
COLLECTING BUTTERFLIES

by

Geraint Jones
Mary Sheeran

Technical Monogra.ph PRG-91
ISBN o-902928--j;o-4

February 1991

Oxford University Computing La.boratory
Programming Research Group
11 Keble Road
Oxfo,d OXl 3QD

Copyright © 1991	 Geraint Jones
Oxford University Computing Laboratory
11 Keble Road
Oxford OXl 3QD
England

Mary Sheeran
Department of Computing Science
University of Glasgow
Glasgow Gl2 8QQ
Scotland

Collecting butterflies

This monograph contains three papers about butterfly circuits. Circuits of this
form turn up in many signal processing applications, and networks of the same
shape are found in parallel algoritluns for many sorts of message-passing computers.
Unfortunately their presentation is usually bottom-up and consequently difficult to
understand. In these papers we give top·down analyses of such circuits in the style
of Ruby - a la.nguage of relations and higher~order functions in which circuits a.re
represented as relations on the signals which pass between them.

The first paper - The study of butterjlie8 - introduces the a.lgebra. of the
combining forms with which butterfly circuits will be described. It goes on to
show that butterfly forms arise naturally when certain sorts of problem are tacked
by a divide-and-conquer strategy.

Butterfly circuits are probably most familiar from their application to the
implementation of the fast Fourier transform. The second paper - A fa3! flutter by
the Fourier tran3form - ta.kes the recursive equation which describes the divide-and
conquer calculation of the Fourier transform and shows how it can be implemented
by butterfly circuits and by various related regular layouts,

The third paper - Sorts of butterjlie3 - shows how Ruby is used to describe
and analyse permutation and comparator networks. It explains a periodic sorting
network that is suitable for implementation on silicon.

ACKNOWLEDGMENTS The presentation of divide and conquer algorithms owes
much to several attempts to explain it to colleagues, and in particular to Richard
Bird. We are grateful to David Murphy and Lars Rossen for many comments and
suggestions,

3

The study of butterflies

Geraint Jones

and

Mary Sheeran

Butterfly networks arise in maoy signal processing circuits and in parallel algo
rithms for many sorts of message-passing computers. This paper attempts to
explain why this should be, and what butterfly networks are, using a new and
elegant formulation based on a language of relations.

Most of the material covered by this paper has appeared in a less tractable
form in earlier papers [16, 17J. The novelty here is in the simplicity and elegance of
the presentatioD l which derives from an appropriate choice of high-level structures.
These structures a.re represented by functions which are used to compose circuits
from components, and are chosen to have simple mathematical properties.

This presentation makes it easier to explain how the design comes about, show
ing tbat butterflies are natural implementations of divide-and-conquer algorithms.
We are then able to go on to explain many of the properties of butterfly networks,
and of their implementations.

A language of relations
The important things in Ruby [13J are the structuring functions, and the interesting
things to know are encapsulated by the mathematical properties of those functions.
Nevertheless we will need to have some idea of what the component parts being
composed are. These are the things that model the components of a circuit, or
the nodes of a network of computers. You can think of these components as being
relations: that is the simplest interpretation of what is happening. You should
however keep in mind that this is just one interpretation, and that the important
things to watcb are the functions that put them together and the algebra of those
functions.

The principal way of putting components together is (sequential) composition,
which we write R ; S. If you are thinking of relations, composition of rela.tions

5

6	 THE STUDY OF BUTTERFLIES

means

x(R;S)z '" 3y. xRy & ySz

but the thing to keep at the front of your mind is that it is an associative way of
potting circuits together, (R; S); T = R; (S; T).

In particular tha.t means tha.t it will make sense to talk a.bout 'reducing' com
position over a. finite ordered set of indices, and we write

; Rt = R1 ; R" ; ... i R..
;=1

a.t least in the case tha.t n > 0, and we write Jr& for ;;:1 R.
The other extreme way of putting components together leaves them entirely

unconnected. The parallel composition [R, Sj is defined by

(p,q) [R,S] (t,u) '" pRt & qSu

and the thing to keep in mind is that sequential and parallel composi lion have the
property [P, QI ; [R, SJ = [(P; R), (Q; S)J which Richard Bird [4J call> the .bid"
property: that lleqnentiaJ composition abides with parallel composition.

The inverse (some people sa.y more properly the 'converse') of a. relation, R-I,
is defineci by

X R-1 y == y Rx

and we will write R-n for (R-I)n and so on. Beware of doing a.rithmetic in the
exponent! A relation and its inverse cannot necessarily be cancelled, so R!' ; R-"
need not necessarily be the same as JlP-q.

Converse distributes over parallel composition, [R,5j-l = [R-1,S-lJ, and in a
modified sense over sequential composition, for (R; 5)-1 = 5-1; R-1.

Because we will want to be wing relatioWi and their converses to translate data
from one representation to another, we will find useful the abbreviation R \ 5 =
5- 1 ; R; S, read 'the conjugate. of R by 5'.

The sum of two relations Rand 5 (their relational sum, or their union) is a
relation R +5 for which

x(R+S)y '" xRy V xSy

Most of the operations introduced so far distribute over sum, so that for example
(R + 5) ; T = (R; T) + (5 ; T). The exceptions are the opf:rations like repeated
composition that are not linear: because

(R + S)'	 (R + S); (R + S)

(R;R)+(R;S)+(S;R)+(S;S)

7 TRANSPOSING AND SHUFFLING

it is nol genera.lly the same as R2 +S1. Similarly the conjugation R \ 5 is nol linear
in S, although (P + Q) \ S ~ (P \ S) + (Q \ S).

We write R: A --+ B to mean that R relates things of type A to things of type
B, a.nd by this we mean that R = A; R; B. A type is just an equivalence rela.t.ion,
which is to say that it is a relation A for which A = A'J = A-I qnd so A = A" for
aU positive and negative n. When we speak of a circuit R, we will have in mind
particular domain and range types R+ and R+-, for which R : R+ -+ R.... , although
we may not make them explicit. Do not think of R+ as being some function of R,
it is just one element of a triple (R+, R, R+-) which we misleadingly identify with
R, on the grounds that it is usually obvious which R+ and R is meant. When.
R+ = R+- we will write this as If, which is suggestive of Jl1;R";Jl1 = H'+f1+Q = R!'.
Such an R we will call homogeneous.

On the whole we will only need to talk about the types oflists of a given length:
we write n for the type of lists of length n, mea.ning that x n y jf and only if x = y
and has n components. There is a notational trap lurking here, for we will write
2" for the type of lists of length two-to-the-n: it should not be read as the n~times

repeated sequentia.! composition of 2. Since 2 is a type, the Ia.tter is just 2 and we
will never need to write it.

A sum R + S is disjoint if R+ ; S+ = 0 = R+-- ; S+-- where 0 is the unit of
relational sum. In that case both R.... + S.... and R+-- + S+-- are types as you can
check hy ca.!culation. (The sum of two types is not in genera.! a type.) Moreover.
since R + S : R+ + S+ -+ R+ +S+--, repeated composition distributes over disjoint
sum.

Sum is associative, commutative and idempotent, so we can write Li for the
coutinued sum over any set of indices.

