
0,"'"-< ! r~;"~r8;~1 Com!Juting leboratory
-.1 L,:. __ "9

: r ,::, j
UAiul U OX 1 ~QO

Formal Aspects
of

Human-Computer Interaction

Gregory D. Abowd

Trinity College

June 1991

Thesis submitted for the degree of Doctor of Philosophy
at the University of Oxford

Formal Aspects
of

Human-Computer Interaction

Gregory D. Abowd

Trinity College, Oxford

Submitted for the degree of Doctor of Philosophy, Trinity Term, 1991

Abstract

This thesis lJrovides a constructive application of formal methods to the study of
human-computer interaction. Specifically, we are interested in promoting a prin
cipled approach to tlJP analysi~ and design of interactive systems that will aCCom_

pany existing henristic ted.miqtl€s. Previous formal approaches have concentrated
on general and abstract mathematical models of interactive systems, proving that
psychologically valid principles of interaction can be expressed in a language suit
able for comput.ation. These abstract models, however, are too far removed [rom an
aetnal design practice which is strongly influenced by common sense and liable to
break down in the face of complexity. Our efforts are focussed toward retaining the
mat.hematical grounding of previous formalisms while providing additional insight
and direction for design practice.

We int.roduce a unifying framework for the informal description of a user, a system
and the interface that sits between them. This interaction framework provides the
context for our research and motivates the properties of interaction that we wish to
formalize. We adopt the view of an interactive system as a collection of agents based
011 the stimulus-response modeL We provide a mathematical model of the agent
capable of expressing interactive properties relating the goals of interaction with
the visible consequences of that interaction. We also provide a language for agents
which allows a natural expression of an agent's internal state-based bebaviollr and
its external event-based behaviour. We contribute further to practical design issues
by introducing templates to relate a task analysis to a specification of a system
to support t.he tasks and an interface to adequately portray that functionality to
the user. Finally, we initiate the formal investigation of multiagent architectures.
This concludes the mapping of properties on abstract models of interactive systems
down to properties on more implementation-based models.

Acknowledgments

I would like to thank my supervisor, Bernard Suffin, for the initial inspirat.ion Oil

t.he topic of this thesis and for directing me to the HeI Group at the University of
York for a fruitful working environmeut.

At. York, [have had the opportunity to collaborate with Michael Harrison, Alan Dix
and Russell Beale. Those collaborative efforts have resulted in several publications,
parts of which have been reproduced in modified form in this thesis. The contents
of this thesis represent my own work, but the thoughts and style have been greatly
influenced and enhanced by contributions from these three individuals.

In addil.ion, I have also greatly benefitted from repeated conversations with fellow
students at the PRG in Oxford, students and sta.ff a.t York, and colleagues on the
AMODEUS project. Research ill isolation has never appealed to me and I am
grateful to those who have provided ample food for my thoughts and friendship for
my heart.

I am particularly indebted to Janet Finlay, Roger Took, Paul Andrews, Chris John
son and Victoria Miles for their helpful comments on drafts of this thesis.

Finally, I would like to acknowledge the support of the Rhodes Foundation whicll
funded the first two years of my doctoral research and the European Commission
which funded the final 18 months while I was working on the A1·fODEUS project.

ii

Dedication

To Riehard, Sam, John, Alltho,% James, DtnJ'id, Elizabeth, Marypat, Hoscma.ry,
Michelle, Stephen, Pe.ter, Paula, Jand, Ninn, Tom, Katie, Sara, Tom, Michael,
Mark. Maryclaire, Dam:d, Pau.l, Danny, Dennis, Michele, Pder, Kristen. Joseph,
Sandy, A nne, Eli:abeth, John, Philip, Paula

and

Me.qhml.

God created us as a family. J haw felt yOur love as if we were separatEd by only a,n
arm '8 length, not thou.9and.s of miles

iii

Contents

1 Introduction 1

2 A Framework for Discussing Interaction 7

2.1 An informal definition 8

2.1.1 The interadive cycle 9

2.1.2 The components of the framework. 10

2.2 A formal definition 12

2.2.1 A simple definition of an agent 12

2.2.2 An agent description of an interactive system 14

2.3 Conclusions 15

3 Background and ReJated Work 17

3.1 Other interaction frameworks 19

3.1.1 Evaluation/Execution Cycle 19

3.1.2 Interaction Modelling Framework 21

3.1.3 Black box models. 24

.l.IA Software architectural models 29

3.2 A survey of research within the framework 34

3.2.1 Research on a7'liculalion 34

3.2.2 Research on ObSfTva.tion 41

3.2.3 Research on pfr!orma.ncr and pf·fscnla.l.wn 43

3.3 Conclusions . 53

4 Properties of interactive systems: Part I 55

4.1 Properties of translations. 56

4.1.1 Hutchins, Hollan and Norman distances 56

4.1.2 Articnlation. 57

4.1.3 Performance. 58

4.1.4 Presentation 59

4.1.5 Observation. 59

4.1.6 Assessing overall interaction 60

4.2 Formal properties of translations 61

v

4.3 Correspondence between agents 62

4.4 Predictability .. 65

4.5 Nondeterminism. 68

4.6 Synthesis. 70

4.7 Consist.ency 71

4.8 Conclusions 73

5 Refining the agent model 75

5.1 Requirements for agents 76

5.2 Internal specification 78

5.3 External specification 88

5.4 Communication 91

5.5 Overall Combination 94

5.6 Interpretations of agents 96

5.6.1 Internal interpretation 96

5.6.2 External interpretation 100

5.7 Conclusions . 101

6 A language ror describing agents 103

6.1 Notations for agents 104

6.1.1 The standard Z notation 104

6.1.2 Object~oriented notations and Z 109

6.1.3 Other concurrent notations 116

6.2 The agent language 116

6.2.1 A language for external specifications 121

6.3 Using the agent language. 124

6.3.1 A toy reactor 124

6.3.2 Some input devices 127

6.3.3 A window 129

6.4 Conclusions . 135

7 Properties or interactive systems: Part II 137

7.1 Relating Display and Result 139

7.2 Templates 141

7.2.1 Agent restriction 142

7.2.2 Result and display templates. 143

7.2.3 Equivalence and indistinguishability revisited 144

7.3 Predictability and Consistency 146

7.4 Synthesis. 152

7.5 Result initiated interaction 158

7.6 Conclusions 159

vi

8 Interactive system architectures 161

8.1 From abstract principles to concret.e architectures 162

8.2 Multiagent models 163

8.3 Applying formal methods to levels of a.bst.raction 165

8A Local correspondence 168

8.5 Assessing the graphical interface to a text editor 171

8.5.1 Single butTer. 174

8.5.2 The buffer manager. 179

8.5.3 Deriving a description of the interface. 180

8.5.4 Conclusions on the case study 182

8.6 Conclusions 183

9 Conclusions 185

9.1 Summary of the thesis 185

9.2 Contributions of this thesis. 186

9.3 Future work 188

Bibliography 191

Appendices 205

A Use of the Z Notation 207

B Some theorems on the refined agent model 213

C Detailed semantics for the agent language 219

vii

List of Figures

2.1 Four phases of interaction between User (D) and System (5) 10

2.2	 The general interaction framework. 10

2.3	 Translations between components . 11

3.1	 Relationship between Norman's execution/evalua.tion cycle and I,he

int.eraction framework 21

3.2	 Barnard and Harrison's interaction framework. 22

3.3	 The PIE model. . 25

3.4	 The red-PIE model. . 26

3.5	 The effects space of the PIE model within the interaction frame"""ork. 26

3.6	 Heuristic versus rormal reasoning within HeI . 30

3.7	 The Seeheim model of a UIMS 32

3.8	 The language model of UIMS within the interaction framework 32

3.9	 The Arch/Slinky model. 33

3.10	 Relationships between levels of PIEs 46

4.1	 Hutchins, Hollan and Norman's distance concepts within the inter
action framework 57

4.2	 Agent correspondence. 63

4.3	 Levels of predictability 67

4.4	 The user's model of the system 67

4.5	 Predictability and synthesis . 70

5.1	 Pictorial representation of an agent 76

5.2	 Synchronous composition of independent agents 78

5.3	 Interleaving composition of dependent agents. 79

6.1	 The "onion skinn view of a windowing system 112

6.2	 The object view of a windowing system 112

6.3	 Window manager/window relationship 133

7.1	 The red-PIE model. 140

7.2	 Ambiguous objff.t sele-ction in SuperPaint. 147

ix

7.3 Agent diagram of the paint layer 148

7.4 Agent diagram of the objecl layer 149

7.5 Agent diagram of the co-exisling paint and object layers of SuperPaint152

8.1 The Model-View-Controller paradigm of Smalltalk . 164

8.2 The MVC hierarchy .. 165

8.3 The PAC model 166

8..1 The PAC hierarchy within an interactive system 167

8.5 The graphical interface of Spy 173

8.6 The graphical interface of Ten . 174

8.7 Agent representation of mnltibuITer edit.or 175

8.8 The single buffer agent .. 175

8.9 Agent represeutation of functional core with operations. 181

8.10 Agent representation of Spy's interface. 181

8.11 Agent representation of Ten's interface.. 182

x

Chapter 1

Introduction

It is well known that ninety-nine percent of the world's problems are not.
susceptible to solut.ion by scientific research. It is widely believed t~at

ninety-nine percent of scientific research is not relevant to the problems
of the rea.l world. ·Yet the whole achievement and promise of modern
techuological society rests on the minute fraction of those scientific dis
coveries which are both useful and true.

C.	 A. R. Hoare in foreword to Systematic Soltwan Development Using
VDM i90]

IndeOO the way that. people use machines is of key importance. The
most significant advances in computer science will be those facilitating
this interaction.

From T. Winograd and F. Flores, Understanding Computers and Cogmtion
[169, page 1371.

The study of Human-Computer Interaction (HCl) is a multidisciplinary one
aimed directly at providing scientific answers to the real problems of designing more
usable computer systems. We limit ourselves in t.his thesis to a close examination of
the relationship between two of the major contributors to HCI research-computer
science and psychology. Each of these disciplines represent a respectable scientific
field with concerus that subsume those of HCI. However, the main goal of HCI
research is to produce methods by which the collective knowledge of psychology
and computer science can be accumulated and applied to the construction of real
interactive systems.

In practice, we are hard-pressed to find true interdisciplinary work significant
to both fields. That which bears great psychological weight brings wilh it little of

2 CHAPTER 1. INTRODUCTION

practical significance to computer science, wherea.s that which emphasizes issues in
the design of computer systems often lacks psychological validity. One reason for
such a bia.s is that computer science and psychology are two camps which speak
a langnage entirely unto themselves. Crucial to the symbiosis of computer science
and psychology is the development of a common language between them. We are
not ~o bold as to suggest the development of such a common language in this
the~is. Rather, we hope to demonst.rate how a language of design in computer
science, in our case derived from the formal notations and methods familiar to
!'oftware engineering, can and should be directly influenced by the va.st body of
psychological knowledge on usability.

Hel, as a discipline, has not reached sufficient maturity to enable software
pngineers to predict the usability consequences of theil design decisions. One of the
reasons for the lack of applicability of HCI research to real design has been noted
by Harrison and Thimbleby [75]:

V'le believe that much of the early work in Hel has beeu eucuITlbered by
a la.ck of appropriate abstractness or applicability to the design process.

A formal approach enables development of software whose function can be
proved correct and reliable. The ease with which a human user can access this
functiouality is an important non-functional requirement of the software. As with
other requirements on software, mathematical formulation of properties which in
crease usability would allow greater assurance of software usahility earlier in the
design process. There have been attempts in the past to show that it is possible to
formulate psychologically valid properties of an interactive system in a mathemat
icallanguage, but only at au abstract and general level [160, 48, 75, 161]. We take
the lead from these previous examples and show that it is possible to formulate in
1.eractive properties at a more constructive and concrpte level of detail which more
readily reflects how the interactive syst.em is built from a collection of cooperating
objects. Hence, we maintain the ability to discuss interactive properties precisely
and formally.

Some researchers have already provided a somewhat more constructive approach
1.0 design and analysis of interactive systems [14, 15, 158], but we would like to
pnhance their work by a stronger link to a methodology linked with empirical psy
chological evidence of how nsers perceive the tasks that computers are designed
to support. To achieve this, we describe a method of design that is motivated by
empirical psychological understanding of interaction. The bulk of HCI formalisms
which we will describe in Chapter 3 are supported by psychological theories about
how humans understand the tasks they perform on computer. The design of future
interactive system musi. obey t.he lessons learned from past mistakes, and they must
take adva.ntage of increased psychological evidence to make a good product even
better. In order to do that, we need a way to incorporate the psychological evidence

3

in the computational language of design. This cannot be achieved with the abstract
aud general models of interactive systems mentioned. above and further discussed
in Chapter 3 because those formalisms do not lend themselves well toward a con
struction of the interactive systems to embody the usability knowledge. We aim
to provide a constructive computational formalism and method which more read
ily captures interactive properties and knowledge of the user at the SQUHe. The
formalism we present-the agent model-provides the means for directly captur
ing empirical evidence, such a~ given by a task analysis, on interaction fDr some
application domain.

The origins of formal methods are in computer science, so it is a fair criticism
that we are biasE'd toward the system side in our HCI research. The bias is intended,
~ this thesis is to be considered first and foremost as a contribution to the field of
computer science, and, more specifically, to the subcomponent concerned with for
mal methods and its applicatiou to the design aud analysis of interactive ~ystems.

Indeed, it has been precisely the success of formal methods of software engineering
in general that tempts us to consider it a worthy candidate for the establishmen1
of engineering for the user interface. Ultimate acceptance of the ideas put forth in
this thesis, however, depends upon their validation by the communi.ty of psycholo
gists active in HeI research and use by software engineers in the development and
analysis of interactive systems.

There are two major contributions arising from this thesis, and they arneflected
in the title. To begin with, we are interested in the promotion of formal t~chniques

which can be used in real desigu. One of the major criticisms of formal t~chniques

arise in an industrial setting where economic forces reign supreme and rigorously
principled design practices do not provide ample benefit for the costs they incur.
There have been isolated cases where formal development has proven an economic
advantage, but for the most part, it is fair to say that formal techniques cost 1.00

much for the benefits they are understood to provide. We aim to show that t.he
benefits of formal techniques have not been fully appreciated in their application
toward more nou-functional requirements.

This leads us to the second contribution of this thesis. We have chosen to
promote the benefits of a formal approach in Hel, more specifically, in the design
and analysis of interactive systems. In attempting to justify the use of formal
methods for design in general, we have shown its particular advantage in HCl
research where there is great need for a bridge between psychological theory and
practical design, a bridge which the formal approach can provide. Howe,er, it is not
only the case that formal methods can promote HCI research, for the development
of the agent language in this thesis a clear c~e of the converse in which HCI
knowledge has influenced the development of a formal approach.

When reading this thesis, it is important to keep in mind its dual purpose. We
are interested in formality, but. not just for formality's sake. That whid we present

4 CHAPTER 1. INTRODUCTION

formally is motivated by Hel considerations. Furthermore, we are interested in
HGI and the consideratiOIls which arise in the design of interactive systems, but.
flot just for the sake of HeI. Those principles which we promote to increa.ge the
usahility of a system are ones which we can capture formally within a rigorous
software engineering notation. We feel this focus is necessary to ensure that our
research is, as Hoare implores, both scientifically grounded and rdevanL

Overview of thesis

In orderta assess the multidisciplinary needs of HeI it is necessary to have an overall
view of inleraction that is separate from, yet sympathetic towards, both psychology
and computer science. In this thesi$ it is hoped that some bridg~ may be forged
between the research in hoth disciplines. A suitable iIltroduetion, therefore, should
provide an overall view of interactive systC'1T1 development and analysis. We refer
to this overall view as an intemetion framework, and its description is the subject
of Chapter 2.

T]le iIlteraction framework provides context for assessing pre~'ious research in
IICI as well as onr own. There have been previous attempts at defining such
cont.ext, and in Chapter 3 we will discuss these other frameworks and show how our
interaction framework has been influenced by them and attempts to extend them.
The interaction framework aJso provideI' a systematic way of reviewing research in
HCI. In our review of Chapter 3, we will highlight the major contributions to HCI
research. emphasizing how the psychological cont.ent has not fully crept into system
design.

Another purp0ge for the interaction framework is to motivate the kinds of for
malisms necessary to express properties of interactive systems. To this end, the
framework naturally corresponds to all agent-based modularization of components
describing the system, user and interface. Properties that affect the overall us
ability d an interactive system can be described qualitatively as features of the
translations that occur hetwe€fI cOinponellts of the framework. A formal model of
an agent provides ammunition for a first attempt at formalizing those qualitative
features of the translations. Tn Chapter 4, we :,iummarize the qualitative properties
of translations in the framework and formalize them in terms of a simple model of
the agent, given in Chapter 2.

The simple agent model is inadequate for two reasons. First, it is not rich
enough to express interactive properties which relate the goals or end results of
interaction to the more immediate perceivable information provided at the inter
face. Psychological formalisms essentially relate tasks that a system should sup
port to the results that those tasks affect. The simple agent model's inability

5

to capture constructively result information prevents its use in an overall psycho
logical/computational design method. Secondly, it is not a design notation. We
cannot use the simple agent model to describe complex systems by the composition
of smaller and simpler subcomponents.

In order to address these two inadequacies, we digress from the specific applica
tion of Hel to concentrate attention in Chapters 5 and 6 on the developrnentof a re
fined agent model and associated language. Chapter 5 defines the new agent model
in terms of three perspectives-the internal, state-based specification of the agent,
its external event-ba.sed specificatioll and a communication specification which links
internal operations to external events. The refined model is shown to obey essential
compositional properties to allow for a modular design approach. In Chaplet 6 we
justify the need for a new formal language to describe agents, which is iI hybrid
notation combining a model-oriented notation similar to Z or YDM and a pro
cess algebra notation similar to CSP or CCS, capitalizing on the familiarity and
expressiveness of each.

Armed with greater detail of the structure of an agent and a language for de
scribing agents, we resume in Chapter 7 with the formal treatmeut. of inleradive
system design. The concentration in this chapter is toward showing how notions of
result and display allow salient description of interactive properties. In i1.ddition,
the introduction of templates allows for a method of design specifically geared to
wards the immediate incorporation of psychological evideuce in interactiye system
descriptions. Result templat~s embody task analytic information which guide the
initial descriptiou of a system's functional core. Display templates are chosen to
correspond to the result templat.es and satisfy some interactive properties, such as
predictability, honesty, consist.ency and others.

It is easier to formally express interactive properties when we remain at the
abstract and general level. We are then able t.o ignore the clutter of implementation
detail which is not entirely relevant to the expression of the properties. However,
we cannot ignore the inevitable refinement towards executable systems,and so we
must consider interactive system architectures and how the abstract principles and
properties can be mapped into a more realistic design platform. Iu Cha.pter 8 we
describe the relationship hetween the abst.ract level of the interaction framework
and the more concrete multiagent architectLlres that. bave been used to describe
the structure of an interactive implementat.ion. The formal agent model allows
us to describe more precisdy the features of the heuristically-based multi agent
architectures and the design methods they imply iu order to assess their value for
preserving the properties expressed at the abstract level.

We conclude in Chapter 9 with a summary of the results and contributions of
this t.hesis, aloug with an agenda for fulure research.

G CHAPTER 1. INTRODUCTION

In addit.ion to the main body of this thesis, we provide three appendices. We
make extensive use of the Z notation throughout the thesis, and we will assume
familianty with the standard notation as provided by Spivey [152]. However, for
stylistic reasons we have deviated from the standard nse in some situations. In
addition, it is often t.he case that we will need to introduce some special notation
to make the expression of some predicate more concise. In order not to detract
from t.he flow in the main body of the thesis, in Appendix A we have described
our stylistic conventions which deviate from standard Z, along with any notation
that is not defined in [1521. Chapter 5 contains the most concentrated sections
of formalism in the thesis. We have relegated to Appendix B the proofs of some
theorems on the refined agent model, leaving only the ollt.line of their proofs in the
thesis body. Finally, in Appendix C we provide greater detail all the semantics for
Ihe agent language in terms of tllP agf'ut model than was deemed appropriate for
the body of Chapter 6.

Chapter 2

A FraITIework for Discussing
Interaction

We present a. general interaction framework which will allow the analysis of the
interactioll between a user and a system to be expressed in one, unified language.
Our intent in this thesis is that the system he some computerized applicalion, but
this assumption does not affect the iuteraction framework. It is also a common
interpretation that by distinguishing betwf'eu user and system we are restricted
to single-user applications. This restriction is not an underlying assumpt.ion in
development of the framework, hut rather results from one's interpretat.ion of what.
Bystem and user represent. Th{' emphasis in the framework is in developing a view
of interaction from a single user's perspective. In a multiple URer application, such
as a multi-party confereuciug system, from the point of view of anyone user the
rest of the users form part of the system.

The interaction framework will he used as a bridging device to provide a com
mon ground for both psychological and computational discussion of interaction and
interac\.ive systems. It is important thal it be understood at some level by both
psychologists and computer scieutists. Therl:'fore, it must be free from the jargon
of both fields and open to accurate interpretation based on common .rnse. By
making common sense principles explicit within the model WI:' open the path to
their automatic inclusion in future design.

Overview of chapter

This chapter proceeds with an informal descriplion of the major components and
translations in the iuteraction framework in Sectiou 2.1. A simple stimulus-response
model of an agent will provide a formal model for the framework in Section 2.2.
Both the informal and formal agent descriptious will be used to expres~ properties
of interactive systems which attempt to qualify and quantify usability throughout
the remainder of this thC'sis.

7

8 CHAPTER 2. A FRAMEWORK FOR DISCUSSING INTERACTION

2.1 An informal definition

The purpose of an interactive system is to aid a user in accomplishing goals from
some application domain. A domain defines an area of expertise and knowledge in
some rea.l-world activity. Some examples of domains are graphic design, authoring
and process control in a factory. A domain consists of concepts which highlight its
important aspects.]n a graphic design domain, some of t.he important concepts are
geomel,ric shapes, a drawing surface and a drawing utensil. Tasks are operations to

manipulate the concepts of a domain. A goal is the desired output from a performed
task. For example, one task within the graphic design domain is the constrnction
of a specific geometric shape with particular attributes on the drawing surface. A
relat.ed goal would be to produce a solid red triangle centred on the canvas.

Our definitions of goal, task and domain generally agree with the approach to
problem solving presented by Newell and Simon [119]. We will apply l.he general
t.erm task analysis for the identificat.ion of the problem space for the user of an
int.eractive system in terms of the domain, goals and tasks. In Chapt.er 7, we
commit to an even more rigid definition of task analysis as a mapping from tasks
in the user's goal stmcture to a set of fealmes or attributes t.hat are intended to

represent the action of that ta."lk in the system.

The identification of goals and tasks in i'I problem space is crncial to the work of
most analytic approaches to HCI, including om own, for they determine "he starting
point for analysis of a design, as Lewis points out [lOlJ. There are those who
object to the nse of goals and t.asks as fixed slarling points for analysis. Whiteside
and Wixon [166j argue that their inclusion shonld only be as dynamic reflections
of broader environmental issnes in HCI and not as static ent.ities from which all
analysis can proceed with sound grounding. Carroll agrees, pointing out that the
usefulness of task analysis to designers is minimized without dne attention to such
cont.extual information, usually laeking in most theoretical approaches [35J. A more
drastic opinion is put. forth by Suchman [157], who states that an nnderstanding
of social interaction, not found in existing task analysis techniques, shonld be the
driving force for any theory of single nser HCI.

Our belief in the context of t,hi~ thesis is that an awareness of the goals and
tasks of a user in a part.icular domain form a crucial guide to the assessment of
the computer system designed to support the int.eraction. Therefore, we are not
as concerned with the overall theory of cognition and social environment which
identifies the goals and tasks as we are concerned with how a definition of task can
be used to aid the formal developmf'nt of the compnter system.

Typically, the concepts lIsed in the design of the sy~tem a.nd the description of
the user are separate; they are considered separat.e component.s, and so we refer
to them separately as the System and the (:'~fr, respectively. The System and
User each have a domain-specific language in which the concepts can be expressed.

9 2.1. AN INFORMAL DEFINITION

These languages treat both System and Usrr as state machines with operations
tbat can transform the underlying state. The System's language we will refer to as
the core language and the User's language we will refer to as the task language.

The core language contains system attributes, describing concepts in the domain
relevant to the System state. The task language contains psychological attributes,
describing con cepts in the domain relevant to the User state. At the most ab
stract level, both system and psychological attributes are not constrained by any
implementation details. Within a formal approach, aU that is required is tha.t these
attributes be represented by some mathematical object. And once the domain
has been adequately captured mathematically, it can be manipulated and reasoned
about with rigour.

At the formal and abstract level it is possible to altain a close correspondence
between the descriptions of the System and User, especially in a user-centr~d design
practice which uses the psychological attributes to determine the system attributes
of interest. This is the purpose for a task analysis method-to produce some
description of the user's understanding of the domain so that a tool can be properly
designed for work in the domain. Though there may be a close correspondence
between the system and psychological attributes, the User does not directl}' interact
with the system attributes. Rather, the interaction is with a represent.ation of the
system attributes that is constrained to a far less expressive language of the physical
interface, exemplified for the most part by two-dimensional displays with primitive
sound features and limited tactile facilities.

2.1.1 The interactive cycle

The communication between the User and the Systrm follows a cycle ofexecution
and evaluation, as explained by Norman [123, 124, 12.51. The User formulates a
goal and then must decide the task to perform in order to achieve the goal. The
task is executed upon the System and the result of the operation is evalua.ted to see
if it agrees with the original goal. This gives four main phases to the inleraction
formulation, execution, evaluation and assessment, as shown in Figure 2.1. We
will further discuss the execution/evaluation cycle of interaction in the context of
previous HeI research in Chapter 3.

Since the result of user-centred design as described above is that tbe task lan
guage of tbe User and the core language of the System are closely related, in
teraction between User aud System is fairly straightforward, since the translation
between the two languages can and should be trivial. The simplicity of interaction
implied by this close correspondence between the abstract System and User-what
the User wants to do the System can do-is misleading, because it is often the
case that there is a mismatch between the User's high-level task langua.ge and the
low-level entities of the physical interface which the User must manipulate in order

10 CHAPTER. 2. A FRAMEWORK FOR DISCUSSING INTERACTION

evaluate

C
~assess

s ~fOI~a~

execute

Figure 2.1: Four phases of interactioTl between User (U) and Sy.~tem (5)

t.o achieve t.he desired goal. There is also a. mismatch between the task langnage
aod t.hat which the User interprets from observations of the physical interface when
determining if the goal has been achieved. These two mismatches are referred to,
respectively, as the gaps of execution and e"'aluation by Hntchins, Hollan and Nor
man [851.

2.1.2 The components of the framework

In order to attain a more realistic description of interaction, therefore, we break
down the interaction between u~er and machine int.o four main components, as
shown ill Figure 2.2. The nodes represent the four major components in an inter-

o

~u
/'"~k

I
input

Figure 2.2: The general interaction framework

active system-the System, the User, the Input and the Output. Each component
has its own language which is used to express its purpose in the interaction. In ad
dition to the User's task language and the Sy.9!em's core language which we have
already introduced, there are languages for both the Input and Output components

11 2.1. AN INFOR.MAL DEFINITION

to represent those separate, though possibly overlapping components. Input and
Output together form the system interlace. Note that we distinguish between the
system interface and the physical interface. The physical interface is that part of
the system which, as its name suggests, is in direct contact with the user in the
physical world. Therefore, the physical interface is viewed a:9 a suhset of th~ inter
face in our framework. The input and output languages do not in most cases map
very directly onto concepts in the domain. Yet, the interface's position between
System and User mandates that it be an effective mediator for the task! in tbe
domain of the application. Therein lies the major challenge in interactive system
design.

As the interface sits between the User and tbe System, there are fo~r steps
in the interactive cycle, each corresponding to a translation from one component
to another, as shown by the labelled arcs in Figure 2.3. The Uur begins the

o
outputP'~ ~o~

S
taskom'- \

per[o.rmdn~ ~'jon

Figure 2.3: Translations between components

interactive cycle with the formulation of a goal and task to achieve that goal. Tbe
only way way the user can manipulate the macbine is tbrough the Input, and so
the task must be articulated within the input language. The input language is
translated into the core language as operations to be perlormed by the System.
The System then transforms itself as described by the operation tramlated from
the Input; the execution phase of the cycle is complete and tbe evaluation phase
now begins. The System is in a new Slate, which must now be communicated to the
User. The current values of system att.ributes are rendered as concepts or features
of tbe Output. It is then up to the User to observe the Output and assess the
results of the interaction relative to the original goal, ending the evalua.tion phase
and, hence, interactive cycle.

It is easiest to think of the interactive cycle as a true alternation between exe
cution and evaluation, hut this is not always the case. Every action by the User
may not be followed by an evaluation, and it is very possible that the User will
he reqnired to observe changes to the System that were not directly prompted by

12 CHAPTER 2. A FRAMEWORK FOR DISCUSSING INTERACTION

actions performed by the User. Therefore, a strict interpretation of the interaction
framework in terms of an alternating execution/evaluation cycle is not intended
in our presentation. However, for explanatory purposes, this interpretation is not
overly ha.rmful.

2.2 A formal definition

In the previous section, we presented an informal introduction to the interaction
fr<Lmework. In this section, we will provide a formal defintion of the framework.
The formal model of the interaction framework provides the foundation for the
work of this thesis, motivating the formulation of abstract properties of interaction
in Chapter 4, the agent model of Chapter 5 and the more constructive interactive
properties of Chapter 7. We view an interactive system as a coltection of commnni
cating interactive agent!;. This section proceeds by giving a simple formal definition
of an agent and a description of each of the components in the interaction frame
work in terms of agents. We then combine the different agents for a description
of a complete interactive system a.~ suggested by the interaction framework and
translations between components suggested by Figure 2.3.

2.2.1 A simple definition of an agent

The description of an agent serves two purposes-to give it.s cnrrent state and to
dC5cribe how that state is transformed as it.~ interaction with other agents proceeds.
\Ve make a distinction, therefore, between the stale of the agent and the events in
which it participates in cooperating wilh other agents. We present two given sets to
represent the set of all possible states of an agent, State, and the set of all possible
ev('nts an agent can participate in, Event.

[Slale, EventJ

Further details of the stale iUld event sets will be delayed until the refinement of
the agent model described in Chapter 5.

The link between tbe state of all agent and the events in which it participates
is given by the agent's behauiour. An agent is based on the stimnlns-response
model, which has been argued to form part of tht' nser's and designer's model
of an interactive system [41J. An agent. participates in a stimnlus event which
triggers a. chiUlge in the internal state. After the transition, the agent respond!;
with events which will affect other agents in the system. From this description, we
choose to model the agent's behaviour a.s a relation between stimulus-state pairs
and response-state pairs. In a given state, receipt of a single stimnlus will result in a
new state and a sequence of observed response events. Two views of t his behaviour

2.2. A FORMAL DHINITION	 13

concentrate on differents aspects of it. One view gives the state transformation
triggered by a stimulus eveut. The other view gives the pairing between stimuli
aud responses. This stimulus-response information is an external description of an
agent, whereas the state transformation mapping gives internal information on the
agent. The simple formal agent model is given by the schema Agent below

,Agent _

states: P State
inits ; P states
B: (Event x slales) ~ (seq Ellent x states)I
transform ; Event - (stales	 slales)<--I

stimrcsp : Event seq Event<--I

Vstirn: Event; res]! : seq Event; s, .5' : stales
•	 ((sllm,s),(resp,l)) E B <=> ((.56m,(s,s')) E transform

1\ (stim, resp) E stimresp)I

'Ne can define two interpretation relations on seqnences of stimulus events, or
programs. The first, I'nl, gives the internal interpretation of the program, i.e., the
possible state that th", agent can be in after participating in the progr~m. Each
stimulus event in the program represents a state transition relation, and so the
overall state transition relation for the program is the sequential composition of
the individual state transition relations. Restricting the domain of this overall
transition relation to the initial states of the agent (A.inits) gives the possible
transitions for the agent.

lransformE:rtend_; Agent -+ seq Event -+ (State +-+ State)

l,ransformExtendA (slims) = (A. inits) <] (9!(stims ~ A.transform))

The internal interpretation function relates the program to the possible ~nal states.

I I~nt: Agent -+ seq Event +-+ State

I- (slims, s) ElAn! ¢:}

:3' So: A.inits • (slim$, (So, s)) E Ifll1lsjormE:rtendA

After each input event. the agent responds with a sequence of response events,
as given by stimresp. A program of inputs, prog, is therefore related to a sequence
of responses, respobs, derivt:"d from the responses of each input event in pray. The
second interpretation relation, I~"j, provides this derived overall stimulus-response
hehaviour.

I

14 CHAPTER 2. A FRAMEWORK FOR DISCUSSING INTERACTION

lost : Agent _ seq Event H seq Event

dam [An = dam l~nj

(prog, respobs) E I:t ~

::3 respseq : seq seq Event
I (# 7"fospseq = # prog

/\ / respseq = 7'espobs)
• Vi: l..#prog

• (prog(i), rrspsrq(i)) E A.sfim7'esp)

Note that captured in t.his definition is t.he assumpt.ion t.hat all of t.he responses
for a gi\'en stimulus event are obsf'rved before any responses owing t.o snbsequent
stimuli, This assumption is noL mandatory. We could have replaced the predi

ca.te '""j7"fSpseq = respobs with one such as (respseq, respobs) E interleaves, with
interleal'es as defined in Appendix A, or even more sophisticated expressions, to
refiect the more genera! possibility that the order of responses does not. fully respect
the order of the stimuli. \1,,/e wilt disregard that possibility in this thesis, for it is
believed to bring more tedium than enlightenment.

2.2.2 An agent description of an interactive system

Om iuitial understanding of an interactive system suggest.s t.hat it is composed of
two agents, representing the User and the System. In addition, there are transla
tions between the stimuli of one and the responses of the other, which represent
the externalized aspects of the execution and evaluation pha..<;es. These translations
are fOlmalized as relations between the stimnli and responses of the agent.s. The
execution translation is a relation between the responses of the Usa agent and
the stimuli of the System agent. The evaluation translation is a relation between
t.he responses of the Systrm agent. and the stimuli of the User agent. A simple
interacLive system is defined below in terms of the User and System agents and the
translations between t.hem.

SimplflntSys _

User, System: Agent

execution, t:tlalvation : seq Event H seq Et'ent

e:Teeution E (ran IU~~T H dom I;;;tem)

evaluation E (ran I;:~t.." f-+ dam IU~~T)

The translations execution and et!aluation are relations between event sequences,
similar to the external interpretation relation for an agent. We can tberefore re
gard eucution and evalualion as specifications of t.he overall stimulus-response be
hayiour of agents between System ami UHr. Const.raint.s on these translations will

15 2.3. CONCLUSIONS

be constraints that must be salisned by the agent which manifests that specifica
tion. Therefore, the description of a simple interactive system contain! infolmation
on follt agents, two explicit (User and System) and two implicit (execution and
evaluation).

The complete interaction framework builds from this simple definition by adding
the Input and Output agents along with translation relations labelled as those in
Figure 2.3. The articulation and pnformance relations are composed to yield the
e.reclJtion translation and the presentation and observation relations are composed
to yield the evaluation translation. As was the case for execution and fv~luation,

these translations provide specifications for additional implicit agents in thf system.

i_lnteraetionFramework --------------------
SlmplelntSys
Input, Output Agerlt
articulation, pe7formance,
presentation,obsf7'uation : seq Event H seq Evolt

erecution == articulation ~ 1/:;,,1 ~performance

evaluation == presentation ~ IO:11P,,1 zobservat.ion

arliculation E (ran Ib:~.- +--> dom 11:;.. 1)

performance E (ran IJ~r;"1 +--> dom 15;:1,,,,)

presentation E (ran IS:~I,m +--10 darn Jb~jlP"j)

observation E (ran Io.},p"t +--> dom ll/~~c)

2.3 Conclusions

From our above discussion, we can see that. t.he interaction framework contains at
least partial information on eight different ageuts-the four major components of
the User, Input, System and Output, and ext.ernal specifications au four agents
which represent the translations between the stimuli and responses of the major
components. Since agents are intended as a compositional a.nd constructive model
for an interactive system, the actuaJ a.gent description of a complet.e interactive
system will contain many separate agents. Our point in tbis thesis is that we caD
view everything in the interactive system as an agent. Therefore, propert.ies of
interaction which we will present in the remainder of this chapter and throughout
the thesis can be expressed as properties on agents,

The justification for our division of an interactive system into four major com
ponents and four translations between them is the subject of the next chapter, in

16 CHAPTER 2. A FRAMEWORK fOR DISCUSSING INTERACTION

which we will use the framework to establish the context of previous HeI research
and establish the further contributions of this thesis for Her.

Chapter 3

Background and Related Work

The last chapter provides context for the applic-atioll of formal methods in HeI by
describing a general interaction framework. III this chapt.er, we will review previ
ous research into establishing t.he general context of HCI research a.nd formalizing
different aspects of interaction. Defore launching into t.he review, we will highlight,
two of the major conclusions which the review supports.

The first conclusion is that <l unified framework, such as presented in Chap
ter 2, helps determine what p~ychotogical information is available to feed into de~

sign. Though there is a basic divide between the precision with which reasoning is
possible DO the two sides of interaction-the human (or user) and the computer (or
system)-it ifl valuable and instructive to view both within the same formal (and
joformal) framework. The system side deals with objects that can be quantified
and reasoned about mathematically. This is the premise upon which the appli
cation of formal methods in software engineering is based. The system at.t.ributes
mentioned in Chapter 2 which are IIsed to describe domain concepts are t'ltended to
have execut.able realizations in refined versions of the system. They may iuitially
be presented as abstract mncepts, but the whole purpose of refiuement work is
to realize an abstraction in concrete det.ail wbile presprvillg the properties of the
abst.raction.

00 the user side, the psychological attribntes represent attempts 10 describe
phenomena whose very existence is itself a research question. Though several for
maliflms ",xiflt which provide quantitative predictive power for analysis of the user's
side of interaction, the conclusions they provide are questionable from both a psy
chological and design perspective. However, empirical and theoretical p;ychological
evidence is able t.o support some assumptions that we can make aboul the human
as user which we can then incorporate into our design process. Incorporating these
assumptions about t.he user explicit,ly in the design process allows their removal or
alteration if they are found to be invalid.

From the design perspective, tl1f~re is a crucial symbiotic relationship between

17

18 CHAPTER 3. BACKGROUND AND RELATED WORK

system and psychological formalisms. The empirical psychological evidence for
interactive behaviour provides dat.a which the system formalism can manipulate.
The interactive design method reqnires both formalisms; hence the need for one
framework which unifies the two.

A second conclusion supported is that the bridge between psychological and
computer science research is not heavily t.ravelled by researchers in formal meth
ods and software engineering. Though the vast. majority of software developed is
interacbve and could therefore be aided by a rigorous t.heory of interactive system
design, very few designers are engaged in such principled design. The majority of
literature in software engineering t.hat covers interactive system development relies
on heuristic reasoning a.bout good design. Though a major reason for this is the
lack of acceptance of formal notations in general in design practice [44], there is
little work done under the name of formal methods which gives fa.ir notice to the
consequences of including user considerations in design or specification. We see
two reasons for this. First., most of the formalisms which have been offered come
from researchers who are mainly psychologists and not, therefore, concerned di
rectly wit.h t.he design implicat.ions of t.heir formalisms. Second, many of the formal
techniques availahle and in nse in industry do not provide enongh descriptive power
to naturally express an interactive system in the way the designer (and the user)
perceives it.. This last topic is a major consideration in our development of t.he
agent model and its associated specification langnage in Chapters 5 and 6.

As a result of these conclusions, we can see the pnrpose of this thesis. We aim
to provide a theory of interactive system design that both makes its psychological
assumptions explicit for means of validat.ion and is within the grasp of the software
engineering profession (or at least practit.ioners of formal methods within software
engineering). By building on and extending previous research in both HCI and
formal met.hods, we present a method for interactive syst.em design which unifies
previously separated considerat.ions abont the user, the system and t.he interface
which separates them.

Overview of chapter

In Section 3.1, we will relate the interaction framework of Chapter 2 to previous
attempts to define the context of HCI research. Our interaction framework is not
t.he first attempt at breaking up the interaction between a user and a computer
into stages. We will present some ot.her frameworks for int.eraction that predate
and influence our own, explaining how our interaction framework extends their
work. In Section 3.2, we will present a survey of the research a,pplied to various
aspects of HCI. In this section, we will describe in more detail WIlle of the formal
and informal research which presents a more narrow focus t.han the frameworks
discussed in Section 3.1. We have tried to classify the different approaches according

3.1 OTHER INTERACTION FRAMEWORKS 19

to how they fit into our interaction framework.

3.1 Other interaction frameworks

We identify four major categories of general and informal theories that have inspired
our framework, and we will discuss each in this section. The purpose of frameworks,
such as ours, is "not to reveal dramatic new trut.hs," as Norman points out [123].
Rather, the purpose is to provide insight into the implicat.ions each stage within
the framework has on the design of interactive systems.

\Ve will emphasize how each of the frameworks below compares to our frame
work. We hope this serves as a suitable justification for the introduction. of yet
another view of interaction which wilt guide the formal approach of the remainder
of t.his thesis.

3.1.1 Evaluation/Execution Cycle

Probably the most obvious influence OIl our interaction framework ha.'3 come from
the executioll/evaluat.ion cycle of interaction. This view of interaction is made
explicit in much of the litf'ra\.ure Oil HCI and it is implicit in nearly everyone's
common sense nnderstanding of the interaction between human and wmputer.
The human user formulates a plan of action which is then executed at the computer
interface. Upon completing the execution of some pla.n, or part thereof, the user
observes t.he compnt.er interface to evaluate the result of the recently exemted plan
and to determine the further course of action. In Chapter 2, we acknowledged
the seminal work of Norman [124J. A similar division of the interaction cycle has
been made explicit hy Card, Moran and Newell [32], and we will examine their
contribution further in Section 3.2 as it is more detailed in the formalism which
it presents. The work by Norman which we reference is mainly qnalitative, and
so most resembles the presentation of our interaction framework. His views of
the iuteraetion between user and computer have been crit.icized as too simplistic,
but we view the real value of his views in the direct appeal to common sense.
Arguments that it over-simplifies a complex topic fail to see its purpose AS a readily
understandable overview of human-computer int.eraction accessible to those lacking
a formal psychological education. COllsequently, Norman's model is accessible to
the computer scient.ist interested in designing a more usable system. Unfortunately,
Norman's model dof's nol consider the system's contribution t.o the execution and
evaluation cycle as much <U:i the user's coutribution. Our interaction framework is
intended to address this disparity.

Norman initially ontlined four stages of the user's activities-intention, selec
tion, execution and evaluation [123]. In later work [124, 125, 85], the interactive
cycle can be seen as divided into two major phases, execution and eva.lllation. Each

20 CHAPTER 3. BACKGROUND AND RELATED \VORK

of t.hese phases is then subdivided further into different sta.ges of the interaction
that can be examined for their particular influence on the effectiveness of the overall
interaction. The seven stages mentioned are [124, page 41):

1. Establishing the Goal

2. Forming the Intention

a. Specifying the Action Seqnence

4. Executing the Action

.5. Perceiviug the System State

6. Interpreting the State

7. EYa.luating the System Statp with respect to the Goals and Int,entions

These stages are further related by Norman. as he symmetrically divides t.he pre
vious execution/eva.Iuat.ion cycle. Hence, perceiving the system state is seen to be
the evaluative equiva.lent of executing l.he acl.ioll, interpreting the state is the eval
uative equivalent of specifying the action sequence and evaluating the system state
with respect to the goals and intentions is the evaluative equivalent of forming the
intention.

Figure 3.1 portrays the relationship hetween the execution/evaluation cycle and
our interaction framework. The obvious comment, as we have already mentioned,
is that. the execution/evaluation cycle does not consider the systetTl beyond its in
terface (hence the shaded left-hand side in Figure 3.1). ~orman simply represC'nts
the syst.em as the world of physical activity, analp;is of which stops at the phys
ical interface. There is much greater detail all the user's side of the interface, as
the translation st.ages from User to Input (art.iculation) and from Output to User
(observation) in our framework are each further divided into three substages in
Norman's model.

Norman's model serves two purposes. It provides the first step needed to in
troduce a computer scientist to the purpose of psychological work in assessing the
usability of interactive systems. It also provides an outline for previous and future
theoretical or empirical research by psychologists trying to describe how the user
interacts with the system and how that interaction can be assessed. This interac
tion is dIvided into two pha~es. One is concC'rned with the formulation of a plan and
its performance. The other phase is concerned with the observation of the results
of previously performed plans and their assessment with respect to the original
plan. As a rule, formal psychological research into human-computer interaction,
t.herefore, is divided roughly into two area'l, one to address the cognitive aspects of
formulation and execution of the plan and one to address the cognitive aspects of

21 3.1. OTH£:R INTERACTION FRAM£:WORKS

/

s /
"

- r
'''''''''''''' \ I

lnp,-O

Figure 3.1: Relationship hetween Norman's execution/evaluation cycle iind t.he
interaction framework

perceiving and asses.~ing the consequences of the execnted plan [301. One notable
exception to this rule is found in the research by Barnard on Interacting Cognitive
Subsystems (leS) \17, 18], which is a model of human cognition and performance
that can address both evaluation and execution in the context of human-computer
interaction.

Our interaction framework, therefore, is an attempt to extend Norma::t's model
with a necessary and complementary component which more fully addresses issues
of the system. The extension provides a first step needed to introduce a psychologist
\0 the ne€ds of computer science in designing interactive systems. In addition it
provides a platform for assessing previow:i syst.em-based work on interac\.il'e systems
and provides direction for future formal research on int.eractive system design.

Norman's lucid acconnl of the execution/evaluation cycle provides ~ clear in
sight into wha.t fac\.ors affect the translation bel""'t'en languages between the User
and the interface (Input and Output). We will discuss in Section 3.2 bow Nor
man's qualitative account can assist in assessment of more formal acconnts of these
translations. The addition of the System and its relationship to the interface in
our intt'raction framework is viewed as a necessary and complementary view that.
enhances Norman's model. \Vith proper attention focused on the system side, we
can also as,.,eBS previous work on interactive system development and propose how
a formal approach can better aid the precise development of more usable systems.

3.1.2 Interaction Modelling Framework

Barnard and Harrison [20, 19] have also prc.~t'nted an interaction framework but for
a different purpose than either our framework or the execution/evaluation model.
The purpose of their framework is to direct. research on incorporating distinct mod
els of the system and user, which already exist, by means of a separate and new
interaction model. It is for this reason t.hat we distingnish this framework from

<;>~tp,,'// I'T'O' '""'>'"""'"1 '"~""'"
~o.. ls U

~
t"s~. lnt , ,<;>"

:;::;;",,,""

