Algebras for Tree Algorithms

|

Oxford University Cormputine ! -
Wolfscn Lo~
Parxs ©2z .4
Oxford OX1 G0

Algebras for Tree Algorithms

Jeremy Gibbons
Linacre College, Oxford

A thesis submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
at the University of Oxford
September 1991

Technical Monograph PRG-94
ISBN 0-902928-72-4
Programming Research Group
Oxford University Computing Laboratory
I1 Keble Road
Oxford OX1 3QD
England
Copyright © 1991 Jeremy Gibbons

Author’s current address:
Department of Computer Science
University of Auckland
Private Bag 92019
Auckland
New Zealand

Electronic mail: jeremy@cs.aukuni.ac.nz

‘Miranda’ ts a trademark of Research Software Ltd.

mailto:jeremy@cs.aukuni.ac.nz

Abstract

This thesis presents an investigation into the properties of various alge-
bras of trees. In particular, we study the influence that the structure of
a tree algebra has on the solution of algorithmic problems about trees in
that algebra. The investigation is conducted within the framework pro-
vided by the Bird-Meertens formalism, a calculus for the construction
of programs by equational rcasoning from their specifications.

We present three different tree algebras: two kinds of binary tree
and a kind of general trec. Onc of the binary tree algebras, called ‘hip
trees’, is new. Instead of being built with a single ternary operator, hip
trees are burlt with two binary operators which respectively add left and
right children to trees which do not already have them; these operators
enjoy a kind of associativity property.

Each of these algebras brings with it with a class of ‘structure-
respecting’ functions called catamorphisms; the definition of a catamor-
phism and a number of its properties come for free from the definition
of the algebra, because the algebra is chosen to be initial in a class of
algebras induced by a (cocontinuous) [unctor. Each algebra also brings
with it, but not for free, classes of “structure-preserving’ functions called
accumulations. An accumulaton is a function that preserves the shape
of a structured object such as a tree, but replaces each element of that
object with some catamorphism applied to some of the other elements.
The two classes of accumulation that we study are the ‘upwards’ and
‘downwards’ accumulations, which pass information from the leaves of
a trec towards the root and from the root towards the leaves, respec-
tively.

Upwards and downwards accumulations turn out to be the key
to the solution of many problems about trees. We derive accumulation-
based algorithms for a number of problems; these include the parallel
prefix algorithm for the prefix sums problem, algorithms for bracket
matching and for drawing binary and general trees, and evaluators for
decorating parse trees according to an attribute grammar.

Philosophy is written in this grand book—I meagn the Universe—
which stands continuously open to our gaze, but it cannot be
understood unless one first learns to comprehend the language in
which it is written. It is wrilten in the language of mathematics,
and its characters are triangles, circles and other geometrical
figures, without which it ts humanly impossible to understand a
single word of it; without these, one is wandering about in a dark

labyrinth.
Galileo, 1l Saggiatore, 1623

Acknowledgements

No research can be performed in a vacuum, and none of the work pre-
sented in this thesis could have been done without the help and foun-
dations provided by my colleagues. I thank Roland Backhouse, Oege
de Moor, Maarten Fokkinga, Johan Jeuring, Geraint Jones, Wayne Luk,
Lambert Meertens, David Skillicorn, Bernard Sufrin, Doaitse Swierstra,
Jaap van der Woude, Netty van Gasteren, Chris Wright, and all the
other squiggolists who have explained their work and mine to me; their
suggestions have greatly improved the material in this thesis. 1 would
particularly like to thank my examiners, Geraint and Lambert, for their
many helpful suggestions. Most of all, I am indebted to my supervisor
Richard Bird, for trying his best to remove my rough edges; the jagged
bits that remain are of course solely my responsibility.

I am also grateful to the other denizens of the basement of the
Programming Research Group for plying me with coffee, commiserat-
ing when the network goes down, and otherwise generally making life
interesting. Greg, Jim, Dave, Alan, Quentin, Colin, Steve: thank you!

Last, but by no means least, my thanks go to my long-suffering
housemate Simon Mercer for putting up with my ramblings and making
me put up with his, and to my fellowship group for reminding me that
there is more to life than writing theses.

This work was supported for three years by a grant from the Sci-
ence and Engineering Research Council.

Jeremy Gibbons
Oxford, September 1991

—_—

Contents

1 Introduction

Program calculation
The Bird-Meertens formalism

Typesand functions

Functors, the pair calculus and binary operators

Inidal data types and catamorphisms .

2 A taxonomy of trees
Mootrees
Moo tree catamorphisms, .
Rosetrees
Rose tree catamorphisms
Hiptrees
Hip tree catamorphisms
Consistency and partiality

3 Upwards accumulation
Accumulationson lists
Generalizing tomoo trees
Examples of upwards accumulation . .

............

............

............

............

Upwards accumulations on hip and rose trees

4 Downwards accumulation
Afirstattempt L
Threads
Efficient downwards accumulations . .
Daerhts
Downwards accumulation on rose trees

............

............

13
14
16
18
19
22

37
37
41
44
47
50
51
54

61
62
66
70
72

75
75
78
84
86
95

12 Contents

5 Prefix sums 101
Calculating the parallel prefix algorithm 102
Prefix sums for a non-associative operator 108
Suffixsums o e 111
Braketmatching 119

6 Drawing trees tidily 125
Levelordertraversal . . 0 . ..o o L oo 127
A downwards accumulation o 0000 L. 129
Anupwards accumulation Lo oL 131
Drawing rosetreesudily 136
Analgorithm00, 140
Ancefficient algorithmo o000 145
Relatedwork 145

7 Attribute grammars 147
Examples of attribute grammars 149
Circolarity o e 151
Attribute evaluations as catamorphisms 152
Attribute evaluations as accumulations L. .. L 153

8 Conclusion 157
Comparisons e e 161
Heterogeneous downwards accumulations 165
Hip trees: anegativeresult. 166
Application and apposition 167
Paramorphisms and predecessors 168
Furtherwork 169

References 173

1 Introduction

The concept of a tree is fundamental to all algebra, and hence to algo-
rithm design too; this is because the terms of any recursively defined
algebra are trees. Bourbaki’s text on algebra (Bourbaki, 1942} has trees
as the first definition on page one. Indeed, trees are fundamental, full
stop: there is a ‘beautiful combinatorial world’ of tree-like branching
patterns in fields ranging from molecular biology and neurophysiology
to hydrogeology and astronomy (Viennot, 1990). Knuth (1968a) traces
the history of trees back to the third day of creation, but the mathemat-
ical notion of a tree dates from Kirchhoff (1847), who was concerned
with finding cycles in electronic circuits, and the name ‘iree’ in connec-
tion with this notion from Cayley (1857), from his series of papers on
the structure of arithmetic expressions.

Trees are importwant in computing because they embody the idea
of hierarchical structure. In the context of parallel execution, they per-
mit fast collection and dissemination of information among their ele-
ments: the structure-respecting functions on trees can be computed in
parallel in time proportional to the depth of their argument. In fac, it
could be argued that all algorithms that take logarithmic time, whether
sequentially or in parallel, do so because of an underlying tree structure.

The purpose of this thesis is to explore the algebraic properties of
anumber of species of tree, and in particular to investigate the influence
that these properties have on the solution of algorithmic problems about
trees. This work forms part of a larger objective, that of the formal cal-
culation of computer programs from their specifications. We have been
aware for more than twenty years that any attempt to construct pro-
grams by trial and error is doomed to failure; clearly a more systematic
approach than this is required.

14 Introduction

Progran calculation

One metldology that offers some scope for making the construction
of prograns more mathematical is that of trensformational programming
(Gerhart,1975; Wegbreit, 1976; Darlington and Burstall, 1976; Burstall
and Darlhgton, 1977; Loveman, 1977; Feather, 1987). This methodol-
ogy is desribed by Darlington (1981) as follows:

Usire the transformational approach to programming, a programmer does not
aiterpt to produce directly a program that is correct, understandable and efficient,
rathv he wmuially concentrates on producing a program which is as clear and
undrstandable as possible ignoring any question of efficiency. Having satisfied
himslf that he has a correct program he successively transforms it to more and
mor efficient versions using methods guaranteed nol lo change the meaning of the
progam.

In esseneg, the value of the approach is in its separation of the concerns
of correcness and of efficiency and implementability.

Trere are two properties of a program notation that will greatly
simplify he process of program construction by transformation. These
propertizs are that the notation covers a wide spectrum, encompassing
both inital ‘specification’ and final ‘implementation’, and that it is con-
cise. Th: first is desirable because it is impossible to make purely local
changesbetween stages of the development, if separate languages are
used fordifferent stages: each different stage entails a complete transla-
tion of the program from one language to the next (Bauer et al., 1979).
The second is desirable because with the transformational approach, the
program is rewritten many times with only small variations between suc-
cessive ‘ersions; if the notation is verbose this is very clumsy, and more-
over,a verbose notation will obscure the structure of a program, making
it difficult to spot the applicability of transformations (Backhouse, 1989;
Meertens, 1989a).

The clearest way of presenting a transformational development is
to give a linear calculation, proceeding by equational reasoning, from

Program calculation 15

the specification of a program to its implementation. A sequence of
programs is presented, each differing from the previous one by the ap-
plication of some relatively simple transformation of a subexpression.
1f each transformation preserves the meaning of the program, then all
programs in the sequence—but in particular, the first and the last—are
equivalent. Ideally, it should be possible to check the applicability of
a transformation on a purely syntactic basis, without having to interpret
the symbols, though of course it is likely that there will be some semantic
intuition on the part of the designer in choosing which particular trans-
formation to apply. Feijen’s proof format (Dijkstra and Feijen, 1988)
provides a clear method of laying out such a calculation: the calculation
is displayed in the form

P

= [[hintastOWhyP=Q]]
Q

= [[hintastowhyQ=R]]
R

There is plenty of room for the hints, minimizing the amount of ‘decod-
ing’ needed to understand the calculation, and it is clear that ‘a step in
the calculation is a very local affair’ (van Gasteren, 1988), involving only
two adjacent expressions and a hint.

Of course, a style of development by equational reascning like
this relies on having ‘an algebra of programs, a rich collection of identi-
ties that hold between different representations of functions’ (Backus et
al., 1990). This collection of identities can be provided by exploiting
the algebraic structure of the data concerned. In particular, there is a
close correspondence between data structures (terms in an algebra) and
control structures (homomorphisms over that algebra). This correspon-
dence is the same as that between the manipulation of types and of func-

16 Introduction

tions by categorical functors. This close correspondence is also an aid to
conciseness; common patterns of computation over data structures can
be encapsulated as ‘higher order operators’, and the repetitive details
elided.

We have discussed various aspects of program calculi in general; we
turn now to a particular calculus, the Bird-Meertens formalism, which
will form the framework for this thesis.

The remainder of this thesis is structured as follows. Chapter 2
provides asurvey of the different species of tree that we will study. Chap-
ters 3 and 4 form the main body of the thesis; in them we introduce the
notions of upwards and downwards accumulation on trees, which embody
the ideas of passing information towards the root and towards the leaves
of a tree, respectively; it turns out that these accumulations are the ba-
sis of the solutions of many algorithmic problems on trees. Chapters 5
and 6 verify this observation by presenting two extended examples of
the use of accumulations: Chapter 5 gives a derivation of the ‘paral-
lel prefix’ algorithm and of two of its applications, running finite state
machines and matching brackets, and Chapter 6 gives derivations of al-
gorithms for drawing trees. Chapter 7 shows the connection between
accumulations and attribute grammars, which also pass information to-
wardsthe root and towards the leaves of a tree; we show that the evalu-
ation of attribute grammars is naturally described using accumulations.
Finally, in Chapter 8, we present the conclusions we have drawn, and
discuss the relationship of the material presented here to other work,

The Bird-Meertens formalism

The Bird-Meertens formalism (Meertens, 1986; Bird, 1987, 1988; Back-
house, 1989) is a program calculus possessing all the desirable proper-
ties we have mentioned: it covers a broad range of levels of abstraction,
itis concise, and it places a heavy emphasis on the algebraic properties of

The Bird-Meertens formalism 17

data types, resulting in a rich and powerful body of laws that encourage
a calculational style of development based on equational reasoning.

Work within the Bird-Meertens formalism has covered a wide va-
riety of programming paradigms. Atone end of the spectrum of abstrac-
tion from physical computers, de Moor (1990) at Oxford and Backhouse
etal. (1990, 199 1) in the Netherlands have been investigating the theory
behind a relational, as opposed to functional, approach. Such an ap-
proach provides the power of non-determinism, partiality and inverses;
de Moor is using it to solve dynamic programming problems. At the
other end of this spectrum, groups at Oxford and Glasgow (Luk, 1988;
Jones, 1989; Jones and Sheeran, 1990a) have been using a similar for-
malism to synthesize circuit designs for hardware. Although the extra
restrictions of locality and of minimizing wire crossings make hardware
design more difficult than software design, the same methods can be
used.

The formalism also covers the ‘parallelism’ axis well. Early work
(Bird, 1987; Bird and Meertens, 1987) was based on a distinctly sequen-
tial intuition, but Skillicorn (1990} has shown that a language consisting
of Bird’s operators map, reduce, accumulation, filter and cross prod-
uct forms a ‘truly architecture-independent programming language’, in
the sense that these operations can be implemented with asymptotically
optimal efficienicy on any of the ‘four major classes of parallel architec-
ture: tightly coupled, SIMD, hypercuboid and constant valence topology
multiprocessors’. Thus, the theory of lists is universal over these mod-
els of parallel computation; this subset of the Bird-Meertens formalism
makes just as good a parallel programming language as it does a se-
quential one. For this reason, we will often talk about the amount of
‘effort’ or ‘work’, rather than ‘time’, that an algorithm requires; this is
the product of processing power and execution time, assuming that all
the processing power can eflectively be used.

Similarly, the formalism is not tied to ‘imperative’ or to ‘functional’

18 Introduction

implementations: a development will produce a program that can be
implemented in either kind of language. The notation may well resem-
ble that of 2 lean functional language like Backus’ FP (Backus, 1978)
or Turner’s Miranda (Turner, 1985), but that is only because programs
written in this sort of language are ‘consistently an order of magnitude
shorter than the equivalent programs in a conventional high level lan-
guage’ (Turner, 1982); the semantics may well resemble that of a lazy
functional language such as Haskell (Hudak et al., 1990), but that is
only because this gives the richest and most useful body of laws.

So much for the philosophical aspects of the Bird-Meertens formalism.
The rest of this introduction will consist of a more detailed discussion of
the notation that we will use.

Types and functions

We use the symbol € for type judgements, writing a € A for “a has
type A’. Uppercase letters near the beginning of the alphabet will usu-
ally be used for type variables. ‘Primitive’ types include the unit type 1
with unique element it, booleans B with elements true and false, and
naturals N, including 0. The use of € for type membership is not in-
tended to mean that types are sets; some types are too big to be sets, and
besides, types are not just collections of elements (Morris, 1973). How-
ever, ve do call on some set-theoretic properties later on—for example,
that injective functions have post-inverses.

The function type former is written — ; the type of functions with
source A and target B is A — B. Function application is written with
an infix dot: if a € A and f € A — B then f.a € B ; application is the
tightest binding of all operations. Functions are often curried, and ap-
plication associates to the left, so f.a.b parses as (f.a).b ; because of this,
the type former is right associative. Function composition is backwards,
is the weakest binding of all operations, and is written with an infix o,

Functors, the pair calculus and binary operators 19

so that (f o g).a = f.(g.a) . The ‘constant function’ always returning a is
written !a and satisfies !a.b = a; the identity function is id.

One characteristic of the Bird-Meertens formalism is that reason-
ing is carried out at the function leve] rather than the object level, wher-
ever practical. This makes expressions more concise, of course, but also
tends to improve manipulability by reducing variables and simplifying
pattern matching. However, we do not stick slavishly to the function
level; Bird (1984a) says ‘one can argue that the additional information
provided by the presence of variables is very important for understand-
ing the meaning of expressions’.

When we do have to resort to a pointwise argument, we often end
up writing expressions like h.(g.(f.a)), or (h o gof).2; the convention
that application is left associative then becomes more of a hindrance
than a help. In this situation, we take advantage of an idea of Morgan’s
(1989), of using a right associative application operator as well as the
normal left associative one. We write this operator with an infix centred
dot, -, and we use it to write expressions like the above without using
so many parentheses:

hg-f-a = h.(g.(f.a))

We give this right associative application the same high precedence as
left associative application, instead of following Morgan and making it
weakest-binding. Any expressions involving both left and right associa-
tive application will be disambiguated with parentheses.

Functors, the pair calculus and binary operators

For quite a while now, we have been used to the idea that data structure
and program structure tend to follow the same pattern (Hoare, 1972).
In categorical terms, this is the reasoning behind ‘functors’, data con-
structions that act on both types and functions: the image of a functor
on a type is a data structure, and its image on a function over that type

20 Introduction

is a corresponding function over that data structure. We denote functor
variables by uppercase letters F, G, ... and pre-apply them like we do
functions: F.A and F.f. Functors respect source and target:

feA—-B = FfeFA—-FB
and they preserve identity and composition:
Fid = id
F{(fog) = FfoF.g
The two kinds of primitive functor we will use are the identity

functor Id and the constant functors !8 for various B ; their actions on
types and functions are given by

I4.A A B.A B
df = f Bf = id

#

We also use infix bifunctors cartesian product || and disjoint sum or
coproduct |, acting on pairs of types and of functions; if f € A — C and
9g€B—D then fllgeAlIB—C)D and flge A|B —- C|D. Using
il and | instead of the more conventional x and 4 leaves the latter
free for arithmetic operations. If a € A and b € B, we write the pair
(a,b) € Al B: in effect, the infix comma is a synonym for the identity on
products. We write « € A|lB — A and » € AIB — B for the product
destructors or projections, and < € A— A|B and > € B — AIB for
the sum constructors or injections.

The product and sum morphisms are written A and v, pro-
nounced ‘fork’ and ‘join’;if f € A— B and g € A — C then

fig € A=BIC
andif h€e B— D and je€ C — D then
hyj € BIC—D

These operations satisfy a number of laws, among which are

Functors, the pair calculus and binary operators 21

fligoehlij = (feh)li(goj) figehlj = (foh)l(go))

fllgehxj = (feh)yi(gej) fygehlj = (feh)v(goj)
fagoh = (foh)a(geh) fogyh = (fog)v(foh)
<Ay» = id <y> = id

<ofrg = f fyge< = f

»>ofAg = g fyge> = g

Recall that composition is weakest binding.
We write I for the monofunctor that satisfies
ILA = AJA
Lf = ff

We also sometimes write f? instead of I.f; note that f? is the product
of functions f |i f, not their composition fof.

Product and sum are not associative. To denote arbitrary prod-
ucts and sums we write Ag|l---tAy_y and Ag{---|A,_1, which are
understood to be applications of n-ary operators; similarly, n-ary forks
and joins are written fg A -+ A fi_y and fy v --- v oy . Because ‘left’
and ‘right’ have no simple analogy for arbitrary tuples, we write the
projections %; and injections 4 on these types.

Another characteristic of the Bird-Meertens formalism is the frequent
use of infix binary operators: if the funcion & has a binary product as
its source type, it is written between its arguments. We have seen exam-
ples of this already: application, composition, apposition, product, sum,
fork and join. Bird (1984a) says, ‘Not only can such operators enhance
the succinctness and, used sparingly, the readability of expressions, they
also allow many transformations to be expressed as algebraic laws about
their distributive and other properties.’ Related to this, and tothe desire
to work at the function level wherever practicable to avoid redundant
variable names, is the notion of sectioning, attributed by Wile (1973) to
the mathematical literature (he cites a recursive function theory text).

22 Introduction

Sectioning is a form of partial parameterization; a binary operator is
given one of its arguments, and it turns into a function of the other
argument.

(a®)b = adb = (@b).a

We will often omit the sectioning brackets, relying on spacing to make
the sense clear. We also section an operator without giving it any argu-
ments; this is just currying:

(®).ab = @.(a.b) = adb

We make the convention that all other binary operators have the
same precedence, between those of application and composition, and
that most are right associative. The exceptions to this last rule are the
few cases in which we define an operator of type A B — A; repeated
applications of such an operator are properly typed only when the op-
erator is left associative.

‘Two further abbreviations involving binary operators will prove
usefullater. These are ‘converse’, &, and ‘lifting’, &, ofa binary oper-
ator @, defined by

d = Pop ik
& = (o)ox
That is,
x®y = yodx
Fdg)x = fx@gx

Initial data types and catamorphisms

We base our notation for type definitions and for catamorphisms, their
structure-respecting maps, on Malcolm’s work (1990), who in turn bases
it on that of Hagino (1987a, 1987b). We use a slightly different notation,
but the mathematics is the same and we draw heavily on his results.

Initial data types and catamorphisms 23

A type definition is written in the form
X = 70.(Fe-X) | -+ | Too1(Fa1.X)

where each F; is a functor. In most cases, these functors will be polyno-
mial, that is, constructed from the identity functor and constant functors
using composition, product and sum, though we will see a type defined
with a non-polynomial functor in Chapter 2. Informally, this definition
says that if a € F.X then r.a € X, thatis, 17 € Fi.X — X. Implicit
in this definition is that X is the ‘least’ type having this property. For
example, the definition

N = !10.1] succ.N

says that !0.it isin N, and if n isin N then so is succ.n (and that
nothing else is in N). The functors here are !1 and Id, since I.N =1
and d.N=N.

We formalize this example below.

1. Definition An F-algebra is a pair (A,f) suchthat fe F.A-A. &

2. Definition A function h is (f, g) F-promotable iff

hof = goF.h
&

3. Definition An F-homomorphism from an F-algebra (A.f) to an F-
algebra (B, g) is a function in A — B which is (f,g) F-promotable. ¢

Clearly, F-homomorphisms are closed under composition.
Promotability is apparently a very important algebraic concept,
judging by the frequency with which it crops up. For example, it gener-
alizes both distributivity and associativity: a function distributes over an
operator @ iffitis (®,®) I-promotable, and an operator @ with type
AllA — A is associative iff a@ is (®, ®) (4l !A)-promotable for all a.
(The ‘lifted product’ functor il here is just an instance of binary operator

24 Introduction

lifting: it satisfies (F i G).A = FAIG.A and (FiG).f = F.fG.f.) Pro-
motability also generalizes conjugation: to say that g is the h-conjugate
of f, goh = hof, isjust to say that h is (f,g) ld-promotable. Con-
jugation is the property on which data refinement depends (Jones and
Sheeran, 1990b): h is the abstraction function, and f and g the con-
crete and abstract operations.

The notions of F-algebra and F-homomorphism will only be used
in this introduction, but F-promotability will be useful later; if the func-
tor F is clear from the context, we will omit it, saying simply that b is
(f.g) promotable.

Returning now to the type definition

X = 1.(Fo-X){ -1 Tau1-(Fy_1-X)
we define the ‘collective constructor’ T by
T = TgAcor AT

and the ‘collective functor’ £ by

F = FO T et T Fn-l
Thus, F is the lifted sum of the individual functors, and satisfies
FA = F A .-~ Fp1 A
Ff = Fgf | << Fn_l.f

Now,we have T € F.X — X, and so (X,7) is an F-algebra; we complete
the definition of the type X up to isomorphism by defining (X.7) to
be aninitial F-algebra, which is precisely to say that for every F-algebra
(A, f) there is a unique F-homomorphism from (X, 1) to (A, f). We as-
sume that we can fix some representative, so we can about the initial
F-algebra. Initiality gives us the unique extension property:

4. Corollary Suppose (X, T) is the initial F-algebra; then, for given f,
thereis a unique function that is {r,f) F-promotable. &

Initial data types and catamorphisms 25

The unique extension property turns out to be very important to us,
because it eliminates the need for nearly all inductive proofs on initial
data types: to show the equality of two functions with source X, where
(X, 1) is the initial F-algebra, it suffices to show that they are both (1, f) F-
promotable for the same f. Intuitively, the unique extension property
is a form of ‘canned induction’; the demonstration that two functions
have the same promotion properties is equivalent to that of the base
case and the inductive step of an induction proof, and the invocation
of the unique extension property corresponds to the ritual steps of the
proof.

It is not immediately obvious that these initial data types actually
exist. However, a standard result from category theory states that poly-
nomial functors are cocontinuous-—a ‘distributivity through himits’ prop-
erty analogous to continuity elsewhere in mathematics—and Smyth and
Plotkin (1982) showed that cocontinuous functors induce initial alge-
bras. Thus, if we restrict ourselves to polynomial F;, the types we define
are guaranteed to exist.

There are actually three abuses of notation in the type definition

X = ‘T‘o.(Fo.X) [I‘T'n,_l.(Fn_1.X)

The first abuse is that it really concerns an isomorphism, not an equality
{Wraith, 1989); we make no excuse for this. The second abuse is that
itis Fg.X|---1Fa_q.X that is isomorphic to X, and the constructors
T; do not come into it; however, we nced some way of introducing the
constructors as well as the {unctors, and in the interests of brevity they
should both be introduced with the same definition.

The third abuse is that it makes no sense to apply a function T;
to a type F.X. Using application here, though, opens the way to a
notational abbreviation: when F;.X is A || B, the product of two types,
we write the constructor T; in infix form, AT B, because it is a binary
operator. For example, we would write the type snocnat of non-empty

26 Introduction

snoc lists of naturals (the name ‘snoc’ is the reverse of ‘cons’, the name
of the LISP function that is used for prefixing an element to a list, among
other things) as

snocnat = oO.N | snocnat+ N

writing snocnat » N instead of the clumsier &.(snocnat |l N). Informally,
this definition says that if n is a natural number then the singleton list
D.n is a snocnat, and that if x is a snocnat and n is a natural number
then x:n isalsoa snocnat. The functor yielding the source type of = is
1d {| IN, the lifted product of the identity functor and a constant functor.

