Probabilities and Priorifies
in

Timed CSP

by
Gavin Lowe

Technical Monograph PRG-111
ISBN D-902928-88-0

November 1993

Oxford University Computing Laboratory
Programming Research Group

Wolfson Building

Parks Road

Oxford OX1 3QD

England

Copyright © 1993 Gavin Lowe

Oxford University Cowrputing Laboratory
Programming Researcl: Group

Wolfson Building

Parks Road

Oxford OX1 3QD

England

Electronic mail: gavin.lowve@comlab.ox.ac.uk

Probabilities and Pricrities in Timed CSP

Gavin Lowe
St Hugh's College

A thesis submitted for the degree of Doctor of Philesophy
at the University of Oxford, Hilary Term, 1993

Abstract

In this thesis we present two languages that are refinements of Reed and Roscoe’s
language of Timed CSP: a probabilistic language, and a prioritized language.

We begin by describing the prioritized language and its semantic model. The
syntax is based upon that of Timed CSP except some of the operators are refined
juto biased operators. The semantics for our language represents a process as
the set of its possible behaviours, where a behaviour models the priorities for
different actions. A number of algebraic laws for our language are given and the
model is illustrated with two examples.

We then describe tbe probabilistic language, which is built on top of the priori-
tized language. The only cause of nondeterminism in the prioritized language is
the nondeterministic cheice operator; by replacing this witb a probabilistic cheice
operator we obtain a language where it s possible to calculate the probability of
any particular behaviour. We produce a semantic model for our language, which
gives the probabilities of different behaviours occurring, as well as modelling the
relative priorities for events within a bekaviour. The model is illustrated withan
exarnple of & communications protocol transmitting messages over an unrelisble
medium.

A complete compositional proof system is presented for the prioritized language,
which can be used for proving behavioural specifications are met. This proof
system can also be used to prove non-probabilistic specifications are met by prab-
abilistic processes, via an abstraction thecrem between the two modeis.

An abstraction theorem is presented relating the Pricritized Model to the Timed
Failures Model. This enables unprioritized processes to be refined into prioritized
ones.

Finally a compositional proof system is presented for the probabilistic language.
This can be used to prove specifications such as “an ¢ becomes available within
two seconds with a probability of at least 90%". Unfortunately proofs of proba-
hilistic specifications are considerably more difficult than in the unprobabilistic
case. We examine these difficulties and show how they can be overcame. The
proof system is illustrated with an example of 2 communications protacol trans-
mitting over an uoreliable medinm: we examine the probability of a message
being correctly transmitted within a given time.

Acknowledgements

I would like to thank my supervisor, Bill Roscoe, for his advice throughout the
preparation of this thesis. He has provided many useful suggestions, and pointed
out errors when I was going astray.

I must thank my examiners, Bengt Jonsson and He Jifeng, for making a number
of suggestions as to how the presentation of this thesis could be improved. Karen
Seidel made many useful comments on an earlier paper on this subject.

Brian Scott and Steve Schneider have provided uvseful sounding boards for new
ideas. I have enjoyed many fruitful conversations with Jim Davies about the
form of languages for specifying timed communicating processes. I have alse
henefited from discussions with Tony Hoare and Mike Reed. [have received many
interesting comments and ideas from my colleagues on the SPEC and REACT
projects.

Thanks must also go to my office colleagues, especiaily Nacho, Augusto, Briag,
Mat, Janet, Bryan, Andrew, Katherine and Sharon, for making the attic a pleas-
ant place to work, and for their friendship and support.

This work was supported by a grant from the Science and Engineering Research
Council of the United Kingdom and a scholarship from St. Hugh's College, Oxford.

Finally T must thank my friends in Oxford University Cave Club for regularly
dragging me underground, and providing much needed breaks from my work.

Contents

Introduction

Timed CSP

2.1 Syntax of Timed CSPo
2.2 The Timed Failures Model
2.3 Semantic definitions L. L
24 Theproofsystemo
2.5 The specification language Lo
26 Recemtchanges

The Prioritized Model

3.1 Syntax for the prioritized language - ..o L
3.2 Examples: a lift system and an interrupt mechanism
3.3 Thegemanticmodel L o oo
3.4 Semantic definitions
3.5 Communication over chanmels
3.6 A deterministic language and model

The Probabilistic Model

4.1 Syntax for the probabilistic language

4.2 Thesemanticmodel
4.3 Semantic definitions Lo oL
44 Example: a communications protocel oL o

Specification and Proof of Prioritized Processes

5.1 Specification of prioritized processes oL oL
5.2 Abstraction mappings L Lo
5.3 A language for specilying priaritized processes
54 Derivationof the proofruleso 0.

5.5 Example: the lift system revisited o L.

-t

24
24
27
ats
40
62
64

67
67
68
71
76

6 Relating the Prioritized Model to the Timed Failures Model 106

6.1 An abstractionresult L. L oo 106
6.2 Using the abstraction resnlt to simplify proofs 120
6.3 An example using the abstraction result oL oL 126
7 Specification and Proof of Probabilistic Processes 133
7.1 Specification of probahilistic processes 133
7.2 Complications with probabilistic preofs 142
7.3 Derivation of the inferencerules oL W4T
7.4 Case study: a simple protocol L 158
8 Conclusions 173
8.1 Related work L e e 174
B.2 Future work o ..o 184
A Summary of Semantic Definitions 188
Al Subsidiary functions 188
A2 Operationsonofferrelations 188
A3 Semantic definitions Lo L L 189
Ad Derived operators 192
B Inference Rules 194
B.1 Proof rules for prioritized processes L. 194
B.2 Proof rules for unprobabilistic specifications on prebahilistic processes 201
B.3 Proof rules for probabilistic specifications L Lo 202
Bibliography 210

Index of Notation 214

Chapter 1

Introduction

Communicating Sequential Processes [Hoa85] is a language for reasoning about concurrent
processes. This mode] has been exteuded [RR86, RR87, Ree88] to include a treaiment of
timing information. Previous models have allowed nondeterminisen; this has proved to be a
useful tool in that it allows one to underspecify the bebaviour of processes, and so maintain
a high level of abstraction. However, previous models have failed to model the probabilities
involved in nondeterministic choices. In this thesis we aim to overcome this deficiency, and
in doing so also produce a model with a notion of priority.

We believe that it is important to be able to model probabilistic behaviour for a number of
reasons.

¢ Many components of computer systems display behaviour that is probabilistic in na-
ture. For example, communication media can often corrupt or lose messages; it is
reasonable to model such a medium as a process that acts unreliably with a certain
probability. Suppose we have a communications protocol that transmits messages over
such a medium. We would like to be able to prove resnlts such as “the message is
correctly transmitted within 3 seconds with a probability of 99%". In order to do this
we need to be able to model the probabilities of messages being lost or corrupted by
the medium.

e There are many problems in computer seience that cannot be solved efficiently by
a deterministic algorithm bnt for which there exist efficient probabilistic algorithms.
Examples include consensus protocols [AH90, Sei92], mutual exclusion [PZ86], and self
stabilization [Her90].

¢ We often want to consider a process operating in an environment that behaves in g
manper that could be considered probabilistic. For example, consider a server providing
a service to several clients, where each client may request the use of the server and then
release it wben it has finished. Here the clients can be considered as forming the
environment of tbe server. If we abstract away from the details of the behaviours of
the clients then it is reasonable to model them as agents that make requests for service
with a frequency governed by some probability distribution. We need to be able to
mode] these probabilities in order to prove results relating, say, to the probability of
tbe server reacting to a request for service within a given amount of time.

2 Probabilities and Priorities in Timed CSP

We believe that a prioritized moedel is a useful thing because this will give us a more powerful
language for specifying processes. Certain applications naturally require different actions to
have different priorities:

¢ When we model an interrupt mechaunism we would like the interrupt event to have
a higher priority than what it is interrupting: otherwise the interrupt event could be
ignored. This is illnstrated in section 3.2.2.

Priorities are useful when: modelling an arbitration protocol for dealing with the case
where several clients compete for the use of a resonrce. Arbitration can be achieved
by giving different priorities to the different clients. If it is desired to have a fixed
hierarchy -— for example if the clients can be ranked in order of importance —- then
these priorities can be constant through time. Alternatively the priorities can be varied
s0 as to achieve fairness: we illustrate this in sectiou 3.2.1 where we model a lift system
which gives different priorities to requesis from different floors in such a way that the
lift is guaranteed to arrive at a floor within a certain time of being requested.

A prioritized language is also useful because if we remove the nondeterministic choice operator
we are left with a completely deterministic language, Nondeterminism can be counsidered a
bad thing, in that a nondeterministic process is unpredictable and we would bke programs
that we write to always behave in a predictable way: this will be true of any program written
in our deterministic language.

The probabilistic language is produced from the prioritized language by replacing the uan-
deterministic choice operator by a probabilistic choice operator. Thus, the only cause of
nondeterminism in the probabilistic langnage is the probabilistic choice operator. We have
chosen to build onr probabilistic model upan this prioritized model because it is our belief
that io order to argue about probabilistic behaviours it is uecessary to be able to predict pre-
cisely how the non-probabilistic parts behave in a given circumstance. If a language includes
other forms of nondeterminism, hesides probabilistic choice, then it is not possible to predict
the probability of a particular behaviour occuwrring. For example, consider the question:

What is the probability that the process a — STOP b — STOP performs
an o if the environment is willing to perform either an ¢ or a b at time 07

In the standard modcls of Timed CSP the external choice operator is nnderspecified, and so
it is not possible to answer this question. We need to refine this operator in order to produce
a deterministic version. In particular we will define two new external chioice operators: a
left-biased choice operator written D and a right-biased choice operator written . These will
respectively arbitrate in favour of their left- or right-hand arguments when the environment is
willing to perform actions from either side; in the circumstauces described above the process
a —+ STOP Db — STOP will perform an a, whereas a — STOP O & — STOP will
performa b,

Some workers bave got around the problem of the underspecification of the external choice
operator by insisting that if a process is able to perform two or more separate actions then
the choice is made by the environment. We avoid this because:

» we consider the environment to be a more passive entity than the process: it seems
strange that an environment is able to choose between two actions whereas a process
is not;

1 Introduction 3

o this idea clashes with our intuition of a system {built out of smaller components) being
in an environment consisting of a user who is willing to observe any event.

Most previous probabilistic process algebras have used a probabilistic external choice opera-
tor, written say as p, o, such that P, @ offers the environment a choice between the actions
of P and Q; if the environment is willing to perform the actions of either, then P is thosen
with probability p and @ is chosen with probability ¢ (where p + g = 1). We choose ta
separate the two phenomena of external choice and probabilistic nondeterminism for we be-
lieve them to be ortbogonal issues. Our language will include two deterministic (prioritized)
external choice operators and a probabilistic internal choice operator. Having more operators
produces a language that, while being harder to reasou about, is easier to reason with. Qur
prioritized external choice operators will be the same as the operatars ; ¢ and p ;: hence
in a sense the priaritized external choice is the “limit” of a prebabilistic external choice. The
probabilistic external cheice operator can he regained from the prioritized operators via the
identity P, ,Q = (PDOQ),;N,(P1q), where ;N is a probabilistic internal choice operator.

The rest of this thesis is structured as follows. In chapter 2 we give a brief review of the
Timed Failures Model of Timed CSP. In chapter 3 we describe our prioritized language and
its semantic model. We will represent a process by the set of behaviours that it can perform,
We will represent a behaviour, or observation, by a triple (7, C, s} where 7 is the time that
the ohservation ends, C records the different priorities given to actions during the behaviour,
and s records the events performed. We give semantic definitions for all the constructs of the
language and prove the delinitions sound with respect to a number of healthiness conditiona
for the semantic space. In section 3.6 we show how, by removing the nondeterministic choice
operator from the syntax, we can produce a completely deterministic language.

In cbapter 4 we consider the probabilistic language. The syntax is the same as the syntax
for the prioritized language except the nondeterministic choice operator is replsced by a
probabilistic choice operator: the process P N, @ acts like P with probability p and like @
with probability 4. The semantic model represents a process by a pair {4,) where A is the
set of behavionrs that it can perform and f is a function that gives the probability of each
behaviour occurring given a suitable environment.

In chapter 5 we examine ways of proving properties of prioritized processes. We write P sat
S(r.C,s), where S(7,C,s) is a specification whose argument represents a behaviour, to
specify that all bebavionrs of the process P satisfy 5. We then describe a specification
language based upon the one in [Dav91]. The syntax of the specification [anguage = a3 near as
possible to the English language so that we can be reasonably confident that our specifications
meet our informal requirements. We present a complete compositional proof system, in the
style of [DS89b], consisting of a mnmber of inference rules. For composite processes, a proof
obligation is broken down into proof obligations on the subcomponents. We illusirate the
proof system with an example. This proof system can also be used to prove properties of
probabilistic processes: we can prove that all behaviours of a probabilistic proress satisfy
a specification by showing that all bebaviours of the corresponding unprobabilistic process
satisfy the same specification.

In chapter § we relate the Prioritized Model to the Timed Failures Model. We investigate
whbich fattures could have resulted from a particular prioritized bebaviour, and thus produce
an abstraction result from the Prioritized Mode) to the Failures Model. We then show how this
result can be use to prove properties of prioritized processes. We will show that if a process

4 Probabilities and Priorities in Timed CSP

in the Timed Failures Model satisfies a specification then all its prioritized refinements satisfy
a related specification.

In ehapter 7 we give a proof system for proving properties of probabilistic processes. We
write P satff‘ S{r,C,s) to specify that, whatever the environment offers, the probability
that process P performs a hehavieur {r,C.s) that satisfies the predicate §{r,C,s) is at
least p. We will also define eonditicnal probabilities: we will write P sat?? §(r,C s) |
G(r,C,3) to specify that the probability that P performs a behaviour that satisfies § given
that it satishes (G is at least p. Unfortunately, proving properties of probabilistic processes is
considerably barder rhan for unprobabilistic processes; we explain what the main difficulties
are and how these can be overcome. We illustrate ihe proof system via a case study of a
protocal transmitting messages over an nureliable medium, We show that the pretocol acts
like a buffer, and perform an analysis of its performance: we prove a result that gives the
probability of a message being correcrly trausmitted within a certain amount of time.

In order 10 keep this thesis to a reasonable size we have omitted a mmmber of proofs that have
appeared elsewhere. The interested reader is referred to the relevant papars.

Chapter 2

Timed CSP

In this chapter we give a hrief overview of the syntax and semantics of Timed CSP. The first
models appeared in [RR86, RRB7] and [Ree88]. These have since been extended in [Sch90,
|Dav91) and [DS92a]. The forthcoming hook on CSP [DRRS93] will provide a complete
overview. The model described here fits most closely with the model described in ,'Dav91]_
although the specification language we present is nearer to that of {DRRS93].

The development of a mathematical model of a CSP-based language normally bllows a
particular approach:

& A mathematical structure is described for representing a particular behaviour or obser-
vation of a process; a process is then represented by the set of snch behaviours that it
can perform.

Semantic definitions are given for all the constructs of the language: these define pre-
cisely what behaviours a process can perform; for composite processes, the semantic
definition is in terms of the semantic representations of the subcomponents.

Certain healthiness conditions are conjectured: tbese express properties thal we would
expect all processes to have, and outlaw pathological processea. Proving that our defi-
nitions meet these healthiness conditions improves our confidence in the model. Alter-
natively, if we find that a healthiness condition is not satisfied hy one of ovr semantic
definitions then we know something is wrong -+ perhaps because the definition is wrong,
or perbaps because the mathematical structure we are using to represent processes does
not carry enough information.

The healthiness conditions are often used in proving results ahout specific processes,
and in proving algebraic laws — they give us extra information about how processes
behave.

e A proof system, consisting of a number of proofl rules, is developed for the language:
rules are given for proving properties of atomic processes directly; for composite pro-
cesses, a proof rule is given that reduces a proof obligation to proof obligations on the
subcornpenents. These rules are proved sound with respect to the semantic defiritions.

s The semantic model is related to simpler semantic moedels: this improves our confi-
dence that our model “agrees” with existing models, and also provides a useful proof

6 - Probabilities and Priorities j_]}_}"jmed C5P

technique — properties can he proved to hold of processes by arguing in the simpler
model.

Tlis is the approach we will take in developing the models in this thesis.

The semantic models of Timed CSP are based on a number of assumptions which we list
here; the Prioritized and Probabilistic Models presented in this thesis will be based upon
much the same assumptions.

Communication Communication between processes is achieved via handshaking: ohsery-
able events can only be performed with the cooperation of the environment.

Real time We model time using the non-negative real numbers. There is no lower bound
between the times of consecutive independent events. Each observation is made with respect
to a global clock: this clock cunnot he accessed by auy process.

Instantaneous events Events have zero duration; if we want to model an action with a
significant duration then we should model the start and finish as two distiuct events.

Non-Zenoness We assume that no process may make an infinite amount of progress in a
finite time.

Maximum progress If a process aud its environment are both willing to perform an event,
then the process may not idle: it must either perform this event or some ather event (visible or
invisible). In the Prioritized Model presented in chapter 3 we will make the assumption that
a process performs the action offered by the environment to which it gives highest priority.

Hidden events When events are hidden they do not require the cooperation of the envi-
roument and so eccur as soon as the process is ready for them. In the Prioritized Maodel
we will make the assumption that the process performs the number of internal events that
it gives lghest priority to. This and the previous assumption can be considered as maxi-
mal progress assumptions: the process performs as many events (internal or external) as the
cuvironment allows; in the Prioritized Model the process performs whichever action it gives
highest prigrity to.

Causality There is a non-zero delay between consecutive events in sequential precesses, so
immediate causality is not allowed. The reader should note that the most recent models of
Timed CSP de allow immediate cansality. For simplicity we de not allow immediate causality
in this thesis.

2.1 Syntax of Timed CSP 7

2.1 Syntax of Timed CSP

The syntax of Timed CSP is as follows:

Pu= STOP | SKIP | WAITL | X | basic processes
e—P | P P| WAIT ;P | sequential compaosition
PAP| PP P|cd:D"% Py | altenation
PI|PIPHEP P P PQP | parallel composition
PNA| F(PY | FHPY abstraction and renaming
p'PIP PIPYP] transfer operators
pX Pl uX Pl{X.i=P) recursion

where ¢ and ¢, range over the set T/ME of times, which we take to be non-negative real
numbers; a ranges over some alphabet T of events; and A and B range over I. X ranges
over process names. ¢ rapges aver the set CHAN of channels, I} ranges over datatypes, and
d ranges over I}.] is an index set ranged over by i and ;. The renaming function [ranges
over functions of type & — .

STOP represents the deadlocked process that can perform no visible events. The pro-
cess SKJP can do nothing except terminate hy performing the event ., WAJT ¢ can terminate
after ¢ time units. The variable X represents a call to the process bound to X.

The process ¢ — P is initially willing to perform the visible event o once it has performed
an a, it will act like process P after a delay of length t. If we omit the parameter | we will
take its value to be § — a system congtant. The process P @ will initially act like P; if P
terminates, the process will then act like Q after a delay of length 6. WAIT {; P arts like P,
delayed by ¢ time noits.

P N @ nondeterministically chooses between the processes P and . The process et Pi
nondeterministically chooses between the processes P, indexed by the set /. The process
P Q offers the environment a choice between the two processes P and (Q: as 5001 as the
environment is willing to perform an event offered by one of the processes, that process is
chosen. If the environment is first able to perform an event offered by P at the same time as
it is first able to perform an event offered by @, then the choice is made nondeterministically.

Communication of values along channels is modelled by the process ¢?d . Dt R Py this
is initially willing to input any value d of type D on channel ¢, and then after a delay of
length iy act like process Py.

The process P || @ executes P and @ in lockstep parallel, synchronizing on every visible
event. The process P)8 Q@ executes P and @ in parallel; P can only pertform events
from the set A, and @ can only perform events from the set B; they must synchronize
on events from the set 4 M B. This processes is normally written as P 4|5 @ with the
alphabets as subscripts; in this thesis we write alphabets as superscripts because we want to
use snhseripts for probabilities. P @ interleaves P and @: the kwo processes are executed
in parallel without synchronization; if the environment is able to do events of P or of Q,
hut not both, then the choice is made nondeterministically. The process P !l @ is a hybrid

8 Probabilities and Priorities in Timed CSP

parallel operator: it forces syuchronisation on the events from C, but allows interleaving on
all ather events.

Abstraction is achieved via the hiding operator: the process P \ A acts like P except all the
rvents rom the set A occur silently: the environment’s cooperation is not uecessary for the
events fom A to occur, so they happen as soon as the pracess is able to perform them. The
pracess f(P) acts like P except all the external events are renamed by the function f. Tle
process [~/ (P} acts like P cxcept it performs the event a whenever P can perform f(a).

Timeouts are modelled using the operator: P ‘ @ initially acts like P; if no visible event
has been performed by time ¢, then it times out, and after a delay of length § acts like Q.
With the process P . Q. coutral is transferred from P to Q at time ¢, with a delay of 6,
regardless of the progress P has made up until this tinie. Interrupts are modelled using the 2
operator: P Y @ initially acts like P except at any time it is willing to perform the interrupt
event o:if an a is performed, control is transferred to the interrupt handler .

The processes u X P and g X P are recursive processes. They both act like P, with
X representing a recursive call. With p X P, there is a delay of leugth § associated with
all recursive calls; with 4 X P, the recursion is immediate: it is the responsibility of the
programmer to ensore that the process cannot perform jufinitely many recursions in a finite
time. Mutual recursion is modelled by {X, = P,},; this represents the jth component of the
veetor of processes (X, | t € f) mutually defined by the set of equations {X, = P, |1 € J}.

2.2 The Timed Failures Model

2.2.1 Timed failures

A timed event is a pair (£, a) where ¢ is a member of the set TIMFE of times, which we take
to be non-negative real numbers, and a is a member of the set ¥ of visible actions.

A timed trace is a finite sequenee of timed events arranged in non-decreasing order of times.
For example the trace {(1,4a),(2, b},(2, c}} represents the performance of an a at time 1, and
a b and ac at time 2. We write TE for the set of timed events, TZ for the set of timed
traces, and s for a typical member of TEg:

TE= TIME x T TEY = {s €seq(T} | (t,a) precedes (¢',6) ins =1 '}

If & process is unwilling to perform a particular timed event then we say that it can be refused.
A refusal R is a set of cvents that are seen to be refused by a process. Our assumptions about
finite speed of processes allow us to restrict our attention to sets of refusals that are the union
of a finite number of refusal tokens:

RSET = (| JC | C € (RTOK)}
where a refusal token is the cross product of a half apen time interval and a set of events:
RTOK =2{] x A|[€ HOTINTA A€ T} HOTINT = {[t,t") | ¢, € TIME At < t'}
A timed falure is a pair (s,R) where s is a timed trace and R is a refusal set:

TF & TSy x RSET

2.2 The Timed Failures Model 9

The pair (s, R} represents that the process performs the events in s while refusing to perform
the events in R. For example, the timed failure ({(1, a),{2,5)},[2, 3) x {b, ¢}) represents an
observation where an a accurs at time 1 and a b at time 2, and the process refuses a b and
a ¢ during the interval [2,3). Note that a timed event can appear in hoth the trace and
the refusal: in the example the process performs one b at time 2 but refuses to perform any
more bs.

2.2.2 Notation

In this section we describe the notation we will use for reasoning about timed failures. An
index of notation appears on pages 214-218.

We use the following notation for traces: the empty trace is denoted by {}; concatenation of
traces is written using ; we write 8; in sp if 5, is a contiguous subsequence of sp; we write
5y = 8y if sy is a permutation of sy.

The function times returns the set of all times at which events are performed or refused:
timess = {t|3e {{t,e)} ins} timesR = {t|Ja (L a) ER}

We can use this to defiue begin and end functions that return the time of the beginning or
end of a trace:

begin(} = oo begins = inf{limess) if s # (}
end(} = 0 end s = sup(twmess) ifs # ()

Similar functions can be defined for refusals and observations:

begin{} = oo begin® = inf(limes ¥) R #{)}
end{} = ¢ end® 2 sup(ttmesR) iR #{}
begin(s,®) = min{begin 5, begin N} end(s,®) = max{end s, end R}

The values for the empty trace and empty refusal are chosen so as to make the subsequent
mathematics as simple as possihle.

The functions first and last return the first and last events [rom a trace; for the empty trace
they return the non-event ¢:

first(} € first(((t.a}} 5
last} = ¢ last(s ((t,a)})

I
1N

a

1y
]

a
The functions kead and foot return the first and last timed events from a trace:
head s = (begin s, first 5) fool s = (end 3, last 5)

The durtng operator (1) returns the part of a trace or refusal occurring during some time
interval f:

Orr =4
L [ltay (sth iftel
((ta)))t = {s” tigr
1T = {(ta)eR[tel)

10 Probabifities and Priorities in Timed CSP

Nate that in order to make ¥ 1 [a member of RSET we will normally take [to be a finite
union of half open intervals. We can use the during operator to define before (). strictly
before (), after (), strictly after (), and at (1) operators:

s 1 +[0,¢] ® ot 2 R[]
5= 5100 Rt = RH[0.0)
s t = stt, oc) R ¢t = Rt{t o)
s F = st(too R ot = RT(Loc)
ST!ESTU} Rttt = RT{H)

The restrict operator {) restricts a trace or a refusal to events from a particular set:

H A=)
(i(ha)) 5) 4= {i“':)) (o 4) :;ZZi
N A= {(ha)eR|agA)

The hiding operator (\) restricts a trace or a refusal to all eveuts not in a certain set:
s\A=s (T\A) RYAZR (T\4)
Traces and refusals can be relabelled by a function f : £ = Z in the chvious way:

20

I

; ((41(a)}) F(s)
HORERSICHIT IR
) {(fn)\tfaneN}
The alphabet operator (¥) returns the set of vatimed events froin a trace or refusal:
Ts={a|3t {(t,a)}ins)} TR={a}3t (t,0) € N}

The operators + and -- are used to temporally shift traces, forwards or backwards through
time:

G+t =20
((Fa)))+t 2 (' +ea)) (s+1)
-t=20
' L Jur - ta)y (s-) ifr
ey 9-c= {4 e

These operators can also be apphied to refusals or bebaviours:
Rttt = {(¢+¢ta)|(ta)en)
K-t = {{t' —ta)l|{t, o) eERAL ¢}

(5, W)+t = (s+48+1)
(5, R) =t = (s -,V —1t)

IH

I

2.2 The Timed Failures Model 11

2.2.3 The Timed Failures Model

The Timed Failures Model represents a Timed CSP process by the set of behaviours that it
can perform. We define Sz to be the set of all timed failures:

Srp = (TF)

The Timed Failures Model Myp is then defined to be those members S of Str satisfving
the following seven healthiness conditions:

L{(.{hes
2. (s w,R) €8 = (5,8 bepnuw)e§
L sReSas=w=(wR}eS

4 (s.WeSat 0=
IR e RSET RCWA(s. W)€ S
AW U At a) g (s tF (Fal N thed)

5 Vi€ [0.00) In(t)e V(R €S ends t=3#s nlt)
6 5, MeSANCcRIETANCR= (5, ¥)e S

(s w,R)€ § AR ¢ RSET
7. lAends begin® Aend® beginw | = {s w,RUNW)cS
A¥(La) €V (s (LalR ¢S

The first condition says that every process can perform the empty trace and refuse nothing.
The second condition says that if any particular behaviour can be observed, then any prefix
of that behaviour can also be ohserved. The third condition states that simultaneous events
in a trace can be reordered.