Transposing and shuffling
Most of this paper turns out to be about certain sorts of permutations: those that
can be understood in terms of transposition operators. The transposition relation
trn relates two 'rectangular' lists of lists, in such a way that

x trn y == X' J = Yj,i

You can thjnk of it as taking a row-of-columns enumeration of a two-dimensjonal
array and turning it into a column-of-rows enumeration.

The easiest way of describing the relation halve is to say that its iuver-se halve- t

relates a pair of equa.!·length lists to the even-length list obtained by concatenating
them

(XQ, XI1 ... X~"_l) halve ((xo, Xl> ... X.._l), (x", X..+l, .. ,X2n-IH

and similarly the relation pair is the converse of pair-1 which relates a list of pairs

8 THE STUDY OF BUTTERFLIES

g
~
 ~
~ffF
 ~

~

~-

~ ~
~ ~

Figure 1: layouts for 12; halve, 12 ;pair, and 12; njfie = (12; halve); trn; (12; pair)-l

to the even-length list obtained by conca.tenating the pairs

(:to, x}, . .. %2"_1) pair «:to, Xl). (X'll X3) •. .. (:1:2"_2' X'lft-l))

The reason we need halve and pair is to define

riffle == halve i trn ; pair-I

which is a permuta.tion of even-length lists. Think of the professional card-player's
shuffling of a. pllCk: the pack is divided in two, halve; the corners of the two half
packs are flicked together to interleave them, trn; and then the pack is straightened
up to give the same status to cards (rom either half-pack, pair-I. This 'riffiing'
operation is sometimes called a 'perfect .!IhufHe'. It is harder to give a convincing
account of how to unriffie a deck of cards, as described by riffle-I!

Sometimes we will need to know how wide a list is being permuted, particularly
because n successive riffiings of a list of length 2" will restore it to its original order,
which is to say that

2" ; riffle" = 2"

so that
2" ; nffle"-; 2" ; riffle- i

Note that this is not directly rela.ted to an almost useless fact which any card-sharp
will know, that 52; riffleS = 52.

A language of homogeneous relations
Suppose Ris a len.gt.h:-homogeneous.-circuit, that is-one which relates lists of-signab
only when they have the same length, so that n ; R = R; n. One wa.y of making

9 A LANGUAGE OF HOMOGENEOUS RELATIONS

a

B

Figure 2: an interpretation of two R as a circuit arromgement

~~

~~

Figure 3: two circuit forms suggesting two{R j S) = tweR; twoS

a bigger length-homogeneous circuit is to take two copies of R, and to divide the
inputs and outputs of the new circuit equally between the two copies,

twoR = [R,R]\halve- t

So long as we confine ourselves to length-homogeneous relations, two distributes
over composition, meaning that

two(R;S) = twoR;twoS

and so two Er' = (twoR)ft.
The restriction to length-homogeneous circuits is necessary. Considf'f the rela

tion R which relates (.) to both (....) and (*,*), and the relation S which relates (.)
to (a) and (.,.) to (b). Then R; S ,elat" (.) to both (a) and (b), eo lwo(R; S)
relates (.,.) to all fOUT of (a, a), (b, a), (a, b) and (b, b). However two R relates (*, .)
only to (., .) and (.,.,.,.) and twoS relates each of these to (a, a) and (b, b), so'
twoR; two S is a strictly smaller relation than two(R; S).

A different way of making a length-homogeneous circuit from two components
of half its size is suggested by figure 4. The interleaving of two components is
defined by

ilvR ~ (twoR)\r;jj'lr

10 THE STUDY OF BUTTERFLIES

rnA

Figure 4: two differenl interpretations of ilv R = twoR \ riffle

a ~R~R~

~~

Figure 5: two views of twoilv R = ilv twoR

and - following from the distribution result for two - if Rand S are both length
homogen6:>U5 then

;lv(R;S) = ilvR;ilvS

What may be more surprising is tha.t applica.tions of two and ilv commute, for

two ilv R = ilv two R

This means l by an induction on the number of constructors, that any term consist
ing of applica.tions of two and ilv to a relation is determined solely by the number
of a.pplications of two a.nd the number of applications of ilv, and that the order in
which they axe applied is immaterial.

The meaning of the equality is suggested by figul'e 5, and the proof goes
something like this

halve; [riffle-1 j halve, 1-iffle-t ; halve]

halve; [pair; trn, pair; trn]

pair; halve; (tm, tm]

pair; trn i [halve, halve] ; trn

riffle-I; halve; [halve, halve I j trn

'0
twoilv R = {definitions of two and ilv and collecting terms}

[[R, R], [R, RJI \ ([h.lv,-' ; ,ijJJ" h.lv,-' ; rijJJe] ; halve -')

11 DIVIDE AND CONQUER ALGORITHMS

= { calculation above, taking inverses aD both sides}

([[H, R], !R, RJI \ 1m) \ ([halv,-', halve']; halv,-1 ; riffl')

~ {[lA, B], [C, DJI \ 1m = [[A, C], [B, DJI}
[lH, H], [R, RJI \ ([halv, -', halv, -1 J ; halv,-1 ; riffl')

= {collecting terms a.nd replacing definitions}

ilvtwoR

The details are tedious, but we need never see them again: just remember that
twoilv R = ilv twoR.

Divide and conquer algorithms
Suppose you want to solve some problem by a binary divide and conquer strategy:
that is, you know how to solve (conquer) some problems by an algorithm C, and
you have a technique D for dividing up any problem that is too big to be dealt
with by C. A problem divided has then become two smaller problems that can be
tackled in the same way_ The algorithm is a solution 4> to

<I> = C+(D;two<l>}

You can read this as an equation in which the unknown is a relation, andin which
the + sign means relational sum (union). The solution can be found by unwinding
the recursion:

fb = C +D ; twofb

C +D; twoC +D itwoD; two2~

3C + D ; two C + D ; two D ; two'l C + D i two D ; two2 D ; two {)

n i-I n

L(j two' D) ; two' C +(; twd D) ; two"+! <I>
.=>0 j=:O)=:0

and because (at least if there a.re no empty lists in the range of ~) the range of
two; If,l contains only lists of length at least i long, this unfolding eventua.Hy defines
~, by

CQ i-I

<I> ~ 2); two' D); two' C
;=:0 j=:O

We will suppose that C and D are length-homogeneous, and that C: k -+ k for
some small number k. There is no ha.rm in supposing that we can only conquer
small problems: that is of the essence of how divide-a.nd-conquer works. Of course
there remains the problem of how to divide very large problems.

[2 THE STUDY OF BUTTERFLIES

Suppose that D can itself be implemented by divide-and-conquer, a.nd that
D:::: R+ S; twoD. If we are to ma.ke progress S had better he simple: we could
1\Ssume that S was the identity relation. In that case D :::: Li two' R and if R : k-tk
as well as C, it follows that III :::: L;{twO' R)i; two' C = Li twoi(R' ; C). This is not
very interesting, because it says that III can be applied to a list of a give size just
by allocating each k-wide piece to a calculation independent of all the others.

Butterflies arise in the ca.'!Ie where large division problems can be tackled by
interleaving sma.ller division algoritbIrul, for suppoee that D == R + ilv D, then
under the same assumptions

<X> .-1

lIJ = ~J; two' ilv'-] R) ; two' C
;=0)=0

andifR=C

~ = LM,R
.=0

where P<l; R:::: ; twd ilv'-J R
j""O

The right-hand side of this definition suggests a way of laying out the circuit which
is illustrated in figure 8 for the case of D<l3 R where R : 2 --+ 2. We define the
butterfly of R hy the sum

MR = LM;R
;==0

The sum is disjoint, at least if j{J == k for some fixed number k, a.n assumption
which we make in wbat follows.