22

CS1--toCS2 "CS3 "CS4~CS5..CS6 "CS7..

~~~ 
IS3 IS' 

MSl_MS2_MS3 ~MS4~ MS5~MS6.. 

CHAPTER 3. BACKGROUND AND RELATED WORK 

ours by referring t.o the Barnard and Harrison version as an interaction modelling 
framework. Figure 3.2 is a graphical representahon of their framework, taken from 
[19]. 

I 

N~ 

F 
AR 
C 
E 

Figure 3.2: Barnard and Harrison's interaction framework. 

Barnard and Harrison identify some major problems of system and user models 
of interactive behaviour. System models make implicit psychological assumptions 
about the user that can be invalid. For example, t})e PIE model version of pre
dictability [54, 48], which we will discuss lat.er, makes t.he assnmption that a system 
designer can a priori determine what effects will be perceived and understood by t.he 
user in terms of their task langnage. User models make implicit assumpt.ions about 
the practice of system design that are impractical. For example, a psychologically 
valid notion of consistency of an input languages is presented by Payne and Green's 
TAG notation [127, 128J, but. t.heir device representation does not consider that sys
t.em design must take int.o account more than jnst inpnt langnage consistency. It 
is not. so much a problem t.hat. t.he separate modelling domains make assumptions 
about the other. The problem is when the modelling technique depends on implicit 
assumpt.ions that it cannot change. In an ideal situat.ion, each modelling domain 
(via the modellers) must be able to validate the ll..'lsumptions made by the other 
modelliug domain and also incorporate t.he results of the ot.her domain within its 



23 3_1 OTHER INTERACTION FRAMEWORKS 

own work. How can this be achieved? 

In Barnard and Harrison's view, there is a common feature that can be eXLract.ed 
from both models of the system and models of the user. Each can describe its 
subject in terms of a state-ba.'led machine that undergoes transitions. The system 
states are machine statts, and the user states are cognilil1e states. Any instance 
of interaction between user and system results in a sequence of transitions in both 
the machine and the user. Figure 3.2 depicts these transitions by the sequence of 
machine states MSI, MS2, ... and cognitive states CSl, CS2, ... There is no clear 
link made between machine state MSi and cognitive state CSi. The intention of 
the mappings from models to state transitions in Figure 3.2 is to show that the 
system and user models are nol wholly determiued by what they say about state 
transitions. Rather, those models each say something about the behaviour of the 
machine or cognitive state of tIle user that Can be mapped onto state transitions. 
In turn, particular instances of the machine or user behaviour can be mapped into 
the respective model for interpretation relative to abstractions within the model, 
as we will discuss next. 

Within a system or u"er model abstractions can be defined in terms of the 
transitions of the machinf' or cognitive state. For example, there is tbe notion 
of cyclf' within the system model and the notion of task in the user mode\. In 
trying to establisb the relationship between the abstractions made by tbe system 
modelters and those of the user modellers. they suggest a third model, called t.he 
interaction model. The reasoning is that any relationship between systernand user 
modelling concept.s would only be relevant where the two models meet, that is, 
at the human-compnter interface. Therefore, a model of the interface would be 
the suitable location for the cross-fertilization of the different concepts of system 
and user modelling withont undue empha.sis on eitber side of the interface. This 
interaction model would also have an interpretation based on states, la.bellf'd by 
'interaction states', and iustances of transitions wonld be labelled lSI, 152, ... , as 
in Figure 3.2. The interaction model is fed by information about system and user 
models but in addition can also f'mbody explicitly notions that are usu ...lly lacking 
wit bin the system and user models, such as the domain knowledge. 

Finlay et al. have attf'mpt.ed t.o apply the interaction modf'lling framework to 
the analysis of exemplar systems, such a.s an automated teller machine, by making 
explicit an event structure used to link the system and cognitive models [57]. The 
significance of the events used hy Finlay et al. is that thf'y can both be handled 
by the respective system and cognitivf' modellf'rs. Events are labels for operations 
or state transitions. At the interface between user and computer, the same event 
can be linked to operations 011 both the user and the system. On the ~ystem side, 
events are similar to those described in Cbapter 2 for the simple formal model 
of an agent. On thf' user side, Barnard's own ICS model is used, And there is 
a much less convincing connection between events and the ICS way of modelling 



24 CHAPTER 3. BACKGROUND AND RELATED \\'ORK 

the user's cognitive stales and operation.s performed upon them. This points up 
not a t.heoretical failing of les but rather its illability in its present form of beiug 
expressed in a formal not.at.ion similar to that. used on the system side. More 
flC'Cent work by Ba.rnard and Harrison [22] has concentrated on providing a uniform 
description of both user and system model structures. 

There is a stronger similarity between the interaction modelling framework and 
1he refinement of our own framework introduced in Section 2.2. In that section, 
we begill to formalizC' the concepts of Lhe- interaction framework. OUf refined inter
action framework will address directly the problem discussed above of t1lf' linking 
work done by Fiulay cI (II., because we will provide a common not.ation for both 
tlie user and system models. Whal would remain is to e:xpress a cognitivf' model 
such as ICS within that notat.ion. 

3.1.3 Black box models 

A major difference between how an int.eractive sysctem is "iewed by a designer 
as opposed to a user is that. the designf'r knows ahout the intricate detail of t.he 
computer system and thf> user does not. A result of this knowledge deficiency is that 
the user attempts 10 formulate a model of how the system works, This model is in 
part determined by lhe experience the nser ha." in interading with the system. In 
these interactions, all that. a nser will know about the system will corne from all of 
t.he perceivable information which the system pre..,ents. A principle of user-centred 
design is that the designer try to match t.he user's perception of the interaction. 
This principle justifies to some extent, why psychologist.s focus their analysis on only 
that part of the system which is observable, since that is the only informat.ion t.hat. 
the system provides the user. But in attempting to thiuk as the user. it. is often 
hard for the designer to be divorced from t.he intricate system det.ail. 

This knowledge discrepancy causes a problem with the principles of user-cf'nt.red 
design because the designer knows too much about how a syst.em functions in order 
t,o objectively judge such properties as predictability as the user would perceive 

. them. One solntion is to analyze the system by forgett.ing (temporarily) the internal 
details. Essentially, a user views t.he computer system as a black box, noticing only 
t.hat which is presented as input to the syst.em and t.hat which is produced as the 
effect inspired by the input. If the designer also adopted this hlack box view of the 
system, then a fairer a.ssessment of the interactive properties of the syst.em could 
then proceed. 

A more import.ant use of a black bo:x mod{'l would precede a full specificat.ion 
and implementation. In this case gf'neral domain· independent principles can be 
Ilsed to guide the development. Di:x d al.[52] show how such principles can be used 
t.o guide the design of a small programming environment. Monk and Di:x [113] use a 
semi-formal black box model to e:xaminc how aetiou-effect rutes can provide insight. 



25 3.1. OTHER INTERACTION FRAMEWORKS 

iuto the application of general principles of predictability, simplicity, consistency 
and reversibility within design. 

As an aside, these approaches to specification and design suggest a revised 
software lifecycle, as presented by Harrison [(1), in which a model of interadion, of 
which a black box model is but Olle example, is used as a link from the requirements 
phase to the specification phase. 

requirements -} interactioll model -} speeification -} implementation 

The uotion of a black box is quil,e a common one in software engineering and 
system development; it appear!' under the name of data abstraction and the a.bstract 
data type [102] or information hiding [126]. It is also quite common in other sciences; 
for example, the transfer function in control theory. The classic example of a black 
box approach to int.eract.ive system analysis is the PIE ffiodrl, first presented by 
Dix and Runciman [54], and later greatly expounded upon by Dix [48, ~9]. The 
model cousiders user input to thf" system as coming from a set of programs P and 
output. as being from a set of effects E. The system is modelled as a black box 
whose entire functiowdity is described by an interpretation function i which takes 
programs to their effects. figure :3.3 shows the original PIE model. 

~ 

p E 

Figure 3.3: The PIE model. 

The simple PrE model can be refined to di!'it.inguish between two separate fea
tures of the effect space---the result and the display. The result deals with the 
final end·product of the int.eraction between human and computer, wht'reas t.he 
di!'iplay deals with the intermp.diate and ephemeral aspects of the effects. Impor
taut properties of the interaction can be characterized as relationships between 
the display-which the user usually can perceive directly and continually-and the 
result-which is of most importance to the user bnt is not always directly nor 
continually perceivable. Iu fact, one of the most common heuristic guidelines for 
interactive system design is termed WYSIWYG ("What you see is what you get"), 
which cau be deciphered as a comparison between the instantaneous display and 
the end result of the interaction. Figure 3.4 depicts tbis refinement, aptly named 
the red.PIE model. We will discuss the red-PIE model in more detail in Chapter 7. 

An important feature of the PIE models is the flexibility of the effect space as 
given by thi.s definition from Dix [48, p. 40]: 



26 CHAPTER 3. BACKGROIJND AND RELATED WORK 

;f/Ri 
p E 

~ ~/qJ' 

D 

Figure 3.4: The red-PIE model. 

E - the effect.s space. The set of all possible' effects the system can 
have Oil the Ilser. This may be thought of in different ways, and 
at different levels. For example. it may be' regarded as the actual 
display seell by the USN, or as the enlirf' text of a document being 
edited, perhaps evell the entire store of information available to 
the user. 

The program set is aha flexible. It ma:r be regarded as the keystrokes and mouse 
movements, or as more abstract domain-specific operations for the system or the 
user. Wit.hin our interactioll framework, this would mean that particular effect and 
program spaces lie on a contililium between the SY5/rlll and the User, as depicted 
ill Figure 3.5. With such a l1exible definition of t he effects and programs spaces, 

E 

~11~1T'~
,\Y.,;
 
Abott""l p Ahotf..,t 
oy,lem 

Figure 3.5: The effects space of the PIE model within the interaction framework 

it is possible t.o write many interactive properties and pitch them at varying levels 
of generality. The statement of properties within the PIE model have increasing 
psychological significance as both effects and programs move towards the User. Un
fort.uuately, the increased psychological significance is accompanied by a decreased 
design significance, as the constrncts bear less of a resemblance to constructs which 
can be represented in a real design. 



27 3.1. OTHER INTERACTIO~ FRAMEWORKS 

There is a close connection betweeu the PIE model and the simple agent model 
defined in Section 2.2. We have defined the internal interpretation relation, I~,·j, 

which links sequences of stimulus events to achievable states. Tbe sequences of 
stimulus events are the basic constructs of the program set. The state description 
of the agent is the definition of the effect set. Therefore, I~al is very similar to 
the interpretation mapping of the PIE model. The importance of this connection 
between the PIE model and agents is that we are able to incorporate all of the work 
on PIE models which exprf>SS interactive properties into our work with agents. 
In Chapter 4, we will give examples of how some classes of abstract interactive 
propertjes first expressed in terms of the PIE model can be expressed wir.hin the 
agent model. 

The PIE model demonstrates how a black box model can be used to formalize 
interactive properties. It is important to highlight some of the problems as weB as 
the advantages of the black box model. The abstractness of a black box model has 
several major advantages for use in iuteracti\"€ system design and analysis. It is 
a very simple model that is uncluttered by the details of system implementation. 
This makes it possible to express properties of interaction that are implementation 
and domain independent. It can be represented mathematically, so the statements 
of properties that it allows are precise and they provide a possibility for proof. As 
shown by Monk and Dix [113] it can also be used as a semi-formal aid to design. An 
initial encroachment of valid psychological assumptions into the system modelling 
practice can be achieved with the black box model. This marks the beginning of a 
bridge between psychological theory and software engineering. 

Most of the drawbacks of the black box model arise because it is so abstract. 
Formal techniques have been criticized for being too far removed from the practice 
of software engineers designing real systems. The techniques that the black box 
model present are not. constructive, t.hat. is, they do not provide enough mpport. for 
practising designers in going from an init.ial specification to an implementation. As 
far as this criticism is concerned, the black boX" is a move in the wrons direction. 
Nobody would waut to ~pecify an entire system in terms of a PIE! And though a. 
black box model provides t.he ability to precisely express properties of interaction 
at various levels, depending on the meaning attached to the effects space E, proof 
of these properties in a real specification would be a nightmare. The black box 
model has no way of managing the proof obligations of large specifications because 
it makes no attempt to modularize the description. It is in order to address these 
criticisms tha.t. we provide the more coustructive theory of agents. We admit that 
having prm'ided a more constructive theory we are still far away from providing a 
compositiona.l proof system as we would like. However, the refined agent model is 
a move in the right direction. 

But there are more seriolls psychological crit.icisms of the approach tha.t un
derlies models such i\S the PIE. A predictability property, which mathematically 



28 CHAPTER 3 BACKGROUND AND RELATED WORK 

states that the result of future input to the system is determined by the current 
effect preseuted to the user, claims to capture a psychologically significant feature 
of an interactive system at. a very high level. But predictability is llat all that is 
important for determining the usability of an interactive system. In Chapters 4 
and 7, we will provide other examples of general interactive properties relevant at 
varying levels of detail as well, but the question remains as to whether a 'complete' 
set of principles exists such Ihat satisfaction of those principles guarantees a usable 
system. Our formalisms do not address this issue of completeness. 

There is skepticism that the mathematically formulated properties capture the 
int.ent of their psychological cousins. This is a general criticism concerning re
quirements capture. Dix and Harrison [51] speak about the 'formality gap' that 
exists hetween requirement, usually couched in natural language terms, and for
mal specification, expressed using mat.hematics. The purpose of the interaction 
models, such as a black box model like the PIE. is to partially bridge this gap by 
allowing a formalism specifically geared towards psychological or HCI issues t.hat 
may arise in the requirements. But the important point is that the formality gap 
can never be fully bridgpd bpcause there will always be a translation from natural 
language to the formalism. This then demands that the translation be made as 
readily understandable as possible to the one who must verify its correctness. Since 
someone with psychological insight would best be snited to verify psychologically 
grounded requirements for usability, the interaction models must be geared to their 
unders1.<l.nding. 

The black box model assumes that the relevant properties for interactive design 
can be expressed from first principles for any system. This assumption is reinforced 
by the placement of the interaction modelling component in the revised lifecyc1e 
mentioned above. There are two criticisms of this assumption. First, some believe 
as Carroll and Rosson [36J that design is essentially empirical 'not because we don't 
know enough yet, but because in a design domain we can never know enough.' 
Anot.her somewhat related issue is t.hat expressing general and abstract properties 
at a high level of design assumes there are features of an interactive system which 
can be factored out in determining t.he syst.em'il usability. Carroll criticizes this 
view by noting, along with others, that there is potentially 'infinite detail' at many 
levels of description in an interactive system, all of which plays a critical role in 
determining the usability of the syst.em [35J. These views should not. be considered 
a refutation of the value of a formal 'get it right the first time' <l.pproach. Rather, 
they should be cousidered as a warning that a formal approach alone is not sufficient 
for the design of usable interactive systems and it. should be complemented by other 
t.echniques, such as rapid prototyping and empirical evaluat.ion [7]. 

There are those who believe that an it.erative approach to design with fast and 
easy prototyping is the only way to create usable systems. Lewis classifies these 
people in the "process is paramount" category of his part.itioning of HCI researchers 



29 3.1. OTHER INTERACTiON FRAMEWORKS 

[101]. However, initial design decisions (step 0 in the iterative approach) greatly 
affect the final result and the number of iterations necessary to get there. So it is 
advocated that some semi-formal reasoning be available to the designer in order to 
make good first guesses at the design based on certain general principles. I A black 
box model of interaction can aHow greater confidence in initial design decisions 
because the properties it best supports are very general and most easily dealt with 
at an abstract level, which is where most design begins. And placed in a. more 
formal design process, the assurances of step 0 design decisions can be made with 
greater confidence. 

In summary, the importance of the PIE model is in its bridging of the 'psy
chological gap' in Hel. The PIE model formed the initial inspiration for the work 
by Sufrin and He [158J in describing interactive processes in a formal notation for 
subsequent analysis. This .....ork in turn inspired the agent theory of thi, thesis. 
llarnard and Harrison's arguments motivating an interaction modelling framework 
suggests that there is no existing model of the interface and that all modelling 
techniques should fit squarely into either category of system or user model. We 
questiou that assumption, since the black box model directly discusses the model 
of the interface, though it does not go so far as to propose one interaction state, 
preferring instead to allow levels of abstract.ion between the .'iystem and t.he user, 
all of which repre:'ient some kind of interface. The very notion of an interaction 
slate runs counter to the intention of the black box model because it is precisely 
the abstraction away from nnderlying state that produces the black box. 

3.1.4 Software architectural models 

The emphasis in this thesis is on the incorporation of psychologically valid claims 
about human-computer interaction into the design of interactive systems, by mfans 

of a formal approach. There is, however, another .....ay to incorporate psychological 
principles into design, and it is by far a more common approach. That would be by 
a heuristic approach in which reasoning based on experience and empiricaJ evidence 
drives the common sense applied in the design process. Figure 3.6 demonstrates 
the different reasoning directions one can take in applying psychological knowledge 
of HeI issues to the design of interactive systems. 

We assume that both formal and informal advocates have access to the same 
body of psychological knowledge ahout human-computer interaction. This knowl
edge embodies information which describes what is meant by effective interaction 
between user and system. The advocates of formal methods try to upture this 
information in the same mathematicallangnage which is used to describe the sys
tem. The aim of this activity is to produce a mathematically constructed usable 

1Lewis alo;o makes this point, but adds that "process is paramounC' people dmbt the contri_ 
butions that formal models can proVide in attaining best first gues&eS. 



30 CHAPTER 3. BACKGROUND AND RELATED WORK 

formal reasoning 

, 
,-~. ,., -

.o1Q ~ 
Formal
 
Methods
 

Psychological beMer design practices 
Knowledge 01 ?
Hel • 

heuristic reasoning 

--D-D-D-- 'd 
~ '6' 

System 
Architectures 

g 
a!!!!I. 
Interactive 
systems 

Figure 3.6: Heuristic ver.sus formal reasoning within Her 

system lIl'hich can then be refined into an executable version which preserves the 
usability properties. The greater majority of researchers and practitioners, take 
a far more pragmatic approach. They use common sense in reasoning backwards 
from the myriad of examples of interactive systems to arrive at abstractions from 
design that capture why it is that some systems are usable and others are not. In 
Lewis' taxonomy, these are the "system!! are paramount" researchers in HeI. 

Some of the abstractions provided by pragmatists we classify as interactive 
architectures which are themselves expressions of frameworks (or interaction. We 
can further subdivide this class into two (somewhat overlapping) subclasses. Oue 
subcla.~s deals with the significant contributions of the User Tnterface Management 
System. or UIMS. The other subcla..'>s deals with the more recent emergence of 
multiagrnt architectures. 

An important feature of both subclasses is that they are mainly concerned with 



31 3.1. OTHER INTERACTION FRM..tEWORKS 

design of the user interface. Restriction to the details of the user interface as
sumes the existence of t.he undedying application. There is an enormous economic 
argument in favour of this approach because it recognizes that there are many com
petent computerized systems in existence whose major failing is not in performing 
functions relevant to its domain but in providing an interface through which users 
can easily acces:-; that functionality, Interactive architectures have been del'eloped 
with the understanding that tilt" user interface can and should be a separate module 
of the interactive system. Ill. practice, however, such a clean separation is not easy. 
Nor is it clear that such a separation is wholly desirable. 

We contrast thj~ with the theme of this thesis, which is interactive system 
development. We do flat assume the existence of the underlying application in our 
formal analysis. On the cont.rary, we depend upon a system core that. na.<> been 
properly and formally specified ill accordance with a task analysis on the domain 
of the application. This prO(:ess ensures the pos,'iibility that lIser interaetian, which 
will have to occur through (I.Jl inkrface mediator, will be effective since the system 
is designed to perform t.he tasks that the user will require. Despite the contrast 
between our approach and t.hat of til(' rest.ricted user interface design, there is still 
good reason why we can consider it. User interface design can be viewed a.... a 
proper subset of iuteractive system development. If we can assume the existence of 
a system core which performs t.he tasks desired for the interactive system, then we 
can proceed to the description of t.he user interface which should preserve the task 
information it prcsents from the system to the user. 

Unfortunately. thc majorit.y of existing systems do not adhere to our requirement 
that they respect the output of a task analysis for their domain of application. 
Recent work on the ESPRIT project FOCUS 1,58] ha.5 suggested t.he use of a back
end management system whose purpose it is to impose a relevant tas~ strnctnre 
to existing applications for which a new user interface is desired. In theory, the 
back-end manager will allow a principled design of the user interface, but. there is 
no clear indication that their development will always be more cost effeet.ive than 
complete system development from t.he ground up. 

The earliest work on user intt'rface management systems dat.E'S back to work by 
Newman on t.he Reaction Handler [120J, but it was not until many yean later that 
the term UIMS came into use [ISO]. A result of the Seeheim Worksoop on User 
Interface ~'Ianagement Systems wa.s one of the first st.andardized architectures for 
UIMS, called the SeeheiOi model [129], shown graphically in Figure 3.1. 

The main parts of the UlMS (I,re a preselltation component, a dialogue controller 
and an application interface. These roughly correspond to the iexica.l, syntactic 
and semantic levels of Foley and van Dam's model [S9J, which we call the language 
mode\. The fourth unnamed box in the diagram recognizes that for proper semantic 
feedback and efficiency reasons, it is sometimes necessary or desirable to circumvent 
the dialogue component and provide direct application interface t.o presentation 



:J2 CHAPTER 3 BACKGROL'l'D A!\'D RELATED WORK 

U,11<:al Synl...:tie Semamic 

) Presentation (Ilh'endcd E Componentlf6er 
Dialog""> Control 

Application 
Inlerface I( ) Intended~ 
Model ApplJeallOn 

~6J 
Figure :i.7: The Sechpim model of a UHvlS 

rommunication. Figure 3.8 ~how:'l how the language model fits within t.he intcr<Ldion 
framework. Thus we can SC'L' the the language model gives a more complete account 
of the interface in our framework, but does not trent thp USt'f and system on an 
equal footing with t.he interface. 

o
/ f~ co:"' ,)~
 
S 3 g~. U 
,,,"~~. ~ R / 

I 
.".put 

Figure 3.8: The language model of lTIMS within the interaction framework 

The Seeheim model has recelltly heen revised [23], as shown in Figure 3.~J, 

to include domain specific information and recognize the large llulTIber of toolkits 
available for the design of interactive objects. This new model-referred to as either 
the Arch or Slinky model-is int.ended to refleet t.he ability to ca.pture domain 
information in interadi\'t' objects that lie clost' to tbe user. 

Oneof the drawbacks to a model such as t.ht' Seeheim model is that although it 
does separate tasks within the user interface to enhance portability, it does not pro
vide fora modular approach to the development of each part. The designer is given 
no aid to the structured development of a complex user interface by means of the 
composition of smaller and simpler interface modules. An additional model mllst be 
superimposed on the Seehpim model to facilitate a modular de~lopment scheme, 



33 3.1. OTlIER INTERACTION fRA'\1E\vORKS 

Domain 
Specific 

Interaction 
Toolkit 

Figure :3.9: The Arch/Slinky model 

and many UIMS incorporalc sHch a model for t.he de....elopment of each component 
in t.he UIMS. For example, c'rpen discusses the use of recursive or augmented tran
sition net.works, llNF notation, and event handler notations as alternative notations 
for development of dialogue controllers [62J. Various presentation device notations 
exist., such as PlJIGS and GKS, with which toolkits can be COJlstructed for handling 
of logical input and output mechanisms. A more general notation based on the in
put and output device spaces defined by Card ei ai. could replace tbese j31J. Also, 
the application interfaCl~ can have its own notation, though its job as a translator 
from interface t.o applicat.ion semantics st.rongly urges a similar model to that used 
to develop the applicat.ion (if such a model exists!). 

The apparent freedom of choice for models and notations within each component 
in tbe UIMS model suggests anot,her problem for the designer. One of the major 
obligations of a user interfac(" c1e,.;igner is to etl~nre that the interface adequ.ately 
reflects the tasks of the application so that a user is free (,0 interact with the task and 
not wit.h lobe int.erface. Wher("as t.his chore i5 simplified by breaking the proof into 
three st.ages representing ,,{'mantic, syntactic and lexical correspondence between 
application and physical in!erfan', it is not. c1par that the job is at all simplified 
by imposing very different models at. each layer. It is also argued th~t the strict 
separation between layers in the Seeheim or language model does not SUpport. the 
handling of semanti .. feedback [14DJ. It is for these reasons that some more recent 
DIMS have utilized a siugle model in which the various components of the Seeheim 
model or language model can be expressed. One such example is GWUIMS [150], 
which is viewed as a UIMS based on the object-oriented model rather than an 
object-oriented implementation of another UIMS model. 

Models such as GWUIMS mark the move in our discussion toward the second 
subcla.ss of interactive architectures, namely multiagent. architectures. Multiagent 



34 CHAPTER 3. BACKGROUND AND RELATED \VORK 

architectures recognize that the key to bnilding complex interactive systems is by 
use of a compositional model in which smaller, simpler modules can be created and 
composed to form larger, more complex modules. \Ve will only mention some of 
those in this thesis, namely G\VUIMS, the 11VC model for Small talk [61, 29, 96J 
and Coutaz's own PAC model [39. 38, 40J. A sOITlPwhat related architecture has 
been presented by Took, in which the interaction medium-the surface-is treated 
as an independent agent with which both user and application interact [163, 162]. 
Like t.he language models, t.hese multiagent architeclures recognize a separation 
between presentation and appliccllion. but there is TlO uniform argument in the 
multiagent archit.ectnre literature as to how this sC'paration should be done. 

\-Vhat separates these compositional multiagent rnodds from the more genC'ral 
compositional process models of :iOftware engineering is their emphasil'i 011 the spe
cia.! consideratiom of interactioll in t.he intended design. Oue of the purposes of 
the general agent model in this thesis is to demoIlslratC' how a general and more 
formal compositional model can be used to describe interactive archit.ectures. Our 
conclnsion is that henristic and forlllal approaches to design are cOInplementary and 
a connection bet.ween these fonnt·rly distinct approaches is the key to all effective 
design pradice. This theme is continued in Chapter 8, in which we investigate the 
connection between the formal agent model and multiagent. architectures. 

3.2 A survey of research within the framework 

\Ve will now use the interaction framework t.o provide a structured review of the 
previolls formal and informal rel'iearch relevant to interactive system design. Sec
tion 3.2.1 concentrates on work that. has addressed the adicu/al.ion translation from 
Use, to Input. In Section 3.2.2 we will oul.line t.he work done on the Output to Use, 
translation (obseT'1wt.ion). Section 3.2.3 discusses work pertaining to the translation 
from ITlpll,! to System (pe'/fo,m,ana) and from Systcm to Output (pr·eSf:lltation). 
\Ve combine the work on these two translations bC'cause most work on one of them 
has been also applied to the other. 

Much of the mat.erial in this section has been culled from state-of- the-art reviews 
by Abowd et al.[6] and Abowd, Dix and Harrison p] and in a tutorial on formal 
methods in HCI by Harrison and Ahowd [69]. Other good reviews on analytical 
models have been prodnced by Reisner [134] and But.ler et al. [30]. 

3.2.1 Research on fldiculation 

The formalisms which address the translation from Use, to Input have been de
veloped by either psychologists or compnter scientists whose main interest is in 
understanding user behaviour. Therefore, the empha.<;is in this work has been on 
formulating some model of the user-~a use, model. By user model in t.his context 



35 3.2. A SURVEY OF RESEARCH WITHIN THE FRAMEWORK 

we mean the designer's model of the user (see [122]). The user model is tom ana
lyzed to describe features of the interaction. This may iuvolve either an additional 
description of the inpnt (a-~ in Kieras and Polson's CCT) or simply be done by 
nsing tbe input description as the user model (as is done in Reisner's USf of the 
BNF notation). A useful summary of these rormalisms may be found in fht' paper 
by Green, Schiele and Payne [63) who classify them in respect to how wt'll they 
describe the competence and peljormance of the user. A task or goal is basic to 
both approaches. III practice all the notations that deal with competence and per
formance incorporate aspects of both to a greater or lesser degree. Quoting from 
Simon [151J' 

Competence model:; 1£,11(1 to be ones that can predict legal behaviour 
sequences but generally do this without reference to whether they could 
actually be executed by user::;. In contrast, performance models not 
only de5C1"ibe what the necessary behaviour seguences are but usmJly 
describe botlt what the user need)'; to know and how this is employed in 
actual task execution. 

Simon goe5 on to classify these notations (and cognitive models in general) 
in a 3-dimensional space, representing various trade-off~ made by their designers. 
\\le cboosl:' a simpler classification here, partitioning t.he formalism int.o two main 
categories: 

• hierarchical representations of the lISN'S task and goal structure; and 

• descriptions of lhe dialogue as a language, or formal grammar. 

Goals, Operations l Methods and Selection (GOMS) 

The best example of the hit'rarchical representations is the Goals, Operations, Meth
ods, and Selection notat.ion (GOMS). based on t.he Model Human Processor and 
Keystroke-Lev€! model prcsf'nted by Card, Moran and Newell [32J, This assumes 
the U:ler has a hierarchical decomposition of goals into subgoals. The goal decom
position may be df'l.erministic or may im'oh'e choice among different strat.egies for 
achieving tbe goal. At the leaveg of the resulting goal tree are the basi( operations 
that. the user carrie.s out to aciJi~ve the lowest. level subgoals. Grannlarit.y of the 
resulting analysis is given by these basic operations. So for example at a coarse 
level ed1t-document may be regarded as basic, whereas for finer grained analysis 
press-cursor-up-key may be terminaL Analysis of the goal st.ructure pro~'ides 

mea.:mre:'l for determining user performance. For example, the :'lta.cking depth of 
subgoals can indicate short lcrm memory requirements. The models of the users' 
mental processes implied by GO!vlS are very idealized and do not apply t.o error 
conditions that will ttrise in the attempt to satisfy goals. 



:l6 ro~....... , , ~~"........ ') BACKGROUND AND RELATED WORK
 

Formal grammars 

Representative of the Jinguistic approach is Reisner'~ use of Bl\'F notation to de
scribe the dialogue between user and system as a formal g"rammar [133, 135, 134J. 
This views the dialogue at a purdy l'ynt.actic level, ignoring the semantics of t.be 
language. Typically, grammar rules igllure mmputer output and the emphasis [or 
analysis is on the complexity of the input. There arE' well known techniques [or 
analysing the complexity of grammars, and these can be used to give a crude mea
5U[{' of the difficulty of a dialogue, however the interpretation of such mea.'iures is 
severely complicat.ed by such things as familiarity wit.h (perhaps complex) gram
matical forms, clear mode ("hanges etc. Others have used state transitions diagrams, 
TTlO1'it notably Jacob [89, 88], and addl'([ actions to grammar rules. which iuclude 
out put among the grammar's terminal::>. 

Task Action Grammar (TAG) 

Payne and Green have developed a not.ation called Task Action Grammar (TAG) 
[127,128, 142J to describe the C01l5IslnU"!J of t.he inpllt language by describing the 
user's task structure and the action sequences that accompli~h those tasks. The 
task structure description conforms \\,jth the hierarchical goal structure of GO MS. 
Thf' centraJ role o[ the task in this fOf]na[ism il' at the expense of attention to the 
useI', The view o[ the user is just as t.lll> ,g'oal structnrej no consideration is given 
t.o how that St.ructUre may be modillf'd by the results of previous interactions as 
observed in the output.. 

TAG nses parameterised grammar l'Hles to emphasise consistency and world 
knowledge (e.g., up is t.he opposite of down). For examplf', assume the following is 
an adt'quate description o[ t.he user's knowledge of how to draw a. graphic object, 
such as a rpctangle, in Apple MacDraw, as shown below. 

select rectangle tool then 
place mouse at one corner of the desired rf'ctangle then 
depress button then 
drag to opposite corner t.hen 
release button. 

This is represent.ed in the TAG notation by means of t.a..'lk production rules. The 
use of semantic fe.atures such as objretlypr allows a more general description of 
the task by use of user-relevant attributes, similar to the psychological attributes 
di1'icllsSE'd in Chapter 2. The following i~ il. TAG schema rule descript.ion of tbe task 
for drawing a rectangle or square (a square is a constrained rectangle). 

task[effe.ct = add, objt:e/fype = reclaugle,
 
constraint = any, sdecUool = (lny] :=
 

seleettoo/[objecttype = n'c/anyle] + draIl'lron.stramt]
 



37 3.2. A SURVEY OF RESEARCH WITHIN THE FRAMEWORK 

draw [constraint = yes] .-'= 

press SHIFT + place m01lse .. 

draw[constmint = no] ;= 
place mouse .. 

V\'ithin this claimed mC'lllal representation of the system it then bpcollles pos
sible to analyse notions of consistency. Since a square is just a constrain~d form 
of a rectangle, its creation should be consistent, or similar to, the creat.lon of a 
rectangle. This is captured above in the first task production rule by means of 
the any value for the semantic feature constraint. Heuce. a desired consi~tency is 
captured by the generic task de~cription. Here f"Onsistency is related to the user's 
understanding. Consl"qnently, t.here are dear design implications. What TAG does 
not attempt is to provide any linkage between appropriate task action grammars 
and possible designs. 

Recent, developments of the notation (by Howes and Payne [83] ) include at
tempts to make good some of the limitations of TAG, in particular to include display 
informat.ion and flow informat.ion (no state is implied by TAG). A pessimistic view 
of these developments is that they make an already cumbersome notaticlO worse. 
The possibility of developing informative nolions of consistency becomes even more 
remote. Although this notion is purported to be a competence formalism [63], it is 
dear that the breakdown of the task into action also has performance implications. 
Attempts to scale TAG to substantial applications have not been satisfactory (se.e 
for example Schiele and Greell [142]). 

Despite t.hese criticisms, the methodology of TAG is extremely important when 
considering the link betwct-'n psychological and computational HCl res€atch. The 
semant.ic features that arc the basis for TAG schemas are based on empirical evi
dence of how users perceivp. the tasks they perform and the interfaces with which 
they interact. We will take this identification of task informat.ion from the user's 
perspective and use it as the fonndation for a user-centred design and analy:;;is 
method described in Chapters 7 and 8. 

Command Language Grammar (CLG) 

Taking the lead from linguistic theory and parsing, it is often suggestfd that sev
eral levels of grammars ought to be used. 1-foran's Command Language Grammar 
(GLC) [114J is probahly the most well known example of this. CLG uses (our
lexical, syntactic, semant.ic and la..'lk. It is mOre design oriented than most other 
similar approaches, the ta<;k level being described first, obtained presumably from 
a task analysis, then the semantic level, formalising the entities, before moving on 
to the more concrete leveb. Various rules a.re given for checking consistency within 
and between the levels, although these are rather loose and incompMe. This ap
proach conws closer to viewing the entire system as involved in the interaction 



38 CHAPTER 3. BACKGROUND AND RELATED WORK 

ra.ther tha.n just the surface dialogue. Unfortunately, it has been found unwieldy 
to use in practice [148, 147]. and the uotation used is particularly arcane, looking 
very much like LISP. 

Cognitive Complexity Theory (CCT) 

Cognitive Complexity Theo'ry (CCT), first presented by Kieras and Polson [93]) 
combines the goal hierarchy and dialogue grammar approaches. It has two parallel 
descriptions. User goals are expressf"d a." pmduetian 'rules a. la COMS. The system 
grammar is given by a generalized transition network (GTI\'). The production mles 
are a sequence of rules of tile' forlll 

if condition then action 

where condition is a statement about the contents or working mernory. If the con
dition is true then the productiOiI is said to have fired. An action may consist of 
one or more elementary actions. The USfT pmg'ram is written in a LISP-like lan
guage and generates actions at til,· keystroke level that have associated performance 
characteristics. This user program can be execnted and assessed empirically and 
analytically. In addition, mismatches between it and the system grammar can be 
found and a dissonance mea'lure- produced. The GTNs which describe this system 
grammar are in the form of diagrams representing t.he dialogne states with arcs 
repreBenting the possible transitions on user aetionB. The difference from simple 
state transition diagrams is that the nodes may be hierarchically decomposed. This 
system part of CCT conld be executed in the same way as a grammar to give a 
crnde dialogue prototype. 

Problems with goal structures aud grammars 

The formation of the goal hierarchy is largely a post-hoc technique and mns a 
very real risk of being defined hy the- dialogne ral,h£'r than the user. Knowles 
[94] attempts to rectify this by producing a goal structure based on a pre-existing 
manual procednre. She thus hopes to obtain a natural hierarchy. In addition, 
she criticizes the mechanical measures of complexity because they do not take into 
account issues snch as user knowledge. 

In addition, as more display-oriented systems encourage less structured methods 
for goal achievement. Instead of wel! defined plans, the user is seen as performing 
a more exploratory task, recognizing fruitful directions and backing out of others. 
Typically, even when this exploratory style is nsed at one level we can see within it 
and around it more goal-oriented methods. So for example, we might consider the 
high level goal strncture below. 

WRITE_LEITER ::) FIND_SIMILAR_LETTER + COPY_IT + EDIT_COPY 



39 3.2. A SURVEY OF ItESk:,\,RCH WITHIN THE FRAMEWORK 

However, the t.ask of finding a similar letter would be explorat.ory, searching trrrough 
folders aud recognizing possible pln.ces may uot. be well represented as a goal st.ruc
ture at all. Similarly, t.he actual editing would depend very much on non-planned 
activities. If we drop \.0 a lower level again, goal hierarchies become more lpplica
hIe. for instance, during the editing stage we might have tbe following sub-dialogue 
for deletiug a word. 

delete. word :::;.. select. word + dick.on.delete 
selecLwom :::;.. mOllf'.Tllouse.to.word.start + deprfss.mouse.butlon 

+motJe.mouse.fo.word.f'nd + release.mouse.bulton 
click. on. delete :::} mO/·f.mouse.to.ddett.icOil + dick.mouse.buttofl 

Thus goal hierarcllies can vartia.\ly cope with display oriented systems by appro
priate choice of level, but the problems do eIllpha.size thf! prf'scriptive nature of the 
cognitive models underlying them. 

Grammar techniques were initially developed to examine command-based and 
key.stroke dialogues. ant" problem in applying them to mouse driven window sys
tems is determining lobe lowest level lexical structure. Pressing a cursor key is a rea
sonable lexeme, but moving a mouse one pixel is less sensible. In addition, pointer 
dialogues are !TIore dependf'ut on thE" display. Clicking a cursor at a particular point. 
on the screen has a meaning dependent on the currcut. screen contents. This problem 
can be partially resolved by l'egn.rdillg operations such as select-regioD-of-text 
or c!ick-on-quit-button as t.he terminals of the grammar. If this approach is 
taken, the detailed mouse movements a,nd parsing of mou.se f'vents in the context of 
display information, such as meuubars, are abstracted away_ This mean5 that any 
prototyping of the dialogue will be at a similarly abstract level or require "Wizard 
of Oz" t.echniques to mock lip the full interface. 

Programmable User Model (PUM) 

Goal structures such as those provided by GOMS, TAG, CCT and CLG form rudi
mentary user models, none of which are vcry good at haudling user error. More 
receut research hy Young et at. [173, 175j has investigated the possibilities of pro
grammable user models (PUMs) which can more directly address the question of 
error in order to further aid de.~ign of the int.erface. This research involves executing 
programs In the SOAR cognitive architecture [98J 1.0 perform scenarios-typical ex
amples of user interaction with the machine--t.o determine usability consequences of 
a given system design for accomplishing given tasks. An advantage of this approach 
over the other$ is that a detailE"d description of u.ser procedures is D(Jt necessary. 
Rather. a, knowledge u,nalysis, embodying the user's understanding of the function
ality of t.he system from its intended interface, characl.eri7;es the possible behaviours 
of the user. The execut.ahle cognitive architecture theu uses minimal problem salv· 



40 CHAPTER 3_ BACKGROUND AND RELATED \\laRK 

iog techniques, familiar to t.he AI community, to highlight usability consequences 
and possible behavionral errors which would result from a means-end analysis. 

The PUM met,hodolog,y relies all levf'ls of description, much like CeT and CLG. 
Two lewis of interest are the task lcw'} and the device level. The task level descrip
tion is device independent, and problem solving in that space is usually straight
forward. Solutions determined at the task level are then mapped into the device 
level, which is given by the knowledge analysis. The PUM provides a trace of user 
actions at the device level and the goals that those actions satisfy. This trace of 
user behaviour can be compared 1.0 the designer's intended hehaviour. A discrep
ancy "..ould indicate to the designer a possible prohlem that may need correction . 
.--\. simple and effective example ill of this procedure ill text editing is given in [173J. 

Graphical or diagrammatic approaches 

A major criticism of formal techniqnes is that they are not accessible to the average 
designer. On the principle that many people find graphical notations easier to use, 
there have been many different notations proposed. Most of the hierarchical and 
grammar notations can be given a graphical form. In addition, there are data-flow 
diagrams, state transition diagrams (of lOany flavours), Jackson System Develop
ment (JSD) diagrams and simple flow diagrams. Diagrammatic notations are often 
llsed in conjunction with other notations and may have automa.tic support. For in
stauce, Marshall's diagrammatic notation [105] (see below) links Harel sl.a.techarts 
to VDM. 

Sutcliffe [159] has nsed JSD procf'SS structure diagrams to describe tasks. He 
then analyzes these in order to highlight possible proLlems such as memory limita
tions (rather like GOMs). Similarly Walsh et al.[165] have integrated ta.sk analysis 
techniques with lSD. They point. out that these notations a.re already heavily nsed 
[or the softwarf' development. side, and therefore tllf'y form a common language. 
JSD diagrams can be nsed quit.e .~illlply as a model of the dialogue, being a partic
ular form of grammar. 

Conclusions on a.rticulation 

This section has discussed the different psychological and soft computer science 
models of the User to Input translations. All these approaches are still at the 
research stage. However, the general idea that producing a description of how the 
user is to accomplish expected tasks in parallel to I he actual system development 
seems useful. It is generally agrft'd that the form of the modelling is uot nearly as 
important as the discipline it enforces on t.he designer. 



41 3.2. A SURVEY OF RESEARCH WITHIN THE FRAME\'\.·ORK 

3.2.2 Research on obserl'ution 

In this section, we overview some of the analytical methods used to assess the trans
lation from Outp'ut to ther, the (JbSt'rllution translation in our framework. TlJis i~ 

perhaps the most important translation as far as dett.'rmining overall usability of 
an interactive system, and yet it is the mO!lt elusive. This is not surprisillg, since 
at the very core of this analysis, we are trying to determine how individuals under
stand that wh ieh they perceive. It is one thing to empirically test the percept ual 
capabilities of an average hnman lIser [112], and. from that. provide some model of 
the user as an information gatherer, but it is far more to explain how that perceived 
information is transfornwd into knowledge abont the surrounding world. This topic 
is certainly beyond the scapI-' of thi:'. tlwsi;,;, but it i~ intere~ting to note that resean:h 
which has occurred in thi:; arl-'a. fiesearch in this area i::; now generally "jewed as 
the next major challenge for psydlOlogical research in HCr. 

!\.lost of the illformatioIJ on analytical models of perception has been taken from 
the review done at the CHI'88 Worhhop all Analyt.ical Models [30], and therefore 
our comments are V('Iy brief. A model not usually grouped with the analytical 
models is Barnard's IntCl"nctiIlg Cogllit.ive Subsystems (ICS) which we discuss here 
becanse of jts contrihution to visual proces::;iIlg and it.s apparent amenit~' with the 
agent model. 

Display Analysis Program (DAP) 

Tullis has produced a computer program, the Display Analysis Program (D.4P), 
which takes as input the actual displays for a sY5tem aud produces a listing of 
improvements that call bl' made in the design of the screen layout t.o improve the 
time reqnirement for location of specific text units on the display. His work ignores 
the semantics and ta.,k strtleture of the display. He provides support for the variance 
in locating textual units in t.erms of certain selected characteristics of the layout 
and perceptual attribut.es that can be objectively assessed by a compuler. 

ANets 

Just as CCT and other notations Tnt>ntioned ahove use a two layer description of 
goal structure and device structure to discuss the translation between the two, so 
does Chechile's approach to modelling comprehension of displays rely all a two level 
description, one of real world knowledge and one of display knowledge. Each of these 
desniptions are given in terms of ANfls, augmented forms of semantic networks. 
The world knowledge network represents the users general knowledge about the 
display format and the domain of the interaetin· appli,ation. This would com prise 
knowledge about how conn~pts relevant in the domain (the psychological attributes 
in our terminology) would be r('presented in the display (the display attributes). 



42 CHAPTER 3. BACKGROUND AND RELATED ","'ORK 

The display knowledge represents information about actual displays as snapshots 
III t.he dynamic interaction. 

Cognitive Environment Simulation (CES) 

Roth et ai. have developed a symbolic processing model of the inferencing and 
evaluation procedures of nuclear power plant operators. The aim of the model 
is to provide predictions of situations aud properties of the environment and the 
information provided by an interactive system that wllllead to errors in assessment 
and intention formation. CES is an example of knowledge-based simulation models 
of human performance whose objective is to explicitly present domain goals and 
the knowledge necessary to support tho.<;e goals. CES is not based on a cognitive 
architecture, as ANets are. 

Interacting Cognitive Subsystems (ICS) 

Barnard attempts to incorporate two separate psychological traditions in describing 
his cognitive architecture of Interacting Cognltivf Subsystems (lGS) [17, 18,211. 
One is the architectural and geueral-purpose information-processing approach of 
ShOT,t Term Memory (STM) research. The other is the computational and rep
reseutational approach characteristic of psycholinguistic research and AI problem
solving literature. 

ICS provides an architecture for perception, cognition and action built up by 
the coordinated activity of nillf~ smaller subsyslC'ms, five comprising a peripheral 
subsystem in contact with the physical world and fouf comprising a central subsys
tem. Each of the uine subsystems is specialized for handling some aspect of external 
or iuternal procf:ssing. For example, one peripheral subsystem is the visual system 
for describing what is sC'en in the world. All example of a central subsystem is 
one for the processing of propositional information, capturing the attributes and 
identities of entities and their relatiouships wit.h each other (a particular example 
is that propositiona.l informatiou represents '''knowing' that a particular word has 
four syllables, begins with 'p' and refers to all area in central London.") 

A subsystem is describC'd in teL"m~ of its tYlwd inputs and outputs along with 
a mem<lry store for holding typed information and transformation functions for 
processing the input and producing the OUtPlit. So ICS can be seen to have a 
natural description in terms of agents, but just how close the correspondence is 
between the ICS subsystems and the agents prt"sented iu this thesis is an interesting 
questiou which, unfortunately, remaius open. 

Though ICS is purported to provide a model of percC'ption, cogni t ion and action, 
t.he type of information it provides on tht" action side is not the same as provided by 
the models for action described in our discussion of models for articulation above. 
IeS is not intended to produce a description of the user in terms of sequences of 



3.2. A SURVEY OF RESEARCH \VITHI~ THE FRAMEWORK 43 

actions that are performed. ICS provides a more holistic view of the user as an in
formation processing machine. The emphasis is in determining how easy particular 
procedures of action sequences become as they are made more automatic within 
the user. The lack of quantitative ontpnt from ICS makc5 it less practical than the 
other articulation models. However, ICS does provide competent and understand
able analyses of how visual information i5 perceived and transformed by the user, 
and this information provides substantial advice to designers wishing to enhance 
the proceduralizatioll of user behaviour, since proceduralized behaviour is a.!sumed 
to be less prone to error and, hence more effective. 

Th{' mdin purpose of ICS is not so much as a model for generating a description 
of a user's behaviour. as one vj~ws the purpose of <l model such as PUMS. Rather, 
its purpose is as a classification method for the wealth of empirical psydologica.l 
evidence on user behaviour. Thus, we would expect ICS to perform better as a 
rationalizdtion of u.~er behaviour based on empirical evidence, whereas PUMS we 
would expect to produce bettf'r predictive information. 

Conclusions on ObSt7','ulion 

Research on the translation from Output to User is not as progressed as research 
on the translat.ion from User to Inpul. This is perhaps due to a lack of empiri
cally validated psychological theory concerning perception and understanding, or at 
least a failure to apply those theories to question5 of human-compnter interaction. 
Contributions from this research, however sparse, will bear a great significance in 
directing design of interactive systems. 

3.2.3 Research on pcrfonTwncf. and presentation 

Research in this section focnses on feat.ures of the interaction which are directly 
affected by the System and the interface (input and Output). We ha"e bundled 
t.ogether the performance and pl'('.~entatlOn translations because most lIlodels de
vised to deal with one also deal with the other. The work in this section fits along 
a continuum from very abstract models (such as t.he PIE) to very constructive na
tations (such as Alexander's SPI). We will try to present this review from the more 
abstract towards the constructive. 

Extensions to the PIE model 

We have already presented the PIE and rtd-PIE models in Section 3.1 In order to 
study more specific ar{'as of interactive behaviour, fnrther refinements to the basic 
model have been introd\lced. 



14 CllAl'T81{ 3. BACKGROUND ,\ND RELATED WORK 

Handle spaces 

A client-server relationship is a common way to view the independent eXf'cution 
of several programs (the clicnls) under one controlling progr<lffi (the server). This 
view can be readily extended to situatious ill which a user plays the role of client 
or server. 

An example of the user as client jg seeIl in a mult.i-windowing system, where 
different windows represent different tasks and so the user treats them no';; indepen
dent interactive systems. Each window can be treated as a red-PIE, and ,,0 the 
multi-windowing system is represellted as a collection of PIEs. The user is able 
to direct input to particular window,;, i.e .. the user call select a window for input. 
This selection can be modellpd by giving each window as a red-PIE a handle for 
distingUlshing its input.. Alternatiw{v, t.here is an injective funct.ion from handles 
to PIE~. The overall dispLay arid rt'sult functions will depend on the set of active 
handles, or active windows, yielding ... red-PIE descript.io{l of the multi-windowing 
~.\'stem. Since we iL$sume t.he user consid('rs the separate window.':! as illdependent, 
interference betweeu windows is unde:;irable. \Ve can t.herefore formulat.e a con
straint on the collection of window PIEs, called ("f$1I1i lTIdl~pe.1idl:na by nix, which 
would ensure I,hat the contribution from interaction with onf' window to the aver
a]] resulL be separable from that of any other window. Handle spaces and resnlt 
independence are dealt with in more detail by Dix and Harrison. [50,48]. 

Sitnations in which the user is the client. (and hence, there are many users) 
fall under the research theme of computer supported cooperative work (CSCW), 
a topic which is outside the SCOpf' of this thesis. A formal met.hods approach to 
CSC\V has not yet beeu attempted, t.hough we suspect that a treatment analogons 
to handle spaces would be enlightening. 

Nondeterminism 

There are severa] not.ions of nondet.f'rrninism relevant. to interactive systems. Non
determinism arises from the loss of knowledge, f'ither deliberate or not, of some 
aspects of the whole system. The user, who for reasons of inexperience or a con
scious decision t.o remain ignorant, does not know f'xactly what a.spects of the 
system determined its behavionr. It can arise that. different situations which vi
sually appear the same react differently to the same commands. So, for example, 
in a graphical drawing package the .'Ielection algorithm will take into account a 
st.ructural or temporal hierarchy (into layers, perhaps) of t.he object"., which may 
not. be fully manifested in the visual prf'sent.ation. If two objects appear to overlap 