Candition 4 says that any refusal set R can be enlarged to a maximal refusal set ¥’ thas
contains all timed events that the process cannot perform during this behaviour. The fact
that I’ is a member of the set RSET of refusals relates to our finite speed assumption: the set
of events that the process cannot perform changes only finitely often in finite time. The fifth
condition also relates to our finite speed assumption: there is a bound na(t) on the rumber
of events that the process can perform within time f.

Condition 6 says that if the process can refnse all the events of ® then it can also refuse any
subset of R. The Gnal condition says that if the refusal set N is such that all of its elernents
ocenr between the times of the traces s and w, and none of the events can be performed after
trace s, theu &' can he added to the refusal set.

We place a metric npon the set of tined failures by considering the first time at which twe
elements can be distinguished. For § € Sr we define

S t={(s. V)€ §|end(s.) 1}
We then define the metric 4 by
dE Ty =i({27°|5 t=T tfu{th

This metric will be used to give a semantics to recursive processes.

12 Probabilities and Priocities in Timed CSP

2.2.4 The semantic function

Tbe syntax of Timed CSP includes the term X: a variable that can be bonnd to a process.
In order to give a semantics to variables, we define a space ENVp of environments or variable
bindings:

ENVF = VAR _"STF

We will write p X for the value assigned to variable X in environment p.

We can now define the semantic function:
Fr : TCSP = ENVy — Spy

Z P pwill represent the set of timed failures that Timed CSP term P can perforin, given
variable binding p. If P is a process (i.e. if it has no free variables) theu it ruakes sense to
omit reference to the environment and simply to write Fr P . In the nexi section we give
scmantic definitions for all the Timed CSP constructs.

2.3 Semantic definitions

2.3.1 Basic processes
The process STOP can only perform tbe empty trace; it can refnse anything:

Fr STOP p= {({(}.¥) | R € RSET)}

The process WAIT t can perform the empty trace as long as it does not refuse a after
titne ¢; alternatively it can perform a at any time t' after t as long as it does not refuse
a between ¢ and ¢,

Fr WAIT t o= {({(13)] ¢ Z()}
U, e A g ERT[)}
SKIP is the same as WAIT @ so we have the following definition:

Fr SKIP p= {{((,R)| ¢ ER}
O{i(s, MM SR 1)

The term X represents the process bound by the environment to the variahle X:

FrXp=Ep X

2.3.2 Prefixing

The process a — P can perform the empty trace as long as it does not refuse an a:
alternatively, it can perform an a at some time {', and then act like P starting from time {'+¢,
as long as it does not refuse an a before ¢'.

Fra-Pp={(().8)]|ag¢Ix)
U{((¥,a) sp+ ¥+ LR [a@ SR E)A (s R-t' —) €Fr P g}

2.3 Semaantic defipitions 13

2.3.3 Sequential composition

We assume that in the combination P) the event is always available for P: in other
words, P may terminate as soon as it 15 able. Hence @ can perform a non-terminating
trace of P only if P is unwilling to performa , ie. ifit is always able to refuse a . Similarly,
P can terminate at time ¢ only if it could refuse a at all earlier times; in this case control
is passed to () starting from time ¢ + 4.

Fr P Qp2{(s.,R)] ¢€EsAVI€HOTINT (sRu(Ix{ }))eFr P g}
U{(s,R) |3t ¢E(s Oa(s ¢ (t, N tuf{onx{ N eFrPp
ASTUE+B =0 A(s—t-8R—t—8)eFr Qg

The pracess WAIT ;P acts like P after a delay of length ¢

Fp WAIT L, P p={(s +t,®)|(s,R— 1) € Fr P p}

2.3.4 Nondeterministic choice
P 11 Q can act like either P or @; similarly, ., P, can act like any one of the P;:

FrPNQp=FrPpufrQp
Fr gPiesUFrPiplien

1

This latter definition is sound only if the set of processes {P, | 1 € I} is uniformly bounded
in the following sense:

Definition 2.3.1: The set of processes {P; | i € I} is uniformly bounded iff
Yi: TIME;p: ENVp 3n(l): Vi:l (s,N)€Fr Popnends =45 n{l)
¢

The set is uniformly bounded if there is a uniform hound on the number of events that each
process can perform within time ¢. This condition is necessary to ensure that condition 5 on
the semantic space is satisfied.

2.3.5 External choice

The process P @ offers the environment a cboice between the events offered by £ and Q.
It can perform the empty trace when botb P and @ can: in this case, every event refused
by P @ must be able to be refused by both P and Q. Similarly, if P @Q performs a
nonempty trace of either P of § then any event refused before the firat visible event must be
able to be refused by both P and Q.

Fr P Q=
{(O® (R eFr PpnFr Q p}
U{(s.R) s QA (s,R)EFT P pUFr Q pA({},R begins)€ Fr P p0Fr Q p}

14 Probabilities and Priorities in Timed CSP

The process c?d : D L, Py is able to input any value d of type D on channel ¢ and then,
after a delay of length ¢4, act like Py. If it performs the empty trace then it must not refuse
to input from ¢. Alternatively it can input some value ¢ at time £, and then act like Py after
a delay of length #4, as long as it does not refuse to input from ¢ before ¢,

Freld: D24 pyp=
{{h®) e DnER={}}
U{{(L,e?7d) s+ i+t X jdeDaceDNEMR () ={}A(s,R~1t —1ty) € Fr Py p}

This definition is sound if the set of processes {P; | d € I’} i5 uniformly bounded in the sense
of the previous section.

2.3.6 Parallel composition

The process P || @ executes P and @ in lockstep paralle!l, synchronising on every event. The
parallel composition can perform an event if both P and @ can; it can refuse an event if
either Por @ can:

FrPIQ p={(s-RpuRg)|{sRp)eFr P pa(s,Rg) € Fp Q p)

P*||¥ @ can perform trace s if P can perform the restriction of s to alphabet X. @ can
perform the restriction of s to alphabet Y, and all the events of s belong to either X or Y.
It can refuse an event from X if £ can refuse it; it can refuse an event from Y if @ can refuge
it; and it can refuse any events not in X or Y.
Fr PXIV Qe
[NpUNQURZ) (s X, Rp)EFr Ppals Y NG €Fr Q pASsCXUY
AERPEXI\ZNQQ Y/\ENZ(;E\X\ Y}

P @ exccutes the processes P and @ in parallel without synchronization. It can perform
an event il either P or @ can: it can refuse an event if both P and @ can:

Fr P Qp={(sR|(sp.MEFr Pparl(sgR)eFr Qprscsp sg}
where is defined on traces by
sp g ={s:TETL |Vl stt=sptt sg T}

P il Q isa hybrid parallel composition: synchronisation takes place on events from C but
c

all other events are intetleaved. An event from C can be performed if both P and § can

perform it. an event from outside € can be perfermed if cither P or @ can perform it. Hence

if P can perform trace sp and @ can perform trace sg then P || @ can perform any trace
¢

from sp ESQ, defined by

SPE‘SQE{SH C=3sp C=39 CAs\Cesp\C 359\ C}

2.3 Semantic definitions 15

P il @ can refuse an event from C if either P or Q can refuse it; it can refuse an event from

[
outside C if both £ and @ can refuse it.

Fr Pl Qp={N)|(pRp)EFr P palsqg) €Fr Qpascse |l
AR C=(RpURg) CAN\C=(RpnRg)\ C}

2.3.7 Abstraction and renaming

The process P \ X acts like P except all events from the set X are made interml. This
means:

e events from X oaccur silently and should not appear in the trace;

e these events do not need the cooperation of the environment; this means that the
process P should always be able to perform as many events from X as it requires; this
is equivalent to saying that it should be ahle to refuse any additional events kom X,

Thus P \ X can perform trace s \ X and refuse N if P can perform s and refuse ® U
([0, end (s, R)) x X):

FrPAX p={{s\ X,®)| {5, RU{[0,end(s,W)) x X)) € Fr P p}
The process f{P) acts like P except all events are renamed via the function f. This means:

» f(P) performs the event f(a) if P performs a;

& f(P) can refuse a b if P can refnse all events & snch that f(a) = b, ie.if P can
refuse £~ (8). ‘

Hence we have the following definition:
Fr f(P) p2{{/{s),®) | (s,/ '(R)) € Fr P p}

The inverse image of P under f may perform a whenever P may perform f(a), and can
refuse a whenever P may refuse f{a}:

Fr f7P) p = {{s,W) | (f(5),f(R)) € Fr P p}

2.3.8 'Transfer operators

The process P ‘ Q initially acts like P; if no action is observed by time ¢ then a tirne out
occurs and, after a delay of length 4, control is passed to . A behaviour of P ! is either:

+ a behaviour of P whose frst event occurs no later than {;

» or a behaviour of P up until time t during which no events occur, folowed by a
behaviour of @ starting at ¢ + &:

16 Probabilities and Priorities in Timed CSP

Fr P Qoz{(sX)bgims LA(s,R)EFr P p)
U{(s, R} | begins t+6n (LR NDeFr Ppa(s,R) —t—-8€Fr Q p}
The process P . Q is siznilar to P : Q except control is removed from P at time ¢ regardless
of the progress made. Thus a behavieur of P , @ must be such that:
the behaviour up until t is a hehaviour of P;
no events are observed between ¢ and { + 6;

» and the bebaviour from ¢ + & is a behaviour of §:

Fr P Qp={(s,R)[{s LR NeFr Ppasttt+d)=(A(sR)—1-b€Fr @ p}

P ? @ initially acts like P except it is always willing to perform the interrnpt event e; if
an e occurs then control is passed to §. Thus a behaviour of P V @ is either:
g
* abehaviour of P wherc an ¢ is always available (e ¢ £8) but no e occurs (e ¢ s);

* or a behaviour of P up until some time ¢ when an e occurs, followed by a behaviour
of @ after a delay of 6; in this case an e must not oceur before { but must be available
up antil then:

Fr PYQp%{(s.NHeQS(s,N]/\(s,N)ETTPp}
U{(s, R} |32 5 ¢t e={{t,e)) heg (R t)Abeqn{s 1) 1+§
Als t\eR DEFr PpA(sR)—t—6€Fr Q p)

2.3.9 Recursion

In order ts give a semanties to the recursive process p X P we need to consider the mapping
on the semantic space represented by the term P considered as a function of X. We denote
this by M(X, P)p, defined hy

M{X,PYp=)Y Fr P pY/X]
Recursion is then defined by
Fr pX P p = the unique fixed point of the mappiug M (X, P)p

In [Dav9l] Davies shows that this is well defined if £ is constructive for X, where construc-
tivity is defined as follows:

Definition 2.3.2: TCSP term P is i-consiruchve for variable X if
Vig: TIME;p: ENV Fr Pp tg+t=Fp Pplp X to/X] fp+1t

2.4 The prool system 17

Informally, P is t-constructive for X if the hehaviour of P up until ¢y + ¢ is independent of
the behaviour of X after time tp.

Definition 2.3.3: Term P i3 consfructive for X if there is a strictly positive time ! such
that P is t-constructive for X. o

Davies gives a pumber of rules for checking whether a term is constructive for a variable.

The recursive process p X P differs from uX P in that there is a delay of length §
associated with all recursive calls. The mapping on the semantic space associated with P
where all calls to X are delayed by 4 is denoted by Ms{X, P)p and defined as follows:

Definition 2.3.4: If P is a TCSP term and X a variable then

Ms(X,Pjp= WisoM(X,P)p where W;=AY Fr WAITS; X p[V/X]

The function Wy delays all calls to X hy d. Delayed recursion is defined by
Fr 4 X P p=the unique fixed point of the mapping Ms(X, P)p

In (ReeB8] Reed showed that the mapping M;(X, P)p is a contraction mapping and so always
has a unique fixed point; hence the semantics of 4 X P is well defined.

Mutual recursion is handled similarly. For 1 € { let P, he a term and X, a variable, We write
(X, = P, |4 €[}, to denote the jith element of the vector of processes (X, | i € /) mutually
defined by the set of equations {X; = P, | i € f}. We will write £ for {P; | i € I}, ete, The
vector of equations (X; = P;) represents a mapping on the space .S'é-,; which contains gne
copy of St for each element of J; this mapping is written M (X, P)p and defined by

M{X.P)p=)Y Fr P plY/X]
We then define mutual recursion by
Fr (X, = P}; p= 5, where § is a fixed point of M(X, P)p

Lhy A,

In [Dav91] Davies gives a sufficient condition for this to be well defined.

2.4 The proof system

In [DS89b), Davies and Schneider presented a complete proof system for Timed CSP. If P
is a Timed CSP term and S(s, R) is a predicate whose free variable represents a behaviaur,
then they write P sat, §(s,X) to specify that all behaviours of P satisfy §:

Psat, S(5, M) =VY(s,R) e Fr P p S(s,R)
If P is a process then it makes sense to omit reference to the environment:
Psat S{s,R)=VY(s,N) e Fr P S(4, 1)

The argument (s, R} is dropped when it is obvious which model we are working in.

18 Probabilities and Priorities in Timed CSP

They give a proof rule for each construct of the language. These rnles are of the following
form:

antecedent

antecedent L.
*[s:de condttmn]
consequent
If we can prove cach cntecedent and the side condition is true then we can deduce the
conscquent.

On composite processes the proof obligation is reduced to proof obligations on the subcom-
ronents. For example, the proof rule for lackstep parallel composition is

F sat, Sp

() sat, Sgp

Se(s,Rp) A So(s,Ng) = Sis,RpURg)
PllQsat, S

To prove that P |} Q sat, S(s,R) we have to find specifications Sp and Sg for P and @
such that whenever behaviours of P and ¢ satisfy Sp and Sg the corresponding hehaviour
of P || ¢ satisfies S.

Throughout this thesis, we will quote proof rules for the Timed Failures Model as and when
we need them.

2.5 The specification language

In order to specify Timed CSP processes, Davies introdnced in [Dav9l] a specification lan-
guage; this language was revised in [DRRS93]. The meaning of a specification written in this
language 15 as near as possible to its English language meaning. This means that we can be
reasonably confident that specifications written in this language meet our informal require-
meuts. This also means that our specifications will be open to interpretation in other models:
in section 5.3 we will present a similar language for specifying prioritized processes, and in
section 6.2 we will show that if a Timed CSP process P satisfies a particular specification
written in the specification language, then, subject to certain conditions, all P's prioritized
refinements will satisfy S when this is interpreted as a specification on prioritized processes.

2.5.1 Primitive specifications
The predicate (a at #){s,R) specifies that an e occurs at time ¢:
{aat)(s,R}) = {(t,a)}ins

This may be generalised by replacing the event a with a set of events and hy replacing the
time ¢t with a set of times:

Aatf=3Jaee A FLe€S aat!

2.5 Tbhe specification language 19

A at] holds if some element of A occurs at some time during /. Note that we are using the
convention of dropping the argument (s, N} from specifications when it is obvious from the
context in which model we are working-

These can be generalised to specify that n events happen during some interval:
(Aat" (s, Xy =H#{s AtI) n

We can also specify that particular events do mot accur:

noaatt = - (aatt)
noAat! = ~(Adatl)
no Aat" f = - (4at" [)

Another useful specificatiou primitive is ref, which is used to specify that an event is refused.
(aref t)(s,N) = (t,a) € R

We will not actually write specifications using ref: we will use it to define more useful speci-
fication macros.

We can also specify that an event is not seen to be refused:

no aref ¢ =~ {arefi)

Both of these generalise to a set of events:

Areft=Vaed oreft no Areft=¥a€ A noareft

We will sometimes want to say that a process acts in a particular way if we have observed
it for long enough. The predicate beyond ¢ will he true if we have observed it until at least
time ¢:

(beyond ¢){3, N} = end(s, W) > ¢

2.5.2 Liveness specifications

The live macro i3 used to specify that the process is willing to perform an event at a parlicular
time.

aglivet=aattVnoareft
o live ¢ is true if either an a is performed at time ¢ or it is not refused. It will be true of
an observation of a process if that observation is consistent with the process being able to
perform an a at that time.
This can be generalised to take a set of events as argument.

Alivet = Aattvno Areft

Alive ¢ is true if the process is willing to perform any one of the events from A: it wil either
perform one or refuse none.

20 Probabilities and Priotities in Timed CSP

We can also generalise tbe live macro to specify that an event is available throughout some
interval, until it is performed:

alivel =2Viel] acatin(0,t]Vnoarelt

e live [is true il at all times in 1, an @ cannot be refnsed unless it has already been observed.
This generalises to a set of events iu the obvious way:

Alve I =Yiel AatlIn{p,t]vno Areft

It will be particularly useful to be able to specify that an event becomes available at sotne
time { and remains available until performed.

a live from ! = q live [}, 00) Alive fram ¢ = A live [£, oa)

Thus from ¢ is simply an abbreviation for the interval [t.o0).

We can also specify that a process ig able to perform up to n copies of an event.

alive™t = aat" L Vnoareft
Alive™ t = Aat™ ¢t Vo Areft
Ytel aat" IN[0,t]Vnoareft
viel Aat" In[0,t]vno Aref?

]

a live™ I
A live™ I

1}

2.5.3 History predicates

Often we will want to write specifications that refer in some way to the events that have been
observed. These will take the form (M (s}], where M is a projection function from timed
traces tosome type T, and ¢ i3 a predicate on . We can define a few useful such projection
functions M.

The functions first and last return the first or last timed events observed during a behaviour:

first(s) = head s last(s} = fout s

These can be qualified with one of the terms before ¢, after ¢ or during [to restrict attention
to a partiular set of times. We can also restrict our attention to a particular set of events.
For example:

(first A after £)(s) = head(s A)
(last A before 1){s) = fool(s A 1)
{last during I){s) = foot(s 1 I}

The functions time of and name of return the time and event components of a timed event:
time of {t,a) = ¢ name of {#,a) = a
These can be used to write predicates such as

time of first A after 2 3 nameof last A = a

2.5 The specification language 21

Other functions that we will find useful are alphabet which returns the set of (untimed) events
observed, and count A which returns the number of events from the set A that are performed:

alphabet(s) £ Ts count A(s) = #(s A}

These can be qualified with the phrases before ¢, after ¢ or during J; we will omit the argu-
ment A of count if we want to refer to the total number of events performed, i.¢. in the case
A=1.

2.5.4 Environmental assumptions

Often we will want to say that a process acts in a particular way if the environment satisfies
some condition. In this subsection we describe a few macros for placing conditions on the
environtment.

We will write a open ¢ to specify that the environment is willing to performn an a at time {:

aopeni = aattVareft

a open { is true if the observation is consistent with the environment being willing tc perform
an a at time {: it is true if an « is either performed or refused at time ¢.

This can be extended to sets of events in the obvious way:

Aopent=Aatév Areft

We will say a open I if the environment is willing to perform an a at all times during F until
one is performed:

Viel aatIno,t}vareft
veel AatlInfo,t]v Areft

1]

aopen |

11

A open [
As with live, it is useful to have a special form for the interval [¢, oo):

a open [t,00)

1M}

a open from ¢
Aopenfromt = A open [t,00)

It is also useful to be able to generalise to say that the environment is able to perform n copies
of an event:

aopen™ ¢ = pat" tVareft
Aopen™ t = Aathtv Areft
Yiel aat" Inf0.t]vareft
Viel Aat"In(o. ¢ v Areft

I

a open” |

I3

A open™ |
The following lemma shows that the open macro does what we want:

Lemma 2.5.1: Aopenit A Alivet = Aatt. @

22 _Probabilities and Prio_ri.‘.jes in Timed CSP

If the environment is willing to perform any event from A and the process is live on A, then
an event from A occurs.

Proof: We have

Aopeni A Alive !
= (definitions

(AattvVae A areft) A (AattvVae A —~areft)
= (predicate ca.lculus>

Aatt

a
To specify that the environment is not willing to perform an event, we use the closed macro:
aclosed t = - (a at 1)

If a closed ¢ holds then the observation is consistent with the environment heing unwilling to
performan a at time ¢ Note that this is the same as no a at ¢: we will restrict the use of
closed to environmental assumptions. This macro generalises iu the obvious way:

Aclosed I 2va € A Viel aclosedt

The final environmental assnmption we want is to say that the environment is elways willing
to perform as many events from: 4 set A as the process wants, This will occur when the events
from A are hidden.

internal A =V beyond! = Aref ¢

Note thal
(internal A)(5. ®) = A open™ (8, end(s, ¥))

2.6 Recent changes

The above description of Timed CSP follows mainly that deseribed in [Dav91], although the
specification language is that of [DRRS93]. Recently a couple of small changes have been
made to the semantics [DS92a]; for completeress, we include here a note of these changes,
although the new models presented in this thesis will be based upon the earlier work.

In the earlier models there was a non-zero lower bound 4 between the times at which causally
related events could ocenr. More recently, this constraint has been dropped. and a prefixing
operator with a zero delay has heen introduced. For example, the process

a % b L sk
May perform an ¢ and a b at the same instant, and then terminate ome second later. For
example, it may perform the trace {(0, a), {&, b)}. In order to incorporate immediate prefixing
into the semantic model, it was necessary to drop axiom 3, which allowed simultaneous events
to be reordered. If this axiom were retained. then the above process would be able to perform

2.6 Recent changes 23

the trace {(0,), (0, a)}, and so by axiom 2 would also be able to perform the trace {(f, b)),
which is obviowaly nonsense,

The other main change that has been made to the semantic definitions is that now a dis-
tributed system may terminate only when all components can terminate. Thus in the parallel

combinations
PMPQ ad PlQ
c

the event is imphicitly included in the synchronization set, and the interleaving operator
may be defined by the equation
P Q=P U Q

Chapter 3

The Prioritized Model

In this chapter we present the syntax and semantics of the prioritized language. Recall that,
as described in the introduction, one of our aims is to restrict nondeterminism to just that
caused by the nondeterministic choice operator, so that when we replace the uopdeterministic
choice operatar by a probabilistic choice operator, we will be able Lo present a semantic modal
that gives the probability of a process acting in a certain way.

In section 3.1 we describe the syntax of the language. In section 3.2 we illustrate the language
with a couple of examples, We deseribe the semantic space in section 3.3 and give semnantic
definitions for all the constructs of the language iu section 3.4. In section 3.5 we describe how
the semantic model cau be extended to model communication of values over channels. In
section 3.6 we show that by removing the nondeterministic choice operator from the syntax,
we are left with a language that is completely deterministic.

3.1 Syntax for the prioritized language

We want to produce a language where the only form of nondeterminism is that cansed by
the nondeterministic choice operator. lu order to do this we must first understand the ways
in which nondeterminisn: can arise. Nondeterminism can arise in Timed CSP in a number
of ways:

Explicit nondeterminiam: The process P 1 @ chooses nondetermiuistically betweeu the
processes P and Q.

External chojee: Consider the process a — P b —+ Q. If the environment is willing
to do either an a or a b at some time, then the choice is made nondeterministically.

Interleaving: Consider the process a — P b — Q. If the environment is willing to
perform either an a or a b at some time (but not both), then the choice is made nondeter-
ministically.

Hiding and renaming: Deterministic processes can sometimes be made nondeterministic
by hiding or renaming. For example, if the process o — P b — Q is put in an
environment that offers just a b at time 0, then the b will be performed. Il however the process
(a — P b — @)\ ais put in the same environment then it will nondeterministically
choose between performing the b or performing the a silently.

24

3.1 Syntax for the priaritized language 25

The last three forms can all be thought of as types of underspecification; in normal Timed CSP
we do not specify how the operators behave in the situations described. We shall refine our
operators 50 as to overcome this underspecification.

3.1.1 Biased external choice

We define two operators, a left-hiased! choice O, and a right-biased choice (0. The left-biased
choice PD Q will choose £ if the environment is willing to do the Brst events of both P and @
(at some time). The right-biased choice P 11 @ will choose @ if the environment is willing
to do the first events of hoth P and . For example, a customer who is willing to accept a
toffee, but would prefer a chocolate:

CUST = chocolate O toffee

where we have written chocolate as an abbreviation for chocolate — STOF.

3.1.2 Parallel composition

Consider the process (a0 &) || (a @ 4). If the euvironment offers both a and & at time 0,
then the behaviour of the process is not fully specified. The left hand side wants to perform
an a, while the right hand aide wants to perform a &. The only sensible interpretation is that
the process chooses nondeterministically between the a and the b. Since we are aiming to
eliminate all nondeterminism, we define a left biased parallel operator 4 which arbitrates in
favour of its left hand argument. So (a D b} 4t (o m &) will perform an a if the environment
offers both 6 and b. We can consider the left hand side to be a master, and the right hand
side to be a stave which will do whatever its master waunts, if it can.

For example, consider a vending machine which will dispense either chocolates or toffees as
its enviranment requires, hut would rather dispense toffees:

VMB = chocolate [toffee

If we put this in paralle] with the customer who prefers chocolates, with the customer acting
as the master, then the customer gets what ke wants:

CUST §} VM8 = chocolale D toffee
If however we make the machine the master, then it gets its way:

VMB 4t CUST = chocolate O toffee

We can similarly define a right biased parallel operator ¢ which arbitrates in favour of its
right hand argnment. For example, {c 0 &) 4 (a3 5) will perform a b if the environment
offers both an a and a 5.

"Throughout this thesis we will use the words biased and priovitized as synonyms.

26 Probabilities and Priorities in Timed CSP

3.1.3 Interleaving

We define a left hiased interleave operator +— such that if the environment is willing to do
events of P or of ¢ (but not both) then P «— § performs the events of P. For example:

e ifa single g is offered then ¢ — P +— ¢ — @ will perform the a on the left;
e (a+— b) 4t (a &) will perform an a if an @ and a & arc offered at the same time.

s [a4+— b} (e @ b) will perform a & if an @ and a & arc offered at the same time, since
the right hand side is the master and it prefers the &.

s A greedy customer would like both a chocolate and a toffee, but if he can have only
one lie would prefer a chocolate:

GCUST = chocolate +— toffee

When he is placed in parallel with the biased vending machine, with him as the master.
he gets just a chocolate since the vending machine is only willing to dispense oue sweet.

GCUST §f VMB = chocolale [toffee

We can sinilatly define a right biased interleave operator — such that if the environment
is willing 1o do events of P or of @ (but not hoth) then £ — ¢ performs the events of Q.
Aside: The reader may be wondering why we have not specified that if processes P and @
have different initial events then P +— @ offers these events equally strongly, and aliows the
envirenment to decide which is performed. This method does not work, as can be seen by
considering the process {a +— (b @ e)) 4 (c Mo @ b). Suppose this process is offered both
an a anda b; then the left hand side has no preference between them, and so the right hand
side choases a. Similarly, if it is offered an @ and a ¢, the riglht hand side makes the choice
in favoural e. If, however, it is offered a b and a ¢, then the left hand side chooses in favour
of &, Sothis process prefers a to b, prefers b to ¢ and prefers ¢ to 4. We conclude that it is
not possible to define the juterleave operator in this way.

3.1.4 Alphabet parallel composition

The ideas of the previous sections carry over to the parameterized parallel operators. The
priorities of P 447 @ follow the priorities of P on events from A, and follow Lhe priorities
of @ on events from B \ A; events from tbe master’s alphabet (A4) are preferred to other
events (those from I \ A). The priorities of # *p% @ follow the priorities of on events
from B, and follow the priorities of P on events from A \ B.

