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2 INTRODUCTION 

Introduction 

The two pa.pers collected in this monograph describe the logic that forms 
the theoretical foundatioa of the proof 3.Ssistant known as the B-tool. The 
B-tool was designed as a. computerized support for the formal development 
of impen.tive programs from Z-like specifications. Its prime functions are 
to provide a. simply-accessed da.tabase for recording program developments, 
and to provide a. seCU1'e environment for interactively constructing the proofs 
necessary for those developments. 

The style of proof encouraged by the tool is that of building up theories of 
related fa.cts which are relevant to partkular applications. Complete freedom 
is allowed in the order in which facts are proved. New axioms can be added 
a.t any time; one can attempt to prove an axiom of questionable correctness 
from more obviously-correct axioms at a later date. Although new axioms 
and rules of inference can be added freely, their use in proofs is strongly 
controlled, protecting the user from the common errors such as capturing free 
variables. The tool provides little automation, but concentrates on making 
interactive proof construction a smooth-running and error-free process. 

Proofs are conducted in a goal-oriented way, the tool suggesting rules that 
match the goal, and the user controlling the proof by accepting or refusing 
the suggested rules. There is also a simple tactic language which allows 
some automation of proof construction. With the tactic language the user 
controls the order in widch the theories (i.e., sets of related rules and axioms) 
are bearched. Often a tactic can be chosen which causes the tool always to 
find the correct rule on its first attempt. In that case the user can waive 
his right to vet rules, and instea.d allow the proof to continue automatically. 
Typically a combination of interaction and automation is used. 

The 8-tool is quite flexible. Most of the syntax and many of the axioms 
and inference rules are user-defined, and so tbe tool can be applied to many 
problem domains, using vadous logics. The flexibility is due maiuly to the 
expressiveness of the logical language employed by the tool. The language 
is actually a meta-language for first order predkate calculus and has a form 
similar to the meta-languages used informally in logic text books. In it 
one can state general inference rules such as mathematical induction and 
existential introduction, thus rules like these can be added as easily as can 
single predJcate calculus formulae. A few indispensable rules bave been 
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built-in and these support a mixture ofthe natural deduction and equational 
styles of reasoning. 

The use made within the B-tool of its logical language is not restricted to 
proof. The same language often doubles as a. programming language, and 
as such performs many of the administrative functions, such as reading-in 
files and pretty-printing. We make no attempt to explain these seconda.ry 
features of the language; we concentrate on the logical aspects alone. rn fact, 
we doubt the existence of a. simple explanation of all aspects of the language, 
and would recommend a. strict separation of the activities of proving and 
programming wHhin the B-tool. 

A Logic for a Theorem Proving Assistant is intended for users of th€ B~tool 

and designers of proof assistants that function along the same lines. No deep 
issues concerning logic are discussed and to those wishing to take tlH:! ideas 
presented here further, we recommend the work of Milsted [8]. 

Variable Lifting presents the technique by which the 8-tool delegates the 
checking for variable capture to the logic. Because of its slightly unusual 
nature, we felt obliged to give a full account of its justification. 
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A Logic for a Theorem Proving Assistant 

Paul Gardiner· Trevor Vickerst 

Abstract 

A detailed description of a simple logic for a theorem proving assis
tant is presented. The approacb taken is closely related to that used for 
AbriaJ'a B-tool, and so an u....derstanding of the behaviour of the 8-0001 
may be gained. The description of the Jogic is supported by motivation 
of the logic's design, and by an example of its use. Some issues for a 
practical implementation are discussed, including a technique called 
variable-lining, which separates the concerns of pattern-matching and 
variable-captwe. Simplicity is the foremost goal. No deep facts COR

c:erning logic are 8S8umed or presented. 

Introduction 

The use of a. variety of logics in computer science has lead to an increasing 
interest in tools tha.t allow some freedom in the choice of logic. OUf goal 
has been to design a tool that not only allows this choice but also allows 
one to capture proofs much as one would on paper and to express <lJld 
prove new rules of inference. Such flexibility can be achieved using alogica.l 
framework in which various (object-) logics can be captured. Here we present 
a logical framework (or meta..logic), known as BL, which provides much of 
the freedom of naive mathematics, without loss of formality. 

Many of the ideas presented here come from work on the B-tool [1, llJ. 
The developers of the B-tool felt that, for a. prototype tool, the choice of 

·Program.mi.Dg Research Group, Oxford University, 11 Keble Rd, Oxford OXI 3QG, 
U.K. 

tDepartment of Computer Science, AuR1ralia.n National University, Ca.nberra, 
Autrwa. 
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5 Overview of BL 

a particular logic would prema.turely fix the modes of reasoning they could 
consider. So initially the B-tool was developed by intuition: sometimes 
adding to as logical language and inference mechanism for the sake of prac
ticality, sometimes restricting its behaviour because unsoundness had been 
discovered. 

In time, the tool beca.me a useful support for the kind of proof methods 
required, but with no 10gicaJ basis it could not he trusted. Effort then 
turned towards the search for a. logic to act as a foundation for the tool. 
The resulting logic is not compromised by its development in this way. As 
the understanding of the logic increased, and discrepancies between the logic 
and the tool's behaviour were found, it was the program which was modified 
and not the logic. The logic therefore is quite general a.nd not restricted by 
its use as the basis of B. 

The following sections motivate the logic's design, supporting the formal 
definition of BL. The definition is foJIow£:d by an example of BL's use in 
reasoning about logical systems. We also discuss how a tool might be based 
on this logic, introducing techniques that simplify the avoidance of variable
capture. 

2 Overview of BL 

Working with logics necessarily involve6 the creation of notations for string 
manipulation (i.e., a meta-language). Books on logic malce much use of 
these. For example, many predicate calculus systems have axiom schemata 
tha.t cannot be captured by a finite set of fonnulae. Another example is the 
proving of schematic theorems. In both cases a meta~la.nguage is required. 

In designing BL, we have taken advantage of the similarity one finds in the 
meta-languages of a. wide range of logics. Rather than work with a particular 
logic, we have abstracted the parts common to most meta-Iangua.ges and 
formalised them. The result is a reasonably-general logical framework, in 
which one reasons much as one would on paper. 

The advantage of this freedom is most a.pparent in tools based on RL. When 
one wishe6 to reason about a quantifier I sa.y, not known to the too!, one can 
usually write introduction and elimination rules directly in BL - far better 
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than having to reprogram the tool. Of course if thOfie rules are invalid, 
unsound results may follow, and we deliberately place the onus of validity 
of those rules on the user. 

The way we intend exploring a. mathematical theory is first to choose some 
logical system tha.t works well for that theory, and then reason about the 
strings of that logical system in BL. Most importa.ntly, we would want to 
prove th.at certain strings are theorems of tha.t system. The logical sys
tems which we reason a.bout in BL will be known as object-logics or object
languages. 

Since reasoning a.bout strings presents no special problems, the Predica.te 
Calculus seems a. na.tural candidate for a meta.·13.llguage - with its terms 
denoting strings of the object-logic, and its formulae expressing properties 
such as 'is a. theorem' and 'does not occur free in'. In fact BL is much like 
the Predicate Calculus: it differs only in being simpler. 

SimpliJi.cations are possible because we wish to assert and prove only a very 
restricted set of properties of object-level strings - properties that corre
spond to object-level inference rules and axiom schemata. These are always 
of a certain form, just stating that a basic property (such as theoremhood) 
of one string follows from basic properties of others. For recording such 
properties, logical connectives like negation and implication are overly ex
pressive. So the first simplification of predicate calculus is to replace the 
logical connectives by a single construct - the sequent. Rules of inference 
with side conditions need no special treatment: since side conditions are 
also properties of strings, they appear simply as extra antecedents. Our 
notation for sequents copies one often used for displaying rules of inference. 
The antecedents are written above the consequent with a horizontal line 
between. 

Just i\8 logical connectives are unnecessary for expressing inference rules, 
so are quantifiers. Thus their removal is the second simplification to the 
Predicate Calculus. We retain, however, the distinction between terms and 
formulae. Note that these simplifications are not imposed on the object
languages that BL reasons about. The object-languages may have logical 
connectives and quantifiers. 

By simplifying the meta-language we also simplify the task of building"" tool. 
Sequents are ideal for a goal-oriented proof style (without committing us to 
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that style), and the lack of quantifiers removes the possibility of variable 
capture (i.e. capture of meta variables), so that simple pattern matching 
can be employed during proof construction. 

3 Overview of BL's use 

The metarlanguages found in logic texts are quite schematic in nature. Ax
iom schemata are presented by writing one instance with the parts that 
can vary indicated by letters of some reserved font (calligraphic say). For 
example, Hnbert~style formalisations of Predicate Calculus often have the 
schema 

A=> (8 => A) 

This schematic style is easily formalised in BL by associating a meta-language 
function symbol with each connective of the object-language. In the case of 
implication, the function symbol is 2-placed and its meaning is the function 
that takes two strings and returns the result of concatenating them with an 
implication symbol between. That is 

14> => .p) ;: 14>1 => l.p) 

where nis the semantic function from meta-language to object-language. 

Note that the =:- occurring on the right is the logical connective of Predi
cate Calculus, whereas the one occurring on the left is the associated meta
language function symbol. 

The formal counterpart of the calligraphic letters are the variables of BL. 
By convention, we use capital italic letters for variables. So the instances of 
the axiom schema are exactly the denotations of the BL term 

A=>(B=>A) 

as the va.riables range over all object-level formulae. 

The fact that each instance is an axiom implies that each is also a theorem. 
It is theoremhood that we will record and reason about in BL. Theoremhood 
is represented by the one-place predicate symbol 1-. So the BL formula 

I- A=>(B=>A) 
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formalises the axiom schema. above. 

There are still some flaws in our formalism, which we now address. BL's 
domain of discourse is the set of all strings of the object~language. Only 
some of these are well-formed, and those tha.t are ma.y be mern.bers of one of 
several syntactic classes. In the literature, axiom schema.ta. are accompanied 
by text that sa.ys what sort of string the calligra.phic letters sta.nd for. In 
our example schema. the calligraphic letters stand for formulae. We must 
make the same restriction in our formalism. To achieve this, we introduce in 
BL a predicate symbol for ea.ch syntactic class of the object-Iangua.ge. So, jf 
the object-langua.ge is the Predica.te Calculus then we introduce one-placed 
prewcate symbols var, trrn and frm. The meta-formula. 

f,m </> 

is true if and only if the meta-term ifJ denotes a well-formed object-level 
formula. In a similar way, var means object-level variable and trm means 
object-level term. 