and the mouse cursor is placed ill a location which is 'covered' by both objects, a 
subsequent mouse click to selecl will choose one or thf' olher object depending au 
which is considered on top, or it may choose both, if the two objects have been 
grouped as one. The point is that there is usuall)' no vi sua] indication to aid the 



3.2. A SURVEY OF RF.SE;Akt:H WITHIN THE FRAMEWORK 45 

user in predicting the outcome of select; the algorithm is nondeterministic as far as 
the user is concerned even though it may have a perfectly deterministic description 
at some level of detail. 

Dix has discussed this nondeterminism [4i] in interactive systems and how it 
can be modelled in a PIE. In Chapter 4 we extend Dix's ideas in terms of agents 
when we investigate this user noudeterminism with respect to predictability. 

Temporal models 

One featnre of an interactive system which greatly affects its perceived t:sabilily 
is the avoidance of display lag wherein the current display does not adequat,ely 
reflect the state of the system resulting from all prior user input. Dix [48,49] has 
discn!ised display lag and whether it cau be avoided iu any system. The cO[lc\usion 
is that rather than chase t.he ··myt.h of the infinitely fast" machine, HCI research 
can Concent.rat.e on what it means to make a system usable that will admit the 
inevitable delays. A simple ext.ension to the PIE modd in which a single nuJl input 
event, is introduced in the program language P leads to a definition of ste<idy-st,ate 
hehaviour and t.he consequences all predictabilit.y of allowing buffered user input. 
One of the most important. results of this work has been a formal representation of 
the rt'quirement.s that can be pla.ced on 3 system which experiences display lag in 
order to expose information that must be available t.o the user. 

Levels of system description 

As we explained in Section a.l, a PIE analysis can be given at varying levels of 
abstraction. As Carroll has pointed out [35J important interactive features become 
apparent depending on tht> It'vel of detail in the system description. Though we do 
not adhere to Carroll's further and fata\i~tk belief that there are an infinite number 
of such levels-each of grave import.ance to the overall usability of a sysl,em-and, 
hence all attempts to model such properties will be hopelessly incomplete, it. is 
important to consider how the varying levels of detail can be related. 

We can view the description of an iuteractive system as a collection of PIEs, 
each representing the system at differeut level of abstraction and each capturing 
relevant int.eractive properties along the way. The system description is completed 
by providing ma.ppings betweell the program spaces (parsers, as Dix calls them) 
and effect spaces (projection or ell1beddiug mappings) of the various Il"vels. The 
result space will be associated to a Inore abstract. level PIE as the concrete level 
PIEs usually dea.l with more immediat.e aud temporary features of the interaction 
(such as editing a command line or displaying a pop-up menu). Each PIE will 
contribute to tbe overall display. Figure 3.10 depicts t.hese relationships in a two 
level description. 



46 CHAPTER 3. BACKGROUND AND RELATED WORK 

R 

/iabs 

Palls • E.bs • D."" • Doveran 

pa~eJ proj J 
icon /

Peon • E"," • Den" 

Figure 3.10: Relationships between levels of PIEs 

State display model 

Anoth~r obvious way to separate into levels is by considering the interface sepa
rately from the underlying system, as is suggested in the interaction framework. 
Harrison and Dix have considered such a state display model [73] in an attempt to 
formalize notions behind direct manipulatiou interfaces. This model considers the 
uoderl}'ing system and the display as separate machines, similar to agents. The 
link between these machines is referred to as state display conformance in which 
operations performed on the display by the user are adequately mirrored by opera
tions performed on the state. State display conformance can be used to assess the 
quality of a graphical interface, as Ahowd, Dix and Harrison have sho..... n [2J. The 
theory of data refinement is dose to that of state display conformance and we will 
discuss this in terms of agent correspondence in Chapt.er 4. 

Templates 

One of Lhe problems with system model~ is that a.lthough they describe interactive 
behaviour they have no conception of how the user sees the system. We demonstrate 
what we mean hy an example from [201 in the context oftlle predictability principle. 
One way [53, 158, 9) oC making a principle of predictability precise is t.o require that 
if the effect of any two input programs are the same, then no future experimentation 
will betray any difference in effect between the systems. Viewing programs as 
sequences of inputs, we can formalize this as below. 

Yp, q E P • ;(p) = ;( q) => Y rEP. ;(,> ~ r) ~ i(q ~ r) 

This notion stresses that the effect is sufficient to determine the equivalence of 
distinct system states. From a nser's point of view the fact that the two effects are 



3.2. A SURVEY OF RESEARCH WITHIN THE FRAMEWORK	 47 

identical may not be sufficient. A stronger requirement of predictability (which as 
it happens may be too strong for any realistically complicated interactive system) 
is that the equivalence of the effects will depend on the user's perception of whether 
the effects are equivalent. If we regard the display as what the user perceives then 
it may be more appropriate to define predictability as below. 

'<Ip,qE P. di,play(i(I')) = di,play(i(q))=>'<IrE p. i(p~r)= i(q~r) 

This says that if the viewable effects are the same, then the obtainable effects are 
indistinguishable (though not necessarily visibly indistinguishable). By indistin
guishable we mean that no experimentation by means of input r would betray a 
difference. 

We can go further than t.his and add structure to the model t.o incorporate claims 
about., say, user attention. Certain components of the display ale more likely to be 
noticed in making decisions about the next action than others. Some parts of what 
is seen of the system will be different in a way that is irrelevant to the future of the 
application (e.g., more general system status informatiou and the time and date). 

One way to add struct.ure to the model is through the use of templates as 
suggested by Harrison, Roast and Wright [74]. Instead of maintaiuing a single 
display and result. function, we can allow for many display and result mappings on 
the effect space, each of which we will refer to ~ either a display template or a 
result template. It is beneficial to formulate properties of a design in terms of the 
relationship between the ephemeral and immediate display and the end result. In 
essence, that is precisely what the predictability property above is doing. Since we 
have access to a result function in a red-PIE, it would probably be berleficial to 
rewrite the above predictability property including the result. 

'<Ip,	 q E P. di,play(i(I')) = di,plaY(i(q)) =>
 
T/ rEP. result(i(p r. r)) = reMJ.lt(i(q r. r))
 

This says that if the viewable effects are the same, then the obtainable end results 
are indistinguishable (though still not necessarily visibly indistinguishable). 

The main use of templates by Harrison, Roast and Wright was in an invest.igation 
of cyclic properties of a bibliographic dat.ab~e. A structure that is particularly 
common in menu-b~(>d systems is a cycle. A main menu presents an initial set of 
options, each leading to a dialogue se<Juence. The sequence affects some change in 
the result only at its conclusion, when the main menu is redisplayed aJid the cycle 
;s complete. Hence in the database, a select entry in the main menu will lead to 
a cycle that results in the selection of a reference given a particular name or date 
or source. Recognition of the cycle is e.~pecially useful t.o the designer if the user 
understands and relie.s on it for pffeetive interaction. It then becomes important 
t.o ensure that some display template at the st.art and end of the cyde is dearly 



48 CHAPTER 3, BACKGROUND AND RELATED ","'ORK 

significa.nt to the TIser and that whatever effect the system has on the associated 
result template takes place at the end. The cycle is then, in some circnmstances, a 
miT rat of the task as it would apply in the TIser model. Claims about the interaction 
from a task point of view, perhaps the identification of possible error sitnations. 
can then be formulated in terms of the cycle and experimentally observed through 
evalnat.ion of actual use. 

Templates are determined from empirical evidence, as were the semantic features 
of TAG, The use of templates marks an initial encroa.chment of solid psychological 
information into the system modeling cornpouent of Her. A mono constructive view 
of templat.es in terms of attributt's is one of the main rf'asons for a refinemf'nt of the 
agent model in Chapter .5. Templates, therefore, form the basis for an interactive 
de:oign and analysi::; method described iu Chapters 7 and 8. 

Limitations and application of abstract models 

The biggest danger of any forOldl dpproach is thdt the designer mdY attach more 
credenre to it than it dpserves. This is particuldrlr trne of dbstract models of the 
sort described here. An unwary user of the techniques mar believe that formal con
sistency with some of the principles and models descrilJf'd dbove was sufficient for a 
syst.em [0 be usable. The fallary of this is obvious to anyone with an understanding 
of HCI, but formalisms can be both seductive "'nd blinding. It is therefore essential 
to understand t.he limitat.ions of the ahstract terhniques above. 

Rather than being snfficiellt conditions for u:"ahilit,y. t.he vdrious formal state
ments of principles t.end to be /j[Ce.~SU1·Y conditioll.~. A formalization of the familiar 
slogan ·what yon spe is what you get" (l~'TS/HTG) as done by Dix [48] and 
Thimbleby [161] and Sufrin and He [158J says thaI it is possible to work out the 
end result of a system by interactively examiuiug it. This is essential if t.he system 
is to be usable at all, but does not tell us how easy it is to work out the res\.Ilt, 
or how visually and spatially faithful a repre~eIltatjon of the [f>sull we see on the 
screen. The latter of these problems is perhaps ea..~y for the designer to verify, and 
mistakes will be obvions, hut the former rpquirp:" a deep understanding of human 
cognition that is unlikely to bp formalizable to thp same extent. 

Some of the psychological issues are just bpyond thl" scope of the models, and 
one can simply not.e t.hat. evpn when the system has passed the formal tests, more 
human rentred analysis mnst be applied. Indped, t.hl" introduction of templates was 
specifically geared to marrying together the abst.ract principled approach with an 
evaluative approach. In ordpr to satisfy the formal prillciple the desigller would 
have to give the relevant templatp fnnctions. Thf'!'c rall then be validated either 
empirica.llyor by a hnman factor.~ specialist. Similarly. the stm/rgies by which the 
user caninvestigate the system state [-I8J are a form of llser program, alld can thus be 
validated against executable cognitive models. or agaill by direct evaluation. Often 



49 3.2. A SURVEY OF RESEARCH WITHIN THE FRAMEWORK 

the simple fact that the operations and deductions that the user must perform have 
been explicitly stated as part or the formal proof will be sufficient to see whether 
they are reasonable or not. 

The other major non-formali~abte part of the use of these models is deciding 
which principles are applicable and de~irable to a particular application, and also at 
what degree of abstractioll to apply them. A system may be understood at \'arious 
levels of abstraction, such as concrete keystrokes and mouse actions, syntactic unit.s, 
or semantic commands. The models can often be applied to the system at each 
level. Some of the propertie~ will be universally applicable to all systems at all 
levels, but in general the desigllPr will be more selective. So for instance, in a 
command based operating system, one expects to have a total view of the current. 
command being edited, that is, it. obeys a very strong visibility principle. However, 
when tbe command is snbmitted (entering the carriage return key) the results of 
it on the file system will bf' far Ipss visible, usually requiring explicit commands to 
view files, directories etc. Arguably, in \.llis example, the st'mantic level could do 
wit.h being more visible too, but it is a design decL~ion as to what degree of visibility 
is required at which level. 

In short, as with any met.hod or model the domain of applicability of abstract 
models must be born in milld when they are used or evaluated. 

A further and related issue involves the refinement of one abstract lewl in order 
to more closely approximate an execut.able system while still preserving the inter
active properties. Having produced specifications that. satisfy desirable properties, 
there is no guarantee that t.he structures used in the specification designed to mat.ch 
the us('r model will be well-suited \.0 implementat.ion 

The major aim of the above models has bf'en to defi,u; useful properties. There 
Is then the issue of actually building systems that satisfy them. 

Having produced specifications that satisfy desirable properties, jt i, probable 
that the specification structures designed to match the user model art'" very ill-suited 
to implementation. This conflict. will arisf' with uny specification of interactive 
systems. If a designer leans towards efficient implement.ation structures, then it is 
likely that user requirements are badly defined, whf"re<u; if she leans towards the 
user then iueflicient st.ructures result. Hence the desire in this thesis to provide 
a more constructive approach via agents that i.~ at once amenable to the kind of 
analysis of the abstract models but also sympathetic to softwart' engineering. 

But our agents are certainly not the first const.ruct.ive approach to the applica
tion of formal methods in Hel, and we will review those now. 

Dialogue specification 

A problem with the use of general specification techniques is that Ihey are too 
general. The dialogue of the interaction will uot be separate in the notaLion, instead 



50 CHAPTER 3. BACKGROU!'W AND RELATED WORK 

it must be modelled. The dialogue component may be packaged and used within the 
standard notation, allowing the free mixture of interface and standard forms. This 
gives ma.ximum expressiveness. but at the cost of losing the dialogue/application 
separation which is freqnently seen as desirable. In particular it makes it hard to 
analyse the dialogue structure M a separate part of the system. 

There have heeu various attempts to add dialogue specification components to 
standard notations. These may be simply sugarings that are then translated into 
the underlying notation to give them semantics, or have a separate level of semantics 
given them. In either case, the actual concrete notation makes a clear separation 
between the two styles of specification. 

EPROL 

Hekmatpour and Ince [79], for instanc~, have a .~eparat.e user interface design com
ponent in their w'ide-spedrllm 1ll11y'unye. EPROL. This interface component seems 
rather disappointing however, being simply a teletype forms and menu description 
snch as may be included with many data-baBe languages or fourth generation lan
guages. The dialogue is apparently de.~crjbed entirely within the main specification 
language and may thns be easily obscured. 

Statecharts and VDM 

Marshall [105J haB merged a graphical dialogue specification technique baBed on 
Harel's ,tatecharts [67, 68] with VDM. This includes standard constructs such as 
sequence. choice and iteration in the dialogue, each terminal dialogue "box" is 
related to a piece of VOM specification. She also suggests that the user's actions 
in this ca.n be represented by a parallel diagrammat.icjVO!\J description, but in her 
examples this diagram consists of a single hox, so the claim is not supported. This 
exposes the fact that the diagrammatic notation does not support parallel activities 
(such as multi-window dialogues). It would he quitf' f'asy to add such a construct 
at the diagrammatic level, but the meaning when t.rafi.','lated into VOM semantics 
would not be clear. The actual acceptance of input is handled by "shared" global 
variables with the user "process" and is hardly dean. Another problem, is that each 
piece of VOM works on glohal variables. making it difficult to trace the semantic 
impact of particular user actiolls without analysing the pieces of VOM in detail, 
which runs counter to the desires of dialogue separation. 

A gra.phical notation has the considerable advantage that it is easier to com
prehend initially. A disadvantage of a graphical notation is that it is difficult to 
formulate properties, or theorems, within a strictly graphical notation. Since our 
work emphMizes the use of a formal notation for the precise expression of interac
tive properties that can then be used to analyze and develop an interactive system, 
tills laUer disadvantage far outweighs the advantag~ of comprehensibility. It is a 



3.2. A SURVEY OF' RESEA.RCH WITHIN THE FRA.MEWORK 51 

reasonable objective in the future to extend our agent model to include a graphical 
representation. 

SPI 

Alexander [10, 11, 12J has de~igned an executable specification/prototyping lan
guage around CSP and 'fnf>too called SPJ, (specifying and prototyping interac
tiou). Me·too is an executable specification language based on VDM and imple· 
mented under several dialeet~ of LISP. The CSP forms the dialogue speci~cation 

part, whertc'as the me-too :mpplies the semant.ics. This is rather similar t.o the way 
CCS and ACT-ONE are combim·d in LOTOS[87. 164J. 

SPI's dialogne component i~ ("aIled fVfnlCSP, it includes most CSP constrncts, 
sequential action, dlOice. iteriltion, and most importantly parallel composition. 
The parallel compositio(l makps it possible to express concepts such as the choice 
between monse and k<,yooard input. The cxpression of choice is based 011 the oc
currence of events and is th\ls more clear. It inherits drawbacks from CSP however, 
such as the lack of direction iII <'vents, it is not evident iu the syntax whl'ther an 
event is due to external input, produces external out.put or is an internal synchro
nisation between parallel processps. This can be confusing in dialogue design when 
there is an obvious direction of control (low. Howf>ver, the problem is largely miti
gated for user I/O by til(' jmJicious choice of event names. It is thus only internal 
events that remain confusing. Tbe struc\.ure of possible events is static lOO. This 
would make it hard t.o deal with the- dynamic creation of windows for instance. This 
lack of dynamic confignration (and related lack of parameterisat.ion) is common to 
many dialogue languages, it would be easy to add to most., but would typically 
reduce the possibility of analysis of the dialogue st.ructure. 

The semantic part of SPI is called CVCTlt{SL. Although it is based upon me
too, it is intended t.o operate with various languages, in particular a C version is 
available. The host language independent part consists of several elements: a clause 
giving the global values needed for the event, a pre-condit.ion expressing when the 
event can occur, output and inpllt parts. The hosl, language part, simply describes 
what update!:> to global valu<'s are possible. The glohals used and updated are 
made explicit and thus tracing the effects of events is ea.'lier. It would be possible 
to use other specification notations slIch as an algebraic notation or Z a.~ the host 
langua.ge, with a subsequent sa.crifice in executability, a choice we consciously make 
(at lea.'lt initially) in designing t.he agent language. 

SPI ha.'l a prototyping tool for use when only thf> eventCSP dialogue description 
ha.<l been produced. This allows the designer to examiue possible erent traces. 
La.ter full protot.ypes using th(' me-too version or eventISL or the C version can 
be executed. One drawback with the implement.ations is that they do not offer 
the full parallelism of the esp. This is because the underlying langnages t.hey 



52 CHAPTER 3. BACKGROUND AND RELATED WORK 

were built. upon did not allow full multiplexed. non-blocking I/O. They fake the 
nondelerminism as long as they can for internal events, but when one of several 
choices of user input device are possible, the system makes an arbitrary choice. 
~'Iost \"ersions of C on UNIX or pes have system calls for non-blocking I/O, so it 
should be possible to rectify this, at the cost of some loss of portabilit.y. 

Anderson '5 work 

Anderson has built on the claims of the PIE model with a more constructive re
finement of it[14, ]5]. He provides explidly an input language generated by a 
conte-xl-frce grammar, wherpa-o; Ill" inpllt language of the PIE model imposes no 
such structure on the dialogue. A st.at.!" description is separated from t.he ontpnt, 
with a meaning function mappilJg input constructs to state transitions and a dis
play function mapping the resulting state to its output presentation. As such. 
Anderson's model contains thn'f' of the components found in our own lllteracl.ion 
framework, though we represe/lt bot.h Input and Output as state machines and he 
does not. The important contrihllt iOll of Anderson's work is that he provides con
crete examples of a system, a file browser. and translates the abstract properties 
expressed as theorems on the specification and then proves their satisfaction. 

Interactive processes in Z 

The work of this thesis is based on another constructive refinement of the PIE 
model given by Sufrin and He's descript.ion of LIJf' design, analysis and refinement 
of iuteractive processes [158J. lIe [76, 77J and Josephs [92) independently gave 
descripLious of a state-based version of CSP in which the events of the language 
were coupled to transitions of an underlying state madline. Sufrin and He provided 
the description of the state machine in the Z language and encapsulated a CSP-like 
synt.ax within Z for the event lipecirication. The import.ance of this work can be 
seen in several ways. 

The PIE model served as the motiva.tion for the int('ractive processes, One of the 
requirements for interactive proce55e5 was tha.t they would be able to express the 
same types of properties expressible with a PIE. Sufrin and He convincingly satisfied 
this requirement, ultimately providing a very systematic and intriguing categoriza
tion of WYSIWYG-like properties in terms of the display and resIlIt mappings. 
Our own derivations of interactive properties iu Chapters 4 and 7 are based on this 
technique. The link between the CSP and Z is similar to one suggested by SPI and 
mentioned earlier, but this parti(·ular work showed more of the advantage of such 
an approach by showing its use in formulating properties on tbe specification that 
could then be the subject of proof and refinement. 

Z is becoming increasingly familiar ill both academic and industria.l circles, 
so the presentation of interactive processes in Z :"howed convincingly that HCI 



53 3.3. CONCLUS10NS 

concerns could be expressed in the language of software engineering, not s() much 
as a separate and disparate module in development but as an integral component 
with the software development li[('cycle. 

Conclusions on per/onna7lce and presmtation 

All immediate conclusion arising from this review of system based work on formal 
methods in HCI is that. except for the Sufrin and He model, there has been little 
effort in the last four years on incorporating the abstract principles motivated by 
the PIE model into a more concrete design practice. One of the principal aims of 
this thesis, therefore, is to investigate a further constructive formal method and its 
links to interactive system desigll and analysis. 

He and Josephs' work 011 state-based csr strongly suggests that the monolithic 
presentation of interactive processf'S can aud should be made as composHional as 
a process algebra allows. Outside of interactive system design, there has been an 
iucreasing interest in the development of model-orient.ed specification techniques 
which more adequately address the. modularization necessary for the descript.ion of 
large systems. In Chapter 6 we will discuss several of the at tempts to eXltnd t.he Z 
notation to capture object-oriented techniqnes. The agent language developed in 
this thesis is an attempt. to address both the need for better modular spedfication 
notations and also providf' a Rexible and consistent notation to express internal 
state-based behaviour as well as exterual event-based behaviour. The resulting 
notation will allow us to formally express interactive properties at the t.ask level. 
This implies that Ihe agent model can be used in an interactive design method 
which is linked to task analysis information. 

3.3 Conclusions 

We have seen how the interaction framework of Chapter 2 Was influenced by pre
existing general accotluts of the structure of interactive systems. The contribut.ion 
of the framework is two-fold. It first provides a uniform language for describing 
the three major components of an interactive system, the User, the System and 
the mediating interface (in terms of Input and Output). The unified treatment of 
these three components opens up the possibilit.y for a cross-fertilization of research 
on both the system side and user side of interactive system analysis and design. 

The second contribution of the framework is that it provides context for research 
in HCI. Having completed this contextualization we can see where the work in this 
thesis fits in the general scheme of interactive system analysis and design. We intend 
to provide a constructive model of the System, Input and Output in terms of the 
agent model and its associated language. This model will provide the means for 
a compositional description of realistic interactive systems. We will concentrate in 



54 CHAPT£:R 3. BACKGR01JI'OD AND RELATED \\fORK 

our descriptions on revealing t.hose features of the design which highlight. properties 
of the interaction between the user and the system. In doing so, we will provide 
formal a.ccounts of existing interactive design heuristics which can lead to a more 
principled design practice. 

In tbe next chapter we will describe both formally and informally interactive 
properties that are derived from the interaction framework. In order to relate 
these properties to a design and analysis methodology, we will need to provide 
greater detail on the struet.llre of agents in the refined model of Chapter 5. Having 
refined the agent model, we will provide a design language for agents in Chapter 6 
which matches more closely than the standard Z notation how a designer thinks of 
describing an agent. In Chapters 7 and 8 we will link the refined agent model and 
notation to a design methodology for generating descriptions of interactive systems 
and analyzing existing system based on empiricall>\'idenre of Ilow user's understand 
the tasks the system snpports. 



Chapter 4 

Properties of interactive systems: 
Part I 

The purpose of this the:'\is is to provide a. means for designing interactive systems 
which con be analyzed ..... ith respect. to desirable properties to enhance usability. 
We have established the context of this research iu t.he previous two chapters. In 
this chapter we will investigat.e the kinds of properties which influence usability. 

We present a catalogue oj' interactive properties, discussing each entrJ in terms 
of the interaction fra1Tl('work and/or the simple agent model. This catalogue is 
not intended to be complete ill the sense that it lists every property of an inter
active system that could possibly affect usability. The artillery with which we aTe 

equippt'd at this point is not powerful enough and it is even doubtful that such a 
complete catalogue could be compiled. "Ve first inspect. the interaction framework 
to uncover properties of the translations which affcct overall usability. providing 
examples within real systems. The properties of interest for translations in the 
framework concern the ease a;<Jsociated t.o the t.ranslation and the coverage of the 
translation, and we can attempt to formalize those notions. Other inter<ietive prop
ert.ies have been discussed in t.he PIE model literature and the Sufrin and He model 
which pert.ain to the relationship between the- System and the Input and Output 
componenb of the framework. Assuming a compositional model of the agent., which 
we will define explicitly ill Chapter 5, these propert.ies can be defined over a. single 
agent. 

Overview of chapter 

In Section 4.1 we will give an iuformal account of properties of translations within 
the interaction framework. The intent of Ihis informal section is to motivate how 
the coverage and ease of a translation affects u.~ability. In Section 4.2, we begin 
the formal treatmcnt with the definition of a defincdness ordering on t.ranslations. 
Though this ordering directly addresses coverage of a translation, we see jts use 

55 



56 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART I 

mainly as the basis for a refinement ordering on the external behaviour of agents. 
\Ve do not pursue refinement of ageuts any further in this thesis. In Section 4.3, we 
address the ease of a translation as a ('orrespondence relation between agents similar 
to treatments of data refinement. The remaining sections of this chapter apply the 
Sufrin and He method for da..o;sifying interactive properties as relationships between 
inpnt history and state or response history. We conclude the chapter by indicating 
how th(' agent model most be altered to accommodate more salient descriptions of 
interactive properties relating results and displays. 

4.1 Properties of translations 

Figure 2.3 depicts four separate Irans]atiolls between t.he components of the inter
action framework. Properties of t.llOse translat.ions have consequences toward the 
overall usability of the interactive system. In this section we will discu~s qnalita
tively how those translation~ affect. llsability before attempting to formalize prop
erties of the translations in the next section. 

4.1.1 Hutchins, Hollan and Norman distances 

Hut.chius, Hollan and Norman have used the exec:n!ionjevaluation cycle of interac
tion as the basis for an inforlIlal understanding of direct manipulation [85J. Crucial 
to theirqnalitative account of the east' of use that results from dired manipulation 
interfaces are two notions of distance-semantic and articulatory-both of which 
are minimized in effective interactive ~ystems. They classify input and output lan
guages in the more general category of interface languages. Any expression within 
an interface language has both a meaning and a form. Semantic distance concerns 
the translation between the user's intf"flt.ions and the meaning of the interface lan
guage. It is measured by the expressiveness (Is it possible t.o say what one wants to 
say in this language?) and conciseness (Are simple task expressions translated into 
complicated input expressions?) of the input language. The articulatory distance 
is a measure of the correspondence between the meaning and the form. This can be 
measured in terms of the link betweeu the structure of the inpnt or output terms 
and their intended meaning. For example, input to a graphical drawing package 
will be assisted by gesture input wit.h a mouse, or touch-sensitive screens will be 
used to provide more natnral illdicative iupnt (e.g., move that item to there). Mon
itoring a. variable in a process control system may be aided by output in the form 
of a meter reading or a continuolls graph, instead of a semantically equivalent table 
of time-stamped values. 

The translation from user intention to user input is influenced by both the 
semantic and articulatory distances associated with the input interface language, 
as the user translates from the goal in the task language to the meaning of that goal 



4.1 PROPERl'IES OF TRA!'lSLATIOr-;S 57 

and its subsequent foml within the input interlace language. Similarly, semantic 
and articulatory distances affect the translation from user-perceived system output 
to user assessment. Semantic and articulatory distance measures are applied to the 
execution as well as t.he evaluat.ion phase of in.teraction. They attempt to answer 
questions about the possibilities enabled by tbe translation and the ease of the 
translation the user and the interface. Figure 4.l portrays the Hutchins, Hollan 
and Norman sellse of articulatory and semantic distances within our in1.naetion 
framework. 

o 

I 

[ r;,~r" 

0' 
outr-·u~ 

mean L-" 

"n'.'·ulat.-,ry 
Qlsta~,c" 

I' 
1 ".,,,t 

,,-.e.'n ,co' 

~ u 
dLstanc~ 

task 

~ 

interface interface
 
fonn meaning
 

Figure 4.1: Hutchins, Hollan and Norman '5 distance concepts within the interaction 
framework 

Had Norman's initial execut.ion/evaluation cyde been more detailed on t.he sys
tem side, it may have prompted Hutchins, Hollan aud Norman to haw extended 
the definition of articulatmy and semautic distance to the correspondence between 
the flystem and the input and Ol1tput lauguages of the interface. 

Since Hutchins, Hollan and Norman have not provided a quantifiable metric to 
these notions of articulatory and semautic distance, we feel uncomfortable referring 
to them as distances. It is for this rea.<;ol1 that we no longer refer to the descriptions 
of properties on translations as distances. 1 

4.1.2 Articulation 

The User's fonnulatiou of the desired task to achieve some goal needs to be artic
ulated in the input language. The tasks are responses of the User and they need 
to be translated t.o stimuli for the Input. As pointed out above, this articulation 

lin an earlier paper j5), qualiLies allached to each t.ranslation irl the framework were referred 
to ~ distances 



.,8 ICHAPTER 4. PROPERTIES Of INTERACTIVE SYSTEMS: PART 

is judged in terms of the coverage from tasks to input and the relative ease with 
which the translation can be accomplished. The task is phrased in terms of certain 
p.~ychological attributes that highlight the Important. features of the domain for 
the U,~f.T. If these psychological attributes map clearly onto the input language, 
then articulation of the task will be made much simpler. An example of a poor 
mapping that is common in our everyday lives occurs in a large room with overhead 
lighting controlled by a bank of switchfOS2 . :vIan)' times it is desirable to control the 
Jighting such that only a certain section of the room i~ lit. \Ve are then faced with 
the puzzle of determining which switches control which lights. The consternation 
resulting from repeated experimentations wit.h the switches to .a.chieve the desired 
lighting effect can be traced to the difficulty of articulating a goal such as "Turn 
on the lights in the front of the room" in t.he input lauguage, which consists of a 
linear row of switches which mayor may not be oriented in a manner suggestive of 
their operation. 

Examples iu which articulation affl:'cts the l:'CLl3P or possibility of interaction with a 
computer systems are apparent as welL \.1uch of the allufl> of yirtual reality systems 
is achieved by novel input devices, such as a data glove, which are specifically geared 
toward easing articulat.ion. Speech recognizers make it possible for disabled users 
to input t.ext. when t.yping via a st.andard keyboard is impossible. Syst.ems which 
track t.he eyes of t.he user can makl:' point.ing t<l1iks possible when input. through a 
mouse or t.ouch are not possible. 

4.1.3 Performance 

At the next stage, the responses of the Input are translated t.o stimuli for the 
System. Of interest in assessing this translation is whether the translated input 
language can reach as many states of the System as is possible using the System 
stimuli directly. This is similar to the notions of reachabilil.y defined by Dix and 
Runciman [54, 48] in the PIE model. For example, t.he remote control units for 
some compact disc players do not allow thl:' user to tmn the power off on the player 
unit, hence the off state of the player cannot be reached using the remote control's 
input language. On the panel of the compact. disc player, however, there is usually 
a button which controls the power. The l:'ase with which this translation from 
Input t.o System takes place is of less importance becanse the effort is not expended 
by the user. However, there can be a real effort expendl:'rl by the designer aud 
programmer. In this case, the ease of the translat.ion is vip wed in terms of the cost 
oC implementation. 

2This example comes courlesy of Donald Norman [1151 



4.1 PROPERTIES OF TRA.\'SLATIONS 59 

4.1.4 Presentation 

Once a .'!tate transition has occurred within the System, the execution phase of 
the interaction is complete and t.he evaluat.ion phase begins. The new state of 
t.he System must be communicated to t.he User, and t.his begins by translating 
the System responses t.o t.he transition int.o stimuli for the Output component. 
This presentation t.ranslation must preserve the relevant system attributes from the 
domain in the limited expressiveness of t.he ontput devices. The ability to capture 
the domain concept.'l of the System within t.he Output is a question of possibility 
for this t.ranslation. 

For example, while writing a paper with somf' word processing package, it is nec
essa.ry at times to see both the immediate surrounding text where one is currently 
composing, .say the cnrrelJt paragraph, and a wider conl,ext within the whole paper 
that cannot be ea~ily displayed on oue screen (say the current chapter), When 
moving files bet.ween tbe directories in a hieran:hically arranged file .'!y~t.rm, such 
a.'l UnixJ , it is necessary for th", user t.o know the current position in the directory 
structure in order to usc relativf' path namf'S effectively. 

The Information Visnalizer developed at Xerox PARe uses three dimensional 
presentation techniques t.o pl'Ovide more context in displaying hierarchical informa
tion thal would not otherwisf' be possible in two dimensions [33, 138J. They give 
the example of the display of the hierarchy of job positions in a large company. 
A standard two dimensional display of such arl organizational chart would be far 
too large to display on a display screen. A three dimensional representation in the 
form of a cone-tree allows the whole chart to appear on the display with ii readable 
portion on top. The advantage of the cone-trCf" is that. it. more ea.'lily displays the 
context within which a portion of the hierarchy is viewed. At all times it is possible 
to trace the path along t.he hierarchy from a viewed portion to the root. 

The importa.nce of this translation is t.hat. differences between two System states 
be present in the Outpuf. Hidden differe!lces result in an increased burden on the 
user who is trying to assess the result of previous input relat.ive t.o a specific task 
goal while also t.rying to predid the outcome of fut.ure interact.ions ba,;;ed on the 
current output. Lack of amhignit.)· between distinct System stat.es and the Output is 
at least a necessary condition for overall predictabilit.y and proper goal assessment. 

4.1.5 Observation 

Ultimately, the user lllllSt interpret. the output. to evalnate what has happened. 
The response from the Output is translated to stimuli for the U.ser which trigger 
assessment. The obser....al.iOTl translation will address the ease and coverage of this 
final translation. For example, it is difficult. to tell the time accurately on an 

3Unix is a registered trademark. or AT&T Laboratoril's. 



60 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART I 

unma.rk~d analogue clock, especially if it is not oriented properly. It is difficult in 
a tty interrace to determine the result of copying and moving files in a hierarchical 
file system. Typeset.ting a. report using one of the popular typesetting programs 
available today is made virtually impossible without some previewing facility which 
allows rapid (and tree-saving) feedback to assess progress. 

4.1.6 Assessing overall interaction 

The interaction framework is presented as a means to judge the overall usability 
of an elltire interactive system. In reality, all of the analysis that is .'lllggested 
by the framework is dependent on the current task (or sel of tasks) in which the 
User is engaged. This is not surprising since it is only in attempting to perform a 
particular task within some domain that we are able to determine if the tools we 
use are adequate. In my own expt"rience, I have fOlllld that different t.ext editors 
are better at different things. For a particular editing t<l.sk, I choose the text editor 
t.hat I believe is best suited fat' illt.erartion relative to the t.ask. The best editor, 
if I am forced to choose only one, is the one that best suits the tasks that I most 
frequently need to do. Therefore, it is not too disappointing tbat we cannot extend 
the interaction analysis beyond the scope of a particular task. 

A simple example of programming a VCR from a remote control shows that all 
four translations in the interaction cycle can affect the overall interaction. Ineffec
tive interaction is indicated hy the user not being sure the VCR is set to record 
proper!}. This could be because the user has pressed the keys on the remote control 
unit in the wrong order; this can be classified as an articulatory problem. Or maybe 
the VCR is able to record on any channel bnt the remote control lacks the ability 
to select channels, indicating a coverage problem for the performance translation. 
It may be the case that the VCR display panel does not. indicate th at the program 
has been set, a presentation problem. Or maybe the user does not interpret the 
indication properly, an observational error. Anyone or more of these deficiencies 
would give rise to iueffective interaction. 

Throughout this section, we have been referring to the two features of trans
lations, the ease with which they happen and the possibilities or coverage they 
provide. With overall interaction, we can make similar distinctions between the 
ease of assessing the result of the previous interaction with the intended goal and 
the ability to achieve that goal. It is desirable to make assessment as easy as pos
sible. However, if attainment is difficult at the same time, then the user is forced 
to traverse the interactive cycle many times, and this is not desirable. The best 
system would maximize ease of assessment and goal coverage. 

More examples of how the interaction framework can be used to assess the overall 
effectiveness of interaction have been provided by Abowd and Beale [4, 5J. We will 
move on now to show how coverage and ease of translations can be formalized. 



4.2. FORMAL PROPERTIES OF TRANSLATIONS 61 

4.2 Formal properties of translations 

A translation takes sequences of one language of events-the source language-
to sequences in another language of events-the target language. In the interac
tion framework, the translations of articllia/ion., performance, presentatilJn, and 
observation each have their source and target languages fixed by some component. 
We introduce the generic set of translations with fixed source and target languages. 

Tronslalion[S, T] == S l--+ T 

We refer to element.s in lhe domain of a translation as SOurce elements and rlements 
in its rangl:' as target dements. We can dpfine propert.ies of the translation relation 
in terms of its possiiJility, covemge and ambiglldy. 

Possibilil,y indicates bow much of the sonrce language is translatable. A trans
lation / is said to be le,~s lJartiallhan t' if every source element of t ' is also a SOurce 
element. of l. The source elements of a translat.ion are exactly the domaJn of the 
t.ranslation, so possibility ,an be IJhrased as the following predicate on domains: 

dom t' ~ dam r. 

Coverage indicates how much of the target language is expressible ~ a trans
lation of source element.s. A t.ranslation f is said t.o be more expressive than t' if 
every target element of /' is also a t.arget element of t. The target elements of a 
translation are exactly t.llt' rangf' of the translation. Coverage is therefore the same 
as the level of surjectivity of t.he translation. This property can be phrased as the 
following predicate on ranges: 

ran (' ~ ra.n t. 

For a given translation, t, a source element can be translated into many different 
target elements. In t.hat sense. the translation is ambiguous. If the translation is 
unique (or all sourcl:' {'lprn{,llts, then it is unambiguous. Two translations over t.he 
same source and t.arget languages can be compared to determine if one is less 
ambiguous than the other. \\le say that l i~ les.'i ambigno1ls t.han t' if every source 
element of i' ha..'l fewer possible t.ranslat.ions in I.. We represent this as the following 
predicate on image set.s of somef' elements: 

"fes: (domt1ndomf) 

• t(I{" JD" t'G{ ,-, lD· 
We can combin{' the propert.ies of possibility, coverage and ambignity to create 

a partial ordering on t.ranslations which will give a comparative measure of defined
ness for translations on fixed source and target. languages. A translation t is said to 



62 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART I 

be more defined than tt, written t moredefineqs,T] t', iff t provides more possible 
translations of the source language, covers more of t.he target language and is less 
a.mbiguous than I'. 

[5, Tl~~~~~~~~~~~~~~~ 

moredefined: Trun5!ation[S, TJ +-+ Translalion[S, T] 

t moredejined i' ~ ( dom t' c;;:: dom t 
/\ ran I' c;;:: ran t 
/\Ves:domt' 

• '(I( es lD e,: t'(I{ " JD) 

This relation is reflexive, aut.isymmetric and transitive, so moredefined[s,TJ does 
indeed induce a partial ordering 011 the t.ranslations betwel"o sou fce language S 
and target language T. This partial ordering relation is similar to a relational 
generalization of Manna's less-defined property of functions [104] which has beeu 
discussed by Mili and Mili and Boudriga et ai. in their work on developing relational 
heuristics to program refinement [108, 2GI. 

Definedness directly addresses the informal property of a translation's coverage, 
as discussed in Section 4,1. We can use thi~ ordering as a comparative measure of 
the agents whose external behavionr manifests some translatiou in the framework. 
Everything else being the same, a more defined tra.nslation is preferred_ However, 
the major use of such a definedness ordering is as a refinement ordering, which we 
do not. fuHy exploit in this thesis. 

4.3 Correspondence between agents 

Definedlless only indirectly addresses questions of ease of a translation. A more 
direct approach is motivated by HUlt:hins, Hollan and Norman [85, p. 317-318J: 

In a system built 011 the model-world metaphor, the interface is itself a 
world where the user can act, and which changes state in response to 
user actions. The world of interest is explicitly represented and there is 
no intermediary between user and world. Appropriate use of t.he model
world metaphor can create the sensation in the user of acting upon the 
objects of the task domain themselves, We call this aspect of directness 
dIrect engagement. 

The ease of a t.ranslation between components in the framework, t.herefore, 
relies on a correspondence between thf'ir f'xternal stimnli and responses and the 
internal states to which they are linked in thf'ir agent representations. We will now 
investiga.te how to formalize such a corrf'spondence between agents. 



63 4.3. CORRESPONDENCE BETWEEN AGENTS 

CarT'"espondence concerns the relationship between the state and stimuli of two 
agents. We assume tbere is a relationship between the underlying state spaces of the 
two agents and we investigate whether the operations tbat can be performed on one 
agent are sufficiently mirrored as operations on the otber agent. Witb resped to in
teractive systen~s, a similar feature was introduced as :stat.e display confo7·mdnce. by 
Harrison and Dix [73J and hM been further discussed by Abowd, Dix and Harrison 
[2J with respect to graphical interfaces. The notion of state display conformance is 
very similar to the notion of data refinement (or data reification), which has been 
treated by He et al. [78J and Coenen eI a.l. [37] in a general relational format. We 
will use the ideas of data refillemeut in forming our definition of correspondence. 

The purpose of dat.a refillement is to characterize how the function of an ab
stract description of a state machine can be adequately captured in a more concrete 
representation. A concrete represeutation is supposed to be indistinguishahle from 
it:s abstract counterpart, in the seuse that an outside observer interacting with the 
concrete represeutation cannot distinguish it from the abstract one. Tbe concrete 
representation is then a suitable simulation of the abstract [76, 170]. We are not 
coucerned here with the abstract-concrete refinement. Rather, we are concerned 
with the relationship that exists hetween the System and the interface (Input along 
with Output) of an interactive system. The observer in this ca.'!e is the Usel', and 
we want to stipulate that operat.ions performed on the interface wbich the Usel" 
observes accurately reflect operations being performed on the System. In this sec
tion, we will develop a formal definition of correspondence and in Chapter 7 we will 
iuvestigate further its relevance to interactive systems. 

We will describe correspondence as a const.raint between two agents, say A and 
B. Figure 4.2 gives a picture of t.he correspondence we intend to describe We want 

ei-l e, 
AgenlA =9 ASi_l~ AS, AS,+, 

0••• ,~1 , ,~1 • ••'1 
~ 

., . ...AgentS '9 BS BS' BS" 
tri-l tri 

Figure 4.2: Agent correspondence 

agent B to adequat.ely mirror some funclionality of ageut A, i.e., we want operations 
performed on A to be matched by operations performed on B. The matching is 
done in terms of a given relationship which holds between the state descript.ionl' of 



64 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART I 

A and 8, and we will call this relation retrieve (of type B.stutes _ A.states). This 
relation determines from t.he state of B what the state of A should be, and it is 
underst.ood as the interpretation A can make of the state of B. 

To define this correspondence, we begin by asserting that the initial states of A 
and B are related by the retrieve relation. Then for any state that A can attain 
there must have been a way for B to attain a related state. And for any future 
state t.hat A can attain, B must be able to attain a related state. Note that we 
do not demand that at all times A and B are in related stat.es. The transitions of 
A are what determine the states that B must eventually attain, and not the other 
way around. 

The schema AgentCorr gives the formal definition motivated by the above de
scription of correspondence. 

AgentCorr	 _ 

Agent I 

Agent J 

retrieve; states J +-+ states} 

inits J x inits J ~ retriet'e 

'rI( irI, SI), (trl --- tr;' sf) ; I;~~e"ll 

I (Sf,sf) E ir; Ei /mnsfonn l 

•	 3(trj,sJ),(lrJ---lrj,sj): I;~~<"IJ 

I (s;,sj) E trjg transform) 
• {(SI,SJ),(s;,sj)} ~ rdrieve 

We define correspond_ as a relation bet.ween agents indexed hy a retrieving relation 
between their state set.s. The pair of agents (D, R) is in correspondrel if agent R 
corresponds to agent D as defined by t.he schema Agw/Corr with retrieving relation 
ret. 

correspond_ : (Stale +-+ State) --+ (Agent +-+ Agen/) 

correspondrd = { AgentC07T 
I retriel!e = rei. 
• OAgent l 1--+ (}Agent J } 

We have given in this section a Vf~ry coarse treatment of correspondence. In 
ChapterS we will see how correspondence can be treated more constructively in the 
refined agent model using templates. The purpose of the coustructive treatment is 
to formally link the empirical psychological evidence which identifies usefnl template 
information with the heuristic motivation behind multiagent architectures. 



65 4.4. PREDICTABILITY 

4.4 Predictability 

Users interact with any system in order to satisfy certain goals. Fundamental to 
goal sa.tis-faction is the ability to plan interaction which will achieve the goal. In a 
graphic drawing package, the user may want to select one or more of a collection 
of overlapping figures in order to perform some similar operations to them. In this 
case it is necessary that the user be able to predict how to select the figures of inter
est. Predictability is a property of interaction concerning the degree of confidence 
with which a user can determine the effect snbsequent task execution will have 
on the achievement of tIlt' goal. Therefore. predictability is necessary for effective 
interaction and is a crucial measuriug stick by which to gauge the usability of an 
inleractiv{' system. In \.h(· foiJowing, we will formalize how predictability can be 
expressed all agents and characterize levels of predictability within the interaction 
framework. 

A formal treatment of pn~dictability was first. given with the PIE model by Dix 
and Rnnciman [54]. Predictability in the PIE model is defined by an unambiguous 
interpretation function betwef'n programs aud effects. When two programs lead to 
the same effect, then future experimentation will betray no difference between them. 
Letting P represent the set of programs, E the e!fed.s set and I the interpretation 
function between programs and effects (f : P ----l E), a predict.able PIE satisfies the 
following predicate. 

Vp, g, r, p Il(p) = l(q) ol(p ~r) = l(g ~,.) 

This says that the current effect is enough to predict future behaviour. 

In terms of the agent model. predict.abiJity can be seen as an obset'"able rela
tionship between the stimuli arid respOI1S~S. Based on t.he Sufrin and He approach 
to cla5sifying interactive proper\.ie.'i as relationships between input histories and 
state or response histori('s. we can model tbis predictability (and other interactive 
properties) within the simple agent model. 

Viewing an agent as another representation for a PIE, we can see that the 
SL'quences of stimnJi are the programs and the history of responses are the effects. 
From the definition of an agent we derived an external interpretation relation, f,tl, 
which provides a relationship between a program (sequence of stimuli) and the 

rrresulting responses. fA is a relation, not a function, and so our formulation of 
predictability is slightly more cumberr>ome than for the PIE model. One program 
can produce more than one possible sequence of relSponses. Two differenl programs, 
p and q, which yield the same po."sible responses are said to be crteroally equivalent, 

and we write this as P ~4 q. 



66 CHAPTER 4. PROPER.TIES OF INTERACTIVE SYSTEMS. PART 1 

_ ~__ : Agent ---. (seq Event +-+ seq Event) 

_ ~A _ ~ (dam /~rl) x (dam Iyl) 

P WA q" I,,"'(I{plD = I,,"'(I{qlD 

Programs that are initially externally equivalent may cease to be $0 after the 
next stimulus event is received and the agent transforms itself and responds. If any 
such experimentation on equivalent programs betrays no such difference, then the 

programs are said to be externally indistinguishable, and we write p ~t A q. 

_ ~__ : Ageltt _ (seq Et1fnl +-+ seq El!ent)
 

_ ~A _ ~ (dam 1",'1"1) x (domlyl)
 

p ~A q <=} Vr: seq Event _ (p""" r) ~A (q""" r)
 

A predictable agent would be one in which all externally equivalent programs 
are externally indistinguishable. Since it is trivially true that all externally indistiu
guishable programs are externally equivalent (let r == ( ) in the definition above), 

predictable agents can be characterized by the equality of the relations ~ A aud 

'"' =A· 

Pre.dictable : P Agent 

A E Pre.diciable. ¢? (_ ~A _) = (_ ,,£1.4._) 

In the same way that the PIE model can address varying levels of abstraetion by 
suitable definition of the program and effects sets, we also can apply predictability 
at. different levels within the framework. Three levels naturally arise from the 
framework, and we can inve.stigate what predictability means at each of these levels. 
Figure 4.3 depicts the various levels we will discnss. 

At the lowest level, we consider stimuli aud responses of the System alone. Pre
dictability at this level we call algorithmic predietab'ilily. This is the simplest form 
of predictability possible and it is a necessary condition for the remaining levels. 
We a..!Isume that algorithmic predictability is satisfied sO that all programs issued 
to the System which are externally equivalent are also externally indistinguishable. 

At the next level, we consider the physical interface. Predictability at this level 
is perceivable predictability because it is here that contact with the User is possi
ble. Perceivable predictability says that the information provided by the history 
of Output responses is enough to determine how fnture programs received by the 
Input will affect the Output. It is therefore possible that the User could predict 
the outcome of future inpul. 



--

67 4.4. PREDICTABILlTV 

I::::I~, 
per"" ....... ih'...-c:tive
 

Figure 4.3: Levels of predictability 

At the highest level. we move beyond the world of keystrokes and digplays to 
include how the User ()b.~e(yes the Output and understands the Input. I'flleracti(le 

predictability means tIlal !ltat which the User understands of the history of Output 

responses is enough to determine the effect of future tasks. Many systems can 
satisfy perceivable predictability and yet remaiu unusable because of the way the 
Outptd responses are obserwd by the User. 

One feature of I,he agent model which we rely on is its compositionality. This 
will be further developed III Chapter 5. For now, we will assume that components of 
the framework, which are defined as agents, and thl' Iranslations, which are external 
descriptions of agents, can be composed to form more complex agents. If we combine 
all of the components and tra.nslations of the interaction framework except for thl' 
User we have a mer's model of the system, or, more precisely, the designer's model 
of the user's model of the system, depided in Fignre 4.4. The external interpretation 

User's model 

I 

~ u 
~ 

t_""~Jo:1/ 
,nput 

Figure 4.4: The user·s model of the system 



68 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART I 

relation for this a.gent, which we refer to as Itf;"r'~ mol,I' relates information at 
I,he level of how Input stimnli and Output response are nnderstood by the User. 
Hutchins, Hollan and Norman refer to this level of information as the meaning of 
the input and output interface languages[85]. 

A colloquial expression for this interactive predictability would be 

What you. have done up to now determines what you will see from now 

0'. 

There are two separate aspects of this statement to consider, whal is seen aud what 
is remembered. IU~~TJ8 moa" makes explicit the a.~sumptions about what is seen and 
how the User understands the responses from the Output. For example, when using 
a calculator, it may be a safe assumption that nnmberti displayed are interpreted 
in base 10, so imaginp the surprise and consternation when the user enters 9+4 and 
gets back the response D! \Vhat is remembered is import ant because sometimes the 
order of slimuli and responses contaius information crucial for predictability. For 
example, in an interactive drawing package, the order in which overlapping objects 
arc crealed can determine the effect of clicking the mouse button t.o select objects 
when tht selection cursor is located in the overlapping region. 

Predictability as defined above assumes both perfect memory aud equivalence 
over the ent,ire history of the interaction. This i<l not satisfactory since users for
get and similarity of future responses does not depend on exact similarit.y of past 
responses. Predictability is a feature of an interactive system which enhances the 
interaction. Formalizing what it means to be predictable highlights the cost associ
ated in order to realize the benefits of predictability. Our earlier definition has too 
high a cost, and so we would like to investigate ways of reducing that cost.. One 