Pﬂé{ @ and P ﬁ" Q execute P and @ in parallel, synchronising on events in C. They are
biased towards P and @ respectively.

3.2 Examples: a lift system and an interrupt mechanism 27

3.1.5 Complete syntax
The complete syntax for Biased Timed CSP (BTCSP) is as follows

Pu= STOP | SKIP | WAITt | X | basic processes
esP | P P| WAIT ;P | sequential composition
PP | P | POP| FOP| alternation
PP | PHP | PP | P*H7P | parallel composition
P‘—PIP——*P\P‘ﬁ'P|P‘ﬂ’P\ interleaving
t
P PP P | PY P transfer operators
PNA | (P abstraction and renaming
uX P | pX P|(Xi=P) recursion

where ¢ ranges over the set TIME of times, which we take ta be positive real rumbers;
X ranges over the space VAR of variables; & ranges over some alphabet T of events; A and B
range over L; [ranges over £ — X; and ¢ and 7 range over an indexing set [.

3.1.6 The effect of hiding

Consider the process P = (aD?) \ a. It is interesting to ask whether this process can ever
perform a b. The process P certainly prefers to perform an ¢ (silently) to a 4. In a previous
paper [Low9la] we took the view that the enviranment would always be willing to perform
the empty bag of events; hence P cauld never perfarm a b since it would always ¢hoose to
perform a silent a in preference. This assumption produces a model which, while sonnd, is
extremely complicated and contains a numher of unusual and undesirable features.

In this thesis we adopt the view that there are environments that are nof willing toidle. Then
the process P is able to perform a b, but only if its enviranment is not willing to perform
the empty bag of events. Conpsider for example the pracess 4+ P. The left hand side of this
prefers to perfarm a b than to idle; it is the master and so it forces P to perform the b even
though it wauld prefer ta perform a silent a.

3.2 Examples: a lift system and an interrupt mechanism

In this section we consider two examples that make use of the biased operators.

3.2.1 A lift mechanism

We consider an example of a lift serving three foors of a building: on each floor there is a
button that can be used to summon the lift; once the bntton has been pressed, the lift should
arrive on that floor after a short delay. The naive implementation in unprioritized Timed
CSP would he

SYSTEM = (LIFT “R™" BUTTONS)\ R

28 Probabilities and Priorities in Timed CSP

LIFT = reqp -+ arrveg = LIFT
req) -5 arrive; <5 LIFT
reqs 23 arriveg - LIFT
BUTTONS = BUTTONy BUTTON; BUTTON,
BUTTON, = push; = req; = BUTTON, (:=10,1,2)
where Lhe alpliabets are defined by
A= {arrive, [i € 0 .. 8} Re{reg |1€0.. 2} P={push, |1€0..2}
When button ¢ is pushed, it makes a request to the lift by offering the event req,; two scconds
after the reg; is accepted, the lift arrives at floor :.

Unfortunately. there is a prohlem with this implementation. Suppose you are on the first
floor and the lift is on the ground floor. You press your button at the same moment that
somehody on the second floor presses the hutton there. Both buttous offer their reg event.
and suppose the lift chooses in favour of the hutton on the second foor; then the lift goes
straight past you to arrive on the second floor. Meanwhile, somcbody arrives on the ground
floor and pushes the button there. The bnttons on the first and ground floors are now both
offering \heir req events; suppose the lift chooses in favour of the one on the gronnd floor;
again, the lift goes straight past you, to reach the ground floor. This frustratiug sequence of
events could continue nntil you eventually give up and head for the stairs.

Thbis is not the only problem. There is also the possihility that you are stnck on the second
floor while the lift shuttles backwards and forwards between the gronnd and first Aoor. It's
even possible that the lift never leaves the ground floor, if more and more people keep on
pressing the bntton there.

These prohlems can be overcome using biased operators. We use the following definitions:
SYSTEM = (LIFT "R ™ gUTTONS)\ R
LIFT 2 LIFT,
LIFTy = req; 24 armvey = LIFT]
0O regy 2, arrivep -4 LIFT,
D regp LN RITIVED 4 LIFT,
LIFTT = vegy 24 armver —4 LIFT,
O regy -z arrve; NS To
D reg, 2, arrive; LIFTI
LIFT} = reqy 2 armue; = LIFT;
[regs N arriveg LN LIFT,
Dreq; —+ arrive; — LIFT}
LIFT; 2 req; =+ armve; - LIFT}
O reqe —= arrives —— LIFT,
D regs 2, arrives - LIFTy
BUTTONS = BUTTON; BUTTON; BUTTON:
BUTTON, & push, — reg; =+ BUTTON, (:=0.1,2)

3.3 The semantic mode! 29

where the interleaving of the huttons could be either left- or right-biased. LIFTy and LIFT,
represent the lift oo the ground and second floors respectively; LIFT,T and LIFT‘,‘ represent
the lift on the first foor where the previous movement was up or down respectively. The lift
is hiased in favour of next going to an adjacent floor; when it is on the first floor it is biased
in favour of continuing in the direction it last went. The reader may care to verify that none
of the problems described ahove occur given these definitions.

In section 5.5 we will formally verify that if the environment always allows the armve events
then the lift arrives at a floor within 15 seconds of the button being pressed.

3.2.2 An interrupt mechanism

We cansider now an example of an interrupt mechanism, jutroduced in [CH88), and illustrated
in figure 3.1. A counter can normally continually perform the events up and down. Tf,

up

C i INT |— shut_down

doumn

Figure 3.1: A counter with interrupt mechanism

however, the event shui_down occurs, then it shonld be interrupted via the internal event i.
In an unprioritized model the definition would be

SYS = (G XY INT)\+
INT = shul_doun — 1+ — STOP
Cp 2 up— Cr 1 — STOP

Cats = (up — Coyp dowm — C,) i 3 STOP

where the alphabets are given by X = {up, down, 1}, ¥ = {i, shut_down}.
It should be obvious that this conld perform the trace (up, down, shul_down,up, down):
C can choose to ignore the event i, offered by /NT, in favour of 1ps and douns. We can get
around this by giving the i a higher priority than the up and the down:
Cy up — C; i — STOP
Cntt = (op — Cayg down — G)@ — STOP

i

where the external choice could be either left- or right-biased. Now the i will be performed
as soon as it is offered, and € will he interrupted as required.

3.3 The semantic model

In this section we develop a semantic model for our langnage. We begin by describing how
we want to model a behaviour of a process. We then present some notation before producing
the semantic model itself, which will represent a process by the set of behaviours that it ¢can
perform.

30 Probabilities and Priorities in Timed CSP

3.3.1 Bebaviours

As in most models of concurrency, we want our model of a behaviour, or observation, of a
process to record the events performed. Since we are interested in the different priorities
given to different actions, we also want to include some representation of these priorities. It
will ease our notation to also include the time at which the observation ends. Our model
af a bebaviour will therefore consist of three parts: the time up until which the process is
abserved, the events which it performs and the priorities given to different actions.

The trace of a pracess is the collection of timed events which it performs. In standard
Timed CSP the traces {(0,a},(0,4)) and {(0,8},(0,8)} are treated as distinct. In this
thesis we want to associate these, otherwise when we come to consider probabilities we will
experience prablems. For example, consider the process a+—b; if the envirenment is willing to
performan a and a b at time 0 then this can perform the trace {(2, a), {0, b)) with probahility
one andcan also perform the trace ((@,b),(0,a)} with probability one: our probabilities will
not sumto one. In our model we shall say that in this environment the process performs the
bag {|a, 4} at time O with probability one.

We represent traces as functions from an initial segmeut of the time domain to bags of events:

Definition 3.3.1 (Timed traces) The space TT of timed traces is defined by
TT = {s: TIME »bagX |3+ doms=[0.7]}
o3

We think of s({) as being the bag of events performed at time ¢. Both of the above traces
are represented by At if £ = I then {ja,]} else {}. For ease of notation. we shall often
write traces as sequences within the brackets < and >, so the above {race will he denoted
by either <(1,a)}, (!, b} or <(7,b), (7, a)>, and the empty trace is written <>, We shall
sometimes omit the brackets for singleton traces.

We say that a process offers a particular bag of events if it is willing to perform that bag, or,
put another way, if it offers the bag to parallel processes.

Definition 3.3.2 (Offers) The set of offers OFF is defined by OFF = TIME x hag .
¢

The pair (1, x) represents the bag of events x being offered at time f. We shalt write v, w,
etc. for typical members of OFF, and v, ¥, etc. for typical members of bag T.

Note: It is normal to consider a function from type a to type b to be of type (ax b). Using
this identiication, we can consider a timed trace to be of type (TIME x bag L}, i.e. a trace
is simply a collection of offers. We will make use of this to simplify onr notation.

A process will often be willing to offer more than one particular bag of events. It will then
have some preference as to which bag of events it would rather perform. For example, the
process o +— b initially offers the bags {ja, b}, {af}, {0}, and {}, and prefers {a, b} to {af},
prefers {o} to {|b}, and prefers {|&f to {J}. We want to model the order of preference of offers.

Definition 3.3.3 (Offer relations) We defiue the space OFFREL of offer relations to be
those relations C of type OFF x OFF satisfying the following conditions:

3.3 The semantic model 31

—

. (t,x) C (¢',x') = t = t' (comparable offers occur at the same time)
wl w Aw' Cw’ = weC v’ {transitivity)
wCw Aw C w=w=w (antisymmetry)

w € items C. = w C w (reflexivity on iterns C)

o wmo

L {t,x), (4,9) € items T = (¢, x) T (¢, %) v {{,¥) E (2, x) (totality on itemsC)
where items T is the set of all offers made by the process:
temsC = {w|3v wCvVvvCw}
o

Informally, if v C w then the process would rather perform w than v. For example, s +— }
has offer relation with {0,{}) C (#,(1}} C (0.{a}) C (0. {a, b}).

Note in particular condition 5 which says that the restriction of an offer relation to a particular
instant is a total order on those offers that the process 15 willing to perform.

We introduce the following shorthands:

vCwes v wAv£w vldwewlv vIwswly

A behavionr will be a triple of type TIME x OFFREL x TT. The behaviour {r,C,s) will
represent an observation up until time v where trace s is observed and where C gives the
priorities on offers. We shall discuss which behaviours are possible after we have introduced
some Dotation.

An environmental offer is the set of bags of timed eveuts which the process is offered by the
environment; more farmally, it is a set of offers, i.e. a set of type (OFF). Welet EQOFF
be the set of all environmental offers and write £ for a typical member. We shall discuss
environmental offers more fully after we have introduced some notation.

3.3.2 Notation

Our notation is hased upon the notation for the Timed Failures Model, described in sec-
tion 2.2.2. An index of notation appears on pages 214-218,

Our natation for bags follows that of Morgan [Mor90]. We write b.€ for the uumber of times
element e occurs in bag b; € € b is true iff b.e > 0. We have a number of operalions on bags

(by Ubgle=br.eUbg.e (byNbg)e=byemMbge
(b; —bz).e=(b;.e—bg.e]L|0 (b Wha)e=bse+ bye

where the operators U and I return the maximpum and minimum of their arguments respec-
tively. Bag enumerations and bag comprehensions are written within bag brackets {| and [.
If a particular value of a bound variable occurs more than once in a bag comprehension, then
the corresponding term occurs more than once.

The function times returns the set of times at which events occur during a trace:

times s = {¢ | s(1) #{}}

32 Probabilities and Priorities in Timed CSP

This contrasts with the function 7 which returns the set of all times in the domain of a trace:
Is = doms
‘We can define similar functions for offers, offer relations. and environmental offers:

I, x) & 2
IC = {1]3Iy (I,x)€itemsC}
times 0 = [t I £{F (£,x) €}
I = {t|3x (L) et}

We will consider only those offer relations T and envirowmnental offers £2 such that JC and
It are intervals.

i

[}

We define begin and end operators which return the times of the first and last events of a
trace:

begins = {°° if times s = {} if times s = {}

inf{times 5) otherwise

end s = {0

enp(times s} otherwise

[t will also be useful to define the function begin on environmental offers: it will reture the
time at which the environment is first willing to perform an event:

begin 2 = oo ff trmes 2 = {}
inf{times Q) il trmes Q 3 {}

The firsi and {ast operators return the bags of initial or final events of a non-empty trace:
first s = s(begin 5) last s = s(end 5)
The head and fool operators return the first and last non-einpty offers performed:
head 5 = (begin s, first s) fool s = {end s, last 5]
The during operator T returns the subtrace of a trace that occurs during some time interval:
stI2{tmsit)|tel}
We can define similar operators on offer relations and euviroumental offers:

ctrs
at!

T where (t,x) T (t.) & tE€ T A {t,) T (£, 9)
{U’a?() EQ| Le [}

]

I}

We use these to define before {), strictly before (), after { J, strictly after { } and at (1)
operators:

s 1= 510,14 C ¢t =Ct]a.y Q= Q10,4
s = st[o,) CtrzcCtlon Qt=Qto)
s 4 & stltea) C t = Ct[toe) 0t =01t
5 £ & st(t oo, Ct=Ct(thoo) Q=2 Q1)
sTt = {t.s(E) Ctt =Ct{t} fire = Qt {4}

3.3 The semantic mode! 13

We define a partial concatenation operator on traces:

s; sz ={ter ap{t) |t €Jo; Ut 2(8) | t € [z}
if 37 IS;UI32=[0,T}AVEIEfs;;ngng ty < &g

This is only defiued if the time intervals of s; and sz follow one another without a gap and
without overlap. We define similar operations on offer relations and environmental offers:

C;, C: 2 C; ULy ifdr IC,UIC,=(0,7]AVYE €10, €I0, & <
2, O = QU if 37 I.Q;UI.Q;;:[G,T}n\Vt;EIQ;;lgEIQg by <t

We define restriction and hiding operators on offers, traces, and environmental offers:

(tx) X = (L{seecxyleeX]) tx)\VX = (t,laex|ag¢ X}
s X = [tms(t) X|tels}) s\X & [t-s{t)\ X[tels
O X = {{t,x X)|(L)en} VX = {(Lx\VX) |ty en)

We will define a hiding operator on offer relations in section 3.4.11.

The alphabet function T returns the set of (untimed) events from a trace or offer relation, or
the event component from an offer:

Zs = {a|3t ae€s(t})
IC = {a|3(¢,y) €itemsC @€ x}
B{t,x) = x

The operators + and — temporally shift their arguments forwards or backwards through
time:

{t+1t' 2ty | ' € Is)

s+l =

s—t = '~ ()| elsnt 1}

C+t =L where(b+¢,x) T e+, ¥) ' .x)C (£
C-t=2C where(!'-t,)C' (F -0} & (',] T ()t |
Q+¢ 2 {(¢+6x) | (Fx) et}

Q- = {{~tx) (. xJeftat ¢

Recall the definition of the function items which returns the set of all offers of an offer relation:
itemsC 2 {w|3Jv wluVyLl w}

It is usefu] to define an operator @ : (TIME) x seq(bagZ) - OFFREL which we will use
for representing offer relations: I ® (xg,Xs,---,xn_r) represents the offer relation =, such
that for all times ¢ during I, (¢,xe) D {t,xs) 2 (t,xg) J... 3 {tixn-1).

VI: (TIME);d:seq(bagLl) I®@d=C
where (L, x)C (F, W) t=teladiy 0 1 j<#dnd() =vady =

34 Probabilities and Priorities in Timed CSP

We denote the maximum elements of £ under C hy U2
LeQE{(t,x) € QNitemsC | Yy (#,9) € itemsC N0 = (2, 4) C (L x)}

Note that Lic§2 is a set of offers, one offer for each time during the duration of 2, and so can
Le thought of as a trace — namely the trace where at each instant the element of {2 that is
maxima under C is performed. This will be the trace that a process with offer relation C
will perform when placed in an environment £2.

3.3.3 Possible behaviours

Only certain behaviours {r,C.s) are possible. We want tu limit our attention to those that
satisfy a number of healthiness conditions which express some of our intuitions abont how
a proeess shauld behave. Proving that our semantic definitions do satisfy these conditions
will imptave our confidence in the model. On the other hand, failure to prove the conditions
suggests that something is wrong: when we were first developing the semantic theory, we
experimented with several plausible-looking models, only to find that in these models there
seemed to be no way of defining the constructs of the language in such a way that the
healthiness conditions were satisfied; thus these models had to be abandoned or refined, until
we eventually hit upon what we believe to be the correct one.

We define the space BEH of possihle hehaviours to he those triples (1,C, s) of type TIME x
OFFREL x TT satisfying the following healthiness conditions:

Al JC=1s =[0,7}

A2 Yt T sTHEltemsC

A3 (ty <ty AVEE (E,8r) (tx) € itemsT) = {ig,)W s T to s T Hp

Ad (tp<t; AVLE (B9, ty) {t,n) EitemsCT) = (t;,%) € items C

AL (Y} eitemsC Ay C xy = (1, ¢) €itemsC

A6 vwpw Jv Alvwosw)INne =vNe = e Jvvewe Ju)
AT, #s< oo

AB. Ak: I,,....Iw_; € TINT
Iy, ... Ty partitien [0, 7]
AVi: 0. k—1;t0 el x,yy€bagl (LX) C(4,9) = (%) £ (2 4)

We discuss the eight healthiness conditions in turn:

Al. If a process is gbserved up until time 7, then the time intervals of the trace and offer
relation must be the interval [0, 7].

A2 itemsC is the set of offers that the process is willing to perform: a process can only
perform offers from this set.

3.3 The semaniic model a5

A3.

A4

A5,

AG.

If a bag x is offered throughout some open interval beginning at ¢, then at #y this hag
is offered along with whatever was performed at that time {{¢g,3) & 5 T #p). Further,
the process would have rather performed (tg, x) W s 1 fp to what it did perform.

The condition says something about the time interval over which a process is willing
to perform a particular action: namely that this interval is closed on the left. Inother
words there is a particular time at which an action is made available.

This condition is necessary to avoid processes such as the one that offers a bag x during
(0, 1); if the environmeut offers y from time 0 onwards, then it is unclear when it should
be performed. The axiom says that if x is offered throughout (@, 1) then it is offered
at ¢ along with what was performed then.

To understand why {{g, x)Ws T & is offered stronger than s T & consider the following
situation. Suppose the process P performs a b at time 0 then offers an a during (@, 1),
but offers the bag {la. b} weaker than {4} at 0. Suppose this process is in an environ-
ment §2 that is willing to perform {Ja, b}, {8} or {af} at time 0, and {la at any time
after 0. Then P will perform a & at 8, but there will then be no sensible choice as to
when the e can be performed. This axiom (along with a similar condition on environ-
mental offers, presented in section 3.3.4) prevents situations like this from arising: if
a process offers an a during (6. 1) after performing a & at time D, then it should have
offered {Ja, b[} stronger than {Jb]} at 0; in environment €2 it would have performed {ja, 4]}
at time 0.

In chapter 6 we will consider the timed failures that are related to a particular behaviour
in the Prioritized Model. This condition will be used to show that the refusal set of a
process is opeu on the right.

If a process offers a bag x at all times just before t;, then it also offers x at ¢;. The
condition alsc says something about the time interval over which a process is willing to
perform a particular action: namely that the interval is closed on the right. In other
words, the offer is still available at the moment at which it is withdrawn.

The offers of a process are suhbag closed: if it is willing to perform some bag x then it
is willing to perform any subbag of x.

To understand this condition it is useful to consider what it means in the prioritized
model for a bag of events to be refused. In the classical models of CSP, events are
refused if the process can not perform them in addition to what it does perform. The
ohvious adaptation of this to the prioritized model is that a process refuses a bag of
events x at time ¢ if it prefers not to perform ¥ in addition to what it does perform,
that is:

stew(t,x) 2sTt

The condition A6 implies the following:
vEwdrAvHy Jvrvbuwwy D (*}

which says that if the process can refuse w while performing v, and can refuse &' while
pecforming v, then it can refuse w and w’ when they are offered together.

36 Probabilities and Priorities in Timed CSP

However, it turns cut that this condition is not quite strong enough to prove directly
by structural induction. Consider an offer relation witk

{ja, 6} 2 {ch 2 {i=f 2 {3} 2O

This relation satisfies (x), but not A6, If we were to hide e from the above offer relation
we would get an offer relation with

{a.6F 24F 2{al 203}

which fails the condition (*). We therefore take the stronger condition A6, and de-
duce (+) as a consequence,

The condition (v@Ww® w') Ny’ = yNv' in the statement of A6 says that v is a subset of
v#¥ wwWw' that contains as many memhers of v as possible (and possibly events from
outside v* as well), Tt is worth noting that this condition is always satisfied if v/ C v.

A7. The process can only perform a finite number of events in a finite time. Later we will
show that for each process, there is a finite bouud on the number of events that can be
performed by a given time.

A8. The offer relation changes shape a finite number of times: there is a finite number of
time intervals Ip,...,Ji—; such that the offer relation does not change shape during
each interval J,. Later we will show that for each process, there is a finite bound on the
number of times that the offer relation can change shape within a given time.

Using these conditions, we can show that the empty bag is always offered:

Theorem 3.3.4: ¥(r,C,5) € BEH Yte[o,r] (L,{]}) €itemsC. v

Proof: By condition Al, doms = [0,7], s0 for all ¢ € [0,7], 8 T ¢ € items T by condition A2.
Now {J}} CT(s 1 ¢), so by condition A5 we have (¢,{}) € itemsC. a

In seme arcumstances a process can offer a bag of events weaker than the empty bag: the
following theorem says that a process can only do this at isolated times rather than throughout
some interval. This is related to our assumiption about maximal progress: as we will see later,
offering au empty bag stronger than a non-empty bag corresponds to hidden events being
available; these hidden events must either be performed or withdrawn immediately, which
means that the empty bag cannot continue to be offered stronger than a non-empty bag
threughout some interval.

Theorem 3.3.5: i, 41,x fo <ty AVLE (.t} (£,0)C (LD ©

Proof: Suppose for a contradiction that there is some {5, ¢; and x such that {p < ¢; and
Yie (o ty) (LT D (+)

Dick ¢ € (tg,t;) such that s 1 t; = (#5.{}): such a tj exists hy condition AT. Then
Yt (th,¢) (t,x) € itemsC. so by condition A3 we have 5 7 th @ (4, 1) 2 s 1 #;. But this
contradicts (=} since & + ¢ = (&5, {[}). @

3.3 The semantic mode! 37

3.3.4 Environmental offers

The hehavicur of a process is obvicusly dependent upen the environment in which it executes.
In this section we discuss how we model tbe environment. Qur representation of the environ-
ment will become particularly important in the next chapter when we extend our semantic
model to include probabilistic hehaviour.

We will represent an environment for a process P hy a set of offers: the set of offers that
the environment will allow. This set will depend upon the other components of the system,
how P is comhined with the other components, and the environment for the whole system.
As an example, consider the process P = (¢@ b) \ ¢ in parallel with Q@ = b — STOP. with
@ the master, in an environment that allows a b at time 0. It should be obvious that this b
will he performed. But in what environment does P execute? It cannot be in an environment
that allows idling, for if it were then it would have performed the a silently. We are forced
to conclude that P is in an environment that allows a #, hut does not allow idling at time Q.
We shall say that a behaviour (r,C,s} is compatible with an environmental offer Q {of
type (OFF))if (r,C, s} could have resulted from the environment offering Q.

Definition 3.3.6: The behaviour (7,C,s) is compatible with the enviroumental offer ,
written {1,C, s) compat Q, if:

1. IQ=[0,7]

291 stt=0UcQtt

33, L €TINT, Xp,... . Xy € (bagR) Q=L xX;lic0..k-1}

4. (Viefltp, ty) (LX) e= (g, x)Wsttpe
where TINT is the set off all time intervals {cpen, closed or half open). &
These conditions state that:

1. The duration of the environmental offer is the same as the duration of the behaviour;

2. At all times, the process performs the element of the environmental offer that is maximal
under its offer relation: in other words, the process picks the offer that it prefers;

3. The set of offers changes only finitely often. Note that this condition is independent of
the behaviour (r,C, s} — we include it here for the sake of convenience;

4. If a bag of events y is offered throughout some open time interval beginning at ¢, then
at tp the environment must have offered x along with the events of 5. In other words,
the duration of an offer is closed on the left: offers become available at a particular
instant, This condition is necessary to aveid an environment such as the one that offers
an a during the period (&, 1]; if a process that is willing to perform an 1 from time
onwards is placed in this environment, then there is no sensible choice as to when the
event should be performed.

38 Probabilities and Priorities in Timed CSP

Of these, condition 2 is perhaps the most important. It describes the way that a process
chooses the events it performs. At each instant the environment is willing to perform any
one of a number of bags of events; the process takes its pick from these by choosing the hag
that is strongest under its offer relation.

It should be noted that there is no ordering on the environmental offer: it is simply a set of
offers from which a process is able to make its choice.

In general, we will allow the environmental offer to be a function of the observed behaviour.
This Ats in with our intuition of the environment for process P being dependent upon the
other processes in the system: different behaviours of P will cause the other components to
act in different ways, and so will cause different environmental offers in the fnture. In general,
it is enough to allow the environment to depend upon the offer relation of the process. When
we want to Stress that environrent £ js a function of the offer relation T, we will write Q(C).
We shall insist that an environment cannot depend upon the future behaviour of the process
(i.e. it is not clairvayant):

in

=0 f= QL) t=0C") ¢

We will only be interested in environmental offers that allow the process to act in some
manner, even if it only ailows the process to idle. For example, we do not want the process
a —+ STOP to operate in an environment that allows neither an ¢ nor idling. We will
call the sitnation where the environment does not allow the process to progress at all a time
deadlock. We shall call an environment friendly if it does not allow time deadlack; this can
be formalized as

VC Vit endC 3y (¢,x) €itemsCNET)

Whatever offer relation the process has, there is some behavionr with this offer relation that
is compatible with the environiment.

It turns out that, subject to a very reasonable assumption. every process execntes in a friendly
environment. We thing of a system a3 being built out of several componeats. We assume
that the system as a whole i3 in a friendly environment — this fits with our intuition of a
system being in an environment provided by an observer who is willing to abserve anything. In
producing the semantic definitions for the operators we will ensure that if a composite process
is in a friendly environment then the subcomponents are also in friendly environments (this
was formally proved in [Low91b]). Hence by induction on the structure of the system, we
can deduce that every component is in a friendly environment.

We will therefore consider only friendly environments. This is equivalent to taking the fol-
lowing definition for the space of environmental offers:

Definition 3.3.7:

EOFF = {Q: OFFREL » (OFF) |VG 3.5 (7,C,s) compat Q(C)}

There is always some behaviour that is compatible with the environmental coffer.