(If you are comparing this paper with the discussion of butterflies in refer
ence [16], notice that in that paper the definition is slightly different, being D<l R =
1 +L~o Cl<Ii R. The difference is unimportant, and only slightly alters the discussion
in the following section.)

Recursive decomposition of butterflies
Because we arrived at the butterfly by solving a recursion equatiou, it comes as no
surprise that it ha.<; a recursive decomposition. There are however a great number
of other decompositions. Suppose p and q are at least zero, then

p+q+l

Cl<Ip+q+I R = ; two' ilv(p+q+I)-i R

,==0,
; two' ilvP-' ilv ll+1 R .,, twd'+l two' ilv ll -' R

.",0 ;==0

13 SHUFFLE NETWORKS

J' _. '.
; two' ilv P-'(ilv Q+1 R); ; two' ilvq-'(twd'+l R)

.=0 ;=0

txIp ilv
q+1 R ; t><I q twd'+l R (1)

and
l><3 p+q+1 R = ilv Q+1 tx1p R; t~lt><1qR (2)

In particular, by taking one or other of p and q to be zero in each of equations 1
and 2, it follows tha.t

t><In+l R = ilvn+l R; txln twoR (3)

ilvl\+IR;twot><lnR (4)'

txl" il... R; twon +1 R (5)
ill, txIn R; twO''Hl R (6)

each of which suggests a layout for the implementation. The four decompoaitions
of t><I 3 R, for a. component R : 2 - 2 that takes pairs to pairs, a.re illustrated in
figures 6 to 9.

Results about the general t><I follow from taking sums on both sides of each of
these equations, for example from equation 3

00

~R = ~,R + L~iR
;=1

R + L(il,·H R;~,twoR)
i=O

00

;1,' R; R" + (Lil,'+' R); (L~"woR)
;=0 ;=0

ii,' R; R" + (L ii,' R); ~ twoR
;=1

(Lil" R) ; (R" +~twoR)
;=0

because the various cross-terms are empty and so disappea.r from the sums. In the
same way it can be shown that

00

~R = (R"+~i1,R); L'wo'R
;:0

an so on.

Shuffle networks

Although the recursi e decompositions or butterflies are elegant and easy to reason
about, when it comes to laying out circuits they have the disadvantage of having

14 THE STUDY OF BUTTERFLIES

Figure 6: tx3 2 R = ilv2 R ; tx3 1 two R = ilv 2 R ; ilv two R ; txlo two] R

Figure 7: l>~h R = ilv2 R j two tx31 R = ilv2 R j two(ilv 1 R; two t><1 o R)

Figure S: M 2 R = tx31 ilv R; two" R = tx3 0 ilv 2 R; twoil ... R; two" R

Figure 9: [:::42 R = jlv [:::41 R ; two" R = ilv(ilv tx3 0 R ; two R) ; two" R

15 SHUFFLE NETWORKS

Figure 10: ~'l R = ;~=.o two'l R \ riffie'l.-·

differently shaped wmng in different places. Even if the R components can be
replicated and laid out in a regular way, each column of wiring is different and
there is an amount of work about 16n involved in laying out the differently shaped
Pa.I'ts of it.

Recall that because two ilv R = ilv twoR, the only thing that matters in a term
like two" ilv 9 H, or the equivalent ilv 9 twO'" R, is the number of applications of ilv and
two. This is encapsulated in the equality

two" ilvqR = (two"+q R) \ riffie9

which can be proved by an induction on q. The case of q = 0 is easy, and

two" ilvQ+1 R = { commuting terms }

ilv two" ilv q R
= { defini tion of ilv }

(two two" ilvq R) \ riffie

= { commuting terms }

(two" ilv q two R) \ riffie

={inductive hypothesis}

(lwo""lwoRj \ (rifjle'; nfjle)
== tWoP+~+l R \ riffle9+1

This now suggests t.ha.t the composition of terms that male up a butterfly has an
p.xpression in terms of riffle and two" R.

.
IX]n R == ; two' itv"-' R

,,,,0

; (two" R \ riffle n -.)

.=0

; (riffle-In- i); two" R; rifjlen-,)
;:0

16 THE STUDY OF BUTTERFLIES

Figure 11: riffie.3 ; t:<]~ R = (riffle.; two~ R)3

in whil:h the columns of Rs are all the same, but the wiring between them, as
illustra.ted in figure 10, is different for each column and unnecessarily complex.

By the associativity of sequential composition one of the three pa.rts of each
column can be carried forwa.rd to the next, and

l"i.Jjle(n+l) ; l><J" R :::: rijJle(n+I); ; (rijfie-(lI-.) ; two" R; riffle..- i)

,=0
; (rijfle"'+I-i ; rijJle-(n-i) j two" R) ; riffieo

;=0
n

; (riffie; two" R)
.=::0

(riffle; two" R)"+I

in which each column IS the same, and each is wired in the same way to its neigh
bours, as illustrated in figure 11. This arrangement of components is commonly
known as a 'shuffle network'.

Since if R: k _ k, any term like two; ilvJ R has width 2;+; k, and in case k :::: 2,
it is immediate from its definition that t>4.. R ; 2"+1 _ 2n +1 , and the riffle.n +1 on
the left-ha.nd side can be cancelled yielding

t><Jn R = (riffle; twon R)n+l

Although there is still a great number of wire crossings in the resulting circnit
about 4n in each of the II + 1 columns - it has the advantage that each column is
the .'l.ame as all of the others, so only one column's worth of the circlli t need be laid
out and replicated.

By a symmetrical argument, it is also true that

t><J n R = (il...n R; nfflet+1

A fast flutter by the Fourier transform

Ceraiut Jones

This paper explains some familiar hut intricate circuit forms that are used to
implement the fast Fourier traJlsform. They are shown to he solutions to a recursion
equation that defines the transform. An earlier paper [12J showed that the essence
of the fast Fourier transform is captured by an equation characteristic of divide
and~conquer algorithms. Butterfly circuits have been shown [141 to be solutions to
slIch equations, and in this paper solutions are derived to the particular equation
defining the fast Fourier transform.

Introduction
Twenty-five years ago Cooley and Tukey rediscovered an optimising technique
mmaJly attributed to Gauss, who used it in hand calculation. They applied the
technique to the discrete Fourier transform, reducing an apparently O(n~) problem
to the almost instantly ubiquitous O(n log n) 'fast Fourier transform' [7]. The fast
Fourier transform is not of course a different transform, but a fast implementation
of the discrete transform.

Its greatest virtue lies in that it can be executed in O(logn) time on O(n)
processors in a uniform way - which is to say that it lends itself to a low-latency
high~throughput pipelined hardware implementation. Ind~d, a footnote to the
Cooley-Tukey paper records that a hardware implementation was underway as
the paper was published, specifically that a component for evaluating a four-point
transform had been 'designed by R. E. Miller and S. Winograd of the IBM Watson
Research Centre'.