Now we can correctly formalise the example axiom schema with the following 
BL sequent. 

frm A frm B 
I- A ~ (B ~ A) 

So far we have a language sufficient to express, for example, most of the 
Hnbert~style axiom schemata, but there are still a few we ca.nnot. One such 
is 

(1/ •• A(.» ~ A(r) 

Here A(z) stands for a formula in which a variable, z, has been singled out, 
and A(T) stands for the result of replacing each occurrence of that variable 
by the term T. We could make this formal by considering A to be a function 
from strings to strings, but this would complicate BL unnecessarily. Instead, 
we formalise substitution in BL with a 3-place function symbol, which we 
will call formal substitution, written [ifJ := ¢18. Its meaning is defined only 
when¢J denotes a variable, ¢ denotes a term and 8 denotes a term or formula.. 
In thot case [[</>:= 1/>]81 is the result of ,eplacing all free occurrences of [</>I 
by [V] in [8]. In all other cases its meaning is arbitrary. Using formal 
substitution, the above axiom schema can be written as follows. 

var X trm T frm P 
1--(1/ X • P) ~ IX :- TIP 
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There is a danger whh substitution that variables may become captured. 
In the literature, capture is often avoided by enforcing side conditions like 
IT is free for z in A'. We could represent such aide conditions by predicate 
symbols of BL, but there is a simpler path: substhutioDs can be performed 
in a way that avoids capture. 

If one accepts the validity of changing the namet> of bound variables, then 
one can change all the bound variables of A, making them different froro the 
free variables of T. After this, the substitution can be performed withoutdsk 
of capture. We choose this combination of alpha-conversion and substitntion 
(known as safe substitution) for the meaning of (_:::: -l _. 
Not all side conditions can be avoided. One that appears often and that we 
do have to formalise is Idoes not occur free in'. This is represented in BL 
by the predjcate symbol ¢ \ 1/J. Its meaning is defined only when ¢ denotes 
a variable and t/J denotes a term or formula. ]n that case, ¢ \ ,p is true iff 
I¢) doe. not occur free in l.p). 

With what we have presented so far, we can provide a meta-language for 
many logics. Common practic.e, however, is to alternate between reasoning 
schematically within the meta-language and reasoning directly in the object
language. BL can be used for the former, but how do we achieve the latter? 
The answer is quite simple. If we extend BL, so that it can refer to particular 
object-level strings, then we can mirror individual object-level proofs. Little 
needs to- be added to BL. We already have meta-level function symbols 
associated with each object-level connective. All we need do is associate a 
meta-constant with each of the object-level constants and variables. That 
is, for each object-variable (z say) we have a meta-constant (also written x) 
such that 

Ixl ;; x 

Similarly, object-constants are denoted by meta-constants. 

Thus, for example, theoremhood of the object-formula 

m+n:;:;n+m 

is expressed by the BL sequent 

I- m+n:;:;n+m 
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Having introduced all the main concepts, we are ready to define BL. We 
show how BL is applied as a meta.-Ianguage in section 5, where we use it to 
describe Hilbert~style PreWca.te Calculus. 

Definition of BL 

In this section we define the syntax and inference mechanism. of BL, forget
ting for now tha.t BL will be used to reason a.bout other logics. 

We said earlier that BL is like a simple form of Predicate Calculus, with the 
logical operatoTs replaced by sequents. So, strictly speaking, BL is a sequent 
calculus. Sequents are constructed in the following wa.y. 

SEQUENT ::: FORMULA,··· FORMULA, 
FORMULA 

FORMULA ::: P.(TERM" ... , TERM.) 
TERM ::: F~(TERMh'""' TERM~) 

I VARIABLE 
I C 

where p. stands for any n-ary predica.te symbol, Fm. for any m-ary function 
symbol and C for any constant symbol. 

For va.riables we will use upper-case italic letters, sometimes subscripted by 
... number. The predica.te, function and constant symbols will vary according 
to application. 

As in the predica.te calculus, theorems are derived from axioms using rules 
of inference - although in BL the axioms and theorems Me sequents, not 
formulae. The BL rules of inference are as follows. They are not unusual 
(see Scott [9]). 

4>ASSUME T 
ifr h rtoTHIN • Tt en ~ 

"r r4> rCUT if T and ----;j) then ¢ 
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f f'INSTANTIATE if ~'hen 7 

where ¢ and t/J axe formulae, r and I:J. are sets of formulae, and I'" and ¢I axe 
respectively r and ¢ after application ofa substitution of terms for variables, 
Standard techniques can be used to show the soundness and completeness 
of BL. These results are not presented here, 

The following example illustra.tes the use of these rules. 

Example 
Let t> be a predicate symbol. T'hen from 

Xt>Y Yt>Z S1 
Xt>Z 

we can derive 
At>B Bt>C Ct>D
 

At>D
 

ProoC 
Apply INSTANTlA TE to S1 to get 

At>B Bt> C S2 
At>C 

and 
At> C Ct>D S3 

At>D 

then apply THIN to S2 and S3 to get respectively 

At>B Bt>C Ct>D S4 
At> C 

and 
At>B Bt> C Ct>D At> C S5 

At>D 

and finally apply CUT to S4 and S5. 

As you will have noticed, the inference rules are cumbersome. So when pre
senting proofs we will use a different method of inference, which is justified 
by the inference rules. Tills method works a.t the level of fonnniae rather 
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than sequents. The method consists in the construction of a set of formulae, 
starting with the antecedents of the sequent to be proved, and then adding 
new formulae until tbe consequent is present. A new formula. can be added 
to the set only if it is the consequent of a sequent (either an axiom or the re
sult of INSTANTIATE applied to an axiom) whose antecedents are already 
present. 

Using this method of inference the example can be presented more succinctly, 
as follows. 

Proof 
(1) At> B assumption 
(2) B t> C assumption 
(3) C t> D assumptioD 
(4) At>C 1,2 and SI 
(5) At> D 3,4 and SI 

Equality 

The equality relation is sufficiently domain-independent to wa.rrant inclusion 
as part of BL. We represent it by the predicate symbol ==, sa.ving = for 
equality in the object-languages. It is axiomatised by the following standard 
sequents, for each function symbol F and predicate symbol P. 

X==X 

Xl ;;;;;;;;;; Y1 ••• X. == Y.
 
F(X" ... ,X.) == F(Y" ... , Y.)
 

Xl == YI ••• X. ;;;;;;;;;; Y.
 
P(X" ... ,X.)
 
P(Y" ... , Y.)
 

One can think of these sequents as being like the logical axioms of Pred
icate Ca.lculus: to reason about a particular domain of disco1ll"se they are 
augmented by othel' domain specific aXioms. 
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The == axioms justify term rewriting, and that is how we use them. DllIing 
a proof in the style of the lallt example, if we have derived a formula A(¢J) 
in which the term ¢J occurs, and we are able to derive ¢J == t/J or t/J :::;:::; ¢J, 
then we may also derive A(",). 

This concludes the definition of BL. 

5 Example: Hilbert-style predicate calculus 

In this section we present a formalisation of Hilbert-style Predicate Calculus 
all an example of BL's use. We follow the description of Predicate Calculus 
found in Mendelson [7] except we formalise, all BL sequents, what is stated 
there in English. We will refer to that calculus as PC, and our formalisation 
as PC-theory. 

First we deal wah the rules of inference and logical axioms of PC. To 
introduce these we need to mention the following PC symbols. 

variables a, b,c, ... 
predicate symbols '1 _ 
quantiiiers 
logical operators -,-, -=>

To record facts about these PC symhols, we will need the following BL 
symbols. 

constants a, b,c t •••
 

variables A,BtCt ...
 
function symbols - = - '1_. - .., - , - => -, {_:= -l 
t 1 

predicate symbols var _, trm _ , frm _ , _ \ _, l- _ 
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When describing a logic one must present its syntax. The following sequent6 
can be thought of as being the BL equivalent of a. syntax for the part of PC 
introduced so far. They express the concept of well-fonnedness. 

WLF 

for each 'II'" dra.wn from a, b, c, ..• 
var'll'" 

var X trm S trm T var X rrm P 
trm X frm S _ T rrm "X. P 

rrm P frm P frm Q 
frm-, P frmP=> Q 
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In section 3 we said that _ \ _ represents non-freeness. To allow reasoning 
about non-freeness in BL we introduce the following axioms. 

NFR 

for each palr 11", P of dis
tinct elements drawn from 

~ Il, b, c, ... 

var X trm S trm T 
X\S X\ T var X frm P 
X\S= T X\VX.P 

var X var Y frm P var X frm P 
X\P X\P
 

X\VY.P X\~P
 

var X frm P frm Q 
X\P X\Q
 
X\P"" Q
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The following sequents a.xiomatise formal substitution. 

SUB 

var X trm E trm T var X trm E frm P 
X\T X\P
 

IX:- E]T== T IX := E]P== P
 

var X trm E 
[X := EjX == E 

var X trm E trm S trm T 
IX:- EI(S - T) -- IX:- E]S - [X:- EIT 

var X trm E var Y frm P 
Y\X Y\E
 

[X := E](\I Y • P) == \I Y • [X := EJP
 

var X trm E frm P 
[X :- E], P -- , IX :- EjP 

var X trm E frm P frm Q 
IX :- EJ(P => Q) -- IX :- EJP => IX := E] Q 
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Lastly we have the rules of inference and axioms of PC. PC has two rules 
of inference: Modus Ponens and Generalisa.tion. These can be written in 
BL as follows. 

I,m P I,m Q 
f- P var X frm P 

f- P ~ Q 
f- Q 

MP f- P 
f-VX.P 

GEN 

And PC has five axiom schemata.. 

