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Abstract 

This thesis presents an investigation into the properties ofvarious alge-
bras of trees. In particular, we study the influence that the structure of 
a tree algebr<l has on the solution of algorithmic problems about trees in 
that algebra. The investigation 1S conducted within the framework pro-
vided by the nird-Mccrtcns formalism, a calculus for the construction 
of progT<lms by equation.al reasoning from their specifications. 

\Vc present three difTcrcnt tree algebras: two kinds ofbinary tree 
ami a kind of general tree. One of the binary tree algebras, called 'hip 
trees', is nc'-\'. Instead of being: built with a single ternary operator, hip 
trees are built with two bjnary operators which respectively add left and 
right children to trees which do not already have them; these operators 
enjoy a kind of associativity property. 

Each of these algebras brings with it with a class of 'structure-
respecting' [unctions called catamorphisms; the definition ofa catamor-
phism and a number of its properties come for free from the definition 
of the algcl)l'a, bcca usc the algebra is chosen to be initial in a class of 
algebras induced by a (cocontilluous) functor. Each algebra also brings 
with it, but not for free, classes of'structure-preserving' functions called 
accumulations. An accumulation is a function that preserves the shape 
of a structured object such <l:i a tree, but replaces each element of that 
object with some catClmorphism applied to some of the other elements. 
The two classes of accumulation that we study are the 'upwards' and 
'downwards' acculllulations, which pass information from the leaves of 
a tree towards the root Clod from the root towards the leaves, respec-
tively. 



Upwards and downwards accumulations tum out to be the key 
to the solution of many problems about trees. We derive accumulation-
based algorithms for a number of problems; these include the parallel 
prefix algorithm for the prefix sums problem, algorithms for bracket 
matching and for drawing binary and general trees, and evaluators for 
decorating parse trees according to an attribute grammar. 



Philosophy is written in this grand hook-I mean the Universe-
which stands continuously open to our gaze, but it cannot be 
understood unless one first learm to comprehend the language in 
which it is written. It is written in the language ofmathematics, 
and its characters aTe triangles, circles and other gemnetrical 
figures, withaut whi<:h it is humanly impossible to underswnd a 
single word ofit; without these, one is wandering about in a dark 
labyrinth. 

Galifeo, It Saggiatare, 1623 
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1 Introduction 

The concept of a tree is fundamental to all algebra, and hence to algo-
rithm design too; this is because the terms of any recursively defined 
algebra are trees. Bourbaki's text on algebra (Bourbaki, 1942) has trees 
as the first definition on page one. Indeed, trees are fundamental, full 
stop: there is a 'beautiful combinatorial world' of tree-like branching 
pallerns in fields ranging from molecular biology and neurophysiology 
to hydrogeology and astronomy (Viennot, 1990). Knuth (1968a) traces 
the history of trees back to the third day ofcreation, but the mathemat-
ical notion of a tree dates from Kirchhoff (1847), who was concerned 
with finding cycles in electronic circuits, and the name 'tree' in connec-
tion with this notion from Cayley (1857), from his series of papers on 
the structure of arithmetic expressions. 

Trees are important in computing because they embody the idea 
of hierarchical structure. In the context of parallel execution, they per-
mit fast collection and dissemination of information among their ele-
ments: the structure-respecting functions on trees can be computed in 
parallel in time proportional to the depth of their argument. In fact, it 
could be argued that all algorithms that take logarithmic time, whether 
sequentially or in parallel, do so because ofan underlying tree structure. 

The purpose of this thesis is to explore the algebraic properties of 
a number of species oftree, and in particular to investigate the influence 
that these properties have on the solution ofalgorithmic problems about 
trees. This work forms part of a larger objective, that of the formal cal-
culation of computer programs from their specifications. We have been 
aware for more than twenty years that any attempt to construct pro-
grams by trial and error is doomed to failurej clearly a more systematic 
approach than this is required. 



14 
 

Introduction 

Progran calculation 
One metlodology that offers some scope for making the construction 
of prograns more mathematical is that of transj!JT71Ultional programming 
(Gerhart.1975; Wegbreit, 1976; Darlington and Burstall, 1976; Burstall 
and Darli,gton, 1977; Loveman, 1977; Feather, 1987). This methodol-
ogy is de5:ribed by Darlington (198l) as follows: 

Vsi"." the transjo1'TTUJlicmal approach to progra7!mting. a programmer does not 
attnpt to produce directly a program thai is correct, understandable and efficient, 
Talk .. he lTluially concentrates on producing a program which is as clear and 
undlf'Slandable as po.uible ignoring any questian ofefficiency. Having satisfied 
hi711-.'lf that he has a correct prtJgram he suaesrively transJonns iJ, to mare and 
1/WT't'fficient 1.'ersions using methods guaranteed not to change the meaning of the 
proJ.ram. 

In essence, the value of the approach is in its separation of the concerns 
of correCness and of efficiency and implementability. 

Trere are two properties of a program notation that will greatly 
simplify :he process of program construction by transformation. These 
properti:s are that the notation covers a wide spectrum, encompassing 
both inital 'specification' and tinal 'implementation', and that it is con-
cise. Th, first is desirable because it is impossible to make purely local 
changes between stages of the development, if separate languages are 
used fordifferent stages: each different stage entails a complete transla-
tion of tile program from one language to the next (Bauer et aJ., 1979). 
The sec<,nd is desirable becL/use with the transformational approach, the 
progran is rewritten many times with only small variations between suc-
cessive 1et"Sions; if the notation is verbose this is very clumsy! and more-
over, a verbose notation will obscure the structure ofa program, making 
it  to spot the applicability of transformations (Backhouse, 1989; 
Meertens, 1989a). 

The clearest way of presenting a transformational development is 
to give a linear calculation, proceeding by equational reasoning, from 
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the specification of a program to i15 implementation. A sequence of 
programs is presented, each differing from the previous one by the ap-
plication of some relatively simple transformation of a subexpression. 
If each transformation preserves the meaning of the program, then alJ 
programs in the sequence-but in particular, the first and the last-are 
equivalent. Ideally, it should be possible to check the applicability of 
a transformation on a purely syntactic basis, without having to interpret 
the symbols, though ofcourse it is likely that there will be some semantic 
intuition on the part of the designer in choosing which particular trans-
formation to apply. Feijen's proof format (Dijkstra and Feijen, 1988) 
provides a clear method oflaying out such a calculation: the calculation 
is displayed in the form 

p 

[ hint as to why P ; Q ] 

Q 

[ hint as to why Q ; R ] 

R 

There is plenty of room for the hin15, minimizing the amount of'decod-
ing' needed to understand the calculation. and it is clear that '01 step in 
the calculation is a very local affair' (van Gasteren, 1988), involving only 
two adjacent expressions and a hint. 

Of course, a style of development by equational reasoning like 
this relies on having 'an algebra of programs, a rich collection of identi-
ties that hold between different representations of functions' (Backus et 
aI., 1990). This collection of identities can be provided by exploiting 
the algebraic structure of the data concerned. In panicular, there is a 
close correspondence between data structures (terms in an algebra) and 
control structures (homomorphisms over that algebra). This correspon-
dence is the same as that between the manipulation of types and offunc-
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lions by categorical functors. This close correspondence is also an aid to 
conciseness; common patterns ofcomputation over data structures can 
be encapsulated as 'higher order operators', and the repetitive details 
elided. 

We have discussed various aspects of program calculi in general; we 
tUfn now to a particular calculus, the Bird-Meertens formalism, which 
will form the framework for this thesis. 

'The remainder of this thesis is structured as follows. Chapter 2 
provides a survey ofthe different species oftree that we will study. Chap-
ters 3 and 4 form the main body of the thesis; in them we introduce the 
notions of upwards and downwards accumulation on trees, which embody 
the ideas of passing information towards the root and towards the leaves 
of a tree, respectively; it turns out that these accumulations are the ba-
sis of the solutions of many algorithmic problems on trees. Chapters 5 
and 6 verify this observation by presenting two extended examples of 
the use of accumulations: Chapter 5 gives a derivation of the 'paral-
lel prefix' algorithm and of two of its applications, running finite state 
machines and matching brackets, and Chapter 6 gives derivations of al-
gorithms for drawing trees. Chapter 7 shows the connection between 
accumulations and attribute grammars, which also pass information to-
wards the root and towards the leaves of a tree; we show that the evalu-
ation of attribute grammars is naturally described using accumulations. 
Finally! in Chapter 8, we present the conclusions we have drawn, and 
discuss the relationship of the material presented here to other work. 

The Bird-Meertens formalism 

The Bird-Mentens fornlalism (Meertens, 1986; Bird, 1987, 1988; Back-
house, 1989) is a program calculus possessing all the desirable proper-
ties we have mentioned: it covers a broad range oflevels of abstraction, 
it is concise, and it places a heavy emphasis on the algebraic properties of 
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data types, resulting in a rich and powerful body of laws that encourage 
a calculational style of development based on equational reasoning. 

Work within the Bird-Meertens formalism has covered a wide va-
riety ofprogramming paradigms. Atone end ofthe spectrum ofabstrac-
tion from physical computers, de Moor (1990) at Oxford and Backhouse 
et a1. (1990, 199 I) in the Netherlands have been investigating the theory 
behind a relational, as opposed to functional, approach. Such an ap-
proach provides the power ofnon-determinism, partiality and inverses; 
de Moor is llsi.ng it to solve dynamic programming problems. At the 
other end of this spectrum, groups at Oxford and Glasgow (Luk, 1988; 
Jones, 1989; Jones and Sheeran, 1990a) have been using a similar for-
malism to synthesize circuit designs for hardware. Although the extra 
restrictions oflocality and of minimizing wire crossings make hardware 
design more difficult than software design, the same methods can be 
used. 

The formalism also covers the 'parallelism' axis well. Early work 
(Bird, 1987; Ilird and Meertens, 1987) was based on a distinctlysequen-
tial intuition, but Skillicorn (1990) has shown that a language consisting 
of Bird's operators map. reduce, accumulation, filter and cross prod-
uct forms a 'truly architecture-independent programming language', in 
the sense that these operations can be implemented with asymptotically 
optimal efficiency on any of the 'four major classes of parallel architec-
ture: tightly coupled, SIMD, hypereuboid and constant valence topology 
multiprocessors'. Thus, the theory of lists is 7lniversal over these mod-
els of parallel computation; this subset of the Bird-Meertens formalism 
makes just as good a parallel programming language as it does a se-
quential one. For this reason, we will often talk about the amount of 
'effort' or 'work', rather than 'time', that an algorithm requires; this is 
the product of processing power and execution time, assuming that all 
the processing power can effectively be used. 

Similarly, the formalism is not tied to 'imperative' or to 'functional' 
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implementations: a development will produce a program that can be 
implemented in either kind of language. The notation may well resem-
ble that of a lean functional language like Backus' FP (Backus, 1978) 
or Turner's Miranda (Turner, 1985), but that is only because programs 
written in this sort of language are 'consistently an order of magnitude 
shorter than the equivalent programs in a conventional high level lan-
guage' (Turner, 1982); the semantics may well resemble that of a lazy 
functional language such as Haskell (Hudak et aI., 1990), but that is 
only because this gives the richest and most useful body of laws. 

So much for the philosophical aspects of the Bird-Meertens formalism. 
The rest of this introduction will consisl of a more detailed discussion of 
the notation that we will usc. 

Types and functions 
We use the symbol E for type judgements, writing a E A for' a has 
type A'. Uppercase letters near the beginning of the alphabet will usu-
ally be used for type variables. 'Primitive' types include the unit type 1 
with unique element it, booleans 18 wiLh elements true and false, and 
na turals N , including O. The use of E for type membership is not in-
tended to mean that types are sets; some types are too big to be sets, and 
besides, types are not just collections of elements (Morris, 1973). How-
ever, we do call on some set-theoretic properties later on-for example, 
that injective functions have post-inverses. 

The function type former is written -+ ; the type of functions with 
source A and target B is A -+ 8. Function application is written with 
an infix dot: if a E A and f E A -+ B then La E B ; application is the 
tightest binding of all operations. Functions are often curried, and ap-
plication associates to the left, so f.a.b parses as (f.a).b; because ofthis. 
the type former is right associative. Function composition is backwards, 
is the weakest binding of all operations, and is written with an infix 0, 



19 Functors, the pair calculus and binary operators 

so that (f 0 g) .• = I.(g.a). The 'constant function' always returning. is 
written !a and satisfies !a,b = a; the identity function is id. 

One charactedstic of the Bird-Meertens formalism is that reason-
ing is carried out at the function level rather than the object level, wher-
ever practical. This makes expressions more concise, of course, but also 
tends to improve manipulability by reducing variables and simplifying 
pattern matching. However, we do not stick slavishly to the function 
level; Bird (I984a) says 'one can argue that the additional information 
provided by the presence of variables is very important for understand-
ing the meaning of expressions'. 

When we do have to resort to a pointwise argument, we often end 
up writing expressions like h.(g.(I..)), or (h 0 go f) .• ; the convention 
that application is left associative then becomes more of a hindrance 
than a help. In this situation, we take advantage of an idea of Morgan's 
(1989), of using a right associative application operator as well as the 
normal left associative one. We write this operator with an infix centred 
dot, " and we use it to write expressions like the above without using 
so many parentheses: 

h·g·f·. = h.(g.(I..)) 

We give this right associative application the same high precedence as 
left associative application, instead of following Morgan and making it 
weakest-binding. Any expressions involving both left and right associa-
tive application will be disambiguated with parentheses. 

Functors, the pair calculus and binary operators 

For quite a while now, we have been used to the idea that data structure 
and program structure tend to follow the same pattern (Hoare, 1972). 
In categorical terms, this is the reasoning behind 'functors', data con-
structions that act on both types and functions: the image of a functor 
on a type is a data structure, and its image on a function over that type 
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is a corresponding function over that data structure. We denotE functor 
variables by uppercase letters F, G, '" and pre-apply them like we do 
functions: F.A and F.f . Functors respect source and target: 

I E A  B 2t F.I E F.A  F.B 

and ther preserve identity and cumposition: 

F.id id 
F.(I 0 g) F.f 0 F.g 

 two kinds of primitive functor we will use afe the identity 
functor Id and the constant functors 18 for various B ; their actions on 
types and functions are given by 

Id.A  A !B.A B  
Id.1  I !B.f  id  

We also use infix bifunclors cartesian product II and disjoint sum or 
coproduct II acting on pairs of types and offunctions; if f E A -t C and 
9 E B  D then 1119 E A II B  ell D and 1/9 E A I B  C I D. Using 
1/ and I instead of the more conventional x and + leaves the latter 
free for arithmetic operations. If a E A and b E B J we write the pair 
(a, b) E A II B ; in effect, the infix comma is a synonym forthe identity on 
products. We write -<: E A II 8 - A and,. E All B ---4> B for the product 
destructors or projections, and < E A  A I Band > E B  A' B for 
the sum constructors or injections. 

The product and sum morphisms are written J.. ijnu Y I pro-
nounced 'fork' and Join'; if I E A  Band g E A -+ C then 

1),9 E  

and if h E B  D and j E C  D then 

hyj E  

These operations satisfy a number oflaws, among which are 
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Iligohllj = (10 h) II (g 0 j) Ilgohlj = (loh)l(goj) 
IlIgoh;.j = (10 h)A (g 0 j) fygohlj (Ioh)y(goj) 

I;.goh = (10 h) ;. (g 0 h) log y h (log)y(loh) 
"';.:» = id <y> = id  

«of;.,g = 1 fygo< 1  
»of)"g = fygo> 9 9 

Recall that composition is weakest binding. 
Vve write n for the monofunctof that satisfies 

Il.A = A II A 
ll.f = 1 II 1 

We also sometimes write (2 instead of I1.f; note that f2 is the product 
of funct.ions f II f J not their composition f 0 f . 

Product and sum are not associative. To denote arbitrary prod-
ucts and sums we write Ao II ... It An_ t and Ao 1 ... I An_I, which are 
understood to be applications of n-ary operators; similarly, n-ary forks 
and joins are written fo ).. . , . ).. fn_ 1 and fo y ••• y fn_ 1 . Because 'left' 
and 'right' have no simple analogy for arbitrary tuples, we write the 
projections 'Jtj and injections Lj on these types. 

Another characteristic of the Bird-Meertens formalism is the frequent 
use of infix binary operators: if the function $ has a binary product as 
its source type, it is written between its arguments. We have seen exam-
ples of this already: application, composition, apposition, product, sum, 
fork and join. Bird (1984a) says, 'Not only can such operators enhance 
the succinctness and, used sparingly, the readability ofexpressions, they 
also allow many transformations to be expressed as algebraic laws about 
their distributive and other properties.' Related to this, and tothe desire 
to work at the function level wherever practicable to avoid redundant 
variable names, is the notion of sectianing, attributed by Wile (1973) to 
the mathematical literature (he cites a recursive function theory text). 
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Sectioning is a form of partial parameterization; a binary operator is 
given one of its arguments, and it turns into a function of the other 
argument. 

(.$).b = • $ b = ($b) .• 

We will often omit the sectioning brackets, relying on spacing to make 
the sense clear. We also section an operator without giving it any argu-
ments; this is just currying: 

($).a.b = $.(•. b) = • $ b 

We make the convention that all other binary operators have the 
same precedence, between those of application and composition, and 
that most are right associative. The exceptions to this last rule are the 
few cases in which we define an operator of type A II 8 - A ; repeated 
applications of such an operator are properly typed only when the op-
erator is left associative. 

Two further abbreviations involving binary operators will prove 
useful later. These are 'converse', e, and 'lifting', $, ofa binary oper-
ator Ell, defined hy 

Eil = $0>;'< 
ffi = ($0)0;' 

That is, 

xffiy : y$x  
(f ffi g).x = Lx $ g.x  

Initial data types and catamorphisms 
We base our notation for type definitions and for catamorphisms, their 
structure-respecting maps, on Malcolm's work (1990), who in tum bases 
it on that ofRagina (l987a, 1987b). We use a slightly different notation, 
but the mathematics is the same and we draw heaviJy on his results. 
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A type definition is written in the fann 

X = TO.(FO'X) I ... I T._dF._,X) 

where each Fi is a functor. In most cases, these functors will be polyno-
mial, that is, constructed from the identity functor and constant functors 
using composition. product and sum. though we will see a type defined 
with a non-polynomial functor in Chapter 2. Informally. this definition 
says that if a E Fj.X then 'ri.a EX, that is, 'Tj E Fj.X -. X. Implicit 
in this definition is that X is the 'least' type having this property. For 
example, the definition 

t-l = !D.I I sueeN 

says that JO.it is in N. and if n is in N then so is suee.n (and that 
nothing else is in N). The functors here are !1 and Id I since !1.N = 1 
and Id.N = t-l. 

We formalize this example below. 

I. Definition An F-algebra is a pair (A, f) such that f E F.A - A. ? 

2. Definition A function h is (f, g) F-promotable iff 

hof = goF.h 
o 

3. Definition An F-homomorphism from an F-algebra (A. f) to an F-
algebra (B. g) is a function in A ..... B which is (f. g) F-promotable. 0 
Clearly, F-homomorphisms are closed under composition. 

Promotability is apparently a very important algebraic concept. 
judging by the frequency with which it crops up. For example, it gener-
alizes both distributivity and associativity: a function distributes over an 
operator $ iff it is ($, $) U-promotable. and an operator @ with type 
A II A ..... A is associative iff o@ is (@,@) (Id ij !A)-promotable for all o. 
(The 'lifted product' functor ij here isjust an instance ofbinary operator 
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lifting: it satisfies (F fi G).A = F.A II G.A and (F fi G).f = F.f II G.f .) Pro-
motability also generalizes conjugation: to say that 9 is the h-conjugate 
of f, 90 h = h 0 f , is just to say that h is (f,9) Id-promotable. Con-
jugation is the property on which data refinement depends (Jones and 
Sheeran, 1990b): h is the abstraction function, and f and 9 the con-
crete and abstract operations. 

The notions ofF-algebra and F-homomorphism will only be used 
in this introduction, but F-promotability will be useful later; if the func-
tor F is clear from the context, we will omit it, saying simply that h is 
(f, g) promotable. 

Returning now to the type definition 

X = To·(Fo.X) I ... I T._dF._!.X) 

we define the 'collective constructor' T by 

T = TO A ... A"n-l 

and the 'collective functor' F by 

F = Fol···1F._1 

Thus, F is the lifted sum of the individual functors, and satisfies 

F.A = Fo.A I .,. I F._I.A 
F.f = Fo.f I ... I F._I.f 

N ow, we have T E F.X -f X, and so (X, T) is an F·algebra; we complete 
the definition of the type X up to isomorphism by defining (X. T) to 
be aninitwl F-algebra, which is precisely to say that for every F-algebra 
(A, f) there is a unique F-homomorphism from (X, T) to (A, f). We as-
sume that we can fix some representative, so we can about the initial 
F-algebra. Initiality gives us the unique extensitm property: 

4. Corollary Suppose (X, T) is the initial F-algebra; then, for given f, 
there is a unique function that is (T, f) F-promotable. (> 
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The unique extension property turns out to be very important to us, 
because it eliminates the need for nearly all inductive proofs on initial 
data types: to show the equality of two functions with source X, where 
(X, T) is the initial F-algebra, it suffices to show that they are both (1, f) F-
promotable for the same f. Intuitively, the unique extension property 
is a form of 'canned induction'; the demonstration that two functions 
have the same promotion properties is equivalent to that of the base 
case and the inductive step of an induction proof, and the invocation 
of the unique extension property corresponds to the ritual steps of the 
proof. 

It is not immediately obvious that these initial data types actually 
exist. However, a standard result from category theory states that poly-
nomial functors are cocontinuous-a 'distributivity through limits' prop-
erty analogous to continuity elsewhere in mathematics-and Smyth and 
Plotkin (1982) showed that cocontinuous functors induce initial alge-
bras. Thus, if we restrict ourselves to polynomial Fj, the types we define 
are guaranteed to exist. 

There are actually three abuses of notation in the type definition 

X = To·(Fo·X) I ... I T,_t·(F'_l'X) 

The first abuse is that it really concerns an isomorphism, not an equality 
(Wraith, 1989); we make no excuse for this. The second abuse is that 
it is Fo.X I ... I Fn_l.X that is isomorphic to X, and the constructors 
Tj do not come into it; however, we need some way of introducing the 
constructors as well as the functors, and in the interests of brevity they 
should both be introduced with the same definition. 

The third abuse is that it makes no sense to apply a function Ti 

to a type F;.X. Using application here, though, opens the way to a 
notational abbreviation: when Fj.X is A II B, the product of two types, 
we write the constructor Tj in infix form, A Tj B, because it is a binary 
operator. For example, we would write the type snocnat of non-empty 
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soae lists of naturals (the name 'soae' is the reverse of 'cons', the name 
of the LISP function that is used for prefixing an element to a list, among 
other things) as 

sRocnat D.N I snocnat:· IN 

writing snocnat :·IN instead of the clumsier :·.(snocnat II IN). Informally, 
this definition says that if n is a natural number then the singleton list 
D.n is a snecnat , and that if x is a snocnat and n is a natural number 
then x;· n is also a snecnat. The functor yielding the SOUTce type of :. is 
Id fi lIN ,the lifted product of the identity functor and a constant functor. 

Another abbreviation we make is that, if Fj.X is 1. we will usu-
ally write Tj instead of 'ri.t. For example, the defining equation for N 
becomes 

IN = 0 I silcc.N 

writing 0 instead of 0.1. 

Catamorphisms are the promotable functions mentioned in the state-
ment of the unique extension property: 

5. Definition Suppose (X, T) is the initial F-algebra. Then, for given 
f , the unique function that is (T, f) F-promotable is called a eatamorphism, 
and written IX: fl· <> 

The identity function on any initial data type is a catamorphism, 
because id is (T,T) F-promotable for any F. Thus, the catamorphism 
built from the constructors of its source type is the identity: 

IX: T) = id 

A more interesting example is provided by the function # on snocnat, 
which returns the length of a list of naturals. This satisfies 

#00 !l 
#0:. = 67 0 (# II id) where x 67 a = x + 1 
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These two properties can be combined into a single one by joining the 
functions together: 

#o(oy:.) ; (!1Y$)o(idl(#lIid)) 

and so # is (0 y :', !1 Y$) (!N 1(id fi !N))-promotable, Now, snocnat IS 

the initial (!N 1(id 11 !N)-algebra, so 

# ; (snocnat:!1 Y$) 

It is usually more convenient to look at the components ofa cata-
morphism individually, as a function is (fo Y ... Yf._I, 90 Y ... Y9.-1) 
promotable ilIit is (f;,9i) promotable for each i. Thus, # is both (0, !1) 
!N-promotable and (:" $) (id fi IN)-pl'Omotable. This encourages us to 
write the components of the catamorphism separately, too; when we 
write IX: fo, ••• ,f._t) we mean IX: fo Y , .. y f._I)' We often omit the 
source type of the catamorphism if it is clear from context, so we might 
write 

# ; (!1.$) 

for the length function; this rendition is shorter and more manipulable 
than the recursive definition given above. 

It is often the case that an initial data type is a polymarphic type, param-
eterized by one or more type variables. In this case, some of the Fj will 
depend on these variables. For example, the type snOCA ofnon-empty 
snoc lists over the type A is given by 

snoCA o.A 1 snOCA:' A 

The two functors involved here are !A and Id fi !A, both of which de-
pend on the type variable A. We will now see how to define a functor 
snoc, which maps this type A to the type snOCA. 

We do this by defining snoCA in terms ofa hifunctar, one ofwhose 
arguments will be the parameter A. If @ is a bifunctor, then the oper-
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ation (A(8» on types and functions which satisfies 

(A0).B ; A0B 
(A0).f ; id 0 f 

is a functor. In the case of snOCA • this bifunctor ® satisfies 

A(8)B A I (B II A) 
f09 ; f I (9 II f) 

and snoCA is the initial (A(8»-algebra. 
This gives us the type part of the functor snoc : it takes a param-

eter A and yields the type snOCA. What about its function part? Since 
snoc is to be a functor, its action on functions must satisfy 

f E A  B =$ snoc.f E snoc.A  snoc.S 

and it should respect identity and composition. The map to. which ap-
plies the function f to every element ofa snoc list leaving the structure 
unchanged, satisfies exactly these conditions; it is given by 

to ;  (snocA: 0 d.:· 0 id II f) 
(snocA: (0 y :.) 0 (f 0 id») 

It turns out that the same procedure works for any parameterized 
type. If an algebra (XA.T). parameterized on A. is the initial F-algebra, 
then we define the bifunctor 0 such that (A(8» ; F (and such that A 
does not appear free in (8)). Then the X that satisfies 

X.A XA 
X.f (XA: T d (8) idl for f E A ---+ B 

is a functor; X.f is written f*. FIbe proof that X respects identity and 
composition can be found in Malcolm's thesis, and is omitted here. This 
X is cocontinuous if ® is. 

For the sake of brevityI we often omit the parameter A from the 
type information ofa catamorphism. writing (X: f) instead of IX.A: fl. 
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The treatment we have given here assumes that the type has a 
single parameter, but the same procedure applies ifit has a tupleofpa-
rameters, as for example do the types of trees with leaves and branches 
ofdifferent types that we introduce in the next chapter. In this case, the 
bifunctor generalizes to an n+l-ary functor fOrluples oflength n, and 
the map takes an n -tuple of functions. 