Another abbreviation we make is that, if F;.X is 1, we will usu-
ally write 7; instead of 1;.1. For example, the defining equation for N
becomes

N = 0] succ.N

writing 0 instead of 0.1.

Catamorphisms are the promotable functions mentioned in the state-
ment of the unique extension property:

5. Definition Suppose (X,T) is the initial F-algebra. Then, for given
f, the unique function thatis (r, f) F-promotable is called a catamorphism,
and written {X: f). &

The identity function on any initial data type is a catamorphism,
because id is (t,7) F-promotable for any F. Thus, the catamorphism
built from the constructors of its source type is the identity:

(X:1) = id

A more interesting example is provided by the function # on snocnat,
which returns the length of a list of naturals. This satisfies

#H#oo = 11
#Hox @ o (F# I1id) where x@a=x+1

Initial data types and catamorphisms 27

These two properties can be combined into a single one by joining the
functions together:

#Fo@yzr) = (yd)o(idi(Flid)

andso # is (@ v = !1 vy &) (INT(d fi IN))-promotable. Now, snocnat is
the initial (IN T (id f| IN))-algebra, so

= (snocnat: !1vy &)

It is usually more convenient to look at the components ofa cata-
morphism individually, as a functionis (fo ¥ +-- v fa_1.90 Y * -+ Y Ga-1)
promotable iffitis (f,, g;) promotable for each i. Thus, # isboth (o, 11)
IN-promotable and (-,) (id fi !N)-promotable. This encourages us to
write the components of the catamorphism separately, too; when we
write {X:fo, ..., fac1) we mean (X:fyv.--vfi_;}. We often omit the
source type of the catamorphism if it is clear from context, so we might
write

= (1.0}

for the length function; this rendition is shorter and more manipulable
than the recursive definition given above.

It is often the case that an initial data type is a polymorphic type, param-
eterized by one or more type variables. In this case, some of the F; will
depend on these variables. For example, the type snoca of non-empty
snoc lists over the type A is given by

snocp = D.A |snocysA

The two functors involved here are A and Id i !A, both of which de-
pend on the type variable A. We will now see how to define a functor
snoc, which maps this type A to the type snoca .

We do this by defining snoca in terms of a bifunctor, one of whose
arguments will be the parameter A. If @ is a bifunctor, then the oper-

28 Introduction

ation (A®) on types and functions which satisfies
(A®)B = A®B
AR)f = Wdf
is a funcor. 1n the case of snoca , this bifunctor @ satisfies

A®B = A|BIA)
f®g fi(gif)

i

and snocy is the initial (A®)-algebra.

This gives us the type part of the functor snoc: it takes a param-
eter A and yields the type snoca . What about its function part? Since
snoc isto be a functor, its action on functions must satisfy

feA—-B = snoc.f€snoc.A— snoc.B

and it should respect identity and composition. The map fx, which ap-
plies the function f to every element of a snoc list leaving the structure
unchanged, satisfies exactly these conditions; it is given by

fx = (snocp:oof zoid|f)
= ({snoca: (v #)e(f@id))

It turns out that the same procedure works for any parameterized
type. Ifan algebra (X,,), parameterized on A, is the initial F-algebra,
then we define the bifunctor ® such that (A®) = F (and such that A
does not appear free in ®). Then the X that satisfies

X.A = XA
X.f {Xa:Tof®id) forfeA— B

is 2 functor; X.f is written fx. The proof that X respects identity and
composition can be found in Malcolm’s thesis, and is omitted here. This
X 1s cocontinuous if & is.

For the sake of brevity, we often omit the parameter A from the
type information of a catamorphism, writing (X: f) instead of {X.A: f).

Initial data types and catamorphisms 29

The treatment we have given here assumes that the type has a
single parameter, but the same procedure applies if it has a tuple of pa-
rameters, as for example do the types of trees with leaves and branches
of different types that we introduce in the next chapter. In this case, the
bifunctor generalizes to an n+1 -ary functor for tuples of length n, and
the map takes an n -tuple of functions.

The types we have seen so far have all been ‘free’ types, that is, types
where the constructors are injective, and so there is exactly one way to
construct a given object. There are many interesting non-free types too,
types where the constructors satisfy some laws and consequently where
some objects can be constructed in more than one way. For example,
the type of non-empty ‘cat’ (short for ‘concatenate’} lists is given by

cat.A = o0.A | cat. A4 cat.A

modulo the law that 4+ isassociative. Strictly speaking, the singleton cat
list constructor o should be distinguishable from the singleton snoc list
constructor o ; the reader may imagine that they are printed in different
colours.

Manes and Arbib (1986) say that a definition such as this defines
cat.A tobe ‘the initial object of the category of all models of the specifica-
tion’, that s, the initial algebra among all those (!A | I)-algebras that have
an associative binary operator. In essence, we can construct a congru-
ence relation & on terms in such an algebra, by taking the congruence
closure of the symmetric relation ~ on terms induced by the laws; we
then take as objects of the type the congruence classes under =. In the
case of cat lists, for example, the ‘symmetric relation on terms induced
by the laws’ ~ relates terms (x -+ y) + 2 and x 4+ (y -+ 2) which can
be identified by a single application of the associativity property at the
top level, and the congruence reladon = relates those pairs of terms
that can be identified by any number of such applications.

The praomotability property of catamorphisms can be seen as an

30 Introduction

evaluation rule, since
{fyor = foF.ff)

This reveals a subtlety when the source type is not free. Consider, for
example, the cat list catamorphism h = {cat: f, @} ; we have

h.((x H# y) H 2) (hx@ hy)® h.z
hix#(y#2) = hxd(hydhz)

Now, the two argumerits to the catamorphism on the left hand side are
equal, because 4 is associative; therefore, the two right hand sides
should also be equal, to retain substitutivity, that is, & should be asso-
ciative (at least on the range of the catamorphism).

In view of this, we make the restriction that a function, and in
particular the components of a catamorphism, should respect the laws
that hold of the constructors of the source type:

6. Definition A function f respects a relation ~ iff

x~y D fx=fy

<
7. Property A well-defined function respects the congruence relation
generated by the laws on its source type. ¢

8. Corollary The components of a catamorphism respect the congru-
ence relation generated by the laws on its source type. &

For example, a cat list catamorphism {f, ®) € X — A is ‘proper’
only when @& Is associative, for only then is (A, f ¥ @) an object of ‘the
category of all models of the specification’.

We now present a few theorems about catamorphisms that will prove
useful later on. None of them are new.
One important result is that any injective function is a catamor-

Initial data types and catamorphisms 31

phism, because it has a post-inverse.

9. Theorem Suppose f hasan initial data type as source; if thereexists
a g such that gof =id, then f is a catamorphism.)

Proof 1f f has source type X with (X, 7) the initial F-algebri, and
gof =id, then f is (r,f o1 F.g) F-promotable. \V

In particular, any function can be written as the composition of a
projection and a catamorphism, hecause the fork of any function with
the identity is a catamorphism (Meertens, 1990):

10. Corollary For any f with an initial data type as source, there exists
a catamorphism g such that f = «ogq. o

Proof Justtake g =fAid; »cg =id so g isa catamorphism, Q

These last two results are usually of theoretical rather than practical
interest: they give a method of computing f--x in terms of (F.f)-x,
but only by throwing away any intermediate result, reconstituting x,
applying T and starting from scratch.

Another important theorem concerning catamorphismsisthe pro-
motion theorem (Malcolm, 1990):

11. Theorem If h is (f,g) F-promotable, then

hoff) = {9}

Proof
ho{fjor
=][catamorphisms]|

hofoF.(f)

32 Introduction

[[premise]l
goF.ho F.{f)

i[functors H
goF.(hoff})

so ho(f) is (r,9) promotable, and the result follows from the unique
extension property. Q

The promotion theorem gives the conditions under which a function
h can be ‘fused’ with a catamorphism ({f) to produce another catamor-
phism. In Chapters 3 to 6 we will be looking for catamorphic solutions
to certzin problems, and this is the tool we shall use.

A consequence of this theorem, which we will use in Chapter 5, is
that a map can always be absorbed into a catamorphism:

12, Corollary ~ Suppose that (X.A,7) is the initial (A®)-algebra, and
feB®C—Cand g€ A— B. Then

(XB:fjogx = {XA:fco(g®id))
¢

Proof Firstly, g is simply an abbreviation for {X.A: T o (g ® id)} . So,
(oro(g®id)

II catamorphisms ﬂ
fo(id® (f))o(g®id)

ﬂ ® is a bifunctor, so id ® h commutes with g ® id H
fo(g®id)o (id ® {f))
thatis, (f} is (o (g ® id), fo (g ® id)) (A®)-promotable. Q

Finally, the fork of two catamorphisms is itself a catamorphism
(Fokkinga, 1990).

Initial data types and catamorphisms 33

13. Theorem Suppose (X, 7) is the initial F-algebra. Then

PG A g) = (Xi(feFg) A (geFus))
<
Proof
{f) » {ghyor
- [+
(o) & ({gdoT)
= [[catamorphisms]]
(foF.{f)) » (goF.{g))
= [[A, < and », reintroducing the original fork]]
(foF.(xo{f) A(g)) A (goF.(»o{f) A(q))
= H functors]]
foF.<xo F.((f) Afg)) A (goF»o F.((fp A {9y
=[]
((fo F.) A (goF.»)) o F.({f) £+ {a))
and so {f) A{g) is (v, (f o F.<) A (g F.»)) F-promotable. o

We should pause to consider why our notation for type definitions ought
to differ from the notations of those who have gone before (Hagino,
1987a; Malcolm, 1990; Verwer, 1990; Fokkinga and Meijjer, 1991): it is
because our needs our different. If one is concerned with the theory of
these definitions in general, as these writers are, then one needs to talk
about—and hence to name—the type and the functors, either individ-
ually or collectively, but one does not need to talk about the collective
constructor much, nor about the individual constructors at all. If, how-
ever, one is concerned with the application of this theory to the derivation

34 Introduction

of algorithms, as we are, then the names of the functors are of less im-
portance than the names of the individual constructors; that is why we
need to name each 1.

The reader may also be wondering why the structure preserving
maps over algebras are called homomorphisms, whereas those over ini-
tial data types are called catamorphisms. The answer is that homomor-
phisms and catamorphisms are subtly different. Consider the Function
constant, which holds of a snoc list whenever all its elements are the
same:

constant.x = all.{(= last.x).x
where fast and all.p are catamorphisms,

last = {snoc:id,»)
all.p {snoc: p, A cid il p)

Informally, last returns the last element of a list, and ali.p holds of a
list iff p holds of each of its elements.

Now, constant is not catamorphic, because it does not promote
through *; there is no @ such that constant.(x » a) = constant.x ® a.
Intuitively, constant.x does not provide enough information about x to
permit computation of constant.(x» a).

However, consider now the funiction pairs , which tuples every ele-
ment of a snoc list with the following element, and tuples the last element
with the first. For example,

pairs.(1,2,3] = [(1,2),(2.3), 3, 1)]

(We write [ag, -..,an~1] forthelist o.ag » --- +a,—1 .) Thisisan invertible
function—it has post-inverse «* —and so it is a catamorphism. In fact,
pairs = {ooid A id, @) where

o(b,b)®a = [(b,a) (a, b)]
(x=(b.c))Da x»(b,a)x(a,c)

Initial data types and catamorphisms 35

Moreover,

all.(=)e pairs = constant

We cannot prove this using the unique extension property, because
constant is not catamorphic and so does not promote through =, but
a simple inductive proof does work.

At this point, we should realize that something odd is going on.
We have shown that constant is not a catamorphism, but that it #s the
composition of two catamorphisms, all.(=) and pairs. That is, cata-
morphisms are not closed under composition, in contrast to homomor-
phisms. The catch is that, for a given F, F-homomorphisms are closed
under composition, whereas, for some other functor G, the composi-
tion of an F-homomorphism with a G-homomorphism need not yield
another homomorphism. In our example, although pairs is a homo-
morphism, it is not a homomorphism to the algebra of snoc lists, formed
by © and & ; rather, itis a homomorphism to the strange algebraformed
by acid Aid and & . Similarly, all.(=) is a homomorphism on snoc lists,
but not a homomorphism on this strange algebra. For this reason, we
choose to abandon the notion of ‘homomorphisms’ in favour of that of
‘catamorphisms’, being homomorphisms over initial data types.

2 A taxonomy of trees

In this thesis we will encounter three different species of tree, and nu-
merous subspecies within these species; we give the details in this chap-
ter. Recall the observation we made in the introduction, that trees are
the foundation of algebra. This point is worth reiterating: for us, trees
are just terms in some algebra; we do not think of trees as nested collec-
tions of sets, nor do we identify them with certain graphs. In paricular,
because of our algebraic viewpoint we have no way of saying anything
about ‘sharing of substructures’: we cannot distinguish between the tree

and the directed acyclic graph

which results from ‘sharing’ the middle two leaves of the tree.

Moo trees

The simplest recursively defined term algebra of all is that of natural
numbers, which we saw in the introduction. Of course, the naturals
form a rather uninteresting species of tree: every ‘parent’ has exactly

38 A taxonomy of trees

one ‘child’. If we generalize the unary constructor succ , which takes a
single ‘child’, to a binary constructor which takes two, we get the branch-
ing structure characteristic of trees. We use the operator & for this
constructor; it is a corruption—introduced for ease of writing—of the
Chinese ideogram 7, pronounced ‘moo’ and meaning ‘tree’ or ‘wood’.

This generalization gives us the type umtree of unlabelled moo
trees:

umtree = A | umtree £ umtree

That is, the empty tree A is an umtree, and if x and y are umtrees then
so is x % y. For example, the expression A % (o « 4) corresponds to
the unlibelled tree

Naturally, unlabelled trees have no labels; the only information
in a tree of type umtree is structural information. We can generalize
further by labelling the leaves and the branches; this gives us the type
mtree of (labelled) moo trees:

14. Definition
mtree.(A,B) = A.A | mtree.(A, B) xg mtree.(A, B)
¢

Informally, if a € A then a.a is a tree of type mtree.(A, B}, and if x and
y aretrees of type mtree.(A,B) and b € B then x %4 y is another tree
of type mtree.(A, B). For example, the expression a.b &, (a.d . a.e)
represents the mtree

Moo trees 39

To avoid confusion, we always write the type A of leaf labels before the
type B of branch labels; similarly, when we come to define catamor-
phisms on trees, the leaf component will be given first.

The operator & is now a ternary operator, and no longer simply a
binary one; we write the extra argument as a subscript, for lack of any-
where better to put it. This can lead to some notational infelicities if the
subscript is large, and for this reason, we extend the notion of section-
ing to ternary operators: if ternary operator @ hastype X AllY — B,
then the sectioned operator (@) is a function oftype A = XY —= B, a
function yielding a binary operator given the subscript argument. That
is, (@®).a is the binary operator @, which, when applied to the pair
(x,y), yields x @, y. This means that, instead of writing ‘@ where
U@y V = U xgqp v’, as we would otherwise have had to do on page 42,
we can write {%)og.

That mtree is a generalization of umtree is clear from the fact
that umtree is isomorphic to mtree.(1, 1), the type of labelled moo trees
where neither leaves nor branches carry any useful information. In fact,
we will take this as the definition of umtree:

15. Definition
umtree = mtree.(1,1)

<&

It is tedious to have to write a.it for the ‘empty’ tree and &; for the
binary moo operator, so we will abbreviate these to a and %, relying on

40 A taxonomy of irees

context to dispel confusion. The advantage of making umtree a special
case of mtree is of course that everything we say about mtree will hold
automatically of umtree.

Two types that are intermediate in generality between mtree and
umtree are the types of leaf-labelled and branch-labelled moo trees Imtree
and bmtree, where the branch labels and the leaf labels, respectively,
carry no information.

16. Definition

Imtree, A = mtree.(A, 1)
bmtree.B mtree.(1, B}

¢

We use the same abbreviations— % with Imtree and A with bmtree —
as we do with unlabelled trees. Examples of these two tree types are
the leaf-labelled tree expression a.b % (a.d x a.e), which corresponds
to the trec

and the branch-labelled tree expression a %, (& *c a), which corre-
sponds to

Moo tree catamorphisms 41

The last specialization of mtree that we will come across is that of
homogeneous moo trees, where the leaf and branch labels have the same

type.
17. Definition
hmtree. A = mtree.(A A)

¢

1f we have need of a name for the moo trees that are in none of
the special cases, we will call them ‘general (moo) trees’.

Moo tree catamorphisms
The definition of moo tree catamorphisms is completely determined by
the definition of moo trees:

(f,@] oA
(f.e)ex

f
@ ({f.e)nidu{f. &)

[l

That is,

{f, @].(A.a) = f.a
(f.@®)x*xpy) = ({f.&)x(f &)y
Of course, this definition holds for all specializations of mtree as

well as for the general case, but for these there are some notational sim-
plifications that we can make. For trees with no leaf labels, we have

{f.®).(a.it)y = fit

42 A taxonomy of trees

We have already said that we will write & instead of a.it; this gives us
the more natural voicing

(le.®).s = e

for the above equation, when we note that any function with source 1
is a constant function.
Similarly, for trees with no branch labels, we have

(f.®)xxy) = (fo)xdul(f D)y

Again, we abbreviate x ; y to x % y; in the same way, we write just &
instead of @ , and so this equation becomes

(f.e)xxy) = (f.a)xa(fo)y

The map operation on moo trees takes a pair of functions, since in
general moo trees have two base types; it applies one function to each
leaf label and the other function to each branch label in the tree:

(f.g)x = (acf (x)og)

(Recall that ((%) © g).b.(u,v) = u &4p v.) We make some more nota-
tional abbreviations for the special cases: for homogeneous (including
unlabelled) trees, we write f* for (f, f)x; for Imtree. A with A different
from 1, we write f* for (f lit)x; for bmtree.B with B different from
1, wewrite fx for (lit, f)x.

The identity catamorphism is, of course, the catamorphism built
from the constructors:

id = (a %)

The root of a homogeneous moo tree is given by the catamor-
phism

root = (id, %)

Here, 7, is the projection returning the middle element of a triple.

Moo tree catamorphisms 43

The function depth, returning the number of elements on the
longest path from the root to a leaf, is given by

depth = (11, 6) where u@,v=1+(UuTvV)

Note that depth gives the same result, 1, for both the ‘empty’ branch-
labelled tree & and the ‘singleton’ leaf-labelled tree a.a.

The analogue of the length function # on lists is a bit more dif-
ficult. Consider the two functions

leaves = (11,6} where u®,v=u+v
branches = {10,®) where v®,v=u+1+v

]

returning the number of leaves and the number of branches ina tree,
respectively. A popular undergraduate exercise in structural induction
is to show that

(14) o branches = leaves

which, since (1+) is (®. @) (Id {i !A il 1d)-promotable, is an immed;-
ate consequence of the promotion theorem. Now, define the function
elements by

elements = leaves { branches

Again, thanks to the promotion theorem,
elements = (I1,®)

The awkwardness in defining the size of a tree lies in our intu-
ition concerning ‘size’. Intuitively, we might expect the general tree
Ab %k, (ad %£. a.e) and the unlabelled tree & £ (& £ 4) both to have
size 5, but the leaf-labelled tree a.b £ (a.d + A.e) to have ske 3 and
the branch-labelled tree a %, (& %. 8) to have size 2. That is, ‘size’
ought to mean branches on branch-labelled (but not unlabelled) trees,
leaves on leaf-labelled (but not unlabelled) trees, and elements every-
where else. Because of this awkwardness, we will stick with the three

44 A taxonomy of trees

separate functions.

Our last example of moo tree catamorphisms will consist of the
various traversals of trees. Similar complications arise here, due again
to conflicting intuitions; we will present examples just for homogeneous
trees, leaving the generalizations to the reader. For homogeneous trees,
then, preorder, inorder and postorder traversals, each returning a cat
list, are given by

preorder = (o, ®) where u@,v=0a-HuHv
inorder = {0, ®) where u@,v=u+H0aHv
postorder = (0, ®) where u@®,v=u+HvHoa

We present a fourth kind of traversal, levelorder traversal, in Chapter 6.

Rose trees

We arrived at binary trees from natural numbers by generalizing the
constructor succ , which takes one ‘child’, to the constructor & , which
takes two. Another generalization that we might have made is to a con-
structor which takes a list of children; this generalization gives what
Meertens (1988) calls ‘rose trees’. Meertens allows his lists of children to
be empty, so permitting parents with no children; to avoid this rather
strange concept we use non-empty lists.
Unlabelled rose trees are given by the definition

urtree = A | —<-snoc-uUriree

The constructor —< could be pronounced ‘tree’ in this context. Gen-
eralizing unlabelled rose trees in the same way that we did unlabelled
moo trees, we get general rose trees.
18. Definition

rtree.(A,B) = a.A | B —<snoc-rtree-(A, B)

Rose trees 45

for which the constructor ~ is more naturally pronounced ‘above’. As
with lists, we make no excuse for using the constructor 2 for both moo
and rose trees. We can define unlabelled, leaf-labelled, branch-labelled
and homogeneous rose trees in terms of rtree, just as we did for moo
trees.

19. Definition

urtree = rtree.(1,1)
Irtree. A = rtree.(A, 1)
brtree.B = rtree.(1, B)
hriree. A = rtree.(A, A)

<&

We use the same kind of abbreviations as for binary trees, writing a for
ait and —.x for it <x.

Some example rose trees are:

= the unlabelled rose tree —~.[a, <[4, a]], which might be drawn

*= the leaf-labelled rose tree —.[a.b, <.[a.d,a.e]], which would be
drawn

46 A taxonomy of trees

x the branch-labelled rose tree a <[4,¢c < [s,a]]:

* the general rose tree a <[a.b,c <[a.d, ae]]:

There is a complication with rose trees, in that their defining func-
tor is non-polynomial. The type rtree.(A, B) is the initial F-algebra,
where

F.X = Al|(Blsnoc.X)

The occurrence of the functor snoc in this expression makes F non-
polynomial, that is, not built solely from identity and constant functors,

Rose tree catamorphisms 47

sum, product and composition. This means that the standard results
about polynomial functors being cocontinuous do not apply. However,
for any A, the type snoc.A is itself the initial algebra formed by a co-
continuous functor; Malcolm (1990) showed that any functor like snoc
satisfying this property is in turn cocontinuous: ‘functors induced by pa-
rameterized Hagino types are [colcontnuous if their defining functors
are [co]continuous’.

Rose tree catamorphisms

Rose tree catamorphisms satisfy the equations

(f.d)osr = f
F®)o< = doidi{f®)*
That is,
{f.®)sa = fa
fLo)yb=<x) = b ((fd)*x

The * here is a map over snoc lists.
As with moo trees, we make some notational abbreviations for the
special cases. If the leaf type is 1, we write

(le.®)a = e

and if the branch type is 1, we write as the second component the list
function (it®) instead of the binary operator & :

(f.9).(=x) = g.lf.a)*x)
The rose tree map is given by
(f.g)* = (aof,<o(glid))

The only abbreviation that we will bother to make for map onrose trees
is to write f* instead of {f,f)* on homogeneous trees.

48 A taxonomy of trees

We now give a few examples of rose tree catamorphisms. The
identity catamorphism is, of course, given by building a catamorphism
from the constructors:

id = (a~)
The root of a homogeneous rose tree is given simply by
root = (id, <)
The depth of a rose tree is given by
depth = (!1,{1+) o (id. T} o>}

where t returns the greater of its arguments. That is, the depth of a
branchis one greater than the largest of the depths of its children.

The numbers of leaves, branches and elements in a rose tree are
similar;

leaves = ('1,(id, +)<»)
branches = (10, (1+) o (id, +} o)
elements = (11, (1+) o {id, +) o >}

Another example is provided by Dewey Decimal labelling (Knuth,
1968a), which returns a rose tree of cons lists; the latter are defined by

cons.A = aA | A-<cons.A

We introduce here the operator Y, pronounced ‘zip’, which is the post-
inverse of «* A »% on pairs of snoc lists:

Yo(*x A»x) = id
Thatis, Y satisfies
ovaYaob = a.(ab)
(xra)Y{y=b) = (xYy)+(ab)

Rose tree catamorphisms 49

on pairs of equal-length lists. We extend its definition to pairs of same-
shaped trees in Chapter 5, and to pairs of different-length lists in Chap-
ter 6. The idiom (@)*oY crops up so often that we define an abbrevi-
ation for it:

Yo = @)oY
The function dewey is now given by
dewey = ({!(0:0), (=)o ({a.0) I (index Yy id)))
where
ndt = (n3) =t
and
index-o-t = o0

index.(x » t) index.x » #£.x

so that # oindex = # and index = {snoc: !(0.0), +o (id A #)o <). The
function index simply replaces every element of a list with its position
in the list, with the first position being 0.

In every example {f, ®) ofa rose tree catamorphism thatwe have
seen so far, the snoc list function b@ has been a catamorphism. Al-
though this appears to be true in nearly all ‘natural’ cases, it is not nec-
essary, and in general b&® may simply be a list function. Consider, for
example, the rather contrived predicate funny on leaf-labelled boolean
rose trees: a leaf is funny iff its value is true, and a branch is funny iff
all its children are funny, or all its children are unfunny:

funny-a-a = a2
funny-—-x = constant-(funny * x)
where constant is the predicate introduced at the end of Chapter 1,

which holds of a list whenever all its elements are the same. Now, funny
is a catamorphism

50 A taxonomy of trees

funny = ({id, constant}

but, as we saw in Chapter 1, constant is not a list catamorphism.

