- - ﬁ,-w—rw-\n"nrq r'ﬂi Y
oy Loberatory

: oy
.

Gavaia LAY GQL P

DATA REFINEMENT IN A CATEGORICAL
SETTING

by

He Jifeng
C.A.R. Hoare

Technical Monograph PRG-PRG-90
ISBN 0-902928-68-6

November 1990

Oxford University Computing Laboratory
Programming Research Group

11 K eble Road Ty U
Oxford 0X13QD_ , .- - . ., .. L LTI
England i L T T ! [AP Bl
L} |
| —~ ‘ 22 FEB 2007
S § ——
%
{
!

"303397006U

T e A ke i A LU o

o — T e 2

i
i

Copyright © 1980 He Jifeng, C.A.R. Hoare

Oxford University Computing Laboratory
Programmning Research Group

11 Keble Road

Oxford OX1 3QD

England

Data Refinement in a Categorical Setting

He Jifeng and C.A.R. Hoare
August 15, 1990

Contents

1 Introduction

2 Preliminaries

3 Data Reflnement By Natural Transformation
4 Data Refinement by Simulation

5 Language Constructors
51 Composition e,
52 Disjoint Union e e e e
53 Product e e
54 Higher Order Functions
55 Recursive Programs

8 Conclusion

10

18

24
24
26
28
29
30

3ic

1 Introduction

Data refinement is one of the most eflective formal methods for design and development of
large programs and systems [6, 8, 11, 12, 15]. Design starts with a grtapg D, whose nodes
are names {b,c,.., 4] of basic types, and whose arrows are the names {p.g,..,r} of primitive
operations onr values of the type. We introdnce the notation ¥ to stand for the source node of
pin D, and F for the target node. A program text over graph D iz a language [is the text
of any syntactically valid and strictly typed program whose primitive types and operations
are named by objects and arrows from the graph D). There are assembled into a program by
means of the constructors of the language L.

An interpretation of a graph D is given by a graph morphism A, mapping each type names
{objects) of D to a set of mathematijcal values, and each operation name of D to some math-
ematical function. The domain of the function Ap is just A(;) and the image is included in
A(;), i.e., the target of Ap. This is becanse A js a graph morphism, and so respects type
structure.

A large program can now be designed as an abstract program, which applies mathemati-
cal fonctions to set of mathematical values. In the text of this program, the names b,¢,.., d
are nsed to denote the types Ab, Ac,.. Ad; and the names p.gq,..,r denote the functions Ap,
Agq,..Ar. Full advantage can be taken of the simplicity and generality of mathematics to ensure
correctness of the design.

In the programming language available implements directly all the mathematical concepts
used in the abstract program, this can now be compiled and run directly on a compuler, and
no refinement is necessary. Mote nsually, a general-purpose implementation of mathematical
concepts is impossible, or impossibly ineflicient. So it is necessary to select a specialised im-
plementation of [, taking advantage of the special characteristics of the particvular abstract
program. Such a concrete implementation takes the form of another graph morphism €. €
maps the type names of I to bit-pattern which can be held ia the store of a computer, and
the operation names of D to subroutines which manipulate these bit-patterns. The program
text designed abstractly at the earlier stage is now given this new concrete representation, so
that it can be compiled and executed efficiently on a computer.

An operation with several arguments can he represented by a simple arrow from a node repre-
senting a cartesian product of the types of all the arguments; other arrows from this node to
the nodes denoting types of argnments represent projections both in abstract and in concrete
interpretations. A similar encoding is used in sketches [1]. So without loss of gererality, the
complexity of mntiple arguments can be ignored.

But of course it is esseutial to prove that replarement of the abstract interpretation A by
the concrete interpretation ¢ maintajus the cortectness of the program. In data refinement,
this is done with the aid of a collection n of abstract functions, one for each type-name d of
D. The function nd maps the values of the concrete set C'd to the corresponding abstract ste
Ad. The abstraction functions are proved to commute with all the primitive operations p of
D, in the [ollowing; sense:

To apply the abstract function n 7 after a concrete operation Cp gives the same
result as applyiug the abstract function n P before the corresponding abstract
operation Ap.

This description presuppose that the sets and functions over which € and A range are included
in 2 homogeneous mathematical space M on which functicnal or sequential composition {here

denoted by semicolon) is defined for type-compatihle functions. In other words, M is a category.
The commuting principle described in the inset above can thus be expressed by the algebraic
laws:

nd = Cd
nd = Ad
CpinP = np;Ap

In category theory, the abstract and concrete interpretations are functors from the graph I
to category M; and a collection of functioaz n which satisfy these laws is called a natural
transformation from functor € to functor A. The laws are often abbreviated to the notation

n: C > A
or expanded te a commuting diagram
Ap
AP m o > AP
n F " E;
o > Cp
Cp

In data refinement, the commuting equation is proved to hold just for the primitive opera-
tions p in D. It is then believed to hold also when p is allowed to range over all programs in
some much more powerful programming language L. The purpose of this paper is to explore
the condition under which such a belief is valid. It will be shown in later section that these
conditions can be expressed as algebraic laws, which must be satisfied by the constructors of
the programming language L.

For this reason, the validity of data refinement depends crucially on the details of the se-
mantics of the programming language L. Here we take an algebraic approach to semantics [4,
18], which matches well to the description of data refinement given above. The semantics is
specified in three relatively independent parts; the first of these is called the inner syntaz of
the language, and the third is the outer syntaz [18].

o A finiteset of names of primitive data types, and the names of the op erations that may
be performed upon them; some of them map on type to another. Theset is structured as
a diagram D {a direct graph), which defines the type constraints of the context-dependent
syntax of the primitive operations of tbe language. This diagram is siznilar in structnre
and purpose to that described above for designing concrete representations for abstract
data types.

An abstract interpretation A of the graph D is a (unction which maps each node name
(type) of D to a mathematical set, and each arrow name {(operation) of D to a function
from its source set to its target set. For some languages, the arrows are mapped by A to
partial functions or (in the case of non-determinism) to refations. The image of A can
be made into a category M, by incinding all type-consistent finite cormpositions of the
operations. Consistency of syntax with semantics requires that A shoould preserve the

structure of the graph D; in other words, A must be a graph morphism from D to UM,
where U is the forgetful functor from the variety within which M resides to the category
of graphs. Later we will need its free aedjoint F.

¢ The syntax and type constraints of the outer language are specified as a heterogeneous
signature I, containing symbols for all the construtors of the language (such as sequential
composition, conditional, or recursion), and sorts for its types. The set of sorts may
themselves be defined by means of the type constructor {(e.g., products and disjoint
sumsa) in the set I, so that the number of sorts is denumerably infinite. An algebraic
semantics for the language is given by a set of equations E governing the constructors in
L. This defines a variety V, whose objects are heterogeneous (ynany sorted) algebras that
are closed with respect to syntactically consistent application of the constructors of I,
and satisfy the equation in E; and whose arrows, say A : B — (', are E-homemorphisms
preserving all the constructors of E in the sense that

h(ea(Z1,.,2x)) = oc(hTi,..,ATy)

for all constructors o with arity » and all 2, in the carrier of B, where opis the inter-
pretation of the constructor ¢ in the I-algebga B. The variables z; are constrained to
sorts which make terms meaningful.

We define the meaning of the langnage in a manner which takes as parameter the isterpretation
described in (2). For a given graph D defining the janer syntax and given variety V' defining
the outer syntax, the language is defined az FD, the free cetegoryin V corresponding to D in
the category of graphs. Subsequently, we may choose an object of V' as the target semantic
category M; and then choose a fanction A from D to M, which is represented as a graph
morphism from D to UM, as described in (2). Then the concept of freemess ensures that
for any given inter pretation 4 there is an unique homomorpkism 84 in ¥V which maps each
program of FD to its meaning in M:

A -
D e e > UM
FA
FD -~ e e e - ——— > FUM
gA €
M

where 8 is the adfunction and € the counil. Since V is a variety, #4 is a denotational semantics
in the semse that it respects the structure of the language. Thus we have preserved the greatest
possible independenice in the choice of V, D and finally A.

In all programming languages of interest, there exists a composition operator (dencted here
as p;¢ elsewhere g - p). This is always associative and has both a left and right unit. It will
usually be a partial operator, defined only between certain compatible sorts, There sorts play
the same role as homsets in a category. To cut a long story short, the composition operator

of our programming languages will make each object of the variety ¥ into a small cotegory
(usually with additional structure), and each homomorphism into a functor (which respects
the additional structure); so V itself is a snbcategory of CAT, the category of small categories
and functors.

This method of defining a semantics for a programming language makes it possible to use
data refinement as a method of establishing correctness of an implementation of the whole
language. Suppose a particular choice A : D — M is made, which is nicely abatract and so
easy to understand and use; but perhaps it is impossible or unacceptably inefficient to im-
plement directly on a computer. Instead, we propose to implement the semantics associated
with a more dever and complicated concrele interpretation ¢ ; D — M. This proposal is
acceptable if we can show that the two semantics are isomorphic, that is, if there exists a
natural isomaorphism from C to #A. In many cases, the isomorphism may be weakened to a
projection, or a natural transformation, or other even weaker form of simulation.

Let Af be a ategory and let A,C : D — UM be graph morphisms, and n : € 5 A a
natural transformation. The induced implementation of the whole language is #C. In arder to
prove the correctness of the implementation, we need to find a natural transformation called
#n from 8C to 8 A
n: 8C - 84

Consider now the variety V = CAT. In this variety, the free category FID is just the path
calegory over D, which will henceforth be denoted D=, A simple and familiar induction shows
that n : §C = @A is also a natural transformation; and so C is a valid refinement of 4. To
prove this, it is sufficient to prove the commutativity property of the natural transformation
just for the small set of arrows of the graph, which is a simple task compared with proving it
for all programs in the language FD. [n more formal terms, the adjunction @ can be extended
to all such natural transformations by defining

FHn:C > Y (n:c>a)
forall C, A: D — UM¥in GRAPH ,i.c., the same function n (collection of arrows in M) serves

as a natural transformation in both GRAPH and V. We summarise this fact by stating that
the variety CAT respecis natural transformation.

Lemma 1.1

Let f,¢ : D —+ E be graph morphisms, and n : f — g a natural translormation. Then n
is also a natural transformation between functors f* and ¢° where f* and g* are the unique
extentions of f and g on the path category D".

