Cc)

Figure 3: Vehicle Moving in a. Straight Line

the composite objects are described by 19 and 10 primitive sha.pes in the
esc descriptions, which require about 150 linear half-spaces to describe.
Figures 3(b) and (c) show two later snapshots, with the former showing a
collision between a loaded tray and the load of the vehicle. The collision de
tection routine was asked to search for clashes over a time span of length 20;
the S-bound sta.ge correctly identified a subspan of length 1.33 as being of
interest, and found a witness to the collision (a point in space-time at which
the collision was occurring) in 0.55 of CPU time (ou a SUN 3/260 without a
floating point accelerator). To illustrate the usefulness of the S-bound stage
here, note that only 5 of the 29 original primitives survived the S-bound
stage after 2 Up /Down passes7 , reducing the bypervolume to be considered
by a factor of 20. (These figures are for Hlustration only; in practise the
regions discarded by the S-bonnd stage would have otberwise been quickly
discarded by the division stage.)

Instead of terminating when any point of collision is found, the routine
can also be asked to find an earliest witness (a point when the collision
starts). This is done by ordering the division stage of tbe routine so that
the 'earliest' regions are examined first, and only termina.ting when the
routine is sure that the earliest point has not been missed. As this involves
a search over time it is slower than just finding any witness, although iu this
particular case the extra time required is small; the same example consumed
0.6s of CPU time. As a final extension, we can ask the routine to find all
the edges in the skeleton of tbe common collision region. In this case there
is no way of terminating early; for the same example this process took 15.9s
of CPU time. The morale here is that a simple yes/no answer is normally
far easier to obtain!

1A simple exLension af 'he a.rgument6 in [eY] show that lhe faur-dimensional S-ballnds
mU5t converge in a linear nllmber af passes.

-!2

~ 0 "" ~
 e: g. ~

~ S·
 ""

'"
~

~

;.

. <:: t'
l on

~

ltJ=

~

~

~
 ftJ=

:?
~

/(}

=

~
0=

=
""

6 THE MULTIPLE OBJECTS PROBLEM 19

The example a.bove only considered single motion components. In fig
ure 4 we show the same objects as before, hut now the trays have been
lowered,60 tha.t the only part of the vehicle that a tray can only pass over is
the centre section. The trays are moving with constant velocity, as before:
the vehicle moves forward «a)), stops«b) and (c)). and then moves forward
«d)), allowing a. tra.y to move over itself in the process. It thus avoids colli~

sians (but only just). The routine is able to check this; indeed, the S-bound
sta.ge is sufficient here (after two Up-Down passes), as the paths and the
objects happen to be aligned with the spatial axes. To make the problem
harder we can run the same test, but with all the spa.tial axes skewed with
respect to the "natural" axes defined by the problem. Even in this case
checking for a collision took 4.1s; with the S-bound stage passing on a 11
leaf tree to the divide-and-conquer stage for one of the 3 time spam, and
providing 5 leaf trees for the other two time spans.

6 The Multiple Objects Problem

Up to now we have been considering the problem of finding collisions be
tween only one pair of objects. If many objects are moving, we will wish to
detect collisions between any pair of objects over a time span. A simple way
of performing this is to consider each possible pair of objects separately. In
many c<u;es this is quite a sensible stra.tegy, <u; we may wish to only test for
collisions between certain pairs. For example, if we have a robot ma.nipula
tor we ca.n often ignore the possibility of collisions between adjacent !.inks.
However in the general case of n objects we will have 8(n2) possible object
pairs to consider. Using extrusions it is possible to minimise any duplication
of effort, using the scheme given below. We follow the order that we used in
the description of the case of a single pair of objects: the theoretical basis;
the divide-a.nd-conquer mechanism; and the use of S-bounds.