Hip trees

The third and last species of tree that we will encounter is that of A
trees, a name coined by Geraint Joncs. Hip trees are a kind of homoge-
neous binary tree, but instead of being built from a single constructor
& theyuse two constructors / and \ , pronounced ‘under’ and ‘over’.
Intuitively, the tree t / u is formed by adding t as a left child to u;
similarly, t\ u is formed by adding u as a right child to t. Thus, /
and)\, are a little like left and right hips, whence the name. These two
operatoars satisfy the law

(t/u)\v = t/(u\v)

We say that * / associates with .
Formally, the type htree.A of hip trees with elements of type A is
given by

20. Definition
htree, A = A.A | htree.A / htree.A | htree.A \, htree.A
modulo the law that / associates with . [¢]

For example, the hip tree expression
ab/aa\ (ad/ac) ae)

represents the by now familiar binary tree

Hip tree catamorphisms 51

whereas
A2\ (ad /a.0)

represents the tall thin tree

Different presentations of hip trees can be found elsewhere (Gibbons,
1988; Bird, 1988).

Hip tree catamorphisms

The definition of hip tree catamorphisms is, of course, determined com-
pletely by the type definition:

(htree: . ®, ®)oa = f

(htree: {, ®, ®) o / @ o {htree: f, @, ®)’
(htree: f, @, @)\ = & o(htree: f, ®, ®)°

Moreover, @ must associate with @ .
One example hip tree catamorphism is the function elements,
which returns the number of elements in a hip tree:

52 A taxonomy of trees

elements = (11,4, 4)

Another is the function inorder , returning a list consisting of the
elements of its argument in the order given by an inorder traversal:

inorder = (o, H, +)

Yet another is the predicate some.p, which holds of a tree iff some
element of that tree satishes p:

some.p = (p.V.V)
and the predicate all.p, similarly:
allp = ([p,AA)

In all these cases, the two binary operators are the same and are
associative, that is, the first associates with the second. In fact, they are
all spedial cases of the following theorem.

21. Theorem

(cat: f,®) cinorder = (htree: f, ®, B)
if @ is associative. &
Proof (cat: f,®) is (#,®) promotable. Q

Informally, the lifting of any cat list catamorphism to hip trees is still a
catamorphism.
More interesting examples are the functions root and depth:

root = (id,», <)
depth = (11.®, @) where x®y=1+x1y

Now, » associates with «:

Hip tree catamorphisms 53

x> (Y % 2)

[>]

y<z

[~]

x>y)<z

i

In fact, we did not need any properties of <« at all, which means that
» associates with anything, and by symmetry anything associates with
<. However, < does not associate with », because x « (y »12) is x
whereas (x<y)»z is z.

For depth , we have

x@ (yd2)
I[@, twice ﬂ
I+x)T1+2)Ty)
\I T is associative and commutative]]
A+2)T (A +x)Ty)
I[@, twice ﬂ
xdy)dz

and again the catamorphism is proper.

For our last two examples, we consider conversions between moo
and hip trees. One such conversion is the function hmh from homoge-
neous moo trees hmtree.A to hip trees htree.A, which satisfies

4-a

hmh-a.a
hmh-(X £,y) = hmhx /a.a\ hmh-y

and so
hmh = f{hmtree: &, ®) where t@,u=t/aa\u

54 A taxonomy of trees

Note that hmh is not surjective: hip trees in which some children are
only children have no obvious counterpart as homogeneous moo trees.

Aconversion in the opposite direction is provided by the function
hbm from hip trees to branch-labelled moo trees,

hbm € htree.A — bmtree.A

given by
hbm = (htree: « o (1a Aid A 12), D, ®)
where
XY *,2) = X&,2
(X%, ¥)®Z = x%x,2

Again, the conversion is not surjective, because there is no empty hip
tree.

Consistency and partiality

As a kind of ‘sanity check’ on a type with laws, we will want to ensure that
the laws we have chosen are consistent with the intended model, that is,
that they do not equate terms that are intuitively ‘different’; the quotient
under the congruence relation ~ will always exist, but too strong a
collection of laws will make it collapse to fewer congruence classes than
the intended model has objects.

One way of performing this check is to exhibit a free algebra that
is ‘obviously’ isomorphic to the intended model, and to show that this
algebra is also isomorphic to the quotient algebra; this guarantees that
the congruence relation ~ does not identify terms that are different in
the intended model. It does not matter if this free algebra is clumsy to
work with: its purpose is solely to show that the lJaws are not too strong,
and after serving this purpose it can be forgotten.

For example, recall from Chapter [the type cat.A of non-empty

Consistency and partiality 55

cat lists over a type A. Itis not difficult to show that cat.A is isomor-
phic to the free algebra snoc.A— the cat catamorphism (g, &), where
the associative operator @ satisfies (x@) = {({(x+), +}, and the snoc cata-
morphism (g, (H-) o (id Il 0)) are each other’s inverses—and so the asso-
ciativity property is indeed consistent.

However, if we try to perform this check on hip trees, we find that
it is not obvious what kind of tree they are isomorphic to—it is clear that,
for example, 4.2 / a.b)\, a.c represents the same tree as 4.3 + &.¢, but
what tree does the expression

odd = (aa/ab\ac) / (ad/ae)\ af)

represent? Evidenty, some more laws are required in order to make
the algebra an algebra of trees.

1t seems that choosing these laws is not at all straightforward. If
we add the two laws

I

t/(u/v) t/v
t\u\v t\v

which express the fact thatadding a branch destroys any branchthat was
already present, then all sorts of functions cease to be catamorphisms—
in fact, the only ones remaining out of those we have seen so farare root
and hbm . Adding this law breaks the antisymmetry of the relation ‘is a
componentof ’ on hip tree terms, and the process of structural induction
(Burstall, 1969) relies on this ordering being well-founded.

A more sensible suggestion is to make / and \ assodative, so

that

t/(u/v) (t/u /v
(tVu\v t\(ulyv)
in which case / and \ add children at the ‘bottom left corner' and

‘bottom right corner’ of the tree. This does give us an algebra corre-
sponding to our intuition of trees, contrary to Meertens’ (1989b) obser-

56 A taxomomy of trees

vation that ‘associativity kills treehood’, but it still means that depth is
not a catamorphism: if x@y = (1 + x) Ty, then neither & nor & is
associative, and indeed the depth of t / u cannot be determined from
just thedepthsof t and u.

The solution we would like is to say that the term odd ‘does not
correspond to a tree’: that the operators / and \ are partial, and that
t / u is ‘undefined’ (whatever that may mean) if u already has a left
branch,and t\ v undefined if t already has a right branch. That is,
define the predicate proper, which holds of a hip tree expression if it
‘represents a proper tree’, by

proper.(a.a) = true
proper.{(t / u) proper.t A proper.u A le.u
proper.(t\, u) = proper.t A proper.u A re.t

where le and re (short for ‘left empty’ and ‘right empty’) hold of trees
which have no left branch and no right branch, respectively:

{!true, !false, <)
{!true, >, lfalse)

le
re

"

Since proper is not a catamorphism, we should check from first princi-
ples that it respects the associativity of / and \ ; indeed,

proper.((t / u) \ v)

[[proper ﬂ

proper.t A le.u A proper.u A re.u A proper.v

[{ proper II
proper.(t / (u '\ v))
We would like to say that a hip tree is defined iff it satisfies proper.

Partial algebras, though, are notoriously difficult to work with. In
particular, we would like to avoid any weakening of equality, because it

i

Consistency and partiality 57

plays such a crucial role in our calculational style. For instance, if we
weaken equality so that it holds vacuously when either side is unde-
fined, then it ceases to be transitive—but our Feijen-style calculations
lean heavily on the transitivity of equality: if that goes, we must check
separately the definedness of each step of each calculation. Alterna-
tively, if we use an asymmetric ‘refinement ordering’ instead of equality,
as Morris (1987) and Morgan (1990) do for their Refinement Calculus,
then we can only apply some equations in one direction—we can no
longer use the unfold-fold style of reasoning (Burstall and Darlington,
1977), on which we also rely.

So, we have a dilemma. On the one hand, we want to exhibit a
free algebra isomorphic to htree, in order to demonstrate the consis-
tency of the associativity property enjoyed by / and \ ; constructing
such an algebra is made difficult by the fact that we have no intuition
for the ‘improper’ hip trees. On the other hand, we do not wanito elim-
inate these improper terms by making / and \ partial, because partial
algebras introd uce complications that we could do without.

The solution to this dilemma is that we need only exhibit a free
algebra isomorphic to the proper subset. For, suppose that we have an
algebra A with Jaws =, and a predicate p on A. Suppose also that we
have a model B, an algebra isomorphic to the subset of termsof A that
satisfy p, that is, we have f € A — B and g € B — A such that

fog = id
and
peg = ltrue
but only that
gfa = a if pa

If ~ relates two proper terms a and b, then f-a and f-b are equal,
because f must respect ~—thatis, a and b correspond o the same

58 A taxonomy of trees

object in B; the laws do not relate proper terms that correspond to
differentobjects.

Returning to our dilemma, we need only show that the proper hip
trees areisomorphic to some free algebra; this is given by the following
theorem. This means that we can forget about making / and \ partial,
and can instead remain firmly rooted in a calculus of total functions.

22. Thesrem The proper hip trees are isomorphic to the free algebra

ftree A = aA | ftree AR A | AR ftree. A | ftree A Ra ftree.A
¢

Proof Define the functions fh € ftree.A — htree A by
fh = (a /oidlla \calid ®) where t®,u =t/aa\u
and hf € htree.A — ftree.A by

M = (a2 0.0)
where
x@aa = xQAa Aaa®z = afNz
xQ@(yR@a) = xQQa xDa)Qz = xX,z
xQ@RNz) = xWaz @Ry)©z = aNz
XQ(Y®az) = x®z (xRY)Oz = xK,2
Then

(1) propero fh = Itrue
(ii) hiofh =1id
(ii1) (hohf)|id o proper? = proper?, where
pra = { <a if pea

>t otherwise

These results follow from the unique extension property; the calcula-
tions are straightforward but lengthy, so we omit them. Q

Consistency and partialily 59

Not all algebras that are intuitively partial are as well behaved as
hip trees. For example, Wright (1988) has been doing work on two-
dimensional ‘arrays’ or matrices similar to ours on trees. Arrays are
constructed from an embedding and two associative binary operators
e and ¢, pronounced ‘above’ and ‘beside’. The intuitive model of
arrays as rectangular matrices only holds up when all subterms of a
term ‘conform’—two arrays must have the same ‘width’ if they are to
be placed one above the other, and the same ‘height’ if placed side by
side. The operators ¢ and ¢ enjoy a kind of distributivity property
called the abiding law (Bird, 1988):

wWox)e(yoz) = (weyodlkxez)

provided that all four parenthesized terms conform. Jeffrey (1990) hasshown
that if the abiding law is strengthened to hold unconditionally, then the
intuitive mode) breaks: this stronger law entails identities such as

ooo o
o -0
oo o
|
ooc oo
o= o
cCooo

using the obvious graphic representation for rectangular arrays. Thus,
the dilemma between consistency and manipulability is not so easily
avoided: if the algebra is to be consistent with the model, either the
constructors must be made partial—introducing the foundational com-
plications we wish to avoid—or the laws must be weakened to their
guarded forms—requiring that calculations be peppered withside con-
ditions and checks of conformity—or both.

3 Upwards accumulation

We have now covered the background material on which we willbuild
and can proceed with the main topic of this thesis, which is the study of
accumulations on trees. Applying an accumulation to a structured object
such as a list or a tree leaves the 'shape’ of that object unchanged, but re-
places every element of that object with some ‘accumulated information’
about—that is, a catamorphism applied to—other elements. Accumu-
lations are a very common pattern of computation; the encapsulation
of these patterns as higher order operators creates a powerful structur-
ing tool, making programs clearer to read and easier to manipulate.
Moreover, accurnulations can provide an efficiency-improving trnsfor-
mation, if the naive computation of the accumulated information can
be replaced by a more careful incremental computation; the naive com-
putation corresponds to the declarative description of a result, and the
incremental computation to a more efficient butless perspicuous way of
achieving it.

The upwards and downwards accumulations that we discuss in this
chapter and the next are two instances of this general scheme. Upwards
accumulation replaces every element of a tree with some catamorphism
applied to its descendants, and so corresponds to passing information up
the tree from the leaves to the root; downwards accumulation consists
of replacing every element with some catamorphism applied to its ances-
tors, and so passes information down the tree from the root towards the
leaves. (Computing, as has been noted before, i1s one of the few areas
in which trees have their leaves planted in the ground and their roots
waving in the air.)

We start by reviewing accumulations on lists (Bird, 1987).

62 Upuwards accumulation

Accumulations on lists

Consider the function inits,
inits € snoc.A — spoc-snoc-A
which returns the list of initial segments of a snoc list; for example,
inits.[a,b,c] = [[a), [a, bl [a, b,c]]
Intuitively, inits replaces every element of the list with the list of that
element’s predecessors. Formally, inits is characterized by the equations
inits-0-a = D-0-a
inits-(x>a) = inits:x» (x> a)

Although it is not immediately obvious from these equations, inits
is a snoc list catamorphism; for it to match the pattern for catamor-
phisms, the only occurrences of x on the right hand side of the second
equation should be as part of the expression inits.x. However, it is easy
to see that

last o inits = id
s0, by Theorem 9, inits is catamorphic:
inits.(x »a) = inits.x » (last-inits-x » a)
and so
inits = ([ooo, @) where v@®a = u: (last.usa)

An important property that holds of inits, and of the analogous func-
tions on trees that we will introduce shortly, is given by the following
theorem.

23. Theorem

initsefx = fxxoinits

Accumulations on lists 63

Proof By the unique extension property, using the property that

frxo® = @Sofsx|f
Q

Categorically speaking, Theorem 23 is the statement that inits is a nat-
ural transformation. from snoc to snoc o snoc, the latter being the functor
that maps A to snocsnoc-A and f to fxx. Intuitively, a polymorphic
function like inits cannot ‘examine’ the elements of its argument, and
so can do no more than blindly ‘rearrange’ these elements; mapping
a function over the elements cannot change the way in which they are
rearranged.

Functions that ‘pass information from left to right’ are character-

ized by the following definition.
3

24. Definition We calla function g rightwards if it can be written in the
form

g = hxoinits
for some h. o

Suppose g is rightwards, and can be written in the above form with
an h that takes linear sequential time; this gives us a quadratic time
algorithm for computing g. Now,

9-(x > a)
“ rewrite g]I

h * inits-(x » a)

[inits]

h * (inits-x & (x » a))

- [

(h * inits-x} » h-(x = a)

64 Upwards accumulation

= [[fold g again]l
g-x » h(x > a)

This does not change the efficiency of computing g; if h takes linear
time, [or example, then this characterization of g will still take quadratic
time. However, suppose h is a snoc list catamorphism:

h{xra) = hxPa
for some @ taking constant time; then
g(x»a) = gxs(hx®a)
Moreover,
lastog
ﬂ unfold g]l

last o h* o inits

1

l[promotion: last o hx = holast]]

h o last o inits

H inits has post-inverse last]]

and so
g(x»a) = gx=(last-gx®a)

and ¢ can be computed in linear time, using only a linear number of
applications of @ . What is more, g is a catamorphism:

g = f(ooheq,®) where u®a = ux (last-u® a)

Functons of this form are what we mean by accumulations on
lists:

Accumulations on lists 65

25. Definition Functions of the form {f, ®)# o inits are called rightwards
accumulations, and are written (f,)4 . o

Bird (1987) calls these functions ‘left accumulations’, a contraction of
‘left-to-right accumulations’, following functional programming conven-
tion, but this name is confusing in view of the rightwards-pointingarrow
he uses to denote it.

Functions which are rightwards but not rightwards accumulations
are awkward to deal with, since they are both inefficient and intractable;
where possible, we try to find rightwards accumulations instead, which
being catamorphic are both efficient and easy to manipulate.

Rightwards accumulation can be seen as a generalization of inits ;
where inits replaces every element ofa list with its predecessors, a right-
wards accumulation replaces every element with some catamorplisim ap-
plied to its predecessors. That it is a generalization and not justa varia-
tion follows from the fact that the identity is a catamorphism:

inits

ﬂ identity]]

id* o inits

ﬂ identity catamorphism n
(o, =) oinits

[#]
@)4

The equation

it

. @)yp = (fO)*oinits

could be seen as an efficiency-improving transformation, when used
from rightto left. It can also, of course, be used from left to right, when
it forms a ‘manipulability-improving’ transformation: we know many

66 Upwards accumulation

useful properties about inits, * and catamorphisms, and so the right
hand side may be more amenable to calculation than the left. Most of the
time, however, we aim simply to express functions as accumulations—
we know then that we can both implement them efficiently, by writing
them in the form of the left hand side, and manipulate them readily, by
writing them in the form of the right hand side.

Generalizing to moo trees

We now show how all this can be generalized to trees. The function
inits on lists replaces every element of a list with its predecessors, that
is, with the initial segment of the list that ends with that element. By
analogy, the function subtrees on trees replaces every element of a tree
with its descendants, that is, with the subtree rooted at chat element. For
example, applying subtrees to the tree

yields the tree of trees

Generalizing to moo trees 67

@ @©

@ OOO
(o) (@)

The following definition characterizes subtrees.

26. Definition
subtrees.(a.a) = a.a-a
subtrees.(x £py) = subtrees.x &,,,y subtrees.y
¢
Again, since

toot o subtrees = id

we can calculate that
subtrees.(x & y) = subtrees.x @y subtrees.y
where
Udpv = Ux,V where 2z = root.u %y root.v

and so

subtrees = (aca @)

As with inits, we have the following theorem.

68 Upwards accumulation

27. Theorem
subtreesofx = fukosubtrees
Y
Proof By unique extension property, using the property that
faro® = @ofax|)f(fax
Y

The analogue of a rightwards function on lists is an upwards func-
tion on trees:

28. Definition Functions of the form h= o subtrees are called upwards
functions. ¢

As with rightwards functions on lists, an upwards function can still be
neither efficient nor catamorphic. If h is a tree catamorphism, though,
then h* o subtrees is much more amenable.

29, Definition Functions of the form {mtree: f, ©®)* o subtrees are called
upwards accumulations, and are written (f, ©)fr. o

An upwards accumulation replaces every element of a tree with
some catamorphism applied to the descendants of that element. For
example, applying the accumulation (f, ©)1t to the tree

produces the result

Generalizing to moo trees 69

(£.b @, (f.d @ f.e))

(%) (taorre)

Because the catamorphism {a,) is the identity, subtrees is itself
an upwards accumulation:

subtrees = (&, £)f

Just as we did with left accumulation, we can calculate a catamor-
phic characterization of upwards accumulation. We observe first that

root o (f, Q)

[+]

root o (f, ©)* o subtrees

1l

= H root ofx = f oroot]]
{f. ©) o root o subtrees
= [[root o subtrees = id]I
(10}
Now let

t = [f.O)x = root((f,®) N %)
s {f.0)y root.{(f, ©) ft y)

and so {f,®).(x £py) = r@ss. Then
O (x£by)

L]

(f, ®) * subtrees.(x &3 y)

I
ff

il

70 Upwards accumulation

H subtrees]]

{f. ©) * (subtrees.x %,y subtrees.y)

[+]

{{f. ©) * subtrees.x) x,q,s ({f, ©) * subtrees.y)

[+]
((f, ©) 1t x) £ius (. ©O) 1Y)
ﬂ let @ satisfy u @p v = (&).(root-u Op root-v).(u,v)]]
(. O)) @b ((f. @) 1Y)
and so upwards accumulation is indeed a catamorphism:
f.on = (a°f®)

Once more, we notice from this characterization that the upwards
accumulation of x & y can be computed from the accumulations of x
and y using only one more application of ®, giving us a linear ‘algo-
rithm' {a o f, ®) in place of the quadratic ‘specification’ {f, ©)* o subtrees.
In fact, if we have one processor per element of the tree, acting in paral-
lel and connected in the same topology as the tree, then we can perform
an upwards accumulation—as we can any tree catamorphism—in time
proportonal to the depth of the tree, assuming that the individual op-
erations take constant time.

i

Examples of upwards accumulation

One example of an upwards accumulation is the function sizes, which
replaces every element of a tree with the number of descendants it has:

sizes
= ’[definition]|

elements* o subtrees

Examples of upwards accumulation 71

1l

ﬂ letting @ satisfy u @,v =u+1+v]l
{1, ®)* o subtrees

[]
(1L &)

A variation on this function forms the first half of the logarithmic-time
parallel list ranking algorithm that we will see in Chapter 4.

Another example would be that of the function minmax, which
labels every element of a tree with the smallest and largest elements of
the subtree rooted at that element:

minmax = ({id, |} A (id, 1})* o subtrees

By Theorem 13, the fork of two catamorphisms is itself a catamorphism,
and so minmax isalso an upwards accumulation. When applied 10 aleaf-
labelled binary search tree, that is, one for which an inorder traversal
produces a sorted list of leaves, this function ‘annotates’ the tree with
the information needed to enable the fast operations for which binary
search trees are useful.

We give some more substantial examples of upwards accumula-
tions in later chapters. In Chapter 5 we see that upwards accumulation
forms the first half of the two-pass ‘paralle] prefix’ algorithm. This al-
gorithm passes information up towards the root of the tree and then
back down to the leaves again—it is, in fact, a generalization of the list
ranking algorithm that we mentioned in connection with sizes above.
In Chapter 6 we discuss the problem of drawing a tree, whichis also an
upwards accumulation; the problem consists of labelling each branch
of the tree with information about where to draw its children, and the
label attached to an element is a catamorphism of the subtree rooted
at that element. Finally, in Chapter 7, we see that there is a very close
analogy between upwards accumulation and synthesized attributes in
an attribute grammar.

72 Upwards accumulation

Upwards accumulations on hip and rose trees

We do not need upwards accumulation on hip trees for this thesis, but
it can be defined in much the same way as on moo trees. It is given by

(@) = ({(htree: f, @, ®)=* o subtrees

where the function subtrees on hip trees—again, we make no apologies
for reusing the name—satisfies

subtrees-a-a = A.a-a
subtrees-(t / u) t @ (subtreest / subtrees-u)
subtrees-(t \, u) (subtrees-t \, subtrees-u) Q u

1

where
t@au = a(t/u) au®t = a(u\t)
teix/y) = x/(t@y) (x/y)®t = x/yOYH
tex\Vy) = (t@x)\y (x\yOot = xOt\y

We should check the consistency of these equations from first principles,
since we have not phrased them as catamorphisms; we have that

te((x/y)\2) = x/(t@y)\z = toXx/\2)
(x/Y)\V2)Qu = x/yow\z = (x/{y\2)Ou

and so (t@) and (Qu) are proper; they both affect only the root of a
tree. Moreover, @ associates with ©, and so

subtrees-(x /y\ z) = subtrees-x / (x @ subtrees-:y © z)\ subtrees-z

and so subtrees is itself proper. What is more, all three of these func-
tions, subtrees, (t@) and (Qu), are injective and hence catamorphic.

Upwards accumulation on rose trees is a lot more straightforward than
it is on hip trees, on account of the absence of laws on the algebra of rose
trees. Again, the accumulation is just a catamorphism mapped over the
subtrees,

Upwards accumulations on hip and rose trees

(f.O)t = (rtree: f, ©)# o subtrees

where subtrees satisfies
subtrees-a-a = A.A.a
subtrees-(a < x) (a < x) < (subtrees * x)

Once more, subtrees is injective:
root o subtrees = id
and so is catamorphic:

subtrees = (rtree: soa, @) where a @z = (a <root*2)<z

4 Downwards accumulation

In the previous chapter we discussed upwards accumulation, which em-
bodies the notion of passing information up through a tree from the
leaves towards the root. We now turn our attention to the inevitable
counterpart, downwards accumulation, which captures the idea of pass-
ing information in the other direction, from the root towards the leaves.

It turns out that downwards accumulation is less straightforward
than upwards; the latter follows the structure of the tree, but the former
goes against the grain, so to speak. It also transpires that there are two
different classes of downwards accumulation; one is catamorphic and
the other is efficient, and where they intersect we get accumulations
that are both well-behaved and practically useful.

A first attempt

As upwards accumulations arose by considering the function subtrees,
which replaces every element of a tree with its descendants, so down-
ward accumulations arise by considering the function paths, which re-
places every element of a tree with that element’s ancestors. The ances-
tors of an element in a tree form another tree, a tall thin one with that
element as its only leaf. For example, the ancestors of the element d in

the tree

76 Dounwards accumulation

form the three-element path

Applying paths to the whole five-element tree produces the tree of trees

@2 O,
O, O,
O O

It seems that paths, and hence downwards accumulation, is ex-
pressed most naturally in terms of hip trees, since the paths themselves
are trees in which every child is an only child. The type of paths is thus

paths € htree,A — htree-htree-A
If we define the operations @g and Qg for given @ by

XxQay = ({(@rooty)xx)/y
xQgy = x\ ({root.x®) *xy)

A first attempt 77

—note that @g associates with Og for any & and @ —then we can
define paths as follows.

30. Definition
paths = (fhtree:204,0Q;, O}
¢
Thus,
paths-a-a = a-aa
paths-(t /u) = paths-t @; paths-u
paths.(t\ u) = paths-t ©\ paths-u
and in particular, we have
paths{(t / a-a\ u) = ({/a-a)*paths-t) /a-aa\ ({a-a\) * paths-u)
As before, paths is a natural transformation.
31. Theorem
pathsof* = fx* o paths
&
Proof By the unique extension property, using the fact that {f,®, @)+
is (©;, @g) 2nd (S\.OQp) promotable. V)

Proceeding in the same way that we did in the previous chapter,
we define downwards functions and accumulatjons.

