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PART ONE

Overview

Introduction

Que of the most important developments in coluputer science has been that of data
absiraction. which lias enabled 1he specification of computer systems without regard to
implementalion detail, and has resulted in the development of many formal specification
languages. [or example [17], [28].

A formal specification will undonbtedly provide for a greater understanding of a compurer
system [22]. It should not, however. be regarded as an end iu itsell: il may be regarde:l
as a contract between the customer and implementor of a system, and musl ultimately
be judged on whether it results in the production of better quality soltware orin the
more efficient production of sollware [15].

Conseqneutly, the provess of transforming a formal specification into executable code has
attracted atiention of many theoreticians, and ecarly work [12], [33] has more recently
been supplementec by the prodnction of refinement calculi [2]. [5], [7], [14], [21], [23].

In the literature the examples illustrating the refinement techniques are, of necessity,
modest in scope and size; usually the specification is presented in a single flat development
npon which the method is then demoustrated.

Little investigation has been done {ato putting such theoretjcal resuits into practice
in realistically-sized applications (examnples are surveved below). The nain purpose of
our work is to demonstrate that a suitable forimal basis can be practically and uselnlly
employed in the Jevelopment of “real” soltware.

The vehicle for our illustration is a full screen text editor. Whilsi this may not be
regarded as a commercial-scale development. it 1+ of a size (the specification comprises
nearly ninety pages) sufficient to enable conelnsions to be made regarding the “scaling-
up™ of the method to much larger applications.

We had to develop a technique that would cope with the problems of size, aud the key
[actor in the developtnent method is its hierarchical nature. vnabling the relinement to
proceed in manageahle parts. The abstract state is composed of approximately thirty



components having over twenty five invariant relationships, with the implementation
comprising approximately the same. and consideration must be given to each of Lhese
constityeut for each of the sixly operations cthat are specified and implemented. Even
with a specification of modest size, the problems of complexity are considerablie.

We propose & novel hicrarchical approach 1o the specification/refinoment proress. e
start with a simple mathematical inodel of tie systemn and ewbellish this model in a
series of steps (a hierarchy of levels. cach one isolating and treating a particular aspect
of the requirements) in such a wayv thal each new level emboeds the previons one. This
specification siyle is iltustrated in [3). Nole that we use the terin “hierarchy™ o mean a
single level as well as the more normal meaning of 2 set of levels.

T wuch a specification ouly the tup-level hierarchy will camplelely deline 1he desired sys-
tem. Iowever intermediate levels will also be of significarce, since i1 is possible to apply
a relinement calculus at any level Lo produce a Ddly deterministic aud implermenatable
eoncrete data bype correspoanding Lo each hierarchy (or abstract data t1ype) of the speci-
Feation. The modularity so-achieved will make reasoning aboul the developmeut a morn:
manageable task.

It is, of caurse, possible tiat this approach might resull in an incfiicient implenentation.
since the strueture of the design will not necessarilv he compatible with that of the
specification. bal we feel that program transformation techniques [26] cun remedv the
situation {and, sce our conelnsions below),

A further advantage of the method concerns protolypiag. A crucial problem jn con-
structing any formal specificatinn is 10 ensure correspoudence with ai initial {(nsnally
inforinal) sei, of requirements. One solution 1ha! kas been proposed is to write the spec-
ification in an executable language [11]. [31] evabling the specification o be tested as
it is wrilten. The nature of such declarative formulations, however, tend to be make
them more dificait to read than those written in a nou-cxecntable specification language
{since the latter nead not provide the algorithmie solntion thatl the former, by definition.
requires) and necessarily conipramises the data abstraction gualities of the specification
process.

Whilst we support the view that a formal specilication should contain a body of Lheory
Lo help bnild confidence 1kat it does indeed describe the inforinal model that it is meant
to, we also feel that a rapid prololyping facility would considerably aid this task.

The refinemeat technigue that we nse provides for a complete impletuentalion of a spec-
ilication hierarchy. and this serves rhe same purpose as a rapid prototy pe, since we are
able 1o lest the specification agaiust the requirements at exch slage of the development.
The henefit of our approach is that the code produced is not discarded: it forms an
integral part of the final implementation.

The emergence of data abstraction is clearly advantageons in many respects {for example,
allowing attention to be [ocused on the similaritics of data 1ypes, rather than contrasting
their differences) bnt it is not without its problenis. When a specification is implemented
it willbe on hardware that does not have an infiuite supply of resources, and althongh we
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do not wish Lo comnpromise Lhe abstraction process by the inclusien of snch considerstions,
they are of paramount importance in the iraplementation.

1t is the jobh of the refinement calculus to bridge the gap between an abstract specification
and its implementation: the calculns that we present extends the coucept of refinencnt to
permit the introdnction of resonrce limit considerations by cousideration of “acceplably™
inadequate design decisions.

Of necessity this is a long, detailed and technical piece of work, which we presentia fonr
main parts. In this part {Part 1) we state our aims, conelnsions and related comments. In
Part 2 we present the refinement calenlus which provides the formal basis that underpins
our development rnethod. We present the abstract specificalion of the editor in Part 3,
and its refinement in Part 4. Appendices A and B sommarisc Lhe hierarchies of Parts 3
and 4 respectively, The implementation is given in Appendix C.

Each part. is, largely, self-cenlained, with it= own intreduction and contents sections. The
advice we would give to the reader wishing to consider one particnlar part wonld be to
start with its introduction. followed by the relevant appendix (in the case of Parts 3 or
4, to give an overall picture}, before proceeding with the detail.

We assmine a knowledge of Z [27], [24]. [30] and the Schema Calculns [18], [20] The
numbering of definitions etc. is best explained by example: Lemma 3:1.4b refers lo the
second lemma. appearing Section 1.4 of Part 3.

The size of the project has dictated onr methodology and also affected onr presentation.
Although we are able to give the complete abstract specification of the editor, in order
to keep the thesis down to a reasonable size, we do not present the refinement n full.
We have been honest, however: the entire refinement has been developed rigorously in
the manner that we illustrate.

The stimulus for the project was provided by [32] which closely followed the strncture
of the specification on which it was based [29); the specification was presented in 2 hier-
archy of three levels, and the implemnentation was similarly consirneled with eack level
embedded in the next. Although the derivation of the implementation was complelely
informal. it was felt that the coutrol achieved by nsing Lhat structure was considerably
greater than would otherwise have been the case.

We chose onr implementation language, C [18], mainly for its speed and since it was
readily available. Qther high-level languages would have served the purpose equally well
since the programming constructs that onr relinement caleulus requires (assignment,
sequencing, “if” and “do” [5], [7]) are always provided. It is worth noting thal lusgnages
more strongly typed than C would not provide a “safer” implementation: we plare no
type-checking requirement oo the programming langnage.

Conclusions And Further Work



The accent on onr approach throughout this project is on rigour rather than formality:
for example, we indicate which rules are applicable rather than proving that the rules
apply. However the development method does permit a completely formal derivation by
virtue of the refinement calculus given iu Part 2.

Our experience suggests that a lesser degree of formality could, where it was felt to he
necessary. be adopted: each abstract dala type will nsnally vontain many operations,
some of which will be broadly sinilar, and once one of & set of such operations has been
refiued to code. that for the other operalions may reasonably safely be written down
without reconrse to the refinement caleulus, Of course. soch infornality will tesndt in
code requiring thorough testing.

The abstract specilication played a crucial role in ensuring a deep nnderstanding of all
aspects of the systen. This has been the experience of many others {for example. [22]).

The development of the six chosen refinement hicrarchies proceeded remarkably smoothly.
the transition of the operations from specification 1o code presenting few problems. Ve
recoginge that even working within a completely formal [ramework of program devei-
opment will no! automatically ensure hog-frec code. ‘The errors that oceurred in our
impleinentation, however, have heen of a trivial nature {tvping errors and Lhe like} and
there have heen no errors of a “serious”™ nature (requiring the re-writing of lacge parts of
the implementation). Of course we have re-written parts of the jmplemeatation (there are
many possible refinements of a given specification) in the gnest for irnprovement. and
Lthe modular structure of the implementation has made this task casier than it would
atherwise have been.

In order to simplify the description ol operatious lnvalving i/o, we included a hrief specifi-
cation of onr understanding of some operaling systew and terminal hardware operations
(nrthogonal to the main model). Although this formal staternent of these operalions was
of considerable use in the consimaction of 1he editor interface, bolh in the specification
and refinement phases, we estimate that interfacing the edilor took at least hifty percent
of the time spent on the impleineutation!

Whilet sotne of this time may be explained by onr programining inexperiermce. the inher-
ent problem of formal developinent within an operating system and hardware environ-
ment that s almost exclusively informal is considerahle. and much investigation remains
to he done.

The facility to Lest the specification against its regnirements proved o he extremely valu-
ahle. Although it didn't nncover any major disparity. it did give rise to some fine-tuning
of our requirements, the nain one concerniug cnrser movewrent. and the orthogonal
development of the (3 stale (Part 3, Secliou 4).

We did. in fact, partially implement the display of the editor {the Doc9 hierarchy. Parl 3,
Section B) at au early stage so thal we conld view lower-level hierarchies. This approach
is made possible because of the indeperdeuce of itnplementation hierarchies due to the
“report-passing” style of programming adopted (see Part 4, Section §).
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We completed the specification before starting ity refinement, and in somc cases the
{minar) changes made as a result of testing did percolate up through the specification
hierarchies, which leads us 1o believe that for some programs, Lthe siiunitancons develop-
ment of specification and implementation might he a very usclul approach - the hierarchy
under current constraction will then be buill on lower Ievels which are demonstrated 1o
have met the informal requirements (Lhrough their intplementation ). mnimising ~pecifi-
calion change.

A further advantage in adopting a simultaneons development sirategy ts that the devel-
opment team would, at regular intervals. have something concrete [or discnssion vith the
client, permitting early feedback whilst also demonstrating that progress is being made!

I'he consideration of specification change is important since. although we can demon-
strate fo the client that the specification maleles his/lier requirements, the change may
be forced by factors outside their immediate conteal.

We wished 10 demonstrate the impact of specification change on the refinement method
by implementing a specification that we would then change and re-implement. ln fact
the specification that we present 1s the amended one; jnitially we did not permit (he
ase of regular expressions in the scarch operations, and did not mclude the movelo-line
operation {Part 3. sections 7.2 and 6.4.6 respectively). Space considerations prevent g
from presenling the original specilication and refinement.

The introduction of regnlar expressions necessitaled the re-refinement of Lhe two search
operations (resulting in the introduction of the CharMulched routine of ConeDacd (Ap-
pendix C, page xi). The addition of the move-to-line command necessitaled its refisement
in ConcDoc® (Appendix C. page xiii), but it could then be promoted v the same way
as other operatione on that state, and regnired no further work.

Further, after the implenientation was complete we changed onr notion of a line in the
lowest-level hierarchy {we initially modeled a document line Hoe ! and a display line Doc3
in the same way, and realised. at a very late stage, that they would be betier mudelied
in a different way). The scope of this specification change was limited to the four line
operations in Deel, and, accordingly, our only change in the refinement concerned those
four operations.

Clearly the hierarchical structure of the method limits the amonnt of work that has ro
be done as a resull of specification change. considerably simplifying the 1ask of soltware
maintenance.

Another aspect of the modularity of the development method that we were 10t able
to investigate, but feel that it would be worthwhile to do so. 15 the re-usability of the
specification.

We feel it would be possible to add and refine specification hierarchies, in exaclly the
saine way that we have done here. using the cxisting code; again. the “report-passing™
implementation facilitates this approach.



One example of re-use wouwld he to regard the cditor as Lhe basis on which, say, a
functional programining tool was to he buill: by removing the display Doc9 hierarchy
{Part 3, Seclion R), adding hierarchies to provide the necessary functionality (e.g. the
addition of “fold” and “unfold” operations), promoting existing operatious to the new
hierarchies, and putting the display module back at the highest level would enable exacily
the same micthod of implementation that we have used o he followed. The existing code
would form an integral part of the extended implemeutation.

Critics of formal methods will point Lo the impossibly large number of proof obligations
associated with any reasonably-sized program, and this has been the main reason for our
rigorous, rather than lormal. treatmeunt.

Althougl wr found the power of the Schema Calenlus ro be a considerable assel in
the construction of the specification. but would welcome a tool lor automatic schema
expansion, the repeated use of schema inclusion in the coustruction of the specificarion
rneans, particularly at higher levels, that the problems associated with the identification
of proof abligations are severely compaunded.

Since the completion of this thesis we have employed a proof-assistant [L], to identify
and discharge the obligations associated with the Doc! specification hierarchy (Part 3.
Section 1). Over ope hundred proof obligations mnerged. It is clear that any formal
development of a large svstem without the aid of mactine assistance would present
considerahle problems.

\We strongly feel that there is a clear need for machine assistance, both in the identi-
fication and discharge of proof obbgalions. Parts of the refinement can be calculated
and lhere, also, computer assistanre wonld be mosl weleome. The provision of a suppart
covitonment, for example, as described in [4], would cerlainly make the entire process
more manageable and would, we [eel. enable a more formal and less rigorous approach
Lo he adopted.

We had anticipated tlat the performance of the editor would he inadequate. and, as
indicated in the introdnctory section. that some program transformation wonld be nec-
essary. To our pleasant surprise. however. we found that the cditor’s response times
certainly matched that of the one that formied the basis for its reqnirements [32], and
consequently we have left the implementatiou in # siructure 1hat exactly miatches that of
its specification. We have no reason to believe that our code is less efficient than would
have been produced by more traditional means.

My design/programming inexperience was a major contribution to the duration of the
project; correct refinement does not necessarily imply a good design! It is argued that
intuition and experience are a computer scientist’s most valnable tools, and any tech-
niques wsed wmay, at best, be a supplement to them [24]. We feel. however, that there
is considerable room for creativity in inethodologies such as the one we present. and
indeed that u design leam wonld welcome a basis that enabled the determination that a
particular implementation did exactly the job for which it was designed.



Related Work

As stated in our introdnction. Lhere are very few examples of large- and medium-scale
formal development of software; this applied science is still very much in its mfancy.
Much interest has centered on “salely-critical” software ([or example where peoples’
lives may he endangered by software [ailnre). bnt the nature of these projectsis snch
that pnblication is restricted.

The Vienna Development Method. VDM [17), is the longest-established of the formal
development mmethods, and has been used extensively in both academic and industrial
courses. I is probally nol now as widely used as other specilicalion langnages (no-
lably Z}, but it has been of indamental importance in its inlinence of formal methods
techmignes.

VDM has been applied mosl notably in the areas of systans programming. where the
complexity of the code is particularly suited to formalism, and programming language
semanlirs. most notably the description of PL/1.

It is noted that the scale of suck developmenrs often renders the work nnsuitzble for
nermal publication [17). and il such work is to gain a wider audicuce than at prasent it
js an area that clearly nceds urgent attention.

Since 1984, TBM have been uring formal metliods in the development of CICS (Cuslomer
Information Control System) [16]. It is a large transaction processing system (comprising,
over 800,000 lines of code) and exisled before the introduction of formal development,
the later being nsed in the prodaction new. rather than existing, inodules.

The method is based on Z aud (he guarded command langnage: much emphasis is placed
on the specification phase. which is used as the vehicle far discussion between the design
team and the customer {the business planning/ technical sections of the company. Once
the specification is agreed it becownes a record of commitment Lo be fullilled by the
development team.

The refinement of the specification into code is informal and achleved in two stages:
a high-level Z document is first produced stating how the design will be implenented,
followed by a low-level document written in the guarded command langnage. The code
is written directly from the latter.

Refinement takes the form of ~condensing out the simple parts immediately into guarded
cammand langnage. acd specifving the more complicated as schemas to be refined [ur-
ther”. Experienced programmers are used and mathematical techniques (e.g. the use of
loop invariants) employed only when the spectfication is complex.

[n general, code is prodnced at a point al which it is felt to be “safe”. and experi-
enced programnmers are [ound to be indispensable. Module testing is then performed
before handing over to other groups [or system testiug. The specification is fonnd 1o be



invalnable as a reference docnment at this point.

The main benefits derived from the approach are felt to be that a greater understanding
of the problem is achieved, evabling the team to “get it right” at an early point in the
process. incrrased productivity, improved documentation, and the abilily of newcoiners
to the project to come lo terms with the problem quickly. Considerable henefits have
been identified in the area of specification change. arising out of greater undersianding
of the functionality of the application, Further, there is sirong cvidence Lo suggest Lhat
there are fewer bugs in the resulting code than those presenl using traditional metheds.

Much effort has gone into iraining, with the establishment of an in-house caurse. [t
is generally found that it takes a few monihs for someone, initially having no lormal
methods training, 10 become proficient.

The success if the above project has led to further studies in formal deselopment being
pursued at IBM [34). The specification aud target langudges are again Z and that of
zuarded commands. but the transition from one 1o the other is on a meore formal basis.

Data and operational relinement are treated separately, and (e correciress criteria slem
from a retrieve relation, and the identifiration of obligations to be discharped in a similar
way 1o the VDM methed (sce above).

Empliasisis placed on the tabulation of particular aspects of the development (e.g. pee-
couditions of partial operatious). hoth to minimise errors and (o serve as convenient
summaries. ‘[he developer is also encouraged to review iuforinal checklists at specific
stages (e.g. whether or not sufficient use has been made of pre-existing duta types). The
aim is to provide a standard development method that has a formal basis.

Small-scale applications have proved successful, with the henelits resulting largely par-
alleling those stated above and it is noted that there fs 4 need for automated assistance
and stressed that the creative role of the programmer is not remaved.

A formal methods approach has successfully been adopted to develop a floating point
arithmetic routine for the transputer (3. The roatines were abstractly specified in Z,
aud the code formally derived with proofs of correctness given to shaw that it met its
specification.

The significance of this project is not in the scale of the application, but in its complete
formalily and it relation to the hardware aspect of a computer svstemn; il augurs well
for the future.
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0 Introduction

We establish a set of rules and proof obligation- which will enable the construction of a
formal prool that a proposed implementaiion of an abstracl specilication meets (i.e. is
correct with respect 1o] its specification. We follow the appraach of [17] iu separating
refinement of data from that of operations.

In Section 1 we consider data relinement on an abstract state (the iinplermreutatjon of
a concrete data type for the abstract data type of the specification). We refer lo this
process as the taking the “design decision” since we are designing a data structure that
can be jmplemented in a programming lauguage. b {act. the chauge from abstract o
concrete data types need not be accamplishied in oue step, but each step may be regarded
as refining 1o a "more” concrete type, in the sense that the new typeis “nearer” to being
able to e implerwented in a programming language; our rules permit such a stepwise
approach.

In Section 2 we consider the iinplications of the design decision on the refinement of in-
dividual operations of the specification, establishing a method for calculating the specifi-
cation of the weakest (i.e. most general) concreie aperation corresponding to an abstract
gpceration. We also show how a reconfiguration of the concrete state may be achieved
once the design decision has heen taken without incurring further proof ohligations.

In Section 3, we establish a set of operation refinemeut rules based on the pre- and post-
conditions inherent in the specification. We may then either adopl o fransformational
approach 1o operational refinement, since each result may be regarded as a correctuess-
preserving transformation of the operation and may be appliedd (without proof) in the
refinement process, or we may. using our intuition and experienve, produce what we ferl
is a refinement of the operaticn and use the rules 1o prove that it is so.
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The natnre ol an abstract specification is such that operational considerations such as
resonrce limitations are usually ignored. stuce their jnclusion would detract from the clar-
ity and conciseness of the specification. In Section 4, we show how resonrce constraints
may be admitted into the refinermnent process: existing theories of refinement do not al-
low snch activity, and we motivate the need for Lthe inclusion of such considerations, and
extend our definition of refinement, establishing the proof ebligalions thereby incurred.

‘We nse the symbol “C" to mean “is refiued by” or “can be safelv replaced with” i botl
data and operational refinerneut.

0.1 A Note Regarding Presentation

In order to aid readability, we use the convention that vertically aligned predicates imply
their logical conjunction. Thns:

predi1

pred2

predd v pred

will be equivalent to:

predi A pred2 A (pred? vV predd)

and:
pred?
pred2 = pred3
predf
preds
v
preds

will be equivalent to:

predi A (((pred2 = (predd A prrdf)) A pred5) v preds)

1 Data Refinement On A General Abstract State

Data refinement involves the implementation of a concrete data type to represent an
abstract data type. In this section we consider the implementation of the concrete stale
for the abstract state. We assnme a fully absiract stale, by which we mean that each
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abstract represeutation iz unique in the setwe Lhal for any Iwo stales therc exists a
sequence of operations (defined on the absiract state) which enahle the two states 1o
be distinguished (in [17] this properly is referred to as “freedom from implementation
bias™}.

1.1 The Concrete-Abstract Invariant Relation

We dufine a general absiract state which comprises the abstract object AS (alist of
abstract variahle signatures) together with an invariant predicate ebsine:

AbsState = [.th | absinw ]

Wo wish todata refine AbsSlate. and we assume a design decision in which the concrele
state comprses the concreie ohject €5 [ a list ol concrete varaible signaturos) together
with an invatiant predicate concinv:

ConcStete = [ €S | roncwny

e require that cach conerete state has an ahsiract connlerpart: by doing so we consid-
erably simplifv proof obligations (ebviating the peed for existential quantification over
abstract slates), and note thal this requirement does uot inhibit our iransformation
from absiract specification into code (the refineiment of the specification. Part 4): since
we bave a [ully ahstract representation, cach coucrete state will be associated with a
nnique abstract state.

In general, we also require that each abstracl state has al Jeast one concrete counterpart
{1.e. that the design decision is adequate): wilhout this requirement it is possible ta admit
a design decisiou which hnplements only a very small part of the absiract specificalion
(the extreme case being an empty design decision), which. elearly. will be of limited
practical use and is nolikely to satis(v the specifier of the system. This requirement is,
however, too strict since the use of non-determinism in the specification may explicitly
allow swates for which no concrete connterpart is envisaged, the specifier allowing the
designer the freedom of choice as 1o exactly which states are provided in the implemen-
tation. Since, when uvsing this techniqoe. the specifier piay communicate his/her wishes
oniy by informal means. we place proof chligations on the uaplementor and pursue this
consideration in the next section.

1.1.1 The “Rel” Schemas

The invariaut relationship between the abstract ard concrete states may be conveniently
captured in a schema which is the conjunction of the abstract and conerete states together
with apredicate, invrel. describing the relationship between the two states:

el = [ AbsState A ConeStale | wnorel |

13



We may express the requirement that each concrete state corresponds to a unigue ab-
stract state msing this schema:

Definition [C 2:1.1.1a]
Y ConcState o 3, AbsState o el

It is usefn! to consider two further schemas in which the direction of the relationship is
recognized (i.e. abstract to concrete, or concrete to abstract): the first. Downfel relates
a before-ahstract state to an after-concrete one, and the second. pflel. relates the two
states in the reverse dirertion:

|

DounRel =  Rel[CS'] C5)
UpRei = Rel[AS] A8

i

The concrete representation for a particular abstract state will not, in general, be unique:
in fact for each abstract state the design derision will define an equivalence class of
concrete configurations, which may be determined by calculating tpRel (relaiing an
arbitrary concrete state - through wbsinv - with the abstract staie that it represents)
composed with DownRel (relating that abstract state back Lo another concrete slate),
and we define:

Concflet = UpRel; DowrRel

which expands to give:

ConcRel )
AConcState '

1 AbsState, o
i Rel[ AS,[ AS)
| Rel] 45,, C5'} 45,75
|

{rom which we obtain:

Concllel
AConcStale |

csiqrmnn——

© 3 A5, e
absinv[45,/ AS]
invrel[45,] AS]
inerel[ 45, C5'f A5, €5]

14



I [T 2 : 1.l.1a] is satisfied, the unigque existeuce of A%, satislying absinu (the first
predicate)} is guaranteed, since the second predirate associates AS, with CS through
intrel. The final two predicates relate 45, to bath C5 and %', aud their simplificatiou

- -7
will define the relation between €% and 'S and, hence. the concrete state eguivalence
class.

For example, if AbsState.ConcSiate and Rel are as follows:

AbsState 2 [ Arseqg N | #A< V]

ConeStute = [C:1.. N > N; P:a..¥)

Rel = [ AbsState A ConeState | A = Cflor P
where:

::::‘_:-::::ﬁ;:::::::7T:~_7:—;‘

We have;

ConcRel
AloneStale '

T 4,:5eq N w
#4252 N
4, = Cfor P
' for &

—_—

N
Py
It

and since we may verify that [E 2:1.1.1a] holds. we elimiuvate A, 10 got:
ConcRel & | ACuneState | Clor P = C' for P/

which defines the egnivalence ¢lass (in which any 1wa tnembers must have equal poiunters,
their arrays must agree up to those pointers, hut can have any natural number values
after their pointers).

We may regard ConcRel as the weakest specification for a concrete statc reorganising
aperation, and we pursuc this in Section 2.2

We now return to the question of adequacy, and we may calculate the subset of the
abstraction that the design decision implements by considering the above composition in
the reverse order: we compnte DownKel (relaling an arbitrary abstract state - through

15



absiny - with a concrete state) composed with TpRel {relating thiat concrete state back
to an abstract state), and we define:

AbsRel = DownRel; UpRel

which expands to give:

‘ Ads el
AAbsState

1 (oneState, »
Rel[C5, ) %)
iL Rel[AS, C5, A5, €8]

I
|
r
I
I

and we obtain:

| Absfel
JAdsState

i 3C5, .
‘ concine[ 5,/ C5]

| im:rea'[C"'SQ," C:.'S']

i invrel[ 45, 5.7 A5, (5] ‘
| ]

This time the second predicate indicates that 75, will exist on_l_v for those abstract states
which have been implemented by the design decision. but if 'S, does exjst the final two
predicates relate both A5 and A5 to €S, throngh sherel. and if [C 21 1.1.1a] also holds
{when the first predicate will be assured), AS and A‘S' must be Lhe same. and so AbsRel
is defined on a no-change state:

Absiel
\' ZA bsState
|
i

3C5, »
eonemv[CS /CS]

invrel[CS, [ C5) |

— . —_1

Hence we may interpret AbsRel as representing the identity operation on the sibset of
the abstract state for which concrete states exist; when the predicate part of AbsRel ig
true we kave an adequate design decision.

Using the above example, we have:

16



} AbsRel
| ZAbsSlate \

‘ It N = NG P08 & A= (for Py

the predicate part of which is true, and so AbsRe! is equivalent te Z4bsSlate indicating
an adequate design.

When each concrete state corresponds Lo a unique abstract state, and cach abstract state
has a representation in the design. A bsSiatc can be safely replaced with CloneState:

Definition [C 2:1.1.18]

Rel = [ AbsSteic A ConeStale | absiny |
YV ConcSiate o 3y AbsSinte & Rel
Abslel = ZAbsSlate

i_
AbsState T CancStlate

u

When the first requirernent is satisfied but the second is not (AbsRel is not eqnivalent to
ZAbsState), we require thal the designer has good reason for the partial implementation
before we allow the concrete siate to impleigent the abstract; we lormalise the concept
al “good reason™ in Section 4. giving an alternative formulation of the above lernma.

2 Data Refinement Of A General Abstract Operation

In this section we consider the implementation of the conrrete operation for a genecral
abstract operation.

We first demonstrate (Section 2.1) thal, once the design decision has been taken, the
weakest specification of the correspanding concrete operation may be calcnlated; the
before- and after-state of the concrete operation will correspond to the before- and after-
state of the abstract operation throngh the Rel schema,

However, efficiency considerations (for example) may dictate that the operation is hest
effected on a particnlar confignration of the concrete state. We know (Section 1.1.1) that
a concrete state corresponding to an abstract state will not, iu general, be nnigue, and
it is therefore possible to transform the operation such that it is defired on the required
concrete confignration.

17



While this may be thonght of as a refinement of the concrete operalion, the cheice of
the specific concrete state may be made from Lhe coucrete equivalence class defired by
the ConRef schema. and we choose Lo regard the process as that of reconfiguration. We
show how this may be achieved using CooneRel in Section 2.2,

2.1 The Weakest Specification Of The Concrete Operation

The abstract operation AQ# links a before-state AbsStale with an after-state AbsState’.
and we dcfine a general operation whose before- and after-states are related through the
predicate prepost:

AOF = [ AAbsSiate | prepost )
We assume a design decision with Rel. Abshic! and ConcRel as defined in Section 1.

Assurning that the before- and after-states of AGP have a representation in the desigu,
we may represent the relationship by the following commuting diagram [10], [12]:

AbsStole AbsState’
O . O
t \ I |

| .

LpRel | DounRel LpRel } ' UounRel
| |
o .
cop

CaneState ConeSiale’

We label the operation linking the concrete states COP, and way use the diagram to
calculate its weakest (1.e. most general) specification:

UpRel; AOP 3 DownRel

which expands to give:
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UpRel; AOP; DouwnRel
A ConcStale

3 AbsSlale,, AbsState;
| Rel[A5,/ AS)
i AOP[AS,. A5,/ A5, 45))
: Rel[dS,. 051 45, C9

from which we get:

Uphels AGP ; Downhel
|

ACuneStale
'3 45,45, =
| absinv{AS,/ A5
‘ absinu[AS, / A5
invrel A5,/ 45]
invrell 45, (5’ A5, €5
prepost{AG,, AS, } AS. .4_'5"]

As i the simplification of ConcRel, [ 21 i.1.1e] ensures the unique extstence of both
,.-1_:5'a and 1{_:51 (satislying the first 1wo predicates). Siuce A%, and A5, are related to
&% and (5 throngh invrel respectively (third and fourth predicates), the final predicate
indicates that the operation may be ablained by the snbstitution of abstract variables
by their inuvrel concrete counterparts, nndashed concrete replacing undashed abstract,
and dasbed concrete replacing dashed abstract.

Continuing with the example introduced ju Section 1.1.1, if we have an abstract operation
which returns the length of the sequence 4:

AOP

‘i AConrcState

we have:
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UpRel ; 4OP ; DounRel
‘ AloncState

| Ar o
! A, £ N
‘ #4, 2N

Ag = Cfor P
| 4, = ' far P/
| Ao = A
l 7 = #A,,
L

Since [C 2 : 1.1.1¢a] holds, we simiplify to gel:

UpRel; AOP; Dawnflel
‘ AConcState

¢ for P = ' for P’
{2l = #(C for P) .
R |

indicating that when ahsiny expresses each camponent of the abstract state axplicitly
in terms of the concrete stale, we may obtain the weakest concrete operation from the
abstract operation by textnal ceplacement of the abstract component for the wncrete
component, and provided that [C 2 . 1.1.1a] holds, and the before- and afler-zhstract
slates have a representation in the design, we incut no further proof obligations

We denote this weakest specification for the concrete equivalent of 40P by A0PC, and
it Tepresents our starting point for Lhe refinement of an operation:

Lemma [C 2:2.la}

Rel = [ AbsSlate A ConcState | absinv ]
Y ConcSilate o Iy AbsSinte » Rel
1 CencState. ConcSitate’ o AOP A Rel A Rel’

ACOF L AOFC
]

2.2 Reconfiguring The Concrete State

In this section we show how it is possible to pursue refinement on the weakest con-
crate specification for AOF that conforms to a pariicular before-state configuration. We
achjeve Lhis by pre-sequential composition with an operation that produces the desired
configuration,

20



As discussed in Section 1.1.1, the weakest specification for an operation that reconfigures
the concrete stale is given by C'orcliel. That operation is. in fact. an identity for AOPC.
and we could, therefore, take our slarting point for operational refinement as:

ConcRel ; AOPC

and. using the resutts we establish in Section 3. refine Concflel so that its after-siate
conforms 1o the specific voncrete configuration that we require. However, we could not
refine AOP sothat its before-state was that conliguration since we wruld be violating the
Domain condition for refinement [ 2 : 3.2a| that the pre-cemdition cannot be narrowed.
So if we want to pursue refinement on a particular concrete configuration. our starting
point must aready embody the configuration reqnired.

Qur approach is 10 define an operation like Conclel. bnt one produncing the tegumired
coufiguration as its after-state, and tv define another operation like AOPC, bnt one
whose belore-state alsa has the desired configuration: we then show Liiat the sequeniial
compaosition of the two is a refinement of AQPC, thns providing us with an alternative
starling point for operational relizement.

These two operations can be calculated in the same way as ConcHel and ACOP, and we
start by defining the particular conerete configuration by the addition ol the predicate
specific to the conerete state;

ConcSlate,peeyic = | ConcState | specific |

The relationship between the abstract state and this configuration of the concrete stale
is given by:

Re“speclﬁc E [REI ‘ Spf(‘:iﬁr]

We faliow the same procedure as in Section 1.1.1, and deline schemas giving the rela-
tionship direction:

1

UpReElypeesic Relypersic[AS' | A5]
DownRelyepe = Ifrl,:,,,nﬁc[(:S,/ %)

aed define ConeRelipeqs- to be the composition of UpRel with DownRel,, 0\fq, and so it
relates ap arbitrary before-concrete state with an after specific concrete state:

ConcRelyepe = Upflely Downlivl g,

which expands to give:
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‘ ConcRelypecsic
 ConeState I

! ConcState),, .

| 3 AbsState, e

Rel[ As,/ 45)
‘ Relopeeysi-| 45,. C5'[ A5, C5)
| .

We now deline AOPC peri5,:
ACPCgociic = UpBedgpeersc ; AOP; DounBel

and il expands to:
: UpRelypecsfic ; AOFP 3 DoumMel

ConcSiate 1

L' ConcStatel,, ..,

I 1 AbsStatc,, AbsSlate; »
‘ Re[,,,,m_{,s[A':S_"a/ A”s;] .
| AOP[AS, 45,/ 4%, A%
; Rel{A5,,C5 | A5, €5
- ]

We may interprel this operation as being obtained from AQP by the substitutjoa of the
before-abstract state by the corresponding concrete state defined by Rel,..ig., and the
after-abstiract state by the corresponding coucrete state defined by fel

We now show that the sequential composition of ConeRelypeng. and AOPC,poeife is equiv-
alent to AQP, provided [C 2: 1.1.1a] is met and the abstracl operation is admitled by the
design such that its before-state bas a representation Lhrough Relypo.p, and its alter-state
a representation throngh Rel:

Lemma [C 2:2.2d]

Rel = [ AbsState A ConcState | absimv |

Relypecinic = | Rel | specific ]

Y ConcState o 3; AbsState o Rel

3 ConcState, ConeState’ o AOP A Relg..ic A Rel’
'f‘

AOPC = ConeRelypop. ; AOPC,,, 5,
]
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Proof
FExpanding the schema of the right hand side. we obtain:

ConeRelypecafie 3 AOPCopeasfic
AConeState I
: 3 ConcSlate, »
' 3 AbsStale,
Jel[AS, ] AS)
Relypecic[AS 4. €5, A5, 5]
3 AbsSiate;, AbsSlates o
Relypesicl 451, €5,/ A%, (5]
AOP[AS,, ASy/ A5, 45
‘ Rel[ASe, CS [ 45, (5

Il Cone-State, exists, then by the third antecedent of the lemma, since both AbsStaic,
and AbsStale, are associated with ConcSlate, (Lhe secoud and third predicales). they
must be the same. and we may simplify the predicate part to:

3 ConcStale, =
3 AbsStale;. AbsStaley »
Rel[A5,/ AS)
Rel, e[ 451, C8./ AS, C5)
AOP[45,, 45:/ A5. A5
Rell 481, C5'f 45, (5]

The first predicate relates AbsState; to ConcSiate Lhrough Rel. and g0 the lemma’s third
antecedent ensures the existence of AbsState;, and (fourth predicatej it corresponds to
the before-state of AOP. ConeStalc, is related ta AbsStafe, through Rel,p..ps. (second
predicate) and therefore the last antecedent of the letnma guarantees the existence of
ConcSlate,, and we may further simplify to:

3 AbsStale,, AbsStates o
Rel[ A5,/ AS]
AOP[AS,. A5.] AS. A5
Rel[AS,., 5’7 45. 09

which is 1the same as the le(t hand side.

Using this result, we may combine it with [C 2 : 2.1a] to get an alternative starting point
for operational refinement:
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Lemma [T 2:2.2]

Rel = [ AbsState A ConcState | absinv ]

Relyeeic = | Rel | specific]

¥ ConcState o 3, AbsStote o Rel

3 ConcStale. ConcState’ o 40P A Relgpoe A Rel
-

AOP [C ConeRelypinpe ; AOPC,pecife

Therefore if our conrrete operation does not need 1o be conducted on a special con-
crele state configuratlion. our starting point is AGPC; if a parlicular coufiguration is
required. we may use this lemma alternatively ta start with the sequential construct
(ConcRelygacifc ; AOPC ponpc) in which the former's alier-state and the latter's hefore-
state conform to the required configuration: both may be calculated once the design
decision has been taken.

3 Operational Refinement

In this section we define exacily what we mean by refining an operation which is specified
in Z using the Schema Calculus: we may then {perhaps using our iutuition) produce what
wc feel is a refinement of the operation, and prove that it is so. We also establisha series
of refinement results allowing an alternative approach: each resull may he regarded as
a refinement-preserving trensformation of the operation. and may be applied (without
proof) in the refinement process.

3.1 The Logical Basis

We use the laws of logic preseuted in [9] in our proofs of the refinement theory, and also
use the following laws, the first of which {ollows from Constructive Dilemma.? with d
replaced by ¢, and the second {rom that same law with d replaced by a, Generalization
and Antisymmetry:

(a=b) = {((a A c)={b A )} Constructive Dilemma.3

(a=b) = {(a A b)=a) Absarplion.3

We use two properties of pre-conditions of operations. Since ihe pre-condition is cal-
culaled by existentially quantifying after-variables. and existential quantification dis-
tributes throngh disjunct, pre does likewise:
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+ pre.l
pre[v' IR (-41)] SRy I..n (pre[ft:]]

In general, the same is not true of conjunclion; however the existential quantification
ol a conjunction implies the conjunction of the existential quantifications, and so, by
definitian of pre:

[ pre.2
pre[/\| HY I (41]} = A! HE ..n(pre[Al])

3.2 Refinement Of One Operation By Another

An operation B refines an operation A if it satisfies two conditions: the Dermain condi-
tion, which requires that B must he applicable when A is (although B may be applicable
{or further states as well), and the Safety condition, wlich requires that when 4 is ap-
plicable the resnlts allowed hy B are also allowed by A (althongh B may do more than
A). These requirements have been presented in [17] and elsewhere.

Here, we lranslate the two reqnirements to a Z/Schema environment, presenting them
in the form of a definition from which all subseguent results ju this seclion are derived:

Definition [T 2:3.2q]

F
AC B
(=4
pre[4] = pre{B] Domain
prefd]l A B = A Safety
"

Thus Demain condition allows us 1o weaken the pre-condition and the Safety condition
allows us to strengthen the post-condition.

A corollary to this definition follows frorn Unit.3: a total aperation may be rclined only
by another total operation:



Corollary [C 2:2.25)

pre[d] = true

-
A C B
<
pre[R] = true Domain
B = A Safety
u

The ordering is Lransitive, euabling a stepwise approach to relirement to be adepted:
Lemma [C 2:3.2¢]

(A CE B) A~ (RE O
i_
4L

Proof
Domain

Follows from the transitivity of “="

Safety:
1. pre[B] A C = B BCC
2. pre(B] A C A pre[A] = B A pre[4] 1., Specialization
3. pre[A] AB = A ACEH
4. pre[B] A C A pre[d] = A4 2..3.
5 pre[d] = pre[B] AC D
6. pre[d] A pre[B] = pre[A] 5.. Absarption.3
7. pre[d] A T = A 4.6,

[ ]

The ordering is reflexive (recall that A = B if they are applicable for exactly the same
set of states, and the resnlts produced by one imply, and are irnplied by, the results
produced by the other):
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Lemma [C 2:3.2d]

(A CEH A (BLCA

}_
A= 8B
L |
Proof
(pre[A] = pre[B]) A (pre[B] = pre[4]) = Antisymmetry

preld] = pre[B]

(pre[d] A I = A) A (pre[Bl A 4 = ) = pre[4] = pre[B]
(prefAl A B = A) A lpefd] A 4 = BY = propt. Schenia
(8 =2 A) A (4 = D) = Antisymmelry
A =B

Since pre[4] is obtained from the scheira A by the “hiding™ operator. pre{ 4] conjoined
with A is just A.

We note that since every operation trivially refines itsell. [C 2 : 3.2¢] and [IZ 2 3.2d]
imply that “C" is a partial order.

We establish a result which will enable refinement by the addition of predicates: il 4 is
the operation we wish to refine. and ¥ an operation such that the pre-condition of the
conjoined operation {A A B)is the same ax that of A, then {4 A D) refines A:

Lemma [C 2:3.2¢)

prefd A B] = pref.4]
-
AEC AADB

Proof

Dormain

Follows directly from the antecedent. using Autisvmmetry.
Safely

1. A = A Reflexive. 1
2. pre[d] A A A B = A 1., Specialization



We give a result which will be nseful when refining an operation which is promoted

from one abstract state to another by the nse of Jogical

conjunction. Suppose we wish

to promole an operation A by logically conjoining it wilth a promotion schema P, and
suppose B refines A. If we can show that B alsc refines /. then B also refines the

promoted operation [A A P):

Lemma [C 2:3.2f]

4 C B
PC R
}_
AAP CF
|
Proof
Demain
L. prefd A B] = prel4] A pre[B]
2. prefd A B] = pre[B]
Safety
1. prefd] A B = A
2. pre[P] A B = P
3. pre(d] A pre[Pl A B => AAP
4. pre[A A P] = pre[d] A pre[P]
5. pre[d A P] A B = pre[d] A pre[P] A B
6. prefA A Pl A DB = AAP
u

3.3 A Disjunction Of Operations

pre.2
|.. Specialuation

A B
P n
1., 2., Constructive Dilemma.l

I m

pre.2
4., Coustructive Dilemma.3

3., 5.

The following result will enable an operation to be split inte a disjunct of smaller oper-

alions (typically dictated by a composite pre-condition):

Lemma [C 2:3.3q)

pre[A] = V.., . (pre[B])
Yi:rf..n o (pre(d] A B, = A)
}_
A C V.., W {B)
|
Proof

2%

Duomain

Safety



We appeal to definition [C 2 : 3.2a] with (\; | (B,)) replacing B.

Domain

Fallows directly [rom the Domain antecedenl and pre.1

Safety
Y i:f.n e (prefd] A B, = 4} = Coustructive Dilemma.2
V.., . (pre[d] A B)) = A = Distributive 2. [dempotent.2
pre[] A V; ;. (B = A

||

Having refined an operation into a disjunct ol operations. we may wish lo preserve
the struclure so-gained and pursue refinement on each disjunct. If an operation A is
composed of disjuncis 4,. and earh A, is refined by B, snch that the pre-condition is nm

changed, then A is refined by the operation composed of the disjuncts H,:

Lemma [C 2:3.5]

Yiil..n e pre[d,] = pre(f},] Domain
Yiil..n &« 4, T B Safety
'_
Vioroal4) BV (8D
[ ]
Proof

We again nse definition [T 2 : 3.2a). substituting V, ; .{4,) and V,, ;. ,(Bi}lor 4
and B respectively.

Domain
pre{V| H n(A‘ )] = pre.l
Viir onlpre(Addl = pre[A;] = pre[ B}
VioialpreB]) = pre.l

prefV, -, . (B

Safety
forelV,:7 (A0 A (V.. W(B))
(Voo alpre[AN) A V., (B
Vios ntprelBal) AV, (B
(Vi1 a(pre{B] A B
iVi.g . alprefds] A B)
Vi o(4)

pre.l. Coustructive Dilemma.3
pre[d,| £ pre[B)]

propt. Schema

pre{A,] = prelB,]

4, C B,. Constructive Dilemma.3

RS T V]

It

4




3.4 A Sequentially-Composed Operation

We now consider the decompositiou of an operation A juto two aperations B and €,
whose sequential composition will produce a refinement for A: each will, in general,
be a simpler operation than A, and will themselves he candidates for such refinement.
enabling an operation to be refined into the sequential composition of several smaller
onas.

If we consider the scquentially composed operation {4 ; /7), the pre-condition for the
operation must certainly imply A’s pre-condition {(by definition of “;”, and il each state
output bv 4 is applicable for B, the pre-condition for (A ; B)is exactly that of 4. As a
svnlactic sugar, we defiue 4 ~+ B to mean that all states produced by A arc applicable
for B;

Definition [T 2:3.44]

)_
A~ B
<
pre[4] = pre[4; I

The first result we establish allows an operation 4 to be refined by 8 ; C provided that
B is applicable everywhere that A is, and under 4’s pre-condition, that all output [rom
B is applicable for € and 1hat the results produced by B ; € must imply those piaduced
by A:

Lemma [T 2:3.40]

pre[4] = pre[8] Domain!
pre[d] = (B ~ C) Domain?
prefd] A (B; ) = A Safety
}_
A E (B;C}
| |
Proof

We appeal to definitiou [C 2 : 3.2a], subslituting {8 ; C'} {or B.
The Safety coudition of [T 2 :3.2a) follows immediately from Lhe Safely antecedent.
We now establish Domain of [C 2:3.2a):
1. prelA] = (pre[B| = pre[B; C]) Domain?, [C 2: 3.4a]
2. pre[A] = pre[B; €] 1.. Domaint, trans.“ =
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Having shown how an cperation may be refined into a sequential composition of otber
operations, we now consider refinement of such a seqnentlial composition: we wish to
refine an {4 ; ') by refining A to B and C ta [ snch that (B ; D) refines (4 ; (") We
establish two lemmas, the lirst of which considers the relinement of A to B, the second
one considering the refinement of ' (o D, and combiue them 1o produce the reguired
resylt.

In the proofs we use the shorthand that, for example. 57 denotes the after-state produced
by an operation A that corresponds to a before-state of 5 {where § mnust, of course, be
in the pre-condition of A).

We cstablish tiwe first lemma:

Lemma [[T 2:3.ic)

Proof
We discharge the proof by appealing to [T 2: 3.4)], snbstituting (4 ; €) for A.
We first establish Domaint of [T 2: 35.4b);

1. pre[A; O] = pre[4] propt.=; "
2. pre[d] = pre(B) ACE
3. pre[A; O] = pre(B] 1.2, trang. " =~
We now establish Pomain2 of [T 2:3.48] by contradiclion:
4. pre(d; C] = - (pre[B] = pre[B; O]} Assumption
5. 3 Scpreld; (] o (S=>preB] A (5 = prefFs CN) 4.
6. 3 S:pref[d; C] » =[5 = pre[C]) 5., defn. S§
T (5 =pre(A]) = (55 = 5 ACR
R[S =prefd; C]) = (S5=5) 7., L
& (S=prefA; CN = (59 = pre{("]) 8., defn. 5
10. (§=prefd; C1) = (8 = pre[C]) 8.9, trans.” = 7
1. pre[d; C) = (pre[B] = pre[F; ) 4., 6., 10.
12, pre[A; €1 = (B~ C) 1. defn.® ~ ™
We finallv establish Safety of [ 2: ILAb):
13 prefA; CIA(B; C) = prefd]A(B; ¢) L.. Constructive Dilemma.3
14, prefd; CJA(B; C) = A4 13, Safely

We pow establish the second lemma:
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Lemma [C 2:3.4d]

cc D
}_

(A5 T (43 D)
|

Proof

We appeal to definition [T 2:3.2a] and establish the Domain condition by contradiction:

1. - (pre[A ; €] = pre[4; D] Assumplion
2. 3 5: State o (5= pre[d; £ A —(5 = preld; DI}) 1.
3. pre[d ; C] = pre[A4] propt.*; "

1. 3 S:pre[d] o (S = pre[d; (] A (5= pre[.t; D]}

2..3.. Constructive Dilemma.3

5. 3 S:prefA] o (5 = pre[C] A — (5] = pre(D]]} deln. 5%,
6. - (pre[ (7] = pre[D]) A,
7. pre[C’]) = prelD] AC DL
8. pre[d; C| = pre[d; D] L..6., 7.
We also establish Sefefy by contradiction:
9. -(pre[d; C] A (4, D) = A; ) Assumption
10, 3 S:pre[d; (] o ﬁ(S{A sy 5(’_4 : C.)) 8.1
11, 3 S:pre[(7] & ~ (5, = 50) 7.0 10, prept.ts ©
12. =~ ((S = pre[C]) = (5, =2 SL)) L.
13. - (pre[C]A D = () 12.
14. pre{CIAD = € CC D

15, pre[d: O] A (A; P} = A;C

3.,13.. 14.

Combining the two lemmas, we obrain the desired result:

Lemma [T 2:3.4¢]

AL B
cCc D
=
(A;C) C (B; D)
]
Proof
1. A;¢C C B;C
2 B,C C ;0D
3. A; C £ By D
|

32

AC B, [C 2:3.4¢]
€ C D, [E 2:3.4d]
L.2.,[C 2:3.2¢]



3.5 Refinement To Program Constructs

We now consider refinement of the specification 4 to the “if...8" and ~do...od™ constructs
presented in [3]. [7] and to the assignment statement.

3.5.1 The Guarded Expression

We first consider refinement of 4 to the constrnct (G —>  Bj.in which the specification
B will be executed only if the guard G a boolean expression, helds.

We may regard (G —> B) as the sequeutial composition of two operations, the first of
which, Gz, I+ applicable only when & lwlds and does not change the slate, and. under
A’s pre-condition. is total with respect to the second operation, B.
Thus the pre-condition for Gz is 2

pre[G:] =2 G [¢EN]
When (7 implies the pre-coundition for B under A's pre-condition. (7= niust do likewise:

pre[d] = ((G = pre[B]) = (G=z~ H)) (=2

and since under A's pre-condition G- is total with respect to £, and /= does not change
anything, Gz seqnentially composed with & is just B:

prfdl = (Gz; B = B) Gz.3
Thus, if 4 is refined by (& —> B). we reqnire that A is total with respect to 7, and
that under A’s pre-condition. B is applicable when (7 holds and the resnlts produced hy

B imply those produced by A:

Lemma [T 2:15.1q]

prefd] = & Domain!
pre[d] A G = prelH] Domanz
prefAl A B = A Sufcty
F
A C (G —> H)
»
Proof

To discharge the proof we appeal to [T 2: 3.4b). substituting (G= ; B) far (B3 ).

We first establish Domaint of [T 2: 3.4b]:
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1. pre[d] = G Domain t
2. pre[A] = pre[Gz] 1.,G=.1

We now cstablish DomainZ of [T 2: 3.48):
3. preld] = (G = pre[B)) Domain2. Importation
4. preld] = (G: ~ B) 3., (=2, trans." = 7

We finally establish Sefely of [T 2: 3.4b):
5 pre[d] A (G=; B) = A Safety. G=.3

3.5.2 The Alternative Construct
We wish to refine A by the the “if ... i” construct, and may informally interprel the
statemeunt:

it (G — Bi) | (G2 —> Ha) | -+ ] (Ga —> B, 8

as *if guard C, is true carry out B;, and if not then if guard G, is true carry ont 3. and
if not ...”. Clearly the constrnet will be uon-deterininistic if more than one of the guards
holds, and we require that at least one must hold when A ts applicable; we further require
that cach (G, —> B;) satisfies the Domain2 and Safety conditions of [C 2 : 3.5.1a):

Lemma |[C 2:3.5.2q]

prefdj = V... . (G) Domaini
Yi:tl..w w» (prefd] A G, = pre[B]) Domain2
Yi:il..n e (pifd} A G, A B, = 4) Sufety
.
AL [fi0.(G —> B)fi
]
Proof

As in the previous section, we regard each (G; —> B,) as (G;= ; B,), and so may
consider A as being refined to the disjunct of those n operations, and we discharge the
proof of this lemma by appealing to [C 2 : 3.3a).

We first establish Domain of [C 2:1.3q):
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1. 3 k:/..n o prefd] = (. Dornam/
2. prefd] A Gy = opre[] Domainz
3. prefd] = pre[] 1., 2.. Absorption.3
4. preld] = pre[Giz ; Bl 3., G=3
5. pre[d] = V.., . pre[G=; B 1.. Generalization

We now establish Safety of [T 2: 3.3al:

6. Yi.f..n « [pre[d] A G, A B = A) Safety
T.¥iti.on e (prefd] A G, A (G ) = A) G., G=.3
8. G A G- & Gs (7z.1, propt. Schema
9. Yi:t..n e (prefd] A (G2 Bi) = A) 7.8

]
We may ioformally represent [C 2 : 3.5.2a] by the following cbecklist:

When the pre-condition for 4 is satisfied:
» at least one of the gnards mns1 hold
» eacl body must be applicable wlen its guard bolds

& the results allowed by each body when its guard holds must allow those results
produced by 4.

We now consider the same lemma, but when A is composed of a disjunct of n oper-
ations A, (as is freqneatly the case in an incrementally-constructed specification), and
the pre-condition for each A, forms the guard &,: if we cusnre tbat I, is applicahle
when G, holds, and then that the results produced hy B, finply those required hy each
corresponding A;, we may refine to the “if.. i” constroct:

Lemma [T 2:3.5.2]

A2 V., L {4)

Yi:l..n e (pre[4,] = G} Domaini
Yi:l..n & (G, = pre[B)]) Domain2
Vi:l..n o (G, A B, = 4,) Sufety
I—
A if (1.1 .G —> B)A
]
Prool

We appeal to [ 2:3.5.2a] and lirst establish Domaint:
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LoV W (pefd} = V., L (G Domaini, ConstructiveDilemma.2
20 prely,. L (AD] 2 Vo L (G 1. pre.l

We now establish Domain2 of [T 2:3.5.2a):
3 Vi:t..n » (prefa] A G, = pre[B)]) Domain2, Absorption.3
We finally establish Safety of [T 2:3.5.2a]:

4. Y i:l..n e (prefA] A G,oA D = AN Safety, Absorption.3
5. ¥ i:t..n e (prefA] A G A B = ¥, ,(A;)) 4., Generalization

3.5.3 The Loop Construct

We wish to refiue A4 by the loop construct:

do (G —> B) od

which we may informally interpret as “if gnard & holds carry out B and then start the
coustruct again; if & does not hold then finish™.