I,m P I,m Q Ll 
f- P ~ (Q ~ P) 

I,m P I,m Q I,m R L2 
f- (P~Q)~«P~(Q~R))~(P~R)) 

I,m P I,m Q L3 
f- (~P ~ Q) ~ «~ P ~ ~ Q) ~ P) 

var X trm T frm P L4 
f- (V X • P) ~ IX :- TIP 

var X frm P frm Q 
X\P L5 

f- (VX.P~Q)~(P~VX.Q) 

The following example illustrates how one uses PC-theory. 
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Example 

frm P 
~P=>P 

Proof 

(1) Irm P	 assumption 
(2) I,m P => P	 1 a.nd WLF 
(3) rrm P => (P => P)	 1,2 a.nd WLF 
(4) rrm (P => P) => P	 1,2 a.nd WLF 
(5) r,m P => ((P => P) => P)	 1,4 a.nd WLF 
(6) Irm (P => ((P => P) => P)) => (P => P) 2,5 a.nd WLF 
(7)	 ~ P => (P => P) 1 and L1 
(8)	 ~ P => ((P => P) => P) 1,2 and L1 
(9)	 ~ (P => (P => P))
 

=> ((P => ((P => P) => P)) => (P => P)) 1,2 and L2
 
(10)	 ~ (P => ((P => P) => P)) => (P => P) 3,6,7,9 and MP 
(11)	 ~ P => P 2,5,8, 10 a.nd MP 

A proof assistant based on BL 

In this 5ectJOn we discuss a very simple way in wh..ich BL proofs might be 
constructed with machine support. We imagine a proof assistant to which 
the Wier has added the axioms of PC·theory. Proofs are constructed ill 
reverse! using a goal directed approach. For example, the sequent 

f- 'Vzez=z 

might be proved as follows. A set of goals would be formed, initially con
tainingjust the one formula I- Vz • z ;;:;; z. The data base of axioms would 
be searched to find one whose consequent matches the goal. There are two 
such. 

f,m P frm Q 
~ P 

~P=>Q MP 
~ Q 
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and 
var X frm P 

~ P 
GEN 

~ 'IX. P 

The user would choose one of these (GEN say). The matching process would 
yield tbe instantiation, %for X and %;: %for P, thus transforming GEN 
to, 

varz frm%==z 
~ % == % GEN' 

~v%.%;:z 

and the goal would be replaced by the antecedents of GEN'. If the user 
chose MP then much the same would happen, except that only Q's instan
tiation would be obtained hy matching. The user would be prompted for 
P's instantiation. 

The application of axioms would cQntinue, acting on new goals a.s for the 
first, until no goa.ls remain. The proof is then complete. 

In theory, a tool with the facilities we have just described could be used 
as it stands; one could type in the axioms of PC-theory, add to these the 
axioms of number tbeory, and prove number theoretic results. In reality, 
proof construction would be far too slow with such a tool. In the next 
section we look at ways of speeding up the process. 

7 A practical implementation 

The inefficiency of our imagined tool has two sources. One source is the 
PC - theory axioms for well-formedness, non-freeness and substitution; these 
have to be applied repeatedly just to perform a single substitution or derive 
a single non-freeness condition. The other source is the object-logic; PC 
was designed for the study of proof, not for practical use. 

The problem with well-formedness, non-freeness and substitution is easily 
dealt with. The axioms for these can be built in to the tool. Then the many 
steps necessary to perform a substitution, say, can be presented to the user 
as a single step. 

There is a.nother advantage in building in this part of PC-theory. These 
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axioms occur in groups containing one axiom per symbol of the object
language. So when a new symbol is introduced these axioms must be sup
plemented. With the axioms built in, the tool can be responsible for supple
menting them - the user ha.ving merely to specify whether a new symbol is 
of the object-language, and if so, what type of symbol (e.g., constant symbol, 
function symbol etc.). Building in parts of PC-theory restricts the user's 
choice of object-logic, 80 the decision to do 50 might not be appropriate for 
all applications. 

To avoid the a.wkwardness of PC we ca.n use a. different inference system. 
The B·tool uses the langua.ge of PC, with d. combina.tion of Natural Deduc
tion and Term Rewriting. Next, we outUne how this is achieved in BL. 

7.1 Natural deduction 

To support na.tural deduction we need to have BL reason a.bout theorems 
under bypotheses. So we supplement the predica.te symbol I- _ with an 
infinite fa.mily of new predica.te symbols, one for each length of hypothesis 
list. The5e are written 

_, ... ,_ f- _ 

We give meanlng to these new symbols by sa.ying tha.t 

~, ...• <p. ~ !/> 

is true iff the following is true. 

~ ~ => (</>, => •• •(<p. => !/>)) 

•
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This rela.tionship can be used to justify replacing the logical axioms of PC 
by the following sequents. 

rrm HI ... frm Hn HYP 1::; i ~ n 
H}, ... ,Hn I- Hi 

frm G1 ••• frm GA
 

frm Hl rrm Hm frm P
 
Hll ,Hm I- P
 
G}, ...• GA I- HI
 

GI, ... ,Gn f- Hm TRANS 
G}, ... ,GA I- P 

var X frm P
 
rrm HI ... frm Hn
 

X \ HI' ,·X \ H.
 
Ht, ... ,HA f- P
 GEN 

Hl,. .. ,HA f- VX. P 

var X trm T frm P SPEC 
It X • P ~ [X:= TIP 

I,m P I,m Q 
frm HI'" rrm HA 

H}, ,H.,P I- Q I,m P I,m QDED MP 
H), ,H. ~ P", Q P,P'" Q ~ Q 

I,m P I,m Q CONTRA 
~ P", Q, ~ P '" ~ Q ~ P 

These axioms give shorter and more easily-constructed proofs, but they do 
have one dra.wback: there are infinitely many of them. So some of them will 
have to be built in to the proof assistant. 
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SPEC, MP and CONTRA need not be built in. They Me single sequents 
and therefore can be typed in when needed. HYP, GEN and DED can be 
built in directly as they stand. This lea.ves TRANS. 

TRANS is built in indhectlY. It modifie6 the wa.y in which certain sequents 
are used in proofs. The sequents tha.t Me affected axe those of the form 

(h·· .{}. 
(81)

Q>l, ••• ,Q>m I- tP 

where 911 "" 9. are well-fvrmedness or non-freenes8 conditions. If we con
sider how proofs are generated, we notice tha.t a sequent of this form can 
be used only when as consequent exactly matches a goal - an uncommon 
occurrence. However, if we take 8uch a. sequent together with TRANS we 
can derive 

(h·· .{}.
 
rrm Q>1 ••• frm rPm. frm t/J
 

frm Tl ••• frm. Ti
 

Th •• "Tt I- r/J1
 

Tl, ••• ,Ti I- 4Jm (82) 
Tl, •.• ,Ti I- t/J 

where TI,"" Til are arbitra.ry meta-terms. 

With these sequents, a greater range of goals can be matched. A match is 
possible provided the goal has I- as its predicate symbol with the rjghtmost 
argument matching,p. The transformation from (81) to (82) can be thought 
of as a derived rule of inference. 
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7.2 Term rewriting 

BL already supports meta·level term rewriting, but this is of use only in 
exchanging meta-terms that denote the same object-level string. Wbat we 
wish to do is reason in BL about object-level term rewriting. 

We can give a simple axiomatisation in BL as follows, for each object-level 
function symbol :F, predicate symbol P and logical operator £. 

trm T 
~ T = T 

trm 51 ... trm S. 
trm T1 ••• trm T. 

s, = T" ...• S.= T. ~ F(S" ...• S.l=F(T], ... ,T.) 

trm 51 trm 5. 
trm Tl trm T. 

s, = T, •...• S. = T. ~ P(St •... ,S.) .. P(T" ... , T.) 

frm 51 ... frm 5,. 
frm T1 ••• frm T. 

s, .. T, •...• S... T. ~ .C(S..... ,S.) ...C(T" ...• T.) 

These axioms are not used directly. Instead, they appear implicitly as alter
ations to the procedures for pattern matching and goal generation - much 
in the way that TRAN5 does. The details are a little messy, and we omit 
them here. 

1.3 Variable lifting 

The above proof system works well provided the sequents called upon in a 
proof are schematic (Le., contain meta.-variables). There are more problems 
to solve, however, if we wish to use non-schematic sequents effectively. 

Consider the following sequent. 

(1) 
~ a ~ b .. (3%. a+% = b) 
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From this, we would expect to derive directly: 

(2) 
~ p:<;q+r¢>(3yop+y=q+r) 

But in fact. the derivation is anything but direct. 

To Bee why this is so, we must take a closer look at (1), remembering that 
it is a. meta-language expression. The symbols a, b and x, which look as 
though they are PC variables, are actually BL constants and cannot be 
altered by application of tbe BL inference rule INSTANTIATE. Instead, 
we rely on the inference rules of PC, formalised in BL. In particular, we 
need generalisation and specialisa.tion to alter a a.nd b, and alpha-conversion 
to alter :1:. 

It seems, at first sight, to be more convenient to avoid sequents like (1), 
replacing them by more easily-a.pplied ones like 

var X trm A trm B (3) 
~ A:<; B ¢> (3X 0 A + X = B) 

but these are more difficult to interpret. To decide on the truth of (3) one 
would nave to consider the results of repla.cing X, A and B by all possible 
object-language strings, whereas one can safely imagine that (1) is written 
directly in the object-language. So sequents like (3) involve an extra level 
of complexity. 

Complexity can lead to error. For example, one might think (1) and (3) 
interchangeable. But, whereas (1) is a legitimate definition of :5, (3) intro
duce5 a contradiction. To exhibjt the contradiction, apply INSTANTIATE 
to (3) \0 obtain both 

~ a:<;b¢>(3b o a+b=b) 

and 

~ 1:<; 2 ¢> (3 Z 0 1+ Z = 2) 

Simplify respectively to 

~ a:<;b¢>a=O 
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and 

~ 1:$ 2 

and, from these last two seqnents, derive 

~ 1 =0 

The cause of the inconsistency can be found at the very first step, where 
variable captnre occurred. Capture can be avoided by adding further an
tecedents to (3), thus obtaining 

var X trrn A trrn B 
X\A X\B (4) 

~ A:$ B <> (3 X • A +X = B)..
 
- But how can we tell whether inconsistency has crept in through some other 

door? 