6.1 Theoretical Basis

We ha.ve n moving objects, say 01, ° 2 ,..• ,on, with each Oi having a location
function 11.;_ To tell wllether any pair colHde, we need to determine whether
Ej n Ej t- 0 for i t- j, where Ei = Ex(Aj,O I)' But this will follow if the
union of these Ei n Ej's is non-null, Le., if

l!J{E,] # 0

6 THE MULTIPLE OBJECTS PROBLEM 20

where I:!;l is a new n-ary set operation, defined by

I±I{X;} ", U X; n X.
i#

(For completeness, we define I:!;l to return 0 if it has less than two argument
sets.) Then to consider whether there are intersections between any pair
from {Ei}, we form a. single esc tree for each E" and then combine these
as children of one l:J node. This opera.tion bas spa.ce and time complexity
linear in the size of the extrusions.

6.2 Divide-and-Conquer

Given a. composite esc tree, with a. l:J opera.tion a.t the root node, the
division process of §4.1 ca.n he used with little modifica.tion. That is, starting
with a tree and region of space-time, we need to he a.ble to simplify the tree
with respect to the region. Comparing the individual half-spaces a.t the
leaves works exactly as befoTej to rewrite the tree, we need only additional
rewrite rules for the I:!;l operation. These are given by the identities:

.IfX;",0 l!J;{X;}", l!Ji~;{X;}

• If any pair of Xi'S are equivalent to {} l!J;{X;} ", n

The latter case yields proof of intersection.
The conquer stage is also very similar to before. We just form candidate

lines in space-time by taking triples of half-spaces; split these using other
half-space boundaries to form candidate edgesj and consider the interior of
these edges as points to check. Again, as each point is tested by considering a
number oflogical formulae this step is easily extended to take the l:J operator
into account.

Of course there is an extra penalty for considering n objects at once,
instead of tWOj the size of tbe tree considered is bigger (by a factor of n/2).
Assuming a division strategy that reduces the problem into subproblems of ,bounded size then the effect of this increased size is to increase the division
time only; depending on the statistical distribution of the primitives, this
can be expected to increase only slightly worse than linearly [Cam84].

6.3 S-bounds

The use of S-bounds in the many-pairs case is not as straightforward. The
presence of the l:J operatl:?r at the root node of the tree changes the effective
topology of the expression into a graph, as it is possible to find many paths

6	 THE MULTIPLE OBJECTS PROBLEM 21

from the root node to any leaf. However, the rewrite rules that make S
bounds efficient are defined on tree structures.

So to consider the properties of S-bounds a.bout the l!J operator, we
should rewrite the ~ as an equivalent tree. For example,

1;tJ1E], E" E3 } " (E1 n E,) u (E, n E3) u (E3 n E,).

We note that the subtrees £1 n E2 , etc., look like the entire tree in the case
of a. Bingle pair of objects, and so if we were to concentrate our attention on
one such subtree we could use the operators described there (including the
special n operation). Also, jf we apply the Upward rule at the root node (a
U operation) we obtain a bound on the entire tree: this bound will be bigger
tha.n that of any of the subtrees, and so a subsequent application of the
Downward rule about the root node will have no effect on the bounds of the
subtrees E 1 n E2, etc. Thus each subtree is, effectively, an island, which will
receive no useful information from a.ny of the other subtrees. This suggests
a way for dealing with S-bounds about a ~ operator, withQut producing the
expanded tree.

1.	 Let the entire tree be l!HE,}. Associate with each node in each Ej an
array of three-dimensional aligned boxes. To start the process, form
three-dimensional S-bounds by considering just each Ej, placing the
resul t for each node in every element, and set the four-dimensional
bound for the l!J node to be n.

2.	 For every pair 1 :5 i < j :5 n, apply the 4DSB processing for the
implicit subtree E; n Ej. This is done by using the scheme of §4.3.2,
using the bounds in the jth array elements from Ei' and vice versa.
When we are satisfied with the bounds formed, add the (implicit)
bound of Ej n Ej to that of the ~ operator.