Au important concept in the proof of loop correctness is that of an invariant (5} a set
of predicates which hold before the loop activates, alter each iteration of the logp, and
after the loop has terminated.

We denote the invariant by f. 1t wiii be defined on the same state as that on which A is
specified, State. and will usually employ the (fixed) initial values of the state variables.
Since we wish to accomplish A, and 7 must hold after terminatien of the leop, [ must
form part of A's pre-coudition,

Another importarnt consideratiou concerning loops is that of demonstrating tetaf correct-
ness [5] - i.e. showing that the loop does termiinate after & finite number of iterations. In
order ta do this we introduce a variont fnnction which associates each state {satsfying
A's pre-condition) with a natural number, and we require each iteration of the lvop Lo

reduce its value,

The loop represents a. total operation: if G holds then B is executed and if & does not
held then the operation is complete. Thus we may consider the loop construct as:

DO = if (G —» (B;D0O)) [| (-G —> EState) £

We have:
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pre[DO] = true DC.)
pre[{ B ; DO)] B D02

1l

When A is applicable, and the loop guard & holds, we reqnite that the loop body. B. re-
establishes 7, and when the loop guard does not hold, we reguire that the state satisfies
A’s post-condition. Note that in the formulation of Lthe lenmiina dashed decorations in the
antecedents refer to the after-state after a single iteration ol the loop:

Lermmma (5 2:3.5.34q]

pre[d] = Variant¢ Sinte — N

prefd] A G A B = Variant (Stale’] < Variant (State) Variant
prefd] A T A G = pre[B] Domair
pre[d] = I Sofetyt
prefd] AT AG A B = 1 Safety?
pre[d] A [" A G = A Safetysd
}_.
AL do(G — Djod
|

Proof
To discharge this prool we uke |C 2:3.5.2¢] with n=2and G;, G», By and He equal Lo
G, ~ G, (F, DO) and ZState respectively.

We first establish Domain? of [T 2:3.5.2a]:

1. & v =G = true Fxctuded Middle

2, prefd] = GV -G L., Unit.3
We now establish Dornain2 of [C 2: 3.5.2a]:

3. pre[A] = pre[d] A [ Safely?, Absorption.}

4. pre[d] A & = pre[B] 3., Domain

5 pre[A] A G = pre[B; DO 4., D02

6. prefA] A ~ G = ZState pre[=State] = trve, Unit.d

and Domaing with n = ! is established by 5., aud 6. establishes Domain2 with n = 2.
We finally establish Safety of [C 2: 3.5.2a]:

TopreAl AGA B = I 3., Safelyz
s prefd]l A -C = 4 3., Safety3
9. pre[d] A =G A ZState = | 8., Specialization

and 9. establishes the Safcty condition for n = 2

The Safety condition for n = [ is established recursively by 7., since it guarantees that
cach jteration starting with @7 holding will praduce a state which satisfies [ and so, under
A’s pre-condition, 7. will guarantee that [ is re-established if & still holds. and if G does
not hold, 8. will egsure that A4 is satisfied. termination is guaranteed by Vanan!




We may informally interpret [C 2: 3.5.3q] by the {ollowing checklist:
o identi{y an invariant that holds when A is applicable
¢ identify a non-negative variant function
And wheu the pre-condition for 4 {and, hence. the invariant) is satisfied:
¢ the body of the loop must be applicable when its guard holds
s each iteration of the loop must re-establish the invariant
e each iteration of Lhe loop must decrease the variant function

o when the gonard no longer holds, A must be satished.

In each refinement lo a loop construct, we use { condition } to indicate that, at that
particular point in the operation. condition holds. Iurther, we identify the invariaut.
guard (negation} condition, and bound function explicitly to aid the proof of eorrectness
of the refinemeut,

3.5.4 The Assignment Statement

The assignment stalewent has the form z := v and the stalement is execnted by eval-
uating v and storing the resultiug value in location z. Thus, assuming v cvaluates.
assignment can be regarded as the substitntion of one value for another, and we may
avbieve substitution by renaming.
For example, lo establish the truth of the predicate:

(r>1 A z=zx4+!) = > 2
we would establish the result of the equivalent predicale:

£> 4 = (> 2)z+1/x]

We use exactly the same technique in a Schema environment; if an nperation A isdefived
on a state § = [z :N ], then:

prefAl A zi= v = A
is eqnivalent to:
pre[4] = A[v/ ]

provided we can evalnate v which, in this context, means that r must evaluale to &
natural numher.
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When the state consists of variables =, £g. ..., Za:

Iy i=Up] . IV, = A

preflA] Az, = v g
is equivalent to:

prefA] = Aley/ z))[ve/ o) (eaf £L)
provided that each v, evaluates 1o a valid component of the state on which 4 is defined.

Assuming that A is defined on Stalc, we have:

Lemma [C 2:3.5.4a]

pred] = 3 piigs...yn Staic 8 oy = vy A Fp =i A LA Ya T 0y
prel:d] A Alv,f zpl{eef 28] [va/ 2}

}_L
AL mi=vTei=vp) 0 L iv

]

Proof

We use definition [C 2 : 3,2a] and establish its Domain condilion by the first antecedent
since the pre-condition for the assignment slatement js the existence of Lhe valnes o,
The Safety condition is estahlished since i1 is equivalent ta the second antecedent.

4 Admitting Resource Constraints Into The Refinement

One of the most important developments in compnter srience has been that of data
abstraction, which enables the specification of computer systems without the need to
consider details of the implementation.

An example of such detail is a resource which is limited in somne way, and over which the
system (and certainly the specifier of a system) lias no control. in an abstract model we
do nat wish to include such factors since snch considerations will detract from the clarity
and conciseness of the specification: for example, when we speeily an operation which
consumes a particular resource, we wish our attention to be [orused on what we require
Lhe systemn to do before and after that resource has been exhansted. rather than on its
explicit identification.

To illustrate the consumption a limited resource, we consider two specilications of an
abstract state comprising a sequence of numbers, and an operation whick coucatenates
a number on 1o the front of the sequence.
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In the first we identify the maximum value of the limited resource, Maz:
[Maz]
AbsSlale_ 1 = [ S:isegN | #5 < Maz ]

AAbsSlate 1 = AbsStale.1 A AbsState 1’

Add_1

‘ AAbsState_ I |
i s?:N
‘ rep!: Report

—_— -
\ #5 < Maz

i = <cs?> T8
\ rep! = “OK”
"

\ #5 = Maz
i 5 =5

| rep! = “Full”

-

The operation specifies that, if the maximuin size of the sequence has not been reached,
s 15 concatenated on to the front of 5, bul once the maximum size of the sequence has
been reached, S will not change.

Suppose we choose to itnplement the model using a fixed size array, together with a
pointer. We may represent this design decision as:

ConeState

Arr:1. . Mex —> N |
plr: 0, Max |

We show the concrete-invariant relationship through the schema flef, in which the con-
tents of Arr up to pir are equated to § (Section 1.1):

Rel 1

—

|

| AbsSlate_ !
l ConcState [
—

‘ 5 = Arr for pir

Note that, by definition of for, a pir value of @ corresponds 10 § being the empty
sequence; further, since pir may not exceed Maz, for each concrele stale satisfying
the ConeStaie, { invariant, the schema identifies a unique abstract stale satisfving the
AbsState_ | invariant. Thus the relationship from concrete to abstract is functional and
total.
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We calcolate 4bsiel (Section 1.1.1). which simplifies to give:
AbsRel t = ZAbsStale !

and so AbsState T AbsSiate [C2: 1.1.14).

We now repeat (he specification, but this time without specific reference to Maz:
AbsState_ 2 z2 [ S:seq N |

AAbsStale. 2 = AbsSlale 2 A AbsSlate 2

Add 2
AAbsStale 2
s7:N
rep! : Repord

! 5 =cs'> T8

rep! ="0K™
v

s =8

rep! = “Full”

This time the operation non-deterministically specifies that either s shonld be concate.
nated on to the froni of S, or § should remain unchanged.

We use the same design decision:

ConeState. ¢ 2 ConcSlate 1
and, as before. the concrete-abstract relation is fuuctional and total.
We again calculate Ap~Rel, and, afler simplification. get:

AbsRel 2 2 [ ZAbsState | #5 < Maz )

which indicates an inadequate design decisiou. since we are only able 1o implement that
subset of the abstraction for which the length of the sequence does not exceed Moz, and
we may not appeal to [C 2:1.1.15).

Of course the gpecilier would not expect an adegquate implementation in Lhis case: it
would have to provide for a sequence of infinite length, since, clearly. the specification
allows for arbitrarily large sequences to he constructed. However a design decision which
implements 5 as an emply array and which never allows S to change (i.e. the secoud
disjunct of the operation is always chosen) would be unlikely Lo meet with the specifier’s
approval!
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Here the specifier is simply avoiding implementation detail by use of non-determinism
in the specification. and is communicating his/her wishes infortnally through the report;
we may interpret the specification as “whilst there is available capacily, concatenate s
on to the frout of 5. and when the availabie capacity is exhausted, do not change S™.
This style of writing Z specifications is commonplace (for example [8]).

This first approach has two obvions disadvantages: it places an ohligation on the specifier
to consider details of the implementation {even though he/she may have no knowledge
of the proposed implementation} and it results in a more “clultered” specification. We
thercfore extend our concept of refinement from [C 2 : 1.1.14] 10 cope with specifirations
written in the secoud style.

4.1 oco-Refinement

We therefore propose a process of refineruent in which we take an abstract specification
to a partial implementation, coptainjug a set of resource constants, and dernanstrate
that if such constants could be made large enough, we would he able to effect a f2ll
implementation of the specification. In other words, the only reason that we have not
heen ahle to fully implement the specification is that we do not have compuiers big
cnough, and if we increase the size of the target computer we could zccordingly increase
the subset of Lthe specification that is implemented,

For example, in the second specification above we would need to show thatl a snitable
vatnrai number & can be found such that for every possihle value of the ahstract sequence
5, the predicate # 5 < Mar is satisfied (or each valne of Mar greater than or equal to
N

Y S:seq N o« 3 ¥ N o Maz >N = #£5 < Muz

Generalising this result to a predicate pred, we need to show that for each resource limit
¢, present in the design, we can find a natural number ¥, such Lthat pred is satisfied when
every value of ¢; is greater than or equal to the correspouding N,:

¥ Cry€2. .-, 0y ! Hesotreelimit o
NNy, WNp: N e

&

€ = N, A 2 Ne A LA ey 2N, = pred
for which we use the syntactic sugar:
3 ¢r.¢s, .o, €n 2 ResoureeLimit o lim,, oy cq—mc.co...00 (PTEd)
We accordingly extend our definition of refineruent aud nse the symbol “C~. which

is read “refines in the limit” (or “co-refines™). We assume the sel of resource limits,
ResourceLimit (which would include, for example, mazint of Pascal), and have:



[ ResourceLimit]
Definitior [T 2:4.lq]

F

3 €y, fqentn: Resoureclaont » limg, co o) —ceocm (A © 8)

whete ¢, do oot appear in A and will be free in B (since they will be “external™ constants).
Hence we are concerned with the limiting behaviour of the predicates of B containing
such constants.

We uow extend Lhe result of [C 2 : 1.1.14] to deal with (acceptably) inadegnate desigu
devisions, Werequire that. io such decisions. cach concrere state carresponds fo a unigue
abistract state. and thal resource Jimit constants », ran ke identified such that, as we
allow them to increase indefinitely, in the limit the predicate part of AbsRel will be true:

Lemma [C 2:4.1b)
Rel = | AbsState A ConcState | nbsinv ]
¥ ConcState » 3; dbsSlale o Ref
Ciy C8y ones €+ JiEsOuTce Limil
M, o, in—esc.o0.ce (AbsRel = true)
'.
AdsState T, ConcState

Proofl

We discharge the proof by appealing to {C 2 : 1.1.14): the first two antecedents are
provided directly by those of this lemma.

This lemma’s ather two antecedents together with the definition of SAbsState give:
3 ci,cp o 0p s Resourcelimit o By o, oo s oo (AbsRel = A bsState)

and soby [C 2 : 1.1.18] and the distributivity of *37, we have:

3 oy e 60 Resourcelimit o ling, -, . cucccome. .o (AbsStale T ConcStote)

which, by definition [T 2 : 4.1e] yields the desired resull.
]




We place an ghligation on the desiguer to ensure that the requirements ol [C 2 : 11.15]
or those of [C 2 : 4.1d] are met when data refining an abstract specification. Clearly,
this obligation will not guarantee that a particular design for a specification will satisfy
its specifier, since the latter requirernent depends upon the idertification of appropriate
resource YHmits, and the contents of the set of ResourceLinit are undefined. However, we
feel that the obligation does force the designer to consider the adequacy of the proposed
implementation by giving due regard te inforinal communicaljon of the specifier, and
this might not he the case were the obligation not present.
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0 Introduction

We prezent a formal specification of a screen-oriented text editor, written in Z [19(27].
(28] and nsing the Schema Calculus [20].

The specification is developed iu a hierarchical manner such that the abstract data rep-
resentation being currently specified is an embellishment of the previous one. We start
with a simple abstract representalion of the editor, successively curiching it until we
finally have a complele mathematical model. Each abstract data 1¥pe (an abstracl data
representation togetber with an initialisation and a family of operations) is thus embed-
ded in succeeding hierarchies. This technique ensures that each step isclates a specific
problem, enabling clear specification objectives, aud supporting the concept of “separa-
tion of concerns” [1]. Thus at cach hierarchy of the specilication we are able 1o specify
additional operations (requiring the enriched state) and “promote” existing operations
{i.e. re-specify each one on the embellished state, sueh that its original characteristics
are retained).

Where possible we employ an orthogonal development method: the orthogonal modei is
constructed outside the main model. the two haviug no common state. The orthogonal
mode] is subsequently introduced into the main model through logical (schema) conjnuc-
tion, with the possible addition of an invariant indicating the way in which the two are
related. This method leaves the main model uncluttered by, for example, the uectessary
or desirable establishment of theory.

Further, we use generic coustructions, in which families of concepts may be captered in
a single definition, enabling a theory on the formal generic parameter to be constructed.
rather than having to develop like theories for each actual generic parameter.

Each operation specified is total. Typically an operation is specified in several stages us-
ing schema iuclusion, ronjunction and/or disjunction, and an apetation with an tiherent
pre-condition is made total by disjunction with an “error™ schema. in a similar way to
that presented in [&].

This specification uses many of the ideas put forward in [25], whicl in turn was heavily
motivated by [29]; the latter was written in Z but did not emplay the Schema Calculus
{which hadn’t then been fully developed) and emploved “higher order” functions {Tunc-
tious thal take other funciions as argumenls) to acbieve a hierarchical structure. Ve
gratefullv acknowledge that paper as a source of inspiration for this specification.

We summarize our requirements as the editor [32], together with the facility 10 move
the cursor around the quarter planc in which the documeut resides (rather than just
aronnd the document itself). and the pravisos that no line may end in whitespace {other
than the current line when the cursor is at the righl hand end - olherwise it would be
inipossible to insert a space character at the end of a line) and that the document may
not have trailing empty lines; veither can be detected on the terminal screen. An editor
shauld juspire the coufidence of the user [6], and without these latlet two requitements
a move to the bottom of the document or end of line. for example, could have (literally!)
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unforeseen consequences. We extend the quote operations {vperations not effected by
single keysirokes. but cequiring the inpul of text into a bufler) to incinde the writing and
appending of marked text to a named file, and exclude the exclhange marked text with
paste buffer operation of the editor {32] (since the lalter operation ay be accomplished
by the former).

0.1  The Hierarchy Of Abstract States

Our first simple absiract representation of the editor is 1he Docf model (Section L) in
which we use a pair of sequeuces to capture both the eontent and the currert position of
a document. the latier being the point at which changes ta the dacuinent may be made.
This model incorpurates equivalent character, word and line “views™: we discuss their
relationship and specily a change of erent position and the lnsertion and deletion of
text by using the view which is most appropriate,

We madel the document’s display by first cousideriug au unbounded display specificalion.
LD, orthogonal to that of the document specified in Doef . which nodels the display as
a sequence of display lines, incorporating a cursor and a cursor line. We conjoin the 1wo
models into Doc2 (Section 2}, in which we give Lthe relationship between the conteuls
and current positior of a document 10 its vubounded display and cursor position.

We then “tidy™ the display of the docnment to the Doe3 mode] (Section 3), by requiring
that the trailing whitespace/null lmes requircinents are met,

We define the QP state (Section 4} in which curser movement aroind the quarter plane
is developed orthogonally to the main model. subhsequenily conjoining QP with Doc® to
give the Docd model, in which we require that the curcors of I'D and QP are equivalent.

Further Dor models introduce the remaining edit operations. In Section 5 we specily the
text manipulation operations concerned with marking text {Dor5). and Lifting, cutting
and pasting text (Dor6}. Section 6 s concerned with eommands which cannat be acti-
vated by a siugle keystroke - for exaanple comniands requiring textnal input - the Quate
commands (Lloc7). In Section 7 we specify commands which permit the searching lor
and replacing of text { Doc8).

After all edit operalious have been specified, our last development is 1o introdnee a
movahle window on to the unbounded display of the dacument. Sectinn 8, and we define
the 1opJevel hierarchical state. Doc®, which represents aar camnplete mathhematical model

of 1he editor.

For convenience. we give a snmimary of the specification state hierarchios in Appendix A.
0.2 A Note Regarding Specification Convention

We continue 16 use the convention 1hat vertirally aligued predicates imply their logical
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conjunction (see Part 2, Seclion 0.1).

Also we use the convention that, for example, “string” represents the sequence of char-
acters < s, i, r.i.n, g>.

The reader should refer to (28] for a full description of the Z notation: anythisg not
provided by that library will be defired as it is required.

0.3 Specification Proof Obligations

We consider prool ohligations that ensure that 4 paossible implementation for the specifi-
cation exists {thereby ensuring rhat we have not specified an unimplementable system ).

FEach specification representation will include an invariant on the stale variables {in
simple cases this will be the type of the variables), and ons first proofl obligation 15 to
show that the initialization operation establishes that invariant. Defining our abstract
variables as A5, our state iuvariant as abs_inv 45 and denoting our iuitialisatiou as fnit
which has after-state variables A5 . we may formally define our first prool obligalion as:

+ PO O
3 4% e Init A abs.inv A5

For example. if cur absiracl stale comprises 1wo variables @ and &, with state irvariant
that both are natural nnmbers together with the requirement thal o must uot exceed &,
and the initialisation sets both to zero. onr prool obligation is:

’,
Ja b e a=0AV=0AdeNAVeENAIJLLY¥

simplifying to:

0eNA OGO

Once the state invariant has been established by the initialization operation, we are
obliged to show that each subseqnent operalion preserves the invariant, assnming the
pre-condition of the aperation: if operation Op has before-siate variables 45 and after-
state variables A5, we mnst show that:

abs_inv (45} A pre[Op]
= PO

-1

345 » Op A abs inv(AS)



Using the example given above, suppose an operation @p has the pre-condiliou that a
is non-zero and decreases a hy I leaving b unchanged, cur proof obligation is:

eENAbeENAalhA#0
1_
It e ad=a-I AV =bAdeENAVENACSY

simplilving 1o

ae Ny = a—-1€N
¢GE N, AbBENA<H = a~-1< )

Notice that since since borh o' and & were explicitly set by the operation. Lhe exislential
quantifier disappears (by the “one-point” rale). When the operation is noo-deterninistic.
howaever, this is not the casc.

For example by defining the operatlon on the ~A” abstract state {for an example, see Sec-
tion 1.3) the before- and alter-invariaut is frosen in 1o the specification of Lie operation,
and any variables not explicitly sel are thys allowed to change to any value consistent
with the state invarant,

Continuing with the same exainple, suppose another operation is delined on AAbsSlate
{where AbsSiale incorporates Lhe state invarian! thal ¢ and b are nateral nnoibers with
a not exceeding &) which has the same pre-condition, decreases a by 1, but leaves b
non-deterministic. Our proof obligation is:

tENAVeENAa<LbhAra#ép
|_
Iad. bt w g =a~1 ACENAMVENAC Y

which simplifies to:

g€ Ny, == a-~7€eN
3V »w YENAWVZa-1

We employ an orthogonal method of specification development, combiring the arthogonal
models using schema conjunction with {usually) an invariant cementing the relationship
between the two states (for an example. see Section 2.2). In order lo identify our proof
obligation we could expand the conjoined state and the proof obligations outlined above
would apply. However, if we have already discharged the ohligations for each orthogonal
state, we may lighten cur proof obligation load.
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Suppose a state AbsSiated incorporates variables AS with invariant A_abs_inv, and
another state AbsStateB has variables HS with invariant B_abs_inv, and we schema-
conjoin the states to form AbsStateC, adding the invariant C_abs_inv. Thus the conjoined
stale comprises both sets of variahles on which both iuvariants, as well as the additional
invariant, holds.

If an operation Op, defined on A4S and preserving A abs_inv, is promoted Lo AbsSleteC’
through logical conjunction with AAbsStateC . we mnsl show that Op does not violate
the invariant of the orthogonally specified state B_abs_ inv. by showing the existenceof an
alter state of AbsStaileB under C abs inv. assuming the pre-condition ol the operalion:

A_abs_inv (AS) A A_abs inv [_-!:S'f) A pre{Op]
- PO 2
3 H5 e Op A C_abs_inv (At‘a". H.'S") A B ahs inv (}f‘u’f)

For example, suppose we have:

AbsStateA = [a.b:N l o
AbsState B

I
o

Il
=

"
2
[FAY

with operations:

[ AdbsStated | o =t A ¥ = 2]

I

OpA
OpD = [AAbsStateB | s 20 A S =s—1 A H =]

Supposc we have discharged all proof ohligations, and we wish to specify a composite
state 4bsStateC, where:

AbsStateC = [ AbsStaleA A AbsStateBl | b = 5]

For OpA (which 1is total, and so its pre-condition is therelore true), we must show the
existence of au alter-state of AbsStateH. under the invariant of AbsStateC:

aeN ABENAaLHAdENADVENA LY
}_
st aad = AN =2 A =5 ASeENAFYENASSI!

which simplifies to:
FJ e "ENAV 2> 2

For OpB, we musl show the existence of an after-state ol AbsSlaleA. under the nvariant
ol AbsStateC:
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sENanteNAs<tasdeENAVTENASCHE A g
|_
Ja't » s =s5—1 Al =357

=5 AdeNAVEN A CH

which simplifies to:

se N, = s—1 €N
Ja & deENAd st

Note that we may achicve the same specification by renaming s to b in AbsStateB, in
which case 4bsState (' wonld require no additional invariant (and so C abs_inv would
Just be true), In this case the same proof obligation applies.

Often the discharge of Lthese proof ohligations will be trivial (particularly type obliga-
tious); when this is not the case. wr give a proof Lhat the obligation is met, or indicate
how it may be discharged.

Of course we may choose 1o do more than just meet vhe specification proof obligations,
aud state (or prove) further properties relating to the specifivation which. we feel, may
give further insight into the system, increase our confidence ia the model we are huilding,
or demoysirate conlormity Lo our initial (informal) requireinents.

1 The Docl Model

1.1 The Generic Document

The twoessential characteristics of the state of a document. beiug edited are its contents
and current position: changes made to the coutents of a documeut will take place at
that position. These two characteristics may be captured by representing a document.
as a pair of sequences, one corresponding to the part of the document preceding, aund
the other to that part which follows the current position. The contents will thus be the
concatenation of the twn sequences.

A docurnent may thus be wnodelled as a pair of sequences of characters. However it is
often convenient to represent the document as a pair of sequences of words or lines (for
instance when moving the cursor by a word or line at a time, rather than a character
at a time). Therefore our initial definitions will nse the [ormal parameter X. which we
will instantiate by the sets of aclual generic parameters of sequences of characters, words
and lines to give three different. bul equivalent, views of the document:
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Pair[X] = [ Lefi. Right - X |

We use the symbol “A” throvghout the specification to represent the conjunetion of a
before-state (undashed) and an after-state {dashed):

APair[X] = Pamr[X] A Pair’|X]
and the symbol “Z™ Lo represent a no change A-state:
ZPair[X] = [ APairlV] | Pair[X] = Pair'[X]]

«

Finallv. we nse “ =y, " Lo represent a before- and after-document whose content hasn't
changed (i.c. it aliows for a change of current positiou):

Zeom Pair] X)) = [ APair(X| | Left ~ Right = Left' ™ Right! ]

1.1.1 The Generic Move And Delete Operations

We specify the basic operations move (left) and delete (left); the former has the pre-
condition that Leff must not be empty, its last element being moved to the beginning of
Righi:
Me[X]
Egnt Fair

Left £ <>
Left! = front Left

\
e
i

-]

and the latter has the same pre-condition, but this operation discards the last element
of Left.leaving Right nnchanged:

‘ Det() . _—
L_dPair !
| Lefi# <>

[ Left’ = front Left

| Right’ = Right
e

We also specily an operation which moves the current position to the end of the decument.,
with pre-condition that that must not already be the current position:
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MuvBotlX]

_:c.,,,,Pair

Right # <>
Right' = < >

1.2 The Character, Word and Line Views Of The Document

A Word may be defined as a non-empty sequense of characters which consist enlirely
of whitespace (space characters) or non-whitespace (no spaces ot newlines), or the upit
sequence whose clement is the newline character. A Line may be delined as a [possi-
bly empty) sequence of characters not coulaining the newline character. We tlerelore
introdnce two special characters:

spoud: Char | ap £ nd

and define:

WhiteSpare = {sp}
NonWhiteSpace = Char — {«p. nl}

to give:

Word - = seq, WhileSpace U seqy NonWhileSpare U < nl >
seq { Char — {ni}|

Hs

Linc
We wish to define a total hijective fonction that converts 2 seqnence of chararters into a
unique sequence of words; if we consider the sequence of cliaracters:

<t he spsp,riad >
we want the corresponding word sequence Lo he:

<< tohye, >, < spsp <yl >
50 that each member of the sequence satisfies the definition of Word, and the sequence
Aattens (through distributed concatenation) inte the character seqnence. However the
following word sequence also satisfies those requirements:

<< L he> <sp><sp>,<e,u> <t >>
In order to obtain the desired word view of the docnment, therelore, we 1nust not allow
two Whiteopace words or two Non WhileSpace words to be adjacent in that representa-

tion. Clearly, this requirement will ensure a unique word seqnence for each sequence of
characters. We define:



|

W € DocWordSeq <
‘ Y owl,w2: Word ; wi,uw2: Word | <wj w2 > infix W e
! rng (w!) = WhileSpace = rmg (w?j # WhiteSpace
\

|- infix __:scg X x stg ¥ — B

Xtinfix X & 3 X2, X3:seq X o X2 7 X7 7 N3 = 1Y

As a direct consequence of this definition, if we liave two Dor WordSequences surh that
their distributed concatenation is equal. thc sequences themselves arc equal:

Corollary 3:1.2a

Wi W2 DorWordSey | — /W1 = — /W2
+
Wi = W2

Since by definition of © 7/ 7. if iwo sequences are equal, so Is their distributed oncate-
nation, we now define the required one-to-one function, FW (FlattenWords):

The sequence of words corresponding to the empty sequence of characters is the empty
sequence of words:

Lemma 3 :1.2b

C=<>
}.
FW-! € = <>

n
Proof

56



Follows directly from the definition of FW, since 7 /(<> )= < »
]

Ve also wish to define an analogous function that transforms the line view of the doco-
ment into the character view. For example. we want Lhe sequence of characters:

< AR LT Y >
to correspond to the line sequence:
LA, ATy 2>
and the character seqience:
<t henlc,anorynl alatfe >
Lo correspond te the line sequence:
<<the> <l > <o anary>cpl><nl > calé»s

so that the line sequence flatiens (through distribuled eoncatenation) to the character
sequence. In order to ensuro that each line view is unigne, we define a DoclLineSeg,
analogous 16 Doc Wardseq. requiting that two non-newline words rnay nol he adjacont jo
the representation:

e e e L

DacLineSeq : P (seq Line)

:

|

i ¥ L: DocLineSeq; li {2 :line | < {f,.{2> infix [
! W #<nl> =2 2=cnl>

i

As a direct consequence of this definition, il we have two DocLineScquences soch Lhat
their distributed cencatenatian is equal, the seqnences themselves are equal:

Corollary 3: 1.2¢c

L1.L2: DocLineSeq | —fL1 = T/ L2
F
Lt = L2

Since by definition of = 7/ 7, if two sequences are equal, so js their distributed concate
nation, we now define the required ane-to-one funrtion. FL (FlattenLines):
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| FL : DocLineSeq >—» scq Char

L FLL= /L

S

The sequence of lines corresponding to the empty sequence of characters is Lhe emply
sequence of lines:

Lemma 3 :1.2d
= <>
FL7' ¢ = <>
| |

Proof
Similar to Lemma 3:1.2b.
| |

1.2.1 The Instantiated Move And Deleie Operations

We now instantiate the formal parameter Y with the sets of actual generic parameters
seq Char, DocWordSeq and DocLineSey to give schemas thai specify movement and
deletion by a character, word cr liue

Mo char = Mulscq Char]
MY Ward = Mu[DacWordSeq)
Mvgn, = Mv[DocLineseq]
Del oner 2 Dellseq Char]
Del rgrs = Del[DocWordSeq)
Delsn. 2 Del[DoclLineseq)
MvBol char = MvBot[seq Char)

Expanding the schemas for Muvy, .. and Dely,.4, for example, we have:

M'ULme - .
Left, Right, Left', Right’ : DorLineSey
U Left ™ Right = Left! T Iight!
Left £ <>
Left’ = front Left

-]
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Delwyre
| Left, Right, Left’, Right’ - Doc WordSeq
Left # <>
Left' = fromt Left
. Right' = Raght

1.2.2 Some Results Concerning Characters, Words And Lines

Since move and delete operations involve the front and tail of sequences, we give Lhe
lollowing resnlts concerping those operatars applied to 1he word and line view of the
Docl model in terms of the character view,

We first tonsider the tail of a word sequence. Suppose O s a nou-emply sequence of
characters. W the corresponding word sequence. W/ thie tail of W oand ¢ the character
sequence correspondiug to WY We consider thicee cases; the lirsl element of W being a
newline word, a whitespace word and a non-whitespace word.

For the At case, since the newline itself forms a word, €7 is obtained from C by (he
removal ol the newline, for example:

C = <nl.thocspe,act>
W=FW1lC=xcenl><bhe><spr<enl>>
Wi=tail W = <<t he > <sp><e,a,t,>>

M= FWW = <t hoe,sp,c,a,t>

For the secend case, " will postfix 7 starting at the first non-space charactar, for
example:

C = <spyspot b upcat>

W =W O = <<spsp > <t e > <sp>.<coat >>
W' =tail W = << the> <sp> <eab.d>>
Ch=TWW' = <t hespooat>

or (" will be emmptly if no such non-space character exists, for example:
C = <sp,sp,sp,sp >
W = FW ! C = << sp,sp.sp.sp >
W'o=tal W = <>
Ch= W = <>

Similariy for the Jast case, ' will postfix ¢ starting at the first nou-non-whitespace
character {space or newline), or be empty if no such character exists,

We therefore have:
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Lemma 3 : 1.2.2a

C e seq; Char
C' e seq Char | C' = FW{tail FW™1 C)

F
C' postfix € A
head ¢ = nl
' = tail O
v
C{1..#C-#C) C {sp}
CH#E <> = CREC-FT 1) £ 5p
v
COL $C—F) N {epnll =
C A <> = CIHC-F0+11€ (spouf)
u
Proof
1. ¥ S:seq Char w7 jitall 5) posthx — /5 propt. —/
2. 7/ (tail FW™' (') postfix 7/ (FW™! C) 1.
3. FW(tail FW~! ('} postfix FW (FW=! (") 2. def FW
4. €' postfix 3., del . FW

The three disjunctions follow from the definition of Doc WordSeq: the first followssince a
newline word has length one, and the remaining two siuce, by definition, no two whites-
pace words and no two non-whitespace words can be adjacent in a Do WordSeq

Tu a similar way, we now consider the front of a line sequence. Suppose C s a nog-etupty
seqnence of characters. [, the corresponding line sequence. L' the front of [ aud ¢ the
character sequence corresponding to L', We consider two cases: the last element of /,
being a newline word, and being a non-newline word.

For the first case, €' is oblained from C bv Lhe removal of the newline charatter, for
example:

C = <c,anary.spat.enl>

L=FL™' € = <<coamaryspade> <nl>>

L' = front L = << c,a.n,a,r,y.8p.a.1,€ >>

C' = FL L = <coa.ma,r.y.sp.al,e >

and for the secand case, C” will prefix C up 1o the first newline character, for example:
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O = <c.a.na v g.sp,ad,oond fhoe >

L=FL ' ¢ = <<c,a.naryspal,e><ul> <t he>>
L =front L = << c.a.na.r.yspal.e > <nl>>

= FLL = <coanary,spoal.oonl>

or 7 will be empty if no such nop-space character exists. foc example:

C = <, noary>
L=FL' U= <<coanary>>
L' = fromt L = <>
C=FLI = <>

Lemma 3 :1.2.2b

g seqp Chur
'€ ary Char | % = FL{front FL7' ()
'.
¢ prefix 7 A
fast O = nl
= fromt O

g CQ#EC L1 #C)
T # s = C(RC) # nl

Proof

¥ S:seq, Char o 7 [(front S) prefix T /5§ propt. —f
7/ (tail FWTY ) postfix T/ (FW! C) 1.
FW (tail FW=! (7} postfix FW (FW=' () 2., defl.FW
' postlix 3., del FW

L

The two disjunctions follow from the definition of DocLincSeq: the first (ollows since a
newline word has length one, and second since, by definition. no rwo non-newline words
can be adjacent in a DacLine Seq

|

1.3 The Docl State

We now wish to define a docnment state which incorporates Lhe character, word and
line views of the document, ceinenting the cquivalence of the three views through a state
invariant using the FW and FL functions.
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This enables ns to specily cach eperation on the appropriate view of the document. and
since we specifly on a “A” state which incorporates the state invariant, the other lwo
equivalert views will be “antomatically” updated.

We specily the three representations that are provided by Pawrey,,. Pairw,.¢ and Parg,,,
which are schemnas instantialing the generic se1 X of the Pair schema of Section 2.1 with
the sets seq Char, DecWordSeq and DoclineSeqy:

Faircyqr = Pair[seq Char]
Pairw,.y =  Pair[DocWordSeq]
Pairgg. = Pawr[DocLineseq)

and for the sake of brevily, we define:

Leftcaar = Paircra - Left
Righlena, = Paircag, . Right
Leftw,rg = Pairw,.q - Left
ughtwori = Pairw,,q - Right
Leflyine = Pairg,, . Left

Rightrm. = Pairg,, . ight
and incorporate an invariant relating the three views to give:

Doci

‘ e — =

‘ Parghar 1
Pairward

‘ Patrs e

-
! Lfﬂ(.‘har = FW Lfﬂ“'orrl = FL Eﬁ'ﬁf.me
) Rightcasr = FW Righty,,s = FL Rightgme

e

For non conlent-changing operations. we define:
EcomPoct 2 Epgn Patr[Char] A ADoct

Initially the lelt and right character seqnences are empty:

Initializepy,; 2 [ ADocl | Lefigre’ = Righloga = <> )

and we discharge PO 0. since Lemmas 3:1.2h and 3:1.2d give:
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Lemma 3:1.3a
Initializcpye
Leficnay = Righlege,' = <>

Leflword' = Rightwerd = <> = PN (Leftgn,,') = FWH( Rightey,.')
L"'frl.me’ = Righann(’ =<> = FI--_j (Leﬂ-(.‘harl) = FL_I(nght('har’)

We now prowote the move and delete operations to the Dort stare:

MueChar = Mirgar A ADors
MeWord = Miwen A ADoci
MyLine = Mvp, A ADocl
DelChar = Delryar A ADocd
DelWord = Delwora A ADoect
Deif.ime = Deéle A dDoct
MeBotlom = MuBoten,e A DADoct

We must discharge PO 1 for each of these operations: for examiple, for DelWord wo have:

Leftemar = FW Leffwors = FL Leftyn,

Rightcy., = FW Righiw,y = FL Rights,,.

Leftwesa # < >

}_

3 Leftcner', Rightepe,'s Leftwords Rightyom, Leftrin,’. Rightn.'
Lefiwory’ = front {Lefliyonq)
Hightw,rd' = Righty,.s
Lfﬂchur" = FW Lfﬂl‘r’ord, = FL LeﬂL:m’
Right(*h,,r' = FW Ri{jhlwn”{’ = FL Ri:gflf[dm,'

which simplifies to:

Leftorer = FW Leftwars = FL Lefiy,.,

Lefiwga # <>
I,
3 Lefionar’s Leftpm.” »
Leftenae’ = FW front (Leflwom)
Leftrn.” = FL™Y {Leftons.’)

Thus this and each of the other PO 1 proof ohligations may be discharged sinee FW and
FL are bijective.
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1.3.1 The Insert Operation

We specify the operation to insert a character on the Doci staie, distingnishing the
imsertion of the 1ab character from a non-tab character. We inlrodoce:

tah : Char

and ficst specify the operation to insert a non-tab character, z, al the end of the left
character sequence, the right seqnence renining unchanged:

InsNonTab
i ADoel

L z7 ¢ Char
| z? # tab

‘ Leftene.' = Leficpar = < 17>
! Rightcwe.’ = Righlcpar

L

The tab character itself is not inserted into the document, but instead sufficient space
characters are inserted at the end of the left character sequence 1o ensure that the
current position is moved to the next (implementation- dependent) tabstop, wilth the
right character sequence remaining unchanged:

r? = tab

Leftcher prefix Leftoier’

g (Lﬁ.?(tc.‘lm’jl - LeﬂCﬁnr) = {JP}
Rightcya,” = Righlcra,

to give, as the insert operation:
InsChar £ MmsNonTab v InsTab

PO 1 may be discharged in the same way as in Section 1.3.

1.4 Introducing Direction

So [ar, the operations that we have defined have been “left™ operatious. and we now
consider their “right” connterparts. We are able to derive the latter operations from the
former by using of the schema
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Mirror __
\ ADoct

e

Leftora, = rev Hightoy,,
! Rightcne' = rev Lefleyar

R |

and since rev ; rev s the identity on sequences, we have:

Mirror ; Airvor = ZDocl
If we apply Mirror followed by the left operation. [ollowed hy Mirror again we have
achieved the corresponding right operation. To aid readability. we nse the following

syntactic shorthand:

Right P
Left OF

Mirror y OF ; Mirror
(e

i i

and] apply 10 the move and delete operations defined in Section 2.2 10 oblain:

Raght MvChar =  Right MeChar
LefiMvChar = Left MvChar
RighiMyWoerd = Right MvWard
LeftMeWard = Left MyWord
RightMvLine =  Right MuLine
LeftMvLine = Left MvLine
RightDelChar 2 Right Delhar
LeftDelChar = Left DelChar
RightDelWord = Right DelWord
LeftDelWord = left DeiWord
RightDelf ine = Right Delline
LeftDelLine = Left DelLine
MvTaTop =  Right MuvHettom
MuvToBat = Left A:Bottom

Partly expanding the sehema LeftMuLine, for example, we obtain the operation initially
requiring that the left line sequence does not comprise av emupty line, with the left line
sequence becoming equal to its front. and the right line seqnence changing in snch a way
that the concatenation of the lefl and right line sequences does not change:



LeftMvline
| ADoct

-

I LeﬁL:nt # <>
| Leﬁ’Lm:iI = front LfﬂLinr

Leftym.’ 7 Rightp,.' = Leflyn. — Righlp,,.

and similarly expanding the schema lar RightDet Word we obtain an operation wilh the
pre-condition that the right word seqnence is non-empty, with the right word sequence
hecoming equal to its tail, and the lelt word seqoenee not changing:

RightDelWord

| Righlw,ra # <>

Mghlwsrd’ = tail Rightiy, g

Leftword’ = Leftwors ]
i i

.o - . . . __ 4

PO 1 for the “left™ operations are discharged in Section 1.3; those {or the “right™ opera-
tions may be discharged in exaclly the same way.

1.5 Error Messages

The move and delete commands of Section ].4 have pre-conditions that either the right
or left sequences must be non-empty. In order 1o make the operations total. we extend
the operation domains by the inclusion of the report of an appropriate error message if
an atternpt 1s made o execule the comimand outside its domain: such error messages are
assumed to belong to the sct Repert. We define:

[Report]
Suecess = [ repl: Report | repl = “OR™ |
DoctUnchanged = [ SDoel ; rep!: Report |
ErrorTopOflroe

| DaciUnchanged j

Feﬁmr =<>
I rep! =*“At top of doacument”
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ErrorBotOfDoc ____ _
‘ DoctUnchanged

L

Righltcher = <>
rep! = “At botlom of docvment™

Although we are not concerned with operational detail in this abstract specification, we
must recognize ithat the editor will have finite capacity, and that the insert operation
may not always be succossful, We define:

Errovfull

i Doctlnechunged

' rep! = “Editor full”
t

1.6 The Total Operations On The Docl State

Wo now have:

RuymMoveCharp,., = {Right MuChar A Suecese) v FrrorBotOfDoe
LeftMoveChary, ., = (LeftMeChar A Surcess) v ErrorTopOfDec
RightMove Wordp,,, £ (RighiMvWord A Success) Vv LrrorBatOfDor
LeftMove Word g, _, = {LeftMuWord A Sucress) v FrrorTopOffioc
RightMoveLine ., = (RightMoline A Success) v ErrerBotOfDer
LeftMovelinep,,, = (leftMuLine A Success) v ErrorfopOfoc
RightDelcieCharp,,, = (RightDelChar A Surcess) v ErrorBotOfDoc
LeftDdeteChary,, . = (LeftDelChar A Suceess) v ErrorTopOfboc
RightDelete Wordp,.,, = (RightDelWord A Succexs) v ErrorBotOffioc
LeftDelete Word = (LeftDilWord A Success) v ErrorTopOfDoe
RightDeleteLinep, = (RightDelLine A Success) v ErrorBotOfDoc
LeftDeleteLine ., = {LeftDelline A Succrss) v ErrorTepOfDoc
InsertChar e £ (InsChar A Success) v ErrorFull

MoveTolopp,., = (MoTelop A Success) vV ErrorTopOffoc
MoveTeBot poc; = (MvToBof A Success) v ErrerBotOfDoc

Partly expandirg the schema for LeftMoveLines, . for example, we oblain an operation
which, if the lefi line sequence does not comprise an empty line performs LeftMuLine
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and issues an “OK"™ report. and if the left line sequence is an empty line does nothing
except issue the “At top of docnment™ report:

LeftMovelLinep,;
ADoct

|

L

Leftrn.' — Rightpm,' = Le€flpine = Rightpa,
Lfﬂme F <>
Leflpine' = front Leftr.a.
rept = “OK”

Lefltan. = Leftpn' = <>
rep! = “At top of docnment™

and similarly expanding the schema for Right Delete Wordp.,; defines an operation which.
if the right word sequence is non-empty performs fight DelWord and issues a repart of
“QK". and if the right word sequence is empty does nothing except issue the report ~At
bottom of document”:

RightDelete Wordp,.

ADoct
| rep!: Report
LEﬂ"Wurd’ = LEﬂ“’ori
Right wed # <>
Rightw"d' = tail Rightwors
rep! ="0K”

|

|

J

| v

‘ Rightw,d = Rightwed = <>

L rep! = “At bottom of document™

- ]

Lemma 3:1.3a im plies that the initialization operation will always succeed, and 0 we do
not include a report message with that operation.

Since a Success schema does not alter the stale, if we have discharged our invariant
preservation obligation for some operation OFP. then we have also discharged our obli-
gation for the conjuunction of that operation with a Success schema. An Error leaves
the slate unchanged, and so there is no associated proof obligation. Each of the above
operations comprises a disjunction of two other operations, both of which prescrve the
state jnvariant, and thus each operation itself must preserve the stale invariant.



2 Unbounded Display Of The Document

2.1 An Unbounded Display Mode]

In this seclion we specily a mode} which displays a doenment in full, and then (Section 8)
use thiz apbounded model to develop a bounded display model jucorporating a siugle
maovable window on to the document. We define the unbounded display in « manoner
orthogonal to that of Doci.

An unbounded display may he unignely characterised in many diflerent ways. We choose
a line miodel becanse this enables the display to he verv natutally viewed as a sequence
of lines placed one ahove the other and aligued at the Jeft. the first at the top, the next
imirnediately below, and so on.

For example, we want the four line display:

the canary
ate

the

to correspond to the sequence:
<<l h,e spoc,e,hoar gy > <at.e > <> <l he>>

Note that eacl display line may be etnpty, bul cannot contain a newline (unlike the line
view incorporated in the Doc/ model). The empty display will correspond to the unit
sequence containing the empty display linc.

We therefore define a display line as a scquence of claracters nol containing a sewline:
Displine = seq (Char — {nl})

and we chancterize the display of an unbounded document by ['Dlines, a non-empty
sequence of DispLine.

We model the screen cursor by a pair of natural numbers, with the top left hand posi-
tion corresponding to (1. 1), and we requite llie cursor 1o be inside the display of the
document. X FDCurXaund TDCurY represent the herizoutal and vertical displacerpent
from the topleft hand corner of the screen. we therefore require that the latter cannot
exceed the length of UDLines, and the former cannol be ane more than the length of
the UDCurY® line of UDLines (UDCurX attaining its greatest value when it appears
immediately alter the last character of that line).

For case of reference, we also inclnde UDCurLine, the EDCurY ™ line of UDLines {the
line in which the cursor resides) in the unbounded display modai:
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um
| UDLines - seq; Displine
UDCurX, UDCurY - N,
i UDCurLine @ DhspLline
'_. —_——

o UDCurY < # UDLmnes
‘ UDCurbine = UDLines UDCurY
| UDCurX < # UDCurline + 1

We note the following resnlt when the display contains a single empty line:

Lemma 3 : 2.1a

UD | UDLines =< <> >
-
UoCurY =1
UDCurline = < >
UpCwrX = 4
| ]

Proof

UDCurY € Wy A UDCuwrY < < <> > = UDCurY =1
UDCurline = < <>> [ = <>
UDCurX € Ny A UVDCuwrX < # <>+t = IU'DCwrX =1

2.2 The Doc2 State

The Doct stale is now extended to Dec? by incorporaling its unbonnded display: We re-
late the two through their respective character seqnences, such that the flattened display
line sequence is the concatenation of the lefl and right characler views of Doct.

To obtain the character sequence corresponding to a sequence of display lines, we define
a fonction FDL { FlattenDisplayLines) that inserts a newline character between adjacent
display lines before flattening the sequence. Clearly, we have a fnnction which is tijective:



DY L1 L2 seq, Displine ; 1 Displine =

! FOL (<i>) = I
EDL (L/ = 12) = (#DL L1y~ <ni> ~ (FDL L2)

We establish three results relating Lo this definition,

Firstly. an empty sequence of characters carresponds 10 the display containing a single
emply line:

Lemma 3:2.2a

=<

L scqy Displine | 1 = FDL7' ¢
-

L=<<>>
[ ]

Proof
L= <> = < <> >
]

Secondly, il L is a non-empty sequence of display lines. the number of newlines in the
corresponding character sequence is one less than Lhe leagth of L:

Lemma 3:2.2b

L:seq, Displine
}_

#UFDL L) > {nl)} = # L1
]

Proof




We nse induction on the leugth of the sequence L
Base: L =< {>
1. #L=1
2. FDL L =1
3. H#UFDL Ly 1> {nl}) =0
1. #{(FDL L) & {nl})=#L-1
Step: L = L1 7 <!> where Li # <>
#(FOL L1) © {nl}) = # L1 1
#L=#L1+1
FOLE = {FDL L) ™ <nl> T |
#((FDL L) & (nl}) = #((FDL L) > {nl})+ !
H#FDL L} & {nl})= #L-1

Do - ;W

Base
DBase, defls. FDL
2..1 € DispLine
3.0 1.

Step

Step

Step, defu. FDL
7., 1€ Displine
5.6, R,

Finally. the character sequence corresponding te a seqnence of display lines of lepglh at
teast two and whose last element is the empty line has a newline as its last elerment:

Lemma 3 : 2.2¢

L : seq; DispLine ‘ #L>2 Alast L= <>

C : seq Char | c=FOLL
},
last C = nl
]
Proof
1. LetL = L1 ™ <<>>
2. LI # <>
3. C=FDL(LI T <<>>)
4, C=(FDLLH) ™ <nl> 7 <>
5. last C = nlf

1, 8L > 2
L.
2.,3.,def. FDL

4..defs. 7, <>

We now define the Doc?2 state as the conjunction of the Doc? and £1) models, requiring
that the two character representations are the same. Then {/DCurfine comprises the
last of the display line sequence corresponding to Leffos,, concatenated with the first of
the display line sequence corresponding to Rightep,,; /DCurY equals the length of the

display line sequence corresponding to Leflry,,, and I'DCurX equals the length of the

last element of that seqnence:



Deoc2
© Doct
CUD

. UDLines = FOL™Y (Feftogar — Righteng,)

| UDCurling = last (FDL™Y Leften,,) ~ first (FDL™! Rightepes)
CUDCurY = #{FDL7Y Lefirpar)

D UDCurX = # (last FDL™Y Lefteng, )+ f

We note that the invariant of Doc2 is consistent with that of Doci. siuce the word
and line views of 1he latter are not vsed in Lhe specjfication of the former. We show
that there is no confiict betwesn the Doc? and UD invariamis by assuming that the two
character representations are the same {the first predicate of Doe2) and showing that
the defintions of UDCurline, UDCurX and I'DCurt mect the U6 invariaat,

In order to show the first of 1hese. we have, denoting FDL™ Lefé ey, by L. FDL™' Right oy,
by B. Ullires by U and I'DCurY by n:

Let & = L7 < (> and <v> T HOY = R defu, FOL
20 #LD - n— 1o 1 .#lL=mn
3. FDL L. 7 FDL R =~
FDLLO & <nl> 7 <t> 7
<r>»  <nl> 7 FDL Ho 2., defn. FDL
4. FDL L 7T FDL R =
FDL Lo ™ «<nl> 7 <ihr> 7 <nl> 7 FDL RO 3. defn. ~

5. FDL L T FDLR =FDL (X~ <l.r> — R 4., defn. FDL
G. FDL™'{(FDL L " FDLR) = L& ™ <i.r> 7 RO 5., defn. FDL
7. ' = Lo~ «<lr> T HO 6.. Doc2, deln. FDL
8 n=<lr> 2., 7., deln. ™

The minimum value for UDCurY is given when Leftgper 15 minimal in the document -
when Lefton, is empty:

UDCurY = #FDL7' <> = Heo <> =}
and the maximum value is given when Lefic,, is maximal - when Highlep,. is emply:
UDCuwY = #FDL™ (Leftenar = Rightower) = # UDLines

Finally, the minimum value for /0CurY will be given when the last of FDL™' Leficpar
is mintmal in FDCurline - when il is empty:

UDCurd = #(<>)1+1 = 1

and its maximmm value will occur when the last of FOL™! Rightcy,, is maximal - when
the first of FDL™! Rightcu,, is empty:
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PDCurX = # (last (FOL™' Leftenar) ™ first (FDL™! Rightcngr)) 4+ 7
# UDCurline + 1

llence there is no conflict between the invariants of Doc2 and £D.
Initially:
nitwahzepe.» = Initiahzep,; A ADoc?
and as a direct result of the definition of FDL and Leminas 3:1.3a and 3:2.1b, we have:

Lemma 3 : 2.2d

Initialize s

U'DLines” = < < > >
I'DCurLine' = < »
(I'DCurX’, UDCerY’) = (1.1)

2.3 Promotion Of The Docl Operatians To The Doc2 State

Each of the operations of the Docl stateis promaoted 16 the Doc2 state in the same way.
In order to save unuecessary repetition in this and subsequent promotion processes, we
nse the following inforinal method: we define the set of names:

MoveOps = { RightMureChar, LefiMoveChar,
TightMaove Word, Left Move Word.,
RightMaveLine, LeftMooeLine,
MoveTopDac, Move BotDor }

DeleleQps = { RightDeleteChar, Lefi Delete Char
ItightDelete Word, Left Delete Word .
RightDeleleLinc. Lefi Delels Line }

fly

IncertOp { InsertChar }
to give:

EditOpsi = MoveQps U DeleteOps U InsertQp

Then for each operation OF defined in Section 1.6 on the foc! staic and m the set
EditOpsi, we have:

¥ OP;: FditOpsi e OPpyen 2 OPp,.; N ADoc?
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The Doe2 jnvariant ensnres Lhal each of the unbounded display compotents is uniquely
defined in terins of the Docl companents, and salisfy the UD imvariant, which means
that the introdnction of the L'D variables does nol result in additional proof obligalious
since they are redundaut - they mayv be calculated from the Docf and we have shown
that they do aot violate Lhe slate invariant.