32. Definition Functions of the form hx o paths are called downwards
Sfunctions. &

33. Definition Functions of the form (htree: f, &, ®}* o paths are called
downwards accumulations, and are written (f, ®, N} . &)

The promotion properties used in the proof of Theorem 31 give
us immediately that

78 Douwnwards accumulation

@&, ®) | aa a-f.a
f.e.®) (/) ..ty (&.®)du
fo.edt\uy) = (6.0 JtSs (. @) u

and so downwards accumulation is catamorphic:
&0 = [2:f0g Og)

However, something unexpected happens here. Consider the identity
function; it is easy to see that @¢ = / and ©, =\ ,s0

it

id-aa = aida
id(t fu) = idt@cidu
d(t\u) = idtS, idu

and so, by the unique extension property, we would expect that
id = (d <> = (id < »)*ocpaths

—but we noted in Chapter 2 that (id, «,>») is not a hip tree catamor-
phism, because « does not associate with >» . The associativity property
imposes conditions on all tree catamorphisms, even though not all hip
trees can be paths; no element of any path of a tree has a stbling, and
so the associativity property never comes into play for downwards accu-
mulations.

We show next how to prevent these extra conditions on hip trees
from interfering with downwards accumulations.

Threads

The solution to the dilemma mentioned above is to coin a new algebra,
less general and more appropriate than hip trees, to represent paths;
we call terms in this algebra threads. Every thread can be a path in some
tree.

Threads 79

34. Definition
thread. A = o.A | A athread. A | Ay thread A
¢
The operators « and ., might be pronounced ‘left child’” and ‘right
child’. Informally, threads are like hip trees in which every child is an
only child; alternatively, they could be seen as a kind of non-empty cons
list with two different cons operators. For example, the three-element
path from page 76 corresponds to the thread ay, (¢ < 0.d).
With this new algebra, paths has type

paths € htree.A — htree-thread-A
and is given by the next definition.

35. Definition (replacing Definition 30)

paths = (aoa, @z, Og) where xpgoa = agx
o:aNX = ayux
o
More lucidly,
paths«(t / a-a\ u) = ({aa) *paths-t) / a.0a), ({ay) * paths-u)

The downwards functions remain the same as before: if we call
thie function in Definition 30 pathsg, in order to distinguish it from the
new definition of paths in Definition 35, then

hx o paths; = (h o th)# o paths

where th is the injective but nat surjective function converting threads
to hip trees,

th = ({thread: a, Zeoalid, \ eallid)

and

80 Doumwards accumulation

hx o paths = (hoht)x o pathsy

where ht € htree,A — thread.A is the post-inverse of th.

The downwards accumulations, however, are different with this
new definition of paths : a downwards accumulation is now a thread cata-
morphism mapped over the paths of a tree.

36. Definition (replacing Definition 33)

f.®, ®)\ = (thread:f, @, ®)x o paths
¢

Because threads form a free algebra, there are no laws to impose on the
compaenents of an accumulation, and the identity function is a down-
wards accumulation after all:

id = (d > >

Now, unfortunately, something else goes wrong: (f, @, ®){ is no
longer a catamorphism, because it promotes through neither @z nor
O . This can be seen for @y by looking at the tree a-a / ab:

(f.® ®) 4 (aa/ab)
[+]

(f. ®, ®) * paths-(a-a / a-b)
![paths]I

(1. ®. ®) + (&-(b 0-2) / a-0:b)
ﬂ *, catamorphisms I|

a(b @ fa)/afb

Il

The accumulation depends on the root b of the tree, as well as the
accumulations a-f-a and a-f-b of the components.

This can be rectified by defining paths and downwards accumu-
lation on homogeneous moo trees instead of on hip trees; intuitively,

Threads 81

the accumnulations of the children happen ‘at the same time’, when the
root is still available. Formally, we redefine paths once more to have

type

paths € hmtree.A — hmtree-thread-A
as follows.
37. Definition (replacing Definition 35)

paths = (hmtree: a0, @)
where u@,v = (@) *u %x,, (aL) *v

%

It is still a natural transformation, and so satisfies Theorem 31.
With this definition, the downwards functions are now moo tree
functions of the form

hx o paths € hmtree.A — hmtree.B
Every downwards function in this sense corresponds to one in the sense
of Definition 32, but the converse is not true because the correspon-

dence between hmtree and htree is not surjective. The downwards ac-
cumulation

(f.®. @ = (thread: f, ®, @)= o paths
regains its catamorphic status, being now a catamorphism on moo trees:

f®.®)laa = afa
@84y ((a®) * (f, ®, ®) U X) *(a ((a®) * (F. &, ®) I y)

SO

&, = (hmtree: 801 @)
where

U@, v = ((a®)=u) %1, ((a®) xV)

82 Douwnwards accumulation

Applying the accumulation (f, @, ®){ to the five-elemenut tree given ear-
lier produces the tree

P
(a®(c®f.d)) (a@(c@f.e))

as a result.

Many vseful functions on trees are downwards accumulations. We
have already seen two examples, id and paths; another simple yet im-
portant accumulation is the function depths, which replaces every ele-
ment of a tree with its depth in that tree:

depths = (11,8,0){ where a®x=1+x

The thread catamorphism {!1,®, @} involved here returns the length
of a thread. We can write the weighted internal path length wipl of a
tree interms of depths :

wipl = (id, ®) o depths where u@,v=u+a+tv

A more substantial example is provided by backwards analysis of
expressions (Hughes, 1990), which ‘starts with information about the
context of the entire expression and propagates it downwards through
the syntax tree to the leaves to derive information about the contexts
in which the subexpressions occur'—that is, it consists of a downwards
accumulation applied to the parse tree of the expression.

As a final example, consider the function leftleaves, a variation on
the function sizes of Chapter 3; this function replaces every branch of
a leaf-labelled binary tree with the number of leaves in its left child, and
replaces every leaf with 1:

T_hreads 83

leftleaves = (leaveso left)x o subtrees € Imtree.A — hmtree.N

where left satishes

left.a.:a = a-a
left(x xy) = x
Now defne the function rank by
rank = (id, lit)x o (id, », 4-){} o leftleaves € Imtree.A — Imtree.N

The function (id, lit)x turns a general binary tree into a leaf-labelled
binary tree by throwing away the branch labels. A little manipulation
shows that

rank-a-a = a.l
rank-(x £ y) = rank-x % (leaves.x+) * rank-y

and so rank numbers the leaves of a tree from left to right.

Now, leftleaves is upwards, but it is not an upwards accumulation
because leaves o left is not catamorphic. Tupling produces the catamor-
phism leaves A (leaves o left) :

leaves A (leavesoleft) = (I(1,1), (+ A <)o <?)
from which we can construct an upwards accumulation:
leftleaves
[denition |

(leaves o eft)x o subtrees

i

it

![pair calculus]]

>x* o (leaves A (leaves o left))* o subtrees

i

II tupling, upwards accumulation]]

$# o (W1, 1), (+ A <€) o <)

84 Doumwards accumulation

This gives rank as the composition of a map, a downwards accumu-
lation, another map and an upwards accumulation. All but the down-
wards accumulation can be evaluated efficiently—with linear effort, and
in parallel in time proportional to the depth of the tree. The downwards
accumulation, though, is still quadratic. In the next section, we will see
how a downwards accumulation can be evaluated efficiently—in partic-
ular, rank can be computed in parallel on a linear number of processors
in time proportional (o the depth of the tree. Thus, rank can be used as
a logarithmic-time parallel function to label the elements of a list from
left to right, by first building a balanced binary tree whose leaves are the
elements of the list.

Efficient downwards accumulations

Look again at the result of applying the accumulation (f, @, ®){ to the
five-element tree on page 75:

(a@tb) &a@f.i
(eocaly) (aocotie)

This tree contains a quadratic number of applications of @ and ®, and
there are no common subexpressions; evaluating the accumulation will
inevitably take quadratic effort.

We might ask, under what conditions can the accumulation be
evaluated using only a linear number of @ and ® applications? That
is, what properties are required of f, @ and ® in order that each
parentin the result is a common subexpression of both its children?

Efficient downwards accumulations 85

Considering the two elements on the middle level of the tree we
see that a necessary condition is that there exist operators B and ®
such that

ag®fb = famb
a®fc = faRc

for only then is the root of the tree a common subexpression of its two
children. Given this property, a sufficient condition for the two elements
on the bottom layer to have their parent as a common subexpression is
that @ and ® each associate with both 8 and ® (thatis, four assacia-
tivity properties, not two); if this is the case then, for example,

a® {cpf.d

[=]

a® (f.cmBd)

[[associativity]I
(@ fcmd

[=]

faRc)@md

which has f.a ® ¢, its parent, as a subexpression.
Let us give these various properties a simple name, so wecan refer
to them.

38. Definition Say (f, ®,®) nverts to (f B, ®W) if

agfb = fa@b
a®fec = faRc
and @ and ® each associate withboth B and X . &

39. Definition Say the triple (f, ®, ®) is top-down if there exist B and
® such that (f,®,®) invertsto (f. @, ®). ¢

86 Doumwards accumulation

These definitions give properties for threads analogous to those for lists
under which a cons list catamorphism can be written as a snoc list cata-
morphism.

We sometimes extend these concepts in the natural way from com-
ponents to catamorphisms—that is, we sometimes say ‘the catamorphism
{f. ®, ®) is top-down’ instead of the rather long-winded ‘the compo-
nents (f, ®, ®) of the catamorphism (f, @, ®) are top-down’, and simi-
larly for inversion.

As we shall see, if (f,®, ®) is top-down then the accumulation
f. ®. ®)Y can be evaluated with only linear effort; moreover, it can be
evaluated in parallel in time proportional to the depth of the tree on a
number of processors linear in the number of elements of the tree.

Daerhts
Consider the type daerht, pronounced ‘dirt’ and defined as follows.

40. Definition

daerht.a = o.A | daerht.A+ A | daerht. A = A
¢

The two operators « and = could be pronounced ‘left leaf” and ‘right
leaf”’, respectively. Informally, daerhts are ‘inverted’ threads; daerhts
are constructed top down, whereas threads are constructed bottom up.
Put another way, daerhts are to threads as snoc lists are to cons lists.

The correspondence between daerhts and threads is made for-
mal by the function td of type thread.A — daerht.A, which converts a
thread to the corresponding daerht; this function is invertible (threads
and daerhts are isomorphic), and so it is a catamorphism.

td = (thread: o0, @, Q) where a@ = (daerht:o¢.ac, ¢, 3)
a® = (daerht:¢.a=,¢,3)

For example, considering again the path from page 76,

Daerhis 87

td.@an (cuod)) = (ca=3c)sd

Now, thread catamorphisms that are top-down are also daerht
catamorphisms, modulo type conversion:

41. Theorem If (f &, ®) inveristo (f, B, K}, then

{thread: f,®,®) = (daerht:f B, &) otd
<

A significant proportion of the proof of this theorem will be used
later, so we extract it as a lemma.

42. Lemma

(.8 ®)otdo ()
(. B.®)otdo (au,)

(f.am. B, ®) o td
{fam, 8, R)otd

Proof We prove only the first part; the second is symmetric.

{f.8. ®)otdo (ay)

[«]

(f.H. ®) o (a@) o td

lo]

(fB.R)efo.ar,r, 3)otd

]

|[promotion]]
((f 8. ®) o (0.ar), B, ®)otd
|[catamorphisms]|
{(f.am), B, ®) o td

@

Proof (of Theorem 41) The proof follows directly from the unique ex-
tension property. For singleton threads we have

88 Douwnwards accumulation

(daerht: f, B, R} otd o o

|]

(daerht: f, B, ®) oo

1

il

l[catamorphisms ﬂ

II catamorphisms]|
(thread: f, ®, @} o 0

For longer threads, we only show the case for « ; the érgument for
is symmetric. We have as premise that (f, ®, ®) inverts to (f, @, ®).

(daerht: f, B, R} o td o (a)

Il Lemma 42 ﬂ
(daerht: {f.am), B, K)o td

II premise: (f.a@) = {(a@®)of Il
(daerht: (a®) of, B, R) o td

i

ﬂ premise: @ associates with @ and ®; promotion l
{(ad) o (daerht: f, B, ®) o td
and of course, {thread: f, ®, ®) follows the same recursive pattern:
(thread: f, @, ®) o (act) = (ad®) o (thread: f, @, ®}
Invoking the unique extension property completes the proof. Q

Thus, any top-down downwards accumulation can be expressed
in terms of daerht catamorphisms:

43. Corollary If (f, @, ®) inverts to (f, @, ®) then
(f.® @)} = (daerht: f, B, ®)x o tdx o paths

Daerhts 89

Proof

fo.®)

[4]
(thread: f, &, ®)* o paths
[[Theorem 41]]

1i

{daerht: f, @, ®)#* o td* o paths
©

Let us define the function htaps, pronounced ‘taps’, to return the
paths of a tree as daerhts rather than as threads:

44. Definition
htaps = td= o paths
¢
Again, we have a theorem about htaps promoting through a map.
45. Theorem
htapsof* = f+* o htaps
o
Proof
htaps o f*

= l[htaps]I

tdx o pathso fx
= ﬂ Theorem 31 I]
td* o f+x o paths
= H promotion: td commutes with f*]I

fsx o td= o paths

90 Downwards accumulation

= l[htaps H
fxx o htaps
\V
The downwards functions in terms of htaps are the same as the
downwards functions in terms of paths, since
h«ohtaps = (hotd)* o paths
and
h* o paths = (hodt)xohtaps
where dt is the inverse of td. Downwards accumulations in terms of
htaps are given by the following definition.
46. Definition
(f.8, ®)A = (daerht: f @, &)*o htaps
¢

We might call this ‘htaps accumulation’, to distinguish it from ‘paths
accumulation’. Almost by definition, paths accumulations that are top-
down are htaps accumulations.

47. Theorem If (f,®,®) invertsto (f, @, ®) then

o) = (| A
¢

Proof By definition of J,, using Corollary 43. Q

As we would expect—since this was the reason for which we defined
it—htaps accumulation can be evaluated with a linear number of appli-
cations of its component operators. Let h = {daerht: f, (5, K} ; then

Daerhis 91

(B8R AKX £ay)
= [[A; htaps]|
h » td * paths.(x &, y)
= [[paths]l
h«td * ((ad) * paths.x £,, (aL) * paths.y)
= [[*, td and catamorphisms]]
(hotd o (a)) * paths.x &¢, (hotdo(aL})* paths.y
= H Lemma 42 I|
{f.2@, B, ®) » td * paths.x =y, (f.aR, B, R) * td * pathsy

[41

(faB, B. ®) Ax #r. (f.a®, B, B) Ay

|

and the last line contains no expensive maps. Moreover, assuming that
MW and ® take constant time, the accumulation can be evaluated in
parallel in time proportional to the depth of the tree, given as many
processors as there are leaves.

For example, applying the htaps accumulation (f, 8, ®)A to the
standard five-element tree

produces the result

92 Downwards accumulation

‘ faxcy@d , ((f.a@c)e)

which has only a linear number of different subexpressions.

Note that htaps accumulation is not in general catamorphic: the
accumulation (f, 8, ®)A of the parent x %, y depends on different ac-
cumulations (f.al, B, ®)A and (f.a®, B, ®)A ofits children.

We have already seen one example of htaps accumulation, the
function htaps itself:

htaps = (o,+, VA

because the daerht catamorphism (¢, &, 3} is the identity. Another ex-
ampleis the identity function:

id = (do> »)A

The daerht catamorphism (id, »,») returns the last (bottom) eclement
of a daerht.

Most natural downwards accumulations are both paths- and htaps
accumulations. For example, recall the function depths from page 82:

depths = (1,.®, @) where a®x = 1+4x
Now, 11, ®, ®) inverts to (!1, ®, &) —because a @ !1.b = !11.ad b and

@ associates with & —and so
depths = (1, &, d)A

as well. The evaluation of this latter formulation of depths takes effort
linear, rather than quadratic, in the size of the tree.

Daerhts 93

However, there are natural paths accumulations that are not htaps
accumulations, and vice versa. An example of the former is the paths
accumulation (id, », +){ that formed part of the definition of rank on
page 83; there are no operators BH and for which the functions
(thread: id,>», +) and {daerht: id, 8, ®) o td are equal. To see this, de-
fine, for brevity, two functions

f = (thread: id,», +)
g = ({daerht:id, H, &) td
for some given B and ®, and consider the three threads of numbers
= auo.b
= au(bgoc)
z = (a+b)uoc

with a being non-zero. We will show that f and g must disagree on at
least one of these threads,

We have
fx = a+b gx = a@®b
fy = a+4c gy = (@®byme
fz = ¢ gz = {(@a+b)Hc

Comparing the values on x, wesee that a®@ b = a 4 b, in which case
g returns the same values for y and z—but f returns different val-
ues. Therefore, for no @ and ® does g equal f; hence, the paths
accumuladon (id,», +){ is not a htaps accumulation as well.

When we first introduced the function rank, we promised that
we would show how it can be efficiently evaluated; we have just shown,
though, that the downwards accumulation component itself is ot an
efficient (htaps) accumulation. The solution is to tuple the downwards
accumulation so that it can be inverted to form an easily computed htaps
accumulation. We just present the tupling here as an example, but in
the next chapter we show how to calculate it.

94 Doumwards accumulation

Consider the daerht catamorphism h.a defined by

h.a = (daerht:!a Aa+, B, ®) where (uv)®a = (uu+a)
(uv)®a = (v,v+a)
It is easy to show that
»oh.0otdoo = id
»ohQotdo(ae) = »ohlotd
»ohlotdo(ay) = (a+)ow»oh.0otd

(for example, by first showing that h.a = (a+ lla+)°h.0, a simple con-
sequence of the promotion theorem), and so

»o(l0A0+, @ ®)otd = (id, > +)
whence

>*o(04id,®.A = (d >+
'I]ius,

rank

[[definition, page 83]‘
(id, it)x o (id, », +) o >x 0 ({1, 1), (+ A <) o <)t

[above |

(id, it)x o >x o (10 L id, B, @)A o 2x o ({1, 1), (+ + <)o «)f}

which is the algorithm running in time proportional to the depth of the
tree that was promised earlier.

We have just seen that not all paths accumulations are htaps accu-
mulations; we now see a counterexample to the inclusion in the other
direction. Consider the function tp.a, which tuples every element of a
tree with its parent, tupling the root with a. It is defined by

tp.a = (aAid, @, DA where (a,b)y® = !bAid

Dounwards accumulation on rose trees 95

For the sake of brevity, as before, define the functions

f = (daerht:!laiid, @, @)otd
g = (thread:laxid, ®, ®)

for some @ . We show that f and g must differ on some arguments;
hence, there is no operator ® such that f and g are equal.
Define the three threads

aL o.cC
= bun{a, o.c)
z = buoc

with a and b different. We have

f.x = (a,c) gx = a®f(a,c)
f.y = (a,c) 9y = b®(a®(ac)
f.z = (b0 9z = b®({a.c)

If f and g are to be equal, then certainly a ® (a, ¢) = (a, ¢)—but then
f and g cannot agree on both y and z. Therefore, there is no thread
catamorphism equal to f, and no paths accumulation equal to tp.a .

Most natural downwards accumulations, though, are both paths-
and htaps accumulations, and so are both catamorphic and linear—that
is, both easily manipulated and efficiently implemented. In the next
chapter, for example, we look for a function that can be writien as a
paths accumulation, but that has the associativity properties that allow
it to be inverted to produce a htaps accumulation; we can calculate us-
ing the tractable catamorphic form, but know all the time that we can
evaluate it quickly in the efficient form.

Downwards accumulation on rose trees

Now that we have worked out all the details for moo trees, the definjition
of downwards accumulations on rose trees causes no great surprises; the

96 Douwnwards accumulation

only aspect that needs a little thought is the definition of rose threads.

48. Definition

rthread. A = o.A | A 4 rthread.A
¢

Thus, rose threads are built from a unary and 2 ternary constructor.
Informally, the ternary constructor could be seen as a countable infinity
of binary constructors, corresponding to the two binary constructors
and L, of binary threads. The intention is that, for example, the rose
thread to the clement d in the homogeneous rose tree

IS 3@ &) (c &g o-d); the numbers identify which branch to take on each
level, with 0 signifying the first branch.
Rose thread catamorphisms satisfy the equations

(rthread: f, ®)-a-a = fa
{rthread: f, ®)-(@ & x) a @; [rthread: f, @)-x

dictated by the above definition.

The function paths on rose trees—again, we trust to context to
resolve any ambiguities between rose and moo tree accumulations—
replaces every element of a rose tree with the path to that element, and
is given by

paths-A-a A-0-2
paths-(a—<x) = o-a—<(index-x Yg, (paths * x))

Dounwards accumulation on rose trees 97

where
i@ r = (ag)xr
and where the function index is as defined in Chapter 2:
index = ({(~—1)o#) oinits
it is clear that index = index o paths* , because a map does not change
the length of a list, and so

paths:(a < x) = ©¢-a— (index-(paths * x) Yg, (paths ¥ x))

and paths is catamorphic:

paths = (rtree: a0, ®)

where
a®ps = o-a—<{(index-ps Yg, ps)
A paths accumulation over rose trees is just a rose thread catamor-
phism mapped over paths:
49. Definition
(f, &)} = (rthread: f, ®}* o paths
%
For example, the function dewey from Chapter 2 is given more suc-
cinctly by
dewey = (4o-0), @) where a@;r=i4r

Paths accumulations on rose trees are inefficient, just as are paths accu-
mulations on moo trees; the above characterization of dewey , for exam-
ple, like the characterization given in Chapter 2, takes quadratic effort
in the worst case. With this in mind, we define rose daerhis.

98 Dounwards accumulation

50. Definition

rdaerht. A = o.A | rdaerht. A "y A
<

The obvious correspondence between rose daerhts and rose threads is
made formal by the function rtd € rthread.A — rdaerht. A :

rtd = (rthread: o, ®) where (ad®:) = (rdaerht: 0-am;, ")
For example, we have
rnd-(a ;1 (cspod) = (vamnic)mpd

We can compute the htaps of a rose tree by converting the paths
into daerhts, just as we did for moo trees:

htaps = rtd= o paths

And, finally, we can express htaps accumulation, an efficient downwards
accumulation on rose trees, by

51. Definition
(f,®A = (rdaerht: f, &)* o htaps

This accumulation satisfies the equation
f.d)A@=<x) = f-a—<(index-xYp, x)
where
iGat = ({f-a®), @) At

For example, a linear effort characterization of Dewey Decimal index-
ing, yewed, returning a homogeneous rose tree of snoc lists, is given
by

yewed = (40-0), DA where r®;a = rei

Downwards accumulation on rose trees 99

This concludes the definitions of accumulations on trees; in the next
three chapters we shall see them at work on some example problems.

5 Prefix sums

The prefix sums problem consists of evaluating all the ‘running totals’
{cat: f, ®)=* o inits of a list. The operator ® must be associative for the
catamorphism to be proper; we also assume that ©® has a unit, e. For
example, applied to the list [ag,...,a5_1], the problem is to evaluate

[f.ag, f.ao ® f.al, faay f.ao [O] f.a1 [ORERNO) f.an_l]

This problem encapsulates a very common pattern of computation on
lists; it has applications in, among other places, the evaluation of polyno-
mials, compiler design, and numerous graph problems including min-
imum spanning tree and connected components (Akl, 1989).

It would appear from the above example that the problem inher-
ently takes linear time to solve; the structure of the result seemsto pre-
clude any faster solution. However, Ladner and Fischer (1980), rework-
ing earlier results by Kogge and Stone (1973) and Esirin (1960), prove
the rather unexpected result that the evaluation can be performed in
loganiithmic tme on a linear number of processors acting in parallel. We
will derive their ‘parallel prefix’ algorithm in this chapter, but we will ex-
press it in higher level terms than they do—in fact, in terms of upwards
and downwards accumulations.

Recall the function rank from the previous chapter. It satisfies the equa-
tion

iolorank = #xoinitsoiol

where iol , short for ‘inorder leaves', returns the list of leavesof a tree,
in left-to-right order:

iol = (o, @) where u@,v=u+Hv

102 Prefix sums

We dcfined inits in Chapter 3 to have snoc lists as source and target;
here welift it in the obvious way to cat lists.

Suppose we have a pre-inverse loi of iol, thatis, a function satis-
fying iole loi = id ; such a function takes a list and returns a tree whose
leaves in inorder traversal produce this list. Now, loi allows us to use
rank tocompute #* o inits:

#xoinits = ioloranko loi

Ignoring the time taken to construct and destroy the tree—hopefully
this costcan be spread over several operations—the right hand side will
take parallel time proportional to the depth of the tree; if loi constructs
a balanced tree then the right hand side will take logarithmic parallel
time.

The left hand side of this equation, #=* o inits, is an instance of
the prefix sums problem, since # is a catamorphism (cat: 11, +}; we
might ask whether we can find a function corresponding to rank for
any instance of the problem. Thatis, for given f and © such that © is
associative and has a unit, we would like to find a function pps satisfying
the implicit specification

iolopps = {f.®}xcinitsoiol

The need for @ to have a unit is not obvious from the specification, but
becomes clear as we proceed to calculate. The domain and range of ®
can always be augmented with such a unit, if none already exists.