The types we have seen so far have all been 'free' types, that is, types 
where the constructors are injective. and so there is exactly one way to 
construct a given object. There are many interesting non-free types too, 
types where the constructors satisfy some laws and consequently where 
some objects can be constructed in more than one way. For example, 
the type of non-empty 'cat' (short for 'concatenate') lists is given by 

cal.A = o.A I cat.A * cat.A 

modulo the law that * is associative. Strictly speaking, the singleton cat 
list constructor 0 should be distinguishable from the singleton snoc list 
constructor 0; the reader may imagine that they are printed in different 
colours. 

Manes and Arbib (1986) say that a definition such as this defines 
cat.A to be 'the initial object of the category ofall models of the specifica-
tion', that is, the initial algebra among all those (!A 1D)-algebras that have 
an associative binary operator. In essence, we can construct a congru-
ence relation  on terms in such an algebra, by taking the congruence 
closure of the symmetric relation on terms induced by the laws; wet"V 

then take as objects of the type the congruence classes under",. In the 
case of cat lists, for example, the 'symmetric relation on terms induced 
by the laws'  relates terms (x * y) * z and x * (y * z) which can 
be identified by a single application of the associativity property at the 
top level, and the congruence relation  relates those pairs of terms 
that can be identified by any number ofsuch applications. 

The promotability property of catamorphisms can be seen as an 
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evaluation rule, since 

(fIOT = foF.(fl 

This reveals a subtlety when the source type is not free. Consider, for 
example, the cat list catamorphism h = (cat: f. EIlI ; we have 

h.«x -It y) -It z) = (h.x Ell h.y) Ell h.z 
h.(x -It (y -It z» = h.x Ell (h.y Ell h.z) 

Now, the two arguments to the catamorphism on the left hand side are 
equal, because * is associative; therefore, the two right hand sides 
should also be equal, to retain substitutivity, that is, Ell should be asso-
ciative (at least on the range of the catamorphism). 

In view of this, we make the restriction that a function, and in 
particular the components of a catamorphisffi l should respect the laws 
that hold of the constructors of the source type: 

6. Definition A function f respects a relation ....., iff 

x  y  f.x = f.y 

<> 
7. Property A well-defined function respects the congruence relation 
generated by the laws on its source type. <> 
8, Corollary The components ofa ca!amorphism respect the congru-
ence relation generated by the Jaws on its source type. ¢ 

For example, a cat list catamorphism If, EIlI E X  A is 'proper' 
only when Ell is associative, for only then is (A, f yEll) an object of 'the 
category oral! models of the specification'. 

We now present a few theorems about cataffiorphisms that will prove 
useful later 00. None of them are new. 

One important result is that any injective function is a catamor-
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phism. because it has a  

9. Theorem Suppose f has an initial data type as source; if there exists 
a 9 such that go f = id , then f is a catamorphism. <) 

Proof If I has source type X with (X, T) the initial F-algebra, and 
9 0 I  id , then I is (T, lOT 0 F.g) F-promotable. \? 

In particular, any function can be written as the composition of a 
projection and a catamorphism. hecause the fork of any function with 
the identity is a catamorphism (Meertens, 1990): 

10. Corollary For any f with an initial data type as source, there exists 
a catamorphism 9 such that f  «0 9 . <) 

Proof Just take 9  I  id; »0 9  id so 9 is a catamorphism. \? 

These last two resull') are usually of theoretical rather than practical 
interest: they give a method of computing f'T'X in terms of (F.I)·x, 
but only by throwing away any intermediate result, reconstituting x, 
applying T and starting from scratch. 

Another important theorem concerning catamorphisms isthe pro-
motion theorem (Malcolm, 1990): 

11. Theorem If h is (I. g) F-promotahle, then 

h 0 III  (g) 
<) 

Proof 
hO(fJOT 

[ ca tamorphisms ] 

holoF.(IJ 
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[ premise] 

go F.h 0 F.(f) 

[ functors ] 

go F.(h 0 (f) 

so h 0 (f) is (T. g) promotable, and the result follows from the unique 
extension property. <:;> 

The promotion theorem gives the conditions under which a function 
h can be 'fused' with a catamorphism (f) to produce another catamor-
phism. In Chapters 3 to 6 we will be looking for catamorphic solutions 
to certain problems, and this is the tool we shall use. 

Aconsequence of this theorem, which we will use in Chapter 5, is 
that a map can always be absorbed into a catamorphism: 

12. Corollary Suppose that (X.A, T) is the initial (A0)-algebra, and 
fEB 0 C --> C and 9 E A --> B . Then 

(X.B: f) 0 g. = (X.A: f 0 (g ® id») 
o 

Proof Firstly, g. is simply an abbreviation for (X.A: To (g ® id») . So, 

(f) 0 TO (g ® id)  

[ catamorphisms ]  

f 0 (id ® (f» 0 (g ® id) 

= I ® is a bifunctor, so id ® h commutes with 9 ® id ] 

f 0 (g ® id) 0 (id ® (f) 

that is, (f) is (T 0 (g ® id), f 0 (g ® id» (A®)-promotable. <;> 

Finally, the fork of two catamorphisms is itself a catamorphism 
(Fokkinga, 1990). 
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13. Theorem Suppose (X, T) is the initial F-algebra. Then 

(X: fl A(X: gl (X: (f a F.<) A(g a F.»)I 

<> 
Proof 

«(fl A (gl) aT 

[ A ] 

«(fl 0"-) A «(gl aT) 

[ catamorphisms ] 

(f a F.(fl) A (g a F.(gl) 

 [ A, <: and >, reintroducing the original fork] 

(faF.«alfIA(gl)) A (gaF.(»a(fIAlgJ)) 

= [ functors ] 

(f a F.< a F.«(fl A(gl)) A (g a F.» a F·(lfl A(gJ)) 

[ A ] 

«f a F.<) A(g a F.»)) a F.«(fl A(gl) 

and so (fl A(g) is (T, (f a F.<) A(g a F.») F-promotable. Q 

We should pause to consider why our notation for type definitions ought 
to differ from the notations of those who have gone before (Hagino, 
1987a; Malcolm, 1990; Verwer, 1990; Fokkinga and Meijer, 1991): it is 
because OUf needs our different. If one is concerned with the theory of 
these definitions in general, as these writers are, then one needs to talk 
about-and hence to name-the type and the functors, either individ-
ually or collectively, but one does not need to talk about the collective 
constructor much, nor about the individual constructors at all. If, how-
ever, one is concerned with the application of this theory to the derivation 
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of algorithms, as we are, then the names of the functors are of less im-
portance than the names of the individual constructors; that is why we 
need to name each 'Tj • 

The reader may also be wondering why the structure preserving 
maps over algebras are called homomorphisms, whereas those over ini-
tial data types are called catamorphisms. The answer is that homomor-
phisms and catamorphisms are subtly different. Consider the function 
constant, which holds of a snoe list whenever all its elements are the 
same: 

constant.x all.(= last.x).x 

where last and all.p are catamorphisms, 

last = (snoc: id, » 
all.p = Isnoc: p, /\ 0 id II p) 

Informally, last returns the last element of a list, and "/I.p holds of a 
list iff p holds of each of its elements. 

Now, constant is not catamorphic. because it does not promote 
througn :.; there is no E9 such that constant.(x:. a) = constant.x E9 a. 
Intuitively, constant.x does not provide enough information about x to 
permit computation of constant.(x:. a). 

However, consider now the function pairs, which tuples every ele-
ment ofa snoe list with the following element, and tuples the last element 
with the first. For example, 

pairs.[l, 2, 3] [(1,2), (2, 3), (3, I)] 

(We write [ao . ... I an-II for the list o.ao:· ... :. an_l .) This is an invertible 
function-it has post-inverse <* -and so it is a catamorphism. In fact, 
pairs  100 id,). id, Ell) where 

o.(b, b) Ell a = [(b, a), (a, b)]  
(x:· (b. c)) Ell a x:· (b, a):· (a, c)  
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Moreover, 

all.(=) 0 pairs constant 

We cannot prove this using the unique extension property, because 
constant is not catamorphic and so does not promote through :', but 
a simple inductive proofdoes work. 

At this point, we should realize that something odd is going on. 
We have shown that constant is not a catamorphism. but that it is the 
composition of two catamorphisms,  and pairs. That is, cata-
morphisrns are not closed under composition, in contrast to homomor-
phisms. The catch is that, for a given F, F-homomorphisms are closed 
under composition, whereas. for some other functor G, the composi-
tion of an F-homomorphism with a G-homomorphism need not yield 
another homomorphism. In our example, although pairs is a homo-
morphism, it is not a homomorphism to the algebra of snoc lists, formed 
by 0 and :.; rather, it is a homomorphism to the strange algebra formed 
by 00 id }. id and Ell. Similarly, .11.(=) is a homomorphism on SDOC lists, 
but not a homomorphism on this strange algebra. For this reason, we 
choose to abandon the notion of 'homomorphisms' in favour of that of 
'catamorphisms', being homomorphisms over initial data types. 



2 A taxonomy of trees 

In this thesis we will encounter three different species of tree, and nu-
merous subspecies within these species; we give the details in this chap-
ter. Recall the observation we made in the introduction. that trees are 
the foundation of algebra. This point is worth reiterating: for us, trees 
arejusllerms in some algebra; we do not think of trees as nested collec-
lions of sets, nor do we identify them with certain graphs. In particular, 
because of our algebraic viewpoint we have no way of saying anything 
about 'sharing ofsubstructures': we cannot distinguish between the tree 

&£  
and the directed acyclic graph 

&  
which results from 'sharing' the middle two leaves of the tree. 

Moo trees 

The simplest recursively defined term algebra of all is that of natural 
numbers, which we saw in the introduction. Of course, the naturals 
form a rather uninteresting species of tree: every 'parent' has exactly 
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one 'child'. If we generalize the unary constructor succ • which takes a 
single 'child', to a binary constructor which takes two, we get the branch-
ing structure characteristic of trees. We use the operator * for this 
constructor; it is a corruption-introduced for ease of writing--of the 
Chinese ideogram '*. pronounced 'moo' and meaning 'tree' or 'wood', 

This generalization gives US the type umtree of unlabelled moo 
trees: 

umtree a I umtree ± umtree 

That is, the empty tree l::.. is an umtree, and if x and yare umtrees then 
so is x:\; y. For example, the expression t:::. ± (6 ±'.6.) corresponds to 
the unlabelled tree 

Naturally, unlabelled trees have no labels; the only information 
in a tree of type umtree is structural information. We can generalize 
further by labelling the leaves and the branches; this gives us the type 
mtree of (labelled) moo trees: 

14. Delinilion 
mtree.(A. B)  I:>.A I mtree.(A, B) ± B mtree.(A, B) 

<i 
Informally, if a E A then I:>.a is a tree of type mtree.(A. B), and if x and 
y are trees of type mtree.(A, B) and bE B then x ±b Y is anothertree 
of type mtree.(A, B). For example. the expression L>.b ±. (I:>.d '*, I:>.e) 
represents the mtree 
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To avoid confusion, we always write the type A ofleaflabels before the 
type B of branch labels; similarly, when we come to define cammor-
phisms on trees, the leaf component will be given first. 

The operator", is now a ternary operator, and no longer simply a 
binary one; we write the extra argument as a subscript, for lack of any-
where better to put it. This can lead to some notational infelicities if the 
subscript is large, and for this reason, we extend the notion of section-
ing to ternary operators: if ternary operator Ell has type X II A II Y ..... B, 
then the sectioned operator (Ell) is a function oftype A ---+ X II Y ---+ B, a 
function yielding a binary operator given the subscript argument. That 
is, (Ell}.a is the binary operator Ell. which, when applied to the pair 
(x, y), yields x Ell. y. This means that, instead of writing' 6l where 
u Ellb v = U "'9.b v', as we would otherwise have had to do on page 42, 
we can write (±) 0 g. 

That mtree is a generalization of umtree is clear from the fact 
that umtree is isomorphic to mtree.(1, 1), the type oflabelled moo trees 
where neither leaves nor branches carry any useful information. In fact, 
we will take this as the definition of umtree: 

15. Definition 
umtree = mtree.(1,1) 

o 
It is tedious to have to write .o..it for the 'empty' tree and ;bit for the 
binary moo operator, so we will abbreviate these to .0. and :;1:::, relying on 
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context to dispel confusion. The advantage of making umtree a special 
case of mtree is ofcourse that everything we say about mtree will hold 
automatically of umtree. 

Two types that are intermediate in generality between mtree and 
umtree are the types of leaf-labelled and branch-labelled moo trees Imtree 
and bmtree. where the branch labels and the leaf labels, respectively, 
carry no information. 

16. Definition 

Imtree.A mtree.(A,l) 
bmtree.B mtree.(l, B) 

o 
We use the same abbreviations- ± with Imtree and L::l. with bmtree-
as we do with unlabelled trees. Examples of these two tree types are 
the leaf-labelled tree expression ".b ± (".d ± ".ej, which corresponds 
to the tree 

and the branch-Iabelled tree expression l:J. ±. (A ±c .0.), which corre-
sponds to 
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The last specialization of mtree that we will come across is that of 
homogeneous moo trees, where the leaf and branch labels have the same 
type. 

17. Definition 
hmtree.A mtree.(A, A) 

o 
If we have need of a name for the moo trees that are in none of 

the special cases, we will call them 'general (moo) trees. 

Moo tree catamorphisms 
The definition of moo tree catamorphisms is completely determined by 
the definition of moo trees: 

(f,EIl)'" f 
If, Ell) '± = Ell' «(f, Ell) II id II If, Ell) 

That is, 

If, EIl).(".•) L. 
(f, EIl).(x ±b y) = (f, EIl).x EIlb (f, EIl).Y 

Of course, this definition holds for all specializations of mtree as 
well as for the general case, but for these there are some notational sim-
plifications that we can make. For trees with no leaflabels, we have 

If, EIl).(".it) = Lit 
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We have already said that we will write a. instead of o..it; this gives us 
the more natural voicing 

(!e, $)." = e 

for the above equation, when we note that any function with source 1 
is a constant function. 

Similarly, for trees with no branch labels, we have 

If, $).(x xit y) (f, $).x $;1 If, $).y 

Again, we abbreviate x ±il y to x ± y; in the same way, we write just ED 
instead of eit • and so this equation becomes 

If, $).(x x y) (f, $).x $ If, $).y 

The map operation on moo trees takes a pair of functions, since in 
general moo trees have two base types; it applies one function to each 
leaflabel and the other function to each branch label in the tree: 

(f, g). = I" of, (x) 0 g) 

(Recall that «x) 0 g).b.(u, v) = u X •.b v.) We make some more nota-
tional abbreviations for the spedal cases: for homogeneous (including 
unlabelled) trees, we write to for (f, f). : for Imtree.A with A different 
from 1, we write f. for (f, lit). ; for bmtree.B with B different from 
1 , we write f* for (!it, f)* . 

The identity catamorphism is, of course, the catamorphism built 
from the constructors: 

id = I", x) 

The root of a homogeneous moo tree is given by the catamor-
phism 

root = lid, "1) 

Here, 1fl is the projection returning the middle element of a triple. 
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The function depth, returning the number of elements on the 
longest path from the root to a leaf, is given by 

depth (!1.EllI where U Ell. v = 1 + (u i v) 

Note that depth gives the same result, 1, for both the 'empty' br.mch-
labelled tree 0. and the 'singleton' leaf-labelled tree o..a. 

The analogue of the length function # on lists is a bit more dif-
ficult. Consider the two functions 

leaves = (n,EllI where uE6a v ::;u+v 
branches = (!O, 01 where u 0. v = u + 1 + v 

returning the number ofleaves and the number of branches ina tree, 
respectively. A popular undergraduate exercise in structural induction 
is to show that 

(1+) 0 branches leaves 

which, since (1+) is (0, $) (ld fi !A fi ld)-promotable, is an immedi-
ate consequence of the promotion theorem. Now, define the function 
elements by 

elements leaves +branches 

Again, thanks to the promotion theorem, 

elements = (ll, ®I 
The awkwardness in defining the size of a tree lies in our  

ilion concerning 'size'. Intuitively, we might expect the general tree 
o.,b ±. (o..d ±c o..e) and the unlabelled tree'" ± ('" ± "') both to have 
size 5, but the leaf-labelled tree o.,b ± (o..d ± "',e) to have size 3 and 
the branch-labelled tree 0. ±. (0. ±, 0.) to have size 2. That is, 'size' 
ought to mean branches on branch-labelled (but not unlabelled) trees, 
leaves on leaf-labelled (but not unlabelled) trees, and elem'nts every-
where else. Because of this awkwardness, we will stick with the three 
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separflte functions. 
Our last example of moo tree catamorphisms will consist of the 

various traversals of trees. Similar complications arise here, due again 
to conflicting intuitions; we will present examplesjust fot' homogeneous 
trees, leaving the generalizations to the reader. For homogeneous trees, 
then, preorder, inorder and postorder traversals, each returning a cat 
list, are given by 

preorder = (0, (I)) where u EEl, v ::::: o.a -+t u * v 
inorder == (0. (I)) where u EBa v = u -+t- o.a -++- v 

postorder == (0, (I)) where u EBa v = u +t- v -++- O.a 

We present a fourth kind of traversal, levelorder traversal, in Chapter 6. 

Rose trees 

We arrived at binary trees from natural numbers by generalizing the 
constructor succ, which takes one 'child', to the constructor ±. which 
takes two. Another generalization that we might have made is to a can· 
structor which takes a list of children; this generaliza tion gives what 
Meertens (1988) calls 'rose trees'. Meertens allows his lists ofchildren to 
be empty, so permitting parents with no children; to avoid this rather 
strange concept we use non-empty lists. 

Unlabelled rose trees are given by the definition 

urtree = A I -<,snoc·urtree 

The constructor -< could be pronounced 'tree' in this context. Gen-
eralizing unlabelled rose trees in the same way that we did unlabelled 
moo trees, we get general rose trees. 

18. Definition 
rtree.(A, B) = (;.A I B -< snoc·rtree·(A, B) 

<> 
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for which the constructor -< is more naturally pronounced 'above'. As 
with lists, we make no excuse for using the constructor D. for both moo 
and rose trees. We can define unlabelled, leaf-labelled, branch-labelled 
and homogeneous rose trees in terms of rtree. just as we did for moo 
trees. 

19. Definitinn 
urtree = rtree.(I.I) 

Irtree.A ;::: rtree.(A,I) 
brtree.B rtree.(I. B) 
hrtree.A = rtre•. (A. A) 

<> 
We use the same kind ofabbreviations as for binary trees, writing t:::.. for 
D..it and -<.x for it -< x. 

Some example rose trees are: 

• the unlabelled rose tree -<.[". -<.[". "]], which might be drawn 

• the leaf-labelled rose tree -<.[".b. -<.[".d. ".eJ], which would be 
drawn 
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* the branch-labelled rose tree a -< [l>, C -< [l>, l>J] : 

* the general rose tree a -< [l>.b, c -< [l>.d, l>.e]] : 

There is a complication with rOSe trees, in that their defining func· 
tor is non-polynomial. The type rtree.(A, B) is the initial F-algebra, 
where 

F.X = A I(B II snoc.X) 

The occurrence of the functor snoc in this expression makes F noo-
polynomial, that is, not built solely from identity and constant functors, 
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sum, product and composition. This means that the standard results 
about polynomial functors being cocontinuous do not apply. However, 
for any A, the type snoc.A is itself the initial algebra formed by a co-
continuous functor; Malcolm (1990) showed that any functor like snoc 
satisfying this property is in turn cocontinuous: 'functors induced by pa-
rameterized Hagino types are [co]continuous if their defining functors 
are [co]continuous'. 

Rose tree catarnorphisrns 
Rose tree catamorphisms satisfy the equations 

If, EJ)) c" ; f 
If, EJ)) c-< EJ) C id II If, EJ))-

That is, 

If, EJ))·".a La 
If, EJ))·(b -< x) = b EJ) (If, EJ)) ox) 

The * here is a map over snoc lists. 
As with moo trees, we make some notational abbreviations for the 

special cases. If the leaf type is 1, we write 

(le, EJ))." = • 

and if the branch type is :l, we write as the second component the list 
function (itEJ) instead of the binary operator EJ): 

If, g).(-<.x) = g.(lf, 9)_ x) 

The rose tree map is given by 

(f, g)_ I" C f, -< C (g II id») 

The only abbreviation that we will bother to make for map on rose trees 
is to write h instead of (f, f)* on homogeneous trees. 
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We now give a few examples of rose tree catamorphisms. The 
identity catamorphism is, of course, given by building a catamorphism 
from the constructors: 

id = (",-<) 

lbe root ofa homogeneous rose tree is given simply by 

root = (id, <) 

The depth of a rose tree is given by 

depth (II, (1+) 0 (id, i) 0 ») 

where r returns the greater of its arguments. That is, the depth of a 
branch is one greater than the largest of the depths of its children. 

The numbers of leaves, branches and elements in a rose tree are 
similar: 

leaves = (!1, (id, +) 0 ») 
branches = (10, (1+) 0 (id, +) 0 ») 
elements = (ll, (1+) 0 (id, +) 0 ») 

Another example is provided by Dewey Decimal labelling (Knuth, 
1968a), which returns a rose tree of cons lists; the latter are defined by 

cons.A = D.A I A·: cons.A 

We introduce here the operator y, pronounced 'zip', which is the post-
inverse of <* A >* on pairs of snoc lists: 

yo«. A»') = id 

That is l Y satisfies 

D.a y D.b = D.(a, b)  
(x :. a) y (y:. b) = (x Yy):. (a, b)  
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on pairs of equal-length lists. We extend its definition to pairs of same-
shaped trees in Chapter 5, and to pairs ofdifferent·length lists in Chap-
ter 6. The idiom (el)' 0 Y crops up so often that we define an abbrevi· 
ation for it: 

y" = (el). 0 Y 
The function dewey is now given by 

dewey (!(0·0), (-<) 0 (!(0.0) II (index y" id»)) 

where 
n el t = (n.:). t 

and 
index·c-t = 0·0 

index.(x :. t) = index.x:· #.x 

so that # index = # and index = (snoc: !(o.O),:· 0 (id A #) 0 <I. The0 

function index simply replaces every element of a list with its position 
in the list, with the first position being 0 . 

In every example If, ell ofa rose tree catamorphism that we have 
seen so far, the snoc list function bEB has been a catamorphisrn. Al-
though this appears to be true in nearly all 'natural' cases, it is not nec-
essary, and in general bel may simply be a list functian. Consider, for 
example, the rather contrived predicate funny on leaf-labelled boolean 
rose trees: a leaf is funny iff its value is true, and a branch is funny iff 
all its children are funny, or all its children are unfunny: 

funny·A,·a a 
funny·-<-x constant·(funny. x) 

where consta nt is the predicate introduced at the end of Chapter I, 
which holds ofa list whenever all its elements are the same. Now, funny 
is a catamorphism 



50 A taxonomy of trees 

funny = lid, constant) 

but, as we saw in Chapter 1, constant is not a list c:atamorphism. 

Hip trees 

The third and last species of tree that we will encounter is that of hip 
trees, a name coined by Geraint Jones. Hip trees are a kind of homoge-
neous binary tree, but instead of being built from a single constructor 
'*' they use two constructors / and \. . pronounced 'under' and 'over'. 
Intuitively, the tree t j u is formed by adding t as a left child to u; 
similarly, t \ u is formed by adding u as a right child to t. Thus, j 
and \ are a little like left and right hips, whence the name. These two 
operators satisfY the la w 

(t j un v = t j (u \ v) 

We say that , " associates with \ '. 
Formally, the type htree.A ofhip trees with elements of type A is 

given by 

20. Definition 
htree.A A.A I htree.A j htree.A I htree.A \ htree.A 

modulo the law that j associates with \. <) 

For exam pIe, the hip tree expression 

".b j ".a \ (".d j ".c \ ".e) 

represents the by now familiar binary tree 
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whereas 

".' \ (".d / ".c) 

represents the tall thin tree 

d 

Different presentations of hip trees can be found elsewhere (Gibbons, 
1988; Bird, 1988). 

Hip tree catamorphisms 
The definition ofhip tree catamorphisms is, ofcourse. determined com-
pletely by the type definition: 

(htree: f. $. ®) 0"  f  
(htree: f. $. ®) 0 / $ 0 (htree: f. $. ®)'  
(htree: f. $. ®) 0 \  @0 (htree: f. $. @)'  

Moreover. G1 must associate with @. 
One example hip tree catamorphism is the function elements, 

which returns the number of elements in a hip tree: 
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elements (11, +, +) 
Another is the function inorder J returning a list consisting of the 

elements of its argument in the order given by an inorder traversal: 

inorder = (D, *, *) 
Yet another is the predicate some.p, which holds ofa tree iff some 

element ofthat tree satisfies p: 

some.p = (p, V, V) 

and the predicate a/l.p, similarly: 

all.p = (p, 1\, 1\) 

In all these cases, the two binary operators are the same and are 
associative, that is, the first associates with the second. In fact, they are 
all special cases of the following theorem. 

21. Theorem 
(cat: f, Ell) 0 inorder (htree: f. Ell, $) 

if ED is associative. o 
Proof (cat: f. $) is (*, Ell) promotable. Q 

Informally. the lifting of any cat list ca<amorphism to hip trees is still a 
catamorphism. 

More interesting examples are the functions root and depth: 

root = (id, >, <) 
depth = (ll, Ell, Eel where x Ell y = (1 + x) iY 

Now, » associates with <:: 
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x» (y <. z) 

 [»] 
y<z 

[ » ] 
(x» y) '" z 

In fact, we did not need any properties of '" at all, which means that 
» associates with anything. and by symmetry anything associates with 
«. However, « does not associate with ». because x« (y ,. z) is x 
whereas (x", y) »z is z. 

For depth, we have 

x Ell (y 67 z) 

:::;; [ EB, twice ] 

(1 -c x) T«1 -c z) Ty) 

[ T is associative and commutative ] 

(1 -c z) T«1 -c x) Ty) 

[ EB. twice] 
(x EB y) 67 z 

and again the catamorphism is proper. 
For our last two examples. we consider conversions between moo 

and hip trees. One such conversion is the function hmh from homoge-
neous moo trees hmtree.A to hip trees htree.A. which satisfies 

hmh·.6,·a = 

hmh·(x ±, y)  

6,·a 
hmh·x 16.• \ hmh·y 

and so 
hmh = lhmtree: 6. Ell) where t Ell, "  t I 6'. \ " 
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Note that hmh is not surjective: hip trees in which some children are 
only children have no obvious counterpart as homogeneous moo trees. 

Aconversion in the opposite direction is provided by the function 
hbm from hip trees to branch-labelled moo trees, 

hbm E htree.A  bmtree.A 

given by 

hbm  (htree: ± 0 (!,,). id ). !,,). $. 0) 

where 

x $ (y ±. z) 
(x ±. y) 0 Z 

X *a Z 

x ±a Z 

Again, the conversion is not suIjective, because there is no empty hip 
tree. 