The end result of this processing is a total (four-dimensional) hound at the
root (~) node, plus a set of n bounds for each uode of each Ej, with the jth
set of hounds at Ei corresponding to possible interactions with Ej.

It will be noted that we have considered the interactiou of all 6(n 2)

pairs of objects by this process. We regard this as a necessary evil, whose
effect we are trying to minimise. It is possible to produce had-cases in which
each object could, conceivably, collide with every other object, and 80 our
routiue must, in such cases, be prepared to consider all such pairs of objects.
However, we believe that most real-life situations are much better behaved,
and that only a few pairs of objects might collide. Cn such cases the S-bounds
can decide, not only which pairs might collide, but also give bounds on the
region of space-time in which each collision occurs, and even which parts of

6 THE MULTIPLE OBJECTS PROBLEM 22

each object could be involved in the collisions. Such 'normal' situa.tions will
result in most of the bounds crea.ted being 0. Further, it 115 possible to disa.ble
any furtber consideration of collisions between certain pairs of objects (e.g.,
adjacent links in a. robot structure) by setting the relevant S-bounds to 0;
this effedively prunes the releva.nt pair from the eSG description.

So once we have crea.ted these S-boundl5 we need to use them within
the divide-and-conquer mechanism. Here we suggest two schemes. The
first , which would work well if only a. few pairs of objects a.re shown to
be capable of colliding, simply identifies those pairs (from the S-bounds)
and then tackles each pair separately (as in §4). This scheme is spa.ce
efficient, as we ca.n process ea.ch pair when their S-bounds are considered
without storing the S·bounds further. However, we are then performing the
divide-and-conquer process many times. To avoid this we can use the second
8cbeme. which is based on §6.2, but where we treat the union of tbe array of
S-bounds stored at each lea/node as an outer bound for that node, and take
these bounds into account during the division process8. This is done by
ignoring any leaf node whose total S-bound does not intersect the region of
interest; as the division process proceeds, the regions of interest get smaller,
and so more leaf nodes are (on average) pruned out. Further, a.t the conquer
stage we can take the S-bounds into account during the point classification
stage.

The second scheme is likely to be more efficient than the first when there
are a large number of possible collision regions between a large number of
pairs of objectsj however tbe organisational complexity of the scheme in
creases. Intermediate approaches are possible; instead of forming the exact
union of tbe S·bounds in the array (as a list of S-bounds), we could form
an approximation to the union, using U instead of U. Again. the relative
advantages of these approaches is heavily in.fl.uenced by the geometrical do
main; the intermediate approach is likely to work well if the possible collision
regions for each object are localised (in space-time).

Another approacb that is likely to be useful for the many-pairs case is
to build up a hierarchy of approximations to the objects. For example, in ,[FT87] a11st of approximations to the shape of objects is used. with the later
approximations being finer than the earlier approximations. We may think
of the early approximations as shells around the objects; their algorithm iui·
tially considers the relationships between the outer shells, and when these
get 'too close' the current shell is 'broken' and the next approximation used.
Thus a variable resolution is used in the models, depending on the distances

'We can, without loss of generality, consider only leaf nodes as the bounds Cormed lI.n

mODoh;lllic decreasing in size as we work don the CSG trees.

7 SUMMARY 23

between different objects. To use this idea we would have to build a series
of coarse S-bouncls for each approximation, and to use different lev{'ls of
approxima.tions for different pa.irs of moving objects. In fact we may also
regard the S-bounds in the esc tree as naturally forming an approxima
tion hierarchy, although then with snb-components of objects rather than
separate objects.