The unfortnnate disadvantage of tbe fast algorithm is that although the fun·
damental idea is simple, the detail of its efficient implementation is very hard to
understand. That efficiency depends on intricate permutations which rearrange
data to ma:>-:imise the sharing of work done in calculating intennedii\te results.

17

18 A FAST FLUTTER BY THE FOURIER TRANSFORM

Presentations of the algorithm abound in mysterious artefacts like the reversal o{
bits in subscripts [II, and the translation of parts of suhscripts {rom time space to
frequency space [I8). More recent descriptions of implementations seem to gloss
over the problem, either referring the reader back to older presentations [21], or
apparently assuming that the algorithm - because it is well known - must be well
understood [61.

An earlier paper [12] reports the derivation of the Cooley-Tukey {a.-;t Fourier
algorithm from the specification of the discrete Fourier transform. A functional
programming notation wa.-; used to express the discrete transform, and an equation
describing the fast algorithm calculated from it. That recursion equation shows
that the 'fa.-;t transform' is an application of a divide-and-conquer strategy. In this
paper we take the derivation further by finding a solution to the renusion equation,
a solution which is the well-known butterfly circuit.

The discrete Fourier transform
The discrete Fourier transform is defined in terms of the arithmetic on an integral
domain. You ca.n think of arithmetic on complex numbers, for a definite example,
although there are applications where finite fields or vector spa.ces over integral
domaim are appropriate. The derivation depends only on the algebraic properties
of the arithmetic, not on the underlying arithmetic itselfl so everything said here
about the algorithm will be true for finite fields and vector spaces as well.

The discrete Fourier transform of a vector x of length n is a vector y of the
same length for which

JxkYj = L w X XI:

I::O$k<n

where w is a principal n-th root of unity. (In the example of cODlplex numbers,
you can think of w = e~"';/n.) The result, y, is sometimes called. the 'frequency
spectrum' of the sample x.

Even if the powers of w are pre-calculated, it would a.ppear that O(n~) multi·
plica.tions are required to evaluate the whole of y for any x. The fast algorithm
avoids mMy of these by making use of the fact that w" :::: 1. The discovery made
by Cooley and Tukey was that if n is composite, the calculation ca.n be divided
illto what amounts to a number of smaller Fourier transforms. Suppose lJ, :::: p X q,
then by a change of variables

Ypo+b:::: L L w("..+bHQ'+~)xQc+~
c:05c<p ~:05~ <'I

L L (wpq)ac(wP)ad(wQ)bcwb~xQc+d
c:05c<1' d:05~<q

19 TRIANGLES

L: L:(W1')'ldWbd (wq)bcXqc+d

d:O~d<q c;0::S;c<p

Since w q is a. p-th root of unity, and wP is a q-th root of unity, it is not surprising
that the a.bove calculation leads to an implementation in which p-sized and q-sized
t.ransforms appear.

In particular, if p = 2 there is an implementation involving only transforms of
size 2 - which are particularly simple - and a pair of transforms of size nj2. Re
peated division by two permits of an implementation consisting solely of transforms
of size two, for any transform which has a width that is a power of two. It is however
rather difficult to see from the above calculations what these implementations might·
be.

In reference [12] the divide-and-conquer strategy is revealed by a calculation in
which the expressions are algorithms, rather than data values. For this we will need
the notation from a companion paper [14J and a small amount of extra notation
specific to this problem.

Triangles
With the constructors introduced in reference [14], any pa.th from the domain to
the range has to go through the same number of components. In order to deal with
a wider class of circuits we introduce

oneR = [id,RJ \ hal1Je-1

where in is the identity relation, the unit of sequential composition. This construc
tor behaves Very like two, for example, remembering that the variables range over
only length-homogeneous relations

one(R; S) one R; one S

ilvone R one ilv R

but he careful because twoone R::j:. one two R.