Proof: D* and D have the same set of nodes (objects), thus the domain of n is nnchanged.
Consider anypath r = py;..; s in the graph D, one has

f*r; nrY
fmic foin g
n P47 gPk
= aTigr

The language FD described in the previous paragraph is a trival one, in which the only way
of combining programs is by sequential composition. A more interesting and useful language
will have means of constructing conditionals, loops, and structured data ty pes. Cousider, for
example, a typed lambda-calculus over a graph D. This can be defined [13] as the free ob ject
over D in the variety CCC of cartesian closed category. The importani question therefore
arises, can the programmer in this language salely use data refinement a5 a program devel-
opment technique ? The answer is mo for natural transformations, but yes for certain other

kinds of simulation, namely Scott retractions. The proof of this requires us to extend the
adjunction # froma jnst functors to all appropriate kinds of simulation in GRAPH. This will
be more complicated than before, because a free cartesian closed category usually has many
more objects tham the graph D, and #*n must be defined for those constructed ohjects as
well. So it is far better to rely on some general theorem that guarantees the existence of #tn,
without going to the trouble of finding it in each case. That is the technical content of the
remainder of this paper.

The general technique of defining #* is based on the concept of horizontal composition of
vertieal arrows in a 2-category. A 2-category is a category under horizontal composition,
where each of its homsets is also a category under vertical eomposition [5]. The classic exam-
ple is NAT, the category of small categories, whose vertical objects are functors, and whose
vertical arrows are natural transformations; in this case, horizontal and vertical compositions
have their usual meanings. Qther examples are obtained by restricting the arrows of the ver-
tical category to matural isomorphisms, retractions, or other kizds of simulation. A 2-funcior
is a function between 2-categories that respects both vertical and horizontal compositions and
identities.

If CC is a 2-category, its thinning CC~ is defined as the subcategory whose objects are
the horizontal ob jects of CC, and whose arrows are the vertical objects. If F'F is a 2-Tunctor,
its thinning £ F~ is defined as the result of thinning jts source and target. A l-functor F is
said Lo respect a certain category (for example, natural transiormations) if it is a thinning of
a 2-functor F*. A adjunction < F,G,¢,§ > between 1-categories C'C~ and DD~ is said to
respect the 2-category CC il F does so.

The category GRAFH can be seen as a thinning of the 2-category GRAPH*, whose ver-
tical ohjects are graph morphisms, and whose vertical arrows are simulations beiug used for
data refinement. In a similar way the L-variety V can be regarded as a thinning of the 2-
category V¥, whose vertical objects are E-homomorphisms, and whose vertical arrows are
simulations. In the diagram below, we assume that the 2-functor F* : GRAPHY — V¥,
which maps graph morphisms to Z-homomorphisms, and simulations to simulations, has the
free functor F' as its thinning. The required vertical arrow between #C and @A is provided by
defining 8% n similasly to #C and #A as the horizontal composition of F*n and the counit ey,
which is a vertical identity in the 2-category V1, s0 0¥ n: 0C - A,

________ FAe— - >
ED Fn FUM
———————— FC—-vm————>
€ €M
#tn BA
#C M

In general. given a variety V' and given one kind of simulation between graph morphisms, if
we can prove

1. GRAFH and V are the thinnings of the 2-category of the given kind of simulation.
2. the free functor F : GRAPH — V is respectful
then the adjunction @ between GRAFH and V can be extended by defining

d
8t € Ftntey

where § is the horizontal composition in ¥V+. Consequently, data refinement based on the
given simulation can be used safely as a program developrment technique in the language with
V as their outer syntax. In this case we say that the variely V' (or the signature I together
with the equation E) respects that kind of simulation.

The general way to prove respectfulness of a free functor ¥ is by constiucting the free 2-
functor F* ina manner which mirrors the standard construction of the inital Z-algebra. The
construction is complicated by the need to keep account of the object structure, which defines
the sorts of the heterogenerous L-algebra. Usually, there will be many more of these than in
the original graph D. Consequently, FD) mnst expressed as a colimit of the following chain in
the category CAT

D" = 9(D) = D)= ---

where ® js a fanctor from GRAPH to CAT, and $(D) is defined as the path category over
the graph (D), where nodes are identified with formal terms o(by,..,bs) where o is a type
constructor of arity & in the set X, and all b, are nodes in IJ, and whose arrows are identified
with formal terme o(p1,..,px) Where o is a constructor of arity k and all p; are arrows in D.
These formal terms are considered as quotiented by equations in £. In thiscase, as the colimit
of the chain, FD is actually the union of the categories (D). The main theorem in section
2 shows that il $ is respectful so is F. Thus the proof task (2) mentioned previously will he
replaced by shawing that the functor ¥ is respectful; this greatly simplifies our job.

This paper investigates a series of constructors which enrich the simple programming language
D*, including least upper bounds, zero morphisms, coproducts, products or smash products,
and higher function order spaces. Relying on the following fact (lemma 4.3)

If T, and I; respect simulations of the kinds 5y and I, respectively, then the
signature £y U Zq will respect simnlations in §3 N Sz

we can treat each enrichment separately in section 4, so that the proofs ipply tc the widest
possible variely of languages.

The remainder of this paper is organized as follows. The next section is devoted to presenting
the relevant concepts of category theory, and exploring the cocontinuity of the thinning func-
tor. The proofs of the general theorems are postponed to the third section. Section 4 describes
the concept of simulation and investigates a variety of constructors. We apply the theoretical
results of section 4 to a selection of constructors in a range of familiar languages in section 5.
The final section suggests a valuable criterion for the design of programming languages.

2 Preliminaries

We presume familiarity with the standard notions of category, morphisms, functor, limit, col-
imit and adjunction [14]. For the concept of 2-category, we refer reader to [5], but we shall not.
presume familiarity with it. The set of morphisms {rom object z to object y in category C is
denoted C(z,y). We will equate an object with its identity arrow, even in the case of a graph.
We compose morphisms in diagram order: if k € C(z,y) and { € C(y,2) then k! € C(z,z2).
We write functiona! application in the conventional way: if f : B — C and ¢: C — FE are
functors, and k € B(z,y), then g(f(k}) € E(g(f(z}) 9(f(v)).

Let B and C be small categories, f,¢ and A be functors from B to C. letm : f — ¢
and n ;g — h be natural transformations

________ [S
n
B —— = = g——-——--- > C
m
________ fom——==>

The vertical composition (m;n) : f = h is defined by

m;n o Ab.[mb; nb)
Note that functor f is a vertical object, and the associated identity arrow is fo: f — f where
fo is the object fumnction of f. T and | will denote the target function and source function in

the vertical composition.

Given functors and natural transformations as helow

—————— he————> —— e —h ——— = >
n n'

; S Y s S g —~-——>1D
m m’

—————— f-——> e [y

the horizontal composite (m § mYi () (g:g) is defined by

m§m A8 (m'(fb): 9 ()

We now summarise a few familiar facts about NAT. If ID(C) : C — € is the identity furctor
for the category (C, and its restriction to objects Id(Clo : Id(C} = [2(C) is the identity
natnral transformadtion of that functor, one has

myldCly = m
I4(Cl 3 m

m

Each category C will be called a horizonial object, and Td(C)e will be called the horizental
identity in the 2-category NAT [14].

The composition ; and § in NAT are readily seen to be associative. Moreover, they are
related by the interchange law

(m;n) § (m';n') = (m} m');(n 3 n')

7

Let CC and DD be 2-categories. A 2-functor f f : CC — DD sends objects of CC to objects
of DD, arrows of CC to arrows of DD, preserving source and target and all types of identity
and composition. A 2-natural transformation 8 : ff = gg : CC — DD assigns to each
horizontal object z of C'C' an arrow A(z) : ff(z) — gg(z) in DD, which is not only natural in
the ordinary sense that, for any vertical ohject p:z — ¥, we have

ff(p); Bly) = B(3); gel»)

but also 2-natural in the sense that, for each vertical arrow m : p — ¢ where p,g € CC{z,y),
we have
FF(m) 5 B(y) = B(z) 5 gg(m)

We will use £F to denote the 2.category with horizontal objects all small 2-categories, and
vertical objects all 2-functors and arrows all 2-natural transformations between them. We
define a thirning fanctor from EE to N AT, and show that this preserves the colimit of the
right chain in EE. This is needed to ensure that the thinning of a free 2-ad junction is a free
adjunction.

If CC is a small 2-category (an object in EE), its thinning CC~ is defined as the subcat-
egory whose objects are horizontal ohjects of C'C, and whose arrows are the vertical objects.
If ff: CC — DD is a 2-funcior (a vertical object in EE), its thinning £ f~ is defined as
the result of thinning its source and target. Similarly, a 2-natural transformation is mapped
to an ordinary one in NAT. It is clear that ff~ : CC~ — DD~ is a lunctor. A functor
f:CC™ — DD~ is said to be respectful if it is the thinuing of a 2-functor f+: CC — DD.

Let hh: NAT - NAT he a 2-functor. Suppose that a family of inclusion functors {inc{(C):
C — hh(C) | Cisasmallcategory} is a 2-natural transformation {rom the identity functor to
hh. Consequently, for any small category C there is a right chain in N AT

C 25 hh(C) 4 MW (C) s ..

where in; o hhi(incl(C)) is an inclusion functor. In this case, the colimit of the chain,
denoted by Lim;hh'(C), is actually the union of the categories h'(C)

Limhh(C) = [JAK(C)

For any functer f,g : C — D and any natural transformation n : f -+ g, one has the following
commuting diagram

Limhh*(C)
C-—=—>M(C)——-->hW}C}—— - - >
n hh(n) hh(n)
D-———>hh{D)———=> WW?¥(D) - - ——>
Limhh*(D)

We define Lim, hhi(n) as the mediating arrow from the colimit Lim;ha'(C) to the cocone
Lim;hh'(D)ie, foral k> 0

hhE(n) § 1p, = tg, § LimAhi(n)

8

where to, : hiF(€) — Limhh*(C) and tp, : hh*(D) — Lim;hh'(D) are inclusion functors, It
is easy to show thal Lim hh' is a 2-funclor defined an ¥ AT

When A : CAT — CAT is a functor, and the family of inclasion functors inclg :C — A(C) is
a natural transformation from the identity functor to h, the colimit Lim,A' can be defined in
the same way as Lim;hh'.

The following theorem tells us that the thinning operator is a cocontinuous functor.
Theorem 2.1 Lirrhh' = Lim,(hh~)
Proof: Direct from the definition of the thinning operator.