7 Summary

We have introduced a formalism that allows us to model objects in motion
by subsets of space-t1me, and explained how the topological properties of
the objects and motions a.ffect the extrusions formed. Extrusions can
be used to transform the collision detection problem into an intersect.ion
detection problem in space-time. The problem transformation is general,
but takes on a particularly easy form when the objects are described as
a set-combination of half+spaces. An implementatiou of the method has
been developed for the case when the objects are polyhedral and moving
with linear motions. The implementation uses a preprocessing step (based
on S-bounds) which determines interesting regions of space-time in which to
search for collisions. This step also identifies which parts of each object could
be involved in collisions, and hence simplifies the size of the interspction
detection problems. It should be noted that the preprocessing step is easily
extended to deal with other geometries, as we only need bounds on the sizes
of regions. It could also be used with other forms of shape de~criptions, for
example, B-reps [RV82] where an S-bound is stored with every boundary
feature, although then it is more difficult to identify which subcomponents
of the objects might be involved in collisions. As a special case we could use
a three-dimensional modeller to test for collisions between two-dimensional
objects.

The ou tput of the preprocessing step is processed by a divide-and-conquer
mechanism. This is based on splitting the original problem into a number of
simpler problems, each of which is finally tackled using a generate-and-test
routine. Of these stages only the 'generate' step is difficult to generalise
to a.rbitrary shapes and motions, as we used knowledge of the properties of
linear equations to produce our set of points to test.

In use t he preprocessing step is seen to be efficient at selecting regions
of space-time to test, at least for objects moving with linear motions. We
conjecture that th" preprocessing will also work well for general motions if
we select bounds that are the extrusions of a simple shape (sllch as spheres
[Cam89]) moving with the centre of mass of the objects; this will involve a

7 SUMMARY 24

more complicated bound combination strategy as we will then, effectively,
have to solve the collision detection problem for spheres.

Hmany objects are moving we may wish to consider many potential pairs
of objects in collision. This can be tackled under the same framework by a.
slightly more complicated preprocessing system that identifies which object
pairs are of interest. The remainder of the processing can be performed
(potentially in parallel) by a simple extension to the divide-a.nd-conquer
framework. Althongh for n objects there are 8(n:J) object pairs that could
collide, the a.dvantage of our approa.ch is tha.t we can share much of the
processing, as the extrusions for ea.ch object are the same regardless of which
other object is potentially involved in a. collision. This is not the case foc,
say, the swept volume metbod for collision detection, in which the relative
motions between objects bas to be used.

The main limjtation of the routine described. here is in tenns of the shapes
and motions it can consider. However the ability to deal with linea.r motions
is useful for cartesian mechanisms and robots, vehicles, and the end-effector&
of general robots under cartesian control. General rotations, such as those
affected by the body of an anthropomorphic robot, do cause practical diffi
culties. Most of the routine is easily extended, with the real problem being
performing the final null object detection tests (§4.2), which must generate
a sufficient set of points to be sure of collisions. Effectively, if you double
the number of different types of surfaces tbat have to be considered then the
number of ways of generating test points goes up by a large factor, whereas
the extensions to the other stages scale linearly. This effect is well·known
within the geometric modelling community. A partial solution might be
to ~apt Canny's algoritbm [Can86] as a solution to the null object detec
tion problem, either by using his quaternion mapping to encode rotations
as polynomial half-spaces, or by calling his routine in the hard cases with
the vertices and surfaces within the regions given by the divide-and-conquer
mechanism. Canny's implementatiou combines 'traditional' hand-encoded
programming (to describe the configuration space obstacles) with computer
algebra techniques (to find the roots of the polynomials). For a truly general
solution, in terms of the coverage of surface and rotation types, we believe
that we will need further advances in computer algebra and theorem prov·
iog, in order to write routines that can automatically handle the new surface
types as they are added.

Acknowledgements

This work reported herein was financed by the Science and Engineering Re
search Council, under a postgraduate studentship at the University of Edin

25 REFERENCES

burgh, aDd under an Atlas R.e8earch Fellowship at the Rutherford-Appleton
Laboratory. My thanks are also due to Mike Bra.dy for encouragement, and
to him and the anonymous referees for their comments.