3 Invariants On The Unbounded Display Model

3.1 The Doc3 State

It is impossible to identily trailing whitespace (space characters at the end aof a line)
on a terninal sereen {except when the cursor is at the end of a hine) and so we require
thut each document line (except Lhe cursar line) has no 1railing whitespace, We define
a display line (o be visible il and only if it 35 empty or its last character is not o spuce
character:

I
Fm—m— -

[ wisble [ & (I # <> = hsti# sp),

For the sane reason, we require that the document has no trailing null lines, and we
specily that a non-empty sequence of display lines is a visibleseq il and only if it is emnpty
or its last element is non-null:

visibleseq I, & (L #< <>> = last L # < » ),

Expressing the above definition in terms of the corresponding character sequence gives:

Lemma 3:3.1a

L : seq; Displine

C:seqg Char | FDLL = €
‘_

visibleseq L & (C # <> = last O # af)
| ]

Proof



Follows from Lemmas 3:2.2a and 3:2.2c.
| ]

In the Docd model we therefore require thal every line except the cursor line is visible,
that the cursor line itsell 1s visible following the cnrsor position, and that the sequence
of lines below the cursor line is a visibleseg. We define:

Y i:1. 4 UDLines = {1'DCurY'} e visible ({"DLines i)
visible ( L'DCurlane after FDCurX - 1)
v visibleseq { I'DLines after I'1)Cur?’)

: - o
Siuce the Doc? state introdnces no new coniponents, the initial state of Docd is exactly
that of Doe2:

Initializepges = Initiglize ey

We nole that, alter initialization, and using Lemma 3:2.2d, the first predicate of Docd
is trivially true (since # UDLmnes = UDCurt = 1I); the secoud predicale follows
by definition of “after”, noling thai 7DCurLine is initially empty aud that the empty
sequence is visible; the final predicate holds again by definition of “after” noting that,
initially, I/DLines after UDCurY is empty. and thns comprises a visibleseq. ‘Thus we
discharge PO D.

3.2 Two Relations That Tidy The Display

We now consider the preservation of the two invariant requirements of the Dec? model.

We first consider the whitespace invariant, and define a relation between twe display
lines in which the first is visible and is the longest such that it is a prefix the second:

_ visible_prefix _ : DispLine x Dhsplane —> B ;]

‘\ L' visible_prefix L & visible L' A mg (L - L) € {sp}

1
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Nate that, since [ aud [’ are sequences:

mg(L—L') C {sp} & [/ prefix L
Li#l+1. #10 C [p)

and that visible prefix is reflexive for all visible lines:

Lemma 3 :3.2a

visible L
F
L visible prefix
| |
Proof
l. L prefix L deln. prefix
LL(#FLFEL) = 0 C {sp} delus. .., C
3. L visible prefix L 1..2.
]

We now consider the preservation of the nyll Hues invariant of the Docd model by delining
an analogous relatjon on sequences of display Hues, in whicl the first sequence is a
visibleseq and is the longest such prefix of the second:

Relating this result to the corresponding character sequences gives:

Lemma 3:3.2b

L.I': seqy Displine
C,C'iweq Char | C = FDL L A ' = FDL I/

l_
L' visibleseg prefix L. & (' prefix C
(' # <> = last €7 # nl
CH# '+ 1. #C) C {nl}
|
Proofl

The result follows direcily from the defiuition of FDL, and the results of Lemmas 3:2.2¢
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and 3:3.1a.
[ ]

We note that visibleseq . prefix is also reflexive [or all visibleseq:

Lemma 3 : 3.2¢

visibleseq [
}_

L visibleseq_prefix /.
]

Proof
Similat 1o Lemma 3:3.2a.

3.3 Promotion of Doc2 Operations to the Doc3 State

When showing that an operation preserves the invariant of the state on which it is
defined, we assumne that Lhe state invariant is trne before the operation (s invoked (PO
1). Thus the only display line that may contain viclating trailing whitespace aller an
operation has been performed is the previous corsor line (which inay, of course, not have
changed).

We therefore define an operation that removes violating trailing whitespace fom Lhe
previous cursor line, taking the previous value of the length of Leftcos,, as the identifying
input parameter, (since we will posi-sequentially compose with Lhis operation) leaving
all other DocZ components unchanged.

I the cursor line has rot changed, there must be no trailing whitespace to the right of ihe
new cutsor position, and so the corsor line after ITDCur¥Y — 1 mpst becotne a visible prefix
of iteelfl, with the cursor line 1o the left of that position temaining unchanged, and if the
cursor line has changed, the whole of the previens cnrser line must become a visible prefix
of itselfl:
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RemTradl WS
| AUD
' prerCP?T: N
e e
P UDCuw X UDCurY! = UDCurX , UDCurY
! {prevUDCurY) @ UDLines' = {preel DCurY) 4 UDLines
: prevliDCurY = UDCury

UBCurLane for UDCurX — 1 = UDCurline for UDCurX” — 1

(UDCurLine' after UDCurX — 1) visible prefix ( UDCurLine after LDCurX — 1)

(UDLines’ precUDCurY ) wisible prefix ( UDLines prenl DCur¥)
where

l

: prevlDCurY # UDCurY

:

: prevltiDCury = #(FDL™'((Leftena, — Rightcna,) for preoc " PTY)
|

The first two predicates ensure that all lines except the previous cursor line and the
cursor poesition do not change. the fiest disjunction Lreats the case when the cursor line
does not change. and the second deals with a change of vursor line. In botl cases, since
all lines except the previous cursor line cannot have had trailing whitespace, aud since
visible prefix is reflexive (Lemma 3:3.2¢), the Doc3? Lrailing whitespace invariant is met.

We now define an operation that renoves trailing null hnes from that part of the docu-
ment following the new cursor line {once again leaving Lhe carsor position unchanged):

AN I

VDCurA’, UDCurY’' = UDCurX. UDCurY

UDLines' for UDCurY = UDLines for UDCurY
| {UDLines’ after UDCurY ) visibleseq prefrx ( /Dlines after UDCurY } |
f i

R O E E———————— 4

“The first two predicates cnsure that the cursor posilion and all lines above and including
the new cursor line do not change. the last predicate ensures o trailing null lines after
the new cursor iine, which meets the Doc? null lines requirement.

We promotc the aperations of Section 2.3, defined an the Doc2 state, 1o the Dec? state
by sequenlial composition with the first of the above operations (1o remove trailing
whitespace), followed by sequential composition with the second (to remove trailing null
lines). We define an operation 1o identify the previous cursor position:

FlagPrevCursor = [ Leflen,, @ seq Char 3 prevC'PY N | prevCP! = # Lefichar ]
For each operation OF identified with the set FditOpss (Sectian 2.3), we have:

Y OF: EditOps! »
OPpors = FlagPrevCursor : OPp,.s 3 RemTrailWs ; Rem Froil ML
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We unte that each firm aperation is total, and therefore may freely post-compose with
both.

4 Cursor Movement

4.1 The QP State

The eight move operations defined on the Dors state (left and right, by character. word
and line, and to the top aud bottom of the document } facilitale cursor movemnent around
the document. but do not enable positions “outside” its unbounded display Lo be reached.

The unbounded display of the document defines a “quarter plane™ - a plane bounded by
the top and lelt hand edges of the document. but wnbonnded 10 the nght and below - and
we now consider operations to move the cursor aronnd tbal gnaster plane.

We specify a state comprising a coordiuate position within the guarter plane, orthogonal
to the model developed so far:

QP = [ QPCurX,@PCurY :N;]

We wish to define cursor moverneut up, down, left and right, and first define harizontal
and vertical moves (wheu, respectively, QPCury and QPCurX do not change); wedefine
a vertical move with the parameter y so thal we may subsequently use the definilion to
specify vertical movement by character or page:

QPHorizMowx = [ JQF | QPCurY" = QPCurY ]
QPVertMove = [4QP:y:N; | QPCurX’ = QPCurX |

where the parameter y represents the number of characters 1o be moved verfically {since
we wish to specily vertical movement by a page as well as a character). We define:

‘ QFCurl'p e
L QP VertMave !

QPCurY —y > 0
QPCurY'! = QPCurY —y

- -

QPCurDoun
‘ QFPVertAfove

L QPCurY' = QPCurY +y
L
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QPCurleft
QPHorizMove

QPCurX > 1
QPCurX’' = QPCurX ~ 1

QPCurRighy _ .
I QP HorizMoue

e e — = —

D QPCurX’ = QPCurX + 1

noting that the pre-conditions are necessary for leftward and upward movemenl to ensure
the preservation of the @P invariant.

To totalise the operations (Ly which we wean transform cach such that i1 becomes tatal)
we define the following errer ruessages, the first when upward movernent would cause
QPCurY tobeconie non-positive, and the second when tle cursor is at the rap lefl hand
coruer of the plane when any leftward wove would similarly violate the invariant:

ErrorAtTepPage
| . .
; QP

| N

! repl: Report
}___
QFCurY —y < 0

rep! = “At top page of docurpent”

ErrorQPAtTep
ZGF
repl: Repart

QPCurX = QPCurY = 1
rep! = “At top of docnment” ‘
|

The remaining case to consider is when the cursor Is at the left edge of the document
but not in the top line. In this case. rather than the left move operation failing, and
an appropriate error message being issued {which. we feel, would be [rustrating for the
user), we decrcase QPCurt by one without specifying the valie of QPCurX. This nou-
determinism enables the operation to mimic the left D enrsor niove {which will thus
be to the end of the previous line) when conjoined with the Docd state (which, we feel,
would be what the user would actually expect of the aperation). We define:

a1



_ QPCurToPrevline _
| aqp

We now lhave the tolal operations:

Cursorlp = QPCurlip A Success
v
ErrorAttopPage

CursorDown 2 QPCurDouwn A Suecess

CursorLeft = QPCurLeft A Sucerss
A
QPCurfoPreeline A Success
v
ErrorQPTop

1h

CursorRight QPCurRight A Surcess

cach of which clearly preserves the state invariant. and so we discharge PO 1.

We now consider curser movenient vertically by a page: it 18 desirable that the page
licight should he less than than that of the terwinal sereen ( WindowHeight, introduced
formally in Section &). thereby eusuring thal some informalion contained in the current
display is “carried over” 1o the nexl display. We introduce:

PageHeight : Ny |  Pagelleight < Windowlleight

and now define:

CursorU/pChargp = [ QPCurserlp | ¢y =1]
Cursorl{ipPagegp = | QPCursorlip |y = PageHeight ]
CursorDownChaerge = | QPCursorDown | 3 = 1]
CursorDownPagege = [ @PCursorDown | g = PageHewght |
CursorleftChargp £ QPCursorleft

CursorRightChargp = QPCursorRight

4.2 The Doc4 State

We combine the Docd and QP states into the Docy state by logically conjoining the two,
and requiring that the twe cursor positions coincide:
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Docy & [ Docs A QP | UDCurX = QPCwrX A IDCuwrY = QPCurY )

Ve specify the initialize operation as:

Imbtializep,.; = Initializip,.. A ADoeq

whicl means that. by definition of Docg. the QF cursor must injtially be the same as

the ol the UD cursor:

Lemma 3 ;4.2a

Initialize pueq
‘,

QP urX’ = QPCwrY' = |
a

and we discharge PO 0.

4.2.1 Promotion Of The Doed Operations To The Doc4 State

Since the Dory state requires that the QP and UD cursurs agree, we speciiy a total

operation to alter the value of the former ro the latier:

EquuteQPWHRUD

!
o
i UBCurX. UBCurY : N

| QPCurX', QPCurY' = UDCurX.UDCur¥

We now define. for each OF delined on the Docd state and associated wilh the set

EditOps1 of Section 2.3:

¥ OP: EditOps! o OPp,.; = (OPpo.s; EquateQPWithliD) A ADoc)

post-sequenlial composition with the Egquate operation ensuring that each operation

preserves the Docd invariant.

4.2.2 Promotion Of The QP Operations To The Doc4d State

In order to preserve the Docgd invariant for each of the @P cursor movement operations,
we must specify an operation to change the valnes of the ¥} cutsor, but in so doing
we may violate the invaciant of the Joc3? model. Jf the cursor position remains inside
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the nnbounded display. the treatment ol the operatiou is the same as that for a Doc?
operation, but when the rursor position is moved outside, we must change the cantents
of the doenment, ensuring that the whitespace/nnll lines requirement is met.

As with the D operatians, the only line that may contain vielating whitespace after the
operation is the previous eursor line, and so for each QF operation. we post-sequentially
compose with RernTretf W5, To ensure that there are no trailing null lines after the new
cursar line we also post-sequentially compase with RemTrei!NL. In bolh cases the cursor
position does not change, and the considerations are exactly the same as those disrussed
in Section 3.3. we naw cansider the two cases when the cursor is moved outside the
nnbonnded display.

We {irst. consider the case when the QP cursor posilion is to the right of the unbounded
display, when the cnrsor line position will not have changed. We may leave all lines
unchanged except for this one (since we are. in effect. performing a left inserl aperation,
which affects only the cnrsor line}. and we choose to “pad” this line with whitespace
{since this is what the user wonld naturally perceive on a ierminal screen). Thus the
previons corsor line (the QPCurY ™ line of t/DLines} will be a visible_ prefix of the new
(the QPCurVY*™ line of UDLines” - i.e. UDCwrLling’). Note 1hat since visible_ prefix is
reflexive {Lemma 3:3.2a) this relation will alss hold when it Is not necessarv to dhange
the contents of the line.

We now consider the @P cursor being moved helow the bottom of the unbeunded display.
In this case we choose 1o pad the end of the document with empty lines (again fitting
in with the nsers’s perception of the display). Further, if the cursor is not at the [eflt
hand edge of the document, we pad the last of these lines with space characters. [n atl
cases, all display lines ir the (possihly empty) range # UDLines + 1 to QPCurY —
will be empty, and the rng of the last line {which in this case will be the current line
UDCurLine') will be a subset of {sp] (which alsa halds, ol course, when that line is
empty).

We define the aperation to equate the I'D with the QP cursar:

Equatt’UDW:'thP _

UDCurX’, UDCurY': N

o
i -
L

UDCurX' UDCurY' = QPCur/\ QFPCurY

and the operation to pad the display with whitespace/newlines:
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PadWSNL
AUD

: Equate UDWHhQ P

| QPCurY < # I'DLines
1 {QPCurY} @ UDLines’ = {QPCwrY} 4@ UDlLines
UDLwnes QPCurY visible prefix ['DCurline!

QGPCurY > 4 I'DLines

# U'DLines’ = QPCurY

t'DLines prefix UDLines'

V i:# UDLines + 4 .. QPCurY — {0 UDlanes 1 = < >
mg (FDCurlindy € {sp}

The first disjunction treats the case when the cursor does not move below the unbounded
display: the second predicale ensures that no lines change except the cursor line. aud the
third allows whitespace padding of that line. T'he secand disjunction deals with the cursor
being moved below the urbounded display: (he seeond predicate extends Lhe number of
display lines in the docutnent to agree with QPCurY . (he third predicate cnsures that
cxisting display lines do not change, the next ensures that all lines (except the last)
appended to the display are emnpty, and the final predicate allows for whitespace padding
of the Jast (cursor) live. The operation is toral, and rlms post-sequeutial conposition
with this operation will epsure that all newly added lines salisfy the flocd invariant.

The CurserleflCher operation is idenlical Lo LeftMoreCharp,.s {since the QF cursor
will always remain inside the nubounded display):

CursorLefiChurp,ey =  LefiMoveCharpay A ADocq
We now promote the remaining QF carsor operations by defining the set of names:
QPCyrsorOps & | CursorUpChar, Cursor DounChar,
Cursorlplage. CursorDownPage.
CursorLeftChar. CursorRightChar )

and have, recognizing that the editor’s capacity nay be exceeded:

V OP: QPCursorOps — {CursorLefiChar} o
OPpocy = FlagPrevCursor ;
SuceOFgp ; PadWSNL ;
BemTrait WS ; RemTrailNL A ADocq

IinSuccOPgp A SDocy

ErrorFull A ZDocs
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where

I

SuccOPgp [ OPgp | rep! =“0K™ |
UHSUCCOPQP = i OPgp | rep! #+0K" ]

The last two disjunctions do not change the conteut af the operation, and for the lirst,
the Pad operation ensures that the two cursar positlions agree and. together with the
two Rem operations. eusures that the Docd invariant is maintained (and as explined
in Section 3.3 we flag the cursor positiou helore the start of each operation). Thus we
discharge PO 1.

5 Text Manipulation Operations

5.1 The Doc5 State And Marked Text

It is sometimes necessary 1o identify a portion of text in order that it may either be
removed from the document (and, possihly, replaced clsewhere) or lifted (1o be copied
elsewhete), Such text is referred Lo as *marked”. The operation to set the mark jdentifies
a particular character position in the document and marked text is that lying berween
the mark aud the cursor; hence marked text can lie ahove or helow the cursor.

In the former case we define MarkSeq to be the sequence of charaeters starting at the top
of the document aud finishing at this marked position, and thus marked text, whicll we
define as MarkedSeq, will be the sequence of characters lying between the marked and
current positions. In the latter case MarkSeq will starl at the marked position and end
at the bottom of the document and Marked5eq will lie between the cnrrent and marked
positions. If the mark is not set. we define hoth MarkSeq and MarkedSeq 1o be empty.
Thus when the mark is set moviug the cursor increases or reduces the ainount of text
that is marked.

We extend the document stale to incorporate marked text:

MarkedTert o,
| MarkSeq, MarkedSeq : seq Char |
| Pairciar

MarkSeq = MarkedSeq = <>
v

MarkSeq = MarkedSeq = Leftryg,
A

MarkedSeq ™ MarkSeq = Righicy,,

U |
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Docs = Docf A MarkedText

[nitially the document does not contain marked text:
Inttializep,.s = | Indtighizep..; A ADocs | MarkSeq = MarkedSeq = <> |

and thus we discharge PO 0 since the first predicate of Marked Text is satisfied [since
Inddializep, .y ensures that Leficng, is empty),

The Operation To Set The Mark
We define the operation Lo vet the mark at the current cursor position:

[ Sedk o _ _ _ _ _

Marked Text’

Paireyar

MerkSeq' = Leftchar
MurkedSeg’ = < >

- e — =

wlich leaves Lhe Docf components of Docs unchanged:

SetMarkp,c; = SetMk A ZDocd A ADocs A Suecess

5.1.1 Promotion Of The Docd Operations To The Doc5 State

It is desirable that cursor-changing operations should preserve Lhe nark (set or unset)
but necessary that content-changing operations reset the mark {for instance if part of Lhe
document is deleted then Mark could peint bevond the end of the dorument). However,
sinre cursor-changing operalions masy themsclves change the content of the docnment
{through ihe RemTrasdd WS or RemTroflNI operations of Section 3.3, or the Pad WSNL
operation of Section 4.2.2) we wmay ot stipulate that the marked position does not
change, because if whitespace/newlines are inserted/deleted at 2 point in the docnment
above the marked position, preserving the mark will. in fact. ove it relative to the rest
of the document,

Thns cur policy for promoting the Docj opetations is to require Lhat all coptent-changing
operations result in the mark heing reset. but 1o adopt a non-deterministic approach for
cursor-changing operations when the mark is already set, allowing the implementalion
policy to dictate when the mark should be reset for such operations; in 1he latter case,
when the mark is not set, it will remain so.

We define:




ResetMark = [ AMarkedText | MarkSeq' = MarkedSeg’ = <> |

and use MoveOps, DeleteOps and fnsertOp (Section 2.3) and QPCursorOps (Section1.2.2)
ta define:

NonCursorOps = DeleteQps U InsertOp

CursorOps 2 MoveOps U QPCurserQOps — NonCursor(Ops

CursorOps_ NoMarkSel = CursorOps | MarkSeq' = MarkedSeq' = <>

CursarOps_ MarkSet = CursorOps | MarkSeq" = MarkedSeq' # <>
to give:

¥ OF : NenCursorOps e OPp,; = OPp,; A ResetMark

1

Y OP: CursorOps NoMuarkSet s OPpe.es OPpoey A ZMurkedTee!
¥ OP: CursorOps_ MarkSet e OPpus & CPpoey A AMourkedTer!

We note that there are no associated proof obligations associated with this prowotion

process since Docd and AfarkedTert do pot have variables in common, and thers is no
“cementing” invariant contained in foes.

5.2 The Doc6 State And The Lift, Cut And Paste Operations

Marked text may be placed into a paste buffer by a Lift or ('uf operation (the former
leaving the marked texi in the document, the latter removing it} and subsequently copied
from the buffer to a (new) cursor position by the Pasie operation. Text in the buffer is
not changed nntil a new Liff or Cuf. and consequently several copies of the buffer may
be made at different points in the document.

We enrich the document state as follows:
PasteBuffer = [ PBuff : seq Char |

Doct = Pees A PasleBuffer
and initially we set the buffer to be the empty sequence:
Initializep,.s = [ Initializep,.s A ADoet | PBuff’ = <> |
The Lift Operation

We first define an operation in which non-empty marked text is copied to the paste
bofler:
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CopyMTeat PBuff
APasteBuffer

|

‘ Leﬂcﬁar

} Marked Tex!
i

I

In order to totalise the operation we deline the error schema:

ErrorNoTextMarked _ i
? ZDoct ,
i rep!: Report

I MarkcdSeq = < >
rep! = No lext marked”

to give:
Lifthees = CopyM TertPUuff A ZDacs A ADocb A Success
ErrorNoTeztMarked
The Cul Operation

This operation is similar to Lift, except that the marked Lext is actually removed from
the decument, ard thus the mark pointer must be reset. We define a 1otal operation
which removes marked text from the document and resets the mark:

RemMText

|
APaircpar
AMurked Text

|
-
i
|

MarkSeq’ = Markedseq’ = < >

MarkSeq = MarkedScq = Leficn,, = Lefleaar’ = MarkSeq

Righlchey' = Righlogs:

i MarkedSeq — MarkSeq = Leficna, = Rightorer = MarkSeq
Leftoner’ = Leftciar

-

Since the content of the document is changed. we must ensure the preservation of the
Docd invananl, and have:

Culp,es = FlagPrevCursor
CopyMTextPBuff ; RemMText
RemTradWs | RemPTrailNL A Suecess

ErrorNoTeztMarked

29




The Paste Operation

The Paste operation concatenates the {non-empty ) paste buffer onto the end of Le ficy,,,
with Rightcy., and the paste buffer being lefl unchanged: ihe pasted text becomes
marked text aud thus we set the mark to the original length of Lefichar:

Pst

APaircy,r
AMarked Tezt
PoasteBuffer

—

PBuff # <>

Leftene:’ = leficiar ~ PBuff
| Righlcia:’ = fRighlcnar
' .’lfari‘Sf.q" = Leflohar
| MorkedSeq' = <>
\

ErrorPBuffEmpty
1 ZDoct
repl: Report

b
‘ PBuff = <>
| rep! = “Paste buffer empty™

We acknowledge that the paste operation may cause the capacily of the editor to be
exceeded, and again ensure that the Doc? invariant is met hy post-sequential composition
with the Rem: operations of Section 3.3 to give:

Fasten, s = FlagPrevCursor |
Pst ; RernTrail WS s RemTrailNL A ADoc6 A Success

Zhoc6 A FrrorFull

ErrorP BuffEmpty

5.2.1 Promotion Of The Doc5 Operations To The Doc6é State

We use CurserOps and NonCursorQOps {Section 5.1.1) to define the set of names:
EditOps2 = CursorOps U NonCursorOps U {Mark}

and stipulate that each operation OF in EditOps2 leaves Lhe paste buffer unclhanged:
V OP: EdilQOps2 o OPp,s = OPpos A SPastcBuffer
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Wa again note that there are no praof obligations associated with this promation process,
for the same reasons as those discussed in Section 3.1.1.

6 Quote Commands

6.1 The Quote Buffer

Unlike ather commands, quoted commands are hot tecessarily single-key commands, aud
mayv Tequre entry of text: we inlroduce a buffer, Quote Huffer, into which such text may
be directly typed and edited, which we specily as the concatenatjor of a pair of sequences
of characlers. thereby enabling character mavement duting editing:

Quote Buffer
LeftQuore. RighlQuar. : seq Char
QBuff : seq Char

QBuff = LcﬂQuulr - RightQuoce |

S S S —

—— e =

6.1.1 Operations To Edit The Quote Buffer

In genaral, text typed into Quole Duffer will be shorl | und so we provide only the limited
editing features of character movement. insertion and deletion. We define the insert
operation. noting that we exclude the insertion of the tab character {(since this will result
in a varyieg nuuber of spaces heing introduced into the bufler} and the other gquote edit
operations in an analogous way to those delined on Docl:

QlelnsChar

l AQuole Buffer '
' 1 Char

z! # tlab
| Lefiquoe’ = Lefiguoe — < x>
% Rfﬂ""eroicl = Rigi"Quu!c
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QielefiDel Char
. —

- — — " —/
1 AQuoteBuffer !

-_ .

Leﬁan.‘s # <>
LfﬁQuo{zl = front LeﬂQuois

} Rightouere’ = Righlguor

- =

QieRightDelChar

| AQuoteBuffer

Rightgua,, # <>
Lr'f"‘Quulz" = L(’.flqu,,,t
| Rightguow' = tail Rightgye.

QlelefiMvChar
]
. AQuote Buffer

| Lﬁﬁl?wlr ?é <>
I Lefiguae’ 7 Righlguse' = Leflguse — Righlgue.
Leftguoe’ = front Leflguos,

QteRightMyChar _
A Quote Buffer i

| Rightquore # <>

| LEfthiE’ - Rigfthtof,' = L(’ﬂQuDl, - Hz‘gh[qwh

‘| Rightgun.' = tail Rightgaor.
|

and the error messages:

ErrorQuote = | ZQuateBuffer 5 rept: Report |

ErrorlllegalCharacler _

‘ ErrorQuole
z?: Char
7 = tab

| rep! = “Illegal quote character”
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ErrorQuote Full
’ ErrorQuote

Error TopQuote

ErrorQunte

LrrorBotQunte
! ErrorQuoele
| o e
i Rightgyee = <>

rep! = “At botiom of quote bulfer”

11

{QtednnC har A Surecss) Vo FrrorQuetchull v
Lrrorilleqallaracter

LeftDelete Charguor. = {QULeftDelChar A Sucress) v ErrorTopQuote

Right Delete Chutguon {(QeRrghtDelChar A Succrss) v ErrorBotQuole

LefiMoveCharg e = (QleLefiMvChor A Success) v ErrorTopQuote

RiphtMoveCharguge. [ QleRighiMvCher A Sucerss) v ErrorBoiQuote

InseriChargyore

n

I

To discharge PC 2, we note that each operation is a disjouction, only the first of which
changes the bufler. Each of the first disjunctions of the first three operations explicitly
set Leflgue.’ and Rightg,,."; lor the first disjunclion of the loft move operation, we note
that:

Leftguate. Highl guare - seq Char A Leflgume # <>
I_
3 LCﬂka’,RI‘gh!QM”' L
Leflgnoe’ Right oy’ « seq Char
Lefiguor’ ™ Rightguns’ = Leftguoe — Rightgunte
Leftguor’ = front Lefigy

simplifies to:

Leftguote, Rightgyon & s6q Char A Leflgu, # <>
.
3 Rightpuor,” ®  Righlgye' : seq Cher
ngthnntr’ = (]aSt LC.anmn) - R'igthtuit
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which is true. We may Lreat the right operation in an analegons way, and since QHuff
is redmndant (it may he calculated from Lefig,.. and Rigitlgy.a ). we discharge PO 2.

6.2 Operating System I/0

Althongh we are not roncerned with implementation detail in the abstract specification.
we must make some high-level assumptions about the vperating svstem under which the
editor will run since several quole operations will require the facility te read from or
write to files and. io order to simplify their specification. we assume the existence of
three operating syster operations, stating our assumptions of these operations in the
following “specifications™,

The firsl, Sy~GetPir. returus a pointer to the rampuier’s store, lrom which reading or
writing is to commence. and takes a file name (2 sequence of characters) and file wode
{ ~r" for reading, ~w” for re-writing - creating a new file, or envptying an existing filo- and
“u” for appending 1o the end of an existiug file} as input paramelers. [ the operation
is unsuccessful (for example the file might Lave read or wrilte protection), NullPtr s
returned. We assume the set of such pointers Pir:

[ Ptr)
NuliPtr : Ptr

SysCetPir o
" filename? : seq Char ‘I
| filemode?, filemode!: {< r>.< w >. < a >}
Sysptr! © Ptr

1 filemmode! = filemode?
i

-

and define
SuccSysGetPlr = [ SysGetPir | Syspir! # NullPir |
UnSuccSysGetPtr = [ SysGetPtr | Syspir! = NullPtr |

The second operation, SysWrite, takes the pointer returned by SysGetPtr and WrileSeq,
the sequence of characiers to be written, and returns the boolean variable NoWrite Error
indicating whether or not the operation was suceessful.

Altbough we are not concerned with the operational detail of how the computers filestore
is changed by an operation, we assume that the filestore is a mapping from Pir 10 Cont

[Cont]
Store = [ FSlore: Ptr ~— Cont |
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and define a function that converts Uhe rontents of a stored file into a sequence of char-
acters:

1
g
|
i

We now define the operation SysWrite: it has the ingpul parmoetcrs Syspir. WriteSeq?
and filemode? and retorns the flag No Write Krror indicating the success or olherwise
of the operation. If the operation was unsuccessful, #FStore will rot change. otherwise
if filernode”? indicales a write, its Sysptr elenwent will now be associaled with WriteScg
{throegh the storedseq fuuction]. and if fitermode? iudicates an append. that clement will
now be assoriated with the concatenation of ils previous association concatenated with
WriteSeq:

Sys Write
' AStore
; Sysptr? 1 Ptr
I WriteSeq? : seq Char
flemode? » {< v >. < a >}
NoWriteError! : B

< NoWritcError! = FSlore = FStore’

I NoWrteErrorl A filemode? = < w > =

t {Sysptr?} @ FStere’ = {Syepir?} @ FStare
i storedseq{ F-Stare’ Syspir?) = WriteSey!

[ NoWriteError! A filemode? =< a > =

| Syptr? € dom FSlore

| {Sysptr?} @ FStore’ = {Sysptr?} 4 FStore

L storedseq( FSinre’ Sysptr?) = storedseq( FStore Syspir?) 7 WrileSey?
SuccSysWrite = [ SysWrite | NoWriteError! ]
UnSureSysWrite = [ SysWrite | - NoWriteError! |

The final operation that we assume. SysRrad. is analogous to SysWrile. takes the param-
eter filernode {which must equal “r") and the pointer returned by SysGetPir, retnrning
the flag MoReadError indicating its success or otherwise, and in the former case. the
sequence of characlers RradSeq. assaciated with Sysptr in Store (through storedseq); in
all cases Storc rermains unchanged:

ZStorc

Sysptr? : Pir
ReadSeq! : seq Char
filemode™ : {< r >}
NoReadError! : B

- NoReadError! = ReadSeq! = storedseq{ F'Slore Syspir?)
i
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SuecSysRead [ SysRead | NoReadError! )
UnSuceSysfead = [ SysRead | - NoReadError! |

To totalise the read aud write operations. we deline the error messages:

FrrorCannotOpe nFile { rep!: Report | rept = “Cannot open hle™)

FrrorWritingFile = [ rep!: Report | vepl = “Error writing file” |
ErrorReadingFile = [ repl: Report | rept =~Error reading file" |
to give:
WriteToStore =
SueceSysGelPir = SuceSysWrite A Suecess
A
SuccSysGetPlr > UnSuceSysWrite A LrrerWeitingFile
A
UnSuceSysGei Pty A ErrorCammotOpenkile
Suce Write ToStore 2 [ WriteToStore | wep! = "0OK™ ]

W\

UnSuce WriteToStorc [ Writr ToStore | rep! #~0ONK™ |

We note that WriteToSiore contains the input parameters filcname?, filemode”? and
WriteSeq?, which will be provided by the guote operation. We recognize that text read
from store will be appeuded to the document and so must allow for the possibility that
the editor’s capacity will be exceeded, and define:

ErrorReadFull = [ rep!: Report | rept = “Editor full™ |

ReadFromSlore =
SueeSysGetPir >> SuceSysficad A Success

v
SuccSysGelPtr > UnSuccSysRead A ErrorReadingFile
v
{UnSuceSysGetPir A ErrorCannotOpentile
v
SuceGetSysPtr A ErvorReadfull
SuccRead FromStore = [ ReadFromStore | rep! = “OK" |

UnSuccReadfvomStore 2 [ ReadFromStore | rep! # “OK™ |

We note that ReadFromStore contains the input parameters filename? and flemode?
(which will be provided by the gquote operation) and returns the component ReadSeq!.
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6.3 The Doc7 State

It order to enable text euntered al 1he kevboard to be directed either to the document or
to Lhe Quole Buffer il is necessary Lo lucotporate two states into the editor: a Stateg,.
for normal document editing aud a Siateg,,. for QuoteBuffer editing. Further, some
quoted commands also require the file naue (a sequence of characters). and we therefore
extend the document state as follows:

DocStatr = [ State : {Statep,.. Slalegyo ) |
DocName = | Name : seq Char |

Doc? = Dacé A Quole Buffer n DocState A DocNamne

Nearne iz to be provided hy the (operating svstem) command 1o start editing, and is
assumed Lo be iaput o the editor through 1hat command: GHuff i< inivially set 10 the
coupty sequence, with the editor (v Stetep.... giving:

futializepocy

1 Bhdtiglizepos !
I Alor?
filename? : seq Char

QR = < >
Slate! = Slalcp,.
Name' = filenamc?

6.4 Quoted Operations

All operations (with the exception of the scarch/replace commands - sec Section 7) are
begun and termipated by pressing a particular key [the quote key), unlike the other
operatious specified 50 far which require the implementation to “bind” each one 1w a
different key. When the document is in Slmicpgy, and the quote command (throvgh the
quote key) changes nothing except the stale {which is changed 1o Stalega,r.) and the
quote buffer (which is emptied ready to receive lext):

‘ Quolesyarenoe
ADoc?
ZDocb
rep!: Heport

Name' = Name
State = Slalep,.
State’ = Slategy,.
QBu! = <>
rep! = “OKk”

Y "l
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After the appropriate text has been entered into QBuff. the quote key is pressed again
(now, of course, In StuteQuoc.) and this acts as a reqnest for the operation - dictated by
the QBuff text - to be carried out (“regnest” since some of these commands will be
concerned with the operating system, and may, for a variely of reasons not concerned with
the editor, fail). We are notl concerned with the explicil specification of such operating
system operations (althongh we do make limited assnmptjons abont the input and output
relating to each, Secticn 6.2).

In order to save unuecessary repetition in the specification of the quote operations, we de-
fine two operations that perform a gqnote request, distinguishing between a document con-
tent change - Quote RequestContentChange - and no content change - Quote Request¥oChange.

Woe first define the operation Quole Request which is execnted in Slategyae. and terminates
in Slatep,; with the docnment name. paste and quote buffers nnchanged, allowing only
the content of the document and marked text to change. and providing the filenamc and
Jilermode input for operating system i/o:

QuoteHequest
1 ADoc?
| ZDocName
1 ZPaste Buffer
SQuote Buffer
‘ filename! : seq Char
U filemode! s {< 1> < w >, < a >}
State = Stalegyore
State' = Stelep,,

If a qnote {requesl) operation does change the content of the dornment, the mark is
reset:

QuoteRequestContentChange = [ QuoieRequest | MarkSeq’ = MarkedSeq = < > ]
and we note that the operation defines all components of the Doe7 stale except the
content of the document, aud therefore when nsing it we ensnre that the whitespace
and null lines invariant of Docd is mainiained (using the Rem operations of Section 3.3)

which therefore preserve the Doc?7 invariani.

We finally define a quote (request) operation that aliows neither document content nar
marked text to change:

QuoteRequesiNoChange = Quoteflequest A ZDecs

and we note that this operation defines all componenis of the Doc7 state, and so when
using this operation we ensure that the Doc7 invariant is preserved.
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Each quote operation. except abort and escape, will be identified by its first letter.
with optional arguments being separated by spare characters: we require Lhat the abort
operation is entered in full to preclude possibly disasirons conseqnences, the escape
operation heing identified by the character *!". We introdnce:

a.byi.o,q.r. 8,1, 0,05 Char

6.4.1 The Abort Command

This command returns control 1o the aperating system witboul saving the contents of the
docunient to backing store. We assume the sel SysQOp of operating systein instructions
and introduce:

[SusOp]

SysleturnControl : SysOp

noting that it has no associated inpnt. We define the command lor requesting an ahort.
which is always snccessful:

NequestAbort .
! I
F Quote Request NoChanye '

F————— - ——— -—

! <aba.rt>= QBuff

repl = "OK”
1
to give:

Aborlgy,i. = Requestdbort ; SysHeturnConirol

6.4.2 The Save Command

The commard writes the entire content of Lhe document 1o store: we note that the
content of the document might not have changed since il was loaded from store, or since
it was last written, and so define the error message:

ErrorllocNotChanged = [ repl: Report | rep! = *“Docnment not changed” ]

This operation spectfies the sequence of characters to be writen, WriteSeq, as the catire
dacument, provides filemode as “w” and fifename as the docnment name (as inpnl 1o
the Write ToStore operation of Section 6.2). and doves not change the content of the
document:
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~ HegquestSave

‘l QuoteRequesiNoChange
WriteSeq! : seq Char

R
 filemode! =< v >
‘| WriteSeq! = Leftona — Righlcagr
| flename! = Name

- - - e -

and we have:

."':'mleQw,I =
ReguestSave > Wrile ToStore
v
RequestSave >> ErrorDor ¥oiChanged

Our comments of Section 6.4 indicate that, since we are using QuoleRequestNoChange,
there are no proof ohligations associated with the Save operation.

8.4.3 The Write And Append Commands

These commands write or append nen-empty marked text to a named file, and do not
change the document. We define a ~proper™ prelix relation in which 5 is a praper prefix
of T if and only if 5 is a prefix of T bnt nol equal toit:

i _ prefix; _:seq X x seg X —> B

‘LS prefix; T & Sprefix T A 5§ £ T

and now define the operation to write marked text, which specifies filernode a3 “w™,
WriteSeq as MarkedSeq and provides filerame as the contents of the quote buifer follow-
ing the first twe characters {since these characters indicate the quoled operaticu required)
as input to Write ToStore:

RequestWriteMarked Tezt

‘ QuoleRequest NoChange ]

WriteSeq! : ¢eq Chnr

< w,&p > prefixy QBuff
filemode! =< w >
flename! = QBuff after 2
| WriteSeq! = MarkedSeq
{



and the analogous operation to append marked text, with filemode specified as “a™:

RequestA ppendMarked Text

! QQuate ReguesiNaChange
| WiiteSeq! : seq Char

r < a.sp > prefix; QBuff

I filemode! = < & >

| filename' = QBuff after 2
| WriteSeq! = MurkedSey

! I

We require that the marked text is non-emply, aud use the ErrorNoTertMarked schema
of Section 5.2 10 give:

[VﬁteQuuic =
[Request Write Murked Text | MarkedSeq # <> ] > WriteToStore
Y
RequestWrite MarkedTezl A ErrorNo TertMarked

Appeﬂdq“h =
[RequestAppendMarkedTert | MarkedSeq # < > ] > Writc ToSlore
A\
RequestAppendMarkedText A ErvarNoTest Marked

As in 1he previous section. the use of Quoir RequestNo(hange ensnres that we have na
prood obligations.

6.4.4 The Quit Command

This command has no argument and first performs a save operation (if neressary -
i.e. if the document’s content has changed) and if successful issues an “OK™ report.
subsequently returning control to the operating system; il the save {s necessary. but
unsuccessinl, editing continues with the dacument unchanged. We define:

RequestQuit e

Quote RequestNoChenge
WrileSeq! : seq Char

WhiteSeq! = MarkedSeq

< q>= QBuff

filename! = Name

filemode! = < w >

WrileSeq! = Leftonar ™ Righton,,

—_— RN ——




to give:

Quitgyote
RequestQuit > Succ Write ToStort. ; SysReturnControl
WV
RequestQuit >> ErrorDocNolChanged : SysHeturnControl
v

RequesiQuil >> UnSuce Wrile ToStore

6.4.5 The Input Command

This command inserts text [rom a uamed file to the current cursor position, and we
specily a reqnest operation to provide filemode as “r" and filename as the contentsof the
quote buffer following the first twa characters as input for ReadFromStore (Seclion 6.2);

Requestinput ) .
uote RequestConlent Change }

< 1,8p > prefix; QBuff
filemode! =< r >
Jilename! = QBuff after 2 ‘

the text from a successful input is the concatenated on to the end of the left character

sequence;

InputReadSeq
I —
| ADoct
| ReadSeq? : seq Char

Leflenee’ = Leflopae — ReadSeq?
Rightchgr’ = Rightcaar

We note that the file might not exist, that it might be of au unsuitable type {e.g. not a
text file) or that the input may cause the capacity of the editor to be exceeded. and so
define:

ErrorFileNot Ezist = | rep!: Heport | rep! = -File does not exist™ ]
ErrorUnsuitableFile [ rep!: Report | rep! =“Unsuitable file” ]

i

to give:
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Iﬂpu!(}uau =
FlagPrevCyursor ;
{ Requestinput >> SuccReadFromStlore >> InpulReadScq);

RemTrail WS ; RemnTradNL

v
Requestinput >> UnSuccReadFroraSiore
v
Requestinput ~n ZDocs A ErrorFileNotErist
v
Requesiinput A ZDoc5 A UnsuilobleFile
v

Requestfnput A ZDoed A Errorfull
Ounly the first disjunction will change the document. and in line the comroents made in

Section 64 regarding Quote Request( ‘ontentChange we eusure that the Doc? invarianl is
maintained.

6.4.6 The Move To Line Number Command

This command moves the cursor Lo the beginning of the line numhber indicated by the
QBuwfTF text; if this number exreeds the number of lines in the document., the cursor is
positioned at the beginning of the last line.

We assume the set of numbers NumChar, a subset of Chor:
NumChar < Cher

and iutroduce a total {unction that converts a sequence of NurChar into a natural
number:

ConvNum : seq NumChar —> N

[he command is a cursor movement commaud and so all Dee7 components (except the
cursor) remain unchanged. We defiue:

RegquestMvLine Number
Quote RequestConlentChange

ran QBuff C NumChar
DacCurX' = 1
DocCurY’ = min (ConvNum QFuff,# UDLincs)

to give, noting that we must preserve the Doc3 invariant:
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Moveline Numberg, ., =

(FlagPrevCursor 3 RequestMuliineNumber |
RemTrailW5 ; RemTmilNL) A Success

Similar comments to those made regarding the discharge of the proof obligation for frnput
also apply here.

6.4.7 The Escape Command

Communication with the operating system from within the editor may be achieved
through a Quote operation: QBuff text commencing with the “ character consiitntes
a request for such a command, the test for the command itself being the quote huffer
text following that character. We introduce an operaling system Interpretive command,
commandscq, which accepts a sequence of characters, and performs the appropriste ac-
tion:

Sysinterpret - SysOp
We define:

Escape. Provide Tezt

QuoteRequestNoChange —|
commaendseq! - seq Char

# QBuff > 1
< !> prefix; QBuff
commendseq! = tail QBuff

ErrorNoCommandGiven -
QuoteRequestNoChange —I
rep! : Report

<!>= QBuff
rep! = “No command given”

to give:

Eseapeguore =

Escape_ ProvideTezt >> Sysinterprel A Sucecss
v
ErrorNoCommmandGiven

Note that although the sysiem command may not succeed, the Doc7 operationitself is
successful.
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6.5 The Quote Command

‘We now express the effect of pressing the quote key, when the editor iz in Quote stale,

as a disjunction of the above operations.

However, when Q8uff contains text other

than that defined in the previous sections describing the Quote operations, an error is

reported. We define:

Valid G BuffConlent

ValidQBuffPrefix

ValidQBufffect

‘: Quote Buffer

{<abort><qg><s><l>}

I

{ <a,sp><i,sp>,<wsep><\>}

3 5: ValidQBuffConient » s = QBuff

v
3 5 ValidQBuffPrefiz & s prefiy QBuff
v
mg @QBuff C NumChar
e

to give the error message:

FrrorQuote Error

| QuoteRequesi NoChange

~ ValidQBuffTezt
rep! : Report

L rep! = “Quote erraor”

We therefore have:

QthESIGfEQUﬂlf

Abortgy,s. vV SaveQua. VY Writeguore ¥V
Appendgyore vV Quitguae Y Mputgee, Vv
Escapegyer,. vV ErrorQuoteError

and we now express the Quote aperation as the disjunction of the operations specified
on the Doc and Quote states:

Quo;eﬂoc‘.’

Since we have demonstrated

Quotesiaiepoc

v Quofﬁmuqmc

that each individual operation preserves the invariant on

Doc7, the disjunction of those operations must do likewise,



6.6 Promotion Of Quote Buffer Edit Operations To The DocT State

We use the same names for the quote huffer edit operations as those we specified on
Doct; the farmer are promoted to Dec? by stipulating thal they do not affect the Doct
components, and the latter by stipulating that they have no affect on the quote buffer,
documeut stale or documeut name. We define the set of names

QBuffEditOps = { InsertChar, LeftMoveChar, RightAMfove Char.
CursorLeftChar, CursorRightChar,
LeftDelcte Char, RightDelete Char }

and:

LK

Promate ToDocT EQuateBuffer A ZDocState A ZDocName

to give:
Y OF: QBuffEditOps «
OPpper = [ OPguate A EDoc6 | State = Slalegyog |
v

[ OPpocs A PromoteToDoc? | Slate = Statep,, |

and, clearly, we have no proofl cbligations associated with this promotion.

6.7 Promotion Of Remaining Doc6é Operations To The DocT State

Wenote that the remaining Docé operations may successfully be eflected only in Statep,.,
aud they are promoted in the same way as those described above, We use LdilOpsz2
(Section 5.2.1) to define the set of names:

EditOps3 = FEditOps2 U { Lift, Cut. Paste, EzchMTexiPBuff }
to give:

NonGBuffEditOps = EditOpss — QBuffEditOps

We define Lhe error schema:

; ErrorfllegalQBuffEdiiOp
i ZDoc7
|

State = Stalegyger
rep! = “Mlegal edit operation”

. . ]
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1o give:

Y OP: NonQBuffEditOps »
OPp,.; = | OPpocs A PromoteToDoc? | State = Statep,, |
A9
ErrorillegulGBaffEdilOp

and again we have no associated proof ebligation.

7 The Search And Replace Operations

We now ¢onsider the operations to search [or a specific string of characters, and { possibly}
to replace that string with another specified string of characters. Since we wish all
documenl changes ta take place at the cursor position we do not allow “global” string
replacement, and specify the replace operalion as having the pre-condition that the cursor
must be ai the start of text matching that specified in the search aperation.

7.1 The DocB State

We enrich the document state by providing two buffers:

SearchBuffer = [ SBuf : seq Char ]
ReplaceBuffer = [ RBuff : seq Char |
Docl = Doc7? A SearchBuffer A ReplaceBuffer

and initially each buffer is set to the empty sequence:
Initighizep,.s = [ Initializep,.; A dDoc8 | SBuff' = RBuff' = <> |}

Ap described in Section 6.3 pressing the quote key - CuoteKey - change states. Fach
time QuoteKey is pressed in Stategyore, the quote buffer is emptied ready to accept new
text. Pressing the search key - SearchKey - will then have three effects: copying the
contents of the quote buffer iuto the search buffer, carrying ont a search operation for
that text, and returring the editor to Statep,.. The replace operation performs a similar
function except that text immediately following the cursor in the document must match
that in SBuff (as it wonld immediately following a snccessful search operation) to enable
a replace operation to start.

For example, if we wanted to search for the string “foe™ and replace it with the string
“baz", we would type the following at the keyboard (with the document initially in
Statep,, ):
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QuoteKey [ o o SearchKey QuoteKey b a : Replacehey

Notice that both Searchey and ReplaceKey are pressed in Stategy,s., and afterwards
the search buffer contains “foo™ and the replace buffer contains “baz”. To repeat the
above search/replace operation we would type:

SearchKey ReplaceRey

the difference being that now both keys are pressed in Staleg,,;. which means that the
current contents of the search and replace buflers are nsed.

7.2 Regular Expressions

We wish to use a form of “regular expression” when searching for a string of characters
and introduce:

RegExpression : P (seq Char)

and define a relation which holds when a regular expression matches a prefix of a sequence
of characters, and require that an expression cannot match by a sequence that is shorter
in length:

= - — =5

— regexpmatches  : RegPrpression % seq Char — B I

€ regexpmatches s = #e > 5

Since we wish the document to be in a matched state when text in the search buffer
matches text immediately {ollowing the cursor, we now define a relation between se-
quences of characters, the firsl of which may contain a bracket expression:

i

| — matches _ :seq Char x seq Char -—> B

¥ e: RegFzpression; si.s2 € seqg Char | s1 @ Regbrpression »
e malches 52 <& e regexpmatches s
sJ matches 52 < o1 prefix a2

I

We note that a sequence cannot be matched by one that is shorter in length.

7.3 The Down Search Operation

Search operations are cursor-changing operations and will start only when the search
bnffer {which does not change} is non-empty. and will terminatce in Statep,.. We define:
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SearchOp _

ZromtDoct
ZSearchBuffer
| ADocState

i SBuff # <>
|

State’ = Slatep,.
I

We need a means of determining the length of the matched string in the document. and
s0 we define a partial function which takes two matched sequences (the first of which, of
course, may be a regular expression| and returns the leugth of the mateh (i.e. the length
of the matching prefix of the second sequence):

E (s1,52) € dom matchedlength & s/ matches s2

- . . ]

After a successful search, $Buff will match Rightey,, and this will be the first such
available match - i.e. the text in $Huff must not match the content of the document
from:

# leficnar + 2. % Leficra,” + matchedlength (SBuff, Rightcae,)-- 1

since the search will have started rom the second element of Rightcy.,,and the match is
with the first matchedlength SBuff elements of Righicn.,’. We define a suecessful down
search in Stalep,., which has the pre-condition that the length of Rightcpa, must he at
least that of the length of the search bufler:

SueeDownSchppe
SearchOp

State = Statep,,

# Rightcaa, > # SBuff

SBuff matches Rightcy,.'

—(3 Sinn..m 4 {Leftorae T Rightcps,) © SBuff matches 5)
where

n,m = (# Leftcner + 2).(# Leftore,” + matchedlength (SBuff, Righlcga,’) — 1)

]

The only difference between this and the corresponding operation in State gy 15 that
the quote buffer is first copied into the search buffer, with the operation terminaling in
Statep,.. We define:
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CopyQBuffSBuff _
ASearchBuffer
|  ADocState
Quote Buffer
State = Stategy,.
State' = Slatep,,

S$Bufl! = QDuff

to give:
SuccDownSchguee =  CopyQDufSBuff ; SuccDownSchp,.

An unsuccessful find in Stateg,,, oceurs when the search bnfler is not in the lail of
Righicia, (since the search will start from its second element):

UnSuecDounSchp,. ) o

SearchOp
Elact

| State = Statep,.
SBuff # <>
—{3 S in (tail Rightcs,,) ® SBuff matches )

and we have the corresponding operation in QuoteSiate:
UnSyceDounSehgua. £ CopyQBuffSBuff ; UnSuccDownSchp,.
To totalise the operation, we define the following report and error message:

RepStringNotFound 2 [ rep!: Report | rep! = “String not found” |

ErrorSBuffEmplyp,.
‘ EDoc8
| repl: Report

State = Statep,.
! SBuff = <>
[ rep! = “Search huffer empty”

ErrorSBuffEmplyquere =  CopyQBuffSBuff ; EvrorSBuffEmptys..

To give:
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SuccDoumSearch = SueeDownSchp,. v SuecDownSchguo
UnSuccDownSchp, v UnSuceDownSchgugie

13

UnSuceDownSearch

ErrorSBuflEmpty = ErrorSBuffEmplyp.. v ErrorSBuffEmplyg..

For each search operation, only the search bnffer, document state and cnrsor position
may change; liowever since a change of cursor position may result in a change of content
(it may necessitate the removal of whitespace), we also unmark marked text in snch
cases. We define the promotion schema:

PromeleSearch

} ADock

“ Zoent Dot i

, AMuorked Tert

[ ZPastc Buffer

| ZQuoteBuffer
ZDocName
ZReplace Buffer

PromoteSearch UnMark = [ PromoteSearch | MuarkSeq = MarkedSeq' = <> ]
FromoteSearchLeaveMark = PromoteSearch A SMarkedTcxt

to give:

DovnSearchp,s =

FlagPrcvCursor ;
SuceDownSearch ; RemTrail WS ; RemTradlNL A
PromoteSearchlnMark A Suceess

UnSuccDouwnSearch A PromoteSearchleaveMark A RepStringNotFound
ErrorSBuffEmpty
The last two disjunctions do not change the content of the document; for the first, we

ensure the preservation of the Docd invariant by posl-sequential composition with the
Rem operations of Section 3.3.

7.4 The Up Search Operation

We define searches up the document in an entirely analogons way. The difference ocenrs
in the spedfication of the ‘first match’: the search huffer must not match the content of
the document from:

# Lefione,' + 2. 4 Lefloner + matchedlength (SBuff, Rightey,, ) — {
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since the search will have started {rom the element corresponding to the penuitimate
character of the malched scquence of Rightegar (or, if the search buffer is of unit length,
from the last clemert ol Leflgg,, up to the second clement of Rightra,."). We deline:

SuceUpSchp,.,
SearchOp

State = Stalep,.
#Leﬂckar z # SB“E
‘ SBuff matches Rightcy,,
(3 Sinn.m i (Leficaer ~ Righicasr) » SBuff matches §)
where
nom = (# Leficrae + 20, (# Lefleror + matchedlength (SBuff. Rightos,'} — 1)

I

SucclUpSchgu. = CopyQBuffSBuff ; SucelpSchy:.,

An nnsuccessfyl up find in Siategy,s, occurs when the search buffer is not in the front of
Leftchar:

UnSucclpSchp,.

SearchOp ;
EDocl
State = Stalep,,

| SBuff # <>

' ~(3 Sin (front Leften..) o SBuff matches 5)

UnSuceUpSchguore = CopyQBufTSBuff 5 TinSuceUpSchp,,
We may now specifly the up search operzlion:

SuccUpSearch
UnSucc{/pSearch

SucclpSehy,. ¥ SuccUpSehgy g
UnSucel'pSehp,, Vv UnSucelUpSchg,u.