3 Data Refinement By Natural Transformation

A graph of primitive types and operations would be a very primitive language, which offers
no method at all of combining built-in operations into useful programs. The introduction of
a constructor denoting composition greatly increases the power of the language, since it per-
mits operations to be assermbled into sequences. We will use T to denote an arbitrary set of
constructors ore of which is composition. Without loss of generality, we also assume that the
identity constractor is in £. If & is a constructor {binary, say}), then o(z,y} is taken as the
text formed from texts = and y separately by commas, prefixed by & and open bracket, and
terminated by close bracket.

A T.category is defined as a small heterogenerous E-algebra. Oune of its sorts is the set of
all its objects. The remaining sorts are identified with a homset, i.e., a pair of objects. Each
object is either a node in the graph or built from nodes by the means of the type constructors
in . All comstrnctors in T are in principle indexed hy the homsets of their operands and
results. All terms of the algebra can therefore in principle be checked for type consistency.
The carrier ofa E-category is defined in the usual way as the smallest set containing all con-
stants denoting each object and arrow in the graph, and closed with respect to syntactically
consistent application of the constructors of &. For a given E-category M and any constructor
o of I, opr will stand for the interpretation of o in M.

Let M and N be I.categories. A I-homomorphism & : M — N is a function on the car-
rier sets which preserves all the constructors of I in the sense that

hap(zr, -, 2x) = on(ha1,., hes)

for all ¢ € ¥ and z; in the carrier of M. Since the composition is included in X, a T.
homomorphism also preserves composition, and therefore is a functor in the usual sense. We
shall be particularly interested in cases where oas is a function on M, whose defining properties
are expressed by categorical coneepts; for example, it may be an endorfunctor, or a natural
transformation. The variables z; are (implicitly here) constrained to sorts which makes these
terms roeaningful.

A T-variety 1s defined as a category V whose objects themselves ©-categories, and whose
arrows are 1 homomorphisms. Since E-homomorphisms are functors, a Z-variety is a sub-
category of CAT. A E-variety is nsually defined by a set of equational laws governing the
constructorsof T, and its objects are just those Z-categories in which thelaws are valid. CAT
itself is a T.variety, with composition and identity as the only members of Z, and familiar
axioms of category theory as equations. Cartesjan closed categories form an other variety, with
product and exponential endoflunctors serving both as sort constructors and operators of X,

Let T be a set of constructors in a programming language. A representation of £ is a pair
(®,H), with & a functor from GEAPH to CAT, and for all T-categories M, {fy a functor
from @(U M) to M where U is a forgetful functor from the variety V to the category GRAPH,
such that for all graphs D, E and graph merphisms f: D — E,

1. &(D) the path category over the graph E(D), whose nodes are identified by a(b, ...b:)
where is a type constructor of arity k in the set T, and all & are nodes in 2, and whose
arrows ate identified by o(p;, .., pr) where o is a constructor of arity k an d all p, are artows
in D.

2. (@h)yolpr,-npi) = o(fp, - Spe) foro € Zand p, € D.

3. om(propt) = Hulolpr, pi)) for o € Eand p € M

10

Y. is said to be regzresentable if such a representation exists. In this case @ is called a represen-
tation functor of X. Since I contains the jdentity constructor, there is a right ¢hain for any
graph D

D™ 20 &(D) &4 97(D) 2

where in; 4 ®'(inel(D)) and incl(D): D — ¥(D) are inclusion functors.
T is said to be respectable if the representation ® is respectful.

Let (@, H) he a respect{ul representation of I. Define

F Y Lime
& Y apip

M) ¥ 1am)
an(M) Z M) Hu for k20

where 1p is the inclusion functor from D to UF(D).
Lemma 3.1 {¢,(A) | k > 0} is a cocone of the right chain

M 2o UMy 2L UMy s

where in;) ®'(inel(M)) and incl(M) : M — $(U M) are inclusion functors.
Proof: From the definition of Hyy it follows that for all pe M

p = Hump
(incl(M); Hps)p

which implies eg(M) = ing; e (M).
Assume that ¢, = dng;epy {2f), one has

€1 (M)

il

B(eu(M)); Hue

Dfing; a1 (M) Hpr
Bin,), Plexr (M) Hu
= ingy;enpa(M)

This completes the proof.

Define ‘
Y AM [eg,€1,-.]

where [¢o, €], ..] is the mediating morphism from the colimit Lim;®(I/M) to the cocone {e} |
k > 0} satisfying for all inclusions tar, : $5(UM) - Lim;®'(UM)
tanileo(M), a(M),] = (M)

Now we are going to show that < F, U, é, ¢ > is a respectful adjunction.

Lemma 3.2 F is a respectful functor from GRAFPH to the variety V.

Proof: Here we first wish to prove that for any graph morphism f : D — E, Ffis a T-
homomorphism. Let & he a constructor of arity k, and p1, .., px are arrows in 0

Ffla{pr - Pe)}
(W olpr, -)
= a(fr, - fPe)

= a(Ffpi .. Ffp}

il

When py, .., s are elements in $(D), one has

Fflo(p,)
= (1) o(p,.. ;)
= o(® (e, 3 (Nee)
= o(Ffp,..Ffm)

From the definition of F and theorem 2.1 one concldes that F is respectful.

Lemma 3.3 M) : FU(M) — M is a functor.

Proof: Since all ¢, (M) are functors, so they are the vertical identity in the 2-category N AT.
The conclusion follows from the fact [14] that the horizontal colimit of vertical identities is a
vertical identity.

Lemma 3.4 §: Id — U/ F is a natural transformation.
Proof: For any }: D — UM one has

567
= fitym {(f:D>UManddef of 6}
= tpyUFf {defeof F}
= & [;UFf (f:D— UM and def of 6}
Lemma 3.8 ((UM); Ue(M) = Id(UM).
Proof:
LHS
= lum el M), a{M),...] {def of § and ¢}
= t'IJ(A{) {def Of [f,.q7]}
= RHS {def of eo(M)}

For any graph morphism f: D — UM define

0f Y Fre(M)

Lemma 3.8 ¢ is an injection.
Proof: Here we want to show that for all graph morphisms f: D — UM

=48 5005
This can be shown as follows
§F:UEN
= & [;UFfUM) {def of 8}
= fid }.; Ue(M) {lemma 3.4}
= [8UM); U M) {f:D- UM}
= J {lemma 3.5}

Now it is easy to see that #f = 8¢ implies f = g.
Theorem 3.1 < F, U, §, ¢ > is a respectfu} adjunction provided & is respectiul.

12

Proof: We want to show that for any Z-morphism A : FD — M, there exists [: D — UM
such that
h=2¢8f

Define f & tp; U7 A, Then we wish to show that
¥(fye = Lik

where ¢; 1 (UM} — M abbreviates ¢{M), and #; : $*D — FD stands for the inclusion from
3 Dto FD. When i = () one has

LHS
= FiIdM) (def of col M)}
= tpiUk {def of [}
= RHS {to = t,[)}

Proceeding inductively, for any constructor ¢ of arity k& and all py,..,pe € $"(D)

ho(pry o)
= onr(hpr, .-, hm) {h is a T ~ homomorphism}
= Haqo(lhp, .. Api) {def of Hy)
= Haqo((®"(f)iea)m, (B €n)pic) {induction hypothesis}
= Has®(@™([)iendo(pr, o Pe) {de fining properiy of B}
= (@€); Haa T NP1y o PA)) {# is a functor}
= (@™ (fhieas1)o(pr, o P) {enst 2 (caks Hu)

So we deduce
¢n+l(f);€r\+l = tnt1ih

On the other hand, we know that for all i > 0

1;4f
= L (Ffie(M)) {defof @}
= i Lim®(f);e(M) {def of F}
= {f)itie(M) {def of Lim&"(f)}
= (M) {def of (M)}
= ®(fla4 {def of €}

By the universal property of the colimit it follows that
h=28f
Furthermare, from lemma 3.6 we conclude that # is a bijection.

For any natural transformation n: f = g, define

Ft % Lim(e*y

#*n ¥ Fras (M)

where €7 is a 2-functor whose existence is postulated by the respectfulness of ®,and (Mg :
e[M) = (M) is the identity natural transformation on €{M).

Theorem 3,28 n: 8f = 8y
Proof: From the definition of the vertical composition in the 2-category NAT, one has

18%n
= TFta;1e(Mo {def of 3 in NAT}
= F*(Tn)le(M) {F*is a2 functor)
= FrgdM) {def of n and (M o}
= Fgie(M) {F is the thinning of F*)
= #fg {def of 6}

In a simitar way one can show that | #tn = 4f.

In the remainder of this section we will deal with natural transformations. It will be shown
that they are respectful; i.e., they have a respectful representation (&, H).

Let m : A; = &, be a natural transformation constructor, where k) and k; are endofunctorial
constructors, and their meanings are specified by covariant endofunctor ky and h; respectively.
The interpretation of /2 is given hy a natural transformation m : by = hz. Suppose that all the
constructors but the composition in I are endofunctors or natural transformations between
them. Then for any graph D, £(D) will be the graph with each node identified by A%, ..,5)
where A is an endofunctorial constructor of arity & in £, and b4y, .., b; are all nodes in graph D,
and with each arrow identified by o(pi, .., px} where ¢ is a constructor of arity k¥ in ¥ and all
P11--> i all are arrows in D. The target and source fnnction in the path category over L(D)
is defined as usual, for example, one has

(mb) = hgb
(mb) = kb
(k) = A(F)
(hp) = A(P)

Finally comes the main result of this section.
Theorem 3.3 The set of natural transformation constructors between covariant functors has
a respectiul representation (&, H).
Proof: For ay graph morphisms f,g : D — E and any natural transformation 1 : f — g,
define

B (WA(by, ., b) 2 by, ... nby)

Consider three cases:
(1) o is a covariant endofunctorial constructor h

B()A(p1, P)i ¥ (n) Mpr. - Pi)
= AUfPuy e fER ;OB) {def of B)

= B(Jpyser [PR)R(R PL, o n P2) {def of %}
= h{Jprin B, fpei i) {h is a functor}
= h(n P1;9P1 - ™ Pai 9Pk n:f=g)

= ®*(n) h(pI:,pk);Q(g)h(pl, wPx) {by & mirrer gargurnent)

{2) o is a patural transformation = : Ay = ha
B(f)m(brs . bi); ¥ (n) miby, .., 0x)

14

= m{fbr,.., for); EH(n}halby, ... bs) {def of &)
= m{mby,..,mby);ha(br, . by) {def of &%)
= h,(nbl,..,ub;);m(n_t;],.., nE;,) {m : hy = hq}

= dt(n)m(b,, .., 5); B(g)m(by, .. by) {by a mirror argument)

(3) o 15 the composition constructor ;

B(f)(ps; pa); 9 (n) (pr32)

= (fmifminm {def of B}
= fminpigm {n:f-g)
= npigmigm {n:f=g)
= &H(n)(prip2)i ¥(9)(P1i) {def of ¥}

So &*(n) is really a natural transformation from @(f)} to ®{g}. It is routine to check that ¢+
respects horizontal and vertical compositions of natural transformations, Therfore ® is the
thinning of 2-functor $+.