Consistency and partiality 
As a kind of'sanity check' on a type with laws, we will want to ensure that 
the laws we have chosen are consistent with the intended model, that is, 
that they do not equate terms that are intuitively 'different'; the quotient 
under the congruence relation R:: will always exist, but too strong a 
collection oflaws will make it collapse to fewer congruence classes than 
the intended model has objects. 

One way of performing this check is to exhibit a free algebra that 
is 'obviously' isomorphic to the intended model, and to show that this 
algebra is also isomorphic to the quotient algebra; this guarantees that 
the congruence relation  does not identify terms that are different in 
the intended model. It does not matter if this free algebra is clumsy to 
work with: its purpose is solely to show that the laws are not too strong. 
and after serving this purpose it can be forgotten. 

For example. recall from Chapter I the type cat.A of non-empty 
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cat lists over a type A. It is not difficult to show that cal.A is isomor-
phic to the free algebra snoc.A - the cat ca!amorphism (0, EIlI, where 
the associative operator Ell satisfies (XEIl) = (x:.), :,1, and the snoe ca!a-
morphism (0, (+1-) c (id II 0)1 are each other's inverses--and so theasso-
ciativity property is indeed consistent. 

However, ifwe try to perform this check on hip trees, we find that 
it is not obvious what kind oftree they are isomorphic to-it is clear that, 
for example, b.a , b.b \ b.C represents the same tree as b.a ±b 6.C, but 
what tree does the expression 

odd = (".a / ".b \ ".e) / (".d / ".e \ ".f) 

represent? Evidently, some more laws are required in order to make 
the algebra an algebra of trees. 

It seems that choosing these laws is not at all straightforward. If 
we add Ihe two laws 

1/ (u / v) 1/ v 
(t \ u) \ v = I \ v 

which express the fact that adding a branch destroys any branch that was 
already present, then all sorts offunetions cease to be catamorph.isms--
in fact, the only ones remaining out of those we have seen so far are root 
and hbm. Adding this law breaks the antisymmetry of the relation 'is a 
component of' on hip tree terms, and the process ofstructural induction 
(Burstall, 1969) relies on this ordering being well-founded. 

A more sensible suggestion is to make I and \ associative, so 
that 

t / (u / v) = (t / u) / v 
(l\u)\V = t \ (u \ v) 

in which case / and \ add children at the 'bottom left comer' and 
'bottom right corner' of the tree. This does give us an algebra corre-
sponding to our intuition oftrees, contrary to Meertens' (I 989b) obser-
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vation that 'associativity kills treehood', but it still means that depth is 
not a catamorphism: if x aJ y = (1 + x) i y, then neither aJ nor $ is 
associative, and indeed the depth of t I u cannot be determined from 
just the depths of t and u. 

The solution we would like is to say that the term odd 'does not 
correspond to a tree': that the operators I and \ are partial, and that 
t I u is 'undefined' (whatever that may mean) if u already has a left 
branch, and t \ u undefined if t already has a right branch. That is, 
define the predicate proper, which holds of a hip tree expression if it 
'represents a proper tree', by 

proper.(".a) true 
proper.(t I u) = proper.t 1\ proper.u A le.u 
proper.(t \ u) proper.t A proper.u A re.t 

where Ie and re (short for 'left empty' and 'right empty') hold of trees 
which have no left branch and no right branch, respectively: 

Ie = lltrue, ifalse, <) 
re = (itrue. >, ifalse) 

Since proper is not a catamorphism, we should check from first princi-
ples that it respects the associativity of I and \ ; indeed, 

proper.«t I u) \ v) 

: [ proper ] 

proper.t /\ le.u A proper.u /\ re.u /\ proper.v 

[ proper ] 

proper .(t I (u \ v)) 

We would like to say that a hip tree is defined iff it satisfies proper. 
Partial algebras, though, are notoriously difficult to work with. In 

particular, we would like to avoid any weakening of equality, because it 
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plays such a crucial role in our calculational style. For instance, if we 
weaken equality so that it holds vacuously when either side is unde-
fined, then it ceases to be transitive-but our Feijen-style calculations 
lean heavily on the transitivity of equality: if that goes, we must check 
separately the defined ness of each step of each calculation. Alterna-
tively, if we use an asymmetric 'refinement ordering' instead ofequality, 
as Morris (1987) and Morgan (1990) do for their Refinement C'lculus, 
then we can only apply some equations in one direction-we can no 
longer use the unfold-fold style of reasoning (Bursrall and Darlington, 
1977), on which we also rely. 

So, we have a dilemma. On the one hand, we want to exhibit a 
free algebra isomorphic to htree, in order to demonstrate the consis-
tency of the associativity property enjoyed by I and \; constructing 
such an algebra is made difficult by the fact that we have no intuition 
for the 'improper' hip trees. On the other hand, we do not wanl to elim-
inate these improper terms by making I and \ partial, because partial 
algebras introd uce complications that we could do without. 

The solution to this dilemma is that we need only exhibit a free 
algebra isomorphic to the proper subset. For, suppose that we have an 
algebra A with laws"" , and a predicate p on A. Suppose aro that we 
have a model B, an algebra isomorphic to the subset of terms of A that 
satisfy p, that is, we have f E A -> Band g E B -> A such that 

fog = id 

and 
pog = !true 

but only that 

g·f·. = a if p'a 

If "" relates two proper terms • and b, then f·a and f·b are equal, 
because f must respect:=::: -that is, a and b correspond (0 the same 
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object in B; the laws do not relate proper terms that correspond to 
dilferentDbjects. 

Returning tD our dilemma, we need only shDW that the proper hip 
trees areisDmDrphic to some free algebra; this is given by the fDIIDwing 
theDrem. This means that we can fDrget abDut making I and \, partial, 
and can instead remain firmly rooted in a calculus of total functions. 

22. Theorem The proper hip trees are iSDmorphic to the free algebra 

ftre'.A = ".A I ftree.A I2l A I AD ftree.A I ftree.A r81A ftree.A 
¢ 

Proof Define the functions fh E ftree.A  htree.A by 

fh = (", I id II ", \, 0" II id, 01 where t 0. u = t I ,,·a \, u 0 

and hf E htree.A  ftree.A by 

hf = 1",0,0J 

where 

)( 0 A·a = xl2la A-a \Sl z aDz 
x 0 (y I2l a) = xl2la (x I2l a) 0 z = )( l8I a z 
x 0 (a D z) = x  Z (aDY)0z aDz 

x 0 (y r81. z) = x l8Ia z (x r81. y) 0 z = x l8I it Z 

Then 

(i) ploper 0 fh = !true 
(ii) hI 0 fh = id 
(iii) (Ih hf) Iid 0 proper? = proper?, where0 

<·a if p·ap?a = . .{ >",t otherwIse 

These results follDw from the unique extension property; the caleula-
tions are straightfDrward but lengthy, SD we omit them. <:;) 
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Not all algebras that are intuitively partial are as well behaved as 
hip trees. For example, Wright (1988) has been doing work on two-
dimensional 'arrays' or matrices similar to ours on trees. Arrays are 
constructed from an embedding and two associative binary operators 
-€T and <p, pronounced 'above' and 'beside'. The intuitive model of 
arrays as rectangular matrices only holds up when all subterms of a 
term 'conforrn'-two arrays must have the same 'width' if they are to 
be placed one above the other, and the same 'height' if placed side by 
side. The operators  and <1> enjoy a kind of distributivity property 
called the abiding law (Bird, 1988): 

(w <1> x)  (y <1> z) = (w  y) <1> (x  z) 

prrruided that all four pareruh.,ized tmn, confmm. Jeffrey (1990) has shown 
that if the abiding law is strengthened to hold unconditionally, then the 
intuitive model breaks: this stronger law entails identities such as 

o 
o 
o 
o 

using the obvious graphic representation for rectangular arrays. Thus, 
the dilemma between consistency and manipulability is not so easily 
avoided: if the algebra is to be consistent with the model, either the 
constructors must be made partial-introducing the foundational com-
plications we wish to avoid--{)r the laws must be weakened to their 
guarded forms-requiring that calculations be peppered with side con-
ditions and checks of conformitY-Dr both. 
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We have now covered the background material on which we will build 
and can proceed with the main topic of this thesis, which is the study of 
accumulations on trees. Applying an accumulation to a structured object 
such as a list or a tree leaves the 'shape' ofthat object unchanged, but re-
places every element ofthat  with some 'accumulated information' 
about-that is, a catamorphism applied t(}--{)ther elements. Accumu-
lations are a very common pattern of computation; the encapsulation 
of these patterns as higher order operators creates a powerful structur-
ing tool, making programs clearer to read and easier to manipulate. 
Moreover, accumulations can provide an efficiency-improving transfor-
mation, if the naive computation of the accumulated information can 
be replaced by a more careful incremental computation; the naive com-
putation corres ponds to the declarative description of a result, and the 
incremental computation to a more efficient but less perspicuous way of 
achieving it. 

The upwards and downwards accumulations that we discuss in this 
chapter and the next are two instances of this general scheme. Upwards 
accumulation replaces every element ofa tree with some catarnorphism 
applied to its descendants, and so corresponds to passing information up 
the tree from the leaves to the root; downwards accumulation consists 
of replacing every element with some catamorphism applied to its ances-
Lars, and so passes information down the tree from the root towards the 
leaves. (Computing, as has been noted before, is one of the few areas 
in which trees have their leaves planted in the ground and their roots 
waving in the air.) 

We start by reviewing accumulations on lists (Bird, 1987). 
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Accumulations on lists 
Consider the function inits, 

inits E snoc.A -+ snoc·snoc·A 

which returns the list of initial segments ora sooe list; for example, 

inits.[a, b, cJ = [[a], [a, bj, [a, b, cJ] 

Intuitively, inits replaces every element of the list with the list of that 
element's predecessors. Formally, inits is characterized by the equations 

inits·Q·a = D·Q·a 
inits·(x:· a) = inits·x:· (x:· aj 

Although it is not immediately obvious from these equations, inits 
is a snoc list catamorphisffij for it to match the pattern for catamor-
phisms. the only occurrences of x on the right hand side of the second 
equation should be as part ofthe expression inits.x. However, it is easy 
to see that 

lastoinits :;::: id 

S0, by Theorem g, inits is catamorphic: 

inits.(x :. a) inits.x:· (Iast·inits·x:. a) 

and so 
inits 1000, $} where U $ a = U :' (Iast.u:· a) 

An important property that holds of inits. and of the analogous func-
tions on trees that we will introduce shortly, is given by the following 
theorem. 

23. Theorem 
inits 0 f* := h. 0 inits 

o 
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Proof By the unique extension property, using the property that 

1**0$ = $01**111 
o 

Categorically speaking, Theorem 23 is the statement that inits is a nat-
ural transformation from snoc to snoc ° snoc, the latter being the functor 
that maps A to snoc·snoc·A and 1 to h •. Intuitively, a polymorphic 
function like inits cannot 'examine' the elements of its argumem, and 
so can do no more than blindly 'rearrange' these elements; mapping 
a function over the elements cannot change the way in which they are 
rearranged. 

Functions that 'pass information from left to right' are character-
ized by the following definition. 

24. Definition We call a function 9 rightwards if it can be written in the 
form 

g = h*oinits 

for some h. <> 
Suppose 9 is rightwards, and can be written in the above form with 
an h that takes linear sequential time; this gives us a quadr<Hic time 
algorithm for computing g . Now, 

g·(x:·a) 

[ rewrite 9 ] 

h • inits·(x:. a) 

[ inits ] 

h. (inits·x:· (x:· al) 

[.] 
(h. inits·x):· h·(x:, aj 
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= [ fold 9 again ] 

g·x:· h·(x :. a) 

This does not change the efficiency of computing g; if h takes linear 
time, [or example, then this characterization of 9 will still take quadratic 
time. However, suppose h is a snac list catamorphism: 

h·(x :. a) h,x$ a 

for some ED taking constant time; then 

g.(o a) g·x:· (h·x $ a) 

Moreover, 

last 0 9 

= [ unfold 9 ] 

last 0 h* 0 inits  

= [ promotion: last 0 h* = h 0 last   
h 0 last 0 inits  

=: [ inits has post-inverse last ]  

h 

and so 
g·(x:. a) = g·x:· (Iast·g·x $ a) 

and 9 can be computed in linear time, using only a linear number of 
applications of $. What is more, 9 is a catamorphism: 

9 = (00 h 0 0, 01 where u 0 a = u:' (Iast·u $ a) 

Functions of this form are what we mean by accumulations on 
lists: 
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25. Definition Functions ofthe form If, $1* 0 inits are called rightwards 
accumulations, and are written (f, $)+ . <> 
Bird (1987) calls these functions 'left accumulations', a contraction of 
'left-to-right accumulations', following functional programming conven-
tion, but this name is confusing in view ofthe rightwards-pointingarrow 
he uses to denote it. 

Functions which are rightwards but not rightwards accumulations 
are awkward to deal with, since they are both inefficient and intractable; 
where possible, we try to find rightwards accumulations instead, which 
being catamorphic are both efficient and easy to manipulate. 

Rightwards accumulation can be seen as a generalization of inits ; 
where inits replaces every element ora list with its predecessors, a right-
wards accumulation replaces every element with some catamorphism ap-
plied to its predecessors. That it is a generalization and not just a varia-
tion follows from the fact that the identity is a catamorphism: 

inits 

= [ identity I 
id* 0 inits 

= [ identity catamorphism ] 

10, :,1* 0 inits 

= [+] 
(0, :')+ 

The equation 

(f, $)+ = If, $1* 0 inits 

could be seen as an efficiency-improving transformation, when used 
from right to left. It can also, of course, he used from left to right, when 
it forms a 'manipulabmty-improving' transformation: we know many 
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useful properties about inits I * and catamorphisms, and so the right 
hand side may be more amenable to calculation than the left. Most ofthe 
time, however, we aim simply to express functions as accumulations-
we know then that we can both implement them efficiently, by writing 
them in the form of the left hand side, and manipulate them readily, by 
writing them in the form of the right hand side. 

Generalizing to moo trees 
We now show how all this can be generalized to trees. The function 
inits on lists replaces every element of a list with its predecessors, that 
is, with the initial segment of the list that ends with that element. By 
analogy. the function su btrees on trees replaces every element of a tree 
with irs descendants, that is, with the subtree rooted at that element. For 
example, applying subtrees to the tree 

yields the tree of trees 
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$S  
 

The following definition characterizes subtrees. 

26. Definition 
subtrees.(".a)  

subtrees.(x ±b y) subtrees.x ±UbY subtrees.y 

<> 
Again. since 

root 0 subtrees = id 

we can calculate that 
s ubtrees.(x ± b y) subtrees.x EBb subtrees.y 

where 

U@b V u ±z v where z = root.u ±b root.v 

and so 

subtrees = I" 0 ". Ell) 

As with inits. we have the following theorem. 
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27. Theorem 
subtrees 0 t. = f •• o subtrees 

<> 
Proof By unique extension property, using the property that 

l .. oEll = EIloh-nlnh_ 
Q 

 analogue of a rightwards function on lists is an upwards func-
tion on trees: 

28. Definition Functions of the form h* 0 subtrees are called upwards 
functions. <> 
.As with rightwards functions on lists, an upwards function can still be 
neither efficient nor catamorphic. If h is a tree catamorphism, though, 
then h. 0 subtrees is much more amenable. 

29. Definition Functions of the form (mtr•• : 1,0)- ° subtrees are called 
upwards accumulaticms, and are written (I, 0)il. <> 

An upwards accumulation replaces every element of a tree with 
some catamorphism applied to the descendants of that element. For 
example, applying the accumulation (1,0)1t to the tree 

produces the result 
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Because the catamorphism (6. ±) is the identity, subtrees is itself 
an upwards accumulation: 

subtrees (<>, ±)1t 

Just as we did with left accumulation, we can calculate a catamor-
phic characterization of upwards accumulation. We observe first that 

root 0 «( 0)1t  

= [ 1t ]  

root 0 If, 0)* 0 subtrees  

[ root 0 f * = f 0 root ]  

If, 0) 0 root 0 su btrees  

[ root 0 su btrees = id ] 

(f,0) 

Now let 

If,0).x rool.«f, 0) 1t x) 
s (f,0)·Y = root.«( 0) 1t y) 

and so (f, 0).(x ±b y) = r 0b s. Then 

(f, 0) 1f (x ±b y) 

= [ 1t J 
(f, 0) * subtrees.(x ±b y) 
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[ subtrees ] 

(f, 0)* (subtrees.x X"" subtrees.y) 

[ * ] 
«(f, 0)* subtrees.x) x'0.> «(f, 0)* subtrees.y) 

 [ t  
«f, 0) t x) x'0.> «f, 0) l1' y) 

[ tet0 satist)' u 0b v  (x).(root.u 0b root·v).(u, v) ] 

«f, 0) t x) 0b «f, 0) t y) 

and so upwards accumulation is indeed a catarnorphism: 

(f,0)l1' = ("of,0) 

Once more, we notice from this characterization that the upwards 
accumulation of x d; b Y can be computed from the accumulations of x 
and y using only one more application of 0 , giving us a linear 'algo-
rithm' I" ° f, 0) in place ofthe quadratic 'specification' (1,0)* ° subtrees. 
In fact, if we have one processor per element ofthe tree, acting in paral-
lel and connected in the same topology as the tree, then we can perform 
an upwards accumulation-as we can any tree catamorphism-in time 
proportional to the depth of the tree, assuming that the individual op-
erations take constant time. 

Examples of upwards accumulation 
One example of zm upwards accumulation is the function sizes, which 
replaces every element of a tree with the number of descendants it has: 

sizes 

;::  definition j 
elements. 0 subtrees 
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= [ letting $ satisfY u $, v = u + I + v ] 

(!l, $1* 0 subtrees 

= [ 1t ] 
(!l, $)it 

A variation on this function forms the first half of the logarithmic-time 
parallel list ranking algorithm that we will see in Chapter 4. 

Another example would be that of the function min max ,which 
labels every element of a tree with the smallest and largest elements of 
the subtree rooted at that element: 

mlnmax «(id,l) A (id, iJ). 0 subtrees 

By Theorem 13, the fork of two catamorphisms is itselfa catamorphism, 
and so min max isalso an upwards accumulation. When applied 10 a leaf-
labelled binary search tree, that is, one for which an inorder traversal 
produces a sorted list of leaves, this function 'annotates' the tree with 
the information needed to enable the fast operations for which binary 
search trees are useful. 

We give some more substantial examples of upwards accumula-
tions in later chapters. In Chapter 5 we see that upwards accumulation 
forms the first half of the two-pass 'parallel prefix' algorithm. This al-
gorithm passes information up towards the root of the tree and then 
back down to the leaves again-it is, in fact, a generalization of the list 
ranking algorithm that we mentioned in connection with sizes above. 
In Chapter 6 we discuss the problem of drawing a tree, which is also an 
upwards accumulation; the problem consists of labelling each branch 
of the tree with information about where to draw its children, and the 
label attached to an element is a catamorphism of the subtree rooted 
at that element. Finally, in Chapter 7, we see that there is a very close 
analogy between upwards accumulation and synthesized attributes in 
an attribute grammar. 
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Upwards accumulations on hip and rose trees 
We do not need upwards accumulation on hip trees for this thesis, but 
it can be defined in much the same way as on moo trees. It is given by 

(f, Ell, 0)1)- (htree: f, Ell, 0)* 0 subtrees 

where the function subtrees on hip trees-again, we make no apologies 
for reusing the name-satisfies 

su btrees·A·a == .ll.·.ll.·a 
subtrees·(t j u) t 0 (subtrees·t j subtrees·u) 
subtrees·(t \. u) = (subtrees·t \. subtrees·u) <9 u 

where 

t 0 "·u ,,·(t j u) "·u <9 t = ".(u \. t)  
t 0 (x j y) = x j (t 0 y) (x j y) <9 t = x j (y <9 t)  
t 0 (x \. y) = (t 0 x) \. y (x \. y) <9 t = (x <9 t) \. y  

We should check the consistency ofthese equations from first principles, 
since we have not phrased them as catamorphisms; we have that 

t 0 «x j y) \. z) x j (t 0 y) \. z t 0 (x j (y \. z)) 
«x j y) \. z) <9 u = xj(Y<9 u)\.z = (x j (y \. z)) <9 u 

and so (to} and (<9u} are proper; they both affect only the root of a 
tree. Moreover, 0 associates with G, and so 

subtrees·(x j y \. z) = subtrees·x j (x 0 subtrees·y <9 z) \. subtrees·z 

and so subtrees is itself proper. What is more, all three of these func-
tions, subtrees, (to} and (Gu} , are  and hence catamorphic. 

Upwards accumulation on rose trees is a lot more straightforward than 
it is on hip trees, on account of the <:ibsence oflaws on the algebra ofrose 
trees. Again, the accumulation is just a catamorphism mapped over the 
subtrees, 
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(f,0)11" : (rtree: f, 0)* 0 subtrees 

where subtrees satisfies 

subtrees·.c..·a ::::: .c..·.c..·a 
su btrees·(a -< x) : (a -< x) -< (subtrees * x) 

Once more, subtrees is injective: 

root 0 su btrees = id 

and so is catamorphic: 

subtrees : (rtree: <> 0 <>, $) where a EB z ::::: (a -< root .. z) -< z 



4 Downwards accumulation 

In the previous chapter we discussed upwards accumulation, which  

bodies the notion of passing information up through a tree from the 
leaves towards the root. We now turn our attention to the inevitable 
counterpart, downwards accumulation, which captures the idea of pass-
ing information in the other direction, from the root towards the leaves. 

It turns out that downwards accumulation is less straightforward 
than upwards; the latter follows the structure of the tree, but the former 
goes against the grain, so to speak. It also transpires that there are two 
different classes of downwards accumulation; one is catamorphic and 
the other is efficient, and where they intersect we get accumulations 
that are both well-behaved and practically useful. 

A first attempt 

As upwards accumulations arose by considering the function subtrees, 
which replaces every element of a tree with its descendants, so down-
ward accumulations arise by considering the function paths, which re-
places every element of a tree with that clement's ancestors. The ances-
tors of an element in a tree form another tree, a tall thin one with that 
element as its only leaf. For example, the ancestors of the element d in 
the tree 
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form the three-element path 

a 

Applying paths to the whole five-element tree produces the tree oftrees 

 (\ 
It seems that paths. and hence downwards accumulation, is ex-

pressed most naturally in terms ofhip trees, since the paths themselves 
are trees in which every child is an only child. The type of paths is thus 

paths E htree.A --> htree·htree·A 

Ifwe define the operations 0 .. and 0.. for given $ by 

x 0 .. y = «$root.y) * x) / y 
x0.. y = x\ «root.x$) *y) 
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-note that 0$ associates with iSI0 for any EB and ® -then we can 
define paths as follows. 

30. Definition 
paths  (htr••: 0. 0 0., OJ, 0\) 

(> 

Thus, 

paths·,6.·a ;::;: .tl,·.ll.·a 

paths·(t / u) paths·t OJ paths·u 
paths.(t \. uj paths·t 0\ paths·u 

and in particular. we have 

paths·(t /o.·a \. uj  ((/o..a). paths·t) /o.·o..a \. ((o..a\.). paths·u) 

As before, paths is a natural transformation. 

31. Theorem 

paths 0 f* h* 0 paths 
(> 

Proof By the unique extension property, using the fact that (f, ffi, ®). 
is (OJ, 0",) and (0\, (0) promotable. 'V 

Proceeding in the same way that we did in the previous chapter, 
we define downwards functions and accumulations. 

32, Definition Functions of the form h. 0 paths are called dawnwards 
functians. (> 

33. Definition Functions ofthe form (htr•• : f. ffi, ®). 0 paths are called 
downwards accumulatians, and are written (f, ffi, ®)jJ.. (> 

The promotion properties used in the proof of Theorem 31 give 
us immediately that 
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(1,67,0).(1. ",a ,,·1·a 
(1,67,0).(I.(I}U) = (1,67,0).(1.10", (1,67,0).(I.u 
(1,67,0).(1.(1\ u) (1,67,<8).(1.10" (1,67, 0).(1. u 

and so downwards accumulation is catamorphic: 

(1,67,0).(1. = (" 0 f. 0"" 0,,1 

However, something unexpected happens here. Consider the identity 
function; it is easy to see that 0< = j and \$I> = \ , so 

id·ll.·a ll.·id·a 
id'(1 } u) - id·10.id·u 
id·(1 \ u) =  

and so, by the unique extension property, we would expect that 

id = (id, «C, »).(1. (id, «C, »)* 0 paths 

-but we noted in Chapter 2 that lid, «c, ») is not a hip tree catamor-
phism, because <:: does not associate with». The associativity property 
imposes conditions on all tree catamorphisms. even though not all hip 
trees can be paths; no element of any path of a tree has a sibling, and 
so the associativity property never comes into play for downwards accu-
mulations. 

We show next how to prevent these extra conditions on hip trees 
from interfering with downwards accumulations. 

Threads 
The solution to the dilemma mentioned above is to coin a new algebra, 
less general and more appropriate than hip trees, to represent paths; 
we call terms in this algebra threads. Every thread can be a path in some 
tree. 
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34. Definition 
thread.A  o.A I A+-, thread.A I A 4 thread.A 

o 
The operators  and 4 might be pronounced 'left child' and 'right 
child'. Informally, threads are like hip trees in which every child is an 
only child; alternatively, they could be seen as a kind of non-empty cons 
list with two different cons operators. For example, the  

path from page 76 corresponds to the thread a 4 (c +-' o.d) . 
With this new algebra, paths has type 

paths E htree.A  htree·thread·A 

and is given by the next definition. 

35. Definition (replacing Definition 30) 

paths = (" 0 ", 0",  where 

o 
a 4 X 
a +-' x 

 

X"" 0" 

o·a ISJ x 

More lucidly, 

paths·(t j "·a \ u) (a+-,) • paths·t) j "·o·a \ «a4) • paths·u) 

The downwards functions remain the same as before: if we call 
tbe function in Definition 30 path So , in order to distinguish it from the 
new definition of paths in Definition 35, then 

h* 0 pathso (h 0 th). 0 paths 

where th is the injective but not surjective function converting threads 
to hip trees, 

th  (thread: ", j 0" II id, \ 0" II id) 

and 
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h. 0 paths (h 0 ht). 0 paths. 

where ht E htree.A  thread.A is the post-inverse of th . 
The downwards accumulations, however, are different with this 

new definition of paths: a downwards accumuhtion is now a thread cata-
morphism mapped over the paths of a tree. 

36. Definition (replacing Definition 33) 

(f,$,0W  (thread: f, $, 0). 0 paths 

<> 
Because threads form a free algebra, there are no laws to impose on the 
components of an accumulation, and the identity function is a down-
wards accumulation after all: 

id = (id, >, ».IJ-

Now, unfortunately, something else goes wrong: (f, $, 0).IJ- is no 
longer a catamorphism, because it promotes through neither 0121 nor 
00. . This can be seen for 0" by looking at the tree "·a j ",·b : 

(f, $, 0).IJ- (", .• j ",·b) 

: [ .IJ- ] 

If, $, 0) • paths·("'·, j "'·b) 

[ paths ] 

(f, $, 0) • ("'·(b .-J o·a) j ",·o·b)  

= [ *, catamorphisms ]  

"'·(b $ f·a) j ",·f·b 

The accumulation depends on the root b of the tree. as well as the 
accumulations .o.·f·a and .6,·f·b of the components. 