UpSearchpoes =
FlagPrevCurser ;
SucclipSearch 3 Rem TradWS ; RemnTrailNL A
ProtnoteSearchUnMark A Suceess
UnSuccl/pSearch A PromoteScarchLeaveMark A lepStringNelfound
ErrorSBuffEmpty

The comments made regarding proof abligations for the promotion of the down search
operation (Section 7.3) also apply here.
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7.5 The Replace Operation

A Replace operatiou can only be success(ul when the document is in a *matched” state
- Le. when SBuff matches Rightry,,. after which the document is left in Statep,,. The
operation can be carried out in either Statep,. or Staie gy, and we first consider the
former: the text matched with that in the search bufTer is first rermoved, Lhe state
remaining unchanged:

RemMoichedTert

ThocState
SearchBuffer

Rightcpay' = Mightes,, after matchedlength (SBuff, Rightcrar )
Leflehar = Leftonar
Stale = Slalepa,

and then the text io the replace bufler is concatenated on to the front of Righloy,.:

, sBuffTert
‘ Aloc!

Replace Buffer

1 Rightoney' = RBuff — Rightone:
]‘ Leﬁﬁ'her’ = LeﬁC}lur

and we have:
Sucellpip,. = RemMatehedTert ; InsfiBuffext

The difference between this and the corresponding operalion in Stalrgyoee is that the
qquote boffer is first copied into the repiace boffer, after which the quote bulfer is emptied.
In a similar schema to CopyQBuffSBuff of Section 7.2, we defive:

CopyQ@BuffRBuff = CopyQBuffSBufflReplaceBuffer\ SearchBuffer]
to give:
SuccRplguor: = CopyQBuffRBuff 1 SuceRplp,.

An unsuccessful flepluce operation in Slatep,. accurs when the dorwmnen! is nol in a
matched state, when neither the content nor the state change. We definc:
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tUnSuechipln,, _
. ZDoct
1 SPhocState
SearchBuffer

|~ (SBuff matcbes Righicy,.)
Stgle = Stalep,.

and have the correspondiug operation in Stafe gy..:
InSuccRplaei. = CopyQBufJRBuff ; UnSuccRplp,.

Wa define the following error message:

RepNoMalehSBuff . - o
repl: Heporl
, rept = "No match with search bufler”

Note that there is ne replace schema analogons to the search schema ErrorSHuflEmpty
since we want to make it possible to replace the fennd string with the nuil string - i.c.
to enable a series of deletions to be made. lor the replace operation. only the replace
huffer, document state and document content may change (and in the latter case marked
text inust be unmirked), and we define:

Promote Heplace

Jocd

Zram Doct

AMarked Tex!

ZFPaste Buffer

ZQuoleBuffer

ZDocNarne
| ZSearchBuffer )
| |

Promate Replace inMark = | PrumoleReplace | MarkSeq = MarkedSeq’ = < » ]
PromotefepiaceLeaveMark = FromoteReplace A EMarked Text

and, recognizing that the Replace operation may exceed the editor’s capacity, we define:

ErrorReplaceFullp,,

ZDoc®

State = Stalep,.
rep! = “Editor fnll”




ErrorReplaceFullgue = Copy@BuffRBuff ; ErrorReplace Fullp,,
ErrorReplace Full = ErrorReplacetullp,. v ErrorReplace Fullg, ...

b

to give:

Suecltplp.. v Suee Bplgyar.

fly

SuceReplace

11

{'nSucc Replace ['nSuceRplp,. v UnSuccRplo,ar,

Replacepoeg =

FlagPrevCursor

Sucefeploee 3 Rem Trail W8 ¢ Rew TradNL A

Promole Replace UnMark A Success
hTS

I'nSuceReplace A Fromele Replace Leave Murk A RepNodatchSBuff
v

FrrorReplacr Full

The comments made regarding proofl obligations for the promotion of the down scarch
operation { Section 7.3) also apply here.

7.6 Promotion Of The Doc7 Operations To The Doc8 State
We use £4itOps3 (Scction 6.7) to define the set ol names:
EdtGps{ = EditOps§ U [ GQuote }

We require that each operation in the set EditOpsy does not change Lhe search or replace
buffers. ta give:

¥ OP: EdilOps{ =
OPpocs = OPps.r n ESearchBuffer n ZReplareRuffer

Clearly this promotion process does not incur proof ohligations.

8 A Window On To the Display

In Section 2 we incorporate an unbennded display into the specification of the editor; in
this section we specify a {movable) window on to Lhat display. We first define a Window
stale, orthogonal to the Doc model.



8.1 The Window State

The window is assumed to be rectangular and of fixed width and height:

WinWidth , WinHeight : Ny

We ueed a means of moving the window. and we introduce 1wo values that represent
its horizoutal and vertical displacement frem a fixed arigin {s0 that the window always
appears In the right of and below the crigin):

WindowOffset = | OffsetX  OffsetY : N |

‘flie window contains a non-ecmply sequence of display lines {Section 2.1). the sqquence
having a maximum length of Winffeight, each line of the sequence being of maximum
tength WinWidth. The lines are displayed in the window one ahbove the other. with the
first line at the top of the window, the second immediately below it and so on. each
vertically aligned with its left kand end flush against the efi edge of the window

We incorporate a cursar, a pair of positive nalural numbers, such Lhat the Lap left Land
corner of the window corresponds with cursor position (£, ), the botiom right hand
corner being ( Win Width, WinHeight), and which we require 1o always ba in Lhe window:

WindowCursor
WinCur X, WinCur¥ : Ny

| 1 < WinCurX < WinWidth
‘ ! < WinCurY < Winfleight
and have:
Window .
Windaw L ines . seqy Displine
| WindowQOffset
f WindowCursor

% # Windowlines < WinHewht
: ¥V oy: 1. .# WinLlines o #(WindowLines y) < WinWidth
i

8.2 The Doc9 State

We define the Doc® state by coujoining the Docs and Window states. In order to obtain
the sequence of window lines {from the sequence of unbounded display lines we first mask
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ont that part of the unbonnded display lying to the left and right of 1he window position.

Lo obiain the sequence Win

¥ oy:1..#% UDLines

Masklines:

WinMasklines y = (UDLines y after OffsetX) for WinWidth

We note that the definition of for ensures that the length of each WinMMusklne does

not exceed Wen Wadth.

We now mask out that parl of Wim.Muosh Lires lying above and below the window:

Windowlines = (WiniMaskLines after OffectY) for WanHeight

and again, the definition of for ensures that the length of Windowlines does not exceed

WenHeght.

The window corsor values will be the diflerence hetween the document enrsor values and

1he oflzets:

¥ T
| |
| |
| |
‘ UNBOUNDFED THSPLAY OF THF DOCUMENT
Offset Y; |
| |
; ‘ UDCuryY
OffsetX ) ‘ i
— | ‘
.
! i
‘ I‘ WinCurY
|
i |
I
"DCurX 1 L ;
[ WinCurk
Window




We now define:

Doc$ _
! T T T

Doc§
Window

¢ WinCurX WinCurY = UDCurX - OffsetX, UDCurY — OffsetY
' WindowLines = { WinMaskLnes after Offset Y') for Winflcight
where
# WinMasklines = # UDlLnes
Y y:l. . #UDLines »
! WimMusklines y = ({ UDlLwes y) after OffsetX ) for WinWidth

Woe note that the WindowLmes sequence 1s rednudant since il may be calculated rom
UDLines  Ahe offsets and the window cursor: further, the offsets may be calculated [rom
tbe window cursor. and vice-versa. using Dor# and the ') cursor. Hence Dwr¥ and
either the offsets or the window cursor uniquely define Docd.

We show that the character at the { WinCurY, WinCurX ) window position is the same
as that at the ( ZDCurX, UDCurY') position of the nnbounded display of the dowment:

Lemma 3 : 8.2a

Docy
F

{ Windowlines WinCurt') WinCurX = (UDLmes U CurY) GDCurt
u

Proofl



=T

10.

Windowlines WinCur¥ =
({ WinMaskLines after OffsetY) for WinHewh! ) (UDCurY -Offsett)

Docy
1 € WinCurY < WinHeight WindowCursor
1 < UDCurY-OffsetY < WinHeight 2., Docy

WindowLines WinCuyrY =
{ WinMasklLines after OffactY ) (I'DCurY —Offset ¥) 1.. 3., prapt. for
WindowLtnes WinCurY = WinMaskLwes UDCurY 4., Doy
{ WindowlLines WinCurY ) WinCurX =
({{ UDLines UDCurY) after OffsctX ) for Win Width) (UD CurX—OffsetX )

5., Docy
I < WinCwX < WinWidth WindowCursor
I < UDCurX—0OffsetX < WinHeight T.. Doc®

{ WindowLines WinCurY) WinCurX =
{({ UDLines UDCurY )after OffsetX ) ( UDCurX—OffsctX) 6.0 8., propl. for
{ Windowlines WinCurY) WinCurX = (UDLines UDCurY ) UDCurX
N.. propl. after

‘We specify the initialization operation as:

Initializep,.s = Initializep,.; A ADocd

which implies thal initially both offsets are zero. and both window rursors are set to

unity:

Lemma 3 :8.2b

l_

Proof

LS L

Initializepgen

Offset X', Offset ¥’ = 0,0
WainCurX', WinCur¥” = 1,1

UDCurX', UDCurY' = 1.} Lemma 3:2.2d4
WinCurX' : Ny A WinCuerY’': N Nocy’
1- OffselX > | A 1~ Offset}’ > ! 1., 2., Docd
OffsetX' : N A Offset}' ' N Dorg’
OffsetX’, OffsetY' = 0,0 3.4
WinCurX', WinCurY' = 1,1 1., 5.
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Lemma 3 :8.2c

Inulialize poes
}-
WindowlLines' = < « > >
u
Proof
1. UDlLines' =< < > » Lemma 3:2.2d
# WinMaskLines' = [ [..Docg’

3. WinMoskLines’ = < (< < > » after 0) for WinWidth >
1., 2., Lemma 3 - 2.2b, Dacd’
4. WinMaskLines' =< <> > 3., WinWidih : Ny
5. Windewlines’ = (< <> > after ) for Winlleight
1., Lemma 3 : 2.2h, Dacd’

G. Windowlines' =< <> > 5., WinWidih : N

Thus we discharge PO 0.

8.2.1 An Operation To Centre The Window

We specify an operatiou to move the window vertically such that the current line appears
in the centre of the window, document length permitting. We introduce:

HaifWinHeighi - N | HalfWinH{eight = Winlleight[2

(where “/” represents integer division, and so Half WiniTewht has minimum value { and
maximum valne WinHeight).

We require that OffserY should be changed such that WinCurY equals HalfWinleight -
e we set OffselY to equal (UDCurY — HalfWinlleight). In order to preserve the Doc?
invariant that the offset be non-negative, we thues have the pre-condition:

UDCurY > HalfWintiright

and so we define:
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Offse! X' = OffsetX
Offsel ¥ = UDCurY — HalfWinHewht

| i
together with the error message:

ErrorTooNearfop
' Zhecy
' np!: Reporl
L - _ _ _ .
I EDCarY < HalfWindleighi
| rep! = “Too near top of document™

to give:
Centre Windowp,.s 2 (CenWin A Success) v EvrorTooNearTop

The second disjunclion does not change Doc. and the lirst changes only OffsetY . the
pre-rondition ensuring that the invarianl is preserved, and noting onr comuments in Sec-
Lion 8.2 that Doc§ together with the oflsews uniquely define Docd. we discharge PO 1.

8.2.2 Promotion Of Doc8 Operations To The Doc8 State

Some of Lthe Dac8 operations will result in the cursor heing moved to a position ont-
side the eurrent window, and the Doc$ invariant requires that for such operations an
appropriate window cliange is made in order to reposition the window to regain the
CUCs0r.

In general, if the operation leaves the cursor in the rurrent window, it is desirable that
there should be no window change, since a redisplay of the window in such cases would
be hoth upnecessary, and tiresome for the user. However for some such operations
the user would expect a window change (for example, CursorDownPnge). therefore
our promotion policy for a Dar& operation leaving the cursor in the window is non-
determinislic, allowing a window change to be made.

We define an operation with pre-condition that the cursor is currently in the window,

in which all Doc8 components do not change but which allows the window offsets to
change, providing that the new window position contains the cursor:
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Cursorin Window

' AWindowO[fset
ZDock

hDCurX — OffsetX € .. WinWadth
i UDCurY — OffcetY € 1 .. Windleigh!
. UDCwrX'’ — OffsetX’ € 1.. WinWidth
‘ UDCurY* — OffseiY’ € 1., WinHeigh!

When 2o operation moves the cursor vutside the currenl window. we change the ofl-
sels (and. necessarily, the window cursar. but leaving all other compononts of Doed
unchanged), but, cleasly, for a given unhounded display there is more thaa one window
change which will repnsition the window to regain a “lost™ cursor.

Alhlough we are not cancerned with the implementatiou of the window-palicy for Der8
operations that leave the cursar ontside the window, we stipulate Lthat if the cumsor can
be regained by a Seroll (a change in Lhe vertical offsel only) or a Pan (a change in the
horizontal ofset only ), then that should be thie window repositiou operation utilisel { (Jius
preserving tlie same screen columns or lines respeetively, enabling the user Lo locate the
screen cirsor more easily). We define:

Seroll
‘ A Windowffset |
ZDocs

FU’DC’urX — OffsetX € 1.. WinWidth
UDCurY — OffselY g 1.. WinHeight

1 OffsetX" = OffselX
’ UDCurY' — Offset¥' ¢ | .. WinHeight |
|

Pan
| - -

A WindowOffset '
ZDoc8

UDCurX — OfsetX € 1., WinWidth
UDCurY — OffsetY € 1., Winfleight
UDCurX’ — OffsetX’ € 1., WinWidth
Offset¥’ = OffsetY

L g o]

It may not be possible to regain the cursor by either of these operations and so we define:
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ScrolidAndPan
|

| A WindowOfset
| ZDocs

rrUDCurX - OffsetX ¢ 1. WinWidth

UDCurY — OffsetY & 1., Winilewght
IDCurX' — OffsetX’ € 1. WinWidth
CDCurY” — Offset¥” € 1.. Winlleight

to give a promotion operation which is the disjnnciion of these four window-change
operations:

Windou Policy =
(CursorinWindow v Screll v Pan v SerollAndPar) A Doct'

We nole that the pre-conditions of the four disjunctions forn a partition of the sel of
possible window stales. and so Lhe prowotion operation is total: i1 sakisfies the Docy
requirement that the corsor be in the window siuce each disjunction does; further, our
comments of Section 8.2 indicale Lhat Windnwlines and tbe window cursor can be cal-
culated from the operation, Thus WindowPolicy represents an operation in which none
of the fec® components may change. hut allows the offsets (and lence WindouwLines
and the window cursor) to change in line with Doc9, and so posl-sequential composilion
with the operation yields a state satisfving the Pocd invariant.

We use the set FditOps4 of Section 7.6 to define rhe set of names:
EdiOpss = EduOpsf U {DounSearch, UpSearch, Reploce )
to give, for cach operation OF ju the set EditOpss:
Y 0P EditOpss ¢ OPpoy = OPpy, ; WindowPelicy

We thus discharge PO 1 for cach Doc# operation.
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0 Introduction

In the abstract specification we make considerahle use of redundancy. For example,
we have equivalent “views” of an abslract state, and 1o specify an operation defined
on that “A” state we select the view which is most appropriate {the correct update of
the other views being ensnred by the state invariant). In Section 1 we discuss abstract
redondancy with respect to data refinement: we and also consider the implications of
concrete rednndancy in that section.

The specification i5 constructed in a hierarchical inanner, each level aof the hierarchy
conforming Lo an abstract data type (comprising a state, an initialisation and a family

of operations). This structure provides well-defined points which, in & natural way,
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break the specification into a number of smaller. more manageable parts, enabliug the
identification and discharge of proof obligations in a manuer that follows the “separation
of concemns” approach o software constructiou [i].

‘I'he goals of an abstract specification are not usually compatible with the design reguire-
ments of its implementation: the former seeks to express the relationship between the
before- arnd after-states of a system rather than defining the algorithms underlying those
relationships which the latter requires (the refinement calculus providing the bridge be-
tween the two). We can, however, nse the problem-isolatiug structure of the specilication
to advanlage in the refinement process.

We propose a novel hierarchical approacl to refiuement, in which we regard each speci-
fication hierarchy as a candidate for relinement. The implementation structure will thus
he closely related 1o that of the specilication,

We choose six abstract hierarchies on which Lo conduct refinemeut: the lowost-level
hierarchy is the Docf state {Section 2), followed by the Dued state (Seciiou 3), the
Dorg stale (Seclion 4}, the Dor6 state (Section 5), the Doc® state (Section 6), with the
top-levei hierarchy being the Doc® state (Section 7). We give reasons for choosing these
particular hierarchies at Lhe heginning of each seclion.

FEach hierarchical refincment is based the refinement calculus that we present in Part 2.
We first give the design decision, expressing Lhe concrete-abstract relation through the
Rel schema. Where necessary. we establish a theory relating to the design decision,
cnabliag the subseqnent refinement to proceed more smoothly. We discharge the data
refinement proof obligation by calculation of AbsHel, and consider concrete slate recon-
figuration by calculating ConcRel. Variables introduced in Rel form the global variables
of the implementation.

We then turn to operational refineinent, our starting point for which is the calculation
of the weakest concrete operation. possibly on a specific configuratiou of the concrete
state. In the majority of cases we then apply the rules developed in the calculus in a
stepwise manner to achieve the refinement {rather than writing down what we feel is the
refinement and proving that it is so from our definition).

On each level selected for refinement we refine sufficient operations to iudicate the method
of refinement for all operations specified on that hierarchv. We then give the promotion
method for operations that have already been refined ou lower-level hierarchies, (and
since each abstract operation is usnally promoted in the same way, we need only provide

one promation operation).

For convenience we give a summary of the concrete stare hierarchies in A ppeudix B.

0.1 A Note On Refinement Convention

We use the following steps in the data refinement of each abstract data type (hierarchy):
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The design decision

A statement of the concrete representation of the abstract state, together with an expla-
nation of why the representation was chosen.

The concrete-abstract invariant

we give the relationship between the abstract and concrete siates, ftel, together with the
calculation of the schemas Absfel and ConcRel; we use the former to prove that the
design decision is adequate (or Lhat we have an oc-implementation). and the latter to
define the equivalence class of concrete slates corresponding to a single abstract state.
We may refine this latier schema to a concrete rearganisiug operation Keleecose.

The following steps are used in the refinement of each operalion (several may be combinec
into a single step):
Specification

For tonvenicnce we give the ahsiract specification, given in Part 33,

Expansion

The expansion of the abstract specilication {usually into vertical schema form).

Weakest concrete operation

Using the results established in Part 2, Section 2. we replace the abstract state compo-
nents by their concrele counterparts (Lhrough Rel).

Weakest Standard concrete operation

As above, but specific concrete counterparts (through Rel,.ip.) are used Lo obtain a
particular concrete conliguration.

Simplification

The weakest concrete operation is obtained Ly textual replacement. and can usually be
considerably simplified before refinement proceeds. We establish a theory relating to the
design decision to aid this process of simplification.

Refinement

‘We use the resalts established in Part 2, Section 3, iudicating which we use by, for ex-
ample, [C 2:3.1a].
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Code

We use the resnlts established in Part 2, Section 3.5. When refinivg to a loop we incor-
porate the invariant predicate, variant function and guard negation as { assertions } to
aid the discharge of the proaf abligation. and use a subscripted “o” to indicate initial
values.

It will net be necessary to include each of the above steps in the refinement of every
operation; many operalions follow a similar development pattern and we avoid repetition
where pessible by combimng several steps into one. Where necessary we supplement the
refinement process with netes on one ar mmore of the above steps (appearing after the lasl
refinement step. so as not to clntter the development).

Use of shorthand notation

Because of the hierarchiral natnre of the refinemeut process. often compaonents not
relating 1o the current hierarchy will not change (since, for example, many opera-
tions are promoted by the malntenance of a no-change state), and as Lbe hierarchical
ievel increases, the nutnber af unchanging lower-level components may be considerable.
When we are nsing a schema notation. we may, of course, emnploy the “=” no-change
schema. During Lhe latter stages of each refinement we wish to avoid needless repeti-
tion of the signature declaration, and we give only the predicale part of the schema,
enclosed by a square bracket ~[7, and 1o avoid the “formal clutter” [13] that would en-
sue from a long list of unchanged compouents, we use the convention that, for example,
“NoChange( ConeDocN \ comp! . comp2)” inplies that each componeat of ConcPocN
except comp! and comp? will not change during that refinement step,

We contime to use the convention of vertical alignment of predicates to imply logical
conjunction (Part 2, Section 0.1).

Further, we nse :
a++ and g-——
to mean, respectively :
a = (a+1) and a = (e—1)
apd we again nse, [ar example, “slring” 1o represent < s, ¢4, r, i, R, ¢ >.
Input and output conventions
I, for example, operation A takes inpul parameters z;7, 57 ... z,7, we use:
A(value; , values ... value,)

to indicatethat each z,7 is set to value, by the operation with which 4 is pre-sequentially
composed, when there is no possibibty of confusion.
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Fnrther, if, for example, an operation sets the valne of its (single) cutpnt parameter y!
to value, we use return{value) (typically, this will be used for the return of the report
indicating the success or otherwise of the operation).

0.2 Overview Of The Command Loop Structure

The command loop can be regarded as the highest level hierarchy of the implernentation,
immediately above Doc®, and it acts as a filter mechanism to identify keys which are not
bound to specific editor operations. When a commani is entered at the keyboard, the
keyboard interpret routine [“kbdinterpret.c”. Appendix €} will set the global variahle
OF to the namc of one of the editar operations. or Nel{/mplemented should the kev not
be bound to an operalion (see “consts.c”™, Appendix CJ; if the operation is MsedChar,
the global OPChar will be set to the character inserted.

If OF is NotImplemented, an appropriate error message will he displayed aud control
stays within the loop structnre, otherwise control is passed to ConcDocd. If the oparation
is specified on that level, it is effected, the display (if necessary) updated, and control
passed back to the command loop.

If the operation is nol specified on that hierarchy, control passes down through the
hierarchies until 1t reaches that on which it is specified (the filtering during the command
loop ensuring that a hierarchy will be found). The operation is effected and the report
(rep - see “consts.c”. Appendix C) passed back np through the hierarchical structnre
(with tbe “promotion™ mechanisms being applied, details of which may be found in the
relevant refinements. Sections 2 to 7). So. for example, if the n® hierarchy receives a
rep passed from OP,_; and has promotioa mechanism Promote,,, the code is;

(rep := OFPn_y); Promotle, ; return(rep)

When the report eventually reaches ConcDoc9, the display is {il necessary) updated,
and if the operation was not snccessful an appropriate message displayed before contral
is passed back from ConcDocd io the command loop. In general. unsnccessful opera-
ticos will require no amendment Lo the display but will necessitate the reporting of an
appropriate errer message {sec “prompt.c”, Appendix C).

A further global variable, OFType, is set (in the implementation of Doel) for each oper-
ation, the classification being LeftMove, RightMove, NeMove, LeftDelete, RightDeleie,
Leftinsert or RightiInsert, We do this since a group of operations (for example the three
left delete operations of Doct) are treated in exactly the same way by. for example, the
re-display algorithm of ConeDoc9, and it is more convenient to use the operation type
rather than the operation itsel{. (This would also keep algorithmic changes down 1o a
minimurm should further operations be added to the specification at a later date.)
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1 Specification And Concrete Redundancy Considerations

The ahstract state Doc! comprises the components Peirgi,,, Pairw,rg and Pairpy,
together with an invariam reiationship which renders any two of the three components
redundant, in the sense ibat they may be compnted from the third.

We are al liherty to exclude such rednndan? componentis from the design, since we may
obtain complete representation without them. However, efficiency considerations may
dictate that such items are hest included in the implementation (thereby, for example,
obviating the need for the rontinual re-calcnlation of a particular value). It is worlli
noting that a redundant component included in the design at a particular stage in the
development. and subsequently found not to be requited. may be removed from the
impletuentation by methods of program transformation [26).

Of course the inclusion of rednndant conponents will not violate oar concept of refine-
ment. since its Safety aspect [C 2 : 3.2] explicitly allows vs to “do more™ (i.e. to he
more deterministic) than Lhe specification requires, provided we introduce no conflict
with those requirements. and, therefore, we are at liberty to include further concrete
components having no ahstracl counterparl.

2 Refinement Of Docl

‘The Doct hierarchy includes sixteen operations which we may regard as relating to
memory management, and we cboose it as our lowest-level hierarchy on which to conduct
refinement.

2.1 The Design Decision

We need 1o tepresent only one DorJ abstract view, and we choose to represent the
Paircy,, component by a character array, Arr (assumed to have a maximum length of
Mar, a valural number Resourcelimit dependent npon available memory size):

Mat : ResourceLimil

CharArray £ | Arr: 1. Moz —> Char]
together with the pointers LFP {Left Pointer), RP (Right Poirter), and CFP {Cursor
Pointer). The contents of the array from f to LP and from (RF + 1) to Maz represent
the concatenation of the left and right character sequences, with CP providing the current

position. Thus we require that LP may not exceed RP and that CP must not exceed
the length of the array contents:
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Pointers - -
. _ ——————

| LP,RP,CP:0.. Mor
! LP < RP
L CP < Mazx + LP —~ RP

to give the concrete state:
ConcDoc! = CharArray A Pointers

This general configuration will be used for the refinement of cursor-movement operalions.
which may therefore be accomplished by a change of C'P (since the contents of the
document and, hence, of the array will not rhange). Lhus avoiding unnecessary “array
shuffling™.

However, we also consider the particular configuration of the array in whick the cortents
from ! to LP correspond to the left character sequence (and thus CF will be equal to
LP), and the array contents {rom (K + 1} to Mez correspond to the right character
sequence, Changes made to the document will take place at the current position, and so
this confignration will be used for the refinement of operations that change the contenl
of the document; for example the left insertion of characters will commence at array
position (LP + 1), with LP and C'P being iucremented accordingly.

We thus define the Standard concrete slate:

ConcDoclsiandars = | Concflocl | CP = LP ]

2.1.1 The Concrete-Abstract Invariant

The content of the document is represented by the part of the array from J to LF and
{(EP + 1) to Maz, with CP equal Lo the length of the left character sequence. We
therefore have:

Arr for LP ™ Arr after RP = Leficy,y — Righloper
# Leftoye, = CP

For ease of reference, we define:
ArrCont = Arrfor LP ™ Arr after RP

and then an equivalent specificatiou, in which the left and right sequences are explicitly
defined, is:

Leftcher =  ArrCont for CP
Rightoy,e = ArrCont after CP
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1o give:

RE[DM;‘ .
! Doct
| ConeDoct
-_—
| lefionar = ArrCont for CP
| Rightcasr = ArrConi after CP
L

We show that Rel relates each concrete sltate Lo a valid abstract state; we have, by
definition.

(Arrfor LP 7 Arr after RP) for CP
{Arr for LP ™ Arr after RP) after (P

Leftonar
Rightopar

[+ il

»n

and the definitions of Arr, for. after and “—” cnsure that both are valid character

sequences. Clearly, for a given concrete state both character sequences will be unique,
and so we establish:

Lemma 4:2.1.1a

Rf'rﬂac.‘
I

Y ConeDoc? o 337 Doel o Relp,,
..

We now calculate AbsRel and have, after simplification:

AbsRelpoer = [ ZDocl | #(Leftchar — Rightcnaer) < Mez |
and since:

Limygr—o {#(Lefione: 7 Righloye,) € Maz) = true

we discharge our dala refinement proof obligation by appealing to [T 2 : 4.18], because
Lemma 4:2.1.1a together with this result imply an co-refinement:

Lemma 4:2.1.1b

-
Doct C. ConcDoct
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We now establish some theory relatiag to the design. Firstly. if the array conlent is
empty, L# and CP are hoth zero and RP is equal to Maz:

Lemma 4 : 2.1.1¢

ConcDocl | ArrCont = <>

l_
LP =0 A RP = Mar A CP=14¢
]
Proof

1. Arrfor LP = Arre after RFP = <> defn. ArrConi, propt.* — ”
2, LP =1 L.. propt. “for”
3. RP > Ma:x 1.. propt.“after”
4. RP = Mar S0 RP 0. Mar
5. CP < & 2,4 CP < Mar + Li— &P
6. P = 0 2,5.CP:0..Max

Secondly, we note that LP and RP arc pointers to Arr, whereas CF is a ponter to
ArrCont, and we give the following lemmas (the proofs of which follow immediately
from the definitions of “for™, “after” and “U”) which relate ArrCont to drm

Lemma 4 :2.1.1d

ConcDoci
-
¥ pir: 0. . Maz »

pir < LP &  ArrConi ptr = Arr ptr

ptr < LF & ArrContfor pir = Arr for pir

pir < LP & ArrContafter pir = {ptr+1..LP U RF+ 1. Max} { Arr
ptr > LF & ArrCon{ ptr = Arr (ptr + RP - LP)

ptr > LP s ArrContforptr = (1 ..LP U RP+ f. pir) 1 Amr

ptr > LP & ArrCant after pir = Arr after ptr



lemma 4:2.1.1e

ConcDocl
},
Y oplri, ptr2 : 0. . Maz e
ptrz < LP &
ArrConi (| pirl .. ptr2 ) = Arr (| pirt . . pir2 ]
pirl < LP < ptr2
ArrCont (| ptrd ..ptr2 ) = Arr(pirl .. LP U RP+ 1..ptr2 + RP - LP|)
ptr1 > LP &

ArrCont (| ptrt .. ptr2 ) = Arr{ pirl + RP - LP .. ptr2 + RP - LP |}

2.2 Initialization

Abstract specification:

Iitwalizepge)
ADoc?

Leftoner = Rightons,’ = <>

Woeakest concrete operation:

Inihalizep,.r C

iA AlConeDocl j
|

AmrCont for CP' = ArrCont’ after CP' = <

T ST

Simplification:
[ LP, CP',RP' = 0,0, Maz

Code:
Initinlizep,
r BP = Mur

Notes
Simplification:
The definilion of for implies that either ArrCont’ is empty or CP' is ¢, and that for
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after implies that either ArrCont’ is empty or ("P’ has value greater than the length of
ArrCont, which together imply that 4rrCont’ is empty. The simplification then follows
from [C 4: 2.1.1¢).

2.3 Content-Changing Operations And The Standard State

As discussed in Section 2.1, operations which change the docnment’s content will be
refined on ConelDoctsiyndqara. We have:

REtDacfSiandurd = I Re!DD” l CP = LP]
which expands to:
Relpoei Standard

Dact
ConrcDoc 1

Lefteyar = Arrfor LP
Righlraar = Arr after BP
|

in which Leftcga, and Rightcopg, are directly related Lo Arr (rather than indirectly as in
ArrCont).

We now calculate ConcRel, and have, after simplification:

ConcRelpoc) . —e
AConeDocl

CP' = CP
ArrCont’ = ArrCont

- . J

and may informally interpret this equivalence class as those concrete states whose cursor
pointers are the same, and whose arrays agree once the array posilions not being used
have been filtered out. Thus LF and RP will uot be uniquely defined, allthough their
nnrerical difference must be the same for each cquivalence class (equal to the diference
between Maz and the tength of ArrCont).

Using the Standard configuration, we calculate Coneflelp,.; siandard 10 got:
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Conefelpo.; siandard

|

| AConeDoct

i . .
| CP = CF

| LP" = CP

| ArrCont’ = ArrCon! |

By [T 2:2.2b] we may choose aur starting point for refining a content-changing abstract
operation ACPpq.; as:

ConcRelpaes standard 3 AOPDoe: Cstandard

where A0Ppg.: Cstandare 15 obtaiued from the ahstract operation by the substitution of
the concrete state conforning Lo Relp,es granders [07 the hefore-state, and that corforming
to Relp,., for the after-state variables.

In fact we choose Lo use the Stendard concrete configuralion for the after-variable sub-
stitntion as well, which we denote by AGPp,;Csiandarar 10N that In so doing we are
not changing the pre-condition, and that the Standard configuration implies the non.
Standard, and so we can appeal 1o [C 2: 3.4d] to obtain:

Cﬂ”CRCIDDC:'Elnndnrd H AOPDHCICSIu'nd'ard' = C""CHCIDM! Standard 3 AOPDUCICS(andard’

2.3.1 The “Standardize”™ Reconfigure Operation

We partilion the concrete gtates into those where CP exceeds LP. those where LP
exceeds CP and those where they are the same. l'or the first of these we mnst move the
“gap” {the portion of the array thal is not used) to the left to achicve a Stendard slate:

Move(:apo’ﬁ‘ —
| AConcDoct
- -
‘ P > CP
| P = CP' = CP
[ ArrCont’ = ArrCont

For the second the pap mnst be moved to the right:

MoceGapRight
| ]
‘ ACeneDoct
"7 ———

LP < CP

P = CP' = CP

ArCont’ = ArrCont )

-

137



and far the third case therc is nothing to do:

Standardized = [ SConeDocl | CP = LP ]

We now define:

Standardizep,.; = MoveGapLeft v MoveGapRighi v Standordized

To show that Siandardizep,.; refines ConcRelyycs siandeed We appeal to [C 2 : 3.3a),
nating that the digjunct of the pre-conditions of the former is true {and by pre.l so is
the pre-coudition of the disjunct, and thus Domain is satisfied). and that cach disjunct
contains the post-condition that ArrCorl and C'P do not change (and thus Safety is

satisfied ).
By now appealing to [C 2:3.2¢],{C 2:3.4¢] and [C 2 : 2.2b] we establish:

Lemma [C 4:2.3.1q]

'_
AOFp,cn © Standurdizep.o ; AOPD,tCstandardr

2.3.2 Refinement Of “Standardize”

Specification -

Standardizep,.; = MouveGepLeft v MouvcGapRight v Standardized

Expansion:

LM = CP' = CF
RP' = RP—-LP + CP
Arr! for CP = Arr for CP
Arr! after RP = Arr after RP
LP > CP
pred BP=LF . CP 4+ 1. [P a4 Atr = RP' 4+ 1. RP Q Ard'

v
LP < CP
suce RF-4P . P+ 1 RP' a4 Arr = LP+ .. CP 4 Arr!
v
LF = CP
L CP+1..LP @ Arr = CP+ 1., LP a Ar
Refinement:



[LP' = CP' = CP
RP' = RP - LP+ CP
LP > CP
Arr' = Arr 2 pred AP-LF L CP 4 L LP g Ay

v

LP < CP

Arr' = Are & succ RP-LF ; AP+ 1 LRPa Arr
W

LPp =P

Arr' = Arr

Caode for Standardizepo.;

if
(LP > CP) -—>
do
(LP > CP) -—> Arr RP = Arr LP; RFP—; LP——
{ lovariant : ArrCont = ArrCant, }
{ Invariant: Arr = Arr, & pred RE-LP s LP+1..LP, 4 A, }
{Variant: LP - CP}
{ Guard Negation: LP < CP}
od

|
| (LP < CP) >
do
(LP < CP) —> Are(LP+1) »= Arr{RP+ 1}; RP++ ; LP++
{ Invatiant: ArrCont = ArrCont, )
{invariant : Arr = A, @ succ RP-LP P+ 1. HP 4 Arr, }
{Variant: CP-LP}
{ Guard Negation: LP > CFP}
od

fi

Notes
We consider MoveGapLeft: similar comments apply to MoveGapRight.
Expansion and Refinement:

We pursue refinement on each disjnnct, appealing to [C 2 : 3.38]. and noting that wo
do not change each pre-condition we satisly Domain. Each array element moved will be
moved a distance cqual to the array gap (i.e. #P — LP), and the predicate:

At = Arr @ pred BPLE L (CP 4+ 1) LT 9 Arr

implies the second predicate of the disjunct in the expansion, since
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pred RP-LF - (CP 4 1), LP =
(CP+ 1+ RP—LP). (LP+ RP— LP) =
RP'+1..RP

50
CP+{..LP/! Arr = RP'+1..RP | Are'

and since Arr’' does not change np to CP and after P, ArrConi will remain nnchanged,
and hence we satisfy Safety of [C 2 : 3.33].

Code:

The pre-condition for the loop body is that both £ and RP must be non-zet: the
former is implied by tbe guard, since CF cannot be less than zero, and the latter by
the requirement that £P must be at least as large as LP; tbus the guard implies the
pre-condilion for the loop body.

The invariant is initially trne since LP+ 1 . LP is empty, and the guard negation implies
the post-condition of the specification expansion. Each iteration of the body decrements
both pointers, which means that RP/+ 7 .. RP is extended by one at its left hard end,
and it copies the contents of location LF into locatiou RP before they are decreased,
and thus invariant is re-established.

Finally we again appeal to [C 2 : 3.5.28] to refine to the alternative command, and

[C 2:3.5.3¢] to ensure that the disjunct of the refinement can be safely replaced with
the loop.

2.3.3 Refinement Of “LeftDeleteChar”
Specification :

(LefiDelChar A Success) ¥V ErrorTopOfDoc

Expansion:
LeftDelete Charpye; —
ADect
Rightohar' = Rrghtcha.
l Leftoper # <>
H Leflore, = front Leficher
rep! =*0K”
v
Leftone,' = Lefieper = <>
t rep! = “At top of document” )
i} _ -
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Woeakesl Standard’ concrete operation:

LeftDelete Charpae) Csiandard:

AConeDocigianderd l

Arr' after RP' = Arr after RP
Arrfor LP £ <>
Arr’ for LP' = front (Arr for LP)

rep! = "OK”
W
Art' for LP' = Arrfor LP = <>
rep! = “At top of document” |
Refinement:

[ LP.LP' = CP,CP
Art!, RP', = Arr RP
LP # 8
LPLCP = (LP—1),(CP=1)
rep! =“0OK"

IP=IP=CP=CP=20
rep! = “At top of document”

Code for LeftDeleteCharp,.;

Standardizepocs

{iP=CFP}
if
| (WP #0) = LP—; CP— return{“OK")
0
| (LP = 0) — rcturn{"At top of document™)
fi

Notes

Refinement:

We use [C 2 : 3.3b) which allows us to treat the operation as a disjunct, noting that
the pre-condition of the two disjuncts does not change Domain; although the operation
stipulates that the array up to {LP — 1) and after RF does not change, we choose to
leave the entire array unchanged and appeal to [C 2 : 3.1a] - we are strengthening the
post-condition - to establish Safety of [T 2 :3.38].

Code:



We use [4 : 2.3.14] to give a Standard refinement, and appeal to [2 : 3.5.20] to produce
the if ... fl construct: we note that tbe guards should, in fact, test both LP and CP,
bnt since we are sure that the two pointers are equal before the operation starts (because
of the post-condition of Standardize), we choose to test for just one {and so in the firs1
conjunct, the guard does imply the pre-condition of the body).

2.3.4 BRefilnement Of “InsertChar”

Specification :

({ ImsNonTabV InsTab) A Success) ¥V ErrorFull

Expansion:

InsertCharp,.

ADoct T
GPChar? : Char

| R‘-g’l‘tCAarI = Rightchar
| OPChar? # tab
Lefigher = Leflorer — < OPChar? >

W

OPChar? = tab

Leftcyar prefix Leficha,

g (Leftonar’ — Leflonar) = (sp}
rep! =*0K”

i LCﬂ,c}mrr = Le.ﬂCimr
rep! = “Editer full”

o ]

Weakest Standard concrete operation:
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; InsertCherpo; Cstandera

AConcDoclgiondard
OPChar? : Char

Arr' after RP’ = Arr after RP
QP Char? £ tab
Arr' dor LP' = (A for LP) T < OPChar? >

v
OFChur® = tab
{ A for LI’) prefix (Arr’ for LP’)
rog ({ Arr' for LP') — (Arr for LP)) = {sp}
! rep! = “OK”

Arcf for LP' = Arrfor LP
rep! = Editor full”

Refinement and simplification:

LR LF = CP,CF
RP! = RP
LP # RP
OPChar? # tob
LP' = LP+1
Arr' = Arr & {(LP 4+ 1) +=> OPChar?}

OPChar? = tab
ILP+ 1. LP @ Aw' = [P+ 1..LP' @ A
Ar'r(] LP-{-I..LP"D = {.vp}

rep! = “OK"

LP = RP = LP'
Arr' = Arr
rep! = “Editor full”
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Coade for Insert Charp,q:{ OPChar) OPChar? : Char

ptr 1= CP:0. Mer;

count := 0:0.. Mar
Standerdizepn,.; ;
{LP=CP}

il

(LP # BP A OPChar # tab} —» LP++4; CP++;
Are LP = OPChar ; return“OK™)

LP #£ RP A OPChar = tob) —>  InsertSpuces; relurn(“OR™)

.

g
K
0
1 (LP = RP) —> relurn(“Editor full”)
fi

Code for FrsertSpaces

do
{ptr # 0 A Arrptr # nl) —  count+; ptir—
{Invariant: nl g Arr{ptr+1..CP[}}
{ Variant : pir }

| { Guard Negation : pir = 0 Vv Arrptr = nl}

od ;

counl = tabstop — (count%labstep) ;
{(LP, + count)%tabstop = 0}

do

(count # & A LP # RP) —> Arr{lP+1) = sp;
CPA+; LP 4+ count—
{lnvariant: LP # LP, = Ar{LP,+1..LP]) = {sp}}
{ Variant: count }
{ Guard Negation: count = 0 v LP = RP}
o

Notes

Befinement:

We again use [ 4 : 2.3.1g] to proceed on a ConcDoclsundara State, and thus each
disjunct iucludes the invariants:

# AmrCont < Maz
# ArrCont’ < Marx

which, for a success{ul insert operation, imply:
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#gArrCon? < Max

and thisis the pre-condition for the first disjunct. In order to keep the operation total
we introdnce the pre-condition for the second disjnnct:

# ArrCont = Maz
and appeal Lo [T 2: 3.20]. the two pre-conditions simplifying to:

LP # RP
IP = RP

[o the case of the ted character. the abstract specilication, of course, does hot stipalate
how many space characters should be inserted. We take the design decision thal after
the operation. the number of characters between the cnrser and the previous newline (or
the start of the docoment, if no such character exists) is ap exact mulliple of fabstep; Lthe
exception to this is when the editor’s capacity will not allow all such space characters 1o
be inserted, in which case as many spaces as possible are inserted (and the “OK” report
issned).

Code:

We are able Lo refine to the allernate constroct by virtue of [C 2 : 3.5.28], noling that
if LP isuot eqnal to f2P then the ConcDoc! invariant that LP does notl exceed RP,
together with the signature of AP, implies that LP is less than Maz. Further, since
Standardize sets LP to CP, the latier must also be less than Mar. Thus each guard
ensures the pre-condition for its body. The loops follow {from [C 2 : 3.5.3al, and we are
able to decompose JnsertSpaces to the sequential composition of two loops by appealing
to [T 2:3.4b] noting that every loop represents a tetal operaiion (and so the two Domamn
conditions follow). Safely following from the second invariant and guard negation, noting
that the loop will iterate at least once (by definition of %" - the operator sueh that
{a%b) gives the remainder when a is divided by ).

2.3.5 Refinement Of “RightDeleteWord”

Specification :

{ Right DelWord A Success) vV ErrorBotOfDoc

Expansion:
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RightDelete Wordp,,
l‘ ADoct

‘ Lfﬁ Word’ = LEﬂWnrd

| Rightwora # <>
Rl‘ghtward’ = tail Right\yorg

i repl = “OK"

|

|

v
Right g = Righl yod' = <>
rep! = “At bottom of document”

Weakesl Standard concrete operation:

RightDelete Wordpo 1 Csigngard ,, -

| AConcDocIsiandard

P — o

1 FW=1(Are for LPY = FW { Arr for LP)

| FW—!(Arr after RP) £ <>

| FW—Y(drr after RP') = tail (FWi{Arr after RP))
‘ rep! =*“0OK"

FW=1(4rr after RP} = FW™'(Arr after BP") = < >
‘ rep! = At bottom of document™

Simplification and refinement:

[ Arr = Arr!
LP' = LP = CP = CP!
AP # Ma:z
FW 1 Arr after R = rail (FW™!(Arr after RP))
rep! =*“0K"
v
RP = RP' = Maz
i rep! = “Al bottom of dacument”

Further simplification:
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|'Arr = Arr’
LP' = LP = CP = CP

AP # Mazx
Arr(BP+ 1) = nl
RP' = RP+ I

v

Arrf RP+ 1. RP') C {sp}
RP' ¥ Mar = Am(RP'+1) £ sp

v

QRP+L.RP) 0 {sp.nl} = @

RP' # Maz = Arr(RP'+1)€ {sp,nl}
rept = "0K”

RFP = RP' = Maz
rep! =“At bottom ol docnment”

Cade for RightDelete Wordp,;

Standardizens,; 3

{tP = CP}
if
| {RP # Maz) —>
it
| {Arr(RP+1) = al} —> RP++
a
{ (Arr(RP + 1) = sp) —> RPWSWord
0
| (Arr{RP + 1) £ ni A AM(RP+ 1) £ sp) —> RDNWSWord
fi;
return(“0K™)

(RP = Maz) —> return(“At bottom of document™)

g ]
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RODWSWord

do

(RP # Maz A Arr{RP + 1) = sp) — RP++

{ Invariant: Arr | RP, + f..RP]) C {sp]}

{ Variant © Maz - RP }
i { Guard Negation : RP # Maz = Arr(RP+ 1) # sp}
od

RDNWSWord

do
(RP # Maz & Arr(RP 1) £ 0l A Ar(RP+ 1) # sp} —> RBP4+
{Invariant: Arr (| RP, + 4. . RP) 0 {sp,ni} = ¥ }
{ Variant : Maz — RFP }

| { Guard Negation : HP # Mar = Arr(RP+1)€ {sp.ni}}

od

Notes

Simplification and refinement:

We apply FW to both sides of the first, second and fifth predicates of the weakesl concrete
operation and choose to leave the array unchanged - [T 2 : 3.2q] Safety.

Further Simplifleation:

We use Lemma 3:1.2.22 to simplily the second predicate of the first disjunct, noting that
C and €’ of that lemma correspond to 4rr after RFP and Arr after RP' respectively.
Code:

Again we nse the Siandard confignration, by appealing to Lemima 4:2.3.1a. We then use
[C 2:3.5.2b] twice to give the two alternate constrncts (the pre-condition of the disjuncts
forming the guards in both cases), Finally, the two loops are justified by appealing to
[C 2:3.5.3a). Note that the negation of the loop guard is:

RP = Maz v Arr(RP+ 1) #£ sp
which is logically equivalent to:
EP # Maz = Arr(RP+1) # sp

and we [requently nse this latter implication form Lo more easily demonstrate that the
guard negation is equivalent to a predicate of the refinement,

2.4 Cursor-Changing Operations

As discussed in Section 2.1, a cursor-changing operation does uot require a reconfigura-
tion of the concrete state: the design decision enables such operations to be eflected by
a change of CP.
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When specifying a cursor-changing operation in the abstract specification, we used

Zrene Poel
{1 ADvet

IlLeftChnr a Righrf:'.‘mrl = (L'(’Jr"(fﬁar, - Riyht(‘har’] |

and have, as the weakest concrete specilication

ZroneDoct C
‘ AConeDoct

(ArrCont for CP) = (4rrCont after ('P) =
(ArrCont’ for CP') 7 (ArrCont’ after CF'}

Fhe predicate part siinplifies 1o:
[ ArrClont = ArrCont’

which [C2: 3.2q] is refined hy:

Arr’ = Arr
RP" = RP
LP = LP

and thus we may replace the former by Lhe latter in Lhe refinement process.

When refining such operations, valees of ArrCont will be reqnired (rather than those of
Arr when using a Slendard conliguration), and we now specify an operation which will.
for an input of ptr, output the coutlents of that location of ArrCont, r:

GetArrCont _
ConcDocl

pir? o 1. Mar
c!: Char

¢l = ArrCont pir?

Code for GeitArrConlt(ptr) ptr7 . 1. Mar

if
{ptr £ LP) —> return{Arr pir)

U
‘ (ptr > LP) —> return{Arr (pir + RP — LP))
fi
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Note
The cede follows from [C 2:3.5.20) and Lemma 4:2.1.1d.

2.4.1 Refinement Of “LeftMoveLine”
Specification :

{LeftMvLine A Success) v ErrerTopOfDoc

Expansion:

LefiMove Linep,.;

_::r,,,fDOCI

|
i
| Leftyme #<<>>
: Lefty,..' = front Left;,.,
‘ rep! =“0K”
v
| Leftron, = Leftpn. = <<>>
|

rep! = “At top of document”

Weakest concrete operation:

LefiMoveLinepg;yC
EcomPoct C __*

FL-Y(ArrConl for CP) £<< >>
FL='(ArrCont' for CP') = front FL='(AreCoant for CP)
rep! =“0OK"

FL™Y( ArrCont for CP) = FL_l(Ar‘r'Cont' for CP') = << >>
rep! = “At top of docament™

Simplification and refinement:
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[ 4rr',LP'",RP' = Arr LP.RP

CP' < CP
last (ArrCont for CP) = =l
CP' = ¢CP— |

v

nl @ ArrConl (| CP' +1..0CP))
CP' # 0 = ArrCont(CP'} £ ni

rep! = “OK"
v
CcP=CP =0
rep! = “At top of document”

Code far LeftMove Linep,.s

i
(CP £ 0) —>
if
[ (GetArrCont (CP) = nf) —» P = CP—1
=
{GetArrCont{CP) # nl) —>
do
(CP # 0 A GetArrCont (CP) # al) — CP——
{\nvariant: nl ¢ AvrCont ( (P +1..CP, )}
{ Variant: CP}
| { Guard Negation: CP # ¢ = ArrCont(CP)=nl}
ad
& ;
return(“OK"™)
il
‘ (CP = 0) —> return{*At top ol document™}
fi
{CP < CP, }

Notes
Simplification and refinement:

‘We incorporale the predicate of Zpuq Poct C and apply FL to the first predicate of the
first disjunct, and to the second disjnoct. We simplifv the second predicate of the first

disjnnet wsing Lemma 3:1.2.2b, noting that €' and '’ correspond to A rrCont for C'P
and ArrCont for CP’ respectively.

Code;
We appeal to [T 2 : 3.5.2b] for both alternate constructs and [C 2 : 3.5.3a] for the loop.
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3 Refinement Of Doc3

The Doc? state introdnces an nobounded display of the editor, and the DocS state
imposes invariants on that model by ensuring that ao line can end in whitespace (ether
than the current line. when the enrsor is at its right hand end) and that the documen?
cannot end in nnlf lines {(except when the current line is the last fine). Since both abitract
states are conceraced with how Lhe edited docnment will Jook on the termival screen, we
conduct refinernent in a single step, on the Docd state.

3.1 The Design Decision

The Docd state does not extend (i.e. does nol introduce new variables on) the Doristate
and so we first consider the concrete reptescutation of the latter. It comprises tie I'D
and Docl states, and inclndes an invariant relationship beiween UDLines, {/0CurLine,
UDCurX and UDPCurY of UD, and Lefichar and Righicpa, of Doct.

The invariant renders the UDLines and UDCurLine components redundant sinc both
may be calculated from Doel using UDCurX and UDCurY (Part 3, Section 2.2);
we choose nol to represent the &/0Lines sequence in the implementation. However,
since changes take place in the current line, we do wish to have a representation for
UDCurlLine, which we provide by including two poiuters, Starfin and &ndin. which
point to the ArrCent location preceding the start of the carsor line, and the engof the
cnrsor line, respectively. Both sharc the same signature, haviug a minimun vale of ¢
and a maximnm valne of Afaz.

We require a representation for both of the abstract variables {/DCurX and UDCerY in
the concrete state: we introdnce CxrX and CurY, the minimum value for each beiug !
(when the cnrsor is at the top left of the document) and the maximum value (M + 1)
(provided by the docnment containing no newline characters in the case of UlCurY,
or containing only newline characters in the case of ZDCurY ). Thus CurX willalways
exceed the difference between CP and Startin by one, and CurY will exceed the nimber
of newlines iq the ArrCont locations up Lo £F by one,

We also incorporate the variable Doe NL, representing the number of newline charictersin
the docnment {(and so being equal to one less that the number of lines in the doament),
principally for optimization of Move ToBot - obviating the need for a newline count to set
CurY - but also to identify more easily thoge octasions when a cursor movement(Dorcd )
operation wonld move the cursor below the unbouuded display of the document

Finally, we include the two variables WSRem and NLRem: since some cursor operations
will resnlt in a change in the content of the document {when trailing whitespace/null
lines are removed) these variables will represent the amount of whitespace removed by
RemTrail WS and nulf lines removed by Rem TrailNL, thereby enahling the repositicning
of the Mark pointer (Section 5) so that iis same relative position in the dorument is
maintained.
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We therefore have, as our concrete representation of Dac?