15

4 Data Refinement by Simulation

In program development, it is not necessary to insist on absolute identity of the effect of the
concrete and abstract programs. It is certainly enough to require that the concrete program
is better than the abstract one in all relevant respects, and in all contexts of use. We there-
fore introduce a preorder C into the homsets of the matbematical categories, 1o denote its
right operand is an improvement on the left operand (which must have the same domain and
codomain). Inthe mathematical theory, C is an arbitrary preorder, and may be interpretated
as any kind of improvement. To ensure that the improvement is maintained in all contexts,
we postulate that all operators, constractors and functors under consideration are monotonic.
As nsual, = denotes the eguivalence induced by the preorder.

Let M be a small category in which for each pair (b,¢) of objects M(b, ¢} is a preorder,
and moreover the composition ; is monotonic. Define M M as the collection of all pairs (p, q)
of elements p,q of M with p C g. It is well known that MM is a 2.category. The horizontal
composition §in M M is defined by

2
29 3 (o) ¥ (mr.ais)
provided that p=¢=7=43 in M,
The vertical composition ; is defined by

.9 @7 2 (1)

Both definitions are valid since C is a preorder and the composition ; in A is monotonic.

The compositions ; and 3 are readily to be associative. Moreover, they are related by the
interchange law

{me)i (@3 () () = (o5 (7,9) S (g.7')

Now the commuting equation defining natuality can be replaced by an inequation, expressing
the superiorily of the concrete functor. This can be done in two different ways, leading to two
definitions,

Let f,¢ : L » M be functors, an up-simulation u is defined as a transformation from [
to ¢ such that

ub: fb— gb Jor all abjects bin L
u ‘}7; gpC fpu ? Jfor all elements pin L

It will be denoterd u: f < g.

A down-simulation d is defined as a transformation from g to f such that

db:gh— fb for all objects bin L
gpd F[;d ;;fp Jfor all elementapin L

It will be denoted € : ¢ > f. clearly, a natural transformation n» : f -~ g i3 both an up-
stmulation and a down-simulation from [to g.

Qune way of combining the two definitions is in the definition of a tolul simulation. this is
a pair (d,u), where

16

2. d is a down-simulation from g to f.
3. db;ub = gb and ub;db C fb for all objects b in L.
It will be denoted (d,u): f — g.

The {ollowing lem1na shows that each component of a total simulation uniquely determines
the other, up to equivalence.
Lemma 4.1 Let (d,u) and (d, ') be total simulations from f to g. Then

d=d iff u=
Proof: Assume d = 4. For any object b one has

ub

ub; gb

ub; (d'b; u'b)
ub; db;u’h
fhiu'd

u'h

nm n

The proof that u'd C ub is similar. The proof of the reverse implication is similaly similar.
Let (d,u}: f — g and (e,v) : g — A be Lotal simuations. Define
(dw)iler) ¥ (e5d,u0)
def def
where e;d = Ab.(ed;db) and u;v = Ac.(ucive).

Lemma 4.2 (e;d, u; v} is a total simulation from f to A.
Proof: For all elements p in L one has

hpi(eid) P
= hpeP;dD {def of d;u}
C e;:gll;d; {e:h>g}
C ep;dp;fp {d:g> f}
= (sd) Pifp {def of ¢;d}

In the similar way we can prove
(uiv) P;Ap C foi({u;v) P
Moregver we have

(e;d)d; (u;v)b

= eb;db;ub; vb {def of u;v and e;d}
= eb;gh vh {db; ub = gb}

= ebvb {gb is an identity)

= hb {eb; vb = hb}

17

(u; v)b; (e; d)b

= ub;ub;eb;db {def of u;v and e;d}

T ub;gh;db {vh;eb C gb and ; i3 monotonic}
= ub;dd {gb is an identity)}

c sb {ubsdb © fh)

So (e;d, u;v) is a total simulation from f to A.

Given functors and total simulations as below

—————— hem———=> e - —— >
L (d, u} M (d’, u) N
—————— f——————> e flee——a— >

the horizontal composition (d,u} § (¢, v'} is defined by
(dyu) § (@0 & (o (dby; d(fb), Abu'(fb); k' (ub))

Lemma 4.3 {4, u) 3 (¢, u’) cis a total simulation from f; f' to A; A’
Proof: Similar 10 lemma 4.2

Becanse neither the collection of total simulations nor the collection of up(down)-simulations
satisfies the interchange law, they are not 2-categories. Therefore we need to modify the resulis
in the previous section to take this into account: we develop a theory of guesi 2-category which
characterises the mathematical properties of simulations. By a quasi 2-category is meant a
collection of arrows with two different compositions § and ;, in which every identity arrow for
the first composition is also an identity for the second composition. The interchange law is
weakened to an inequation. From the previous lemmas we know that SIAf U, the collection
of all total simulations, is a quasi 2-category. It is also ohvious that the collection of down-
simulations and the collection of up-simulations are quasi 2-categories as well.

Let QC and QD be quasi 2-categories. A quaal'fﬂz_functor gf : QC ~ QD sends objects
of GC to objects of @D, arrows of QC to arrows of {J D, preserving source and target and all
types of identity and composition, In a simjlar way to section 3 we can define the thinning
category QC~, and the thinning functor ¢f~. A functor f: QC~ — QD ~ is said 1o be re-
spectful if it is the thinning of a quasi 2-functor f* : QC — QD. If QC and QD are categories
of total simulations (down-simulations, up-simulations) f is said to respect total simulations
(down-simulations, up-simulations). It is easy to see that theorem 2.1 still holds in the case of
quasi 2-categories.

A T-preprdered category is a T-category whose homsets are endowed with preorders, and afl
operators in T are monotonic. The equatious & may inciude inequations as well as equations.
As for natural transformation constructors, we can define up-simulation and down-simulation
and total simulation coustructors in a Y-preordered category NV by the inequations that they
satisfy

gv{p)idn PCn dy Pika(p) for all clements p & N
uy E;g;v(p) Cy hn(p)u ? for all elementape N
dnybiunt =n gn(b) Jor all objects bof N
upnbidybd Ta fu(B) Jor all objects bof N

18

where dy and upy are the interpretations of d and u in N, and Cy is the preorder defined on
the homsets of N .

A T-preardered variety is defiued as a category V with I-preordered categories as its ob jects,
and with monatonic L-homomorphisms as its arrows. Since I-homomorphisms are functors,
a Y.variety is a subcategory of CAT.

¥ is said to respect total simulations (down-simulations, up-simulations) if its representation
functor ¢ does so, i.e., & is a thinning of quasi 2-functor $* defined on the qnasi 2-category of
total simulations { down-simulations, up-simulations). In this case, following the same approach
presented in the previous section we can construct a respectful adjnnction < F\U, 6, ¢ >. It
indicates that the introduction of constructors of L into a programming language will maintain
validity of total sirnulation (down-simulation, up-simulation) as a data refinement rule.

In the rest of this section we are going to invesiigate a nnmber of language constructors
and work out their respectful representation. The following lemma enables us o treat them
individually so that the results apply to various kinds of language as far as the validity of
simulations in data refinement is concerned.

Lemma 4.4 If £ and I respect simulations of the kinds §; and $7 respectively, then the
signature T; U Eg respects simulations in 5 N S;.

Proof: Let (&, Hy) and (&2, H2) he the respectful representations of T, and I 1espectively.
It is obvious that the mmion set £1 U E; is also representahle by the pair (¢, A) defined as
follows

8(D) ¥ (TuD)u D)
B Nole,om) ¢ (o mp) ifoe

H(o(pryms) E (Eulo(p,om)) if o€ L

Define for any simulation ¢ € §; U S5
b Y aF (0 ifbe Ti(D)

Because both I; and I3 respect simulation t, so (1) and &7 are the extention s of the
simulation ¢ in the categories ®;(D) and ®3(D) correspondingly. From the definition of @+ it
follows that ®*(t) is the extention of ¢ in the category (I,(D) U Z2(D))".

Lemma 4.5 If ©; and I; respect simulations of the kinds §; and 53 respectively, then the
siguature Ly N Lz respects simulations in $; U Sq.
Proof: Dual to lemina 4.4,

Similas to a natnral teansformation, a down-simulation {or an up-simulation or a total simu-
lation) defined on graph (D, Cp) can he seen as a down-simulation (or an up-simulation or a
total simnlation) on the path category (D*, C}) where C}, is defined as the minimal binary
relation satisfying

1L.pChop

b
L
L]

b ¢.¢ Cp rimplies p Cf, ¢

el
L
n

p gimpliesp Ch ¢

g, 7T CH sand P=7 implies (p;7) Cp (g s)

-
-]
M
g

19

Theorem 4.1 Composition respects all kinds of simulation.
Proof: Similar o lemma 3.7.

Now let us examine down-simulation constructors.

Theorem 4.2 Down-simulations respect up-simutation and total simulation.

Proof: Let A,C : D — E be functors and d : A > C a down-simulation. For any object
h(by,..,b) in 8{D) define

&+ (d)h(by, .., b)Y h(dby, .., dby)
Now we are going to prove that ®¥(d) : $(4) > &(C).
(1} o is an endofunctorial constructor 4.

S{AWM(p1, ., 1); BT (d) h(?:-,m
R(Ap1, -, Api); BF (dYh(p1, - p1) {def of &)

= h{Apy, - Apr); h(d Py, .., d Pi) {def of ¥%)
= A(Ap1;d Py, Apeid Pi) {h isd @ functor}
C a(dp;Cpis e d A Cmi) {d:4>C)

‘I'+(d) h(Pl::Pk); S(CH(p1y.,px) {by a mirror argumnent}

(2) o is an up-simulation constructor m : hy < hg.