88

8

Figure 12: circuit arrangements for twoR and one R

20 A FAST FLUTTER BY THE FOURIER TRANSFORM

~~~
 
~
 

Figure 13: thw R, twothw R = thwtwoR, and onethw R = thwone R 

~
 
?J~
 

Figure 14: lrin+1 R = two lri" R ; one blockn R 

Of cnurse. you can riffle together the two halves of a one R. Define 

thw R = (one R) \ riffle 

for 'throllgh-wire', and it should come as no surprise that 

thw one R onethw R 

thw two R twothw n 
although in general thw ilv R f:- ilv thw R. 

There are two families of these constructors, the straight ones: one and two, 
and the shuffled ones: ilv and thw. Just as before we were able to say that the 
anI:}' thing that mattered in a. term made by applying ilv and two was the number 
of each, so now we can say that the term is determined by the number and order 
of the stra.ight constructors, and the number and order of the shuffled ones. The 
order of the constructors matters within a family, but not the way in which the 
constructors from the two families are interleaved. The shuffled constructors pass 
through tile straight ones like ghosts thuugh walls, but behave quite reasonably 
with respect to each other. 

YOll c"n think of one R as a small triangular-sha.ped circuit, and figure 14 
suggests that larger triangular-shaped circuits can be made by a recursion similar 
to that for butterflies. 

trin+1 R twotrin R; one blockn R 

one block" R; twotri" R 
where blockn = twon H,Q 



21 TRIANGLES 

- R R R R R RjRt 

R R R R R R 

R R R R R~ 
_ R R R R 

~R R 

[B:: 

Figure 15: tri3 R ::: one two" R' ; twoone lwo R? ; two] one R 

where this time trio R ::: id is the identity relation, tri1 R ::: one R, and 50 aD. You 
can define a tri of general width and depth by 

~ 

triR ::: L:tri;R 
;:::0 

which is again a disjoint sum in case R has a fixed width. 
An iterative solution to the recursion for triangle is given by 

tri" R::: 
n

; twoi - 1 one two"-; R'l"-' 
;=1 

and a layout suggested by this equation is shown in figure 15. Because each of the 
CQustruetors in a triangle is straight, it follows that ilv tri R ::: tri ilv R so triangle 
itself has straight properties. The proof goes like 

~ , 
ilv tri R ::: ifvL: ; tWo'-1 one twoi -] R'l'-J 

i=Oj:l 

f: ; lWo'-l one two'-J ilv R'2'-' 
;=0 j=1 

f: ; lvvoJ-1 one twoi-jUlv R)]'-J 
i=O,=l 

triilv R 

and silJIilarly thw t~i R ::: tri thw R. 
(If you are comparing this paper with earlier presentations such as that in 

reference l13], beware. that this is not quite the same definition of triangle: that 
paper defines a triangular constructor which assumes that the component is R 
1 _ 1.) 



22 A FAST FLUTTER BY THE FOURIER TRANSFORM 

The fast Fourier transform 
At the end of reference [12J it is suggested that, at least for certa.in factorisations, 
the algorithm admits of an implementation which is like a butterfly network. The 
substance of that claim can now be explained. In the reference it is eventually 
shown that the transform of size 2n can be implemented by two calcula.tions of size 
n by the algorithm 

J, ; 2n = riffle; twOn(Ffn j 2) ; riffle-I; tri l tri" I ; two(Fp ; n) j riffle 

where the kernel operation I : 1 -t 1, multiplication by a 2n-th root of unity, is 
such that p" is the identity on singletons. 

The component r.p = F f n;2 takes two inputs to two outputs and will be ASsumed 
to be directly implementable. The other part, Fp ; n is also a Fourier transform 
because (fl)n is also the identity. If n is even the division can be repeated, and in 
partlcula.r if n is a power of two it can be continued until the only F components 
are all !fl. 

Let i)" = Ffn ; 2" where for each n the operation In is such that In~" is the 
identity, and In = IJ+1' Then at least for n > 1 

~" ::: riffle; two"-I~; n]fie- l ; tri 1 trin_11"-1; tWO~"_I; 7'iffle 

:: { rifflen can be cancelled on 2" } 

riffle-tn-I) ; two,,-I r..p; rijJle,,-1 ; trh tri"_1 1"-1 ; tWO~n_1 ; riffle 

:: {twoR \ riffle = ilv Rand twoilv R =ilv twoR and then by induction} 

ilv,,-I ~ j trh tri,,_l In-1 ; two~n_l ; riffle 

:: { unwinding the recursion, then hy induction} .
";1 .-1' ,,_i .. n-l,two (11v ~ ; tU] trIn_i In-d ; two r.p ; twon-. 
. 

riffle 
;=1 .=2 

The term in the middle can be written, rather perversely, <Ui 

two"-l r..p = twon-I(ilvO r..p; tri1 trio 10); twon- l l'iffle 

by adding in some extra telms that happen to he identities, so 

~n = B" ;S" 
where 

Bn = '. . 
; two·-I (ilv"-' r.p ; tri 1 tri,,_. In-i) (i) 

;""1 

S" = ; two,,-i (2; j riffle) 
,""I 



23 THE BUTTERFLY 

As in the decompositions of the butterfly, the B a.nd S terms ca.n be summed 
separately, since B; ; Sj is empty unless i = j. Let 8 = L~o 13. and 5 = L~o So 
then cI> = L~o cI>i = B; S. It is normal to implement the required part of B in a 
machine, and t.o leave the corresponding part of S to the way that the machine is 
connected to the outside world. 

The butterfly 
The part of t.he decomposition of ~n that looks like a. butterfly circuit is Bn , 

which is like a butterfly - specifically, like l><J n _ 1 If' - in which to each column 
twoi - 1 ilv n- i If' has been a.dded a term two;-l tri} trin_i In-i' This is made 1IIith only 
straight constructors and powers of the kernel operation: in implementations it 
would be turned into a single column of multipliers. 

For example, following the development of the shuffle network for a butterfly 
given in the companion pa.per [141, there is a shuffle network for the Fourier 
transform. Each column of 8" in equation 7 has the form 

twoi-1(ilv ...- i iP; trll trl,,_. 1,,-;} 
ltwoi- ilv.. - i l{J; twoi- 1 tri l tri,,_, 1,,-; 

= {unriffling the ilv,,-i ip } 

l'ijJie-("-i) ; two,,-l If'; rijJie,,-i ; twoi - l one lri,,_i 1,,-i 
= {riffling the twoi - I one R } 

l'ijJie-("-i); two,,-l iP; rijJie"; ilv·- 1 thwtri,,_i 1,,-i; rijJie"-' 

= {rijJle" can be cancelled on 2"-lists, promoting stra.ight operators} 
l6ffie-("-'J ; two,,-l If'; tri,,_, ilv i- thw 1,,-i ; rijJie"-; 

but the term in the tria.ngle 

ilvi- l thw 1,,-; = {unriffiing} 

(twoi - l one 1,,-;) \ rijJie i 

= { rijJiei can be cancelled on Zqists} 

two·-1one 1,,-i 

Re-assembling these columns in equation 7 and cancelling, . .
 
8" = ; two·-1(ilv"-'l{J; tri l tri.. _i 1,,-d
 

;:1. 
; (riffie-(,,-i); two"-l iP; tri"~i twoi - 1 one 1,,-i ; rijJien- i ) 

.=1 . ,l-ijJie-"; ; (1·jjJie ; two"-l iP; tri.. _i two - 1 one 1,,-d 
.:1 



24	 A FAST FLUTTER BY THE FOURIER TRANSFORM 

Now the term in the triangle is entirely straight, in fact it is 

trin_i two;-I onefn_• .-, 
; two'-t one twon-('+J)(tWo'-1 one fn_i)Jn-('+J) 

i=l 

n-i . 
; two'-l one two(n-J)-l one fJ 

i=1 
50 

Bn = ; (riffle ;C;) 
"=1 
where Ci = twon- I <p; n;i twoi- 1 onetwo(n-J )-1 one 1; 

i",1 

The column Ci is a group of 2n
- 1 independent circuits, each of which is <p; onef:_i 

for some k. It would be nice to conclude by showing this, but we have not yet 
found an elegant and convincing way of doing this within the notation. 

The shuffle 
Returning to the remaining part of the algorithm, an induction from twoR; riJffe = 
riffle; ilv R will show that 

.	 H 

S.	 2"; ; twon-. riffle 2"; ; ilv i riJffe 
;=1 "",0 

This is just a permutation on lists of length 2n. It is that very thorough shuffle 
that appears mysteriously in many presentations of this algorithm: x Sn y if and 