This can be rectified by defining paths and downwards accumu-
lation on homogeneous moo trees instead of on hip  trees; intuitively, 
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the accumulations of the children happen 'at the same time', when the 
root is still available. Formally, we redefine paths once more to have 
type 

paths E hmtree.A  hmtree·thread·A 

as follows. 

37. Definition (replacing Definition 35) 

paths = Ihmtree: '" a 0, $1 
where u$. v = (a,.J) * U "'Q.' (a4) * v 

o 
It is still a natural transformation, and so satisfies Theorem 3l. 

With this definition, the downwards functions are now moo tree 
functions of the fonn 

h* 0 paths E hmtree.A -+ hmtree.B 

Every downwards function in this sense corresponds to one in the sense 
of Definition 32, but the converse is not true because the correspon-
dence between hmtree and htree is not surjective. The downwards ac-
cumulation 

(f, $, ®).(I. (thread: f. $, ®I* a paths 

regains its catamorphic status, being now a catamorphism on moo tfees: 

(f, $, ®) .(I. "'·a ,,·f·a 
(f,$,®).(I.(x ±.y) «a$) * (f, $, ®).(I. x) ±r.• «a®) * (f, 6). ®).(I. y) 

so 
(f, $, ®).(I. = Ihmtree: '" a f,@l 

where 

u@"v «a$) * u) ±r.• «a®) * v) 
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Applying the accumulation (I, el, 0).1J, to the five-element tree given ear-
lier prod uces the tree 

a 0 (c 0 I.e) 

as a result. 
Many useful functions on trees are downwards accumulations. We 

have already seen two examples, id and paths; another simple yet im-
portant accumulation is the function depths, which replaces every ele-
ment of a tree with its depth in that tree: 

depths (11, el, el) JJ. where a el x = 1 + x 

The thread catamorphism 111, el, ell involved here returns the length 
of a thread. We can write the weighted internal path length wi pi of a 
tree in terms of depths: 

wipl ; lid, ell 0 depths where U $a v = u + a + v 

A more substantial example is provided by backwards analysis of 
expressions (Hughes, 1990). which 'starts with information about the 
context of the entire expression and propagates it downwards through 
the syntax tree to the leaves to derive information about the contexts 
in which the subexpressions occur'-that is, it consists of a downwards 
accumulation applied to the parse tree of the expression. 

As a final example, consider the function leftleaves, a variation on 
the function sizes of Chapter 3j this function replaces every branch of 
a leaf-labelled binary tree with the number ofleaves in iL' left child. and 
replaces every leaf with 1: 
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leftleaves ::::;: (leaves 0 left)* 0 subtrees E Imtree.A  hmtree.W 

where left satisfies 
left·6·a :::; t:.·a 

left·(x ± y) = x 

Now define the function rank by 

rank = (id, lit)_ 0 (id. >, +).(1. 0 leftleaves E Imtree.A ---> Imtree.N 

The function (id,lit)_ turns a general binary tree into a leaf-labelled 
binary tree by throwing away the branch labels. A little manipulation 
shows that 

rank·t:.·a :::; .0·1 
rank·(x ± y) = rank·x ± (Ieaves.x+) _ rank.y 

and so rank numbers the leaves of a tree from left to right. 
Now, leftleaves is upwards, but it is not an upwards accumulation 

because leaves 0 left is not catamorphic. Tupling produces the catamoT-
phism leaves), (leaves 0 left) : 

leaves), (leaves 0 left) = 11(1,1), (+), «) 0 <'1 
from which we can construct an upwards accumulation: 

leftleaves  

= [ definition ]  

(leaves 0 left)* 0 subtrees  

= [ pair calculus ]  

>* 0 (leaves A (leaves 0 left»* 0 subtrees  

= [ tupling, upwards accumulation]  

>_ 0 (1(1, 1), (+ ), «) 0 <')11'  
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This gives rank as the composition of a map, a downwards accumu-
lation, another map and an upwards accumulation. All but the down-
wards accumulation can be evaluated efficiently-with linear effort, and 
in parallel in time proportional to the depth ofthe tree. The downwards 
accumulation, though, is still quadratic. 1n the next section, we will see 
how a downwards accumulation can be evaluated efficiently-in partic-
ular, rank Can be computed in parallel on a linear number of processors 
in tirneproportionallo the depth of the tree. Thus, rank can be used as 
a logatithmic-time parallel function to label the elements of a list from 
left to right, by first building a balanced binary tree whose leaves are the 
elements of the list. 

Efficient downwards accumulations 
Look again at the result of applying the accumulation (f, $, ®)JJ. to the 
five-element tree on page 75: 

a ® Ic ® I.e) 

This tree contains a quadratic number ofapplications of e and ®, and 
there are no common subexpressionsj evaluating the accumulation will 
inevitably take quadratic effort. 

We might ask, under what conditions can the accumulation be 
evaluated using only a linear number of $ and ® applications? That 
is, what properties are required of f, e and ® in order that each 
parent in the result is a common subexpression ofboth its children? 
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Considering the two elements on the middle level of the tree we 
see that a necessary condition is that there exist operators EE and 18I 
such that 

a $ Lb La EE b 
a 0 Le = La  e 

for onlY then is the root of the tree a common subexpression of its two 
children. Given this property, a sufficient condition for the two elements 
on the bottom layer to have their parent as a common subexpression is 
that EB and ® each associate with both EE and 181 (that is, four associa-
tivity properties, not two); if this is the case then, for example, 

a0(e$Ld) 

[ EE ] 

a 0 (Le EE d) 

= [ associativity ] 

(30 Le) EE d 

[  ] 
(f.a 0e)EEd 

which has La 18I c , its parent, as a subexpression. 
Let us give these various properties a simple name, so wecan refer 

to them. 

38. Definition Say (f, $, 0) inverts to (f,  if 

a $ Lb = La EE b 
a 0 Le = La  e 

and $ and <8> each associate with both EE and  <> 
39. Definition Say the triple (f, $, 0) is top-d=n if there exist EE and 

 such that (f, $, 0) inverts to (f,  <> 
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These definitions give properties for threads analogous to those for lists 
under which a cons list catamorphism can be written as a snoc list cata-
morphism. 

We sometimes extend these concepts in the natural way from com-
ponents to catamorphisms-that is. we sometimes say 'the catamorphism 
(f, $, 0) is top-down' instead of the rather long-winded 'the compo-
nents (f. $. 0) of the cat<lmorphism (f, $. 01 are top-down', and simi-
larly for inversion. 

As we shall see, if (f, $, 0) is top-down then the accumulation 
(f, $, 0)J,J. can be evaluated with only linear effort; moreover, it can be 
evaluated in parallel in time proportional to the depth of the tree on a 
number of processors linear in the number of elements of the tree. 

Daerhts 
Consider the type daerht, pronounced 'dirt' and defined as follows. 

40, Definition 
daerht.a = o.A I daerhl.A. A I daerht.A • A 

o 
The two operators. and • could be pronounced 'left leaf' and 'right 
leaf', respectively. Informally, daerhts are 'inverted' threads; daerhts 
are constructed top down. whereas threads are constructed bottom up. 
Put another way, daerhts are to threads as snoe lists are to cons lists. 

1he correspondence between daerhts and threads is made for-
mal by the function td of type thread.A -> daerht.A, which convens a 
thread to the corresponding daerht; this function is invertible (threads 
and daerhts are isomorphic), and so it is a catamorphism. 

td (thread: 0, 0, (YI where  a0 (daerht: o.a',' .•1 
a(Y = (daerht: o.a.,' , .1 

For example, considering again the path from page 76, 
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td.(a 4 (c ,.J o.d» (o.a .c)..- d 

Now, thread catamorphisms that are top-down are also daerht 
catamorphisms, modulo type conversion: 

41. Theorem If (f, Ell, 0) inverts to (f, EE, 1>1), then 

(thread: f. Ell, 01 = (daerht: f, EE, 1>11 ° td 
 

A significant proportion of the proof of this theorem will be used 
later, so we extract it as a lemma. 

42. Lemma 

(f, EE, 1>11 ° td ° (a,.J) (f.aEE, EE. 1>11 ° td 
(f, EE, 1>11 ° td ° (a4) (f.al>l, EE, 1>11 ° td 

 

Proof We prove only the first part; the second is symmetric. 

(f, IE,  ° td ° (a,.J) 

= [ td ] 

(f, IE,  ° (a0) ° td 

= [ 0 ] 
(f, IE,  ° (o.a..-,..-, .10 td 

[ promotion ] 

(If, IE,  (o.a..-),EE,l>Ilotd 

= [ catamorphisms ] 

«(f.alE), EE, 1>11 ° td 
Q 

Proof (of Theorem 41) The prooffollows directly from the unique ex-
tension property. For singleton threads we have 
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(daerht: f, ffi,l>l) 0 td 0 ¢  

( td ]  
(daerht: f, ffi,l>l) 0 ¢  

[ catamorphisms ] 

f 

[ catamorphisms ] 

(thread: f, (fl, 0) 0 ¢ 

For longer threads, we only show the case for ..-J; the argument for 4 

is symmetric. We have as premise that (f, (fl, 0) inverts to (f, ffi, I>l). 

(daerht: f, ffi,l>l) 0 td 0 (a,.J) 

= [ Lemma 42 ] 

(daerht: (Lam), m,l>l) 0 td 

= [ premise: (Lam) = (a(fl) 0 f ] 

(daerht: (a(fl) 0 f, ffi, I>ll 0 td 

= [ premise: ffi associates with B3 and 18I; promotion ] 

(a(fl) 0 (daerht: f, ffi,l>l) 0 td 

and of course, (thread: f, (fl, 0) follows the same recursive pattern: 

(thread: f, (fl, 0) 0 (a,.J) = (a(fl) 0 (thread: f, (fl, 0) 

Invoking the unique extension property completes the proof. <:;) 

Thus, any top-down downwards accumulation can be expressed 
jn terms of daerht catamorphisms: 

43. Corollary If (f, (fl, 0) inverts to (f, m,l>l) then 

(f, Ell, 0)JJ = (daerht: f,Ill,l>l)o 0 tdo 0 paths 
<> 
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Proof 
(f,$,®).ij.  

[ .ij. I  
(thread: t, $, 01- 0 paths  

 [ Theorem 41 ]  

(daerht: t, m,l>ll- 0 td_ 0 paths  
o 

Let us define the function htaps, pronounced 'taps', to return the 
paths of a tree as daerhts rather than as threads: 

44. Definition 
htaps  td_ 0 paths 

o 
Again, we have a theorem about htaps promoting through a map. 

45. Theorem 
htaps 0 f* = h* 0 htaps 

o 
Proof 

htaps 0 f* 

 [ htaps I 
td.o paths 0 h 

 [ Theorem 31 ] 

td* 0 h. 0 paths 

[ promotion: td commutes with f* ] 

f •• 0 td. 0 paths 
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[ htaps ] 

f*. 0 htaps 
\? 

1he downwards functions in terms of htaps are the same as the 
downwards functions in tenns of paths, since 

h. 0 htaps = (h 0 td). 0 paths 

and 
h* 0 paths (h 0 dt). 0 htaps 

where dt is the inverse of td. Downwards accumulations in terms of 
htaps are given by the following definition. 

46. Definition 
(t, [E, c;<J),I, (daerht: t, [E, c;<J1* 0 htaps 

o 
We might call this 'htaps accumulation', to distinguish it from 'paths 
accumulation'. Almost by definition, paths accumulations that are top-
down are htaps accumulations. 

47. Theorem If (t, Ell, 0) inverts to (t, [E, c;<J) then 

(t, Ell, 0)J) = (f, [E, c;<J),I, 
o 

Proof By definition of ,1,. using Corollary 43. \? 

As we would expect-since this was the reason for which we defined 
it-htaps accumulation can be evaluated with a linear number of appli-
cations of its component operators. Let h = Idaerht: f, [E, c;<J1; then 
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(I, rn, 181) A(x",-. y)  

= [ },; htaps ]  

h * td * paths.(x "'-' y)  

= [ paths ]  

h * td * «a,.J) * paths.x "'-0.• (a4) * paths.y)  

[ *. td and catamorphisms ] 

(hotd 0 (a,.J») * paths.x "'-I.. (h o td o (a4»)*paths.y 

[ Lemma 42 ] 

(f.arn, rn, Il'l) * td * paths.x "'-I.• (f.all'l, rn, 181) * td * path,.y 

= [A] 
(f.arn, rn, Il'l) Ax "'-I.. (I.all'l, rn, Il'l) Ay 

and the last line contains no expensive maps. Moreover, assuming that 
EE and 18I take constant time, the accumulation can be evaluated in 
parallel in time proportional to the depth of the tree, given as many 
processors as there are leaves. 

For example, applying the htaps accumulation (I, EE, 18l)}, to the 
standard five-element tree 

produces the result 
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which has only a linear number ofdifferent subexpressions. 
Note that htaps accumulation is not in general catamorphic: the 

accumulation (I, EE, 0)}, of the parent x .l.. y depends on different ac-
cumulations (f.aEE, EE, 0)}, and (l.a0, EE.Ill)}, of its children. 

We have already seen one example of htaps accumulation, the 
function htaps itself: 

htaps = (0.+ .•)}, 

because the daerht catamorphism (0, +, .) is the identity. Another ex-
ample is the identity function: 

id = (id, ». :>o)}, 

The daerht catamorphism (id,:>o.:>ol returns the last (bottom) clement 
of a daerht. 

Most natural downwards accumulations are both paths- and htaps 
accumulations. For example, recall the function depths from page 82: 

depths (!I. $, $)jJ. where a $ x = 1 + x 

Now, (!1,$.$) inverts to (!l,EB.EB)-because a$!1.b = !l.aEBb and 
fB associates with ES -and so 

depths (!1. EB, EB)}, 

as well. The evaluation of this latter formulation of depths takes effort 
linear, rather than quadratic, in the size of the tree. 
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However, there are natural paths accumulations that are not htaps 
accumulations, and vice versa. An example of the former is the paths 
accumulation (id. », +)1). that formed part of the definition of rank on 
page 83; there are no operators E8 and [8) for which the functions 
(thread: id, », +) and (daerht: id, EB, I:!'l) 0 td are equal. To see this. de-
fine. for brevity, two functions 

f (thread: id, », +) 
g = (daerht: id. EB, I:!'l) 0 td 

for some given EE and [8J, and consider the three threads of numbers 

x = a 4 o.b 
y = a 4 (b ,.J o.c) 
z = (a + b) ,.J o.C 

with a being non-zero. We will show that f and 9 must disagree on at 
least one of these threads. 

We have  
Lx = a+b g.x = al:!'lb  
f.y = a+c g.y (al:!'lb)8J c 
Lz = c g.z = (a + b) EB c 

Comparing the values on x, we see that a  b :::::: a + b J in which case 
9 returns the same values for y and z -but f returns different val-
ues. Therefore, for no E8 and I:!'l does 9 equal f; hence, the paths 
accumulation (id, ». +)1). is not a htaps accumulation as well. 

When we first introduced the function rank. we promised that 
we would show how it can be efficiently evaluated; we have just shown, 
though, that the downwards accumulation component itself is not an 
efficient (htaps) accumulation. The solution is to tuple the downwards 
accumulation so that it can be inverted to form an easily computed htaps 
accumulation. We just present the tupling here as an example, but in 
the next chapter we show how to caJculate it. 
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Consider the daerht catamorphism h.a defined by 

h.a  ldaerht: la A a+, Ell, 01 where (u, v) Ell a = (u, u + a) 
(u,v)0a = (v,v+a) 

It is easy to show that 

>oh.Ootdo¢ == id 
»0 h.O 0 td 0 (a,.J) :»oh.Ootd 
»oh.Ootdo (a4) (a+) 0 :» 0 h.O 0td 

(for example, by first showing that h.a = (a+ II a+) 0 h.D, a simple con-
sequence of the promotion theorem), and so 

» 0 1!0 A 0+, Ell, 01 0 td lid, », +1 

whence 
». 0 (!O A id, Ell, 0)A = (id, », +W 

Inus, 

rank 

; [ definition, page 83  
(id, it). 0 (id, », +)JJ. 0"'* 0 (!(1,1), (+ A <) 0<2)11" 

[ above  
(id, it). 0». 0 (!O A id, Ell, 0)A 0». 0 (1(1, 1). (+ A <) 0 <')11" 

which is the algorithm running in time proportional to the depth of the 
tree that was promised earlier. 

We havejust seen that not all paths accumulations are htaps accu-
mulations; we now see a counterexample to the inclusion in the other 
direction. Consider the function tp.a. which tuples every element of a 
tree with its parent, tupling the root with a . It is defined by 

tp.a = Ua A id, Ell, EIl)A where (a, b)EIl = !b A id 
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For the sake of brevity, as before, define the functions 

f (daerht: !a A id, EEl, EEl)' td 
g (thread: !a Aid, <8>, <8» 

for some (81. We show that f and 9 must differ on some arguments; 
hence, there is no operator (81 such that f and 9 are equal. 

Define the three threads  
x = a 4 o.c  
y  b L-, (a L-, o.e)  
z = b 4 o.c  

with a and b  different. We have 
Lx  (a, e) g.x a <8> (a,e) 

Ly  (a, e) g.y b <8> (a <8> (a, e)) 
Lz  (b, e) g.z b <8> (a. e) 

If f and g are to be equal, then certainly a <8> (a, e)  (a, e) -but then 
f and g cannot agree on both y and z. Therefore, there is no thread 
catamorphism equal to f J and no paths accumulation equal to tp.a . 

Most natural downwards accumulations, though, are both paths-
and htaps accumulations, and so are both catamorphic and linear-that 
is, both easily  manipulated and efficiently implemented. In the next 
chapter, for example, we look for a function that can be written as a 
paths accumulation, but that has the associativity properties that allow 
it to be inverted to produce a htaps accumulation; we can calculate us-
ing the tractable catamorphic form, but know all the time that we can 
evaluate it quickly in the efficient form. 

Downwards accumulation on rose trees 
Now that we have worked out all the details for moo trees, the definition 
ofdownwards accumulations on rose trees causes no great surprises; the 
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only aspect that needs a little thought is the definition ofTose threads. 

48. Definition 
rthread.A  o.A I A <4" rthread.A 

<) 

Thus, rose threads are built from a unary and a teITlary constructor. 
Informally, the ternary constructor could be seen as a countable infinity 
of binary constructors, corresponding to the two binary constructors .-J 

and 4 of binary threads. The intention is that, for example, the rose 
thread to the element d in the homogeneous rose tree 

is a <41 (c <40 o·d) ; the numbers identiJY which branch to take on each 
level, with 0 signiJYing the first branch. 

Rose thread catamorphisms satisfy the equations 

(rthread: f, $)·"·a f·a 
(rthread: f, $)·(a <4; x) = a $; (rthread: f, $)·x 

dictated by the above definition. 
The function paths on rose trees-again. we trust to context to 

resolve any ambiguities between rose and moo tree accumulations-
replaces every element of a rose tree with the path to that element, and 
is given by 

paths·t:.·a = l).·o·a 
paths·(a --< x) = o·a --< (index·x Y"" (paths * x)) 
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where 
i tea r (a<4;) 0 r 

and where the function index is as defined in Chapter 2: 

index = «-l}o#)ooinits 

It is clear that index::; index 0 paths* . because a map does not change 
the length of a list, and so 

paths·(a -< x) = o·a -< (index·(paths 0 x) y",. (paths 0 x)) 

and paths is catamorphic: 

paths = (rtree:" 0 0, ®J 
where 

a ® ps = o·a -< (index·ps y",. ps) 

A paths accumulation over rose trees isjust a rose thread catamor-
phism mapped over paths: 

49. Definition 
(f, $).IJ. = (rthread: f, $10 0 paths 

o 
For example, the function dewey from Chapter 2 is given more suc-
cinctly by 

dewey (!(o·O). $).IJ. where a E9i r ::; i .: r 

Paths accumulations On rose trees are inefficient,just as are paths accu-
mulations on moo trees; the above characterization of dewey J for exam-
ple, like the characterization given in Chapter 2, takes quadratic effort 
in the worst case. \Vith this in mind, we define rose daerhts. 
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50. Definition 
rdaerht.A  = o.A I rdaerhl.A AN A 

00 
The obvious correspondence between rose daerhts and rose threads is 
made formal by the function rtd E rthread.A  rdaerht.A : 

rtd = (rthread: o. ffil where (affi;) = (rdaerht: o·aA;. Al 

For example, we have 

rtd·(a;41 (C;4D o·d)) (o·a Al c) AD d 

We can compute the htaps of a rose tree by converting the paths 
into daerhts,just as we did for moo trees: 

htaps = rtd* 0 paths 

And, finally, we can express htaps accumulation, an efficient downwards 
accumulation on rose trees, by 

51. Definition 
(f, ffi)},  (rdaerht: f, ffil* 0 htaps 

00 
This accumulation satisfies the equation 

(f, ffi)}, (a -< x) f·a -< (index·x Y8. x) 

where 

;0, t = «f·affii),ffi)},t 

For example, a linear effort characterization of Dewey Decimal index-
ing, yewed, returning a homogeneous rose tree of snoc lists, is given 
by 

yewed = 0(0·0), ffi)}, where r ffii a = r:' i 
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This concludes the definitions of accumulations on trees; in the next 
three chapters we shall see mem at work on some example problems. 



5 Prefix sums 

The prefix sums problem consists of evaluating all the 'running totals' 
leat: f, 0)* "inits of a list. The operator 0 must he associative for the 
catamorphism to be properj we also assume that 0 has a unit, e. For 
example, applied to the list [ao, ... , a,-Il , the problem is to evaluate 

[Lao, Lao 0 f.a1 .... , f.ao 0 f.a1 0··· 0 La,_Il 

This problem encapsulates a very common pattern of computation on 
lists; it has applications in, among other places, the evaluation of polyno-
mials, compiler design, and numerous graph problems including min-
imum spanning tree and connected components (AId, 1989). 

It would appear from the above example that the problem inher-
ently takes linear time to solve; the structure of the result seems to  

clude any faster solution. However, Ladner and Fischer (1980), rework-
ing earlier results hy Kogge and Stone (l973) and Estrin (1960), prove 
the rather unexpected result that the evaluation can be perfonned in 
logarithmic time on a linear number of processors acting in paralIe!. We 
will derive their 'paralIel prefix' algorithm in this chapter, but we will ex-
press it in higher level terms than they do-in fact, in terms of upwards 
and downwards accumulations. 

Recall the function rank from the previous chapter. It satisfies the equa-
tion 

iolo rank #* 0 inits 0 iol 

where iol J shon for 'inorder leaves', returns the list of leaves of a tree, 
in left-to-right order: 

iol = ID, Ell) where u e. y = u * v 
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We defined inits in Chapter 3 to have snOt lists as source and target; 
here we lift it in the obvious way to cat lists. 

Suppose we have a pre-inverse loi of iol , that is, a function satis-
fying iolo loi = id ; such a function takes a list and returns a tree whose 
leaves in inorder traversal produce this Jist. Now, loi allows us to use 
rank to compute #* 0 inits: 

#* 0 inits = iol 0 rank 0 loi 

[gooring the time taken to construct and destroy the tree-hopefully 
lhis costc3n be spread over several operations-the right hand side will 
take parallel time proportional to the depth of the tree; if loi constructs 
a balanced tree then the right hand side will take logarithmic parallel 
time. 

The left hand side of this equation, #* 0 inits, is an insmoce of 
the prefix sums problem, since # is a catamorphism (cat: n, +); we 
might ask whether we can find a function corresponding to rank for 
any instance of the problem, That is, for given f and <:) such that 0 is 
associative and has a unit, we would like to find a function pps satisfying 
the implicil specification 

iol Q ppS (f, 0)* 0 inits 0 iol 

The need for 0 to have a unit is not obvious from the specification, but 
becomes clear as we proceed to calculatE. The domain and range of 0 
can always be augmented with such a unit, if none already exists. 

Calculating the parallel prefix algorithm 
We can calculate immediately the result of applying pps to a leaf, since 

iolo pps 0 6 

::: [ specification of pps ] 

(f, 0»* 0 inits Q iol 06. 
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= [ iol ]  

(f, 0)* 0 inits 00  

= [ inits ] 

(f,0)*0000 

= [ .] 
00 (f, 0) 00 

= [ catamorph isms ] 

oof 

and hence 
PPS 0 A = A 0 f 

since iol is injective on leaves. Letting s = (f, 0) 0 iol , we geton branches 

iol·pps·(x '" y) 

[ specification of pps ] 

(f, 0).·;nits.io!·(x '" y) 

[ iol ] 

(f, 0).·inits,(iol,x * iol·y) 

= [ inits ] 

(f, 0).·(inits·iol·x * (iol·x*} * inits·io\.y) 

= [ * ] 
(f,0) * inits·iol·x * (f, 0)* (iol.x*} * inits.iol.y 

[ catamorphisms ] 

(f, 0) * inits·iol·x * (s,x0} * (f, 0)* inits·iol·y 
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I specification of pps ]  

iol-pps-x * (S-X0) * iol-pps-y  

This does not completely determine pps on branches, since iol is not 
injective on branches, but it is 'sweetly reasonable' to suppose that 

pps-(x" y) pps-x '" (S-X0) * pps-y 

for some a j certainly, this supposition satisfies the implicit specification 
of pps _ The calculation can tell us nothing about the value of • , the 
root of pps-(x " y), because iol throws branch labels away_ 

This gives us an explicit-that is, executable-specification of pps: 

pps·.l:,.·a "-f-. 
pps-(x " y) = pps-x '" (s-x0) * pps-y 

for some a . Executing this specification requires parallel time quadratic 
in the depth of the tree in the worst case; we show next how to improve 
this to linear parallel time_ 

Suppose that. = s-x, that is, that 

pps-(x " y) pps-x "'_' (s-X0) * pps-y 

Intuitively, this allows the computation of pps-(x "y) to be split into 
two parts, the first bringing s·x to the root of the tree and the second 
mapping (s-x0) over the right child_ More formally, suppose that 

up-(x " y) = uP'X ±.s-x up·y 
down-(u "b v) down-u "b (b0) * down-v 

whence 

down-up-(x" y) down-up-x " •., (s-x0) * down-up-y 

so down 0 up follows the same pattern as pps. Provided that 

down 0 up 0 L::. pps 0..0. 
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which holds if 
up·A·a A·f·a 

down-ll.·b = A·b 

an ind uctive proof shows that 

pps = down 0 up 

We cannot use the unique extension property because pps is not ex-
pressed as a catamorphisrn. 

We have not yet improved the efficiency; up and down both take 
paralIe! time quadratic in the depth of the tree. However, as the names 
suggest, up is an upwards function and down a downwards aCOlffiula-
tion, and we know something about making such functions efficient. 