B(AIM(Br, . b4); BF(d) m(by, . bs)

m{Aby, .., Aby); B4 (dha(by, .., be) {def of &}

m(d pr, -, d P hadby, .., dby) {def of B*)

ho(dby, .., dby); m(d p1,...d Pa) {m: fu < h2}

dH(d) m(bl.,_.., b); B(C)m(by, ., b} {by @ mirror ergument)

non

il

(3) o is the composition constructor ;.

B(ANp1; p2); 8 (d) (P13 22)

= (Ap3Ap)id ;2 {def of &}
C Ap;dmiCm {d: 4> C)
C dp;CmiCp {d: 4> C}
&*{d) (P;;_PJ);‘I’(C)(PHPZ) {by @ mirror argument}

From theorem 4.1 it follows that ®¥(d) is a down-simulation from ${A)to D(C).

If (4, u) is a total simulation from € to 4, define
H(dh(by,..b) 2 A(dby,...dbs)
BH(uhby, . b)) Y hubi, .., ub,)
Because h is a covariant functor we have

¢-'-(d)h'(blv a1y bi)i Q+ (u)h(bh -y bt }

= h{dby,...db.); h{uby, .., uby) {def of &}
= h(dby;uby, .., dby; ub;) {h is a functor}
= h{Ab;. .., Ab) {{d,u): C— A}
= S{A{bh....0x) {def of ®)

20

&H(u)h(by, ., bi); BT (A)A(by, ... b)

= h(uby,..,ubc);h(dh, .., dby) {def of B}
= h(uby;dby, .., uby; dby} {h i3 & functor}
C A(CHy,..,Cl) {(d, w): C — A}
= ®(CHa(by,.., b) {def of B}

Moreover, the previous argument shows that &+ (d) : $(A) > ®(C). By appealing to lemma
4.1 it follows that {®1(d), @*+(u)) is a total simulatiou.

It is routine to check that &+ preserves horizontal and vertical compositions of down-sirnulatious.
Therefore is the thinning of a quasi 2-functor @t.

The following theorem is dual to theorem 4.2.
Theorem 4.3 Up-simulations respect down-simulation and total simulation.

A covariant natural transformation can be regarded as both a down-simulation and an up-
simulation. From lemma 4.5 it follows that it respects all kinds of simujation.
Theorem 4.4 Covariant natural transformations respect all kinds of simulation.

Let us now consider a function A which satisfies the distributive law:
hp:h P_hYP
hipiq) = hpihq

Because distribution of A through composition reverses the order of the operands, it is known
as a contraverian? funcior.

Theorem 4.6 Contravariant functorial constructors respect total simulation.

Proof: Let (d, u) : € — A be a total simulation. Define for any contravariant functor &

ar(dA(b) ¥ h(ub)
(k) 2 hdb)
Then one has

B(A)(hp); @7 (d) hp

= h(Ap):&*(d)(h P) {def of &)
= A(Ap)ih(u P) {def of &%)
= hu ;;Ap) {h is coniravariant}
C ACrup) {u:C < 4)
= 8*(d) hp; #(C)(Ap)
$+(d)hb; dF(u)hd
= h(ub; A(db) {def of ®+)
= h{db; ub) {h s contravariant}
= h(Ab) {(d, u) 0= A}
= ®(A)(hb) {def of &}

&+ (uhhb; &+ (d}hb

21

il

h(dbY; h(ub) {def of &%}

= h(ub;db) {h is contravariant}
C A(ChH) {{d, u): C— A}
= 2(CYHhkt) {def of &}

From lemma 4. it follows that {2*{d), $+(u)) is a total simulation.

Theorem 4.7 Contravariant natural transformations respect total simulation.
Proof: Similar to theorem 4.6.

Let f:L — M and ¢ : M — L be covariant functors. We define a junction as a weaker
form of an adjunction, which does not need to be a bijection. A right function © from f to g
is a function of three arguments; the first is an idertity in L, the second is an identity in M,
and the third an arrow in L. The result of © is an arrow of M, More precisely, if ¢ 1 b — ge
in L then Obeq: fb— cin M. Furthermore, © satisfies

.07 (mq) = fm© PG ¢ forall p, qin L of appropriate type.
2 097 (g9r) = (O 7T g);r forallgin Land riz M of appropriate type.

Having defined a preorder in the homsets of the categories L and M, the above equations
can then be replaced hy inequations. A righi-doun-junction € 4,,, from [to g is a function
possessing the following properties:

1. £9iOdoen P4 ¢ C Ouown P I (p3g)
2. Odouwn I7 (4i97) & (Odown I7)7
A right-up-function O, from [to g satisfies
1. 0., PT(piq) C fPOu, PY q
2. (O 47 q)ir T BOyy 47 (g97)
It is clear that a right junction @ is hoth a right-up-junction and a right-down-junction.

The concept of a left junction ¥ from g to f is dual to that of a right junction. For any
arrow ¢ : fb— ¢ in the category M, ¥heq is an arrow in L with b as its source, and with g¢
as its target. ¥ satisfies

1. ¥ g7 {g:7) = (¥ 7 q);gr.
2. ¥ PY(fpiq) = pi(¥ P4 q)

In analogy with what we did for right junction, we can definea so-called left-down-junction
and lefi-up-junction. the former satisfies

1. Pi (¥trwn P9 4) T Pooun P4 (fPig)
2 Wdoun 7 (&7) & (Yatown 97 qhigr

The latter possesses the following properties
1. 9., 79 (f7i9) C (%0 P T @)

2. (W 47 ghigr C ¥ 47 (g57)

22

The introduction of junctional constructors into a programming language maintains validity
of simulations az shown below.

Theorem 4.8 Down-junctional constructors respect up-simulation and total simulation.
Proofl: Let 4 be an np-simulation from ¢ to A. Define for any right-down-junction 8 4,,,, from

frog
& () Ouounbep Y uc
(1) Ououmbep = fub
Then one has

8*(u) Bgrunbep; H{A)(Ogounbep)

= f(ub); Odoynl AbAcAp) {def of B}
C Ougun{CtAc(ub; Ap)) {the property (1) of right — down — jundion}
C Ouun(CbA(Cp; g{uc))) {u:C < 4}
C Ouun(COCECpliue {the property (2) of right — down — juncion}
= &(C)(Osownber); ¥ (v) Bd.,:bcp {def of ¥*}

as required.

Left-down-mnction can be treated in a similar way.

Theorem 4.9 Up-junctional constructors respect down-simulation and total simulation.
Proof: Similar to that of theorem 4.8.

Theorem 4.10 Jun ctional constructors respect all kinds of simulation.
Proof: Direct from lemma 4.5, thearem 4.9 and 4.10.

The concept of junction can extend to the contravariant functors. Snppose that f isa covariant
bifunctor, and g is contravariant in its first argument and covariant in the second argument.
A contravariant junction T from f to g is a function satisfying the following properties

L. If g: f(b,c) — ain M then Theag:b — g(c,a}in L.
2T PUT(f(p,q)isir) = MY PIT 59(q,7)

Theorem 4.11 Contravariant junctional constructors respect total simulation.
Proof: Define for any contravariant junction T from f to ¢

1y

8*(u) Yheap ¥ g(de, ua)
fI’*(u)Tb.;zp Y ow

&*+(d) Theap 2 g(uc, da)
at(d)Theap ¥ @

The conclusion can be established by the techniques similar to those used in the previous
theorem.

23

5 Language Constructors

In this section we show that many constructors in a range of programming languages have
familiar categorical interpretations. For simplicity, we will suppress mention of types (objects)
wheuever possible,

5.1 Composition

In all programming languages of interest, there exists a composition operator (denoted here as
P; 4, elsewhere p x g). Execution of such a compaosite program usually (but not always) involves
execution of both of its components, In a procedural programming language like PASCAL,
we interpret this notation as sequential execution: ¢ does not start antil p has successfully
terminated. In a functional language it denotes functional compasition. This operator is as.
sociative

(pighir = pilg;9)
It has both aleft and a right unit. In Dijkstra’s language [1], the unit is the command skip

skip;p = p;ekip = p

In a typed language, the composition of programs is nudefined when the type of the re-
sult of the first component differs from that expected by the second component. This can be
treated in category theory by associating source and target types with each program. (p;¢q)

is then well.defined iff P = 7.

In the rest of this section we assume without explicit mention that all type constraints have
been, observed,

A zero of composition (if it exists) is denoted by #. It is the program that fails to termi-
nate. The defining property of the zero program is

;0 =0=20:¢q

In words, a program which starts by failing to terminate is indistinguishable from one which
ends by faling te terminate.

In Dijkstra’s language, this role of zero program is played by the programn abort which is
the bottom element in its homset. It may fail to terminate: ot beisg non-deterministic it may
do even worse: it may terminate with the wrong result, or even the right one (sometimes, just
to mislead you). To specify the execution of ¢ after termination of abort cannot redeem the
situation, because abort cannot be relied on ta terminate. To specily execution of g before
abortion is equally ineflective, because the non-termination will make any result of executing
p inaccessible and nunusable. In other words, composition in Dijkstra’s language is sirictin the
sense that it gives bottom if either of its arguments is bottom. Tle above defining equation
states that zero program is a natural Lransformation.

A language Jike CSP [4] coutains commands for input aud output, which have resuits ob-

servable before the program terminates {or fails to do so }. Consequently, the aliorting com-
mand chaos does not satisfy the above equation. However it has the weaker property that

24

non-termination after performing the inputs and outpute of p cannot be worse than immediate
non-termination. So for CSP, the defining property of the aborting command mustreplaced by

$;9g=0C p; 0
which states that @ is an up-simulation.
In a lazy functional programming language like Miranda {9], the call of a function will not
evaluate an argument unless the value of the argument is actually needed during execution
of the body of the function. As a result, it may terminate even when applied to a non-

terminating argument. However, the wholly undefired function always fails. On the principle
the failure is worse than any kind of success, the property of zero program has to bereplaced by

pid=0C & ¢

i.e., zero programs become a down-simulation in this case.