3.3 The semantic model 39

3.3.5 The semantic space Mg

We are now ready to define our semantic space. Firstly, we give a name to the space of sets
of prioritized behaviours
Srg = (BEH)

Stp is the space of sets of timed biased behaviours. We define the space Mrp (the Model
using Timed, Biased behaviours) to be those sets A of type Stp satisfying a number of
axioms. Intuitively, the set A represents a process that can behave like any of tbe elements
of A. The set A must obey the following axioms:

Bl ¥r 0 3alr) (nE,5)eA=>#s nr)

B2 ¥r 0 dn{r) (rnC,s)eA=3k n{r);fe..., iy € TINT
Ig,-.. f_y partition |@, 7]
AVi: 0. k—1;4V eliix,vébagE (Lx)C {89 & (') (. ¥)

B3 {rn,C,s) e AA(Lx)eitemsC = ({,C t,s ¢ (Lx}}eA
B4, 3C (0,C,<»)€ A
Bs ¥(r.C,s) € A;7 >r;0: EOFF IQ=(r1]=
3T T r=CA(,Chs Loy, RIC) €A
We discuss each of these axioms in turn:
Bl. The number of events that a process can perform in a finite time is uniformly bounded.

B2. The number of times at wbich an offer relation can change in a finite time is uniformly
bounded.

B3. A process is able to perform any bag of events that it offers.
B4. The process can perform the empty trace up until time 0.

B5. Any behaviour can be extended in time: if the process can perform some behaviour
{r,C,s) up until time 7, then if it is observed until 7', it can have some offer relation C’,
which agrees with C until 7, and at each instant after = will perform the element of the
environmental offer that it prefers.

3.3.6 Laws

The following law can be deduced from the axioms. If a process can have a particular
behaviour, then it can perform any prefix of that behaviour:

Theorem 3.3.8:

(L) eAAT r=2{C s Hean(r i s o (F{HeA

40 Probabilities and Priorities in Timed CSP

Proof: Suppose (7,C,s) € A A 7' 7. Then by condition A2 on behaviours, s 1 1 €
items C. and by theorem 3.3.4 (7', {[}) € itemsC, so by axiom B3 we have

(' s 17 s1r)ed and (FLC 7.5 7 (P {}eA

as required. B

3.3.7 Semantic functions

In order to give a semantics to variables we define a space ENV of environments or variable
bindings, which contains all functions from VAR, the set of variables, to sets of behaviours:

ENV = VAR — STB

We will write p X for the value assigned to variable X in environment p.

We shall define a function Agy : BTCSP —+ ENV — Srp such that Ay P p gives the
set of possible behaviours of process P given variable binding p. We can give semantics to
syntactic substitution as follows:

Apr PIQ/X] p=Agr P plAar Q p/X|
where p[Y /X] is the environment obtained from p by setting X to ¥:

fZ=X

Y
Y/X|Z =
ALY /X] {pZ otherwise

A BTCSP process is a BTCSP term with no free variables. Its semantics will be independent
of the environment, and so in this casc it is sensible to omit reference to the environment.

In the following section we give definitions for .4 gy for each of the operators; in most cases
the crux of the definition will be the explanation of how the offer relation of a composite
process results from the offer relations of its subromponents. The definitions were proved
sound (i.e they respect the axioms) in [Low0lbj.

‘We will state a number of laws that can be shown to hold of our processes, and also show
which laws do not hold. Most of the Jaws were proved sound in [Low9la).

3.4 Semantic definitions
Throughout this section we will take Ap = Apr P p, Ag £ Apr @ 5.
3.4.1 STOP

The process STOP always performs the empty trace anl offers only the empty bag of events:

Apr STOP p = {(r.[0,7] ® (). <) [7 € TIME}

3.4 Semantic definitions 41

34.2 WAITt
The process WAIT t behaves as follows:

« for observations endiug hefore ¢, nothing is performed and only the empty bag of events
is offered;

e if the environment does not offer at or after ¢ then it performs the empty trace and
offers from ¢ onwards;

e if is offered by the environment at or after ¢ then it is immediately performed: will
be offered from time ¢ until it is performed.

This gives the following definition:
Agr WAIT t p 2 {(r,[0,7]S {1, <=) | T < ¢}
uinle. s b [trjed LA, <=7 ¢
vinienedd HeYled BB (e b <,)=
t ' 7}
3.4.3 SKIP
SKIP is equivalent to WAIT 0, so we have the following definition:
App SKIP p= {(T! [DvT] @ (H ﬂ,ﬂﬂ)."ﬁ-)}
vitnned BAb (rle i, < -1 T}
3.4.4 Variables

We give semantics to the clanse X in the obvious way:

Apr X p2p X

3.4.5 Prefixing

The process a L., P should offer an a until it is performed, and then act like P. In order for
this to Gt with our intuition of causality, we insist that P i3 unable to perform auy events at
time 0.

Agr @ —g—) Pp= {(Ta [0!71 ® ({Iﬂu’:{]“!**)}
U{(Tr [07 t] g ({]al}!{]l}) ;F + t!(t! G) 3p + t) |
(r=t,00{}) Cp, <> sp)EAprT |}

We define the general prefix operator by e Yy Pza- L waAIT i P

42 Probabilities and Priorities in Timed CSP

3.4.6 External choice

Consider the process PO (. We want to derive a definition for the offer relation of P ¢ in
terms of the offer relations of P and Q. We begin hy considering an example. Suppose P has
offer relation Cp and @ has offer relation Cg, with {a} Jp Il Jp {6 and {c} 24 {a} ¢
{it 2¢{d}. Then:

e fthe environment offers {a[} then P will perform it;

« Ifthe environment does not offer {Jaf}, then P may idle and @ may perform {c[}, {}
or {|d}f. Nate that even if the environment doesn’t allow idling at some time ¢ — for
example if it offers anly {c} or {d} — then P may idle at time ¢ while Q performs {Jc[t
or {|d}. Note also that ¢ cannot perform { a]} since if the environiment offers {af} then
it would be performed by P.

e If none of these are possible, then P will perform {b}.

Hence PO @ has an offer relation with {a} 3 {e} 2 {} 2 {4} 2 J2l-
In general, the offer relation of P @ is formed by

1. taking P’s offer relation ({la} 2 {)} 2 {#]} in our example);

2. replacing the occurrence of {|}} with £'s offer relation (to get {la} 2 {c} J{o} 2{} 2
{d} 2 {4} in our example);

3. for each bag that occurs twice, removing the Jower copy (to get {Jla} 2 {c} 2 {) 2

Jdb 2 {8}
In general, P @O @ will perform the offer w if the environment offers v and

+ P would rather perform w than idle and the environment offers nothing that P prefers
to w;

* P chooses to idle, @ cffers w and the environment offers nothing that @ prefers to w;
or

o () doesn't offer w, P would rather idle than perform w hnt the environment does not
allow idling and does not offer anything that @ could perform nor anytbing that P
prelers to w.

The process should offer w more strongly than v if

s P prefers w to idling and v is either offered by @ but not P, or offered by P less
strongly than w;

e P prefers neither v nor w to idling, @ offers w and either

- @ prefers w to v; or
— v is offered by P but not @:

or

3.4 Semantic definiticos 43

o P offers v weaker than w, but would rather idle, and @ offers neither » or w.

Hence if P has offer relation Cp and Q bas offer relation T then P @ @ bas offer relation
Cp DL g, where the operator 0: OFFREL x OFFREL — OFFREL is defined by

Definition 3.4.1 {left-biased choice composition of offer relations) For all offers ¢
and w, it t = v = fw then
#(CpDCqlw @ w Jdp (L, {P) A{vCpuwVy€itemsCg \ items Cp)

Vo, wdp (N AweitemsCy A{vEguwVvcEitemsTp \ items)

VueCpwCp (L) Av,w ¢itemsCq

¢

Note that items(C pOE 5} = items C p Uitems £ . Note also that the operator is still defined
when the durations of Cp and Cg are different: for example if the relation C p is empty after

tirne ¢, but C o extends beyond this time, then after time ¢ the offer relation CpDCq is just
the same as Cq.

Haviug explained how the offer relation of P @ Q is derived from the offer refations of P
and @, we can now derive the semantic definition of the process. The process P D ¢ can

o perform the empty trace if both P and @ can;

¢ perform a non empty trace s if P can perform s and @ can perform the empty trace up
until time ¢ = begin s; if the bag x performed at time ¢ is below the empty bag in P's
offer relation, then ¢ must also be able to reject it {or else @ would have performed x);
ie.sttdp (L, Vet ¢ itemsTy; or

¢ perform a non empty trace 5 if @ cap perform it and P can perform the empty trace
up until time begen s and P prefers idling to the initial events of s, i.e. 5 Tt Ap (t,{J[}).

This gives the following definition:

Apr PD@ p =
{(nEpDCg,<>) [{r.Cp <>} € Ap A (1,Cq, <~} € 4g}
U{(r,EpDEqg.5) | s £ <> Abegins =t A (T, Ep,5) € Ap
AL Cg, <>l € dgAa{stiDp (LIl vstt¢itemsCqo)}
W{r,CpMCq,8) {s# <> Abegns =t A(t,Cp, <) €EAp
AlrCq.ale dgasttdp (64h)
We define PO Q@ by POQ=QMDP.
We have a number of laws for the choice operators:

Law 3.4.2 (Associativity of external choice)
(PODOR=PO(QDR) and (PODQOR=PO(QDR)

44 Probabilities and Priorities in Timed CS5P

Law 3.4.3 (STOP is an identity of external choice)
PDSTOP=P and STOPDP=P

Note 3.4.4: The following laws do not hold:
Po(QuRr)=(PDQ)OR; POQDR)=(PDQ)DR

Let P2 a —s STOP, Q £ b — STOP, R 2 ¢ — STOP. Then PO (Q O R) and
(P m Q)0 R will perform an o in preference to a ¢, whereas (PO Q)W R and PN ({Q O R)
will perform a ¢ in preference to an a. <&

Note 3.4.5: The external choice operator is net idempotent iu this model. Let P = a —»
STOP Nb — STOP. Then P D P can have an offer relation with (0,{4}) 1 (0.{a]}) 0
(0,{}), whereas P cannot have this offer relation. <

3.4.7 Parallel composition

We consider now the parallel composition of two processes. We start by considering the
left-biased parameterized parallel composition, F X‘HY Q. The offer relation of P X+|-|— 4 Qs
derived from the offer relations of P and Q. P X447 @ will offer w if

o Poffers w X;
o Qoffersw Y;and
e all the events of w are in either X or V.
w is offered more strongly than v if
¢ Poflers w X more strongly than » X or
e« w X=v X and @ offers w ¥ more strongly than » Y.

Hence if P has offer relatiou Cp and @ has offer relation Cg then the offer relation is
Cp XdbY Cg, where the function X4} : OFFREL x OFFREL — OFFREL is defined by

Definition 3.4.6 (Left-biased parallel composition of offer relations) For all offers
v and w,

v XY Colw e
(v Xrcpw XVv X=w XAv YCEgw Y)
Av X.w X€itemsCpAn Y.w Y EitemsCoAZv,TwCXUY

3.4 Semaantic definitions 45

Note that items(Cp 4t " Co) = (wlw X citemsCpaw Y € itemsCg A Zw C XuY},

P*dtY Q will perform trace s if
» The alphahet of s is contained in X U ¥;
» P can perform s X; and
» @ can perform s Y.
Hence, we have the [ollowing definition for parallel composition:

Asr PX4Y Q p=
{(T,gprH-y Cg.8) [(n,Ep.s X)EApA(r.Cg,s Y)€EAgALsC XKUY}

We use this definition to define the other paraliel operators:
PEBRYQ=QY4* P P4Q2PTHYQ PHQ=PIHTQ
This gives the following
Apr Pdt @ p={(r,Cpd4f Cg,9) | {r.Cp,s) € Ap 1 (7,5, 5) € Ag}
where the parallel composition of offers is defined hy
vEpft Eqlw o vCpw A v, weitemsCyp
Note that items{C p it Cg) = items Cp Nitems Cg.
A numher of laws hold for the parallel operators:
Law 3.4.7 (Associativity of parallel composition) The following laws hold:
PXGTUE(Q TP R) = (PX¢Y Q) V4P R
PXPTUZ(QY IR = (PARY Q)XY 42 g
PH(Q4R) = PH Q4R
P (Q4tR) = PH(Q$R)

Fa¥

Law 3.4.8 (STOP is a zero of parallel composition) P 4 STOP = STOP and P 4
STOP = STOP. &
Law 3.4.9 (Communication) The following laws for cammunication hold:

(a — Pt (e = Q=c— (P4 Q) fa—=PlPpla—>Q=0c—P+H Q)
(@ Pt (b— @)= STOP {(a—+ P) (b — Q)= STOP

46 Probabilities and Priorities in Timed CSP

Note 3.4.10: We do not have the following laws:

PX-HQ'YUZ(Q Y<‘|'|'2 R) - (PX%Y Q)XUY('H‘ZR

P).'*H_YLIZ (Q Y(.H_Z R) - PX*H'YUZ(Q Y_|_|+Z R)
Let P2o — STOP, @ = b - STOP, R=¢c— STOP, X = {a}, Y = {b}, Z = {¢}.
Then:

o PXpYVZ(Q Y@ R) prefers a ¢ to an o, whereas (P ¥ 7 Q) *V Y ¢t% R prefers an o
toa c;

o PXQYYT(Q Y@ ? B) prefers a b to a ¢, whereas P X4 Y2 (@ ¥ % R) prefers a ¢
toa b.

Note 3.4.11: We do not have the lJaw P4 (Q b R) = (P4 Q) R. Let P = amb,
Q@ =amb, R=amb. Then Pof (@ b R) prefers an a to a b, whereas (P4t Q) b R prefers
a b to ana. . <o

3.4.8 Interleaving

‘We want to derive a definition for the offer relation of P +— @ in terms of the offer relations
of P and). We begin by considering the question

If P «— @ offers w, then what do P and @ offer?

It is clear that P must offer some suboffer of w, and @ must offer the rest of w. Let wp be
the subofler of w that P offers strongest subject to the condition that Q can perform the rest
of w. Let wg be the rest of w. We make the assumption that P +— @ offering w corresponds
to P offering wp and @ offering wq: since P is the master, it chooses the suboffer of w
that it prefers. We define an operator ZP Qwhich returns the subset of its argument that

s oﬂ'ered strongest by I'.‘p subject to the COndI.tIOD tbat the rest of the argument is offered
(HJwp €itemsCp,wg € itemsCg w = wpWuwg) =
Apgp,ng =Ucp{wp €itemsCp | wh C wA w— wp € itemsC, 5}
It will be useful to define an operator that returns the rest of the offer:

(Jwp etemsCp,wg €items Ly w=wpWug) = ‘b;p,gow = 1w — LPEp-Eqw

Let wp and wg be the suboffers of w performed hy P and @ respectively, i.e. A‘PCP Eqw and
Vbcp Eow. Let vp and vg be the corresponding suboffers of v. Then P +— @ offers w more

str—ongly than v if

3.4 Semaatic definitions 47

» P offers wp strictly stronger than ve, or
s wp = vp and @ offers wg stronger than vg.

Hence, if P and @ have offer relations C p and C g, the offer relation for P+— Q is Cpe—Cp
where +— is defined by

Deflnition 3.4,12 (Interleaving of offer relations) For all offers v and w, if
Juvy € itemsCp, vy €itemsCg v=vp ¥ vb
ATwp €itemsCp up Citems S w = wp W wy

then
v(iCp+—Cplw s up Cpup YV up =wp Avg g wg

where
p= ZP';PJ;QU ve = ;b;P!;Qv wp = 42?@@»"} we = ngpwng
Note that items(Ep «— Cg) = {wp Wwg | wp CitemsCp A wg € items Eg}.

P «— @ can perform trace s if, at all times ¢, P can perform some subbag of s 1t and @
can petform the rest of s T ¢. In particular, P performs that subbag of s 1 ¢ that it offers
strongest subject to the condition that @ can perform the rest of s * t. We extend the

ﬁpgp‘gaand ‘bg o operators to traces:

tP;P‘;Qs = {tw c}\EP (st1)]tels} ;}7;})’;03 = {tw gbgpigé‘s te)|te fs}

We then have the following definition:
Asr Pe—Q p2{(nCpe—Los) | (nlp b D EAPAMER Y, o) € A9}

The right biased interleave operator is defined by P — @ = ¢ +— P.
We have a number of laws for interleaving:
Law 3.4.13 { Associativity of interleaving)
P—(Qe—R)=(P—@)+—R and P (Q@Q—R=(P—Q —R

Law 3.4.14 (STOP is an identity of interleaving)
P+—S5TOFP =P and P —STOP=P

Note 3.4.15: We do not have the following laws:
Pi—(Q—R)=(P— @) —R P—(Qe-R=(P—Q)+R

Let P=a — STOP, Q2 b — STOP, R = ¢ — STOP. Then P +— (¢ — R) and
{P— @) +— R prefer a to ¢ whereas (P +— @} — Rand P — (Q «— R) prefer ¢ to a.
<

48 Probabilities and Priorities in Timed CSP

3.4.9 Communicating parallel

The process P'H‘ (@ executes the processes P and @ in parallel, synchronising on events
from C. and mterleavmg on all other events. It can be defined by

P4 Q= ctP) 47 r(Q))
where
cla) =a ifeeC

fae € faeC
TR T O A cife) ZaifagC
I.a otherwise r.a otherwise . K
cra)y=aifag C

and
AslHE-CyucC B=rE-C)uC

and weassume [(B)NnC=r(S)nC = {)}.
In order to give a semantic definition to this operator, we first consider what offers P and @
perform when P *j&f‘ @ performs some offer ». By analogy with the definition of interleaving,

we claim that P and @ perform %Ep,gqv and ?EP:EQv' respectively, where the operators
and are defiued b
?;anq t[_:P»';Q 4

Definition 3.4.16: For all offers v and w, if
Jyp citemsCp;vg €itemsCg wp C=vg C=v CArvpw(y\C)=v
then

v 2 U, {epColep C=v Carv—{vp\C)citemstq}

v = y— (%EP-EQH) \ O

o< o
n
T
i
G

n
»
I
o

¢

P performs a snbbag of v that contains all of v €, and such that @ can perform the rest of v
along with v C'; subject to these conditions, it performs the subbag of v that is maximal
with respect to its offer relation. € performs all of v except for those events outside the
synchronisation set that are performed by P.

If 2 and ¢ have offer relations C » and S then P‘it € will have offer relation Ep*ﬂ? Cg,
defined by

Definition 3.4.17 (Sharing composition of offer relations) For all offers v and w, if
Jup, wp € itemsl;p;vb,w'g €itemsCg vp C :vb C=v C
A wh C’=w'Q C=w
Au};@(ub\C):U
Aupd(wp\ C)=w

3.4 Semantic definitions 49

then
U(Ep‘ﬂ.' Colw e vp Cp wp V op = wp Avg Cg wg

where

wp = [ﬁEpEQw vg = ?gp.gqu wg = dggp.ng

=
h’
I
o>
[l
b
In
o]
-]

&

Cp ﬁ(‘_}!‘ Cy is the lexicographical ordering an the corresponding projections of its arguments.

We can now give the semantics for the “ﬁ" aperatat.
Apr P4 Q p = {(rCrt Cavs) | ('r,;p.j:gpygqs) € Ap A (r,;q,dggpggqs) €4q}

where the & _ and operators are extended to traces by
?EP-EQ tEEP»gQ P

i\gp‘gqs 2 {trs A({:;PEO(S t)]t els) ?EP,EJ =t dggpéo(” 1) te Is}

We can define a right-biased communicating parallel operator by

Phe=q4r
Nate that if ZP € A and £@Q C B for some sets A and B such that AN & = C then
PH Q=P 4P Qund P Q=P H7 Q.

3.4.10 Nondeterministic choice

The process P 1 @ either acts like P or like @. Therefore the set of behaviours of PN @ is
the union of the behaviours of P and Q:

Agr PNQ pEApr P oUdpr @ p
The following laws hold for the nondeterministic cboice operator:

Law 3.4.18 (Commutativity of nondeterministic choice) PN Q@ =Q N P. PN

Law 3.4.19 (Idempotence of nandeterministic choice} PN P = P. Fa

Law 3.4.20 (Associativity af nandeterministic choice} PN {Q N R)=(PN QN &.
Pl

50 Probabilities and Priorities in Timed CSP

Law 3.4.21 (Distributivity) All operators except recursion distribute through nondeter-
ministic choice:
Prefixing: a—'a(PFIQ):a;}Pﬂa—uQ
External choice; PO(QNRy=POQnPOR
(PNQ)OR=PDRNQDR
Parallel cornpasition: PX4:¥ (QMB)=P*¢4 Y gnpPX4¥ R
PR 4" R=P Y RN Q¥4 R

Interleaviug: Pr—(QnRA)=P—QnP—R

(PO +— R=P+—RNQ+— R
Hiding: (POQINX=P\XNQ\X
Renaming: PN QI =f(P)TA(Q)

Sequential composition: (PN Q) R=P RN R
P (QNRY=P QP R

and similar laws for the right hiased operators. Jay

Infinite nondeterministic choice

The semantic definition for the infinite nondeterministic choice operator is similar:
Asr o Piez|HAsr Piplrel}

As in the Timed Failures Model, we need a restriction upon the sets of processes over which
the choice can Lie made.

Definition 3.4.22: The set {F, | 1 € I} is um/formly bounded if
Yr 0 An(r) Viel;pe ENV (r.C,s)cdpr P, p=#s n(7)
and

VY7 0 3An(r) Vie[.p€ ENV
(r.C,8) € Apr Pi p= 3k nl(7);Jo,....Jeoy : TINT
Jo, ... Je_ pattition [@, 7]
AV 10 . k—T1:tt:J x,v:bagl {{,x)C(t.¥) & (K, x)C (9

<

These two conditions correspond to axioms Bl and B2 of tbe semantic space. The first
condition states that there is a uniform bonnd on the number of events that any of the
processes can perform within time 7; the second condition states thal there is a uniform
bound on the number of times that the offer relation can change shape within time 7.

3.4 Semantic definitions 51

The reader should be aware that this method does not always effectively model nondeter-
minism that does not manifest itself in a finite amount of time. For example, consider the
process Py, that can perform n as:

Py 2 5TOP Puys 26— P,
Let P be the process that chooses nondeterministically between the P,:

il nENPn

P can perform any finite nnmber of as. We would expect this to be different from the
process P’ that can perform an arbitrary number of as:

P'=(a -+ PN STOP

However, our semantics gives tbe same value to both of these processes.

3.4.11 Hiding

In order to define the operation of hiding on processes we must first define hiding on offer
relations. A bag of events being offered by P \ X corresponds to P offering a bag of events
w' sucb that w' \ X = w. In general, P may be able to perform several bags w’ such that
w' \ X = w. We make the assumption that it performs the one that is maximal with respect
to its offer relation. This can be thought of a3 a sort of maximal progress assumption in that
the process performs as many hidden events as it wants.

‘We want an operator that, given an offer of P \ X, returns tbe corresponding offer of P. It
will turn out that our semantic definition of renaming will be very similar to that for hiding,
so we define an operator that can be used in both cases. The operator £ : OFF + OFF is
such that { w is the C-strongest offer w' such that guw' = w: -

v citemsT gu'=w = flw=Uc{w €itemsC | gu’ = w)
Hence, w being offered by P \ X corresponds to ﬂE\X w being offered by P. The operator
ﬂ‘é\x can be though of as a sort of “inverse hiding” operator in the sense that _ Y X oﬂE\X =
id. The offer ‘nﬁ\x w is the C-maximal member of (_\ X)~‘(w).

P\ X will prefer w to v if P prefers ﬂg\x w to ﬂE\X v. Hence we have tbe following definition
for hiding on offer relations:

Definition 3.4.23 (Hiding on offer relations) For all offers v and w, if
Jd\ 0 €itemsC v\ X=vAuw \X=w

then
WA X)w & 4 vE 1w

52 Probabilities and Priorities in Timed CSP

Note that items(C \ X} = {v\ X | v € itemsC}.

An offer relation C of P \ X must have resulted from an offer relation C’ of P, such that
C'\ X=LC. Then for P\ X to perform trace s, P must perform trace ﬂE}X s where the
operator is defined on traces by -

ﬂé,s={tt—>ﬂgg,(s1'1)|t€]s}

This exists only if for all ¢ there is some v € itemsC’ such that v \ X = s t t: this is
equivalent to saying ¥+ s 1t € itemsC. Thus we have the following definition:

Aar PAX p={(r.C,s) |Vt sticitemsT Al TV X =C A (r.C 2% s) € Ap}

The fallowing laws relate to the hiding operator:

Law 3.424 (General laws for hiding) P\ {} = Pand (P\ X)\ Y =P\ (XU Y]}

A
Law 3.4.25 (Distribution of hiding) Tbe followiug two laws hold:
WAIT ¢, X) if X
(e 5Py x = PAIT A e
e — (P\ X) ifag X
(P QAN X = (PAX) P (QVN)ITXCAVBUBAA
A

3.4.12 Renaming

The definition of renaming is. in many ways, very similar to the definition of hiding. To define
renaming on processes, we must first define renaming on offer relations. The process g(P}
performing v corresponds to P performing ff » {assuming of course that there is some
»' € itemsC such that gv' = v). Hence tbe offer relation renaming aperator, which we write
as 3, has the following definition:

Definition 3.4.26 (Renaming of offer relations) For all offers v and w, if
3w € itemsC gvr =1 A gw' = w

then
vgoCw & tEvCiiw

3.4 Semantic definitions 53

Note that items(g © C) = {gv | v € itemsE}. We shall sometimes choose to write g @ C
as gC.

A behaviour {r,C, s) of g(P) must correspond to a behaviour (7, E',Trf:, s) of P, such that
g @' = C. This is well defined only if V¢ s 1 ¢ € itemsC. Hence we bave the fellowing
definition:

Agr 9(P) p = {(r.C.s) [Vt sticitemsCAIC gOC =CAfnL AL s) €Ap)
For bijective g , we have
Apr 9(P) p = {(r,g ®L,g5) | (1., 8} € Ap}
Where in this case g @ C = {{gv,qw) | v C w}.
The following laws bold for the renamiug operator:

Law 3.4.27 (Successive renaming) f(g(P)) = (f g)}{(P). A

Law 3.4.28 (Distribution of renaming) g(o — P) = ga — g(P). Fa

Law 3.4.29 (Distribution of renamiug by bijective functions) If ¢ is a bijection then
the following distribution laws hold :

s PR Q) = o(P) ¢ 9iQ)
opX FX)=pY g(Fg7'Y))
g(P\X) = g(P)\ gX
g(POQ) = g(Fmg(Q)
g(P — Q) = g(P)e— g(Q)}

3.4.13 Sequential composition
A behaviour (7,C, s) of P @ can come about in three ways:
¢ a bebaviour of P that does not terminate before time r;
¢ a behaviour of P that terminates between times + — § and 7; or

¢ a behavionr of P that terminates successfully before time v — & followed by a behaviour

of Q.