Rather than leave such questions to the discretion of each user of EL, we 
have systema.tised the generation of schematic sequents from non-schematic 
ones. We include the transformation as a.n inference rule called VAR-Jift. In 
fact, (4) is the result of applying VAH-lift to (1), and thus (4) is admissible. 

Looking at (4), one ca.n see a pattern to the antecedents: var X is there 
because z occurs bound in (1), trrn A and trrn B because a and b occur free, 
X \ A and X \ B because a and b occur in the scope of z. The pattern 
generalises to any sequen t without a.ntecedents, provided it is made up from 
only I- a.nd symbols of the object.language. 

VAR-lift also applies to sequents which have antecedents, and those in which 
meta-variables, substitution and non-freeness occur. But these additions 
complicate t he transformation and we will not cover them here. For the 
general statement of VAR-lift and a proof of its validity. we refer you to 
[12). 

A proof assistant would apply VAR-lift to every sequent entered by its user. 
Both the lifted and the unlifted version would be stored. That way, the 
user may enter easily-interpreted sequents Hke 0), and still have schematic 
versions of them available during proofs of other sequents. It is probably 
best if a.ll this is hidden frOIn the user. All tha.t should be discernible is an 
increased a.pplicability of non·schematic sequents. 
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8 Conclusions 

Although BL is very simple and certainly doesn't break any new ground in 
the study of logic, there are a few advantages we can claim for it over other 
logics for proof assistants. In fact, it is the simplicity that provides most of 
the advantages. 

Firstly, since the use of BL does not involve any complicated coding of the 
object logic, there is no need to hide BL formulae from tbe users of a tool; 
formulae caD be viewed directly without pretty-printing. This ma.y seem 
a. trivial point but it is very important, when using intera.ctive systems, 
that man and machine shaxe a common forma.lism. A disparity between 
formalisms can lead to confusing machine behaviour and diminish a. user's 
ability to direct a proof. 

OUf simple approach also works well when applied to object logics in which 
variable names are significant to meaning (e.g. Hoare Logic [6], Weakest 
Precondition [4], Z [10]). Object logics fiuch a.s these don't have to be 
treated specially in BL, because object logic va.riables are trea.ted explicitly. 
Some other systems (e.g. the LF {2]) avoid (ree variables by considering 
terms as (unctions and quantifiers a.s higher-order functions. That approach 
deals cleanly with many object logics, but it runs into trouble with some 
programming calculi where variable names are significant. 

Another advantage of BL is that it is ea.sy for non-logicians to understand. 
Anyone who has read an introductory text on formal logic should find BL 
familia.r. BL is, after all, just a formal version of the meta languages typically 
used by such books. The popula.rity of the B-tool is evidence o( the ease 
with which BL is picked up. 

There are a few simple extensions to BL that we have not covered here. One 
extension is the use of types. Most object logics have a variety o( syntactic 
classes. In a typed version of BL, each syntactic class could be assigned a 
type, so that object-level, syntactic correctness could be assured by meta
level type checking. The use of types in this way is far more natural and 
practical than our predicates var, trm, and frm. We avoided types, however, 
to stay consistent with the B-tool. Milstead [8] takes a simila.r approach to 
ours, but uses types. 

The use made within tbe B-tool of its logical language is not restricted to 



27 Acknowledgements 

proof. The same language often doubles as a programming language, and as 
such performs many of the administrative functions, such as reading-in files 
and pretty-printing. We have made no attempt to explain these secondary 
features of the language; we concentrate on the logical aspects alone. In fact, 
we doubt the existence of a simple explanation of all aspects of the language, 
and would recommend a strict separation of the activities of proving and 
programming within the B-tool. 
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Variable Lifting: 
deriving schematic object-level inference rules 

Trevor Vickers and Paul Gardiner 

Abstract 

In the c.ontext of a formal meta-logic, a process (called variable. 
lifting) is described which produces a completely schematic object
level inference rule from a non-schematic (or incompletely schematic) 
object-Level inference rule, axiom or theorem. A full description of 
variable lifting and a rigorous proof of its derivability is presented. 

Variable lifting is not only important for the description and imple
mentation of theorem proving aBSistants, but also justifies an informal 
practice found in many logic texts. 

Introduction 

The logic BL 15] is a. lormal meta-language for theorem proving assistants, 
and was orjginaJJy designed to describe the behaviour of the B-tool [1]. 

A proof assistant based on BL encoura.ges the user to enter non-schematic 
object-level inference rules, axioms and theorems. The correctness of these 
is easily verified by user interpretation, but its applicability is often re
stricted. A process of transformation, called variable lifting, produces a. 
schematic object-level inference rule from a given non-schematic (or par
tially schematic) object-level inference rule etc. The process consists of the 
replacement of variables by meta-variables while adwng antecedents which 
represent non-freeness properties and prevent variable capture. The resul
tant inference rule is of general applicability. 

We present here a full description of variable lifting. and prove that the 
lifted sequent can be derived from the given sequent. 

28 
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That proof is quite complex. We reduce the complexity by introducing some 
simplifying notation and several theorems and lemmas before presenting the 
proof. 

2 Overview of BL 

This section presents the elements of BL essential to the understanding of 
the variable lifting discussion. The remaining details can be found in 15]. 

BL consists of a simple meta-logic which may be extended by embedding 
a chosen object-logic. All facts about the object-logic are formalized as 

r 
sequents, written T. The meta-logic is essentiaJIy the rules assume. 
cut, thin, and instantiate of the sequent calculus. There is one given meta.
predicate symbol: P == Q means P and Q are the same (object-level) 
expression. 

An object-logic extends BL by the association of BL meta-function sym
bols with object-logic predicate and function symbols, BL meta-consta.nts 
with object-logic variables, and so on. For example, the Predicate Calculus 
includes the following symbols. 

variables a, b, c, ...
 
quantifiers 'V_.
 _
 
logical operators -,-, -=>

Facts about these symbols are recorded by the following BL symbols. 

constants a,b,c,. ..
 
variables A,B,C, ...
 
function symbols V_ • -, -, _ , _ => -, l-:: -1
predicate symbols var _ I trm _, frm - , - \ _, _, ... , _ I- _
 

Note that var X, trm X, and frm X mean that X denotes an object-variable, 
object-term, and object-formula respectively. X \ P means there are no free 
occurrences of X in P. [X := T]P represents the object-level substitution 
of T for aJI free occurrences of X in P. Facts a.bout the object-logic are 
axiomatized as a set of BL sequents. 

Iu the remainder of the pa.per we use the Predicate Calculus extension of 
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BL to demonstra.te varia.ble lifting. It will be clear what conditions must be 
met by other object-logics for varia.ble lifting to be a.pplied to them. 

To avoid ambiguity we often use 'meta.-varia.ble' to refer to varia.bles of 
the logic, reserving 'object-variable', and sometimes 'variable' for meta.
constants representing object-level (e.g., Predicate Calculus) varia.bles. On 
other occasions the context will indicate which is intended. We adopt similar 
terms for other constructs of the object. and meta.-Ievels. 

3 Motivation 

Suppose we have the following sequent: 

f- n+O=n 

IT we now wish to show the theoremhood of m+O = m, we could perform the 
following steps. Ea.ch step here represents several steps in the meta.-Iogic. 

f- n+O= n 

I- Vnen+O=n 'V-introduction 

f-(n:=mJ(n+O=n) 8pecializa.tion 

f- m+O= m substitution 

Similar steps would be performed in cases where our interest lay in object. 
terms other than m. Consider the ease with which the result could be 
established in the presence of the variable-lifted version of the initialsequeut: 

trm N 

f- N+O=N 

Consider also tbe ease with which a. mecha.n.ization of the logic could a.pply 
the lifted rule by simple pattern matching. A single application of instantia,.
tion (of N as m) yields the result. For more complex sequents the derivation 
of a new sequent requires many steps, while the lifted form will still yield 
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tbe result in one step, subject to the satisfaction of its antecedents. For 
example, suppose we bave established, 

I- sS;;;t='Vz.zEs,,*zEt 

To establish the following, similar result is qillte laborious. 

~ {a, b} f; k =Vy • YE {a, b} * YE k 

f- s~I=Vz.zEs=>zEt 

I- 'v'B.s~t=Vz.zEs=>zEt V~introdnction 

~ [s:= {a,b}J(sf; I=V••• Es*. E t) specializ;a.tion 

~ {a,b}f;t=Vz,zE{a,b}*zEt substitution 

~ Vt.{a,b}f;t=Vz,zE{a,b}=>.EI V-introduction 

~ [t:=k]({a,b}f;I=VzozE{a,b}*zEI) specialization 

~ {a,b}f;k=V"zE{a,b}*.Ek substitution 

~ {a, b} !::: k =Vy • YE {a, b} * y E k alpha-conversion 

The lifted form of tbe given sequent is: 

V3r X trm S trm T 

X\S X\T 

~ Sf;T=VX.XES=>XET 

Instantiations of S as {a. bh Task and X as y yield the result in one step 
(ignoring the satisfaction of antecedents). 

The added antecedents are very important. Without the non·freeness con· 
ditions, the rule is unsound, as they prevent variable capture. Particular 
instantiations would Lead to the following invalid sequent. 

~ sf;{.}=V"ZEs*zE{z} 
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While the right hand side of the equivalence is always true, that isn't the 
case for the left, for arbitrary values of s. 

Of course, we could dispense with writing object-expressions altogether, and 
write lhe already-lifted sequent down to begin with. The complexity of the 
last example is convincing evidence of the difficulties to be encountered if 
we hope to correctly write down such general sequents. We can be much 
more confident of the correctness of the simpler, Don-schematic sequent. 

We informally characterize the result of variable lifting by the following. 
Transliterate object-variables to their corresponding meta-varia.bles. For 
the new meta.-variables, T, which appear a.s bound variables, add the side
condition var T; for the rest add trm T. For a new bound meta-variable, T, 
in whose scope appears a new meta-variable, S (different from T), add the 
side-condition T \ S. For an existing meta-variable found in the scope of 
two distinct object-variables translated to X and Y I add tbe side-condition 
X \ Y. 

4 Issues in Lifting 

In this section we present an example in which the lifted form of a. sequent 
is derived. Our purpose is to give a glimpse of tbe complexity variable 
lifting entails, and to provide intuition and understanding for the steps in 
the general proof of variable lifting. 