way to reduce the cost is by revising the definition of equality so t.hat it is not over 
entire response histories bnt over some ~llbsel and only on particular attributes 
associated with the responses as well. 

4.5 N ondeterminism 

Predictability only cousidered the external behavionr of an agent. The responses 
from an agent occur after the state transit.ion fired by the stimnlus. There is more 
information available at the state level than at the response level. We can apply 
the met~od used for predict.ability on responses to formalize an internal version 
of predictability. The internal interpretat.ion relation, I;t' relates programs to the 
possible states the agent can be in after participating in the program. Internally 
equivalent programs result in the same possible st.ates. Internally indistinguishable 
programs will betray no state difference. 



69 4.5. NONDETERMINISM 

~l 
- ---, 
_ ~I __ : Agfnt _ (seq Event <---) seq Et'ent) 

_ ~A _ ~ (dom IA"I) x (dom l:t) 

_ ~lA _ ~ (dom IA"') x (dom l:tl 

P ~A q "" IA"'O{pJD ~ IA"'O{qJD

m' V E ("" ;,,1 ( ~ )
P =A q # r: seq l'ent. p r) ~A q r 

A dEterministic system i.~ int.ernally predidahle, so that internally equivalent 
programs are also interJIally indistinguishablt'. 

cte1'mini8tic : P Agent 

,nl 'nt

A E Determlnl.~tlC: <=;- (_ ~A _) = (_ =A _)
 ~ 

The state holds enough information to detf'rmine future internal behaviour, 
We have modelled the behaviour of an agent as a relation which reflects t.wo 

types of nondetermillism-irue randomness or 'don't care' nondetermini.\m. True 
randomness is very rare in computers. 'Don't care' nondeterminism comes from 
abstracting away details that will be present in any implementat.ion but do not 
matter for the purpose of the current description. Don't care nondeterminism is 
very common and encouraged in abstrad specification. It is the main reason we 
have modelled beha.viour as a relation ra.ther than as a fundion. The definition of 
deterministic above essentially rules out internal randomness. It does not· rule out 
nonde\.erminism that arises from abstraction. 

Another form of nomleterrninism arises from how the user perceives the system. 
To a naive user even the simplest of interactive systems is nondeterministic. An 
example used by Dix [48, ·19] and Thimblehy [IGI} is of a prime nnmber gener
ator. Even though the algorithm for deriving the sequence of increaslllg primes 
is c1eterminilitic, if the USN does not know t.hat the system is producing primes, 
tbesequence 2,3,5,7,11,. may appear somewhat random. It is only through 
experience interading with the system that the user can begin to understand its 
deterministic functionaJiLy. And this user-perceiv~d nondeterminism arises natn
rally even for an expert, as uTlcl'rtainty about the past interactiou history leads t.o 
uncertainty of the current stat~. Therefore, even though an agent's beha.viour may 
satisfy the definition of deterministic abo....e, it can still seem nondeterministic to 
its observer. 

Equivalence was based Oil all "t.ate information. Only part of tbe state informa
tion may be important for a givell task, and so we may want to analyze whether t.he 
agent was deterministic relati\'e t.o that part of the state. To do this, Wf will need a 
wa}" to highlight specific information about lhe state. The simple agent model does 



70 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART I 

not allow us to constructively denne such a restricted view, and so we define the 
state of the refined agent. model iu Chapter 5 in terms of aUribute-value mappings. 
Then in Chapter 7, we define restrictions on agents by m{'iillS of templates, which 
are simply formed as subsets of the agent's stat,e attributes. 

4.6 Synthesis 

Predictability assumes that tlw H:ier has some knowledge of how the system works, 
i.e., that the user has internalized a model of how the system works. Expert users 
will have a more complete internalizf>d model than novices, which reflects their 
greater experience. Most nsers, f>xpert. or novice, will continually be presented with 
sitnations which are uew to them and for which their model is not able to provide 
enough informatiou to predict future outcomes of subsequent input. In these cases, 
the user will experiment with the system by offering some input and trying to 
detect the effects which result, hence building np more iuformation in their owu 
model. We call this process of internaliziug input-output relationships synlhe.sis. 
Synthe~is is complement.ary to predictability. A predictable system is one in which 
it would be possible for the user to internalize a model that would be of benefit 
to futurt' interaction. Predictability is doue by reasoning forward in time based on 
information available at prescnt. Synthesis iuvolves reasoning back in time iu order 
to determine how the present informatiou was achieved from the past. Figure 4.5 
shows how predictability and synthesis relate t.o t.he interaction framework. 

&.&.<!.<!.<!."-"-"-"-«««««o:-<o:-««<:< 

~L,-&.L"-&. ,.,.,.,.»»>:»>:>>>:>:> <:", .ynlh••i. 
eFt:. ;7-',7"»> »»»>.>.> 

j! :1""/""/7 0 "'> 
J' .,-1 output8 ,'""/ ~ 
~ ~ 
~ ~ s u 
~ ~M~ /'"~'"'t " I1'", 

'\ \'\'I;": l- predictability
"h 1"",,<:-: ~np,," ..<.I"
~-l ''''''''<:<: .c."..LI'.,,-,-L 

""-l-l.>.>.> ««««««««< 

.>.»>:>.>:>:>:>:»:»»»»»»»>??? 

Figure 4 ..'j: Predictability and synthesis 

The observer of au ageut ollly has access to the stimulus-response behaviour 
of the agent. Since 1.h(> stimuli cause state transitions which in turn d(>termine 
the responses, effectiV(> synt.h(>.~is depends on changes to the underlying state being 



71 4.7. CONSISTENCY 

reflecl.l'd in the responses. If a program changes the underlying state, then the 
subsequent responses should indicate this In order for the observer to have the 
chance of correctly synthesizing the t'ffecl. of the previous input, the response should 
occur befort> any other changes are made to the internal state. An hones! agent. 
will satisfy the property t.hat externally equivalent. programs are also internally 
equivalent. A weaker property would only require that externally indistinguishable 
programs be internally equivalent; such agents are deemed lrustworthy4, 

Honest, Tru.stworthy : P Agent 

A E Honesl ?} _ ~jA _ <.;:; _ ~IA_ 

A E Trustworthy ¢:;> _ '£,4 - ~ _~A-~ 
A good example of the difference between honesty and trustworthiness can be 

seen wit.h search and replace facilities in most text editors. A single search for a 
string of text followed by the replacement with another string of text is honest, 
for the replaced text is usually displayed on screen right where the old lext was 
located. Most global search and replace facilities do not display all of the changes 
made, leaving the user to confirm the changes made by subsequent hrowsing of the 
text. Global facilities such as this can only ever be as good as trustworthy. 

4.7 Consistency 

Consistency is prominent. in the fICI and ergonomic literature [113, 142]. It is put 
forth as a cause for increase.d learnability of a system [142, 93, 321. In rea.ding dif
ferent accounts of consistency, there is clearly a debate about what exactl~' is meant 
by consistent at the psychological level (witness, for example the debat.e on consis
tency between Grudin [64J and Reisner [136]). Such informal arguments highlight 
even more the import.an("e of a formal framework in which different formulations of 
consistency can be compared and cont.rasted. 

As an example of how we can formalize consi,~tency, we will take a simple def
inition. Our informal definition of consistency is that the same input in similar 
situations has similar effects. This is a generalization of predictability in which the 
same input in the same situation has the same effect. The criteria for deciding 
similarity are crucial, just as the criteria for equivalence were for predict.ability. 
And as was done for predictability, we can discuss consistency internally and ex
ternally. Consistency of an agent is defined with respect to the similarity criterion, 

~... ~.. .
';:'UlTlD ana "I' originally used the names honcsl and trustworthy to apply to individual pro

grams which satisfy conditions >;omewhal similar to those described here. Tbeir definition, bow
eVer, demanded that programs whicb were nol indistinguishable intewally were eitner not equiv
alent (for honesty) or not indislingui.9hable {(or lrustworthy) eXlernally. 



72 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART I 

which is modelled as an equivalence relation. Internal consistency depends on a 
similarity relation, say""', which is an equivalence relation on the states of tbe 
agent. The state transition relation associated to any program must then respect 
the equivalence classes of "". 

IntConsistent : P(Agent x (State: +-+ State)) 

(A, '"") E IntConsistent ¢:> 

( equivalence(,....,) 
1\ ....... C A.states x A.slates 
I\Vp:seqEvent; El,E2:classes( ...... ) 

• E1 <J (tmnsJormExtend p) ~ E2 

A similar definition applies for external consistency, with the only difference 
being that the similarity relation is defined on the histories of responses for the 
agent. The interesting question to ask now is whether for an externally consistent 
agent A with respect to response similarity criterion ,-....., is there a corresponding 
state similarity criteriou ,-.....' such that A is internally consistent with respect to 
,-.....'? Within the interaction framework, it would be possible for the User to detect 
the external consisteucy of the interface and it would be useful if that consistency 
mapped down to some consistency interna.l to the System which related to the 
domain of applicatiou. Likewise, t.he User may rely on some internal consistency 
of the System which would then be expected to be manifested externally at the 
interface. 

Whereas this definition of consistency is simple to express, we must exercise 
caution in understauding what it actually is saying. First of all, we had to assume 
that there was a way to partition the state or responses by some nont rivial similarity 
criterion. And we assume that this similarity criterion is relevant to the observer 
for external consistency. If such similarity criteria exist, then an a.dvantage of this 
definition of consistency is that it is cumulative. By this we mean that. if we have 
two similarity criteria then their conjunction is also a similarity criterion (though 
t.here again is no guarantee that it will be relevant to the observer). Therefore, 
consistency as we have defined it also has many levels of applicatiou. A word of 
caution. however, since compounded equivalence relations will tend to have many 
more and smaller equivalence classes, until the compounded similarity criterion 
gives no more information than the trivial one. 

Another possible disadvantage of this definition is its application to all possible 
programs. It seems more realist.ic t.o assume that consistency properties will be 
relevant for subsets of programs. Finally, consistency is defined with respect to the 
similarity criteria. Therefore, an agent consistent by one similarity criterion may 
be iuconsistent by another, suggesting a trade-off to be made during design. 

We nave only cousidered one formalization of consistency here. An obvious 
other consistency notion would have similar input in the same situation resulting 



73 4.8. CONCLUSiONS 

in similar behaviour, but we have not investigated this possibility yet. 

4.8 Conclusions 

Iu this chapter we have provided both qualitative and quantitative evidence for 
properties of interactive system which enhance the interaction between user and 
system. The qualitative accounts have appealed mainly to a common sense under_ 
standiug of how the various translations in the framework impact On tbe overall 
effectiveness of interaction. Two important features of any translation were iden
tified as its coverage or possibility of converting one language to another and the 
ease with which this conVer~ion can occur. The interaction framework provided a 
mechanism for applying heuristics for effective interaction uniformly. 

Though we strongly urge the use of heuristic reasoning in the design and analysis 
of interactive systems, our main emphasis in this thesis is on transferring that 
heuristic knowledge onto a more rigorous software engineering platform ba.<;ed on 
formal methods. The atl.empts to formalize various interactive properties in terms 
of the simple agent model have shown that the formalism can capture the iutended 
meaning of thrn>e propel'tie~. But more importantly, by making our definitions of 
the properties such as predictability and consistency formal, we can more easily see 
what it is about those pl"Operties thaI. we have not captlJred in the formalism. 

For example, we can see that our definition of predictability assumes we can 
judge equality over complete re~pouse hist.ories for an agent, and this seems too 
stringent a requiremeut au t,he observer of the agent, especially when that observer 
is a user. V'/e require a way to express predictability so that it embodies more 
realistic coustraints on the observer. 

Though the agent model brf'aks open the black box of the PIE model somewhat, 
allowing expression of properties such as correspondence and honesty, it is dear that 
we have not opened the box wide enough. We ::;till have not provided an easier way 
to describe the behaviollr of an agent in order to accommodate proof of satisfaction 
of various interactive properties. We have only slightly mot.ivated the need for a 
compositional agent model, and this needs further investigation. 

One of the advantages of the red-PIE model and of Sufrin and He's model of 
interactive proceSSes was that they both distinguished that which is discernible by 
the user (the display) from that which the user wants to achieve from the interaction 
(the result). We have made light of this distinction in the simple agent model. 
Displays are immediate and ephemeral indications from a system and we have 
equated those with respollses of an agent. Results are more permanent and we 
have equated them with th(' uuderlying state of the agent. This is not satisfactory 
because displays ace more like state machines than a sequence of respoDses would 
indicate and the state of an agf"llf, may contain informat.ion that is not relevant to 



74 CHAPTER 4. PROPERTIES OF INTERACTIVE SYSTEMS: PART] 

~_e-Responserelationship Interactive Propert.y 

(-;;fA -) ~ (- ~'A-) 

(- ';;A -) = (- ~A -) 

(~~jA _) ~ (_ 81 A _) 

( 
,,' 

) C ( '"' )=A "'A 

predict.ability 

deterministic 

honesty 

trustworthinC"ss 

Table 4.1: Interactive propert.ies expressed as state-response relationships 

the end result from the user's point of view. We will llf'ed a way to more faitbfnlly 
represent these crucial notions of display and result 

We have adopted Sufrin and lIe's approi\Ch to classification of intcrac1.iVf' prop
ert.ies in terms of equivalence and indistingnishabilit.y because the structure of the 
classifiCAtion snggests the possible propert.ies that can be expressed. Table 4.11i5t5 
the properties we have discussed in terms of cquivalcncf' and indi8tinguishability of 
stat.e and response (interual and external). A similar classification approach which 
takes inlo account resull and display information will be th(' subject of Chapter 7. 

Thus we have set the agenda for the remainder of this thcsi~. 'Ve begin with 
a refinement of the agent model in Chapt.er 5 followed by a definition of a design 
language for describing agents in Chapt.er 6. The st.ate of the agent will be described 
in terms of attribut.es and so we will be able to extract partial information, or 
templates on the state. We will then show how the refined agent model allows 
t.he expression of fnrther interactive properties in Chapter 7. The introduction 
of attributes and templates will lead to a mof(' dir('et treatment of the result
display relationships that will take a similar form to t,he state-response relationships. 
The descript.ion of agents in the refined model is more closely linked to empirical 
psychological evidence of how users under.stand the t.a.sks the agents are designed 
to sllpport. The interactive propertif's will also bf' based on that task-specific 
evidence, providing for a t1ser-centrf'd methodology for the design and analysis of 
an int.er...ctive system. In Chapter.s 7 a.nd 8 we will show how t.he methodology is 
implied by the description of furt.her interactive properties and t.he investigation of 
heuristic multiagent architectures. 



Chapter 5 

Refining the agent model 

In precl'ding chapters we h<lw' discussed au overall framework for the description 
of an interactive syS"tems and how it provides a basis for t.he description of genf'ral 
properties of interaction expre.~~ed within a formal model. The purpose of this 
chapter is to refine the model of the agent used in the previous chaptf'fs. The next 
chapter then provides a design language for agents. 

The agent model we present in this thesis is directly motivated by the formal 
presentation of tlle interaction framework. We desire a language that will alIa",", the 
discussion of interactive properties and with which it will be possible to describe a 
complete system. The formal interaction framework provided a means for a precise 
discussion of interactive properties, but it did not aJJow a realistic description of a 
complex system. What is required is a compositional model, and this is what the 
refined ageut model is int.ended to providp. 

The refinement. of the agent model in this chapter is a necessary digression. We 
have seen the need for more detail of the structure of an agent in order to describe 
interactive properties more c1osC'ly related to the way a user perceives interaction 
with respect to the goals of t.a.sks. The refinement is also necessary from a software 
engineering point of view. To bring HeI considerations into earlier stage~ of design 
it is not sufficient. 10 merely provide an abstract. mat.hematical model for describing 
interaclive propt'fties. The model must be expressible by some design language 
and accompanied by some method for directing the de.~cription. In this <"llapter, 
we address the design issue by providing a composit.ional agent model. 

Overview of chapter 

In Section 5.1 we will formulate thE' requirements placed on our agent model for its 
usc in the design and andlysis of int.eractive systems. Olle of t.he major requirement.~ 

is that the refined model supports a modular descript.ion of complex agents by the 
composition of smaller and simpler agpnl.s. 

7.5 



76 CHAPTER i'), REFINING THE AGENT MODEL 

The description of the refined agent model is separaf,ed into three stages tepre
sentingthe internal sta.te-based specification, the externa.l event-based specificatioll 
and the communication specification, which links events to internal operations. 
Hence, the outline for the refined agt'Jlt model is as below. 

Agent _ 

lnterna/Spee 
ExternaISpec 
Cornrnullicalio1j 

In Sections .5.2, .5.:1 and 5.4 we will addrf'ss slC'parately the internal, external and 
communication specifications of the refined agent model. In each section, the model 
for the particular specification will be given and then it will be shown how separate 
specifica.tions can be composed associatively. There are two ways we will compose 
ageuls, by interleaving ami by syncbronization. In Section 5.5, we will unite the 
separate specifications and show }lOW interleaving alld synchronization are defineJ 
betw<:'Cn agents. 

In Section 5.6, we will show how the refined agent model felat.es to the simpler 
model of Chapter 2 by defining the int.ernal and ext.ernal interpretation functions. 

5.1 Requirements for agents 

An agent has state and a means for communicating st.imulus and response f'Vents. 
A pictorial view of an agent is givf'I1 ill Figure 5.1. The stimulus and response event.s 

outl 

out2 
A 

inl 

Figure 5.l: Pictorial representation or an agent 

afe cOlllnHlnicat.ed along input and out put. channels. There are sever al requirements 



77 5.1. REqUIREMENTS FOR AGENTS 

on the refined model which motivate its development in this chapter and the next. 
Here we will discuss requirements relating to compatibility with the simple agent 
model and compositionality. 

We have already given a simple definition of an agent in Chapter 2 which is 
adequate for expressing a variety of interactive properties at the abstract level. 
The new model must be consist.ent with the older model. The two most important 
features of the simpler model were the derived internal and external interpretation 
relations, I~nj and ',lUI, so we must be able to derive similar relations with the 
new model. It turns out t.hat though we can express the external interpretation 
function, 'Arl , we will not use it in formulating properties relating result and display 
in Chapter 7. 

In Chapter 4, we itSsulIled that agents could be composed to form moucomplex 
agents. We will need to demonstrat.e to what degree the refined agent model allows 
the construction of complex agents throngh the combination of existing agents. 
Given two agents, it and B, there will be two ways of combining them tet achiev(' 
a third agent, 

We may want to treat A and B as independent agents that can only affect 
each other's private stat.e by means of synchronous message passing along common 
communication channels. The agent derived by this synchronous composition we 
will denote by composf3 ¥4C(A, B). There are various conditions that ar~ imposed 
on A and B so that they ma:y be synchronously composed. They must have sep
arate state spaces with no common attributes. Any common channels must be an 
input for one agent and ,an output for the other. The common channels become 
synchronized, meaning that. communications that occur along them mUlt be par
ticipated in by both component. agents simllltaueDtlsly. The synChronized channel 
is no longer visible outside the composed agent. Figure 5.2 is a graphic depiction 
of synchronous composition. 

We may want t.o treat A and B as dependent agents. In this case, oome part 
of their internal states is sha.red bet.ween them. Such dependent composition we 
describe by interleaving their descriptions to obtain another agent, dmoted by 
composc;ndA, B}. There are conditions we impose on interleaving composition as 
well. The separate agent's states may be defined over common attribute~and they 
ma:y have common input. or output channels. The effect of operations defined for 
both agents is constrained stich that they only alt.er the values of common ..ttributes. 
Figure 5.3 graphically depicts this composition by interleaving. The overlapping 
circles a.re meant to indicate shared state informat.ion. Note that interleal'ed agents 
canuot communicate via synchrouous c.hannels, so an input for one agmt cannot 
be a.n output for the other agent. In this seuse, the agents are unlinked. 

In Section 5.5, we present two main t.heorems concerning the assoaativity of 
synchronons and interleaving composition. The proof of these theorem is dealt 
with in terms of smaller theorems on the associativity of composition for the in



78 CHAPTER 5. REFINING THE AGENT MODEL 

",,<2 
0"<2 

composeryoc =, ~ 
in2 

in2 

Figure 5.2: Synchronous composition of independent a.gents 

lernal, extprna] aud communication specifications of the previous sections. The 
associativity of composition will allow any number of agents to be composed either 
all synchronously or all by intprleaving without worrying about the order of the 
composition. 

5.2 Internal specification 

An agent has its own private and persistent 51.ate. The possible set of states for 
an agent is described by the val lies associated to some fillite set of attributes. We 
assume a set of attribute names and it universal set of values. A state is it finite 
function from attributes to values. 

[A,Vj 
State == A-fH V 

A stule set is a set of states, all of whose element.s are uefined over t.he same set 
of attributes. In addition, the attributes of a slate set have typt:.s associated with 
them. A type is a nonempty subset of V, The \'ahleS of an attribute a.re restricted 
to beiug in that attribute's type. 



----

79 5.2. INTERNAL SPECIFICATION 

oull 

® out2 
= 

inl 

composeinr , 

Figure 5.3: In1erlea.villg composit.ion of dependent agents
 

Stateset _
 

aI/ribs: FA 
type: A -++ P I V 
states: PI Stale 

atlrihs = dom type
 

Vs : stutes, a : atlribs _ s( aj E type(a)
 

statrs S; (attribs -+ V)
 

The internal ~pecifi("alion of an agent gives t.he state set along with operations 
defined on that state set. Each operat.ion is labelled by a message, obtained from 
a :let of all possible me~Si\.ges. The internal specification is completed by giving the 
set of initial states. 

[Message] 

Intema/Spec

ISlolm, 
inits : PI Stale
 
operot ions : .\1essage -++ (.;lates states)
H 

t11eMages : P ,\{eSS(lljt 

inits ~ stales 

~lessages = dam oprm/iQHS 



80 CHAPTER 5. REFINING THE AGENT MODEL 

Combining internal specifications 

Two separate internal specifications can be combined to create a new internal spec
ification. One comtraint on the combination concerns the separate state sets-they 
must agree over all common attributes. If 8, is a st.ate of one internal specification 
and &l i5 a state of the other internal specification, and the values of 8, and .'J.;j agree 
over their common attributes, i.e., 81 and 82 are compatible, then they define a state 
in the combined internal specification. A simple way to express this compatibility 
constraint takes advantage of the functional representation of a state and says that 
t.wo states are compatible if overriding one by the ot.her is equal to the functional 
union of the two. 

compatiblt : Statr ..... State 

(S1, S2) E compatible ~ 8t tIl 52 = S1 U S2 

The schema JOiTlStlllesds ch<lTacterizes the combination of two state ~ets to 
form a third state set whose elements are the union of such compatible pairs of 
states. We have st.ipulated that the state sets are nonempty, so state sets which 
are to he joined must have at least one pair of compatible states. We choose the 
!lame join because it is suggestivt-' of t.he similar operation for relational databases. 
Joining is also similar to schema signature combination in Z, where components 
with the same name from two different seht>mas mnst. be of the same type and take 
on the same values [153]. Note that the I and J are used in t.he following schema 
to decorate the argument state sets and' is used to decorate the state set resulting 
from tbejoin. 

JoinSlatesets _ 

Statesrt l 

Statesetl 
Stateset' 

Va: altrib!J n aH,'ius J • typt/(a) = typeJ(a) 

3s[: statrs l ; SJ: states J • (Sf.SJ) E compatiblf 

attribs' = altribs l U aUnus J 

type' = type l U type J 

5talrs' = { 51 ; statts l ; '~J : statrs J 

I (Sf,SJ) E rmnputible 
• SI U SJ } 

For couvenience, we call reprelit'llt the above schema definition as a binary oper
at.ion jOifl on Stateset. We will frequently make use of this mechanical terhnique 



81 5.2. INTERNAL SPECIFJCATIO~ 

for characterizing il combination via a schema. and then converting it to a binary 
operation. 

}Olll : (Staleset x 5'lalcsct) -++ 5talestl 

join = { Join5talfsdB 
• (fJ5tattsd'.O,S·lalfMt J ) l-t fJStatf.~df} 

As we described in Section 5.l, we will ....ant to compose several <lgent descrip_ 
tions and we want thaI composition to be associative. The proof of the associativity 
of the overall agent composition fllndions is distributed throughout this and the 
next two sr-ctions. The first thr-orr-m below shows (hat joining of st.ates sr-ts gatisfies 
associativit}'. 

Theorem 5.1 

'rj 5'1,52,53 : 5tatesd
 
I ( (51.52) E domjoill
 

1\ (jmn(51, 52), SJ) E domjoin)
 
• join (join(51, 51"2), 53) = join(51.join(52. 5'1)) 

PROOF OF THEOREtl.I 5.1: 

The proof proceeds in two stages. First, nnder thr- conditions of the hypothesi~, 

namely that 

(51,52) E dOIll)om
 
1\ (Join(S 1. 52). 83) E dOlll)Oll1
 

we must show that 

(52,53) E domjoin
 
1\ (SI,joill(52,S1)) E dornjoin
 

After proving that (S1, jOlu(82,8:3)) E dom jo·in, wr- must show t.he equality of t.he 
different joins. Both stages of this proof rely on a lemma on state compatibility 
which says that if the union of Iwo compatihle sti\tes is compat.ihle wj~h a third 
stat.e. thE'n each of those slatt's is compatiblE' sepa.rately with the third stat.e. Full 
detail~ of the proof of tbis lemma and thr- stages of this theorem are provided in 
Appendix B. 
o END OF PROOF OF TIJEORE:'I .5.1 

To complete the defillitioll of composition of liiternal specifica.tions, we must 
sho...., how the operal,ions of t.wo liE'parale internal specifications are coalesced to 
derive t.he operatiom of tile comhined illternallipecification. The expla.nation be
hind this derivation is rE'lat.ivdy s!.raightforward. Tht> messages of the new internal 



82 CHAPTER.) REFINING THE AGENT MODEL 

specifica.tion fall into one of tbree sets-messages unique to one specification, or 
unique to the other, or common to hoth. If a message is unique to one of the 
internal specifications, then it is lifted to an operation which is consistent with 
the original specification and behaves like the identity transition elsewhere. If a 
message is common to both internal specifications, then it, is lifted to an operation 
which il consistent with both of the original specifications. The derivation of the 
operations set reflects the three mntually exclusive conditions on messages of the 
combined internal specification, and hence is a bit large. We could have been more 
concise with the description of operations, but this large definition mirrors the way 
we regard the operations set til the associativity proofs which follow. 

The schema Combine/nt df>fines how two internal specifications can be combined 
t.o form a. third internal specification. 



83 ,5.2. INTERNA.L SPECIFICATION 

CombineInt -:-	 _ 

InternoISpec' 
In/ernaISpec J 

InternalSpec' 
JoinStat.esets 

.3 sJ : inits'; at : mits J • (s6, Srf) E compatiblt 

iniis' = { ~ : inits' ~ st :inltsJ 
I (56, s,1) E compatible. st u st 

messages' == mess(J9f.Sl U messages J 

V m : nussag(s' - mtSs(JgesJ 

• opera/lOns'(m) == 
{ 5, s': stutes' 

1 ( (uttrib,~.l <JB,atf1'ibs' <J Sl) E opt'-mtion.~l(m) 

II (attl"ib:/ ..a 5, al/rib.s l ""3 s') E id(KnotIottribs __ V)) 
•	 st-+s'}
 

J l
Vm : rnessages - messages
• opcratiol/~'(m) == 

{ 5, s': slaies' 
! ( ((Jttribs J <J 5, allnbs J <J s') E operations J(m) 

1\ (o,ttrib.,J..a s, attribt/ ""3 s') E id(KnotJattribs __ V)) 
.st-+s'} 

JV m: message.;' n messages
• operations'(m) = 

{ 5, S' ; 5iotl:~.' 

I ( (oftribs l <J s, attnb.s 1 <J 5') E operations 1(m) 
/I. (aUribs J <J s, attribs J <J 5') E operationsJ (m)) 

• s ~ s' } 

where	 J(not!(lltnbs = aUribs' - all.ribs l 

Knol1uttribs = at/ribs' - allribs J 

The first predicate :itip\llates that one pair of compatible st,ates must be from 
the initial states of each, to ensure that there is an initial state of the composed 
specification. The last three predicates cover t.he three cases for messages of the 
new internal specification. 

The schema Combine/nl describes the most general combination of internal 
specifications we will need. This composition can be represented as a function 
derived from the schema above. Given two internal specifications, which satisfy the 
constraints of Combine/lIt a.bove, Icompose yields the unique internal specification 
which is their combination. 



84 CHAPT~H. ·5. R~;FINING THE AGENT MODEL 

/compose: (InierflalSpn: :x lnterna/Spec) /nterna/Spec-H 

lcompose = { Combmclllt 
• (() InleT"1wJSpec l ,0 /nierna/Spcc J

) 1---4 DfnternalSpec' } 

When interleaving agents, associativity of [compose is dependent upon how 
the separate agents are defined to behave over any common messages. We stipulate 
that common messages can only cha.nge the values of shared attribut.t:'s. In practice, 
this constraint will be satisfied because the common messages between interleaved 
agents will only be output messages defined to be the identity transitIon on all 
attributes. This general condition of message compatibility is characterized in the 
following schema. We express it mat.hematically by saying that the operations 
associated to common mC's:-ages do not affect attribul('~ not in common between 
the agent.s. 

McssageCompatiblt __ 
In/emu/Spec I 

Intema/Spec J 

notlJ : P A 

notIJ = (attnbs' u attribs J ) - (uttribs' n atlnb5 J ) 

If m: messages' n me5S(lgf..~,J; 

(s"sj): opcmlionsJ(m); 
(s;,s;): operationsJ(m) 

•	 ( (notU <J 51, nolU <J 5j) E id( notIJ -*Jo V)
 
/\ (notU <J sJ. /lotIJ <J 5;) E ide notU -*Jo V))
 

messagecompatiblt : Internu/Spec +-+ IJltcTnalSprc 

messagecompatible ={ J-fessagrCompatib/e 
• OlnlfT71alSpcc1 Intcr'TIalSpecJ }1--+ 

In the case of synchronous composition, associativity is satisfied because the 
separate state sets a.re forceo to be disjoint. The associativity conditions for the 
composition of internal specificat.ions are summarized in the following two theorems. 
Theorem 5.2 treats the case for interleaving composition and Theorem 5.3 covers 
the case for synchronous composition. The proofs arc only outlined; full proofs such 
as thosl.' provided in Appendix B could be provided. 



5.2. INTERNAL SPECIFICATION 85 

Theorem 5.2 .I.'W.essage compatible internal specifications can be composed associa· 
tively, i.e., 

'r/ Il, 12. 13: InttrfwlSpec 
I ( (ll, 12) Edam lcompose
 

A (Icompose( 11,/2), 13) E dom Icompose
 
A {(l1,l2),(/2,/3),(/1,t.l)) s:: mmag,compatibh)
 

• Icompose(lcompose(l1, 12), 13) = leompo.H'(Il, lcompose(l2, 13)) 

PROOF OF THEOREM 5.2: 

Theorem 5.1 allows lIS to prove that if the first two predicates in the h)'pothesis 
are sat.isfied. tben the composition cau be formed in either order and the stale sets 
and initial states a.re eqniva.lent.. We examine the two cases for messages, ones that 
arc not shared and ones tha.t are. 

Case 1: The message is Hot shared by any two of 11,/2,/3. 

There are three subcases to investigate, but the argument is the same for 
each, Suppose, for exa.mple, the message belongs to /l and not /2 or /3. We 
bave the operations defined as below. \\'e adopt a shorthand notation, so, for 
example, 

ope r'ations l ( 11).1 

will st.and for
 

IcoTnpose(lcoTllpose.(IL /2), 13).operation5
 

The proof proceeds. For any message 171 : messages l 
], we have
 

opemtions/(12 lJ (m) =
 
{ s, l : state5 l {I'l)3
 

) ( (attribs 1l2 <J s, attribs m <J S') E operations ll1 (m)
 
A (attr'ibs /12 .EJ s, aftribs 112 ""3 s')
 

E id(ultribs l3 - aUribs 1l2 ~ V»)
 
• s 1--+ 5' ) 

By definition of ope7'ations l12 , and since 171 E message II and Theorem 5.1 
tells ns tha.t the state seh are equivalent, the above set. comprehension is 
equivalent to the following. 

{ s, s' : statEs ll (23) 

I ( (altribs fl <J s, attr'ibs Tl <J s') E opemtions11(m) 
A (alll'ibs/ 2 <J att,'ibs 11 -a s, attribs/2 <J aUribs l1 -<l s') 

E id(attribs I2 - attribs ll _ V) 

A (attribs 1l2 -a s, attribs 111 ""3 S') 
E id( aU"ibsI:J - altribs/12 ~ V)} 

• S 1--+ 5' } 



86 CHAPTER 5. REFINING THE AGENT MODF:L 

And the last two predicates can be collapsed to obtain the following. 

{ s, s' : slates/1(lJ) 

I ( (atiribs f1 <l 5, al.l1'ibs11 <J 5') E operations/I(m) 

1\ (attnbs Il ..a s, attribs 11 -a s') E ide atll'ibs T2J - attribs ll 
--JI-t V» 

• s 1--+ 8/ } 

This final set comprehension is opemtions/ 1(23 l (m), as desired. A simila.r proof 
holds in the other cases, and so we have shown that the operation sets defined 
are equivalent. 

Case 2: The message is shared by 1. or more of llJ2,B. 

Again, there are several sU!Jcases, but f'ach is argued similarly. Assume, for 
example, thaI In is a message for I1 and J3, but not 12. The operations are 
defined as 

operatiQns l (t2)3( m) = 

{ 5, s' : stales/(12)3 

I ( (attribs1l'l <J 5, attribs 1I2 <J .~/) E opemtwns Il2 (m) 
/I. (altribs 13 <J 5, atlTibs l3 <l s') E opemtions l3 ( m)) 

• S""" 8' } 

By definition of operalio71s1l2 , and since m E messagell and Theorem 5.1 

tells us tha.t the state sets aTe equivalent, t.he above set comprehension is 
equivalent to the following. 

{ s, Sl : sl.ates ll (23) 

I ( (attribs ll <l s, (Lftribs'l <l s') E operations 11 (m) 
1\ (altribs l2 <l uflnbs lJ <Ii3 s, at.trib,~'2 <l aitribs ll ..a 5') 

E ide l.lttrihs l2 - utlrihs l1 -- V) 
1\ (altribs 13 <l S, uttribs/3 <J s') E oflemtwns I3 (m)) 

• s 1--+ s' } 

By assumption, ope rut ions II (In) and operations I3 ( Tn) ha.ve no erred on a.t.
tributes not in common, so lhe middle clause can be rewritten, substituting 
13 for I1, to obtain 

{ s, s' : sfates l1 (13) 
f1I ( (attribs Jl <l 5, aUrib5 <J s') E opemfions I1 ( Tn) 

1\ (attribsI"J <l altrib,~fJ <E3 5, aUribs I2 <J alt1'ibsJ3 ..a S') 
E id( atlribs I1 - alt1'ibs lJ _ V) 

1\ (attribs 13 <l s, attribs fJ 
<J s') E opemfions /3 ( Tn)) 

• S 1--+ s' } 



87 5.2. INTERNAL SPECIFICATION 

This, in turn can be collapsed, by the definition of operations n3 . 

{ S, 5': 5/.ates 'I {23) 
I ( (attrib51l <J s, attribs/ 1 <J 5') E operation5 fl (m) 

1\ (attribs 123 <J s, allribs 123 <J 5') E ope rations/ 23..1 (m)) 
• 8 f-t 5' } 

This last set comprehension is eqnivalent to operationsI1 (23l, as desired. 

<> END OF PROOF OF TlIEORE.\"{ .':1.2 

Theorem 5.3 IntenwJ specijictltlOns with no common attribldes can be composed 
associatively, i L, 

V /l, 12, 13 : InlerrwlSpee 
( disjoint (Il.aUribs, n.altribs, 13.uttribs) 

1\ (/),12) E darn !composE 
1\ (Icompost( /l, 12), /3) E dorn [compose) 

• Icompose(Iwmposr.(/l, 12). /3) = Icompose(Il, Icompo5e(I2, 13)) 

PROOF OF THEOREM 5.3: 

Equivalence of state sets follows from an idenlical argument as above. There 
are many cases to investigate to determine the equivalence of the opera1ions set. 
The arguments are similar for all of these cases, so we will provide one example_ 
Assnme that the message satisfies 

m E (I 1. messages n n. me.5sages) - 12. mf.~soges. 

The operation defined for that m is given by thf" following set comprehension. 

operalions l(J7)3(m) =

{ S, 5' : stu/es/(I2)3
 

I ( (allribs lI2 <J s, altrtbs 1l2 <J Sl) E operations1l2(m)
 
1\ (aUribs/3 <J s, attribs13 <J s') E operalions/3(m))
 

• s 1-+ 5' } 

By the definition of opertItions/ 12 (m), this expands to 

{ s, S' : states '123
 

I ( (atlribs Il <J $, allrlbs/ I <J s') E operations ll (m)
 
1\ (allribs/2 <J attribs lI -ca 5, attribs/2 <J attribs/1 ....a s')
 

E id( att7-ibs 12 "- attribs ll --it+ V)
 
1\ (attribs/ 3 <J s, aftribs 13 <J $') E operations J3 (m))
 

• s 1-+ S' } 



88 CHAPTER 5. REFINING THE AGENT MODEL 

We can rewrite the middle clause because the attribute sets are disjoint. 

{ 5, 8' : statesll~3 

I ( (attribs Tl <J 5, uttribs ll <J 5') E operationsIl(m.)
 
/\ (atlrihs I2 <J attribs 13 ""'3 5, atiribs I2 <J attribs l3 "'3 S')
 

E id( attribsI1 
- atlribs l1 ...... V)
 

/\ (atlribs l3 <J 5, altribs 13 <J 8') E operations13 ( m»)
 
• S ......... S' }
 

By the definition of opem/io7lb123 , this cau be rewritten as follows. 

{ 5, 5' : states Il2 (3) 

I ( (attribs Il <J s, attrib!/l <l ~I) E optrufiofl"f1{m.)
 
/\ (attrihs I23 <l 5, allrihs f13 <J 5') E op(rutjon~J23{m»
 

• S ......... 8' }
 

This la.8t set comprehension is equal to operution .. lI {"n)(m), as desired. 

<> END OF PROOF OF THEOREM .5.3 

5.3 External specification 

The internal specification implies an ordering on the sequence of state transitions 
in whidl an agent can participate. If a designer wants to specify the order of 
operations to satisfy some constraint. it is not always easy to do by means of the 
internal specification. In other words, some constraints are not nat urally expressible 
in terms of state transitions. TlJis is a fiimilar conclu!iiou to that reached hy Lamport 
199], 5,n,;n and He [1581 and Took [1621. 

Another way to express constraiuts on the state transitions is to view the con
straints as external, meaning that an a.gent has both an internal and external specifi
cation. The agent participat.es in events and the external constraints are expressible 
as predicates on event participation. Proce8s algebras are specifically designed to ac
commodate such event descriptions. The standard examples of process algebras are 
Hoare's Commnnicating Seqnential Processes (CSP) notation [81, 82], developed 
at Oxford, and Milner's Calculns for Communicating Systems (CCS) developed at. 
Edinburgh. 

We adopt the traces model of a CSP process a.', the basis for the external spec
ification as a nonempty prefix-closed set of sequences of events. 



89 5.3. EXTERNAL SPECIFICATION 

_ExternalSpee 
alphabet: P Evt:1Il 
truces: P seq alphabet 

( ) E traces 

prefix_closed (tmces) 

The definition of the predicate prefix-closed is defined in Appendix A. 
It would be possible to incorporate more complex process algebra models. We 

do not ignore the significant variety of process algebra models, most notably the 
family of algebras derived from Milner's CCS. For the purposes of this tht'Sis, how
ever, a demonstration of the incorporat.ion of a proces~ algebraic technique with 
the model-oriented axiomatic technique is ali that is important, and in doing so we 
limit ourselves to the simplest case of the CSP traces model. More sophisticated 
models would allow expres~ion of more sophisticat.ed external constraints, Wit.hin 
the traces model, only safdy constraints may be expressed, which would allow ex
plicit expressions to rule out nndesirable behaviour. Livenfss constraints which 
make explicit that desirable behaviour will happen, require a model such as the 
failures-divergence model of CSP [28]. Some timing constraints may require even 
more sophisticated proo'ss algebras that incorporate a model of time and concur
rency beyond the interleaving semantics of the traces or failures-divergence models. 
Examples in the CSP family are the various timed models of Reed [132J and Davies 
and Schneider [46, 144, 45J. A timed version of ees has been provided by Moller 
and Toft, [Ill]. 

Combining external specifications 

One of the main features of a process algebra is its compositionality. We will dis
cuss in a later section how that compositionality is a.chieved in isolated de~criptions 

of external specifications. Then, we will provide both a constructive trace nota
tion, which is described ill detail in Appendix C and a more implicit descriptive 
techniqne or a predicate calculus on t.races. In this section, we will concentrate on 
how to combine external specifications at the agent level, i.e., when the external 
specification is linked with an internal and commnnication specification. In this 
case we have two desired combinations-independent combination b.y interleaving 
and dependent combination by synchronization. 

Interleaved combination is used to allow the behaviours of the separate external 
specifications to occur in the combiued specificatiou. The traces resulting are all 
iuterleavings of pairs of traces from the two separate specifications. The description 
of this interleaving is exactly the same as the int.erleaving of processes in CSP [82], 
which we also further define in Appendix C. 



90 CHAPTER 5. REFINING THE AGENT MODEL 

Interleave£'x-t _
 

Ex/ema/Spec/
 

E:rternalSpec J
 

ExternalSpec'
 

alphabd' = alphabe.t f U alphabet} 

tmces' = { s : seq alphabet' 

I 3 t : tro.ce.s'; It: traces J • s interleal~es (i, I') 

• s} 

\Vt" ca,n represent this combination as a binary operation, Ecompose,n/. 

Ecomposeint : (ExtenwlSpec x EXfenwlSpec) ---. Externa.lSpec 

Ecompose,nt = { InlerlmveExl. 

• (OE.r:ternaISpa l , OExternalSpecJ ) 1--+ ExternalSpec' 

Synchronous combination, as its name suggests, allows (or t.he synchronizing 
of events between two external specifications. Its definition is similar to that for 
synchrollous parallel combinat.ion in esp, which we have also further defined in 
Appendix C. 

SynchronizeExt 
ExtemulSpec l 

Ex/emu/Spec J 

Extemu/Spec' 

alphabet' = alphabet l U alpllllbrt) 

traces' = { I : seq alphabd' 

( t D-.
q 

f1lphabel 1 E traees 1 

1\ t 'D.q 
ldphabet) E traces}) 

• l} 

Sequence range restriction, S~q, is defined in Appendix A. It operates much like a 
filt.er ill a functional programming language. We can represent this combination as 
a binary opera.tion, Ecompose.,nc. 

EcomposesJnc : (E:rtenwlSpec x Externa/Spec) _ ExternalSpec 

Ecompose.,nc = { SYlIchroni::eEzt 
• (OExlC17wlSpec', (lExtema/Spec)) I-t ExtEma/Spec l 

} 

It is well known that bot.h of these operators are associative [82, pp. 70,120]. 



91 5.4. COMMUNICATION 

5.4 Communication 

The internal specification indnces an ordering on the state transitions of the agent 
and this ordering can be represented by the message labels associated to the tran
sitions via the fnnction operafion. The external specification gives directly the 
ordering on events that can occnr during truces of the behaviour. In the communi
cation specification for an agent, we link the messages of the internal specification 
to the events of the external specification. Events are communications of messages 
along channels. 

To accommodate this within the agent model, we will introduce explicit chan
nels that are tneant a.'J point-ta-point, one-way, synchronous communication paths 
between agents, as in the prograrnmirJg language occam [86, 91J. Though this is 
it fairly restrictive means of communication, it ha'l been noted that ihis restric
tion makes possible tractable algebraic techniques for reasoning rigorously about 
an occam program [25, 139, 140], which we can then incorporate into the agent 
development method. \Ve assume a set of all possible channel identifiers. 

[Cf,annelJDj 

An event is a message communicated along some channel. We can represent the 
refined Bvenl type as a schema which indicates the channel name and \.he message. 

Event === ChannelID x Message 

We provide some shorthand notation for accessing the channel and message content 
of an event. 

chan Event _ Cf,amlt:lID 

mess; Event - ,Vess(Jge 

chan = 1st 

mess = snd 

A channel is associated to a set of message which can be communicated aCross 
it There are four kinds of channels possible. A channel can be used for the input 
of messages or the output of messages. The combination of an agent wh.ich uses a 
channel for input and an agent which uses the same channel for output creates a 
synchronized channel. Finally, there is a completely internal channel which handles 
internal communication within an agent. 

We define a function events which yields the set of all possible events that can 
occnr along a channel. 

events: (ChanTielID x P Mtssaye) ----Jo P Ellent 

events(c,MS) == { m: MS. (c, m)} 



92 CHAPTER 5. REFINING THE AGENT MODEL 

The communication specification gives all input, output and synchronized chan
nels. These channels are all distinct. Each agent also has 1:1. special channel for 
internal events, which is called T. From the channel information, we can derive the 
alphabet of events in which the agent can participate and the set of messages for 
which operations must be defined. These two deriwd sets wiH match the corre
sponding sels in the external and internal specifications. 

Communication _ 

input~. outputs, syncs: ChanndID -++ P Message
 
intErnal : P Message
 
alphabet: P Event
 
messages: P Message
 

, :disjoint (dam inputs, dam outplds,dom syncs, {T})
 

alphabet = eventsaillputs~ U eventsOoulputsD U
 
eventsOsYlIcsD U events(r, internal)
 

messages = messOn/phabelDI 

Combining communication specifications 

Two communicat.ion specifications are channel compatible if no synchronizc:d chau
nel of Olle is either an input, out.put or synchronized channel of the other. 

ChanneiCompfl/ible _ 

Communication J
 

Communication)
 

dom syncs) n (dom illputs' U dam oulpuls J U dam .~yncsr) = 0
 

dam syncs J n (dam inputs) U dam ou/pllls) Ullom sYr/cs)) = (,)
 

Two communication specificat.ionll are ulllir/ked if they are channel compatible 
and no input channel of one is an output channel of the other. 

Unlinkedc- _ 

ChannelCompalible
 

(dam inpui.s J n dom oulpuls)) = (,)
 

(dom inputs) n dom oldpuls f) = (,)
 

Two communicatiou specifications which are unlinked can be combined to yield 
a third communicat.ion specificat.ion. Unlinked communication specifications can 



93 5.4. COMMUNICATION 

share the same input channels or the same output channels. The combined spec_ 
ification forms the union of t.he message sets asso,-iated to each channel identifier. 
This combination of communicat.ion specifications will be used to form the inter
leaved composition of agents. 

IntrrleavrComm 
un/ink,d 
Communication' 

internal' = internall U internaersyncs' = syncs' U syncs J 

inputs' = { c : dom inputs' U dam input!;J 
• c r-+ (lIIputs/(c) U input!;J(c)) } 

outputs' = { c: dom ou/puls l U dom output!;J 
• c ......... (outputsI(c) U output!;J(c))
 

~-----------------------

We can represent this combination as the hinary operation, CcompOSeifti' 

Ccompose,nl (Communication x Com.munication) _ Communication 

CcompOSeiftl =
 
{ Interltul'FComm
 
• (OCommunicationI,eCommunication)) r-+ Communication'} 

Two communication .';fJecifications which are channel compatible a.nd which have 
no Common input channels nor common output ,.hannels are .~aid to be linkahle 
and they can be synchronized. The common inpnt/output channel pairs are made 
synchronous channels. The messages which are allowed on t.he synchronized channel 
are ones which are allowed as input. by one agent or output by the other. 

Linkable ,-_-,-, _ 

ChannelCompaiihle 

(dom inputs I n dam input!/) = (21 

(dom outputsI n dam outputs)) = 121 



94 CHAPTER 5 REFINING THE AGENT MODEL 

SynchronizeComm _
 

Linkable.
 
Commu,nication '
 

intcrnar = internafl U i1ltf"rnal' 

sync:,' = syncs l U syllCS J
 

U { c; (dam i"puls 1 n dam OlJ,tputs J 
)
 

• C>---J (inputs/(e) U ou.lpl1.ts J (c» 
U { c: (dam irLpu.ts J n dam output.s!) 

• C f-+ (inputs] (c) U outpu,lsI (c» } 

inputs' = darn syncs! <3 (inputs' U inputs')
 

I output.s' = dam syncs' ""'i (outpuls! U QUfPTll.:;')
 

We can represent the synchronized composition of communication specifications as 
the binary operation, Ccompose.,flr' 

Ccompose'I~C: (Commu.nication x Communication) -++ Communication 

Ccompose"fI. = 
{ SYllchrolli~eComm 

• (OCommunicatiofl1 , OCommunicatioTlJ ) >---J OCommunication l 

By arguments similar to those given to show that internal composition is associative, 
we Can also show that communication composition operators are a.lso associative. 

5.5 Overall Combination 

Having specified the componeuts of the refined agent model and bow they are 
individually composable, we cau now define two operations to compose agents. 
The two composing functions will represent an interleaving composition, in which 
the two agents act as one agent by interleaving their individual behaviour, and a 
:>ynchronizing composition, in which communication will be synchronized between 
common channels. 

Interleaving composition is specified in terms of the general internal specification 
composition and the interleawd composition of the external and communication 
specifications. We include the constraint on message compatibility defined earlier 
so that. the condition.!l of Theorem 5.2 are upheld and the resulting composition 
operator, CompO.!le"tl, is associative. 



------

95 5.5. OVERALL COMBINATION 

InterleaveCompose _ 

I Agenl 1 

I Agent J
 

Agent'
 
MesslJ,geCompatible
 
Combinelnl
 
Inlt:rleaveExi
 
Interh:al 1eComm
 

The binary operation for interleave composition is compose'lIj 

compOSCjnr : (Agent x Agent) -++ Agent 

compOSC,nl = 
{ InierleavcCompo.5c 
• (BAgentJ,OAgent J ) i-""+ OAgent' 

Arguments in the preceding three sections lead to the proof o( the associativity 
of eompose,"j. 

Theorem 5.4 lnterleavillg compo5ilion, when defined, is associative, i.e., 

compose,,,d compose,nd A1I A2), A3) = compose,nr( AI, composeinl( A2. A3». 

Synchronizing composition is specified in terms of the general int.ernal specifica
tion composition and the synchronized compo.<3ition of t.he external and communi
cation specifications. We add t.he constraint that the attribute sets of the dgents to 
be composed must be disjoint. This is to ensure that the condit.ions of Theorem 5.3 
are upheld in order that compoM:.Jnc be associative. 

Synchroni::eCotnl'ose ----------------
Agent! 

Agent J 

Agent' 
Combinelnt 
SynchronizeExt 
SyllchrollizeComm 

aUribs J n attribsJ = lZl 

The binary operation for interleave composition is compose.J"c 



96 CHAPTER 5 REFINING THE AGENT MODEL 

compose.,..e : (Agent x Agent) -++ Agent 

compose""c = 
{ Synchronize Compose 
• (8Agent l ,OAgent J ) OAgenl')1--+ 

Arguments in the preceding three sections lead to the proof of the <l5sociativity 
of compose., ..,> 

Theorem 5.5 Synchronolls composition, when defined. IS as~;ocialive, i.e" 

compose"nc( compose" .. ,( AI, A2), A3) =
 
compose.)'n,(Al, composc. jnc ( A2, A3)).
 

Since these composition operators are associative. we can define operations 
which wmpose arbitrary Ilonempty sequences of agenls by means of the folding 
operations of 9talldard functional programming [24]. Refer to Appendix A for def
inilions of the folding operations in standard Z. 

composeall,nl' 
composeall••nc ; seql Agent -++ Agent 

composeall,nt "= /oldll composetnl 

composeall~r"c = /oldll compose.,nc 

The composition operat.ors an> not mutually associative, but. in practice this will 
not matter. Interleaving i!> used to build tip a specification of an agent that will 
have a private state. Synchronization i~ us{'d to connect the separate agents, i.e., 
ones which have a private .'~tat.e. 

5.6 Interpretations of agents 

The commnnication specification now provides the link n{'cessary for combining an 
internal specification and an external specification. What remains is to describe 
the refinements of the intemal and external interpretation relations. 

5.6.1 Internal interpretation 

We wa.o.t to derive the internal interpretation relation l)t for an agent which maps 
traces of events that an agent can participate in to the possible states that the agent 
can be in after participating in the trace. Following thl' approach of Chapter 2, we 
first extend the operations mapping from the internal specification. However, since 



97 5.6. INTERPRETATIONS OF AGENTS 

that mapping uses messages to index the state transitions and not events, we must 
also extract the message content of the event. 

opE:rtend_: Agent _ seq Evr.nt _ (State ....... State)
 

opExtendtil trace) = A .in1is <J (~/( trace; mess;A.operations)) 

A difference to note from the development of Chapter 2 is that every event has 
an associated state transition, instead of jnst input events. We refer to sequences 
of events in this definition a.<; traces instead of programs to alert the reader of 
the differeuce. It is the role of an event which distinguishes stimuli (input) from 
response (output). The domain of opExtend manifests the constraints on event 
sequencing which arise from the int.ernal specification. The external specification is 
already expressed ill t.erms of evellt sequences. JAnl mnst be consistent with both. 

1:"'''' : Agent _ (seq Et,rnl ....... Sfflte)
 

(tmCE, s) E IAnl ¢:} ( 3 So : A. inils • (fmce, (So, s)) E opE:rtendA 

1\ lrace EA. fmet'S) 

It is important to note in thi~ definition, that the overall interpretatioIl is given 
as a conjunction of internal and external constraint,s. This was the main motiva.tion 
for the hybrid notatiou of the Sufrin and He model. In that formal model, however, 
the external description was defined to constrain the transitions possible from the 
internal description, but not vice versa. However, it Was dearly the intenlof those 
anthors to allow the iuternal specification to const.rain the traces possible from the 
external desui phon. We mention this point as another example of how a formal 
approach can uncover inconsistencies between informal requirement.s (the intent 
mentioned above) and the deliverable (tbe actual formalism). 

The histories of an agent, written H[ A ], give a recording of the events in 
wbich it can participate and are derived from the domain of I.i- j 

• 

H[ -I: Agent - P(seqEvwt) 

H[ A n= domft"1 

There are three properties which must be satisfied by the internal interpretation 
relation and its derivatives: 

•	 the set of histories of an agent is prefix closed, so that for an agent to partic
ipate in a sequeuce of events it must bave participated in each prefix; 

•	 the internal interpretation relation respects the history of interaction, so that 
any state the agent can attain must have been reached from a previously 
attainable state; and 



98 CHAPTER 5. REFINING THE AGENT MODEL 

•	 the internal interpretation relation is nonempty, so that every agent has some 
behaviour. 

We will prove each of these properties of the internal interpretation relation in torn 
as theorems. 

Theorem 5.6 The. set of lruces of an agent is prefix closed, i.e., 

\fA: Agent. prefix_dosed H[ A ]. 

PROOF OF THEOREM 5.6: 

To prove this theorem, we lI{'eu Lemma 5.1, which states that opExtendA obeys 
a nice compositional property. 

Lemma 5.1 

VA: Agent; 5: A.states; So: .1,init5; hd, t/: seq Event 

•	 (hd'-' ti, (So, 5)) E opExtendA ~
 

3 s' : A.states
 
•	 ( (hd, (50, s')) E opExlendA 

/\ (ti, (51,S)) E (tl~ mess:::A.operations)) 

PROOF OF LEMMA 5.]: 

Becanse of layout considerations, in the following argument we have substituted 
the expression Aops for the correct exprt'.'Jsion A.operotio1ls. 

(Ad'" ti, (So, s)) E opExtelldA [a.ssumption) 

¢;I (So, s) E ~j (hd '""' tl ~ mess ~Aops) [defn. of opExtendA , So E A. inii-s] 

¢} (So, s) E ~j ((hd; mess ~Aops) ..... (tI; mess ;Aops)) [; dist. over .....J 

¢} ISo.,) E (;/(hd ; me" ,Aops)) , I'll tI , me" ,AQp,)) [defn. of ,II 
¢;I 3 s' : A.states	 [defn. of ~J 

• ( ISo,S') E (,/lhd,mesqAop,)) 
A (5', s) E (;j(tl ~ mess~Aops))) 

¢;I 3 .~I: A.stales [defn. of DpExtend] 
•	 ( (hd,(So,5'))E opExtendA
 

A (tl,(s',s)) E (ll;mess;Aops))
 

<:> END OF PROOf OF LEMMA 5.1 



99 5.6. INTERPRETATIONS OF AGENTS 

Continuing with the proof of Theorem 5.6, let ir E 1-£[ A ] and hd - tr, i.e., 

hd'--' tl = tr. We need to show that hd E 1-£[ A ]. 

hd ~ II E rtl A I [assumption} 

¢> hd .-. tl E dom I;t [defn. o!rt! A II 
¢} 38: A.slates; 50: A.inits [defn. of l.tlJ 

•	 ( (hd'--'a,(So,s)EopExtendA
 

A hd'-' t/ E A.lmces)
 

Lemma 5.1 
¢> 38': A.slates; .'>0: A.inifs 

prefix-closed (A.traces)
•	 ( (hd, (so, s'» E opExterulA
 

A hd E A.fl"lices
 

¢> hd E dom finl [defD. of IA"'] 
¢} hd E 'Hi A I [defn. of HI A II 

<) END OF PROOF OF THEOREM 5.6 

Theorem 5.7 The internal behaviour of an agenl is history-closed, i.e.} 

VA: Agent; (1-1', ..;): I;t 
•	 3 s' : A.stales; t,.', 11'": seq Afessage
 

tr' ...... tT" = II"
 
• (	 (tr\8')E/J.... t 

A (.'I', .'I) E (tr"~ mes5~A.()pemtions) 

PROOF OF THEOREM .5.7' 

Assnme we have an i\gent A with (tr, s) E I;t and tT''-' tr" = tr. If 11" = tr, 
then we can satisfy the conditions of the theorem by letting s' = .'I and Ir" = ( ). 
So assume that I,.' # Ir. By Lemma 5.1, we know that 

3.'1': A.slates; 50: A.iruts 
•	 ( (tl"',(."o,.'1'»EopExtendA
 

1\ (t1''',(5',.'1» E opExtendA)
 

Since tl" E A.truces and A.traces is prefix closed by definition, we conclude that 
I(tr', .'I') E IA" , as desired. 

<) END OF PROOF OF THEOREM 5.7 

Theorem 5.8 For (my agent A, the inlernal interpretation relation is Tlonempty. 



100 CHAPTER ,5. REFINING THE AGENT MODEL 

PROOF OF THEOREM 5.8: 

Since A.inits is nonempty, this theorem is satisfied by demonstrating that, for 
all agents A a.nd initial stale So: A.lnits, the element (( ),So) is in IA"'. First, we 
show that opExtendA () = idStale. 

opExte.ndA ( ) 

= ;/(( ).tqM<U4g<:: mess::A.opemtions) [defo. of II 

= v/(( )5141<_51,,1.) [defo. of;] 
= id State [defo. of ;/1 

Since (So, 50) E id State, we have satisfied the firs1 predicate in the definition of l)t J 

because 

((),(,",s.,)) E opEx'nodA • 

Finally, ( ) E A.traces by the definition of EzferllalSpfc. Therefore, the internal 
interpretation relation of an agent is never empty, since it contains (( ), So). 
o END OF PROOF OF THEOREM 5.8 

5.6.2 External interpretation 

In Chapter 2, we also defined all external interpretation relation, l~rl to reflect the 
overall ~timulus-responsebehaviour of an agent. The importance of this interpre