ConcDoc2

ConcPDocl

Startin. Endin, Doc NL, WSRem, NLRew 2 @ .. Max
P CurX,CurY 1. Mar+ 1

Startln < CP < Endin
‘ NoNLin (ArrCond, Slertln + .. Endin)
' Startln # 0 = ArrCont Startin = nl
Endin #£ (Mexr + LP — #P) = ArrCani(Fudln+ 1) = ni
‘ CurX = CP — Startn + 1
| CurY = NumNLin {ArrCont, . €U+ ]
Dor NL = TotalNLin ArrCont

where

i NumNLin:(f.. Yar — (har) x PN - N
| TotalNLin:{/..Max —> Char) — N
tNoNLin _:{l..Max — Char) x PN — B

i NumNLin (arrag,m..n) = #((m..n < army) b {nl})
‘ TotalNLin erray = NumNLlin {array. [ .. # array)

NoNLin (armay,m..n) & HNumNLin (arrag.m..n) = @
| ;

For each wursor-changing operation Of associated with the set MoreOps (Section 3:2.3).
the document lengih will be changed only by the amount af whitespace /ruumber of null
lines removed. and therefore we wish (he [ollowing invariant 1o hold after each such
operation:

{IP - RP=LP, - RP, + WSRem + NLRem }
The lollowing are a direct teselt of the ConeRoc? invariant:

Lemma 4:3.1a

Concfoc?
}_
CurY = NumNLin (ArrCond, f.. P+ 1
CurY = NumNLin {ArrCont. 1 .. Startin) + 1
CurY = NumNLin {(ArrCont, 1 .. Endln)+ 1
]

Proof



Follows since there are no newlines in Lhe ArrCont locations from ( Slartin+ ) 1o Endin,
and since CP mnst lie between Stariln and Endin.

||
Corollary 4 : 3.1b
ConcDoc2
'_
CuryY = #{FDL (ArCont for (1))
CurY = # {FDL7) {ArrCont for Startin})
CurY = #(FOL" (ArrCont for Endin)}
[ ]
Proof
Follows from the previous lemma and Lemma 3:2.2b.
n
Lemma 4 : 3.1¢
ConeDoc2 | CFP =0
f—
CurX = CurY = Startln+1 = !
a
Proof

Since Startin may not exceed CP. Startin must also be zero. and so CurX is unity (Since
it oxceeds the difference belween P and Startin by ane), as is CurY (since it is one
more than the number of newlines in the range (1.. CP). which is empty).

| ]
Lemma 4 : 3.1d
ConeDoc2 | CP = Maz + LP - RP
-
Fndin = Maz + LP - RP A CurY = DocNL 41!
| |
Proof

Since CP may not exceed Endin, (Maz + LP — RP) is the maximum valne of CP, and
so Endln mnst also have that valne. DocY is one more than the number of newlines np
to CP - i.e. the number of newlines in ArrCent - and 5o exceeds Doc¥L by ope.
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Lemma 4 : 3.1e

ConelDoc2 | CP #£ 0 A ArrCont CF = nl
F
Startin = CP A CurX =1

Proof

Since CP mnst be in the non-empty range {Siartln,. Endin), and there are no newlines
in the ArrCont loecations (Startin + .. Endin), CP must equal Startin, and CurX.
exceeding their difference by one, must be unity.

B
Lemma 4 : 3.11
ConcDoc2 | P # Mer+ LP — RP A ArcCont(CP4 1} = nf
F
Erdin = CP A CurX = PEndin - Startln + 1
|
Proofl
Similar to Lemma 4:3.1e.
[ |

‘We now impose the whitespace and null lines invariants on the ConcDoc2 model to give:

 ConcDocd ) ) ) )
{oneDoe2 _l

PVt DoeNL 1 — {CurY) e visible ((FOL™! ArrCont) 1)
visible (CF + { .. Endin 4 ArrCont)
‘ visibleseq (FDL_l(AI‘T('Ont after Endin))

e

S
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3.1.1 The Concrete-Abstract Invariant

felpgea o .
|
. Doc3 !
! CencDoc?
I Relpees
! UDCurX , UDCurY = CurX . CurY
| I'pLines = FDL™' ArrCont
| UDCurline = Startln+ 1 .. Endlv | ArrCont
" # UDLines = DocNL+ 1

The following are direcl results of this sciiema:
Lemma 4:3.1.1a

Re".l)ac.s‘
}7

UDCurLine = <> &  Sfartin = CP = Endin
]

Lemma 4:3.1.1b

HeI.l)or.‘J
l_
UDCurLine for UDCurX — 1 = Startin+1..CP 4 AreCont
UDCurLine after UDCurX — { = CP+ 1..Endin { ArrCont
n

Tu order to discharge our data refinement proof obligations we must show Lhat the con-
crele state defines a valid abstracl siate. Help..s ensures that cach of the abstract
components is of the correct type, and is uniquely defined. We must show that the
abstract invariant is satisfied.

Firstly, the first result of Lemma 4:3.1b implies that (Cur} < #FDL™! ArrCont), and
50 Relpges ensures thal (£DCurY < # UDLines).

The invardaut of Cencloc2 ensures that ArrCont in the range Startin + I.. Endin
is a memher of the display line sequence corresponding lo ArrCont, FDL™! ArrCony:
Lemma 4:3.1b ensnres that it is the Cur¥* member of the sequence and, byRelp,.q.
UDCurLine is the UDCurY** member of UD/ines.

Finally, ConcDoc¥ defines that CurX. and hence UDCurX. cannol exceed [Endin —
Startln + 1), which. by Relpyey. is 4 VDCurLine+ 1.
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Finally, ConcDoc2 inposes the whitespace and null lines invariants on CencDoc2 in
exactly lhe same way the Doc3 imposes them on Dor2, and Lemma 4:3.3.30b ensures
that the concrete state invariant matches that of the abstrart state,

Thus the Docd invariant is satisfied. and we establish:

Lemma 4:3.1.1c

Religes
F
¥ ConcBPors o 3y Doci e Relpoes

]

We now calcnlate AbsRelp., : and have. alter simplification:
AbsRelp,ey = ZDocd A AbsRelp,.,

aud. pursuing the same argminent as in Serhon 2.1.1, we obtain:

Lemma 4 :3.1.1d

E
Doc3 L. ConcDoel

]
ConeDoe? requires no specific configuration for the exeention of its operations. but since
we will be dealing with whitespace/newiine removal for ConeDoed operations. we define
the Stendard concrete state as:

ConeDocTsiandards = ConcDocd A ConcDoclsigniare
and since Doed contains Docl and Relp,.s contains Relpe.s, we have:

Relpoes standard = Melpoes A Relpocr siandard

and we calculate ConecRelp,.s5i0040.¢ Which simplifies to give:

Concflelpacs standerd
AConcDoc3

CP'.LP' = CP.CP
ArrContl’ = ArrCunt
Stariin’, Endin' = Stertin. Endin
CarX’!, CurY’ = CurX,Cur¥

DocNL' = DocNL

WSHem', NLRem’ = WSRem, NLRem
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Hence a concrete reorganizing operation must preserve the newly-introduced compouents
of the Doc? state; we may appeal to [C 2 : 3.2¢] 10 show that Stendardizep,.; refnes
Cancltelyges:

ConeRelpoes Siandare & Standurdize gy,

3.2 Initialization
Specification :

fitiabizep,.; A Abor2

Codefor Fnitializepg.n

Initializep ey 3 Startln = 0 Fadin = 0,
Cur = f; CwrY = 1y DocNL = 0
WSRem = 0; NLRem = 0

Note
We use Lhe results of Leanma 3:2.2d, 4:3.7.1a and 4:3.0.)¢; we set. WSHem and N Hem
to zero (althongh they could have any values).

3.3 Operations To Set “Startln” And “Endin”

For each content-changing operation, aud cursor-changiug aperation in which the cursor
line is changed, 1t will be necessary to set new values for Startln and/or Endin.

We specify and refine an operation, SeiEndin that sets Fndln nsing the (new) enrsor
position; an analogons operatiou, SriStartin may be similarly specified and refined,

Specification:

Settndle

; Endin’ = 0 .. Mar )
| ConeDoc2

[

‘ Endin’ # Mar + [P - RP = ArrConl (Endin’' + 1) = nl
i NoNLin (ArrCont, CP 4+ 1 . Endin")

L

|




Code for SetEndin

Endin 1= CP;
do
{Fndln < Mnz + LP -~ RP A GetArrCont(Fndin+ 1) # nl) — Endin++

{Invariant . NoNLin (ArrCont, CP, + 1 .. Endini }

{invariant . CP < Endin}

{ Variant: AMaz + LP, — RP, - Endin }

{ Guard Negation : Endin # Mar + LP, ~ RP, = ArrConf(Endln+ 1} = nl'}
o

Note

The second invariant of (enclloc2 may be equivalently stated:

NoNLin { ArrCont. Startlin + 1 .. CP)
NoNLin (ArrCCond, CP + 1 .. Endin)

The secand is satisfied by this operation. the first being satisfied by Se/Startin. Since we
are not changing the document's content we do 1ot need to standardize the array, and
we use GitArrCont 10 search ArrConl. We appeal to [C 3 : 5.34] Lo refline Lo a loop.

3.3.1 An Operation To Update The ConcDoc2 Components
Each absiract operation OP defined on the Dort state is promoted to the Doc2 state in
the same way:

OPpocy = OPpyes A ADoc2
to give, as the weoakest. specification of the concrete operation:
OPpyeeC 2 OPpyy © A AConcDoc2

An intuilive approath snggests that only the uew components of the Dpc2 state - CurX,
CurY, Startin, Endin and DocNL - need be considered, since the reinement on Doct
will already have dealt with the other components. This, in fact, is the way we proceed:
we specily and refine a concrete operation that updates the ConcDoc2 components,
Updatep, s, and show thal post-sequential comnposition of the operaiion with OPp,.;
refines bath OFp..s and the promotion schema ADoc?2, and, using [C 2 : 3.2f], OPpgcs:

159



Lemma 4 : 3.3.1a

OPD::C! c OPpoes 3 Updﬂ"¢[1062

ADoc2 C  OPpecr ; Updatep,.s
’v.

OPpoee = OPpo.y A ADuc2 C OPp,,, ) Updatep,,s
| |

We note that if the update operation js total and does nat change any of the CeneDnc
components, the first antecedent is automaltically satisfied by appealing 1o [C 2 < 3.4b].
‘Therefore the above lemma will apply when the second arteccdent is satisfied [since
0P, will cosure the after-state satisfies the invariant for Doe?) - 1.0, when lpdalep,,.,
produces an after-state satisfying the Doc2 invariant. [E 2 3.4¢] ensures that we may
use the refinements of the Dor! operations derived in Sectinn 2.

We may npdate Startln and Endin using the operations SeeSiartin and SetFrdlr, and
then update the value of CurX using the ConeDoc? invariani relationship that it exceeds
the differenve between (P and Starfin by one.

Changes in CurY andjfor flec¥L will depend npon the type of operation. and we snn-
marize the cffect of each operation type on CurY and DocNL, where cach is incremented
{(for Right operations) or decremented (for Left operalions) by the nnmber of cewlines
in the ArrCont or Arr localions indicated:

Operation Component ArrCont Arr

Type Affected locations locations

Leftfngert  CurY . DocNL CP 4+ 1. CH

RightInsert DorNL RP' 4+ 1. . LF -~ LP+ RP
LeftDelete  Cur¥, DoeNL CP' 4+ 1..CP

RightDelete DocNL LPP - LP + HP . _HP'
LeftMove CurY CP'+1..CP

RightMove CurY CP+71..CM

Note that since insert and delete operations will have heen effecied on a standard config-
uration by a change of pointer. the “deleted” characters still reside in the array available
for inspection. In the case of a right insert or delete. however. we calculate Lke previous
standardized position of #P {rather than nsing prevAP). since we may not assume a
standardized confignration before the commencement of the Doc! eperation,

We now give the operation Lpdatep,.s:
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Code for Updatepges( prov(’P.prevEh Plprec it P) precC P! precLPY precRPT . 0. Mar

NemNL: 0 .. Maz

{ Cur¥V = NumNLin { ArrCont . precCPi+ 1)

if

‘ {OPTypc # NoMove) —>  SetStarth; SetFndin CwrX = (CP — Starthi + 1) ;
WSRem. NlLiften 1= 0.0 ; Update OFPTypr

(OPType = Noliore) —>  Skip

g ]

Update . OPType

if
’ {OPType = Leftinsert) —> Updele Leftlnserip,.n

—

| (OPType = Rightinsert) —» Update. Rightfnsertp,.o
{(QPType = LeftDrlcley —> Update_LeftDeletep, o

(0P Type = [ightDelele) —> Update_ RightDelelep,c

O— =0— 1!

(OPType = LefiMove) —  Update_ LeftMove p,p

F——

| {OPType = RightMove) —» Update RightMovep.,.
f

Update. Lefilnsertpyee

{IP =CP}

{Cur¥ = NumNLin (ArrCont. 1. prevCPY+ 1 }

{ DocNL = NumNLin (ArrCont, 1. . prevCP) + NumNLin (ArrCont, CP + ! .. Maz) }
NumNE = NLCountArr(precCP, CP);

{ fum¥L = NumNLin (ArrCont. prerCP+ 1..CP) }

CurY = Cur¥ + ;\"um‘\"L; DoeNL = DoeNL 4+ NumXL

{CurY = NumNLin (ArrCont. .. CPY4+ 1}

{ DocXL = NumNLin (ArrCent, 1.. Maz] = TotalNLin ArrCont }
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NLCountArr(first, last) first? last? . ¢ .. Maz

NumNL = 0:0., Muz;
do
| (first # lasl) -—»
Jirst ++ H
if
| {Arr first = =l) — NumNL4++
r
| (Arr first £ al) —> Skip
fi

{Invariant : NumNL = NomNLin (drrfirst, + 2. first) }
{ Vanant : last — first }
{ Guard Negation : first = last }

od ;
{ NumNL = NumNLin (Arr. first, + 1 .. last) }
return{ NumNL)

Notes

We wish to show that Updatep,. refines ADoc2 by ensuring that the ConcDocZ wompo-
nents are set in line with the jnvariant. We usc [T 2 : 3.5.24] to obtain the first aliernate
consiruct (noting that the pre-conditiou of the first body is dictated by Update. OPType
which is the same as the goard, and that Skip is Lotal). We appeal to the tesult again to
partition the Update operations, and we give tle code for one; the code for Lhe remaining
five is similar. [ts pre-condition is dictated by thal of NLOountd rr which requires that
its second parameter i not less than its first, and this is ensured by the guard. We yse
the results of Leminas 4:3.4.1d and 4:3.4.1e 1o save nnnrecessary counling of newlines
when the cnrsor is moved either to the top or to bottom of the docurnent, and appeal to
[C 2:3.5.3a] for the loop of ¥LCountArr.

Il an operation takes inpnt parameters, we inclnde them in brackets after the operation
name; we also list the parameters decorated with * 7 and giving wleir signatnres so that
they may be casily identified in the earlier development.

3.4 The Removal Of Trailing Whitespace

Having refined the operation to the Doc2 state, our next Lask is the removal of trail-
ing whitespace, siuce the abstract promotion method to the Doc3 state is by pre se-
quential composition with FlagPrevCursor and then post sequertial composilion with
Rern Trail WS (followed by sequential composition with RemTradd NL). where

FlagPrevCursor = [ Lefigag, @ seqg Char ) precCPU N | prevCPl = # Lefton: i
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RemTraslWS
arp

L‘D?‘EU(;P? :N

" UOCur X!, UDCurY’ = UDCurX, UDCurY
{prevl/DCurY} 4 UDLines' = {precUDCurY} @ UDLines
presliDCurY = UDCurY
i UDCurLine’ for FDCurX — 1 = UDCurlLine for UDCurX — 7
i (UDCurLine’ after UDCurX — 1) visible_ prefix ( UDCurLine after UDCurX — 1)

i prevliDCurY £ UDCurY
| (UDLines’ prevlUDCurY') visible_prefix { UDLinrcs prevlUDCurY)
| where

prevliDCurY = # {FDL'I((LBI.',CM, T Hightey,,) for preaC’P?Y)

The weakest concrele operation for the latier is:

[ CurX', CurV’' = CurX.Cury¥
{prerCurY} 4 (FDL™! ArrConl") = {prevCur¥Y} q (FOL™' ArrCont)
prevCurY = CurY
(Startin' + 1 .. Endin’ 1 ArrCont’) for CurX — | =
{Starthn + 1 .. Endin § ArrCont) for CurX - 1
({Startin’ + 1 .. Endln’ 4 ArrCont’) after CurX — 1) wvisible_ prefix
{(Stertin + 1 .. Endln 4 ArrCont) after CurX - J)

v

prevCurY # CurY

{((FDL™! ArrCont') prevCurY) visible_prefix ((FDL™? ArrCont) prevCur¥)
where

prevCury = NumNLin (ArrCont, f . precCPYy + 1

Simplification:
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[ CurX', Cur¥’ = CurX, CurY

prevCurY = Cur}

ArrCont’ for Startin = ArrCont for Slartin

ArrCont’ after Endln’ = ArrCont after Erdin

{Startin + 1 .. CP [ ArrCont’) = (Startln +1.. CP { ArrConi)

(CP+ 1..Endin’ I ArrCont') visible_ prefix (CP + 7 .. Endin 4 ArrCont)

v
prevCur) # Curt
ArrCant’ for prevStariin = ArrCont for prenSiariin
ArrCont’ after newEndln — ArrCont after prevEndin
{prevStariin 4 [ .. newEndin { ArrCont') visible_ prefix
(prevStartin + 1 .. prevFndin ! ArrCont)
where

prevStartin < newfndln < prevfndin

prevStartln < preeCP? < prevEndin

NoNLin (ArrCont, prevStartin + 1 .. prevEndin)

prevStartin £ 0 = ArrCont prevStariin = nl

prevEndin # Moz + LP - RP = ArrConl(prevEndin 4+ 1) = ol
presCurY = NumNLin (ArrConi, (.. prevEndin) + 1

Further simplification and refinement:

[ CurX!, Cur¥' = CurX,CurY

prevCurY = CurY

ArrCont' = ArrCont for Endin' ™ ArrCon! after Endin
ArrCont (] Endln’ + 1 .. Endln|) C {sp]

Endin’ £ CP = ArrConi’ Endln’ £ sp

prevCurY £ Curl
ArrCont' = ArrCont for newEndin ™ ArrCont after prevEndin
ArrCont (| rewEndin 4 1. .prevEndin ) C {sp}
newEndin # 0 = ArrConl’ newEndln £ sp
where
newFndin < prevEndin
prevCP? < prevEndin
prevEndln £ Maz + LP — RP = ArrCont(prevfndin+ 1) = al
NoNLin (ArrCent, prev(CP? + 1 .. prevEndin}
prevCurY = NumNLin (ArrCont, I .. prevEndin) + I
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Code for RemTrail WS (presCP) prevCP? . @ .. Muz

tempCP = CP:0.. Maz;

tempEndin = Endin: 0. Maz;

prevEndin : 0. Mar

GetpresEndln ;

if

{OPType = LeftMove v OPType = RightMove v

QP Type Leftinsert v OPType = Rightinsert) —
if
| {prevEndin = Endin) —> RemTrailWSUDCurLine
O
l (prevEndin £ Endin}y —> RemAlUWSPrevUDCurLine
fi

U
-~ (OPType = LefiMove v OPType = RightMove v
OPType = Leftinsert v OPType = Rightinsert) —> Skip

GetprevEndln

CP := preeCP; SetEndin; previndin := Endin;

CP := tewmpCP ; Endin = tempEndin

{ prevCP < prevEndin }

{Endln # Mar + LP — RP = ArConi{Endin+ 1) = nf }
{ NoNLin ( ArrCant, prevCP + 1 . prevEndin}

165



Rem Trall WSUDCurline

if

i
|
fi

| (Endin # CP A GetArrConl Endin

= sp) —>

CP := Endin; Slandardizep,.; ; CP = tempCP ;
= CP, A LP = Endin,}

{ ArrCont = ArrCont, » CP
do
sp) —> Endin——; LP— ; WSRem 4+

(Endin 3¢ CP A Arr Fndin =
{ lnvariant : ArrCont’ = ArrCont for Endin = ArrCont afte Endin, }

{ Invariant: ArrCont (| Endln+ 1. . Endin, ) C {sp}}
{ Invariant: [P, - AP, = LP - RP + W5Rem }

{ Variant: CP - Endin}
‘ { Guard Negation : Endin # P = ArrCont Endin # sp}
od

S (Endin # CP A GetdrrCont Endin = sp) —> Skip
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RemAUWSPrevl DCurLine

if
{prevEndin £ 0 A GetArrCont prevEndin = sp} —>
CP := prevEndin; Standardizep,.; ; CP := tempCP
{ ArrCont = ArrConly, A CP = CP, A LP = prevEndin}
do
(LP # 0 A Atr LP = sp) -—=> LP—-; WS5Rem 4+
{nvanant : ArrConl' = ArrConl for LP ™ ArrCont after prevEndln }
{Invariant : ArrConlt (| LP 4+ 1 .. prevEndin]) C {sp}}
{Invariant: LP, - RP, = LP — RP + W5Rem }
{ Variant: LP}
{ Guard Negation: LP £ 0 = ArrCont LP # sp}
od ;
{ newkndin = LP}
if
(CP > LP) —> CF = (CP~ WSRem);
Startin := (Startin — W5Rem) ;
Endln := (Endln - WSRem)

0
[ ~{CP » LP) —» Skip
fi
U
| ~(prevEndln # ¢ A GetArrCon! prevEndin = sp) —> Skip
fi
Notes:

Simplification and refinement of weakest concrete operation:

We use Lernma 4:3.1.1b 1o simplify the weakest concrele operation. Then in the first
disjunct we use Lemma 3:3.2a (which states that a visible sequence reflexively satisfies
the visible_prefix relation) togelher with Lemma 4:3.1.1b to provide the simplification;
the second is similarly simplified, except that we must state the relationship between
prevCurY aud prevEndin (whereas they were part of the Docd invanant in the first
disjunct), and we choose to refine the operation by introducing the second of these as au
input variable (thereby avoiding the needless re-calculation of the value prevEndin).

Code:

The code {or GetprevEndln sets the prevEndin of the where clause.

We note that a right delete operation cannot result in the need for the removal of trailing
whitespace, since if the cursor is not currently at the end of the line, the cursor position

becomes the end of line, with the ConcDocd invariaut implyiug that there can be no
trailing whitespace, and il the cursor is currently at the end of the line, the character
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that is moved to the end of the line as a result of the delete operation must cnrrentiy be
at the end of another document line, aud since the ConcDegcd invariant holds before the
operation it cannot be a space character.

Similarty a left delete cperation does not require the removal of trailing whitespace since
the character currently at the end of the cursor line will remain there, and, for the same
reason as above, cannot be a space character.

If the previous cursor lize is above the new cursor line, it Is necessary to decrement
CP, Slartln and Endin by WSRem 1o ensure that each points to the same position of
ArrCont as it did before the operation.

We refinement to the first alternate construct by [C 2 : 3.3a); one guard is the negation of
the other which satisfies Domain. We similarly refine to the second alternate construct
(to RemTrailWSUDCurLine and RemAllWSPrevl/DCurLine). We appeal to [C 2 :
3.5.3a] for the loop refinements, to provide the Safety aspect.

Although the operation tequires a Standard configuration (for which we may we [C
4 : 2.3.1q]), we push the Standardize operation through until just before the loop is
activated, otherwise the advantage of a non-Standard configuration for cursor-charging
operations not requiring whitespace removal would be lost.

3.5 The Removal Of Trailing Null Lines

Having remeved trailing whitespace, the final part of the abstracl promotion method for
Doc? operations to the Docd state comprises seqnential composition with Rem TraidNL,
with specification:

RemTratlN L

_

‘ ADoc2 !

Leﬁl’.ms’ = Leftpin,

Weakest concrete operation:

FOL~!(ArrConi’ for CP') = FDL [ ArrCont for CP)
(FOL"'(ArrCont’ after CP')) visibleseq. prefix (FDL™! (ArrCont after CF))

Simplificatior and refinement:

CP' = CP

ArrCont' = ArrCont for Maz + LP' — RFP’

CP' £ Maz + LP' - RP' = ArrCont’ (Maz + LP'— RP') # nl
rng (ArrCont after Maz + LP'— RP') C {nl}

A’ = Arr
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Code for RemTrailNL

tempCP ;= CP:0.. Maz;
if
(GPType = LeftiMove v OPType = Rightlnsert) —
if
(CP # Maz + LP— BP A GeldrrConi(Mnr + LP — RP = rl)) —
CP = (Maz+ LP ~ CP); Standardizep,.; ; CP := tempCP
{ ArmrCont = AprCont, A TP = CF, )
do
(LP # CP A Arr LP = nl) — LP——; DoeNL—— ; NLRem ++
{Invariant: LP = Moz + LP - £P)
{ Invaniant : rog (ArrCont, after LP) C {nl}}
{nvanant: LP, — RP, = LFP — RP + NLRem }
| {Varant: LP}
‘ { Guard Negation : LFP = CP Vv ArrCont LP # nl}

od

~{CP # Maz + LP ~ RP A GetArrCont(Maz + LP — RP = nl)) —> Skip

B [~

I
jn)
, ~(OPType = LeftMove V' OPType = Rightinsert) —> Skip
fi

Notes

Simplification and refinement:

We apply FDL to both sides of the first predicate of the weakest conrrete operation and
so both CP and ArrCont up to CP will not change. We then use Lemma 3:3.2b: the
second predicate is a direct result of ArrCont’ alter CP being a prefix of ArrCent after
CF {and ArrCont' having length CF + LP' - BP"). We choose o leave the entire array
unchanged.

Code:

We nate that the only operation types that can result in the need for the removal of
trailing null lines are a left move or right imsert. Similar comments to those made for
Rem Trati WS regarding the refinement to alternate and loop constructs also apply here.

3.6 Promotion Of The Docl Operations

‘The abstract promotiou method for each OF defined on the Doci state to the Decd
stateis:

FlagPrevCursor ; (GFp,c; A ADoc2); RemmTrail WS ; RemTraiNL
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We have shown (Lemma 4:3.3.1a) that
OPpoey A ADec2 C OP.DDH§ UPdNEDacz

and we define:

IUpdalep,.s 2 Updatep, s(prevCP, prevl P, prevRP) ;
RemTradWS(prevCP); RemTrailNL

and appeal to [Z 2 : 3.4e] to give. for each concrete operation OF defined on the
Conc¢Doc! state:

Code for OPp,es

rep : Report ;
FlagCPLPRP
(rep == OPpy.y); Updatep, s(prevCP, previ PP prevRI)

; relurn(rep}

4 Refinement Of Doc4

The abstract QP enables cursor movemen! ontside the unbounded display of the docu-
ment, and because of this we choose to condnct refinement on this state.

4.1 The Design Decision

The QP stale comprises a cursor position represented by QPCurX and QPCuwY and
the Doc4 invariant renders it rednndant {since it is the same as Lhe Doc cursor). We
therefore choose to exclude the QP cursor components from the design decision.

However, for the same reasons as those for including WSRem and NI Rem in ConcDoed,
we here include the analogous WSiIns ard NLIns, representing the amount of whites-
pace/number of newlines introduced by Pad WSNL:

ConcDocy = ConcDoc3 ; WSins NLIns: 0. Maz

For each cursor-changing operation in the set EditOps! (Section 3:2.3) or the set QPCursorOps
{Section 3:4.2.2), therefore. we wish the following to hold

{LP,— RP, = LP~ RP + WSRem + NLRem - WSins — NLlins}



4.1.1 The Concrete-Abstract Invariant

| REIDMJ e ———
| Does

CeoncDocd

Relﬂo:.ﬁ

| @QPCwX,QPCurY = CurX, Cury
|

s

The same argument advanced in Section 2.1.1 may be used here to give:

Lemma 4:4.1.1a

RBID,“'
-

Y ConcDocy w 3, Docd & Relp,y
]

We calculate AbsRelp, ., and get, after simnplification:

AbsRelpa.; = AbsHelpg.s

Thus we may discharge our data refinement prool obligations in exactly the same way
as in Section 3.1.1, to give:
Lemma 4 :4.1.1b

-
Docy Lo CencDoc

Finally, we calculate ConcRelp,eg Standard 1O BIVES

! AConcDoced i
[_ e
|

ConcRelpset gi4miera

ConcRelpoes siandard
WSIns', NLins' = W&hs, NLins

L e ]

and may again appeal {Section 3.1.1) to [T 2 : 3.2a] to show that Standardizep,.; refines
this aperation.
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4.2 Initialisation
Specification :

Inittaltzep,es A ADocd

CodeforInitialize pocy
Initializepgey 3 WSIns = 05 NlIns := 0

Note

No new components are introduced by ConcDscf; we set WSIns and XLIns lo zero
{although, as with WSRem and ¥LRem they could have any initial values).

4.3 Promotion Of The Doc3 Operations
Fach abstract OF defined on the Doc? state is promoted Lo the Dacf siate in the saine
way:

OPpocs = (OPpyes ; EquateQPToDoec) A ADocy

where

Equale QPToDocf _

QF
f DocCurX , DocCurY . N

— S —

QPCurX’, QPCurY' = DocCurX, bocCurY
-

which has weakest concrete operation:
[ CurX’, CurY’ = CurX, Cur¥

and thus representis an identity operation. The code for the Docd operation will therefore
provide a refinement for Doc{, but we must ensure that the two (ConcDocd components
are correctly set.

4.3.1 An Operation To Update The Doc4 Components

Since each ConicDoed operation cannot tesult in the need for the padding of whites-
pace/null lines, both ConcDoc{ components must be set to zero. We thus have:
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Updatep, 4
WSIns, NLIns 1= 0.0

to give, as Lhe concrete promotion mechanism for each operation OP refined on Lbe
ConcDoced state;

OPDDC.‘
rep @ report
rep := OPFpges ; Updatepecy ; returnirep)

4.4 Promotion Of The QP Operations
The abstract prometion method gives:
CursorLeftCharp,ey = LeftMoveCharp,,,
aud using the set QPCursorOps of Section 3:5.1.1, we have
YOP : QPCursorOps — { CursorLeftChar) »
GPpaey = FlagPrevCursor ;
SuceOPgp ; Pad WSNI. ;
RemTratl W5 3 RemTrailNL A ADocy
UnSuccOPQP A EDocd

EvrorFull A ZDocy

where

I

OPgp | rep' = “OK"
OFgp | rep! £ 0K”

SueeOPgp
I'nSuccOPgp

b
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PadWSNL

| AUnboundedDisplay
| EgquateDocToQP
| =qP

QPCurY < $# DoecLines
rag ( CurLine' — Doclines QPCurY) C {sp}
{QPCurY} @ DocLines’ = {QPCurY} @ DocLines

QPCurY > # DocLines
# DocLmes’ = QPCurY
‘ Doclincs prefix DocLines’
‘ Y i: 3 Dochines+ 1 .. QPCurY — 1 & Doclines’' i = <>
rng (last DocLines’y C {sp}
EquateDocfoQP
QF

\
! DocCurX’, DocCur¥Y’': N

J;___f -

DoeCur X', DocCurY' = QPCurX, QPCurY

|
| — - : —

As before, the latter is equivalent to an identity operation.

We refine the CursorRightChar: the refinement of the remaining operations proceed along
similar lines; in so doing, we utilise operations refined on the Do staie. and o post-
sequeatial composition with RemTraiiW5 and then RemTrailNL will be unnecessary,
siuce the relevant javariants will have been maintained by thaose Doc? operations. Further
we use a cumulative count of whitespace and null lines removed to ensure that W5Rem
and NLRem reflect the total amount of whitespace/number of null lines removed by the
Doc# operations.

Promotion Of “CursorRightChar”
Specification:

FlagPrevCursor | CursorRightChargy ; Pad WSNL ;
RemnTrailWSs ; RemTrailNL A ADocy A Success

FlagPrevCursor ; ErrorPull A ZDor

Expansion of specification of ( CursorRightChargp ; PadWSNL):
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DocCurX', DoeCurY' = QPCurX'. QPCur}”
rag{ CurLine' — CurLinc) € {sp}
{QPCsrY") @ DocLines’ = {QPCurY'} 4 Dorlines

Weakest concrete operation:

CurX', CurY’' = CurX + 1. CurY
CurX!, CurY' = CurX 4+ 1, CuryY
rng ((Stertin! + 1. . Fndin’ A ArrCont')-
(Startln + 1. Endin 4 ArCont)) C {sp}
{Cur¥'} @ (FL™! AerCont’) = {CurY) @ (FL™' ArrCont}

Simplification and refirement:

( AP Startin’, Curl”, NLIns' = RP, Stertln, CurY 4
CarX' = CurX + 1

CPr = Py 1

IP—RP = LP' — RP' + WSRem' + NLReny' — Walns' - NLIns*
CP # Endin
LP_ Endin . Arr’ = LP, Endin, Arr
Wshs' = ¢

v

CP = Endin A LP £ RP
CP' = LP' = P+ 1

Endin' = Endin + 1

Arrf = Arr & {OP > .S'p}
L WSins' = 1

Simplification and refinement of weakest concrete operailon for ZDocy:

" NoChange(ConcDocf)

CP = Endin A LP = RP
CP' ArrCont' = CP, ArrCont
WSIns'. NLIns' = 0,0
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Code for CursorfRightCharp,c;

rep : Report
WsIns := 0 ; NLIns .= 0;

if
(CP # Endln) — OP = RightiMoveChar ; rep 1= OPFpuy;
{ WSftem = NLRem = WSins = Niins = 9
{LP,- RP, = LP - RP}
U

(CP = Endln) —> OP = RightMoveChar; OF'Char := sp;
rep = OPpacs; WSIns+4 5
{ WSRem = Nlltem = NLiny = o}
{LP, - BRF, = LP - RP - WSRem }

fi
OF = CursorRightCher ; return{rep)
{ILP,— RP, = LP - RF 4+ WSRem 4+ NfRem — WSins — NLIns }

Notes

Specification:

We note that the QP operation is always successful.

Expansion of specification of ( CursorRightChargp ; PedWSNL):

Sinre the cursor line does not change, ( DocLines @QPCurY”’) will he Lhe samne as CurLine.
Simplification and reflrement:

We choose to introduce two pre-conditions, the first corresponding to the cumor not
being at the end of the line, and the second corresponding to the cursor being at the end
of the Jine and with capacity to insert a space character. thns splitting the first part of
the specification into two disjuncts. A third pre-condition (ensnring a total operation).
corresponding with the cursor being at the end of the current line but with the editar
being [nll, is introduced for the final part of the refinement. We appeal to [C 2:3.5.20
using each pre-conditiou as the guard for Lhe alternate coustruct, noting that each body
is total.

When the cursor resides at the end of the carrent line, (CP is equal to Endin), since the

cursor line and hence Siartin do not change, we may refine the fourth predicate of the
weakest concrete operation to:

Startin + { .. Endln 4@ ArrCont' = Startin + 1 .. Endin 4 ArrCont
ArrConi’ CP' = sp

which, together with the final predicale and assuming a standardized array (ensured by
InsertChar) it is refined by:

Arr' = A & {CP' > sp}
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Note that ju this case it is necessary to increment the value of Endln in order to maintain
the ConclDocd invariant.

Conversely, when the cursor is not at the end of Lhe line, that same invariant regqnires
that Fndln does not change. aud the same predicates of the weakest concrete operation
are refined by leaving the entire array unchanged.

Code:

The requirerments of the first disjunct are salisfied by the Dord right character move;
those [or the second and “na change” disjuncts are satisfied by the foed insertion of a
space character, that operation providing the check for a full array. Further, since Lhe
Dord operalions do nol necessitate the removal of trailing whitespace/null Jines. both
WS5Rem and NLRem are zero after the operation.

5 Refipement Of Docb

The Does state introduces marked text and the Sefdfark operation: however we choose
to also include the paste buffer and its operations in our uext refinement step, since we
feel that the consideration of tarked text alone does not merit a refinemnent level, Thus
we now consider refinement on the Jocé state.

5.1 The Design Decision

The Docj state is enlarged to the Doct state by the inclusion of the abstract components
PBuff, MarkSeq and MarkedSeq.

Our concrete represenlation for the first is the character array Parr of size Maz and
pointer PP, a natural number vot exceeding Mer. We introduce the pointer MP, lving
between — 1 and Mar with — I indicates that no text is marked. Otherwise, if MP
is less than CP MarkSeq and MarkedSeq are equal lo the ArrCont up to MFP and the
ArrCont lying between MP and CP respectively; if M{’ exceeds CP they are eynal to
the ArrCont after MP and the ArrCont lying between CF and MF respectively:

| ConePaste Buffer R

| PArr:1.. Mar —> Char !

{ PP:0..Mar .

‘f . o
ConcMark = MP: —1. Maz
ConelDocé = ConcDociy A ConcPasteDuffer A ConeMark
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5.1.1 The Concrete-Abstract Invariant

‘ Relpges I .
" Docé f
i ConcDoct

’ Rf!DncJ

MP # -1 A MP < CP = MarkSeq = ArrCon! for MP
MarkedSeq = MP+ 1 CP { ArrCont

MP # —1 A MP > P = MarkSeq = ArrCont after MP
MorkedSey = CP+ 7 .. MP 4 ArrCont

l MP = -7 = MarkSeq = MarkedSeqg = <>
|

[n order 1o satisfy the condition that every concrere state rorrespoiuls Lo a unique abstract
stale [C 2 : l.1.1a]. we have only 1o show thal the roncrete paste huffer defines a
nnique abstract one. and similarly for the renerete mark {the ConeDocd obligation was
discharged in Section 1.1.1): clearly both follow immediately Irom Relpe.s, to give

Lemnma 4:5.1.1a

Rijocﬁ
l_
VY ConcDocé o 3y Docé e fielp.¢

]
We calcnlate Absfiel. and have, after simplification:
AbsRelp,ee = [ EDocé A AbsRelp,., | # PBuff < Mnz |
Using the same argnment as that in Section 2.1.1, since:
liMafay—oo (# {PBuff < Maz) = true)

we discharge our data refinement proof ohligation by appealing to [ 2 : 4.18] and the
above lemma. implying an co-refinement:

Lemma 4 :5.1.1b

}_
Doc6 T, ConcDocé

a
We now calculate ConeRelp, s signdard 10 giVe:
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, Concllelp,cs Standare e oo
] -
i ACencDocé

| Conelelpocs siandars
| Pdrr'for PP = PoArr for PP
| MP = MP

and may again appeal (Sectiond 1. 1) to [C 2:3.2a] to show that Standardize ;5,., relines
1his operation.

5.2 Refinement Of “SetMark”
Specification :
setdfk A FDocf A ADocs n ZPasteRuffer A Success

where:

Stk )
Marked Tezt' !
Pairgpg,

MarkSeq’ = Lefteiar’
MarkedSeq' = <>

Simplification aud refinement of weakest cuncrete operation:

NoChangre( ConcDoct \ ConcMark)

WP = CP
rep! = ~OK”
Markn,s
MP = CP; return(*OK™)

5.3 Refinement Of “Lift”
Specification
CopyM Tezt PBuff A ZDocs A Alocté A Success

ErrorNoTextMarked
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where:

CopyAM Tect PBuff
| APasteBuffer

| Leflchar
| Muorked Text

e
I PBuaff' = MoarkedSeq £ <>

Simplification of weakesl concrete operation for Copyd Tert PBuff:

CP # MP #£ -1
CP < MP = PAre' for PPP = P+ 1. MP F AmCont
P> MP = Pdrrfor PP = MP 4+ 1..CP ' ArmrCont

CapyM Tezt’Buff

MPpir: 0. Mar

{Cr# MP A MP £ 1}
PP = 0;
if

] (CP < MP) —> CopyMTestPBuf  Curdboue

-

(]
| (CP > MP)Y —» CopyMTeztPBuff CurBelow
fi

CopyM TertPBuff_ Curdbove

MPptr = CP;
do
(MPptr # MP) —> MPpir+4 3 PP+ PArr PP = GetArrCnnti M Pptr)
{Invariant : PArrfor PP = MPpir+1..CP 4 reCont }
{ Variant : MP — MPpir }
{ Guard Negation : MPptr = MP }
od



Code for Liftpees

FlagCPLPRP
rep @ Jeport

if

l (CP#F MP A MP # -1y = CopyMTerlPBuff ; refurn(*OK™)
o

f (CP = MP v MP = -1} —» rriuni"No text marked™)

fi-

Updatep,ea{ prevcCP, precLPoprevR PPy Updute oy o relurnirep)

Note
Code

We appeal to [T 2.3.5.25], the pre-condilion for vach disjuner providing the guard: the
loop is, of conrse, total, and for which we use {2 2.3.5.3a]. The corle for the body of the
secand disjuncl, CopyM FertPBuff CurBelaw . is similarto that for CopyM Text PBuff (urdborve,

5.4 Refinement of “Paste”
Specification

FlagPrevCursor

Pst ; RemTrarl WS, RemTrnINL A ADoc6 A Sarcress
v

ZDoct A Errorfull
v

ErrorPBuffEmpty

wlere:

Pst

-‘ APairepa, !
| AMarked Tect

! PasteBuffer

e

! PBuff # <>

1\ Leftonsy = Leflong- — PBuff
! Rightcnar’ = Rightchgr
MarkSeq" = Leftciar
MarkedSeq' = < >

Woe first consider Pst and have. as the simplification and refinement. of jts weakest
Standard concrete operations
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PP £ 0

PP < RP - LP

LP.LP = CP.CP

Are' far LY = Arrdor LP 7~ FPArr for PP
Arr! after LP’ = Arr after LP

MP' = LP
Pst
{LP=CP A PP #£0 A PP < HP-LP}
if
| up = CP; Pait
fi
Psti
PPptr = a;
do

| (PPpir # PP} — PPpirt+ ; LP4+ 3 CP++ ; Arr LP = PArr PPpir
{Invariant: Arrfor LP = Arr, for LP, = PArr, for PPpir}
{ Variant: PP - PPpir}
{ Goard Negation : PPpir = PP}

od

Cade for Pastepaes

FlagCPLPRP

PPpir 1 0.. Maz 4 rep : Heport

if

‘ (PP = 0) —> rep := “Paste buffer empty”

0

| (PP # 0 A PP > BP— LP} —> rep := “Editor full”

(]

\ (PP #£ 0 A PP < RP-LPy —» Standardizepy. ; Pst; rep = "OK”
fi:

bl

Updatepg.g(prevCP, prevL P, prevRP) o Updatep,.; 5 relurn{rep)

Note
Weakest concrete operation:

We appeal to [C 2 : 2.2b] to refine on a Standerd conliguration, (pushing the Standerdize
cperation throagh to where it is actnally required).
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Caode:

The pre-condition that PP must not exceed the difference hetween BP and LP for the
third conjunct is implied by the ConcDocl invariant, aud we appeal to [C 2 : 3.3q]
(treating the first two disjuncts as a single operation) to refine 1o a disjunet noting that
one pre-condition is the negation of the other. We then use [T 2 ; 3.5.2b], with each
pre-condition providing the guard, and appeal to [T 2 : 2.5.34] for the refinement of Psis
to 3 loop.

5.5 Promotion Of The Doc4 Operations

The ahstracr promotion melhod for the Dorg operations to the Docs stale requires that
for content-chauging operations the mark he re-set, but is non-deterministic for cursar-
changing operations; the suhsequent promotion 1o Dec6 requires a no-change paste
buffer. Using the sets CursorOps_ NoMarkSe!. CursorOps MarkSei and NonCursorOps
{Part 3, Sectinn 5.1.1), we have:

¥ OF : NonCursorOps »

GPpus = (Ppocy A ResciMark A ZPasteBuffer
¥ OP : CursorCps. NeMarkScl »

OPpock & OPpoy A ZMarkedTont A EPasteBuffer
¥ 0P : CursorOps  MuorkSet »

OPpocs = OFpoy A dMarkedText A ZPasteBuffer

Since it is desirable that cursor-changiug operations should preserve the mark position.
we choose to do that provided. after the operation, the mark does not point beyond the
bottom of the document {as it may do after the removal of trailing null lines); if it does,
the mark s re-set.

We therefore have:
Code far Updalep, sl prevC P, preal P prevRP) preeCP? prevl PV prevRP?: 0. Maz

if
({OPType # NoMove A GPType # LeftMove A OPType # RightMove) v

MP > Maz + L.P — RP) —> MP = -t

-
)

({(OPType = NoMove v OPType = LeftMove v OPType = RightMove) A
MP < Moz + LP—- RP A MP # —1) — AdjusiMark

J

{(OPType = NoMove v OPType = LeftMove v OFPType = RightMove) A
MP < Maz + LP-R A MP = 1) — Ship

fi
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AdjustMark

(prevCP < MP A CP < MP) — MP = MP— WSRem + WSIns

{prevCP < MP A CP 2 UP) — MP = MP — WSken

{prevCP 2 MP A CF < MP) -—> MP = MP 4+ WSInus

(prevlP > MP A CP > MP) —> Skip

= I e T e O e =4

We now have the concrete promotion method for all operations OF defined on the
ConcDoed state:

OPpore

FlagCPLPRP |
rep = OPp,. : Repert;
Updatep,cs( prevCPY ; return{rep)

Note

Il the cursor is originally above the marked positiou, the latter’s relative position will
change by the amount of whitespace removed {and thus we mnst teduce MP by WSRem),
and is the final position of Lthe cursor is above the marked position, the latter’s relative
position will change by the amount of whitespace inserted {and so we need 1o increase
MP by the WSIns). Thbe insertion of newlines (by Pad WSNL can only take place when
the cursor is moved helow the bottom of the document (and so MP will be less than CP,
which requires no change in the former to maintain its relative position), and the only
way in which the removal of newlines (by RemTruilNL) can aflect MP is i[ it points to
one of those newlines, and so will end up pointiug to a peint bevond the bottom of the
document {and tbus will be reset),

We use [C 2 : 3.5.2b| for the U'pdaie alternate construct, and [T 2 : 3.3a] for that of
AdjustMark, voting that the disjunct of the pre-conditions is Iruc.

6 Refinement Of Doc8

The Doc7 state introduces the quote bufler, logether with an editor state {10 epable
switchiug between document and quote bufler editing), and a document hle name, with
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the quote commands specified on tbis state. The Dwed state jutreduces search and
replace buffers. enabling the sperification of the search and replace operations. Since the
latter two operations may also be regarded as quote operations (they way be cffected
from either editor state}. wi choose not to refine on the Do 7 stale, but to incorporate
all of the quote operalions in one single refincmeut step, on the Doc& state.

6.1 The Design Decision

We represent the left and right quote buffers by a single character array, QArr, together
with the painters QP (Quote Pointer) and QCP (Quote ('ursar Peinter). QBuff. the
concatenation of the Jeft and right quote huffers. is rednadaut. and we choose to exelnde
it from the concrete state.

We identify QMar as a ResourceLimit. although, clearly, the specifier intended the in-
PMemeutalion ta provide only a small buffer.

[t is envisaged that the quote bufler will displayed on a single line of the terminal screen,
and its signature (together with those of the search and replace buffers) will reflect this.
Although we use an array and pointers as we did with the Docf representation, the guote
bufler content will be represented by the first QF locations of the array (a zere pointer
meaning an empty array), with QCP represcnting the cursor position; the smail size of
the array will render array shufiling ivexpensive.

The search and replace buffcrs will be represented by the characrer arrays SArr and
RpArr, together with their poiuters 5P and RpF respectively, having minimum valne
@ and maximum value QMaz - also Resourcelimils - with Matchedlength equal tao the
number of characters {ollowing the cursor that the search buffer corresponds to when
the documenl is in a matched state (since, berause of the nse of regular expressions,
we cannpt take the length of the buffer). The document flename is represeated by
the string F¥ame, the concrete editor state being ESlale, sharing the signature of its
abstract counterpart.

We also include the boolean DacChanged, indicating whether or not the document’s
content has changed since the last read from/write to store.

QMaz : ResourceLimil
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ConcDoc8
ConeDoct !
QArr.SAvr, KpArr: 1 .. QMaz —> Char
QP.QUCP,SP,RpP:0..QMuz

U FName : String

| MatchedLength: 0 .. QMnz

| ESiate : { Statep,.. State gyore }

| DocChanged : B

—_——— — -

QUP < QF
(S5Arr for SP) matches ( ArrClont after CF) =

| MatchedLength == matchedlength [SArr for SP. ArrCont after )

6.1.1 The Concrete-Abstract invariant

) REI;)M& - 3
| Dacs !
{ ConcDoc&

i Helpacs

f——— —

| State = EState

| Lefiguoe = QArr for QCP

| Rightquore = QUP+1..QP { Qarr
| SBuff = SArrfor SP

i RBuff = RpArr for RpP

QBuff = QArr for QP

F FileName = FName

|

R P |

Hence, for a given concrete stale Relp,. s will uniquely define the abstract Dec& rompa-
nents,a to give:

Lemma 4 :6.1.1a

REIDGE(-{
F

Y ConcDoc8 o 3y Doc8 » Re!p;cg
L |

We calculate AbsRel, and after simplification obtain:

186



Ab.’:‘RClD,ﬂg it et ——
i ZDoc8 I
| AbsRelpoes
e

|

| SBuf < QMazr
| RBuf € QMaz
b QBuff < QMar

We proceed exactly as in Section 5.L.1 ta obtain:

Lemma 4 : 6.1.1b

L
Dor® G, Concliocs

[
AbsRelpees = ZDoc8 A AbsRelp,,,

C Conellelpeey

AConcPDock
ConcRelp,e

Qarr' for QP' = QArr for QP
Sdre’ for SPY = SArr for 5P
RpArr for RpP! = RpArr for RpP
FNamc' = FName

] QCP', EState’, DocChanged’ = QCP. EState. DocChanged |
i

|
|
-
|
|
|

Similar comments to those made in Section 6.1.1 also apply here.

6.2 Refinement Of I/0 Operations

In the specification we make broad assumplions concerning the operations to return a
pointer to a file, GetSysPtr, and those to read and write a file. SysRead and Sys Wrute
respectively, and specify the operations HeadFromStore and WriteToStore (mmaking use
of those ifo operations) which incorporate the return of appropriate reports indicating
the success, or otherwise, of the ifo operations.

Refirement Of “ReadFromStore”




Specification :
SuccSysGeiPlr 3> SureSysRead A Success
SuceCietSysPtr > I'nSuccRendFile A Errarlcadinglile
EnSuceSysGetPtr A ErrorCannoetOpenfile

SuccSysGetPlr A ErrorFuli

SysRead __
I AStore
t SysPir? N
| ReadSeql: seq Cher
NoReadError! : B
I

Code for ReadFromStore( filename) filenrame? © String

fitelength : N 4
FlagPrevDocl
SysPir = fopen (filcnome, < r>) N
if
| (SysPtr # NullPtr) —
if
( FileSuitable( filcname)) —»
filelength = SysGetFilelength{ filename} 5
if

(filelength < RP — LP) — Hegd ToCurrentPosition

B!
| (
fi

Jilelength > RP — LPY —> rriurn{*Editor full™)

1

] (~ FileSuitable( filename)) —» return(“Unsuitable file™)
fi

i

l (SysPtr = NullPtr) —>  return(“Cannot open file”)
fi
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ReadToCurrent Position

NoReadError := true: B;

Standardizep,.; ;

do

(LP <« RP A NoReadError A Nolnterrupi A filelength > 0) —
GetNertNon CrirlChar ; Arr(LP+ 1) = 1 LP++ ;
if
] {z = nl) ~—> StripTrailW§
il

| {r £ nly —> Skip

fi;

{!nvariant: Read(LP, + {..LP / Arri }

{lovarant: ¥ {-FLV(CP..LP f 4rr) o visible [}

{ Variant: filelength }
{Guard Negatien : LP > RP v - NoleadError v ~ Nolnterrupt Vv filelength = 0]

felose ( Syshtr) ;
if
(LP = RP) -—= [P := preclP; relurn(=Editor full”)

(= NoReudError) —> LP := preelP; relurn("Error reading file™)

e

(flelength = 0) —> { ReadSeq = LP, +1..LP i 4rr}
CP o= LP; return{*OK")

fi

GetNestNon CrtriChar

cntrifnd - B
r =  gete (SysPer); filelength— ; entrifnd := ControlChar z
b
{entrifnd A filelength > 0 A Nolnterrupt) —>
z = getc [SysPIr); filelength—— ; cntrifnd = ConirelChar z

{lovartant : ¥ c: Store (| SysPir, . SysPtr— 1) o ControlChar ¢}
{ Variant : filelength }
i {Guard Negation : —cntrifnd v filelengih = 0 v - Nofnterrupt }
od
{ filelength > 0 A Nointerrupt = - (ControlChar z)}
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Strip Trail WS

do
(LP > CP+1 A Arr(LP-1) = sp) —> LP——; Arr LP = nl
{Invariant: Arr, (LP+ 1. LP,~1) C {sp}}
{\nvariant : Arr LP = nl}
{Variant: LP-¢P -1}
{ Guard Negation: LP = CP+ 1 v Arr(LP -1} ¥ sp}
od

flast (FLTY (CP. LP { Ay = <> }
{LP # P+ 1 = visible (last FL7) (CP..LP— 1§ drr)) )

Note

For the first disjunct of ReadFromStore, we introdnee the pre-coudition that there must
be soflicient editor capacity 1o accommiuodate the file (i.e. the file lenglh mnst not exceed
the difference between RP and LP); in order to preserve the tolalily of Lhe operation,
we nse the negation of this pre-condition as that for the last disjunct, and appeal ta
[T 2:3.3a] [or the alternate construct.

Since a successful ReadFromStore is always piped into fnputReadSeq (see Section 6.4.1).
and the latter requires tkal the seqnence of characters read is inserted into the docu-
menl at the current pasition, we tefine the former so that thal requirement is satisfied.
StripTrail WS ensures that feadSeq satisfies the whitespace invariant of Deoc¥, and the
final Update operations (Section 6.3) ensure that the original cursor line also satisfies
that invariant, and that trailing null lines are removed.

We pse the C lunction putc to return a character from a file. and the informal boolean
Read to indicate which part of ReadSeq has been read [rom store and inserted into the
array. The function SysGetFilelength is assnmed to return the length of the file {using
the C call stat) and we assume that ControlChar indicates whether or not a characler is a
valid text character or not. In the implementation we expand the T4 B control character
to an appropriale number of spaces {with a test to cnsnre that the editor capacity is not
exceeded); Lhe procednre follows that for the insertion of a tab character in the refinement
of InsertChar, Section 2.3.4.

We recogrnize that the user may interrupt the reading of a file, when, we assume that the
Nofnterrupt flag is sel to false, and in this case a read error message is reported.