only if oX and yare both of length 2n and Xi = Yi where the (n-bit long) binary 
representations of i and of j are each the reverse of the other. 

It is its own inverse, and is closely related to the butterfly since if R : 2~ - 2.1.: 
then (ilv R) \ S'H = Iwo(R \ S,) and (tweR) \ S,., = ilv(R \ S,), and 50 a150 

(Nn(R \ Sic)) \ Sn+A: = (lAn(R-1))-I. Proofs of these, and the discovery of many 
other pleasant properties are left for the reader's idle moments. 



Sorts of butterflies 

Mary Sheeran 

This paper shows how Ruby is used to describe and ana.lyse permutation and 
comparator networks. It describes two merging networks, the bitonic merger and 
the ba.lanced merger, and shows how they are related. Both of these networks 
can be used to build recursive sorters. The balanced merger is also th~ building 
block of a periodic sorting network that is suitable for implementation on silicon. 
'fhe correctness of tbis sorter is demonstrated. As always the key to success in 
understanding a circuit or algorithm is in finding suita.ble structuring functions 
and studying their mathematical properties. 

Permutation networks 
As well as the wiring permutation riffle, we will need some other permutations. 
The basic building blocks are [id,id} and swp where (a,b) swp (b,a). The per
mntation two" swp swaps adjacent pairs in a. list of length 2n +l 

. For example, 
(0,1,2,3,4,5,6,7) i:s related by two2 swp to (I, 0, 3, 2, 5, 4, 7, 6). The permutation 
lIvn 

SW]} switches the two halves of a list so that 

ilv" swp = 2"+1; halve; swp i halve- l (8) 

For example, (0,1,2,3,4,5,6,7) is related by ilv z swp to (4, 5, 6, 7,0,1,2,3). The 
relation ilv'" swp commutes with twoR for any homogeneous R. 

ilv" swp ; two R = { equation 8 and definition two } 

2n +1 ; halve; swp; halve-I; halve; [R, RJ ; halve-1 

= {halve; swp; halve-I; halve = halve; swp} 

2"+1 ; halve; swp ; [R, R] ; halve-1 

= {'WI'; [R, RI = [R, RJ; ''''1'-' and R homogeneou,} 
halve; [R,RJ; SWp-l; halve-I; 2n+1 

25 



26 SORTS OF BUTTERFLIES 

= { reveL'sing the above calculation} 

(ilv" swp; twoR-1t1 

= {taking inverses, Swp-l = swp} 

two R ; ilv" swp (9) 

For any R : 2 _ 2, the relations two" R and ilv'" R are related by 

two" R = 01," R) \ c;ffie 

since 2"+1 ; riffie'" = 2",+1 ; riffle-I. So We can take the riffle conjugate of each side 
of equation 9 to get 

two'" swp ; ilv R = ilv R ; two" swp 

The relation prm, for 'permute', defined by 

pnn = lid, idJ + Swp 

relates a 2·1ist to each of its two pennutations (and vice versa). Since pnn = 
prm-1 = pnn2 

, it is the type of unordered 2~lists. 

Switching networks can be built from pnn. For example, two prtn relates a list of 
length four to each of the four permutations that are obtained by choosing whether 
or not to swap adjacent pairs. These four possibilities are shown in figure 16. 
Similarly, two" pnn relates a list of length 2",+1 to each of 22" permutations since 
each prm can be either lid, id] or swp. Note that while two"'(id, idJ and two" Swp 
both commute with ilv R for homogeneous R, two" pnn does not. 

The network 1Xl.. pnn is an interesting one that has been much studied. For 
example, it is presented and analysed in reference [3] where it is called the omega 

network. it ha:> (n + 1)2'" prm elements each of which has twa possible settings. 

Comparator networks 
A two--input comparator is a permuting element whose range is constrained to be 
sorted. Let inc, be the identity on sorted lists of length 2i and up = inc} be the 
identity on sorted two-lists. Then inc = E~o inc; is the identity on sorted lists. 
Define 

cmp = prm; up 

=x:: =x:: 
=x:: =x:: 

Fignre 16: The four permutations realised by tWOp1ill 



27 BATCIfER'S BITONIC MERGER 

Then because prm and up are both types, 

prm ; emp = cmp = cmp ; up 

so the type of cmp is prm -+ up which sa.ys that it relates an unordered 2-1ist to an 
ordered one. Because up is strictly smaller than the identity, cmp < prm. 

The Dumber of pairs in a sequence that are in order (x; ~ X J for i < j) is a 
measure of the sortedness of the sequence. The rela.tion two" cmp increases the 
sortedness of a sequence by swapping the value at index 2i with the value at index 
2i + 1 if necessary. For example, the sequence (7,6,5,4,3,2,1,0) is related by 
two'l cmp to (6,7.4,5,2,3,0,1). If the sequence in the domain of two'" emp consists
of two interleaved sorted sequences, then the related sequence in the range a.lso 
consists of two interleaved sorted seqnences. We write this as 

ilv inc; twon cmp = ilv inc; twon Clllp ; ilv inc (10) 

The relation ilv inc is the identity on sequences whose even~numbered elements and 
odd-numbered elements both form sorted sequences. Here we are using restricted 
identities as predicates. We will say that a sequence satisfies an identity if it is in 
the doma.in of the identity. The equation Pre. ; R = Pre; R i Post says that if an 

element jn the domain of R satisfies Pre then the related element in the range of 
R satisfies Post. 

It can be proved tbat if k < n 

ilv,l,+l inc; twon cmp = ilv.Hl inc; twon Clllp; ilv.l:+ 1 inc (ll) 

from equation 10 and the properties of permutations. 

Batcher's bitonic merger 
Perhaps the best known compara.tor network of ali is Batcber's bitonic merger. It 
is a butterfly of comparators and it sorts some but not ail sequences. In pcu:ticular, 
Bi'ltcher notes that Bn = D<I n cmp sOrts any sequence (of length 2n +1 ) whose two 
halves Me sorted into opposite orders (see references [2, 20]). It sorts many other 
sequences, but that does Jlot matter. Knowing that it sorts sequences of that 
particular form gives us the classic recursive bitonic sorter. 

The interesting properties of the bitonic merger derive from the fad that it is 
a butterfly. For example, 

80 = cmp 

En+! :::: ilv-"+l Bo ;"twcrB;. 

ilv Bn ; twon+t 8 0 



28 SORTS OF BUTTERFLIES 

These are the two standard recursive decompositions often presented in the litera
ture. The properties of ~ give us many more, including 

Bp+q+l = ilvv+1 8, j tWa*l Bq 

This is the equation that underlies the K-way bitonic sort which is presented in [15]. 
It is not really a new algorithm, but another way of decomposing an. old one. 

We can build networks with the same behaviour as 8" but with a different con
nection pattern by putting the wiring relation SU!p in front of selected comparators. 
This transformation preserves behaviour since s1l1p ; cmp = cmp. Replacing every 
crop by s1l1p ; crop turns out to be uninteresting hut we can replace the two" cmp 
in the rightmost column by two..- 1 ones1D1'; twoq cmp since 

two..- 1 one SUIp ; two" cmp two"-l (one swp j twocmp) 

two.. - I two cmp 

two" cmp 

Abbreviate two..- 1 onesvrp to alt" and let alt =E~ alt;. 

B.. = ilv Bq _ t ; alt.. ; two" cmp 

We want to move the a/t leftwards BO that it appears as a wiring relation on the 
domain. Define a new structuring function vee by 

veeR = (ilv R) \ alt 

We can compose alt on the left of both sides of this equation to give alt; veeR = 
ilv R ; alt. Now 

B.. = alt .. ;vee B.._1 ; two" (mp 

and by induction (using properties of vee tha.t are discussed in the next section) 

q-l. .. .. 
8.. = (; vee' alt.._i); ; vee"-I two l cmp 

;:::::0 i",O 