Let 51 = root 0 up, so 

sl·A·a = f·a 
sl·(x do y) = s·x 

Now, 

up = 51* 0 subtrees 

so up is an upwards function-vindicating the choice of name. It is not 
an accumulation. though, because sl is not a catamorphism; however, 
5 ).. 51 is a catamorphisffi, 

s ). sl = If). f, (0 ). «) 0 «'I 

as a little calculation shows. This means that 
up 

[ above ] 

51* 0 subtrees 
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; [ pairs ] 

>* 0 (5 ), 51)* 0 subtrees  

[ s), sl is a catamorphism ]  

»* 0 (f A f, <0 A «) C «'1* c subtrees  

[ n ] 
»* 0 (f A f, <0 A «) c «')n 

which-assuming that 0 takes constant time---can be evaluated in time 
proportional to the depth of the tree in parallel. 

So much for up; wh<lt about down? We have 

down·.6.·a = A-a 
down,(u Xb v) = down-u Xb (b0) * down-v 

and so down is already a p<.lths accumulation, 

down = (id, »,  

However, (id, », 0) is not top-down/ as we showed on page 93 for the 
special case where 0 is + _Consider, though, the fork of thread cata-
morphisms 

(!e, »,01 A (id, », 0) 

By Theorem 13, this is itself a catamorphism: 

(!e, », 01 A lid, », 01 lie Aid,  

where 

a t!'J (b, c) = (a 0 b, a 0 c) 

Moreover, it is top-down-it inverts to (!e), id, $, ®) where 

(b, c) Ell d (b, b 0 d) 
(b, c) <8> d (c, c 0 d) 
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Thus, 

down 

= [ down]  

(id, >, 0)   

= [  ]  
lid, >.0). 0 paths  

= [ pairs ]  

>. 0 (!e Aid, >, 181)' 0 paths  

= [ Theorem 47 ]  

"'. 0 (!e Aid, $, 0),1. 

This gives us the promised efficient algorithm for pps: 

pps = "'* 0 (!e Aid, $, 0),1. 0 "'. 0 (t At, (0 A<) 0 <')it 

Note that the map between the two accumulations can be absorbed into 
the downwards accumulation. by Theorem 45 and Corollary 12, though 
this does not change the asymptotic efficiency of the algorithm. 

O'Donnell (1990) has presented a similar derivation to this, but he only 
went as far as producing a catarnorphic characterization of pps, 

pps.(x ± y) g.(pps.x (j) pps.y) 

and then making it efficient by making it 'top-<1own'; he did not sep-
arate out the <D and 9 to get an upwards accumulation followed by 
a downwards accumulation. The result is a very operational descrip-
tion of a 'sweep1 operation consisting of a tree processes, each of which 
'sends information in both directions on each data path'. The advan-
tage of identifying the two accumulations is that it becomes clear that 
the algorithm operates in two distinct phases; the intermediate results, 
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and even the fact that the algorithm terminates in the first place, are 
more evident. 

Prefix sums for a non-associative operator 

One surprising property of the prefix sums problem is that it can even 
be applied to snoe list catamorphisms, where the binary operator need 
not be associative. Imagine, for example, that we have a finite state ma-
chine with initial state e and with state transition function EB, which 
produces a new state 5 ED i given the old state s and input i. This 
machine is modelled by the catamorphism (snoc: eEll. Ell) on non-empty 
snoe lists; the operator ED certainly is not associative, because its left and 
right arguments are not of the same type. Running this finite state ma-
chine on the input list x produces the list ofslates (snoc: eEll. EIlI • inits.x, 
which looks very much like an instance of the prefix sums problem. 

Imagine also that we know the list of inputs that the machine will 
be given, but that we do not know the initial state; this is the case, for 
example, when we want to run the machine concurrently on two halves 
of an input list, since the initial state for the second half is the final state 
for the first. Can we rewrite (eEll. Elli in a form that allows us to do some 
'precomputation' using the inputs? That is, can we extract the e from 
the catamorphism? 

We have  
uElla  

[ sectioning,  ] 

u: (Ella) 

[ - and sectioning again ] 

u: «&}.a) 

so 
Ell = :0 (idll(&}) 
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and in particular, 

o Ell a 

[ above] 

o:«($).a) 

[ sectioning ] 

(o:).«($)·a) 

[ 0 ] 

«(0:) c ($»).a 

so 
eEll = (e:) 0 ($) 

This gives us 

leEll, Ell) = W) 0 ($),: 0 idll($») 

Recall Theorem 11, the promotion theorem, from the introduc-
tion; instantiated for snoc lists, it states that 

f.(xElla) = f.x®a  lo(g,Ell) = (log,®J 

Now, 

(' 0 idll($»)-(e: x, a) 

= [ 0 ] 

(0: x) : «$)·a) 

[ (u: f)' 9 = u: (log) ] 

0: (x 0 ($).a) 

= [ 0 ] 

0: «0 c idll($»)-(x, a») 
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so by the promotion theorem, with t, g, EEl and <8> instantiated to (e7) , 

(EB), 50 idli(EB) and 70 idll(EB), we have 

(e7) (EiJ), 7 0 idll(EB)1 (e7) (EiJ).O 0 idll(EiJ)10 0 

If a binary operator EE is associative, then the snoc list catamor-
phism (snoc: f, EE idllfl and the cat list catamorphism (cat: t, EEl are0 

equal, modulo input type conversions; that is, if cs is the function that 
converts a cal list to the corresponding snoe list, 

cs (cat: D, EEl) where (xEEl) = (snoc: X:', :·1 

then 

(snoc: f, EE idlltl 0 cs (cat: t, EEl0 

The operator in this case, 0, is indeed associative, so we have 

(snoc: eEEl, EElI 0 cs (e7) 0 (cat: (EB), 0) 

In effect, we have shown that, although (snoc: eEEl, $) 0 cs is not a cat 
list cat<Jrnorphism, the function f satisfying 

Lx.. = (snoe: .$, $I·cs·x 

is a catamorphism. 
In the case of a general snoe list catamorphism, this does not pro-

duce "ny gain in efficiency; the 'sum' (cat: (EiJ), ol.x is a composition of 
functions which takes order #.x steps to apply to an argument. How-
ever, ifthe left domain and range of $ is finite-for example, if Ef; is the 
state transition function for a finite state machine-then each function 
(ffi) ,Xi in this composition offunctions is a finite mapping, and the whole 
composition can be precomputed by composing these finite mappings; 
the precomputed composition can then be applied in constant time. 

This means that we can use the parallel prefix algorithm to run a 
finite state machine on n inputs in log.n time in parallel. This method 
is commonly used to produce fast carry-lookahead circuits (Ladner and 
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Fischer, 1980) and to parallelize the 'lexing' stage ofcompilation (Schell, 
1979). 

Suffix sums 
We have just derived the parallel prefix algorithm for the prefix sums 
problem ps = (f. 0)' 0 inits. A closely related problem is that of find-
ing the suffix sums ss = If. 0)' 0 tails of a list, where the injective func-
tion ta ils returns the list of tail segments of a list in descending order of 
length: 

tails-ooa = c·c·a 
tails·(x -tt y) = «-tty). tails·x) -tt tails.y 

By following exactly the same reasoning as for prefix sums, we can cal-
culate a 'parallel suffix' algorithm 

"'. 0pss = "'. 0 (Ie Aid, (9, ®)}, 0 (f A f, (0 A"') 0 <'HI 
where 

(b, c) (9 d = (e, d 0 c) 
(b,e)®d = (b,d 0 b) 

This parallel suffix algorithm satisfies 

iol 0 pSS = ss 0 iol 

Indeed, we can find prefix and suffix sums together, with an al-
gorithm of the same form. That is, suppose we have to replace every 
element a of a list x -tt D.a -tt y with the value 

If, (9).(x -tt D.a) 0 19. ®).(D.a -tt y) 

for some fixed f, (9, 9, ® and 0; the task ofmaking this replacement 
for every element of a list is performed by the function 

(If, (9). 0 inits) Y0 (19, ®). 0 tails) 
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where \'I'e have lifted the operator Y. the post-inverse of <* ).. >* . to 
act on pairs of equal-length cat lists. Call this function fs, for 'fix sums', 
since it involves both prefix and suffix sums. The claim is that there 
is a 'par.lllel fix' algorithm pfs. of the same form as the parallel prefix 
algorithm, which satisfies 

iol 0 pfs = fs 0 iol 

To shuw this, we first note that the fix sums can be found by zipping the 
parallel prefix and suffix trees, then taking the leaves; once more, we 
lift the zip operator, this time to pairs of same-shaped trees. 

fs 0 iol 

 [ fs ]  

(ps y", ss) 0 iol  

[ pairs ] 

y", 0 (ps 0 iol) ). (ss 0 iol) 

 [ pps, pss ]  

y", 0 (io1 0 pps) ). (iol 0 pss)  

[ wish: y", 0 iol' = iol 0 y", ] 
iol 0 y", 0 (pps). pss) 

::: [ pairs ] 

iolo (pps Y", pss) 

So if we can fulfill the wish that y", 0 iol' = iol 0 y"" then pps y", pss 
satisfies the requirements for pfs j we have then only to show that this 
'zip of two parallel fix algorithms' is another parallel fix algorithm. 

In fact, the wish does not hold in general; it only holds in this case 
because the function pps).. pss which precedes it returns a pair of trees 
that are the same 'shape'. We will prove the following lemma: 
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52. Lemma 
yoiol'o(<<.>.>.) = ioloYo(<<.>.>.) 

<> 
The more general case for Y0 follows from this,since Y0 = 0' o y and 
a map commutes with iol. 

Proof 
yo iol2 (<<. >. >.)0 

= [ pairs ]  

yo (iol 0 «.) >. (iol 0 >.))  

= [ map commutes with iol; pairs ] 

Yo(<:. >.>.)oiol 

= [ yo <* A >* = id, twice ] 

ioloYo(<<.>.>.) 

So we have shown that the equation 

iol 0 (pps Y0 pss) = fs 0 iol 

holds. We have now to show that pps Y0 pss is another 'parallel fix 
algorithm', that is, the composition of a map. a downwards accumula-
tion, another map and an upwards accumulation. In fact, we prove the 
following theorem: 

53. Theorem 
(to 0 (g, Ell, 0).(1. 0 h. 0 (k,@)1't)Y0 (p. 0 (q, EB, I!il).IJ- 0 r. 0 (s, 1!l)1't) 

(0 0 flip). 0 (g II q, EIlMEB, 0MI!il).IJ- 0 (h II r). 0 (k >. s,@MI!lHt 

<> 
The operator M satisfies 

IV 
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(Ell) N (EE)  (Ell II EE) 0 «' A>') 

That is, 

(a, b) EIlNEE (c, d) (a Ell c, b EE d) 

It is a generalization of the 'centre-swap' operator <2 A »2 used by 
Meenens and van der Woude (1991). 

In order to prove Theorem 53, we must call on a number onem-
mas. Tne first two of these are really part of the pair calculus. 

54. Lemma 
1* Ag.  «* A>*) 0 (I A g)* 

o 
Proof 

«* A»*) 0 (I Ag)* 

 pairs ] 

«*O(IAg)*) A (>*O(IAg)*) 

[ map distributivity; pairs ] 

10 Ag* 
<:;) 

55. Corollary 

(10 II go) 0 «* A »*) «* A »*) 0 (I II g)* 
o 

Proof Corollary to Lemma 54, since 

I II 9  (I 0<) A (g 0») 
<:;) 

The next two results arc corolJaries ofgeneral-purpose theorems 
about catamorphisms that we gave in Chapter 1. Before presenting 
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them, we introduce some notation that will shorten subsequent calcula-
tions. 

56. Definition Define the operators • and • by 

i = f II id 
1 = id II f 

o 
Note that 

iog = fllg = goi 
57. Definition Define the operator G by 

$GEE • •($o<)J.(EEo» 

o 
In particular, we have 

• •($ 0 <)G(EE 0 » = $MEE 

We return now to the coronaries. Firstly, a map can be brought 
inside a thread catamorphism: 

58. Corollary (to Corollary 12) 

(thread: f, $, <81) 0 g* = (thread: fog, $ g, <81 0 g)0 

o 
And secondly, the fork of two catamorphisms is a catamorphism: 

59. Corollary (to Theorem 13) 

(thread: f, $, <81) J. (thread: g, EE, Il;l) = (thread: f J. g, $GEE. 0GIl;l) 
(mtree: f, $) J. (mtree: g, EE) = (mtree: f J. g, $MEE) 

o 
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The last two lemmas we need form significant parts ofthe proof 
of the- theorem; we separate them out in order to divide the otherwise 
rather large calculation into more manageable pieces. Informally, they 
state that two accumulations running 'in parallel' on same-shaped trees 
can be combjned to form a. single accumulation. 

60. Lemma 

(k, ®)it " (5, IEJit (<t:. """J 0 (k "s, ®MI!J)it 
<> 

Proof 

(k, ®Jit" (5, IEJit  

= [ it; pairs ]  

(Ik, ®!. " Is, IE!') 0 subtrees  

[ Lemma 54 ]  

(<t:. ,,"'*) 0 (Ik, ®l "(5, IE!)* 0 subtrees  

= [ Corollary 59 ]  

«* ,,"'*) 0 Ik" 5,  0 subtrees  

= [ it ]  

(<t:* "",.) 0 (k " 5, ®MIE)it  
o 

61. Lemma 

«f, El),0W II (g, EB,  0 «."",.) (<<U"'*) 0 (f II g, El)MEB,  

<> 
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Proof 
«f, Ell, 0).IJ-II (g, EE,Il!l).(I.) 0«*,,>*) 

= [ .(I.; pairs ] 

«(f, Ell, 0)*11 (g, EE,Il!l)*) 0 paths' 0«*,,>*) 

= [ pairs; Theorem 31; pairs ] 

«(f, Ell. 0)*11 (g, EE,Il!l)*) 0«**,,>**) 0 paths 

= [ Lemma 54 ] 

(If, Ell, 0)*11 (g, EE,Il!l)*) 0«*,,>*) 0«*,,>*)* 0 paths 

= [ Corollary 55 ] 

«*A»*) 0 (If, Ell. 0)11 (g, EE.Il!l)* 0 «*,,>*)* 0 paths 

= [ pairs; Corollary 58 ] 
+ + + + 

«*A»*) 0 (Ifo<, EIlo<, 00<)" (go>. EEo>,ll!lo»)* 0 paths 

[ Corollary 59 ] 
.. .. .. + 

«*A»*) 0 If IIg, (EIlo<)G(EEo», (0o<)G(1l!l0»)* 0 paths 

= [ observation concerning I::J and  ] 

«*,,»*) 0 If IIg. EIlMEE, 0MIl!l)* 0 paths  

= [ .(I. ]  

«*,,»*) 0 (f IIg, EIlMEE, 0MIl!l).IJ-
\;i 

Finally, we can prove the original theorem. 

Proof (of Theorem 53) We introduce some abbreviations for the var-
ious subexpressions involved: 

"0 = (k,@)11" 
", = (s, I!J) 11" 
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u = (k A s, ®NI!I) it 
da =  0) jJ. 
d, = (q, EE, 0) jJ. 
d = (g II q, EIlNEE. 0N0) jJ. 

Now, 

(f* 0 do 0 h* 0 uo) Y0 (p* 0 d1 0 r* 0 Ul) 

[ '; Y ] 
0* 0 y 0 (f* 0 do 0 h* a UO) A (p* 0 d1 0 r* 0 Ul) 

[ pairs ] 

0* 0 y 0 (h II p*) 0 (d a II d,) 0 (h* II r*) 0 (Ua AU,) 

= [ Lemma 60 ] 

0* 0 y 0 (f* II p*) 0 (da II d,) 0 (h* II r*) 0 «"* A »*) 0 U 

[ Corollary 55 ] 

0* 0 y 0 (f* II p*) 0 (d a II d,) 0 (<C* A »*) 0 (h II r)* 0 U 

[ Lemma 61 ] 

0* 0 y 0 (f* II p*) 0 (<C* A »*) 0 do (h II r)* 0 U 

[ Corollary 55 ] 

0* 0 y 0 (<C* A »*) 0 (f II p)* 0 do (h II r)* 0 U 

[ yo(o A»*) = id ] 

0* 0 (f II p)* 0 d 0 (h II r)* 0 U 

Q 

Moreover. if the two original fixes were efficient, then so is the new one: 
if (g. Ell. 0) inverts to (g, 0, 0) and (q, EE. 0) inverts to (q.lZl, ISJ), then 
(g II q. eNEE, 0N0) inverts to (g II q, 0NIZl, 0NISJ). 
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Bracket matching 

An example of the application of Theorem 53 is the so-called bracket 
matching problem: given a 'balanced' string of brackets, the function 
mbs (for 'match brackets') replaces every bracket with the length of the 
'phrase' in that string of which it forms an endpoint. For example 

mbs."{{){»){}" = [6.2,2,2.2,6,2,2] 

A balanced string is one that can be reduced to the empty string 
by repeatedly erasing from it all occurrences of the substring "U"; the 
language of balanced bracket strings is what a formal language theo-
rist would can a 'Dyck language' (Illingworth et aI., 1990). An arbitrary 
string that has been reduced in this way will consist of a sequence of 
closing brackets followed by a sequence of opening brackets, and so is 
completely determined by the pair of numbers giving the lengths of 
these two sequences. Thus, we define bracket reduction to be the cata-
morphism lcat: f, 0) , where 

f.'(' = (0,1) 
f.')' = (1,0) 

(a, b) 0 (c, d) = (a + (c  b), (b  c) + d) 

where ..:...) pronounced 'manus' J is subtraction bounded below by o. 
The predicate bal, which holds precisely of balanced strings, can now 
be defined by 

bal = «0,0) =) 0 (f, 0) 

If the bracket a in the string x * D.a * y is an opening bracket, 
then 'the phrase of which it forms an endpoint' is the shortest balanced 
non-empty initial segment of D.a * y; because the input x * D.a * y 
to the problem is itself balanced, this phrase exists (this is a property 
of Dyck languages), Similarly, if a is a closing bracket then the cor-
responding phrase is the shortest balanced non-empty tail segment of 
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X-#- o.a. Denote the functions that return these two phrases by mo and 
me respectively; we have 

me = 1#/ 0  inits0 

me = 1#/ 0  0 tails 

For our purposes, the function P<l returns a bag consisting of those el-
ements of its argument that satisfy the predicate p. Bags are given by 
the type definition 

bag.A = 0 I (5.A I bag.A  bag.A 

modulo the laws that l±J is associative and commutative and has unit 0 , 
The function p<1 is then given by 

if p.a 
 = (cat: p?1±J1 where p?a = {  

otherwise 

If the operator 0 is associative and commutative and has unit e, we 
write the bag catamorphism (bag: e, id, 01 as 0/ for brevity. In this 
case, the associative and commutative operator 1# returns the shoner 
of its two arguments. Since it is always presented with different-length 
arguments here, the complication of choosing between equal-length ar-
gumerns can be avoided; however, what or its unit? Let us augment the 
range and domain of 1# with a 'fictional element' w, and make it the 
unit of 1# ' This is the value returned by me (respectively, me) ifits ar-
gument has no balanced initial (respectively, tail) segment, which is the 
case-for our example x * D.a * y-ifit is applied to D.a * y when a 
is a 'j' (respectively, to x * D.a when a is a '('). With this knowledge, 
we can define the function mb which matches one bracket: 

mb.(x * D.a, D.a * y) mc.(x * D.a) 1# mo.(D,a * y) 

One of the arguments to 1# here will be w , and the result will be the 
other argument. The original problem is then 
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mbs = (# 0 mb). 0 (inits y tails) 
= #* 0 (me* 0 inits 'Yl* mo* 0 tails) 

If we can express me and rna as cat list catamorphisms, then mbs is 
an instance of the fix sums problem and we can solve it in logarithmic 
parallel time with the parallel fix algorithm. 

Let us focus on rna for a while. As it stands, it is not a catamor-
phism: it returns "0" for both the inputs "u" and "{l{" , yet should re-
turn different results forthe inputs "u" -It- "J" and "{l{" -It- "J". There-
fore, we introduce the function mar, for 'match open bracket with re-
mainder', defined by: 

mor.x (mo.x, mo.x .., x) 

The operator --" pronounced 'drop prefix', satisfies x .., (x -++- y) = Y 
if x 'f w. We make the convention that w is a left unit of .., , so that 
mor.x :::: (w, x) when mo.x = w. Now, mar is injective, and so certainly 
is a catamorphism; moreover, 

ma ::;:: <: 0 mor 

Ifwe manipulate mo.(x -It- y), we see that 

mo.(x -It- y) 

[ mo ]  

1#/-bal<l.inits.(x -++- y)  

[ inits ] 

1#/-bal<l.(inits.x -++- (X-lt-). inits·y) 

= [ promotion ] 

1#/-bal<l.inits.x 1# 1#/-bal<l·(x-lt-).·inits.y 

= [ mo; p<lO f. = h (p 0 f)<l (Bird, 1987) ] 0 

mo·x 1# l#!-(x-lt-).·(bal 0 x-lt-}<l·inits·y 
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[ wish: x* distributes over 1# ] 

ma·x 1# x -+I- l#/-(bal 0 x-+l-)<J·inits·y 

The wish, that x-+l- distributes over 1#, is fulfilled on different-length 
lists if w is a right zero of -+I- . 

This still does not produce an efficient algorithm, since we have no 
quick way ofcomputing l#/·(bal 0 X-+l-)<J·inits·y from mor.y. (We havea 
way. since mar is injective, but it consists essentially of reconstructing y 
and staning from scratch.) The solution is to perform a data refinement; 
this refinement is to write the string mo.y .., y in the form t * Uo -++- v, 
and then to write 

t = U-a * <cr' -++- ••. -++- U_l -++- "l" 
v = "f' -++- Ul -++- ... -++- "l" -++- Ub 

with each Uj balanced or empty; each Uj is then further subdivided: 

Uj = Ui,O -++- '" -++- Ui,k,_1 

such that each Ui,j is non-empty, balanced and of minimum length. Ev-
ery bracket string has a unique representation of this form: the Uj are 
the 'maximal balanced segments', the Ui,j the 'minimal balanced seg-
ments', the remaining characters are the 'unmatched brackets' and the 
string t * Uo * v reduces to (a, b) . The details of the refinement are 
beyond the scope of this example-we have already strayed a long way 
from tree algorithms-but suffice it to say that if the lists Uj are kept 
as balanced binary trees, and all strings are labelled with their length, 
then mor.(x -+I- y) can be computed from mar.x and mor.y in logarith-
mic time sequentially, 

Retracing our steps, we get me -and symmetrically, me -as the 
composition of a projection and a catamorphism, 

rna = «0 If, $1 
mc = «019,01 
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for some f , g, and some Ee and ® which take logarithmic effort; then 

mbs 

 [ mbs ] 

#* 0 (mc* 0 inits t* mo* 0 tails) 

[ me and mo as catamorprusms ] 

#_ 0 «_ 0 (f, Ee)- 0 inits YJ. c:_ 0 (g, ®J- 0 tails) 

[ y ] 
#_ 0 «(f, Ee)- 0 inits YJ••<, (g, ®)_ 0 tails) 

which is an instance of the fix sums problem. It can be evaluated using 
the parallel fix algorithm in log',n time in parallel on input of ,ize n. 

This is not the fastest algorithm known-there are algorithms for 
matching brackets that run in logarithmic time on n / log.n processors 
(Dekel and Sahni, 1983b; Bar-On and Vishkin, 1985; Gibbons and Ryt-
ter, 1988; Gibbons and Ziani, I 991)---but it is interesting since it provides 
further evidence of 'the power of parallel prefix' (Kruskal et aI., 1985; 
Blelloch, 1990). 
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The tree drawing problem is to produce a mapping from elements of a 
tree to points in the plane; this mapping should correspond to a drawing 
that is in some sense 'tidy'. We do not directly formalize the concept of 
tidiness; instead, we simply identify some properties enjoyed by 'tidy' 
drawings, and use these properties to determine a formal specification 
of the problem. This collection of properties constitutes our indirect 
definition of tid iness. 

First we consider drawings of binary trees. The quest for an effi-
cient algorithm will lead us naturally to a combination of upwards and 
downwards accumulations. We then generalize this solution to rose 
trees, which, it turns out, present some extra complications over binary 
trees. 

We make the simplification of ignoring the labels of the tree, so 
that the drawing depends only on the structure. Thus, the source type 
for the drawing functions will be one of unlabelled trees. 

The first property that we observe of tidy drawings is that all the 
elements at a given depth in a tree have the same y-coordinate in the 
drawing. That is, the y-coordinate is determined completely by the 
depth of an element, and the problem reduces to that of finding the 
x-coordinates. This gives us the type of bdraw, the function which 
draws a binary tree-its result is a homogeneous moo tree labelled with 
x-coordinates: 

bdraw E umtree -+ hmtree.D 

where coordinates range over (), the type of distances. We require 
that D include the number 1, and be closed under subtraction (and 
hence also under addition) and halving. Sets satisfying these conditions 
include the Teals, the rationals, and the rationals with finite binary ex-
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pansions, the last being the smallest such set. We exclude discrete sets 
such as the integers, as Supowit and Reingold (1983) have shown that 
the problem is NP-hard with such coordinates. 

Tidy drawings are also regular, in the sense that the drawing ofa 
subtree is independent of the context in which it appears. Informally, 
this means that the drawings of children can be committed to (separate 
pieces of) paper before considering their parent; the drawing of the 
parent is constructed by translating the drawings of the children. In 
symbols, 

bdraw'(x x y) (+r) * bdraw·x x. (+5) * bdraw·y 

for some a, rand s. 
Tidy drawings also exhibit no left to right bias. In particular, a 

parent should be centred over its children; we also specify that the root 
of a tree should be given x-coordinate O. Hence, r + s and a in the 
above equation should both be 0, as should the position given to the 
only element of a singleton tree: 

bdraw·b  b'O 
bdraw·(x x y) (-5) * bdraw·x xo (+5) * bdraw·y 

for some s. Indeed, a tidy drawing will have the left child to the left of 
the right child, and so 5 > O. 

This lack-of-bias property implies that a tree and its mirror image 
produce drawings which are reflections of each other. That is, if we 
define the function brev, which reverses a binary tree, by 

brev  Ib, EIlI where uEe.v = V;;k;a U 

and denote unary negation by -, then we also require 

bdraw 0 brev = -* 0 brev 0 bdraw 

The fourth criterion is that in a tidy drawing, elements do not col-
lide, or even get too close together: pictures of children do not overlap, 
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and no two elements on the same level are less than one unit apart. 
Finally, a tidy drawing should be as narrow as possible, given the 

above constraints. Supowit and Reingold (1983) showed that narrow-
ness and regularity cannot be satisfied together-there are trees whose 
narrowest drawings can only be produced by drawing identical subtrees 
with different sha pes-and so one of the two criteria must be made sub-
ordinate to the other; we choose to retain the regularity property, since 
it will lead us to a catamorphic solution. 

These last two properties determine s, the distance through which 
children are translated: it should be the smallest distance that does not 
cause violation of the fourth criterion. Suppose the operator <D, when 
given two drawings of trees, returns the width of the narrowest part of 
the gap between the trees; if the drawings overlap, this distance will be 
negative. The drawings should be moved apart or together to make this 
distance 1, that is, 

5 = (1 - bdraw·x <D bdraw·y) -;. 2 

All that remains to be done to complete the specification is to for-
malize this description of <D . 