OUT enm.ple is the strong induction rule, 

k\P f,mP 

(Vkek<n=>[n:=k]P)=>P f- P 

whose lifted form we show to be, 

K \ P f,m P va. K va, N K \ N 

(V K • K < N => IN := K}P) => P f- P 

In order to 'guard' the existing meta-variable P from the substitutions to 
which it will be subject, we first instantiate it to [1" := k}[n' := n][k := 
1"1[n := n'1P (abbreviated F). The 'intermediate' variables k' and n' are 
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distinct froID It, n and each other, and do not occur free in P. The'tempo
rary' variables It" and n" are distinct from It, n, It', n/ and each other, and 
do not occur free in P, K or N. (The construction of intermediate and tern· 
porary varia.bles within the logic is described in Section 5.4). Instantiation 
yields. 

k\P I,mI' 
(V k • k < n => [n :~ kiP) => I' f- P 

By a combina.tion of standard rules we introduce the substitution [k := 
It'][n := n'] onto the operands of l- . At the same time, by the axioms of 
frm and \, we introduce that substitution onto the opera.nd of frm, and the 
substitution [n := n'] onto the second operand of\. After distributing these 
substitutions where possible, the sequent is, 

k \ [n:~ n']P I,m [k := k'][n:= n'IP 

(V k. k < n' => [n:~ k]P) => [k:~ k'][n:~ n']P 

f- [k:~ k1[n:= n1P 

In general, the above steps will change a variable z to x' unless x occurs 
where only a variable may: for example, in [z := T]Q, or in x \ Q, or as a 
bound varia.ble in V x • Q. Alpha. conversion deals with the last case, and 
axioms of [:=] and \ deal with the others. Applied to our example, and after 
some simplifica.tion, they yield, 

k' \ [k:~ k'][n := n'lP I,m [k :~ k'][n:~ n'jP 

(V k'. k' < n' => [n':~ k']([k:~ k'][n:~ n1P)) => [k := F][n:~ n'IP 

f- [k:~ k1[n :~ n']P 

We note, 

[k :~	 k'][n:~ n1P 
== [k:~ k'][n:~ n'][k':~ klln':~ n][k := k"lln:= n'1P 
~= [k:= k'1[n := n"IP 
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giving, 

k' \ Ik := k"Hn := n"IP (,m [k := k"Hn := n"]P 

(V k'. [n':= k'](ik:= k'1[n:= n"IP)) => Ik := k"Hn := n"IP 

~ [k:= k"Hn:= n'1P 

To remove these substitutions on P, we introduce the substitution [/ell := 
k][n" := oj onto the operands of I- and frm and the second operand of 
\, as before. This substitution distributes completely, affecting only 1k := 

k'1[":= n"]P, which simplifies to P. Thus we ha.ve, 

k' \ P (,m P 

(V k' • k' < n' => In' := k']P) => P ~ P 

Significantly, this is our initial sequent with all occurrences of k, n replaced 
by /e', n', and concludes the first phase- of the denva.tion. The second phase 
is alm06t identical, except we replace k' by K and "' by N. The 'freshness' 
of k',n',Ic",n" has enabled the dismissal of many conditions which would 
ha.ve remained had we attempted simply to replace lei n by K, N. 

We commence the second phase by 'guarding' P by instantiation to [K := 

k'HN:= n']Ik':= k'1[n':= n'1P (abbreviated P). 

k' \ P I,m P 
(V k' • k' < n' => In' := k'lP) => P ~ P 

The substitution [k' := K][n':= NJ is introduced onto the operands of l
and frm, and [n' := N] onto the second operand of \. At this point certain 
conditions are required to maintain object-level well-formedness. 

trm K trm N 

k' \ [n' := NIP Irm [k' := K)[n' := NJP 

(V k'. k' < N => In':= k1P) => Ik':= KHn':= NJP 
~ Ik' := K)[n':= N]P 

Again we use alpha conversion and the other rules above to change k' to K 
and n' to N. This requires the extra conditions var K, var N, and K \ N 
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below. 

var K var N K \ N 

K \ [k':= KJ[n':= N]P frm~" :=K][fl':= N]P 

(If K • K < N => IN := KJ([k':= K][n':= N]P)) => [k' := K][n':= N]P 

~ [k':= KJ[n':= N]P 

We note, given K \ N 1 

Ik':= K][n':= NIP 
== [k':= K][n':= NJ[K := k'J[N:= n'][k':= k"J[n':= n'1P 

== [k':= k"J[n' := n"]P 

This simplification gives, 

var K var N K \ N 

K \ [k':= k"J[n':= n"lP frm [k':= k"J[n':= nUJP 

(If K • K < N => IN:= KI([k':= k"J[n':= n'1P)) => [k':= k'1[n':= n"]P 

~ Ik':= k'1[n' := n'1P 

Again these remaining substitutions are r€IDoved during simplifica.tion of 
the introduced substitution [k" := k/][n" := n'L as before. This leaves the 
lifted form of the initial sequent: 

K \ P frm P var K var N K \ N 

(If K • K < N => IN := KJP) => P ~ P 

5 Notation 

5.1 Well-formeduess 

Many of the sequents reasoned with in BL ha.ve antecedent formulae present 
merely to ensure well-formedness at the object-level. That is the purpose of 
frm P below. 

frrrrP 

~P=>P 
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As these well-formedness antecedents can always be ascertained from the 
rest of the sequent, we adopt the convention of not displaying them. Thus 
the above sequent will be written, 

f-P=?P 

We also omit these antecedents from our proofs. It can be shown, by analysis 
of the inference rules and axioms of the meta-logic, that the omission does 
not affect the validity of the proof. 

5.2 Consecutive Substitution 

In the proof of the derivation of the lifted sequent, we consider the consec
utive Bubstitution of all object-variables in the sequent. Such consecutive 
substitutions can be cumbersome: 

[PI := ~11··· [Po := ~.l.p 

For convenience we choose to write this as 

(p:= ~J,..•.p 

Occasionally we shall restrict attention to a subset of the substitutions, and 
use the notation, 

[u Ip := ~J,..•.p 

which includes the substitution [Pi := 'U] only if i is in the set C1 and 1 ~ 

i :$ n. Similaxly, we omit paxtieulax substitutioDB by, 

(ul P := ~k•.p 

where 2f is the complement (with respect to the set of indiees 1..n) of (J. The 
above includes a. substitution [Pi ::;;; '7i] only if i is "lot in (J and 1 :$ i :$ n. 

In many cases we shall re-order the list of substitutions to bring one in 
particular to the front or rea.r. We can do this in a. proof whenever SCp 
(defined below) is among the assumptions, :.inee the following sequent is 
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deri vable. 
SCp(p,~) 

IP:= ~I,O == IP:= ~I.O 

where u is a. permuta.tion of t 

and where the antecedents SCp(P,17) are as follows. 

p\~ 

distinct P 

Note: For the sake of brevity we write P \ fJ for Pi \ fJj (all i,j), and 
d~tinct P for Pi \ Pi (i #: j). Elsewhere we write var P for var Pi (all i) and 
so on. 

The proof of this result is not presented, but relies on the following derivable 
sequent. 

X\Y X\T Y\S 

IX := S][Y := TjP == [Y := T][X:= S]P 

When the permutation result is applicable (i.e., SCp(p, fJ) is derivable), and 
the order of substitution unimportant, we omit the subscript, writing simply 
IP:= ~IP. 

The following rules are deriva.ble and are presented without proof. 

SCp(p, ~) A.I SCp(p,~) A.2 

16 Ip := ~1ll61 p:= ~IO == IP:= ~IO (p := ~Ip; -- ~; 

SCp(p, ~) SCp(p,~) SCp(~,p) 

p \ 4> A.3 p\4> A.4 

[p:= ~14> == 4> [p:= ~II~:= pl4> == 4> 

SCp(p,~) 

SCp(p, f{) A.5 w\~w\4> A.6 
P \ lp:= ~14> w \ (p:= ~J4> 
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5.3 A Unifying Concept 

Performing vaxiable lifting relies 00 the ability to change the variables of a 
formula.. For simple expressions, such as t == t the change can be effected 
through a. substitution, perhaps introduced in the larger context of the ex
pression. For quantified expressions, such as Vz • x == !/, the % is changed 
through alpha conversion a.nd the y by an introduced substitution. Another 
example is [z := t)(z = y), in which the t and y can he changed hy intro
duced substitutions, but the x must be changed by applying the axioms of 
substitution. 

In searching for a common representation for all these expressions, we note 
three important categories offunction symbol operands: those (like x above) 
which occur in a position which can only be occupied by a variable, those 
(like :=1') which refer to that x, and those (like t) which are not influenced 
by tbe choice of x. 

We use a scheme 0(.8, "I'L in which the bound variable.8 (e.g., x above), 
the operand in the scope' (e.g., x ::= y above), and those operands outside 
the stOpe I' (e.g., t above) are a simple re-arrangement of the usual function 
symbol operands. An empty category is represented by £. 

Every term has a. 0(.8,"1') expression. We call this the ban representation 
(for bound variable, scope, non-scope). For example, the above expressions 
become 0 1(£,£,(t,t)), O2{x,z = y,£), and 0 3(z,z::= !I,t). 

Using this scheme for V, the standard alpha conversion rule is written as a 
rule scheme below. 

Y \, 

e(x",v) == e(Y,[x:= Yj"v) 

The importance of the generalization can be seen if we interpret 0 in that 
rule as substitution [X:= T]P. We then have the following. 

Y\P 

[X := TjP == [Y:= T][X := YjP 

This is exactly the rule needed to change the X in [X :== T]P, and it is 
derivable. Similarly, we can express whole families of related and useful 
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rules using the bsn notation. Each can be checked by case analysis to be 
derivable. 

Y \ < <la 
0(X,<,v)==0(Y,[X:= Y]<,v) 

SCp(p, ~) 

(J\p{J\~ 1011 
lp:= ~D0({J,<,v) == 0({J, Ip:= ~I<, [p:= ~]v) 

10], 
[X := Tj0(X,<,v) == 0(X,<,[X:= Tjv) 

The 0(P, \,11) representation leads us to adopt the term bound variable for 
any P, saying it has scope \. Similarly, we refer to the rule as above, as 
alpha conversion. 