54 Probabilities and Priorities in Timed CSP

Note that we have to hide the event [rom any behavionr of P in order to make sure that
it happens (silently) as soon as possible. We have the follewing definition:

Agr P Qp=
HUr.Cp,sp) |¥1I spTf€itemsCy
AIC, Th\ =Cpaln g'p,@: splEApn ¢ 2(1@: sk}

VirCp (7]@ {D), sp) |

t T<t+daYY sptt €items(Cp (L] @{})

AILE T\ =CpA(tCh AT sp) € Ap Abegn((D))) =1)
Lir.tp (Lt+8a{h Cot+itéer sg+t+d)]

! T=0AYE sptt €itemsCp

AACh Ch\ =Cp A (LDp AT sl € Ap Abgm((D) 5p))=t

AT —(t+6),Eg,5¢) € 4g}

We have the following laws for sequential composition:
Law 3.430 (Associativity of sequeutial composition) (P @) & =P (R) and
(s — Pl Q=0 —(F Q) A

Law 3.431 (STOP is a left zero of sequential composition) STOP P = STOP.
Py

3.4.14 Delay
Consider a behaviour (7. C, s) of WAIT t; I

» if ¢ > 7 then the process can perform and offer nothing;

e if ¢ 7 then the process can act like P. temporally shifted by ¢.
This gives the following definition:

Agr WAIT t:P p= {{r,[0.7)a {1).0) | ¢ > =}
U(r.foty iy CH+t== s+t)|t TA(r —LE,s) € Ap}

=

The followwg laws hold:

Law 3.4.37 (Effect of SKIP) SKIP PP = WAIT 4, F. A

Law 3.4.33 (Successive delays) WAIT #: WAIT t': P = WAIT 1+ 1'; P. A

3.4 Semantic definitions 55

3.4.15 Timeout

In [Sch9D], Schneider defines a timeout operator by
Pl QP WAITttrig— Q)\ trig

where frig is an event not in the alphabets of 7 or Q. This begins by acting like P; if no
visible event has occurred by time t then the process times out by performing the event trig
silently, and after a delay of length & acts like Q. If P is able to perform its first visible event
precisely at time ¢, then it is nondeterministic whether or not the timeout occurs.

We will define our timeout operator hy refining the external choice in the process definition
to either a left- or right-biased choice. We consider the effects of these two different choices.

+ If we choase a left-biased choice, then if the process P is willing to do it fist event
precisely at time /, then that event is offered stronger than the silent frig, and so will
occur if the environment is willing to perform it.

¢ If we choose a right-biased choice, then if the process P is willing to do its first event
precisely at time {, then that event is offered weaker than the silent irig, and so will
occur only if the environment is not willing to idle.

The first choice seems to be more useful in practice. The timeout operator is often used
where the process is initially waiting for an event to be offered by the environment: if the
event is not offered within a certain time then it times out and acts accordingly. It seems
sensible to give the environment as much chance as possible to respond; we therefore specify

3
that P @ will be willing to accept the events of P at all times up to end includmg .
The first choice also produces the simpler operator: it turns out that with this choice the

1
offer relation of P @ at time ¢ is simply the offer relation of P at that time; if we were to
make the second choice then the offer relation would be somewhat more complicated.

We therefore have the following definition:
Definition 3.4.34 (Timeout) The process P ! @ is defined by
Pl Q= (POWAIT t;trig — Q)\ trig
where trig i3 an event not in the alphabets of P and Q. &
We can use this definition to give a semantic equation for the timeout operator.

ABTP‘Q,O={(T,E,3)|(T tvbeging t)A(r,C,5) € Ap}
U{{r,C (rle{lh <>} t<r<t+6A{{L,C, <) €4p]
U{{r,Cp (1,1 +8) @} Co+it+d=~ sg+t+4)]
T t+5l\(t,gp,-<>-)€APA(T-!*-J,EQ,SQ)EAQ‘}

A hehaviour of P ‘ @ can either he:

e a behaviour of P that either ends before time ¢ or where a visible event has occurred
by thme i;

56 Probabilities and Priorities in Timed C5P

s a behaviour of P in wbich no visible events are observed up until time ¢, followed by a
short period during whbich control is being transferred to ; or

a behaviour of P in which no visible events are observed up until time ¢, followed by a
short delay, followed by a behaviour of Q.

3.4.16 Timed transfer

The process P . {2 acts like P up until time ¢, at which time control is passed to Q {after

a short delay) regardiess of the progress made by P. This differs slightly from the definition
given in [Sch90], where control was not transferred to @ if P terminated normally before
time ¢. The semantic definition is as follows.

ABTPlQpé{(T,;.s)h tA(r,C,s) € Ap}
U{(nE (Lrl@adls <) |t<r<t+b6A(LT,5) € Ap}
UVi(r,Cp (Lit+8{l) Sog+i+tdsp < sqo+i+d)|
T t+IA(LEpspl€Ap A{T —t -8, Cg,8q) € Ag}

A behaviour of P . (} can be either:

e abehaviour of P that ends no later than t;

® abehaviour of P up to time ¢, followed by a short delay during which control is being
transfered to @; or

s 3 behaviour of P up to time ¢, followed by a short delay, foliowed by a behaviour of @
starting at time ¢ -+ 4.

3.4.17 Interrupts

The process P V @ initially acts like P except it is always willing to perform the interrupt
1

event ¢. If an i occurs, control is passed to the interrupt handler @, after a delay of length 4.
‘We assume that P cannot perform the event { — it cannot interrupt itself.

Before the event i occurs, the process should always offer 4; it should be willing to perform
an @ tn adgition to whatever actions P offers. For example, if P has an offer relation C with
(. 06}) 2t {e}) 2 (#,4}), then PV @ should have an offer relation E” with

(8,04, 60) 2 (¢, 02, af) 7' (4,021 7' (2080 2’ (&, 0ed) 2" (6, 4D)

In general if P has offer relation T

=1

then before the interrupt occcurs £ V @ should have

offer relation C b i given by

Ear2L — oo {1

3.4 Semantic definitions 57

The semantic definition of P V @ is

Apt P?QDE
{{(r,C®i,s) |(T.C,5) € ApAnigLs}
u{{r,C@i (t,r)e{il,s <t)=t v<i+8Ai€ s A(L,C,5) € 4p}
Wi(r,Cp®s (1:+8 D Co+t+édse <{t)~ so+t+d)|
T t+6/\i¢Es.p/\(t,f;p,-ﬁp)GAP-’\(T—t—ﬂ,EQ,SQ)EAQ}

A behaviour of P ? Q can be either:

» a hehaviour of P where an additional 1 is offered at all times, and no t occurs:

» a hebaviour of P where an additional i is offered at all times and an 1 first occurs at
time ¢, followed by a sbort pause during which control is being transferred to Q; or

« a behaviour of P where an additional 1 is offered at all timnes and an 3 first occurs at
time f, followed by a behaviour of @ after a delay of length 4.
3.4.18 Recursion

In order to define recursion, we first define a metric on the space M. We do this by con-
sidering the first time at which two processes may be distinguished. We define an operator
an behaviour sets which gives the behaviour of a process up to a certain time.

A t={r,C,s)edlr 1t}
We define the metric on Mg by
d(Ar, Ag) = inf({27 | Ap t=Aq t}u{1})
The semantics of a BTCSP term P is a function of the free variables appearing in the
definition of P. If P is tbe body of a recursive process, then the recursion is well defined if
P corresponds to a contraction mmapping in Mg, For this to be true it is sufficient for P to
be constructive for the bound variable.
Constructive processes
‘We define constructive terms as follows:
Definition 3.4.35: Term P is t-constructive for X iff
Vig: Tip:ENV Apr Pp t+i=Agr Pplp X o/X] o+t
&

P is t-constructive for X if its behaviour up until time #p + ¢ is independent of the valne of X
after {p.

Definition 3.4.36: Term P is constructsve for X if there is some strictly positive ¢ such
that P is t-constructive for X. O

58 Probabilities and Priorities in Timed CSP

From the semantic equations for the BTCSP operators we can derive a number of results
about constructive terms.

Lemma 3.4.37: For any X aund ¢,
1. STOP, SKIP and WAIT t/ are t-constructive for X;
2. X is O-constructive for X, and ¢-constructive for ¥ # X;

3. pX P is t{-constructive for X

Q
Lemms 3.4.38: If P is ¢-constructive for X then
1. ¢ %5 Pand WAIT ¢ ; P are { + t'-constructive for X;
2 uY P,P\ Aand f(P) are t-constructive for X;
3. P t'-constructive for X, for any &' < &,
V)

Lemma 3.4.39: If P is t;-constructive for X and @ is {z-constructive for X theu

L POQ,PDQ. PN, Q. PHQPHQ P47 QP47 Q Pe—QandP — @
areall ¢; M {z-constructive for X;

2. P @ is{; Nty + §-constructive for X.

HRecursive processes

The semantics of a term P with free variable X may be thought of as a function of the
seinantics of X; it is the function that associates with each member ¥ of the semantic
space Stp. the value of P evaliated in an enviroumeut where X is bound to Y. We represent
this function by M (X, P)p:

M(X.P)p2 Y Agr P p[Y/X]

Note that the environment p supplies the bindings for any variables other than X. We use
this mapping to give a semantics to the immediate recursion operator:

Agr uX P p = the nnique fixed point of the mapping M (X, P}p

We will show that if P is constructive for X then the mapping M{X, P)p is a contraction
mapping, and hence the semantics is well defined.

Lemma 3.4.40: If term P is copstrnctive for variable X, then M[X, P)p is a contraction
mapping on the semantic space Stg. %

3.4 Semantic definitions 59

Proof: Let ¥ = M(X, P)p. F is a contraction mapping iff
Ar <t Y85 . T:87g d(F(S),F(T)) r.d(5T)
where 4 i the metric defined by
d{5. Ty zinf({27" |5 t=T t}u{i})

Pick S and T in S7p. If § = T then hoth sides of the above equation are zero. Otherwise,
let d(5, T) = 2. Now F is constructive, so there is a strictly positive ¢’ such that

S 1=T 1= F(8) t+=F(T) t+V

80
d(P(5),F(T); 27 =27 (5, T)

Hence F i¢ a contraction mapping because 2~7 < 1. [m}

We have shown that the mapping corresponding to a constructive term is a contraction
mapping on Stp. To show that it has a unique fixed point, we require the following result
from [Sut75]:

Theorem 3.4.41 (Banach’s Fixed Point Theorem) Let (M, d) be a complele metric
space, and let F : M — M be a contraction mapping. Then F has a umque fixed point
fir(F). Furthermore, for all § € M we have fir(F) = limga 00 F™(5). Q

In order to apply this, we need the following lemma.

Lemma 3.4.42: Mg is a complete subspace of Stp. Q

Proof of lemma: Forall n € , let As be a member of M7z, and let {A, | n € } have
limit A. We must show A € Mrg. Let d, = d(A,, A). Then d, = 0,50V 3N, ¥n
Ny d, <277, le.

¥n N A, =4 1

The axioms of M p can now easily he proved. We prove axiom B5 for illustration. Let
(r,C,8) € 4,7 > 7,0 € EOFF such that /) = (r,7']. Letn Np,s04 ' =4, 1.
Then (1,C,s} € A, and since A, € Mpg there is some C' such that T’ 7 = C and
(T, E'ys Ugne §8) € A, Hence (7.2, s Ugyy, Q) € A as required. o

Corollary 3.4.43: Il F - S7p — S7p is a contraction mapping that maps M rg into itself,
then F has a unique fixed point, which lies in Myg. Q

Proof: This follows immediately from Banach's fixed point theorem, because a wntraction
mapping on Sts 1s a contraction mapping on M rg. O

60 Probabilities and Priogities in Timed CSP

Lemma 3.4.40 and corollary 3.4.43 can be combined to give the following result:

Theorem 3.4.44: If term P is constructive for variable X, then the semantics for
Apr X P pis well defined in all environments p. v

The semantic definition gives rise to the following equivalence.
Theorem 3.4.45: u X P=PuX P/X] Y

This result justifies the use of recursive equations, such as X = o L X, as process defini-
tions.

Delayed recursion

To give a semantics to the delayed recursion cperator. we consider the compositicn of the
mapping M (X, P)p with the fuuction W; which delays its argument by 4.

Definition 3.4.46: If P is a term. X is a variabie, and Y is 2 member of S7g, then
M{X,Plp2 M(X,Plpe W5 where WyZ=AY Agr WAIT §.X p[Y/X]
Q
The W;reflects the delay associated with this recursion. We may now give seniantics for the
delayed recursion operator:
Agr X P p= the unique fixed point of the mapping Ms (X, P)p

It is very easy to prove that M;(X, P)p is always a contractiou mapping, and hence delayed
recursion is always well defined.

Mutual recursion

We can define a BTCSP term iu terms of a vector of mutually recursive equations: {X, = P, |
© € I); represents the jth component of the vector of terms defined by the set af equations
{X; = P,}. We shall write P for the vector {f, |z € I}, etc.

In order o give semantics to (X, = P, | 1 € I}, we consider the semantic domain Shy. ie.
the product space with one copy of Srg for each element of /. We define a metric on this
space by

AU, ¥) = sup{d(U,. V) |1 € 1}
If P is a vector of BTCSP terins, X is a vector of variables, and ¥ a vecter of memhers of

Stg, all indexed by set 7, then the mapping on .5'5'-3 corresponding to P is given by
M(X Plp= XY Apr P o[Yi/ X, |1 €]]
We can now give a semantics to mutual recursion.
Definition 3.4.47: I P is a vector of BTCSP terms, then
Agr {Xi=P;|1€l); p2 5, where § is a fixed point of M(X, P)p

3.4 Semantic definitions L 61

This is well-defined when all ixed points of M{X, P)p agree on the jth component. In the
rest of this section, we study under what circumstances M{X, P)p has a umgque fixed point.

We will need some definitions relating to partial orders.

Definition 3.4.4B: A partial order < on a set § is a well-ordering if there is no infipite
descending chain (s, | + € } such that s,4r < 5, forall i € . The initial segment of 5 iu
(5, <) is the set of elements less than s; i.e. seg(s) = {s' € 5| ¢ < s}. o)

We can now define what it means for a vector of terms P to he constructive for a vector of
variables X. This will turn out to be a sufficient condition for the existence of a unique fixed
point.

Definition 3.4.49: A vector of terms (P, | ¢ € I} is !-eoustructwe for vector of vari-
ables (X; | i € I} if there is a well-ordering ~< ou [such that

¥i,7:1 7 ¢ seg(i) = P, t-constructive for X,
¢

Definition 3.4.50: A vector of terms P is conséructive for vector of variahles X if there is
a strictly positive ¢ such that P is {-constructive for X. o)

If £ is construetive for X then all nnguarded recursive calls from term F, are to a variable X,
such that 7 < 3. Any sequence of ungunarded recursive calls must correspond to a decreasing
sequence of I, and so must he finite.

It will normally be possible to show that all terms P, are constructive for all variables X,.

Definition 3.4.51: A vector of terms (P, | i € I} is uniformly t.constructive for the vectar
of variables {X, | 1 € I} if P, is {-constructive for X,, for all « and 7 in [. I

Definition 3.4.52: A vector of terms P is uniformly constructive for vector of variahles X
if there is some strictly positive t such that £ is uniformly ¢-constructive for X. [¢]

Lemma 3.4.53: If P is uniformly constructive for X. then P is coustructive for X. v}
We can now state the foliowing theorem:

Theorem 3.4.54: If vector of terms P is coustructive for vector of variables X, then the
mapping M (X, P)p has a unique fixed poiut iu $}g. @

Proof: The proof of this theorem follows closely the work of Davies aud Schueider [D590]
and was given in [Low92a]; the interested reader should refer to that paper for details. The
proof proceeded as follows: we defined a secoud vector of terms Q by

Q= Pi[Q:/XJ |7 € seg(r)]

we showed that this vector is well defined; we showed that the corresponding map-
piug M(X, @)p is a contraction mapping and so has a unique fixed point; we showed that
this fixed point is also a fixed point of M{X, P)p; we showed that this fixed poiut is unique.

a

62 Probabilities and Priorities in Timed CSP

From this theorem, we can deduce the following corollary:

Corollary 3.4.55: If vectar of processes F is eonstructive for vector of variables X, then
the semantics of (X, = P}, is well defined. Q

3.5 Communication over channels

In the final two sections of this chapter we consider two variations on the Prioritized Model
In this section we consider how we can model the communication of values over cliannels;
in the next section we consider what happens when we remove the nondeterministic choice
operator from the syntax of the language.

Sote models of concurrency have modelled communication by considering communications of
different values to be fundanentally different events. For example if ¢ is a channel inputting
integers. then the events ¢71 and ¢?2 would be treated as completely different. This is not
udequate in a model where we want to place priorities upon actions: we do not wani to have
to make arbitrary decisions such as specifying that the process would prefer to input a 1 than
a 2. We want to mode! the fact that processes have no preference as to which event they
input along a channel. We will therefore arrange that the offer relatiou just records the fact
that the process is willicg to input something on a channel and says nothing about the values
passed.

Another problem arises from processes such as
(clt 23 Pe—ct2 5 P XY (o725 Qr)e— 29 5 Q')

Here it isimpossihle to tell which process on the right inputs the 1 and which inputs the 2. To
overcome this we shall insist that no process tries to write two things onto the same channel
simultaneously or tries to read two things from the same channel simultaneously. This seems
a reasonable assumption when one considers the physical nature of the channels: no wire
can pass iwo messages simultaueously. It will be a requirement of anyone writing a process
definition in BTCSP to check that this condition is satisfied. Fortunately the folowing lemma
simplifies this.

Lemma 3.5,1: If a process P is such that

e no interleaving within the definition of the process has both sides able to write to the
same ehannel, or has both sides able to read from the same channel; ond

« all renaming within the process definition is one—one on channel mames

then P does not try to write two things to any channel simultanecusly or try to read two
things from a charnel simultaneousiy. Q

One further prohlem arises from hiding of input channels. In normal Timed CSP we have
the identity
(?25:X D P\e=WAIT 1, ,.xP:

However, when we come to extend onr model to include probabilities we will want to avoid
such processes, hevause we will be unable to assign probabilities to the nondcterministic

3.5 Commugication over channels 63

choice on the right. We therefore will not allow input channels to be hidden: again this
seerns a reasonable assumption.

We let CHAN be the set of all channel names. If type(c) is the type of data transmitted over
channel ¢ then we insist that

Ye: CHAN ;x : type(c) cx € X

i.e. all communications are visihle events. We will write c?z to represent the input of value
on channel c.
We define an action to be a pair consisting of a bag of events and a set of channels.

Definition 3.5.2: The set ACT of actions is defined by
ACT = hag¥ x (CHAN)
¢

We will write «, @ for typical members of ACT, x, ¢ lor typical members of hagL and ¢,
n for typical members of (CHAN). The pair (x,(} will represent the performance of the
events of x, and the input of events from the channels of {. We can now define the space OFF
of offers, which are basically timed actions.

Definition 3.5.3: The set OFF of offers is defined by

OFF = TIME x ACT
¢

We will write v, w for typical members of OFF. The pair (¢, (x.()) will represent that the
process is willing to perform the events of x and ioput on the channels of ¢ at time ¢. So,
for example, we will write (7, ({a, a, b}, {€, d})) to represent the willingness of a process to
perform two as and a b, and to input on channels ¢ and d at time 3. For ease of notation,
we will often write the elements of a particular action within bag brackets, marking input
channels with a *?’; so, for example, we will write the above offer as (3, {la, a, b, c?.d7}).

Asg in the model without commuuication, we can now define the space OFFREL of offer
relations as being those relations T of type OFF x OFF satisfying

1. {t,a) C (¢',8) = t = {' (comparable events occur at the same time);

2 wCuw Aw Cu'= wl o (trapsitivity),

3 wCuw Aw C w= w=w' (antisymmetry);

4. w € itemsC = w C w (reflexivity on itemsC);

5. (t,a),(L,) € itemsC = (¢,e) C (¢, 3) v (1,5} C (,) (totality on items C)

where itemsC = fw |Jv vC wVwCo}
Similarly, we now define the space T'T of timed traces by

TT = {3: TIME + ACT |31 dems = [0,7]}

64 Probabilities and Priorities in Timed CSP

i.e. fonctions from times to actions,

Our semantic model for our language remains largely unchanged by this extension, the only
change being the new definition of the space OFFREL.

We can now define a new operator, prefix choice. The process ¢?d : D 4 P, is willing to
input any value d on chaanel ¢, and then act like the process Py, where P, will, in general,
depend on the valve d ioput. In order to fit with our intuitions about cavsality, we will
insist that the processes Py are unahle o perform any events at time £. A behaviour of
¢?d : DL Py will be either:

& zlchaviour where nothing is performed, and the process is willing to input on channel ¢
at any time; or

® a behaviour where an element @ of D is inpot at Lime ¢, and the process then acts
like Py.

This gives the following definition.

Agrctd: D -2 Py p 2 {(7,(0,7) {00}, <-) | T € TIME}
U{(r [0,] ® e A T+ it e?d) s+1)]
dedat talr-t(0}o{h C.s)€Apr Py o}

This definition is well defined (i.e. it satisfies the healthiuess conditions of the semantic space)
if the set of processes is uniformly hounded in the sense of section 3.4.10.

We can now define the general prefix choice operator. The process ¢?d : D Py inputs a
value d on channel ¢, and then acts like process Py after a delay of length 14, where t3 may
depend on the value d input. We can define this process by

7D Py ctd: S (WAIT €45 Pa)

3.6 A deterministic language and model

In this section we show how we can produce a completely deterministic language by removing
the nondeterministic choice operator from the syntax of BTCSP. The results of this section
also say semething about the Prioritized Model: if a process in BTCSP is constructed without
using the nondeterministic choice operator then it is deterministic in the following sense: if
we know what the environment offers then there is only one way that the process can behave.

3.6 A deterministic language and model 65

We define the syntax of Deterministic Timed CSP (DTCSP) by

Pu= STOP | SKIP| WAITL{ X | basic processes
a5 P | P P| WAITt;P | sequential composition
PDP | POP | cla: A% P, | alternation
PGP | PP | P%P | PAB%P | nparallel composition
PP | P—P | P4PPPP| interleaving
PP | P P | PV P | transfer operators
PrA L fP) | abstraction and renaming
X P | uX P|{Xi=P) recursion

This is the same as the syntax for the biased language, except the nondeterministic choice
operators have been removed.

We define the space Adprp (the Deterministic Model using Timed, Biased behaviows) to be
those sets A of type Stz satisfying the following healthiness conditions:

DI.¥r @ 3n(t) (r,C,s) e A= #s n(r)

D2 ¥r 0 3n{r) (nC,sl€A=3k ni{t)ils.... Jay € TINT
Ig,... i partition [0,1’]
AV 0. k=1, el webagl (g,x) C(4,9) e (t',x) C (%)

Di. (,C,s)e AA (t.x)citemsC = {{,C ¢,s ¢t (t,x))EA
D4. V2 : OFFREL — EOFF 3,C (end,C,UcQ(C)) € A

Axioms D1-D3 are the same as axiotns B1-B3 for the Prioritized Model. The fourth axiom
says that the process is deterministic: given the way the environmental behaves, there is a
unique offer relation that it can have; it will perform those members of the envircnmental
offer that are maximal with respect to this offer relation.

We define a semantic function Apt : DTCSP - ENV — AMprg such Apr Ppis the
set of behavionrs that P cau perform in variable binding p. The semantic definitions for the
constructs of the language are the same as in the Prioritized Model, except references to Agy
should he changed ta Apr; for example

Apr PX4Y Q p2 ((r.Cor ¥4 Cy.s) | Bs C XU Y A(1,Cp,s X)EApr P p
Al Cg.s Y)eApr @ p}

In {Low31b] we showed that the semantic definitions respect the healthiness conditions of
the semantic space. In particular, from condition D4 we see that this language is completely
deterministic.

The Deterministic Model lies inside the Prioritized Model in the sense that any set of be-
haviours that satisfies the axioms of Mprg also satisfies the axioms of Mrg. To see this
let A € Mprg. Then A mnst satisfy the first three axioms of Mg because these are the

66 Probabilities and Priorities in Timed CSP

same as the first three axioms of Mprg. Taking Q@ = {(0,{} in axiom D4 we see that
JC (0.C,~>) € A so axiom B4 is satisfied. For axiom B3, let (1,C.5) € A, " > 7,
$? € EQOFF such that /2 = (r,7]. Let ' = {(¢,s(¢)) |8 ¢ 71}ufl. Then hy axiom D4
there is a unique offer relation T’ such that {7/, C’, U@’} € A. By axiom D3 and the unique-
ness cordition we have ©' 7 = C, and by the definition of ' we have U =5 Uy, Q,
so (7".E,s Ucn, Q) € A as required.

All the algebraic laws that hold in the Prioritized Model also hold in the Deterministic Model,
except of course those laws relating to the uondeterministic choice operator. We also have
that the external choice operators are idempotent: POP = P and PO P = P; thisis a
consequence of the language being completely deterministic, $o couuter-examples such as the
one in 3.4.5 do not occur.

Chapter 4

The Probabilistic Model

4.1 Syntax for the probabilistic language

We will now discuss the probabilistic language and model. The syntax is the same as the
syntax of the biased language, except the nondeterministic choice operators are replaced by
probabilistic internal choice operators, and we add a probabilistic external chaice operator.
The process P pN, @ will act like P with probability p and like @ with probability ¢. The
process .'[p‘]P' will act like process P; with probability p,. The process P, 4 @ will be
biased in faevour of P with probability p and hiased in favour of @ with probability q. In
the biased model, all nondetermirism was caused by the nondeterministic choice operators;
bence the only place where nondeterminism arises in the probabilistic language is through
the use of the probabilistic eperators.

The complete syntax is

Pu= STOP | SKIP | WAIT { | X | basic processes
a5 P | P P | WAIT ;P | sequential composition
Ppny, P | .-yIp“IF" | probabilistic internal choice
PgP | PofP | Py, ;P | e?d: D4 P, | external choice
PP ! PP P P PP parallel compasition
P+—P1P—4P|P#P|P-ﬁu’i interleaving
p'P | P P { P VP | transfer operators
PNA| (P abstraction and renasming
puX P | pX P|{X.=P); recursion

where ¢ and I, range over the set TIME of times, which we take to be pasitive real nurnbers;

X ranges over the space VAR of variables; and ¢ ranges over some alphabet L of events. J

ranges over indexing sets, and is ranged over by 1 and 3. p, ¢ aod p, (for i € I) range over the

interval (0, 1), with the properties that p + ¢ = ! and };c; p; = 1. ¢ ranges over channel

names; D is the type of the data passed on ¢ and is ranged over by d. A and B cange over
E; f ranges over & 4 &

67

68 . Probabilities and Priorities in Timed CSP

4.2 The semantic model
As before we define a behaviour or an observation of a process lo be a triple (r,C, s), where

e 7is the time up until which the process is ohserved.

e Cis a partial order on the space OFF (= TIME x bag L) of offers. We say a process
offers y stronger than ¥ at time ¢, and write (¢,%) C (¢, x), if the process gives a higher
priority to the bag of events y than the bag of events ¥ at time ¢.

* 5is a timed trace, of type TIME - bag %: s(f) is the bag of events perfarmed at time ¢.
Recall the definition of the space Stg of sets of prioritized behavionrs:
St = (BEH)

‘e also want to be able to discuss the space PF 15 (Probahility Functions on Timed, Biased
behaviaurs) of probability functions:

PFre = BEH - [0, 1)

We will eften need to sum probabilities. We will write Zﬂf(:) | p(z)[} to represent the sum
of the f(z), where the sum is taken over all z such that p(z) holds.