We have shown that the bitomc merger can be rewritten as the composition of a 
wiring permutation ;:,:;; vee; alt,,_, with something that looks very like a. butterfly 
except that it is made with vee instead of with ilv. The butterflY-like thing is 
the balanced merger proposed in reference [Ill as the building block of a periodic 
sorter. 



29 NETWORKS BUILT USING vee 

Networks built using vee 

The next step is to stndy the properties of vee. Assume that Rand S are length
homogeneous. Because ilv distributes over composition, so does vee (see figure 17). 

vee(R; S) = veeR; veeS 

Becanse alt...+1 = twoalt" and ilv commutes with two 

twoveeR = veetwoR 

It is altogether more surprising to find that (fOf R: 2".-,2") 

vee ilv R = ilv ilv R 

Instances of these two equalities are shown in figures 18 and 19, for R; 2 --t 2. 
If a sequence in the domain of two" cmp satisfies vee inc then the related se

quence in the range of two" cmp satisfies ilv inc since 

vee inc; twcY' cmp ={definition vee} 

all ; ilv inc; all ; two" cmp 

= { all ; two" cmp = twoP cmp } 

aft ; ilv inc; two" cmp 

={equation 10 } 

aU ; ilv inc; tYKI cmp ; jlv inc 

= { reversing the steps in the above calculation} 

vee inc; two" cmp ; ilv inc (12) 

Each comparator 'operates' on One value from each of the sorted sequences in 
the domain. An example of a sequence that satisfies vee inc (but not ilv inc) is 
(0,4,5,1,2,6,7,3); one that satisfies ilv inc (but not vee inc) is (0,4,1,5,2,6,3,7). 
These two sequences are related by two~ cmp. 

We have now proved 

vee ilvk inc; tYKI cmp vee ilvk inc; two" cmp; ilv H1 inl (13) 

~ R
 

~ R
 

Figure 17: vee(R;S) and veeR;veeS
 



30 SORTS OF BUTTERFLIES 

~
 
~
 

Figure 18: twoveeR and veetwoR 

Figure 19: veeilv Rand ilv ilv R 

because if Ie: = 0 it reduces to equation 12, and if Ie> 0, since lIee ilv R = ilv il\! H, it 
reduces \0 equation 11. 

Let rev be the relation between each sequence and the corre~ponding sequence 
with the same elements in the reverse order. The relation vee" swp reverses a 
sequence of length 2n+I 

vee" swp = 2,,+1 ; l'ev 

because it swaps the first and last elements, second and second last, and so on. 
Similarly, vee'" cmp compares the first and last elements of a sequence, the second 
and second last, and so on. For example, the sequence (0,4, 1,5,2,6, 3, 7) is related 
by vee2 cmp to (0,3,1,2,5,6,4,7). For R : 2 -+ 2, the relations vee" Rand ilv" R 
are related by 

vee" R == (ilyn R) \ one rev (14) 

If you WiUlt to think about binary representations of indices, then ilv R divides 
elements of its domain and range (between instances of R) according to the least 
significant bit of the index, while two R divides according to the most significa.nt bit. 
Amazingly enough, vee R divides according to the parity of the two lea.st significant 
bits! It is best to stop thinking about bits as soon as possible. 

The butterfly-like structure that arose in the discussion of the bitonic merger is 
defined by 

nW.R ; vee -. twoi R 
.:=0 



31 THE BALANCED MERGER 

We read this as ·veefly R'. Because vee is so much like ilv the structure has a great 
many recursive decompositions like those of the butterfly, including 

Hl R ; WWp +9+1 R Wp vee q twoP+ 1 R 
veeq+! "1111 R; twoP+ 1 Wq R 

and choosing p or q to be zero, 

W,,+IR	 vee"+t R; "11" twoR 

vee"+t R; two "11.. R 
"11.. Vee R; two..+1 R 
veeW"R; lWO,,+l R 

each of which suggests a layout for the network. The four decompositions of "113 R 
for a component R : 2 _ 2 are shown in figures 20 to 23. 

The wiring permutation ;;':01vee' alt ..._i that arose in the discussion of the 
bitonic merger is itself the inverse of a veefiy. 

.-, .-, 
; vee; alt

fl 
_ i ; vee; two,,-t-i one swp 

;=0 ;=0 
.-, 

( ; vee,,-J-i tWo'oneswp)-t 
.:0 

("11"_1 one Swp)-l 

(t is also a butterfly. It can be shown by induction that 

.-, .-, 
; vee' alt . ; ilvn

- 1-; alt;+1
.=0 n-' ;=0 

,,-1 ,. 
; ilv n- I 

-, two' one swp 
;=0 

txl"-l one swp 

We can conclude that 

8 n = (W,,_loneswp)-';Wncmp 

txln_1oneswp; W" cmp 

The balanced merger 
In reference-til] the original designers of the balanced merger present it as a 
modification to the bitonic merger. 



32 SORTS OF BUTTERFLIES 

UiI
 
Figure 20: W, R =vee' R i WI twoR = W' R; vee two R; Wo two' R 

R 

Figure 21: W'lR= vee~ R; twoW1R = vee' Rjtwo(veel R; two WoR) 

mR
 
Figure 22: W,R = Wt veeR;two'lR =Wovee~ R ;twoveeR; two~ R 

Figure 23: W,R = veeW'1 R;twol R= vee(veeWoR;twoR) ; two' R 



33 THE BALANCED MERGER 

We apply the permutation (nJ2 - I, n/2 - 2, .. " 1, 0, nJ2, n/2 + I, ... , 
n - 2, n - 1), to the first phase of the bitonic merging network to obtain the 
new first phase comparing elements %(0) with z(n - 1), %(1) with .r(n - 2), 
'" z(n/2 - 1) and z(n/2), where % is the input vector, that is, comparing 
the first element wHh the last one, the second with the second to last, etc. 
Applying this permuta.tion to the following phases of the bitonic merging 
network does not change those phases. instead, we follow the bitonic merging 
network jn assnming the partition of the elements into two halves of the 
smaller and the larger elements and applying in the second pba.se the same 
structure of the first phase for both halves. We continue T&ursively Cor the 
consecutive pba&e8. 

The authors write sequences of numbers x = (xo•... ,x., ... ,xn_d to name the 
permutation that takes i to x,. They also number the sequences in their diagrams 
from top to bottom. so the permutation that they write as (o/Z - 1, o/Z - Z, •..• 
1,0,0/2,0/2 + 1, ...• 0 - 2.0 -1) is wdtten n;onerev in our nota.tion. Hreverses 
the top half of a sequence of length o. 

To construct the balanced merger from the bitonic merger, we transform the 
first rank of compa.rators from ilvp +1cmp to veeP+1 cmp using the properties of the 
permutation one rev and the fact that rev is a left-identity of the bitonic merger. 

one rev; Bp+1 = { definition B} 
one rev; ilvP+t cmp; twoBp 

={equation 14} 

veeP+1 cmp j one rev; two Bp 

= { rev; Bp = Bp } 

veeP+! cmp ; twoBp 

The relation veeP+ 1 cmp compares the first and last elements of a sequence, the 
second and second last elements, and so on, as required. 

We also want to replace each of the recursive calls of Bp by one rev i Bp in the 
same way, and so on recursively. It can be shown by induction that 

, 1'+1 _. 
(; two'onerev);Bp +1 ; veeP+ 1-. two' cmp 
;:0 ;:0 

Wp+l cmp 

So the balanced. merger, Mp+l, is just the network Wp+1cmp that we have a.lready 
seen, and it is related to the bitouic merger by 

, . 
M p+1 = ( ; two' one rev) ; 81'+1 

;:0 



:H SORTS OF BUTTERFLIES 

The wiring permutation ;:=0 twoi one rev, when it operates on sequences of length 
2p +2 as it does here, is Wp one swp, which we saw above. 

, . 
; two' one rev; 2,,+2 == { rev; 2,+1 == vee" swp } 

;=0 ,. . 
; two' one veeP-' swp 

;=0 
== {one veeR = vee one R} 

, . . 
; two' veeP-' one swp 

;=0 

== {defini tion W } 

W"oneswp 

This is the permutation T that appears mysteriously in reference [3] when the 
balanced merger is discussed. The natura.! language description of the balanced 
merger quoted above is typical of the way in which networks are described in 
the litera.ture. Our formal description is much more precise, and it captures the 
designeJ:~' intuition in a satisfying way. 