Calculating the parallel prefix algorithm
We can calculate immediately the result of applying pps to a leaf, since

iol o ppsoa

"

ﬂ specification of pps]]

(f. ©)* cinitsoiol o &

Calculating the parallel prefix algorithm 103

[]

(f.@)* o initsoa

[[inits ﬂ

(f,@]* oQoD

[-]

ao(f,®)en
= I[catamorphisms]]
gof
and hence

ppseca = Aof
since iol isinjective on leaves. Letting s = (f, ®) ¢ iol, we geton branches

iol-pps-(x % y)

[[specification of pps]]
{f, ©)-inits-iol-(x « y)
= [o]
(f, ©)*-inits.(iol-x H- tol-y)
= II inits]]
{f, ©)*-(inits-iol-x 4+ (iol-xH-) * inits-iol-y)
= [+
(f. ®) *inits-iol-x H (f, ®) * (iol-x4) * inits-iol-y
= [[catamorphisms ﬂ

(f. @) = inits-iol-x H (s-x@) * (f, ©) * inits-iol-y

104 Prefix sums

[[specification of pps]l
iol-pps-x H (5:x®) * iol-pps-y

This does not completely determine pps on branches, since iol is not
injective on branches, but it is ‘sweetly reasonable’ to suppose that

PPS-(X % y) = PPs-X £, ($XO) * pps-y

for some a; certainly, this supposition satisfies the implicit specification
of pps. The calculation can tell us nothing about the value of a, the
root of pps-(x % y), because iol throws branch labels away.

This gives us an explicit—that is, executable—specification of pps:

pps-a-a = Af.a
PPs-(X % ¥) PPS-X %, ($:XO) * pps-y

forsome a. Executing this specification requires parallel time quadratic
in the depth of the tree in the worst case; we show next how to improve
this toJinear parallel time.

Suppose that a = s:x, that is, that
pps: (X £y) = PPSX kex (SXO) * pps-y

Intuitively, this allows the computation of pps{x % y) to be split into
two parts, the first bringing sx to the root of the tree and the second
mapping {s-x®) over the right child. More formally, suppose that

up-(Xky) = UPX kg upy
down-(u %, v) down-u % (bO®) * down-v

whence

down-up-{(x £ y) = down-up-x %4y (5Xx®) * down-up-y
so down o up follows the same pattern as pps. Provided that

downoupea = ppsoa

Calculating the parallel prefix algorithm 105

which holds if
up-a:a = af.a
down-a-b = ab

an inductive proof shows that
pps = downoup

We cannot use the unique extension property because pps is not ex-
pressed as a catamorphism.

We have not yet improved the efficiency; up and down both take
parallel time quadratic in the depth of the tree. However, as the names
suggest, up is an upwards function and down a downwards accumula-
tion, and we know something about making such functions efficient.

Let si = rooto up, so

sla.a = f.a
sl(xxy) = sx

Now,
up = sl¥osubtrees

so up is an upwards function—vindicating the choice of name. It is not
an accumulation, though, because sl is not a catamorphism; however,
s Asl is a catamorphism,

sasl = (fAf,(OAx<)o<?)
as a little calculation shows. This means that
up
= [[above H

sl o subtrees

106 Prefix sums

[pairs |

>% 0 (s A sl)k o subtrees

[[s A sl is a catamorphism]]

3* o (f A1, (O A <)o« osubtrees

[#]

»xo(f AL (O A <)o

which—assuming that © takes constant time—can be evaluated in time
proportional to the depth of the tree in parallel.
So much for up; whatabout down ? We have

down-a-a = a.a
down-(u &, v) = down-u &p (b®) x down-v

and so down is already a paths accumulation,

down = (id,» O}
However, (id,», ®) is not top-down, as we showed on page 93 for the
special case where © is + . Consider, though, the fork of thread cata-
morphisms

(le,>», O) A (id. >, ®)
By Theorem 13, this is itself a catamorphism:

(le.»> @) A {id. > @) = (leiid > K)
where
a@(bc) = (@Oba®

Moreover, it is top-down—it inverts to (le A id, &, ®) where

(b,c)®dd = (b,bed)
(bc)®d (c.co®d)

Calculating the parallel prefix algorithm 107

Thus,

down

[down]

(d, > ©) 4

[o]
(id, ». @)+ o paths
[[pairs B
»#* o (le Aid, », ®)#* o paths
[[Theorem 47]]
»xo(le Lid, @, ®)A

It

This gives us the promised efficient algorithm for pps:
pps = xo(leAid, @ @)Ao>ro(fAf, (O A <)o)

Note that the map between the two accumulations can be absorbed into
the downwards accumulation, by Theorem 45 and Corollary 12, though
this does not change the asymptotic efficiency of the algorithm.

O’Donnell (1990) has presented a similar derivation to this, buthe only
went as far as producing a catamorphic characterization of pps,

pps.(x xy) = g.(pps.x O pps.y)

and then making it eficient by making it ‘top-down’; he did not sep-
arate out the @ and g to get an upwards accumulation followed by
a downwards accumulation. The result is a very operational descrip-
tion of a ‘sweep’ operation consisting of a tree processes, each of which
‘sends information in both directions on each data path’. The advan-
tage of identifying the two accumulations is that it becomes clear that
the algorithm operates in two distinct phases; the intermediate results,

108 Prefix sums

and even the fact that the algorithm terminates in the first place, are
more evident.

Prefix sums for a non-associative operator

One surprising property of the prefix sums problem is that it can even
be applied to snoc list catamorphisms, where the binary operator need
not be associative. Imagine, for example, that we have a finite state ma-
chine with initial state e and with state transition functon &, which
produces a new state s @ i given the old state s and input i. This
machine is modelled by the catamorphism {snoc: e®, @) on non-empty
snoc lists; the operator @ certainly is not associative, because its left and
right arguments are not of the same type. Running this finite state ma-
chine on the input list x produces the list of states {snoc: e®, ®) * inits.x,
which looks very much like an instance of the prefix sums problem.

Imagine also that we know the list of inputs that the machine will
be given, but that we do not know the initial state; this is the case, for
example, when we want to run the machine concurrently on two halves
of an input list, since the initial state for the second half is the final state
for the first. Can we rewrite {e®, &) in a form that allows us to do some
‘precomputation’ using the inputs? That is, can we extract the e from
the catamorphism?

We have
uda

= [[sectioning, ~]]
u®{®a)

= \T " and sectioning again ﬂ
u ((®)-a)

SO
® = To(idi{B))

Prefix sums for a non-associative operator 109

and in particular,
eda
[[above]]
e ((®)-2)
= I[sectioning]l
(e)-((D)-a)
[-]

(&) o (&))-a

so
@ = (¢)0(d)
This gives us
a.0) = ((¢)°(®).7-idI(®))

Recall Theorem 11, the promotion theorem, from the introduc-
tion; instantated for snoc lists, it states that

f.xda)=fx®a = fofg,d) =(f-9 Q)
Now,

(o idil{B))-(e~ x, 2)

[-]
€707 (@)-2)
(wif)ig=ui(fsg) |

]]

ﬂ
x & (D)-
Il
e ((5 o idI{&))-(x, a))

i

110 Prefix sums

50 by the promotion theorem, with f, g, @& and @ instantiated to (e7),
(®), 50idi(®) and ~oidIl(®), we have

(&) o (&), "oidI(®)) = (&) ((B).50idII(D))

If a binary operator B is associative, then the snoc list catamor-
phism {snoc: f, @ oidlif) and the cat list catamorphism ({cat: f, B) are
equal, modulo input type conversions; that is, if ¢s is the function that
convers a cat list to the corresponding snoc list,

cs = (cat:o, @) where (x@®) = (snoc: x,)

then
{snoc: f, B oidlif)ccs = (cat: f, &)

The operator in this case, 3, is indeed associative, so we have
(snoc: e®, BYocs = (e o {cat: (D), 3)

In effect, we have shown that, although (snoc: e®, @) o cs is not a cat
list catamorphism, the function f satisfying

f.xe = (snoc:ed, P)-cs-x

is a catamorphism.

In the case of a general snoc list catamorphism, this does not pro-
duce any gain in efficiency; the ‘sum’ (cat: (&), ¢).x is a composition of
functions which takes order #.x steps to apply to an argument. How-
ever, ifthe left domain and range of & is finite—for example, if @ is the
state transition function for a finite state machine—then each function
() .x; in this composition of functions is a finite mapping, and the whole
compesition can be precomputed by composing these finite mappings;
the prccomputed composition can then be applied in constant time.

This mecans that we can use the parallel prefix algorithm to runa
finite siate machine on n inputsin log.n time in parallel. This method
is commonly used to produce fast carry-lookahead circuits (Ladner and

Suffix sums 111

Fischer, 1980) and to parallelize the ‘lexing’ stage of compilation (Schell,
1979).

Suffix sums

We have just derived the parallel prefix algorithm for the prefix sums
problem ps = {f, ®)* o inits. A closely related problem is that of find-
ing the suffix sums ss = {f, ®)* o tails of a list, where the injective func-
tion tails returns the list of tail segments of a list in descending order of
length:

i

tails-0-a 0-D-3
tails-(x Hy) = ({Hvy) * tails-x) H tails-y

By following exactly the same reasoning as for prefix sums, we an cal-
culate a ‘parallel sufhix’ algorithm

pss = »xo(lerid, @ ®)Ao>*o(fAf, (O A>) o<
where
(be)®dd = (c,d®c)
(bo)®d = (b,d®b)

This parallel suffix algorithm satisfies
jolopss = ssojol
Indeed, we can find prefix and suffix sums fogether, with an al-

gorithm of the same form. That is, suppose we have to replace every
element a of a list x H 0.a +y with the value

(f. ®).(x+ 0.2) © (9. ®).(0.a Hy)

forsome fixed f, &, g, ® and @ ; the task of making this replacement
for every element of a list is performed by the function

({f, ®)= o inits) Yo ({g, ®)* © tails)

112 Prefix sums

where we have lifted the operator Y, the post-inverse of <% A >*, to
act on pairs of equal-length cat lists. Call this function fs, for ‘fix sums’,
since it involves both prefix and suffix sums. The claim is that there
is a ‘paralie] fix’ algorithm pfs, of the same form as the paralle] prefix
algorithm, which satishes

iolopfs = fsoiol

To show this, we first note that the fix sums can be found by zipping the
parallel prefix and suffix trees, then taking the leaves; once more, we
lift the 7ip operator, this time to pairs of same-shaped trees.

fs o iol
(o]
(ps Y@ ss) e ol
= [[pairs]]
Yo o (ps o iol) A (ss o iol)
= [[pPs, Pss Il
Yo o (iol o pps) A (iol o pss)
= [[wish: Yg e iol? = iole Y ﬂ
iol o Yg © (pps A pss)

[i]

iol = (pps Yo pss)

"

1§

So if we can fulfill the wish that Yg o iol2 = iol o Yg , then pps Y pss
satisfies the requirements for pfs; we have then only to show that this
‘zip of two parallel fix algorithms’ is another parallel fix algorithm.

In fact, the wish does not hold in general; it only holds in this case
because the function pps 4 pss which precedes it returns a pair of trees
that are the same ‘shape’. We will prove the following lemma:

Suffix sums 113

52. Lemma
Y oiolo(«x A>x) = joloY o(<«* A >x)

¢

The more general case for Yg follows from this, since Yp = ®@+0Y and
a map commutes with iol .

Proof
Y ciol? o (<* A >%)
= I[pairs]]
Y o ((iol o «x) A (iol o >%))
= I[map commutes with iol; pairs]]
Y o (<% A >x%) ool
= [[Yo<x A »x = id, twice]l

iol 0 Y o (&% A »x*)

So we have shown that the equation
iol o (pps Yo pss) = fsoijol

holds. We have now to show that pps ?o pss is another ‘parallel fix
algorithm’, that is, the composition of a map, a downwards accumula-
tion, another map and an upwards accumulation. In fact, we prove the
following theorem:

53. Theorem

(o (g, @ @)L o hx o (k, ®)M Vo (p* 0 (@, B, B o rx o (s, @)
= (@oflp)xo(gllg, &XE, @) o (hllr)*o (k As, @)
o

The operator 4 satisfies

114 Prefix sums

@x@ = @UIB) > (<213}
That 1s,

(2, b)®XB(c,d) = (adc,bmd)
It is a generalization of the ‘centre-swap’ operator <«? A »? used by
Meertens and van der Woude (1991).

In order to prove Theorem 53, we must call on a number of lem-
mas. The first two of these are really part of the pair calculus.

54. Lemma
fx Agx = («x A>x)o(f Ag)*
¢
Proof
(<x A >x)o(f £g)*
= ﬂ pairs]]
(«xo(f Ag)*) A (»xo(f Ag)*)
= [[map distributivity; pairs]l
fx A g*
VY
55. Corollary
(fx) gx)o(xx Ap*x) = (<xA>x)o(fllg)*
¢
Proof Corollary to Lemma 54, since
filg = (fox)A(gom)
Y

The next two results are coroliaries of general-purpose theorems
about catamorphisms that we gave in Chapter 1. Before presenting

Suffix sums 115

them, we introduce some notation that will shorten subsequent calcula-
tions.

56. Definition Define the operators *and * by

f = fiid
P o= it
¢
Note that
fog = fig = gof
57. Definition Define the operator G by
OEE = (@°<)A(@o>)
%

In particular, we have
@-<D@e>) = OXB

We return now to the corollaries. Firstly, a map can be brought
inside a thread catamorphism:

58. Corollary (to Corollary 12)
(thread: f, @, ®) ogx = (thread:fog &og, ®cg)

And secondly, the fork of two catamorphisms is a catamorphism:
59. Corollary (to Theorem 13)

(thread: f, &, ®) A {thread: g, B, R) = (thread: f A g, DEHE, ¥BR)
(mtree: f, @) A {mtree: g, B) = (mtree: f A g, HXE)
¢

116 Prefix sums

The last two lemmas we need form significant parts of the proof
of the theorem; we scparate them out in order to divide the otherwise
rather large calculation into more manageable pieces. Informally, they
state that two accumulations running ‘in parallel’ on same-shaped trees
can be combined to form a single accumulation.

60. Lemma
(k.®)ﬂ. A (s, E)ﬂ = (<k=x A»*)O(k As, ®@dE)T

Proof
(k. @)1 A (s. BN
= l[1 pairs ﬂ
({k. @)= £ (s, @)#*) o subtrees
- [Lemmasa |
(€* A >*) o ([(k, ®) A {5, @))* o subtrees
= ﬂ Corollary 59]I
(«* A >x)o [k As, ®XE)* o subtrees

- [+

(<* Apx)o (K As, @XE)N

61. Lemma

((f. 2.1 (9. B, B o (xxipx) = (KxApx)o(fll g, ONE, QXX
&

Suffix sums 117

Proof
(f. &, @)1 (g, 8. ®)Y) o (€xA>%)
= [[4; pairs]]
({f. ®.)= {g, B, ®)*) o paths? o (<xA>+)
= [[pairs; Theorem 31; pairs]I
((f. ®, @)+l (g, B, ®)*) o (€*xA>x%) o paths
= |I Lemma 54]I
((f. ©. @)1l {g, B, ®)*) o (€*xA>*) o (€ A>#)* o paths
= I[Corollary 55]|
(xxi2>%) o ({f, @, ®) It {9, B, B))* o (€xA>*)* o paths
= II pairs; Corollary 58]]
(«xi>x) o ({fog, q;oé, @o&] A {go>, an;», [g&}): o paths
= I[Corollary 59]|
(«xi>x)off I g, (@o&)B(EO;), (@:»«2)!3(@0}2))* o paths
= [[observation concerning [J and X]|
(«xA>x) o [f Il g, DX, @XX)# o paths
=[]

(«xA>x) o (f || g, DXE, XX

Finally, we can prove the original theorem.

Proof (of Theorem 53) We introduce some abbreviations for the var-
ious subexpressions involved:

w = ket
up = (S, E])ﬂ

118 Prefix sums
u = (kis, ®XB)N
dg = (g.@.@)U
d, = @B @Y
d = (glq &xB, OXR) 4
Now,

(f*odooh*ouu)?e(p*odlor*oul)
[=v]
@*aY o(fxodgohkoug) A (pkod;orkouy)
[[pairs]l
Ox oY o(fx|l px)o(dplidy)o (hx{fl rx)o (ug A uy)
H Lemma 60]]
Ox oY o(fxllpx)o(dplidi)e (h*lrk)o(«x A>*)ou
I[Corollary 55]]
O oYo(fxlipx)o(dglidi)e («x A>x)o(hiinN*xou
{[Lemma 61]]
O oY o(f* | px)o(xx A>x)odo(hlir«ou
[[Corollary 55]]
E*oYo(ex A>x)o(flIpyxodothlrkou
ﬂ Yo (<x Amx) = id]]

O*O(fllp)*odo(hﬂr)*ou
Q@

Moreover, if the two original fixes were efficient, then so is the new one:
if (g, @, ®) invertsto (g, @, ®) and (q, B, ®) inverts to (q, @, V), then
(911 q. ©¢E, ®NEK) inverts to (gl q. QKA, OXN) .

Bracket matching 119

Bracket matching

An example of the application of Theorem 53 is the so-called bracket
matching problem: given a ‘balanced’ string of brackets, the function
mbs (for ‘match brackets’) replaces every bracket with the length of the
‘phrase’ in that string of which it forms an endpoint. For example

mbs."{}{}H}" = [6.2,2,2,2,6,2,2]

A balanced string is one that can be reduced to the empty string
by repeatedly erasing from it all occurrences of the substring “{}” ; the
language of balanced bracket strings is what a formal language theo-
rist would cal} a ‘Dyck Janguage’ (1llingworth et al., 1990). An arbitrary
string that has been reduced in this way will consist of a sequence of
closing brackets followed by a sequence of opening brackets, and so is
completely determined by the pair of numbers giving the lengths of
these two sequences. Thus, we define bracket reduction to be the cata-
morphism {cat: f, ®), where

f.¢ = 01
£y = 1,0
(@,byo(cd) = (a+(c=b),(b~c)+4d)

where =, pronounced ‘monus’, is subtraction bounded below by 0.
The predicate bal, which holds precisely of balanced strings, can now
be defined by

bal = ((0.0) =)o (f,®)

If the bracket a in the string x 4 0.a -+ y is an opening bracket,
then ‘the phrase of which it forms an endpoint’ is the shortest balanced
non-empty initial segment of o.a 4 y; because the input x #0.a Hy
to the problem is itself balanced, this phrase exists (this is a property
of Dyck languages). Similarly, if a is a closing bracket then the cor-
responding phrase is the shortest balanced non-empty tail segment of

120 Prefix sums

x - ©.a. Denote the functions that return these two phrases by mo and
mc respectively; we have

14/ o balaoinits
L/ o bal<o tails

mo
mc

)

For our purposes, the function p« returns a beg consisting of those el-
ement of its argument that satisfy the predicate p. Bags are given by
the type defuition

bag.A = @ | [{.A | bag.A W bag.A

modulo the laws that @ is associative and commutative and has unit & .
The function pd is then given by

L.a if pa

4 = (cat:p? where p?a = .
P (p?.) P { [otherwise

If the operator [is associative and commutative and has unit e, we
write the bag catamorphism (bag: e,id, 0} as [0/ for brevity. In this
case, the associative and commutative operator |, returns the shorter
of its two arguments. Since it is always presented with different-length
arguments here, the complication of choosing between equal-length ar-
guments can be avoided; however, what of its unit? Let us augment the
range and domain of |4 with a ‘fictional element’ w, and make it the
unit of |, . This is the value returned by mo (respectively, mc)ifits ar-
gument has no balanced initial (respectively, tail) segment, which is the
case—lor our example x -4 o.a # y —ifitisapplied to o.a +y when a
is a ‘Y (respectively, to x #+ o.a when a isa ‘("). With this knowledge,
we can define the function mb which matches one bracket:

mb.(x H0.a,0.a Hy) = me(XH0.a)l, mo.(0.a+ty)

One of the arguments to |, here will be w, and the result will be the
other argument. The original problem is then

Bracket matching 121

(3 o mb)# o (inits Y tails)
= #fxo(mcxoinits \A’l# mos o tails)

mbs

If we can express mc and mo as cat list catamorphisms, then mbs is
an instance of the fix sums problem and we can solve it in logarithmic
parallel time with the parallel fix algorithm.

Let us focus on mo for a while. As it stands, it is not a catamaor-
phism: it returns “{}" for both the inputs “{}” and “{H”, yet should re-
turn different results for the inputs “(}” +# “}” and “(}{” + “}" . There-
fore, we introduce the function mor, for ‘match open bracket with re-
mainder’, defined by:

mor.x = (mMo.X, mo.x = X)

The operator —, pronounced ‘drop prefix’, satisfies x 4 (X #y) =y
if x # w. We make the convention that w is a left unit of —, so that
morx = (w,x) when mo.x = w. Now, mor is injective, and so certainly
is a catamorphism; moreover,

mo = <Lomor
If we manipulate mo.(x Hy), we see that
mo.(x + y)
[]
14/ balinits:(x 4 y)
= [[inits]]

L/ -bala-(inits-x H (x3) * inits-y)

Il

= 'I promotion]]
lg/-baldinits-x |g |g/-bala-(x-H)*-inits-y

= [mospacte =froponya (Bird, 1987) |
mo-x |y |y/-(x+H)*(balo xH)<inits-y

122 Prefix sums

I{ wish: x4 distributes over | 4]]
mo-x |y x-H 1#/~(balox-|+)<1-inits~y

The wish, that x4 distributes over Ly is fulfilled on different-length
lists if v is a right zero of 4.

This still does not prod uce an efficient algorithm, since we have no
quick way of computing | /-(bal o x4+)<-inits-y from mor.y. (We havea
way, since mor is injective, but it consists essentially of reconstructing y
and starting from scratch.) The solution is to perform a data refinement;
this refinement is to write the string mo.y — y in the form t +# up 4+ v,
and then to write

= ua YA U Y
v = Hud o H T Hw

with each u; balanced or empty; each u; is then further subdivided:
Ui = Ui e H Ui

such that each u;; is non-empty, balanced and of minimum length. Ev-
ery bracket string has a unique representation of this form: the v; are
the ‘maximal balanced segments’, the u;; the ‘minimal balanced seg-
ments’, the remaining characters are the ‘unmaiched brackets’ and the
string tH up H v reduces to (a, b). The details of the refinement are
beyond the scope of this example—we have already strayed a long way
from tree algorithms—Dbut suffice it to say that if the lists u; are kept
as balanced binary trees, and all strings are labelled with their length,
then mor.(x H y) can be computed from mor.x and mor.y in logarith-
mic time sequentially.

Retracing our steps, we get mo —and symmetrically, mc—as the
composition of a projection and a catamorphism,

mo = <off @)
me = <«o(9,®)

Bracket matching 123

for some f, g,and some ® and ® which take logarithmic effort; then

mbs

[e]

£+ o (Mcx* o inits \A(l* mox o tails)

W

= ‘[mc and mo as catamorphisms]]

#x o (x o {f, @) o inits Y, <xo (g,)+ o tails)

[y}l
#x o ({f, ®)* o inits Y[.2 {9, @) o tails)

which is an instance of the fix sums problem. It can be evaluated using
the parallel fix algorithm in log?.n time in parallel on input of size n.

This is not the fastest algorithm known—there are algorithms for
matching brackets that run in logarithmic time on n / leg.n processors
(Dekel and Sahni, 1983b; Bar-On and Vishkin, 1985; Gibbons and Ryt-
ter, 1988; Gibbons and Ziani, 1991)—but it is interesting since it provides
further evidence of ‘the power of parallel prefix’ (Kruskal et al., 1985;
Blelloch, 1990).

6 Drawing trees tidily

The tree drawing problem is to produce a mapping from elements of a
tree to points in the plane; this mapping should correspond to a drawing
that is in some sense ‘tidy’. We do not directly formalize the concept of
tidiness; instead, we simply identify some properties enjoyed by ‘tidy’
drawings, and use these properties to determine a formal specification
of the problem. This collection of properties constitutes our indirect
definition of tidiness.

First we consider drawings of binary trees. The quest for an effi-
cient algorithm will lead us naturally to a combination of upwards and
downwards accumulations. We then generalize this solution to rose
trees, which, it turns out, present some extra complications over binary
trees.

We make the simplification of ignoring the labels of the tree, so
that the drawing depends only on the structure. Thus, the source type
for the drawing functions will be one of unlabelled trees.

The first property that we observe of tidy drawings is that all the
elements at a given depth in a tree have the same y-coordinate in the
drawing. That is, the y-coordinate is determined completely by the
depth of an element, and the problem reduces to that of finding the
x-coordinates. This gives us the type of bdraw, the function which
draws a binary tree—its result is a homogeneous moo tree labelled with
x-coordinates:

bdraw € umtree — hmtree.D

where coordinates range over D, the type of distances. We require
that D include the number 1, and be closed under subtraction (and
hence also under addition) and halving. Sets satisfying these conditions
include the reals, the rationals, and the rationals with finite binary ex-

126 Drawing trees tidily

pansions, the last being the smallest such set. We exclude discrete sets
such as the integers, as Supowit and Reingold (1983) have shown that
the problem is NP-hard with such coordinates.

Tidy drawings are also regular, in the sense that the drawing of a
subtree is independent of the context in which it appears. Informally,
this means that the drawings of children can be committed to (separate
pieces of) paper before considering their parent; the drawing of the
parentis constructed by translating the drawings of the children. In
symbols,

bdraw-(x x y) = {(+r) * bdraw-x %, (+s) * bdraw-y

for some a, r and s.

Tidy drawings also exhibit no left to right bias. In particular, a
parentshould be centred over its children; we also specify that the root
of a tree should be given x-coordinate 0. Hence, r 4+ s and a in the
above equation should both be 0, as should the position given to the
only element of a singleton tree:

bdraw-a = a.0
bdraw-(x £ y) = (—s) * bdraw-x x¢ (+s) * bdraw-y

for some s. Indeed, a tidy drawing will have the left child to the left of
the right child, and so s > 0.