We will represent a process by a pair (A, f). As before A € Srp gives the set of behavicurs
that a process can perform. f € PF g is a probability function: f(r,C, g) is the probability
of (7, C.s) occurring, given a suitahle environment, i.e. any environment §2 such that (7,C,s)
is compatible with {2 (in the sense of section 3.3.4). We define the space PP g (Probabilistic
Pairs using Timed Biased Behaviours) to be all such pairs:

PPrg & Srg x PFrm

Note that if (r,C,s) is compatible with two different environments, £2 and €', then the
probability of {7,C. s} occurring is the same in environment as in environment §¥'. This is
because to say that (7, C, s) is compatible with {2 and f¥ means that both enviranments offer
everything performed in trace s, but neither offers anything that is offered stronger under the
offer relation C: the rest of the environmental offers do not have any effect on the behavionr
of the process, so the probability of (7, C, s) is the same in each environment.

It 15 worth stressing again the relationship between the probability function f and the envi-
ronment §. f(r,C,s) is the probability of the process performing (r,C, s) given that (r,C,s)
is compatible with £2. We can use this to define a probability function fp (for each environ-
ment {2} which gives the probahilities of each behaviour, given that the environment offers .

f(7.C.s) i {7,C, s} compat O

[otherwise

falr.Es) & {

In the nextsection we illustrate this with an example; in the following section we will formally
define our semantic space.

4.2 The semantic model 69

4.2.1 Example
‘We present a process that models a biased coin being tossed once:
COIN = head — STOP 1,,‘3’—]3/3 tail — STOP

Here is a list of some of the possible behaviours of COIN when it is observed up until time 2:

by = (2,[0,2] @ ({head],)) =)
b = (2,(0,2] @ ({tasth 1) y, <= }
bs = (2, [0, 7] ® {head]} B} (1. 2] @ (I}), <(1, head)>)
by = (2,[0, 1)@ Qa1 (1,21 @ {1 . =<(1, tar)>)

In behaviour &; the probabilistic choice is made in favour of the head, so a head is offered,
but nothing is performed: this must correspond to an environment where no head is offered.
Behaviour bz is similar, except the choice is made in favour of the fgil. In behaviour by the
choice is made in favour of the kead, which is performed at time 1: this must correspond to
an environment where a head is first offered at time 1. In behaviour b; the choice is made in
favour of the {ail, which is performed at time 1.

The probability function f associated with this process associates the following probabilities
to these behaviours:

fh)=1/3 flb)=2/3 flbs)=1/3 [f(b)=2/3

The two behaviours where the probabilistic choice i3 made in favour of the head are given
probability ! /3, while the behaviours where the choice is made in favour of the tai! are given
probability 2/3.

Consider now an environment with duration [0, 2] where neither a head nor a tail is offered.
The behaviours b; and b are compatible with this environment, but behaviours ¢; and b
are not since in both of these an event is performed that was not offered by the environment.
In fact &; and bp are the only behaviours that COIN can perform in this environment. The
probability function associated with this environment has

falbr) =173 felbs)=2/3 falbs)=0 failb) =10

and all other hehaviours are given probability zero. Note that the sum of the probabilities is
one.

Consider now an environment § that first offers a head at time 1, and does not offer a tail.
Now behaviours bz and bs are the possible behaviours. Behaviour #; is incompatihle with 2
because at time [it offers a head stronger than the empty bag, but performs the empty
bag despite the fact that the environment is willing to perform a kead: it disobeys the rule
that says that at each instant the process must perform the member of the environmental
offer that it offers strongest (i.e. is maximal in tbe process’s offer relation). The probability
function associated with this environmental offer therefore has

falby=0 falbe)=2/3 Jalbs)=1/3 falby) =10

Finally, consider an environment that offers a head and a tail at time 1, but offers neither
earlier. In this case behaviours b3 and b; are possible; the other two are incompatible with

IiY Probabilities and Priorities in Timed CSP

the emvironmental offer. Hence the probability function associated with this environmental
offer has

Jalbr) =20 Jalbz) =0 folby)=1/% folbyy =273

Note that the choice of whether the process offers a head or a tail js made at time 0, before
either s actually offered by the environment.
4.2.2 The semantic space Mprg

We define the space M pry {(the Probabibstic Mede] using Timed Biased hehaviours}) to he
those pairs (A4, f) in PP rg satisfying the following axioms:

PL ¥t 0 3n(7) (nE,s)e A=#s ni7)

P2 ¥r 0 3n(r) (n,C,s)€ A=3k n(r):lo....l; € TINT
fg,. .. Ie— g partitiou [@, 7]
AV 0. k-1 LV el x,vebags (Lx)C(69) o (¢, x) C (¢}
P3. {(rC,s) e AA(t.x) €itemsC = (£, f,58 t (f,x}J€ A
P4. f(rCE,s) > 0 < (r,E,s) € 4
Ps. Y{f(0.C, <=} | C € OFFREL]| = 1

P6. ¥s: TT;C: OFFREL;Q: EOFF ;r.7 . TIME | doms = {0.7] A IS = [r, 1]
7.6, =3 Chs + uom| r=cf

The first three of these axioms are the same as the first three axioms ir the Prioritized Model.
We discuss the other three axioms in turn:

P4. If the probability of a process having a certain behaviour is non-zero, then that be-
haviour is possible.

P5. If the environment offers no events at time 0, then the empty trace occurs with proba-
bilily one.

P6. The probability of a process displaying some behavionr up to time 7 is the same as the
sum of the probabilities of the extensions of this behaviour that could have resulted
from the euvironment offering) between times T and 7'.

It is worth noting that {n any enviroument there is a couutable number of behavionrs that
a process can perform: this is a resnlt of the syntax we Lave chosen, which only allows
countable probabilistic choice. This fact means that summing over probabilities (rather than
integrating) is a valid technique.

4.3 Semantic definitions 71

4.2.3 Laws

The following law, which was proved in section 3.3 for the Prioritized Model, also hold in
this model. If a process can have a particular behaviour, then it can perform any prefix of
that bebaviour.

Theorem 4.2.1: {1,C,s)€AAr 7= ("C s €A vl

In addition, the following law holds in this model. If the environment offers 2, then the sum
of the probabilities of all possible behaviours is one.

Theorem 4.2.2: Y2 : EOFF V1 endQ Y {|f(end,C,Uc®) | C € OFFREL} = 1.
v

Proof: Pick {2 and let 7 = end 3. We have

E{]}(end 0,C,Uc) |Ce OFFREL[}
(rean-anging; taking C'=C 0)

Y{>{rret o) it o=cfendr =0}
(ta.king 8 = ~<>- in axiom PG)

Y{ro.c’ <) | endr = 0}

= Saxiom P5)

i

4.2.4 Semantic functions
We define the space of variable bindings for the Probabilistic Model by
ENVP = VAR - PPTB

We shall drop the subscript P where it is obyious from the context which model we are
working in. In tbe next section we shall define functions Apgr : PBTCSP — ENVp - Srg
and Ppgr : PBTCSP — ENVp — PF rp such tbat in variable binding p, Appr P p gives
the set of possible behaviours of process P and Ppgr P p gives the behaviour probabil-
ity function. We define the semantic function Fpgyr : PBTCSP — ENVp — Mprg by
Fpgr P p= (ApaT P p,Pepsr P p). In section 4.3.8 we discuss which algebraic laws hold
in this model. The semantic definitions were proved sound in [Low91b).

4.3 Semantic definitions

In this section we derive the semantic definitions for each of our basic processes and for each of
our operators. For most of the processes {all except the probabilistic operators and recursion)

72 Probabilities and Priorities in Timed CSP

the definition of the set A of possible behaviours is the same as in the biased model; for these
processes we derive the definitions for the probability functions from the definition of A. For
the prchabihstic operators, the definitions are easy; for recursiou, the definitions are very
similar to those in the biased model.

The defipitions are summarized in appendix A.

4.3.1 Basic processes

The processes STOP, SKIP and WAIT ¢ are completely deterministic. The semantic defini-
tions for their sets of pessible hehaviours are the same as in the biased model. Each of these
semantic definitions are of the form

Appr P p={(r.C,s)| 5(r.C,5)}

for some predicate §. Behaviours of this form occur with probability one; all other hebhaviours
have probabitity zero. This gives the following definition:

Pppr P p = fillout{{r,C,s) = 1 | §(r,C,)}

where the function fillout : (BEH -+ [2,1]) — (BEH -+ [0, 1]} extends partial behaviour
probability functions to total probability functions:

f(r.C,s) (r,C,s) € domf
0 (r.,C,s5) € dom f

Al behaviours not defined (n f are assumed not to occur, and so are given zero probability.

¥f.(r,C,s) fillout f {r,C,s) ={

4.3.2 Unary operators

Let F beone of the unary operators prefixing, hiding, renaming, or delay, For each of these
operators. the definition of the set of passible behaviours from section 3.4 carry over to the
Probabilistic Model. In each case the semantic definition can be put into the form

Apgr F(P) p= {(7.C,s} |37.C"\s' (7, C,5') € Apgr P p A S(r,7,C,C 35,5}

for some predicate §. The probability of F({P) performing a behaviour (7, C, s) is the proba-

bility of P performing some corresponding behaviour (v',C', s') such that S{r,7',C,C". 5.5}

holds; hence we want to sum over all such behaviours. This gives the following definition
Prar F(P) plr,C.5) = Y {Pror P p(r',C,5') | (7,7, C, T, 5,81}

Note that this can normally be greatly simplified using the one-point rule.

4.3.3 Binary operators

Let - & _ be one of the binary operators on the syntax, other than the probahilistic operators.
Again, for sach of these operators the semantic defiuition from section 3.4 carries over to the
Probabilistic Model. The definition for the set of pessible behaviours can be put in the form

Appr P& Q p={(v,C.5} | 37p,79.Cp,Cq, 5P, 5q
{rp,Cp.3p) € Appr P pA(1q,Cq.5q) € Arpr Q p
A §(1,7p,7q,C.Ep,Cq.5,85P, 39)}

4.3 Semantic definitions 73

for some predicate 5. The probability of P @ @ performing such a behaviour (r,C, s} is
the probability of P and @ performing some corresponding behaviours {rp,Cp,sz) and
(7q,C g, 3g) such that 5(r,7p,7¢,C,Cp, Cg.9,9p,9g) holds; hence we want to sum over all
such hehaviours. This gives the following definition:

Pepr PO Q o(1,C,9) =
Z*HPPBT P p(Tp,Cp,9p) X Pear @ p(7q,Cq, 99} | 8(7, 77,7, 5, Cp T, 8, 95, JQ)I}

4.3.4 Communication

The definition for the set of possible behaviours for the prefix choice operator is

Apgr ela: A 2 P, p= {(r,[0,7] ® {c2a} . {}), <>) | T € TIME)
uf(r, (0,8} © ({e?al, I} T+, (£ e73) s+2)]
acAAL TA(T—!,{G}@({“}) C.s) € Appr Pi p}

For the probability function, behaviours of the first sort occur with probability one, if the
environment is unwilling to communicate on ¢. The probability of a behaviour of the second
sort is the probability of P; performing the corresponding behaviour starting at time { when
the first communication the environment is willing to make is an 4 at time {.

PepT eta: AL P, p2
{(r,[0,7} ® {c?a},{}}, <) — 1 | T € TIME}
u{(r,[0,2)® (Jc?al, {}) T+t (¢e?8) s+E)—+
Prer Pap(r—t,{0} o {1} C.9)|
deANt T}

fillout

As in the Prioritized Model, we can use this to define the general prefix choice operator:

e7a: A% P, 2cla: AL (WAIT t,; P,)

4.3.5 Probabilistic internal choice

The process P N, @Q acts like P with probahility p, and like @ with probability ¢. It will
have behaviour (7, T, s) if

¢ P is chosen and P has bebaviour (7,C, 5},
¢ or () is chosen and @ has behaviour (1,LC,).
‘We therefore have the following definitions, assuming p£ 0, ¢# 0, and p+ g = 1:

Apgr P pU Appr Q@ p
p-Pear P p(1,C,5) + ¢ Ppar Q o(r,C,s)

Apar PN, Q p
Pepr P ply Q o(7,C, 8}

]

74 Probabilities and Priorities in Timed CSP

Infinite prababilistic choice

If I is acountable set, and 3", p, = I then we will write . ,[p,]P, to represent the process
that, for all §, acts like process 7, with probability p,.

We give a semantics to this process in the obvious way:

(Ul Apsr Fipliel)
Z{IP- x Ppgr P, p{r.Cis) | i € ![}

I

Apgr ,Ef[PI]Pt 7

i

Prar iR Pi p(1.C,8)

This is well defined only when the set of processes {P, | ¢ € [} is uniformly bounded in the
sense ol section 3.4.10.

As in the Prioritized Model, this method does not always effectively mode! nondeterminism
that doss not manifest itself in a finite amount of time. For example, consider the process P
which can perform any finite number of gs:

p= _1/2)"*)P, where Py = STOP Puy;=a 2 p,

We would expect this to be different from the process P’ that can perform an arbitrary
number of as:
P'2g Ly Py 0, STOP

However, our semantics gives the same value to both of these processes. It is interesting
that the behaviours of P’ that our model does not adequately represent — namely where an
infinite mmber of as are performed — geccur with zero probability.

4.3.6 Probabilistic external choice

In this section we describe a probabilistic external choice operater , o such that P, | @
offers an external choice between P and @ that is biased in favour of P with probability p.
and biased in favour of @ with probability ¢. The probabilistic external choice operator iy
defined by

Pp ¢ @=(POQ)N, (FOQ)
P, 4 Qacts like P 0 @ with probability p, and like P (0 @ with probability g.
"This operator is very similar to the probabilistic choice operator defined in mast probabilistic
models of CC3, for example in [v(G33T90). There, an external choice between processes P
and @ is written [p)P + [g]@: if the environment can perform events of both P and @ then
the choice is made in favour of P with probability p and in favour of Q with probability ¢.
This can then be used to define a probabilistic internal choice between two processes by
[p]7.P + [g]r. @, where 7 represents an internal action, Qur approach has been the other way
round: we have defined biased external choice operators and a probabilistic internal choice
operator, and used these to define a probabilistic external choice operator. We believe that it
is more nataral to define separate internal and external choice operators since these are very
different operations. A language with more operators, while being harder to reason about, is
easier to reason wnth.

4.3 Semantic definitions 75

4.3.7 Recursion

Our definition of recursion for probabilistic processes follows closely our approach for pri-
oritized processes. We define a metric on the space Mprp by considering the first time at
which two processes may be distinguished. We define an operator on behaviour stz and
bebaviour probability functions which gives the behaviour of & process up to & certain time.

A t={{(n.Cis)eA|T ¢} f t={{r,C,s) = f(r,C,s) |7 ¢}
We define the metric on Mprg by

d((Ap.fp). (Aq. fQ)) = inf({27 | Ap 1=Aq tAfp t=fq HU{I})
We define the mapping on the semantic space corresponding to a term:

M(X,Pljp2 XY Fppr P p[Y/X]
We can then define recursion by
Fppr uX P = the unique fixed point of M (X, P)p

As in the Prioritized Model, this is well defined when P is constructive for X.

Delayed recursion

For delayed recursion, we define a mapping W; which delays it argument by §:
Ws= AY Fpgr WAIT §; X p[Y /X]
We can now define delayed recursion by
Fper 5 X P p = the unique fixed point of M{X, P)po Wy

Mutual recursion

In order to give semantics to (X; = P; |+ € I); we consider the semantic domain PPLg, ie.
the product space with one copy of PPrg for each element of f. We define a metric on this
space by
d(U, Y) = sup{d(U;, Vi} | i€ T}
M P is a vector of PBTCSP terms, X is a vector of variables, and ¥ a vector of members of
PPrg, all indexed by set [, then the mapping on ‘PP;‘B correaponding ta P is given by
MX,Pype Y Fppr P plYi/Xi|ic |
We can now give a semantics to mutual recursion. If £ is a vector of PBTCSP terms, then
Fpar {X, =P, |i€f}; p= S, where S is a fixed point of M{X, P}p

As in the Prioritized Model, this is well defined when the vector of terms P is constructive
for vector of variables X. The proaf of this appeared in [Low92a] and is very similar to the
proof sketched in chapter 3. We defined a second vector of terms @ by

=P/ X |] € seg(n]]
we showed that this vector is well defined; we showed that the corresponding map-

ping M(X, @)p 5 a contraction mapping and so has a unique fixed point; we showed that
this fixed point is also a fixed paint of M (X, P)p; we showed that this fixed point is unique.

76 Probabilities and Priorities in Timed CSP

4.3.8 Algebraic laws

In this section we discuss which algebraic laws hold in the probabilistic language. The proofs
of these laws are similar to the proofs for the Prioritized Model.

All the laws that were described above for the Prioritized Model carry forward to this model
{except of course those laws involving the nondeterministic choice operator). In addition, the
following laws hold for the probabilistic choice operator:

Law 4.3.1 (Commutativity of probabilistic choice) £ ,M; @ = @ (N, P. Pat

Law 4.3.2 (Idempotence of probabilistic choice) P N, P = P. A

Law 4.3.3 (Associativity of probabilistic choice)

P pMger (Q efarrefgte Ry=(P pipralla/pte Qe R

Law 4.34 (Distributivity) All operators except recursion distribute through probabilistic
choice:
Prefixing: a5 (PN, Q=85 P,N0-"+@Q
External choice: PO(Q.,n,R)=POQ N, POR
(PN QDR=POR,N, QUOR
Parallel compesition: P ¥ (@ ,n, R =PYet" @ .n, P*4¥ R
(Pog Q" R=P Y7 Ry Q *¢t7 R

[nterleaving: P (@M R)=Pe— @M P+ R

(Ppng @}¢—R=P+— RN, Qe— R
Hiding: (Peng @I\NX =P\ X,m @\ X
Renaming: JIP Ny @)= f(P) N J{Q)

Sequential composition: (P ,N, @} R=F R, N, @ R
P (@, Ry=P @,n;F R

and similar Jaws for the right biased operators. FAY

4.4 Example: a communications protocol

We consider a very simple communications protocol transmitting over an unreliable medium.
For simplicity, we abstract away from the actual contents of the communication and just
concentrate on whether the message is transmitted. We also only insist that the protocol is

4.4 Example: a communications protocol 77

Im rm
in pyvs E out

Figure 4.1: The communications protocol

able to handle a single message. We are interested in the probability of the message being
correctly transmitted within a certain time.

The protoco) is as in figure 4.1. Messages are received on the channel #n. They are then
passed along the wire W, which loses a proportion of its inputs. If @ receives the mes-
sage, it acknowledges it on the channel ack and outputs on out. 1f P does not receive an
acknowledgement within a certain amonnt of time, then it tries retransmitting.

The processes P, @ and W are defined by

P = tn-—pX Im— (ack — STOPD WAIT 1 — 26, X)
Q = rm — ack 1238 ut — STOP
W2 pX Im-—((rm— X) N, X}

The protocol is then given by
PROTOCOL= (P 4% W) P4t C @)\ ¥
where A, B, and C are the alphabets of P, W, and @, and ¥ is the set of internal actions:
A = {in,lm, ack} B = {lm,m} C = {rm, out, ack} Y = {Im, rm,ack}
For simplicity we rewrite P and W by

P =in— P
Py = Im — (ack — STOPD WAIT 1 —6; Py)
W = Im — (rm 25 W0, WAIT 6; W)

Then using laws for communication and hiding we have PROTOCOL = in -— PROTOCOL'
where PROTOCOL' = ((P; 4% W) VB4C 0)\ ¥. Now

PROTOCOL
= (laws of communication; parallel composition distributes through probabilistic choice)
(bm — ({ack — STOP D WAIT 1 ~ §, P;) %% (mm £5 W)
ABYC m — ack -3 ;out — STOP)
#Mg
((ack —s STOP @ WAIT 1 - §;P,) 45 (WAIT §; W)
AVBYClrm s ack =% out — STOP))\ ¥

78 Probabilities and Priorities in Timed CSP

= <laws of communication and hidiug)

(im — (rm — ack "= out — STOP ,Ny WAIT 1;(P; ¢ W) B¢ Q))\ ¥
= <laws of biding)

WAIT 1 — & out ;Mg WAIT 1 ; PROTOCOL

Let g, be the probability that PROTOCOL’ is not willing to perform out within n—4 seconds
(n €). Evidently go = 1 and gn+; = ¢.¢a. Hence ¢, = ¢™ and so the protacol :5 willing to
perform out within n seconds of receiving an input with probability t — ¢". Letting n tend
to infinity we see that the protacol is eventually willing to perform out with probability one.
In chapter 7 we will study a somewhat more reasonable protocol, which is able to handle
more than one message. We will prove that it acts like a one-place buffer and will present a
probabilistic investigation of the time taken for messages to be transmitted.

Chapter 5

Specification and Proof of
Prioritized Processes

In chapter 3 we gave a semantic model for a language using prioritized operators. Unfortu-
nately, the semantic equations are rather complicated and so hard to use for reasoning about
processes. In this chapter we present a proof system, in the style of the proof system described
in section 2.4, which will euable us to prove that a process meets its specification. The proof
system will comprise a number of inference rules; these rules will allow proof obligations on
composite processes to be reduced to proof obligations on the subcomponents.

In section 5.1 we deseribe the form of our specifications. If §(7,C,s) is a predicate on
behaviours, we will say that a process P satisfies §(7,C, s} in environment p, written P sat,
8(+,C,), i §(7,C,s) is true for all behaviours (7,C,s) of P. We will normally drop the
argument (7,0, s) of § and simply write P sat, § when it is obvious from the context in
which model we are working.

This method can be extended to the Probabilistic and Deterministic Models. In section 5.2
we will present abstraction mappings from these two models to the Prioritized Model and
show that a probabilistic or deterministic process satisfies a behavioural specification if the
corresponding biased process satisfies the same specification. Note that this proof systern will
only relate to non-probabilistic specifications, i.e. specifications that state that ail behaviours
of a process satisfy some property. In chapter 7 we will present a proof system that allows
us to prove probabilistic specifications on processes, for example specifications such as ‘an a
is offered within 3 seconds with probabiity 80%’.

In section 5.3 we present a language for specifying processes. This will be based o the spec-
ification language described in section 2.5, extended so as to be able to talk about priorities.
We derive inference rules for each of the constructs of the language in section 5.4. We also
show that they are complete in the sense that if, from the semantic definitions, a predi-
cate 8{7,C,s) can be shown to be true of all the behaviours of a process P, then P sat, 5
can be proved using the proof system.

In section 5.5 we apply our proof system to the lift system introduced in section 3.2 we show
that the lift always arrives on a particular fAoor within 15 seconds of being surnmaned.

79

80 Probabilities and Priorities J'n_T:'med CSP

5.1 Specification of prioritized processes

We define a behavioural specification to be a predicate §(r,C,s) with free variable rep-
resenting a possible behaviour. Our basic specification statement will be of the form
P sat, §(r,C,s) in Mpp. This will mean that in environment p alf behaviours (1,C,)
of P will satisfy the predicate §(7,C, s):

Definition 5.1.1: P sat, §(v.C,s)inMpg =¥(7,C,5) € Apgr P p 8(7,C,s). o
If P isa process, we may omit reference to the enviranment:
Definition 5.1.2:
Psat S(r,C,s)in Mg =V¥pe ENV V¥(r,C,s}€ Apyr P p S5(7.C.s)
Y

We shall omit this qualification ‘' in Mg’ and the argument (r,C,s) of § where the model
we are working in is obvious from the context.

5.2 Abstraction mappings

In the following two subsections we give abstraction mappings from the Probabilistic and
Deterministic Models to the {unprobabilistic) Prioritized Model. These abstraction results
will allow us to prove results about probabilistic or deterministic processes by proving corre-
sponding results about the corresponding process in the Biased Model. In chapter 6 we will
alsa give an abstraction mapping from the Prioritized Model to the Timed Failures Madel of
Timed CSP. The relationships between the probabilistic, deterministic and prioritized lan-
guages and models are shown in figure 5.1. The mappings gf.lm and BS,H) remove probabilities

but keep biases; the mappings (,o&f) and ﬂfDB) remove determinism but keep biases.

PBTCSP nTesp

BTCSP Mg

Figure 5.1: A hierarchy of languages and models

5.2.1 Abstraction from the Probabilistic Model

In this section we give an abstraction mapping from the Probabilistic Medel to the Prioritized
Model. We define a mapping %' : PBTCSP — BTCSP that removes all probabilities

5.2 Abstraction mappings 81

from the syntax: angB) maps probabilistic choices to nondeterministic choices and distributes

through all other operators:
(P, Q) 2 o (PN (@)

b

AN P = (P
ﬂP(pB)(Pp @) = PoQnPog where P/ = ‘PP)(P) and @' = ﬂPE:B)(Q)
&Py P for P = §TOP, SKIP, WAIT t, or X
AF(PY) = Flp(P)) for F(P)=a -4 P, WAIT t; P.P\ X,
f(P),uX P,oruX P
PP(PB Q) = p(P)oe(Q) for ® = 0,04 4, X4, X,
1—,—',%,4{‘?, ":‘ or Y

i (cta: At Py) 2 cta: AL (P,
WP = Piy) 2 (X = oW (P

The corresponding semaatic map GE,B) : Mprg — Mrg is easy to define: the process with set
of possible behaviours A and probability function f maps to the process with set of possible
behaviours A.

87(A,f) = A

80 G%B) is the projection #;. We can show that 9&,‘8) maps Mprg into Mrg.

Theorem 5.2.1: BS,B)(MPTB) C Mrg. v

Proof: We must show that for all (A, f) € Mprg, the set A satisfies the healthiness con-
ditions of AMrg. The first three conditions are easy as they are the same as the first three
healthiness conditions of Mprg. For condition B4 note that by axiom P5 of A prp we have
some offer relation C such that f(0,C, <>) > 0, so by condition P4 we have (#,C,<>) € A.
For condition B5, suppose (r,C,s) € A, 7 > 7 and O € EOFF with I§2 = (r,7]. Then
f(r,C,s) > 0 by condition P4. Let £’ = {(r, s(r})} UQ; then by condition P6

Z{]f{f’,g’,s T Uy,) T=;[} >0

Hence there is some offer relation C’ such that f(+',C',s 7 Uy, R} >0 andC r=C,
Buts 7 U, $2 =3 Ugy, {3 s0 by condition P4, (1',C',s Ugy, 1) € A, as required.
a

‘We will now prove an abstraction theorem that says that 95;5)(pr1' P p} = Agr pp (Yo
for suitable environments p and p'; the condition on the environments is that m{p X) =
g X for all variables X; this can be written as p' = #; o p.

Theorem 5.2.2: 1f // = 1; o p, then
95351(7"}931' P p)= Apgr P p= Apr (P(PB)(P) 'y

82 Probabilities and Priorities in Timed CSP

Proof: This can be proved by structural induction; all cases are easy because the semantic
definitions are very similar in the two models. We prove the result for probabilistic choice as
an example. Assume p' = 7, o p; then

Apsr Pl Q p
<semantic definition in MPTB)
Apgr P pUAppr Q p
(inductive hypothﬁis>
Agr FEUP) FUAsr Q) F
<semantic definition in MT3>
Asr @RI NP (Q) ¢
= (deﬁnition of g$8)>

Asr 5PN, Q) ¢

il

1

a
If we define a satisfaction rclation in Mprg by
Feat, Siu Mpra & ¥(r,C,s5) € Apgr P S(7,C, s}
then we have the following inference rule
Rule 5.2.3:
w[F.E)[P) saty Sin Mrg A
UL [=nse]
P sat, Sin Mprg
A
Proof: We have
GNPy sat, §in Mg
& {defiuition of sat in Mg)
¥(r,C,s) € Apr ¢} (P) ¢ S(r.C,s)
Ll (previ.ous theorem, using the side condition)
W(r.C,s) € Apgr P p $(7,C,s)
e <deﬂnition of sat in .M‘pTB>
P sat, §in Mprg
as required. (]

To prove that a probabilistic process satisfies a hard specification, it is enough to prove that
the corresponding uuprobabilistic process satisfies the same specification.