Levelorder traversal 

When we introduced the zip operator Y in Chapter 2, we defined it 
only on pairs of equal-length lists. We now extend the definition in two 
different ways to cover pairs of different-length (cons) lists. These two 
extensions are 'short zip', which we write Y, and 'long zip', written t; 
they differ in that the length of the result of a short zip is the length of 
its shorter argument, whereas the length of the result ofa long zip is the 
length of the longer. For exam pIe, 

[a, bJ '7$ [c. d, eJ = [a 11) c. b 11) dJ 
[a. b] t$ [c, d, eJ = [aI1)C,bl1)d,e] 
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From the result of the long zip, we see that the Ee must be an enda-
operator, that is, it must have type A II A  A . Tills is not necessary for 
short zip, but we do not usc the general case in this chapter. 

The two zips are given formally by the equations 

o.a Y'e o.b D.(a Ell b) 
o.a'le (b .: y) D.(a Ell b) 
(a,:x)'Ie D . b = D.(a Ell b) 

(a .: x) 'Ie (b·; y) (a Ell b)·: (xY'e y) 

D.a te D.b = D.(a Ell b) 
D.a te (b.: y) (aEllb)·:y 
(a .; x) t D.b (.EIl b)·:xe 

(a .;x) t (b .; y) = (a Ell b)·; (x t y)e e 

They share many properties, but we use two in particular. 

62. Fact x Y'e y and x te y can both he evaluated with #.x L#.y ap-
plications of Ell . (; 

63. Lemma If f is (Ell. <8) promotable then h is both (7e. Y'e) and 
<teo t.) promotable. (; 

We use long zip to define levelorder traversal of homogeneous bi-
nary trees. This is given by the function levels E hmtree.A ---I' cons·cat·A: 

levels = (00 O. Ell) where x Ell. y = o.a .: (x t* y) 

For example, the levelorder traversal of the five element tree 
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is [[a], [b, cJ, [d, e]] . 
We can at last define the operator <D on pictures, in tenns of 

levelorder traversal: it is given by 

p <D q = lid,l)' (lid, 1) • levels.q Y'- (id. n .Ievels.p) 

The catamorphisms (id.l) and lid. n return the least and the greatest 
elements of a list, respectively. If u and v are levels at the same depth 
in p and q, then lid. iJ.u and (id.l).v are the rightmost point of u 
and the leftmost point of v, and so lid,l).v - (id. n.u is the width of 
the gap at this level. Clearly, p <D q is the minimum of these widths. 

This completes the specification of <D, and hence of bdraw : 

bdraw (<>.0. $) 

where 
p$q ; (-s).p doo (+s).q where s;(I-p<Dq)+2 
p <D q ; (id.l)· (lid,ll' levels.q Y'_ lid, n• levels.p) 

This specification is executable, but requires quadratic effort. We now 
derive a linear algorithm to satislY it. 

A downwards accumulation 

We  that a major source of inefficiency in the program we have 
just developed is the occurrence of the two maps in the definition of 
$. Intuitively, we have to shift the drawings of two children when as-
sembling the drawing of their parent, and then to shift the whole lot 
once more when drawing the grandparent. This is because we are di-
rectly computing the absolute position of every element. If instead we 
were to compute the relat'ive positions of each parent with respect to its 
children, these repeated translations would not occur; a second pass-a 
downwards accumulation---can fix the absolute positions by accumulat-
ing relative positions. 
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Suppose the function rootrel satisfies 

rootrel·ll,·a o 
rootrelo(x x. y) (a - rootox) 0 (rootoy - a) 

for some idempotent operator O. The idea is that rootrel determines 
the position of a parent relative to its children, given the drawing ofthe 
parent. That is, if we define the function sep by 

sep = root rei 0 bd raw 

then 

sep'll, 
sepo(x x y) 

o 
(1 - bdrawox CD bdrawoy) + 2 

and 
bdrawo(x ± y) (-s). bdrawox xo (+s). bdrawoy 

where s = sepo(x x y) 

Now, applying sep to each subtree gives the relative position of every 
parentj define the function rei by 

rei = sep* 0 su btrees 

so that 
reloA = AoO 

relo(x x y) rel·x ±sep.(uy) rel·y 

This gives us the first 'pass', computing the position of every parent 
relative to its children; how can we get from this to the absolute position 
of every element? Vve need a function abs satisfying the condition 

abs 0 rei bdraw 

On leaves, this condition reduces to 
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abs·rel·.a. = bdraw·.o, 

[ rei, bdraw ]  

abs·"·O = ,,·0  

while on branches, we require 

abs·rel·(x ± y) = bdraw·(x ± y) 

[ rei, bdraw; let s = sep·(x ± y) ] 

abs·(rel·x ±. rel·y) = (-s) * bdraw·x ±o (+s) * bdraw·y 

These requirements are satisfied if 

abs·tl,·a = "·0 
abs·(x ±. y) = (-a) * abs·x ±o (+a) * abs·y 

that is, if 

abs = (!O,':',+)j). 

Thus, we have 

bdraw abs 0 rei 

where 
rei sep* 0 subtrees 

abs = (!O, .:.. +)j). 

This is still inefficient, partly because rei is upwards but not an upwards 
accumulation. We show next how to compute rei quickly. 

An upwards accumulation 

We want to find an efficient way ofcomputing the function rei satisfying 

rei  sep* 0 subtrees 

where 
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sepo.6, = 0 
sep·(x ± y) = (1 - bdraw·x CD bdraw·y) 72 

We observed that rei is upwards but not an upwards accumulation, be-
cause sep is not a catamorphism-more information than the separa-
tions ofthe grandchildren is needed in order to compute the separation 
of the children. How much more information is needed? 

We note that each level of a picture is sorted. Therefore, 

lid, 11- 0 levels head * 0 levels 
lid, ii- 0 levels lash 0 levels 

and so 

pCDq = right·p rn left·q 

where 
left = head* 0 levels 

right = lash 0 levels 

and 

urnv = lid, lI·(v 'I- u) 

Intuitively, left and right return the 'contours' ofa drawing; for exam-
ple, applying the function left A right to the tree 

produces the pair oftists ([a, b, d), [a, c, eJ). These contours are exacdy 
the extra information needed to make sep a catamorphism. 
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To show this, we need to show first that sep can be computed 
from the contours, and second, that computing the contours is a cata-
morphism. Define the function contours by 

contours (left). right) , bdraw 

Suppose the function f satisfies 

f.(D.a.D.a) a 
f.(a .: x. a .: y) (a - head.x) 0 (head.y - a) 

on pairs of lists with the same head; then, as a short calculation shows, 

f , (left). right) rootrel 

Thus, 
sep  

[ sep ]  

root rei 0 bdraw  

= [ f, (left). right) = rootrel ]  

f, (left). right) , bdraw  

= [ contours ] 

f 0 contours 

so indeed, sep can be computed from contours. Moreover, contours is 
c3taIDorphic: since 

sep.(x '*' y) = (1 - (»·contours.x llJ <·contours·y)) + 2 

and head and last are (-+t-. <) and (-+t-. ») promotable, respectively, 
we can calculate that contou" = (!(D·O. 0·0). ®) where 

(w. x) ® (Y. z) (0·: «-s) * w Yc (+s) * y), 0·: «-s) * x Y. (+s) * z)) 
where s = (1 - x llJ y) + 2 
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Hence, 

bdraw 

[ relative positions ] 

abs 0 rei 

[ abs, rei] 

(!O,'::', +).(1. ° sep. ° subtrees 

 [ sep in terms of contours ] 

(10,'::', +).(1. 0 f. 0 (1(0·0, o'O),@),osubtrees 

[ 1't ]  

(!O,'::', +).(1. 0 f. 0 (1(0·0, 0,0),@)1't  

There are still two sources of inefficiency here. The first is that 
abs is a paths but not a htaps accumulation, and so takes quadratic ef-
fort. and the second is that the operation ® takes at least linear effort, 
resulting in quadratic effort for the upwards accumulation too. We solve 
these two problems next, producing at last a linear algorithm for draw-
ing trees. 

Making the downwards accumulation abs efficient is straightfor-
ward: we can use the tupIing trick that has worked so well in the past. 
We note first that as it stands, it is inefficient: no operator €B satisfies 
a + !Q·b = 10,a €Il b • and so the triple (10, .:., +) is not top-down and the 
accumulation not a htaps accumulation. However, consider the function 

ab = (thread: 10,'::', +1 ,l, (thread: id, >. » 

The second component of this fork returns the last (bottom) element of 
a thread. Clearly. «0 ab = (10,'::', +). Moreover. by Theorem 13, ab is 
a catamorphism: 

ab = 110,l,id,('::'o(idll«)),l,(>o»,(+o(idll<)),l,(>o») 
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Finally, ab is top-down: it inverts to (daerht: !O ). id, - II id, + II id); we 
therefore have 

(!O,'::, +)JJ. 

[ JJ. ] 
(!O, .::, +)* 0 paths 

= [ liO,'::, +1 = «0 ab ] 

<* 0 ab* 0 paths 

[ ab is top-down ]  

00 (!O). id, - II id, + II id)).  

That removes the first inefficiency; the second is more involved. 
We have to find an easy way of evaluating the operator 0 where 

(w,x)0(Y,z) = (0·: «(-s) *wt< (+s) *y),O·:«(-s)  (+') *2»  
where s = (1 - x my) -7 2  

One way of doing this is with a data refinement, whereby instead of 
maintaining a list ofdistances w we maintain the list whose image under 
the invertible function lid, +)* 0 inits is w-that is, a refinement with 
abstraction function lid, +)* 0 inits. Under this refinement, the maps 
can be perform.ed in constant lime, since 

(+s)* 0 (id, +)* 0 inits = (id, +)* 0 inits 0 (s$) 
where 5 E9 Doa = o·(s+a) 

S $ (a .: x) = (s+a)·:x 

The details of the refinement are not our concern here, but they are 
easily calculatcd---especially so since the abstraction function is invert-
ible. 

The refined 0 still takes linear effort, but the important obser-
vation is that it now takes effort proportional to the length of its shorter 
argument (that is, to the lesser oflhe common lengths of wand x and 
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the common lengths of y and z, when 0 is 'called' with arguments 
(w, x) and (y, z), This is because the only remaining non-constant ef-
fort parts are the three zips, each of which can also be evaluated with 
effort proportional to the length of their shorter argument. Reingold 
and Tilford (1981) showed that, if evaluating h,x ffi h.y from h,x and 
h.y takes effort  to the lesser of the depths of the trees x 
and y, then the tree catamorphism h = (f, ffi) can be evaluated with 
linear effort. Actually, what they show is that if g satisfies 

g"6·a 
g·(x", y) 

o 
g·x + (depth·x Ldepth·y) + g.y 

then 
g·x = elements-x - depth·x 

which can easily be proved by induction. Intuitively, 9 counts the num-
ber of pairs of horizontal1y adjacent elements in a tree. 

So, the refined upwards accumulation can be evaluated with lin-
ear effort, as can the map and the downwards accumulation; therefore, 
we have a linear effort tree drawing algorithm. 

Drawing rose trees tidily 
We now proceed to generalize the problem to that of drawing rose 
trees. This latter problem is rather more interesting. because rose trees 
present complications that do not occur with binary trees. 

The specification starLli ofT in the same way as for binary trees. 
The problem is to find an efficient algorithm for computing a function 

rdraw E urtree -lo hrtree.D 

This corresponds to the first criterion for binary trees. The second cri-
terion is that the drawing is regular, and so the drawing of a parent is 
assembled from shifted drawings of its children. This is formalized by 
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rdrawo-<ox a -< position·(rdraw * x) 

for some distance a and function position which satisfies, for some f,  

position- ps f·ps YEO ps where a $ p = <a+) * p  

Infonnally, f takes a list of drawings ps and returns a list of displace- 
ments, one per drawing. 

The third condition is that the drawing should be unbiased. If 
the function rrev J which reverses the structure of a rose tree without 
affecting its elements, is defined by 

rrev = la. --< 0 id II revl 

where the function rev reverses a snoc list, then this condition is stated 

rdraw 0 rrev = -* 0 rrev 0 rdraw 

InfonnaUy, the drawing ofthe reverseofa tree should be the same as the 
reflection ofthe drawing of the original tree. In particular, the drawing 
is rooted at 0 

root 0 rd raw = 10 

and a parent is centred over its children: 

midpoint 0 position 0 rdraw* = !O 

where 
midpoint (root 0 head) 0 (root 0 last) 

where aGb = (a+b)+2 

The last two criteria are that the elements ofthe drawing should 
not collide, and that the drawing should be as narrow as this permits. 
This is the reason why rose trees are more difficult to draw than binary 
trees: it is not sufficient to say that the drawings of adjacent children 
should be as close as possible. For example, consider a rose tree with 
three children t, u and v, such that t and v are large but u is small: 
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686  
If the children are positioned with the statutory narrow gap between t 
and u and between u and v, then t and v may well still collide: 

The children that interact may not be adjacent; the condition should 
instead be that all pairs ofchildren are collision-free. We now formalize 
this condition. 

Define the functions twoinits and twotails I from non-empty lists 
to bags of lists of Jength at least two, by 

twoinits two<] 0 inits 
twotails tWO<lo tails 

where 

two = (;'2) 0 # 
These functions return the (non-empty,) non-singleton inits and tails, 
respectively, of a list. For example, twainits.[a. b, c] is Ua, b], [a, b, cJS , 
whereas twataifs.[a, b, c] is Ua, b, c], [b, cJS. Both twainits and twataiis 
return the empty bag when applied to a singleton list. Now define the 
function twosegs, returning non-empty. non-singleton segments of a 
list, in terms of these: 
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twosegs I;jj/ 0 twotails* 0 twoinits 

(Recall that Ell/is lbag: e, id, Ell) , where Ell has unit e.) For example, 
twosegs.[a, b, cJ is ([a, bJ, [a. b, cJ. [b, cH . 

The endpoints of a list are its head and its last element: 

endpoints head A last 

Now, a list of pictures is 'collision free' ifit satisfies the predicate disjoint: 

disjoint all.(;;'1 0 <D) 0 end points. 0 twosegs 

where all.p = /\/ 0 p., Here, <D is the analogue for rose trees of the 
corresponding operator on binary trees: if levelorder traversal of rose 
trees is given by 

levels (h rtree: ° 0 0, Ell) where a Ell xs = o-a·: lid. 'f*),xs 

then, as before, 

left = lid, 1). 0 levels 
right = lid, n. levels0 

rn = lid, 1) 0 Vo 
<D = rn 0 (right II lett) 

Recall the function position, satisfying 

rdraw--<·x = 0 -< position·(rdraw * x) 

The no-collision criterion can now be stated 
disjoint 0 position 0 rdraw* = ltrue 

This completes the specification of rdraw. We have first to synthesize 
an executable program from these conditions. and then to make this 
program efficient. 
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An algorithm  
Although our definition of segments, twosegs I is not the same as Bird's,  
we can still apply his Segment Decomposition Theorem (Bird, 1987) to 
the predicate disjoint: 

disjoint 

[ definition ] 

 1 0 (J) 0 endpoints* 0 twosegs 

[ twosegs ] 

all.()1 () (J) 0 endpoints* 0 I±J/ 0 twotails* 0 twoinits 

= [ promotion ] 

/\/0 (all.()! 0 (J) 0 endpoints* 0 twotails)* 0 twoinits 

[ letting delta = all'("'lo(j)oendpoints. otwotaiis I 
all.delta 0 twoinits 

In particular, a singleton list is always disjoint, because it has no twoinits; 
indeed, we could say that disjoint is 'prefix-dosed with derivative delta') 
although this is using the term in a way slightly different from Bird's: 

disjoint·(ps:· p) 

[ above ] 

(all.delta)·twoinits·(ps:. p) 

[ twoinits ] 

(all.delta)·two<l·inits·(ps:. p) 

[ inits ] 

(all.delta)·two<l·(inits·ps:· (ps:· p)) 
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[ two·(ps:· p) = true ]  

(all.delta)·(two<1·inits·ps !±lIps:· pj)  

[ twoinits, all ] 

(all.delta)·twoinits·ps 1\ delta·(ps:· p)  

[ disjoint ]  

disjoint·ps 1\ delta·(ps:· p)  

Now, we know that 

position 000 rdraw = CI 0 rdraw 

because an only child must be rooted at the origin. Suppose that position 
is a snoc list catamorphism (snoc: o. Il;l) such that 

ps Il;l p centre·(ps:· «ps@ p)+) > p) 

where 
centre·x (-midpoint·x» > x 

The idea here is that ps @ p gives the distance by which p must be 
shifted in order that it fit snugly against ps; then centre translates the 
whole list ofchildren bodily to the left, putting the midpoint at the origin 
and hence recentering the parent. 

If position is of this form, then the no-collision condition reduces 
to 

disjoint·ps  delta·(ps Il;l p) 

This follows since a singleton is always disjoint, and because, with this 
condition, adding another child in the correct position maintains  

jointness: 
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disjoint·position·(ps:· p) 

[ position ] 

disjoint·(position·ps I2l p) 

[ I2l ] 

disjoint·centre·(position.ps:. «position·ps @ p)+) * p) 

[ disjoint is. invariant under translation ] 

disjoint·(position·ps:. ((position·ps@ p)+) * p) 

[ disjoint is prefix-closed ] 

disjoint·position·ps 1\ delta·(position·ps I2l PI  

= [ assuming disjoint·qs '$ delta·(qs I2l PI   
disjoint-position- ps 

so by the unique extension property, 

disjoint 0 position  !true 

This gives us some information about [81, namely that its result 
shouldsatisfy delta ifits left argument is disjoint. A calculation involving 
(]) and properties of i. -. 1 and zips shows that 

delta·(ps:· PI == (id, t'TI·(right * pSI []] left·p  1 

Thus, 

delta·(ps I2l PI  

[ I2l ]  

delta·centre·(ps:· ((ps@ p)+) * p)  

[ delta is invariant under translation ] 

delta·(ps:· «ps@ p)+) * p) 
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[ above] 

(id. trhright. ps) rn left·«(ps ® pJ+}. p) ;;, 1 

[ left 0 (a+). = (a+). 0 left; urn 0 (a+). = a+ 0 urn ] 
(ps ® p) + (id. trhright. ps) rn left·p ;;, 1 

[ arithmetic ] 

(ps <8> p) ;;, 1 -lid. tr)·(right. ps) rn left·p 

'" [ fix ps ® p as small as possible ] 

(ps <8> p) = 1 - (id. tr)·(right. ps) rn left·p 

Now, the list ofdrawings produced by pOSition is by no means unbiased; 
each child except the leftmost is packed tightly against its left siblings. 
For example. position would draw our example rose tree with three 
children in the form 

Therefore, let us rename position to lehwards: 

leftwards = (0.181) 

It is not difficult to show that rdraw is unbiased precisely if position is 
unbiased. In other words, define the function mirror J which reflects a 
whole list of drawings, by 

mirror rev 0 rrev* 0 -** 

Then if rdrawo-(ox = 0 -< position·(rdraw * x) , as we have above, then 
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-* 0 rrev 0 rd raw = rd raw 0 rrev 

 [ a short calculation ] 

mirror 0 position = position 0 mirror 

[ mirror is its own inverse ] 

position :::;: mirror 0 position 0 mirror 

We havejust seen, though, that leftwards does not commute with mirror: 
if we define 

rightwards == mirror 0 leftwards 0 mirror 

then rightwards, which packs children to the right, is different from 
leftwards. However, their average is unbiased-if we redefine position 
so that 

position == leftwards Yy@ rightwards 

then it does commute with mirror, since negation is (0, 0) -promotable, 
and 0 is commutative. 

All that we have left to check is that this redefined position pro-
duces disjoint lists of drawings; we showed earlier that leftwards does, 
but it is not immediately obvious [rom this that position does too. Nev-
ertheless, it is not too arduous to show that the disjointness ofrightwards 
drawings is equivalent to the disjointness ofleftwards drawings: 

disjoint 0 rightwards ::;:: disjoint 0 leftwards 

and that disjointness of the means follows from disjointness of the two 
components: 

disjoint·(x YYo y)  disjoint·x A disjoint.y 

This means that we now have an executable, albeit inefficient, pro-
gram for rdraw : 

rdraw I!("·O), (0-<) 0 position) 
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position leftwards YYe mirror 0 leftwards 0 mirror 
leftwards = ID,0) 

where ps 0 p = centre'(ps:, «ps ® p)+) *p) 
centre·x = (-(root·head·x 0 root·last·x) __ x 

ps ® p I -lid, 7rl·(right _ ps) mleft·p 

An efficient algorithm 
Effectively the same optimizations that applied to binary trees can be 
used for rose trees. Informally. these are that 

_  drawing should be split into two stages: first, find the position of 
every child relative to its parent, and second, perform a down-
wards accumulation to compute the absolute positions 

*  drawings are 'sorted': the contours are the endpoints ofthe levels, 
and if disjoint·ps then  

lid, 7 l·(right _ ps) . lid,  _ ps) r
and so ps ® p depends only on the 'right contour' of ps 

*  maintain these contours during the first stage, making itao up-
wards accumulation 

Along with the observation that centering need not be performed so 
often, that is, that 

leftwards centre olD, 01 
where ps 0 p = ps:' «ps ® p)+) _ p 

these optimizations provide us with an efficient algorithm. 

Related work 
The problem of dIawing trees has quite a long and interesting history. 
Knuth (1968a, 1971b) and Wirth (1976) both present simple algorithms 
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in which the x-coordinate of an element is determined purely by its po-
sition in inorder traversal. Wetherell and Shannon (1979) first consid-
ered 'aesthetic criteria', but their algorithms all produce biased draw-
ings. Independently of Wetherell and Shannon, Vaucher (1980) gives 
an algorithm which produces drawings that are simultaneously biased, 
irregular, and wider than necessary, despite his claims to have 'overcome 
the problems' ofWirth's simple algorithm. Reingold and Tilford (1981) 
tackle the problems in Wetherell and Shannon's and Vaucher's algo-
rithms by proposing the criteria concerning bias and regularity; their 
algorithm is the one derived for binary trees here. Supowit and Rein-
gold (1983) show that it is not possible to satisry regularity and minimal 
width simultaneously, and that the problem is NP-hard when restricted 
to discrete (for example. integer) coordinates. BrGggernann-Klein and 
Wood (1990) implement Reingold and Tilford's algorithm as maCros for 
the text formatting system TEX. 

The more difficult problem of drawing rose trees has had rather 
less coverage in the literature. Reingold and Tilford (1981) mention 
them in passing, but make no reference to the difficulty of producing 
unbiased drawings. Radack (1988) presents the algorithm that we de-
rive here. Walker (1990) uses a slightly different method: he positions 
children from left to right, but when a child touches against a left sib-
ling other than the nearest one, the extra displacement is apportioned 
among the intervening siblings. 
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Our third and last illustration of the applications of accumulations on 
trees is provided by evaluation mechanisms for attribute grammars. At-
tribute grammars were proposed by Knuth (l968b) as a tool for pre-
senting the semantics of programming languages. They arose as an 
extension of the 'syntax-directed' compilation techniques of the early 
sixties (Irons, )961). Using these techniques, the parse tree ofa pro-
gram is dearrated with attributes, the decoration attached to an element of 
the parse tree representing some aspect of the semantics of the subtree 
rooted there. In Irons' formulation, the attribute attached to an ele-
ment depends only on the descendants of that element; Knuth showed 
that although no extra power is gained by doing so, the description of 
the semantics of a language can be considerably simplified by allowing 
attributes to depend on other parts of the parse tree as well. 'The reader 
is referred to the comprehensive survey by Deransart et aJ. (1988) for 
further information about the history of attribute grammars; their re-
port includes a bibliography of over five hundred items. 

Traditionally, an attribute grammar for a context free language 
is an extension of the grammar which describes the syntax of that lan-
guage. Each symbol in the grammar has associated with it a number of 
attributes, and each production in the grammar comes with some rules 
that give values to some of the attributes attached to symbols appearing 
in that production, in terms of the values of the other attributes that ap-
pear. The attributes are classified into two categories, inherited and syn-
thesiud; inherited attributes are those appearing on the right hand side 
of the production in which their value is defined, and hence concern 
the 'children' of the production, whereas synthesized attributes appear 
on the left, and concern the parents. Irons' syntax-directed translation 
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corresponds to attribute grammars with only synthesized attributes.  

tuitively, inherited attributes carry information into a subtree and syn-
thesized attributes carry it back out again; in Knuth's (197Ia) words, 
'inherited attributes are, roughly speaking, those aspects of meaning 
which come from the context of a phrase, while synthesized attributes 
are those aspects which are built up from within the phrase.' 

OUf view of attribute grammars differs somewhat from this tradi· 
tional view. \Ve suppose that a tree has been built already. and that the 
task is to evaluate the attributes of the root of the tree. We make several 
simplirying assumptions in order to prevent the proliferation of sym-
bols and indices, but none of these significantly affect the mathematics. 
Throughout this chapter, A is the type of labels of the tree, and I and 
5 the types of inherited and synthesized attributes, respectively. 

64. Definition An attribute grammar consists simply of an evaluation 
rule 

$ E A II (III 5 II 5) --> 111111 5 
o 

We make the simplification, after Fokkinga et aJ. (1991), that every ele-
ment has exactly one inherited and one synthesized attribute, and that 
all inherited attributes have the same type, as do all synthesized  

tributes. This entails no loss of generality, since attribute types may be 
sums ofprodllcts. We assume also that the tree is homogeneous, and 
a binary tree at that: rose trees can be treated in an entirely analogous 
way. 

The idea is that the evaluation rule $ takes an element a of the 
tree and a triple (i, s, t) ofattributes, with i being the inherited attribute 
of that element and sand t the synthesized attributes of its children; it 
yields a triple 0, k, u), with u the synthesized attribute of that element 
and j and k the attl;butes its children will inherit. The simplification 
that the inherited attributes ofthe children and the synthesized attribute 
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ofthe parent depend only on the inherited attribute of the parent and 
the synthesized attributes of the children is due to Boehmann (1976). 
To avoid the need for different evaluation rules for leaves and branches, 
we assume also that there is a 'dummy' inherited attribute WI that can 
be produced as the inherited attribute for the 'children' of a leaf, and 
a dummy synthesized attribute ws, distinct and distinguishable from 
'valid' synthesized attributes, that can be used for their synthesized at-
tributes; such an element can always be adjoined to 5 if none exists 
already. 