tation relation was twofold. It provided an external specification of an agent, so 
t.hat the translations of the interaction framework could be viewed as specifications 
of agents themselves. It also was used to define some interactive properties. such 
as predictability, honesty and trust.worthiness. 

External specification is now explicit in the agent model, but it includes m.ore 
information than the overall stimulus-response and it also includes event behaviour 
that could be excluded by the internal specification. fA"l is defined on the traces 
of A, applying only to legal behaviours of the agent, and il filters out t.he input 
and output events. The stimnli of an agent are the e ....ents that can occur along 
the input channels. The responses are the events that can occur aloug the output 
channel~. 

stimuli, r'e5ponses : Agent --+ P Event 
f~r1 : Agent --+ (seq Et'ent +-+ seq Event) 

stimuli(A) = events{lA.illputsD 

r'esponses(A) = eventsOA.oulputsD 

IA" ~ { t , HI A I 
""q nq

• t t> slimuli(A) r-o t t> r'esponseH(A) 



101 5.7. CONCLUSIONS 

Because 1{[ A ] is prefix closed, we can show that both the domain and range 
of Iyl are prefix closed as well. 

5.7 Conclusions 

In this chapter, we have refined the model of the agent. The specification of an 
agent has been split into three parts to define the internal state-based beha\'iour, the 
external event-based behaviour and the communication specification which links the 
internal and external specifications. We have described two composition operators 
on agents. The first correspollds to the interleaved composition of dependent agents 
which will aid in tIle gradual development of complex agents sharing attributes and 
messages. The second composition is a synchronization of independent agents which 
share no attribntes and communicate via synchronized message passing. 

The agent model presented is good for theoretical use. We can express and prove 
general illteraet.i\'e properties of agents using this model. In Chapter 7 we will use 
the refined model as a basis for the reformulation of the interactive properties 
expressed in Chapter 4 and introduce some new ones. The agent model, however, 
is not. a very good design lIotation. We will justify this claim in the next chapter 
and present a language for the description of agents which can map back into the 
agent model. 



Chapter 6 

A language for describing agents 

Up to this point in the thesis, the Duly formal not.ation we have used has been 
Z. We believe that strici adherence to Z as a design notation for agents is not 
desirable. The way a designer conceptualizes an agent's behaviour must be more 
directly captured in the agf'nt language than standard Z allows. We will, therefore, 
provide a new langnage for the description of agents. We waul the new language to 
be flexible. The properties we express on an agent relate t.he events and the state, 
so it is important that. we can describe the event-state behaviour. As de5cribed in 
the last chapter, sometimf's it is easier to describe such a desired behaviour via t,he 
internal state description linked with a communication description and sometimes 
it is easier to do directly via the external event description. 

The agent. language is a formal notatiou, and there are many existing formal 
notations which are increasingly being used in both academic a.nd industrial circles. 
We want to take advantage of the familiarity with t.hose existing notations. How
ever, most of thc notations are either more suited to the state-based d~s(Tiption 

or the event-based not.ation, and sO they do not alone satisfy the expre~siveness 

requiremcnt described above. Following on from Sufrin and He's model of interac~ 

tive processes [158], we propose a hybrid notation which marries a model-oriented 
descriptive t.echnique for the internal description and a process algebraic technique 
for the external description. Elsewhere, we have described a version of the agent 
la.nguage which uses an algebraic notation for the int.ernal description [69], but the 
semantics for such a language we have not defined. 

Overview of chapter 

In Section 6.1, we justify the need for an agent notation different from standard 
Z and we give an oven' jew of some other agent~like notations. In Section 6.2, we 
provide a lauguage for describing agents and we outline the mapping from that 
syntactic domain to the sCll1antic model, further details of which can bE found in 
Appendix C, The best way to explain how the agent language is used is b}example, 

103 



104 CUAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS 

and so we offer severa.l examples in Section 6.3. We have placed a. heavy emphA:lis 
on familiarity with the new not.ation, which has resulted in a hybrid language 
resembling established model-oriented langnages, such a..s Z or VDM, and process 
algebra notations, such as CSP or ecs. Any language exerts an influence on its 
users-some things will be easy to express within t.he language and some things 
will be difficult. Such an influeuce is not a bad thing, A:l long as we are aware of 
it and we recognize the limitations it implies. At the end of this chapter we will 
summarize the limitations of the agent. language. 

6.1 Notations for agents 

Although the model presented in Chapter 5 will be adequate for deriving the inter
active properties to be disclIssed in Chapter 7, it does not satisfy the requirement 
of natural expressiveues.'L Before we present the agent language, we explore in 
this section some other possible languages for our agents and other ohject-oriented 
formalisms. 

6.1.1 The standard Z notation 

We ha\'e used the Z notation to present all of the formalisms so far in this thesis, and 
we will continue to use Z as the means for mathemat,ical expression and reasoning 
within the agent model. However, we do not favour Z as t.he design notation for 
agents for two main reasons. 

Our first criticism of Z is the lack of modularity it. provides in standard use. 
,",'herea.<; in most tutOTials on t.he Z language a modular development approach is 
advocated, any modularity ill result.ing specifications is left to the reader to extract. 
The principal features of an internal specification of an agent-the state space, the 
initial states, and the operat.ions on the state space-are separat.ely describable in 
Z. When we want to bundle these components together, it is possible in Z, but 
not natural to the standard Z development. The possibility was demonstrated by 
Sufrin and He [158], so to justify our argument. we will provide an example of the 
specification of a window in a multi-windowing environment using their model of a 
process, given below. 

lEI 



105 6.1. NOTATIONS FOR AGENTS 

~SandHProc",[SJ _ 

a:PE 
/3' E ~ (S ~ S) 
Tmce : P(seq E) 
l: PS 

a = dom;3 

'i 5, t : seq E. 5'-' t E Trace =} 5 E Trace 

For our purposes, w(" call ("(juate the type E with the type Message, and S wjth 
S/fJle. 

We will begin by giving a Z description of the functionality of t.he individual 
window. A window has two representations, depending on whether it is open or 
closed. When closed it takes the form of an icon, which is one from a set oC all 
possible icons, denoted ICON. 

[ICON I 

When open, the window covers a rectangular region on a fini te coordinate plane 
representing the visual di~play. This plane is commonly viewed as a pixel plane 
with boundaries ill the horizontal (x-axi>l) and vertical (y-axis) directions. The 
type PIXEL will repre;;ent points in this finite coordinate plane. 

;rmax. yfnax : N 

PIXEL == 0 .. .rmax x 0 .. ymax 

For our purposes, a window is completely defined when we have the following 
information on it: 

• the icon to repre~enl it. when closed and its position in PIXEL space 

• the position and extent of its rectangnlar region in PIXEL space when open 

• an indication of whet.her the window is open or closed 

The schema type WindowState describes the state of snch a window. Each as
pect mentioned above is represented directly by a component of the schema type 
WindowStafe. 

WindowStatc _ 

icon: lCD/If 
iconpos, winpos, wlnsi=e : PIXEL 
status : open I c10Md 



106 CHA.PTER 6. A LANGUA.GE FOR DESCRIBIIIIO AGENTS 

We could add some constraints on the window state. For example, we could con
strain the size of the window such that the whole window is contained in PIXEL 
space. For simplicity, we ignore such constraints for the moment. 

Wben a window is created, we can stipulat.e that it satisfies certain constraints 
beyond any given i'I.S the state invariant of WindowStatc (had we given any). Ini
tialization constraints are by convention detailed by the schema Windowlnil, and 
the purpose of this schema is to give the subset of all possible states in which a 
window can he initially. This schema only contains a copy of the state after tbe 
initializa.tion (the window is assumed not to exist before initialization). In our 
example, we will stipulate that a window begins with stat.us open. 

Windowlnit _ 

~ WindouSlul" 

[status' = open 

Some of the normal operations performt'd upon a window would be to open 
or close it, to move it (WIWIl open or closed) or to resize it when open. We 
indicate a window operat.ion by a schema description containing the declaration 
.6. WindowState which contains two copies of window schema binding to represent 
the window before (using undashed component names) and after (nsing dashed 
component names) the operation. V....'e can specify the operation to open a window 
by requiring tha.t the stat.ns of the window indicate that it is closed before the 
operation and open afterwards. No other componeut of the window is cha.nged. 

Open Win(JowOp _ 

.6. WindowS/ate 
S( Win(JowState \ {status}) 

status = closed 

status l = open 

Tbis operation definition is equivalent to the following expanded schema.. 

INO~f ~he use or the =: convention along wil,h Schema hiding ( \ ) to give such framing wn
(lltions. The hidden componen~s are precisely thOlll" we wish the operat,ion to be able to change; 
the oth~l remain the same. Though nol widely pllblicizcd, thiS technique or explifitly nammg the 
fra.ming conditions or operaliolls is good practice [106, 27]. 

I 



- ---

61 NOTATIONS FOR AGENTS 107 

_ Open WindowOp ~ _ 

WindowSlrlfe 
Wi7ldowStale' 

status = closed 

status' = open 

iratj' = 1'con 

ICQnpos' = icollpoS 

. ,
wmpos = Wl'flpOS
 

1Jlinsize' = wl1Isi::e
 

Similar descriptioIlH can dp.~cribe other operations on a window, such as closing, 
moving or resizing. As a.n example of an opera.tion which takes an argument, 
we specify how a window is moved. Either the open window or iconified window 
position can be altered, so .....e define the gent'raJ move operation in two parts to 
coveT the two different Ci\..<;es. The m'erall window repositioning operation is then 
the disjunction of those two spparate operations. When the window i3 closed, the 
argument to the reposItioning operation indicates the new position for the icon. 

MOllE WindowClosed _16 ~l'indowStatE 
=( WindowS/ale \ {iconpos}}
 
newpos? : PIXEL
 

slulu8 = closr::dr
I iconpos' = newpo,s? 

When the window i:> open, the a.rgument indicates the new posit.ion for the 
rectangular region. 

Movc WindowOpen _ 

16 WindowSlaie 
I =:( WindowSfaic \ {winpos}) 

nEwpos? : PIXEL 

status = open 

winpos' = nrWpos? 

MOVE WindowOp == J'v!O"f WindowCfosed V MOt'f WindowOpen 



108	 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS 

The window is represeuted as a process in the following manner. Th", statl' set 
is given by WindowState and the initial states (£) ar~ characterized by Windvwinlt. 
The message set contains elements that can be linked to the schema. operations 
realized as relations on WindowSlale. 

E;:= open 
I close 
I move ((PIXEL)) 
I re,ize((PIXEL)) 

Window: SandHProc('ss[ WilldowSltLlfJ 

Window.a = E
 

Window,l = { Window/llit. 0 Window' )
 

Windo'W.,8(open) =
 
{ Open WindowOp _ 0 WindowS/atr ........ I) ~l'tndowState' } 

Vp' PIXEL 
• Window.p(move(]J)) = 

{	 Move WindowOp
 
I newpos? = p
 
• 0 WindowS/ale f--+ 0 WindowSta{f/ 

Sufrm and He [158], showed that it is even possible to give the external specifica
tion with.in Z, and we offer furt.her proof of that in Appendix C with a full semantics 
for a constructive trace language based on esp. So there is no feature of a process 
(or agent) which cannot in principle be represented in Z. But this representation is 
achieved through rather rotlndil.hout measures, none of which is difficnLt, but all of 
which 5{'em unnecessary to the desniption of an agent. 

Our second criticism of Z as the agent notation again arises because Z is not 
specifica.lIy geared to describe functioning entit.ies (like an il.gent or process) in 
isolation within a system of ot.her entities. Z has a limited ability to express com
munication between schemas, sequential composition and piping operators being 
defined in the schema calculus having oilly the limited possibility of communicat
ing with one other schema. The stimulus· response model dictates that the agents 
be able to communicate to an arbit.rary number of ot.her agents in response to any 
stimulus received. Though extensions to Z which we discnss below remedy the 
earlier problem about bundling internal information into one object, no previous 
formalism adequately addresses this failing. 



109 6.1. NOTATIONS FOR AGENTS 

6.1.2 Object-oriented notations and Z 

Om notion of an agent is somewhat similar to that of an object in objeet·oriented 
programming parlance. With the advent of object oriented programming languages, 
tbere has been a change in the way many designers view the systems that they build 
[43]. A system can now be nalurally viewed a.~ a collection of objects which pass 
messages that cause cbanges in their neighbours, that is, designers have adopted a 
stimulus-response view of their systems. In response to the increasing acceptance of 
object-oriented programming notations in industry, researchers have' attempted to 
provide a formal notation to represent the largely informal and intuitively appealing 
concept.s of objects. 

The roots of object-oriented programming can be t.raced to data ahstraction 
[102J, in which only the means for transforming an underlying dat.a structure, not 
the procedur~, are made apparent to its user. Though data abstra.ction within 
an algebraic framework was initiated at least as far back as 1978 by Guttag and 
Horning [65] and Goguen d ul.[60], it. ha.'i only been inw-stigated more recently 
within a model-oriellted axiomatic approacb. In this section we will discuss a few 
of the techniques distinct from our agent model that have been offered, in a roughly 
chronological order. These techniques have all influenced the development of the 
agent model, though none seems to address the issues around communication as 
well as t.he agent model. 

Promot.ion 

The description of a window and the operations that can be performed on it is 
easiest when done in isolation, that. is, withont consideration of auy other windows 
which may coexist. The schema definitions describe the kinds of transformations on 
windows that we waut to be possible. The operation definitions describe transit.ions 
on all possible windows; given a.ny element of type WindowStale, the operation def
initions provide a description of when and how that element can be t.ransformed to 
another element in WindowS/.ate. This is snbtly different from an iuterpretation of 
what operations on windows as objects in an interactive windowiug environment 
represent. In t.hat case, we create a window and that marks the beginning of its 
existence as an entity (or object or process or agent.). This entity has character
istics (or components or attributes) which fully describe it at any point during its 
exist.ence and there a.re operations which can be performed on the entity to change 
those characteristics bu/ withollt changing the identity of the window within the 
fJystem. 

This last point is very important point becau:;e it embodies another criticism 
of 'l, namely t hat it does not. allow for identification of the objects in a system 
so that. changes t.o one object can be isolat.ed. ''''Ie do not feel, however, that this 
criticism is valid, as t.he standard Z development method provides promotion as a 



110 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS 

means of objectifying isolated specifications in order to incorporate them directly in 
a larger global system descript.ion. The technique of promotion is common amongst 
Z practitioners, being first. explailled by Morgan and Sufrin in their description of 
the Unix filing system [117). and given a more rigorolls mathematical treatment by 
Woodcock [171] 

A fundamental charaeteristj<: of an object is its idf'otity. To promote the local 
window description into the more global window manager level, we need a way of 
identifying the different instances of windows, all of which are of the same type 
WindowS/ate. We introduce a .'Set of window identifiers, WlNID, so that the iden
tificat.ion of individual windows is modelled a.s a partial function from identIfiers 
to the schema type WindolL'Stllte. The windows that the manager "knows~ about 
ore precisely those in the domain of t.his function. The window manager also keeps 
track of the current selected window or windows, to which all future inpnt is di
rected. The window manager may COllI ain ot.her information as well, but for our 
present purpose we need not bother with any furt.hf'f detail. 

[WINlD] 

WindowManageT' :cc_~c:- _ 
windows: WINID --H WindowSlale 
known: P It'INID 
se/cdrd : P WIN"!D 

known:::: dom wimlo1Us 

selrcted C known 

We have already defined operations such as MOlle WindowOp on a single, isolated 
window because they were more cOllveniently described iu that context., rather than 
in the context of the window monager. We can promote the local operations via 
the promotion schema v'v"indowPromoiL 

WindowPmmote 
.6. WindowManagrr 
win?· WINID 
.6. Window 

win? E known 

() Window:::: windows 1rill? 

wmdows' = WilHJOWS EB { win? _ 0 Window'} 

known' = known 

selected' :::: selecled 



111 6,1. NOTATiONS FOR AGENTS 

This promotion schema will allow us to embed the local window operations 
as operations of the window manager with minimal changes to their definition, 
The advantage lo this method is that in the definition of the window o~rations 

we did not have to worry about propert.ies of the window manager, whic~ makes 
their definitions not only simpler but more natural to express. For example, when 
defining the move window o!Jel'ation it should not mncern the specifier what other 
windows are known to the window manager. Operations on windows can be defined 
directly as oper at.ions at tht' level of the window manager via tbis promotion schema. 

~VAfOpl'1L WinrlowOp ==
 
(Open lFindowOp A tl'lIldowPromole) \ ~ WindowState
 

WMClose lVilldowOp =
(Clos(' Win(!owOp A WindowFromolr) \ ,3, H·'indowState
 

t~'MMove }Vmdou:Op ==
 
(Move WiT/domOp A Wmdou'Promote) \ ,3, WindowS'tute
 

~l·A[Resizc lVindoll'Op ==
 
(Resize WindowOp A Windo'l.L'Promote) \ ~ WindowS/ale
 

In our example, we did not want. the global state to affect t.he local operations, 
Though the promotion techni<Jue can cope with such interference by the global stat.e 
by suitahle parameterization of the global operations, it is more in line with the 
spirit of data abstraction to avoid such interference. A limitation on promoted op
erations is that they only affect that part of the global state which wa.c; promoted. It 
is for this rea1mIl that in tlte operation promotion schema WindowFromole that we 
have explicit,ly :;tated that the known and ulfctcd components remain lilichanged 
because these are aspects of the global window manager stat.e that are separate from 
the individual windows. Some operatioIls on ..... indows are only relevant at t.he level 
of the window manager. Examples of such operations are creation and destruction 
of windows. Whereas the conditions for an initialized window or a terminable win
dow were described in isolation from the window manager, the operation o(creating 
and destroying a window can only be defined at the more global level. Whereas 
the lone window did not exist before creat.ion and after termination, the window 
manager existence subsnmes that of any window it manages, 

The main advantage of promolion is t.hat the effects of operations can be iso
lated to the smallest parI of a complex system. This is of great advantage for 
descrihing the functionality of a complex systt'm since the specification lakes on 
a compositional \001. The !Jower of promotion for layering the description of a 
complex system is the major contribution first provided by Morgan and Sufrin. A 
further advantage of promol,ioll is given by its more formal treatment by Woodcock 
in which we can see that the monularization allows for a proof management. system 



112 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS 

to prove the properties of a complex specification. Isolation of proof obligations is 
also important in our a.gent language. 

Promotion captures the ideutity of objt'ct.s, but it does not address very ade
quately the second point about object-oriented not.at.ions, that of conceptualization. 
As Woodcock points oul [171 J, promotion advocates an "onion skin" approach to 
system development. The windowing system is viewed in layers of functionality, as 
shown in Figure 6.1. The innermost la.yer represents the single window, followed 

PhysicallnwrfaLe 

AslfillCt lnwrF:iCe
 

Window Mlnagu
 

( W',oow J 

Figure 6.1: The "onion :'ikin" view of a windowing system 

by the multi-windowing envirOllmeHt, the abstract interface (in terms of logical in
put and output devices) amI the physical interfac,e. Dy contrast, an object view 
of the windowing system may look like Figure 6.2. The onion skin view shows the 

O ~ ,'o,"on' 

o,",,",y/~
 
t:1
 
~ -----88 8 

Figure 6.2: The object view of a windowing system 

inheritance relationship, whereas the object view shows the instance relationship 
and communication. 

In the next few sections, we will sllmmarizesomeof lhe formalisms more in line 
with the object view. 



113 6.1- NOTATIONS FOR AGE"'TS 

Schuman and Pitt 

Schuman aud Pitt [1.16), first suggested in 1987 a variant on the Z notation which 
was specifically designed to meet the ueeds of object-oriented system design and 
conform to its "pragmatic appeal". Schuman, Pitt and Byers [145J followed three 
years later with an interpretation of classes in their earlier model as concurrent pro
cesse~;. Though they recognized the need to relate state declaration with initializa
tion and operations more strongly than is done with Z (or VDM), they deliberately 
did not enforce that relationship syntactically, as we desire to do. 

They uote that one of the prime features of a concurrent specification ter.hniques 
is t.he ability to reason about the behaviour of the individual processes (or objects) 
and about combinations of the several processes. They take minimalist. approach 
to process behaviour, characterizing a process in terms of trace/implication pairs. 
Traces are exactly the same as for our agents above, that is, a record of events 
in which the process has participated. The events are operation names which are 
defined by a pre- and postcondition semantics on the components of the state. 
Implications are that information on lhe state of a process which can be inferred as 
a result of the postconditions of the operations in the trace. Communication is in 
terms of data flow, so synchronization results naturally from conjunction of pre and 
postconditions. They claim this to represent the most natural form of conOlrrency, 
a point which is very debatable. An advantage of our agent.s is in what we believe to 
be a more natural facility for expressiug the communicat.ion between the separate 
components. 

Schuman, Pitt and Byers provide two means for composing, inheritance aud 
instantiation. Inheritance occurs when a process C can incorporate and extend the 
process (or class) information of A and B to define a new process which is a subclass 
of hoth A and B. Instantiation occurs when C incorporates named versi()ns of A 
and B in its definition. The mathematical distinction between inheritance and 
instantiation is that between normal union and disjoint union, and this distinction 
is similar to the conditions for independent synchronization and int.erleaving in our 
agent model, t.hough we do not need only use normal union on attrihute/value 
mappings to obtain the composition in both cases. 

Hall's object-oriented conventions in standard Z 

Hall has llsed standard Z with special conventions designed specifically to deal with 
object-oriented considerations in software development. The main convention is the 
nse of special components in the state definition as a means of object identification. 
This identifier is referred to as self in the state definition. We did the same in pro
motion for the window example hy introducing a set of window identifiers, WIN/D. 
Hall's convention suggests that this be performed from the start. Operations on 
the state of an object are not intended to change its identity, and so t.his can be 



114 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS 

made explicit by the addition of the predicate self' = ulf for all operations. 
Hall is also quick to point out the lack of state/operation bundling in Z, but 

rather than suggest an alternative, he says that the convention is to assume that all 
operations defined are the only ODt'S possible for the object. This seems reasonable, 
but it does not adclre$s the problem of bundling. 

The semantics of ohjects are again in terms of the traces of operations in which 
the object can participate. TIe gives examples of how a mechanical procedure can 
convert a schema definition of an operation to its relational equivalent. This proce
dure is identical to the Olle we showed earlier in converting the window specification 
t.o an element in SaTldHProces5, except that Hall uses only the input parameters as 
the index to the operation. In t.lle agent model this would be equivalent to mod
elling the operat.ions function as a relation between operations and state transitions 
instead of a function, and this decision appears very dubious. Hall admit.s that this 
mechanical definition cannot he defined in Z, as we have noted, and so he calls 
upon a convention to perform tbe mechanical conversion. 

The set of conventions advocatf'.d by Hall has been used wit.h apparent success in 
the speCification of "a subst,antial piece" of software written in Ohjective-C. A very 
interesting case study was performed llsing the Model- View paradigm of Smalltalk. 
We will discuss the formalization of such interactive architectures in Cha.pter 8. 

Object-Z 

Research at Queensla.nd has resulted in the development of Object-Z, a true ex
tension to Spivey's semantics for standard Z /34, 55, 56]. Object-Z introduces a 
class structure whose explicit. purpose is to bind together a state description with 
its invariant, initialization and operations. The semantics of a class is given by the 
events in which the objects (variable instances) of a class participate. An event is 
defined as one of the class operations along with the before and after state bindings 
associated to that instance of the operation applicatiou. A trace of such events is 
called a history. 

A relatively minor ext.ension to Spi ....ey's semantics [153J allows for the descrip
tion of classes. One of the main feat.ures of the extension is the addition of roles 
which are used to distinguish the use of variou.~ identifiers as either input or outpnt 
arguments to an operation definition or before or after values of tbe state. The p~ 

and post roles are used to define legal histories of a class instance, since post valnes 
of the ~tate after one operation must be the pre vahles of the stat.e before the next 
operation. 

Beyond the constraints on state transitions that are defined by the opera.tions, 
there is also the ability to express constraints on the histories of a class instance 
explicitly using a temporal logic predicate language. However, this relationship 
between external specification over histories and the normal internal specification 



115 6.1. NOTATIONS FOR AGENTS 

is not completely formalized in [551. The authors claim that this will allow the 
specification of liveness properties, in which assertions can be made about what 
good properties will occur in the system. Without a clear relationship between 
the external and internal specifications, snch a statement. is hard to back up. The 
external specification may express some liveness criterion, but that. behaviour could 
very well be disallowed by the internal description. 

Object-Z provides a simple and very useful extension to Z by the addition 
of classes. What remains to be done with Objecl-Z is clear. Just as there is a 
schema calculus in st.andard Z which allows for the manipulation and composition 
of schemas, there needs to be a class calculus in Objecl-Z which addresses the com
position of, and communication hetween, classes. We feel that our agent model 
addresses some of those questions. 

Whysall and McDermid 

WhysaU and McDermid have also proposed a means of adding more structure to 
Z specifications to make them more amenable to object-oriented description via 
data abstraction [167, 168]. The description of objects is split iuto two parts, the 
export and the body specifications. They make explicit, as we do, that ODe of the 
main advantages of such structure is to allow composition of modules, both for the 
pnrpose of description of large systems and for the delegation of proof obligations 
for properties of the large systems. These two specifications roughly correspond to 
our external and internal interpretation relations on agents. 

The export specification gives the input/output trace behaviour of the object. 
The notation provided allows for this specification in an algebraic language which is 
based on observational equivalence of method traces. Observational equivalence in 

this case is similar to extl?rnal indistinguishability (_ '~L) we defined in Chapter 4. 
The body specification dictates how the methods behave on the underlying state 
of the object. This is similar to our internal specification. Whysall and McDer
mid define the relationship which must hold between an objed's export and body 
specifications, namely that they cannot be inconsistent with each other. Traces 
of method in vocations allowed hy t.he export specification must be allowed hy the 
body specification. 

z++ 

Work at Oxford has recently resulted in an object-oriented extension to Z called 
Z++ [1001. A separate notation has been added which performs precisely the 
bundling of state specification and operations. It has been shown how this notation 
maps down to more conventional Z. This notation does not consider communication 
at all between separate objects because it has been developed based on a three-



116 CHAPTER. 6. A LANGUAGE F'OR DESCRIBING AGENTS 

level design of systems in which each level uses operations of the level below, like 
the "onion skin" model a.<lsociated to promotion discussed earlier. Z++ is a wide 
spectT1Jm language because it contains both nonexecutable specification statements 
and potentially executable procedural statements (in UNIFORM [154]). 

6.1.3 Other concurrent notations 

We have explicitly incorporated a process algebra model of the external specification 
of agents because it is a simplp compo;;itional model which addresses concurrency. 
Process algebras gain their simplicity and power from their deliberate disregard 
of state information. But as JoseplJs points ont [92J, this is not always a positive 
feature in tbe design of complex systems, as the snccess of model-oriented specifica
tion techniques such a:; Z and VDr..'1 has shown. Both Josephs and He 176, 77] have 
developed state-based versions of communicating proceSSes in which the transitions 
on the explicit state space define the traces of behaviour. It was He's work which 
influenced the hybrid approach of the Sufrin and He model of interactive processes 
and our own extensioll of that model in terms of agents. 

Notations for concurrency abound; an adequate review of these notations is not 
within the aims and scope of this thesis. We take time here to mention the Josephs 
and He models as signposts for the trend in recent years to develop decent models 
of concurrency with explicit state. Our agent model is such an attempt which 
has ari.en out of the special needs to express interactive properties of a system 
design. One other attempt of note is the work by Morgan and Woodcock [170J in 
which a weakest precondition semantics is used to define eSP-like combinators for 
a concurrent extension to Dijkstra's gnarded command language. 

6.2 The agent language 

In this section, we will describe the language for agents and outline how the notation 
maps to tbe model of agents. The agent language is as far as possible a mixture 
of Z and esp, so there is no need to give a detailed semantics for the language in 
the body of this thesis. The interested reader is directed to Appendix e for further 
details of the semantics for the agent language. 

As we have stat.ed, there are two ways to combine agents-by the interleav
ing of agents which may share common e\'ents or attributes, or by the synchro
nization of agents with disjoint attribute sets. Existing agent definitions can be 
combined, therefore, by interleaving tbem or synchronizing them. In addition, we 
can constructively define an agent by giving the internal, external and communica
tions specifications directly. The examples iu Section 6.3 show how and when each 
method of agent description is used. 



117 6.2. THE AGENT LANGUAGE 

An interactive system is a mapping from agent identifiers to the set of agents 
in Agent. We introduce a set of possible agent identifiers. 

[Ag,nt/D] 

JntSy~ == Age'1ltJD --+-+ Agent 

The system semantic function, S( _ j, takes an existing interactive ~ystem and 
an agent language expression and produces a new interactive system. The agent 
language description represents either the synchronization or interleaving ofexisting 
agents, interleaved with an additional 3-part description of a new agent (internal, 
external, communication specification), or a completely new 3-part description of 
an agent. The following is a IlNF-like description of the agent language syntax. 
Square brackets are used lo indicate an it.em which is optional. 

AgExp agenl AywtJD - synchronization 
synchronizes AgtntlDList 
[with 3ParlSpecl 
endagent AgenlJD 
agent Agt:nUD - interleaving 
interleaves AgentJDLisl 
[with 3ParlSpee] 
endagent Agt:ntlD 
agent AgF1ltJD - 3-part specification 
3ParlSpec 
endagent AgentJD 

The system semantic function S~ _ ] is defined structurally over the elements in 
AgExp. For synchronized combination, the exprellsion 

agent Al 
synchronizes AS 
with Spec 
endagent Al 

maps the (fresh) agent identifier Al to the synchronous composition of the agents 
indicated by the sequence of (distinct) agent identifiers AS, if such a composition is 
allowed by composeaIl3rfl.~' This may then be interleaved with the agent defined by 
the 3-part specification Spec, according to the semantic operator Ag[ _ ] discussed 
later. 



118	 CHAPTER 6. A LANGUAGE fOR DESCRIBING AGENTS 

51-1 ' (IntSy, x AyExp) ~ In'Sy, 

'<I AI: Agent/D; AS: seq} AgentlD; p: InlSys 
I ( AI ~ damP 

1\ (AS: p) Edam composeoll.,nc) 

agent Al )
• S[	 synchronizes AS ] = 

( endagent Al
 
PEB{AI t-+ composea/l.,nc(AS~P)}
 

'if AI; AgentlD; AS: sef]l AgentlD; Spec; 3ParlSpec P : IntSys 
I ( AI ~ dam p 

1\ AS ~ P E dam composeall.~"r; 

1\ (composeoll.vn-(AS ~ p), Ag[ Spec ]) E dom compose;"d 

agent Al ) 
•	 S[ s~nch~ol1izes AS ] =
 

with Spec
( 
endagent Al 

PEB{AI ........ c01/lpose",,(com]}osf(Jli.ync(AS~p),Ag[ SptC ])} 

Not.e that because of the associat.ivity of compose.,nc (Theorem 5.5), the order of 
the ag€nt identifiers in AS does not matter. 

For interleaved combillat.ioTl, the expression 

agent Al
 
interleaves AS
 
endagent Al
 

maps the fre1lh identifier Al to the interleaved product of the known agent defini
tions in AS and the 3-part specification Spec, if given. 



119 6.2. THE AGENT LANGUAGE 

V Al : AgcntlD; AS : seql AgentID; P : IntSys 
I ( Al if dom P 

1\ AS ~ P E dom composeall.RI) 

agent Al )
 
interleaves AS
 

• 5[	 with Spec 1-= P\!l{AI ~ composeall'''I(AS~p)} 
(
 

endagent Al
 

V Al : AgenllD; AS: seq\ AgenilD; Spec: 3PartSpec; p: TntSys 
I ( Al if domP 

1\ (AS ~ p) '""' Ag[ Spec] E dom composeall,,,r) 

agent Al ) 
•	 5[ in.terl~aves AS ] =
 

with Spee
( 
endagent Al
 

PEll {AI _ composwll,",( (AS: p) ~ Agi Spec J)}
 

Note that because of the associativity of compose,,,l (Theorem .').4), the order of the 
agent identifiers in AS does not matter. 

A stand alone specification of an agent, 

agent Al 
Spa 
endagent Al 

ma.ps the fresh identifier A 1 to the agent A9[ Spec ]. 

VAl : AyentTD; Spec: 3PartSpa; p: IniSys 
I ( Alifdomp 

A Spec E dom Ag[ _I) 
agent Al )

• sIT	 Spec J ~ PEIl{AI - Ag[ Spcc iJ
( endagent Al 

The semantic function Ag[ _] maps a 3-part description from the agent language 
to its representative dement in Agent. This three part description of an agent 
is given by separate internal, external and communication languagps. The three 
part specification of an agent is given by an internal, external and communication 
language. 

3PartSpec ::= internal TExp
 
communication CExp
 
external EExp
 



120 CUAPTER 6. A LANGUAGE FOR DESCRIBINO AGENTS 

The ageDt semantic operator, Agl_], is defined in terms of semantic operaton for 
each of the sublanguages. The domaiu of AgU -J is the set of combinations of inter
nal. communication and external expressions which yield a valid agent description 
......hen they are mapped t.o their respective specifications in the model. 

Ag[ _ ] : 3PadSpec -+i Agent
 
T~ _ ] : [EIp IntemalSpec
 
c[ _] : CE.xp Communication
 
£[ _] : EE.zp EXlernalSpec
 

dom Ag[ _I ~ ( [E, [Erp; CE, CErp; EE , EErp; Agent 
I ( Obl/el1lulSpec = I[ IE] 

1\ OComTn.1J.nicfJ/iQn = C[ CE ] 

1\ OExteJlwlSpec = £[ EE H) 
;nternal [E ) 

• communication CE 
( external EE 

;nternal [E )
 
Ag[ communication CE ] = jillgent


( external EE • ( 8In/ema/Spec = I[ IE] 
1\ OCommuniwtion = c[ CE H 

A BErtemalSpec = £[ EE J) 

The template for this part of the agent lauguage is shown below. 

agent Agman
 
internal
 

types
 
ty~cJeclamtiallB 

attributes 
attribute value bindings 

invariant 
pn;dicate an stalt: bindillgs 

initially 
predicate 0'1 .~tatc bindings 

operations 
opl(typed a1yumellt Ii;;:!)
 

changes (erplicit fmming condition)
 
pre precondition on stafe and arguments
 
post postcondilion on before/aflf'i state and arguments
 

op2 

communication 



121 6.2. THE AGENT LAN(HcAGE 

inputs typed inptit channels
 
Qutputs typed Otitptit Chrlllllels
 
T internal events
 

external 
constnJCtit'f lruce description 
satisfying 
truce prrdicate
 

endllgent AgeTIlID
 

For the body of this thesis, we feel there is a strong enough intuitive link be
tween these languages and their models to warrant passing over the detail of the 
denotational semantics. We will, however, go into more depth on the external 
language. 

6.2.1 A language for external specifications 

There is a distinction about how an external specifications can be produced-
explicitly via a constructive language of traces, or implicitly via it. predicate language 
on traces. The constructive language of traces is usually what is provided in the 
notation of a process algebra, such as CSP. In this language, the constructors 
provide a way to build lip large process specifications in terms of smaller and simpler 
processes. For example, the construction 

a_P 

is supposed to represent the external specification which first engages in event a 
and then behaves like P. The complete constructive language is very similar to a 
subset of CSP as defined by Hoare [82J. 

ConEExp ::= stop{{P Event)) - deadlock 
run((P Event)) - the total behaviour 
'kip((P Event)) - successful termination 
((Event}) _ ConEExp - prefix composition 
ConEExp 0 ConEExp - choice composition 
ConEExp: ConEExl' - sequential composition 
ConEExp II ConEExp - synchronous parallel composition 
ConEExp gConEExp - asynchronous parallel composition 

I j(ConEErp) - process relabelling
 
I }' X , ((P Ev,nl)) 0 F(X) - guarded recursion
 

These syntactic constructs are mapped to elements in the external specification 
space via the semantic operator [con [ ]. The flmction [001> ~ ] is defined in terms of 
two functions, one which yields the alphabet of the construct, 0:[ ] and one which 
yields the trace set, T I ]. 



122 CHAPTER 6. A LANGUAGE FOR DESCRIBINO AGENTS 

t',".[ _] : ConEExp --+ ExternalSpec 
o( _ 1: ConEExp ......-j P Ef!f'li 

7[ _ ] : ConEExp --+ P Seq El'1'71l 

(E".! ES I)·alpl"'bd ~ fri ES I 
(E,•• ! ES I)·'''"w ~ T[ ES I 

We define the prefix composition operator as follows. 

I -- _: (Event x ConEExp) ++ GonEErp 

dom(_ -. _) = { e : Event; P: ConEExp 
leE fr[ PI 
_(e,P)} 

.[ e ~ P J~ fr[ P I 
T! e ~ P I = ( ) U { , ,T[ P J - (e) ~, } 

As done by Hoa.re [82, p. 134J, we introduce some syntactic conventions to handle 
input and outpnt. The expression 

c:m ---I Pm 

is equivalent to the choice of every possible message that caii occur along channel c 
followed by the behaviour of some predenned description given by Pm._ For example, 
if there were only two messages that could occur on channel c, say mt and m~, then 
we would have the following syntactic equivalence. 

c1m --I Pm dg~ (C.rnl --I Pm) 
o 
c.m~ --I P"'l) 

For olltput, we will Ilse e!m --I P as a syntactic equivalent for (e,m) --I P. For 
both input and outpnt, the arguments for messages will not be given with type 
information, as it is assumed the order and types of the arguments for any given 
messa.ge is as defined in the internal and commnnication specifications. 

In Appendix C we give the full denotational semantics for this constructive trace 
specification language, along with an operat.ional semantics to aid in the intuition 
behind each constructor. 

The advantage of a constructive language for the external specification is that 
it. can lead naturally to a.n implementation. Whereas this is a definite advantage 
if the desire is to produce a rapid prototyping tool from the agent language, or 
eveD a full-blown programming environment, it is not the only purpose of the agent 
language, nor is it the primary purpose. The prima.ry pnrpose is to be ahle to 



123 6.2. THE AGENT LANGUAGE 

provide a descript.ion of the components of an interactive system in such a way as 
to satisfy the constraints imposed by interactive properties such as those described 
in Chapter 4. With that purpose in mind, we admit that it is not always so simple, 
or possible, to describe constraints on the external behaviour using the constructive 
trace language. 

An example of an implicit description of an external specification would be by 
formulation of predicates on the trace set. In CSP, these are referred to as be
havioural sppcifications on the traces[46J. They are used as criteria for judging 
whether a given CSP expression satisfies some requirempnt. In the externa.l speci
fication of agents, we will allow trace predicates to describe additional constraints 
on the communication of events along with the constructive language. 

Providing a very powerful predicate language, such a.s the moda.l mucalculus 
introduced by Pra.tt [131] and Kozen [9.5], is beyond the scope of this thesis, Just as 
we have givpn a simple example of incorporating a constructive language within the 
agent model, so motivating furt.her work on incorporating more complex languages, 
we also provide a simple example of a predicate language and leavp it open to 
incorporate more complex languages. A trace predicat.e, then, is simply a. set of 
functions with a prefix closed domain. 

ImpEExp : P(P Event x (seq Event -t Bool)) 

(A, TP) E ImpEExp <::> prefix-closed A(TP~ true D) 
Just as there was a semantic function, E"o.. [ _ ], which mapped the constructive 
external language to the Ext.ernalSpec. we will also have a function, Eim,[ _ ] to 
map the predicate language to an ExternalSpec element. 

I E,mp[ _ ] : ImpEEJ'p -t Exlerna/Spec 

The overall external specification is obtained by intersecting the trace sets de
rived from the explicit constructive language and the implicit trace predicat.e lan
guage. 

ESpecLanguage :::: ConEExp x ImpEExp 

E[ _ J: ESpecLanguage -++ ExternalSpec 

dam E[ :: ] { A : P Et'enl; con: ConEExp; imp: ImpEExp 
I ( a! con I = A 

A /st(imp) = A) 
• (con, imp) } 

E~ (imp, con) ].alphubet = a[ con] 

E[ (imp, con) ].fraces:: T~ con] n E;m~( imp J.traces 



l24 CHAPTER 6. A LANGUAGE FOR DESCR.IBING AGENTS 

6.3 Using the agent language 

Our presentation of the agt'nt model will be aided by some examples. We would 
like to demonstrate in these examples how the definition of an agent in the new 
language more closely matches the Way a designer understands it. The purpose of 
these examples is both to make c1ea.rer t.he meaning of the language and to show 
how various development techniqm>s can be used to build up agent descriptions 
incrementally. The first example is adapted from Took's thesis and involves the de
scription of a very crude nuclear reactor. The second example involves a description 
of parts of a simple windowing system. 

6.3.1 A toy reactor 

Took [163J describes a primitive nuclear reactor, in which there are damping rods 
to conlroJ the reaction and coolant to take away the heat. generated by the reaction. 
There is only one relevant attribut.e for the rods which indicates whether they are 
up, enabling the reaction, or down, disabling the react.ion. Initially, the rods are 
down. Two operations can be performed on the rods, eit.her lifting them or dropping 
them, after which the rods are up or down, respectively. The rods respond to being 
lifted or dropped by informing some ot.her agent. of the rod posit.ion after the change. 
The agent definition of the rods is given below. 

agent nxls
 
internal
 

types
 
Rodpos ::= up I (lown 

attributes
 
position : RodlK).~
 

invariant
 

' ...e 
initially
 

pol>itiotl :::: dOlLTi
 

operations
 
lift() 

changes (positioll ) 
pre true 
post position':::: up 

drop() 
changes (position) 
pre true 
post position' :::: dou'tl 

injorm(pos : Rodpos) 
pre pos :::: position 

communication 



125 6.3. USING THE AGENT LANGUAGE 

inputs rodin : II/tO, dropO 
outputs rodoul : inform(pos : Rodpos) 
T 

external 
/lX. ((rodin,liftO)-+ rodoul!infonn(pos)-.
 

(rodin, drop()) ~ rodoul!infoT7T1(pos) -+ X)
 
sati.sfying 

I~, 

endagent rods 

This simple example cau he used to explain the notation aud several conventions we 
will adopt in its use. There is no state invariant (beyond that implied by t.be typing 
information of the state attributes) and we have indicated this by the predira\.e true 
in the invariants section of the definition. The pre- and postconditions for some 
operations are also listed as lI've, meaning they are as weak as possible. A true 
predicate in the satisfaction prf!dicate for the external description means that there 
are no further constraints 011 the external definition beyond those imposed by the 
constructive definition and implied by the int.ernal specification. In the future, we 
will usually omit these sections with predicates that ar!" tTue. 

The communication description lists the input and output channels together 
with the messages that can he sent along t.hose channels. Any internal messages 
would have been listed aft.er the internal channel identifier T. There are no internal 
messages in this description. In the future, if there are no messages assoriated to 
a channel, it need not appear in the dfticription. If there are no input or output 
events for the agent, then that section can he omitted as well. 

The external specification of the rods shows the hybrid nature of trre agent 
language. We intend to prohibit two consecntive lifts or drops of the rods. We 
could have easily defined the preconditions for the operations for the lijt() and 
drop() messages to accomrnodate this. However, we chose in this example to use the 
constructive trace langnage of the external specification to express this constraint.. 
Though it does not matter in such a simple example, there may be reasons to avoid 
expressing such ordering constraints by definition of preconditions. We also enforce 
the constraint that an ontput message informing of the new rod position must be 
performed between each input message. 

The coolant for the reactor is very similar to the rods (when viewed as a.Il agent, 
that is). The coolant has only one attrihute of interest which indicates the level of 
the coolant as either in or out. Initially, the coolant is in. Operations are defined 
to add or remove the coolant, after which the coolant i~ in or out, respeeti\'ely. The 
agent definition of the coolaut is given helow. 

agent ('volant
 
internal
 

types 



126 CHAPTER 6. A LANGUAGE fOR DESCRIBING AGENTS 

Coolant Level ::= in I Qut 

attributes 
level: C(X)lanILrfle! 

initilllly 
leud:::: in 

operlltions 
,ddO
 

changes (level)
 
pre level :::: oul
 
post level' == in
 

removeO
 
changes (levd)
 
pre level ::: itl
 

post level' == (Jul
 
in[Qrm(l : Coolant Level )
 

pre I:::: level
 
communication
 

inputs rodin : addU, l'uJloveO
 
output.; rodout : in[m"m(l : Coo/an/Level)
 

external
 
satisfying
 

'V t : !roCfS 

• #(t I (""Jout)) $ #(1 1{rodin)) $ #(tl {nxlout)} + 1 
endagent coolant 

Again, no two addO or removeO messages can be received consecutively. ]0 this 
example we have used the precondition technique to specify this constraint. The 
external description need only ensure that each input event is followed by an inform 
event on the rodout channel, which is described by a satisfaction predicate on the 
trace set. The lack of a construrtive external description means that its constraint 
is as weak as possible, equivalent to runA, where A is the alphabet of the agent. 

The reador agent interleaYf's the rod and coolant agent with the additional 
constraint that at no time can the level of the coolant be out whilst the damping 
rods a.re up. The interleaved combination of rod.~ and coolant does not prohibit this, 
and 50 we must add this in a~ a separate invariant of tbe interleaved combination. 

agent reactor 
interleaves (rodlJ, coolont) 
with internal 

invariant 
--. (rodlJ :::: up 1\ Ie.l'f~l :::: out) 

endagent !'eactor 

Tbe behaviour of the agent reador is auy interleaving of the separate behaviours 
of the rod and coolant agen[.s except for those which would lead to the forbiddcll 



6.3. USING THE AGENT LANGUAGE 127 

state. 

6.3.2 SOIne input devices 

The keyboard 

The keyboard is composed of a collection of buttons, one for each labelled key. A 
button is a simple transducer, couverting inputs of presses and releases by the user 
to outputs of ups and downs to the window manager. Such a button is defined 
below. It. has one attribute of interest representing the status of t.he button (up or 
doum). Two inpuL operations correspotld to the press action and the release action. 
After each, the new button status is sent as a response to the window manager. 

agent button
 
internal
 

types
 
BStatus ::== up I down 

attributes
 
bstalus : BSlatus
 

initially
 
bstatus = up 

operations 
prcss() 

changes (b!itlilus)
 
pre bstatw = up
 
post b.!il-atus';: down
 

release()
 
changes (u!itatu!i)
 
pre bslatus = (lown
 
post usiatus';: up
 

in/orm( us : BStatu.~)
 

changes ()
 
pre us == ustatu.~
 

communication
 
inputs buttin : pr'l::ssO. releaseO
 
outputs buttout : in/o17l1( bs ; BSlatus)
 

externaJ 
I1X. butlin?x --+ bultout!in/orm(b) --+ X
 

endllgent bulton
 

We can define a. relabelling operation on a.gents, so that for any agent identifier AI, 
the expression 

AI[oldl , oJd2,··· /1If:Wl' ne U.'l , •.. J 



128 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS 

is mapped t.o t.he agent identified by Al with the namp old. replaced by netDJ., 
old2 replaced by neWz, etc. We assume that the mapping (rom old names to new 
names is inje-etive. furthermore, for any agent identifier A2 we will write new::A2 
as shorthand for renaming all at.tributes and channels with the prefix new added. 
The keyboard would be represented as th(' synchronized combination of keys, each 
of which behaves as defined lJy bu.ttor! with the attribute and input and output 
channels appropriately renamed. We could have chosen to either synchronize or in
t.erleave in this example since they would both result in the same agent definition. 
We choose to synchronize in this case because it corresponds with our notion of the 
keys as separate entit.ie!> on the keyboard. In t.he design space notation of Card, 
Mackinlay and Robertson [~ll, this composition is classified as "layout composi
tion", referring to the collocation of two or more devices (the keys in our example) 
on differ('Dt places of a common panel (the keyboard in our example). 

agent keyboord 
synchronizes ( a::buttorl, b: bIJUOfl, ... ) 
endagent keyboard 

The mouse 

The mouse also makes use of t.he button agent for each of it.s buttons. In addition, 
the mouse can transform movements in a. 2-dimenslonaJ plane to values in the Pixel 
plane. This transformation is an unchangeable attribute of the mouse agent, res, 
and it corresponds to what Card, Mackinlay and Robertson refer to as a "resolntion 
function". Below, we describe thp movement portion of a mouse as the agent 
Alo1ISt,t[ove. 

agent MouseMove 
internal 

types 
mousexmax, mOlJseymaJ" : N 
A-{ow,ePlane == O•• mouseJ"mar x O.•molJseymax 

attributes 
ew,enfmove : PI1:e I 
res : MouscPlflnf -+ Plul 

operations 
sweep( mdel/a : MouscPla7lf~) 

changes (curnmtmove) 
post eurrentmove' = res( mdel/a) 

mousemove(pdeUa : Pixel) 

changes 0 
pre pdelta :: CLlITf'rltmove 

communication 
inputs gesture: suu'ep( mdel/a : j\{ousePlarle) 
outputs mOlJsEOlJt : mOlJsemove(pdelta : Pixel) 



129 6.3. USING THE AGENT LANGUAGE 

external 
11 X • gesture?:! -+ mouseouf!molJsemove(pd) ..... X
 

endagent MOlueMove
 

The mouse agent is the synchronized combination of the movement agent and the 
buttons agents, of wbicb we assume there are three. 

agent Mouse
 
synchronizes (1", :LuIIOrl, 2m ::button, 3m ::button, MouseMove)
 
endagent Mouse
 

Card, Mackinlay and Robert.son have prodnced a generative design apace for 
describing a large class of inpnt devices. The example of t.he keyboard and monse 
above show how we can realize some points in that space and it wonJd be an 
interesting exercise to generat.e more of that space in the agent langnage. Our 
limited experience suggests that the slightly unnatnral way of expressing stimnlns
response behaviour may be a limiting factor in the snccess of such an exercise. 

6.3.3 A window 

We can represent an individnal window in a windowing system based on the de
scription given in Section 6.1. First we will allow some global type definitions which 
will be available 1.0 all agent definitions in this section. These will allow us t.o talk 
about points ill the window space in t.erms of pixels, and images in termsof pixel 
maps. 

xma:r, ymux : N 
Pixel == O.. :!mux x O.yma:! 
B;t ,,~ 0 I 1 
Pi:relMap == PIXEL -H Bit 

We will assume appropria.tely defined operat,ions on elements in Pixel, such as 
addition and a natural ordering:S. We give an incremental description of the 
window which mirrors the development method used with Z. The window state is 
first, indicating the st.atus of the window as open or closed, the icon associated to 
the window when dosed and its position, and the size of the window when open 
and its position. Initially, the window is open, and the other attribntes ue set to 
some default value. 

agent WindowStale
 
internal
 

types 
1llinsizeli.J : Pire/
 
ironlioJ' Mank : Pixe/Map
 

attributes
 



130 CHAPTER 6. A LANGUAGE FOR DESCRIBINO AGENTS 

icon, contents: PizdMap
 
icorlpos, winJX!s, winsize : Piu.l
 
status: open I closed
 

invariant
 
winpQs + wim'ize :'5: (rmux, lInJUT)
 

initially
 
sJatu.~ = open
 

winpos = icoopos == (0,0)
 
winsiu ~ wir/siuJfl 

icon = icorlJ./
 
contents = ~Iank
 

operations 
showwin( c : PireH{apJ
 

changes ()
 
pre status == open
 

c:::: contents
 

showicon( i : Pire/Map)
 
changes ()
 
pl'e status == c!osul
 

i = icvu
 
communication
 

outputs
 
winout : sholl!wi71(c: PixelMap),s!tQu'icon(i: Pixe/Map)
 

endagent WindowS/ail'
 

The agent WindowStale will be able to continuously send output messages of its 
blank window contents. Because Uw messages showwin(c) and showicon(i) will be 
used by many other agents to be defined below which interleave with WindowStaie, 

we must show in each case that the effect on attribntes not in common is the identity 
transition. In practice, the messages that are shared between agents represent 
output responses and these are usually defined as ideutity transitions, so we will 
satisfy the constraint trivially. 

Opening and dosing the window is described by interleaving WindowState with 
an agent description of those operat.ions. 

agent Open Close 

i.nterleaves (WindowSI.(lle) 
with 
internal 

operations 
openO
 

changes (status)
 
pre stalus = closHJ
 
post status' = open
 

dose(J 



131 6.3. USING THE AGENT LANGUAGE 

changetl (status)
 
pre slafus = open
 
post status' = closed
 

communication
 
inputs
 

winin : openO, dose()
 
endagent OpenClose
 

Moving thF window is described as a single operation. The postcondition covers 
the Lwo cases in which the window is open or dosed. 

agent Move
 
interleaves (lVill/lowSlale)
 
with
 
internal
 

operations 
move(pos: Pixel)
 

changes (winpo.'l, iconpos)
 
post status = dosed => ( wmpos' = pas
 

1\ iconpas' = iconpas) 
stattJ.~ = open => ( iconpas' = pas 

1\ w'inpos' = winnpos) 
communication
 

inputs
 
winin : movf(poS : Pixel)
 

endagent MOlle
 

Finally, resizing a window can only occur when the window is open. 

llgent Resize
 
interleaves (WindowS/fitI')
 
with
 
internal
 

operations 
resize(s: Pixel)
 

changes (winsize)
 
pre status = open
 
post lL'in,~ize' = s
 

communication
 
inputs winin : resize(s: Pixel)
 

endllgent Resize
 

All ofthe above agents (an be combined to give an agent description of a window. 
We add the constraint overall lhat requires l"ach event on the winin channel to be 
followed by an event on the win out channel. The event on the output channel 
either indicates the iconic form of the window or displays the contents, depending 



132	 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS 

on whether the window is closed or open. In order to guarantee this behaviour we 
introduce internal events (r, isopen()) and (T, isclosed()) to decide which view of 
the window is output as a response to the last input. 

agent Window
 
interleaves (Ope.nClose, Mot:e, R(size)
 
with 
internlll 

operations 
i:oopen() 

pte status = opcrl 
i.~close.d( ) 

pre stahJs =:: dused 
eommunieation 

i : isopenO, isclo.5edO 
external 

winout!showin( c) .......
 
p.X.	 (winin?:r: ......
 

«T, isopelLO) ---+ winout!showwin(c) -+ X
 
o 
(i, isclo:>ed()) - winoIJt!sllOwieon{ c) ---+ X »)
 

endagent Window
 

A window manager 

Having defined the individual window, we want to investigate how to define the 
window manager as an agent which synchronizes with and coordinate~ the activity 
of the individual windows. Figure 0.3 gives a graphical view of the agent relationship 
we want to capt.ure. 

Interaction with any window is coordinated via the window manager. In the 
manager we describe here, we will assume that windows are nonoverlapping in Pixel 
space and that commands to the window manager are directed to the currently se
lected window (if there is on!:'). The currently selected window is determined by 
the position of the mouse cursor. These a.<;sumptions have been made to make the 
description simpler. We could easily relax these restrictions, but the corresponding 
description of the window manager wouLd be more complex. We will not give a 
cornplete description of the window manager either. Instead, we will give an exam
ple of how it coordinates activity by describing how the window opening command 