We use p N ¢ to denote the best common approximation in the C ordering of both p and
g, if it exists. It can be defined by the single law

rC(pNg) if rCpandr C ¢

We aye going to explore the way in which composition interacts with the N operator. From
the defining property of N and the monotonicity of composition we can derive the following
weak distnbutive law

ri{png);s C (r;p;s)n(rigq;s)

In Dijkstra’s language {and other truly non-determiaistic language like CSP), N denotes non-
determinism; and the law can be strengthened to an equation

ri{png)is = (ripis)N(r;g;s)

This law states that it makes no difference whether the selection between p and ¢ is made
before execution of the first operand of a compasition (e.g., at compiler time), or whether jt
is made (at run time) after execution of the first operand, In other words, the N isa junction.

However, in a functional or deterministic language it is better to postpone the application
of M as long as possible, becanse it somehow worsens its argument, The above strengthening
is not valid, instead we have

{pNg)is C (p;s)N{g;s)
ri{pg) (ripbn{r;q)

In this case, the N operatar is a quasi-junction.

25

5.2 Disjoint Union

The coproduct [disjoint union) constructor will be dencted by an infix +. & + ¢ is the dis-
criminated union type, which appears, for example, in PASCAL as a variant record. (p + g}
is a case discrimination. When applied to a value of type (P + E) it first tests which variant
it comes from. If it is the first variant, then p is applied, obtaining a result of type P, which

is then injected into the first variant of (P + 3) The treatment of the second case is similar.
Thus

(P +q
(r+a

il
=])
+
@l @l

Furthermore, it is easy to see that the above description of the case discrimination satisfies
the other defining property of a hifunctor

(pta(r+3) = (pir)+(g:9)
The discriminated union provides a convenient method of modelling the familiar conditional
constructionof a programpming language. For example, the test "even”, which tests whether
a nurmber is odd or even, can be regarded as a function from the natural number N to the
disjoint upion N + N. When applied to an even number , say 2x, its result (0, 2n) ia the
same number tagged as in the first alternative of the discriminated union; whereas an odd
number 2n + 1is mapped into (1, 2n + 1), the same number tagged as in the second alterua-
tive. To halve a number if it is even, or add one if it is odd, can be achieved by the composition

even ; (hulve + add)

But it still remains to map the result of this conditional (rom the discriminated union N + N
back to thesingle natural number type N. For this we need [or each type b, a merye operator
symbolised by ¥b, which maps a disjoint union (b + b) onto the type 4, simply by forgetting
the tag which determines from which of the two (identical) types its argument has originated.
Thus to achieve the effect

ifeven(zr)thenz = z/2elsez:= ¢ + 14

the conditional described above should he completed as follows

even ; (halve + add); VN

If p maps b to ¢, p may be applied after the merging operation Vb, or it may be applied to
both altematives before the merging operatar Ve; the final result of each of these applications
will be the same. Thus merging operator satisfies

(p+phiVP=VPip
The above algebraic law states that V is a natural transformation between the identity functor
and the functor that maps p to (p + p).

In a programming language, there ate two extreme conditions for each pair of types b and
c,truey : & — (b+¢)and falsey,:c—~ (b+ch

26

¢ irue,, which tags its argument as the first alternative of type b + ¢,
e falsey, which tags its argument as the second alternatives of type b + ¢

These are called insertion functions. Thus if (p + @) is executed after true— —, thefirst alter-
native p is invariably selected; so the effect is the same as if p had been appiied beforechand

true;‘; ip+q = p true;';
Similarly
falses -5 (p +q) = g; false; o

Thus both condition ¢rue and condition false are natural transformations. Furthermore they
satisfy

truey; Vb = idy
falaeyy; Vb = id,
(truey, + falsey); V{6+¢) = idpy,

where id, stands for the identity fnrction on the type b.

However, in a non-strict programming language the discriminated union of types & and ¢
is not simply the disjoint sum of b and ¢ as described before, but is defined by

b+ c®{L}u{(z.0) |z} U{(r1) | peEe)

where a new element L, represents the bottom element of the union type. The program p + ¢
will map (z, 0) where £ €7 to (pz, 0), and (y, 1} where ¥ €9 to {qy, 1), and the bottom
element L to L. The merging operator V will be defined by

Vb:(b+b) — b
(z,0) — =

(1) — v

1L - 1

In this language, + is a guasi-coproduct (5], in a sense defined up to equivalence by the laws
previously given for coproduct except that the merging operatar is a downward sirulation,
and governed by

(P+pVPCVPip

This is because the program (p + p); V 7 will map Ltol,but ¥V r ; p will not so when the
program is non-strict.

27

5.3 Product

A similar treaiment can be given to the product bifunctor p X ¢, where programs p and ¢ are
assumed to be run in parallel without interference. The associated natural transformations
are the projections my, : (b x ¢} — b and psc; (b x £) — ¢, and the duplicaling operator
&b o b — (b x b), which maps z of type b to the pair (z, z). In a category of total functions,
they satisly

(pxglizz - = moo5ip

.7
(pxaghing s = w5730
APi(pxp) = pi&P

Let p and g be programns with 7= 7., we define their product < p, ¢ > to be a program which
makes a second copy of the current argument, and execute p on one of the two copies and ¢ on
the other one, and delivers the two results as a pair. In a functional programming language
with lists as a data structure, this can be defined:

<p.q >% cons(pz, qz)

In a categorical setting it can be formulated by

del g
<p,9>= AP;(px g

From the defiuing properties of /A and bifunctor x it follows that

<pigr, Bst>=p;<q8>i(r x)

This states that the product functiou is actually a left junction from the duplicating functor,
that maps p to a pair (p, p), to the bifunctor x.

But in many language the above equations do not hold, Suppose that the calculation on
¢ fails to terminate. Then the execution of (p x g); 17— ri in a strict language like LISP will

also fail to terminate. The program v — '5 ; pdoes not mvolve an operation on the discarded al-
ternativeg, and will therefore tenmnate in cases (p x ¢): LR w1ll not. This can be expressed

mathmatically by inequations stating that the projections r a.nd p are downward simulations
from the product bifunctor to the bifunctor that selects one of jts operands,

(pxqlir;s & Aooip
(pxa)ngy B mooie

The strong equations, of course, remain true for a lazy functional language, in which no result
is computed until it is knowu to be needed.

In a programming language which permits uon-determinism, the duplicating operator does

not satisfy the equation A 7, pxp)=pd P p is on-deterministic, the two occur-
rences of p on the left hand side may produce diflerent results, even when starting with the

28

same value. However, equal results on the left hand side are still possible {by chance, say). So
the left hand side can only be inferior in the sense that it is more non.deterministic. The right
hand side is stifl a valid optimisation, as expressed by the upward simulation property [3]

APi(pxp)Cr AP
Consequently one has

<pgpmr> C pi<gr>
<q@prnEst> = <g8>;{rxt)

5.4 Higher Order Functions

As useful example of a bifunctor of mixed variance is the exponental bifunctor, denoted by
=, (b = ¢) is a function space of functions from & to e. (p = ¢) is an operation which when
applied to a function [delivers the function (p; f; g} as result. So the type consistency equires
that f must be in (P = 7) and the resalt will ke in (P = 7). So

(p=>q) :(Pg) — (P=1)

Furthermore (p = g); (r = s) applied to f is

ri{ps figkis = (riphi figi 9}

which is the same as (r; p} = (g; s) applied to f. So we deduce

P=29)i(r=3)=1(rip) > (g:9)

In summary, the bifanctor = is contravariant in its first operand, covariant in its second.

Consider a function f : (b x ¢) — a, which takes a pair of arguments. The curried version of f
is the same as [, except that it takesits arguments one at time. Thus (curry f) 1 & — (¢ = a)
is a function which expects an argument z of type b, and delivers as result another function
from ¢ to a. When this latter function is applied to an argument y in b, it delivers lthe same
result as f does when applied ta the pair (z, ¥). More simply, in symbols

({ewrry flz)y) = fl=z,y)

In category theory use of variable is forbidden; furthermore, the operator needs to be sub-
scripted by the types of its operands and is characterized by the following laws

curryp (N ib = (c > allor fi(bxe)—a
curry - —((px gk fir) = pireurry; o -(f)ilg = 1)

29

This states that curry is a contravariant junction [rom the covariant bifunctor x to the mix-
variant bifencior =>.

The currying operator has an inverse called uneurrying, Its defining properties are

uncurrypcglf) (b X € » afor f: b — (¢ = a)
uncurry— ~ (g filg = r)) = (p X g}icurrys - -

(hir

N

5.5 Recursive Programs

Let ¥ be a continuous constructor satisfying for any program p

¥(p):P 7

The recursive program yuz, .. ¥{z,.) is defined in e.g., {8] as the least upper bound of the
ascending chain

B T ¥{By.) C ¥*{0ho) C

where @, . denotes the worst program with the source 1ype b and the target type c.

From the property of the least upper bound operator U, we can derive for any ascending
chain {g;}

Un{pn;q) Ualpn):g

This law states that the least upper hound operator is a quasi-junction.

In Dijkstra’s language the loop program dob — pod is defined as the least fixed point of
the recunive equation

z = if b then p; r else skip 8

6 Conclusion

This paper has looked 2t a categorical approach to the theory of data refinemeut. The goal is
to explore the sufficient conditions for the validity of data refinement by vanocus simnlations,
and to relate them to familiar categorical concepts.

Data refinement is known to be ap important method for designing computer programs as
well a5 implementation of computer programming languages. It is therefore important to have
simple proof methods to proof its correctness, and to know what methods are valid for various
kindas of language in use. For example, in a first-order programming langnage (without proce-
dures or functions as parameters) the simple proofs work for natural transformations, but in

30

a higher-order langunage they work only for the more restncted class of total simulations. We
have iuvestigated the relationship between the validity of data refinement and the properties
of language constructors. After getting a clear view of many useful feature of programming
languages, we know the reason why those coustructors are to be recommended and why some
other are not. The result of this paper provides an important criterion for design of a new
programming language, that it should maintain tbe validity of some clearly defined technique
of data refinement.

Acknowledgement

To Wim Hesselick, Joseph Goguen, Martin Hyland, Peter Freyd and Samson Abramski for
assistance, encouragement and advice of various kinds. Also to the Admiral B.R. lnman Cen-
tennial Chair in Computing Theory at the University of Texas at Austin for support during
the studies which led to this paper. The research was aleo supported in part by the Science
and Engineering Research Council of Great Britain.

References
[1] E.W. Dijkstra, A Discipline of Programming. Prentice-Hall, Englewood Cliffs. NJ, (1976).

(2] 1.W. Gray, Formal Category Theory: Adjointness for 2-categories. LNM 391, Springer-
Verlag, (1974).