5.3 A language for specifying prioritized processes 83

5.2.2 Abstraction from the Deterministic Model

The Deterministic Model sits strictly inside the Prioritized Model s0 our ahstraction mappings
P! DTCSP - BTCSP and 8" : Mprg — Mg are simply the identity functiors.

dlipyer 6 =24
The following theorem was proved in section 3.6:
Theorem 5.2.4: B(DB)(MDT,&) C Mra. o
The following theorem is trivial to prove by strnctural induction:
Theorem 5.2.5: For all DTCSP processes P and environments p,
057 (Aor P)= Aar ¥ (P) p
v

The following proof rule can be derived from this result in the same way that the poof rute
in the previous section was derived from the absiraction result there:

Rule 5.2.6:

f%s)(P) sat, § in Mrg
P sat, 5 in Mprp

A

Thus we have shown that proving that a specification holds of a process in either the Praba-
bilistic or Deterministic Mode! can be reduced to showing that a corresponding processin the
(unprobabilistic) Prioritized Model satisfies the same specification. The rest of this chapter
will be devoted to methods of showing that a prioritized process satisfies a specification.

5.3 A langnage for specifying prioritized processes

In order to write readable specifications for prioritized processes we need a specification
language; this will be based upon the language described in section 2.5.
5.3.1 Primitive specifications
We write {a at 1}(7,C, s) to specify that event a occurs at time i:
(aat e)(r,C,8) = a€s(t)

As in section 2.5, we generalise this to specify that some event a from a set A occurs at. some
time ¢ during the interval I:

Aatf=daeA Jtel aatt

84 Prababilities and Priorities in Timed CSP

We alsg generalise the at macro in order to specify that n events from some set occur during

some imterval:
Aat" I =4(s Atl) n

And we can specify that events do not occur:

noaat! = —(aatt)
noAdatl = =(Adatl)
nodat" f = -(Aat" 1)

We will sometimes want te be able to specify that a process acts in a particular way tf we
have observed it for long enough.

{beyond ¢){r,C,s) =71 > ¢

We will use the offered macro to specify that a process is willing to perform a particular

event:
(o offered £)(1,C, 5) = beyondt = (1, a) € itemsC

We can also specify that an event a would be refused at time ¢ if it were offered by the
environment in addition te what was performed. This is true if the process does not prefer
an extra a in addition to what it performs at £ (s T tw {¢,{al})) to what it performs (s * t).
This gives the following definition:

(areft)(r,C,s} S beyondt Asttwit{af) Dst!

As in the Timed Failures Model, we will not use this predicate directly in specifications: we
will use il to define more useful macros.
We can also specify that an event is not refused:

no aref & =~ (a ref 8}

80
(noareft){(r,C,s)=¢t TtVstetw{t{a])Dst¢

And we can generalise both these predicates to sets of events:

Areft =Va€e A areft no Areft EvVae A noareft

5.3.2 Liveness specifications
Recall the definition of the offered macro:
(a offered t}(r,C, s) = beyond ¢ = (¢, a) € items T
This generalises to say that the process offers one of a set of events A at time &
Aofferedt =3ac A a offered ¢
We can also say that an event is offered throughout some interval, uatil it is performed:

a offered f =V1Iel sati{N[0,¢) Vaoffered ¢

5.3 A language for specifying prioritized processes 85

@ offered I is true if at all times ¢ during I, if an a has not yet been observed, then a offered 1.
It will be useful to say that an event is offered from some time until it is performed:

a offered from ¢t = a offered [£,00)

Thus from ¢ is an abbreviation for [t, o0).
We can also specify that events are not offered:

no e offered t = — g offered ¢
no Aoffered] = Yac A Vi€l noaoffered ¢

If the set I is omitted, we will take it to be the set of all times:

no A offered = no A4 offered [0, o0)

The live macro is used to specify that the process is willing to perform an event at a particular
time. Its definition is the same as in the Timed Failures Model:

alivet=aattVvnoareft

a live ¢ is true if either an a is performed at time ¢ or it is not refused.
This can be generalised to take a set of events as argnment:

Alvet=Aativno Areft

‘We can also generalise the live macro to specify that an event iz available throughout some
interval, until it is performed:

alivel =¥tel] aatIn[g,t]vnoareft

a live I is true if at all times in 7, if an a has not yet been observed, tben it is available. This
generalises to a set of events in the obvious way:

Ahvel =2Vtel AatIn[0,t]vino Aref!

It will be particularly usefyl to be able to specify that an event becomes available at some
time ¢ and remnains available until performed:

a live from ¢ = 4 live £, 00) Alive fromt = A live [¢, 00}

We can also specify that a process is able to perform n copies of an event:

alive"t = aat"¢{vnoaref!
Alive" I = Aat" { vrno Areft
alive®] 2 vie!l gat"IN[0, 4] Vo areft
Ative® I =¥tel Aat"In[o,{vno Aref!

The two macros offered and live are quite closely related. By condition A5 on behaviours we
have
alive { = aoffered ¢

B6 Probabilities and Priorities in Timed CSP

and by condition A3 we have
a offered (15, ;] = a live [ig, t;)
s0 if we restrict ourselves to half-open intervais, the two macros are equivalent:

a live [1p, t;) ¢ a offered [fg, tr)

Another specification technique that will prove useful is to say that two events a and b cannot
both he offered at the same time:

a, b separate t = g offered ¢ = no b offered ¢
This can be generalised in the obvious ways:

A, Bseparate /] = V¥oc A, be VYiel a, bseparatet

Af, o Anseparate] = ¥a,3:1..n 1#7=> A A, separate [

5.3.3 Priorities

We extend our specification language to allow us to specify that certain prierities hold. We
wrile o preferred to 3 @ ¢ to specify that the process prefers o to 3 at time ¢ (if we have
observed the process until time {):

{or preferred to 3@ t){7,C, s) = beyond t = (¢, 00} T (1, 3)

If the bags o and @ are singletons then we will omit bag brackets to improve readability. We
can generalise this to include several preferences:

op preferred to ay preferred to ... preferred to a, @ ¢t =
Yi:0..n—-1 o,preferred too,+; @ ¢

We generalise this further to specify that certain priorities hold throughout some interval,
until one of the events occurs:

apreferedto 3@ i =Viel aufBatin[0,t) Vo preferred to 5@ ¢

ag preferred to a; preferred to ... preferred toa,, @ / =
Yiel (Uag)atin[0,t) Vv op preferred to o, preferred to ... preferred to o, @ ¢

ayg preflerred to a; preferred to ... preferred to ap, fromt =
agp preferred to a; preferred to ... preferred to o, @ [¢, 00}

where a at/ for bag a has the obvious meaning:

aatfi=Jg€o LET aatt

5.9 A language for specifying prioritized processes 37

5.3.4 History predicates

As in section 2.5, we will often want to write specifications of the form (M (5)), where M is
a projection function that extracts some information from a trace, and is a predicate. In
this section we define a few useful projection functions.

The functions first and last return the first or last tiined events observed during a behaviour,
first(s) £ head s last{s) = foot s

Note that this is a pair consisting of a time and an actton: more than one event could have
occurred at the same time. These can be qualified with one of the terms before t. ater ¢ or
during J to restrict attention to a particular set of times. We can also restrict our atlention
to a particular set of events. For example:

(first A after £){s} = head{s A I}
{last A before t)(s) = foolt(s A 1)
(last during [}(s) = foot(s T I)

i

These operators will allow us to write specifications such as tast A before 3 = (2.{q, b}}).
Omitting bag brackets for singleton actions will make our specificatious more readable, for
example last A before 5 = (2, a).

The functions time of and name of return the time aud action eomponents of a timed action:
time of {t,a} =t name of ({,a) = a

These fonctions can be used to write predicates of the form time of first A after 2 2 or
name of last 4 = a.

Other functions that we will find useful are alphabet which returns the set of {untimed) events
observed, and count A which returns the number of events from the set A observed

alphabet(s)} £ Zs count A(s) = #(s A4)

These can be qualified with the phrases before ¢, after ¢ or during /; we will omil the argu-
ment A of count if we want to refer to the total nnmher of events performed, i.e. m the case
A=Z.

It will sometimes be useful to say that no events are performed:
silent{s) = 5 = <>
This can be qualified in the normal ways, for example

(silent before t)(s) =5 ¢t = <>

5.3.5 Environmental assumptions

Often we will want to say that a process acts in a particular way 1f the environnent satisfies
some condition. In this subsection we describe a few macros for placing condtinns on the
environment. The definitions of these macros are very stmilar to in the Timed Falures Model.

88 Probabilities and Priorities in Timed C3P

We will write a open t to specify that the environment is willing to perform an a at time i;
it is true if either an a is actually performed, or if the behaviour is consistent with the
environment being willing to perform an additional 4, but which the process can refuse.

aopent=aatiVaref?

2 open ! is true if an a is either performed or refused at time t. Any such behaviour is
consistent with the environment being willing to perform an extra ¢.

This macro can be extended to sets of events in the obvious way:

Aopenié = Aativ Aref i

\We will say a open [if the environment is willing to perform an a at any time during [until
one is performed:

aopen] = ¥tel aatIN(0,¢)vareft
Aopen] = Viel AatIn|0,i]v Arefl

10

As with five, it is usefu! to have a special form for the interval [¢,00):

a open from¢ = g apen [¢,00)

m

A open from ¢ A open [¢,00)

It will alse be useful to be able to specify that the environment is able to perform n copies
of an event:

aopen™ ! = aat"{vareft

Aopen" t = Aat"tv Aref!
aopen” I =¥Yiel amt"IN[0,¢]v areft
Aopen" I 2 Viecl Aat"In(0,f)v Arefi

To specify that the environment is no¢ willing to perform an event, we use the closed macro:
aclosed £ = — {a at t)

Any behaviour that satisfies this specification will be consistent with the assumption that
the environment is not willing to perform an a. Note that this is the same as no a at t: we
will restrict the use of closed to environmental assumptions. This macre generalises in the
obvious way:

Aclosedf =¥a€Ad Vi€l aclosedt

The specification internal’A says that the environment is always willing to perform as many
events from a set A as the process wants. This will occur when the events from A are hidden:

(internal A)(7.C,5) = s = 1244(s \ A)

internal A is true if the process performs as many {or as few) events from A as it wants. In
particular it is true if the environment is willing to perform arhitrary many events from 4,

5.3 A lapguage for specifying prioritized processes 89

such as happens when the events of 4 are hidden. Put another way, there is no offer v such
that v\ 4 = s T ¢ \ A and the process would rather have performed v to wbat it did perform:

Yi v v\A=stt\AnvIdstt
In particular

(internal AY{7,C,5) = acA;t T stiw(tfa}) st
(internal a}{7,C,8) = V¢ sTtw(tfa}) 2stt

s0 the process would never have preferred to perform another member of 4. If 4 is a singleton
set we will omit set brackets to improve readability.

Note that we do not have the law internal A = A open™ [}, 7]. Consider the proces b +—
(a D¢} \ ¢ This initially has an offer relation with {6} 3 o, b} 3 i} 2 {la}. Suppose it
performs {ja, 6]} at time 0. Then this behaviour satisfies @ open™ [0, 7], since it will rfuse an
extra a, but it does not satisfy internal a since it would rather perform one fewer a. However,
we do have internal 4 = A open™ [8, 7].

It is worth noting that internalA A internal B # internal{(A U B). Consider the process
{cO{a+— b}) \ c. Initially this bas an offer relation with {|} 1 {o, b} 2 {al} 21 {]. Suppose
it performs Ja, b[} at time 0. Then it satisfies internal{s} A internal{$}, but it doesn't satisfy
internal{a, b} since (0,{})\ {a.8} =s1t 0\ {a,b} and (0.} D510

Note though that we do have the law internal(4 U B} = internal A A internal B.

Another useful specification technique is to say that the environment is willing te perform
a particular bag @. An observation is compatible with this if o is not offered stronger that
what is performed:
{or accessible ¢){r,C,3) = (L, a) As Tt

(o accessible ¢)(r, T, 5) is trne if the offer relation of the process does not have (¢,a) stronger
than s 1 £. This fits with our intuitions becanse if the environment is willing to perform o,
then we should not have (i,a) 3 s T £, or else the process would have performed a in
preference to 5 T £,

This specification macro car be generalised to say that an action a is offered by the environ-
ment throughout some interval unless an event from o is performed:

a accessible I =¥t el aatln[0,1)V (aaccessible t)
As pormal, it is useful to specify that an a is available from some time ¢ until it is performed:
o accessible from ¢ = a accessible [¢, 00)
We can also generalise to specify that a set of actions is offered by the environment:

A accessible] =VYa € A a accessible /

The specification macros ‘internal a’ and ‘a accessible [#,00)" are subtly different; consider
a bebaviour with (2,{ja}} 2 (8,4b}) where a b is performed at time 0. This satisfies the
specification internala but not a accessible £. The specification internal @ states that no
more as could be performed by the process; the specification ¢ accessible & states that {|a] is
pot offered stronger than what is performed. The following lemma relates these lwo concepts
and will be useful in later sections.

90 Probabilities and Priorities in Timed CSP_’

Lemma 5.3.1: Let L = Cp 7 Cgand ¢ € € © AN B. Then if (¢ live £)(1,Cq,s B)
and {internal C A {c}, A\ C separate 1}{7,C,s) then (c accessible {)(7,Ep,5 A). Q

If the events of C are internal, and the slave of a parallel composition is willing to perform ¢ €
¢ at (then, under certain circumstances, the master is in an environment that is willing to
perform a ¢ at ¢. The circumstances are that if the process can perform a c then it cannot
perform any event from A\ C.
Prool: Assume the premises. From (¢ five t}{r,E 5,5 B8) we have

c€Z(stt B)vstt Bo(t,{cf)Igstt B
so in either case we have

sttt B\ Cwt{ch)€itemsCq (*)
using condition A5.
Suppos for a contradiction that — (¢ accessible {){r,Cp,s A}. Then
(0ch) Tp 51t 4
and so 5(stt 4% C)={} hecause {c}, A\ C separate ¢t. Define v by
vEstt\ Cwit{c]})

Thenv A={({{c})pstt Aandv B =51t B\ Cu(t{c}) € items Cg by (=); hence
v 1 9 1tby the definition of parallel compositian of offer relations. Also v\ C=s1t\ C,
contradicting the definition of internal C. 0

We have the following corollary,

Corollary 5.3.2: Let C=Cp 4P Cyand c€ € C ANB. Then if (¢ live [)(7,Cg,s B)
and {intemal € A (e}, A\ C separate J){r,C, s} then {c accessible [}{T,Cp,s A). Q

The internal macro tends to be of use when eveuts are hidden. In section 5.4.8 we will show
that if we can prove P sat internal 4 = 5(r,C, s) then, under certain circumstances, we can
deduce that P\ A sat S(7.C,s). The accessible macro is often introduced when we consider
parallel composition, as sbown by the above lemma.

The speciication language presented in this section is very similar to the specification lan-
guage presented in section 2.5. In chapter 6 we will show that if

e S isa piece of syntax in the specification language satisfying certain properties, for
example if it i5 made up of ats and lives (without any mention of priorities}, combined
using conjunctions, implications and negations; and

e we can find an unprioritized TCSP process P such that P satisfies the failures specifi-
cation represented by S,

then any BTCSP refinement of P will satisfy the specification represented by S in the priori-
tized model. This will allow us to refine processes from the Failures Model into the Prioritized
Model.

5.4 Derivation of the proof rules 91

5.4 Derivation of the proof rules
In this section we derive a complete proof system for behavioural specifications on primritized

processes. The proofs follow very closely those of Schneider [Sch90] and Davies [Davil] for
the proof rules in the Timed Failures Model. The rules are summarized in appendix B.1.

5.4.1 Auxiliary rules

The following rules can be proved directly from the definition of the sat, relation.

Fgat, § P sat, §
Psat, T §(r,C.5) = T(r,C,5)
P sat, true FPsat, SAT Psat, T

Every process satisfies the null specification; if a process satishes two predicates. then it

satisfies their conjunction; and if a process satisfies some specification, then it satihes any

weaker specification.

5.4.2 Basic processes

The semantic equations for the basic processes §TOP, SKIP and WAIT ¢ are all ofthe form
Apr P p 2 {b] T(b)}

The corresponding proof rule is of the form

T{b) = 5(b)
P sat, 5(b)

This is sound since, from the semnantic equation, ¥b € Agp P p T{b); ther from the
premise, ¥b € Apr P p S(b), so P =at, S(b).
5.4.3 Unary operators

The semantic equations for the unary operators prefixing, delay, abstraction, and renaming
can all be written in the forn

Apgr F(P) p={b| T'(B)} U{C(b) [f(b) € Agr P p A T(b)}
The corresponding proof rule is of the form

P sat, §'(b)
T'(b) = §(b)

S (BN A T(b) = S(C(B)
F(P)sat, 5(b)

92 Probabilities and Priorities in Timed CSP

In the cases of hiding and renaming, T(b) is false and so the corresponding antecedent can
be dropped. The rule can be proved sound as follows. Assume the antecedents of the rule;
then
be Agr FIP) p
= (semantic deﬁnition)
Ty v3Y b=CH)Af(b) e Agr P p A T()
= <ﬁrst and secoud premises
SByvIY b=CUYIASFBNATHD
= (third premise)
S v IH b= CWYASCH)
= (predicate ca]culus)
5(b)
So¥bedgr F(P)yp S(b).ie F{P)sat, S(b).

5.4.4 Binary operators
The semantic definitious for the binary operators may be written in the following form:
Agr P& @ p= {C(b)| frlbp) € Agr P p A folbg) € Apr @ p A R{b,bp,bg)}
The corresponding proof rule is of the form
P gat, Sp(b)
Q sat, Sq(b)
S Uslbr)) A Sqlfq(bg)) A R(b,br.bg) = S(C(8)
P @ Qsat, S(b)
The rule may be proved as follows. Assume the antecedents hold. Then,
e dgr PBQp
= (semantic deﬁnition>
3bp,bg, b felbp) € Apr P pAfolbgl € Agr @ p AR(b,bp. bo) A b = C(b)
= <Erst and second premises
Stp, bg. b Sp(fe(be)) A Sq(fo(bq)) A R(b, bp,bg) A b = C(b)
= <third premise)
3bp, bg, b S(C(6)) AV = Cb)
= <predieate Calculus)
S(6"
SoVd €dgr PR Q p S(¥), ie. P& Qsat, S(b).

5.4.5 Indexed operators

. . . . [
The semantic equations for the two indexed choice operators, ., P, and ¢.1: {1 — P; can
be writtenin the form

Apr ®ier Py p 2 (0| T'(0)) U {C(b) |3eed f(b) € Apr Pi p A T(b))

5.4 Derivation of the proof rules 93

The corresponding proof rule is

Yie ! P, aat, Si(b)

T'(b) = S(b)

Viel S{f(b) A T(b) = S(C(b)
@i P, sat, S(b)

In the case of infinite nondeterministic choice, the predicate T'(b) is false, so the corrspond-
ing premise in the inference rule is dropped. The rule can be proved sound as follows. Assume
the premises of the proof rule hold. Then we bave

b€ Apr @herPip
= <5emantic definition
TR VAN b=CYAJiel f(¥)eAsr P.oh T()
= <premisea 1 and 2
SHyvayY b=C¥Yya3iel 3" ATEH)
= (premise 3; predicate calculus
S(byvIY b= C(') A S(C(HY)
= <predimte calculus)
S(b)

Hence, Vb € Agr DiciPi p S(b), so Bt Py sat, S{b).

5.4.6 Recursion

In order to derive a proof rule for recursion, we reason about the topological spaceon which
the model is based. The following theorem is taken from [Ros82]:

Theorem 5.4.1: Let M = (4, d} be a complete metric space, and let TV be the topological
space {{true, false}, T) where T = {{}, {folse}, {true, false}}. IE:

e F: M — T is continnous with respect to the d-open topology and 7,

e the set {o¢ € A4 | F(a) = true} is non-empty,

s the function € : M —+ M is a contraction mapping, and

e Yz:4 F(z)=true = F(C(z)) = true,
then F{fir(C)) = true. <
We define a predicate to be satisfiable if it is satisfied by some element of Srg:
Definition 5.4.2: The predicate R is satisfiable if 34 : Stg R(A). o)

In the following subsections we prove the soundness of the proof rules for immediste recursion,
delayed recursion and mutual recursion.

94 Probabilities and Priorities in Timed Cﬂ’

Immediate recursion
If P is tonstructive for X then we have the following preof rule for immediate recursion:
Rule 54.3:

VY Srp R(Y) = R{Apr P p[Y/X])
R{Aar X P p)

[R continnous and satisﬁable]

JA)

Proof: Il P is constrenctive for X then tbe mapping AX Agr P p|Y /X] is a contraction
mapping. By hypothesis, R is continuous and {A : Stz | R(A) = frue} is non-empty. We
have assymed that

VY :Srs R(Y)= R(Asr P O{Y/X])

Hence we may apply theorem 5.4.1 to show that the result holds. u]
We are only interested in behavioural specifications; this allows onr proof rule to be simplified:
Rule 5.4.4:

X sat, 5 = Psat, §
uX Peat, §

We need the following result adapted from [Ree88]:
Theorem 5.4.5: A specification R is continuous if for all X in Sz such that R(X} = false:

¢: TIME YY :Srp Y 1=X t= R(Y)= false

We can now prove the inference rule sonund:
Proof: Iuorder to use rule 5.4.3 we only need to prove that the predicate
R(Y)=V(r,E,5)e ¥ S(1,C,s)

is continuous and satisfiable. It is satisfiable since R{{}) obviously holds. T show continuity,
suppose that X € Srg and R(X) = false. Then 3(7,E,5) € X - S(7,E,s). Pick { .
Then for all Y € Srg:

VY t=X 1= (rE,5)€Y

But - §(1,C, 3), sa R(Y) = false, as reguired. u]

Note that iz proving X sat, 5 = P sat, § we cannct assnme that X is a member of M gpg:
we may not assume that any of the axioms are satisfied by X. This is rarely a problem.

5.4 Derjvation of the proof rules 95

Delayed recursion
The following procf rule holds for the delayed recursion operator:
Rule 5.4.6:

X sat, (S((1,C,5) - 8) A begins SALC &=1[0,.8) 9 {})) = P sat, $(r,,s)
uX Psat, S(7.C,3)

Proof: The proof of this is similar to the proof of the rule for immediate recursion. w}

Mutual recursion

We restrict our attention to recursive equation sets that have a vector of terms that is
constructive for the vector of variahles. The following rule shows that if a vector of closed,
satisfiable predicates R is preserved by the semantic mapping, then it is satisfied by the fixed
point.

Rule 5.4.7:

(Vi R(Y)))=>Vj R(Apr P, p[Y/X])
Vi Ri(Asr (X =Pi); p)

[R‘- closed, sati.sﬁable]

Jal

Proof: Recall that in the proof of soundness for mutual recursion, described in chapter 4,
we defined a secondary vector of processes @ by

Qi = AIG /X, | 1 € seg(i)]

We defined M(X,Plpby M{X,P)p= AY Apr P plY/X], and defined M(X.@)p simi-
larty. We showed that M (X, @)p is a contraction mapping, and that its unique fixed point
is also the unique fixed point of M{X P)p.

Assume, then, the premise and side condition of the proof rule. We claim that
(wi:I R(YiD=Vj Rj{Asr Q) p[X/X])
we prove this by trapsfinite induction. Define J by
JE{k:T(ve:1 R(Y.}) = RelApr Gr plX/X])}
We assume seg(k) C J and prove that & € J. Assume that

Yi:I R(Y;) (*)

96 Probabilities and Priorities in Timed CSP

Then by definition of Q.
Asr @k plY/X] = Apr Pi plX/X][Asr Qi plY/X])/X; |1 € seg(k)]

Define the vector Z by
. {Y, if 1 ¢ seg(k)
=
Agr Qu p|Y /X] if | € seglk)
Then
Agr Qi plY/X] = Apr Py pl2/X]
Now, by the inductive hypothesis and (), ¥I: T R;(Z}, so from the premise of the proof
rule, Ryl Apr Pe p[2/X]). ie. Rp(ApT Q& p[Y./X]). This proves our claim, and shows that
M (X, @)p preserves R.
Now, exch R; is closed and satisfiahle, so the vector of predicates f2 is closed and satisfi-
able. Hence we may apply theorem 5.4.1 to deduce that £ is satisfied by the fixed point
of M{X,Q)p. But this fixed point js the same as the fixed point of M{X, P}p, so we dednce
that therule is sound. =)

We can use this rule to derive the following rule for bebavioural specifications:
Rule 5.4.8:

(Vi:I X;sat, 5;)=>Vy:] P sat, 5
(X,' = P.‘)J sat, SJ

Fal

This rule follows from the previous rule in the same way rnle 5.4.4 followed from rule 5.4.3.

5.4.7 Completeness

‘We claim that the proof systent is complete in the sense that if same hehavioural specifieation
(7, C, s}is true of all behaviours of a process P, then the inference rules given in this chapter
are sufficient to prove that P sat 5. We proceed via the following lemma:

Lemma 5.4.9: If P ¢ BTCSP is such that every recursion is constructive, then we may use
the proof rules to establish
P sat, (,C,s) € Aar P o

for any environment p. Q
Proof: We praceed hy a structural induction upon the syntax of BTCSP. The result is easily
established for the hase cases. For example, consider the process STOP. The inference rule

S(r.iore {ih. <)
STOF sat, §

5.4 Derivation of the proof rules 97

allows us to establish that STOP sat, T = [0,7] @ {]}) A s = <. From the semantic
definition we have that

C=[07]a{hAs==<+=(nrC,s)€ Aar STOP p
So the inference rule

FPsaty, 5
8{r.C.8) = T(7.C,3)
Poat, T

allows us to establish that $TOP sat, (7,C,s) € Apgr STOP p

For composite processes we assume the result holds for the subcomponents, and apply the
appropriate proof rule. For example, consider the left-biased lockstep parallel operstor. By
induction, we know that the proof rules are strong enough to prove

P sat, {r,C.5) € Agr P p
Q sat, (r,C,s})c Agr Q ¢

The semantic equation for P 4} @ gives us that
(r,Cp.3)€Anr P pA(1,Cq.5) € Arr Q@ p= (1.Cp4t Cq.8) € Aar PtQ o
Then the inference rule

P sat, Sp

g sat, 5g

Sp(r,Cpi8) A Sqg(r,Cg,9) = S(r.Crdt Cq. 5}
Pé Quat, 5

Instantiated with

Sp(r,C,s) = (r,C,s)€Agr P p
Sq(r.C,s) 2 (r,C,s)€ApT Q p
§(r,C,s) & (r,C,3) e Apr Pt Q p
allows us to prove
Pé @sat, (r,.C.a) e Apr P9 Q p
as required.