is defined as an operation on the window manager. 

The attributes of concern for the window manager include: 

• the position of the mouse cursor; 

• the set of PixelMaps associated to a{".live windows in the system; 



133 6.3. USING THE AGENT LANGUAGE 

8 
~
 

~~
 

BE) B
 
Figure 6.3: Window manager/window relationship 

•	 a function for determining to which window a point in Pixel space belongs; 
and 

•	 the currently selected window. which is at most one window. 

Identification of window~ will be by a set of window identifiers, as was proposed 
by the promotion solnt.lon di$c\lssed earlier. 

[W;nJD] 

We will not concern ourselves with initialization considerations in this description, 
as it is not important to the example o( opening windows. Below is th(' agent 
description of the attributes itnd invariants for the window manager. The constraint 
of nonoverlapping windows is pm bodied in the definition of pick as a function. 

agent WindowManl1gl'l
 
internal
 

attributes 
mou.~epos : Pixel
 
windows: WinID --+> PixelMap
 
known, seleetNl: P WinID
 
piek : Pixel --+> WinID
 

invariant 
known = dom willdows 
#seler:trd s: 1 
selected .;: known 
pick = { w : known; p : Pixel 

I	 [J E dom{ windows( w)) 
• p ....... w }
 

selected = pir:kQ{molJ."cpo."}D
 



134 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS 

The window manager will receive as input messages from a potential user which 
can change the mouse position or open the current window. From individual 
windows, the manager receives as input the showwin(c) message that was men
tioned earlier. The response message of importance in this example is the message 
sent to the selected window to opeu it.. \\/e also describe an internal message 
isseleded(w Wind/D) which decides if t.he window labelled by the identifier w is 
the currently selected window. This internal event will allow ns to give the desired 
external description of the manager's behavionr. The following is the definition of 
the operat.ions for the window manager. 

operations 
movemouse( dp : Piu[) 

changes (mousepos) 
post mousepos' = muusepos + dp 

showwin( c : PixelMap) 
changes (wmdows, sr/et:'ted, pick) 
pre selected", 0 
post windows' = wiwlows fB { s : seleded •.~ ....... c }
 

openwindow( ) 
changes () 
pre seIech:d '" 0 

openO 
changes () 

i.!"seleded(w: WinlD) 
changes 0 
pre w E selected 

The communication specification for the window manager has one channel wmin 
for input received from the user <loUd one input channel from every window. Our 
descriptioll of the window manager is statically determined, that is, all commu
nications channels that will ever be used must be declared at once since there is 
no means of adding chat:lnels.2 We therefore define an input chanuel from every 
window, even if that channd is never Hsed. Likewise, we define an ontput channel 
from the window manager to each window. The commnnication description for the 
window manager follows. 

communication 
inputs 

wmin : movemouse(dp : Pixel), opt'"nwindowO 
V w : WinlD • w::winout : showwin( e ; PirelMap) 

outputs 
V w : WinlD • W::wirlin : openD 

T : is.!"efeeted( w: WinlD) 

lIt. should he pO!>l'iible to us., Lhe agelll model dynamically, allOWing channels to be wmmuni
cated as well, hill we have nol LIIvestigated this as yet 



135 6.4. CONCLUSIONS 

The externa.l specification of the window manager is more complicated than we 
have seen previously. This is because the operations defined do not imply much 
ordering information. When an openwindow() message is sent along th~ wmin 
channel, it is meant to open the cnrrently selected window, determined by the 
mouse position. The window manager determines which window is selected by the 
internal event (T, isselcct(.(l{ w : WinID)) which binds the value of w so that the 
manager can send the open() message along the channel w::winin, a.nd then receive 
the new pixel image for the newly opened window along the W::Wlnout challuel, as 
desired. The selected window is changed by movement of the mouse. The external 
specification for the the window mana.ger is given below. 

external ~x. ((O",.W,nlD((r,js.~elecled(w))-OPENw )) 

o 
(wmin,movemouse(dp)) --+ X) 

where 
OPEN", == ((wmin, openwindowOJ ---4 (w::winin, openO)--+
 

(lII::winout,showwin(c)) --+ X)
 
endagent lVindow,\!tJflllgt>r
 

6.4 Conclusions 

In this chapter we have pre~ent£>d a language for the description of agents which is 
more suited to design than the model notation of Chapter 5. The language we have 
chosen borrows heavily from standard Z and CSP. This has two advantagB. First, 
the semantics of the notation is similar to the semantics for those two uotations. 
Second, familiarity with those notations should increase familiarity with the agent 
notation. 

There are disadvantages, however, to our approach. The agent model is based 
on a stimulus-response model, but there is no natural means for expres,iug the 
connection between stimulus and response, which should occur at. the operation 
description level. Rather, we have had to describe all inputs (stimuli) andoutp1lts 
(responses) as independent messages and leave it to the pre~ and postconditions of 
their operation definitions or the external specification to describe auy relationship 
between them. Since output messages usually have no effect on the internal state 
of an agent (at least not in the examples we have given), the relationship between 
stimulus and response is left entirely lip to the externa.l specification. A man' serious 
criticism is that this is not necessarily a flaw in the notation we have cho.~en but 
an undesired bia.'J in the agent model itself. 

This lack of stimulus-response connectedness is probably the most important 
featore of the Z language that we have lost in the agent language. Z provides a very 
natural way of grouping stimulus and response behaviour with a state transition. 
Unfortunately, Z does not provide the general communication mechanism we would 



136 CHAPTER 6. A LANGUAGE FOR DESCRIBING AGENTS 

like, which is why we had to abandon it. A possibility we would like to investigate 
would be the enhancement of Object-Z by provision of a. more flexible facility for 
expressing object to object. communication. 

Despite these criticisms, the agent language is useful {or descriptions of realistic 
interaetivesystems, and its hybrid approach and the composition operators do allow 
{or a systematic description of complex behaviour, as desired. 



Chapter 7 

Properties of interactive systems: 
Part II 

In this chapter we will use the refined agent model to formally expres.'l iutl'ractive 
properties at a more concrete level than was done in Chapter 4. In that chapter, 
we showed how a. simple stimulll~-respon:;emodd could be used to formulaLe prop
erties relevant to interaction with an agent. The class of properties which we could 
express were ver)' abstract, much like the properties expressible in the PIE model. 
Properties such as predictability, consi!'tency, honesty and trustworthiuess, as ex
pressed in the simple agent model, are not very dosely linked with the interactive 
properties suggested by the interadion framework. The framework suggests that 
the Interface (Input composed with Oul.pul), should effectively mediate between 
the tasks of the User and the functions of the System. 

Therefore, the task is seen as providing scope for properties which attempt to 
describe how the Inter/ace can serve as a good mediator. We define the role of task 
analysis in the reformnlation of interactive properties. We define the output. of task 
analysis as an identification of Sy.stcm and Inter/ace attributes which art' under
stood by the User to portray the effect of a given task. The System attributes form 
a result template of informatiou relevant to the achieved goals of the interaction. 
The Inter/ace attributes form a display template of visible information ~h.at the 
User understands in terms of how it reflects the values of attributes in the result 
template. Templates are used to restrict access to information of an agent by any 
of its observers. The interactive properties we will formnlate in this chapter will 
be relationships between the input histories and a result or display templaJe value 
history. 

Since the properties are formulated with respect to the result and displa.y tem
plates, they are task-specific. Hence, we will be able to describe, for example, what 
it means for a graphics package to be display predictable with respect to selection 
of objects or show how a direct manipulation operatiug system interface lacks hon

137 



138 CHAPTER 7. PROPERTIES OF' INTI':RACTIVE SYSTEMS: PART II 

('st.y in supporting the task of directory creation. Though we will not present any 
of the examples in this chapter in complete detail, we will present enough of the 
det.ail within the agent language so that au informal understanding of the proper
ties can be gained wil,h confidence t.hat a completely formal descript.ion could also 
be provided. 

The reformulation of task-specific interactivt' properties and t he examples justify 
OUf claim Ihat the refined agent model and lauguage take us one step closer towards 
realizing a design practice g\lided by principled reasoning. In a design situation, 
l.Le task a.nalysis provides the. result template information for each task that an 
agent should support. The System. agent. is then specified and can be verified to 
check t.hat it satisfie~ certain result only propert.ie:'l, such as result predictability. 
The dutyof t.he designer is then to determine for each task which display templates 
can be chosen and specified to satisfy the constraints imposed by the result-display 
properties, such as honest.y. In analysing an exi.~t.illg design, the task analysis 
provides t,he display template information as well as the result. template information 
and t.hedesign can be tested to see if it sabsfi!"s any of the interactive properties, 
and if not why it fails. 

The main reason we will be able t.o speak more concretely is that the we know 
more about how the agent functions. The internal structure of the agent is no 
longer just a set of states about which we know nothing further. We can now look 
inside that state and describe it in terms of its attributes. and tbese attributes can 
be determined based on t.he level of the description necessary to address a given 
task. Just as t.he agent view of an interactive system allows us to separate its de
scription into more manageable computational units, so too does t,he attribute and 
t.empla.te view of an agent allow us to separate its description into more manageable 
perct'ivable units. 

Overview of chapter 

\Ve begin in Section 7.1 with a discussion of the relationsbip between display and 
result. and how previous formalisms have treated this relationship. In Section 7.2 
WI' defiue a template a.s a means of isolating aspects of the display and result and 
relating them between composed agents. The remaiuing sections of this chapter 
reformulate the properties discussed in Chapter 4 using the display and result tem
plale information to derive more task-relevant defmitions. Several examples are 
discussed along the way to make clear the use of the reformulated interactive prop
erties, especially in the analysis of existing designs. 



7.1. RELATING D,SPLAY AND RESULT 139 

7.1 Relating Display and Result 

As we have said, tbe purpm:e of interaction between human and computer isfor the 
user to attain certain goats within some application domain. Tbe results of inter
action, then, are the achieved goals. The product of a task ana.lysis is a description 
of the user's assumed goals, or an identificatiou of the desired results of interac
tion. A principled, nser-centred design methodology begins with this infonnation 
and describes the system initially as an abstract machine whose state description is 
well suited to the task structure of t.he user. Hence, there sbould be a dose match 
between the results as defined by the task analysis and the state of the system. 

Even for systems which have not been designed initially in this way, it is possible 
to reverse engineer an abstract description of thl' system which concentrates on task 
analytic information. This ili the intent. behind the examples of this chapter and 
the next. in which properties are exemplified by examining how they are missing in 
existing interactive syst.elIls, The motivation for this kind of analysis comes from 
the scenario methodology [171, 175J, which provides examples of user behaviour 
with real systems as a means of cross-fertilization of different modelling domains in 
HCI research. 

It is outside the scope of this thesis to consider any further the description of 
the User. Since we assume it is possible to produce a descript.ion of the System in 
line with the result.s desired by the User, we will use t.he term result from now on 
to refer to the end products of user interaction in t.erms of the state of the System.. 
The agent model and ib: language deal directly with building up a description of 
the System st.ate. 

The user does not see the state of the l<ystem directly; rat.her, parts Df it are 
rendered in the display space. A display is the immediate and perceivablt' feat ore 
of the system from which t.he user must interprd, the relevant fl'atures of the system 
state. The user constructs a relationship between the perceivabll' information of the 
display and the desired but hidden information on the result of the system. Having 
established this crucial link between t.he display and the result, we can investigate 
means for formalizing the relationship. 

As mentioned in Chapler 3, t.he red-PIE model is an extension to the simple 
PIE model which allows for an abstract. discussion of the relat.ionship bl'tw~n result 
and display. In the red-PIE model, .....e introduce separa.te functions on the effects 
spa.ce which separately extract the display and result information, as shown again 
in Figure 7.1. 

In the same "."ein, the Sufrin and He model of processes was enhanced to dis
cuss the relationship between results and views. In that. model, an interactive 
process is built on top of the original process (represent.ed by the schema type 
SandHProcess[SJ in Chapter 6) by including mappings from t.be state space to the 
display and result. spaces and events whicb trigg('r the calculation of the display 



j,1O CHAPTER 7 PROPERTIES Of I~TEnACTIVE SYSTEMS: PART 1I 

;;:yR
~ 

p E• ~lm 
'" D 

Figure 7.1: The [cd-PIE model. 

rlnd result from the va.lue of the st.ate at the lime of the event. 
In the agent model, we adopt a, morc wrtstrllctin' approach in oruer to re

late bet,t.ef with actual design. Consequent,ly. we mlls1 be more explicit aboul. t.he 
display and the result than is nf'n~ssaI'Y in eitber of the other two more abst.ract 
Illodels. Looking to the interae( lOll framework, we sr-e t.hat the result.s as we have 
described above arf' derived from Lhe SY$tem and t.he displays from the lntr.rjace. 
or more specifically. the Output. Relationships betwC"en display and result. then. 
are relaliollships between agents. Vole derived one such relat.ionship in Section 4-.3, 
called correspondence, The key to correspoudence earlier was the definition of a 
relationship between t.he stat.e spaces of two agents. called the rdr'ievr relat.ion. 
The simple agent. model provided no way t,o derive 1he r·ctrrll'f relat.ion, Attributes 
and templates will provide such a mechalli:-;m that can be derived. from empiri
cal evidence, The attributes used in the description of an agent arc t.hen viewed 
as de~ign decisions by t.he spf'cifiN and the jm;tification for those decisions comes 
from the t.emplates obt.ained from ta.'ik analysis. \\'e delay a fuller treatment of 
cOlTe~pondence unt,jl the next chapter. 

Properties like predictability, consistency and honest.y were also expressible in 
tllf' simple agent model. These properties relied on a distinction between internal 
state behaviour and externa.l response behaviour and clnssified systems in terms of 
the equivalence and indistinguishability of stimuli witll respert!.o t.he state changes 
or rl'~ponses they determined. Using a similar approach in this chapter. we will be 
ab\" 10 define these prop('rtie~ and others ill terms of display and result. t.emplates on 
agf'flts composed as described by t he interaction framework. The result templates 
will highligbt relevant. parIs of the System state, whereas display t.emplat.es will 
highlight information to bl" prf'sellted poten! ially as chann('ls of communication to 
t.he user, The advantage of this approach will be that it, will be made explicit. 
whal i\.Ssnmption!< an agent desigu makes about the u:·wr's under,;tanding of the 
illtt'raction, and these assumptioHs call then be tested to Sf'e if t.hey lead to more 
us~hle systems. 

III sum, t.he properties we are interested in expn~ssing in this chapt.er deal wit.h 
thr l"t·lationship between the display and the result.. as indicat ed by the addit.ional 



141 7.2. TEMPLATES 

unnamed arrow in Figure 7.1. They will be given as properties dictated by the 
design of an agent-based syst,em and they are intended as gauges for usability in 
situations where the nser depends on the display to determine the underlying result 
of the interaction or when the result knowledge of the user is needed to determine 
the meaning of the display. 

7.2 Tem.plates 

The reason far int.roducing attributes is to enahle rest.ricted views of an agent. The 
restricted views are called tem.pluies alld were first. discussed by Harrison. Roast 
and Wright [74] as a means of focusing alt.ention on parts of fhe result or display in 
order to formalize realistic relationships between them. For example, whtrl using 
a t.ext editor within a single window on a multi-windowing workstation, the user 
does not usually care about the contents of other windows. They may not even pay 
attention to some of the information in the text editor window. If a user relies upon 
certain properties 01 the interface, such as honesty, then it is important to be able 
to narrow the scope of information in t.he system over which the honest.y property 
holds. The importance d templat.es in design and analysis is that. they are not 
generated by our formalism; rather 1 they are regarded as input to the formalism 
which leads to a truly formal m.el.hod of design and analysis. 1 

We mentioned in Chapter 4 how we can view the properties ~uch as predictabil
ity in terms of the demands they make on the user. For example, in a graphic 
drawing package, the user must remember the order in which objects were drawn 
for predicting the consequence of clicking to select in a region of the 'camas' oc
cupied by overlapping objects. A Macintosh user must remember the I'd.lue of 
the 'items' indicator in the top left-hand corner of a folder window to determine 
whether clicking au 'New Folder' produced a new folder, siuce the new icon may 
not appear in the window 1].)7]. In text editing, I don't usually pay attention to 
the position of the mouse pointer when I am typing. so the mouse pointer is not in 
my display template when [ predid the result of inserting a character. This does 
canse prohlems-the infamous 'unselected windows' scenario---when the mouse is 
accidentally nudged and my keyboard input is suddenly directed to the wnmg win
dow. Notice how the description of each of t.hese examples is given within t.he scope 
of some task the user wishes to perform. 

IMost of what is commonly rdt'Tre-a to as fur-mol mdhods does nol "dually reprl'S('nt any 
method, but just a notation with a formal Sl'mautlcs 



142 CHAPTER 7 PROPERTIES OF lNTF:RACTIVE SYSTEMS: PART II 

7.2.1 Agent restriction 

A template defines a restricted view of an agent by limiting the information known 
about the underlying state. Since all that is known about individual points in the 
state space is contained in the- attribute-viUue mappings, we can define a template 
as a nonemply, finite set of attributes. 

Template == F 1 A 

A template defines that part of the internal specification which is of interest; it 
j herdore induces a new internal specification for an agent. The attributes of the 
template must all be valid attributes of the original internal specification. The types 
of the template attributes remain the same. We only keep state information on the 
attributes in the t.emplate, so states of the original internal specification which agree 
on all atf.ributes of the template arc equated in the new internal specification. For 
each message of t.he original internal specification, and [or each state transition 
in the operation associated to that message, restricting the view of those state~ 

t.o t.he attributes of the template yields a state transition for that message in the 
new internal specificat.ion. A characterjzatiou of template restriction on an internal 
specification is given by the schema bzternalRestriet below, in which the original 
internal specification is decorated with I and the induced internal specification is 
decorat.ed with}. 

InternalRestriet _ 

IniernalSpec l 

InternalSpec J 

t : Template 

t ~ attribs l 

uttribs} = t 

type} = t <llype l 

states} = { s : states' • t <I s } 

messages} = messages l 

Vm : messages} 
• operaliOlls}(rn) = {(S.SI): operationsl(m) 

• (I ''') ~ (I ",,') ) 

A re>triction of an agent with respect to a template of attributes is characterized 
by the schema Restrict, in which t.he original agent is decorated with I and the 
template-restricted agent is decor<l.ted with}. The only change to the agent is to 
its internal specification, as giveu by InlernalRestricl. The communication and 
external specifications remain the same. 



143 7.2. TEMPLATES 

Restrict _ 

Agent! 
Agent J 

InternaIRestrict 

(}Communical.iorl' =:; OCommunlcatloT1 J 

(} ExternalSpec' = (} ExternalSpec J 

We write A -!). I for the agent induced by restrictiou of A to the template I.. 

I -1)._: (Agent x Temp/ale) ---++ Agfnt
 

_ JJ. _ = { Restrict. ((} Agent 1, tJ t-4 0AgwtJ
 

7.2.2 Result and display templates 

We can restrict any agent to a template of a subset of its attributes. However, 
within the interaction framework, different templates take on a different purpose, 
and so we distinguish them by name. Templates applied 10 the System agent are 
called re,~ult tempiate,~. Templates applied to the Interface agent we call di,~play 

templates. 
Attributes in the description of the User are similar to semantic feafures as 

used in TAG [128J and in the knowledge analysis work of Youug and Whitting
ton [173J. A task description for the user highlight.s the psychological attributes 
of importance. These psychological attributes are roughly equivalent to System 
attributes. Therefore, given a t.ask, we can isolate the System attributes 01 interest 
for that task. So the output of some task or knowledge anal,Y9is, would yield a 
mapping from a set of identified tasks to result templates. A designer must then 
choose attributes of the Interface, the display template. which will relate to the 
result template for the task. We model t.he output of ta..<;k or knowledge analysis 
by funclions from some sC'L of tasks to the result aud display templates the tasks 
require. 

[Ta'kID] 

Rtemplate : T(lsHD -++ Template 
Dtemplate : TaskiD -++ Temp/ate 

dam Rtemplate = dom Dtemplate 

Rtemplat-e(t) ~ Systf'm.atlrib,~ 

Dtempiate(t) ~ Interfarr.attribs 



144 CHAPTER 7. PROPERTIES or INTERACTIVE SYSTEMS: PART II 

From a methodological point of view, the result template jnformation is always 
provided by the task analysis. Display template information is provided for anaJ
}'::;is of an existing system, but it is not provided for the design of a new system, 
since that is the responsibility of the designer. However, since rea.! design is an 
iterative procedure and the systems users have in the past experienced influences 
their undt>rstanding of the tasks they will perform witb new systems, we will stick 
with the a.,gumption above that task analysis provides both the display and result 
template information. 

We can now define properties of the interactive system in terms of these task
dependent result and display templates. This provides a principled means of iter
ative design, because if the result and display templates defined do not satisfy the 
requirements of the properties we will discuss then they will have to be altered. 
Typically, the display templates will be altered, as they represent attempts by the 
designer to effectively portray the result templates at the interface. However, a... 
the structure of tasks is seen by many Hel researchers as dynamic [157, 101, 35], 
we can allow for the result template information to change as well. 

7.2.3 Equivalence and indistinguishability revisited 

In the Ia.tter half of Chapter ~, we introduced the notions of equivalence and indis
tinguisbabilitya... a way of relating different program inputs for an agent. Then, we 
diffe.rentiated between internal and external equivalence and indistinguishability to 
show how certain cla3ses of properties could be expressed as relationships between 
internal behaviour and external behaviour. From a software engineering point of 
view, [he distinction between internal and externa.l behaviour, as personified by 
the interpretation relations l;t and IA~(' is satisfactory because it can be used as 
the basis for a refinement calcnlu::; On agents, similar to the way that Whysall and 
McDermid use export and body specifications of objects in their object-oriented use 
of Z [167, 1681. From an HCI point of view, this distinction is less useful because 
it does not directly address the relevance of the external or interna.l information to 
1he goal-directed interaction. 

The result/display distinction is directly intended to address this earlier defi
ciency. Rather than suggest that the following formalizations of interactive prop
erlies replace the ones developed in Chapter 4, we suggest that they are comple
ment.ary, moving more toward analysis of HCI consideratiom. We point out that 
the earlier properties need furt.her investigatiou to make clear their contribution to 
refinement within the agent model, but it was not the inlent of this thesis to pursue 
tbal point. Sufrin and He [158J showed how to define refinement on processes and 
prO\'ed the soundness of downward simulation along with a method for stepwise 
refinement. A similar procedure can he carried Olll. on the agents. 

Given a task t : TasklD and an interactive system JS defined as a collection 



-----

145 7.2. TEMPLATES 

of composed agenb, we want to formalize the relationship between the results 
and displays of IS with respect t.o the task t. If we restrict IS to the attributes in 
Rtemplate( l), we wilt capture the result behavionr of the computer. If we rest.rict IS 
to tbe attributes in Dtemplale(I), we get the display behaviour. Histories of either 
restricted agent are equivalent if they lead to the same possible results or displays 
and they are indistinguishable if further identical extensions to tbe histories does 
not betray the result or display equivalence. Below we give the formal definitions 
of result and display equivalence and indistinguishabilit.y. 

_ ~__ : (Agent x Templale) (seq Event i-+ seq Event)_=__ :(Agwt X Templule) (se'1ElIent i-+seqEvent) 

dom(_ ~__) == { A: Agent, I: PA II s;;- A.attrib8} 

dom(_ ===__) == dorn(_ ~ __) 

P :=::;(A,t~mp) q {:> l,.i'UI<mpG{p}V == !'4'tit,n,pl!{q}D
 
p =(A,lemp) q {:> 'r/ 1': seq Even! - (p '" 1') :=:::(A,r''''FJ (q --- r)
 

In situations where t.he agent is denr from cont.ext, we will usually abbreviate 
p :=::;(A,I<mp) q to p :=::;j<mp q. 

\Ve can now use these more task-oriented definitions of equivalence and mdistin
guishability to discuss interaetiw properties similar to Chapter 4. The introduction 
of task information and the restllt and display templates alJows us to define a scope 
to the properties discw;sed in Chapter 4 that was not then possible. In addition, 
the meanings associated to the propert.ies will bear more significance tOlVard the 
int.f"raetion bet.ween Usn' and System, since they will be couched in terms of task 
and will be focussed on featurel'l relevant to the task. 

In addition to defming a scope for properties, attributes allow th(" definition of 
some proof obligations. The properties we will discuss below are expre9sed over 
histories of interaction, which includes all events in which an agent parlicipa1("s. 
When an agent is restricted to a given template, some of the events in "',hich the 
agent. participates have no effect on the rest,ric.ted state; their effect is confined 10 

attributes outside the template and, therefore, they are independent of the f,("m

plate. Such independent event,s can he neglected in proofs over histories for a given 
template. 

independent: (Agent X Template) --+-> P Event 

dOffi independent == { A : Agt'nl, t : Template Its;;- A. atiTibs } 

e E indrpendent(A. t) {:> 

#«.'1 Jj. not_t).opemtions(mess(e))) == #(A.opemtions(mess(t))) 

where nof_f = A.altnbs - t 



146 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: PART 11 

Sometimes, the user believes some events are jude-pendent of some attributes, 
when in fact they afe not. FOT example, in the 'nnseleded windows' scenario 
mentioned earlier, the problem arises hecause keyboard events are not independent 
of mouse position, though the user tends to forget this. 

7.3 Predictability and Consistency 

\Ve fix on a particular instance of the task knowledge for an interactive system given 
by Rtt'mplate and Dtemplall' defined earlier. A task is result predictable if t('sult 
r-quivalen/. histories with respect to that task and its associated result tt'mpJate are 
also [<'suIt indistinguishable. 

ResultPredictable : P( Ta8klD) 

task E ResultPredidrLble {:;> ( fflsk Edam Rlrmplate 

A (_ "''' _) ~ (_ ='" _)) 

where rt = Rtemplalf(tu.~k) 

Technically, the above equivalence and iIJdislinguishability should be indexed by the 
particnlar agent, say IS which represents the composition of a, System and Interface 
along wit.h t.he translat.ions between them. \Ve tak(' the libert.y of omitting explicit. 
mention of IS throughout this chapter. 

It is sensible that every task of interest be result predict.able. Some possible 
reasons for a task which is not result predictable would be the task's dependence 
on pure randomness (rare), or an incomplet.e task analysis (undesirable). 

A task is display predictable if display equivalent hisf.oril?s are also display in
distinguishable. 

DisplayPredictable ; P( T(lsklD) 

task E DisplayPredietablf: ¢} ( f(Js~· E dom Dtollplafc 

A (_ "'" _) ~ (_ ='" _)) 

where dl = Dtemplatt( [ask) 

Display predictability is related t.o the original predictability properties formulated 
in Ihe PTE except that the addition of task information has confined its scope. \\le 
c<m give a simple and semi-formal example of the violation of display predictability. 
Lased on the SuperPaint graphic art package for the Macintosh [143]. SuperPaint 
s\lpports layers for the construction and manipulation of pictures. These layers 
are independent canvasses upon which pictures can be constructed. The two layers 
in SuperPa.int are the paint layer, in which frl?ehand pictures are canst-rneted and 
manipulated at the lowest level of screen detail (thp pixel), and the object la,yer, in 
which text, boxes, circles, et.c. can be created and ~dited as whole entities. 



73 PREDICTABILITY AND CONSISTENCY 147 

The particular scenario of interest for display predictability involves the task of 
selection. Figure 7.2 depicts the situation presented to the user. A mouse click on 

,
Windows Draw 

~ 
r.~;:... 

Which of thes.e circu11!1r images 1S. painted ~lnd Which Is tm object?0.. 

----+ 
,-=00
-0

A 

0,0-_0 
-a-, 
+IJ-

1iIIIIIIHo~I, , , 

Figure 7.2: Ambiguous object selection in SuperPaint 

an object will select it, ';0 if I.he user knew which vi:lual images were objects, then 
it would be possible to predict from a display template consisting of the mouse 
pointer position and the positions of the objects the effect of subsequent mouse 
clicks. SuperPaint does not. coutain in its description of the Interface attributes 
which distinguish objeet.s from painted pidure:l, so the only attribute information 
that is perceived via a display template by the user is t.he set of all visual images. 
Since similar looking visual images can be created in either layer, selection is not 
display predictable. 

We can base the t.ask ana.lysis information for selection on the description given 
iu the user's manual [1431. We will first treat. the different layers separately, and 
then examine their combination. For lhe paint layer, we have an agent description 



148 CHAPTER i. PROPERTIES OF INTERACTIVE SYSTEMS: PART 11 

System Interlace 

PMI 

Figure 7..'3: Agent. diagram of the paint layer 

presented graphically by Figure 7.3. The sy-"tC'm de!icription is contained in th(' 
<I@;ent. Paint and it contains the result information for selection. There is only one 
image of interest and that. is t.he whole' painted image on some finite coordinate 
plane, called the canvas. Seledion is done by dragging out some connected region 
in the canvas plane, which then selects that region for future operations. The 
definition of the agent Paint for the selection task only is gi\'en below. 

agent Paint 
lype8 

canvas,z:max, canvasyrn(IX : N 
CanvaS == O.. canvasxmax x O. nnll'a,~ymax 

Bit ::= black I while 
CanlJosAfap == COllva.'> ----. Bil 

attributes 
painting: Ca1U'(JsN/rJ{J
 

pee/eeted : P Cant'(ls
 

invariant
 
pseiected 5;; dam painting
 

operations
 
select1Y:gion( region: P Canvas)
 

changes (pselected)
 
post
 

pselected l 
=:: region 

oolJndingbox( region: P CII1ll'flS)
 
changes ()
 
p<e
 

region =:: pseiectfd 
communication 



149 7.3. PREDICTABILITY AND CONSISTENCY 

inputs paintin : sclr-rlregion(region: P Canvas) 
outputs pain/oul : boundingfxn'( ITgi~n : P Con vas)
 

external
 
JJ X • «paintin, selerlregion(l:)) -..... paintou!!boundingbox(y) ..... X) 

endagent Paint 

For the object layer, we have a very similar agent description as that for the 
paint layer, and this is given graphically in Figure 7.4. The system descript.ion is 

System Interface 

ObjsC'l 

Figure 7.4: Agent diagram of the object layer 

contained in the agent Object, and it is more complicated than the description of 
the agent Paint. It is necessary now to identify individual graphical objects and 
the structure implied by grouping of those objects into more complicated objects 
(we will ignore the further complication of levels associated to overlapping objects). 
We represent this structure by a straightforward hierarchy in which any object can 
be linked to at most. one parent object. The selectable objects are only those which 
are not. linked to a parellt object. The current.ly selected objects are some subset 
of the selectable objeet~. \V~ define only one selection operation, which given some 
subset of the selectable objects makes tha.t set the currently selected objects. The 
description of Object corresponding to this result template of attributes is given 
below. 

agent Objed
 
types
 

[ObjlD] 
attributes 

drown: P GbjID
 
grouping: GbjID _ GbjlD
 

objseledablc : P GbJID
 
objselerled : P GbjID
 



150 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: PART II 

invariant 
drown .::: dam grouping U ran grouping 

objselectable = ran grouping - dam grouping 
objselected ~ obj!jf;leclaole 

operations 
sefectobjs( ids: P Obj lD)
 

changes (objselecled)
 
post
 

oaiseleeted' ::: 7T-t/ion 
..howselected( ids: P QbjlD)
 

changes 0
 
p,e
 

id.'l == objselected
 
communication
 

inputs objedin : selectobjs( ids: P ObjlD)
 
outputs paintout: Sl101Jt.~tkc(ed(id,c:P ObjJD) 

external 
IlX. «objedin,sdectlJbj.s(J·») --> [lomtout!shoMefccted(lI) --+ X)
 

endagent Object
 

The Visual agent contains a mapping hom some screen coordinate space, Pixel, 
to bit values, which we will restrict to simpiythe value black Or u,hite. The pixel map 
can be further divided into regions which the user may identify as an iudependent 
image, so that the whole pixel map is considered as a collection of smaller, possibly 
overlapping, pixel maps. There is an indication of the current layer (object or paint) 
and the current tool in that layer, both of which give the mode in which inpnt is 
interpreted. The mouse cursor is also located somewhere in the screen coordinate 
space. So, for the tasK of selection, We highlight information described above as a 
set of attributes describing the state space of the Vis'ual agent. 

agent Visual
 
internal
 

types
 
.~crrenxmax,.icrretlymll:r: N
 
Pixel == O.. screCTlnTlIlJ" X O. scn:tTlymllJ"
 
Bit ;:= black I while
 
PizelMap == Pixel --. Bit
 
PainlLayerlcoTl, ObjtctLayerlcoTl : PuelMu.p
 
Paint 1'001. O!JjectTool: P PixelMllp
 
seleclpainttool : PwntTool
 

attributes
 
lJisible : PizelMap
 
images: P PizefA!u.p
 
usdected : P PixelMllp
 
lilyer : PixelMap
 



151 7.3. PREDICTABlLITY AND CONSISTENCY 

tool: Paint Tool u ObjectTool
 
mOUSecurSQf" ; PixelMap
 

endagent Visual 

Selection in both the paint and object layer are result predictable givell the 
result templates we have chosen for Painl and Object. Rest.ricting for the moment 
to the relationship between the agents Paint, VillUal, and Input we can see that 
the attributes visible andvseleded, which form a display template for t.he selection 
task, provide enough information for selection in the paint layer to be display pre
dietable. They adequately portray the same informat.ion as the attributes ]XJinting 
and pselected, which form the result template. This assumes that we can adequately 
portray the mouse position iuformation which ident.ifies the region of points which 
will be sent as the argument for the scIre/regio" message, and that is the function 
of the agent PickPainl in Figme 7.3. 

For the object layer, it is obviously more difficult to ensnre display predictabil
ity since the display template has no means of portraying the hierarchical structure 
in the result template (it is slightly less difficult to portray the overlappillg am
biguity, but still not trouble free). This problem could be overcome, and display 
predictability satisfied, if thert' was a way to present the structural hierarchy in the 
agent Visual. Translating t.he region of points determined by the monse into a set 
of object identifiers is performed by the agent PiekObjecls in Figure 7.4. For a user 
t.o be able t.o predict t.he outcome of selection, she must have access to as much 
information as PickObjcets needs to perform that translation. 

We can see that the paint layer is display predictable and the object layer is not. 
Since t.he ease with which complicated drawings can be manipulated is enhanced 
by the facilities given in the object layer, t.his lack of display predictability is not 
enough to abandon its use. However, the layering of paint and objects ont.o t.he 
same visual space makes matters even wortle. In Figure 7.5 we present a graphical 
representat.ion of the two layered SnperPaint agent description. There is no visible 
distinction between a painted image from the paint layer and a drawn image from 
the object layer. So not only does the user have to remember the grouping§tructure 
of the objects, she mnst also remember which images are objects and whicb ones 
are jnst paint. It may be possible to suggest a display strategy to circumvent this 
display unpredictability, bnt it seems unnecessary to make the distinction between 
the layers that has been forced hy the system description. Therefore, onr semi
formal analysis of this system with respect to display predictability of the selection 
operator has uncovered a bad design decision. 

In Chapter 4, we distinguished between predictability and consistency, since 
the latter was .a generalizat.ion of the former in the simple agent model. In the 
refined model, the informal definition of consistency that we gave-------the same input 



152 CHAPTER 7 PROPERTIES OF INTf-RACTIVE SYSTEMS: PART II 

System Interlace 

P~senl } (
Ol:Jjecls 

Figure 7.5: Agenl diagram of the co-existing paint. and object layers of SuperPainl 

in similar situations has similar effects--is now wry similar to predictability. Ear
lier, consistency was formalized in terms of a similiHity crikrioll on the state set 
of an agent. Templates are a concrete way of formulating tb~se similarity criteria. 
\\-'e noted earlit'T that definition of consistency did not capt.ure task information. 
Similil.fity based on result and display templates does. 

7.4 Synthesis 

\Vit.h t,he simple model of tile agent., we stated that. the observer of an agent only 
has a.ccess to the stimulus-response behaviour of the agent.. \Vit.hin the agent-based 
description of the System and InlerjllCf , this still applies. An agent can only par
ticipate synchronously in input or ant-put. events wit.h auotber agent. Between the 
Usa and the computer, it is a bit. artificial to name channels of communication 



153 7.4. SYNTHESIS 

which serve as inputs to the user. Consequently, we have introduced display tem
plates to represent the information from the computer which can be perceived by 
the user. 

Synthesis describes the proces.'> by which the user determines how the effect of 
previous input on the result template for a particular task is observable via the 
display template for tbat task. The computer is honest with respect to a task 
if changes to the result template are immediately made apparent in tbe display 
template. If two histories are display equivalent, then they are also result equivalent. 
The computer is trustworthy if changes to the result template are eventually made 
apparent in the display template. Two histories must be display indistinguishable 
before they are considered result equi\'alent, Colloquially, honesty is paraphrased 
as the property: 

If whal you see /lOW (display template) 'IS the same, then what you hare 
now (result template) is the same 

whereas a trustworthiness conforms to the weaker property: 

If all you can possl:bly ue from now on is the same, then what you have 
now is the same. 

Formally, we would represent these task-centred properties as below. 

I Honest, Tntstwol'thy; P( TaskID)
 

I task E Honest ~ ( task E dom Dtemplate
 

A (_ "'J< -) <;; (- "'n _))
 
task E Tr'ust'worthy ¢:} ( task Edam Dtemplate
 

A (_ =J< _) <;; (_ "''' _))
 

where dt = Diemplale(task)
 
1\ 7't = Rtemplate(task)
 

We can give an example in the agent language which portrays t.he difference 
between honesty and trustworthiness, to show how honest. interfaces can be more 
valuable. Our analysis will be conduct.ed on a simplified version of a popular visual 
filesystem interface-the Macintosh desktop interface. We will expound on the 'New 
Folder' scenario briefly mentioned above and introduced by Roast and Wright [137J, 
Onr description consists of a. simple agent definition of a file system and a visual 
folder. The file system represents tbe Syste.m and tht> folder represents the. Interface , 
Each description will ouly provide enough detail to discuss the scenario, We also 
will not make explicit t.he communication between th~ System aud Interface, partly 
becanse that will be covered in the next chapter and partly because we need a 
definition of stable traces (also covered in the next chapter) to fully formalize tbe 
discussion. 



154 CHAPTER 7 PROPERTIES OF INTERACTIVE SYSTEMS: PART II 

The filesystem is a hierarchical arrangement of files and directories. Morgan 
and Sufrin [117] have provided a specification in Z of th(> Unix filing system, and 
our description is a simplified version o( that. Files and directories are identified by 
eJementsin the set of all possihle Hie identifiers, FileID. File identifiers are mapped 
to files in the system; we give 110 further description of files. The hierarchical 
arrangement is represented by two relations on file identifiers, one giving the unique 
part'nt of a file identifier and the other giVing the set of children for a given file 
identifit>r. The distinction between files and directories is that directories can have 
children and files cannot. The hierarchy is acyclic and has a single mol element, of 
which all other known files are descendants. At any time, oue directory is current. 
\Ve describe the filesystem as an agent below with only one operation, the creation 
of a new subdirectory under the current directory. 

agent Files!ls
 
internal
 

types
 
[File/D, File]
 
root : File ID
 
empt!ldir : Fife
 

attributes
 
known: P File!D
 
file8: PileID ..... File
 
parent: FilelD FildD
 
child: FileID FileID
 
cllTT'fOntdiredor!l : FileID
 
clJrT"f'ntfiles : P FileID
 

invariant 
known = domfile8
 
root E known
 
dom parent :::0 known - {root}
 
ran parent 0;;;; known
 
child = parent- 1
 

cllild*a{root}D = known
 
currentdirectory E .blOwn
 
cUTT'fOntfile8 = childa cW"!"entdlredoryD
 

initially 
known = {root} 

operations 

makeslJbdiredor!l( id : FilelD)
 
changes (knOlJ'll. fifo, parent, child, clJrrentfiles)
 
pre id f/: known
 
post files' = fill:S ~ id _ emptydir
 

clJrrentfiln' = clJnenlfiln U {ld} 



155 7.4. SYNTHESIS 

communication
 
input.:s filesysin: makesubdirectory(id: FilelD), ...
 
outputs
 
r: ... 

external 

endagent Filesys 

The description of the lllll'ljace is given (partially) by the Desktop agent. The 
desktop contains folders, one of which is current. Ea.ch folder contains a set of 
icons, a subset of which are visible at any time (we onJy describe the visible icons 
for the current folder in t.he description below for simplicity). The curren! folder 
also displays the number of icons it contains. The only operation we define on the 
dpsktop agent is one to create a new folder icon in the current folder. 

agent Visuallntr:rface
 
internal
 

types
 
[FolderlD, /conl
 
desktop; FlJ{derlD
 
emptyfoiller : leon
 

attributes 
folders: P FolderlD
 
contents: FolderlD ..... leon
 
current: FlJlfler'iD
 
visible: P [eon
 

invariant 
folder.~ = dam contents
 
eUN'{'nl E dom contents
 
desktop E folders
 
visible ~ contents( current)
 

initially 
folders = {desktlJp} 

operations 

newfolder(fid : FlJlderID)
 
changes (folders, contents, visible)
 
pre fid rI- flJlders
 
post folders' = folders U {fid}
 

contents' = cOTltent.~ffl 

cummt ...... (contents(current) U {emptyfolder}) 
visible ~ l!isible' 



156 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: PART II 

communication
 
inpuh folderin ; n£w[oldcr(jid : Foltler/D), ...
 
outputs
 
T: ••• 

external 

endagent Visuallnter/ace 

For the ta.sk of creating a new folder, the user wants to know if t.he curn-nt 
directory contains a new subdirectory, so the result template for this task is onl:y the 
attribute eurrentfiles. When a new folder is created, this attribute value cbanges, 
increasing by one as the result. of tile inclusion of the (fresh) file identifier £d. The 
display template corresponding to that result template is given by the attribute 
'I'isible, indicating a subset of the ieonfl which are contained in the current folder. 
However, the change due to the nt-wioMer message does not require that the new 
icon be in the visible set. Macintosh users will be familiar with situations in which 
the new folder's icon does not appear in the immediately visible set of icons for 
the current folder. The system is not. honest in this situation, requiring the nser to 
browse through the current folder to observe that there is a new icon for the newly 
created folder. Hence, trust.worthiness is all that can be claimed of this visual 
interface. 

Alld we might add that we would expect all tasks t.o be trustworthy, so the 
visual lllterfan> is not. gaining us much with this task over any other interface to a 
hierarchical file system. It might even be sa,id to be worse than a command-based 
interface because the user of the visual interface is led t.o believe that if they don't 
see something change, then it ha.~l1't. changed. The visual int.erface is sly-it leads 
us to believe it is honest when it is not.. 

In defence of the Maeintosh, t.here is a way to salvage honesty for this task. The 
visual interface provides another possible display templat.e in the form of an items 
attribute which gives the count of the number of icons in the current folder. Tbis 
display template honestly reflects the changes in the cllrrelltjiles result template. 2 

We give the revised agent descript iOIl of the \'i~.;ual ink,rface below. 

agent Visuallnier/ace 
internal 

types 
[FolderlD, leon] 
desktop: Folder!D 
empty/older: leoll 

attributes 
folders : P FofderID 

]Well. at least it tries to do so. It is possible 10 mMllpulale the window of the current folder 
in &urh i'I. Wit)· that l'Vl'n this honest Jispla)' templi'l.te is obscureJ! 



157 7.4. SYNTHESIS 

content~ ; FolderID ..... lfOll
 
cur-rent : FolderJD
 
visible: P Icoll
 
it~ms; N 

invariant. 
folders:::: darn contl:ntB
 
CUTTent E dom contents
 
desktop E folders
 
visible ~ con/ent.s(C1JlTe.nt)
 
items;: #(con/ent.~(r1JfTent))
 

inilially 
folders == {desktop} 

operations 

newfolder'(fid : FolderID)
 
changes (fo/de,'s, content.~, tJiBible, item.~)
 

pre fid ~ foldfT,~
 

post folderf)':::: folcler.~ u {fid}
 
eonlcnt:/ = contentsffi 

current 1-+ (con/enls( current) U {emptyfolder} 
visible' ~ visible 

communication
 
inputs folder-in: newfolder(fid: FolderID) , .
 
outputs
 

" ext.ernal 

endagent Visllulln1erface 

As Roast and Wright pOint out, even though this attribute maintains tne honesty 
property, there is no guarantee that it is observed by the user, i.e., the ilems may 
not be used by the Macintosh user as a display template when creating new folder. 

WYSIWYG 

When the task is result predictable and honest, we satisfy the property: 

What you can see now de/ermines all you will be able (0 get. 

This sounds very mucb like the popular slogan :'What y011 see is what you get" 
(WYSIWYG). A weaker, and consequently mOre realistic, property results from 
result predictability and trustworthiness and satisfies: 



158 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: PART II 

All you can possibly see determines all you will be able to get. 

These two versions of WYSIWYG are summarized below. 

U'}SIWYG"lnlJ1,. WySIWyG......,! : P( TuskID) 

task E WYSIWYG,lron, {:::? ( task Edam Dtemplate 
1\ (_ "'i< -) ~ (_ =,,_)) 

task E W}/SIWYGILt.al: {::? ( task Edam Dtemplale 
1\ (_ =d< _) <;; (_ =" _)) 

where dt = Dtemplate(tasl.:) 
/\ rt = Rtemplate(task) 

That these properties formalize the popular WYSIWYG slogan is slightly mis
leading because they only slale that some desirable relationship holds between the 
result and display templates. ThotJgh this is a necessary condition for the interac
tion taking advantage of WYSIW\'C, it is not sufficient since we do not guarantee 
that the relationship is understood by the user. But we are even more pessimistic 
t.han that. Tbe formulation of this property does not e\'en guarantee that the de-
signer is aware of the relationship, because it does not have to be explicit in the 
agent description. In the next chapter, we will discuss localized correspoudence as 
a way 1.0 make explicit the relationship between result and display templates. 

7.5 Result initiated interaction 

The properties of the last section were all display initiated, that is, equivalence 
or indistinguishability of display t.emplates had implications toward equivalence or 
indistinguishability of result templates. Properties that are result initiated reverse 
the situation, so result informat.ion has implications t.oward display information. 
We do not have names for these properties. The first property satisfies: 

Mat you can have (or know) '/lOW determines what you ean .see now, 

and is characterized by the following implication, assumiug result and display tem
plates rt and dt associated to the same task. 

(_ "''' _) ~ (- "'d' _) 

If the t.ask is di!lplay predictable, we have the stronger implication satisfying: 

Mat you can have (or know) now delermi11es all you will be able /,0 

see. 



159 7.6. CONCLUSiONS 

and characterized by 

(- "''' -) ~ (- =" -) 
The weaker versions of the first property satisfies: 

All you can po:;:;ibly have (or know) from now on determines what yo," 
can see now. 

and is characterized by the followiug implication. 

(- =" -) ~ (- "'" -) 
When coupled with display predictability, we have the propert.y sati~rying: 

All you can possibly have (or know) from now 0" determines all you 
wIll be able:. to see from now on. 

aud is characterized by Ihe following implication, assuming result. and display tem
plates rt and dt associated t.o the same task ..1 

(- =" -) ~ (- =" -) 
Since we ha,ve assumed that result. templates bear significance to the task or 

knowledge structure of the user, it is possible that these last fonr properties would 
be considered more r<'levant within the user modelling domain. 

7.6 Conclusions 

In this chapt.er, we have investigated how the increased structure of t.he refined 
agent model allows the formulation of properties over collections of agent.s which Me 

relevant to the internal goals of iuteraction-the results-and the tangiblf evidence 
of interaction-the display.~. We have introduces templates as a task-centred means 
of restricting the knowledge of an agent.'s internal state. This provides us with 
the means of more clearly defining the scope of properties, confining them to the 
interact.ional unit of the t.ask, iustead of over t.he computational unit of the agent, 
as was done in Chapter 4. Table 7.1 summarizes the task-dependent properties 
defined in this chapter. 

Templates extend the bridge betweeu psychology and computer science, by forc
ing an iterative relationship between the psychologist and the interactive system 
designer. The HeI specialist provides the task analytic information, highlighting 
the tasks and the psychological attributes (or semautic features) related to each 

3Sufrin and He classify 110 version of (,his last property as "goal delermine!i view" 



160 CHAPTER 7. PROPERTIES OF INTERACTIVE SYSTEMS: PART II 

Result~Display relationship Interactive Property 

( """ -) <; (- -,,-) 
(- ""., -) C; (_ =d -) 
( """ -) C; (_ ""d -)
(- =" -) C; (- ""d -) 
( "''' -) C; (- =d -)
(- =" -) C; (- =" -)
(- "'d -) C; ( "'" -) 
( "'" -) <; (- =" -)
(- =" -) <; (- "'" -)
(_ =d _) C (_ =" _) 

display predictability 
result predicta.bility 

honesty 
trustworthiness 

WYSIWYG (weak) 
WYSIWYG (,tmng) 

result initiated interaction 
result initiated interaction 
result initiated interaction 
result initiated interaction 

Table 7.1: Task dependent interactive properties f'xpressed as result-display rela
t,lonships 

task. The designer uses this information to formulate t.he result templates for the 
system. An agent description of the SY$te.m. can begin from that point. In design
ing the Interface, appropriate display templates must he determined for each result 
template in such a way as to maximize satisfaction of properties described above. 
If no such display templa.tes can be found to satisfy even the weakest properties 
above, it may be t.he case that the t.ask analysis was faulty, or incomplete, in which 
case some of the process can be it.f'rat.ed. Once some set of satisfactory display tem
plates is settled, the agent. df'scription of the Interface the process is not complete 
as the display (result relat.iollships must be subjected to tests to see if they make 
realist.ic demands on t.he user. 

We realize that the relationship between display aud result implied by t.hf' prop
erties of this chapter must be made explicit in a design situat.ion. In t.he next 
chapt.er, we will investigate bow ageuts can be Ilsed to capture more explicit.ly t.he 
relationship between display aud result. 



Chapter 8 

Interactive system architectures 

OUf purpose in applyIng formal methods 10 the analysis and d~sign of interactive 
systems is to provide a mt>ans of expressing user recognizable structures in a lan
guage more dosely related to the design practice. Abstract formalisms, such as 
tbe PIE model, and more concrete formalisms, such as the SuCcin and He model 
and the agent model of this thesis, have opened up the possibility of incorporating 
valid psychologi.cal assumptions of nsability as design principles in a more rigorous 
software engineering enviroIlment. The intention is that a principled design process 
will resnlt in the ability to t"ngineer more usable systems. Currently, the major
ity of psychological knowledge concerning the usability of interactive sys1l'ms has 
crept into design by means of common sense heuristics. We aim to show (1\ tbis 
cbapter how the agt'nt formalism can capturE' the meaning bebind some heurist.ics 
of interactive system architectnres. 

Overview of chapter 

In Section 8.1, we discuss the progression from abstract to concrete in interactive 
system design and how prin<:iples or properties that apply at the abstract level are 
mapped down to a concrete architecture. In Section 8.2, we describe two multiagent 
architectures for interactive system design, showing how they can be viewed in 
terms of the interaction framework. In Section 8.3, we discuss how the agent model 
allows a formal explanation and comparison of all levels from abstract t<J concrete, 
but especially at the concrete architectural level where few formalisms have been 
brought to bear. 

In Section 8.4, we providf' i1.n example of how the agent model can formalize 
henristic properties of a multiagent architecture, specifically one role of the control 
component of a PAC agent. To do this, we concentrate on the abstract property of 
correspondence introduced in Section 4.3. We give a more constructive definition 
of correspondence with the aid of template information. Correspondence provides 
i1.n architectural constraint Oil the relationship between collections of agents in the 

161 



162 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES 

Interface and System. 
]n Section 8.5, we investigate another architectural consideration in designing 

an interactjve system. We use a semi-formal approach to justify how predictability 
and synthesis can be supported by the analysis of user recognizable structures in 
a graphical interface. The argument which we support in t.his extended example 
is that the agent architedure of the System specification should lead to a natural 
descriptiollof an Interface which will support the user's understanding of the system 
functionality. The particular case we examine concerns the possible arrangement 
of commands in the graphical interface of a multiple file text editor. It does not 
matter that our example is yet another specification of a text editor, because the 
scenario we describe concerns more the support of user recognizable structures in 
an interface that the text editing domain. 

8.1	 From abstract principles to concrete archi
tectures 

Thimbleby [160J introduced generative user-engineering principles, called gueps, as 
a mealls of capturing colloquially understood features of usability wi thin the design 
process. A guep must ,satisfy the following fom criteria. 

•	 it can be expressed formally; 

• it has a colloquial form that is accessible to users: 

•	 it embodies valid psychologicaJ guidelines; and 

•	 it is construct.ive, so that it indicates how the principle can be attained in 
design. 

It is easiest to satisfy the first three criteria at an abstract level in which irrelevant 
clutter can be removed and concentration can be focussed on the essential features 
of the interaction. To address the fourth criterion, concrete architectural detail is 
needed. We identify three levels in the progression from abstract to concrete. 

The conceptual level 

The first and most abstract level identifies the context of an interactive system with 
a gross separation between the human and the computer. In this thesis, the inter
actiun framework provides tbis conceptual and contextual description, and it has 
proved beneficial for sat.isfying the second and third criteria above. Measures ap
plied to the translations within the framework gauge whether a component (System, 
User, Input or Output) can access the behaviour of another component and how 
easy it is to access that behaviour. 



163 8.2. MULTIAGENT MOOELS 

The layers level 

At. t.he second level, a finer grain of separat.ion is introduced for bot.h the human 