[3] M. Hennessy, The semantics of call-by-value and cail-by-name in a non-delerministic
environment. STAM J. Comp. (1980), 67-85.

{4) C.A.R. Hoare, Commaunicaling Sequenlial Processes. Prentice-Hall, (1985),

[5) C.A.R. Hoare and He lifeug, Two-categorical Semantics for Programming Languages. in
preparation.

[6] 1. Lambek and P.J. Scott, fniroduction to higher order categorical logic Cambridge Uni-
versity Press, (1985).

{7] Sanders Mac Lane, Categories for the working mathematiciens. Springer-Verlag, New
York Inc. (1971).

(8] D.S. Scott, The lattice of flow dingrams. Symposium on Semantics of Algorithmic Lan-
guages, LNM 118, E. Engeler (ed.), (1971) 311-366.

[9] D.A. Turner, Miranda, a non-strict functional language with polymorphic types. LNCS
201, Springer-Verlag, (1985) 1-16.

31

Prespecification and Data Refinement

He Jifeng, C.A R. Hoare
September 4, 1950

Contents
Introduction
Data Types
Refinement
Completeness

Conclusion

1 Introduction

A data type is generally defined, in a manner similar to an algebra, as a set of values together
with a family of operations on these values. The operations are indexed by procedure names,
usnally with parameters for conveying values and resnlts between the data type and the using
program. It is only by employing these procedures that the using program can update and
interrogate the value of a variable of the given type.

Ore data type (call it concrete) is said to refine a data type with the same index set (call
it abgtract) if in all circumstances and all purposes the concrete type can be validly used in
place of the abstract one. The practical benefit of this arises when the abstract data type can
be specified, understood and used in an applications program but can not directly or efficiently
represented on a computer; whereas the concrete type is some efficient representation of the
ahstract one involving perhaps a complicated collection of bitmaps, pagetables and fileblocks,
which can be economically stored and updated.

Data refinement technology plays a crucial role in designing programs. It enables us to write
programs based on abstract data type easily and elegantly, and to derive efficient programs
based on sophiscated concrete data Lypes effiectively. Much research in this area has prodnced
various kinds of refinement rules [2,3,4,7,8]. An early suggestion for a method of data refine-
ment was given in [4]. The method was based upon

(1) an invariant predicate which must be proved true after initialisation and after every oper-
ation on structure, assuming that it was true beforchand.

(2) an abstract function which maps the current value of the conerete data type onto the
abstract valne which it stands for. The abstract function must be proved to commute with all
the operations of the data type in the following sense:

To apply the abstract function after a concrete operation gives the same result
as applying the abstract function before the corresponding absiract operation

This is sometimes expressed as a commuling diagram in which abs is the abstract function

abstract operation

abs abs

concrete operation

This method was adopted and developed in the VDM technigne of data refinement 7], In
VDM, certain additional properties of a data type are considered desirable.

{1) The abstract data type should be fully abstract. This means that any two distinct values
of the abstract data type can be distinguished by some sequence of operations on the data.

(2) The concrete data type should be adequate to represent every value of the abstract data
type, that is, the abstraction function should be surjective.

In this paper we attempt simultaneously to generalise and simplify the notion of data re-
finement in the following ways

(1) Both the abstract and the concrete operations may be nondeterminstic. We will use
relations to represent the comnmands over the data type. °

(2) There is no need for the concepts of full abstraction or adequacy.

(3) The retationship between he concrete and abstract data types does not have to be func-
tional; the invariant and the abstraction relation will be combined into a single relation called a
simulation. A simulation may be either upward {concrete-to-abstract) or downward {abstract
to concrete). The two kinds of simulations are sufficient for data refinement and together they
are necessary. This js a new result for nondeterminstic programs.

(4} The simulations rules will enable us to calculate the weakest specification of each op-
eration on the concrete type from the operation on the data type and the simulations.

The following relational notation will be used in the later discussion. Let § be the set of
states of a system. We shall describe an operation on the system by using a binary relation
on S: the state of the system before the operalion is denoted s and the state after denoted o'
Important notations include

Us =85x§
Is ={(5,9):5x5]s=17}
R ={(«,5):§x5|(s,¢) € R}

R ={(s,8):§x5|(s,8) ¢ R}

RUT, RNT, RC T and R:T denotes the union, intersection, containinent and
forward relatioual composition of R and T respectively.

Our definitions and proofs will be considerably simplified by confining attention to total rela-
tion, in which case R € T means simply R is at least as deterministic as T. Tbe justification
for this simplification can be found, for example, in {5].

We find it convenient to have notion for the weakest amongest both the first and the sec-
ond of a pair of relations whose composition meets some specification. We define the weakest
postspecification of relations (see [5]} a5

R/T =(T;R)

The definition is difficult to explain and to use; for most purposes it is sufficient to recall that
weakest postspecification is an approximate left inverse of composition in the following sense
(5]

T;Xch=XCR/T

Analogously the weakest prespecification is defined [5) as
T\R = (R:T)
which is characterized by the law

XiTCRB=XCT\R

2 Data Types
A data type A is defined in a fairly copventional manner to be a quadruple
A= (AVAL AILAAF)

where AV AL is the space of values of the type. Al is an initialisation operation, which is a
relation from some global data space to AVAL; and AF is a finalisation operation which 5 a
relation from AV AL back to the same global data space. A = {aop; | i € I} is an indexed set
of relations over AV AL; total relations in A represent commands that npdate or interrogate
the data, and partial relations represent guarded commands, guarded by a condition that is
just true on the domain of relation. Nontermination must therefore be represented by some
fictitious value L appended to the set AV AL and mapped to everything by each command.

A data type A is said to be canonical if all the operations aop; and Af are functions (to-
tal or partial). Programs will be written in an anologue of guarded commands [1). This is
restrictive enough to be implemented efficiently yet powerful enough to include nondetermin-
ism and recarsion. The set of programs over the data type A is defined to be the smallest set
D{A) containing

(1) the universal relation If and the identity relation I over the related data space

(2) all operations aop; in A

{3) P;q ard PU @ for any P and @ in D(A)

(4)N), Py where the B, form a descending chain of total elements of D(A); that is, for all n,
PoyaC By

A complete program over the data type A is one which begins with initialisation and ends
with finalisation. The space of all complete program over A is thus defined to be

FROG(A) = {Al; PiAF | P € D(A)}

A non-empty subset of a data type is called finitary if it is either finite or the whole type. A
relation on the type is called finitary if the image of each element is finitary, In order to ensure
proper tonvergence under clause (4), we insist that all relations in A be finitary; this property
is preserved by all programs in D{A) and PROG(A)

This paper is concerned with various forms of correspondence hetween one data type and
another. We consider abstract and concrete data type respectively

A= (AVAL AILAAF)

C=(CVAL,CI,C,CF}

and weshall assume that these two types are conflormal in the sense that
(1) their global data spaces coincide
{2} the indexing sets of A4 and C' coincide.

If P(A)is in D(A), we write P{C) for that member of D(C) which is constructed from
the corresponding indexd set € in the same way that P{A) was constructed from A. Similarly
for any complete program P, in PROG(A) we can construct the corresponding complete pro-
gram F; in PROG(C). We shall use the subset ordering on indexed sets, with the obvious
meaning,

CCA=CICAINCFCAFAVi¢l. cop, C aop;

3 Refinement

Defipition. A data type C refines a data type A if replacement of A by C in any complete
program only reduces that program,that is,

CI; P{C);CF C Al P(A),AF
forall P(A) € D(A)
Two types that refines each other are said to be equivalent.

Relational cortainment is used here as a correctness-preserving transformation whose only
effect is a possible reduction of nondeterminism. The insistence that all commands are total
and the use of a data value L to represent nontermination means that total correctness is
preserved.

Theorem 1. if C C A then C refines A
Proof: All operators of the language used in constructing complete programs over C and A
are monotonic in all their arguments. O

Theorem 2. Refinement is transitive: if C refines B and B refines A, then C refines A,
Proof: The proof follows by transitivity of relational containment. o

Refinement is a powerful tool in the design and development of programs, since it permits
an abstract algorithm to be designed over some simple abstract type A, which is then validly
replaced by some complex but efficiently implemented type C. However, the definition of re-
finement gives no indication of how to develop the concrete type: it is something which can be
verificd, with difficulty, when both A and C are known. We start by giving two simple proof
obligations [3], which can he readily checked and which prove to he sufficient for refinement.

Definition. A downward simnlation is a relation R from AVAL to CV AL satisfying

cr CALER
R,CF CAF
Ricop, Caopi; R for each indez i€ I

Here we insist that R be strict, that is ,
{L} x CVALCR
In terms of weakest specification, the inclusions in the above definition become

Cf CALR
CF C AF/R
cop; C (aop;; R)/R for each indez i€ 1

which provide methods for calculating the specification of C from the abstract type A and
the downward simulations using relational algebra.

Oar next concern is with the correctness of the definition of downward simulation for proving
refinement.

Theorem 3. If there is 2 downward simulation R from A to C, then C refines A.
Proof. A typical complete prograrm over C has the form

CILP(C);,CF C (AL;R),P(C);,CF the monotonicity of ;
C ALPA)RCF lemma 1 in appendiz
C AL P(A),AF the monotonicity of ;
which is a complete program over A O

Theorem 4. If R is a downward simulation from A to B, and T a downward simulation
from B to C, then R;T is a downward simulation from A to C.
Proof: Foreach index i € [we have

(B T)icop C RibopT
T is a downward simulation frem B 1o C

C aopii(R;T)
R 13 @ downward simulation from A to B
Other parts can be proved similarly. [m]

Definition. An upward simulation is a relation L from CV AL to AV AL satisfying

ChLL C Af
CF C L;AF
copi; L C L;aop: Jor each indezie 1

We insist that L be strict and finitary. The inclusions in the definition are equivalent o

CI C INAT
CF CLAF
cop; C L\(L;aop;) for eachindez i€ 1

Similarly we can show
Theorem 5. If there is an npward simulation from C to A, then C refines A.

Theorem 8. If L is an upward simulation from C to B, and N is an upward simulation
from B to A, thep L; N ie an upward simulation from C to A.

4 Completeness

This section is devoted to the study of the converse property of soundness, namely complete-
ness. The question being asked is therefore: given a refinement C of A, does there exist a
{downward or upward) simulation between A ard C.