This lack-of-bias property implies that a tree and its mirror image
produce drawings which are reflections of each other. That is, if we
define the function brev, which reverses a binary tree, by

brev = (a, @) where u@,v=vx,u
and denote unary negation by -, then we also require
bdraw o brev = -% o brev o bdraw

The fourth criterion is that in a tidy drawing, elements do not col-
lide, or even get too close together: pictures of children do not overlap,

Levelorder traversal 127

and no two elements on the same level are less than one unit apart.

Finally, a tidy drawing should be as narrow as possible, given the
above constraints. Supowit and Reingold (1983) showed that narrow-
ness and regularity cannot be satisfied together—there are trees whose
narrowest drawings can only be produced by drawing identical subtrees
with different shapes—and so one of the two criteria must be made sub-
ordinate to the other; we choose to retain the regularity property, since
it will lead us to a catamorphic solution.

These last two properties determine s, the distance through which
children are translated: it should be the smallest distance that does not
cause violation of the fourth criterion. Suppose the operator @, when
given two drawings of trees, returns the width of the narrowest part of
the gap between the trees; if the drawings overlap, this distance will be
negative. The drawings should be moved apart or together to make this
distance 1, that is,

s = (1 - bdraw-x @ bdraw-y) =2

All that rermains to be done to complete the specification is to for-
malize this description of @ .

Levelorder traversal

When we introduced the zip operator Y in Chapter 2, we defined it
only on pairs of equal-length lists. We now extend the definition in two
different ways to cover pairs of different-length (cons) lists. These two
extensions are ‘short zip’, which we write Y, and ‘long zip’, written ?;
they differ in that the length of the result of a short zip is the length of
its shorter argumment, whereas the length of the result of a long zip is the
length of the longer. For example,

[a,b]Yg[c.de] = [adc,bdd]
[a, b] % [c.d,e] [adc,bdd,e]

I

128 Drawing trees tudily

From the result of the long zip, we see that the @ must be an endo-
operator, that is, it must have type AllA — A . This is not necessary for
short zip, but we do not use the general case in this chapter.

The two zips are given formally by the equations

naYpob = o(a@b)
DaYg(bey) = o.(a®b)
(@asx)Ygo.b = o{adb)

@sx)Yg(bsy) = (@®b)<(xYgy)
naYgaob = o(aé&b)

gaVg(biy) = (a@b)ay
@:x)Vsab = @®b)<x
@0 YVgbzy) = @@®b)=(xVgy)

They share many properties, but we use two in particular.

62. Fact xYgy and x V@ y can both be evaluated with #.x | #.y ap-
plications of & . &

63. Lemma If f is (@, ®) promotable then fx is both (Yg. Ye) and
(V@.Vg) promotable. o

We use long zip to define levelorder traversal of homogeneous bi-
nary trees. This is given by the function levels € hmtree. A — cons-cat-A :

levels = (goo, &) where x@,y = D.a < (x 7% y)

For example, the levelorder traversal of the five element tree

A downwards accumulation 129

is [[2]. [b,], [d, e]] -
We can at last define the operator @ on pictures, in terms of
levelorder traversal: it is given by

p®q = f{id])- ({id. |) * levels.q Y_ {id, 1) * levels.p)

The catamorphisms {id, |) and {id, 1) return the least and the greatest
elements of a list, respectively. If u and v are levels at the same depth
in p and q, then {id, t).u and {id, |).v are the rightmost point of u
and the leftmost point of v, and so (id, |).v — {id, T).u is the width of
the gap at this level. Clearly, p ® q is the minimum of these widths.

This completes the specification of @, and hence of bdraw :

bdraw = (2.0,®)
where
pdq = (—s)xp ko {(+s)%q where s=(1~-p®q)+2
p®q = (id, 1) ((id. |) * levels.q Y_ {id, 1) * levels.p)

This specification is executable, but requires quadratic effort. We now
derive a linear algorithm to satisfy it.

A downwards accumulation

We note that a major source of inefficiency in the program we have
just developed is the occurrence of the two maps in the definition of
@ . Intuitively, we have to shift the drawings of two children when as-
sembling the drawing of their parent, and then to shift the whole lot
once more when drawing the grandparent. This is because we are di-
rectly computing the absolute position of every element. If instead we
were to compute the relative positions of each parent with respect to its
children, these repeated translations would not occur; a second pass—a
downwards accumulation—can fix the absolute positions by accumulat-
ing relative positions.

130 Drawing trees tidily

Suppose the function rootrel satisfies

rootrel.a-a = 0
rootrel-(x £, ¥) = (a — root-x) J (root-y — a)

for some idempotent operator (1. The idea is that rootrel determines
the position of a parent relative to its children, given the drawing of the
parent. That is, if we define the function sep by

sep = rootrel o bdraw
then
sep-a = 0
sep-(x £ y) = (1 — bdraw-x @ bdraw-y) + 2
and
bdraw-(x x y) = (—s) % bdraw-x &g (+s) » bdraw-y

where s =sep-(x % y)

Now, applying sep to each subtree gives the relative position of every
parent; define the function rel by

rel = sep%osubtrees
so that
rela = a0
rel.(xxy) = relx kgp.xay) rely

This gives us the first ‘pass’, computing the position of every parent
relative to its children; how can we get from this to the absolute position
of every element? We need a function abs satisfying the condition

absorel = bdraw

On leaves, this condition reduces to

An upwards accumulation 131

abs-rel-a = bdraw-a
[[rel, bdraw II

abs-a-0 = 4.0

while on branches, we require

abs-rel-(x = y) = bdraw-(x & y)

II rel, bdraw; let s = sep-(x % y)]]
abs-(rel-x & rel-y) = {—s) * bdraw-x %¢ {+s) * bdraw-y
These requirements are satisfied if

abs-a-a = a0
abs-(x £,y) = (—a)#*abs-x %y (+a) % abs-y

that is, if

abs = (10, =, +)
Thus, we have

bdraw = absorel

where

rel = sep*osubtrees
abs = (10,<,+)§

This is still inefficient, partly because rel is upwards but not an upwards
accumulation. We show next how to compute rel quickly.

An upwards accumulation
We want to find an efficient way of computing the function rel satisfying

rel = sepx* osubtrees

where

132 Drawing trees tidily

sep-a = 0
sep-(X % ¥) (1 — bdraw-x @ bdraw-y) = 2

We observed that rel is upwards but not an upwards accumulation, be-
cause sep is not a catamorphism—more information than the separa-
tions ofthe grandchildren is needed in order to compute the separation
of the children. How much more information is needed?

We note that each level of a picture is sorted. Therefore,

(id, [}* olevels = headx o levels

{id, T}x o levels = lastxolevels
and so

pDq = right-p@ left-q
where
feft = headx o levels
right = lastx o levels

and

u@v = {id, [)(vY_u)

Intuitively, left and right return the ‘contours’ of a drawing; for exam-
Ple, applying the function left A right to the tree

produces the pair of lists ([a, b, d], [a, c, ¢]) . These contours are exactly
the extra information needed to make sep a catamorphism.

An upwards accumulation 133

To show this, we need to show first that sep can be computed
from the contours, and second, that computing the contours is a cata-
morphism. Define the function contours by

contours = (left A right) o bdraw
Suppose the function f satisfies

f.(ga,na) = 0 .
f.(@a<x,a<y) = (a— head.x)(O (head.y — a)

on pairs of lists with the same head; then, as a short calculation shows,
fo(left Aright) = rootrel

Thus,
sep
[]
rootrel o bdraw
I[f o (left A right) = rootrel]l
f o (left A right) o bdraw

I[contours]I

f o contours

so indeed, sep can be computed from contours. Moreover, contours is
catamorphic: since

sep.(x = y) = (1 — (»-contours:x [«-contours-y)) =+ 2

and head and last are (H,<«) and (+,») promotable, respectively,
we can calculate that contours = {!(0-0,0.0), ®) where

W) ® (v.2) = (=((—s)»w Ve (+5) *¥), 0 ((—s) xx Vs (+s) *2))
where s=(1—xDy)+2

134 Drawing trees tidily

Hence,

bdraw

[[relative positions]]

absorel

[abs, el]

(10, =, 4+)U o sep* o subtrees

1l

[[sep in terms of contours l]

(10, =,)4 o fx o {1(0-0, 0-0), ®)* o subtrees

=[]
(10, =, +) o fx 0 (1(0-0, 0.0), @)

There are still two sources of inefhiciency here. The first is that
abs is a paths but not a htaps accumulation, and so takes quadratic ef-
fort, and the second is that the operation @ takes at least linear effort,
resulting in quadratic effort for the upwards accumulation too. We solve
these two problems next, producing at last a linear algorithm for draw-
ing trees.

Making the downwards accumulation abs efficient is straightfor-
ward: we can use the tupling trick that has worked so well in the past.
We note first that as it stands, it is inefficient: no operator @ satishes
a+10b =10-a® b, and so the triple (!0, =, +) is not top-down and the
accumulation nota htaps accumulation. However, consider the function

ab = ({thread: 10, =, +) A {thread: id, >,)

The second component of this fork returns the last (bottom) element of
a thread. Clearly, <« cab = {10, =, +) . Moreover, by Theorem 13, ab is
a catamorphism:

b = (I0Aid, (—o(idll <)) A(>o®), (+o(id |) A (>o3))

An upwards accumulation 135

Finally, ab is top-down: it inverts to (daerht: 10 Aid, — i id, + 11id) ; we
therefore have

(0, =, +)§
[v]
(10, =, 4)# o paths
[to.24)=<cab |

<% o abx o paths

ﬂ ab is top-down]]
<xo (10 Aid, — ilid, + I id)A

That removes the first inefficiency; the second is more involved.
We have to find an easy way of evaluating the operator ® where

WX ® (2 = (0:((—s)*w Ve (+s)*y),0:((—s) *x Vs (+5) x2))
where s=(1—xDOy)+2

One way of doing this is with a data refinement, whereby instead of
maintaining a list of distances w we maintain the list whose image under
the invertible function (id, +}# o inits is w—that is, a refinement with
abstraction function (id, +)# o inits. Under this refinement, the maps
can be performed in constant time, since

(Hsyx o (id, +-}xoinits = (id, +)* o inits o (sB)
where sdoa = 0D-(s+a)
sP@zx) = (s+a)«x

The details of the refinement are not our concern here, but they are
easily calculated—especially so since the abstraction function is invert-
ible.

The refined ® still takes linear effort, but the important obser-
vation is that it now takes effort proportional to the length of iis shorter
argument (that is, to the lesser of the common lengths of w and x and

136 Drawing trees tidily

the common lengths of y and z, when ® is ‘called’ with arguments
(w, x) and (y,z)). This is because the only remaining non-constant ef-
fort parts are the three zips, each of which can also be evaluated with
effort proportional to the length of their shorter argument. Reingold
and Tilford (1981) showed that, if evaluating h.x & h.y from h.x and
h.y takes effort proportional to the lesser of the depths of the trees x
and vy, then the tree catamorphism h = (f, &) can be evaluated with
linear effort. Actually, what they show is that if g satishes

g-aa = 0
9(x*xy) = g-x+ (depth-x|depth-y)+g-y
then
g-x = elements-x — depth-x

which can easily be proved by induction. Intuitively, g counts the num-
ber of pairs of horizontally adjacent elements in a tree.

So, the refined upwards accumulation can be evaluated with [in-
ear effort, as can the map and the downwards accumulation; therefore,
we have a linear effort tree drawing algorithm.

Drawing rose trees tidily

We now proceed to generalize the problem to that of drawing rose
trees. This latter problem is rather more interesting, because rose trees
present complications that do not occur with binary trees.

The specification starts off in the same way as for binary trees.
The problem is to find an efficient algorithm for computing a function

rdraw € urtree — hrtree.D

This corresponds to the first criterion for binary trees. The second cri-
terion is that the drawing is regular, and so the drawing of a parent is
assembled from shifted drawings of its children. This is formalized by

Drawing rose trees tidily 137

rdraw-—<-Xx = a — position-(rdraw % x)
for some distance a and function position which satisfies, for some f
position-ps = f-ps Yg ps where a®p = (a+) xp

Informally, f takes a list of drawings ps and returns a hst of displace-
ments, one per drawing.

The third condition is that the drawing should be unbiased. If
the function rrev, which reverses the structure of a rose tree without
affecting its elements, is defined by

rrev = (& ~<oid] rev)

where the function rev reverses a snoc list, then this condition is stated

rdraworrev = -xorrevordraw

[nformally, the drawing of the reverse of a tree should be the same as the
reflection of the drawing of the original tree. In particular, the drawing
is rooted at 0

rootordraw = 10
and a parent is centred over its children:
midpoint o position o rdrawx = 10

where

midpoint = (rooto head) ® (root o last)
where a®b=(a+b)+2

The last two criteria are that the elements of the drawing should
not collide, and that the drawing should be as narrow as this permits.
This is the reason why rose trees are more difficult to draw than binary
trees: it is not sufficient to say that the drawings of adjacent children
should be as close as possible. For example, consider a rose tree with
three children t, u and v, such that t and v are large but v issmall:

138 Drawing trees tidily

If the children are positioned with the statutory narrow gap between t
and v and between u and v, then t and v may well still collide:

The children that interact may not be adjacent; the condition should
instead be that ¢#/ pairs of children are collision-free. We now formalize
this condition.

Define the functions twoinits and twotails, from non-empty lists
to bags of lists of length at least two, by

twoinits = twodo inits
twotails = twodo tails
where
two = (32)o#

These functions return the (non-empty,} non-singleton inits and tails,
respectively, of a list. For example, twoinits.[a,b,c] is ([a, b}, [a, b,<]f,
whereas twotaiis.[a, b, c] is {[a,b,c], [b, c]f. Both twoinits and twotails
return the empty bag when applied to a singleton list. Now define the
function twosegs, returning non-empty, non-singleton segments of a
list, in terms of these:

Drawing rose trees tidily 139

twosegs = W/ o twotailsx o twoinits

(Recall that &/ is {bag: e,id, ®), where @ has unit e.) For example,
twosegs.[a, b, c] is][a, b], [a, b, c],[b, c]§ .
The endpoints of a list are its head and its last element:

endpoints = head A last
Now, a list of pictures is ‘collision free’ if it satisfies the predicate disjoint :
disjoint = all.(>1 o @) endpoints* o twosegs

where all.p = A/ o px. Here, @ is the analogue for rose trees of the
corresponding operator on binary trees: if levelorder traversal of rose
trees is given by

levels = {hrtree: 000, @) where a @ xs = 0.2+ (id, ¥,.)-xs

then, as before,

left = (id, 1)* o levels
right = (id, T)= o levels
m = (id. l) Y-
® = Mo (rightl left)

Recall the function position , satisfying
rdraw-~<-x = 0 — position-(rdraw * x)
The no-collision criterion can now be stated
disjoint o position o rdrawx = ltrue

This completes the specification of rdraw. We have first to synthesize
an executable program from these conditions, and then to make this
program efficient.

140 Drawing trees tidily

An algorithm

Although our definition of segments, twosegs , is not the same as Bird's,
we can still apply his Segment Decomposition Theorem (Bird, 1987) to
the predicate disjoint :

disjoint
[[definition }l

all.(=1 o @) o endpoints* o twosegs
[[twosegs H

all.(1 o ©) ° endpoints* o W/ o twotails o twoinits

lI promotion]|

A/ e (all.(Z1 o ©) o endpoints* o twatails)x o twoinits

ﬂ letting delta = all.(>>1 o D) o endpointsx o twotails ﬂ
all.delta o twoinits

In particular, a singleton list is always disjoint, because it has no twoinits ;
indeed, we could say that disjoint is ‘prefix-closed with derivative delta’,
although this is using the term in a way slightly different from Bird’s:

disjoint-(ps * p)
ﬂ above]]
(all.delta)-twoinits-(ps = p)

[[twoinits]]
(all.deita)-two<-inits-(ps = p)

[inits |

(all.delta)-two<-(inits-ps i (ps » p))

An algorithm 141

Il

|[two-(ps * p) = true]l
(all.delta)-(two<-inits-ps & 1 ps = pf)
|[twoinits, all]]
(all.delta)-twoinits-ps A delta-(ps p)
|I disjoint]I

disjoint-ps A delta-(ps = p)

I

i

Now, we know that

positionooordraw = 0o rdraw

because an only child mustbe rooted at the origin. Suppose that position
is a snoc list catamorphism {sroc: o, ®) such that

ps®p = centre-(ps> ((ps ® p)+) * p)

where

centre-x = (—midpoint-x)* * x

The idea here is that ps ® p gives the distance by which p must be
shifted in order that it fit snugly against ps; then centre transltes the
whole list of children bodily to the left, putting the midpoint at the origin
and hence recentering the parent.

If position is of this form, then the no-collision condition reduces
to

disjoint-ps = delta-(ps ® p)
This follows since a singleton is always disjoint, and because, with this

condition, adding another child in the correct position maintins dis-
jointness:

142 Drauwing trees tidily

disjoint-position-(ps > p)
[[position ﬂ
disjoint-(position-ps ® p)

[o]

disjoint-centre-(position-ps > {(position-ps & p)+) * p)

It

{ll

[[disjoint is invariant under translation ﬂ

Il

disjoint-(position-ps = {(position-ps @ p)+) * p)

H disjoint is prefix-closed]]

disjoint-position-ps A delta-(position-ps ® p)

ﬂ assuming disjoint-qs = delta-(qs & p) H
disjoint-position-ps
so by the unique extension property,
disjoint o position = !true

This gives us some information about ®, namely that its result
shouldsatisty delta ifits left argumentis disjoint. A calculation involving
@ and properties of T, —, | and zips shows that

delta-(ps > p) = f{id, %]-(right *ps) M left-p 2 1
Thus,
delta-(ps ® p}

[=]

delta-centre-(ps » ((ps ® p)+) * p)

Il

[[delta 1s invariant under translation u

delta-(ps » {(ps ® p)+) * p)

An algorithm 143

[above]

(id, Y1)-(right » ps) @ left-({(ps ® p)+) * p) > 1
|I left o (a-+)* = (a-+)»oleft; ul o {a+)* = a+ o ud]]
(ps ® p) + (id, Vy)-(right * ps) m left-p > 1
[arithmetic |
(ps® p) > 1 — (id, V;)-(right ps) m left-p
& II fix ps ® p as small as possible]]
(ps® p) = 1 — (id, Y;)-(right * ps) D left-p

1]

[H

Now, the list of drawings produced by position is by no means unbiased;
each child except the leftmost is packed tightly against its left siblings.
For example, position would draw our example rase tree with three
children in the form

Therefore, let us rename position to leftwards :

leftwards = (o, ®)

It is not difficult to show that rdraw is unbiased precisely if position is
unbiased. In other wards, define the function mirror, which reflects a
whole list of drawings, by

MIFTOT = TeV o rrevsk o —kok

Then if rdraw-—-x = 0 — position-(rdraw * x} , as we have above, then

144 Drawing trees tidily

-* orrevordraw = rdraw o rrev
&€ i[a short calculation]‘

mirror o position = position o mirror

I

[[mirror is its own Inverse]}
position = mirror o position o mirror

We havejust seen, though, that leftwards doesnot commute with mirror :
if we define

rightwards = mirror o leftwards o mirror

then rightwards, which packs children to the right, is different from
leftwards. However, their average is unbiased—if we redefine position
so that

position = Ieftwards‘;f\,,(5 rightwards

then it does commute with mirror , since negation is (®, ®) -promotable,
and @ is commutative.

All that we have left to check is that this redefined position pro-
duces disjoint lists of drawings; we showed earlier that leftwards does,
but it is not immediately obvious from this that position does too. Nev-
ertheless, it is not too arduous to show that the disjointness of rightwards
drawings is equivalent to the disjointness of leftwards drawings:

disjoint o rightwards = disjoint o feftwards

and that disjointness of the means follows from disjointness of the two
components;
disjoint-(x Yy, ¥y) & disjoint-x A disjoint.y
This means that we now have an executable, albeit ineflicient, pro-

gram for rdraw :

rdraw = {!(2.0), {0=<) o position}

An efficient algorithm 145

position = leftwards YYQ mirror o leftwards o mirror
leftwards = (o, ®)
where ps® p = centre-(ps > ((ps ® p)+) *p)
centre-x = {—(root-head-x ® root-last-x))* * x
ps®p = 1—(id, V;)-(right « ps) m left-p

An efficient algorithm

Effectively the same optimizations that applied to binary trees can be
used for rose trees. Informally, these are that

* drawing should be split into two stages: first, find the position of
every child relative to its parent, and second, perform a down-
wards accumulation to compute the absolute positions

* drawings are ‘sorted’: the contours are the endpoints of the levels,
and if disjoint-ps then

(id, V;)-(right ¥ ps) = (id, Y»)-(right = ps)

and 50 ps @ p depends only on the ‘right contour’ of ps
* maintain these contours during the first stage, making itan up-
wards accumulation

Along with the observation that centering need not be performed so
often, that is, that

leftwards = centre o (o, ®)
where ps®p = ps {{(ps ® p)+) *p

these optimizations provide us with an efhicient algorithm.

Related work

The problem of drawing trees has quite a long and interesting history.
Knuth (1968a, 1971b) and Wirth (1976) both present simple algorithms

146 Drawing trees tidily

in which the x-coordinate of an element is determined purely by its po-
sition in inorder traversal. Wetherell and Shannon (1979) first consid-
ered ‘aesthetic criteria’, but their algorithms all produce biased draw-
ings. Independently of Wetherell and Shannon, Vaucher (1980) gives
an algorithm which produces drawings that are simultaneously biased,
irregular, and wider than necessary, despite his claims to have ‘overcome
the problems’ of Wirth'’s simple algorithm. Reingold and Tilford (1981)
tackle the problems in Wetherell and Shannon’s and Vaucher’s algo-
rithms by proposing the criteria concerning bias and regularity; their
algorithm is the one derived for binary trees here. Supowit and Rein-
gold (1983) show that it is not possible to satisfy regularity and minimal
width simultaneously, and that the problem is NP-hard when restricted
to discrete (for example, integer) coordinates. Briiggemann-Klein and
Wood (1990) implement Reingold and Tilford’s algorithm as macros for
the text formatting system TgX.

The more difficult problem of drawing rose trees has had rather
less coverage in the literature. Reingold and Tilford (1981) mention
them in passing, but make no reference to the difficulty of producing
unbiased drawings. Radack (1988) presents the algorithm that we de-
rive here. Walker (1990) uses a slightly different method: he positions
children from left to right, but when a child touches against a lefi sib-
ling other than the nearest one, the extra displacement is apportioned
among the intervening siblings.

7 Attribute grammars

Our third and last illustration of the applications of accumulations on
trees is provided by evaluation mechanisms for attribute grammars. At-
tribute grammars were proposed by Knuth (1968b) as a tool for pre-
senting the semantics of programming languages. They arose as an
extension of the ‘syntax-directed’ compilation techniques of the early
sixties (Irons, 1961). Using these techniques, the parse tree of a pro-
gram is decorated with attributes, the decoration attached to an element of
the parse tree representing some aspect of the semantics of the subtree
rooted there. In Irons’ formulation, the attribute attached to an ele-
ment depends only on the descendants of that element; Knuth showed
that although no extra power is gained by doing so, the description of
the semantics of a language can be considerably simplified by allowing
attributes to depend on other parts of the parse tree as well. Thereader
is referred to the comprehensive survey by Deransart et al. (1988) for
further information about the history of attribute grammars; their re-
port includes a bibliography of over five hundred items.

Traditionally, an attribute grammar for a context free language
is an extension of the grammar which describes the syntax of that lan-
guage. Each symbol in the grammar has associated with it a number of
attributes, and each production in the grammar comes with some rules
that give values to some of the attributes attached to symbols appearing
in that production, in terms of the values of the other attributes that ap-
pear. The attributes are classified into two categories, inherited and syn-
thesized; inherited attributes are those appearing on the right hand side
of the production in which their value is defined, and hence concern
the ‘children’ of the production, whereas synthesized attributes appear
on the left, and concern the parents. Irons’ syntax-directed translation

148 Attribute grammars

corresponds to attribute grammars with only synthesized attributes. In-
tuitively, inherited attributes carry information into a subtree and syn-
thesized attributes carry it back out again; in Knuth’s (1971a) words,
‘inherited attributes are, roughly speaking, those aspects of meaning
which come from the context of a phrase, while synthesized attributes
are those aspects which are built up from within the phrase.’

Qur view of attribute grammars differs somewhat from this tradi-
tional view. We su ppose that a tree has been built already, and that the
task is to evaluate the attributes of the root ol the tree. We make several
simplifying assumptions in order to prevent the proliferation of sym-
bols and indices, but none of these significantly affect the mathematics.
Throughout this chapter, A is the type of labels of the tree, and I and
S the types of inherited and synthesized attributes, respectively.

64. Definition An attribute grammar consists simply of an evaluation
rule

® € Alqusis)y—nns
&

We make the simplification, after Fokkinga et al. (1991), that every ele-
ment has exactly one inherited and one synthesized attribute, and that
all inherited attributes have the same type, as do all synthesized at-
tributes. This entails no loss of generality, since attribute types may be
sums of products. We assume also that the tree is homogeneous, and
a binary tree at that: rose trees can be treated in an entirely analogous
way.

The idea is that the evaluation rule @ takes an element a of the
tree and a triple (i, s, t) of autributes, with i being the inherited attribute
of that element and s and t the synthesized attributes of its children; it
yieldsa triple (i, k, u), with u the synthesized attribute of that element
and j and k the attributes its children will inherit. The simplification
that the inherited attributes of the children and the synthesized attribute

Examples of attribute grammars 149

of the parent depend only on the inherited attribute of the parent and
the synthesized attributes of the children is due to Bochmann (1976).
To avoid the need for different evaluation rules for leaves and branches,
we assume also that there i1s a ‘dummy’ inherited attribute wy that can
be produced as the inherited attribute for the ‘children’ of a leaf, and
a dummy synthesized attribute ws, distinct and distinguishable from
‘valid’ synthesized attributes, that can be used for their synthesized at-
tributes; such an element can always be adjoined to S if none exists
already.