The process of attribute evaluation according to an evaluation 
rule ffi is performed by the operator @'" E (hrntree.A III) --> 5 ; applied 
to a pair consisting of a homogeneous binary tree and the inherited at-
tribute of its root, it returns the synthesized attribute of the root of the 
tree. For the rest of this chapter, we will assume a fixed evaluation rule 
ffi ,and write sim ply ® for attribute evaluation. This operator satisfies 

6·a@i = ",'(0 ffi (i, Ws, WS)) 
(x ±, y)@ i = "K"2'U where u o ffi (i, 5, t) 

5 = x® "O'U 
t = Y@"K'l'U 

Examples of attribute grammars 
We consider now a number of examples of attribute grammars. Any 
homogeneous moo tree catamorphism can be expressed as an attribute 
grammar with inherited attributes of type 1. We have that the cata-
morphism (hrntree: f, @) is equal to the evaluation (@it) where 

o ffi (it, Ws, ws) (it, it, La) 
a ffi (it,s, t) (it, it,s @, t) if 5, t 'f Ws 

Upwards accumulations and paths downwards accumulations are cata-
morphisms, so they can both be written in this waYi htaps accumulations, 
though, are generally not catamorphic, and for these we need to use the 
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inherited attributes. The idea here is that the inherited attribute holds 
the 'context dependent' part of the accumulation, and the synthesized 
attribute returns the tree which is the result. We get (f, 0, 0)j, = (®f) 
where 

a Ell (f, ws, ws) (WI, WI, ,,·f·a) 
a Ell (f, x, y) (f.a0, f.a0, x xr.. y) ifx,y 'f Ws 

Inform<llIy, information Rows down through the inherited attributes 
and then back up through the synthesized ones. 

Another eX<lrnple involving both inherited and synthesized at-
tributes is the function rank from Chapter 5, which replaces every el-
ement of an unlabeHed tree with the number of leaves to the left of 
and including that element in inorder traversal. Here, the inherited 
attribute of an element gives the number ofleavcs to the left of but ex-
cluding the subtree rooted at that element; this gives us rank = (®O) 
where 

it Ell (i, ws, ws) (WI. WI, ",(I + i)) 
it Ell (i, x, y) = (i,lid, O9I·x, x x (;'.,")., y) if x,y 'f Ws 

where u 0a V = v. The inherited attribute of the right child here, 
lid, O9).x, is the number ofleoves to the left ofand including subtree x in 
inorder traversal; the inherited attribute of a right child depends on the 
synthesized attribute of its left sibling, and information Rows from left 
to right in the same way that it does for a depth-first search. Most of the 
applications of attribute grammars to programming languages involve 
dependencies like this, because ofthe close correspondence between the 
hierarchical structure of the parse tree and the linear structure of the 
program it represents. 

Our final example is Bird's 'repmin' problem (Bird, 1984b); the 
problem here is to replace every element of a tree of numbers with the 
smallest element in that tree. For this we require one inherited and 
two synthesized attributes; the first synthesized attribute attached to an 
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element records the smallest element of the tree originally rooted there, 
the inherited attribute gives the smallest element of the whole tree, and 
the second synthesized attribute contains the tree of minimum values 
which is the result. Attribute evaluation is giyen by 

a Ell (i, (00, x). (00, y)) = (WI, WI, (a, ".i)) 
a Ell (i, (m, x). (n, y)) (i, i, (m La Ln, x XI y)) if m, n f 00 

with 'dummy' synthesized attribute 00. The function repmin itself is 
given by 

repmin.t x where (m, x) = t ® m 

Note that the second synthesized attribute depends on the inherited at-
tribute. which depends on the first synthesized attribute. which depends 
only on the original tree. In fact, the crux of this problem is to evaluate 
repmin in a single pass over the tree; we see shortly how to do this for 
any attribute evaluation. 

Circularity 
The meticulous reader will have noticed that the definition we gave for 
attribute evaluation is circular: 

(x x. y)®i = '""U where U = a Ell (i.s. t) 
5 = X@1l'o'U 

t = Y®'""u 
so u depends on 5 and t, which themselves depend on u. In the ex-
amples we have given, the circularity disappeared because there was an 
ordering on the attributes-or on their components---that respected the 
data dependencies. Jazayeri et al. (1975) have shown that. in general. 
the check for circularity is inherently exponential; indeed, it was one of 
the first naturally occurring problems to be shown so. 
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Heavy emphasis has traditionally been placed on the various pos-
sible evaluation orders for attributes, and on restrictions to the eval-
uation rules that make particular orders valid. This problem can be 
avoided altogether if the evaluation rule is seen as ind ueing a collec-
tion of equations. and the attribute evaluator is seen as an equation 
solver: the equlltions form a program in a lazy functional language. and 
as Johnsson (1987) says, 

The lazy evaluator has taken over lhe Job normally done by the special purpose 
attribute evaluaJion machine-T)o NomUllly in other auribute grammar .rystrms the 
order in which III I! aUributes are evaluated is determined at evalua,tor-gnuratian 
time. In our scheme thIS order is implicitly delemtined by the lazy evaluator at "m 
time. The order is entirely detemlintd by the data dependencies, and may vary 
depending on the order in which the valu.es of the va,riouJ attributes are demanded. 

Under this view, circular dependencies correspond to mutually recur-
sive equations (Chirica and Martin, 1979; Mayoh, 1981). Farrow (1986) 
and Johnsson (1987) both observe that such grammars can be useful; 
Johnsson concludes that 'the only practical road open to us seems to be 
to detect the circularities at run-time; fortunately, though, this can be 
done at very little extra cost', at least on the G-machine, the context of 
Johnsson's paper. 

We sidestep the issue completely, following the lead of the major-
ity ofthe literature on attribute grammars; we treat recursion in the def-
inition of ® in the same way that we treat recursion elsewhere, namely, 
we assume that it is 'sensible'. 

Attribute evaluations as catamorphisms 

In general, an attribute grammar evaluation (®i) E hmtree.A -+ 5 is 
not a catamorphism, because it depends on evaluations of the children 
using different inherited attributes. However, many people (Chirica 
and Martin, 1979; Jourdan, 1984; Katayama, 1984; Johnsson, 1987; 
Fokkinga et aJ., 199 I) have shown that the curried evaluation (®) with 



153 Attribute evaluations as accumulations 

type hmtree.A ---+ (l --+ 5) is a catamorphism. This observation is simi-
lar to the one we exploited in Chapter 5 in order to apply the parallel 
prefix algorithm to a snoc list catamorphism. We have 

(<®) ..,.. = ",0 (,$) 0(id). !ws ). !ws) 
(®),(x ±. y) = ",0 h 

where 
h.i  = u where u = • $ (i, s, t) 

s = (<®).x'("o·u) 
t = (<®).y.(",·u) 

That is, 

(<®)·(x ±. y) = (<®)·x 0. (<®).y 

where 
(f 0. g).i = "K'2'U where u = • $ (i. f·"o·u, g'''I'U) 

A little manipulation of function arguments allows this to be simplified 
to 

f 0. 9 = "2 0 h where h = ('$) 0 (id ). (f 0 "Doh»). (g 0', 0 h» 

Looking back at the examples ofattribute grammars that we gave 
earlier, we are reminded that any tree catamorphism can be written as 
an attribute grammar with purely synthesized attributes; hence, any at-
tribute grammar can be rewritten to involve only synthesized attributes, 
returning a function from the original inherited attribute of the root to 
the original synthesized attribute. As Johnsson shows, it is precisely this 
construction that gives a single pass solution to Bird's repmin problem. 

Attribute evaluations as accumulations 

Attribute evaluation is conventionally understood to mean evaluation of 
a single attribute, the synthesized attribute of the root ofthe parse tree; 
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all the other attributes are 'intermediate results' and are of no further 
interest. For most applications, and in particular for one-off compila-
tion, this is exactly what is required; once the translation of part of a 
program has been constructed, the translations of subexpressions are 
no longer needed. However, for some applications we are interested 
in the intermediate results as well; for example, incremental compilers 
and structure editors such as the Cornell Synthesizer Generdlor (Reps 
and  1984, 1989) make use of these intermediate results in 
order to avoid having to recompile parts of a program that feffillin un-
changed. For such applications, we would like attribute evaluation to 
return the whole tree of attributes, not just the synthesized attribute of 
the root. 

We have seen that the sectioned evaluation (®) is a catamor-
phism; therefore, (®)* 0 subtrees is an upwards accumulation, 

(®)* 0 subtrees E hmtree.A  hmtree.(l  5) 

yielding a tree of inherited-to-synthesized-attribute functions. This is 
nearly but not quite enough to allow us to compute all the attributes 
in the tree-given the inherited attribute of the root. we can certainly 
find the synthesized attribute of the root, but what will the inherited 
attributes of the children be? "Ve have thrown that information away. 

We want a slightly different attribute evaluation that returns the 
whole triple of type 111111 5, consisting ofthe inherited attributes of the 
children as well as the synthesized attribute of the parent. To this end, 
we define the complete attribute evaluator 

1>1", E (hmtree.A III)  (111111 5) 

which we will abbreviate to l!J. The intention is that 'K2 0 0 :::; ® . 
The definition is straightforward, given the definition of ® : 

t>.·al!li = 3$(i,ws,ws) 
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(x .t. y)  ; u where u = • ill (i. s. t) 
s = ..,·(x  "o·u) 
t = ..,.(y  ..,·u) 

Again, the sectioned evaluator (IE) is a catamorphism, 

(IE) E hmtree.A - (I - 111111 5) 

from which we can construct an upwards accumulation, 

(IE» subtrees E hmtree.A - hmtree.(1 - I II I II 5)0 

yielding a tree of inherited-attribute-to-triple functions. 
The operator 0 that takes the result of this upwards accumula-

tion and the inherited attribute of the root of the tree, and returns the 
tree with every element replaced with its 111111 5 triple, satisfies 

,,·f 0; .6.·f·j 

(x .t, y) 0; = (x O"o·f·i) .t,.; (y o ..,·f.;) 

That is, (Oi) is a htaps downwards accumulation: 

(0;) = «';).0.0),1. 

where 
.0g = g·1fo·a 
.0g = g·1fl·a 

Clearly, there is a strong analogy between complete attribute eval-
uation and upwards and downwards accumulations: an upwards accu-
mulation is the complete evaluation of an attribute grammar with only 
synthesized attributes, and a downwards accumulation is the complete 
evaluation of a grammar with only inherited attributes; moreover, any 
complete attribute evaluation consists of an upwards accumulation fol-
lowed by a downwards accumulation. 



8 Conclusion 

In this thesis we have looked at three different tree algebras, namely, 
moo trees, rose trees and hip trees. Hip trees are an original contribution, 
though we did not make much use of them in this thesis. They intu-
itively form a partial algebra, in that some of the terms do not obviously 
correspond to trees. We showed in Chapter 2 how to avoid the intro-
duction of partial functions by demonstrating that the 'tree-like' subset 
of the terms of the algebra is consistent with the intuitive model; this 
means that the algebra can remain total, and we can simply ignore the 
terms that do not correspond to objects in our model. 

Each of the algebras we presented came with a class of structure-
respecting functions called ca!amorphisms, determined completely by 
the definition of the algebra. Each also came with classes of structure-
preserving functions called accumulations; these did not come for free 
from the definitions. Of these accumulations, we defined first the no-
tion of an upwardS function, being a function mapped over the sub-
trees of a tree; upwards functions are exactly those functions that pass 
information up through a tree from the leaves towards the root. We 
observed that upwards functions need be neither catamorphic nor ef-
ficient; this led us to define upwards accumulations, a special case in 
which the function being mapped over the subtrees is a catamorphism. 
o pwards accum ulations are both catamorphic and efficient. 

The development of downwards accumulations was rather more 
interesting, because it presented some problems that did not ocru-r with 
upwards accumulations. We started by defining the paths of a hip tree 
as a hip tree of hip trees; then we defined a downwards function as a 
function mapped over the paths of a tree, and a downwards accumu-
lation as a catamorphism mapped over the paths. We discovered that 
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some functions that we expected to be accumulations were not, because 
of the restrictions imposed by the representation of paths as hip treeSj 
this led to the definition of the free algebra ofthreads to represent paths. 
We then discovered that this caused downwards accumulation to be no 
longer catamorphic. so we redefined it in terms of moo trees of threads; 
this gave us a catamorphic but not generally efficient downwards accu-
mulation. Finally, we defined another representation of paths, daerhts, 
which provided an efficient but not generally catamorphic downwards 
accumulation; we showed under what conditions these last two classes 
would coincide, to produce catamorphic and efficient downwards accu-
mulations. 

The remaining three chapters of the thesis provided a number 
of examples to illustrate the applicability of upwardS and downwards 
accumulations to algorithms about trees. In Chapter 5. we derived the 
parallel prefix algorithm for the prefix sums problem; this turned out 
to consist of an upwards accumulation followed by a downwards accu-
mulation. both accumulations being efficient and catamorphic. We then 
showed how the prefix sums problem encompassed non-associative as 
wen as associative sums. We also presented an algorithm for the suffix 
sums problem, and showed how prefix and suffix sums could be calcu-
lated together. We used the resulting 'fix sums' algorithm to derive a 
solution to the bracket matching problem. 

In Chapter 6 we derived algorithms for drawing binary and rose 
trees. The specification of the binary tree drawing problem was exe-
cutable, taking quadratic effort in the siz.e of the  We discovered 
that splitting it into two phases-an upwards accumulation that com-
puted the relative positions of each parent with respect to its children, 
followed by a downwards accurnulation that fixed the absolute position 
of each child by accumulating the relative positions of its ancestors-
produced an algorithm requiring only linear effort. The same proce-
dure worked for drawing rose trees, except that there the problem of 
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producing unbiased drawings was more difficult; we solved it by 'aver-
aging' the drawings ofa tree and its mirror image. 

Finally, in Chapter 7, we discussed the evaluation of attributes ac-
cording to an attribute grammar. We showed the well-known result that 
this evaluation can be performed in a single pass by constructing a cata-
morphism yielding a function from the inherited attribute of the root 
of the tree. This catamorphism could be generalized to an upwards 
accumulation yielding a tree of functions; we showed that this tree of 
functions could in tum be evaluated with a downwards accumulation 
to produce the whole tree decorated with attributes. Again we discov-
ered the pattern ofan upwards accumulation followed by a downwards 
accumulation. 

it is the identification of these upwards and downwards accumu-
lations as commonly-occurring patterns of computation that is the most 
significant contribution of this thesis; the number of problems to which 
they can be applied testifies to their importance. The next most sig-
nificant aspect of the material presented here is the algebraic approach 
taken to algorithm design using these accumulations; other people, as 
we discuss below, have introduced ideas similar to our upwards and 
downwards accumulations, but to the best of our knowledge the ex-
ploitation of their algebraic properties is original. 

Accumulations provide a valuable method of abstraction, as the 
various examples that we have given show. For example, O'Donnell's 
derivation of the parallel prefix algorithm commences in a similar fash-
ion to ours, but his result consists in erreet ofa tree of processors passing 
messages around in parallel. Had accumulations been available to him 
as a tool, he might have been able to split the solution into two phases, 
making its structure much clearer. Now, splitting the parallel prefix 
algorithm into two phases is not a new idea, and it does not require ac-
cumulations; one of the clearest published explanations of the parallel 
prefix algorithm is by Blelloch (1989): 
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The technique  a/two sweeps olthe tree, an up sweep and a doW'f1. sweep, 
and requires 2log.n steps. The values to be scanned start at Jile leaves oJthe tree. 
On the up sweep, each unit executes $ on its two children units and pa.ues the 
sum to its parmi. Earh unit aLw keeps a copy of the value from its left child in ils 
tl/£11I0ry. On the dawn sweep, earh unit passes to its left child the value from its 
parent, and passes to its right child $ applied to its parmi and the value slored in 
the 111.i/llOry (this value originally W11le from the left child). After the down sweep, 
the values at the leaves are the result of the scan. 

However, this description could be made dearer stil1 by phrasing it in 
terms of accumulations. Blelloch's account is procedural, describing the 
actions that each process performs; the construction of the 'invariant' is 
left to the reader. In contrast, the initial characterizations of accumu-
lations as catamorphisms mapped over the 'generators' subtrees, paths 
and htaps are declarative descriptions, giving the invariants and omit-
ting the method ofachieving them. A declarative description makes the 
properties of the Jccumulations much clearer. For example, the com-
position of an accumulation (f)o 0 gen consisting of catamorphism (f) 
and generJtor gen with a map g* is another accumulation, since 

(f)o 0 gen 0 go 

[ generators are natural transformJtions ] 

(f)o 0 goo 0 ge" 

[ Corollary 12, introducing some fI ] 

(f')o 0 gen 

If we had defined accumulations JS single monolithic catamorphisms, 
as Blelloch describes each phase of the parallel prefix algorithm, this 
calculation would have been rather less straightforward. 
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Comparisons 
We now discuss the published descriptions of which we are aware of 
operations similar to our accumulations. 

Wile (1973) is concerned with a basis for a general-purpose pro-
gramming language that exploits the connection between control and 
data structure; to this end. he defines operations on sequences and on 
nested sequences, the latter being equivalent to our leaf-labelled rose 
trees. Two particular operations on these are of interest to us; Wile calls 
them 'top-down accumulation' and 'bottom-up recursion'. Top-down 
accumulation tda satisfies 

tda.(e, EEl).(LI·a) LI·e 
tda.(e, EEl).(-<·x) -<·(tda.(-<·x EEl e, EEl) • x) 

In effect. this is a downwards accumulation composed with subtrees: 

tda.(e, EEl) = (id, lit). 0 (el:9, ®»)" 0 subtrees 
where U @n a = u ffi a 

in which ® ignores its numeric argument. The seed value-the first 
component of the argument to tda -that is used for a subtree tn of 
the tree will be of the form t,_1 EEl (t'_2 EEl ... EEl (to EEl e) where to is 
the whole tree, tl a child of to I and so on, and tn_l the parent of tn . 

As such, Wile's top-down accumulation is very general, encompassing 
all our examples of an upwards accumulation followed by a downwards 
accumulation, but rather unstructured. 

Wile defines two 'bottom-up recursions', corresponding loosely to 
our rose tree catamorphismsj he gives no upwards accumulations. The 
first of these recursions we would write 

Ilrtree: f, EEll 0 (id Ydepths) 

which depends on the depths of the elements as well as their values. 
The second satisfies the equation in f 
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f·-(·x = -(·x Ell (f. x) 

and so is a rose tree paramorphism (Meertens, 1990) rather than simply 
a catamorphism. 

In many respects, Wile's basis resembles APL (Iverson, 1962). He 
gives a powerful collection of operators which operate on 'structured' 
objeCls as a whole, not just on scalars, and his notation is just as con-
cise. [t even shares the greatest fault of APL, in that the rich collection 
ofoperators is not matched by a rich collection of laws, and their char-
acterizations are given more procedurally than declaratively. 

Myers (1980) discusses a language involving infinite sequences 
and trees; the latter are functions from lists of numbers ('path specifi-
cations') to elements, and correspond to OUf branch-labelled rose trees 
except that they may have infinite depth. The only sensible kind of ac-
cumulation on these trees is a downwards accumulation; infuriatingly, 
Myers only hints at a definition: 'the reader should at this point be able 
to look back at the [rightwards accumulation] operator ... and extend 
this definition to the analogous tscan operator which moves an aCCumu-
lation in all directions down a tree'. One can only guess that he means 

tscan.(e, Ell)." = ,,·e 
tscan.(e, EIl).(a -( x) = e -( (tscan.(e Ell a, Ell)' x) 

Neither does he present any exam pIes using tsca n , which might have 
given us a clue as to his intention. 

Dekel and Sahni (I 983a) talk about the 'binary tree method', in 
which a computation consislS of a series of alternating upwards and 
downwards passes over a tree. For the upwards pass, 'we proceed from 
the leaves to the root solving the subproblem associated with each node', 
and for the downwards pass 'we proceed from the root to the leaves' 
similarly; their presentation is distinctly informaL Tbey discuss one-
pass uses of the binary tree method-they treat these as catamorphisms 
rather than as upwards accumulations-and two-pass uses-the parallel 
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prefix algorithm-but give no other examples. Indeed, all the interest-
ing examples that we have been able to find are no more intricate than 
two passes of Dekel and Sahni's binary tree method; we do not know 
whether there are natural examples consisting of, say, a downwards ac-
cumulation followed by an upwards accumulation. 

Turner (1986) talks about 'up-down parsing' of prefix grammars: 
'the method works in two passes, the first proceeding up the input in-
termediate representation [i.e., parse] tree and the second prcx:eeding 
down', the whole process labelling the parse tree with nonterminals 
from the grammar. Again, there are no precise definitions of accumu-
lations, nor for that matter a precise definition of anything. 

Huang (1985) defines 'type-I' and 'type-2' tree functions which 
he uses as building blocks for parallel graph algorithms on a mesh-of-
trees network. Type- I tree functions correspond to our downwards ac-
cumulation, and type-2 to upwards. According to Huang's definition, 
the binary operators involved must be associative, but since he does not 
specify an order in which elements should be combined the operators 
should really be commutative too; the examples he gives involve only 
commutative operators such as +. i and /\. In our notation, these 
tree functions would be given by 

typeo"e.(I, Gl) = (I, Gl, Gl);" 
typetwo.(I, Gl) = (I, Gl)ft 

where ffi is associative and commutative. In effect, the accumulations 
are bag catamorphisms mapped over trees of bags. 

Gibbons and Rytter (1986) introduce the 'paths problem', which 
would be stated (id, Gl, Gl).IJ. in our terminology. The operator Gl is 
constrained to be associative, and left and right children are treated the 
same; in effect, it consists of a cat list 'reduction' (cat: id, Gli mapped 
over the paths. They actually associate values with the 'edges' of the 
tree rather than the 'vertices', but the problem is equivalent ifeach ele-
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ment of the tree holds the value of the 'edge' between it and its parent, 
and some sensible value is given to the root of the tree. Their definition 
is precise, but still not as general as either ofour downwards accumula-
tions because of its identical treatment afleft and right children. For ex-
ample, this definition excludes the downwards accumulation (id, », +)-IJ. 
forming part ofthe function rank in Chapter 4, which has different com-
ponents for left and for right children. 

Leiserson and Maggs (1988) describe the 'rootfix' and 'leaffix' 
problems on homogeneous binary trees. The rootfix problem is iden-
tical to Gibbons and Rytter's paths problem. The leaffix problem we 
would state as 

(Icat: id, Ell) 0 preorder)* 0 subtrees 

for some associative operator $. Again, this is less general than our 
upwards accumulation, as the catamorphism can depend only on what 
is discernible of the structure of a tree from its preorder traversal; it 
precludes, for example, the computations ofcontours in Chapter 6 and 
of inherited-to-synthesized-attribute functions in Chapter 7. 

Wright (1988) has done some work similar to ours, but on two-
dimensional 'arrays' or matrices rather than trees; we referred to him 
in Chapter 2. Wright talks about upwards, downwards, leftwards and 
rightwards accumulations on arrays, which perform 'list' accumulations 
on each column or each row in parallel, but the closest analogues ofour 
upwards and downwards accumulations would be 'northwest', 'north-
east', 'southwest' and 'southeast' accumulations, each accumulating to-
wards one corner of the array; the 'northwest subarrays' of an array x, 
for example, would form an array of arrays, the same shape as x, con-
sisting of all contiguous subarrays of x that share its northwest corner. 

Jeuring (1989) considers problems about 'hypotrees' ofhomoge-
neous moo trees, which are to subtrees what the contiguous 'segments' 
of a list are to its inits. He defines the calamorphism chop with type 
hmtree.A  cat.(hmtree.A) by 
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chop = (hrntree: Do"'. Ell) where u Ell. v = (±. * (u Xv» -It- D·"'·a 

The operator X here returns the cartesian product-a list ofpairs----of 
its arguments. Informally, chop.t is a list giving all the ways ofchopping 
off pairs ofchildren in t. The hypotrees ofa tree are given by applying 
chop to each subtree and flattening the result: 

hypotrees = (cat: id. -++-) 0 postorder 0 chop* 0 subtrees 

(lbe postorder traversal is an arbitrary choice; arguably, X, chop and 
hypotrees should all return bags.) Jeuring then proceeds to investigate 
a promotion theorem for hypotrees, that is, conditions under which a 
function-actually. he only considers catamorphisms----<:omposed with 
hypotrees is itself a catamorphism. This work is rather closer to that 
of Bird (1987) and de Moor (1990) than to ours; there is no notion of 
'accumulation' here because the generator hypotrees does not return a 
structured object. 

This concludes our discussion ofwork related to our accumulations; we 
turn now to look at other questions that our work has raised. 

Heterogeneous downwards accumulations 

We defined paths and downwards accumulations in Chapter 4 only on 
homogeneous trees. The reasoning behind that decision was as follows. 
Suppose the tree 
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is not a homogeneous tree, so that b. d and e are not the same type 
as a and c. Then the path terminating at c in the tree, a 'homoge-
neous path', has a different type to the path terminating at d, which 
is a 'heterogeneous path'. Van der Woudc has observed that this is no 
great obstacle: paths could return a heterogeneous tree, with homo-
geneous paths at the branches and heterogeneous paths at the leaves. 
However, downwards accumulation would then have to be defined with 
two catamorphisms, one for homogeneous and the other for hetero-
geneous paths. The problems are even worse for htaps accumulations 
than for paths accumul<Hions, for then the 'heterogeneous daerht' cata-
morphism applied to the tlacrht terminating at d need not be a function 
of the 'homogeneous daerht' catamorphism applied to the thread ter· 
minating at c. Sometimes, certainly, we have to say difficult things, but 
this seems just a bit too difficult. 

On a related topic, Backhouse has pointed out that paths could 
return a tree of lists, rather than of threads, and still be invertible; the 
information about whether a child is a left child or a right child, al-
though absent from the path, is still held in the position of that path 
in the resulting tree. However, this information is not 'local', and some 
functions which would otherwise be downwards accumulations-such 
as the (id,::p, +).JJ we mentioned earlier-would not be a catamorphism 
mapped over the paths, 

Hip trees: a negative result 

Hip trees were introduced along with moo and rose trees at the begin-
ning of this thesis. We had hoped that they would provide a natural 
formulation of paths and of downwards accumulation, but they turned 
out not to be as useful as we first thought they might. It was the study 
of hip trees (Gibbons, 1988) that first led us to the notion of downwards 
accumulation, but in the long run it seems that downwards accumu-
lations are more elegantly expressed in terms of moo trees of threads 
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than ofhip trees ofhip trees. The complications that hip trees caused in 
Chapter 4, and indeed the problems of partial algebras that they threat-
ened to introduce in the first place, outweigh any benefit they may have 
brought us, at least as far as this thesis is concerned. It remains to be 
seen whether there are any convincing examples of the utility of hip 
trees-any problems towards whose solutions they lead more naturally 
than do other types of tree. 

Application and apposition 
Another experiment, this time a notational one, that we have performed 
in this thesis is that of using two different application operators, the con-
ventionalleft associative. from functional programming and Morgan's 
right associative .. It would be nice if it were possible to perform all 
manipulations at the function level, but-perhaps because we do not 
yet have the right kinds of combinators-there are many occasions in 
which object level calculations are clearer. It seems that calculations at 
the the two different levels are more comfortable using the two different 
application operators, left associative for functions and right associative 
for objects. 