We need not restrict the bsn notation to terms. We can make similar group· 
ings of the operands of predicate symbols, and extend the above descrip
tions to these. Example representations are E>4(i, i, (P, Q)) for P ==:: Q, 
8 5 (X,P,i) for X \ P, and 0 6 (X,i,i) for var X. The following are the rule 
schemes for formulae. 

Y \ < Y \ < 
0(X,<,v) 0(Y,[X:= Y]<,v)<la, <laE 

0(Y,[X:= Y]<,v) 0(X,<,v) 

SCp(p,~) 

/3\p (J\~ 

0({J,<,v) 0(X,<,v)10]!.1 [0II., 
0({J, lP:= ~]<, [p:= ~]v) 0(X,<,[X:= Tlv) 
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SCp(p.~) 

P\p P\~
 

e(~. [p:= ~J<, [p:= ~Jv) e(x.<.[x:= T]v)
le)E.1 lek, 
e(P.<,v) e(X,<.v) 

Note: [alE is not derivable when e is representing == or I- . 

Again, we call the first two rules alpha conversions (introduction and elimi
nation). Because of the link with the sta.ndard specializa.tion rule, we refer 
to the other four as specialization rules. 

It should be noted that the above rules are assumed derivable by the proof 
of variable lifting. When new symbols are added to a logic, if the above 
rules are derivable for tha.t symbol, variable lifting will continue to apply to 
tbe logic. 

It is possible to further generalize the bsn representation to allow a. list of 
scope expressions, and perhaps a. list of bound variables. For the purposes 
of this paper, such generalization is unnecessary. 

5.4 Variables 

The process of variable lifting replaces object-variables by meta-variables 
not already existing in the odginal sequent. We will replace a variable T by 
a fresh meta-variable T*. We say T* is the corresponding meta-variable of T, 

and write (1* for the list of meta-variables ot, ... ,(1;. 
To aUempt the transition directly from object-variables to meta-variables 
would produce conditions of the form T \ T*, as explained in Section 4. To 
avoid these uDwanted conditions, we use intermediate variables, denoted by 
T', whose definition ensures the derivahility of both T \ T' and T' \ T*. We 
shall also make use of temporary variables, denoted Til, whose purpose was 
demonstrated in Section 4. 

The choice of fresh variables with respect to given expressions is formalized 
by a family of function symbols written nvar(_, ... ,_), which we assume are 
part of the meta-logic. They are defined by the following axioms. 
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for i such that 
1 .:s:; i .:s:; n 

VOIr nvar(4)h •.. ,4>11) nvar(q", ... ,;I.) \;li 

We introduce abhreviatioDs Cor intermediate and temporary variables that 
will be used in the proof of variable lifting. We write rr for the list of nvar 
expressions (which we call temporary variables) O'~, ••• , O'~, and 0''' for the 
list of nvar expressions (which we call intennediate variables) 0':, •. " O'~. 

The abbrevia.tions a' and a" are defined as follows: 

a~ for nvar(a~, ,a~_l,a,O'·) 

ai' for nvar(a~, , o1~l' a', 0', a"', II) 

where a and 11 are the object-varjables and meta-variables of a given sequent. 

The following properties result from the above definitjons, and are collec
tively referred to as var .def. 

vOIr rr vOIr 0''' 

distinct a' distinct 0''' 

0" \ a a" \ 0' 

a' \ 0'* a'l \ a* 

a' \ a" 0''' \ n 

5.5 Scope 

For a given sequent we shall be interested in the scope of its bound·like 
variables. We define scope in terlT's of the set of free object-variables and 
the set of meta-variables in the expressions involved. They are defined as 
follows. 

Let P be any meta-variable, and % be any object.varilloble. Then, 

Jreevars P ;{}
 
freevars % ; {x}
 
Jreevars e(p,<,v) ; (freevars <- {P}) U freevars v
 

metavars P ; {P}
 
mdavars % ;{}
 
metavars 0(,8,<,v) = metavars <U metavars v
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Let 6. be the set of all formulae for which scope is to be defined, and r be 
the union of.6. and all the sub-terms of each element of .6., and let :t and 11 
be any object·variable or meta,..va,riable. Then, 

yE scope:t ~ (30(z",v) E r. 11 E freevars, V 11 E metavars ,) 

6 Statement of Variable Lifting 

Section 4 ga.ve an indica.tion of the process of varia.bles lifting. The following 
is a. precise description of varia.ble lifting for an arbitrary sequent. The proof 
of the derivability of the lifted form is presented in Section II. 

Va.riable lifting a.pplies only to sequents sa.tisfying the following a.pplica.bility 
conditions. Ea.c.b antecedent formula. is constructed from a predica.te symbol 
sa.tisfying the elimina.tion rules of Section 5.3. The consequent formula. is 
constructed from a. predica.te symbols3,tisfying the introduction rules of Sec
tion 5.3. Function symbols used in the sequent must satisfy the equivalence 
rules for terms in the same section. No meta.-variable occupies the position 
of a. bound variable. 

Given a well·formed sequent, 

<p,{u) <P.{u) 

.p{u) 

where t1 is a list containing a.ll va.ria.bles in the sequent, and tha.t satjsfies 
the applicability conditions, the lifted form is the sequent, 

sc 
. <p,{u*) ... <P.{u*) 

.p{u*) 

where se are the added side-conditions, defined as follows. 
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7 

Substitution In traduction and Elimina.tion 

var x* for every bound variable % 

trm %* for every other variable x 
x* \ y'" if Y E scope(x) and x and !J are distinct 
x* \ y'" if there exists a. meta-variable P such that-

P E scope(x) n scope(y) and % and y are distinct 

The first two conditions ensure object-level well-formednessj the last two 
ensure object-level varia.ble capture is avoided. 

Substitution Introduction and Elimination 

We have emphasized the importa.nce of changing variables by substitutions.
 
The following two lemmas describe the introduction and elimination of an
 
arbitrary substitution on the operands of predicate symbols.
 

Lemma 1 Introduction onto operands.
 
For each formula. P(811 ••. ,8m), where P is any predicate symbol satisfying
 
the introduction rules of Section 5.3 and where (Ii are its operands, the
 
following rule is derivable.
 

SCp(p,~) 

SCs(P(8) , ,8m )) 

P(8" ,8m ) 

P(IP:= ~18" ... , 11':= ~18m) 

where the antecedents SCs(0(,B,(,v)) are as follows. 

If f3 is a.n element of p (the jth, say) then, 

var'lj 

~j \ [(j) I p := ~I' 
Otherwise, 

f3\p , 

f3\'1 

Note: SCp is defined in Section 5.2. 
o 
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Proof
 
Let 8(fJ, (', v) be the bsn representation of P(81, •• • , 8m).
 

Case: fJ is an element of p (the jth, say). 

1. SCp(p,q)	 assumption 

2. SCs(8(pj,<,v»	 assumption 

3. 8(pj,<,v)	 assumption 

4. 8(pj, I{j} I p:= ql<, I{j} I p:= q)v)	 1811.1, I, 3 
5.	 8(pj, 

I{j} I p:= ql<, 
I{j} Ip:= q)[{j} I p:= q)v) 18]",4 

6.	 8(qj, 

W} Ip := q)[{j} I p:= q)<, 

Hi} I p:= qll{j} I p:= q]v) 061,2,5 

7. 8(qj, IP:= q)<, IP:= qlv)	 A.l,l,6 

8. 8(IP:= q)pj, IP:= q)<, IP:= qlv)	 A.2, I, 7 

Case: f3 is not an element of p. 

1. SCp(p, q)	 assumption 

2. SCs(8(fJ,<,v»	 assumption 

3. 8(fJ,<,v)	 assumption 

4. 8(fJ, IP:= ql<, IP:= qlv)	 1811.1,1,2,3 

5. 8(IP:= q)fJ, IP := q)<, IP := q]v) A.3,l,2,4 

o 

Lemma 2 Elimination from operanda.
 
For ea.ch formula P(B1 , ••. ,6m ), where P is any predicate symbol satisfying
 
the elimination rules of Section 5.3, and where OJ are its operands, the
 
following rule is derivable.
 

SCp(p, q)
 

SCs(P(8" ,8m))
 

P(IP:= q]8" , IP:= q)8m)
 

P(8" ,8m)
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o 

Proof 
The proof is the reverse of the preceding proof, with elimination rules used 
in place of introduction rules. 
o 

8 Distribution 

Lemma 3 Distribution.
 
For all function symbols, :F, the following rule is derivable.
 

SCp(p,~) SCs(.F«("".,(m)) 

[p:= ~I.F«(,,·· ',(m) == .F(lp:= ~I(" .. ·, [p:= ~I(m) 

Note: Bep is defined in Section 5.2, and SCs is defined for Lemma 1 (Sec~
 

lion 7).
 
o
 

Proof
 
The proof follows the same pattern as those in the preceding sectioD, using,
 
for example, as in place of ael a.nd aeE'
 
o
 

9 Substitution 

Substitutions applied to meta~consta.ntsrepresenting object~constaDts (e.g., 
0) have no effect. Thus we can safely omit these from the list of components 
when writing cPU), and do so in the remainder of the paper. 

9.1 Two lemmas 

Our 'specialization' rules allow, for certain formulae, the introduction a.nd 
elimination of substitutions. These substitutions can then be distributed 
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to the components of the formula.. Thus, from a. particula.r formula. we can 
derive a. second in which the structure of the first is preserved, and some 
substitution a.pplied to the components from which it is constructed. We 
ca.pture this with the following lemma.. 

Lemma 4 Introduction onto components.
 
Fora formula4l({) constructed only from terms {i by a.pplication offuDction
 
symbols and those predica.te symbols which sa.tisfy the introduction rules of
 
Section 5.3, the following is derivable.
 

SCp(p, ~)
 

SCss(¢({))
 

¢({) 

¢«(P:= ~W 

where SCss(l/J) i. as follow•. 

For each formula. and its sub-tenos fJ in the list "-,, 

SCs(8) 

Note: SCp is defined in Section 5.2, and SCs is defined for Lemma. 1 (Sec. 
lion 7). 

<> 

Prool
 
By structural induction: the base case is Lemma I; the step case is Lemma. 3.
 