6.3 Refinement Of The Quote Operations

We refine the operations Input and fownSearch to indicate the method of refinement
for operations specified on the Doc7 and Dock states.
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6.3.1 Refinement Of “Input”

Specification of Inpulp,.7.

FlagPrevCursor ;
(Requestinput > SuccfleadFromStore 3> InputReadSeq) ;
RemTroil WS ; RemTmilN],

¥
Requestfnput >> UnSuccReadFromStorr
A4
RequestInput A ZDocs A Errorkue NotEzist
v
RequestInput A EDord A Unsuilable File
\

Requestinput A ZDocs A ErrorFull

plpers = Inputpees A ESearchBuffer n ZReploceBuffer

Fxpansion of { Requestinput >> SueeReadFromStore > InputRecdSeq):

ADoc? !
ZDoeName

ZPaste Buffcr

ZQuote Buffer

ReadSeq? : seq Char

fitename! : String

flemode! - {<r > < w> <a>}

State = Stalegyorr
i State’ = Stalep,.
¢ < t,ap > prefix QBuff
| filename! = QDuff afrer 2
! filemode! = < r >
| Mark! = 1
! Leftciar = Leflcaer — ReadSeq?
! Rightcney' = Righicya
|

Wealkesl concrete operation:

1M




Simpli

Code:

State_ ConceDoc8

NoChange{ ConcDocs \ ConcDoc2, MP, EStalc)
EState = Statcgyor.

EState’ = Stalcp,.

< i,3p > prefix; (QArr for QF)

MP = —1

ArrCont’ for CP' = ArrConl for CP ~ IteadSeq?
| ArrCont’ after CP' = ArrCont after CP

—

fication and refiuement:

[ State_ Cone Duck

NoChange( ConcDoc& \ ConrDoc2, MI*, EStalr)
# flcadSeq? < RP— LP

ESlate = Slaiegy,.

EState’ = Statcp,,

QP > 3
QArr for 2 =< i,5p >
MP' = —1I

LP,CP/,RP' = LP + # ReadSeq?, CP + # ReadSeq?. RP
ArrCont’ = ArrContfor CP 7 ReadSeq? = ArrCont after CP

Inpulp,cs

Note
Since

{ EState = Statega.i. }

{QP >3 A Qiarrfor 2 =< 1,5p>}

rep : Report ; filename @ String ;

EState = Statep,.; OPType = Leftinsert ; CopyQRuff ToString(filerame. 2]

{ filename = QBuff after 2}
rep = ReadFromStore filename)

if

l (rep =“0OK") —> DocChanged := true ; MP = -1
Q

[ {rep # “OK™) —> Skip

fi

ReadFromStore ensures the whitespace invanant (and the operation cannot violate

the nnll lines invariant). we can dispense with the Rem operations of the first disjunct.
We again use [ 2:3.3a] and [C 2: 3.5.2] 1o refiue to the allernate construct.

192



Since we tefined a succesful ReadFromStors 1o concateuale the seqneuce of characters
read on to the end of the left character sequence, the last two predicates of the refirement
are satisfied. The implementatlion-dependent CopyQBuffToSiring copies the quote huffer
conterts from the third {one more than the value of the second parareter) location to
the QF* location o the string fifename (the value of the first pararucter). In the
implementation we sphit the "nnsuitable file” disjunct into two: we check to see whether
or not the file is a directory, and whether or not the file has read permission. with
appropriate reports returned if eitler requirernent is not satisfled.

6.3.2 Refinement Of “DownSearch”

Specification:
FlagPrevCursor
SuceDownSearch ; RemTrad WS § HemTradiNL A
FromoteScarchUnMuark A Success
UnSucc DownScarch A Promole SearchicaveMark A RepStringNatEound

ErrorSBuffEmpty

where

t

SuceDownSearch SucelownSchp,, ¥ SuccDounSehgyg.

1

UnSuce DounSearch UnSuceflownSchp,. Vv UnSuceDownSche,or.

Succ DownSearchgyor. CopyQBuffSBuff ; SuccDouwnSchy,,
UnSuccDownSearchg,o, = CopyQBuffSBuff ; UnSuccDownSehp,.

I

Expansion of Suce DounSearch:

 SweeDownSearch ____

! ADocs
Eppni Dot

SBuff’ = SBuff # <>
State = State’ = Statep,.
SBuff matches Righicy,,'
j (3 Sinn..m | (Lefiona, T fightcne.) e SBuff matches 5)
. where
\ nom = (# Leftene + 2).04 Lefichar + matchedlength (SBuff, Rightcy,.') — 1)
|
1

i

Simplification and refinement of weakest concrele operatian of first conjunct:
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[ StateConcDorcd
NoChange ConcDoc8 \ ( ConcDoc2, EState, SP, SArT)
SP = SP # ¢
SArr' = SArr
EState = ESlate’ = Statep,.
(SArr for SP) matches (CP'+ 1., P +SP 1 ArrCont)
| - (SArr for SP matches (CP + 2. CP' + 8P — i 4 ArmCont))

Expansion of I'nSuceDownSearch:

ImSuccDownSearch

ZDocs

Spuff £ <>
| State = Slatep,.
I (3 Sin (tail Righlch,,) & SBuff matches S5)

Simplification and reficemeut of weakest concrete operation for serend conjunct:

StateConecDoc8

NeChangeConcDocg

SP£0

EState = Stalep,,

~(3 5in {ArrCont atter CP + 1) o (SArr for 5P} matches 5)

Code for DownSearchp,ca

malched := false : B prevCP = CP:0..Max;

OPType := RightMove ;

if

| (EState = Stategese) —> CopyQBuFSBuff ; EStale := Stalcp,.
U

| (EState # Stoteguo.) —> Skip

fi;

if

l (5P # 0) —> DouwnSearch !

U

I {SP = 0) —> rep := “Search buffer empty™
fi
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DouwnSearchp, ;- 1

dn
(CP < Muz + LP - RP A -~ malched A Nofnterrupt) —>
CP++; CheckForMalch
{Invariant : matched = (Sdrr for SF') matches {Arrfont after GP) }
{Invariant : = matehied = - (3 Sin (CP,+2.. CP+ SP ¢ 4rrCont) =
(SArr for 5P) matches 5) }
{ Vanant : Maz + LF - RP - 5P - CP}
{ Guard Negation : €P = Muar + LP — RP — SP v matched v - Nolaterrupt }

)

od
if
I (matrhed) - rep = “OK"

-
(— maiched} —»
{ Notntcrrupt =
CP+ 5P = Mar + LF - RP
=~ (3 Sin (ArrCont after CP, + 1) o [SArr for §7°) matches §) }
CP := prevCP; rep := “String not found”

h————-
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SP = 8:0..QMar;

Docpir = 0:0.. Mar;

lastmatch(QOK = true: B ;

do

| (SP £ S A CP + Docptr < Mar + LP - RP — 5P A lastmaich(R) —
lastmatchOK = CharMalched( GelArrComt{ CF + Docptr + 1] 5
S5P++ 3 Docptr++

{Invariant : Docptr = matchedlength (SArr for SP. ArrConl after (CP)}

{ Invariant : lastmatchOK =

(SArr for SP) matches (CP.. CP+ Docptr — | 4 Arrlont) }

{ Variant - 5F — 5P }

{ Guard Negation : SP=5Pv CP+ Docpir> Mar +LP-RI-51 v =lostmatchON }

od ;

if

| (SF = SP A lestmalchOH)  —

{ (5Ar for 5P) matches (ArrCon! after TP}

malched = true; Matchedlength = Docptr

{ Matchedl.englh = matchedlength(SArrfor Si°, ArrCont after CP)}

(SP #£ SP v —lastmalchOK) —>
{ - ((54rr for 5P) matches (ArrCont after CP)) }
Skip

CharMatched(c, SP) e?: Char ; SP: 0.. QMaz

if
[ (SA(SP4+ 1) = . ) —> MatchAll(c, SP)

J

(SArr(SP+ 1) = \ ) —> MoichEscapeic. 5P)

(SArr(SP + 1) = ") — MaichNot(c,SP)
(SArr(SP+ 1) = [ ) —> MotchRegErp(c, 5P)

(SAT(SP+1)# . A SAmM(SP+ 1) £ | A

J
O
0
|
’ SArr(SP+ 1) # ~ A SAr{SP4+ 1] # [ ) —> MatchChar(ec, 5P)
fi
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MatchNot(c, SP) e?: Char; SP:0..QMar

{ (SArr for 5P,) matches (CF .. CP 4 Docplr — |/ 1 ArrConi) }
{ SAm{SP, + 1) = " }
{ ¢ = ArrCont(CP + Docpir) }
SPy+: return{SP #£ SP A SAm(SP+ 1) # ¢)
{(SP £ 5P A SArr(SP+ 1) #£¢) =
{SArr for SP+ 1) matches (C'P .. CP 4 Doepir 4 ArrCont) }

Notes

DouwnSeurchy,.s:

The code {or CopyQBuffSHuff is similar 1o thal {or CopyM Text PIff {Section 5.).
DownSearchp,., 1:

We assume Lthat the hoolean Nefnterrup! indicates whether or not an iuterrnpt bas
accurred. The first loop invariant holds initially since mafched is initially set 1o false.
CheckForMalch:

The loop invariant initially holds since S 15 inilially zero. aud we appeal to the definition
of "matches” and “matchedlength”™.

MatehNo:

The final assertion follows directly from the definition of “matches™, and the other four
disjuncts of CherMatched siniilarly {ollow.

7 Refinement Of Doc9

7.1 The Design Decision

The abstract Doc$ state incorporates a single moveable window onto the docnment,
achieved by embellishing Doc& to include the sequence of lines WindowlLines, the window
offsets OffsetX and OffsetY . and the window cursor positions WinCurX and WinCurY .
In the concrete state the first and last are represented by a window on the terminal
screen together with a cursor; both are provided by the hardware on which the editor is
to rum:

TerminalCursor = | TermCurX, TermCurY : N |

Terminal Window .
! TermWinLines: 1 .. WinHeight —> (! .. WinWidth —> C'har—ﬂ

Note that we do not make the assumption that the terminal corsor mnst pecessarly
reside in the terminal window (to enable more realistic assumptions of the operations
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that the terminal provides - see Section 7.2.1). However since the abstract state regiires
that the window cursor resides in the terminal window, the C'oncfloc# state must incdude
the invariant:

TermCurX € .. WinWidth n TermCurY € 1., Winkeighl
We represent the window offsets hy:
ConeWinOffset = [ WinOJX, WinOfY : 0.. Maz |

\We also incinde the pointer WinStertin in the design: il points to the newlive character
immediately preceeding the document line that provides the top window {ine {or lo zero
if it is the first document line) in a similar way ta that in whirh Startln identifies the
carsar line; there will be WinOff¥ newlines up io WinStartin {and so when WinOff} is
zero. WinSlartln will poinl to the beginning of the docmment). and if pir peints o the
{newline preceeding) the y* window line, we have:

NumMNLin (ArrCont. WinStartin -1 ..pir)+1 = ¢

We ncluode WinStarlln to obviate the need for the continnal re-establishment of the
position in the document which will provide the starting point for the window “from
scratch”™, which, for a long docnment when the window is being mnoved near the bottom.
may be time-consuming.

We require that the terminal window correctly displays (he appropriate part of the
docunteut, and so we need to define a relation which holds when a window line correctly
displays a docoment Jine (with appropriate offsets). and thus we need to be alble to
extract a particular display live froin ArrCont. We first define a function which takes
a character array and a posilive integer n as parameters, and returns the sequence of
characters corresponding to the n' line of the array:

e e e e
Arrayline :(f.. Moz — Char) x N, — DispLine
|
\ Arrayline (array,y) = stertlnptr + 1 .. endinptr { arruy
where
y < TotalNLin (grray) + I
¥ = NumNLin {grray, .. startinptr) + !
f startinptr < endlnptr
startinptr # 0 = arroy startinptr = n!
endinptr # # arvay = array(endinptr + 1) = ad
NoNLin {array, startinptr + I .. cndlnpir)
v
y > TotalNLin (arrey) + f
startinptr = endinptr

Thus startinptr and endinpir identify the y™ line of array the same way that Stertin and
Endin identify the Cur¥ * line of ArrCont. Note that when the parameter y exceeds the
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number of lines present, the emply live is returned (when startinptr cquals endlnptr):
il the window display extends beyond the bottom of the document we wish to display
empty lines, and in snch cases we utilise this property ol Arrayline in displaying the
window.

We have the [ollowing resalts:

Lemma 4 : 7.1la

ConrcDoc2
F
Y yil..DocNL4 1 e Arrayline (ArrCont, y) = {FDL™! ArrCont) y
]
Proof
Follows directly from the definitions of Arrayline. FDL and Lemmas 3:2.2b
|
Lemma 4 :Y.1b
ConcDoc?2
l_
Siartin + 1 .. Endin { ArrCon! = ArrayLine (ArrCont, CurY)
[ ]
Proof

Follows imniediately {from the ConeDoc? invariani, with y cqual to Cury | and startlnptr
and endimpir equal to Startin and Erdin respectively.

]

We now define a relation between a line of ArrCont and a TermWinLine, such that the
former is displayed by the latter; if the array line is pot cqual to the WinWidih the

window line is padded with an (ipvisihle} null characier:

nullchar : Char

_ isdisplayedas _ : Linc x Line — B

|
|
s S
i arrcontline isdisplayedas lermuninline <

. {arrcontline [or WinWadth) prefix termuwiniine
' rng (termwinline alter # arrcontline}) C  {nullchar}

1 |

. SV §

The horizontal offset means that each document hine will be displayed starting from
the { WinOffX + 1) position, and the [ollowing are a direct result of the definitious of
“isdisplayedas™ and “after”:
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Lemma 4: 7.1c

arrcontline : Line | # arrconthne £ WinOfJX
termuinfine : Line | # termuinline = WinWidth
rng termuwiniine = {nulichar}
}_
(arrcontline alter WinQffX) isdisplayedas termuinhnc

Lemma 4 : 7.1d

arrcontline : Line | WirOfX < # arrcontline < Wi GFX + WinWidih
ternweinfinee @ Line | # termuindme = Win Wik

{arreontline after WinOff X)) = termunndine for # vercontline — WintffA
g ({fermunnline after # arrcontline — WinGffX ) = {nullchar}

F
{arrcontline after WinOffX) isdisplayedas termasinfing

Lemma 4 : T.1le

arrcontline : Line | ft arrrontline > WinGffV + Win Width

terrmnbinie : Line | # termawintine = WinWadth

{(arrcontline after WinOfX) for WinWidth) = termumnline
'_

{arreontline after WinOffX) isdisplayedas fermuwinline

We note that the { WinOFY + y)* line of ArrCon! starling al position WinGFy, will
correspond 1o the y* window Yine and we are now able to define a refation which holds
when an appropriate docnment line is correctly displayed on the terminal window:

Displayed : (0. . Mar —> Char) x N x N x N —> B

Displayed (array, y, OFY,00%) &
(ArrayLline {array. Off Y + y) after OffX') isdisplayedas ( Terrn Winlines ) ‘

DisplayedRange : (#.. Maz —> Char) x PN x N x N — B

DisplayedRange (array.yt .. y2, OFY . OfX) &
¥ y:y!..y2 e Displayed [array, y, OffY. OFX)
- .
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Nute that we supply the array as a parameter, since this will then enable us 10 make
asseTtions about the uld and new ArrCont values in the promuytion of Doc8 operations;
we use QX and OFfY rather than OffselX and Offset}t to euable us to state. for
example, thal the first y lines of the window need scrolling up by oue line:

DisplayedRange (ArrCont. 1.y WinOFY, WinOffY — 1)

We incorporate the boolean array WinLimeOR of lenglh WinHeight in the design, in-
dicating whether or not cach window line correctly displays the appropriate docuinent
lire. ldeally we Tequire that after each operation the window dispay is corrected, and so
eacli entry in Windowline QK is true; howvver we wish Lo inplement the window display
routites such that the display of the window may he interrupted {so that, for example,
a commanid may be effected immediately. rather than having 1o wail for the window
display to complete). aud so we do pol include this requirement in the represenation of
the Doed stare. but require 1hat if a particular WindowLoe OR entry is true, the that
window line mnst correctly display the correspouding dorumeut line:

ConcDoc$
ConcDovR
TerminalDisplay
Cone WinQOffset
WinStartin : 0. Mar
WuLineOR = 1. Wimnfleight —> B

NumNLin {ArrConi, [ .. WinSiartln) = WinOff¥
WinStortin # 0 = ArrCont WinSlartln = nl
TermaCurX = CurX — WinOffY € .. WinWidlh
fermCurY = CurY — WinQffY € 1.. WinHright
LYy 1., Winficight »
! WinLincORK y = Displayed (ArrCont, y, WinQFX, WinQO[fY')

Note that when y exceeds the nnmber of lines in ArrCont - when the window display
extends bevond the bottom of 1he decument - the definition of ArrayLine ensures that
empty liaes are displayed (i.e. lines of nullchar).

The following results are a consequence of the Conefloc? invariant; firstly, sirce the
window must contain the corsor line. we show that the pointer to the window cannot
exceed the pointer to e current line:

Lemma 4: 7.1

ConcDoc9
}_
WinStartlin < Startin

Proof
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WinlLine > Stariln assumption

2. ArrConi WinStartln = nl 1.. ConcDocy
3. NumNLin (ArrCont. Starth: + 1., WnStortln) > ¢ 1.2
4. NumNLin {ArrCori. I .. WinStartin) = WinOfY ConcDneg
3. NumNLlin (ArrCont, { .. Stertin) = CurY — ConeDoc2
6. WmOFY - CurY +1 > 0 3.4, 5.
7. CurY — WinOffY > ¢ Conclloed
8. WmStartin < Startln 1.,6., 7.

Secondly. the 3% window linc is provided by the { WinOff Y + 1) docnaent line:

Lemma 4 : T.1g

ConeDoc9
startinptr : WinStartln .. Mez + LP — RP
slartinptr # 0 =  ArrCon! startinptr = nl
NumNLin (ArrCont, 1. startlnptr) + 1 = WinOfY +y
',
NumNLin (ArrConl, WinStertln + 1 .. winstartinpir)+ 1 = y

Proof
Follows from the definition of WinStartin.

AS a result, the cursor line must appear in the (CurY — WinOf1 ) window line:

Carollary 4:7.1h

ConeDocy

NumNLin (ArrCont, WinStartin + 1 .. Startin) + 1 = CurY - WinOft’
a

Further, if the cursor is in the top window line, the pointer to the window and that to
the current linc must agree, and vice-versa:
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Corollary 4: 7.1i

ConeDocd

(Cur¥ — WinOffY = 1) & (WinStariin = Slartln)
|

Finally, when ihe window exicnds beyond the unbounded display of the document. all
window lines below thie document are displayed as lines of nulichar:

Lemma 4 :7.1)
Conelocd | DoeNL+ 1 < WinQffY + WinHeght
y:DoeNL+ 1~ WinOffY .. WinHeight

I_.
g ( TermWinlines y) = {nullchar}

| |

Proof
By definition of DocNL and Arrayline, we have

ArrayLine {ArrConl,y) = < >
and so by the ConeDocd invariant:
<> isdisplayedas ( TermWinlLines y)

The defipition of isdisplayedas now provides the result.
»

7.1.1 The Concrete-Abstract Invariant

| OffsetX, OffsetY = WinOfX, WinOfY
I WinCurX, WinCur¥ = CurX — WinOffX.CurY - WinOfY
. Windowlines = TermWinlLines

Clearly, the schema nniqnely defines each abstract window component for a given con-
crete state, and we establish:
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RE[Doc.’i
[
V¥ ConcDoc® e 3 Doc® e Helpg.s

]
We calculate:

AbsRelp,.s = EDoc? A AbsRelp,.,
and, as in section 4.1.1, obtain:

Lemma 4 : T.1.1b

)_
Docd C.. Conclloed

|
We finally calculate concRel:

ConcRelpaco

AConcDocd i
ConcRelpges

WinOf X', WinOf Y’ = WinOfX, WinOfY
WinStartln' = WmStartin

| TermWinLines’ — TermWinlires
TermCurX', TermCurY’' = TermCurX, TermCuryY

Simijlar comments to those made in Section 4.1.1 also apply here, allowing use to use
Standardizep,.; as the concrete reorganizing operation.

7.2 Displaying The Document On The Terminal Window

We refine the Doc? operations in such a way that the array WinlineOR correctly indi-
cates which window lires are currently correctly displayed {to conform to the ConcDoc8
invariant), but do not re-display incotrectly displayed lines; such lines set to false in
the WindowlineOR array, and are displayed by the main program loop when there is
currently no command to be processed and no user interrupt pending (see Seclion 6.3).

However we do employ window scrolling when at least half of the current window can
be moved to its correct posilion (see Section 7.2.4), and assume that Lhe Lerminal hard-
ware is provided with scrolling and other basic window display operations; we stale our
assumptions of these operations in the next section.
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7.2.1 Specifications Of Operations Provided By The Terminal

We assume implementation-dependent operations to clear the window (requiring no argu-
ment, filling the window with nullchar and homing the cursor). to set Lhe cursor (taking
two integer arguments), to display a character at the terminal cursor position (Laking a
single character atgument and incremeuting the cursor as appropriate) aud to clear the
terminal cursor line from the cursor position (filling the rest of the line with nullchar}.
The last two operations require that the cursor is positioned within the terminal screen,
and although we specify them as total operations, we do nol specify whal happens to
the window display when the cursor is incorrectly positioned, or to the cursor position
when the operarion takes it outside the window.

The operation to clear the screen is assumed to fill the screen wilth nulflchar, and moves
Lthe cursar to the top left hand corner of the screen:

CLS

b TermCurX'. Tevim Cur Y= 1,1
{‘ ¥ oyl .. WinHeight o g [ TermWinLines” y) = {nallchar) \
1

1

Wae refine this operation to addilionally set each entry in the WinlineOHK array 1o false
c 2: 3.2a]:

CLSAdjust

CLS ; WinLinesBad( 1, WinHeight)

WinLinesBad first? last? o 1 .. WinHeighi

if

,(_ﬁrst < 1) —> first = 1

L

{lest > WinHeight) —» lasl := WinHeight

]

-

(first > 1 A lost < WinHewght) — Skip

=]

1

o

'(ﬁrs! < lost) —> WinLineOR first = false ; first4-4
{Invariant: ¥V i: first,.. first ~1 e —{WinLineOKk 1)}
{ Variant : last ~ first }
{ Guard Negation : first — | = fast }

od
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The operation to set Lhe termigal cursor does not otherwise alter the display:

 SetTermCursor
|

+ ATerminalDispiay
27y N

\ TermCur X', TermCurY’ = 22, y?
L.TermeLmes = TermWinLinrs

Provided the cnrsor is in the screen, the operalion 1o display a character leaves the screen
otherwise unchanged, and moves the cursor one position to the right:

 DisplagChar __
A TerminalDisplay
" e’ Char

! TermCurX € .. WinWidth A TermCurY € ! .. WinHeight
| [(TermCurY} 4 TermWinLines' = {TermCur¥} @ TermWinLines
: Term WinlLines' fermCurY =

TermWinlLines TermCurY & {TermCurX > 7}
‘ TermCurX', TermCurY' = TermCurX + 1, TermCurY

TermCurX & 1.. WinWidth v TermCurY ¢ I .. WinHeight

The operation to clear to the end of the line fills the cursor line from the cursor position
with nullchar, The cursor liue must injtially be within the window range; we make no
assumption abont the final position of the cursor:

Clear ToEndOfLinr =
A TermmnlD:sp!ay |

|
|
-
‘ TermCurY € 1.. WinHeight
{TermCurY} 4 TermWinLines' = {TermCurV} 4 TermWinlLines
({ TermWinLines’ TermCurY) for TermCurX - 1) =
{(TermWinlines" TermCurY) for TermCurX - 1)
rag {{ TermWinLines' TermCurY') after TermCurX — 13 C  {nulichar}
v
TermCurY ¢ 1., WinHcight

_ -]

We also assume the existence of operations to scrol! the display up and down n lines; the
former scrolls the entire screen from the bottom line and introdnces n lines of nulichar at
the bottom (typically achieved by contirued re-positioning of the cursor at the start of the
bottom line and printing a newline character), and the latter takes a second argument
iudicating from which line the scroll is to take place. with n lines of null char being
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introduced from that line {tvpically achieved by continued re-pasitioning the cursor at
the start of the parameter Jine and adding a blank line):

Serolltp U,
E A Terminal Window !
| n?:N
i.___&ﬁﬁi,ku‘__.

! n? ¢ [.. WinHeqht
‘ ¥ oy:t.. Winffeight — n? »
| TermWinlines' y = TermWinLines(y + n?}
?g ¥ y: WinfHeght —n® + 1 .. WinHeight »
i g ( FermWinlines' y) = (nullchar}
Y,
% n? g I .. WinHeght
i

In order to preserve the Concldoc® invariant, we niust ensure the update of the WinLineOK
artay by setting each cntry in the range / to { WinHeight — n) 1o tbat of the y'* en-
try below jt. and that the final » entries are set to false (since the last n screen lines
will consist of nutlchar, irrespective of the dacument content). We therefore refine the
operation, to Scrolll/pAdjust, as follows:

Scrolit/pAdjustin) a?: N,

{ne .. WinHeight }
= @ 1. WinHeight ;

E.'c

(y+n < WinHeighl) — WinlineOK (y+ 1) 1= WinlimeOK{(y +n+1); y++;
{Invariant: ¥ i:7..y & WinkineOK { = WinLineOR,{i+ n)}
{ Variant: Winkeight ~y —n'}
{ Guard Negation : y = Winlleight —n'}
od;
{ WinLinesBad (WinHeighl — n + 1. WinHeight) }

SerollDowm
| A Terminal Window
| n?, winline? : N
v
——————

winline? € 1 .. WinHfeight A n? < WinHeight — winlme? 4+ [
¥V y:7.. winline? -1 @
TermWinlines' y = TermWinLines y
¥ y:winline? . winline? + 17 — [ o
rog (TermWinlines' y) = {nuflchar}
f Y y:winline + n?.. WinHewght »
TermWinLincs' y = TermWinlines(y - n?)

unnfine? € f.. WinHeight v n? > Winfeight — winline? + 1
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We refine this operatior to SeroliDownddyust in a similar way to that in which we refine
ScrollUp.

7.2.2 An Operation To Set “WinStartin”

We nse the resnlt of Lemma 4:7.1h that there are (CurY — WinOffY — 1) newlines in
ArrCont hetween the valnes of WinStartin and Stariin.

SetWinStartin
numnl = CurY — WinOfY — ) : 1., WinHewhi ;
WinStartln 1= Startin;
do

{mnnl # 0) —> WinSlartln = GetPrevSlartinptr( WinStartln)  numni——
{Invariant : WinStariln £ 0 = ArrCont WinSturtin = nl}
{Invariant : numnl # 0 = WinSuartle £ 0}
{ Invariant : NumNLin (ArrCon?, WinStartin + 1 ., Startln) =
Cur¥ — WinOffY - 1 — numnl }
{ Variant : numnl }
‘ { Guard Negation : numn! = 0}
od

Note

The code for GetPrevStartinptr is similar to that for GetNertStartinptr, given in Sec-
tion 7.2.3, and the second invariaat is dne to Lemma 4:7.1h. We appeal to [T 2 :3.5.34]
far the loop.

7.2.3 An Operation To Display The Window

Displaying A Window Line

We first give an operation that displays the ( WinOf Y + y)* Jine of the document on the
y* window line: the operation’s parameter, startinptr points to the newhine imrmedialely
preceeding the start of the { WinOF ¥ + 4" document line (or to zero i it is the first doe-
nment Jine), The first loop, Move WinOffX, moves the pointer WinOfX positions along
the line (length permitting), aad the second laop, DisplayFrom WinOffX, displays the
next WinWidél characters of the line (again, length permitting); il Win Widlh charac-
ters have not been displayed, determined by Clear FoEndOfLine, the Clear ToEndQfLine
operation is effected.
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Code for DisplayWindawLinc{startinpir) startinptr? < 0. Maz + LP - RP;

T = 0:0..Maz;
{ startinptr # Maz + LP -~ RP =
NumNLin {ArrCont, I .. startinptr) + 1 = WinOfY +y}
{0 # stertlnptr # Maz + LP ~ RP = ArrCont starilnptr = nl }
{ TermCurX, TermCurY = i,y}
{ arrcontline = ArrayLine(ArrCont, WinOff Y +y) A termuintine = TermWinkwne y }
MoveWmOffX ;
{n=12x}
DisployFrom WinOffX ;
{z < WinOfX + WinWidth = #areontline = r '}
{z = WinOFX + WinWadth = n = WinOfJX A # arrcontlinge > ¢}
ClearfoEndCffane
{ Displayed { ArrCant, y. WinOff X . WinOffY) }

Move WinOfX

do
{slartlnptr + z # Maz + LP - RP A
GetdrrContlislartlaptr + 2+ 1) # nl A = # WimOFX) —> 4+
{Invariant : {startinptr + I .. startinpir + = £ ArrCont) prefix arrconiline )
{Variant : Max+ LP~ RP -z}
{ Guard Negation : (startinptr +z = Maz + LP — RP v
GetdrrConi(startinptr + 24+ 1) = al v r = WinQfX)}
od

DisplayFrom WinOff X

do

(startinptr + r # Mar + LP - RP A

GelArrConld(startinptr +r + 1) # nl A £ # WinOfX + WinWidth) —>

DisplayChar{ GetArrCont(startlnpir + £ + 1)) ; z++

{Invariant: (startinptr + 1. starilnpir + z 4 ArrCont) prefix arrconthine }

{ lnvariant : {{arrcontline after «) for r — n) = termwinline for z — n }
{Invariant: TermCurX = z-n+41}

{ Variant : Moz + LP - RP -}

{ Guard Negation : (stertinptr + + = Moz + LP - RP v

GetArrCont(startinptr + # 4+ 1) = nl v r = WinOfJX + WmWidth) }

Note
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The ConcDoc$ invariant stipulates that when the terminal display extends beyond the
botiom of the document, such lnes should contain nullchar (Lemma 4:7.1j). When the
parameter passed is (Max + LP ~ HPj (i.e. the bottom of the document will have been
reached), neither loop will start, Il the parameter passed is not (Maz 4 LP — RP), the
definition of ArrayLline stipulates that there must be ( WinOffY 4 y — 1) pewlines up to
the parameter (and herce the first assertion lor the operation) in order to ensure that
the correct document line is displayed.

The invariant for Moeve WinOffY and the licst for DuwplayFrom WinOfX are due lo the
definition of ArrContline; the remaining two iuvariants for tlie latter are provided by
DisplayChar. We are able to make the assertions immediately alter DisplayFrom WinOf X
from the guards of both loops. together with the definition of Arrayline. Qur final as-
sertion that the window line displays the array line is due to Lemmas 4:7.1c. 4:7.1d and
4:7.1e.

Displaying The Cursor Line

Many operations will necessitate the re-display of just the cursor line {for example a
newline insert), and in this case the parameter for the operation will be Startin:

Code lor Dhsplay Curline

{ NumNLin (ArrCont, Startln) = CurY — 1}
SetTermCursor( !, CurY — WwnOfft)
DisplayWindowLine( Startin)

{ Displayed (ArrCont, fermCurl . WinOfX, WinOffY) }

Displaying A Range Of Window Lines

We next wish to define an operation that will display a range of window lines by repeat-
edly calling DisplayWindowLine with appropriate startinptr parameters; we first define
an gperation which increments that parameter; the maximun value of the parameter is
(Maz + LP — RP} (when the display of the document will be complete, but the display
of the windew is not). and if that maximum value is given as the parameter. that same
value is returned:
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Code for GetNeziStartinpir(ptr) pir? . 0. Maz

{0 # pir # Maz + LP - RP = ArrCont pbr = nl}
if
(ptr # Mex+ LP - RP) —
b o
do
(ptr # Mar + LP — RP A GetArrCont pir # nl) — pir++
{ Invariant : NoNLin (ArrTont. ptr, + £ ..pir — 1)}
{ Variant: Maz + LP— RP ~ ptr }
{ Guard Negation: pir # Mar + LPP — RP = drrCont ptr = ol }
od

\ (ptr = Moz + LP — RP) —> Ship
fi;
relurnl ptr|
{piv, = Maz + LP - RP = pir = Mur + LP - RP}
{ptr # Muz + LP - BP =

ArrCont ptr = nl

NumNLin (ArrCont, 1 .. ptr) = NumNLin (ArrConl, 1. ptr,) + 1 )

We now define the operation which displays a range of window lines:




Code {or Ihsplay WindouwRange(first, last) first? last? : 1 .. Winlleight ;

ptr := WinStartin: 0. Maz ; y = first: 1. WinHewht ;
{ NumNLin {ArrCort, 1. pir) = WinOfft' }
do

{y # 1) —> pir := GetNexiStartin(ptr}; y——
{trvariant: & # pir # Mar + LP - RF = ArrCont ptr = ni }
{Iwariant . ptr # Mar + LFP - RP >

NumNLin {ArrCont, 1. plr) = WinOfFY + first —y }
{Vanant: 3}
{ Guard Negation: y = 1}

t

g2

(first € last A - CharAvadable A Nelnlerrupl) —>
DisplayLinelfNecessary ; pir := GriNextStartn(pir); first++
{invariant: ¢ # pir # Maz + LP - RP = ArrConl piv = ni }
{Invariant : pir # Mazr + LPP - RP =
NumNLin (ArrCont, 1..pir) = WinOFY + first — 1 }
{ Invariant : DisplayedRange (ArrCont, firsi, .. first — . WinOffX. WinOffY) }
{ Variant : last — first }
{ Guard Negation : (- Chardvmlable n Nofnterrupt) = first — 1 = last }

od

DisplayLinelfNecessary

if
—{WinLineOK first} —  SetTermCursor(1, first); Display Windowline! pir) ;
WinlineOH (first) = true

(WinLineOK first) —> Skip

g ]

Note

If the range (first . . last) is empty, the second loop guard ensures that no window lines
are displayed. As discussed in Seclion 7.1, the display of a range of window lines may
be interrupted by a command heing entered at the keyboard {in which case we assume
CharAvailable to hold) or a user-interrupt being received (in which case we assume thal
Nofnterrupt is set to false - see Section 6.4.2).

Displaying The Window

We may now give the operation to display the entire window:
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Dhrsplay The Window

Display WindowRange( 1, Winlleight )
{ DisplayedRange (ArrCont. 1 .. WinHeight, WinOfX, WinGFY) }

7.2.4  An Operation To Move The Window Vertically

Some Doc# gperations will cause the cursor to leave the current window and thus a
change in either or bath offseis will be necessary in order to regain Lhe cursor. We
consider the case when the window needs Lo be moved y positions vertically downwards
to regain the cursor: this may be necessitated by a right move or left insert, and for
the latter we assnme that the range of window lines after first is incorrect!y displayed
by a factor of y with respect o the current offset (hoth valnes being parameters 1o
the operationi. We define an operalion which produces a correct window display, with
specification:

Moue WindowDouwn

|

i AConcDocd
L ZDocs

l y? N,
1

i OFType = Leftinsert =

i DisplayedRange (ArrCont, first? .. WinHeight, WinOf X, WinOffY - y7)
1 WnmOfX!, WinOffY' = WinOfX, WinOffY + y?
L

Code:
Move WindowDown(y. first) yt Ny firet? o 1. WinHeight

{CurX — WinOffX € 1.. WinWidth }

[CurY - WinOfiY +y € 1.. Winfleight }

WinOffY = WinOfY¥ +y; SetWinStorth ;

if

;‘ (OPType = RightMove) —> Move WindowDown_ Right Move

{OPType #£ RightMore) —» MoveWindowDown. Lefiinsert

|
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Move WindowDown_ RightMove

(y < HalfWinffeight + 1) —> SerolllUpAdjust(y}

{y > HalfWinHeight + 1] — WinLinesBad( 1, WinHcight)

M=

Note

We could always re-display Lhe entire window Lo produce a correct display, but we take
the view (for efficiency reasons) that if al least hall of the current window ran he scrolled
into its correct position we do so. leaving Lhe remaining part of the screen to be re-
displayed; we ensure that the appropriate WinlineOR entries are set to false, forcing
the re-display of such lines.

We may similarly specify the analogous operation Mouve Window![/p, noting that the ap-
cration may be mecessitatad hy either a left move or lefl delete operation.

7.3 Promotion Of The DacB8 Operations
Each of the Dec8 operations is promoted to the Doc® stale by posi-sequential composi-
tion wilh Window/?alicy, where:

WindowPolicy = CursorfnWindow v Scroll v Pan v ScrollAndPan

alter which all CorreDoc# invariants will hold, with the exception that the terruinal cursor
may be incorrectly set, and we rectify by post sequeutial composition with:

SetDocCursor
SetTermCursor{ CurX — WinOfX . CurY — WinOffY)

We note that the specification stipulates that if the Dor& operation moves the cursor
outside the cnrrent window both window offsets should be changed only when eitker a
scroll or a pan will not regain the cursor: when the operation leaves the enrsor in the
window the specification allows for a window chapge.

7.3.1 Refinement Of “Scroll”

Our scrolling policy is that for a downward scroli, the window is re-positioned such that
the corsor is a quarter of the screen height from the hottom, and for an npward scroll
it is positioned the same distanee from the top {document length permitting}, aud we
introduce:



QurWinHeght : Ny | QirWinHeight = WinHeigh! — PageHeight < HalfWinleight
Specification:

Seroll .

A WindowCursor
ZDocCursor

L

DacCurX — OffectX € 1. WinWidth
DocCurY ~ OffsetY & 1.. WinHeght
Offst 1V’ = OffselX

DocturY' — Offset¥’ € (.. WinHeight |

[

Weakesl concrete operation:

CurY — WinOff¥ ¢ 1. WinWidith
Curt — WinOffY ¢ 1. Wrndlcight
WX = WmOffx

Car¥’ — WinOff¥Y' € 1., Winlleight

Code:




Seroll{ first, last) first? last? 1 N,

winy = CurY — WinOfY N, ;
{winy < 1 v winy > WinHeght }
if
(winy < 1 A CurY > QirWinHeight) —
{0 < Cur¥ — QurWinHeight }
Move WindowUp( WinOffY — CurY + QirWinHcight, last)
{ WinOFY = CurY — QirWinHeight }
{0 < WinOff¥' }
{ Cur¥ — WinOfY = OtriVinHeight < WinHeight }
C
{wing < 1 A CurY < QirWinflewght) —
Move Window Up( WinOf Y | laxt)
{ winoglv = 0}
{ CurY — WinOffY < QirWinHeight < WinHeght }

[ {wing > WinHewghl) —
{ Cur¥Y > WinHeight }
Move WindowDoun( CurY — Puge Heigh! — WinOffY'| first)
{ WinOfY = CurY - Pageficight }
{ WinOffY > QirWinkieight > 1}
{ CurY — WinOffY = Pagefieight > 1}

Note

The ConcDoc8 invariant means that it is necessary (o show that WinOFY does not
become negative and that, in the case of Move Windowlp, (CurY — WinOffY) dees not
exceed WinHeight, and in the case of Move WindowDown. it exceeds zero.

Our panning policy and, hence, the refinement of Pan is similar {using QirWinWulih in
an analogous way to Qtr WinHeight), using Lthe Move WindowLcfl and Move WindouwRight

operations of Section 7.4, with the refinement of ScroliAndPan being a combination of
both policies.

If an operation leaves the cnrsor visible, the first disjunct of WindowPolicy will apply:
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CursorInWindow

! A WindovrOffset

i ZDoc8

‘r,*“___f,,,,_______“,

I DocCur) — OffsetX € .. WinWidth

I DocCurt - OffseiY € .. Winlewht

U DoeCurX’ — Offset X’ € 1. WinWidth

E DacCurY! — Offset Y’ & 1 .. Winfleight \
o e !

We refine 10 the operation CorrectDisplny, which hias many similarities with both of the
operations Move WindowDown and Move WindowUp. taking as patameters first and lus!
(indicating the Tange of lines incotrectly displayed). but not taking the parameter y.
since it will not be necessary to move the winduw,

We may now reflue WindowPoliry as follows:
WindowPoliey( first, last) first? lost? 1 N,

winr = Cur¥ — WinOffY - 1. WinWidth |
winy = Curt - WinOf Y : .. WinHeight ;

if
(winr 2 1 A winz < WinWidth) —

if
| {winy > 1 A winy < Winlleight) — Curserln Window(first, last)
(
| (winy < 1 Vv winy > WinHelght) —> Seroll( first, last)
fi

0

{winr < [ Vv winr > WinWidih) —
if
{wrny > | A winy < WinHeight) — Pan

=

(winy < 1 v winy > Winllcight) — ScrollAndPun

=

Thus for each operation OF defined on the Docd state and in the sel CursorOps?, we
have. as the code for the corresponding Decf operation:




prevDocNL = DocNL: 0., Marz ;
rep = OFppes : Reporl

first, last. temp : — Maz .. Max ;
if

‘ (rep # “OK”) —> refurn(rep)

-

(rep = “OK™) —>
if
l (EState = Stategy, ) —> DisplayTheQuote Buffer ; return(*OK™}
L)
(EStale = Stalep,.) ——=>  Set_firstlust s
WindowPolicy{ firsd. lasi)
SetDoeCursor 3 returi(“OK”)

fi

Set_ firstlast

first = presCurY -~ WinOQffY ;

tast = first + DoeNL — prevDocNL+ NLRem — NLus

if

first > last) —> temp := firsty first = lusl; lnst = temp

K
U
} {first < last) — Ship

fi

Note

We establish first and last using DocNI and prevDocNL {laking account of ¥LRem
and NLIns), rather than CurY and prevCurY, since for right delete and right insert

operations, the latter method will fail. The DiaplayThe Quote Buffer operation is similar
to DisplayCurLine {except that a poinler parameter is not necessary).

7.3.2 Promotion Of Content-Changing Operations

We choose to promote each content-changing operation soparately since each will require
different treatment, onr proof obligation being to demonstrate that the new (possibly
unchanged) window correctly displays the document, that il contains the new cursor
position and that both new window offsets are non-zero. We promote InsertChar to
illustrate the method.

Promotion Of “InsertChar”
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We distingnish four cases: ibe cnrsor being visible alter the insertion of a newline, the
cursar being visible after the insertion of a character other than a newline, the cursor
not being visible after the jusertion of a newline, and the cursor not being visible after
2 nonr-newline nsert. We nate that after a uewline inserl, the valne of Cur¥ will be 7,
and the ConcDor® iuvariant dictates that the final valne of WinOFX ho zera.

Far the first of these cases we use Lemma 3:2.2a, together with the fact that the y®
array line will provide the {y — WinOfY )™ window line. and, since the Docd operation
will have iucremented CurY by one, the TermCurY* window line will correspound to
the (CurY ~ WinOffY — 1)™ docunient line, the previous cursor line. After the insertion
of a newline character into window line TermCurt', the first { TermCurY — 1) lives will
remain unchanged. and the new window lines from ( TermCurY 4 1) to Windfeight will
correspond to those in the current windaw [rom TermC'urY to ( WmHeight — 1) - i.c
these lines will be currently displayed by an offset of { WinOffY 4 1) (since the offset still
hias its original valne). Since the insertion will have been at window position Term(urX,
e new TermCurY™ window line will be the same as the rurrent one, but cut off alier
{XermCurX — 1) characters (since the Lkorizontal window offset will not have changed
and must therefore have been zero), with the rest of that current window line providing
the new { FormCurY 4+ 1)% window line.

The aperation ihus consists of clearing to the end of the TermCuri™ line, scrolling
down one from the { FermCurY + 11¥ line, and displaying the { fermCur} 4 [}*' - the
new carsor - line.

Cursor Visible AndNewline

{ TermCurX € 1.. WinWidth A TermCurY € 1 .. Winfleight }
{ TermCurY = Cur¥ — WinOffY —1 A CuwrX = 1}
{ VinOffxX = 0}
{ DisplayedRange { ArrConli, 1 .. TermCurY - 1, WinOfX ., WinOffY) }
{ DisplayedRange { ArrCont, TermCurY + 1 .. Winfleight, WinOfX, WinGfY + 1) }
{ (ArrayLine { ArrCont, WinOffY + TermCurY)) =
(TermWinLines TermCurY') for TermCurX - 1 }
Cleur ToEndOfLine 5
{ mg ({ Term WinLines TermCurY) after TermCurX — 1} C {nullchar} }
{ Displayed (AvrrCont. TermCurY, WinOfX. WinOfY) }
ScrollDown! t, CurY — WinOffY') . DisplayPrompt ;
{ DisplayedRange ( ArrCont, TermCur¥ + 2 .. Winifeight, WinQFX, WinOffY} }
DisplayCurline
{ DisplayedRange [ ArrCont, [ .. Winffeight, WinOffX, WinQfJY) }

For the second case, the only line Lhat will change is the cursor line from the previous
cnrsor position; becanse we are nnsure how many chararters will have been inserted
(it may have been a tab insert) and we dor’t assume a terminal operation to supply
the position of the terminal cursor. we require the previous value of Curd to be input
(TermCurY unot baving changed):
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Cursor Visible AndNot Newline{ prevCurX ) preeCurX? 1 L. Win Width

tempCurX = CurX : I.. WinWidih ;
{ TermCurX € [.. WinWidth A TermCurY € 1.. Winieight }
{ TermCurX = precCurX A TermCurY = CurY — WinOfY }
{ DispiayedRange (ArrCont. 1., TermCurY — !, WinOfX, WinOffr) }
{ DisplayedRange (ArrCont, TermCurY + ! .. WinHeight, WinOfX, WinOfY) }
{ ((ArrayLine (ArrCont, Cur¥) after WinOffX ) for LermCurX — 1) prefix
{ TermWinlLines TermCurY) }
CurX = prevCurX ; DisplayCurLineFromCur 3 CurX = tempCurX
{ Displayed (ArrCont. TermCurY, WinOfX . WinOff}' }
{ DisplayedRange [ ArrCont, { .. Winllewht, WinOffX, WinOffY') }

For the third case, either the newline insert will necessitate a change in horizontal window
offset (in which case a pan will be necessary, and the window completely re-displaved)
or the newline insert was in the bottom window line. For the latter, if a pan is not
neressary. the bottom window line is cleared from the previous terminal cursor position
{for the same reasons as those stated in the first case): the display will then be carrect,
and 50 we may use a scroll. We may recognize the cases when a pan s necessary by
WinOffX being nom-zero (since it must be zero after the promotion); in this case we
employ WindowPolicy which will result in the window being completely re-cisplayed:

CursorNot Visible AndNewline( prevCurX )

{ TermCurX € 1 .. WinWidth A TermCur} € .. Winffeight }
{ TermCurY = CurY - WinOffY —1 A CuwrX = 1 }
if
(WinOfX = 0) —
{ TermCurY = WinHeight }
{ DisplayedRange (ArrCont, { .. WinHeight — 1, WinOfX, WinOffY) }
{ (ArrayLine { ArrCont, WinQffY + Winlfeight) alter WinOffX) =
{ TermWinLines Winfcight) for TermCurX — 1 }
ClearToEndQOfLine ;
{ Displayed ( ArrCont, WinHeight. WinOfX, WinOf ¥} }
{ DisplayedRange (ArrCont. .. WinHeight, WirnOffX , WinOf ¥) }
Seroll
]
(WinOfiX #£ 0) —> {CurX — WinOfX < 1)
WindowPoliey

fi
DisplayedRange (ArrCont, I .. WinHeight, WinOff X, WinOffY
7

For the last case, since the cursor line will not have changed, (CurX — WinGfX) must
exceed WinWidth after the Doc® operation (since CurX will have increased), and sa we
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employ Par. resulting in a complele re-display ol the screen.
We now have:
InsertCharp, (e} ¢?: Char

prevCurX 1= CurX 1. WinWidth ;
rep = Inser!Char{e)pges : Repori ;
if

\ (rep #*0K") —> return(rep)

(rep =“0K™) —
if
{CursorVisible A ¢ = nl} —~» CursorVisibleAndNewLine

| (Carsor Visible A ¢ # nl) —> CursorVisible AndNolNewLme

L}
.

(CursorNotVisible A ¢ = nl} —3 CursorNotVisible AndNeuLime(prevCurY)
i

{CursorNotVisible A ¢ # nl) — Pan
fi;

SetDocCursor 3 veturn(*OK")
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Appendix A

Summary Of Abstract State

Doct . o
i - T ~ - 1

I Pairchar
Pairw,re
Pairgn,

FEeflchar = FW Leftwors = FL Leftiine
Righteya, = FW Rightypo.s = FL Righty,,,

JvD_ )

] UDLines @ seq; Displine

| UDCur X, UDCurY : N,

i UDCurLine : DispLine

| UnCury < # UDLines

‘ UDCyrLine = UDLines UDCur¥
CDCur X € # UDCurline + 1

- Doc2
' Dot

uD

| UDLines = FDU™! (Leftoner 7 Righloper)

Hierarchies

. UDCurLine = last (FDL™? Leficye) ™ st (FDL™!' Rightens,)

UDCurY = #{FDL™ Lefigue)
UDCurX = # (last FDL™! Leflcaa ) + 1

Docy
Doc2

¥ i:f..# UDLines— {UDCurY} o wisible [ UDLines i)

visible { VD CurLine after UDCurX - 1)

visibleseq ( UDLines after UDCurY')
I



QP = [QPCurX,QPCurY :Ny )

| UDCurX = QPCurY
| UDCurt = QPCur¥
|

MarkedText ___

MarkSeq, MarkedSeq - seq Char
Parey,r

MarkSeq = MarkedSeq = <>
MarkSeq — MarkedSeq = Lefloye,

MartedSeq ™ MarkSeq = Righley,.
i |

Pocs £ Doed A MarkedText

PasteBuffer = [ PBuff : seq Char |

Docs =  Does A PasteBuffer
QuoteBuffer —
Leftguote, Righlguaie 1 veq Char |

! @Buff : seq Char

S —

| QBuF = Leflguer. T Righlgye .

DocState = [ State ; {Statepoe, Salé quore}
DocName = [ Namc : seg Char )

Doc? = Doc6 A QuetcDuffer A DocStale A DocName
SearchBuffer = [ SBuff : seq Char ]

ReplaceBuffer = [ RBuff : seq Char |

Dacs £ Doc? A SearchBuffer A Replace Buffer




WindowQfset = [ OffsetX, Offsely : N |

WindowCursor
| WinCurX. WinCury : N,

[ < WinCurX < Winidth
I < WinurY < Winfleight

|

1

Window

WindowLines : scg Line

Windowffsel
| WindowCursor
‘ # Windowlines < Winifeight

Y oy:i..# WinLines o #( WindowLines y) < Wardidih

Dged
Doed

| Window
’_
| WinCurX , WinCurt = UDCurY — Offset X UDCurY - OffsctY
| WindowLines = ( WinMuskLines after OffsetY) for Winflewght
where

# WinMaskLines = # I'DELines

Y y:i..#UDLines »

WindMaskLines y = ((U'DLines ) after OffselY) for WinHidth

-




Appendix B

Summary Of Concrete State Hierarchies

ConeDocl

i Avr .. Maz —» Char
| LP.RP.CP:0.. Maz
:r“_________i_______

T LP < RP

i P < Mor + LP - RP

ArrCon! = {Arr for LEY 7 (Arr after XP)
Relpacy:

Leftepar = ArrCont far CP
ArrCont after P

i

Right ghar

Relpocs Staneard®

{ L(ﬂchar

I

Arr for LP
Arr after P

1

Rughtcy..