References

[Abb52} Edwin A. Abbott. Flatland.
originally published 1884.

Dover, New York, 1952. Second edition,

[80y79) J. W. Boyse. Interference det.ection among solids and 8urfa.ce8. Commu.
n'cation.!l of the ACM, 22(1):3-9, 1979.

[CASS] Stephen Cameron and Jon Aylett. ROBMOD: A geometry engine for
lobolia!. In IEEE 1nt Con/. Robotics lind A utomation, pages 880-885,
Philadelphia, April 1988.

[CaroM] S. A. Cameron. Modelling Solids in Motion. PhD thesis, University of
Edinburgh, 1984. Available from the Department of Artificial intelli
gence.

ICamBS] S. A. Cameron. A Iltudy of tbe clash detection problem in robotics. In
IEEE Int Con! Robotics and Automation, pages 488-493, St. Louis,
Ma.rcb 1985.

[Cam89] S. A. Cameron. Efficient intersection tests for objeds defined. conBtruc
tively.lnt J. Robotic:s Rt.3., 8(1):3-25, February 1989. Similar to Oxford
Programming Researcb Group TM-85.

[Can86l John Canny. On detecting collisions between moving polyhedra. IEEE
Pa11trn Anal,sis and Mac:ltint Inttlligtnct, 8(2):200--209, March 1986.

[Can88) John F. Canny. Tilt, Comp/tnty of Robot Motion Planning. MIT Press,
Cambridge, 1988.

{CK86] R. K. Culley and K. G. Kempf. A collision detection algorithm based
on velocity and distance bounds. In Int. Con/. Robohcs t3 Automation,
pages 1064-1069, San Francisco, April 1986.

[CY90) S. A. Cameron and C. K. Yap. The use of bounds in geometric process
ing. Accepted for publication, ACM Transa.ctioI15 on Graphics, 1990.

[Don87] Bruce R. Donald. A aearch algorithm for motion planning with six
degrees of freedom. Art. Intelligtnc:t J., 31(3):295-353, March 1987.

(dPBB83]	 A. de Pennington, M. S. Bloor, and M. A. Balila. Geometric modelling:
A contribution towards intelligent robotics. In 19t1t. Int Symp. Indu
trial Robotics, Chicago, 1983.

[ER83]	 D. M. £Sterling and J. Van RMendaJe. An intersection algorithm for
movingpa.rts. In Proc. NASA S,mposlum on Comptttr-Aided Geomttric
Modtling, pages 119-123, Ha.mpton (VA), Aprill!l83. Conf. publ. 2272.

26 REFERENCES

[FS89] Kikuo Fujimuraand Hanan Samet. A bierarchicalstrategy for path plan
ning among moving obstacles. IEEE 1'rnns. Robotics and Automlltioft,
5(1),61-69, Febm"'l' 1989.

[FT87] Bernard Faverjon and Pierre Tournassoud. A local based approach for
path planning of manipulators with a high number of degrees of freedom.
In Inl. Con/. Ro6otiu & Atdomotioft, pages 1152-1159, Raleigh, March
1987.

[GlaSS] Andrew S. Glassner. Spacetime ra)' tracing for animation. IEEE Compo
GrfJplaies & Application.!, 8(2):60--70, 1988.

[JP88] Deborah A. Joseph and W. Harry Plantinga. Efficient algorithms for
polyhedron collision detection. In preparation: Department ofComputer
Science, University of Wiflcotl8in-MadisoD, 1988.

[LP83] T. Lozano-Perez. Spatial planning-a oonfiguration space approach.
IEEE Tnnu/Zetion.s on Computers, C-32(2):108-120, February 1983.

[LP87J T. Lozano-Perez. A simple-motion planning algorithm for general rohot
manipulatonl. IEEE J. Ro6otic~ & Automation, 3(3):224-238, June 1987.