KnOWing that the ba.!anced merger is a veefly of comparators gives us numerous 
recursive decompositions of that network. In particular, 

Mo 'mp 

M,,+! vee"+l Mo; twoM n 

vee M" ; twon +1 M o 

The designers of the periodic balanced sorter show [11] that 

ilv inc; M n = ilv inc; M" ; inc (15) 

That is, the balanced merger sorts a sequence consisting of two interleaved sorted 
sequences. Applying the function ilv k to each side of equation 15 gives 

ilvk+l inc; ilv kM n = ilvk+1 inc; ilvkM,,; ilv k inc (16) 

To build a sorter for sequences of length 2"+1, we need to relate an unsorted se
quence (which satisfies ilv"+l inc) to its sorted permutation (which satisfies ilvo inc). 
We can do this by progressing through permutations that obey ilv n inc, ilv"-l inc 
and so on. The uetwork 

" Sn :::: ; ilvn- i M· (17)
;=0 • 

sorts in this way. The proof that it is a sorter is by induction on n, using equation 16. 
For a given size of input, Sn has the same number of comparators as the bitonic 
soder. 



35 THE PERIODIC BALANCED SORTING NETWORK 

The periodic balanced sorting network 
What makes the balanced merger interesting is that the composition of n + 1 copies 
of M,,, that is M~+1, is also a sorter. For a. VLSI implementation, the resulLing 
periodic circuit is a.Ura.ctive because only one copy of M n need actually be laid 
out and its outputs can be fed back to its inputs. Thus space, a scarce resource, is 
traded off against time. 

To prove the periodic sorter correct, we need to show that (for 0 :$; k S n) 

ilvk+l inc; M n = ilvJr+l inc; M .. ; ilvk inc (18) 

because then an induction, and the fact that ilv ...+1 inc is the identity on sequences 
of length 21\+1, gives 

M~+l M:+1 
; inc 

which is the desired result. 
The proof of equation 18 is by induction. The base case is equation 15, which 

is proved in reference [ll}; we will not proye it here. For the step: 

ilv.t+:l inc; M n+1 

= {ilv2 R = veeilv R and definition M } 
vee ilv.t+l inc; vee M n ; twon+I emp 

= {homogeneity} 
vee(ilv.t+l inc; Mn}; twon+1 emp 

= { inductive hypothesis} 

vee(ilv.t+1 inc; M n ; ilv.t inc); two..+1 emp 

= {homogeneity and equation 13) 
vee(ilv.t+1 inc; M n); vee ilv.t inc; two..+1 emp ; ilv.t+l inc 

= { reversing the steps in the above ca.lculation) 

ilv.t+l inc; M"+l ; ilv.t+1 inc 

This demonstrates the correctness of the periodic sorter. 
To compare the sizes of Sn and the periodic sorter, note that we have replaced 

each ilvn- i M, in equation 17 by the larger M". In S", the ith column of mergers 
has 2"-iU + 1)2' = (i + 1)?" comparators while in the periodic sorter, each column 
of mergers has (n + 1)2" comparators. This means that the complete periodic 
sorter has roughly twice as many comparators. For such a sma.ll constant factor, 
one might consider laying out the complete periodic network on silicon, instead of 
the smaller but less regular Sn



36 SORTS OF BUTTERFLIES 

Conclusion 
The work on permutation and comparator networks is only just starting. The 
approach looks promising, especially when compared with standard methods, which 
tend to make obscure appeals to the binary representations of indices. OUT proof 
of the periodic sorter is appealingly simple, largely because we were able to use 
exactly the right recursive decomposition of the balanced merger. Our first attempt 
at the proof had the same structure as the original proof in reference [11]- It 
used an inappropriate recursive decomposition of the merger, and so was long and 
complicated. The fact that we can express alternative recursive decompositions 
easily is an important a.dvantage of our use of structuring functions. It is to be 
hoped that it will also be useful in the mapping of algorithms onto structured 
networks. 

There is clearly a whole family of structuring functions like vee waiting to be 
investigated; in particular, there is the structuring function that matches vee in the 
same way that two matches ilv. This will lead to a family of butterfly-like networks 
for different forms of divide-and-conquer algorithms. 



References
 

[IJ	 A. V. Aho, J. E. Hopcroft and J. D. Ullma.n, The design and analysis 0/ 
computer algon'thms, Addison-Wesley, 1974. 

[2}	 K. E. Batcher, Sorting networks and their applications, in Proc. AFIPS Spring 
Joint Comput. Coof., Vol. 32, April 1968. 

f3]	 G. Bilardi, Merging and sorting networks with the topology 0/ the omega 
network, IEEE Tra.nsactions on Computers, Vol. 38, No. la, October 1989. 

[4]	 R. S. Bird, Lectures on constructive functional programming, in [5J.
 
(Progra.mming Research Group technical monograph PRG-59)
 

[5}	 M. Bray (ed.), Constructive methods in computing science, NATO adva.nced 
study institutes, Series F: Computer a.nd systems sciences, Springer·Verlag, 
1989. 

[6]	 K. M. Chandy and J. Misra, Parallel program design - a foundation,
 
Addison-Wesley, 1988.
 

[7\	 J. W. Cooley a.nd J. W. Tukey, An algorithm for the machine computation of 
complex Fourier series, Ma.thematics of Computa.tion, 19, pp. 297-301, 1965. 

[8]	 G. David, R. T. Boule and B. D. Shriver (OOs.), Declamtive systems,
 
North-Holland, 1990.
 

[9J	 1<' Davis and J. Hughes (eds.), Functional programming, Glasgow 1989,
 
Springer Workshops in Computing, 1990.
 

[1 OJ	 P. Denyer and- D. Rerrshaw,- VLSI signal processing; a hit-sel'ial approach, 
Addison-We~ley, 1985. 

37 



;JS	 REFERENCES 

jllJ	 M. Dowd, Y. Perl, L. Rudolph and M. Saks, The periodic balanced sorting 
ndwork, Journal of the ACM, Vol. 36, No.4, October 1989. 

(121	 G. Jones, Deriving the fast Fourier algorithm by calculation, in [9]. 
(Programming Research Group technical report PRG-TR-4-89) 

[13)	 G. Jones and M. Sheeran, Circuit design in Ruby, in (19). 

[14]	 G. Jones and M. Sheeran, The study of butterflies, in this volume. 

[15]	 T. Nakatani, S.-T. Huang, B. W. Arden and S. T. Tripathi, 1"-- Way Bitonic 
Sort, IEEE Transactions on Computers, Vol. 38, No.2, February 1989. 

[16J	 M. Sheeran, Describing hardware algorithms in Ruby, in [8]. (Revised form 
appear, '" [17]) 

[17] M. Sheeran, Describing butterfly networks 'in Ruby, in [9].
 

/181 S. G. Smith, Fourier tran40rm machi.nes, pp. 147-199 in [10].
 

[191 J~Igen Staunstrup (ed.), FON/tai methods Jor VLSI design, North-Holland,
 
1990. 

[20J H. S. Stone, Parallel processing with the pe1ject shu}}ie, IEEE Transactions 
on Computers, Va\. C-20, No.2, Fehruary 1971. 

[21]	 J. D. Ullman, Computational aspects oj VLSI, Computer Science Press, 1984. 

It may be said, therefore, t.hat on these expanded membranes Nature writ.es, a.s on a 
tablet. the story of the modifications of species, so truly do all changes of t he organisation 
register them&elves thereon. Moreover the same colour patterns of the wings generally 
show. with great regularity, the degrees of blood-relationship of the species. As the laws of 
nature must be the same for all beiugs, the conclusions furnished by this group of insects 
must be applicable to the whole organic world; therefore, ... the study of butterflies ~ 

creatures selected as the types of airiness and frivolity - iustead of being despised. will 
some day be valued a one of the mOst important branches of Diologicalscience. 

W. H. Bates (1864) The Natm'(llist on tile River Amazons 