and the computer side of the interaction. At this level we introduce models such 
as Norman's seven stage model of the user activity and the Seeheim model of user 
interface management systems, both discussed in Chapter 3. Each of these models 
presents separa.tion in terms of layers or stages of action. Norman's model cert.ainly 
embodies ·valid psychological guidelines, since it was formed out of a psychological 
model of the user. The Sceheim model advocates the separation of presentation 
from application, which goes part of the way toward addressing the constructive 
criterion by isolating t.hose features relevant to usability from those features relevant 
to functionality. 

The architectural level 

At the third and most concrete level, architectural models are iutroduced to directly 
address the constructioll of a system. In this t.hesis, we are interested in multiagent 
architectures, broadly definC'd as the cla.~s of architectures which advocates the 
identification of simple, independent computational units-agents-coordinated in 
order to produce complex hehaviour. Multiagent architectures have several useful 
constructive features, as summarized by Coutaz [41J. They support iterative design 
since an agent defines the uuit of modularity and can be altered without greatly 
affecting the behaviour of the rest. of the ageuts in the system. They support 
distributed or parallel implementations. Considering the user as an agent which 
can communicate with sy~tem agents means that multithreaded behaviour. ill which 
the user is pa.rticipating in more than one task concurrently, can be more naturally 
expressed by assigning different. agents to the different tasks of the user. In the 
next section, we describe two different multiageut models. 

8.2 Multiagent models 

Model-View-Controller 

The Model-View-Controller (MVC) paradigm is the model used for the design of 
most Smalltalk interactive programs [107, 29, 96, 66]. On the surface, the MVC 
model fits very nicely with the interaction framework, as shown in Figure 8.1. An 
MVC triad represents three of the four componeuts of the framework. The model 
is the object on which work in the application domain is to be performed, similar 
to the System in our framework. The controller provides the input interface to the 
user, similar to tbe Input. The view provides the output interface, similar to the 
Output. The user, though not explicit in MVC. is assumed to communicil.tedirectly 
with the controller and makes observations of the view. 



164 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES 

View 

Display ~/1G -D 

G

8~ M~~/ 

Vlllrouer..- I I8
Keybo.lll1 

Figure 8.1: The Model- View-Controller paradigm of Small talk 

At the abstract (evel of the interadion framework, we were not concerned with 
any further details on t.he decomposition of components. ~fVC, on the other hand. 
is implemented in an object-oriented language, thus providing a natural mechanism 
for a hierarchical arrangement of MVC triads. Figure 8.2 show~ a typical hierar
chical arrangement of a collection of windowed interactive applicat.ions. Another 
distinction between the interaction framework and MVC can be seen by the explicit 
communication link between controller and view; there is no such explicit connec
tion between Input and Oulpu,l in the framework. This is another difference that 
arises from the different levels of ab~t raction they are intended to address. 

Presentation Abstraction Control 

COUlaz bas suggested an alternative to the MVC paradigm, called the Presenta
tion Abstract.ion Control--or PAC-model, shown in Figure 8.3 [38,39,40]. The 
abstraction component corr(>sponos to the model of MVC and the System of the 
framework:. The presentation component combines both view and controller of 
MVC. similar to the Interface. of the framework. In ~'IVC, the view and controller 
communicate directly with the model, and vice versa. In PAC, this communication 
is coordinated by the control component to ensure that the state of the presenta
t.ion component faithfully portrays the state of the abstraction component. The 
control component also coordinates communication between separat,e PAC agents 
hierarchically arranged. 

PAC is intended as a high-level de~ign notation for the desniption of an in
terface. It does not have an nnderlying implementation as MVC does. However, 
PAC is still intended to express a hierarchical rdationship between a collection of 
interface objects. Figure 8.4 gives the relationship between a PAC hierarchy and 
the other components of an int.eractive system. The PAC hierarchy can be seen as 
the dialogue and presentation control. 



8.3. ApPLYING FORMAL METHODS TO LEVELS OF ABSTRACTION 165 

Screen Conlroller
 
Scheduler Conlroller
 

~ 
~ 

Figure 8.2: The MVC hierarchy 

8.3	 Applying formal methods to levels of abo 
straction 

Having described the th ree levels progressing from abstract to concrete descriptions 
of an interactive syst.em, .....e need to show bow properties which arise at the most 

abstract level are traced down to the concrete, a.rchitectural level. We have adopted 
the ageut as the formal means for propagating interactive properties. At each level 
described above, the inspiration for the properties to be formalized comes from 
common sense heuristics. Formality, therefore, does not replace intuition; the two 
are complementary. 

At the most abstract. It>vel, there are computational formal models, such as the 
PIE model in which to expreSi:l many gueps of interest. The agent model can express 
the same properties as the PIE model by looking at it.s trace-state behaviour. An 
example of an a.bstract psychological model is Norman's execution and evaluation 
model, which was the primary motivation for tbe interaction framework and the 
simple agent model. 

At the next level, where there is more separation between components, the 
formal models need to express relationships between the layers or stages. The state



166 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES 

Presentation 8 
. / 

~ 
Figure 8.:3: The PAC model 

display model for the syst.em and CCT for the user are examples of such layered 
formal models. There is also a need to relate properties which are expressed on 
the layered models to the abstract properties given by the PIE model, the agent 
model il.od the interaction framework. Agents cau represent the layers or stages
for example, the state-display model becomes the System-Interface model-and so 
properlies expressed as constraints hetween agents apply to this level. 

At the architectural level, there are no existing examples of a (or mal model which 
captures interactive properties. The Forest project has produced an agent-based 
description of tbe t-1VC model within a modal action logic (MAL) [66, 141), but 
the purpose of that formal model was not to investigate the interactive properties 
of MVC. This absence of formalism at lhe constructive stage of interactive system 
design was one of the prime motivations for the refined agent model. One of the 
problems with the multiagent models described above is that while they do address 
very ~ttong benristic notions of usability-for example, catering for multithreaded 
dialogue between user and system so that the user is freed to direct the interaction-
the lack of a formal model does not allow the description of desirable properties sncb 
as predictability, consistency, honesty, etc. that Were valuable at the more abstract 
levels. It is also difficult to compare different multiageut architectures wben they 
are ('xpressed informally. The refined agent model allows us to formalize features 
of a multiagent architecture, for a wore bonest comparative appra.isal. 

Tne first step formalizing a muHiagent architectnre is to reject the fundamental 
units of both MVC and PAC. MVC snggests that tbe model-view-controller triad 
is the basis for the fundamental unit of iuteractive system design. PAC suggests 
the same for the PAC agent.. In practice, however, this informal rule is continnally 
broken, to the extent that the s~parations implied by eacb model are too artificial 
to be useful. View-controller pairs witbout an associated model are common in 
Smalltalk interactive systems in order to affect flow of control (for example, to 
express tbe role of a parent window whicb administers the change of control between 



167 83. ApPLYING FORMAL METHODS TO LEVELS OF ABSTRACTION 

p ~ § 
~ ~ =ij .~IH!H H1H1 
" > • ~ £°

. 
,0 " 

Figure 8.4: The PAC hierarchy within an interactive system 

subwindows [66]). Similarly, in examples of PAC diagrams, it is not uncommon 
to see PAC agents without a pre.~entatjon or an abstraction component. or with 
multiple presentation components. More recent models of PAC by Nigay [121J 
allow communication between lwo separate application components to bYPMS the 
control components. While we may be surprised by such glaring inconsistencies, it 
is not surprising that they arise. The PAC and MVC architectures are intended a.s 
a guides for designers; t!ley are not intended to be strictly enforced a... II-Duld be 
demanded by a formal model. 

The agent, as defined in Ihis thesis, is a well-defined building Mock for interac
tive system design, unlike the MVC triad or the PAC compound agent. l We can 
now view the MVC and PAC models for what they are-heuristic guidelines for 
the construction of agents into intt>ractive objects. The MVC triad and the PAC 
compound agent can be realized a... composed agents which can address aile or more 
of the user's tasks. The model or abstraction represents result information. The 
view-controller pair or the presentation represents display information. 

What was not discussed in Chapter 7 wa... how the relationship between the 

1We use the term componnd agent now to dlstingl1i~h the PAC unit from our formal age[lt 
modd 



168 CHAPTER 8. INTERACTIYE SYSTEM ARCHITECTURES 

model and its view or the abstraction and its presentation is to be maintained. 
Herein lies a. major difference between the MVC and PAC models. Correspon
dence between model (respectively, abstraction) and view (respectively, presenta
tion) must be maintained in MVC (respectively, PAC) in order to support the nser's 
nnderstanding of the result of interaction based on observations o[ the display. In 
PAC, the cont.rol component makes the correspondence explicit and separate from 
either presentation or abstraction. In MVe, the correspondence must be main
tained either within the model or the view, or both, meaning that model and view 
are not as geparablf' as may be desired. 

Bu\. h(lw does the control component of a PAC agent maintain the correspon
denc('? In 1he following section, Wf> wilJ develop the formal notion of correspondencf' 
introduced in Chapter 4 in an attf'nljll to formalize the role of the control. 

8.4 Local correspondence 

Recall in the definition of correspondence from Section 4.3 that two agents are said 
to correspond if the operations associated with input for one is sufficiently mirrored 
in the other according to some n:triFve relation between their state sets. We need to 
slightb revise the definition of correspondence to relate to the refined agent model. 
In order for agent B to correspond to agent A, we only require that retrieve relation 
hold for stable traces of the t.wo. A stable trace is one which call only be extended 
by a stimulus event, that is, the agent. can only proceed hy participating in some 
input event. 

stable: Agent _ P(seq EveJlt) 

'E s'abl,(A) <> ( 'E Hi A I 
A 'I" , HI A I 

I t~t'Atit' 

• 1'(#' + 1) E sfimuli(A) 

Th~ definition for correspondence for the refined agent model is very similar to the 
Oll~ given in Section 4.3 with the addit.ion of stability conditions. 



------

8.4 LOCAL CORRESPONDENCE	 169 

i
AgentCorr
 
Agent]
 

Agent J
 

relrieTJe : states) I----J slates!
 

inits) x 1'lI.ilsl ~ retl'icve 

"i( tr!, Sf), (trf '" tTl' '~J) : I;~~,,,,I
 

i ( (sf,s~)E (tr;gm('ss~operatJOns!)
 

/\ {tr], tTl ,-, tr]} ~ stable(BAgellf')
 

• 3(tTJ,sJ),(trJ'" tr),s)): 1;~~'1\tJ 

I	 ( (sl,s))E (trJ9me~s~opcrationsJ) 

/\ {tT;, tT)'-' IF)} ~ stablr.(OAgenl J ) 
•	 {( s], sJ), (s;, s))} ~ retrieve 

We define correspond_ as a. rf'la.tion bet,Wf'CIl a,gents indexed by a ret.rievingrelation 
between t.heir state sets. The pair of agents (D, R) is in correspondUI if agent R 
corresponds to agent D fL.'> defined by the schema, AgenlCoTT with retrieving relation 
rd. 

coTT'espond:- : (Stale I----J State) __ (Agent I----J Agent) 

correspondr<l = { Agt:nlCoTr 
I ufncllc = rel 
• OAgenl' ~ BAgent J 

Within the inkraction framework, we want. the User's interaction with the 
Interface to be so mirro1'("d by the Sy.~t('m. Overall, we would want to sa.tisfy the 
following canst raint. 

3 AgentCoTr 
•	 ( (JAgcnt l = Olnt.nface
 

/\ OAgent J = BSy.~tcm)
 

This rneam t.hat we have to find the Htneve relation to interpret information of the 
System within the Interfoce. Motivated by the multiagent architectures, it is de
sirable to localize the correspondence betwf'en Interface and System, both to make 
it easier to satisfy the demands of correspondence and to reflect the relat.ionship 
between intera.ctive objects as Sf'('n by the USer and their counterparts within the 
Systrm. Th€ display and resnlt templates introdu<'ed in Cha.pt.er 7 are useful for 
such localization. 

[Ta'kID] 



170 CHAPTER 8. lNTERACTIVE SYSTEM ARCHITECTURES 

Rlemplate TasklD --+Jo Template
 
Dlemplate ; TaskJD --+Jo Templute
 

This task information forms the basis for the local correspondence between 
System And Interface. For every task, we require a retrieve relation between the 
va[ue~ of tile resnlt attributes and the displa.y attributes for that ta.~k. 

laskrctrieve : TuskID --+Jo (Stute t-+ State)
 

dom laskrctrietw = clom /{/fmplale
 

dom(taskrelrieve(t)) ~ { <~: Syslern.stales _ Rlemplate(l) <1 s
 

ra.n(taskretrieve(t.)) ~ { s; Inlrrjace.slatcs _ Dtemplate(t) <1 s }
 

Given the result and display templates for the interactive ~ystem, we can then 
require that for any task ident.ifier t, the System restricted by the result template 
for t corresponds to the Inlfrjarr n'st.riet.ecl to the display templat.e for I. Below 
we- give A formal representation of this lOCil.J correspondence. 

Loco/Correspondence 
System, Input, OU/pIJt, IlIlnj((("(; : Aq"",/. 

tasks : P Task!D 
Rtemplate : tasks --> Template 
Dlempfate : t.asks --> Template 
taskretriet!e : tasks ----j (Stale _ Slatr) 

Interface = compose.~n« Input < OlltPlIt) 

Rtemplate(t) ~ Systern.aU,·ib8 

Dtemplate( t) ~ Iuterfaer. a/tribs 

dom(taskretrieve(t» ~ { s : Systmufutes _ Rtemplate(t) <J s } 

ran(taskrctrieve(t» ~ { s: Interjace.slalrs _ Dfemplate(t) <J s } 

Vi: tasks; rt: Rfemplate(t); dt: Dtemp[atr(t) 
_ (System JJ. rt, Intcrjace JJ. (Ii) E rorI'Espondr••hdn"'<{I) 

The PAC compound agent is related t.o a set of tasks for the nser. Given a 
ta~k, the description of the abstraction agent supports that task in terms oC the 
attributes in the result template. Related attributes for the pre~entation agent are 



8.S. ASSESSING THE GRAPHICAL INTERFACE TO A TEXT EDITOR 171 

then chosen and tbeir values are constrained by a retrieve rela.tion. The behaviour 
of the control agent is in part specified by the local correspondence relationship that 
it must maintain for each task the PAC compound agent is meant to support. We 
say in part because the control component also coordinates communication between 
PAC multiagents and not ju~t between its presentation and abstraction agents. 

The System is derived from a PAC description as the synchronized composi
tion of all of the abstraction agents. The Interface is derived as the synchronized 
composition of all of the presentation agents. PErform and Present, the agent 
manifestations of the performance and presentation translations are derived from 
the synchronized composition of all of the control agents. We can further divide 
the control agent into a performance subagent controlling dialogue flow from pre
sentation to abstraction. a presentation subagent, controlling dialogue flow from 
abstraction to presentation, and a hierarchical subagent, controlling dialogue flow 
between other control agents 

In the next section. we will concentrate on an example showing how 10c31 cor
respondence can be used to snggest a natural graphical interface to a System de
scription. 

8.5	 Assessing the graphical interface to a text 
editor 

In this section, we w;e t.he agent language to motivate a semi-formal support for 
predictability and synthesis. The detail of strict formality sometimes douds the 
insight which it can support, and so seek in this example to demonstrate how the 
formal properties of predict.ability and synthesis can be used to formulate heuristic 
guidelines for architectural constraints for agents. 

From the description of the interaction framework, we know that the presenta
tion of the interface has great impact. on the effectiveness of the interaction. Given 
an agent description of the System, we can provide a realistic example of how to 
increase the effectiveness of the graphical interface. The example we use extends 
from work done on the ESPRIT Basic Research Action project 3066 (AMODEUS) 
[13, 118] involving scenarios of interestiug user behaviour within an inLeractive 
system. Within the project, scenarios are nsed to compare and contrast the effec
tiveness oC system and user modellers iu explaining interactive phenom~na. The 
scenario we will describe concerns the grouping of commands in two v~rsions oC 
the graphical inh'rface to a mnltibuffer text editor. The versions oC the ~ditor are 
Spy (version 9) and its direct descendant Ten (presumably short for Spy version 
10). Both were developed at the Rutherford Appleton Laboratories in the United 
Kingdom. 

In this example, the snippet of action involves the invocation of operations 



172 CIIAPTER 8, I:--TERACTIVE SYSTEM ARCHITECTURES 

performed on selected text. The advantage of a multiple file, or multi buffer, text 
editor is that the user can rapidly switch attention between different files. Changes 
to the text of one file which involve text from another file-for example, the copying 
of SOme text from one file to a specified place in the other-are readily provided for 
in a multibuffer editor. In this example, the oser may have many buffers active at 
once, each containing text from some file in the filesystem, but only one of those 
buffers is the current buffer-the one to which active editing commands such as 
insertion of a character are directed. Also, the user may select a contiguous regiou 
of text within the current buffer. This select..d t.ext may be deleted from the buffer, 
or it may be copied or moved to any of the open buffers in the editor. 

The multibuffer editors on whicli this scpnario is based have many other features, 
most ofwnich are dp.serving of further analysis, but. for the purposes of this scenario, 
the functiOIlality of the operations to he performed on t.he selected text are all that 
concern us. The chaltenge posed to lICr modellers is to assess two options for the 
arrangement in the graphical interface of the operations for dpletion, copying iU1d 
moving of selected text. 

The first option is represented in the editor Spy ( ...ersion 9), and is shown in 
Figure 8.5. In this graphical interface, tIle operations to copy and move are grouped 
t.og€theron a pop-up menu and the delete operation is separated and appears on the 
menu ba.r associated to each buffer. The second option is represented in the editor 
Ten, and is shown in Fignre 8.6. In this graphical interface, all of the operations
delet.e, copy and move-----are grouped together on the same pop-up menu. 

We begin with an agent descript.ion of t.he SY8lem component of the multibuffer 
editor. The specification of the functionality of the multibufTer editors represented 
by Spy and Ten is a reverse-enginpered dpscription. A separate specification of 
Spy has been presented by Martins exrlusiwl.y in the Z notation [106]. We hope 
to demonstrate that the agent language provides an equally powerful specification 
technique with the advantage that it more closely refleets the object-oriented view 
crucial to the relat.ionship bet.wren tlie System and Interface. 

After presenting a specification of th.. System component of the multi buffer 
edit.or, we will move on to discuss the graphical interface. Our assumption again is 
that. ooth Spy and Ten share a comOlon System desCl'iptiou-at least as far a.s this 
scena.rio is concerned-but differ in the arrangement of the graphical interface. The 
Syslnn description leads us to the suggestion of a natural graphical presentation 
of the System which we could also be descrihed in terms of agents. This natural 
grapnical interface can then be compared to the actual intetfaces for both Spy and 
Ten. 

We use the agent language to give a limited descriptiou of the functionality of 
the multi buffer editor. Our agent description is limited because we will only define 
thaI. part of the editor that conc.erns the scenario descrihed above, i.e., we will only 
describe enough to facilitate specification of the operations of deletion, copying and 



173 8.5. ASSESSING THE GRAPHICAL INTER.FACE TO A TEXT EDITOR 

,"",...... 
~.'p 

...."h 

• 
~IP"ClI 

ap,,,,,,, I QIJ "'1 
DOl'" 

D,lo" 

[~1t 

SO'"C' 

Sollel 

..,." 000 ••,..... 

...pl. 

'oIr1l. QIJ" D,'''" S"", R.p1><;' Gl00ll S.,,,, bl.cu', ,..n 
T~" .. , ...pl, "'. '0 uoon''',11 tloll <!Iff","",," ~oto.." ,~. 

9'"1'010'1'""""" to "0 Sp~ (~••• I"" S)..,~ r." .'",..... 

In $p~, ,n. opcr'<1"n'l porfo... ' on ~.,.tl'~ U'1'" O'J"1 • ..... 
an~ De"", c""J '0" M"", .re 'OCO\.~ "" 0 P>P-UD ........ ""~ " .. 
s.,.,t•• to., .. co~ uc 0"'" '0 11,. p....nlon ,""c.'''' ~l " ........_n I 
h. ,,_.hI;l', ",'''', ,.to" lotot<>d on Ih. b"H.c ...."~" 

"no ItS .lIec, IS lO ro.,,,. 'M SOloct<>d "" f 'M 'ull... r_~.-.. 

.c' , .."., DIlet. butt"", .pp..,'"~ on 'loll ..p oenlb". 
"0.0013'0<110 tno C'Iff'"' 1'" ~u""'" ,'-~ 011 ~ tn"._ 
'"nctl0""rrl~, 

[n lin. Ihe o~er.!lons lIO'fo'"d"' '1""'. llxl or. aga,n Cop~. Mo" 

'''..pl' " ","He I QIJ" I ~., ... ! ~.or" I R.ploa' "lob.' I SelIC' I [,..,uto J $11011 

lb •• i •••'.~,. "'v lu d""",,,\o'.I. tho dlf1oc,,",. b.to..n 'h.
","",h,..l '"'''''00; to th. lOY (Vtc.'"" i) ... Ton .<11100'"'. 

10 50~ ••ho Op..-"""" potrforoe~ on "',,''' ,,_, C.Pl ...... 
af14 c.r.... c"fly an~ ~o.o .ro loco.. ' on • pop-up n M tM 
801Ie"'. to", Is cO.'e~ OC 10'" lO l~. poo'''." '''"'<:.It ~~ til..........on, 
h. co..... '. IO.u.. , 00'."" 10c.'''' "" "" "offlr ",n..ooC. 
&II~ " ••"eel to 10 c.""•• 'ho ,,'acl'" "'., ,,,••M "utlor. Tho.., til.... 

ac. ,.....c., D"e'. ~U"O'" I~P."-'"9 "" t'- .ep..-". _n........ 
...ocloled ,. I~. ey,rOn, "'••uH.... , thoy .11 ~... 'h• ••• 

t""'110nal"~. iiL 
In Ton. 'ho or...."'''''' p"'I....d on '.~'"><t oro .galn C"",. OlD.. 

Figure 8.5: The graphical interfac~ of Spy 

moving of selected t.ext. 

Figure 8.7 is a simpll" graphical representation of an agent architt'cture for the 
multibuffereditor functional core. In Figure 8.7. we represent t.he Interface as a sin
gle agent, and the relat.ionship ht'l,ween interface and functional LOre is represented 
by the Perform and Preswl agent.~. 

A single buffer will contain t.ext. and we will describe operations that manipulat.e 
text both within and between buffers. Within a buffer. the usual insertion and 
deletion of singlt' characters is allowed at an insertion point which can be set to any 
point within the text. of t.he buffer. A sed ion of text within a buffer can be selected 
for subsequent deletion or it can be copied or moved to any point wit.hin t.he t.ext 
of any buffer. There is only one selected section of text iu the whole multibuffer 
editor at anyone time. 

We will now givl" descriptions for the System agents in Figure 8.7. 



174 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES 

1101 i ...rUoooOlGl...opll ICTneO -.lllel "lind 

...-li""_I••~l.' X H
1011, 1;1(1/1'1 up'1<,n, Sue," ~0II1ac:. \l>1ti1l1 nrn 

" 
ODD 

Uri. to. supl••,,. t .......,Unt. lno dUf... ....,. bot..." t..
 
.-aPhl<., 1ntrlKIS '0 U. Sjl"j (1....,009) _ I.. 8II"lll'I.
 

In $fIlI. '110 ......,,.,. p'N.rl'~ on .lll.To. lnl ... ''''1. _
 
onrl bel O:lp~ on<! 1Oe•• oro 1'0"0. on • POP-"l' _u. on<! til•
 
..IK!'" , 10 coploa or ."",. ,. tI,., ,",sition iowll,.,.. oJ '.1
 
"""H _n 'n" ....... ,,'s..,oa. 0.1111 IS loc.to' on ''''' Dull..
 
_. ond It. IlIlet n to , .... '-t ""'leI I••• fr ' .. boil'.r.
 
I~ mlr orl1 lltlfto ""no". ",,~."'lnl on tn <1,.
 
~••u""" I. ,.,. c..-''''' 1,'. ""fforo, ""1 1n ..' .
 
f"""l .... llll· 

~::.sl:;.~:~ o~;.:::.:: ~:~:~:a.:; ~~:~::a..:":9~~:~~~~"'~:. ...~: 
DOll,.. 11111,rly t, Spy. Tn" potltl •• of "" Dol." I. <tI . 
I. '''' I. Ir,"IIYan! .. n. ~oslt'.n ,m.,.u,,," I, ''''lu,r •• lor trlol 
.pera""",. 

orUeb.,..a/•••,., X n 
0.1." 1. l"'UI<I 'n I"" DlJH.r ",.,br. eM It••f,«\ ,. t. 
r......, t,," It'ee••a ,.. t 1ro. 1',. !>JII... _,. t~... or•
 
....... l DII.U a<ll'''''' .p"".r,ng on , .. "P"'" ....mor. OS.,o""••
 
10 I.. "u"••, /11. boH.... '~'Y ol, .."'" ,n••_ 1un"11",,0111,. 

In IOn. U. op.r.tlm. n.,...,.r..o "" ,_]Oc" ••••1 .r••gel' COp/. ""....
 
ond 1\01.10 •
 

..1\ thr •• ""••On"" .... loc.t... "" a pOp-"" ""0. l~. , "'d. ~""."'"
 

.1.II.rl~ to ~Pi. T.. poslflo. 01 ,~ ••au....... 0.1 \. eI,,,.en '"
 
len '" Ir•• I....."' ...o P"""". '.'o'UtTo. '. 'oqUI~.d '''' tnot."""" .. ,.. =:t:;j 

Figure 8.6: The graphical interface of Ten 

8.5.1 Single buffer 

Figure 8.8 is a graphical representation of the single buffer agent.. We begin the 
description of the single buffer by describ'lIlg its state and how it is initialized. For 
the purposes of this description, the only attributes of inten>st involve the main text 
and the selected text within the main text. \Ve are making the explicit assumptions 
about the the result template for these editing tasks, and are defiuing the System 
as restrided by this result template. Text. is a sequence of characters, chosen from a 
set of all possible characters (eN). The selected tf"xt, if it exists, is delimited by two 
natural number indices within the main text. If there is no selected text, i.e., it is of 
value null, then these indices also have !lIe value null. A non-null insertion point 
indicates where subsequent characters are inserted into the text. The insertion 
point is an index within the text that splits the text into two subsequences-the 
text before the insertion point and the text after the insertion point. lnitiaUy, the 
contents of the buffer is empty. The agent description for this core of the buffer is 



175 8.5. ASSESSING THE GRAPHICAL INTERfACE TO A TEXT EDITOR 

Buffer
 
ManllgeJ"
 

//-,
 
..... .....


I .® 
--°---"'8
---e~ I_~
 

Figure 8.7: Agent r<,present,at-ion of mnIt.ibuffer editor 

" C 

g 
~ 

g 
~•
n "" 
~ 

disola 

Buffer 

bufferin 

FigurC' 8.8: The single buffer agent 

given below. 

agent blJffaslate
 
internal
 

types
 
[CHI 
.~ CH 
null r/: CH 
Texl == seq( elf u .) 
¥t: Ted. ( lasl(t) =.11. r/: f3n(front(l)) 

attributes 
text: Text
 
before,seledtd: seq CH U {null}
 
insertion, begsel. endsel; N U {null}
 

invariant 



176 CHAPTER 8. INTERACTIVE SYSTEM ARCHITECTURES 

insertion = null => ( begseL = null 
1\ endsel = null 
1\ ~eleded = null 
1\ before = null) 

insertion #- null => ( insf'rtion E darn text 
1\ bejor'f = l..(insertion  1) <J tert 
1\ begsel = insertion 
1\ endsel ~ begsel 

."1\ se!ceted = begsel .. endsel- 1 <l text) 

initially 
tat = ( ) 
insertion = null 

operations 
communication 
external 
endagent bufferstate 

Text in the buffer is terminated by the special end of text symbol _, which is 
not in the set CH. The state invariant embodies the link between the insertion 
point and the selected text. If there is no insertion point fol' a buffer, t.hen there is 
no selected text. In addition, we constrain the selected text to occur as a contiguous 
sequence of text positioned directly after t.he insertion point. 

We can now specify the operations which deal with selection of text. These 
operations will be collectively specified in the agent bulJerSelect. The first two 
operations are marking the beginning of the selection of text and extending the 
selection of text. These are intended 10 be initiated by the User, via the Interface. 
They are specified in the agent blllJerMrLrkSelecf. After either a mark or extend 
event., the buffer manager is informed of the new selected text. 

agent bufJerMarkSeleet 
interleaves (bufferstate) 
with 
internal 

operations 
beginmark( n : N) 

changes (before, selccl(d, iriMTtion, begsel, endse!) 
p,e 

n E darn text 
post 

in.qertion' = n 

ix'{Jsel l = fndsel l 

extendmark(n: N) 
changes (before, .~eieded, insertion, ix'{Jsel, fndse!) 
p,e 



177 8.5. ASSESSING THE GR,\I'ItICAL ' .... TERFACE TO A TEXT EDITOR 

n E dam lui
 

inse'T'llOll #- 1lUlI
 

poet
 
n ::; begsd => ( bfgsel':= n
 

/\ endscl' = endscl)
 

n > bf:g~'rI => ( beysel' = begnl
 
/\ f'ndsel l = n)
 

.~dfrttext(t : seq eH)
 
changes ()
 
pre
 

t = selcrltll 
communication
 

inputs
 
bufJerm : ocginTTlork( n : N); c:rlcnd'fTwrk( fI : N)
 

outputs
 
rruwllgerin : ,~dfdhxl{ I : sefj CH)
 

external
 
J1 X • (bufferiu '?:< - nwnagcr'in!sclr.dlr.xt( I) --> X)
 

endagent bllffcrMurkSrln:1
 

Notice how the external descript.ion of bufJrrMarkSeleet is so structured t.o make 
t.he stimulus-response of this ageont cl('ar. We also f10te that this external description 
would allow extending tIw selection before the selection has begun. You can do 
a (bufJerin, extendmark(n)) before a (buffe'T'in, mark(n)) has been done, but this 
is disallowed by the internal descript.ion of the agent operations (specifically, the 
precondition of the exl.f'ndmad: operation prevents t.his), 

The next operation, ullselecl ing text., is a control operation which will be re
quested by the buffer manager t.o ensurf> t.hat. only one of the bnffers cont.ains 
select.ed text. Its isolat.ed specification i:; giV<'n by the agent bufJerUnseled. 

agent IlUfferUllse!er!
 
interleaves (bllfftT8Iufc)
 
with
 
internal
 

operations 
lInselecl() 

changes (bc/01"f'. selected. in,~ertioTl.lxgs(:l,cndsel) 
p,e
 

insertion ¥- null
 
post
 

insrrlwn' = Ilull
 
communication
 

inputs
 
manayn1lul :ull"f'/f'cl()
 

external
 



178 CHAPTER 8 lNTERACTIVE SYSTEM ARCHITECTURES 

cun
 
endagent buJJerUnselect
 

The final operations at the buffer level describe the insertion of text at. an 
arbitrary position (used for copying and moving) and the deletion of the selected 
t.ext. 

agent buffer/nsDel
 
interleaves (buffer5tate;
 
with
 
internal
 

operations 
insel'( t : :>eq en; II : N) 

changes (before, selected. ins(,l'tion, iJegsel, end"el, feri) 

p" 
inset'lion '# rlull 

post
 
insertion' == n
 
before' == L(n - 1) <J text
 

seq seq 
endse!' ..#teTt' <J le'Tt' = n. #lext <l texl 

seleeted' == l 
remotJeO
 

changes (selected, cndMl, tat)
 
pre
 

insertion '# null 
post 

selected' == ( ) 
5eq seq

endsd' .. #tcrl' <l (cTI' = endl5el. #lext <l text 
communication
 

inputs
 
manQgfTout . inserttt: seq en; fl : N); removeO
 

external
 
run 

endagent buJJerlnsDel 

\V(' can finally combine the above three agents to arrive at a specification of 
it single buffer agent with selection faciltif's, which we call bufferSeled., We add 
lhe display channel at this point for communication to t.he lnler/ace. The implicit 
external constraint states that e\'ery input event to the buffer is followed by an 
out.put event to the display. 

agent buJJerSeleet
 
interleaves (buJJn·Mart-Select. bljffl'rUrl.~eIect,bujJed1JsDrl)
 

with
 
internal
 



179 8.5. ASSESSING THE GRAPHICAL INTERFACE TO A TEXT EDITOR 

operations
 
showtext(t : sell ell: m, n: N U null)
 

pre
 
1= te.ct 
m = ocgsd
 
n = ends([
 

communication
 
outputs
 

display: .'ihou·/e:r:I(1 : S{'q ef/; m, n: N U null)
 
external
 

satisfying
 
"Vt: traces 
• #(t I {dl.~pl(lyJ):5 #(t I {huffe,·in,mllnageroul}):-:; #(1 I {display}) +1 

endagent bufferSded 

We coulrl contlIlue to define' further behaviour of a single buffer, bul for the 
example of this scenario, the bC'haviour of buffrrSrlrcl is a.dequate, and .~o we can 
refer to it as the bu.ffer agcnt. 

agent buffer
 
interleaves (buffuSdeet)
 
endagent buffer
 

8.5.2 The buffer manager 

The concurrent activity of a collection of buffers will be managed by the agent 
manager. The purpose of this .agent is twofold. It will ensure that only one buffer 
is active, that is, only one buffer contains a non-null insertion point. It. will also 
provide a means by which the .~el('ct.('rl text. is deleted, copied, or moved. We will 
need a set of buffer labels, BUFF/D, which will serve a.s unique identifiers for all of 
t.he possible buffers that. coulrl be known t.o the manager. The manager is init.ialized 
int.ernally. 

agent managerS/ute
 
internal
 

types 

BUFFfD == PV
 
null f/. BUFPfD
 

attributes
 
known: P BUFFID
 
currenl,last : BUr-FIfJ u {null}
 
selected; seq CH
 

invariant
 
current f:. null ~ CUr1l'nt E known
 
last f:. !lull ~ la .. / E ~·nown
 



180 CHAPTER 8. )l"TERACTIVE SYSTEM ARCHITECTURES 

initially 
known = " 

communication
 
external
 
endagent f1!lJfifJgt'rStullo 

We will not give the detailed description of the bnffer manager at this point. 
The importance of this dC5cription is that it would contain events corresponding to 
the copying and moving of sclectf'd text from one buffer to another. Input from the 
User via the interface that. is intended to perform these two operations on ~eleeted 

text must be controlled via the rnanag('r~ interaction diTeet.ly wit.h the buffer would 
Hot be able to control the COlhlTlllllicdtion of selected text bf'tween buffers. In fact, 
it. i5 precisely because individual bufff'l" agents cannot. control this communication 
that the buffer manager was introduced. The manager ensures that only one buffet 
IS acti.'e at a time and it keeps tl'ack of the ~elected text iu order to communicate 
it to any buffer necessary. 

It is not necessary for the buffer manager t.o control deletion of the selected text, 
since tbat operation can be defined ,.t tll(' buffer level. HoweveT, a desigu decision 
{or these text editors has placed the delete command at the control of the buffer 
manager. 

8.5.3 Deriving a description of the interface 

As .....I' r;uggcsted earlier, the agellt description of the functional core suggests a 
natural agent description of its graphical interface. Figme 8.9 is a more detalled 
agent. representation of the funetiOTlal core. This figme shows how operations re
lating to selected text ate distributed in the agent hierarchy. The copy, move and 
dc1etecommands are located within the buffer manager, and the other operations 
on the selected text-marking the beginning and ext ending the selected region-are 
located at the buffer level. 

Predictability, as described earlier in this thesis, centres around the future results 
of the interaction being dderminablt' hased on knowledge of what the results are 
currently, and likewise for the displays. Syuthesis concerned whether the user was 
able to determine changes to the result based on observed changes to the display. If 
the result and display behaviour i:; predidable, then \0 satisfy properties associated 
to synthesis (honesty and trustworthiness are the ones we have discussed explicitly 
in t.his thesis), we need to ensure a (orrespondence between the structures the 
usn recognizes from the graphical interface and the result structures the designer 
intended the display to portray. 

With this in mind, we suggest that thl' agent description depicted in Figure 8.9, 
and given formally earlier, leads to a natural descript.ion of the graphical interface 
which corresponds to the agent description of the Sy"lrm. We can contrast this with 



181 8.5. ASSESSING THE GR,\PJI[CAL I:"TERFACE TO A TEXT EDITOR 

ButfU) ,_, '"" Manager <kh•• 

//-,

88 G
 

I I 

..-,
figure 8.9: Age-fit reprt:'selltation of fllnetional core with operations. 

an age-lit. descript.ion of the' inl.f'rface-s to Spy and Ten based on the visual appearance 
of the graphical illt.erfaces shown in Figures 8..5 amI 8.6. In Figure 8.10, we give 
the agent descript.ion of the Spy in\.('rfacf'. Hc-re it is seen t.hat. t.he delete operation 

§ '0. 
Butr... "'0" 

~btl.g"," 

//,

88 G
 

I I 
"" '''.nd 
<1<1«0 

Figure 8.10: Agent represent.ation of Spy's interface. 

is distribut.ed t.o t.he- pre.~ent.ation of each buffer agent.. User of this system will 
falsely connect. t.he funct.iona.lit.y of the delete se\ect.ed t.ext operat.ion to the buffer 
cont.aining the select.t'd text. But experimentd,l interact.ion with the interfil.Ce shows 
that pressing any dellC'te button will always delete t.he selected text. 

In Tt'tI (see Figure 8.11), since the dekte command has been included in the 
pop-up menu with copy and move, it is no longer falsely a.c;sociated to the single 
buffer. We say tbis because- tllf' pop-up menu is not connect.ed gra.phically to any 
individual buffer, but ratber roaJTlS independently with the mouse, whose input to 
t.he system is constrained to the region in which the editor is located. 



182 CIlAPTER 8. !XTI,:RACTIVE SYSTEM ARCHITECTURES 

§ 
,~, 

ButI.·<... "''"c 
MatI"l!u dtl..e

BB/,'G
 
I I 

=" 
""~Id 

Figure 8.1 J: Agent [("presentation of Ten's interface. 

8.5.4 Conclusions on the case study 

Though the graphical intt'rface of Ten corresponds more closely to the functional 
desniption of the text editor when restricted to the tasks of deleting, copying and 
moving selected It'xL, there still relnaill qllestions about its implementation. By 
placing the delete operation on the pop-up menu, deletion was removed from its ill
advised cannee-lion to the individual buffer. However, pop-up menus attached to the 
mouse are linked with the positiona.l information associated to the monse as well. 
Whereas this iuformation is nece!>sary for tlte copy and move operations, because 
their operations depend on positionfl.l information (the destination of the moved or 
copied text.), it is not. necessary for delet.ion, which is an operat.ion independent. of 
the monse position. This argument leads us t.o suggest. t.hat the best. locat.ion for 
delete would have been in some overall t.ext edit.or menu, or even attached to some 
key on t.he keyboard. Argnments for placing delet.ion on t.he pop-up menu cent.re 
around minimizing the mot.or movement and dist.raction of t.he user. Since deletion 
will often take place shortly after the mou"e has been used to mark and extend the 
selected text, it would be easiest and least distracting to the user to allow them to 
use the mouse again to issue the ddetion coJnmand. \lIle cannot sufficiently support 
Ihese kinds of keystroke level or attention arguments within our formal interaction 
models. As a result, we admit that our formal techniques can only truly be effective 
in concert with other psychological modelling tpchniques which will provide decision 
!'upport for design where our models cannot. 

There are several reasons why this particular multibuffer text editor provides a 
very interesting case study. For the purposes of the scenario, the two versions are 
functionally equivalent. Their only difference lies in the arrangement of commands 
in t.heir graphical interfaces. ThPTP is a significant difference in the t.wo graphical 
interfaces, and one must ask the reason for the massive changes. Ultimately, tbe 
change~ were made in order 1.,0 increa.~e tiJe amount of screen real estate dedicated 



183 8.6. CONCLUSIONS 

to the display of t.he buffer ("ontf'nt~.2 Our analysis has tried to trace the u~ability 

comeqnences of I.his design decision. 
It tnms out for this particular of command organization, the later version (Ten) 

was an improvement au usability. Other analysis that we have done [97] concerning 
the search/replace facility shows that Teu is indeed less usable because the corre
spondence between result and display templates for the ~earching task is not as the 
user anticipates. In general, the move to greater screen real estate has meant a 
sacrifice in visibility of corrr-spondr-TlCt' detail that facilitates predictability. 

8.6 Conclusions 

In this chapter, we have initiated all a.s~essrnent of lTIultiagent architectures with the 
formal agent model. Having introduced two well-known mulLiagent architectures, 
MVC and PAC, we identified a major difff'rence between them iu terms of the ab
stract property of correspondence which we desire to map down to a concrete form 
in some architecture. PAC advocates the isolation of correspondence information 
between SysteTTl and biter/tic{; agents, whereas \lVC does not. We presented local 
correspondence .as a more task-related form of the abstract version of correspon
dence presented in Chapt.er 7. The formal definition led directly to a more precise 
interpretation of the dUI,ies of the conlrol agent in a PAC compound agent, which 
we isolated in terms of it.s rorn-spondeuce role and its hierarchical role. 

Iu the ease study of Spy vs. Ten, we showed how a formal development of 
the System agent architeet.ure can lead to a semi-formal heuristic for the design 
of potential graphical intet"fa<"f'S t.o support properties such as predictabilit.y and 
synt.hesis, in which the use I" tries to recognize structures of t.he 11lterJaceand relate 
them \.0 structures of the Sy8tCnt. 

'Thi~ informa.tion was obtained through private communication with David Duee from Ruther
ford Lab~. 



Chapter 9 

Conclusions 

9.1 SUInIDary of the thesis 

Recalling the dual focus of attention in this thlC'sis-buman-computer iTlt<.'raction 
and software engineering-we can summarize the results which ha.vlC' been presellted. 

From an HeI perspective, we have provided informal, semi-formal and fllll"\ 
formal mechanisms for the design and analysis of interactive systems. InformalJy, 
we have defined an interaction framework which describes the major cornpolienb 

itt an interactive system, the user, the system and the interface, and we u~ed this 
framework both to contextnaJize a great portion of HeI research and to motivate: the 
more formal treatment of interactive properties. At the more forma.llevel, we have 
provided a constrllctivlC' bridge between the abstract and general computational 
models of interaction and the heuristic design of interactive systems. A formal 
model of the agent has been nsed as the building block for interactive system 
description. \Ve have provided tIle beginnings of a methodology for incmporating 
psychological knowledge of users by demonstra.ting the link between task (l.Jlalysi.., 
and agent description. The formulation of interactive propertie::; on agents prll\··ldes 
constraints for. tbe design of an interactive system and a mea.us for eViihl,ll,IJl!-!: 
existing systems to understand user difficulties. Vle have provided several eXiirtl[lles 
of how a. formal or semi· formal analysis can be nsed to explain scenarios or IIser 

behaviour. 
From a software engineering perspective, the agent model is a formal model of 

an object-oriented specification language. It is the first specification langllag-e to 
our knowledge WIth a compositional semantics that incor[lorates existing rtlodel
oriented techniques for a description of an entity'!,,; internal state behaviour alOOf!; 

witb existing process algebra techniques for a description of the (,:xtern.al evetlt 
behavionr. The agent language answers criticisms of previous model-oriented tech· 
niques, such as Z, by providing a mechanism for describing objects. Beyond that. \\'(' 
have also incorporated a means for specifying the communication between ooj(~ds, 

185 



186 CHAPTER 9, CONCLUS[Oi\S 

a facility which is not treated as generally in other object-oriented formalisms. 
It is interesting to note that the requirements for our ageul model which lead to 

the development of the hybrid notation arose directly from OUf ueed to express a 
particular class of interactive properties. Thus we have t;hown how due considera
tion of nonfunctional requirements in software engineering can iucrease the benefits 
of formal methods as well as influellce the development of better [ornlal techniques. 

9.2 Contributions of this thesis 

Our goal in this thesis was to provide a scientific approach to the developrn<:nt of 
more usable interactive systems. \Ve outline now the coutrihution.:> of tllis tllf~sis 

toward that goaL 
Formality rarely provides its own context; it is ofkn neces~ary to provide infor

mill motivation for the formalism. This motivation i~ usually culled from common 
~Cllse about the world around us. The interadion framework is such a COInInO!J 

scns~ description of interaction in the everyday world. Its description is free of psy
chological or computational jargon. The framework has served two major purposes 
in our oval work. It has provided the coutext for our research, enabling us to COIlI

pare and classify previous HeI research as well as our own. It has also motivated 
the development of the agent formalisms used in this thesis to describ(~ relevant 
i nLeractive properties. 

We consider interactive systems as a collection of communicilting stimulus
response agents. A simple model of an agent was described whicb Wa'5 consist.ent 
wit.h the interaction fra.rneworl. and allowed for the precise description of several in
le-raetive properties. These properties were motivated by an informal description of 
the translations made between the major component~ in an intera.cti ve system-t,he 
User', System, Input and Output. We provided an account of how those tran~lit
Lions affect the overall goal-directed behaviour of the human user. Some formal 
descriptions were aimed at describing the ease and coverage of translatious iu the 
framework which are themselves seen as implicit ageut descriptions based on their 
stimulus-response behaviour. The correspondence property was described as a rda
tionship between two separate agents that would e\'entually blC' lC'nlbodied by a third 
translatiou agent. Other more abstract properties, such as predict.ability, syuthesis 
and consistency, classified agents by the relationship between their iuput history 
and their state or response history. 

The problem with the simple agent model was that its neaf black-box descrip
tion did not allow for a constructive discussion of interactive properties that relate 
the goals or results of the interaction with the immediate and visi ble information 
thil,t the user sees. At the abstract level of I,he simple agent, these proplC'rties eaIl 

only be discussed by use of mappings from the state space to the respective result 
ilnd display spaces, as is done in the red-PlE model and Sufrin aud He':; model 



9.2. CONTRIBUTIONS Oi" TIIIS THESIS 1ST 

of interactive processes. In designiug a system, however, we need to be a:'le to 
construct the agents from the result and display information of a task analysj~. 

So motivated by the desire to express interactive properties more con~tr\Jc:i\'ely_ 

we refiued the agent model. The refinement was intended to support a hyLrid \·ie\\" 
of an agent, using complementarydescriptious of its internal. state-based behaviour 
and its external, event-based behaviour. The slate of the agent was given as an 
attribute-value mapping and the two complementary views were made comist,ent 
by a communication description which linkf'd the operations of the intcnlill de
scription with the events of the external description that occur on input. C'Lltput. 
synchronized and internal chaunels. We also defined two composition opemtors, 
corresponding to the synchrOllQus combination of independent. agent.s (thO$O" wiLh 
no attributes in common) and the interleaved combination of dependent agent.;; 
(those with attributes in common). 

The description of the refined ageut model was produced in the Z notatioll. hut 
we felt that Z diu not provide a natural means for Luilding tht' descript.io:] of all 

agent, i.e., Z was not a suitable design notation. \Ve, therefore, provided a lilIlguage 
for ageuts which made clear the int.ernal, external and communication dest:l'ipl iOlls. 
Due criterion for developing this language was that it be familiar to those with 
experience in other formal notations, and so it was made to look similar to a lllodpl
oriented uotation, such i\S Z ar VDM. for the internal description, and similar t.o <l 

process algebra notation, such as CSP or CCS, for the external description, 

The refined agent model aud its associated language were then uSf'd to shinv 
how interactive properties relating result and display information could repla.ce the 
previous mQft" abstract properties on agents. Templates have been previollsly used 
in abstract models as a means of modelling the focus af attention a( a we!", \\'e 

g'ave a coustructive defiuitioll of templates for restrict.ing th(' st.ale of an agent to 
thase attributes which are relevant to a particular task. The identification 0]" re::'lllt 
and display templates as task-dependeut descriptiaus derived from task anaIY::il"i 
links agent design in a more user-centred interactive system development nH'thod. 
Reformulatians of interactive properties related input to t.ask-specific result and 
display templates yielded versions of predictability. consistency, etc., tha.t were 
more relevant to the user's understanding of the interactioll. 

The final contribution of this thesis was to init.iate the formal Jescription of 
multiagent architectures which have been previollsly used as heurist.ic guiJeline,,; 
for interactivt' system development. Architectures are realistic platfQflTls far the 
description of implementations, and it is necessary to show how the properties 
derived in the abstract can be traced down to this more concrete level. \\'ediscussed 
two known multiagent architectures, MVC and PAC, and highlighted a differetlc{' 
between them. PAC providf's for the explicit description of correspondence beh\'I'f'1J 
the System (model or abstraction) and Interface (view Qf presentation) agents. 
whereas MVC does nolo We then showed how this feature of the control agen1. in 



188 CHAPTER 9. CONCLUSIONS 

PAC is a manifestation of the abstract correspondence property expressed between 
agents. A more extensive case study then showed how the agent description of the 
Sys/(;m leads to a natural agent description of the Interface, which was then used 
to analyze the actual graphical interfaces to existing inleractive systems to explain 
confirmed u~er cOllfusion or irritation. 

9.3 Future work 

Though the contributions of this thesis as stated above are significant, another 
real contribution of this work is the research agenda that it motivates. We will 
sllmmarize the main aims of this agenda aud then CDlrlment on improvem(·nls to 
the Cllrrent work which are necessary based on our experience using agents. 

The agent model is intended as the formal system modelling not.ation for the 
ESPRIT Basic Research Actioll project 3066 (AMODEUS) (13J. Within the project, 
sy~tem modelling fits into a targer research scheme with very courageous aims. The 
AMODEUS project is interested in assimilating different HC[ modelling techniques 
in order to see how they can be coordinated toward a more effective desigu practice. 
The modeUers fall into three main categories. There are psychologists whose main 
re~earch is in the development of models of the user. There are computer scientists 
whose main interest in in the development of models for system description. These 
two modelling domains are linked by a third domain concerned with how practicing 
interactive systems developers document the rationale behind their design decisions, 

As briefly discussed ill Chapters 7 and 8, the main exercises within the pl'Oject 
arc based on separate analyses of scenarios of intera,ction between user and system. 
These scenarios are used as a means of eliciting information comparing and con
trast.ing t.he ut.ility of the different modelling domains. Earlier versions of the agent 
model and notation have been used with relative success by the system modellers, 
and some of those examples have been provided within this thesis. Many mote 
scen<lrios have been investigated [72, 8, 42), and further are planned. Some of the 
C(l~e studies address issues in computer-supported cooperative work tCSCW) and 
highly interactive display-based systems. Continued application of the agent mode! 
t.o these scenarios in case studies specifically geared to test its ability to capture rel
evant information concerning interactive behaviour will undoubtedly lead to further 
refinements of the model and an increased confidence in its utility. 

We realize that the formal a.gent model caunot alone address all of the important 
aspect.s of interaction, not even from the restricted viewpoint of system modelling. 
For example, the agent model does not provide a Wil}' of determining the relevant 
a.gents in the system from some requirements specification or scenario description. 
Therefore, a number of system modellers are working on Ways of applying design 
hcmistics in the form of an expert system design tool to help a designer determine 
the agents and their communications connections before embarking on a formal 



189 9.3. FUTURE WORK 

description [70J. We also plan to investigate the possibility of applying the agent 
model more within thc USer modelling domain as a way of expressing the re~;;nlts of 
psychological theory in a language of design. 

Refinement from specification toward implementation within the agellt model 
should also he possible. Sufrin and He demonstrated how a, refinement ordering 
can he defined on their model of interactive processes, leading to a definition of 
operationaJ and data refinement in terms of the result and display behaviour. With 
slight modifications, this definition of the refinement ordering can be mimicked in 
the agent model, with the additional benefit that refinement can be restricted to 
task, since the result and display information in the agent model is defined in terms 
of task. The agent language could be augmented to wide spectrum languag~ .~o 

that refinement can remain within the agent model and proceed from high-level 
specifica.tion to implementation, as described by Morgan's refinement calculus Oil 

Dijkstra's guarded command language [116, 115J. 
We mentioned in Chapter 5 that the inclusion of the simplt~st traces model of a 

process algebra was intcnded as an example of how more complicated process alge
bras could be incorporated. We have not investigated this point very thoroughly, 
and it would be valuahle to see what advantages actnally arise from the use of 
other process algebra models. We suspect that the inclusion of more sophisticated 
models, such as the failures-divergence model of CSP, wonld not automat,kitll}' in
troduce the ability to express !i\·eness properties because of the constraint within 
the model that both internal and external descriptions detennineoverall bebitviour. 
Whereas the external description of an agent in a failures-divergence semantics may 
be shown to satisfy some liveness properties-guaranteeing that some desirable be
haviour will happen-the corresponding internal description may prohibit the agent 
from engaging in the desired property. 

An interesting comment on the development of the agent model is that it was 
directly influenced by two different perspectives on its behaviour, the internit' and 
the external. The need for a hyhrid nota.tion arose when it was realized that the 
two different perspectives corresponded to different na.tural notations. Hence, a 
model-oriented language more naturally expressed internal heha,viour and a process 
algebra notation more naturally expressed external behaviour. Research at York 
is now investigating a classification of perspectives on system models in order to 
determine how hybrid notations can be ada.ptl"d to express the different perspectives 
[16J. 

We first described the behaviour of an agent as stimulus· response. In moving 
toward a concrete notation that corresponded to both Z and esp, we lost the 
ability to simply express the connection between a state transition, the stimuli that 
triggered it and the responses that resulted from it. We admit that this connection 
is much more naturally expressed within standard Z by the use of decorations .? and 
! to mark input and output respectively. However, tbe primitive communication 



190 CHAPTER 9. CONCLUSIONS 

operators in Z do not allow the arbitrary communication between the output of 
one operation and the input to other operations, and so we abandoned the use of 
Z exciusively. We are not familiar with any attempts in the Z community which 
have solved this communication problem. However, it may be possible to define in 
Object-Z a communication component to the object cla.'l5, allowing for a calculus 
of objects. We hope to pursue this point by using the agent model as an example 
of how communication can be incorporated into a model-oriented nolation. 

In summary, we see the work of this thesis a.'l a solid justification for the fise 

of formal methods in syslem development to promote non-functional as \vell as 
fllnctional requirements. Detailed examination of the oon-functional requirements 
reli:l.ted to usability have shown that they can be addressed scientifica.lIy to answer 
relevant re~earch questions. ln addition, we point out that the application of formal 
methods to areas such as HeI can indicate how to improve the existing formal 
not.ations themselves. 



Bibliography 

[1]	 G. Abowd, A. Dix, and M. Harrison. State of the art: Formal aspects of user 
interfaces. Internal report, Human-Computer Interaction Group, Department 
of Computer Science, University of York. Presented at Eurographics'9(), May 
1990. 

[2]	 G. Abowd, A. Dix. and M. Harrison. Formalising user recognisable struclures 
of graphics packages. In Proceedings o/the Eurographics Workshop on Formal 
Methods in Computer Graphics, Marina di Carrara, Italy, June 1991. 

[3J	 G. D. Abowd. Properties of a graphical interface within a formal interactive 
system architecture. In Proceedings of !-he Eurog16phics Workshop on Formal 
Methods in Computer Graphics, Marina di Carrara, Italy, June 1991. 

[4]	 G. D. Abowd and R. Beale. A framework for the analysis and design of inter
activp syst€ffiS. Technical Report YCS (156), University of York, Department 
of Computer Science, 1991. 

[5j	 G. D. Abowd and R. Beale. Users, systems and interfaces: a unifying frame
work for interaction. In D. Diaper and N. Hammond, editors, HCf'91: Us
ability Now. British Computer Society Special Interest Group on Human
Computer Intera.ction, Cambridge, 1991. 

[6]	 G. D. Abowd, J. Bowen, A. nix, M. Harrison, and R. Took. User interface 
lauguages: A survey of existing methods. Technical Report PRG-TR-5-89, 
Oxford University Computing Laboratory Programming Research GroLlp, Oc
tober 1989. Also published as internal report 2487-TN-PRG-I008 Issue 1.0 
for ESPRIT project 2487 (REDO). 

[iJ	 G. D. Abowd and M. D. Harrison. On a constructive approach to applying 
formal methods in HCI. Technical Report YCS (1.51), University of )"ork, 
Department of Computer Science, December 1990. 

[8]	 G. D. Abowd and M. D. Harrison. Design scenarios for M1.5. Working paper 
RP1/WP10, E,pr;t BRA project 3066 (AMaDEUS), March 1991. 

191 



192 BIBLIOGRAPHY 

[9]	 G. D. Abowd, M. D. Harrison, and C. R. Roast. Modelling predictability 
in int,eractive systems. Working paper RPljWP9, Esprit BRA project 3066 
(AMODEUS), Septembec 1990. 

[10]	 H. Alexander. Executable specifications as an aid to dialogue design. In H. J. 
Bullinger and B. Shackel, editors, Human-Computer Intemclion - INTER
ACT'87, pages 739-744. North Holland, 1987. 

[11J	 H. Alexander. Formally-based techniques for designing human-comput.er di
alogues. In D. Diaper and R. Winder, editors, People and Computers Ill, 
pages 201-214. Cambridge University Press, 1987. 

[12]	 H. Alexander. Forrna/l!J~Based Tools and Technl:ques for Human·Compuier 
Dialogues. Ellis Horwood Ltd., 2987. 

[13J	 AMODEUS consortium. Assimilating models of designers, users and systems. 
Esprit Basic Research Action 3066, Technical Annex, 1989. 

[14]	 S. O. Anderson. Proving properties of interactive systems. Technical report, 
Department of Computer Science, Heriot-Watt University. 1985. 

[15]	 S. O. Anderson. Proving properties of interactive systems. In M. D. Harrison 