[Mey81] Jeanine Meyer. An emulation system for programmable sensory robots.
IBM J. Re,. Dev., 25(6):955-962, November 1981.

[Mye811 J. K. Myenl. A supervisory collision-avoidance system for rohot con
trollenl. Master's thesis, Carnegie-Mellon Univenlity, 1981.

[R.eql1J A. A. G. Requicha. Mathematical models ofrigid solid objects. Technical
Report PAP TM-28, Univenlity of Rochester, November 1977.

[RV82] A. A. G. Requicba and H. B. Voelcker. Solid modeling: A historicaJ.
summary and contemporary e.ssessment. IEEE Compo Grvplaic, & Ap·
plicatioru, 2(2):9--24, March 1982.

[RV89] J. R. Rossignac and H. B. Voelcker. Active zones in CSG for accelerat
ing boundary evaluation, redundancy elimination, interference detection,
and shading a1gorithmB. ACM Tron~. Groplaic~, 8(1):51-87, January
1989. Also as IBM Research Report RC13490, Yorktown Heights, NY,
February 1988.

[Sarn84] Hanan Samet. The qu&dtree and related hierachial data structures. ACM
Computing Stanley" 16(2):187~260, June 1984.

[ST85] Hanan Samet and Markku Tamminen. Bintrees, CSG trees, and time.
ACM Compo Grt1.plaic~, 19(3):121-130, July 1985. Presented at ACM
SIGGRAPH Conference.

[TRSO] R. B. TiJove and A. A. G. Requicha. Closure of boolean operations on
geometric entities. CAD J., 12(5):219-220, September 1980.

[Woo86] J. R. Woodwark. Generating wire frames from set-tbeoretic solid models
hy spatial subdivision. Computer-Aided De6ign }., 18(6):307-315, 1986.

A NEIGHBOURHOOD COMPUTATION IN FOUR DIMENSIONS 27

Appendix

A Neighbourhood Computation in Four Dimen
sions

1.	 The neighbourhood 1s input as a Boolea.n function (eSC tree) over a.
number oflinear half-space passing through a. common point a.nd all
containing the line direction i. By sorting the normals to the half
spaces we can indentify any multiple references to a half-space or its
complement, and so express the Boolean function as a function of a
unique set of normals {Pi} for 1 ~ i ~ n. In turn by forming an
orthonormal basis {I, € l, €2, e3} a.nd expressing each Pi as (0, Pi) we
convect the neighbourhood into the equivalent three-dimensional case
of number of planes passing through the origin.

2.	 If n .::; 2, or if n = 3 and the {Pi} are linearly independent then
the Jogic~based approach suffices [Ca.m89J. (Linear dependence is eas
ily checked by generating the basis vectors €j from the Pi using the
Gramm-Schmidt process.)

3.	 If n = 3 but the {Pi} lie in a plane, the following is useful. ConBider
the Boolean function and count for how many of the 8 possible inputs
it can return true. If the answer is 0 or greater than 2 then we can be
sure whether the neighbourhood is empty or not, as there are exactly
2 spatially redundant cases.
(In practise steps 1-3 take care of the vast majority of cases.)

4.	 Otherwise, if all the {pd lie in a plane consider a. new set of 2n test
points of the form {±Pi X nL where X is the vector product operator
and n is the normal to the common plane. Each test point must be
amenable to the logic-based approach.

5. Similar]y,	 if the {Pi} span three dimensions consider test points of
the form {±pi X p,}. This is equivalent to testing a general vertex
in three-dimensions by crawling along all possible edges leading from
that vertex, and testing those recnrsively.