The process of attribute evaluation according to an evaluation
rule @ is performed by the operator ®g € (hmtree.A||1) — S ; applied
to a pair consisting of a homogeneous binary tree and the inherited at-
tribute of its root, it returns the synthesized attribute of the root of the
tree. For the rest of this chapter, we will assume a fixed evaluation rule
@, and write simply & for attribute evaluation. This operator satisfies

Aa®1 = X(aD (i, ws, wg))
X£,Y)®i = =z-u where u = a® (s, t)
s = X@Tpu
t = y®~%u

Examples of attribute grammars

We consider now a number of examples of attribute grammars. Any
homogeneous moo tree catamorphism can be expressed as an attribute
grammar with inherited attributes of type 1. We have that the cata-
morphism (hmtree: f, ®) is equal to the evaluation (®it) where

ad (itws,wg) = (it it f.a)
a (s, 1) (t,it,s ®, 1) if s t#ws

Upwards accumulations and paths downwards accumulations are cata-
morphisms, so they can both be written in this way; htaps accumulations,
though, are generally not catamorphic, and for these we need to use the

150 Atiribute grammars

inherited attributes. The idea here is that the inherited attribute holds
the ‘context dependent’ part of the accumulation, and the synthesized
attribute returns the tree which is the result. We get (f, @, O)A = (®f)
where

a @ (f, ws, ws) (wr, wy, a-f-a)
ad(f,xy = (f.a@,f.a®,xx5,Y) if x,y # ws

Informally, information flows down through the inherited attributes
and then back up through the synthesized ones.

Another example involving both inherited and synthesized at-
tributes is the function rank from Chapter 5, which replaces every el-
ement of an unlabelled tree with the number of leaves to the left of
and including that element in inorder traversal. Here, the inherited
attribute of an element gives the number of leaves to the left of but ex-
cluding the subtree rooted at that element; this gives us rank = (®0)
where

it (i, ws, ws)
ite(,xy)

Il

(wy, wi, &.(1 4+ 1))
@, {id, ®).x. x *gig.@).x ¥) iIf xy # ws

i

where v ®, v = v. The inherited attribute of the right child here,
(id. ®).x, is the number of leaves to the left of and including subtree x in
inorder traversal; the inherited attribute of a right child depends on the
synthesized attribute of its left sibling, and information flows from left
to right in the same way that it does for a depth-first search. Most of the
applications of attribute grammars to programming languages involve
dependencies like this, because of the close correspondence between the
hierarchical structure of the parse tree and the linear structure of the
program it represents.

Our final example is Bird’s ‘repmin’ problem (Bird, 1984b); the
problem here is to replace every element of a tree of numbers with the
smallest element in that tree. For this we require one inherited and
two synthesized attributes; the first synthesized attribute attached to an

Circularity 151

element records the smallest element of the tree originally rooted there,
the inherited attribute gives the smallest element of the whole tree, and
the second synthesized attribute contains the tree of minimum values
which is the result. Attribute evaluation is given by

a® (1, (00, %), (0,¥))
a @ (i- (mv x): (n- y))

with ‘dummy’ synthesized attribute co. The function repmin itself is
given by

Il

{wy, Wy, (a, A1)
G,i,(mlalnxxy) if mn#oo

repmint = x where (m,x)=t®m

Note that the second synthesized attribute depends on the inherited at-
tribute, which depends on the first synthesized attribute, which depends
only on the original tree. 1n fact, the crux of this problem is to evaluate
repmin in a single pass over the tree; we see shortly how to do this for
any attribute evaluation.

Circularity

The meticulous reader will have noticed that the definition we gave for
attribute evaluation is circular:

X*.¥Y)®i = =®u where u = ad(s,t)
5 = xX®%gl
t = y®@m=-u

so u depends on s and t, which themselves depend on u. Inthe ex-
amples we have given, the circularity disappeared because there was an
ordering on the attributes—or on their components—that respected the
data dependencies. Jazayeri et al. (1975) have shown that, in general,
the check for circularity is inherently exponential; indeed, it was one of
the first naturally occurring problems to be shown so.

152 Attribute grammars

Heavy emphasis has traditionally been placed on the various pos-
sible evaluation orders for attributes, and on restrictions to the eval-
uation rules that make particular orders valid. This problem can be
avoided altogether if the evaluation rule is seen as inducing a collec-
tion of equations, and the attribute evaluator is seen as an equation
solver: the equations form a program in a lazy functional language, and
as Johnsson (1987) says,

The lazy evaluator has taken over the job normally done by the special purpose

altribute evaluation machinery. Normally in other altribute grammar systems the

order in which the altributes are evaluated is determined at evaluator-genération

time. In our schewme this order is implicitly determined by the lazy evaluator at run

ttme. The order is entirely determined by the data dependencies, and may vary
depending on the order in which the values of the various attributes are demanded.

Under this view, circular dependencies correspond to mutually recur-
sive equattons (Chirica and Martin, 1979; Mayoh, 1981). Farrow (1986)
and Johnsson (1987) both observe that such grammars can be useful;
Johnsson concludes that ‘the only practical road open to us seems to be
to detect the circularities at run-time; fortunately, though, this can be
done at very little extra cost’, at least on the G-machine, the context of
Johnsson’s paper.

We sidestep the issue completely, following the lead of the major-
ity of the literature on attribute grammars; we treat recursion in the def-
inition of @ in the same way that we treat recursion elsewhere, namely,
we assume that it is ‘sensible’.

Attribute evaluations as catamorphisms

In general, an attribute grammar evaluation (®i) € hmtree A — S is
not a catamorphism, because it depends on evaluations of the children
using different inherited attributes. However, many people (Chirica
and Martin, 1979; Jourdan, 1984; Katayama, 1984; Johnsson, 1987;
Fokkinga et al., 1991) have shown that the curried evaluation (®) with

Attribute evaluations as accumulations 153

type hmtree. A — (I — S) & a catamorphism. This observation is simi-
lar to the one we exploited in Chapter 5 in order to apply the parallel
prefix algorithm to a snoc list catamorphism. We have

(®)-aa = w0 (a®)o (id A tws A lws)
(®)-(xx£,y) = =0h
where
hi = u where u a®(,s,t)
s = (®).x.(xg-u)
= (®).y-(x-u)
That is,
(@) (x£ay) = (®)x®, (®)y
where
f®.9)i = =u where u =a® (i, f-xp-u, g-xq-u)

A little manipulation of function arguments allows this to be simplified
to

f® g = =xa0h where h = (a®) o (id A{fomg o h) A (goxy 0 h))

Looking back at the examples of attribute grammars thatwe gave
earlier, we are reminded that any tree catamorphism can be written as
an attribute grammar with purely synthesized attributes; hence, any at-
tribute grammar can be rewritten to involve only synthesized attributes,
returning a function from the original inherited attribute of the root to
the original synthesized attribute. As Johnsson shows, it is precisely this
construction that gives a single pass solution to Bird’s repmin problem.

Attribute evaluations as accumulations

Attribute evaluation is conventionally understood to mean evaluation of
a single attribute, the synthesized attribute of the root of the parse tree;

154 Attribute grammars

all the other attributes are ‘intermediate results’ and are of no further
interest. For most applications, and in particular for one-off compila-
tion, this is exactly what is required; once the translation of part of a
program has been constructed, the translations of subexpressions are
no longer needed. However, for some applications we are interested
in the intermediate results as well; for example, incremental compilers
and structure editors such as the Cornell Synthesizer Generator (Reps
and Teitelbaum, 1984, 1989) make use of these intermediate results in
order to avoid having to recompile parts of a program that remain un-
changed. For such applications, we would like attribute evaluation to
return the whole tree of attributes, not just the synthesized attribute of
the root.

We have seen that the sectioned evaluation {(®) is a catamor-
phism; therefore, (®)* o subtrees is an upwards accumulation,

(®)* osubtrees € hmtree.A — hmtree.(I —)

yielding a tree of inherited-to-synthesized-attribute functions. This is
nearly but not quite enough to allow us to compute all the attributes
in the tree—given the inherited attribute of the root, we can certainly
find the synthesized attribute of the root, but what will the inherited
attributes of the children be? We have thrown that information away.

We want a slightly different attribute evaluation that returns the
whole triple of type 111111'S, consisting of the inherited attributes of the
children as well as the synthesized attribute of the parent. To this end,
we dcfine the complete attribute evaluator

Bg € (hmtree AN — @NI11S)

which we will abbreviate to ®. The intention is that xo e @ = ® .
The definition is straightforward, given the definition of @ :

aa@i = a®(lws,wg)

Attribute evaluations as accumulations 155

Xk, Y)EI = u where u = ad(,s,t)
s = ¥y{(xEwgu)
t = w(y@xi-u)

Again, the sectioned evaluator (@) is a catamorphism,
(@) € hmireeA— I—-1111S)
from which we can construct an upwards accumulation,
(@)= o subtrees € hmtree.A — hmtree.(1 — 111} S)

yielding a tree of inherited-attribute-to-triple functions.

The operator @ that takes the result of this upwards accumula-
tion and the inherited attribute of the root of the tree, and returns the
tree with every element replaced with its 1/111S triple, satisfies

af®i = afi
X£y)@i = (xO%fi) *rily ©wr-fei)

That is, (®f) is a htaps downwards accumulation:
(@) = (i)eoh
where

a@g = gxXpa
a®g = gx|-a

Clearly, there is a strong analogy between complete attribute eval-
uation and upwards and downwards accumulations: an upwards accu-
mulation is the complete evaluation of an attribute grammar with only
synthesized attributes, and a downwards accumulation is the complete
evaluation of a grammar with only inherited attributes; moreover, any
complete attribute evaluation consists of an upwards accumulation fol-
lowed by a downwards accumulation.

8 Conclusion

In this thesis we have looked at three different tree algebras, namely,
moo trees, rose trees and hip trees. Hip trees are an original contribution,
though we did not make much use of them in this thesis. They intu-
itively form a partial algebra, in that some of the terms do not obviously
correspond to trees. We showed in Chapter 2 how to avoid the intro-
duction of partial functions by demonstrating that the ‘tree-like’ subset
of the terms of the algebra is consistent with the intuitive model; this
means that the algebra can remain total, and we can simply ignore the
terms that do not correspond to objects in our model.

Each of the algebras we presented came with a class of structure-
respecting functions called catamorphisms, determined completely by
the definition of the algebra. Each also came with classes of structure-
preserving functions called accumulations; these did not come for free
from the definitions. Of these accumulations, we defined first the no-
tion of an upwards function, being a function mapped over the sub-
trees of a tree; upwards functions are exactly those functions that pass
information up through a tree from the leaves towards the root. We
observed that upwards functions need be neither catamorphic nor ef-
ficient; this led us to define upwards accumulations, a special case in
which the function being mapped over the subtrees is a catamorphism.
Upwards accumulations are both catamorphic and efficient.

The development of downwards accumulations was rather more
interesting, because it presented some problems that did not occur with
upwards accumulations. We started by defining the paths of a hip tree
as a hip tree of hip trees; then we defined a downwards function as a
function mapped over the paths of a tree, and a downwards accumu-
lation as a catamorphism mapped over the paths. We discovered that

158 Conclusion

some functions that we expected to be accumulations were not, because
of the restrictions imposed by the representation of paths as hip trees;
thisled to the definition of the free algebra of threads to represent paths.
‘We then discovered that this caused downwards accumulation to be no
longer catamorphic, so we redefined it in terms of moo trees of threads;
this gave us a catamorphic but not generally efficient downwards accu-
mulation. Finally, we defined another representation of paths, daerhts,
which provided an efficient but not generally catamorphic downwards
accumulation; we showed under what conditions these last two classes
would coincide, to produce catamorphic and efficient downwards accu-
mulations.

The remaining three chapters of the thesis provided a number
of examples to illustrate the applicability of upwards and downwards
accumulations to algorithms about trees. In Chapter 5, we derived the
parallel prefix algorithm for the prefix sums problem; this turned out
to consist of an upwards accumulation followed by a downwards accu-
mulation, both accumulations being efficient and catamorphic. We then
showed how the prefix sums problem encompassed non-associative as
well as associative sums. We also presented an algorithm for the suffix
sums problem, and showed how prefix and suffix sums could be calcu-
lated together. We used the resulting ‘fix sums’ algorithm to derive a
solution to the bracket matching problem.

In Chapter 6 we derived algorithms for drawing binary and rose
trees. The specification of the binary tree drawing problem was exe-
cutable, taking quadratic eflort in the size of the tree. We discovered
that splitting it into two phases—an upwards accumulation that com-
puted the relative positions of each parent with respect to its children,
followed by a downwards accumulation that fixed the absolute position
of each child by accumulating the relative positions of its ancestors—
produced an algorithm requiring only linear effort. The same proce-
dure worked for drawing rose trees, except that there the problem of

159

producing unbiased drawings was more difficult; we solved it by ‘aver-
aging’ the drawings of a tree and its mirror image.

Finally, in Chapter 7, we discussed the evaluation of attributes ac-
cording to an attribute grammar. We showed the well-known result that
this evaluation can be performed in a single pass by constructinga cata-
morphism yielding a function from the inherited attribute of the root
of the tree. This catamorphism could be generalized to an upwards
accumulation yielding a tree of functions; we showed that this tree of
functions could in turn be evaluated with a downwards accumulation
to produce the whole tree decorated with attributes. Again we discov-
ered the pattern of an upwards accumulation followed by a downwards
accumulation.

1t is the identification of these upwards and downwards accumu-
lations as commaonly-occurring patterns of computation that is the most
significant contribution of this thesis; the number of problems to which
they can be applied testifies to their importance. The next most sig-
nificant aspect of the material presented here is the algebraic approach
taken to algorithm design using these accumulations; other people, as
we discuss below, have introduced ideas similar to our upwards and
downwards accumulations, but to the best of our knowledge the ex-
ploitation of their algebraic properties is original.

Accumulations provide a valuable method of abstraction, as the
various examples that we have given show. For example, O’Donnell’s
derivation of the parallel prefix algorithm commences in a similar fash-
ion to ours, but his result consists in elTect of a tree of processors passing
messages around in parallel. Had accumulations been available to him
as a tool, he might have been able to spht the solution into two phases,
making its structure much clearer. Now, splitting the parallel prefix
algorithm into two phases is not a new idea, and it does not require ac-
cumulations; one of the clearest published explanations of the parallel
prefix algorithm is by Blelloch (1989):

160 Conclusion

The technique consists of two sweeps of the tree, an up sweep and a down sweep,
and requires 2log.n steps. The values to be scanned start at the leaves of the tree.
On the up sweep, each unit executes @ on ils two children units and passes the
sum to is parent. Each unit also keeps a copy of the value from ils left child in its
memory. On the down sweep, each unil passes to its left child the value from its
parent, and passes to ils right child & applied lo its parent and the value stored in
the memory (this value originally came from the left child). After the down sweep,
the values at the leaves are the result of the scan.

However, this description could be made clearer still by phrasing it in
terms of accumulations. Blelloch’s account is procedural, describing the
actions that each process performs; the construction of the ‘invariant’ is
left to the reader. 1n contrast, the initial characterizations of accumu-
lations as catamorphisms mapped over the ‘generators’ subtrees, paths
and htaps are declarative descriptions, giving the invariants and omit-
ting the method of achieving them. A declarative description makes the
properties of the accumulations much clearer. For example, the com-
position of an accumulation {f) o gen consisting of catamorphism (f)
and generator gen with a map g* is another accumulation, since

{f)* o gen o g

[[generators are natural transformations ﬂ

{f)* o g*x* o gen

l[Corollary 12, introducing some f' u
{f'}* o gen

1f we had defined accumulations as single monolithic catamorphisms,
as Blelloch describes each phase of the parallel prefix algorithm, this
calculation would have been rather less straightforward.

Comparisons 161

Comparisons

We now discuss the published descriptions of which we are aware of
operations similar to our accumulations.

Wile (1973) is concerned with a basis for a general-purpose pro-
gramming language that exploits the connection between control and
data structure; to this end, he defines operations on sequencesand on
nested sequences, the latter being equivalent to our leaf-labelled rose
trees. Two particular operations on these are of interest to us; Wile calls
them ‘top-down accumulation’ and ‘bottom-up recursion’. Top-down
accumulation tda satisfies

tda.(e, ®).(r-a) = a-e
tda.(e, ®).{—<-x) —~-(tda.{(=<-xD e, D) *x)

In effect, this is a downwards accumulation composed with subtrees :

tda.(e, ®) = (id, lit)* o (ed, ®)A o subtrees
where u@,a=uda

in which ® ignores its numeric argument. The seed value—the first
component of the argument to tda —that is used for a subtree t, of
the tree will be of the form t,_; @ (th_2 ® --- B (t; & e)) where t; is
the whole tree, t; a child of ty, and so on, and t,_; the parent of t, .
As such, Wile’s top-down accumulation is very general, encompassing
all our examples of an upwards accumulation followed by a downwards
accumulation, but rather unstructured.

Wile defines two ‘battom-up recursions’, corresponding loosely to
our rose tree catamorphisms; he gives no upwards accumulations. The
first of these recursions we would write

(Irtree: f, @) o (id Y depths)

which depends on the depths of the elements as well as their values.
The second satisfies the equation in f

162 Conclusion

foxx = —<x@®(f*xx)

and so is a rose tree paramorphism (Meertens, 1990) rather than simply
a catamorphism.

In many respects, Wile’s basis resembles APL (Iverson, 1962). He
gives a powerful collection of operators which operate on ‘structured’
objects as a whole, not just on scalars, and his notation is just as con-
ase. [t even shares the greatest fault of APL, in that the rich collection
of operators is not matched by a rich collection of laws, and their char-
acterizations are given more procedurally than declaratively.

Myers (1980) discusses a language involving infinite sequences
and trees; the latter are functions from lists of numbers (‘path specifi-
cations’) to elements, and correspond to our branch-labelled rose trees
except that they may have infinite depth. The only sensible kind of ac-
cumulation on these trees is a downwards accumulation; infuriatingly,
Myers only hints at a definition: ‘the reader should at this point be able
to look back at the [rightwards accumulation} operator ... and extend
this definition to the analogous tscan operator which moves an accumu-
lation in all directions down a tree’. One can only guess that he means

tscan.(fe, ®).6 = a-e
tscan.(e, B).(a <x) = e < (tscan.(e@ a, D) *x)

Neither does he present any examples using tscan, which might have
given us a clue as to his intention.

Dekel and Sahni (1983a) talk about the ‘binary tree method’, in
which a computation consists of a series of alternating upwards and
downwards passes over a tree. For the upwards pass, ‘we proceed from
the leaves to the root solving the subproblem associated with each node’,
and for the downwards pass ‘we proceed from the root to the leaves’
similarly; their presentation is distinctly informal. They discuss one-
pass uses of the binary tree method—they treat these as catamorphisms
rather than as upwards accumulations—and two-pass uses—the parallel

Comparisons 163

prefix algorithm—but give no other examples. Indeed, all the interest-
ing examples that we have been able to find are no more intricate than
two passes of Dekel and Sahni’s binary tree method; we do not know
whether there are natural examples consisting of, say, a downwards ac-
cumulation followed by an upwards accumulation.

Turner (1 986) talks about ‘up-down parsing’ of prefix grammars:
‘the method works in two passes, the first proceeding up the input in-
termediate representation [i.e., parse] tree and the second proceeding
down’, the whole process labelling the parse tree with nonterminals
from the grammar. Again, there are no precise definitions of accumu-
lations, nor for that matter a precise definition of anything.

Huang (1985) defines ‘type-1’ and ‘type-2’ tree functions which
he uses as building blocks for parallel graph algorithms on a mesh-of-
trees network. Type-I tree functions correspond to our downwards ac-
cumulation, and type-2 to upwards. According to Huang’s definition,
the binary operators involved must be associative, but since he does not
specify an order in which elements should be combined the operators
should really be commutative too; the examples he gives involve only
commutative operators such as +, T and A. In our notation, these
tree functions would be given by

typeone.{f, ®) fe.8)A
typetwo.(f, ®) = (f. o)

where @ is associative and commutative. In effect, the accumulations
are bag catamorphisms mapped over trees of bags.

Gibbons and Rytter (1986) introduce the ‘paths problem’, which
would be stated (id. ®, @) in our terminology. The operator & is
constrained to be associative, and left and right children are treated the
same; in effect, it consists of a cat list ‘reduction’ (cat: id, &} mapped
over the paths. They actually associate values with the ‘edges’ of the
tree rather than the ‘vertices’, but the problem is equivalent if each ele-

164 Conclusion

ment of the tree holds the value of the ‘edge’ between it and its parent,
and some sensible value is given to the root of the tree. Their definition
is precise, but still not as general as either of our downwards accumula-
tions because of its identical treatment of left and right children. For ex-
ample, this definition excludes the downwards accumulation (id, », +){}
forming part of the function rank in Chapter 4, which hasdiflerent com-
ponents for left and for right children.

Leiserson and Maggs (1988) describe the ‘rootfix’ and ‘leaffix’
problems on homogeneous binary trees. The rootfix problem is iden-
tical to Gibbons and Rytter’s paths problem. The leaffix problem we
would state as

({cat: id, ®) o preorder)* o subtrees

for some associative operator & . Again, this is less general than our
upwards accumulation, as the catamorphism can depend only on what
is discernible of the structure of a tree from its preorder traversal; it
precludes, for example, the computations of contours in Chapter 6 and
of inherited-to-synthesized-attribute functions in Chapter 7.

Wright (1988) has done some work similar to ours, but on two-
dimensional ‘arrays’ or matrices rather than trees; we referred to him
in Chapter 2. Wright talks about upwards, downwards, leftwards and
rightwards accumulations on arrays, which perform ‘list’ accumulations
on each column or each row in parallel, but the closest analogues of our
upwards and downwards accumulations would be ‘northwest’, ‘north-
east’, ‘southwest’ and ‘southeast’ accumulations, each accumulating to-
wards one corner of the array; the ‘northwest subarrays’ of an array x,
for example, would form an array of arrays, the same shape as x, con-
sisting of all contiguous subarrays of x that share its northwest corner.

Jeuring (1989) considers problems about ‘hypotrees’ of homoge-
neous moo trees, which are to subtrees what the contiguous ‘segments’
of a list are to its inits. He defines the catamorphism chop with type
hmtree.A — cat.(hmtree.A) by

Heterogeneous dounwards accumulations 165

chop = (hmtree:noa, @) where u@®, v = (&, % (U XV))H 022

The operator X here returns the cartesian product—a list of pairs—of
its arguments. Informally, chop.t is a list giving all the ways of chopping
off pairs of children in t. The hypotrees of a tree are given by applying
chop to each subtree and flattening the result:

hypotrees = (cat: id, 4+) o postorder o chopx o subtrees

(The postorder traversal is an arbitrary choice; arguably, X, chop and
hypotrees should all return bags.) Jeuring then proceeds to investigate
a promotion theorem for hypotrees, that is, conditions under which a
function—actually, he only considers catamorphisms—composed with
hypotrees is itself a catamorphism. This work is rather doser to that
of Bird (1987) and de Moor (1990) than to ours; there is no notion of
‘accumulation’ here because the generator hypotrees does not return a
structured object.

This concludes our discussion of work related to our accumulations; we
turn now to look at other questions that our work has raised.

Heterogeneous downwards accumulations

We defined paths and downwards accumulations in Chapter 4only on
homogeneous trees. The reasoning behind that decision was as follows.
Suppose the tree

166 Conclusion

is not a homogeneous tree, so that b, d and e are not the same type
as a and c¢. Then the path terminating at ¢ in the tree, a ‘homoge-
neous path’, has a different type to the path terminating at d, which
is a ‘heterogeneous path’. Van der Woude has observed that this is no
great obstacle: paths could return a heterogeneous tree, with homo-
geneous paths at the branches and heterogeneous paths at the Jeaves.
However, downwards accumulation would then have to be defined with
two catamorphisms, one for homogeneous and the other for hetero-
geneous paths. The problems are even worse for htaps accumulations
than for paths accumulations, for then the ‘heterogeneous daerht’ cata-
morphism applied to the dacrht terminating at d need notbe a function
of the *homogeneous daerht’ catamorphism applied to the thread ter-
minating at ¢. Sometimes, certainly, we have to say difficult things, but
this seems just a bit too difficult.

On a related topic, Backhouse has pointed out that paths could
return a tree of lists, rather than of threads, and still be invertible; the
information about whether a child is a left child or a right child, al-
though absent from the path, is still held in the position of that path
in the resulting tree. However, this information is not ‘Jocal’, and some
functions which would otherwise be downwards accumulations—such
as the (id, », +){ we mentioned earlier—would not be a catamorphism
mapped over the paths.

Hip trees: a negative result

Hip trees were introduced along with moo and rose trees at the begin-
ning of this thesis. We had hoped that they would provide a natural
formulation of paths and of downwards accumulation, but they turned
out not to be as useful as we first thought they might. It was the study
of hip trees (Gibbons, 1988) that first led us to the notion of downwards
accumulation, but in the long run it seems that downwards accumu-
lations are more elegantly expressed in terms of moo trees of threads

Application and apposition 167

than of hip trees of hip trees. The complications that hip trees caused in
Chapter 4, and indeed the problems of partial algebras that they threat-
ened to introduce in the first place, outweigh any benefit they may have
brought us, at Ieast as far as this thesis is concerned. It remains to be
seen whether there are any convincing examples of the utility of hip
trees—any problems towards whose solutions they lead more naturally
than do other types of tree.