The conclusion is : when the data type A is canonical, there does exist a downward simulation
between A and its refinement. Therefore for the canouical data type, downward simulation is
both sufficient and necessary for refinement. In general, if the data type A is refined by C,
then there is a data type CA such that there are an upward simulation from CA to A and
a downward simulation from CA to C. This means that downward simulation aud upward
simmulation together are necessary for data refinement.

First we wish to prave that refinement A by C implies the existence of a downward simu-
lation from A to C if the data type A is canonical.

Theorem 7. When A is canonical, downward simulation alone is necessary for refinement.
Proof. Define that for each P{A) in D{A)

R(P) = (P(C,CF\(P(A);AF)
and let R = Npep R(P)
We shall show that /& is a downward simulation from A to C
(1). For all P(A) in D(A} we have

(CLP{CY,CFYC (AL P(A) AF)

by the assumption. It leads 1o

CI € (P{C);CF)\(AI;P(A); AF) def of \
C A6L{(P(CLCFI\(P(A) AF)) lemma 3 in appendiz
= AL;R(P) def of R(P)
Which implies that
cr ¢ n(AI;R(P)) set theory
PeD
= Al r] R(P) femme 5,6 in appendiz
PeD
= AR def of R

(2) Since the identity relation f is a program ir D(A}, we conclude

R C R set theory and def of R
= (I;,CFW\(I; AF) def of R(P)
CF\AF I is the unit of;

which leads to
R, CF C AF def of \

(3). From lemma 7 and lemma 8 in appendix it follows that for each index i €
R;cop; Caop; R

7

This completes the proof. a

[n what follows we will explore a technique by which from any data type A, a canonical
data type CA can be derived such that there exists an upward simulation from CA to A
satisfying for all P in D

PA = PCA
Definition. For any subset B of § and any relation P on §, we define B|P as the image
under P of theee states in B, i.e.,

B\P ={r|3dp€B. pPr}

Now we introduce a relation L from FAVAL to AVAL, where FAV AL is the family of all
finitary subsets of AVAL. L is defined by

{B}]1L =8
for all finitary subsets B of AVAL.

Having defined the relation I we proceed to construct a data type CA from the data type A
and relation L. Here we define
CAVAL =FAVAL

The initialisation operation C AT is specifed by
Al =CALL
This equation can determine a function CAJ by virtue of the formula:
(sY1CAT = {{s}) AT}

for all global data s. Moreover it is strightforward to show that for all global data s

{s}1AI = {{sftAI}lL def of L
= ({sNCADIL def of CAI
{s}(CAL L) by law (6) in appendiz

i.e., CAf really satisfies the given equation.
The finalisation operation CAF is defined by
CAF = L; AF
Finally, for each index { € 1 the operation caop; is specifed by the equation
caop;; L = L;aop,

The existence of a deterministic solution caop, is obvious since caop; can be defined in the
similar way as C AT,

Now we have a canonical data type CA, and can show
Theorem 8. CA refines A by the upward simulation L, and for all P in D
Py = Pca

8

Proof: Direct irom the definition L and CA, and lemma 8 in appendix. O
We are now ready for the main theorem of this section.

Theorem 8. I C refines A then there are an upward simulation I from CA to A, and
a downward simulation from CA to C.

Proofl: If C refines A, C thus refines CA by the fact that Py = Pgcy . By applying
theotem 6, we can find a downward simulation from CA to A. This completes the proof.
a

5 Conclusion

We have iniroduced two simulation conditions which guarantee thal a concrete data type re-
fines an abstract one. These simulation conditions are more general than the rule used in
VDM: the downward rule always applies if the VDM rule does, bat there are situations to
which the downward rule applies though the VDM does not. In cases where botb rules apply,
the VDM relation is total and surjective though the downward simulation need not to be;
when the downward simulation is a bijection, the two rules coincide.

The simulation relations recommended in section 3 ean be used nol only in treatment of
the total comectness of a design, but also in the derivation of a concrete data type from an
abstract data type. The effective way of using the the result of this paper is as follows

(1) First design and maybe use the abstract type A

(2) Choose some suitable simulation relation R

(3) Calcuiate the weakest specification of concrete data type as follows:

CI =ALR
cop; = (aop;;R)/R foreachindezicl

or

CI = R\AT
CF = R;AF
cop; = R\(R;aop;) foreachinderigl

{4) Check that the domain of the concrete operations are weak enough (for example, total
commands are still total).

The use of calculation in step (3) is a promising innovation. If A is an abstract operational
semantics of a programming language, the method may be useful in deriving the concrete
machine code to be produced by a compiler for a concrete machine.

Oue problem in this paper is that refinement for a restricted language does not imply re-
finement for the more general language, which might have more powerful tests to discriminate
data types. So, although the methods described in this paper are perfectly valid, they might
not sirong enough to prove every refinement in more powerful languages. This problem is
investigated in [6].

Acknowledgement

To many members of the Programming Research Group for helpful advice and suggestions

10

of varions kinds. The research is supported by the Science and Engineering Research Council
of Great Britain,

References
{1] E.W. Dijkstra, A Discipline of Prograrnming, Prentice-hall, Englewood Cliffs, NJ, 1976.

[2] D. Gries and J. Prins, A New Notion of Encepsulation, SIGPLAN Notices 20 (7) (1985)
131-139.

[3] He, Jifeng, C.A.R. Hoare snd J.W. Sanders, Date Refinement Refined, (Resume) LNCS
213, (1986) 187-196.

[4] C.AR. Hoare, Proof of Correciness of Data Represeniation, Acta Informatica 1 (1972)
271-281.

[5] C.A.R. Hoare and He, Jifeng, The Weakest Prespecification, Inform. Process. Lett. 24 (2)
(1987) 127-132.

6] C.A.R. Hoare and He, Jifeng, Data Refinement in Categorical Setting, to appeat.

(7] C.B. Jones, Software Development: A Rigorous Approach, Prentice-Hall, Englewcod Cliffs,
NJ, 1980.

[8] T. Nipkow, Nondeterminstic Data Type, Acta Informatica 22 {1986) 629-661.

11

Appendix

The following laws presented in {5] will be used in the later proofs.

(1) If b is a condition, that is b;['=b, then
Pidn@)=(Pn s} @

(2) (PiU)nisC PP
(3) I € is a partial function then £ £ C Is

(4)let k ={1} x § where L denotes the undefined state.
Then U\H. = K

(5) $1P=S if kCP
(6) B|(FQ)=(BPlIQ
(7) A{sH(N B) = N(s1R)
(8) (P;Q\R=P\{Q\R)

Deflnition. For any relation P we define
domP = {p) Ar.pPr A -pPL}
and raaP = S|P

Lemma 1. If R is a downward simulation from A to C then for all P{A) in D(A)
RiP(C) G P(A)R
Proof: The proof is based on structural induction.

{a). Base case, let P = X. For each index ¢ [

R; P{cops} = Ricops def of P
C aop;; R def of downward simnulation
= Plaop);R def of P

When P = f or P = U, the conclusion is obvious.

{b). Assume that
R;P(C)C P(A);R and RiQ(C)C Q(A)R

Then it is easy to conclude that

R;(P(ClQ{C)) = (R P(C);Q(C) the associativity of ;
C PARZR:Q(C) by the assumption
C PAxQ{AVR by the assumption

12

R;(P{CYU Q(C)) = R;PIC)UR;Q(C) i distribute through U
C PARRUQ(ALR by the assumplion
C {(P(AYUQ(A)); R i disiribute through U

{c). Assume that forall n > 0 P, D Fhyy and R; Pu(C) C F(A)R

then we have

BN P(C) € [R:PalC)) the monotonicity of ;
c ﬂ(Pu(A)€R) by the assumplion
€ ((P(A)sR the cocontinuiity of ; O
n

Leruma 2. P;(Q\R) C Q\(P; R)

Proof:
LHS,Q = FP(Q\R:Q) the assoeiativity of ;
€ PR def of \
LHS C RHS def of \]

Lemma 3. If f is a partial function, and @Q;U = U, then

Q\(fiP)= fi(@\P)

Proof:
X;QC fFP
= X;Q;UC /PU the monotonicity of ;
= X;UCfu QU=U and ,UCU
Moreover we have
X;QC [P
=3 ?;X:QQP by law (3)
> [XCQ\P by def of \
= ([;UnIshX C fi(\F) by lew (2)
= (fUnX}C f;(QG\P) by law (1)
= X C fi(Q\F) XCX,U and X;UC f;U
which implies that
Q\fiP) € [i(Q\P)
From lemma 2 it follows that
FHUAPYS N[/ P)
which leads to the conclusion,]

13

Lemma 4. If P is a total finitary relation, and {Q;} is a descending chain satislying for
all ¥ >0 kCg; then
Pi(NQ:) =N(P;Q)
i [}
Proof: Here we dinstinguish two cases:

Casel: {s})]P=§

{3}](P§ﬂQi) = S](ﬂ Qi) by law (6) and the assumption
I = § , by law (5)
= (15193 by law (5)
= ﬂ({ﬂ}](}’, Q.)) by law (6) and lhe assumplion
= {s]1N(P:Q) by law (7)
Case 2. {s]1P = {to, .. 1a}
{3}1(P;in) = U{‘;”(ﬂQa) by law (B) and the assumplion
i 150 1
= UnNinen by law (7)
PR
= ﬂ(U{t_,]]Q,) [intte union distribules through
i 1gn
' the inlersection of a descending chain
= (N&sNP)iQs) by the assumption
= {s} m(P:Q-) by law (7) o

Lemma 5. If { is a partial function, forall i 2 0 k€ @, then

5N =590
Proof: Similar to lemma 4. o
Lemma 6. For all P in D

x C R(P)
Proof.

LHS U\x by law (5)
((P(C);CFW\(P(A), AF) since P(C;,CFC U
and P{A); AF D «

RHS def of P o

N

Lemma 7. If C refines a canonical data type A, thenforallie [

R; cop; € aop, ; I

14

R C (cop; P(C), CF)\{aop,; P{A); AF) def of R

= R C aop;((cop; P(C),CFIN(PA), AF))
{emma 3 and sinee A is canonical
= R C aop;(cop\R(F)) by law (8)
= R;cop; C aop,;(copi\ R(F)); cop; the monotonicity of :
= R;cop; C aop,; R(F) def of \
= R;eopi C m (aopi; R(P)) set theory
Peb
= R;cop, Caop;; R lemma b and lemma6 O

Lemma 8. Forzll Pin D
Pp = Pca
Proof: It is similar to lemma 1, and omitted. [n]

15