ConeDoc?2

3 ConrDoct i
. Startin, Endin, DocNL, WSRem. XLRem : 0., Mux
: CurX. . CurY 1 . Moz + 1
N

1‘ Startin < CP < Endin
| NoNLin (ArrCont Startin + 1 .. Endln)

| Startln # 0 = ArrCont Startln = nl

| Endin # (Maz + LP — RP) = AmCont(Endin + 1) = nl
! CurX = CP -~ Startln + 1

I CurY = NumNLin {ArrCont, /.. CP) + I

! DocNL = TotalNLin ArrCont




Relpo.:

UDCur X, UDCurY = CurX, CurY

UDLines =FDL™' ArrCont

UDCurLine = Startin + 1 .. Endln 4 AreCont
# UDLines = DocNL+ I

| ConcDacld
' ConcDoc2

| I)ocNL+ 1 —{CurY) o visible {(FDL™! drrCont) i)
i vmble CP4+ 1. Endin | ArcCont)
‘ visibleseq (FDL™'{ArrCont after Endin))

Rf{ﬂuc‘?:

Relpoes = Relpoes

ConcDoc 4

ConelDoc3
| WSIns, NLfns: 0., Maz ‘
|

Relpoey:

RC{DHCS’
QPCurX, QPCurY = CurX, CurY



ConcDocé
ConcDoc
PArr: 1. Mar —> Char
PP :0.. Maz

| MP: 1. Maz

I

e

Relpoes:

[ Relp,

MP = -1 = MarkSeq = MarkedSeq = < >

MP £ -1 A MP < CP = MurktSeq = ArrCont for MP
MarkedSeg = MP + 1 .. CP { ArcCont

AMP £ —1 A MP > CP = MarkSeq = ArrCont after MfP
MarkedSeq = ('P+ 1.. MP 4 ArrCont

PBuff = PArr for PP

ConcDocs
! ConcDoct i
QArr. SArr, RpArr 1 1 .. QMar —> Char
QP QCP, 5P, RpP : 0.. QMar
#Name : String
MuatchedLength : 0 .. QMar
EState - { Statep,..5tale guoe }
DecChanged : B

QUP < QF
(5Arr for SP) matches (A4rrCont after CP) =
MatchedLength = matchedlength (SArr for SP, ArrCont after (P} |

Relpaos

Rleocﬁ

State = EStaic

Leftguoi. = QArr for QCP
Righigue, = QCP+1..QP 4 Qarr
SBuff = SArr for SP

RBuff = RpArr for RpF

QRuff QArr for QP

FileName = FName

]




TerminalCursor = | TermCurX, TermCurY : N |

Terminal Window o . - L _
}l TermWinLines: I .. WinHleight — (/.. WinWidth — (har) |
1

TerminalDisplay £ TerminalCursor A Terminal Window

ConcWin Offset

1

| WinQffX, WinGffY 1 0.. Afaz |

- ConcDocd
ConeDocd
TerminalDisplay

Cone WinCffset

WinStartin : 0 .. Maz

WinLineOK : 1.. WinHeight — B

NumNLin (ArrCont, 1 .. WinStariln) = WmmOfY
\ WinStartin # 0 = ArrCont WinStartin = nl
TermCurX = CurX — WinOGffY € 1.. WinWidth
TermCurY = CurY — WinOffY € 1. WinHeght
P Y y:1.. Winfeight «

" WinLineGK y = Displayed {ArrCont, y, WinOFX, WirOffY)

- )

Relpges:

Relpoca

OffsetX, OffsetY = WinOfX, WinOffy

WinCurX, WinCurY = CurX — WinOf X, CurY — WinQfY
WindewLines = TermWinLines



Appendix C

Implementation Of The Editor Specification

/» IMPLEMENTATION OF DOCL =/
/= */

#include "fse/davenfox/c/cZ/erternglobals.c"

[ o e ./

int OF_Docl()

{
if (OP=Laf tMaveChar) { OPType<LeftMove; return(LeftMoveCkar_Doci()); }
else if (OP=RightMaveChar) { DPType=RightMove; return{RightMoveChar_Doc1{)}; }
else if (OP==LeftMaveWord) { DPType=LeftMove; return(LeftMoveWord Doci()}; }
else 1f (OP==RightMaveWord) { DPType=RightMove; return(RightNoveWord_ Doc1()}; }
else if (DP==LaftMoveline) { OPType=LeftMove; return(LeftMoveLine Doci(}); }
else if (OP==RightMaveline) { DPType=RightMove; return(RightMoveline _Ooct()); }
else if (OP==LeftDeleteChar) { DPType=LeftDelete; retnrn{leftDeleteChar_Doci()); }
else if (DPa=RightDeleteChar) { OPType=RightDelete; return(RightODeleteChar_Doci()); }
else jt ((P==LeftDeleteWord) { OPType=LeftDelete; return{leftDelete¥ord.Docl(}); }
elge if ((P==RightDeleteWerd) [ OPType=RightDelete; return(RightDeleteWord_Docl()); }
elae if {0P~=LeftDeleteLline) { DPType<LeftDelete; retnrn{leftDeleteline_Docl(}); }
elae if (0P==RightDeleteline) { DPType=RightDelete; return(RightDeletelLine Docl{}); }
e¢lse 1f (DP=alnsertChar) { OPType~leftlnsert; return{InsertChar_Doci(}}; }
elas if (DP=aMoveToTop) { OPType=leftMove; return(MoveToTop_Poc1(})); }
alse if (OP==MoveTcBot) { OPType=fiightMove; return(MaoveTaHot_Oocl()}; }

}

f® ——- -— e e =/

int Initialize_Docl{)

LF=0; CP=); HP=Max;

}

ril - it ittt «f
int GethrrGont(ptr)  int ptr;

it (pir<=LP) { retwn(ixrciptr]); }

elee { return(Azriptr+iP-LF]}}; }
}

/= B T -/
Standardize_Doci(}

{

if (LE>CP) { while (LP>CP) { Arr[RP]=Arr[LP]; RP-~; LP-~; } }

elme if (LP<CP) { while (LP<CP) { Axx[LP+11=Arr[RP+1]1; RP++; LP++; } }

TA N
int RightMeveChar Decl(}

1

if {cP!=Mar+IP-RP) { CP++, return(OR); }

elme { return{Bot); }

}

[ ¥ s a
int LeftMoveChar_Docl()

{

if (GP'=0) { CP-~; return(0X); }

else { return(Top); }

—— [U— f

I e e e e e e e = = -/




int RightKoveWord_Dec1{)

{
1f (CP'=Max+LP-RP) { af {GetArTCont {CP+1)==ml) { CP++; }
else if (GerjrrCont(CP+1)==ap) { RMWSWord(); }
else { RMNWSWord(}; }
return{OK) ;
}
else { return(Bot); }
}
S m e e e e e =/
RMWSWord{)
1
shils [CP<Max+LP-RAP &t GetArrCont (CP+1)=sp) { CP++: }
}
[ e —— e e e e e T -f
RMNWSWord ()
i

while (CP<Max+LP-RP k& CetArrCont(CP+l)'!'=sp &k GetArrCont(CP+1}'=nl) { CP++; }
}

/% —mmmmm e e e R—.
int LeftMoveWord_Doci(}
{
if {CP!=0) { if {GetArrCont{CP)==pl) { CP--; }

else if (GetArrCont{CP)==ap) { LMWSWord(): }

else { LMNWSWord(); }

return(0K);

}
else { return(Top); }
1
L et D ——— u/
LMWSWord ()
1
shile (CP>0 &% GetArrCont(CP)==ap) { CP--; }
}
/.- Bt Rt -~/
LMEVS¥ord ()
1{
shile (CP>0 k& GetArrCont{CP}'=sp kk GethrrCont{CP)!=al) { CP~-; }
}
o - -—- - Y
int RightMoveLine_Deocl{}
1
if  (CP!=Max+LP-RP} { if (GetArrCoat(CP+1}==nl)
GPa+;
elae

ghile (CP!=Mar+LP-RP kk GetArrCont(CP+1)!=gl) { CP+; }
return(0K) ;
}
else { yeturn(Bot); }
}
= - -— B e el P L TS Tt ————
in: LeftMoveLine Doci{)

if (cPi=Q) { if (GethrrCont(CP)=—nl} CP-—;

elae while {CP!=0 kk GetArrCont{(CP)'=nl) { CP--; }
return{0R) ;
)
else { return(Top); }
}
i* —————————m e —rmm— =/
int RightDeleteChar_Docl{)
{

Standardize_Doci{); if (HP!=Max} { WP++; return{DK); }
alse { return(Bot}; }



i

e - */
int LeftDeleteChar Docl()
{
Standardize Docl(); if  (IP!=0) { LP--; CP-~; return{0K); }
else { return(Top); }
}
A */
int RightDeleteWord Docl()
{
Standardize_Dact{);
it (RP!=Max) { f (Arr [RP+1]==nl) RP++;
elae if (Arr[RP+1]==sp) while (RP!=Nar kk Arr[RP+1]==ap) { RP++; }
elae while (RP!=Nar &% Arr[RP+1]!=nl && Arr[RP+1]‘=sp)
{ RP++; }
return(DK);
}
else { return(Bot); }
}
I e et e e LT L =/
int LeftDeleteWord Doci(}
{
Standardize_Docl():
if (LP!=Q) { if (Arr[CP1==r1) CP--;
else if (Arr[CPl==sp) while (CP!=0 % Arr[{PJ==sp) { CP--; }
alse while (CP'=0 B Axr[CP]!=ml #& Arx(CPl'=sp) { CP--; }
LPeCP; return{DK};
}
else { return{Topl; }
}
£ QT T ——, e »/

int RightDeleteline_Deeci()

Standardize_Doc!{);
if (RP'=Max} { if  (Arr[RP+1]==nl) RP++;

elae while (AP!'=Max &% Aty [RP+1]!snl) { RP++; }
return{0K);
}
else { return{(Bot); }
}
/% e e et e e e -
int LeftdeleteLine_Doc1()
{
Standardize .Doc1{);
if {Lp'=0) { if (Arr[IP]=nl) LP--;
else while (LP'=0 Xk Arr[iP)!=m)1) { LP--; }
CP=LP; return{0X};
}
else { return(Top); }
}
fe /
int InsertChar _Docl(}
{

int ptr=CP; int count=0;
Standardize_Docl();
if (LP{=RP &% OPChar{cTAB} { L¥++; CP++; Arr[1P]=0FChar;: return(dKk}; }
else if (LP'=RP &k OPChar==T&B) { while (ptr!=C &k Arr[ptr]'anl) { count++; ptr--; }

count=tahetop~(countltabstop);

while {(count'=C k& LP1=RP} { Arr{LP+1]asp;

CP++; LP++; count--;
}
return (0K);
¥

elae { return(Full); }

i




e

R e e e e e e e —— e
int MoveToTop_Doci()

{

if (CP'=0) { CP=0; retura(OK}; }

else { return{Top); }

1

% mmmmmm oo
int MoveTaBRot_Doc1()

{

if {CP!=Maz+LP-AP) { CP=(Kax+[P-AF); return(DK); }
elae { return(Bot); 1}

}

— %/

[ e e e e e e e e m e

/» TMPLEMENTATION DF DOC3 s/
i= +/

finclude "/se/daven/ox/c/c2/externglobals,c"

—y

/. - - - - -
it OP_Docd ()

{

int prevCP=CP; int previP=LP; int prevRP=RF; int Tep=0P_Docl():
Update_Doc3(prevCP,prevlP,prevRkF); return(rep);

}

*/

/8 e e e
int Imitialize_Doc3()

{

Toitialize_Dac1(); Startlo=C; Endln=Q; CurX=1; Cur¥=1; DocML=0; ¥SRew=0; NLRem=0,
}

./

/e e T e e -
SetStartln()

{
StartlneCP; while (Startln>C Rk GetArrCont(Startln)'=nl) { Startln-—; }

}

e -

SetEndln()

{

Endln=CP; while (Endln<Max+LP-RF &k GetdrrCont(Endlo+1)'=nl) { Endln++; }
}

W e e e e e e e e e —————————

Update_Doc3(preyCP, prevlP,prevRP) int prevCP; int prevlP; int prevRP;
{
int NumNL; WSRem=0; NLRem=0;
if (OPType'=BoMove)
{ SetStartln(); SetEndln{}; CurX=CP-Startln+l;

if (OPType=LeftIneert} { NumNL<NLCountirr{prevCP,CP}, CurY=CurY+Humil;

DocNL=DocNL+BueAL ;
b3

w/

wlse if (OFType=RightInsert) { DocRL=DocHL+NLCountdrr{AF ,LP-prevLP+prevhP}; }
elee 1f (OPType=LeftDelete) { WumML=NLCountiry (CP,prevCP)}; DocNL=DocHL-BunNL;

CurY=CurY-NuoNL;
}
slee if (OPType=RigbtDelete) { Standardize Docif);

DocBL=DocNL-NLCount Arr (LP-prevlP+previP ,AF):

}

iv



elae if ([PType=LeftMovs) { it (CPa=0) { CurY=1l; }
elre { CurY=CGurY-NLCountArrCont (CP,prevCP);}
X
®lse if (0PTypewrRightMove) { if (CP==<Max+lF-RP)
{ CurY=DucNL+1; }

else
{ CurY=CurY+NLCountArrCant(prevCP,CP); }
1
RemTrail¥s(prevCP); RewTrailNL{);
)]
f e e e e e e w/
int NL{ountArr(first,last) regaster at first] int Jast;
i
int BumNL=0;
while (first!=last) { first++; if (Arr[farat]==nl) { HusNL++; } ]
return{funNL);
1
S e e -—— -/
int NlCountArriont(first,last) register int farsti:; int last;
1
int NumNLa0;
while (firar'=last) { firat++; if {GetarrCont(first)==nl) { NumNL++; } }
Teturn{ HunlL);
1
F L T e e e =/

RenTrailWs (prevCP) int presCP;
{

int tempCP=(P: int teppEndlo=Endln; int prevEndlna;
CP=prev(P; SetEndIn(}; prevEndla=Endln; CP=tempCP; Endln=tempEndlo;
if (UPType=LeftMove |} OPType==RightMove || QPType==LeftInsert |i OPType==RightInsert)
{ if (prevEndln~=Endln)
{ if (Endln!=CP &k CetArrCont(Endin)==gp)
{ CP=Endln; Standardize_Doc1(); CP=templP;
while (Endln!=CP &k Arr([Endln}=sp) { Endln~~; LP--; WSRea++; }
3
1
else
{ it (prevEndln!=0 kR GetrrCont (prevEndln)=sp)
{ CP=prevEndln; Standardize_Docli(}; CP=tempCP;
vhile (LP!=0 &k Ary[LP)==sp) { LP--: WSRem++; }
11 (CP>LP) { CP=CP-WSRem; Startln=Startln-WSRem;
Endln=Endln-¥SEen;
1

}
fe - ———— -—— —— -/
RemTrailNL()
i
int tempCP=CP;
if {PType==leftMove || BPType>=Rightlnaert)
{ if (CP!'=Max+LP-RP && GetArrCont (Maz+LP-RP)==p])
{ CP=Max+LP-RP; Standardize_Docl(); CP=tewpCP;
while (LP!=CP kk Arr[LPJ=-nl) { LP--; DocHL-—; HLRem++:}
]




/= INPLEMENTATION OF DOCA +/
fe s/

$1pclnde "/Be/daven/ax/c/c2/externglabala.c”

/= ./
int OF_Deca()

{

int rep;

if {DP==CursorlipLine) { rep=CursorUpline_Doc4(); OPType=LettMove; }

elee if (DP==CursorUpPage) { rep=CursorlUpPage_Doc4(}; OPType=LettMove; }

elss it (DP==CuraorDowniine) { rep=CurssrDasmLine Docd4(); OPType=RightMore; }

elae if {(OP==CursorDownPage) { rep=CurscrDownPage_Doc4(); UPType=RightMove; }

elae if (QP==CurwmorLeftChar) { rep=CursorLefiChar_Ooc4(); OPTypexLeftMove; }

else 1t (OP==CursorRightChar) { rep=CursorRight{har Docd (}; DPType=RightMove; }

elee { vep=DP_Doc2{); Update_Doc4(); }

return(rep);

}

i -— %/
int lpitialize_Doc4{)

1

Initialize_Doc3d(); ¥SIne<0: NLIns=0;

}

/a - e e e )
Update_Docd (}

1

¥S1gs=0; NLIns=0j;

}

/e - - il =/
int CurscorUpline_Doc4()

1

return(Cursorlp (11};

}

/e - ————————— e o -— ./
int CurserUpPage Docd ()

{

return(Cursorlp (PageReight));

1

fe - -

int CurserUp(y) int y;

{

ant prevCP=CP; int prevlP=LP; ant prevAP=RP; int prevCurX=CurX; int prevlurY=CurY;
int prevStartln=Startln; int prevEndlp=Endln; int prevOP=QpP; int cumWifen=Q;
ant cumNLRem=0; int rep;

¥SIns=0: ELIns=0;
if (CurY¥i=])
{ DP=LeftMoveline;
vhile (SurY!=prevCurY-y &k CP!=0) [ DP_Doc3{); Updatecum¥SNL (§cumWSRem,kcwlLRen) ;}
it (prevCurX<=Fndln-Startln+l)
{ CurX=prevCurX; CP=5tartln+CurX-1; rep<OK; }
else if (prevCurX>Endln-Startln+| k&t LP+prevCur)-1-Endln+Startln<=Rp)
{ ¢P=Endln; CurX=Endin-Startln+1; OP=InaertChar; QPChar=ap;
while (CurX!'=prevCurX) { OP_Doc3(}; WSIns++;
UpdatecunWSKL(&kcun¥SRew, kcumiLRen) ;
}
rep=0K;
}
else
{ CP=prewCP: LP=prevlP; RP=previP; CurX=prevCurX; CurY=prevCurY;
Startlp=prevStartln; Eadln=prevEndln; rep=Full;
}

vi



WSRem=cusWSken; NLRem=cumW[Rem; DP=prev0P; return(rep);

else
{ Update_Docl(prevCP,previP ,previF}; Update_Doc4(); return(TepLine); }
}
el e e e e e e -/
int CursorDewnline_Doc4()
{
return{Cursorbom(1});
}
e - B i [ 74
int GursorDownPage_Docd()
i

return(CursorDeim (PageHeight));

}

I —— - ——— T T TRy
int CursorDoenly) iot ¥

1

int prevCPacp: int prevLP=LF; int prevRP=RF; wmnt prevCurk=CurX: ant prevCurY=CurY;
int prevStartin=Startln; ant prevEndln=Egdln; 1nt prevlP=DP; int cumWSRen=C;

int cumMLRems0; ipt Tep;

WSIns=0; ¥Llma=0; DP=RightMoveline;
while (Cur¥i=preeCur¥+y &k CP!=Maz+LP-RP)
{ OP_Doc3(); UpdatecumVWSNL{&kcunVSRem,&cumNLRem) ;}
if (CurY==prevCur¥+y a8 LP+4prevCurX-Endln+Startln-1<=HP)
{ if (prevCurX<=Endln-Startln+l)
{ CurX=prevCurXk: CPeStartlp+Curk-1; }

elae
{ CurX=Endlu-Startlp+i; CP=Endln; OP=lnsertChar; OPChar=sp;
while {CurX!'=prevCurX) { OP_Docd(); WSlps++;
UpdatecunWSNL (kcumpWSRem , dcumFLRzn) §
}
}
rep=0K;
}

else if (CurY!sprevCurf+y &t LP+prevCurT+y-DocNL-1+prevCuri-1<=RF)
{ OF=IlmsertChar; OPChar=nl;
vhile (CurY!cprevCurf+y) { 0P _Qoc3(); NLlna++;
UpdatecunWSHL (kcumWSRen, kcumNLRen) ;

OPChar=sp; while (CurX!=prevCurX) { OP_Doc3(); ¥SIns++;
UpdatecunWSHL (4cun¥Shem, AcumNLRen) ;
}
rep=0K;
}
else
{ CP=prevCP; LP=prevLP; RP=prevhP; CurX=prevCurX: CurY=prevCur¥;
Startln=prevStartln; Endln=prevEndln; rep=Full:
}
VSRex-cusWSRem; OP=prevOP; return(rep);

}
J B e e e e e e ook
int CursorLeftChar_Docd()

i

int rep;

WSIra=0; NLIns=0; DPrLeftMoveChar; rep=CP_Doc3(); DPeCursarleftChar; retwruolrep);

}

f B e e e e e e e e e e e e »/
int CursorRightChar_Doc4(}

{

int rep;

Vsloe=0; NLIna=0;

il (CP!'~<Endln) { OP<RightMcveChar; rep=0P_Doc3(}; }

vii




else { OP=InsertChar; OPCharesp; rep=0P_Doc3d{); WSIna++; }
OP=CursorRightChar; return(rep);

1

Vil - - e il »/
UpdatecunVSHL (cumWSRen cuaflRen) int #cunWSRem; int *cumBLRem;

{

»cupWSRen= (#cum¥SRem) +WSken; *cumNLRen=(wcunNLRes)+NlRen;

)

FA I B ettt S +/

/% IMPLEMENTATION OF DRCE =/
/e ./

#include “/ae/daven/fox/c/c2/externglobals.c”

e -- it */
int DP_Dack()
{
int prevCP=CP; int preelP=LF; int prevAP=AP; 1nt rep;
if {OP==Mark} { aPType=NoMove; rep=Mark_Doc6(); Update_Doc3(prevCP,prevlP prevhP);
Update_Docd();
}

elae if (OP=x[1ft) { OPType=HoMove; rep=Lift_Doc6{); Update_Doc3{prevCP,prevlP,previP);
Update_Docd(); }
elae if (OP==Cut) { it (CP>NP) { DPType=LeftDelete; } elmse { OPType<=RightDelete; }
rep=Cut_Doct(); Update_Doc3(prevCP.prevLP,previP); Update Joca();
1
elae if {0Pc=Paste) { DPType~lLeftInmert:
rep=Paste_Doc6(); Update_Doc3(prevCP,prevlP ,previP); Update Docd();

1
elae { rep=0P_Doc4(); Update_Doch{prevCP); Y
return(rep);
1
i - -/
int Initialize_Doc6()
{
Initialize_Doc4(}; PP=0; WP=(-1);
}
Il */
Update_Doct {prev(P) int prevCP;
{
if ((OPType'<=NoMove R OPType'!<LeftMove &% OPType!=RightMove) || MP>Max+LP-RP)}
{me=(-1); }
elee
{ it (prevCP<=MP kk CP<=MP} { MP=MP-WSRem+WSIns; }

slase if (prevCP<=NF ik CP>=MP) { MP=MP-VSHem; }
else if (prevCP>cMP kk CP<=NP) { MP=MF+¥SIns; }
1

}
/= -— =/
int Mark_Doct()
{
WP=CP; return{0K);
1
e ——— - - ———— ./
int Lift_Doc6()
{

viil



if  (CP'=MP kk Mp'=(-1)) { CopyMTextPBuff(); return(0K): }
else { return{NoTsxtMarked); }
}

I e -—- -

CopyMTextPBuff ()
!

int MPptr; PPag;
if {CP<MP) { MPptr=CP;

while (MPptr!=MP) { MPptr++; PP++; Phrr[PP]=GetArrCont (MPptr); }

}
elae if (CP>NP) { WPptr=MF;

shile (MPptr!=CP) { MPptr++; PP++; Parr[PF]=CetirrCent (MPptr); }

}
3}

A T ] e
int Cut_Doc&()

{

it (MP!=(-1) & MP!=CP) { CopyMTextPBuff(}; RemMTlext(); return(0OK); }
else { return(NeoTextMarxed); }

}
o e e

RemMText ()

{

Standardize Peci(); it (MP<CP) { LP=MP; CP=MP; }
elae if (MP>CP) { AP=RP+MP-L¥; }

MP=(-1);

}

fm———— B et

int Paste_Doc6()
{
int PPptr;
if (PP==0)
{ return({PBuffEmpty); }
elae it (PP!=0 &k PP>RP~LP)
{ return(full); }

else
{ Standardize_Doci(); MP=CP; PPptr=0;
vhile {(PPptr!=PP) { PPptr++; LP++; CP++; Axz[LP1=PArr(PPptr]l: }
returun(DX);
}
}
FA —

/= IMPLEMENTATLON OF DOCE ¢/
/= .

#inclde "/se/daven/ox/c/c2/eaternglobals.c"
#include <stdio.h>

tinclode <sys/types.h>

#include <sys/stat. h>

.

int P _Doc8()}

i

int prevCP=CP; int previP=L¥; int prevAP=RP: int rep;
if (EState==5tai¢ Doc)

{ if (OP==DownSearch) { OPType=RightMo¥e; rep=DownSearch_Doc8();

ix

*f

/

-/



Update_Docd(prevCP,prevlP ,prevAP) ;
Update_Doc4{}; Update_Doct(prevCP);

Lt

else it (DP==UpSearch) OPType=LeftMove; rep=UpSearch Doc8();
Update_Doc3(prevCP . prevLP,presRP) ;

Update_Doc4(); Update_DocG{prevCF);

Il

elae if (OP—Replace) OPFType=RightDelete;
rep=Replace_DocB(&prevlP ,kprevlP, kpresRP);
OPtype=LeftInsert; Update Doc3(prevlP,prevlP, revAP);

Update_Doc4(); Update_Doct{prevCP};

}
else if (OP==Quote} { rep=Quoie_StateDoc{}; Update_Doc3(prevCP,previP,previF) ;
Update_Dacd(); Update_Doc6(prevCP);
}
elee { rep=0P Docs(); Update_DocB(); }
returni{rep);
}
elae
{ if {DP=<[nsertChar) { rep=TnsertChar_Quote(}; }
elee if (OP==LeftMoveChar) { rep=LeiftMoveChar _Quote(); }
else if (OP==CursorLeftChar) { rep-LeftMoveChar_Qucte(); }
elme it (OP==RightMoveChar) { rep=RightMoveChar_(niote(); }
else if (OP==CursorRightChar) { rep=RightMoveChar Quote(}; }
else 1f (DP==LeftDeleteChar} { rep=LeftDeleteChar_Quote(); }
else 1f (OP=—RightDeleteChar) { rep=RightDeleteChar Quote(); }
elee if (OP==DownSearch) { DPType=RightMove; rep=Do®nSearch_DocB(};
Update_Doc¢3{presCP,prevlP,prevRP);
Update_Docd(}; Update_Doc6{previP);
}
elee if (QOP==UpSearch) { OPType=leftMove; rep=UpSearch_Doc8();
Update_Doci{prevCP,prevlP,prevhP);
Update_Docd(); Update_Doct(prevCP};
}
else if (DP==Replace} { DP=RightDelete;
rep=Replace_Doc8(kprevCP, kprevlP,¥previP):;
OPType=LeftInsert;
Update_Dac3(prevCP,prevlP ,prevRP};
Update Docd(}; Update_Doct(prevlF);
}
else if (0P==Quote} { rep=Qucte_StateQuote();
Update Docd(prevCP,prevlP,prevhP);
Update_Doc4(}; Update_Doc{prevCP);
}
else { Update_Doc3(prevCP,prevLP,prevAP); Update Docd (};
Update_Doc6{prevCP)}; rep=IllegalkditOp;
}
return(rep):
}
}
/e -=- =/
int Initialize DocB()
{

Initialize DocB(); 5P=0; Matchedlength=0; RpP=0; EState=State_Doc; DocChanged=FALSE;
i
I* i -/
Update_DocB()
{
it (OPType'=RoMove &k OPType!=lefiMove ke DPType!=RightMove)

{ if (DecChanged=FaLSE) { PromptDisplayed=FALSE; }

Docfhanged=TRUE;
}




int DownSearch_Doch()
{
int prevCP=CP; int matched=FALSE; char schatring[QMax);
if (FState==State_Quote} { CopyQDuffSBuff(); EState=State_Boc; }
CopySPBufiToString(schatring);
if (5P !=0) { SetPromptMsg(achstring); PromptMessage{SearchingDownFor);
vhile {CP<Max+LP-RF Xk Wot(matched) &t Nolnterrupt)
{ CP++; CheckForMatch(dmatched); }
i1 {(matched} { PromptMessage(Found); return(0K); }

elee { CP=prev(P; SetPramptMeg(achstring); return(NotFound); }
1
elae { return(SBuifEmpty); }
)]
L I - - */
int UpSearch_Doc8()
{

int matched=FAISE; int prevCP=CP; char schatrang[QMaz];
if (EState==State_Quote) { CopyQBuffSBuff(}; EStaterState_Doc; }
CopySButiToString{schetring):
1t (SP'a0) { SetPromptMsg{achatring); PromptMessage(SearchingUpFor};
while {CP>0 Rk Not(matched) &k NoInterrupt)
{ CP--; CheckForMatch(kmatched); }
if {matched) { PromptMessage{Found); return(0K}; }

alse { CP=prevCP; SetPrompiMeg(echstring); return(WetFound); }
}
alse { return{SBuf fEupty}; }
}
/e ./
CheckForMatch{matched}  int *matched;
{

int SPptr=0; int Docptr=0; int laatmatchOK=TRUE;
vhile (SPpir!=SP Rk CP+Docptr<Max+LP-RP #E ]astmatchOX)
{ lastmatchPE=CharMatched(GetirrCont (CP+Docptr+1) ,kSPptr); SPptr++; Docptr++; }
ii (SPptr=<5P kk lastmatchOR) { #patched=TRUE; Matchedlength=Bocptr: }
}
S ———— —_— s/
int CharMatched(c,ptr) char ¢; int *ptr;
{
int prevptr=(+ptr}; int between=FALSE; int Botflag=FALSE: int min; int max;
if (Shrr[(sprr)+1}==".") { return(TRUE); }
elae if (SATr[(wptr)+13='\\’) { (eptr)++; return({*ptr) !=SP kk SArr((sptrl+1]==c); }
else if (SArr[{eptr)+1)==>"1) { (#ptr)++; return({*ptr) !=5P kk ShrT[{eptr)+i]t=c); }
else if (Sarr[(»ptr)+1}="[") { while ({aptr)!=SF kk SArr[(#ptr)+1]'=']1'} { (sptr)++; }
if {(eptr)==5P) { return(FALSE}; }
if (SArrlprespir+2}==’"'}) { Notflag=TRUE; prevptr++; }
11 ((eptr)-prevptr==4 k& Sirr[(*ptr)-1]==7-*)
{ min=Skrr[(+ptr)-2]; max=SArx[+ptr]l;
between=(c>=uwin kk c<=max);
1
elae
1
while (prevptr+1!=(sptr} 2k Not(between))
{ prevptrs+; between=(c==Sirr [prevptr+1]); }

if  {Notilag) { retwmn(Not{between)); }
else { retwrn(betveen}; }
}

elge { return{Skry [{sptri+1l=c); }
1
W e e e e e e e e ittt ./
int Aeplaca_Dac8(prevCP,prevlP,prevRP) int sprewCP; int sprevLP; int sprevhP;
1{
int ptr=0; int matched; char schatring[QMax]; char rpletring{QMax];
if (EState==State_Quote) { CopyQBuffRpHuff(); EStatesState_Ooc; }

A




CheckForMatch (kmatched);
it (matched &k RpP-MatcbedLength<=RP-LP)
{ Standardize_Dacl{); CopySBuf{ToString(schstring);
CopyRBuf fToString(rplatring); SetPromptMag(schstrang):
PrompiMeenage (Replaced); SetPromptMag(rpistrizg); PromptMessage(With);
RP=RP+MatchedlLength; Update_Doc3{*prevCP,+prevlP ,+prevRF); Update Doc4{);
Update DocE{sprevCP,*previP , *previP);
sprev(P=CP; *prevLP=LP; *prevRP=RP;
while (ptri=RpP} { LP++; ptr++; Arxr[LPl=Rphrr[pir]; }
CP=LF; DocChanged=TRUE; return{OR};
}
elge if (matched &% RpP-SP>RP-LP)
{ return(Full); }

elee

{ CopySBuffToString(schstring): SetPromptMsg(schstring);

return(NotMatched);

]
}
8 S e e Ry
int Quote_StateDoc()
{

QP=0; QCP=0; EState=State_Quote; PromptMessage(ShosQuotePrompt); return{0K};

}

/% —— ——e- ]
int Quote_StateQuotel)

{

int rep;

PromptCur=etr len{QuotePrompt)}+QP+1;

if (PromptCur>WinWidth-1) { PromptCur-winWidth-1; }

EState=State_Doc;

if (QArrMatched¥With{"abort")) { Ahort_Quote(); }

elge if (QArrMatchedWith{("q"]) { return{Quit_Quote()); }

else if (QArrMatchedwithi("s")} { return{Save_gQuote()); }

eleze if (DArrPrefivedBy("v ")) { return{¥rite_Quote{)); }

else if (QATrPretizedBy(“"a ")) { return{Append_Quete()); }

else if (QArrPrefizedBy("i ")) { return(Input_Quote(d); }

elae if (QArrFrefizedBy("!"}) { return(Escape_Quote()); }

elag { return{MovelLineNumber0rError_Quote(}); }

}
I i iaind - - »/
Abort_(ucte()
{

PromptMessage (EditAborted); SyaExit(0K);

}
e =/
Quit_Quotaf}

{

int rep; CP=Quit;

if  (DocChanged) { if (Backup=TRUE) { WriteBackupFile();
rep=(VriteToStare{FHame, "y",1 Max+LP-RP));
if  (rep==0R) { SysExit{rep); }

else { return(rep); }
}
elas { PramptMessage(DocNoiChanged); SysExit{UK}; }
}
A I - »/
Save_Quote()
{

int rep; U(P=Save;
if  (DocChanged) { if (Backup==TRUE) { WriteBackupFile(); }
rep=(VriteToStore(Fame,"v",1,Kax+LP-RP}): DocChanged=FALSE;
return(rep) ;
}
elee { return(DocNotChanged); }



}

/e~ - */
Write_Quote()
{
char filename [(QMar]; OP=Write:
1f (MP!=(~1) &k MP!=CP) { CopyQDuffTaString(filename,?); SysTranslate(filenanme};
Fremptlur=1;
it (NP<CP) { return{WriteToS5tora(filename,"v" MP+1,CP}); }
else { return(WriteToStore(filename," " ,CP+1 MP}); }
}
else { return{NoTextMarked); }
}
f B e e e e e e - f
int Append_Quate(}
1{
char filenare[QMax]; DP=kppend;
if (MPte(-1) k& MP'=CP) { CopyQBuffToString(filename,?); SysTranslate{filename}:
PromptCur=1;
if (ME<CP) { return{¥riteToStore{filename,”a" ,MP+},CP)); 3
else { returu{WriteToStore(filename,”a",CP+1 ,MF}}; }
}
else { return(NotestMarked); }
}
S e e e e e ./
int Ioput_Queta{}
struct etat atbui; char f1lename[QMax]; int cirlfound=FALSE: int Tep;
OP=Input; 0°Type=LeftInsert; CopylBuffToString(filename,2); SyaTranslate{filename);
if (FileEzists(filename,kstbutl))
{ if {(BotDirectory(Rstbut))
{ if (ReadPermiseion{filename))
{ rep={ReadFropStore(filename,kstbuf ,tctrifound));
1f (ctrlfound) { PromptMessage(CntrlFeund); }
if (rep==0K) { DocChanged=TRUE; }
return(tep) :
}
else
{ SetProaptMeg{filename); return(NoReadPermisaien); }
2
alee
{ SetPronptMsg(filename); return(Directory); }
}
else
{ SetPromptMag(filename); return(FileNotExist); }
}
o - -—= --- %/
int Escape_Quote()
q
char command[QMax];  int e='\0%;
DP=Epcape; Copy@BuffTnString{command,1};
11 (strlen{ccmmand) !=0)

{ PoaImage(}; SetSysCuraor(); CursorToNextLine(}; ResetTerminal(};
system(command); GetTermCapAndSet®in(); ReadlermMode(}; SetTerminal();
PromptMessage(HitReyToRezume); vhile (ct=ml) { c=GetNexrtChar(); }
RefreshDisplay_DocS(); return{0K);

}

elae
{ return(¥oCommandGiven); }
}
/. -————— e - =/
int MovelineNumberbrExrror_Quote()
{

irt sumstringlQMax]; int lineX; int prevCP=CP;
CopyQBuf {TcString {numatring,0) ;




i1 {CnvStringTolua(oumatring,klinek))
{ if (lineX>DocNL+1) { lineK=DocML+i; }
1f  (lineX<Cur¥) { lineX=CurY¥-lineX; OP=LeftMoveline; }
elae { 11nek=1ineX-CurY; DP=RightMoveLine; }
wbile (lineX'=D) { OP_Doc1(); linel--; }
OPmLeftMoveline; DP_Docl(};
if (CP>prevCP} { OPType=RightMove; } else { OPType=ieftMove; }
OP=MoveLineNumberOrError; PromptDisplayed=FALSE; Pozlmage{); return(0K),

1
else
{ oP=MoveLinebumberOrError; return(QuoteError); }
i
I -- e s - - af
int IneertChar_Quote()
i
int ptr=QF;
it (QP!=OMar)
{ if  (OPChar'=TAB) { while (ptr!=QCP) { QArr[ptr+i]=Qirr[ptrl; ptr--;}
QArr [QCP+1)=0PChar; QCP++; QP++;
return{0K);
}
else { return(lliagalQuoteChar); }
}
elee
{ return{Fulllucte); }
}
FL) e s — e - ———————— af
int LeftMoveChar _Quote()
{
if (QcP!=0) { (CP--; return(DX); }
elee { return(TopQuote}; }
}
P -—— it 14
int RightMovelhar Quote()
{
it (QCP!=QP) { QCP++; return{0X}; }
elee { return(BotQnote); }
}
/> M e e e mmm—— =/
int LeftDeleteChar _Quote()
{
int ptr=q4CP;
if (QCP1=0) { while {ptr!=QP} { Qixxr[ptrl=Qhrr(ptr+i]; prr++; }
QCP--; QF--; return(0K);
}
elae { return(TopQuote); }
}
fE —mae - ——- -———— e e /
int RightDeleteChar _Guote()
{
int ptr=QCP+1;
if (QCPt=0P) { while (ptr'=QP} { Qarr[ptirl=Qirr{ptr+il; ptr++; }
QP--; return(CH);
}
elue { return{BotQuote}; }
}
o —————— - _— /
int QArrPrefizedBy{target) char target[];
{
int prefired: int ptr=0; int length=strlen(target);

prefired=(QP>=length);

vhile (prefixed &k ptr!=length) { prefized=(Lower (QArr [ptr+i1l)==target[ptrl); ptr+;

returp(prefized) ;

}

H



/= B B DL ———— o/
int QArrMatchedWith(target} char target[]:
{

int matched; int prr=0;

watched={(P=catrlen(target)};

while (matched e& ptr'=QP) { watched={Lower (QArr [ptr+:))==target [ptrl); ptr++: }
return(tratched);

}

[ e ————_————m e e - - */
CopyQBuf 1SBut£()

{

§P=0; while (5p'=QP) { SP++; SArr[SP1=QArr{SP]; }

}

/o — - - - “

CapyUButtRpBuft()
i

RpP=0; while (RpP!=QP) { RpP++; RpArr[RpPl=QArr[RpP1; }

}

S e e e -f
CopyQBuffToString{string,ptr) char *string; int ptr:

1{

while (ptr'=(P} { *siring=QArr[ptr+i]; string++; pir++; } sstrang='\0";
}

F B o e e e e e oo */
CDpySEﬂffToStrins(string) char satring;
1

int ptr=0; shile (ptr!=5P) { #atring=SArr[ptr+i]: if (estring==ml) { sstring=>|’; }
stringH; pir++;
}
*string="\0’;
}

L I el —mm »/
CopyRBuffIoString(string) char sstring;
1{

int ptre<0; shile (ptr'=RpP) { sstring=RpArr[ptr+1}; if (seiring<=ml) { estring='1"; }
SLIINg++; ptr++;

*airipg="\0';

1

F I -— -- -— /
int GetShuffNL()

{

int NuaRL=0; int SPptr=0;

while (SPptr!=SP) { SPptr++; it (SArr [SPpirl=ml) NunRL++; }
return{NumbL) ; }

/= -— ——— ———————— 'Y
int GelRpBuffNL(}

{

int ¥umRL=0; int RpPpir=0;

while (RpPpir!=RpP) { RpPptr++; 1t (RpArr[RpPptrl=ml} NumNL++; }

return{fumiL}; }

P - B S — +/

/« IMPLEMENTATION OF DDC9 »/
/* \




#include <stdio.h>
#include "/se/davensox/c/cZ/externglobals.c”

f* T »/
int QP_Doe3()

{

int prevDocHl=Doc<HL; int prevCP=CP; int prevlP=LP; imt prevAP=RP; int preeQP=QP;
int prevCur¥alurY; int firsti; int last; int temp; int rep;

if (JP==bot Isplemented)

{ return(OPNetImplemented); }
else it (OP==CentreWindow)

{ return{Centre¥indow_Doc3()); }
else it {DP==RetfreshDisplay)

{ return(fetreehDisplay_Dec9()}; }
else if (DP==CursorUpPage)

{ return{Scr<en_UpPage()); }
else 1f (OP==CuraprDovnPage)

{ return(Screen_De¥nPage(}); }
else 1f (0P==Replace)

{ return(Screen_Replace({prevCurY)); }
else it (OP==ShowDocStats)

{ return(Screen_ShowDocStats(})); }

else
{ 1t ({zep=0P_Doc8())'=0K)
{ return(rep); }
else
{ if (EState==State_Quote)
{ it (prevQP!=QP) DieplayQuoteButfer{}; }
else
{ ChecXFlashBrackets ();
firat=prevCurY-wWin0ffY;
laat=firet+DocNL-prevDacNL+HLRen-NLIns;
if (first>last) { temp=first; firat=last; last=tesp; }
VindowPolicy(ficst,.last);
}
return(0R);
}
}
}
L] -- - i - */
int Initialize Dac9(}
{

10y ptr=0; Initialize_Doc8{);
OLSAdjust(); PromptCur=vinWidtb; PosImage(); ¥inDffX=0; Win0f{Y=0; SetDocCursor(};
while (ptr!=WanReight) { Vinl1neOK[ptr+1]=PALSE; ptr++; }

}
fe - - =/
int CentreWindow_Doc5{)
{
if (EState=State_Doc)
{ it (CurY-¥inDtf¥>=HalfWinHeight}
{ OFType=RighiMowe; Move¥indowDown{CurY-WinCffY-Hal#WinHeight};
SetDocCursoer(); return(dr};
}
elpe 1f (Cur¥-Win0ffY<Hali¥inHeight &k CurY>=HalfWinHeight}
{ OPType=leftMave; MoveWindosUp(HalfWinHeight-CurY+WindfiY);
SetDocCursor(); return(0E);
}
elae
{ return(TocNearTop); }
}
elee

{ return(OP_Doc8(}): }



}
o e ——— s —— —— - — *f
int RefreshDisplay_(ec9(}
{
CLSAdjust{}; return(0K};
}
L I e S S B e e LT - %/
Screen_UpPage()
{
int rep=0P_Docd().
1f (rep==0K)

{ if (¥inDffY>=PageBeight) { Move¥indowlp(PageHeight}; }

else if (WinDffY<PageHeight kk WinQffY!=0) { MoveWindowUp(WinCffY); }

)

return(rep):

F B et L L LR Pt «f
Screen_DownPage()

{

int rep=0P _Docs():

1f {rep==0K) { MoveWindowDown(PageReight); }

return{rep);
1
B SIS .
Screen_Replace(prevCurY} int prevCurY;
{

int SHBuffiL; int RpBuffiL; 1nt Tep;

if ({rep=OP_DocB{))==0K)

{ SButNL=GetSBuffNL{); RpBuffNL=GetRpBufiNL();
if  (SBuffNL==RpBuffNL}
{ VWindowLinesBad(prevCurY-WinOffY,prevCurY-¥WinOff¥+SBuffNL): }

else
{ WindouLinesBad{prevCurY-Win0ffY WinHeight); }
it (SP<ApP) { OPType~RightMote; } else { DPType=LeftMove; }
VWirdowPolicy(});
1
return(rep) ;

/™ o e -/
int Screen_ShouDocStata{)

{ int pu=e;

it (EState==State_Doc) { PromptMessage(ShovState) ; PromptDisplayed=FALSE; return{0OK}; }

elae { return(UP_Doc8{}); }

}

F I e el »f
CheckFlashBrackets ()

{

int prewCP=CP;  int prevStartIn=Startln; char clesebracket=OPChar; 1nt count=C;

int NusNL=0Q; int nomatche=TRUE; char openbracket; char arrchar;

int 1; int y;

if (0P==InsertChay Ek
(PChaxr=="}" || OPChar==*]’ |{ OPChar=="}’ || OPChar=='>') ki

Tot(Charivailable()))

{ it (closebracket=='}?} { openbracket=’{’; }
elee if (closebracket==’1’) { openbracket='['; }
else if (closebracket==')’) { openbracket=’('; }
elee { openhracketa’c’; }
while (CP>WinStartln+WinOffX+1 kk nomatch)

{ CP--; arrchar=GetArxCont(CP);
if {arrchar==nl)
{ HumRL++; }
elee if (arrchar==closebracket)
{ count++; }
elea if (arrchar==opeabracket)

xvil




{ 1f (count>0)
{ count--; }
else
{ SetStartln(); x=CF-Startlo+]-win0ifX;
y=CurY-NurBL-¥inm0ffY; nomatch=FALSE;
LI {x-1>=1 &k x-1<=WinWidth &k
y>=1 &k y<=WinHeight)

{ WirdowLinesBad (y+Musdl  y+FunlL};
DisplayWindowRange{y+NumNL , y+NusNL) ;
fiflnsh(stdout);

SetTermCursar(x-1,y); fflush{stdout);
delay{); CP=prevCP; Startln=prerStartln;

}
}
}
}
CP=prevCP; Startln=prevStartlm:
}

}
S s e T - —m—emm = e/
Set¥inStartlan()
1

register int numnl=Cur¥-Win0ff¥-1;

¥inStartln=Startln; while (ounnl!'=0} { WinStartlp=GetPrevStartla(WainStartln); ruanl--; }
1

/» - R — R
int GetPrevStartln(ptr) register int ptr;

1

ptr--; while (ptr!'=0 kk GetArrCont{ptr)'=nl) { ptr--; } return(ptr);

}

int GetNaztStartln(ptr? register int ptir;
1
it (ptr!=Max+lP-RP) { ptr++;
shile (prr!=Max+LP-RP kk GetArrCont{ptr)!=nlj { ptr++; }

1
retorn{ptr};
}
B e e e e e e e e e e -—#f
int OiaplayVindowLine(startloptr) register int startlaptr;
i

regieter int x=Q;
wshile (startloptr+x!'=Max+[P-RP kk GetArrCont (startlnptr+x+1)!=nl &k x!=Win02fK}
{ vy ]
while (atartlomptr+x!=Max+LP-RP &% GethrrCont(startlnptrez+1)!=nl &t x!=WinOf{X+¥unWidth)
{ putchar(GetArront(atartlnptr+x+1)); x++; }
if (x!'=Win0ffI+WinWidth) { ClearToEndOfLine(); }
}
fo e - -/

Display¥indowRange (first,last) register int first; register int last;

regieter int ptr=WinStartin; register int y=first;
while (y!=1} { ptr=GetNextStartln{ptr); y—-; }
vhile (firet<=last &k Not{CharAvailable()) &k NoInterrupt}
{ if {Wot(¥WinLineOK[first]})
{ SetTermCur=or(t,firat); Display¥WindowLine(ptr);
VinlineOX[first]=TRUE;

}
ptr=GetfextStartln(ptr); firat++;
}
}
/= - —— %/
¥indcelinesBad(first,last}  int firat; int last;
{

xviil



1t {first<1) { first=1; }
elee 1f (laat)‘h‘j.nﬂeight.) { last=WinHeight; }
while (first<=last) { WinLineOK [first]=FALSE; first++; }

}
i e e e e e e e e e e e e ~ wf
DisplayTheWindow(}
{
Display¥indowRange(1,¥inHeight);
}
fa e -/
DieplayCurLine()
{
SetTermCursor(],Curf-Win0ffY); DisplayWindowLine(Startin);
}
F L e T PRI ./
MoveWindowDnun(y, firet}? imt y:  int firet;
i
WinDffY=Winffit+y; SetWinStaztin(};
if (OPType=RightNove)
{4 (y<=Half¥inHeight+1) { ScrollUpAdjust(y}; }
else { WiandowLinesBad(l,WinHeight); }
}
elae
{ if (y+WinHeight-first<=HalfWinHeight+1) { WindowLinesBad(first,Winleight};
ScrollUpAdiust (y);
}
elae { WindowLinesBad(1,WioHeight); ¥
}
}
J o */
MoveWindaslp(y,last) int y; int last;
{
WinOffY=RinUffY-y; SetWinStartln{);
1f {QPType=LeftMave) { 1f  (y<=HalfWinHeight+l) { ScrollDownidjust(y.1); }
else { WindowLinesBHad(1,WinHeight}; }
}
elsa { if (last<=HalfWinHeight+3)
{ WindowlinesRad(1,last);
if (last<=CurY~WinDfIY)
{ SerellDosnAdiust (CurY-Win0ffY-laat last+1}; }
elae
{ SerollUpddiust(last-Cur¥+WinOf£Y); F
}
elae
{ WindowLinesBad(1,WanHeight); }
}
3
W e e e e e */
MoveWindewLeft{x) int x;
{
Win0ffX=WinUffX~x; WindowLinesBad(1,WinReight);
3
e */
MoveWindewRight (z)  imt x;
{

WipDffX=win0ffX+x; WindowLicesBad(1,WinHeight);

WindowPolicy(firat,last) int first; int last:
{ .
int vinx=CurX-WinOffX; int winy=lurY-WinOffY;
if (vinx>=1 Rk winr<=WinWidth)
{ if (winy»=l &k winy<=¥inHeight) { CursorlnWindow{first,last):; }
elae { Scroll(firet,last); )}

v
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}

elae

{ 1f (winy>=1 &k winy<=WinHeight) { Fan(); }
elae { ScrollAndPan{}); }

JE— ——————
Scroll(firat,laet} int firet; nt laet;
1
int winy=CurY-winDifY;
af (winy<l 22 CurY>=QtrV¥inHeight)
{ MoveWindogUp{Win0f {Y-Curt+QtrWinfeight ,1aat); }
alse if (¥iny<1l k& CurY<Qtr¥WinHeight)
{ MoveVWindowUp{Win0ffY,last); }
elee
{ MovelindosDown(CurY-PageHeight-¥in0f1Y, farst); }
}
/=== -- --- - --- - ./
Pan(}
{
int sinx=QurX-¥indffx;
if (9inz<1 kk CurX»=Qtr¥WinWidth) { MoveWindowlLeft (¥in0ffX-CurX+Qtr¥inWidth), }
rlse if (@winx<l kk CurXcQtrWinWidth) { MoveWindowleft(WinQffX); }
else { MoveWindowRight (CurX-Page¥Width~¥in0f1X); }
}
SR e e e e ——— -- ——— %/
ScrollAndPan(}
i
int winy=CurY-¥in0f{Y;
1f (uiny<l kk CurY>=Qtr¥WinHeight) { WinQff¥=CurY-QtrWinHeight; }
else if (winy<l hk CurT<QtrWinHeight) { WinOffy=cC; }
alae { Win0if¥=CurY-PageHeight; }
SetWinStartln{}; Pan();
}
fr - —— e e e -— ——————tme e */
CursorInWindow(first,last) int first; int laet;
1
if (OPType'=LeftMove kk OPType!=RightMove k¥ OPType!=HoMove)
{ it (firat==lant}
{ DisplayCurline(); }
else
{ if (lest>HalfWinMeight || laet»=CocNL+:i-WinQf{Y)
{ ¥indoeLinesBad (first,Winkeight);
DieplayWindowRange(first,¥WinHeight); }

elee
{ if (OPType==LeftInsert || OPType==Right[neert)

{ VindowlLinesBad(first,last);
ScrollfesnAdjust (Last-first,last+1};

}

else if (OPType==LeftDelete || OPType==ightDelete)

{ WindowlinesBad{1,lant+last-firat);
ScrollUpAdjust (last-first);

}

]

A H e e e e e e e ./
DisplayQuet eBufter ()

{

register int ptr=0; char c;

SetInitfooteCaraor ()]

vhile (ptr!=(P &k ptr!=¥WinWidth-{JuotePromptlLength-1)
{ e=Qarr[ptr+1];

AX



it (ca=nl) { putchar(’{*); }
else { putchar(Qirr(ptr+1]); }
PLr+;
}
®hila (ptr!~WinWidth-DuotePromptLength-1) { putchar(sp); ptr++: } SetQusteCursor();
}
i - ./




Appendix C

Implementation Of The Editor Specification (Continued)

/* main.c «f

i e 4/

2include <stdic.h>

#include <signel.h>

ginclude <sys/types.h>

#include <sys/etat.h>

hinclude <sys/ioctl.h>

#ipclude <sys/fcntl.h>

#include "/sa/davenfox/c/c2/globals.c"
finclude "/se/davenfox/c/cifread.c”

finclude "/se/daven/ox/c/clferite.c”

2include "/se/davenioz/c/c2/screen. c”

2include "/se/daven/ox/c/c2/term.c”

#include “/se/davenfox/c/c2/sysentryexzt.c"
%include “/se/daven/ox/c/c2/messages.c’
ginciude "/ase/daven/ox/c/c2/utilities.c"

[ - = af
main{args,argval) int arge; char *argvalll;:

/* "args" is the nusber of argumenta present in system ceommand line s/
/% “argval" is the array of argument addresses in system command line =/
{
int Imitialline=1; int cotrlfound=FALSE; int newfile=FALSE: int rep;
Backup=FALSE; TerminalSetsaFiLSE; Screenfleared=FALSE; Kbdptr=0; NoInterrupt=TRUE;
GetTermCapAndSetWin(); ReadTermMade(); SetTerminal(); SysEntry{args,argval,*Initialline);

GetNextChar();

rep={StartEditFile(FNawe, kcotrlfound  knewfile));

if (rept=DK) { SysExit(rep,FName); }

else { OF=MoveToTap; OF_Doc8();
while (InitialLine!=1) { DP=RightMoveLine; OP_Doc8(}; InitialLlire--;}
if (Cur¥>WinHeight) { WinDffyeQurY¥-PageEeight; SetWinStartlu(]); }

DisplayTheWindow(};
if (nevfile) { PrompiMessage(EditingNewFile}; PromptDisplayed=FALSE;}
alse { PromptMessage(EditingFile): ProwptDisplayed=TRIE;}

if (cntrlfound} { PromptMessage{CatrlFound); }
SeillDocCursor(); fflush{stdout);
}
while (TRUE) { DPType=NoMove; ExecuteCommand();
it (EState==Stste_Doc)
{ if (Not{CharAvailable{))) { DisplayTheWiadow(); }
if (Not{Folnterrupt)) { PromptMesaage{Interrupted);
ClearInterrupt();

}
SetDacCarsor();
}
else
{ SetQuoteturasor{); }
fflush(etdout);
}
}
f8 e ™



ExecuteCommand ()

int rep=0P_DocS(Xbdhead(});
1f (EState=S5tate_Doc)
{ 1f (rep==0K)
{ 1f (Bot{{ProaptDieplayed)) &k OP!=Quote Ak OP!=UpSearch ¥
0P !=DommSearch kk OP!=Replace k% OP!=Tnput &k OP'=Save k&
DP!=Write kk OP'!=ShowOccStats)
{ PromptMessage(EditingFile); }
}
else
{ PromptMessage(rep); }
/* SetDocCurser{); »/
}
else
{ if (rep!=0K) { RaingBell(); 1 }
/% fflush(stdout); */

}
e e e e e e e »/
/% read.c =/
/o mma==————cz= a/
B e e e - s »/
int StartEditFile(filename,ctrlfound,newtile) char *filename; int sctrlfound;
1at s*neefile;
/* “filenape" is a pointer tec a file, Checks to see if edit possible (if the file «/
/% either doeen’t exiet and can he created, or if it exists then it must read */
/* perzission and must Not exceed the sditor’s capacityl. Returne appropriate rep. #+/
/% and sets scntrlfound to TRUE 1f a centrol character read (which is discarded} »/f
{

int Tep; struct stat stbuf;
if (FilExiste(filename . kstbuf})
{ if (NotDirectory(kstbuf))
{ 1f (ReadPermission{filename)}
{ lnitialize_Doc39(); OP=lnput; DFTypealeftInsert;
rep=ReadFronStore(filename,kstbuf ,ctrliound};
Update_Docd(0,0,Max); Update Docd(); Update DocE{0);
return(rep);