B Special Form of the n Operator

The routine to he described takes two S-bounds, each consisting of a spatial
(rectangular) bound movjng with COnstant velocity, and computes two new
spatial bounds that tightly enclose the intersection, together with a new

28 B SPECIAL FORM OF THE n OPERATOR

time-spa.n [t" th] over which they are valid. We may obtain a. null tjme-spaJ\,
which indica.tes that the space-time bound is null, and thus that the objects
cannot collide (in this time-span). The algorithm proceeds as follows:

1.	 Compute the new time-span, [til th], by considering the intersection of
the spa.tial bounds.

2.	 By considering each spatial dimension separately, compute the new
spa.tial bounds.

Note tha.t if the objects ha.ve the same velocity, then the temporal bound
is unaffected, and the change in spa.tial bound is equivalent to that for the
three-dimensional S-bound system.

Computing [t,. th] Let q be one of the spatial parameters (x, y or z).
Then if we ignore the other spatial parameters we are given four relationships
between q and t, of the form

ut+aSq$ut+a vt+b:<;q:<;vt+iJ

(tI, Q, b and fJ are obtained directly from the 3DSHs, and u and v are the
velocity components.) Solving these inequalities for t giVe6 b- a ~ (u-v)t ~

fJ-a. [t,. thJ is formed by taking the intersection of the three intervals formed
in this way, together with [tL. tH]' (A null time interval causes a. null set to
be returned, signifying a provably null region.)

Computing the Spatial Bound8 For each spatial component q, we ef
fectively compute bounds on q at each of t[and th. and then "push" the
four spatial bounds to touch these bounds. The bound a.t th is given by
qh $ q ~ Qh, where qh = max(uth +a,,,th +b),Qh = min(uth +a,vth+!3).
and we can obtain similar ex'pressions for the bounds at tj, ql and Q,. (Note
that, by our choice of t, and tho qh ~ Qh and ql :$ Q,.) Then we need
to choose values for the new spatial bounds, [a', a'] and [b', ,01, so that the
relevant space-time bounds (ut +al ~ q ~ ut +a', etc.) contain the inter
section region. This is satisfied by setting a' = min(q, - uti, qh - uth), which
simplifies to

a' = max(a,b+min((v-u)',,(v-u)'.))

0' = min(o,il+max((v-u)',,(v-u)'.))

with similar expressions for b' and /3'. (To derive these forms, apply the
affine transformations q _ q - ut and q _ q - vt in turn. Note that we a.re
guaranteed to have a' ~ «, etc.)

29 B SPECIAL FORM OF THE n OPERATOR

q~ "t+b q~11/+fJ

'> <)C t ~ 'h

" V ;;/q=tit+a , t=:t,

q=ut+a:

Figure 5: Example of a projection in q-t space

An example is given in figure 5, in which the dashed region shows the
intersection of the six bounds, but for which a. reduction in the size of the
bounds is not possible (along this spatial dimension). If one of the temporal
bounds were to lie along the dashed line instea.d, a reduction in size wonld
be possible.

Optimal Fit ting of the Final Region The final region is the intersec
tion of the two4DSBs, together with a. time bound, [tl, th]' We need to find a
single redangular bound around this region, to be passed to the divide-and
conquer routine. However, we are at liberty to measure the velocities with
respect to any frame we choose when selecting this frame. This is equivalent
to applying an affine transform to the space-time diagra.ms, or fitting an op
timal parallelogra.m region around the projection of each parameter q. In
fact, if we choose to measure with respect to a frame moving with velocity
to in the direction above, and noting that the intersections of the left-most
and right-most bounds in q cannot be redundant (as otherwise we could
choose better boundlS). then we first see that choosing 'Ill outside the range
between u and v cannot give a optimal fit. So consider 'Ill = Au +(1- A)v
for >.. E [0,1]. Then we can show that the sides of the parallelogram are ~c

30 B SPECIAL FORM OF THE n OPERATOR

apart (measured in the q direction). where

<l.P ~(" - a) +(1- ~)(t1- b)

and so we are best choosing between w = u or w = V' (unless either is
optimal, in which ca.se so is any such w). Notice that this is not necessarily
the same as choosing to regard one of the objects as fixed: we decide which
object to "fix" in each spatial dimension separately.