D 

Simila.rly, from a. formula. in which a. particular substitution is found to
 
apply to all constituent components, we expect to be able to factor out
 
those substitutions to the predicate symbol operands, and remove them by
 
the appropriate specialization elimination rule. We capture this with the
 
following lemma.
 

Lemma S Elimination from components.
 
For a formula 4J({) constructed only from terms {i by application of function
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symbols and those predicate symbols which satisfy the elimination rules of 
Section 5.3', the following is derivable. 

SCp(p,~) 

SCSS(4)(€)) 

4>(lp := ~J€) 

4>(€) 

o 

Proof
 
By structural induction; the base case is Lemma 2; the step case is Lemma 3.
 
D 

9.2 Substitution Theorem 

Theorem 1 Substitution. 
If each <Pi({) is constructed only from terms {j by application of function 
symbols and those predicate symbols which satisfy the elimination rules of 
Section 5.3. and if \&({) js constructed only from terms {j by application of 
function symbols and those predicate symbols which satisfy the introduction 
rules of Section 5.3. then from the sequent, 

I!. 

4>,(€) ... 4>.(€) 

¢(€) 

where fj. is any set of formulae, it is possible to derive the sequent, 

I!. 

SCp(p,~) 

SCss((4>0(€), , 4>.(€)))
 

4>1([P:= ~I€) 4>.([P:= ~W
 

¢(!P= ~W
 

o
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Proor
 
Let the initial sequent be called (I).
 

O. t> assumption 
Ii. SCp(p,~) assumption 
0. SCss((¢o((), ... ,¢.(())) assumption 
1. ¢,([p:=~)() assumption 

n. ¢.([p:=~)() assumption 
n+1. ¢J(O 0,0,1, Lemma 5 

2n. ¢.(() O,O,n,Lemma 5 
2n+1. .p(() (I), 0, n+1..2n 
2n+2. .p([P:= ~I() O,O,2n+l,Lemma 4 

a 

10 Substitution Application 

During the proof of the theorem of variable lifting, we shall apply the Sub
stitution Theorem (Theorem 1, Section 9.2) a number of times. In three 
of these cases the side conditions sess and SCp appearing in the resulting 
sequent are themselves derivable, justifying their omission. In one case, a 
small component of Bess and SCp is not derivable. It is beneficial to exam
ine these claims now, in the form of theorems, to simplify the forthcoming 
argument. 

This section is long and detailed. The re~er may prefer to return to it a.fter 
the proof of variable lifting in Section 11. 

Application of the Substitution Theorem is dealt with by Theorems 2, 3, 4 
and 5 below. Lemmas 8 and 9 introduce some useful simplifications. 

10.1 Non-freeness 

In this section we factor out the complex parts of Theorems 2 and 3 be
low. Those parts deal with the non-freeness of a variable in a complicated 
expreS5ion. 
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H a variable does not occur free in the components of a. term, then it does 
not occur free in the term itself: 

w\ r NF.! 

w \ 4>(f) 

Given tTj not in the set freevars 11>(0',11), where l1>(tT,lI) is constructed from 
variables tT and meta-variables II, it follows that if O'~ does not occur free in 
terms A, then O'~ does not occur free in the term ¢{O", A): 

O'~ \ A (0', ¢freevars ¢(u,lln NF.2
 
uj\ ¢(u',fj.)
 

Both NF.I aJld NF.2 are derivable. Note that the side-condition of NF.2
 
implies that i 1: j for all j such that tTj E /reevars ¢{O',n), and therefore
 
tT~ \ 0'; (by vcr .de/) for those j, which is required for its proof.
 

During the proof of variable lifting, meta-variables are 'guarded' by sub

stjtutions in such a way that certain non-freeness properties hold. Two of
 
these are expressed by the following lemmas.
 

Lemma 6
 
H ,(tT,TI) is the scope of O'j then the following sequent is derivable.
 

uj \ Hi} Iu:~ u'] '(17,811) 

where 811; is ({j Ill, E 8COpe(U;)} Iu':~ 17] [17:= 0'''] 11; 
o 

Proof 

I. "i \ 0' var.de! 

2. I1j \ Slli (all i : IIi E metavors ,(tT,II» A.5, var .de! 

3. 0'; \ '(0',811) NF.I,I,2 

4. distinct 0" var.de! 

5. uj \ W} I O':~ 0'1'(0',811) A.6, 3, 4, var .de! 

o 
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Lemma 7
 
If \(17, IT) is the scope of (7j then the following sequent is derivable.
 

sc 
07 \ Hi} I0':= 0*] « ..... tn) 

where tn, is Ilj IH, E scope(OJ)} I 0* := 0')....[0' := o"jH, 

Note: SC is defined in Section 6. 
o 

Proof 
Lei q = {i I (0' E freevars «0, H) V (metooars «o,H) n scope(o,) # {))) II 
i # j} 

1. 07\ .... var.de! 

2. oJ \ tn, (all i: H, E metavars «o.H)) A.5, var .de! 

3. oJ \ «0', tn) NF.l,1,2 

4. on or (all k E q) SC 

5. on [q I 0':= 0*]« ..... til) A.6.3,4, var.del 

D. 0:' \ tn (all m E q-{j}) A.6, var .de! 

7.....m \ « ...., tn) (all mE q-{j)) NF.2.6 

8. oJ \ [q I0':= o*][q-{i} I 0':= o*I« ....,tn) A.3,5,7,var.de/ 

~. oJ \ [{j} I 0' := 0*J«..... tn) A.I, var.de! 

o 

10.2 Deriving SGss 

Theorem 2 
Given the well·formed sequent below I in which formulae are constructed 
from the variables (1 and expressions sTI, and in which no meta-variable 
occupies a bound variable position, 

¢l(o.sll) ... ¢m(o.sll) 

¢o(o••ll) 
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where sII, is ({j I II, E scope(a;)} I a':= al [a:= a"l II, 

the formulae SCss«4>o, ... ,<Pm)) and SCp(a,a') which result from the appli· 
cation of the Substitution Theorem with substitution [0' := 0'1 are derivable. 
o 

Proof 
We note that as no meta..variable occupies a bound variable position, all 
bound variables are drawn from a. In the following, justification for deriving 
the formulae on the left is given on the right. The permutability conditions 
SCp are easily dismissed, as follows. 

SCp(a,u') var.del 

For each formula in <bo{ a, JIll), ... ,¢m(a, sll), and for each term in each of 
those formulae, SCs must hold. For those formulae or terms E)(,8,c;,v) the 
formulae to be derived are as follows. 

,8 is an element ofO' (thejth, say),
 

var 0'; var.del
 

aj \ W} Ia := a'j< Lemma 6
 
o 

Theorem 3 
Given the well-fonned sequent below, in which formulae are constructed 
from the va.riables a' and expressions tIl, and in which no meta.-variable 
occupies a bound variable position, 

<p,(a',tIT) ... <pm(a',tll) 

4>o(a', tIT) 

where tn, is Iii I II, E scope(oj)} I a*:= o'], ...(a':= a"JII, 

the formulae SCss«4>o(u', HI), ... , <pm(a', HI))) and SCp(a',a*) which arise 
from the application of the Substitution Theorem with the substitution 
la' := 0'*] are derivable from SC. 
o 

, 
Proof 
Assume SC. We note that as no meta.-variable occupies a bound variable 
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position, all bound variables are drawn from cr. Permutability is. esta.blished 
as follows. 

SCp(,,'."*) var.de/ 

The formulae SCss«4>o(u'. tIl) •...• ¢m("'. Ill)) hold if SCs hold. for every 
formulae in ¢o(u', tIT), ... ,<p",(a', til), and for every term of those formulae. 
For each formula. or term 0(13, I; Ill) the following are the formulae. 

{3 is an element of a' (the jth, say), 

nr a; SC
 

"7 \ W} I,,' := ,,*), Lemma 7,SC
 
o 

Theorem 4 
Given the well·formed sequent, in which formulae are constructed from the 
varia.bles q' and expressions [u:= qllln, 

¢I (,,'.I" := "")II) ... ¢m(,,'.I":= "'lII) 
4>0(,,'.1" := "'1II) 

each of the formulae SCss«4>o( ,,' .1" := ""III)•...• ¢m("'.1" := ""lIT))) and 
SCp(qll,U) which arise from the a.pplication of the Substitution Theorem 
with substitution [u":= u] are derivable. 
o 

Proof 
All bound varlablesin the sequent are dra.wn from 0 ' . Therefore, by var.def, 
each bound variable is distinct from each q". Tha.t is, there is no index j of 
(1" such tha.t (1;' is a. bound varia.ble, and so the 'otherwise' formulae from 
SCs are relevant. 

Permutability is esta.blished as follows. 

Sep(,,".,,) var.de/ 
The formulae, 

SCss«4>0( ,,'.1" := ,,'lIT)•...• ¢m( ,,'. i" := "'lIT)) 
hold if SCs holds for e.very formulae of 

4>0(,,'. i":= ,,")IT)•...• ¢m(,,'.I":= "'lIT) 
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and for each sub-term. of each of those fonnulae. For such formulae or terms 
8(IJ", v) the following are the formulae. 

IJ is not an element of 0" t 

/3 \ aU var.def
 

/3\0 var.def
 
a 

Theorem 5 
Given the well-formed sequent, in which formulae are constructed from the 
variables CT· and expressions [u' :; 0"11I, 

if>,(a*, ["':; "''JII) ... if>m(a*, 10':; a"jII) 

<1>0(0*,[0':; a''JII) 

each of the formulae 

SCss«<I>o(a*, la' :; a'1II), ... , if>m(a*, [0' :; a"JII»), 0", 0') 

which arise from the applica.tion of the Substitution Theorem with substi
tution [u" := 0'1 are derivable. 
o 

Proof 
All bound variables in the sequent are drawn from u*. Therefore, by var.def, 
each bound variable is distinct from each 0". That is, there is no index j of 
u" such that oj' is a bound variable, and so the 'otherwise' formulae from 
SCs are relevant. 