and A. F. Monk, editors, People and Computers: Designing for Usability. 
Cambridge University Press, 1986. 

[16J	 P. Andrews. First year report on doctoral research. Department of Computer 
Science, Unjversity of York, June 1991. 

[17J	 P. Barnard. Interacting cognitive subsystems: A psycholinguistic approach to 
short-term memory. In A. Ellis, editor, Progrf:ss in the psychology of language, 
volume 2, chapter 6. Lawrence Erlbaum, 1985. 

[18J	 P. Barnard. Cognitive resources and the learning of human-computer dialogs. 
In J. M. Carroll, editor, Interfacing Thought: Cognitive Aspects of Human
Computer Interaction, pages 112-158. MIT Press, 1987. 

[191	 P. Barnard and M. Harrison. Towards a framework of modelling interactions. 
Project deliverable D3, Esprit BRA project 3066 (AMODEUS), September 
1990. 

[20]	 P. Barnard and M. D. Harrison. Integrating cognitive and system models in 
human computer interaction. In A. G_ Sutcliffe and L. A. Macauley, editors! 
People and Compulers V. Cambridge University Press, 1989. 



193 BIBLIOGRAPHY 

[21J	 P. Barnard, M. Wilson, and A. MacLean. Approximate modelling of cognitive 
activity with an expert system: A theory-based strategy for developing an 
interactive design tool. The Computer Journal, 31(5):44,'5-456, 1988. 

[22J	 P. J. Barnard and M. D. Harrison. Towards a framework for modelling human
computer interaction. Working paper RP3jWP5, Esprit BRA project 3066 
(AMODEUS), May 1991. Submitted to Esprit Confereuce 1991. 

[23]	 L. Bass, R. Little, R. Pellegrino, S. Reed, R. Seacord, S. Sheppard, and 
M. R. Szczur. The arch model: Seeheim revisited. User Interface Developer's 
Workshop Report, April 1991. 

[24J	 R. Bird and P. Wadler. In17YJduclion to Functional Progmmming. Prentice
Hall International, 1988. 

[25J	 R. HomaL Imperative languages in distributed computing. In D. A. Duce, 
editor, Dist7'ibuted Compul.ing System,,; P7'Ogramme, lEE Digital Electronics 
and Comprrting Services, 1984. 

[26]	 N, Doudriga, F. Elloumi, and A. Mili. The lattice of specifications: Applica
tiollS: to a specification methodology. Internal report from Tunis University. 
1990 

[27]	 J. P. Bowen, R. B. Gimson, and S. Topp-Jl1rgensen. Specifying syst"m im
plementations in Z. Technical Monograph PRG-63, Oxford UniversiLY Com
puting Laboratory Programming Research Group, February 1988. 

[28]	 S. D. Brookes. A Model for Communicating Sequential P7'OCf.sses. D.Phil. 
thesis, Oxford University, 1983. Also published as Carnegie-Mellon Technical 
Repo<t CMU-CS-83-149. 

[29]	 S. Burbeck. How to use model-view-controller (MVC). Techuica.l report, 
Softsmarts, Inc., 1987. 

[30]	 K. Butler, J. Bennett, P. Polson, and J. Karat. Report on the worhhop on 
ana.lytical models: Predicting the complexity of huma.n-computer interaction. 
SIGCHI B,lIetin, 20(4),63-79, Apdl 1989. 

[31]	 S. K. Card, J. D. Mackinlay, and G. G. RobertsQu. The design space of 
input devices. In J. C. Chew and J. Whiteside, editors, Empowering People, 
Proceedings of CHI'90 Conference, pages 117-124, 1990. 

[32]	 S. K. Card, T. P. Moran, and A. Newell. The P5ycho!ogy of Human Compute1' 
Interaction. Lawrence Erlbaum, 1983. 



194 BIBLIOGRAPHY 

[33J	 S. K Card, G. G. Robertson, and J. D. Mackinlay. The iuformation visualizer, 
an informalion workspace. In S. P. Robertson, G. M. Olson, and J. S. Olsou, 
editors, Reaching Through Technology, Proceedings of the CHI'91 Con/ereT/a. 
pages 181-188. ACM Press, 1991. 

[34]	 D. Carrington, D. Duke, R. Duke, P. King, G. Rose, and G. Smith. Formal 
specification in Object-Z: Iutroduction and case studies. Technical Report 
105, Key Centre for Software Technology, Dept. of Computer Science, Uni
versity of Queensland, July 1989. 

[:15]	 J. M. Carroll. Infinite detail and emulation in an ontologicall)' minimized Her. 
In J. C. Chew and J. \tVhiteside, editors, Empowering Pmplt, Pmceedwg3 of 
CHl'90 Conference, pages 321-327, 1990. 

[:36J	 J. M. Carroll and M. B. R.osson. Usahility specifications a.s a tool in iterative 
development. In R. Hartson, editor, Advances In Human-Computer InteT'Gc
tio'Tl Ablex, 1984. 

[37]	 J. Coenen, W.-P. de Roever, and J. Zwiers. Assertional data reification proofs: 
Survey and perspective. In Fourth RefiT/,ement Work.~hop of the BCS FACS 
Special Interest Group, January 1991. 

[38J	 J. Coutaz. PAC, an object oriented model for dialog design. In H. J. Bullinger 
and B. Shackel, editors. Human-Com.puter InleractioT/ -- INTERACT'8? 
pages 431-436. North-Holland, Amsterdam, 1987. 

[39J	 J. Coutaz. Interface Homme·Ordinateu.r: Conception et Realisation. PhD 
thesis, University of Grenoble, Laboratoire de Genie Informatiqlle, December 
1988. 

[40J	 J. Coutaz. Architecture models for interactive software. In Pmc. of 
ECOOP '89, 1989. 

[41J	 J Coutaz. Architecture models (or interactive software: Failures and trends. 
In Engineering for' Human-Computer Interoetion, 1989. Proceedings of tbe 
lFlP we 2.7 conference. 

[42)	 J Coutaz. L. Nigay. M. Harrison. and G. Abowd. Design scenarios for mL5. 
Working paper RP2/WPll, Esprit BRA project 3066 (AMODEUS), March 
1991. 

[43]	 B. J. Cox. Object. Oriented Programming: an Evolutionary Approach.. 
Addison-Wesley, 1986. 



195 BIBLIOGRAPHY 

[44] M. Curry, A. Monk, a.nd P. Wright. Obstacles to the use of forma.l notations 
in software design practice. In University of York, Department of Computer 
Science Technical Report, September 1990. 

[45J	 J. Davies. Specification and Proof: Real. Timt Systems. D.Phil. thesis, O:<ford 
University, 1991. 

[46]	 J. Davies and S. Schneider. An introduction to timed esp. Technical Mono
gra.ph PRG- 75, Oxford University Computing Laboratory Programming Re
search Group, August 1989. 

[47]	 A. Dix. Nondeterminism as a. paradigm for understanding the user interface. 
In M. D. Harrison and H. W. ThimbJeby, editors, FOl'mal methods In Humun
Computer Interaction, Cambridge Series on Human·Computer Interact.ion, 
chapter 4. Cambridge University Press, 1990. 

[48]	 A. J. Dix. Formal Methods and Interadive Systems: Principles and Practice. 
D.Phil. thesis, University of York, 1987. 

[49]	 A. J. Dix. Formal Methods for Interactive Sysfems. Academic Press, 1991. 

[50J	 A. J. Dix a.nd M. D. Harrison. Principles and interaction models for window 
managers. In ~'f. D. Harrison and A. F. Monk, edit.ors, People and ComVlJ.lus: 
Designing for usab1lity, pages 352-366. Cambridge University Press. J986. 

[51]	 A. J. Dix and M. D. Harrison. Interactive systems design and formal de· 
velopment are incompatible? In J. A. McDermid, editor. Proceedings 1988 
Refinement Wo'rl-shop. Butterworth Scientific, 1989. 

[52]	 A. J. Dix, M. D. Harrison, clnd E. E. Miranda. Using principles to design 
features of a small programming environment. In 1. Sommerville. editor, 
Software Engineering Envimnments, pages 135-150. Peter Percgrinus, 1986. 

!53]	 A. J. Dix, M. D. Harrison, C. Runciman, and H. W. Thimbleby. InLe-raction 
modeh and the principled design of interactive systems. In H. Njchols and 
D. S. Simpson, editors, European Sojtwan Engineering Cor,jenmce, pages 
127-135. Springer Lecture Notes, 1987. 

[54]	 A. J. Dix and C. Runciman. Abstract models of interactive systems. In 
P. Johnson and S. Cook, editors, People and Computers: Designing Ihe w
terface, pages 13-22. Cambridge University Press, 1985. 

\55)	 D. Duke and R. Duke. A history model for classes in Object-Z. Technical 
Report 120, Key Centre for Software Technology, Dept. of Computer Science, 
University of Qneensland, November 1989. 



196 BIBLIOGRAPHY 

[56]	 R. Duke, P. King, G. Rose, and G. Smith. The Objec.t-Z specification lan
guage: Version 1. Technical Report 91-1, Key Centre for Software Technology, 
Dept. of Computer Science, University of Queensland, May 1991. 

[fi7]	 J. Finlay, A. Green. P. Barnard, and M. Harrison. Linking user and system 
models: an interaction structure. Working paper RP3jWP2, Esprit BRA 
project 3066 (AMODEUS), January 1991. 

[58]	 FOCUS. Foundations of opto-electronic computer systems, action 3180. In 
Synopses of BO!Jic Research: actions, working groups and networks of excel
lence, Volume 8, pages 192--19,5, January 1991. 

[59]	 J. Foley and A. van Dam. Fundamentals of Interactive Computer Graphics. 
A{JdJson Wesley, 1984. 

[60]	 J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to 
the specification, correctness aud implementation of abstract da.ta types. In 
Ych, editor, Current Trends in Programming Methodology, volume IV: Data 
Strncturing, pages 80-149. Prentice·Hall, 1978. 

[61J	 A. Goldberg. Smalltalk-80: The Inl.tractivt PnJgramming Enviornmwt. 
Addison- Wesley, 1983. 

[62]	 M. Green. The University of Alberta user interface management system. 
ACM Conference of the Speeiallnttrtsl GnJup for Graphtcs, 19(3):205--214, 
July 1985 

[63J	 T. R. G. Green, F. Schiele, and S. J. Payne. Formalisable meclels of nser 
knowledge in human-computer interaction. In G. C. vad der Veer, T. R. G. 
Green, J.-M. Hoc, and D. Murray, editors, Working with Computers: Theory 
vtrsus Outcome, Compnters and People Series, chapt.er 1. Academic Press, 
1988. 

[64]	 J. Grudin. The case against user interface consistency. Communications of 
lA, A eM, 4(3P45-264, 1989. 

165]	 J. Guttag and J. Horning. The algebraic specification of abstract data t,ypes. 
Ada Informatica, 10:27-52, 1978. 

[66]	 M. Hanlon and J. Newton. FOREST case study: The MVC. Technical report, 
Advanced Techniques Group, Data Logic Limited, Queens House, Greenhill 
Way, Harrow, October 1990. 1990. 

[67J	 D. Harel. Statecharts: a visnal formalism for complex systems. Scitnce of 
Computer Programming, 8(3):231-274, .June 1987. 



197 BIBLIOGRAPHY 

[68J	 D. Hare!. On visual formalisms. CommurncafioTl-s oJlhe ACM, 31(5):5U-.'i30, 
May 1988. 

[69J	 M. Harrison and G. Abowd. Formal methods in human-computer interaction: 
a tutorial. Technical Report yeS 155, University of York, Department of 
Computer Science, 1991 Also a tutorial presentation at. CHI'91 conference. 

[70]	 M. Harrison, J. Couta.z, L. Nigay, J. E. Finlay, and G. D. Abowd. Ag~llt 

architectures and the application of transformation rules ill interactive system 
development. Project deliverable 02, Esprit BRA project :W66 (AMODEUS). 
September 1990. 

[71}	 M. D. Harrison. r-,·jodelling user structures within system specifil:at.ions. In 
COlloquium on Formal Methods in HeL III, sponsored by lEE Pro[t'ssiona.l 
Group C5 (Man-:\1achine Int.eraction}_ December 1989. 

[72]	 M. D. Harrison, J. Cout.az, J. E. Finlay, G. D. Ahowd. and 1. Nig;'.\'. In
teraction analysis techniques from a system modelling viewpoint. Projf"ct 
deliverable 01, Esprit BRA project 3066 (AMODEUS), September I(J90. 

[73J	 M. O. HarrisoII and A. J. Dix. A state model of direct manipulatlOll. In 
M. D. Harrison and H. W. Thimbleby, editors, Formal Methods in Hu.man 
Compu.ter Interaction, pages 129-1,'}1. Cambridge University Press, 1990. 

[74J	 M. D. Harrison, C. R. Roast, and P. C. Wright. Complementary met.hods 
for the iterative design o[ interactive sygt.ems. In G. Salvendy and M Smith, 
editors, Designing and Using Human-Compl1,ter InterJaces a'fld 1{1UJwledge 
Based Systems, pages 651--658. Elsevier Scientific. 1989. 

[75]	 ro.L D. Harrison and H. W. Thimbleby, editors. Formal Methods in Human 
Computer Interaction. Cambridge University Press, 1990. 

[76]	 J. He. Process refinement. In J. A. McDermid, editor, The Thfory and 
Practice oj Refinement. Butterworth Scientific, 1989. Proceedings of 1988 
York Refinement Workshop. 

[77]	 J. He. A trace-state based approach to process specification and design. Ox
ford University Computing Laboratory Programming Research Gronp, 1989. 

[78J	 J. He, C. Hoare, and J. Sanders. Data refinement refined. In European Sym
posium on Programming, volume 213 of Lectw'C Notes in. Computer Scienee. 
Springer-Verlag, 1986. 

[79J	 S. HekmatpoIlt and D. Ince. Evolutionary prototyping and the human
computer interface. [n H.-J. Bullinger and B. Shackel, editors, Procadings oj 
INTERACT'81, pages 479-484. North-Holland. 1987. 



[98	 BIBLIOGRAPHY 

[80]	 M. Hennessy. Algebraic Theory oj Processes. MIT Press, Cambridge, Mas
sachusetts, 1988. 

[81]	 C. A. R. Hoare. Communicating sequential processes. Communications of 
the ACM, 21(8).666-77, 1978. 

[82J	 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Halllnterna
tional, London, 1985. 

[83]	 A. Howes and S. J. Payne. Display-based competence: towards user models 
for menu-driven interfaces. University of Lancaster. 

[84]	 J. Hughes. Specifying a visual file system in Z. In Formal AJeihods in HGI: 
lIf. IEE Professional Group C5 (Man-machine interaction). 1989. 

[85]	 E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation inter
faces. Human-Computer Interaefion, 1:331-338, 1985. 

[86\	 INMOS Limited. occam Programming Manual. Prentice-HaJl Int.ernational, 
London, 1984. 

l87J	 ISO 8807. Information processing systems-open systems interconneetion
LOTOS-a formaJ technique based on the temporal ordering of observat.ional 
beha.viour. Technical rerort, ISO Standards Authority, 1988. 

[88J	 R. J. K. Jacob. Survey and examples of specification techniques for user
computer interfaces. Technical report, Naval Research Labora.tory, Washing
(,on, D.C., 1983. 

[89]	 It. J. K. Jacob. Using formal specifications in the design of a human-computer 
interface. Communications of the ACM, 26(4):259-264, 1983. 

[90J	 C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall 
International, 1986. 

[91) G. Jones. Progrnmming in occam. Prentice-Hall International, 1986. 

[92J	 M. B. Josephs. A state-based approach to communicating processes. Dis
tributed Computing, 3, 1988. 

[93]	 D. E. Kieras a.nd P. C. Polson. An approach to tbe Cormal analysis of user 
complexity. lntt:rnational Journal of Man-Machine Studies, 22:365-394, 1985. 

[94J	 C. Knowles. Can cognitive CQmplexity theory (CCT) produce an adequate 
measure of system usability? In D. M. Jones and R. Winder, editors, People 
and Computers IV, pages 291-307. Cambridge University Press, 1988. 



BIBLIOGRAPHY	 199 

/951	 D. Kazen. Results on the propositional fl-calculus. Theoretical Computer 
Science, 23, 1983. 

[96J	 G. E. Kr3Sner and S. T. Pope. A cookbook for using the model-view-controller 
user interface paradigm in Smalltalk-80. JOOP, 1(3), August 1988. 

[97J	 S. Krening. The structure of interaction. Working paper RP3/WP6, Esprit 
BRA pwject 3066 (AMODEUS), June 1991. 

[98]	 J. Laird, A. Newell, and P. Rosenbloom. SOAR: an architecture for general 
intelligence. Artificial Intelligence, 33:1--64, 1987. 

[99)	 L. Lamport. A simple approach to specifying concurrent systems. Commu
nications oj the ACM, .'32(1):32-45, January 1989. 

[lOOJ	 K. Lano. Z++ 1 an object-orientated extension to Z. In P"occcdings o/ihe fifth 
ann'ual Z User Meeting, December 1990. 

[101]	 C. H. Lewis. A research agenda for the uiueties in human-computer irlterac
tion. Human-Computer lnteradion, 5(2-·3):125--14:1,1990. 

[102J	 B. Liskov and S. Zilles. Programming with abstract data types. ACM SIG
PLAN Notices, 9(4):50-59, April 1974. 

[103]	 R. Macdonald. Z usage and abusage. Report 910003, Royal Signals and ltldar 
Establishment, Malvern, Worcestershire, February 1991. 

[104J	 Z. Manna. A Mathematical Theo1'Y of Computation. McGraw Hill, 1974. 

[105J	 1. S. Marshall. A Formal Description Method fOT User lnterface~. PhD thesis, 
University of Manchester, United Kingdom, 1986. Also published as technical 
report UMCS-87-1-2. 

1106]	 M. Martins. Formal specification of highly interactive text editors. Tl'chnical 
Report RAL-87-093, Rutherford Appletou Laboratory, November 19S7. 

[107]	 A. Mevel and T. Gueguen. Smalltalk-80. Macmillan Education, 1987. 

[108]	 F. Mili and A. Mili. Relational heuristics for programming: Advances and 
perspectives. Internal report from Oakland University and Tunis, November 
1989. 

[109J	 A. Milner. A Ca!culus of Communicating Systems, volume 92 of LeetlJre Notes 
in Computer Science. Springer-Verlag, 1980. 

[HOi	 R. Milner. Communication and Concunl?71cy. Prentice-Hall International, 
UK, Ltd., wndon, 1989. 



200 BIBLIOGRAPHY 

[Ill]	 F. Moller and C. Tofts. A temporal calculus of communicating systems. LFCS 
Report Series ECS-LFCS-89-I04, LFCS, Department of Computer Science, 
University of Edinburgh, December 1989. 

[112]	 A. Monk, editor. Fundamrnlals of Human-Computer Interadion. Computers 
and People Series. Academic Press, 1984. 

[113J	 A. F. Monk and A. J. Dix. Refining early design decisions with a black-box 
modeL In D. Diaper and R. Winder, editors, People and C07nlmters [[I, 
HerB'l, pages 147-158. Cambridge University Press, 1987. 

[114]	 T. P. Moran. The command language gra.mma.r: a representation for the 
user interface of interactive systems. International Joumal of Alan Machine 
Systems, 15, 198!. 

[115J	 C. Morgan. Programming !rnm Specifications. Prentice-Hall International, 
1990. 

[116]	 C. Morgan, K. Robinson, and P. Gardiner. On the refinement ca.lculus. Tech
nical Monograph PRG-70, Oxford University Computing Laboratory Pro
gramming Research Group, October 1988. 

[117]	 C. C. Morgan and B. A. Sufrin. Specification of the Unix filing system. IEEE 
Transactions on Software. Engineering, 10(2):128-]42. 1·1arch 1984. 

[118J	 K. Myers and N. Hammond. Defiuition of scenarios for I\1I workshop. Internal 
report IR6, Esprit BR.A project 3066 (AMODEUS), July 1990. 

[119J	 A. Newell and H. Simon. Human P1'ObItfn Solving. Prentice-Hall, 1972. 

[120J	 W. Newman. A system for int.eractive graphical programming. In SJCC 1968, 
pages 47-54, Washington D.C., 1968. Thompson Books. 

[121]	 L. Nigay. Modelisation des architectures logicielles des systems interactifs. 
~Iaster's thesis, Institut National Poly technique de Grenoble, Lahoratoire de 
Genie informatique, June 1990. 

[122J	 D. Norman. Some observa.tions on mental models. In D. Gentner and 
A. Stevens, editors, Mental Models, pages 7-14. Erlbaum, 1983. 

[123]	 D. A. Norman. Four sta.ges of user activities. In B. Shackel, editor, Human
Compute.r Interaction-INTERACT'84, pages .507-.511. Elsevier Science Pub
lishers, 1984. 

[1241	 D. A. Norman. Cognitive engineering. In D. A. Norman and S. Draper, 
editors, User-Centered System Design, pages 31-62. Erlbaum, 1986. 



201 BIBLIOGRAPHY 

[125J	 D. A. Norman. The Psychology of Everyday Thing8. Basic Books, 1988. 

[126J	 D. L. Parnas. A technique for software module specification with examples. 
Communications of t.he ACM, 15(.'5):330--, May 1972. 

[127J	 S. J. Pa.yne. Task-action grammars. In B. Shackd, editor, Human-Computer 
Interaetion-INTERACT'84, pages 527-532. Elsevier Science Publishers, 
1984. 

[128]	 S. J. Payne and T. R. G. Green. Task-action grammars: a model of mental 
representation of task languages. Human-Computer Interaction. 2(2):93-133, 
1986. 

[129J	 G. Pfaff and P. ten Hagen, editors. Seeheim W01'kshop on Usn' Interface 
Management Systems, Berlin, 1985. Springer-Verlag. 

[130]	 G. D. Plotkin. A structural approach to operational semantics. T('(hnical 
Report DArMI FN-19, Computer Science Department, Aarhus Uni·.ersity, 
1981. 

(131]	 V. Pratt. A decidable mu-calculus. In Proceedings of the 22nd IEEE (onfe,'
encc on the Foundations of Computer Science, 1981. 

[132]	 G. Reed. A Uniform Mathematical Thr.ory for Real-Time Dist.1·ibuteJ Com
puting. D.Phil. thesis, Oxford University, 1988. 

[133]	 P. Reisner. Formal grammar and human factors design of an interactive 
gra.phics system. IEEE Transaction.:> on Software Engineering, SE-7(2):229
240, 1981. 

[134]	 P. Reisner. Analytic tools for human factors of software. Research Report RJ 
3808 (43605), IBM Research Laboratory, San Jose, 1983. 

[13.')]	 P. Reisner. Formal grammar as a tool for analysing ease of use: some fun
damental concepts. In J. C. Thomas and M. L. Schneider, editors, Human 
Factors in Computer System.5, pages 53-78. Ablex, 1983. 

[1361	 P. Reisner. What is inconsistency. In D. Diaper, D. Gilmore, G. Cock
ton, and B. Shackel, editors, Human-Computer Inlemdion--INTERACT'90, 
pages 175-181. Elsevier Science Publishers. 1990. 

[137]	 C. R. Roast and P. C. Wright. Incorporating the user's perspeetivp- into a 
system model. Technical Report YCS 148, University of York, Depa.rtment 
of Computer Science, 1990. 



202 BIBLlOG RAPHY 

[138]	 G. G. Robertson, J. D. Mackjnlay, and S. K. Carel. Cone trees: Animated 3D 
visualizations of hierarchical infonnation. ]0 S. P. Robertson, G. M. Olson, 
and J S. Olson, editors, Rerlching Through Te.chnology, Proceedings of lhe 
CHl'91 Conference, pages 189-194. ACM Press, 1991. 

/139]	 A. Roscoe. Denot.ational Semantics for Occam, volume 191 of Lecture Notes in 
Computer Science, pages 306-329. Springer-Verlag, 1985. July 1984 Seminar 
on Concurrency. 

[140J	 A. Roscoe and C. Hoare. The laws of occam programming. Technical1-lono
graph PRG-53, Oxford University Computing Laboratory Programming Re
search Group, February 1986. 

[141J	 M. Ryan. Developments of hfAL in forest research. WPI (Logic and Lan
guage) Deliverable NFRjWPl.ljICjRjOOljA, Forest Research Project, Oc
tober 1990. 

[142]	 F. Schiele and T. Green. HCI formalisms and cognitie psychology: the case 
of task-action grammars. In M. D. Harrison and H. W. Thirnbleby, edi
tors, Formal methods in Human-Computer Interaction, Cambridge Series OIl 

Human-Computer Interaction, chapter 2. Cambridge Univprsity Press, 1990. 

[1431	 R. L. Schnapp. SuperPaint 1.1. Silicon Beach Software, 1988. User's manual 
for Macintosh software package. 

[144]	 S. A. Schneider. Correctness and CommunicaUon in Real~ Time Systems. 
D.Phil. thesis, Oxford University, 1989. 

[145J	 S. Schuman, D. Pitt, and P. Byers. Object-oriented process specification. 
Technical report, Department of Mathematics, University of Surrey, 1990. 

[146]	 S. A. Schuman and D. Pitt. Object-oriented subsystem specification. In 
L. Meertens, editor, Program Specification and Transformation, Elsevier Sci
ence Publishers, 1987. 

[147J	 B. D. Sharratt. The incorporation of early interface evaluatioD into command 
language grammar specifications, In D. Diaper and R. Winder, pditors, Peo~ 

pie and Computers JII-Proceedings of HCI'B7. Cambridge University Press, 
1987. 

[148]	 B. D. Sharratt. Top-down interactive systems design: some lessons learnt 
from using command language grammar specifications, In H.-J. Bullinger 
and B. Shackel, editors, Proceedings of INTERACT'87, pages 395-399, North
Holland, 1987. 



203 BIBLIOGRAPHY 

[149]	 J. L. Sibert, R. BeUiardi, and A. Kamran. Some thoughts on the interface 
between DIMS and application programs. In User Inln/ace Managem.ent 
Systems, pages 183-189. Springer-Verlag, 1985. 

[150J	 J. 1. Sibert, W. D. Hurley, and T. W. Bleser. An object-orient.ed user interface 
management system. In ACM SIGGRAPH'86, 1986. 

[151)	 T. Simon. Analysing the scope of cognitive models in human-computer inter
a.ction: a trade-off approach. In D. M. Jones and R. Winder, editors, People 
and Computers IV, pages 79-93. Cambridge University Press, 1988. 

[152J	 J. M. Spivey. The Z ,Volation: .4 Refen;ncc Manual. Prentice-Hall Intprna
tional, 1988. 

[153J	 J. M. Spivey. Understanding Z, a Specification Language and its Semantlcs. 
Cambridge University Pres!;, 1989. 

[154J	 C. Stanley-Smith and T. Cahill. UNIFORM: A language geared to system 
independence. Project Document UL-TN-I002, Esprit project REDO. 1989. 

[155]	 C. Stirling and D. Walker. A general tableau technique for verifying temporal 
properties of concurrent programs. In Semantics for ConcurJY:.ncy, Workshops 
in Computing. Springer-Verlag, 199D. Extended abstract. 

[156J	 J. E. Stay. Denotational Semantics: The Scott-Strachey App1"Oach [0 Pro
gramming Language Theory. MIT Press, 1977. 

[157]	 L. Suchman. Plans and Situated Actions: The Problem of Hu.man Machme 
Interaction. Cambridge University Press, ]987. 

[158J	 B. Sufrin and J. He. Specification, refinement and analysis of interactive 
processes. ]n M. D. Harrison and H. W. Thimbleby, editors, Formal m.eth
ods in Human-Computer Interaction, Cambridge Series on Human-Computer 
Interaction, chapter 6. Cambridge University Press, 1990. 

[159J	 A. Sutcliffe. Some experiences in integrating specification of hllman-computer 
interaction within a structured system development method. In D. Jones and 
R. Winder, editors, People and Computers IV, pages 145-160. Cambridge 
University Press, 1988. 

[160J	 H. Thimbleby. Generative user-engineering principles for user interface design. 
In B. Shackel, editor, Human-Comptlkr Interaction-INTERACT'84, pages 
661-666. Elsevier Science Publishers, 1984. 

[161]	 H. Thimbleby. User Interface Design. Adison Wesley, 1990. 



201 £lIBLIOGRAPHY 

[162J	 R. K. Took. Surface interaction: A paradigm model for separating application 
and interface. In PmC€cdings oj CHI '90, 1990. 

[Hi3]	 R. K. Took. Surface Interaction: An Architecture and Formal Model Jm' 
Separating Applicatio/l and lnte,face. D.PhiL thesis, University of York, 1990. 

[l61}	 P. H. J. van Eijk, C. A. Vissers, and M. Diaz, editors. The Formal Description 
TechniquE LOTOS. North-Holland, Amsterdam, 1989. 

[165]	 P. Walsh, K. Lim, J. Long, and M. Carver. JSD and the design of user 
interface software. Ergonomics, 1989. 

[J66]	 J. Whiteside and D. Wixon. Discussion: Improving human-computer 
interaction-a quest for cognitive science. [n J. Carroll, editor, In/.eo,facing 

thought: cognitive aspects oJ human-computer interaction, ?-.HT press, 1987. 

[167J	 P. J. WhysaU and J. A. McDermid. An approach to object oriented specifi
cation using Z. In Proceedings of the fifth annu.al Z User Meeting, December 
1990. 

[168]	 P. J. Whysall and J. A. McDermid. Object oriented specification and re
finement. In Fourth Refinement Workshop of the BCS FACS Special lntel'f!st 
Group, January 1991. 

[1691	 T. Winograd and F. Flores. Understanding Compu.ters and Cognition. 
Addison-Wesley, 1987. 

[170]	 J. Woodcock and C. Morgan. Refinement of state-based concurrent systems. 
In D. Bj¢rner, C. Hoare. and H. Langmaack, editors, VDA1'90; VDM and 
Z-FormaJ Methods in Software Development. volume 428 of Lecture JVotcs 
ill Computer Seience. Springer-Verlag. 1990. 

[171)	 J. C. Woodcock. Mathematics as a management tool: Proof rules for pro
motion. In Proc. 6th Annual CSR Conference on Large Software Systems, 
September 1989. 

[172J	 P. C. Wright and C. R. Iloast. Abstraction and generalisation in the analysis 
of usability. In University of York, Department of Computer Science Technical 
Report, September 1990. 

[173]	 R. Young and J. Whittington. Using a knowledge analysis to predict cancep 
lual errors in text-editor usage. In J. Chew and J. Whiteside, editors, CHI'90 
Conference Proceedings, pages 91-97. Addison Wesley. 1990. 



205 BIBLIOGRAPHY 

[174]	 R. M. Young and P. Barnard. The use of scenarios in human-computer inter
action research: turbocharging the tortoise of cumulative science. In J. Carroll 
and P. Tanner, editors, CHI and GI Conference Proceedings: Human Factors 
in Computing Systems and Graphic luterface, pages 291-296. ACM, 1987. 

[175)	 R. M. Young, P. Barnard, T. Simon, and J. Whittington. How would your 
fa.vonrite user model cope with these scenarios? StGCHl Bullelin, 20(4):51
55, 1989. 



Appendix A 

Use of the Z Notation 

We mak.1? extensive use of the Z nota.tion in this thesis. For the most P~It, we 
bave adhered to the sta.ndard Z notation, as given by Spivey's standard Z reference 
manua.l [152]. In this appendix, we discuss some stylistic conventions that we have 
adopted, and we provide definitions of operators used in the body of the thesis but 
not defined tbere nor in the standa.rd Z reference manual. 

Function definitions 

When defining a function by predicates describing its effect on arguments in its 
domain, it i:s technically necessary that these axioms be bound by some universal 
quantifier over the domain elements. For example, in the Z reference manual. the 
projection functions on ordered pairs, are defined as below. 

IX, YJ~~~~~~~~~~~~~~ 

first:XxY-X 
second:XxY~Y 

"r/x:X;y:Y 
•	 first(:r, y) = x
 

socond(x, y) = y
 

We have decided that in most cases the type information of the function is 
enough to allow the elimination of the uni ....ersal quantification, leading to aslightly 
less cluttered presentation tbat is no less understandable. The projection functions 
would be rewritten as below. 

207 



-----

208 ApPENDIX A. USE OF THE Z NOTATION 

[X,YI.~~~~~~~~~~~~~~ 
first: X x Y _ X 
sfCond:X x Y- Y 

first(x, y) = x 

setond(:r, y) = y 

Formatting quantifications 

Many quantifications with bonnd varia.bles-"universal, existential, set comprehen
sions, mu·expressions and lambda. expressions-arc rather llC'ngthy and it is always 
a challenge to present with maximal cLuity aud minimal bracketing. In this thesis, 
we have tried to present a consistent format to these quantifications. \Vhere Olle 
would normally write such a universal quautification a!:i 

vn,cI,IP'Q 

we now write 

'if Deds
 
I P
 
• Q 

allowing indentation to replace the need for some bracketing. 
As nllC'ntioned by Macdonald P03], it is common in Z U5age to replace existential 

qnantification by a where clause to increase readability. Hence, the expression 

3Decls 
• Q 

can be replace by 

Q 

where Decls 

Operations on sequences 

We will make use of some operations on sequences. The generic relations - ("is 
a prefix of"'), .-- ("is a snffix of") and ~ ("is coutained in") represent useful op
erations. prefixes is a function which generates the set of all prefixes of a given 



209 

sequence. The prefix relation prefix-closed is true if its argument is a set of se
quences which is closed under the prefix relation, that is, the prefixes of every 
sequence in the set are also in the sel. 

IXI~~~~~~~~~~~~~~~ 

--->.: seq X +-+ seq X 
...-: seq X +-+ seq X 
;::=:seqX f--+seqX 
prefixes: seq X _ P seq X 
prefix-closed _ : P seq X 

IS ~ ys <> 3Z8: seq.\'. x::.·' Z:5 = y:s
 

IS""- ys <> 3Z5: seq.\' • I:5 ..... X$ = ys
 

IS ~ ys <> 3zs,zs': seq X • I:5""" 1:5""" ZS' = ys
 

prefixes ys = {xs:seq.\ Ixs ....... ys}
 
1

prefix~closed XS <> 'r/ IS : XS • prefixes xs' ~ XS 

Technically, the definition of these opera.tions as generic mandates thaI their 
use he indexed by the base set, so we would have to say IS ~ [Yj ys to indicate 
that IS is a. prefix of ys, where both are sequences from the set Y. ]0 practice, we 
will nol indicate the base set when it is clear from the context. 

~/ (Distributed sequential composition) 

The function ;/ sequentially composes a sequence of homogeneous relations (rela
tions of the form X +--. X) to obtain one relation. 

[XI~~~~~~~~~~~~~~~ 
;/ ,,.q(X _ X) ~ (X ~ X) 

;/() =idX
 
;/(R) = R
 
;/((R)~",)=R;(;/r;) 

Sequence filtering 

As described in Sufrin and He [158]. we can extend the notion of domain and range 
restriction to act on sequences. These operators will beha.ve like the familiar filtering 
operations in functional programming and used for trace semantics. The expression 

N ~ s will give a. sequence consisting of the resequencing of the restriction of the 

domain of s to the se~ of natural numbers in N. Similarly, the expression.j ~ S 



210 ApPENDIX A. USE or THE Z NOTATION 

will give a sequence consisting of the resequencing of the restriction of the range of 
s to the set of values in S. 

[X]l~============== 
resequence: (N -+lo X) _ seq X 
Bart: PN _ seqN 

increasing: P(seqN) 
4: (PN x seqX) _ seq X 

r;;(seqXxPX)_seqX 

'rIxs:seqX; N:PN; s:px. 
N ~ s = resequence(N <J s) 

1\ ,') [>1 S = resequence( s t> S) 

V[ : N ...... X • resequence(f) = sort( dam f) ~ f 
'VN:PN; s:seqX. 

ran sorl(N) = N 
A sort( N) E increasing 
II ,"Eincrt'.asing~"fi,j:doms.i<j=*s(i)<s(j) 

For example, 

{l,5,3,ll} ~Q(a,b,c,d,e,f) = (a,e,e) 

(a,b,c,d,e,f)~{c,g,a)= (a,e). 

Some specific filtering on traces as suggested by Hoare [82) will be notationally 
convenient. We first describe channel filtering, which gives the sequence of messages 
communicated along a channel. We write t LCS to represent the restriction of trace 
t to events on channels in the set es. 

l: (seq Event x P ChannelID) seq Event 

t 1es = t g mess [>Ie 

Folding 

We define general folding operations foldl and foldll with their stand.:yd definition 
from functiona.l programming [24]. 



211 

[X, YJ~~~~~~~~~~~~~~~ 

Joldl,((X x Y)~X)~X~"qY~X 

JoldIl' ((X x X) ~ X) ~ seqX ~ X 

'V_op_:(Xx }')_X; a:X; y: Vi ys:seqY 
• ( Joldl op a ( ) ~ a 

1\ foldl op a y'"' ys = foldl op (a op Y) ys) 

V_op_; (X XX)-Xi xs:seqIX 
• /oldll op IS = foldl op (head :t's) (tail 78) 

Similar definitions of the folding operations foldr and foldrl can be defined. 

Interleaving 

Interleaving of sequences is used to define some Df the trace semantics for the agent 
model. We here define interleaving recursively as done by Hoare[82, p. 56]. 

[XJ=============~c 
interleaves; seqX ...... (seqX x seqX) 

( ) ;nlerleav" (I, I') ¢> (I = ( )) A (/' ~ ( I) 

S interleaves (t, i') ~ 5 interleaves (t', t) 

«(x) """.11) interleaves (t,t') ¢::> 

( (t -F ( ) A head(l) = x A, ;nlcrleaves(ta<l(I), I')) 
V (t' -F ( ) A head( t') = x A , ;nlerleaves(t, t'il( t')))) 

Equivalence relations 

An equivalence relation on a type X is relation which is reflexive, symmetric and 
transitive. We define the generic predicate equivalence[XJ to be true when its 
argument is an equivalence relation on the type X. 

[XJ~~~~~~~~~~~~~~~ 
equivalence: (X ...... X) _ Boolean 

V .......: X +--+ X • equivalence ....... ~ 

Vp,q,r:X. { p p 
/I. p q~q ...... p 

A (p - q A q - r) "" p - r) 



-----

212 ApPENDIX A. USE OF THE Z NOTATION 

As USllal, in practice, we will leave out the base type indication when we use 
equivalence when it is clear from the context. 

The set of equivalence classes derived from an equivaleuce relation ,..." on the 
type X is represeuted by classes('"'-'). 

IXJ~~~~~~~~~~~~~~ 

classes: (X ...... X) -H PP X 

dom classes = {"": X ...... X I equivalence ,...,,} 

'rJ,...,,: X ...... X I""'E dam cla8ses • 
clas.se.s(,...,,) = { x : X • { x' : X I x' "" x } } 



Appendix B 

Some theorems on the refined 
agent Illodel 

In this appendix, we provide the complete proofs for some theorems expressed in 
the body of this thesis. To assist in these proofs, we will need the following result. 

Recall the definition of compatible, which relates stales which agree ovrr their 
common attributes. 

compatible: Statt: +-+ State 

(81,81) E compatible ¢:} 81 ED 82 = s\ U So;/ 

The relation compatible is reflexive and commutative. A less common but important 
property of compatible is that if two slales are compatible, and a third slale is 
compatible with the union of the first two, then the third slale is compatible with 
each of the other slales. We state and prove this result as Lemma B.I. 

Lemma B.l 

v5, t, u: State 
I ( (', t) E rompalibl, 

/\ (8 U t, u) E compatible) 
•	 ( (t, u) E compatible 

1\ (5, u) E compatible) 

PROOF OF LEMMA B.1: 

Under the assumptions, we can pick $, t, u : State satisfying 

(,UI)EIlu ~(sut)Uu [assumption and defn. of compatible] 

'" (, Ell I) ffi u = (, U I) U u [(s, t) E compatible] 

"', Ell (I ffi u) ~ s U (' U u) [accoe. of if and U] 

213 



214 ApPENDIX B. SOME THEOREMS ON THE REFINED AGENT MODEL 

By case analysis on A <;; A, we can sa.tisfy the inference 

"J)'=sut )
( I\sfl1(tEBu)=sU(tUu) :::::>(t,u)Ecompatible 

Case 1: A::: dams n dam t 

Since (8, t) E compatible, s and t agree on A, so
 

.4 <J (s Ell (' Ell uj) ~ A <J (t Ell u)
 

A <J (s U It U u)) ~ A <J It U uJ
 

Therefore, (t, u) E compatible in this case. 

Case 2: A :::: dam t - dorn s 

In this case, we satisfy 

A <J (, Ell (I Ell u)) ~ A <J It Ell u) 

A <J (, U (t U u)) = A <l It U u,) 

and so (t, u) E compatible in this case. 

Case 3: A = dam s - dam l 

In this case, we satisfy 

A <J It Ell uJ = A <l u 

A <J It U uJ = A <l u, 

and so (t,u) E compatible in this case. 

Case 4: A = A - (doms U damt) 

In this case, we have 

A<J(tEllu)=A<Ju 

A<JltUu)~A<Ju, 

and so (t, u) E compatible in this case. 

Since these cases are exhaustive, we conclude that (t, u) E compatible. By 
similar arguments, we can show that (s, u) E compatible. 
<> E.'lJO OF PROOF OF LEMMA B.I 



215 

Theorem .5.1 

V 51,52,83 : Stateset
 
I ( (51,52) E domjoin
 

1\ (join(Sl, 82), 53) E domjoin
 
• join(join(51, 52), 53) = join(51, join(52, 53)) 

PROOF OF THEOREM 5.1: 

The hypothesis of this theorem ensures that join(join(S 1,52),53) exists. The 
following predicates are true under this hypothesis. 

Va: Sl.altrihs n SZ.attr£bs 
• 5Ltyp,(o) = 52,typ,(a) 

35\ : 5l.states; -"1 : 52. slates 
• (51,52) E compatible 

Va: join(Sl, S2).allribs n S3.attribs 
• join(Sl,S2).type(a) == 53.type(a) 

:3 512: join(Sl.S2).states; 53: 53.states 
• (81'/:"'Y.!) E compatible 

Under these assumptions, we most show that join(Sl,join(S2,S3» also exists 
and is identical. The proof, therefore, is split into two parts. 

First, to show that (Sl,join(S2,S3» E dornjoin, we must satisfy the following 
four predicates. 

'if a : S2.attribs n 53.atlribs	 (B.1) 
• 52,typ,(a) = 53.typ,(a) 

::3 82: S2.sl.ales; S3 : 53.states (B.2) 
• (52,53) E compatible 

Va: Sl.attribs n join(S2, S3).attribs (8.3) 
• 5Uyp,(a) ~ join(52,53).typ,(a) 

3 SI : Sl.slales; 5'23: join{52, 5,3).states (B.4) 
• (S1>5-.23) E compatible 

To prove predicate B.l, we begin with the assumption 

Va: join(S1, S2).attribs n 53.attribs 
• jo;.(Sl,52),typ,(a) ~ 53.typ,(a) 

By	 the definition of join, this is equivalent to 

Va: join(Sl.S2).attrib8 n 53.attrib.; 
• (5Uyp, U 52.typ,)(a) = 53,typ,(a) 



216 ApPENDIX B. SOME THEOREMS ON THE REFINED AGENT MODEL 

By tile first condition on the definition of y"oin, we know that Sl.typc and 52. type 
agree on common attributes, so the above predicate implies 

"I a : S2.attrihs n S3.att7"ibs 
•	 52.typ,(a) ~ 53.typ,(a) 

as desired. 

To prove predicate B.2, we begiu with the assumption 

.3 Sr2: join(Sl, S2).states; SJ : 53.stales 

•	 (812,53) E compatible 

By the definition of join(Sl, 52), this implies 

.3 .'II : Sl.states; 82 : 52. stales; 83: 53. states 
•	 ( (.'11, 81) E compatible
 

1\ (SI U 81, 83) E compatiblf:)
 

By Lemma 8.1, this implies 

::3 s~ : 52.states; S:3: 53.slates 
• (52, $3) E compatible 

as desired.
 

To prove predicate B.3 we must satisfy "I a : Sl.attrihs n join( 52,53). attrihs By
 
• 5I.1ype(a) ~join(52,53).typ,(a) 

the definition of join(S2, 53), we know 

j(Jin(S2, S3).attribs = 52.attribs U S3.attribs 

jo;n(52, 53).typ, : 52.typ, U 53.typ, 

We have two cases to investigate. 

Case 1: a E 52.attribs 

Since (51,52) E domjoin, we are done beca.use of the assumption 

"I a : 51.a!tl·ibs n 52.attribs 
•	 5l.typ,( a) : 52. typ,( a) 

Case 2: a E (53.attribs - 52.attribs) 

Since (join(51, 52), 53) E domjoin, we know 

"I a : join(51, 52).at17-ibs n 53.aUribs 
•	 jo;n(51,52).typ,(a): 53.typ,(a) 



217 

and by the definition of join and the assumption that a f/. S2.attribs, \I'e have 

Va: Sl.attribs n S3.attribs 
•	 Sl.type(a) ~ S3.lype(a) 

as desired. 

To prove predicate B.4, we can use the assumptions to satisfy 

351 : 51.states; 52 : 52.states; S3 : 53 
•	 ( (.:9}, -"2) E compatible
 

1\ (51 U 52,53) E compatible
 

which by Lemma B.1 and the definition of join gives us 

35. : 51.states; 8:23 : join(S2, S3).states 
• (51) 8:23) E compatible 

as desired. 

We have now shown that join(S2, 53) and join(Sl,join(S2, 53» are defined. 
We can now show the equality required by the theorem. Equality of the aUribute 
sets and the type function relies on the associativity of U. To show equalit)' of the 
state sets, we hegin with 

join(join(Sl, 52), S3).states = { SD : join(Sl, S2).states; 83: 53.staffS 

I (SI2,S3) E compatible 
• SI~ U S:J } 

By the definition of join and Lemma B.l, this is equivalent to 

join(join(SI,52),53).states = { sl.states; s~: 52.states; 53: S3.states 
I ( (SJ,S2) E compat-ible 

1\ (8:2, S3) E compal'ible 
1\ (51 U 8:2,53) E compatible 
1\ (52,52 U 53) E compatible 

• SlUS2 US3 ) 

which is equivalent to join(5l,join(52, 53) ).states, as desired. 
¢> END OF PROOF OF THEOREM 5.1 



Appendix C 

Detailed semantics for the agent 
language 

In this appendix we provide a more detailed semantics for the agent language than 
provided in Chapter 5. The semantics is given in parts. We first define the overall 
semantic operator which takes whole agent expressions and maps them into a system 
of agents. The agent language mirrors the development of the agent model, and so 
we have separate sections of the language which individually treat the description 
of internal, communication and external specifications. Each section will lJave its 
own semantic operator which maps expressions of its language to specifications in 
the agent model. 

Agents in the interactive system 

An interactive system is a mapping from agent identifiers to the set of agents III 

Agent. We introduce a. set of possible agent identifiers. 

[Ag,n/WI 

IntSys :::::::: Ag~ntID -++ Agent 

The system semantic function, S[ _ ], takes an existing interactive sy... tem and 
an agent language expression and produces a new interactive system. The agent 
language description represents either the synchronization of existing agents, the 
interleaving of an existing agent with a 3-part description of a new agent (internal, 
external, communication specification), or a completely new 3-part description of 
an agent. The following is a BNF-like description of the agent language syntax. 

219 



220 ApPENDIX C. DETAILED SEMANTICS FOR THE AGENT LANGUAGE 

Square brackets are used to indicate an item which is optional. 

AgExp ::= agent AgentJD - synchronization 
synchronizes AgentJDList 
[with 3PartSpecj 
endagent AgentlD 
agent AgentJD - interleaving 
interleaves Agent/DLis! 
[with 3Pa'·'Sp<c] 
endagent AgwUD 
agent AgcntID - 3-part specificatiou 
3PartSpec 
endagent AgenUD 

The system semantic function $[ _ ] is defined structurally over the elements in 
AgE:rp. For synchronized combination, the expression 

agent Al 
synchronizes AS 
with Spec 
endagent Al 

maps the (fresh) agent identifier Al to the synchronous composition of the agents 
indica.ted by the sequence of (distinct) agent identifiers AS, if such a composition is 
allowed by composeall"R~. This may then he interleaved with the agent defined by 
the 3-part specification Spec, according to the seffiiUltic operator Ag[ __ ~ di5<:ussed 
later. 



221 

51 _I ' (fntSys x AgEzp) ~ fntSy, 

VAl : AgentJD; AS : seql AgentJD; p: IntSys 
I ( Al ~ dom P 

A (AS~ p) E domcomposeo.JI."IC) 

agent Al ) 
• S[	 synchronizes AS ] = 

( endagent Al 
PEB{All--+ composeall.,nc(ASgP)} 

'r/ AI: AgentlD; AS: seql AgcntID; Spec: 3PartSpec p : IntSys 

I ( Al ~domP 

1\ AS gP E dom composcaU. Jnc 
1\ (composeall.,,,c(AS; p), Ag[ Spec ]) E dom composej"d 

agent Al J 
•	 5[ s~chronize8 AS ] =
 

WJth Spec
( 
endagent Al 

P${ Al 1-+ c..ompOSCjnl( ClJmposealI.pno ( AS ~ p), Ag[ Spec ])} 

Note that because of the associativity of compose.,nc (Theorem 5.5, the order of 
the agent identifiers in AS does not matter. 

For interleaved combination, the expression 

agent Al
 
interleaves AS
 
with Spec.
 
endagent Al
 

maps the fresh identifier Al to the interleaved product of the known agent defini
tions in AS and the 3-part specification Spec, if given. 



222 ApPENDIX C. DETAILED SEMANTICS FOR THE AGENT LANGUAGE 

VAI: AgentID; AS : seqt AgentlD; p: [ntSys
 

I ( Al ~domP
 

A AS ~ P Edam composeal/;f1')
 

agent Al )
interleaves ASosl "hS I=PE!l{Al~compos,"II;.,(AS;p)} 
Wit pee( 
endagent Al 

VAl: Agent/D; AS: seqj Agent/D; Spec: 3PartSpec; P: [ntSys 
I ( Al ~ dom P 

1\ (AS ~ p) """' Ag! Spec] Edam compo8m/lml) 

agent AI ) 
•	 S[ in.terleaves AS ] =
 

with Spec
( 
endagent At 

PE!l{AI ~ romposeall,.,((AS ;p) ~ Ag[ Spec J)J 

Note that because of the associativity of composeml (Theorem 5.4, the order of the 
agent identifiers in AS does Dot matter. 

A stand atone specification of an agent, 

agent Al
 
Spec
 
endagent Al
 

maps the (fresh) identifier Al to the agent Ag[ Spec ]. 

'if Al : AgentJD; Spec: 3PartSpec; p : IntSys 
I ( Al ~ domp 

ASp" E dom Ag[ _I) 
agent Al ) 

o 51	 Spec 1= PEll{ A1 ~ Ag[ Spec ]}
( endagent Al 

The three part specification of an agent is given by a.n internal, external and 
communication langnage. 

3PartSpec :;= internal IExp
 
communication CExp
 
external EExp
 

The agent semantic operator, Ag[ -1, is definoo iu terms of semantic operators for 
each of the sublauguages. The domain of Ag[ _] is the set of combinations of inter
nal, communication and external expressions which yield a valid agent description 
when they are mapped to their respective specifications in the model. 



223 

Ag[ _ J ' 3ParlSp« ~ Agent 
II _J: IExp - InternalS~c 

C[ _ J: CExp - Communication 
[[ _J: EExp -4 ExtemafS~c 

dom Agl_1 = { IE, IExp; CE, CExp; EE, EExp; Agent 
I ( Olnl,rna/Spec = II IE 1 

/I. OComrnunication =C[ CE] 
/\ OExt,ma/Sp,c = E[ EE I) 

internal /E ) 
• communication CE 

( external EE 

internal IE ) 
Ag[ communication CE 1= ~Agcnl

( external EE • ( () InternalSpec ::::: I[ IE I 
/\ OCommunication ::::: C[ CE ] 
/\ OExI,ma/Spec = E[ EE I) 

In the following subsectioIls, we will outline the definition of the sema.ntic operators 
for each of these sub languages. 

A language for internal specifications
 

The internal specification language is given by the following BNF-like description.
 

ISpecLanguage. ::=	 types Deds
 
attributes AVmap
 
invariant AVPred
 
operations OpList
 

The sema.ntic function II-I can be described in terms of smaller semantic functions 
on the different parts of ISpecLanguuge. 

Decls is alist of type declara.tions and constructions local to the agent definition. 
In the decLaration, we can build up type definitions from basic set.s, exactly as is 
done in Z. For example, we could write the type definitions for the window. 

[ICON] 
xmax,ymax: N
 
PIXEL == 0 .. xmax x 0 .. ymax
 

There is a sema.ntic function which produces the sets in the valuespace V similar 
to the Carner function in Spivey's semantics. We will also allow the defillition of 
global types outside the definition of any agent, as is allowed in Z. 



224 ApPENDIX C. UETAILED SEMANTICS rOR THE AGENT LANGUAGE 

AVmap is A list of the attributes for which each state of the agent has a. value. 
The A Vmap is written much the same way that components declarations are written 
in a standard Z schema, so we could write expressions like the following in the 
attributes section of an agent. 

icon: ICON
 
lconpos, winpos, winsize : PIXEL
 
status: open 1 closed
 

These state deda.rations are mapped by the semantic function type[ _ ] to obtain 
the type information for tbe agent. 

AVPmi is a predicate on the values of the attributes which must be satisfied 
by all stales of the a.gent. We allow the same kinds of predicate expressions il-'> 

is possible in Z. The semantic function state[ _ J takes the attributes and the 
invariants information and yields the set of possible states for the agent. 

OpList is a list describing the possible transitions for the agent. The state tran
sitions are given pre- and postcondition semantics, along with an explicit framing 
conditions which lists the attributes that can be changed by the operation. Each 
operation definition gives a family of state transitions indexed by a message iden
tifier along with its typed parameters. The window moving operation for an open 
window would be defined as follows. 

operation15 
movLopen(newpos: PIXEL)
 
changes winpos
 
pre status = open
 
P015t winpos' = newpos
 

The BNF description of OpList is given below. Square brackets are used to indicate 
an optional occurrence of an item. 

[Message/D] 

OpList:= Message/D( TypedPamms) 
[changes (AttribL;st)) 
[pre (BcforePred)] 
[post (Aft<rPred)] 
[OpLis') 

The operation has a name taken from the set MessageID. A typed parameter list, 
of the same form as used to declare the state attributes, lists the generic arguments 
for the operation. A message is formed by instantiating each argument with an 



225 

actual value. For example, a message generated from the definition above would 
be move_open( (0,0)). The changes clause provides an explicit framing condition 
for the operation definition. The precondition is a predicate on the state attributes 
and the arguments. The postcondition is a predicate on the before and after value 
of state attributes and the arguments. The values of attributes before and after 
the state transition are distinguished by undashed and dashed attribute identifier 
names, as is the convention in Z. Together, the framing, pre- and postconditions 
define a state transition. 

The semantic function state[ _ ) takes a list of operations in OpList and crea.tes 
the operations function for the agent. Each single operation defined as abO\t' yields 
a family of state transition relations, indexed by the possible messages. 

I state[ _ n:OpLisl - (Message -++ (Sfate l-t Stale)) 

A language for communication specification 

The communication specification is straightforward, since it simply lists the input 
and output channels for the agent along with the messages that can be passed 
along those channels. Synchronized channels arise from synchronous combination 
of existing agents, it i~ not possible to explicitly declare a channel as synchronized 
in the notation. The burden rests with the designer to ensure channel fidelity, i.e., 
the specification cannot have the same agent using the same channel as input a.nd 
output, nor can a synchronized channel be an input or output channel for a.nother 
agent. The internal messages are also declared explicitly as associated to the r 
channel. A BNF description of the syntax for communication is given below. 

CSpt:cLanguage ::= [inputs TypedChannel/ist] 
I [outputs TypedChannellist] 
I [r: Message/ist] 

TypedChannelList ::= ChannelJD : Messagelist [TypedChannel/ist] 
Messagelist ::= Message!D( TypedParamete7's) [, Message/ist] 

As with the definition of operations _, the set of messages is generated by instan
tiating all of the parameters in the TypedParameters list with values according to 
their types, The semantic function c( _] takes an element in CSpecLanguage and 
produces the communications specification. 

I c[ - n: CSpecLanguage -++ Communication 

A language for external specifications 

The external specification language is developed in two parts as described in Sec
tion 5.3. In this section we will give the semantics for the constructive language 



226 ApPENDIX C. DETAILED SEMANTICS FOR THE AGENT LANGUAGE 

for generating external specifications of agents. First, we recall the definition of an 
external specification as given in Chapter 5. 

EzternaISpec _ 

alphaiJet : P Event 
truc(J : P seq alphabet 

( ) E traces 

prefuLclosed (traces) 

The syntax for the constrncti ve language follows very closely the syntax for CSP 
given by Hoare [82J. 

ConEExp ,,= stop«P Event)) - deadlock 

I run«P Event)) - the total behaviour 
I skip«P Event)) - successful termination 
I «Evrnt)) ~ ConEExp - prefix composition 
1 ConEExp 0 ConEEzp - choice composition 
I ConEExp; ConEExp - sequential composition 
I ConEExp 1/ ConEExp - synchronous parallel composition 
I ConEExp I ConEExp - asynchronolls parallel composition 
I f(ConEExp) - proces~ relabelling 
I ~ X , «P Evrnt)) 0 F(X) - guarded recursion 

We can now give the definition of each of these syntactic constructions in terms 
of the external specification model. We will give two versions of the semantics for 
each construct. The first will be a direct denotational definition in terms of the 
model for external specifications. These definitions are very close to those given by 
Hoare. The mapping from the syntactic domain ConEExp to the semantic domain 
Exter71alSpec is given by the function [CQ .. [ _~, which can be further broken down 
into functions for the alphabet, 01_] and tra.ce set, T[ _]. 

[co,," [ _ J: ConEExp - ExternalSpec 
of _) : ConEExp - P Event 
T[ _ ] : ConEExp _ P seq Event 

(E,oo [ ES I). alphabet = al ES , 

(E,o.! ES I)·/rae" ~ 71 ES I 
The second version of semantics will be an operational semantics which may 

make it easier to understand the functionality of the different constructs. This 
operational semantics is given by inference rules in the manner suggested by Plotkin 
[130J and is the standard semantics usually given for a process algebra in the CCS 



227 

family f109, 110]. We will not extend this operational semantics to show that 
it matches some intuitive equational theory on expressions in ConEExp, as Our 
purpose for presenting it is only to increase understanding. 

Deadlock 

stopA. represents deadlock in which participation in any events from the aiphabet 
is prohibited. 

st.op_ : PI Event - ConEExp 

a[ sloPA J ~ A 

T[ slop A I = { ( ) } 

There is no inference rule to describe the action of stOPA since it ha.'3 no action. 

Total behaviour 

Given a set of events A, the expression runA denotes the external specification with 
alphabet A which ca.n participate in any sequence of events from A. 

I run_: PI Event ConEExp----t 

a[ run A ] = A 

TI runA I ~ "'q AI 

Operationally, runA. participates in any event in A and then continues to behave 
a.'3 run .... 

, E A 

runA"':" runA 

Successful termination 

We introduce a. primitive construct, skipA to represent the successful termination 
of an external specification with alphabet A. To do this, we must also introduce a 
special internal event, J (read Utick") which signals the termination. This event 
ca.rries no message of significance, so we label it the null message. It occurs along 
the internal channel T. Furthermore, we constrain the external specifications set so 
that t.he J event. can only appea.r at the end of a trace. 



228 ApPENDIX C. DETAILED SEMANTICS FOR THE AGENT LANGUAGE 

null: Message 
V: ErJent 
skip_ : PI Event -+ ConEExp 

V.channel = T 

V.message = null 

VES: ExternalSpec; t: ES.traces 
• .; ~ ran(frou/(I)) 

01 ,kip A I ~ A U { .; ) 

7iskiPA 1=( (), (J) } 

The operational semantics of skiPA is given by one simple inference rule. skiPA 
can participate in the event V after which it deadlocks. 

skip A ...i. stoPA 

Prefix composition 

e --. P first engages in the event e and then behaves like P. The constraint on this 
construction is that e must already be in the aJphabet of P. 

___ : (Event x ConEExp) -++ ConEExp 

dom(_ -+ _) = { e : Event; P: ConEExp 

I 'E 01 PI 
• (',P)) 

ul'~PI=uIPI 

7( ,~ PI = { ( ) }U { t : 71 P I. (,) ~ t } 

The operational semantics for prefix composition is also covered by one simple 
inferellce rule. 

, E 01 P I 
e-+P~ P 

Choice composition 

Choice between two external specifications, written PDQ, indicates that the be
haviour can either proceed as described by P or by Q. The choice is made by 



229 

the first event in which PDQ participates. Hoare refers to this choice operator 
as deterministic (or external) choice and distinguishes it from a nondeterministic 
choice, P n Q. In deterministic choice, the choice can be resolved (externally) by 
the environment which interacts with PDQ, whereas in nondeterministic choice 
the environment can have no effect. In the traces model, no distinction can be 
made between these processes, and so we only describe external choice. 

_ 0 _ : (ConEExp x ConEExp) --+ ConEExp 

a[ PDQ I ~ a[ P I u a[ Q I 
T1pO QI~TlPluT[QI 

The operational semantics is given by two inference rules, indicating that PDQ 
can proceed if one of P or Q or both can proceed. In the case where bCllh can 
proceed, the choice is nondeterministic. 

p~ pI 

POQ~P' 

Q'" Q' 

POQ~ Q' 

Sequential (:omposition 

p ~ Q behaves like P until successful termination, marked by participation in the 
special event...j. After successful termina.tion, it behaves like Q. Unlike esp, we do 
not hide participation in the event ...j in the definition of the external specification. 

_; _; (ConEExp x ConEExp) _ ConEExp 

a[ P; Q I = al P Iu a( Q I 
T[P;QI~ nPI 

u
 
{ t ,71 P ], t', 71 Q Illasi(i) ~,;. i ~ t' }
 

OperationaJly, if P can successfully terminate by engaging in the event V' then 
P; Q ca.n proceed to behave as Q. 

P'::: stoPA 

P;Q.::'. Q 



230 ApPENDIX C. DETAILED SEMANTICS FOR THE AGf;NT LANGU AGE 

SynchronoLls parallel composition 

There are two versions of parallel composition which we allow. The first, written as 
PII Q demands that P and Q synchronize on participation in events of their common 
alphabet. In the model description, the alphabets are combiued. The traces of 
the synchronized combination are those which when filtered by the alphabet of P 
(respectively, Q) are a legal trace of P (respectively, Q). 

_11_ : (ConEExp x ConEExp) ConEExp--I 

a[ P II Q ) = al P IU al Q ) 

71 (P II Q I = { t :eeq a[ P II Q I 
I ( t i>' a[ PIE T[ P ) 

A t '[,' a[ Q lET[ Q I) _ I} 

The opentional semantics for P II Q indicates that both P and Q can independently 
participa(e in events private to themselves, but both mnst evolve simultaneously 
on events which they share. Three inference rules sum this behaviour up. 

p~ P' 
[ e E alphabetP - alphabdQ J 

PIIQ~P'IIQ 

Q~ Q' 
[ e E Q. alphabet - P. alphabet J 

PIIQ~PIIQ' 

P"":"P' 
Q~Q' 

[e E P.alphabet n Q.alphabet] 
PIIQ~P'IIQ' 

Asynchronous parallel composition 

The other version of parallel composition is asynchronous, which we write as P WQ. 
Both P and Q can evolve independently, regardless of whether they share events. 
The alphabet is again the union of the component alphabets. Traces are obtained 
by interleaving traces of the components. 

_1_ : (ConEExp x ConEExp) ConEExp--I 

a[ P I Q I= a[ P I U al Q I 
T[ P I Q I = { , : seq a[ P I Q I 

I 3I: T[ P I; I' : 71 Q 1-, ;nterleaves (I, I') - ,} 



231 

The relation interleaves is defined in Appendix A. 
Operationa.lly, PI Q is described by two rules similar to the first two rules of 

PII Q. 

P~P' 

PIQ-:'P'IQ 

Q~Q' 

PIQ-:'PIIQ' 

Process relabelling 

Sometimes it will be convenient to identify an external specification with a previous 
one with an appropriate change in the event names. The restriction on such a 
relabelling is that the mapping to new event names be injective which is total 
when restricted to the alphabet of the original external specification, so that each 
old event name is mapped to a unique new event name. In addition, J must be 
mapped to itself. The new external specificatiou then behaves exactly as lhe old, 
with the uew event names substituted for the old. 

_(_) : (( Eve:nt >++ Et1wl) X ConEEzp) -H ConEExp 

dam _(_) = { f : Event >++ Event; ES : ConEExp 
I ( J E a~ ES J~ Evonl 

1\ J(.j) ~ .j) 
• (f,ES)) 

a[ J(P) I ~ JlIa[ P ID 
TIJ(P) I~ {t ,T[ PI·t;J) 

Note that in the definition of T[ f(P) ], we use the symbol ~ to repreJeot the 
standard Z forward functional composition, not sequential composition of external 
specifications. 

Recursion 

We will allow a simple form of recursion which is uniquely defined using a partial 
order sema.ntics (see Hoare [82, Section 2.8] and Stoy [156]). The type ConEExp 
can be considered a complete partial order using the following ordering relation. 

_ (;;;; _: ConEExp _ CQnEExp 

ES [; ES' .. ( a[ ES I ~ a[ ES' I 
1\ T[ ES I ,;; T[ ES' I) 



232 ApPENDIX C. DETAILED SEMAN'f[CS FOR THE AGENT LANGUAGE 

In this partial order, we can define the least upper bound (lub) of two constructed 
external specifications with the same alphabet by forming the tra.ce set from the 
union of the individual trace sets. We can extend this to obtain lubs for chains of 
specifications as welL Therefore, ConEExp is a complete partial order (with respect 
to the alphabet A), on which all guarded continuous functions F : ConEExp _ 
ConEExp have a unique fixed point solution to the recursive equation 1-J X : A • 
F( X), which is the lub of the infinite chain of successive applications of F to 
stOPA, the bottom element in the complete partial order. We have purposely 
designed ConEExp so that all of the constructors are guarded and continuous, so 
the recursive equation will always have a uniqne solution. 

chain: P(seq ConEExp) 
lub : seq ConEExp -++ ConEExp 
/lX: _. _(X): (PI Et,t'.nt x (CollEExp _ ConEExp)) _ ConEExp 

ESS E chain .. Vi, l..(#chain -1). ESS(i) C; ESS(/ + 1) 

dam lub = chain 

allub(ESS) J= al ESS(I) I 
T[ lub(ESS) I ~ UqEs> T[ ESS I 
a[ ~ X, A • F(X) I = A 

TI ~ X,.4. F(X) J=T[ lub«Fa(stoPA),F'(stoPA)' .. )) I 

Though the definition of recursion depends on the alphabet, in practice it is not 
indicated when the context of use makes clear what alphabet is intended. 