We have also, privately, tried experimenting with what Meenens 
(1986) calls 'apposition', a contraction of 'application' and 'composition'. 
This idea capitalizes on the isomorphism between the types 1 --; A and 
A: the isomorphisms are given in one direction by the function K. with 
type A ---> 1 ---> A satisfying 

K..a.it = a 

and in the other by application to it. If 0 E A and f E A ---> B then we 
have 

1<..(Lo) f 0 (1<..0) E 1 ---> B 

Apposition consists of making the K. invisible and writing, say, fea for 
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both La and f 0 a ; it is tantamount to identifying the constant a and 
the function with unit source K..a . 

Use of apposition brings with it potential pitfalls, as Meertens was 
well aware. The type information 1 B above is crucial; in general,-10 

types A and C -10 A are not isomorphic, and the apposition tea cannot 
be used unambiguously for non-constant a. Higher-order functions 
are necessary for constructing an ambiguous example, but the Bird· 
Meertens formalism thrives on such functions-we have seen them in 
constructing prefix problems from finite state machines in Chapter 5, 
and in translations of attribute grammars in Chapter 7, for example. 

For this reason, we decided to avoid apposition and stick simply to 
right associative application. This leaves us with several awkward uses 
of the unit element it -for example, a leaf of type bmtree.A should be 
written .o.·it rather than just .o.-but there seems to be no safe and easy 
way around this. 

Paramorphisms and predecessors 

Meertens (1990) gives a general construction for prod ucing the 'pre-
decessors' of a structured  such as the inits of a list, the subtrees 
of a tree and so on. Suppose (X, cr) is the initial F-algebra; Meertens' 
construction proceeds by defining a functor G satisrying 

G.A = F.(A II X) 
G.t = F.(fllid) 

The initial G-algebra (Y, -r) is then the algebra of 'substructures' carre-
spondjng to X (Meertens himself does not give it a memorable name). 
On the naturals, this construction gives finite possibly empty lists of nat-
urals, on non-empty snoc lists it gives non-empty snoc lists of non-empty 
snoc Usts, on moo trees, homogeneou.s moo trees of moo trees, On rose 
trees, homogeneous rose trees of rose trees, and so on. He goes on to 
define a 'predecessors' function 
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preds = «0 IX: 1" A(CToF.»}1 E X--+Y 

The other half of the catamorphism involved here is the identity: 

»0 IX: 1" A(CT ° F.»ll = id 

This definition gives the predecessors of the number n as the list of 
numbers [0.1, ... , n - 1] ,and preds coincides with our inits on non-
empty sooe lisL" and with subtrees on moo and rose trees. 

Meertens' paramarphisms, the topic of his paper, are then simply 
G-catamorphisms composed with preds. Our rightwards, upwards and 
downwards functions are special cases of paramorphisms, in which the 
G-catamorphism is a map; accumulations are even more special. because 
then the function being mapped must itself be a catamorphism. 

This construction is very elegant, but it is not dear how, or even 
whether, we can generalize it to cover downwards as well as upwards ac-
cumulations; in a sense, downwards accumulations Tun in the 'opposite' 
direction to the way trees are constructed. For this reason we have cho-
sen to take the more sedate route presented in Chapters 3 and 4. 

Further work 
Like most research, this thesis has probably raised more questions than 
it has answered. We mention three here: a general construction for 
'substructures' and ::tccumulations, a universal model of parallel pro-
gramming, and a theory of directed acyclic graphs. 

Meertens' construction for 'substructures' was covered above, and 
we will not say much more about it; the obvious question is how to apply 
it to get downwards accumulations on trees. 

Skill;com's architecture-independent programming language was 
mentioned in Chapter I; Skillicorn showed that Bird's list operators 
can be implemented with optimal efficiency on any of the four major 
classes of parallel ::trchitecture. It would certainly be interesting to know 
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whether a similar result holds for a language containing our tree accu-
mulations. Leiserson and Maggs (1988) show that their leaffix and root-
fix operations, mentioned above, can be implemented in logarithmic 
time on the 'distributed random access machine', a restricted version of 
Skillicorn's 'tightly-coupled' processors, and Blelloch (1990) shows the 
same result for the Connection Machine, another of Skillicorn's four 
categories. Constant-valence topologies are more awkward: constant-
dilation embeddings of trees are not possible on meshes, for example 
(Skillicorn, 1991). Note that the implementation must give logarith-
mic time even for degener8te trees that have greater than logarithmic 
depth; it seems that Leiserson and Maggs' restriction oftheir leaffix and 
rootfix operations to associative operators is necessary for this, for the 
same reason that it is necessary for the parallel prefix algorithm. 

It is interesting to note that downwards accumulations that are 
both catamorphic and efficient, that is, both paths and htaps aCcumu-
lations, must be expressible using associative operators-this is an ex-
tension of the Third Homomorphism Theorem (Barnard et aI., 1991), 
which states that a function expressible as cons and as snoc listcatamor-
phisms is also expressible as a cat list catamorphism-and so we have 
inadvertently come up with the same associativity condition ourselves. 

The third area for further work that we will mention is that of 
constructing an algebraic theory of directed acyclic graphs ('dags' for 
short). Trees are just a special case of dags; a tree is a dag in which 
paths that diverge never rejoin, and a dag is a tree in which some of the 
elements overlap. It ought to be possible to construct an algebra of dags 
that red uces to some tree algebra-perhaps the homogeneous rose trees 
we have studied here, but with bags ofchildren rather than lists-in the 
special case that the graph is a tree. We might then gain some insight 
about graph algorithms by applying tree concepts to this graph alge-
bra; similarly, we may learn something new about trees by taking the 
special case of some graph properties. Bijlsma (1988, 1989) has done 
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some work relevanl to this; he considers constructs, which are functions 
from partially-ordered sets to elements, just as lists are functions from 
totally-ordered seUi to elements. However, not all constructs can built 
up from 'elementary' constructs using Bijlsma's constructors; in other 
words, there are arbitrarily complex irreducible constructs. This sug-
gests that constructs cannot be defined in the Hagino-Makolm style in 
the same way that our trees can. AnoLher field that offers some promise 
here is that ofgraph grammars (Claus et aI., 1979; Rozenberg and Salo-
maa, 1986), which describe sets of graphs in a way that is analogous to 
the grammatical description of strings. 



References 

Selim G. Akl (1989). Design and Analysis of Parallel Algorithms. Prentice-HaD. 
Roland Baclhouse' (1989). A'n exploration of tAt Bird-Meemns [oTmfJiism. In International 

Summer School an Constructive Algorithmit::s, Hallum, Ameland (1989). Also available 
as Technical Report CS 8810, Department or Computer Science, Groningen 
University, 1988. 

Roland Backhollse. Peter de Bruin, Gram Malcolm, Ed Voermans. and jaap van der 
Woude (1990). A relUlionaJ theory of types. Department of Computing Science, 
Rijksuniversiteit Groningen, and Department of Malhs and Computing Science, 
Technische Universiteit Eindhoven. 

Roland Backhouse, Peter de Bruin, Grant Malcolm, Ed Voermans, and Jaap van der 
Woude (1991). Relational catamorphis11ls. In B. MoUer, editor, Proceedings of the 
IFlP TC2lWG2.1 Working Conference on Constructing Programs. Elsevier. 

John Backus (1978). CalL programmi-ng be liberated from lhe von Neumann style'! Afunctional 
style a-nd ils algebra ofprograms. Communications of the ACM, 21 (8):613-641. 

John Backus, John Wil1i.ams, and Edward Wimmers (1990). An introduction to tAt 
programming language FL. In Turner (1990). 

D. 'T. Barnard, J. P. Schmeiser, and D. B. Skillicorn (1991). Deriving associative &Jtrators for 
language recognition. Bulletin of the EATCS, 43:131-139. 

llan Bar-On and U zi Vishkin (1985). optimal parallel generation ofa compuJoJion ITte form. 
ACM Transactions on Programming Languages and Systems, 7(2):348-357. 

F. L. Bauer, M. Broy, R. Gnatz, W. Hesse, B. Krieg-Bruckner, H. Partsch, P. Pepper, and 
H. Wll,ssner (1979). 1bwards a widNpectrum language to support program specificalian 
and development. In F. L. Bauer and M. Bray, editors, UVCS 69: Program 
Constnu;tion, pages 543-552. Springer-Verlag. 

A.  Bijlsma (1988). A unified approach Lo sequences, bags and trees. Technical Report 88113, 
Technische Universiteit Eindhoven. 

A.  Bijlsma (1989). Transformational programming and forests. In van de Snepscheut (1989), 
pages 157-173. 

Richard S. Bird (1984a). The promotion and a€cumulaLion strategies in transformalimaf 
programming. ACM Transactions on Programming Languages and Systems, 
6(4):487-504. See also (Bird, 1985). 

Richard S. Bird (1984b). Using circular programs to eliminaU multiple traversals ofdata. Acta 
Informatica, 21 :239-250. 



174 References 

Richard S. Bird (1985). Addendum to "The pTomotion and accumulaJiun stTategies in 
transjoT7TU1tional pTogramming". ACM Transactions on Programming  

and Systems. 7(3):490-492. 
Richard S. Bird (1987). An intToductwn to the theory oJ ti.,ls. In M. Bray, editor, Logic oJ 

PTogramming and Calculi oJ Di.-;crele Iksil0' pages 3-42. Springer·Verlag. Also 
available as TechnicaJ Monograph PRG·56, from the Programming Research 
Group. Oxford UniversilY. 

Richard S. Bird (1988). Lectures on constructive functional programming. In Manfred Bray, 
editor. Constructive Methods in C01!tpuJ.eT Science. Springer-Verlag. Also available as 
Technical Monograph PRG-69, from the Programming Research Group, Oxford 
University. 

Richard S. Bird and Lambert Meertens (1987). TWQ exercises found in a book on algorithmics. 
In Meertens (1987), pages 451-457. 

Guy E. Blelloch (1989). Scans as primitive parallel operatjom. IEEE Transactions on 
Compu[ers, 38(11):152&-1538. 

Guy E. Blelloch (1990). liector MotU'sfor Data·Parallel Compu.ling. MIT Press. 
Gregor V. Bachmann (1976). Semantic evaluation from left to right. Communications of the 

ACM, 19(2),55--62. 
Nicolas Bourbaki (1942). Eliments de Mathematiqu£, Livre II: Algibre. Hermann et  

English cranslation published in 1974 by Addison·Wesley. 
Anne Bruggemann-Klein and Derick Wood (1990). DrtIWing trees nicely uriJ.h TEX. In 

Malcolm Clark, editor, TEX: Applications, Uses, Methods, pages 185-206. Ellis 
Horwood. 

R. M. BurstalJ (1969). Proving properties oJprograms by structural induction. Computer 
Journal, 12(1 ),41-48. 

R. M. Burstall and John Darlington (1977). A transformational systnn for developing 
recursive programs. Journal of the ACM, 24(1):44-67. 

Arthur Cayley (1857). On the theory of lhe analytical forms calkd trees. Philosophical 
Magazine, 13: 172-176. Also in The Collected MathematiJ:al Papers ofArthur Cayley, 
Volume Ill, p. 242-246, Cambridge, 1890. 

Laurian M. Chirica and David F. Martin (1979). An order.algebraic definition of Knuthian 
semantics. Mathematical Sysrems Theory, 13(1): 1-27. 

V. Claus, H. Ehrig, and G. Rozenberg. editors (1979). LNCS 73: Graph Gramman and 
their application to Computer Science alld Biology. Springer-Verlag. 

John Darlington (1981). The structured description ofalgorithm. derivations. In J. W. 
de Bakker and H. van Vliet, editors, Algorithmic Languages, pages 221-250. 
Elsevier North-Holland, New York. 



175 

J. Darlington and R. M. BUTSLali (1976). A system which  improves programs. 
Acta Informatica. 6(1):41--60. Also in Proceedings of the Third International 
Joint Conference on Artificial Intelligence, Stanford, 1973. 

Kei Davis and John Hughes, editors (1990). Fumtional Programming, Glasgaw 1989. 
Springer-Verlag. 

Oege de Moor (1990). Calegories, relations and dynamic programming. Programming 
Research Group, Oxford. 

Eliezer Dekel and Sartaj Sahni (1983a). Bitlary trees arId parallel scheduling algorithms. 
IEEE Transactions on Computers, C-32(3):307-315. 

Eliezer Deke1 and Sartaj Sahni (1983b). Parallel generation ofpostfix and tree forms. ACM 
Transactions on Programming Languages and Systems, 5(3):300-317. 

Pierre Deransan, MartinJourdan. and Bernard LaTha (1988). INCS 323: Attribute 
Gramma77l-Dejirlitions, Systems and Bibliography. Springer-Verlag. 

Edsger W. DijkSlra and W. H. J. Feijen (1988). A Method ofProgramming. Addison.Wesley. 
G. Estrin (1960).  Organization ofcomputer systems--lhe fixed plus variable structure computer. 

In Proceedings Western Joint Computer Conference, pages 33-40. 
Rodney Farrow (1986). Automatic generation offixtd-point-finding evaluato771 for circular, but 

well-defined, attribute gram1OO77I. In Proceedings of the ACM SlGPLAN '86 S)mposium 
on Compiler Construction, pages 85-98. SIGPLAN Notices Volume 21, Number 7. 

Martin S. Feather (1987). A survey and classification ofsome program transformation 
approaches and techniques. In Meertens (1987), pages 165-195. 

Maanen M. Fokkinga (1990). Tupling and mutunwrphisms. The Squiggolist, 1(4):81-82. 
Maarten Fokk.inga, lohan Jeuring, Lambert Meertens, and Erik. Meijer (1991). A 

translation from attribute grammars to catanwrphism{. The Squiggolist, 2(1):20-26. 
Maarten M. Fokk..inga and Erik Meijer (1991). Program calculation properties ofcontinuous 

algebras. Technical Report CS·R9104, CWI, Amsterdam. 
Galileo Galilei (1623). Il SaggiaJore. Rome. 
Susan L. Gerhart (1975). Correctmss-preserving program transformations. In Proceedings of 

the Second Symposium on Principles ofProgramming Languages, pages 54-66. ACM. 
Alan Gibbons and Wojciech Ryuer (1986). An optimal parallel algorithm for dynamic 

expression evaluation and its applications. 1n K. v: Nori, editor, INCS 241: Sixth 
Conference on the Foundations ofSoftware 1echnolofJ and 'Theoretical Comp'tlilr Science, 
pages 453-469. Springer-Verlag. 

Alan Gibbons and Wojciech Ryller (1988). Efficient Parallel Algorithms. Cambridge 
University Press. 

Alan Gibbons and Ridha Ziani (1991). The baimued binary tree technique on 77U!sh-conneaed 
computers. 1n formation Processing Letters, 37: 101-109. 



176 References 

Jeremy Gibbons (L988). A New View of Binary Trees. Transferral dissertation, 
Programming Research Group, Oxfon..! University. Abstract appears in the 
Bulletin afme UTeS, number 39, p. 214. 

Talsuya Hagino (1987a). A CaJegoncal Programming Language. PhD thesis, Laboratory for 
the Foundatiom of Com pUler Science, Edinburgh. 

Tatsuya Hagino (1987b). A typed lambda calculus with caJegorica1 type canstructors. In D. H. 
Pitt, A.  and D. E. Rydeheard, editors, LNCS 283: Category Theory and 
COlllpUl.er Sciern:e, pages 140-157. Springer-Verlag. 

C. A. R. Hoare (l972). Notes on daJa structuring. In Ole-Johan Dahl, Edsger W. Dijkstra, 
and C. A R. Hoare, ediwrs, Structured Programming, APIC studies in data 
processing, pages 83-174. Academic Press. 

Ming-Deh A Huang (l 985). Solving some graph problem.,; with optimal or near optimal 
speed-up on lIlf.sh-oJ-trees networks. In 26th IEEE Symposium on Foundations of 
Computer Science, pages 232-240. 

Paul Hudak, Philip Wa<..ller, Arvind, Brian Boutel,Jon Fairbairn,Joseph FaseI. Kevin 
Hammond, John Hughes, Thomas Johnsson, Dick KiebuITz. Rishiyur Nik.hil, 
Simon Peyton Jones, Mike Reeve, David Wise, and Jonathan Young (1990). 
Report on the programming language Haskell, venion 1.0. Technical report, Yale 
University and University or Glasgow. 

John Hughes (1990). Compile-time analysis ojfunctional programs. In Turner (1990), pages 
1l7-153. 

Valerie Illingworth. Edward L. Glaser, and 1. C. Pyle, editors (1990). Dictionary of 
Computing. Oxford University Press. 

Edgar'T. Iron:'! (1961). A syntax directed compiler for Algol 60. Comm unications of the 
ACM,4,51-55. 

Kenneth E. Iverson (1962). A Programming Language. John Wiley. 
MehdiJazayeri, William F. Ogden, and William C. Rounds (1975). The intrinsically 

e>:ponential complexity of the circularity problem fOT attribute gramman. 
Communications of the ACM, 18(12):697-706. 

Alan Jellrey (1990). Soft arrays. The Squiggolist, 1(4):74-75. 
JohanJeuring (1989). DeTiving algorithms on binary labelled trees. CWI, Amsterdam. 
Thomas Johnsson ([987). Attribute grammaTj os ajunctional programming paradigm. In 

G. Kahn, editor, LNCS 274: Functional Programming Languages and Compult'r 
Architecture, pages 154-173. Springer-Verlag. 

Geraint Jones (1989). Calculating the Fast Fouri£r Transform as a divide and conquer algorithm. 
Unpublished draft, Programming Research Group, Oxford University. Later 
version appears as 'Oeriviug the fast Fourier algorithm by calculation', in (Da.vis 
and Hughes, 1990). 



177 

Geraint Jones and Mary Sheeran (1990a). Circuit design in Ruby. In ]0rgen Staunstrup, 
editor, Formal Methods for VLSI Design. North-Holland. 

GeraintJones and Mary Sheeran (1990b). RelaJions and refinement in circuit design. 
Technical Report PRG-TR-13·90. Programming Research Group, Oxford. 

MartinJourdan (1984). Strongly nan-circular aUTibute gmmman and their recursive 
evaluation. 1n Proceedings of the ACM SIGPLAN '84 Symposium on Compiler 
Construction, pages 81-93. SIGPlAN Notices Volume 19, Number 6. 

Takuya Katayama (1984). Translalian ofatlribuLe gramman into procedures. ACM 
Transactions on Programming Languages and Systems, 6(3):345-369. 

G. Kirchhoff (1847). Uber die Auflosung der Gleichungen, aufwekhe man bei der 
Vntersuchung der UneaTen Vertheilung galvanischer Strome gefurht wird. Annalen cler 
Physik und Chemie, 72(12):497-508. In German. 

Donald E. Knuth (1968a). The Art of Computer Programming, Volume 1: Fundamental 
Algorithms. Addison-Wesley. 

Donald E. Knuth (1 968b). Semantics ofcontext-free languages. Mathematical Systems 
Theory, 2(2): 127-145. Correction in (Knuth, 197Ic). 

Donald E. Knuth (1971a). Examples offOTTrwJ semanlics. In E. Engeler, editor, Lecture Notes 
in Mathematics 188: Symposium on Semanties ofAlgorithmit: Languages, pages 
212-235. Springer-Verlag. 

Donald E. Knuth (197Ib). optimum bina'ry search trees. ALta Informatica, 1: 14-25. 
Donald E. Knuth (197 Lc). Semamit:s ofconlexJ,{ree languages: Correction. Mathematical 

Systems Theory, 5(1):95-96. 
Peter M. Kogge and Harold S. Stone (1973). A parallel algorithm for the eiJicient solution ofa 

general class ofrecurrence equations. IEEE Transactions on Computers. 
C-22(8P8&--793. 

Clyde P. Kruskal, Larry Rudolph, and Marc Snir (1985). The power ofparallel prefix. IEEE 
Transactions on Computers, C-34(10):965-968. 

Richard E. Ladner and Michael J. Fischer (1980). Parallel prefix computation. Journal of 
the ACM, 27(4):831-838. 

Lao Tzii (4th century BG). Tao Te Ching. 
Charles E. Leiserson and Bruce M. Maggs (1988).  parallel 

algoriJhms for distributed random-GCcesJ machines. Algorithmica, 3:53-77. 
David B. Loveman (1977). Program improvement by source-to-source transformation. Journal 

of the ACM, 24(1):121-145. 
Wayne Luk (1988). Para71letnsed Design ofRegular Processor Arrays. D. Phil. thesis, 

Programming Research Group. Oxford University. 
Grant Malcolm (1990). Algebrait: Data Types and Program 1tansfonnation. PhD thesis, 

Rijk.suniversiteit Groningen. 



178  References 

Ernest G. Manes and Michael A Arbib (1986). Algebraic APf!1't)(uhes to Program Semantics. 
AKM Series in Theoretical Computer Science. Springer-Verlag. 

Brian H. Mayoh (1981). Auribute grammars and mathematical semantics. SIAM Journal on 
Computing, 10(3):503-518. 

Lambert Mcenens (1986). AlgoTith77lics: Towards programming as a maJhematicaJ activity. In 
J. W. de Bakker, M. Hazewinkel, and J. K. Lenstra. editors, Prot. CW/ Symposium 
on Mathrouaics and Computer-Science, pages 289-334.  

Lamben Meertens, editor (1987). Program Specification and Tram/ormation. 
North-Holland. 

Lambert Meertens (1988). First steps towards the theory ofrose  Unpublished draft. 
CWI, Amsterdam. 

Lambert Meenens (l989a). Constructing a calculus ofprogram.. In van de Snepscheut 
(1989), pages 66-90. Also available as Report CS-R8914 from CWI, Amsterdam. 

Lambert Meertens (1989b). Variations on trees. In !raernationaJ Sutflmer School on 
Constructive Algon'thlllu;s, Hollum, A11IRIand (1989). 

Lambert Meertens (1990). PGTalllorphisms. Technical Report  CWI, 
Amsterdam. 

Lamben Meenens and Jaap van der Woude (1991). A tribute to attributes. The 
Squiggolist, 2(1):10-15. 

Carroll Morgan (1989). Whither application r The Squiggolist, 1(2). CWI. Ams[erdam. 
Carroll Morgan (1990). Programming from Specifications. Prentice Hall. 
James H. Morris, Jr (1973). Types are not sets. I n Proceedings of the FiTSt Symposium on 

Principles of Programming Languages, pages 120-124. ACM. 
Joe Morris (1987). A  basis for stepwise refinement and the programming calculus. 

Science of Computer Programming, 9(3):287-306. 
Thomas]. Myers (1980). Infinite Structures in Programming Languages. PhD thesis, 

University of Pennsylvania, Philadelphia, PA 
John T. O'Donnell (1990). Derivaiian offine-grain aJgorithms. Presentation at IFIP 

Working Group 2.8 meeting, Rome. 
G.  M. Radack (1988). Tidy drawing  trees. Technical Repon CES-88-24, 

Depanmem of Computer Engineering and Science, Case Western Reserve 
University, Cleveland, Ohio. 

Edward M. Reingold and John S. Tilford (1981). Tidier drawings of trees. IEEE  
Transactions on Software Engineering, 7(2):223-228.  

Thomas Reps and Tim Teitelbaum (1984). The  genera!or. In Peter Henderson, 
editor, Prouedings of ACM SIGSOFT/SIGPLAN Software Engineering Symposium on 
PractiaJ Software Developmen.t Environments, pages 42-48. Software Engineering 
Notes Volume 9, Number 3. and SIGPlAN Notices Volume 19. Number 5. 



179 

Thomas Reps and Tim Teitelbawn (1989). The Synthesizer Generatar-A System faT 
Can..ttTUCting Language-Based Editors. Springer-Verlag. 

Grzegorz Rozenberg and Ano Salomaa, editors (1986). The Book ofL. Springer-Verlag. 
R.  M. Schell.]r. (1979). Method!; JOT Constructing Parallel Compilers JOT use in a 

MulLiprocessor. PhD thesis, University of Illinois at Urbana-Champaign. 
David B. Sullieorn (1990). Architecture independent parallel computation. IEEE CompUler, 

23(12PS-51. 
David B. Skillicorn (l991). Private communication. 
M. B. Smyth and G. D. Plotkin (1982). The  solution of recursive domain 

equations. SIAMJoumal on Computing, 11(4):761-783. 
STOP project (1989). International Summer School on Constructive Algoriihmics, HoOum, 

Ameland. 
Kenneth]. Supowit and Edward M. Reingold (1983). The complexity of drawing trees nialy. 

Acta Informatica, 18(4):377-392. 
D. A. Turner (1982). Recursion equations a.s a programming language. In J. Darlington, 

P. Henderson, and D. A. Turner, edilors, Functional Programming and its 
Applications, pages 1-28. Cambridge UniverSity Press. 

David A Turner (1985). Miranda: A non-strict Junctional language with polymorphu types. In 
Jean-Pierre Jouannaud, editor, LNCS 201: Functional Programming LangwJge and 
Computer Architecture, pages 1-16. Springer-Verlag. 

Prescott K. Turner (1986). Up-dOwn parsing with prefix grammars. SIGPlAN Notices, 
21(12):167-174. 

David A Turner, editor (1990). Research Topics in FuncJional Programming. University of 
Texas at Austin, Addison-Wesley. 

J. L. A van de Snepscheut, editor (1989). LNCS 375: MathematiLs of Program C01Istruction. 
Springer-Verlag. 

AJ. M. van Gasteren (1988). On elz". Skape of Mathematical Arguments. PhD thesi3, 
Technische U niversitejl Eindhoven. Also available as LNCS 445. 

Jean G. Vaucher (1980). Prelrrprinting oJtree.t. Software-Practice and Experience, 
10553-561. 

Nico Verwer (1990). Homomorphiml.S, Jactorisation and promotion. The Squiggolisl, 1(3). 
Also available as Report RUU-CS-90-5, Department of Computer Science, 
Utrecht University. 

Xavier Ghard Viennot (1990). 1Tees everywhere. In A Arnold, editor, LNCS 431: CAAP 
'90, pages 18-41. Springer-Verlag. 

John Q. Walker, [[ (1990). A node-pontioning algorithm Jor general trees. Software-Practice 
and Experience, 20(7):685-705. 

Ben Wegbreit (1976). Goal-directed program tran..ifortl1llJion. IEEE Transactions on 
Software Engineering, SE-2(2):69--79. 



180 References 

Charles Wetherell and Alfred Shannon (1979). Tad] drawings of Irtes. IEEE Transactions 
On Software Engineering, 5(5):514-520. 

David S. Wile (1973). A Generative, Nnted-Sequential BasisfoT General Purpose Programming 
 PhD thesis, Deparlment of Computer Science. Carnegie-Mellon 

Universiry. Piusburgh, Pennsylvania. 
Nik.1aus Winh (1976). Algorithms + Data Structures = Programs. Prentice Hall. 
Gavin Wraith (1989). A nole on caugamal daiatypes. In D. H. Pitt, D. E. Rydeheard, 

P. Dyjber, A M. Pitts. and A. Poigne, editors, LNCS 389: Category Theory and 
Computer Science. Springer-Verlag. 

Chris J. Wrighl (1988). A theory of arrays JOT program derivation. Transferral dissertation, 
Oxford University. 



u '"i:' '"  oS .... ·5"" 
-  

<5 
.g 

I.:: 
oS, 

<>  
"t:: 

.",' 

'"'c' " 
 <>

1
" '-l 

] " <> 

j ... '" s    