Permutability is established as follows. 
SCp(u",o) var.def 

The formulae 

SCss((<I>o(a*, [0':; a'1II), ... , if>m(a*, [0' :; a'1II»),a",a') 

hold if SCs holds for every formulae of 

<1>0(0*, 10':; "."jII), ... , if>m(a*, 10':; a"jII) 

and for each term of each of those formulae. For such formulae or terms 
8(/3, <, v) the following arethe formulae. 
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{J is pot an element of (1/1, 

~ ,,," var.def
 

~ \u' var.de!
 
o 

10.3 Two simplifications 

LemmaS
 
For any set 8, the following is derivable.
 

"'I/>
 
I":; "11.1 ,,' := ,,] I/> == I/>
 

o 

Proof 
Assume u \ 4J. 

10 :; "1 [.1 ,,' := "I I/> 
;; [sl " := u'11'1 " := "11.1 ,,' :; "J;> A.I, var.de! 

== Isl,,:=u'II/> A.4, var.de! 

=;1/> A.3, var .de! 

o 

Lemma 9 
For any set 8, the following is derivable. 

u"1/> "t\<1i (i,jEs/li'lj) 
[u' :; <1*] lsi ,,* :; <11 I/> == I/> 

o 

Proof 
Similar to Lemma 8. 0 
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11 Variable Lifting 

Variable lifting is carried out in two almost identical stages. The first re

places a.ll object-varia.bles T hy intermediate object-variables r (with cor

rect non-freeness properties); the second replace'> those variables by the final
 
meta-variablefi T*. Both stages are performed by identical steps. Only the
 
replaced variable and the replacing expression changes.
 

In this section ..... e present a rigorcus proof that from a given sequent we
 
can derive its lifted sequent. This is of course subject to the initial sequent
 
satisfying certain applicability conditions.
 

Applicability Conditions
 
Each antecedent formula cPi(q) of the sequent is constructed from a predi

cate symbol satisfying the elimination rule.... of Section 5.3. The consequent
 
formula is constructed from a predicate symbol satisfying the introduction
 
rules of Section 5.3. No meta-variable occupies the position of a bound
 
variable.
 

Theorem 6 Variable Lifting.
 
From an arbitrary sequent which satisfies the applicability conditions,
 

'!>I (0) ... <Pm (0) 

¢o(0) 

where all object-variables are drawn from CI , we can derive the lifted fonn, 

sc 
<p,(a*) ... <Pm (0*) 

¢o(0*) 

Note: se is defined in Section 6. 
o 

Proof 
We make explicit the meta.-va.riables II of the sequent. Our initial sequent 
is then, 
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,p.{a,I1) ... <Pm(a,I1) 

¢o(a,I1) 

It is from this sequent that we genera.te Of and (J1f 1 and which we take for 
the definition of scope. 

By instantiation of the meta.-variables, we obtain the next sequent. 

<p,(a,sIl) ... <Pm(a,sIl) 

¢ora, sIl) 

where sIl; i' [{j I II; E scope(a;)} 1a' := 0"] [a:= a"] IIi 

We note that the properties of the variables concerned allow re-ordering of 
the above substitutions, justifying the lack of subscript. 

Using the Substitution Theorem (Theorem 1) we impose the substitution 
[0" :::::. qlj. From Theorem 2 we know the conditions Bess are derivable 
in this case, and so we omit Bess from the resulting sequent. Similarly, 
Sep(a,a') are derivable (by var.def). 

M[o:= a'la, [a:= a'jsIl) ... <pm([a:= a']a,[a:= a']sIl) 

¢o([o:= a']a,[a:= a']sIl) 

We next apply the simplification [0 :=: a']O' == a' and note from Lemma 8 
that [a:= a']sIl; == [a := a"]I1i. 

<p,(a', [a := a''JII) ... <pm(o',la:= a"III) 

¢ora', [0:= a"jIl) 

We use the Substitution Theorem to introduce (a" := 0'], with the aim of 
removing the current substitution on meta-variables. Theorem 4 has shown 
that we can derive the side conditions Bess in this case, justifying their 
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omission from the resulting sequent. Similarly, SCp(a",a) are derivable (by 
IJQr.del). 

<h(lu":; uJu', [17":; ullu:; u"lIT) 

4om(lu":; u]u', [u·:; ullu:; u''lIT) 

4>0(117":; u]u', [17":; ullu:; u''lIT) 

We note the 8implification [17" :; u]u' ;; 17' and that [17" :; "Uu :; 
tT']IIj == II.. follows from A.4 allowing derivation of the following sequent. 

40. (u', IT) ... 4om(u',IT) 

4>o(u', IT) 

This is the half-way point. We have derived a sequent in which each variable 
ai of the initial. sequent has been replaced by the intermediate variable a~. 

The second stage performs the same steps as the first, but our goal is to 
replace a' bya*. As before. we begin by instantiation of each IIi· We note 
carefully the absence of a" in the sequent, since they abbrevia.te a string in 
which II .. is present, which would complicate the instantia.tion. 

4o.(u', Ill) ... 4om("" tll) 

4>0(u', Ill) 
whe... tll, ;8 Hi I IT, E BCOpe(Uj)} Iu' :; u'J•..•[o-':; u"]IT, 

The instantiation is similar to our earlier instantia.tion, though we retain the 
subscript on the first substitution for the moment. We introduce [a' := 0'*] 
using the Substitution Tbeorem. Theorem 3 demonstrates that in this case, 
SCss can be derived from SC. Thus we include SC in the antecedents, 
resulting in the following sequent. We note SCp(u',a"') are derivable (by 
var.del). 

SC
 

<h(I".':; u'Ju', [17':; u'ltll) ... 4om(la':; a']u', [a':; "'Jill)
 
4>o([a':; a'ja', [17':; a'jlll)
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From se we note that the substitution [{j I IIi E 8cope(O'jH 10'* := O"I]1..k 

is permutable. We note also that [a' := a*]o' == u* and that the result 
[0" := U*YtIIi =::= ~O" := qll]IIj follows from Lemma 9. 

se 
<PI (,,*, [,,':= ,,"]11) .. , <Pm (,,*, I'"~ := ,,"]11) 

<Po(,,*,[o-':= u"]I1) 

As before, we introduce a substitution to eliminate the Tf!maining substi
tutjons on meta·va.riables. We introduce [0'" :;::: 0"] using the Substitution 
Theorem, noting (from Theorem 3) the conditions Bess for this instance 
are derivable and may therefore be omitted from the resulting sequent. 
SCp(a'l,tT) are derivable (by tar.de/) also. 

se
 
<Pl(["":= ",],,*, [u" := ,,1[,,' := ,,"]11)
 

tPm([a":= Q1a*, [0''':= a'][o/:= al/]IT) 

<1>0(["":= "1"*, ["n:= u'][o-' := ""]I1) 

Applying the simplification [0'":= 0"]0'* == 0'* and noting the result [a" := 

u'nu':= u"]IIj =:::;; IIi (from A.4) allows us to dedve the following sequent. 

se 
<i>J(,,', II) .. . <Pm (,,', II) 

<1>0 (,,*, II) 

o 
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12 Non-Examples 

Our purpose in this section is to discuss sequents to which the lifting pro
cedure as described is not applicable. We intend to justify the applicability 
conditions previously presented. We shall present a number of valid se
quents, whicb fall outside these conditions, and demonstrate that what we 
may have expected to be their lifted form is invalid. 

We note the lack of a specialization elimination rule for the symbol ==. 
Thus we expect problems for a sequent with an === expression in the an
tecedent. Consider the following sequent: 

frm P 

[x:= yJP == P 

PI-'Vx.P 

We note first that the sequent is valid: only when x is not free in P will 
the antecedent be true, in which case the consequent follows. If we applied 
the informal lifting procedure to this (Le., apply the informal description of 
lifting), we wonld have: 

frm P 

var X trm Y 

IX:= YjP== P 

PI-'VX.P 

By insta.ntiating X as Z I Y as x a.nd P as x = 1, however I we arrive at the 
invalid consequence: 

[x:= x](x = 1) == (x = 1) 

x=II-'v'x·x=1 

Similarly, there is no specialization elimination rule for the symbol t-, 
and the following exa.mple demonstra.tes the danger in lifting (informally) 
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sequents in which I a.ppears in an antecedent. 

frm P 

~ [%:= yJP '" P 

~ (V' %0 P) V (V' %• ~ P) 

The validity of this rule is esta.blished as follows. Under tke assumption 
[z := yIP =P, since z \ [z:= y]P, we can derive each of, 

[% := yJP ~ (V' %• P) 

~[%:= y]P ~ (V'%. ~P) 

and so derive, 

~ (V' %• P) V (V' %• ~P) 

The enmple informally lifts to: 

var X trm Y 

~ IX:= Y]P '" P
 
~ (V' X • P) V (V' X • ~ P)
 

InstanUations of X as X, Y as z and P as x ;; 1 yield an invalid sequent. 

~ [z:= zl(z = 1) '" (z = 1)
 

~ (V'z. z = 1) V (V'z. ~ (z = 1))
 

Next, consider the lifting of sequents in which meta.-varia.bles occur in bound
like positions. 

var X 

~ 3X.X=y 

We note this is valid (by cases: X is y; X is not V). Informally, this would 
be lifted to the sequent: 

trm Y 

varX 

~3X.X=Y 
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Instantiating X as x and Y as x + 1 gives the invalid sequent: 

~ 3%.%=%+1 

All of the above problems would be removed by the addition in the 'lifted' 
forms of the extra condition X \ Y. However, unlike the conditions usually 
added by the lifing procedure, there is alack of underlying reMon as to why 
this condition should be added, and good intuitive reasons why it shouldn't. 

For example, X \ Y in the previous 'lifted' sequent, would forbid instanti
ation to the valid sequent, 

~ 3z.z=z 

13 Summary 

The process of variable lifting is one which is informa.lly employed in every 
logic text book. The mechaniza.tion of logic reasoning requires that this 
process be fully understood and shown to be sound. 

Applicability of varia.ble lifting is not limited to the use of the predicate and 
function symbols described here. New symbols may be added freely. As long 
as the appropriate 'specialization' rules hold, and in the case of quantifier
like symbols, the appropriate 'alpha conversion' rule holds, variable lifting 
will apply to sequents using the new symbol. As with particular predicate 
symbols described here, if no elimination rule exists, the constraint of only 
appearing in the consequent of a sequent to be lifted will also apply. 
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