}
else
{ SysExit (NoReadPermission); }
}
else
{ SysExit(Directory); }
3
elee
{ if (¥ritePermission(filenawe))
{ Initialize_Doc9(); ScreenCleared=TRUE; #newtile=TACE; return(OK); }
else
{ SysExit{NoWriteFermissien}; }
)]
}
ettt e ./

int FileExists(filename,stbufptr) char *filename; struct stat #*stbulptr;
/* "filename" points to the file. "stbufptr" is a pointer to stbuf. A "stat" call =/

wii




/% is attewptied, and, if euccesaful, TRUE returned, elae FALSE returmed. */
{

return{(stat(f1lename,stbufptr)'=-1)};
}
fo - —_ e e L ¥
:nt NotDirectory(atbufptr)  struct etat +stbufptr;
/* "filename" points to the file. "stbufpir” is a pointer to sthuf. If file not «/
/+ a directary, fuhctioen returns TRUE, elae returns FALSE »f
{
return{(stbufptr—>et_mode X S_IFDIR) ~ S_IFDIR};
}
Ie —m—ee e e L - - o
ReedPermission(filebame) char +filename;
/% “filepame" a pointer to a file. Tf file has read permlsslsh, function */
/*» retorne TRUE, else returna FALSE L
1{
FILE «fopen{),*SysPtr;
SysPtr=fopen(filenaae, 'r'");
1f (SyePtr!=NullPtr) { fclese(SysPtr}; return(TAUE); }
elee { return(FALSE); }
}
P et Dt e e e e =/
WritePermieeion(filename) cbar *filename;
/+ "filename” is a pointer to a filename. If file can be written to */
/+ function retuwns TRUE, else returns FALSE »/
1{
FILE sfopen(),*SyaPir;
if ((SysPtr=fopen(filename,"o"))'=NullPty 3 /w 1f file can be opened ... */
{ fclose(SysPir); unlink{filename); retixn(TRUE); } /+ ... close and delete it w/
else /* else file can’t be cpened »/
{ return(FALSE); }
}
S - - - - »/
int ReadFromStore{filename,stbufptr,ctrlfound) cbar #filename: Btruct stat »stbufptr;
int *ctrlfound;
/» 1t control characters found, discarded and =*ctrlfound set to TRUE */
/* except for TAB controls. which are expanded in "ExpandTabs". +f
{
int prevlP=LP; int linel=0; int HoReadErrer=TRUE; int entrlind;  nt x;
FILE sfopen(},#SysPtr; int filelength=FileLength({stbufptrc);

SetPromptMag(filename);
if  (filelength<=RP-IP)
{ if ((SysPtr=fopen{filename,"r")}!=RullPtr)
{ ScreenCleared=TAUE; Standardize_Docl(); PromptMessage(ReadingFile);
“hile (LP<RP &% NoReadFrror kk fileleagth>¢ k& Nolnterrupt)
{ x=getc{SysPtr); filelength--;
cntrlfnd=ControlChar{x);
while (cotrlfnd kk filelength>) & NoInterrupt)
{ *ctrlfound=TRUE; x=getc(SysPtr}; filelength-—;
cntrlind=ContrelChar (x};
1
it (x==LF || x==RET) { x=nl; }
Arr[LP+1]=x; LP++; lineX++;
if (3==ul) { lineX=0; StripTrailWs(); >
else if (r==TAB) { ExpandTabs{klinel); }
SoReadErrer=(x*=EOF k¥ Nolnterrupt);

}
fcloee(SysPtr);
it (LP==RP} { LP=prevLP; return(Full_Tabs); }

else it (Not(NoReadFrrar)) { LP=prevlP; return(ReadError); }

XXV



elee { CPeLP; FromptMeseage(Done); retwrn{0K); }

}
elae
{ return{CannatOpenFile); }
}
elaa
{ return(Full}; }
}
/o —— B e e =/

int FileLength{stbufptr) struct stat *sthufptr;

/* "stbufptr” is a pointer 1o "stbuf" in StartEditFile »/
{
return{stbufptr->et_size);
X
I e e e e e — »/
int ControlChar(x) int x;
{
return((z<® * || x>’"7) &k x!=RET A% x'=TAH k& x'=LF);
}
S e e »/
ExpandTabe(ptilanel) imt *ptrlineX;

Arr[LP]=ep; {sptrlinek)=tabstop-{(¥ptrlineX)¥tabstap};
if (sptrlined==8) { sptrlineX=0; }
while ((#ptrlinek)'=0 k& LP<RF)} { Arr[LP+1]=sp; LP++; (sptrlineXl)-—; }

fo —— - - w/
StripTrailks()

{

ehile{LP>P+1 &k Arr[LP-1}a=sp) { LP~-; Arr[LPFl=nl; }

}

fx — Bt e L >/

/% write.c »/

T ———

/% —- e e e e e e e e e e e e e et e e e e af
int WriteToStore(filename,filemade,firet,last) char filename[]l; cbar filemode[J;
int first; int last;
1
FILE »fopen(},*3yaPir; int NoWriteError=TRUE; int ptr=first-1;

SysTranslate(filename); SysPtr=fopen(filename,filemode);
SetProaptMsg(tilename);
it (SyePtr!=RullPtr}
{ PromptMessage (WritingFile);
vhile (NoWriteFrror &k ptr'!=last)
{ NoWriteError={{putc{GetArrCont (ptr+1) ,SysPtr)!=E0F) bk HoInterrupt):
ptri+;
}
if (HoWriteError &k GetArrCont(ptr)!=nl)
{ BoWriteError={{putc(nl,$ysPtr)!aE0F) &k Holnterrupt); }
fcloee (SysPir);
it {NoWriteError) { PromptMessage(Done}; return{0X); }
else { return(¥riteError); }

elae

XXV




}
fo -

{ return(CanhotDpenrile); }

soid WriteBackupFile{)

char

strcpy(backmpflame,FName); strcat!{backupFRame,"++");

f* FBame++ (FName with "++" appended) is first unlinked, and, if poeasible, »/
/e Fllame++ 18 linked to FRame. in appropriate FromptMessage 1s sent. =/

backupFame [FRameNarr] ;

SetPromptMsg(backupFName) ; PromptMeesage(UpdatirgBackup) ;
unlink(backupFName};

it (1
elae

}
fo -

ink(FHame ,backupFName) i=-1)
{ unlink(FName); }

{ ProwptNesaage{CannotUpdateBackup); }

./

/* pew link can be made =/

/* new link can’t be made +/

/* globals.c #/

[+ ars=eomez==o——c &/

#include "coneta.c"

/e
int
char

int

int

char
int

LP,RP,CF;
Arr [Maxz] ;

CurX,Cur¥,Startln,éndln,DocHL,¥5Rem ,NLRen;
WSIne,.NLIns ,PageWidth,PageHeight;

WP ,PF;
PATE [Maxx] ;

QAry [QMaxx] , SArr(QMazx], RpArr ((Maxx];
GF,qck, SP,RpF;

MatchedLength;

FName[FHameMaxz] ;

FP;

EState:

¥inOTtX WinOffY;
¥inStartln;

WinLineCK [RazWinHeight+2]:
VinHeight ,WinWidth;
Half¥inHeight ,HalfWin¥Width;
QurWinfdeight ,Qtr¥inWidth;

EbdArT [YpdMaxx] ;
Kbdptr;
HomePath;

Fey;

ar;

DPTyps;

OP{har:

DOPAxr [kbdMaxx] ;

XXV

/* ConcDocl

/% ConcDoc3

/* ConcDoc4d

/% CancDocb

/* ConcDoch

/#» ConcDac9

/» Ybdread . c

.
/

./



int

NoInterrupt; /* symentryexit.c «/
int Backup; /e wTite.c ¢/
int PromptDisplayed; /= for prampt display e/
int DocChanged;
int PromptCur;
char  Prompt¥sglFiameMaxx] ;
short ospeed; /% term.c o/
int TernType;
atruct sgtiyb Sgiiyb;
int fcot1Flag;
int TerminalSet;
int ScreenCleared;
char  PC; /* termcap padding character */
char  CM{entrlsized; /* terscap cursor metion =/
char  RC[entrlsizel; /% termcap carriage return =/
char  OD[cntrlsizel; /* termcap down ome line o/
char  S0(cntrlaize]; /* termcap begin stand-ont mode */
<har SE[cntriarzel; /*% termcap end stand-cut mcde =/
char  CE[cntrlaizel: /* termcap clear tc end of line */
char  BL[cntrlaizel; /# termcap ring bell */
<har SH[entrlaize]; /* termcap reverse scroll =/
char CL[entrlsizel; /* termcap clear entire acreen =»/
char BC[cnirlaizel; /# termcap backspace *f
char UP[cntrlsizel; /* termcap cursor up */
FA IS - =}

/v term.c »/
Jo zzo==Sece=== af
B e e e e e e e e e e e e e e s e */
GetTernCapAndSet¥Win()

/# Loads "tcEntry" buffer from t
/* termcap not found, else terac

/* ysing "ioctl" call, else termcap, else DefaultWinWidth and DefaultWinHeight;

/# if larger than MaxWinWidth er

struct ttysize ttysz;
char temp[cntzrlaize];
if ({TermType=getenv("TERN"))==0)

ayitch(tgetent (tcEntry,TermTypel)
*ptr=CM; if (tgetatzr{"cm",ptr)==0)
#piraRC; if (tgetstr{"cr",ptr)==0)
spr=0D; if (tgetstr{"de",ptr)==0}
sptemsSl; if (tgetstr(“sc",ptr)==0)
*ptr=5E; if (tgetstr("se”,ptr)==0)
wpir=CE; if (tgetstr(“ce",ptr)==))
eptreBL; 1f {tgetatr("bl",ptr)==0)
sptreSR; if (tgetstr ("sr",pir)==0)
sptr=CL; if (tgetetr(“cl", ptr)==0}
spto=llP; if (tgetetr(“up”,ptz)+=0}

char sptricotrisizel;

ermcap. 5ysExit if termical not defined or w/f
ap values initialized Sets WinWidth and WinHeight «/
*/
MazWinHeight, tben SysExit. »/
char teEntryltesizel;

{ SyaExit(NoTERM}; }
{ case 0 : SysErit{lnknowaTerwinal);
cage -1 : SyaErit{RoTermcapFile);
}
SysExit(InadeqTermCap,“cn");
{ Rc[o]=CR; AC[1]=c; }
{ op[0]=LF; 0D[1]=C; }
if (tgetstr("md",ptr)==0) SysExit(lnadeqTermCap,”sc");
if (tgetstr{"ag",ptr)==0) SysExit(InadegTermCap,"se");
SysExit(InadeqTeraCap,"ce");
if {tgetstr("vb",ptr)==0) { BL[0]=BEL; BL[1]=0; }
1f (tgetatr("al",ptr)==0} SysExit{InadeqTermCap,"sr");
SysExit{InadeqTermCap,'"cl");
SyaExit{InadeqTernCap, "up"};
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kc[o]=B5;BC[11=0:

#ptr=BC; if (tgetflag("ba")=<0} if (tgetstr{"bc”,ptr)==0) SysExrit(InadeqTermCap,'bs");

PC=PAD;
sptr=temp; it (tgetstr("pc",ptr)t=0) { FC=temp[0]; }

if (ioctl(0,TIOCGSIZE,kttysz)==-1 || tiysz._ts_lines<=0 || ttysz.

{ ttysz.ts_cols=tgetnum("co");
it (ttysz.te_cols==-1)

te_cols<=0)

{ SetSysCursor{); printf("Failed to get #columns of tty...setting default"};

ttyer.ts_cols=QefauitWinWidth;
1
ttysz.te_lines=tgetmum("1i"};
it (ttysz.ts_linems==-1}

{ SetSysCurscr{); printf("Failed to get #lines of tiy...setting detault"};

ttyax.ts_lines=Defaul tWinHeight;
}
X
1f {ttysz.ts_cols>Max¥inWidth) { SysExit(TooManyColeTTY,ttysz.
it (ttysz.ts_lines>MaxWinHeight) { SysExit(TocManyRowsTIY,t1yez
11 (ttysz.ts_cole<=0) { SetSysCirsor();

printf{'Failed to get #columns in TTY ...

}
VinWidth=ttyesz.ta_cols;
it (ttysz.ta_linea<=0) { SetSysCursar(};
printi{"Failed to get #limes in TTY ..
}
VinHelght=ttysz.ts_lines;
WinHeight~~;
if {VinHeight<MinWiaHeight) { SyaFzit(WindowTeoSbert); }
i1 (WinWidth«MinWinWidth) { SysExit(WindowTcoNarrow); }
SetDther¥Winkeights();
Teturn;

}

ta_colse); }

.15_lines); }

setting defanli);

. setting default');

/+ for proEpt line */

/a - -
Set0therWinHeighta (}
{
HalfVinHeight=(VinHeight/2); Half¥inWidth=(WinWidth/2);
Qtr¥inHeight=(¥inHeight/4): QurvinWidth=(Vinvidth/4);

*/

Pegeleight=WinHeight-Qtr¥inHeight; PageWidth=WinW1idth-GtrWinkidth;

}

I ==

ReadTermMode()

L

if  (ioctl(0,TIDCGETF,kSgttyb)==0) { aspeed=5Sgityk.sg_ospeed; }

./

else { SysEzat(SystemFrror,l1,"ReadTermMode"); }

}

/o —————— e ————— e
void SetfcntlFlags (2
{

./

if ({fcntlFlag=fcntl(0 F_GETFL))=-1) SyeEzit(SyetemError,[,"SetfcntlFlags”);
if (tentl1(0,F_SETFL,fmtlFlag | FHDELAY)==-1) SysExit(SystemError,1,"Setfcnt1Flags");

}
/e

vaid ReSetfcatlFlags()

{

it {£cntl{0,F_SETFL,fcntlFlag)==-1) SysErit(SystesError,1,"ReSet
}

./

fcntlFlage');

fr ——
void SetTerminal ()
{

o/

struct sgrtyb Sgt tybTemp;  int SgttybMask=" (RAW+CRMOD+ECHD+LCASE+CEREAN+TANDEN) ;

SgttyhTemp=8gttyb;

SgttybTemp.og flaga={(Sgttyb.sg_flage & SgttybMask) | (CHREAE+CRMDG) & ("XTABS));
it {ioctl(0,TIOCSETP,5gttybTemp)==-1) SysExit (SystemError,1,"SetTerminal");

TerminalSet=TAUE;

XX Vil



Setfcnt1Flags();
if (strcmp(TermType, "vi220")==0)

{ printf("Lelc" ,ESC, =), /# application keypad »/
printCsSI(); printt ("Kekdlc”,???,1,°h?); /= applicatien cursor keys =/
}
O e e e »f
ResatTerminal{)
i
it (1actl(O,TIucsETP.lSSttyb)n-l) SysExit(5yetenErrer,], "RecatTerminal");
H.ASAt!cnuFlas.,();
¥
F T T —— */
/* sysentryexit.c */
I S
o= —ans ./

void SysEntry(arge,argval,initline) Int arge; char sargvall]; int »initline;

/® "args” 18 the numher c¢f arguments precent, "argval” an array of addreeeces. */

/* "injtline" a peinpter to Initiailine (from main). functiou checks syntax */
/% of igput - if had, SyeErit, but if OK, FMawme, lnitialLine, Backpnp and »/
/= puafilepames set n=ing SetMertOption - if numfilebames not 1, SysExit, s/

{
int numfilenames=0:
argeal++; arge——;

while (arge>p) { it (eargval[0]==7-") /+ aptioun specified ... =/
{ SetNextOption(&args,kargval,initline, dmumtfilenames); }
else /=... elee the filename *x/

{ 1f (etrlen(sargval)>=FNameMaz-2)
{ SysExit(FilenameToalong,*argval); }
strepy{Flame,*argval};
argval++; args--; numtilenames++;
}
}
1f (oumtilenamea==p) { SysExit{NoFilenameGiven); }
elpe if (numfilenames>1) { SysExit(TooManyFilenames}; }
LoadFredcap(}; SetInterrupts();

}
FoE ——e —————— ——— =/
SetRextDption(as,av,i, £} int =was; char ##av[];
int  ei; int »f;
/+ "as" is a pointer to args, “a¥" points to the address of argval, "i" points to =/
/+ lopitialline and "f" to nuafilspamee (all relating to SysEntry). The function =/
/¢ takee the next argval, and, if recognized, (using the next argval if needed), =/
/* sets the Televant flag. Tf the flag is not recognized, SysExit. «/
{
if (sircmp{ssav,"-d")a=0) /* backup flag recogrized »/
{ Backup=TRUE; (wav)++; (*as)--; }
else if (strcmpl(esav,"-1")=0} /* initial line {lag recognized =/
{ if (vand>1) /* anotber argument tg take */

{ (wav)++; (was)--;
it (CovStringToMum(#®av,id) { (sav)++; (was)--; } /* a valid line numher #/
elee { SysExit(BadlLineBumber,**av); }

XKIX




}
else /* no line number present =/
{ SysExit(BadCommandSyntax); }

}
clpe it (atrcmp(wesav,"-")==0) /* filebame flag Tecognized e/
{ it (=as>1) /* amcther argument to take =/
{ (*aw)+s; (was)--;
if {atrlen{++av}>=FlaneMar-2) { SysExit(FilenameloaLong,**av}; }
strepy (Flame, **av); (sav)+; (was)--; {*1)++;
}
<lse
{ SysExit{NoFilenameGiven); }
}
elpe
{ sysEx1t{UnknownOptipa,+*av); }
}
f# e et b =/
LoadFredcap{)
{
ptTuct atat stbuf; FILE sfapen{),=SyePtr; int x; int num; 1ni count;

char filegame [FNameNaxx]:
if ((HomeFatbwgetenv("HOME"))==0} SysExit (NeHUMEset};
strepy(filename "~ /fredcap/ITERM") ; SyeTranslate(filename);
if {(Hot(FileExists(filename, .kstbut})) { atrcpy({filezame,DefaultFredPath);
SysTranalate(filename);
}
if (Not(FileExiste(filename,Rstbutf))) { SysExit(NoFredcapFile); }
1t {(SysPtr=fopen(filename,“r"))==NullPtr) { strcpy(FName,filename);
SysExit (CannotOpenFredcap) ;
}
Rey=0; while (Eey!=kbdNax} { OPArr[Key]l=Notimplemented; Key++; }
Key=0; r=getc(SysPtr);
ghile (x!=EOF) { Key++;
while {(x!=’:’ &t x!1=EOF} { x=getc(SysPtr); }
1f (x!'=EDF) { z=getc(SysPtr};
if (x'=sp ¥k x!=nl k& x!=FOF)
{ nua=0;
whils (IsD1gitChar{(x)) { num=(numeid)+{x-'0"});
1=getlc(SysPtr);

}
OPArY [Key]=num;
}
}
1

}
/o —mm= ./
SysExit(rep,ptr,mag) int rep; int pir; char *msg;
{

it (rep!'=0K) { AbortMessage(rep,ptr): }

SetSysCursor(); printf('\a");

if (TerminalSet) { ResetTerminal(): }

Poslmage();

if {rep==SystemExror) { perror(msg); printf("\n"); exit{stderr); }

else { exit(repd; }

}

/e ———= - -— e/
Interrupt{)

{

NolnterTupt=FALSE;

}

/e - - —— e -~ »f
ClearInterrupt()

{

Nolnterrupt=TRUE;

XXX



}

F e T i L7
Suspend ()

{

PosImage(); DisplayTheVWindow(); SetSysCursor(}); pramtf{"\n");
printf("%s Editing \"¥a\"" ,EditorBame, Flame}; fflush(stdout);
if (TerminalSet) { ResetTerminal(}: }

sigeetmask(0); signal (RIGTSTP,SIG_DFL); kill(0,51GTSTF);

s1gnal (SIGTSTP,Suspend) ; ClearInterrupt(); SetTerminal (); CLSAdjust{); DieplayTheWindew();
if (EState==Stats _Doc)
{ PromptMessage(EditingFile); PromptMeesage(Resumed); SetDocCurser(); }
else
{ PromptMessage{ShowQuotePrompt); DisplayQuoteButfer(}; }
tflush(atdout};
1
W e e -/
PanicExit ()
{
char filename([FlameMaxx];
strcpy{filenana,””/fred.save"); SysTranslate(filenampe);
it (DocChanged) { PamicWriteToStore(filenase); }
Set3yaCursor(}; printf{"“\n"};
if (Terminalfet) { ResetTerminal(); }
PosImage();
printf("Fatal interrupt received\n");
if (DocChanged} { printf("Tried to save as \*Ys\"\n",filename}; }
prantf("\n"; exit(stderr):

L T - */

int PanicWriteToStore(filename) char sfilename;

int ptreq; FILE efopen(),=SysFtr; SysPtr=fcpen(filenama,"w");
if (SysPtr{=NHullPtr)
{ vhile (ptr'=Max+LP-RP} { putc{GetArrCont(pir+1),SysPir); pir++; }
if (GatArrCont{ptr)!=nl) { putc(nl,SysPtr}; }

fclose(SysPto);
}
¥
F I D e e e L P P e ] f
Setlnteryupta()

signal (SIGHUP,PanicExit)};
eignal (SIGINT . Interrupt);

81gnal(51GQULT. PanicExit);

2ighal(SICTSTP, Suspend);
/e -~ -~ ./
SysTransliate{filename) char afilename;

{

int filelepgth=strlen(filename); char newname[FNameMaxz]; int fptr=0; int newptr=0;

char var (FameMarx] ; int val;
while {fptr<filelength &t newptr<FNameMar-2)
{if {filename [fptr]=="\\?) { fptr++; newnane{nevptr]~filenane(tptr};
Tptrt+; newpir++;
}
else if (filename[fptrl=='"7) { fptr++;
nevpir=lnsert{HomeFath, uewname,nevptr);
}
else if (filename[fpirl='58’) { fpir++;
fptr=5tripEnvYar{var ,filename,fpir);
if ((valegetenv(var))!=0}
{ nevptr=Insert{val ,newnawe,newptr}; }




elae { nevoame[newptr]l=filename[fptr];
iptr++; newptr++;

¥
}
nevname [newptr]l='10"; strepy(filenane,neunane);
}
/e ——mm— -—= - -/
Ingert{@ord,nevname ,newptr) char =vord; char *neename; int megptr;
{

int wordlength=strlen{sord); int ptr=0;

shile{ptr<soxdlength k& newptr<FNameMar-2) { newnane[newptr]=word[ptr]-. ptr++; pevptr++; }
return(newptr);

1

e e e =/
StripEnvVar{(var,filename fptr) char svar; char #f.lename; int fptr;

{

int ptr=0; char c=filemame[fpir];

vhile {IsAlphaNum{<)) { variptrl=c; fpir++; ptr++; c=filepame([fpir]; }

var[ptr]l='\07; return{fptr};

}
A e -- =/
/% screen.c #/
P —
F e e P e e e e */

DisplayChar{c) imt c;
i

/4 i1 (e==sp) { c="_"; } else it (c==nl) { c='["; } &/
putchar{c);

[ - - - - Y
ScreenQutput (cntrlstr,lines) register char ecntrlstr; int lines;
{ tputs{cntrletr,lines,DieplayChar); }
S e e e ———— )
CLSAdjust ()
{ ScreenQutput (CL,VinHeight+1); VindowLinesBad(1,VinHeight};

PromptCur=WinWidth; PromptDisplayed=FALSE; }
e - e - -— wf
SetTermCursor{x,y) nt x; 1nt y:
{

it (strcmp{tgoto(CM,x-1,y-1),"00P5")==0) { SysExit(SystemErrar,1,"DOPS"); }
Screenflutput (tgoto (CM,x-1,7-1].1); }
8 e ——— - ./
SetDocCursor()
{ SetTermCursor (CuxX-Win0ffX,Cur¥-winDffy); }
/e e e e e ./
SetProaptCursor()
{ SeiTermGursor (PromptCur,WinHeight+1); }
S e e - ./
SetInitQuoteCursor (3
{ SetTermCureor(QuotePromptlength+1,VinHeight+1); }
I . - */
SetQuoteCuraor()
{ SetTermCursor(QCP+QuotePromptlength+1,VinHeight+1); }
/e - ~_— ————eme
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SetSysCurmar()

{ 1f (ScreenCleared) { SetTermCursor(1,VioReight+1); } printf(™w"); }

T - e e n ./

ScrollUpAdjust{n) regiater int mn;

{

register int yaq:

if (n!=0) { ErasePromptLine(): ScreenQutput (tgote (CH,0,¥WinKe1ght),1);

while (y'=0) { ScreenCutput(DC,WinHeight+l+y-n); §-—; }
while (y+n<Winfeight) { WinLineQK[y+1]=WinLineOK[y+n+1]; g++: }
PromptCur=WinkWidth; PromptDisplayed=FALSE;
ReDaesplayPromptline(}; WindouwliresBad{WinHeight-n+1,WinHeight);

e s mm e A

ScrollDownkdiyust(n,line) register int o; register int line;

{

Tegister int 713

if (n!=0) { Screealutput{tgoto(CM,0,line-1),{);
ghile {y!=0) { Screenutput(SR,WinHeight-line+l+y-n); y--: }
while {y+line+n<=WinHeight)
{ ¥1nLineOK [WinHe1ght-y]=WinlineOK [WinHeight-y-n]; g++; }

PromptCur=Win¥idth; PromptDisplayed=FALSE;
ReD1splayPromptLine(); WicdovLinesBad (line,line+n-1};

}

L e e L L IR a/
ReDisplayPromptline ()

!

char achstring [FNameMax]; char rpletring[FNapeMax];
if (Not{CharAvailable()))
{ ProaptCur=wWinWidth;
if {EState==State_Doc)
{ if (OP==UpSearch}
{ PromptMessage(SearchingUpFor); PromptMeesage(Found); }
else if (OP==DownSearch)
{ PromptMessage(SearchingDovnFor); PromptMeasage(Found};}
else if (OP==Replace)
{ CopySBuffToString{schatrang);
SetPromptMag(schatring); ProaptMessage{Replaced):
CopyRButfToString{rpletring) ;
SetPromptMsg{rplstring); PromptMessage(With);
1
else 1f {OP==1lnput)
{ PromptMessage(ReadingFile): PromptMesaage(Pone); }

elae
{ ProuptMessage(EditingFale); }
}
else
{ PromptMessage(ShosQuoteProwpt); DisplayGuoteBuffer{};
SetQuoteCursor();
}
¥

}
FL IS e e e e e ————————— e ——— af
Neglsage ()
{ Screentutput(So,1); }
= - -
Ponlmage{)
{ screenlutput(SE,1); }
/e - —_— — »/
ClearToEndOILine (}
{ screenfutput (CE,1); }
fa - -—— -_—— - -_— £y
AingBell()
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{ ScreenOutput(BL,1); }

S e e e e e e e e m e e L
ErasePromptLine ()
{ ot i=0; PosImage(); PromptCur=l; SetPromptCursor();

while(it+!=WinWidth-1) { primf("%c",* *); } }
f# —mmr e e e e e e e e e e e e e -/
DravBlankPromptl ine(}
{ int i=0; VegImage(); SetPromptCursar{);

while(i++!=Vin¥Width-1) { prantf{"%c",’ *); } PorImage(); }
f® o e e e wf
CursarToNextLine ()
{ Screenflutput{0D,1); }
/€ = - T e e - #f
pritcsi() /* print CSI sequence for v£220 «/

{ printf(“%c%c",ESC,'(’); }
f# —m e

f* externglobals.c s/

/# —==m====m—as—zc=cca== & f

Finclude "consts.c”

[ mmme——e
extern int LP,RP,CP;
extern char Ary [Maxx];

ertern int CurX ,CurY,S5tartln,Endln,DacHL,¥SRen, NLRen;
ertern int WSIne NLIns,.PageWidth,PageHeight;

ertern int 1 2
ertern char  Piry [Maxzx];

extern char  Qirx [Warx],Sikrr[QMazx] ,RpArr[QMarxz);
extern int GP, QCP,SF,RpP;

exterz int Mat chedlength;

extern char FHame [FRameNaxa);

ertern int FF;

ertern int EState;

ertern int VinOf X, WinDf£Y;

ertern int ¥inStartino;

eITern int ¥inL ineOK [Max¥WinHeight+2];
extern int WinHeight,WinWidth;

extern int HalfWinHeight ,HalfWinWidth;
extern int QerWinfletght ,Qtr¥in¥idth;

extern char  RhdArr[kbdMaxx];
extern int Ebdptr;

extern int HomePath;
extern int Rey;
extern int OF;

extern int OPType:
extern char OPChar;
extern jnt OPary [100];

extern int Bolnterrupt;

RAXIV
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extern int Backup;

extern int PromptDasplayed;
extern ipt DocChanged;

extern int PromptCur;

extern char PromptMsg[FNameMaxx];

extern short cspeed;

extern int TeraType;
extern struct sgttyh Sgtiyb;
extern int fentlFlag;
extern int TerminalSet;
extern iopt ScreenCleared;

extern char PC;

extern char CM[contrlsize];
ertern char RC[cntrlsizel;
extern char DDlentrlaize];
ertern char 50[cntrlsize]l;
extern char SE[cntrleaze]:
extern char CElcntrlsazel;
extern char BL(cntrisizel;
extern char SH[cntrisizel;
extern char CL(cntrlsize];
extern char BC[cntrlaize];
extern char UP[cntrleizel;

FA BEECE TS - -—nf

/* kbdinterpret.c =/

Jr mammm e
Rinclude "externglobals.c”
[ - */
KbdRead()
i
if (strcmp(TeraType, "vt220")==0) { vtz20Tanzerpret(); }
else if (strcop(TeraType,"sua")==C¢) { SunlInterpret(); }
}
/> - -- - %/
¥t220Inkerpret() /¢ keyboard interpret for vt220 »/
i
char r=GetNextChar();
it (x>=! * gg 7¢=*"?) { OP=lnsertChar; DPChar=x; }
else 1f {(x==RET) { OP=ImsertChar; OPChar=nl; }
elge 1f (xr==TiB) { OPaTosertChar; 9PChar-x: }
elee if (x~=DEL) { UP=LeftDeleteChar; }
alse if (r==ESC) { r=GetBextChar();
1f (x=='["} { vt220InterpreiCSI0); 1}
else if (z=='0') { vi220Interpretss3{); }
else { QP=NotIlsplemented; }
}
else { OP<NotImplemented; }
1
LI - et L L - /)
¥1220InterpretCSI() /* tunction and editing keys o/

XY




i

<har <;

cbar d; char e; it  i;

¢=CetBextChar() ; d=GetNextChar();

if (d=='"")

switch (c)

i

CaEe
case
CaBe
case
cage

cage

}
else {

*1* : break;
»2* :; (P=Mark; break;
'3’ : break;
*q4? : break;
'5* : break;
‘6° * break;

e=GetHertChar();
if (e==2"2*)

i=(10%(c-°0 ) )+d-107;
svltch{l)
{

it j;

/* editling keys

/= Find

/* Insert Here
/% Remove

/+ Selact

/* Pretr Screen
/4 Next S¢reen

/+ function keys

case 17 : break; /* TG
case 18 . OP=CursorlpPage; break; fs FT
cage 19 : OPeMoveToTop: break; /s F8
case 20 : OP=HoveToBot; break; /* Fg
case 2?1 : OP=CursorDownPage; break; {* Fio
case 23 : break; /f* F11
case 24 ; break: /s F12
caga 25 : break; /* Fi13
case 26 : break; /s F14
case 28 : break; {* Help
case 2% : break; {* Do
cage 31 : DP=Cut; break; /= F17
case 32 : OP=Laft; break: !+ Fi8
case 33 : OPaPaste; break; /+ F19
case J4 : OP=Noilmplemented; break; J+« F20
}
elee OP=Notimplemented:
}
}
I RN O
vt220Interpretss3 () /= arrow keys aad auxiliary Reypad =/
i
switch (GetNextChar())
{
case 'A’ : OP=CursorlpLine; break; /% up arrow
casg ’B’ : OP=CursorDownline; break; /#» dewn arrow
case 'C’ : OP=CursorfiightChar; break; /2 right arrow
case 'D’ : OP=CursorLeftChar: break; /% left arrow
case 'P* : OP=LeftMoveline; break; {* PF1
case ’Q’ : OP=RightMoveline; break; I« PF2
case 'R’ : OPxLeftDeleteline; break; fe PF2
case 'S* ; DP=RightDeleteline; break; /+ PF4
cage ’p' : break; P
case ‘g’ : break; /=1
<nge 'r’ : hreak; fe 2
case ‘e’ : break; /= 3
cape ‘t! : OP=LeftMoveChar; break; fe &
case ‘u’ : OP=RightMoveChar; break; /* 5

AAANVT

*/
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case 'v’ : DP=LeftDeleteChar; break; /6 =/
cage 'w’ : DP=LeftMoveWord; break; /27 v/
case 'x’ : DP=RightMoveWord; break; /8 2/
case 'y’ : OP=LeftDeleteWord; break; /v 9 2/
case '1l’ : OF=RightDeleteChar; break; /e . */
case 'm' : OP=RightDeleteWord; break; fx - «f
case 'm’ : byeak; /e »/
case ‘M’ : break; /= Enter =/
}
}
I e - - -— )
Sunlnterpret{} /#* XeYboard read for sun */
{
char x=letBextChar();
if (x>=' ’ k& x<='"’) { OP=InsertChar; OPChar=x; }
else if (x==RET) { 0P=InsertChar; OPChar=nl; }
else if (x==TAR) { OP=InsertChar; DPChar=x; }
else if ( EL) { OP=LeftDeleteCbar; }
else if (x==B3) { OP=LeftMoveChar; }
else 1f (x==ES() { x=Cet¥extChar{);
af (x=="[*) { SunFunctienInterpret(); }
else { OP=NotImplemented; }
}
else { DP=Notlmplemented; }
}
Lt T ittt */
SunFunct imInterpret(}
{
char c=Get¥extChar(); char d=GetNertChar(); char e=GetNextChar(}:
char f=GeNextChar(); Key=0:
1t (f=='2') { eeitch{(100*(c->0’})+{108(d-70"))+{e-"0")} {
case 192 : Key=L1; break; cae 239 ; Eey=LZ; break; cage 203 Eey=L3; break;
case 1356 ; Hey=L4: break; caze 204 : Key=L5; break: cage 236 : Key=L§: break:
case 05 : Key=L7; break; caae 237 : Key=LB; break; <ase 206 : Key=L9; break;
case 138 : Key=L10; break: caze 202 : Key=Fl; break; caee 225 : Rey=F2; break:
case 226 ; Rey=FJ; break; case 227 : Rey=F4; break: case 228 : ; break;
case 129 : Xey=F6; break; case 230 : Key=F7; break; <ase 231 : ; break;
case N2 : Xey=F9; break; caze 208 : FKey=R1; break; case 209 : Key=RZ; break;
casa 210 : Key=R3: break; cage 21f : Key=R4; break; case 212 : Key=RS; break;
case 213 : Key=R6; breal; case 114 : Key=RT; hreak; case 215 ; Key=RB; break;
caee 216 : Key=HY9; break; case 217 : Key=R10; hreak; case 718 Key=Rl1; break;
case 219 : Key=R12; break; case 220 : Key=R13; break; case 271 ; Key=R!l4; break;
case 22 : Key=R15; break; } }
OP=0PArrinyl;
}
S e e e */
/* utilities.c *»/
/4 =t emmee———a=== */
i - =/

char GetNextthar()

{

char c¢=EOF;

it

int ptr=0;

/» unbuffered single character input, */

/* returns nert key from keyboard

(Kbdptr!=0) { c=Xbdarr[1]; Kbdptr--;

while (ptri=Hbdptr) { Kbdirr{ptr+i]=KbdArr(ptr+2]; ptr++;

xxxvil
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}
elae { wbile (c=EOF) read(0,kc,1); }
return{c);

}

Fil e e e e e e e e
int Chardvailahle()

i

char c=E0F;

read(0,tc,1); if (c!=EDF xt Kbdpirt~kbdMax} { Rbdptr++; Rbhdirr[Khdptrl=c; }
retwrn{Kbdptr '=0) ;

}

Fil ——— T e e e s -—= -
delay{)

{

ot 1=1000; while (i»0) { 1f {Charkvailable()) i=0; else i--; }

}

[ m———— - e —_———
int Not(i) /% 1t "1" FALSE, returns TRUE else returns FALSE
int 1;

{ 1f {1==TALSE) teturn(TRUE): else return(FALSE); }

FE BT - - -— e —— e e

ant CneStringToNum({string,ptr)/s "string" is a string. "ptr" a pointer to the value ta
/% be aesigned. 1f each mesber of the mtring 18 an
/+ integer character, the value 18 assigned and TRUE
/* returped, else value left unchanged, and FALSE returned
char stringl[l; int epir:
1
int j=0;

vhile (#atring!=0 Rk TeDigitChar(*string)) { j=(10*j)+{sstring-’0'}; string++; }

1f (#string==0 ik j'=0) /% end of eiring reached, so OR it nct zero
{ »ptr=j; return{TRUE}; }

else /* a non-digit character present
{ return{FALSE); }

}

S ———— e ————— e = —m————————————

int CnvNumToStrmg(nun,atr:img) int num; char #string;

{

chax topsiring[FNameMaxx];
=0 ek ptr<FNameMax-2) { tupstring[ptr]=(’0'+({nus¥i0)); ptr++: num=num/10; }
shile {ptr!=0) { ptr--; estring=tmpatring(ptr]; string+; } *string=’\0’;
}
fe - - -- - - -- -
int IsPigitlhar(c) /+ returns TRUE if '0°<=c¢=’9’, else Teturns FALSE
char c;
{ return(’'0’<=c &k c<='9!); }
I e e e e -
int IsAlphakua(c) /* returns TRUE if ¢ alpha-numeric, elee returna FALSE
char c;
{ return((’a’<=c Ek c<=2') || {"A7<=c kk c<='2°) k& (P0'<=c || c<=9°)): }

/- - - - -

int Lower(c) /* converts ASCII to lower case
char c;

{

3t (c>=’A’ Bk c<="1") returm(ct’a’-’A’};

else return{c);

XXX ¥ill
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/% conats.c */

/* s==E==w==c===x a/
f# e e e — e —— e e e e e T TS S S e e e »/
#defipe Maxx 100001
#define Max Maxz-1 /+ array[0] not used’ »/
Rdefine QMazx 65
#define QNax OMaxx-1
#define FNameMaxx 257
#define FRameMax FNameMaxr-1
#defir: kixiMarx 101
#define XkbdMax kbdMaxx-1
#define tabstop 8
#define MaxWinWidth 150 /= window lengths +/
#define MarWinHeight 60
#define MinWinWidth 8
#define MinWinHeight 3
#define DefaultWinWidth 80
fdefine DefaultWinHeight 24
#define cntrlsize 32 /% for termcap */
#define tesmize 1024
#define WUL \COG! /+ special characters »/
#define PAD *\000!
#define PEL "\00T?
#define IS 0107
#define TAR \011°
fdefine RET \012?
#define IF *\p12°?
#define Q& AYEE
#define E5C *\033°
#detine DIL '\1TT
#define MNillPtr NULL
#define sp 1
#define nl ‘\n’
#define Leit 1 /* fox ConcDocl =/
#define Rigat 2
#define Curibove 1 /* for ConcDocé =/
tdefine Curjelos 2
#define Staie_Doc 0 /+ for ConcDocB %/
#define State_Quote 1
tdefine TRIE 1 /+ booleans */
fdefine FAL3E 0
f#detine O 0 /* report messages */
$define SyatmError 2
#define HoTEMM kS
#define UnimamTerminal 4
fdefine WNaTemcapFile 5
#define InadeqTermCap [
#define TooMaryColsTTY 7
#define TooManyRowaTTT B
#define WindowTooShert 9
#define WindorTeolarrow 10
#define ReadExror 11
#define Writebrror 12
8define WoReadPermibaion 13

KU N



fdefine
#define
#define
#define
#define
#define
#define
#defioe
#define
#define
#define
#define
#define
sdefine
#define
#deline
#define
#define
#define
#define
f#define
#define
#define
#define
fdefine
#def ine
#define
#define
f#define
f#define
#define
tdef ine
#del ine
$def ne
#detine
#define
#define
#define
gdefine
#define
#define
#define
gdefine
#define
#define
#define
#define
#dedine
#detine
#define
#define
#define
#define
#define
#define
#deiine
#define

#def ine
#define
#define
#define
#define
#define

CannotOpenFile
BadTerminalType
EoFilenameGiven
HadLineNumber
TecoMapyFilenames
BadCommandSyntax
HoWritePermisslon
Unknowndption
Full

Tep

Bot

Tepline

LeitEdge
NoTertMarked
FPHuf fEmpty
TooNear Top

OFNot Implenented
QuoteError
TeplQucte
BotQuete
Fullfuocte
11legalEditOp
lllegal QuoteChar
BellRung
DocHotChanged
ReadingFile
WritingFile
EditingFile
EditingNewFile
Done

Updat ingBackup
CannotUpdateBackup
Suspended
Show(uotePrompt
EditAborted
CntrlFound
Fnll_Tahs
FileNotExist
Directory
HitKeyToResune
HeCommandGiven
SearchingUpFor
SearchingDownFor
Found

NotFound
SBuf{Empty
Replaced

Vith

NotMatched
ShowStats
DBui{Eapty
HoFredcapFile
CannotlpenFredcap
Resumed
Interrupted
HoHOMEset
FilenameToolong

NHotImplemented
MaveToTop
MoveToBot
LeftMoveChar
RightRoveChar
LeftMoveWord

(LI AR N Rl

/* editor comands =/



#define
fdefine
#define
#define
Bdetine
gBdetine
tdefine
gdefine
ddefine
2define
#detine
#define
#detline
fdefine
#define
#define
#define
#define
#define
tdefine
#define
#define
#define
#define
#define
®define
2define
#detine
#define
#define
#define
#define
$define
#define
#def ine

fdefine
#detfine
#define
#define
tdefine
Bdeiine
#define

#define
#define
#define
#define
tdefine
#define
#define
#define
fdefine
#define
tdefine
tdefine
tdefine
ddetfine
tdefine
tdefine
fdefine
ddetine
tdefine
tdefine

RightMeveWord
LeftMoveline
RightMoveline
LeftDeleteChar
lightDeleteChar
LeftDeleteWord
RightDeleteNord
LeftDeleteline
iightDeletelLine
tursorLefiChar
tursorRightGhar
fursorpl.ine
tursorDovnline
turaorUpPage
fursorDovnPage
UpSearch
LownSearch
feplace

Tark

Cut

Lift

Paste

uote

Centre¥ indow
RefreshDisplay
showlocStats
Kart

Save

frite

Append

Quat

Input
Nsvelinelurher0rError
Escape
IisertChar

LeftIngsert
RightTneert
LeftDelete
RightDelete
LeftMove
RightMove
KcMove

LI
L
L3
14
L5
L5
L
Ls
L3
L1y
F1
Fz
F§
F4
FS
Fé
F1
F8
F4
R1

~N T AW A e

IR I R - N S

R e e e
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/* for 0PType »/

/+ sun functien keys «/



#define R2 21
#define R} 22
#define R4 23
#define RS 24
#define RE 25
#define R7 26
Sdefine R8 a7
fdefine RS 28
#defzne RI1C 2%
#define R1l 30
fdefine R12 31
#define R13 a2
8define R14 a3
#define R1S 34
#define DefaultTeramPath ‘fetc/termcap”
#define DefaultFredPath " /4TERR"
#define EditorName "fred 0.0"
8define QucotePrompt “QUATE - "
#define QuotePromptLength 8
#define usage "usage: fred [-b] [-1 number] [-2 {ilename™
/4 e e S e S of
/» messages.c »/
fa - -
Abor tMeasage(rep,ptzr)  int rep: int ptr;
{
svitchirep)
{
cane UnknownTermiaal : printf("\pUnknown terminal type \"¥s\"",TermType); treak;
cage NoTermcapfile : printf{"\nCan't find termcap file"); break;
case NoHOMEset : priotf ("\nEnvironkent variable HOME not found"); break;
case InadeqTermCap ; printf ("\nInadequate terminal capabilities - ¥%=".TenType);
printf(" / Xe",ptr}; break;
case TooManyColsTTY : printf (“\nTco many columns in TTY ... columns=j§d",ptr);
printf{" max columns=%d",Max¥WinWidth); break;
case TocManyRawsTTY : printf("\nTec many rews an TTY . . rowe=4d" ptx);
printf (" mar rows=¥d",MarWinMeight); break;
case WindowTeoShert : prantf ("\nWindew toc small ... lines=Xd",WiaHeaght);
printt (" min lines=Y¥a4" MinWinHeight}:; bhreak;
case WindowTcoRarrow : priatf ("\n¥indow tco small ... cols=%d",WinWidtb);
prantf(" min cola=%d",MinWip¥Width); break;
case Full : printf ("\n\"%s\" toc big for editor",FHame);
printf {(*\nYs capacity;:¥d' ,EditorName,Max}; break;
case Full_Tahe : printf(” toc big for editer \{tabs expanded\)");
Poslmage(); printf("\m\n¥s capaczty:¥d" ,EditorName,Mak);
break;
case Directory : printf ("\o\"%a\" is a directory",Flame); break:
case HNoHResdPermisaion : printf("\nRead permimaion denied for \"%s\"",FName); break;
case CannotlpenFile : print?("\nCannot cpen \"%8\"",Flame); break;
case BadTerminalType : printf{"\nfred: not available for ");
printf ("terminal type \"¥s\"".FName); break;
case FilenameToolong : priotf("\nFilename \"1s\" too long",ptr): break;

xlif



case NoFilenameGiven : printf{"\nired: no filename given ,.. "}; printf(usage); break;
case BadlineNumber : printf("\nfred: bad line number \"Xa\"... ",ptr);
prantf(usage); break;
case TooManyFilenames : printf("\nfred: too wany filenames ... "); printf(usage);
break;
cage PadCommandSyntax : printf(“\nfred: bad eyntax ... "); printi(usage); break;
case NoWritePermission : printf(“\n¥rite permimsion denied for file \"is\"" FName);
break;
case Unlmownlpticn : printf("\nfred: Unknown option %8 ... ",ptr);
printf(usage); break;
case NoFredcapFile : printf("\nCan’t find fredcap file"); break;
case CannctOpenFredcap : printf{"\nCan’t cpen fredcap file \"%a\"",FName}; break;
}
X
I e D P DL L D b Dl el e 'Y
PromptMessaga(rep)  int rep;
{
Heglmage(); swatch{rep)
1
case Top :
Prompt (1,"At top of document”); MsgEnd(); break;
case Bot :
Prompt (1."4t bottom of document"); MegEnd(); break;
cage Full :
Prompt {1,"Editor capacity reached"); MsgEnd(); break;
cage Fall_Tabs :
Prompt (0, "Editor capacity ezceeded expanding tabs"); NesgEnd(); break;
case ToplLine :
Prowpt{l,"At top line of document'); MegEud(); break;
cass leftEdge :
Prompt{l,"At left edge of document”); MsgEnd(); break;
case loTertMarked :
Prompt{l,"No Text Marked"); MsgEnd(); break;
case [huffEmpty :
Proapt{1,"Paste buffer empty"); MsgErd(}; break;
cagse TaaNearTop :
Prompt (1, Teo near top of document"); MsgEnd{): break;
case DicNotChanged :
Prompt (1,"\""); Prompt{0,FNane); Prempt(d,"\"");
Prempt (0," Not changed ... Not written"); MsgEnd(); break:
cape (uoteError :
Prompt(1,"QUDTE ; abert a i q & % !'cmd number™); E.1ngl':lell();
MagEnd(); break;
case ReadError :
Prompt (0, "Read exror"); MsgEnd{); break;
case WriteErrar :
Prompt{0,“¥rite error"); MsgEnd(}; break;
case NolommandGiven -
Frempt (1,"Ho command given"}; MagFnd(); break;
cage OPictImplemented :
Prompt (1,"Not 1mplemented"); RingBell(}: MsgEnd()}; break;
case SBuffEmpty :
Prompt(1,"Search buffer empty’); MsgEnd(): break;
caee RewdingFile :
Prompt(l,"Reading "); Prompt{0,."\""): Prompt(0,PromptMsg); Prompt(0,"\"");
Prompt(0,” ... "); break:
case MWritingFile :
if (Backup) { Prompi(0,"Writing “); }
else { Prowpt{1,"driting “); }
Prompt (0,"\""); Prompt(0,PromptMsg); Prompt(C,"\""}; Prowpt(0.,” ... ");
break;
case EditingFile :

Prompt (1,EditcrNane); Prompt{0," Editing "); Prompt(0,"\""};
Prompt(0,Fhame) ; Prompt{0,"\"");



case

cage

case

cage

CAs®

cage

case

case

caee

€agse

cane

case

caae

case

case

case

Case

came

case

cage

cage

cage

case

if (DocChanged) { Prompt(0," *"); };
PromptDisplayed=TRUE; PosImage(); break:

EditingNewFile :

Prompt(l,EditorName); Prompt{0," Editing "); Prospt{(Q,"\"");
Prompt (0, Fiame); Prompi(0,"\""); Prompt(0.” (new file)");
Promptlisplayed=TRUE; PoaImage(); break;

Dene :
Prompt(0,"Done"}; MsgEnd(}; break;

Updat ingBackup
Prompt (1, "Updating "); Prompt(0,"\""); Frompt(0.ProwptMeg); Prompt{l,"\"");
Prowpt(8," ... "}, break;

CannotUpdateBackup :
Prompt(1,"Can’t update "); Prompt(0,"\""); Prompt{0,ProoptMsg) ;
Prompt{0,"\""); Prompt(0," ... "); RingBell(); break;

NoReadPermission :

Prompt(1, "Re

ad permizpiop denied for "); Prompt(0,"\""}:

Prompt(0,PromptMsg); Prompt{0,"\""); MsgEnd(); breaXx;

Directory :
Prompt (1,"\"
Prompt(0," 1

FileNotExiat :
Frompt(i,™\"
Frompt(Q,” d

CannotOpenfFile :

") Frompt (0,PromptMsg); Prompt(0,"\""):
e a directory"): MegEnd{}; break;

"): Prompt(0 . PromptMag); Prompt(0,"\"");
oes not exist''); MsgEnd(); break;

Prompt(1,"Can’t open “); Prompt{0,"\""); Prompt(0,PromptMsg);
Prompt(0,"\""}; MsgEnd(); break;

ShowQuotePrompt :
Prompt(1,QuotePrompt); hreak;

Edithborted :

Prompt(1,"Edit aborted ... \""); Prompt(0,FName);
Frompt(0,"\" Not #ritten"); break;

CntrlFeund -

Frompt [0, {Control chars discarded)"); RingBell(); MsgEnd(); break;
HitKeyToResume :

PosImage(); printf{“\nHit <Return> to resume editing \"%s\"... ",FName); break;
SearchingUpFor :

Prompt{1,"Searching {up) for \""); Prompt(0,Proopthsg);

Frempt(0,"\" ... "); break;
SearchingDownFor :

Prompt{1,"Searching {down) for \""); Prompt(0,PromptMsg};

Prompt{0,"\" ...

HotFound :
Prompt (0,"No
Found :

“); break;

t found"); MsgEnd{}; break;

Prompt {0,"Found"); MsgEnd(); break;

Replaced :

Prompt (1,"Replaced \""}; Prompt(Q,PromptMeg); Prompt{0,"\""); break;

With :
Prempt (0," ¥
HotMatched :
Prompt {1,"No
MegEnd (); br
SbowStata:

1th \""); Prompt{0,PromptMeg); Prompt{0,"\""); MsgEnd(); treak:

t matched with \""); Prompt{0,PromptMsg); Proapt(0,"\'"};
eak;

Prompt (1,"Chare: "); GetlsSiring(Max+LP-RP}; Prompt(0,PromptMsg);

Prompt{0," \
Prompt (0,"
CetAsString(
DBuf fEmpty
Prompt (1,"De
Ilnterrupted ;
Prompt (0," \
Resumad -
Prompt(0," \

("); GetAsString{CP+1); Prompt (0 ,PromptMeg}; Prompt{0,"\}");
Lines: "); GethsString(Poc¥L+1); Prompt(0,PromptMeg); Prowmpt(0,"
Cur¥}; Prompt{(0,PromptRag); Prompt(0,"\)"}; MsgEnd(); break;
lete buffer empty”); MsgEnd(); hreak;

(lnterrupted\)“); RingBell(); MsgEnd(}; break;

(Resumad\) ") ; MsgEnd{); break;

xliv

Y



fflush(stdout);
}
e ———— s/

Prompt{curposn,msg)  int curpeen; char msgll;

int prerPromptCur=PromptCur; int ptr=0; int count;

it (carpoan==1) { Promptlur=1; }

SEtPrDlptCul'scr() H

while (fromptCur<¥inWidth 2k msglptzr]t='\0’) { printf("¥%c",msglptr]l); ptr++; Frompilur++; }
count=FromptCur;

while (count<prevPromptCur) { printf("}%c”,sp}: count++: }

SetProaptCursor () ;

H

fe — - B L -— x/
MagEnd ()

1{

/e £flusa(stdout); «/ PromptDisplayed-FALSE; Poslmage():
}
g - *f

SetFrompilag(siring) char ¢gtring;
{
strcpy(ProaptMsg,string);

———
int GetAsString{oum)  int num;
{
char string[FNameMaxx]; CnvNumTeString(num,string); SetPrompiMag(atring);
}
L ke L L LS LR =/

xlv