Application and apposition

Another experiment, this time a notational one, that we have performed
in this thesis is that of using two diflerent application operators, the con-
ventional left associative . from functional programming and Morgan's
right associative -. It would be nice if it were possible to perform all
manipulations at the function level, but—perhaps because we do not
yet have the right kinds of combinators—there are many occasions in
which object level calculations are clearer. It seems that calculations at
the the two different levels are more comfortable using the two different
application operators, left associative for functions and right associative
for objects.

We have also, privately, tried experimenting with what Meertens
(1986) calls ‘apposition’, a contraction of ‘application’ and ‘composition’.
This idea capitalizes on the isomorphism between the types 1 — A and
A : the isomorphisms are given in one direction by the function & with
type A — 1 — A satisfying

Kaiat = a

and in the other by applicationto it. If a € A and f € A — B then we
have

k.(fa) = fo(ka) € 1—8B

Apposition consists of making the « invisible and writing, say, fea for

168 Conclusion

both f.a and fe a; itis tantamount to identifying the constant a and
the function with unit source k.a.

Use of apposition brings with it potential pitfalls, as Meertens was
well aware. The type information 1 — B above is crucial; in general,
types A and C — A are not isomorphic, and the apposition fea cannot
be used unambiguously for non-constant a. Higher-order functions
are necessary for constructing an ambiguous example, but the Bird-
Meertens formalism thrives on such functions—we have seen them in
constructing prefix problems from finite state machines in Chapter 5,
and in translations of attribute grammars in Chapter 7, for example.

For this reason, we decided to avoid apposition and stick simply to
right associative application. This leaves us with several awkward uses
of the unit element it —for example, a leaf of type bmtree.A should be
written a-it rather than just a—but there seems to be no safe and easy
way around this.

Paramorphisms and predecessors

Meertens (1990) gives a general construction for producing the ‘pre-
decessors’ of a structured object, such as the inits of a list, the subtrees
of a tree and so on. Suppose (X, o) is the initial F-algebra; Meertens’
construction proceeds by defining a functor G satisfying

G.A FAANIX)
G.f F.(fiiid)

The initial G-algebra (Y, T) is then the algebra of ‘substructures’ corre-
sponding 1o X (Meertens himself does not give it a memorable name).
On the naturals, this construction gives finite possibly empty lists of nat-
urals, on non-empty snoc lists it gives non-empty snoc lists of non-empty
snoc lists, on moo trees, homogeneous moo trees of moo trees, on rose
trees, homogeneous rose trees of rose trees, and so on. He goes on to
define a ‘predecessors’ function

Further work 169

preds = <oX:TA(vofF») € XY
The other half of the catamorphism involved here is the identity:
»oXirA(coF») = id

This definidon gives the predecessors of the number n as the list of
numbers [0,1,...,n — 1], and preds coincides with our inits on non-
empty snoc lists and with subtrees on moo and rose trees.

Meertens’ paramorphisms, the topic of his paper, are then simply
G-catamorphisms composed with preds. Our rightwards, upwards and
downwards functions are special cases of paramorphisms, in which the
G-catamorphism is a map; accumulations are even more special, because
then the function being mapped must itself be a catamorphism.

This construction is very elegant, but it is not clear how, or even
whether, we can generalize it to cover downwards as well as upwards ac-
cumulations; in a sense, downwards accumulations run in the ‘opposite’
direction to the way trees are constructed. For this reason we have cho-
sen to take the more sedate route presented in Chapters 3 and 4.

Further work

Like most research, this thesis has probably raised more questions than
it has answered. We menton three here: a general construction for
‘substructures’ and accumulations, a universal model of parallel pro-
gramming, and a theory of directed acyclic graphs.

Meertens’ construction for ‘substructures’ was covered above, and
we will not say much more about it; the obvious question is how to apply
it to get downwards accumulations on trees.

Skillicorn’s architecture-independent programming language was
mentioned in Chapter 1; Skillicorn showed that Bird’s list operators
can be implemented with optimal efficiency on any of the four major
classes of parallel architecture. It would certainly be interesting to know

170 Conclusion

whether a similar result holds for a language containing our tree accu-
mulations. Leiserson and Maggs (1988) show that their leafhx and root-
fix operations, mentioned above, can be implemented in logarithmic
time on the ‘distributed random access machine’, a restricted version of
Skillicorn’s ‘tightly-coupled’ processors, and Blelloch (1990) shows the
same result for the Connection Machine, another of Skillicorn’s four
categories. Constant-valence topologies are more awkward: constant-
dilation embeddings of trees are not possible on meshes, for example
(Skillicorn, 1991). Note that the implementation must give logarith-
mic time even for degenerate trees that have greater than logarithmic
depth; it seems that Leiserson and Maggs’ restriction of their leaffix and
rootfix operations to associative operators is necessary for this, for the
same reason that it is necessary for the parallel prefix algorithm.

1t is interesting to note that downwards accumulations that are
both catamorphic and efficient, that is, both paths and htaps accumu-
lations, must be expressible using associative operators—thisis an ex-
tension of the Third Homomorphism Theorem (Barnard et al., 1991),
which states that a function expressible as cons and as snoc listcatamor-
phisms is also expressible as a cat list catamorphism—and so we have
inadvertently come up with the same associativity condition ourselves.

The third area for further work that we will mention is that of
constructing an algebraic theory of directed acyclic graphs (dags’ for
short). Trees are just a special case of dags; a tree is a dag in which
paths that diverge never rejoin, and a dag is a tree in which some of the
elements overlap. 1t ought to be possible to construct an algebra of dags
that reduces to some tree algebra—perhaps the homogeneousrose trees
we have studied here, but with bags of children rather than lists—in the
special case that the graph is a tree. We might then gain some insight
about graph algorithms by applying tree concepts to this graph alge-
bra; similarly, we may learn something new about trees by taking the
special case of some graph properties. Bijlsma (1988, 1989) has done

Further work 171

some work relevant to this; he considers constructs, which are functions
from partially-ordered sets to elements, just as lists are functions from
totally-ordered sets to elements. However, not all constructs can built
up from ‘elementary’ constructs using Bijlsma’s constructors; in other
words, there are arbitrarily complex irreducible constructs. This sug-
gests that constructs cannot be defined in the Hagino-Malcolm style in
the same way that our trees can. Another field that offers some promise
here is that of graph grammars (Claus et al., 1979; Rozenberg and Salo-
maa, 1986), which describe sets of graphs in a way that is analogous to
the grammatical description of strings.

References

Selim G. Akl (1989). Design and Analysis of Parallel Algorithms. Prentice-Hall.

Roland Backhouse” (1989). An exploration of the Bird-Meertens formalism. In Internalional
Summer School on Constructive Algorithmics, Hollum, Ameland (1989). Also available
as Technical Report CS 8810, Department of Computer Science, Groningen
University, 1988.

Roland Backhouse, Peter de Bruin, Grant Malcolm, Ed Voermans, and Jaap van der
Woude (1990). A relational theory of types. Department of Computing Science,
Rijksuniversiteit Groningen, and Department of Maths and Computing Sdence,
Technische Universiteit Eindhoven.

Roland Backhouse, Peter de Bruin, Grant Malcolm, Ed Voermans, and Jaap van der
Woude (1991). Relational catamorphisms. 1n B. Maller, editor, Proceedings of the
IFIP TC2/WG2.1 Working Conference on Constructing Programs. Elsevier.

John Backus (1978). Can programming be liberated from the von Neumann style? A functional
style and us algebra of programs. Communications of the ACM, 21(8):613-641.

John Backus, John Williams, and Edward Wimmers (1990). An introduction to the
programming language FL. In Turner (1990).

D. T. Barnard, J. P. Schmeiser, and D. B. Skillicorn (1991). Deriving associative operators for
language Tecognition. Bulletin of the EATCS, 43:131-136.

1lan Bar-On and Uzi Vishkin (1985). Optimal parallel generation of a compulation iree form.
ACM Transactions on Programming Languages and Systems, 7(2):348-357.

F. L. Bauer, M. Broy, R. Gnatz, W. Hesse, B. Krieg-Briickner, H. Partsch, P. Pepper, and
H. Wassner (1979). Towards a wide-spectrum language to support program specification
and development. In F. L. Bauer and M. Broy, editors, LNCS 69: Progran
Construction, pages 543-552. Springer-Verlag.

A. Bijlsma (1988). A unified approach to sequences, bags and trees. Technical Report 88/138,
Technische Universiteit Eindhoven.

A Bijlsma (1989). Transformational programming and forests. In van de Snepscheut (1989),
pages 1567-173.

Richard S. Bird (1984a). The promotion and accumulation sirategies in transformatimal
programming. ACM Transactions on Programming Languages and Systems,
6(4):487-504. Sec also (Bird, 1985).

Richard S. Bird (1984b). Using circular programs to eliminate multiple traversals of data. Acta
Informatica, 21:289-250.

174 References

Richard §. Bird (1985). Addendum to “The promotion and accumulation strategies in
transformational programming”. ACM Transactions on Programming Languages
and Systems, 7(3):490~492.

Richard S. Bird (1987). An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrele Design, pages 3—42. Springer-Verlag. Also
available as Technical Monograph PRG-56, from the Programming Research
Group, Oxford University.

Richard S. Bird (1988). Lectures on constructive functional programming. Tn Manfred Broy,
editor, Constructive Methods in Computer Science. Springer-Verlag. Also available as
Technical Monograph PRG-69, from the Programming Research Group, Oxford
University.

Richard S. Bird and Lambert Meertens (1987). Tivo exercises found in g book on algerithmics.
In Meertens (1987), pages 451457,

Guy E. Blelioch (1989). Scans as primitive parallel operations. IEEE Transactions on
Computers, 88(11):1526-1538.

Guy E. Blelloch (1990). Vector Models for Data-Parallel Computing. MIT Press.

Gregor V. Bochmann (1976). Semantic evaluation from left o right. Communications of the
ACM, 19(2):55-62.

Nicolas Bourbaki (1942). Eléments de Mathématique, Livre I1: Algébre. Hermann e Cre,
English translatjon published in 1974 by Addison-Wesley.

Anne Briiggemann-Klein and Derick Wood (1990). Drawsng trees nicely vith TgX. In
Malcolm Clark, editor, TgX: Applications, Uses, Methods, pages 185-206. Ellis
Horwood.

R. M. Burstall (1969). Proving properties of programs by structural induction. Computer
Journal, 12(1):41-48.

R. M. Burstall and John Darlington (1977). A transformational system for developing
recursive programs. Journal of the ACM, 24(1):44-67.

Arthur Cayley (1857). On the theory of the analytical forms called trees. Philosophical
Magazine, 13:172-176. Also in The Collected Mathematical Papers of Arthur Cayley,
Volume 111, p. 242-246, Cambridge, 1890.

Laurian M. Chirica and David F. Martin (1979). An order-algebraic definition of Knuthian
semantics. Mathemartical Systems Theory, 13(1):1-27.

V. Claus, H. Ehrig, and G. Rozenberg, editors (1979). LNCS 73: Graph Grammar and
their application to Computer Science and Biology. Springer-Verlag.

John Darhngton (1981). The structured description of algorithm denvations. In J. W.
deBakker and H. van Vlie, editors, Algorithmic Languages, pages 221-250.
Elsevier North-Holland, New York.

175

J. Darlington and R. M. Burstall (1976). A system whick automatically improves programs.
Acta Informatica, 6(1):41-60. Also in Proceedings of the Third International
Joint Conference on Artifidal Intelligence, Stanford, 1973.

Kei Davis and John Hughes, editors (1990). Functional Programming, Glasgow 1989.
Springer-Verlag.

Oege de Moor (1990). Categories, relations and dynamic programming. Programming
Research Group, Oxford.

Eliezer Dekel and Sartaj Sahni (1983a). Binary irees and parallel scheduling algorithms.
1EEE Transactions on Computers, C-32(3):307-315.

Eliezer Dekel and Sartaj Sahni (1983b). Parallel generation of postfix and tree forms. ACM
Transactions on Programming Languages and Systemns, 5(3):300-317.

Pierre Deransart, Martin Jourdan, and Bernard Lorho (1988). LNCS 323: Attribute
Grammars—Definitions, Systems and Bibliography. Springer-Verlag.

Edsger W. Dijkstra and W. H. J. Feijen (1988). A Method of Programming. Addison-Wesley.

G. Estrin (1960). Organization of computer systems—the fixed plus variable structure computer.
In Proceedings Western Joint Computer Conference, pages 33—40.

Rodney Farrow (1986). Automatic generation of fixed-point-finding evaluators for circular, but
well-defined, attribute grammars. In Proceedings of the ACM SIGPLAN 86 Symposium
on Compiler Construction, pages 85-98. SIGPLAN Notices Volume 21, Number 7.

Martin S. Feather (1987). A survey and classification of some program transformation
approaches and techniques. In Meertens (1987), pages 165-195.

Maarten M. Fokkinga (1990). Tupling and mutumorphisms. The Squiggolist, 1(4):81-82.

Maarten Fokkinga, Johan Jeuring, Lambert Meertens, and Erik Meijer (1991). 4
translation from attribute grammars to catamorphisms. The Squiggolist, 2(1):20-26.

Maarten M. Fokkinga and Erik Meijer (1991). Program calculation properties of continuous
algebras. Technical Report CS-R9104, CWI, Amsterdam.

Galileo Galilei (16238). Il Saggiatore. Rome.

Susan L. Gerhart (1975). Correctness-preserving program transformations. In Proceedings of
the Second Sympostum on Principles of Programming Languages, pages 54-66. ACM.

Alan Gibbons and Wojciech Rytter (1986). An optimal parallel algorithm for dynamic
expression evaluation and is applications. In K. V. Non, editor, LNCS 241: Sixth
Conference on the Foundations of Software Technology and Theoretical Compuler Science,
pages 453-469. Springer-Verlag.

Alan Gibbons and Wojciech Rytter (1988). Efficient Parallel Algorithms. Cambridge
University Press.

Alan Gibbons and Ridha Ziani (1991). The balanced binary tree technique on mesh-connected
computers. 1nformation Processing Letters, 37:101-109.

176 References

Jeremy Gibbons (1988). A New View of Binery Trees. Transferral dissertation,
Programming Research Group, Oxford University. Abstract appears in the
Bulletin of the EATCS, number 39, p. 214.

Tatsuya Hagino (1987a). A Categorical Programming Language. PhD thesis, Laboratory for
the Foundations of Computer Science, Edinburgh.

Tatsuya Hagino (1987b). A typed lambda calculus with categorical type constructors. In D. H.
Pitt, A. Poigné, and D. E. Rydeheard, editors, LNCS 283: Category Theory and
Computer Science, pages 140-157. Springer-Verlag.

C. A, R. Hoare (1972). Notes on dala structuring. In Ole-Johan Dahl, Edsger W. Dijkstra,
and C. A R. Hoare, editors, Structured Programming, APIC studies in data
processing, pages 83-174. Academic Press.

Ming-Deh A. Huang (1985). Solving some graph problems with optimal or near optimal
speed-up on mesh-of-trees networks. In 26th {EEE Symposium on Foundations of
Comgputer Science, pages 232-240.

Paul Hudak, Philip Wadler, Arvind, Brian Boutel, Jon Fairbairn, Joseph Fasel, Kevin
Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil,
Simon Peyton Jones, Mike Reeve, David Wise, and Jonathan Young (1990).
Report on the programming language Haskell, version {.0. Technical report, Yale
University and University of Glasgow.

John Hughes (1990). Compile-time analysis of functional programs. In Turner (1990), pages
117-153.

Valerie Illingworth, Edward L. Glaser, and 1. C. Pyle, editors (1990). Dictionary of
Computing. Oxford University Press.

Edgar T. Irons (1961). A syntax directed compiler for Algol 60. Communications of the
ACM, 4:51-55.

Kenneth E. Iverson (1962). A Programming Languaege. John Wiley.

Mehdi jazayeri, William F. Ogden, and William C. Rounds (1975). The intrinsically
exponential complexity of the circularity problem for attribute grammars.
Commuuications of the ACM, 18(12):697-706.

Alan Jeflrey (1990). Soft arrays. The Squiggolist, 1(4):74-75.

Johan Jeuring (1989). Deriving algorithms on binary labelled trees. CWI, Amsterdam.

Thomas Johnsson (1987). Auiribute grammars as a functional programming paradigm. ln
G. Kahn, editor, LNCS 274: Functional Programming Languages and Computer
Archiutecture, pages 154-173. Springer-Verlag.

Geraint Jones (1989). Calculating the Fast Fourier Transform as a divide and conquer algorithm.
Unpublished draft, Programming Research Group, Oxford University. Later
version appears as ‘Deriviug the fast Founer algorithm by calculationy, in (Davis
and Hughes, 1990).

177

Geraint Jones and Mary Sheeran (1990a). Circuit design m Ruby. In Jgrgen Staunstrup,
editor, Formal Methods for VLSI Design. North-Holland.

Geraint Jones and Mary Sheeran (1990b). Relations and refinement in circuit design.
Technical Report PRG-TR-!3-90, Programming Research Group, Oxford.

Martin Jourdan (1984). Strongly non-circular attribute grammars and their recursive
evaluation. 1n Proceedings of the ACM SIGPLAN 84 Symposium on Compiler
Construction, pages 81-93. SIGPLAN Notices Volume 19, Number 6.

Takuya Katayama (1984). Translation of atiribute grammars inlo procedures. ACM
Transactions on Programming Languages and Systems, 6(3):345-369.

G. Kirchhoff (1847). Uber die Auflssung der Gleichungen, auf welche man bei der
Unlersuchung der linearen Vertheilung galvanischer Strome gefiirht wird. Annalen der
Physik und Chemie, 72(12):497-508. In German.

Donald E. Knuth (1968a). The Art of Computer Programming, Volume 1: Fundamenial
Algonithms. Addison-Wesley.

Donald E. Knuth (1968b). Semantics of context-free languages. Mathematical Systems
Theory, 2(2):127-145. Correction in (Knuth, 1971¢).

Donald E. Knuth (1971a). Examples of formal semantics. In E. Engeler, editor, Lecture Notes
in Mathematics 188: Symposium on Semantics of Algorithmic Languages, pages
212-235. Springer-Verlag.

Donald E. Knuth (1971b). Optimum binary search trees. Acta Informatica, 1:14-25.

Donald E. Knuth (1971c). Semantics of context-free languages: Correction. Mathemancal
Systems Theory, 5(1):95-96.

Peter M. Kogge and Harold S. Stone (1973). A parallel algorithm for the efficient solution of a
general class of recurrence equations. IEEE Transactions on Computers,
C-22(8):786—793.

Clyde P. Kruskal, Larry Rudolph, and Marc Snir (1985). The power of parallel prefix. IEEE
Transactions on Computers, C-34(10):965-968.

Richard E. Ladner and Michael J. Fischer (1980). Parallel prefix computation. Journal of
the ACM, 27(4):831-838.

Lao Tzii (4th century BC). Tao T¢ Ching.

Charles E. Leiserson and Bruce M. Maggs (1988). Communication-efficient paralld
algorithms for distributed random-access machines. Algorithmica, 3:53-77.

David B. Loveman (1977). Program improvement by source-lto-source transformation. Journal
of the ACM, 24(1):121-145.

Wayne Luk (1988). Parametrised Design of Regular Processor Arrays. D. Phil. thesis,
Programming Research Group, Oxford University.

Grant Malcolm (1990). Algebraic Data Types and Program Transformation. PhD thesis,
Rijksuniversiteit Groningen.

178 References

Ernest G. Manes and Michael A. Arbib (1986). Algebraic Approaches to Program Semantics.
AKM Series in Theoretical Computer Science. Springer-Verlag.

Brian H. Mayoh (1981). Atinbute grammars and mathematical semantics. SIAM Journal on
Computing, 10(8):503-518.

Lambert Meertens (1986). Algorithmics: Towards programming as a mathematical activity. In
J- W. de Bakker, M. Hazewinkel, and J. K. Lenstra, editors, Proc. CWI Symposium
on Mathenatics and Compuler Science, pages 289-334. North-Holland.

Lambert Meertens, editor (1987). Program Specification and Transformation.
North-Holland.

Lambert Meertens (1988). First steps towards the theory of rose trees. Unpublished draft,
CWI, Amsterdam.

Lambert Meertens (1989a). Constructing a calculus of programs. In van de Snepscheut
(1989), pages 66-90. Also available as Report CS-R8914 from CWI, Amsterdam.

Lambert Meertens (1989b). Fariations on trees. In International Summer School on
Constructive Algonithmics, Hollum, Ameland (1989).

Lambert Meertens (1990). Paramorphisms. Technical Report CS-R9005, CWI,
Amsterdam.

Lambert Meertens and Jaap van der Woude (1991). A4 tribute o atiributes. The
Squiggotist, 2(1):10-15.

Carroll Morgan (1989). Whither application? The Squiggolist, 1(2). CWI, Amsterdam,

Carroll Morgan (1990). Programming from Specifications. Prentice Hall.

James H. Morris, Jr (1873). Bpes aze not sels. Yn Proceedings of the First Symposium on
Principles of Programming Languages, pages 120-124. ACM.

Joe Morris (1987). A theoretical basis for stepwise refinement and the programming calculus.
Science of Computer Programming, 9(3):287-306.

Thomas]. Myers (1980). Infinite Structures in Programming Languages. PhD thesis,
University of Pennsylvania, Philadelphia, PA.

John T. O’'Donnell (1990). Derivation of fine-grain algorithms. Prescatation at IFIP
Working Group 2.8 meeting, Rome.

G. M. Radack (1988). Tidy drawing of M-ary {rees. Technical Report CES-88-24,
Department of Computer Engineering and Science, Case Western Reserve
University, Cleveland, Ohio.

Edward M. Reingold and John S. Tilford (1981). Tidier drawigs of trees. IEEE
Transactions on Software Engineering, 7(2):223-228.

Thomas Reps and Tim Teitelbaum (1984). The synthesizer generator. In Peter Henderson,
editor, Proceedings of ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages 42-48. Software Engineering
Nates Volume 9, Number 3, and SIGPLAN Natices Volume 19, Number 5.

179

Thomas Reps and Tim Teitelbaum (1989). The Synthesizer Generator—A System for
Constructing Language-Based Editors. Springer-Verlag.

Grzegorz Rozenberg and Arto Salomaa, editors (1986). The Book of L. Springer-Verlag.

R. M. Schell, Jr. (1979). Methods for Constructing Parallel Compilers for use in a
Mudtiprocessor. PhD thesis, University of Illinois at Urbana-Champaign.

David B. Skillicorn (1990). Architecture independent parallel computation. IEEE Computer,
28(12):38-51.

David B. Skillicorn (1991). Private communication.

M. B. Smyth and G. D. Plotkin (1982). The category-theoretic solution of recussive domain
equations. SIAM Journal on Computing, 11{4):761-783.

STOP project (1989). International Summer School on Constructive Algorithmics, Hollum,
Ameland.

Kenneth]. Supowit and Edward M. Reingold (1983). The complexity of drawing ires nicely.
Acta Informatica, 18(4):377-392.

D. A. Turner (1982). Recursion equations as a programming language. In J. Darlington,

P. Henderson, and D. A. Turner, editors, Functional Programming and its
Applications, pages 1-28. Cambridge University Press.

David A. Turner (1985). Miranda: A non-strict functional language with polymorphic types. In
Jean-Pierre Jouannaud, editor, LNCS 201: Functional Programming Language and
Computer Architecture, pages 1-16. Springer-Verlag.

Prescott K. Turner (1986). Up-down parsing with prefix grammass. SIGPLAN Notices,
21(12):167-174.

David A. Turner, editor (1990). Research Topics in Funclional Programming. University of
Texas at Austin, Addison-Wesley.

J. L. A. van de Snepscheut, editor (1989). LNCS 375: Mathematics of Program Construction.
Springer-Verlag.

A. J. M. van Gasteren (1988). On the Shape of Mathematical Arguments. PhD thesis,
Technische Universiteit Eindhoven. Also available as LNCS 445.

Jean G. Vaucher (1980). Preity-printing of irees. Software—Practice and Experience,
10:553-561.

Nico Verwer (1990). Homomorphisms, factorisation and promotion. The Squiggolist, 1(3).
Also available as Report RUU-CS-90-5, Department of Computer Science,
Utrecht University.

Xavier Gérard Viennot (1990). Trees everywhere. In A. Arnold, editor, LNCS 431: CAAP
’90, pages 18-41. Springer-Verlag.

John Q. Walker, [[(1990). A node-positioning algorithm for general irees. Software—Practice
and Experience, 20(7):685-705.

Ben Wegbreit (1976). Goal-directed program transformation. 1EEE Transactions on
Software Engineering, SE-2(2):69-79.

180 References

Charles Wetherell and Alfred Shannon (1979). Tidy drawings of trees. IEEE Transacuons
on Software Engineering, 5(5):514-520.

David S. Wile (1973). A Generative, Nested-Sequential Basis for General Purpose Programming
Languages. PhD thesis, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pennsylvania.

Niklaus Wirth (1976). Algorithms + Data Structures = Programs. Prentice Hall.

Gavin Wraith (1989). A note on categorical datatypes. In D. H. Pirt, D. E. Rydeheard,

P. Dyjber, A. M. Pius, and A. Poigné, editors, LNCS 389: Category Theory and
Computer Science. Springer-Verlag.

Chris J. Wright (1988). A theory of arrays for program derivation. Transferral dissertation,

Oxford University.

A good calculator has no need of artificial aids.
Lao Tz4, Tao Té Ching, 4th cendury EC