For recursion we prove the result for the immediate recursion operator; the other types of
recursion are similar. Recall that the semantics of 4 X P is defined to be the unique fixed
point of the mapping M (X, P}p where

M(X,P)p2AY Agr P plY/X]
Let 5{r.C,3) = (r,C,5) € Agr £ X P p; we will show

X sat, §= Psat, §

98 Probabilities and Priorities in Timed CSP

Assume X sat, §. Then ¥{r,C,s) €p X (r,C,8) € Agr X P p, ie
pX CAgrux Pop

Because of the way the semantics for each aoperator is defined, the mapping on Mg corre-
sponding to any BTCSP term is monctouic with respect to the subset relation. So

M(X,Plplp X } € M(X,P)p(Agr p X F p)
Hence, expanding the definition of M (X, P)p, we have

Apr P plp X JX|C M(X,P){ApT u X F p)
= {definition of substitution
Apr PpC M(X,P)p(Apr uX P p)
= (Apr uX P pis the fixed point of M(X, P)p)
Asr PpCAsgruX Pop
= (deﬁnition of sat,
Psat, (1,C,s)€eAgr u X Pp

S0 P sat, 5. Hence we can use the proof rule

X sat, 5§ = Psat, S
uX Psat, §

to infer that u X P sat, (v,C,s) € Agr pX P p asrequired. This concludes the proof
[}

We have shown that our proof rules are enough to establish P sat, {1,C_,s} € Apr P p. If
a specification S{r,C, s) holds of a pracess P, then (r,C,s) € Agr P p = S(1,C,s}. Then
the proafrule

F sat, 5’
S'(r.E 5) =+ 5(r.C,5)
P sat, §

with 5'(7.C, s) instantiated with (1,C,s) € Agr P p can be used to prove that P sat, 5.

5.4.8 Hiding

In this subsection we consider a way of simplifying the rule for hiding. We define a specifi-
cation S 10 be 4-independent if the removal of A’s events from the trace and offer relation
does not affect the truth of §.

Definition $.4.10; A behavioural specification § is 4-independent iff

V(r,C,8) S(rC,8) = S{r,C\ 4,5\ A}

5.4 Derfvation of the proof rules 99

We have the following inference rule:
Rule 5.4.11:

P sat, internal A => §

[8 iz A-ind ependent]

P\ Asat, §
Ty
If § is A-independent and P sat, internal 4 = $ then we can deduce P \ A sat, S.
Proof: Assume the premise and the side condition. Then we have
(r.C,5) € Apr P\ A p
= (serna.ntic deﬁnir.ion)
AC,s C'\A=Casd\A=sns =12 (' \A) AL, ¥) € dar Po
= {from the premise, definition of internal A)
S3C.s C'\VA=CAas\A=snS(TC¢)
= (S is A—independent)
S(r.C,8)
Hence ¥(7,C,s5) € Agr P\ A p S§(r,C,s), i.e. P\ Asat, §. n}

5.4.9 Arguing about probabilistic processes

Up until now we have heen discussing proof rules for unprobabilistic prioritized processes.
If we want to prove that an unprobabilistic specification is met by a probabilistic process,
then we can use the abstraction result presented in section 5.2 to reduce the proof obliga-
tion to proving a specification on a BTCSP process, and then apply the proof rules for the
unprobabilistic, prioritized model.

Alternatively, we can derive proof rules for arguing directly about probabilistic processes. The
proof rules for unprobabilistic operators take precisely the sarue form as in the unprbabilistic
model. For example, we bave the following rule for lockstep parallel composition:

P sat, Spin Mprg

g sat, Sg in Mprp

SP(TI QPJS) A SQ(Ta —E-Qn"j) = 5(7! EP‘H’ EQ»S)
P4 Qsat, 5 in Mprg

This can be proved as follows. Recail that in section 5.2 we proved the following result:
WP (Pysat, Sin Mrg ¢ Peat, Sin Mprg g =70p (2}
Assume the premises of the abave rule. Then if o' = 7y o p we have

'p(pE)(P) saty, Spin Mrp &DE.;B)(Q) saty g in Mrg

100 Probabilities and Priorities in Timed CSP

by (+} Applying the proof rule for parallel composition in Mg, we have

P Q) = P4 Q) saty Sin Mrp

so P4 Q@ sat, 5in Mprg, by (+) again.
The probabilistic internal choice operators have the following rules:

P sat, Sp

Q sat, Sy Vi€l P, osat, 5

Sp(r,C.s} v Sq(r,C.s) = 8(1,C,s) Yigel S(r,C,s)=3(r.C.s)
Py @sat, § wcip:)Pusat, §

These can be proved in exactly the same way us the rule for parallel compesition, above.

For probabilistic external choice we have the following rule:

PDQsat, §
_PI]]QsatpS
Pp Qsat, §

This can be proved uvsing the proof rule for binary probabilistic internal choice and the fact
that P, , @ is by definition equal to P Q ;N, P Q.

Thus, we can prove a probabilistic specification holds of a process either by applying the
abstraction result aud arguing in Mg, or by applying these inference rules for probabilistic
processes directly.

5.5 Example: the lift system revisited

In this section we consider the lift system that was introduced in section 3.2. Recall that the
Jift systemn was defined by

SYSTEM = (LIFT *'R4™F BUTTONS)\ R
LIFT = LIFT,
LIFTy = req; 24 arvive; -5 LIFT]
Treqa = GTTIVED 24 LIFTy
Direqa 2, arrivey 2, LiFTg
LIFT] = reqs -2+ armivey -~ LIFT,
Drego 2, arriveg 4 LIFTy

Greq, —2+ arrive; — LIFT]

LIFT} = regy 5 arrivey > LIFT,
Dreqs 2 arriveg BEIN LIFTs

Dreg, N arrive; BN J‘.ul‘.""i'",l

5.5 Example: the lift system revisited 101

LIFT, 2 req -2 arrwe; —+ LIFT}
Dregy N arriveg N LIFTy
Dregs %+ arrwves —+ LIFTe
BUTTONS BUTTON; BUTTON; BUTTON,
BUTTON; = push; -+ req, -+ BUTTON, (i=10,1,2)
where the interleaving of the buttons could be either left- or right-biased, and
A= {armive, | 1€ 0.2} R2{req |i €. 2} P=(pushi |ic0. .1}
LIFT; and LIFTy represent the lift on the ground and second floors respectively: LIFTI
and LIFT#’ represent the lift on the first floor wbere the previous movement was up or down,
respectively. The lift is biased in favour of next going to ap adjacent floor; when it is on the
first floor, it is biased in favour of continuing in the direction it last went.
We will show that the lift arrives within 15 seconds of the button being pressed if the envi-
ronment always allows the arrive events.
SYSTEM sat, SPEC
where SPEC = internal A A push, at t A heyond £ + 15 = arrive, at [t + 3, E+ 15)

i

Using the proof rule for hiding, we can reduce our proof obkigation to
LIFT ARy RYP BUTTONS sat,
. . ush; at £ Abeyondt + 13 = reg; at [t + 1,8+ 13
internal A A internal R = {700 e q', [!)
Areq; at t Abeyondt + 2 = errive; at £+ 2
A reg; occurs within 13 seconds of a push;, and arrive; occurs 2 seconds after the reg,.
We will use the proof rule for parallel composition to reduce the proof obligation to
LIFT sat, SPEC
BUTTONS sat, push;ati = no reg at[t,t+ I} A reg; live fromt + J
where
SPECy = A, R separate
A reg; at t =» armwe; live fromt + 2
A internal A A reg, accessible from ¢ A heyond t + 12 = req, at [¢, 1+ 12)
The lift offers req and arrive events separately; two seconds after performing a rg;, it offers
arrivey; and if the environment is willing to perform any arrive events and is offering reg;,
then the lift performs req; within 12 seconds. The buttons offer req; one second after per-
forming push;. We have the following proof obligation:

Lemma 5.5.1: Let C = C, "R¢ Y Ly Then
(SPECL(T, Ci;s AUR)) -
A (pushi at ! => no req at [¢,2 + I} A reg, live fromt + 1)(r,Cg,5 RUP)
internal A A internal R =
push; at t Abeyond ¢+ 19 = req at [t + 1, ¢ + 13)) | (7, C,9)
(Arﬂq,-attf\beyondt+2=9-arriue.att+2)

102 Probabilities and Priorities in Timed CSP

Proofof lernma: Let C = C; “YRgAYP Lo Suppose

SPEC,(v,C;,5s AUR)
A (push, at t = noregat [L, L+ 1) A req, livefromt + 1)(r,.Cp,s RUP)
A (internal A A internal R)(7,C, 5}

We want Lo show

(=)

push, at t Abeyondt + 13 = req, at [t + 1,£ + 15) (1 Cos)
7.5
A reg at ¢ A beyond t + 2 = arvive, at £ + £

For the first conjunct. suppose that (push; at t A beyond ¢ + 13)(7,C,s). Then we have
(push, st t)(,Cg.s LU F) so by BUTTONS' specification, (reg, live fromt + 1)}{(r,Cy,s
RU P). We will show (req, accessible from ¢+ 2){r,Cr,s AUR). Recall corollary 5.3.2 which
said:
LetC = Cp Afﬁ-ﬂ Cgand c € C € AN H. Then if {c live I}{r,Eg.,s B) and
{internal C' A ¢, A \ C separate I}{r,C, s} then (c accessible f}{(1,Cp,s A).

Taking ¢ = req,, C = R, we must show that (internal R A reg,, A separate [){r,C,5). The
first clause holds by hypothesis; the secoud holds because A, R separate. Hence we have

(req; accessible from ¢ + 1){r,C;,s AUR)

Also, (internal A}{7,C, s) so (internal A)(r,C;. 5 AUR). Hence from the third clause of SPEC,
we see (reg, at [t + 1, ¢ + 137, 0, AUR), 50 (req at[t+ 1,1+ 13))(r, C, 5}, as required.
For the second conjunct, of (), suppose that {req; at { A beyond ¢ + 2). Then (req, a1
1){r,Cr,5 AUR)so (arrive, live fremi+ 2)(r,Cp, s AUR), by the second clause of SPEC.
But (intemal A)(7, T, s) so {internal A)(r,Cr,s AUR), so (armive, at ¢ + 2)(1,C 1,5 AUR),
which gives (ermve, at ¢ + 2)(r,C. 3}, as required. o

We now prove that the two suhcomponents satisfy their specifications. The result for the
buttons i easily proved: we can use the proof rule for interleaving to reduce the proof
obligation to

Y1 BUTTON, sat, push; at ¢t = no reg at [t, 8 + 1) A reg, live from { + ¢

which can be proved using the proof rules for prefixing and recursion.
We show that LIFT satisfies the specification SPECL by proving that

LIFT, sat, SPEC; LIFT] sat, SPEC]
LIFT} sat, SPEC} LIFT; sat, SPEC,

where

SPECy = SPEC,
regg accessible from t = regp at [t, ¢ + 9]
A reqy accessible from £ = reg; at ¢

(internal A A silent before t)
=
A reqs accessible from ¢t = regp at [¢, L + 3]

Abeyondt + §

5.5 Example: the fift system revisited 103

SPEC] = SPECY

int I A A silent before ¢
('" erna sient belore A req; accessible from ¢ = reg; at [1, ¢+ 9]

reqp accessible from ¢ = regg at [¢,1 + 6]
=
Abeyondt + 6)

A reqs accessible from b = regp at ¢

SPEC} = SPEC,

: . regy accessible from ¢ = regp at ¢
internal A A silent hefore ¢ . .

= | A req, accessible from ¢ = reg; at [t,14)
A beyondt + 6

A reqs accessible from ¢ = regp at [¢, !+ 6]

1

SPEC, SPECY

internal 4 A silent before ¢ .
A reqy accessible fromi = reqy at ¢

reqp accessible from ¢ = regp at {t, ¢ + 3]
A beyandt + 9)

A regp accessible from ¢ = regy at [¢,1 + 9]

Note that SPEC; = SPEC; and LIFT is defined to be LIFTy, so this will be enough to
deduce LIFT sat, SPEC;.

We prove these results using the inference rule for mutual recursion, noting that the recursions
are uniformly 3-constructive. We assume

LIFTy sat, SPEC, LIFT} sat, SPEC]
LIFT} sat, SPEC! LIFTs sat, SPEC;

and we need to show

req; —+ arrive; —+ LIFT]
Dregs 2N arrves -, LIFTy | sat, SPEC,
Dregy —!—» arrveg N LIFT,
rege 2, erTivep -4 LIFTs
Dregy -2+ arrive; —» LIFT, | sat, SPEC]
Dreq; — arrive; - LIFT]
regp L erriveg 2 LIFT,
Dregy —+ arrives —5 LIFT, | sat, SPEC}
DOreg; 2, arrive; L LIFT}
req; 2 arrive; —+ LIFT}
Dregs 2 arriveg LI LIFT, | sat, SPEC:

Dregz A, arriveg 4 LIFT,

We prove the first result; the rest are similar.

We begin by proving that SPEC] is satisfied. For the separate clause it is enough, by the
proof rule for external cboice, to show that

reg; 2 armve; A LIFT} sat, A, R separate

104 Probabilities and Priorities in Timed CSP

where LIFTY = LIFTy, LIFT; = LIFT}‘, etc. This is easily proved using the preof rule for
prefixing and the assumption that LIFT] sat, A, R separate,

For the second clause of SPEC it is enough, again by the proof rule for external choice, Lo
show that

req, 2 arrive, =4 LIFT; sat, reg, at t = arrive, live fromt + 2
Suppose {reg; at t){7, T, s}). Then either

= this is the first event of reg, N arTive; -4 LIFT}, in which case : = j. Then using
the proof rule for prefixiug, we have {armwve, live from ¢ + 2)(7, L, 5); or

e this is not the first event, in which case it must be an event of LIFTT. In this case, we
can deduce the result from the corresponding clause of the assumption about LIFTY.

Far the third clause of SPE£C;, suppose
(internal A A reg; accessible from ¢ A heyond ¢ + 12)(7,CC, 5)

We want to show reg, at [, !+ /2). Note that (¢, reg,) 7 (', 7eqp) 7 (¥, rega) 3 (¢, {}) for all
times (' up until when the first eveut occurs. Expanding the definition of req, accessible from ¢,
we see that an event must occur by time ¢ at the latest. We have a number of cases to consider.

s Suppose no event occurs before time {, and reg, cccurs at ¢ in this case the result is
immediate.

Suppose the frst event to occur is reg at time ¢, and j # 5. by the definition of @,
and since reg, accessible from ¢{ we must have) = 2ands=0orj =7 and i# . We
consider these two subeases:

- Case j = 2 and i = 0: because (internal A){r,C, s}, by assumption, and by the rule
for prefixing, we have arriveg at t + 2, and the process acts like LIFTy from ¢+ 3.
Now by assurption.

LIFTg sat,
internal A A silent before @ A beyond ¢ A regy accessible from & = regg at [2, 3)

50 in this case we have regy at [t + 2, £ + 6].

-Case j = ! and i # I: because of tbe assumption (internal A)(7,C,s). and by
the rule for prefixing, we have arrive; at ¢t + 2, and the process acta like LJ’FTT
from ¢t + 3. Now by assumption,

LIFT] sat, (internal 4 A silent before 0 A beyand 9) =
reqg accessible from 0 = regy at [0, 6)
A TEqy accessible from 0 = regp at 0

s0 in either case we have reg, at [t 4+ 3, + 9).

5.5 Example: the [ift system revisited 105

o Suppose the firat event to occur is req, at some time t' with t' < ¢ < ¥ + 3 then
we have arrive; at ' + 2 and the process acts like LIFT] from time ¢' + 8. Now by
assumption,

internal A A sitent before 0

LIFTY sat, () =+ reg; at [0, 9]

A beyond 9 A req, accessible from 0
s0 req, at [t/ + 3, + 12], Le reg; at (¢, ¢ + 12).

e Suppose the first event to octur is reg; at some time ¢’ with ¢ + 3 1 then we have
arrive; at ¢’ + 2 and the process acts like LIFT; from time t'+ 3. Now by assumption,

LIFT} sat, intemal A A reg; accessible from ¢ A beyond { + 12 => reg, at [{, ¢ + 12)
so req; at [¢, ¢ + 12).

Hence in each case we have req, at [{,¢ + 1£), so the second clause of SPEC, is satisfied.
We now turn our attention to proving

regg accessible from ¢ => regp at [t,¢ + 9]
internal A A silent before ¢ A beyond 2 + 3 => | A regy accessible from ¢ = feqy at !
A regp accessible from ¢ = rege at 8.1 + 5]

Assume internal A A silent before ¢ A beyond ¢+ 9. We prove the first clause of the consequent;
the other clauses are easier. Suppose then that {regy accessible from1)(r,C,s). By the
definition of @ we have (2, reqy) O {t, regz) 3 (i, reqg) 1 (¢,{I}}, and expanding the definition
of reqp accessible from ¢ we have (¢,regp) 2 5 1 ¢, s0 a req; occurs at t. We consider the three
possibilities:

s Case regg at t: the result is immediate.

e Case req; at ¢: then arrive; at £ + 2, and tbe process acts like LH"’TIT from time ¢ + 5.
Now by assumption

internal A A silent before £

LIFT] sat, .
A beyond t + § A rege accessible from 0

) = regy at [0,6)

so regp at {¢ + 3,¢ + 9]
s Case regp at ! this case is similar to the previous case.

So the result holds in each case.
Hence we have shown that LIFT sat, SPEC; and so SYSTEM sat, SPEC. [m}

Chapter 6

Relating the Prioritized Model to
the Timed Failures Model

In this chapter we want to relate the Prioritized Model of BTCSP to the Timed Failures Model
of Timed CSP. This will belp us to understand the Prioritized Model, and also allow us to
prove properties of prioritized processes by proving results about corresponding unprioritized
ProCesses.

In section 6.1 we produce the abstraction mapping from the Prioritized Model of BTCSP to
the Timed Failures Model of Timed CSF. We present a syntactic mapping ¢ that removes
all priorities, and derive a correspending semantic mapping #. We show that under the
abstraction mapping @, the set of failures corresponding to a prioritized process P is a subset
of the failures of the process ().

In section 6.2 we use this abstraction result to show how. nnder certain circumstances, we
can translate specifications in the Prioritized Model into corresponding specifications in the
Timed Failures Madel. If we can find a TCSP process that satisfies a failures specification,
then any BTCSP refinement of that process will satisfy a corresponding specification in the
Prioritized Model. We develop a number of rales for translating specifications written in our
specification language. The Timed Failures Model is a simpler model than the Prioritized
Model of BTCSP. so the proofs are normally simpler.

We can also use this refinement method as follows: often a specification will consists of a num-
ber of conjuncts; normally it is possible to find a failures specification corresponding to most
of these conjuncts. If we can find a TCSP process satisfying this failures specification. then
we only need to investigate which of its BTCSP refinements satisfv the rest of the conjuncts
of the original specification. We illustrate this method with an example in section 6.3.

6.1 An abstraction result

In chapter 5 we presented ahstraction mappings from the probabilistic and deterministic
languages and models to the priaritized language BTCSP and model AM rp. We now present
ahstraction mappings from BTCSP to TCSP, and from the Biased Model A g to the Timed
Failures Model M r¢. The ahstraction mappings are shown in figure 6.1. The mappings
-;-fnm and GS,E) remave probabilities while kecping biases; the mappings v&;ﬂ) and Bg,m remoave
determinisin hut keep biases; the mappings v and f5 remove biases.

106

6.1 An abstraction result 107

PBTCSP DTCSP
(B (5
(E
BTCSP
@ fg
TCSP Mrgp

Figure 6.1: A hierarchy of languages and models

We define the obvious mapping from the syntax of BTCSP to the syntax of TCSP which
removes al] priorities:

Definition 6.1.1: Wc define g : BTCSP —+ T'CSP by

ra(POQ) 2 we(P) ¢s(Q) sos(PlQ)—saa() ws(@)
va(P*4Y Q) 2 va(P) ¥V ¢ (Q) ea(PXpY @) = (P *|Y wB(Qw
wa(Pd Q) = ¢r(P) || wa(@ ¢(P ¥ Q)= wa(P)| val
wa(P + Q) = ¢g(P) sDB(Q) va(P— Q) = ¢r(P) ‘PB(Q)
va(P4 Q)= ,aa(P) I ¢s(Q) en(P ¥ Q)2 »"B(P) Il #a(@)
wplP) = for P = STOP, SKIP, WAIT {ar X
s(F(P)) = F(qoB(P)) for F(P)=a—5 P, WAIT t, PP\ X,
fiPluX P oruX P
ep(P® Q) 2 ¢r(P)®vp{Q) for & =n, , r,‘, ar ?

6.1.1 The abstraction mapping

Having produced a mapping between the syntaxes, we now seek a corresponding mapping 85
hetwecn the semantic spaces sa that the diagram in figure 6.2 commutes.

We might naively expect to be able to praduce a result of the following form:
f YX 85(0 X)=p X then8a(dpr P p)=Fr ¢5(P) o
Haowever, it is not possible to produce such a mapping 85. Consider the two processes

P=a—b—8TOPDa—¢c— STOP and Q=a—b—STOP

108 Probabilities and Priorities in Timed CSP

BTCsP —22 — 1esp

ApT Fr

|

Mrp g Mg

Figure 6.2: The syntactic and semantic maps

In My these two processes are equivalent, so we have 8g{Agr P p) = 6g(Asr Q p}
whereas Fr wg(P) o' # Fr wg(@) ¢ (for any environments p and g'). We shall give a
functicn #g such that for all BTCSP processes P,

if¥X Og(p X)=p X then 8g(Agr P p) C Fr o5(P) ¢

To begin with, we want to be able to convert hetween traces in the Prioritized Model and
traces in the Failures Model. In the Prioritized Model, traces are represented as functions
from an initial segment of time to actions: TT = {s: TIME + ACT | 37 doms = [0, 7]}
In the Failures Model they are represented as sequences of timed events: TEL. We therefore
require the following definition.

Definition 6.1.2: We define a relation _~ _: TZ: x TT by

(o~ Ac (B
(t,a) s ~ S @{t— () w{al), ifs~ 4

Informally, s ~ s" if s and s' represent the same trace.
An event (¢, a) will be refused during a behaviour {r,C,s) if the process would rather not

perform an extra a: in other words, if the process pr&ers what it performs (ie. s 1 1) to
(£, &} added to what it performs (i.e. st tw{t. a)). Formally, this condition can be expressed
asstiw(i,a) Astt

Note that if s 1t (t,e) Psttandstiw(t,b) AsTithensttw(t,fa b)) A5ttt as
can be easily verified from axiom A6. In other words, if a process can refuse ag @, and it can
refuse a b, then it can refuse the a and the b together.

However, it turns out that it is not enough to take theset {{f,6) |t <7 A s T tu(t,6) 2311}
as the total refusal of the behaviour (r,C,s). Consider the behaviour

(1, [9.0]® el i} (2. 1]& @}, <=)

of (amb) \ & where a b is performed silently at time ¢. For this behaviour, if we put
N={{te)|t<TAsttw(,a} 2stL], then we have (0,1) x {6} C ¥, but (0,2) ¢ K
contrary to our expectations. To fit in with the Timed Failures Model, we will require that

6.1 Agn abstraction result 109

the total refusal relating to a behaviour is closed on the left; this means that the total refusal
for the above behaviour will include [&, 1} x {a}-
We can now define a function giving the total refusal relating to a hehaviour.

Definition 6.1.3: The total refusal of a behaviour (7, C, s} is given by ref(7,C, s) where the
function ref « BEH — RSET is defined by

ref{7,C,s) S closure{{t.a} [t < T AsTtW{l,a) Ds Tt}
where closure 5 is the left-hand closire of 3
closure § = {(t,e) [Te > 8 (t,t+¢) x {a} C §}
¢

The following results about the total refusal of a process will prove useful. The total refusal
is open on the right in the sense that if the timed eveut (¢, a} is refused, then {t’, a) is refused
for all times ¢’ ‘just after’ f.

Lemma 6.1.4: ({,a) € ref(7,C,8) = Je > 0 [t i +¢) x {a} C ref(r,C, 8} v

Proof: Suppose (¢, a) € ref(7,C,s) and suppose for a contradiction that the consequence
of the lemma does not hold. Then by the definition of ref {7, C, s) and the finite variability
condition on offer relations (axiom A8), we must bave for some ¢ > ¢ that V' € (I,f +¢)

s T#w (¥ a)d s T ¢ Hence by the sub-bag closure condition on offers (condition AS5),
Yi' e (t,t +€) (t',a) €itemsC. Then by condition AJ we have that s Tt® (t,a) 3 s 1 (,
contradicting our assumption that (f, a) € ref(r,C,s).]

We use this result to prove that ref(r,C,s) is a member of the set RSET of refusals.
Lemnma 6.1.5: ref(r,C,s) € RSET. W)
Proof: ref(r,C,s) is closed on the left by definition, open on the right by the previous

lemma, and satisfies the finite variability coudition by the cotresponding condition on offer
relations (axiom AS). u

We claim tbat a timed failure (s', ®} could have resulted from a pricritized behaviour (7,C, 5)
precisely when s’ ~ s A R C ref (1,C, s). We will write {¢',%) ~ (v,C.s} and say (&', W) is
compatible with {7, C, 5) if this holds.

Definition 6.1.6: For all (s/,8) € TF and (7,C,s) € BEH,

(s'\R) = (r,C,8) & s'~3ANC ref{r,C, 5)

110 Probabilities and Priorities in Timed CSP

If (&',%) =~ (1, C, 3) then (s',R) is compatible with (r,C, g}, in the sense that

s sand &' represent the same trace, i.e. s’ ~ s; and
p 1

+ al the memhers of ® are refusals of the behaviour (,C, s), i.e. ® C ref(7.C, 3).

We can now give the mapping hetween our semantic spaces.
Definition 6.1.7: The function 05 : S7g — S7r is given hy

Ba(A) = {(s',N): TF | Hr,C,) €A (&,R) = (7,C, s)}

fg(A) is the set of all timed failures that are compatible with some memher of 4.
Recall our definition of failnres environments:

ENVe = VAR 5 S7r

We write o for a typical member of ENVr, and 0 X for the set of failures associated with
variahle X. The priorities environment p and failures environment o are compatible, in the
sense that they associate the same processes with each variable, if ¥ X : VAR fp{p X) =
o X ;this can be written more concisely as o = fg o p.

The composition of f5 with 4p7r will be sufficiently important that we give it a name:
Definition 6.1.8: The function Apy : BTCSP = ENVr = Str is given by
Apr Pa=8g(Aar Pp) where o=fgop
Q

Note that although there may in general be several environments p satisfying the condition
that o = fp o p, this definition is independent of which one we choose: the only place where p
is used is when giving a semantics to a variable; in this case we have

Apr X o =0p(Apr X p)=0(p X }=0c X

s0 the choice of p makes no difference.

In the following subsections we will study the image of Mg under the mapping #5 and show
that it s contained within the Failures Model M pr. We will then consider the effect of the
mapping Arr on the syntax of BTCSP.

6.1.2 The space (M)
All members of 8(A rp) satisfy the healthiness conditions of M 7.

Theorem 6.1.9: For all § in 8(Mrg)

L{i{bes

6.1

2.
3.
4.

5.

6.

-

i

An abstraction result 111

(s w,R) €S = (s, beprnu}ecs
(s, R)eSAs=w=(uR)€S

(s,R)eSAt 0=

IN e RSET RCN A(s,¥)e S

A talte)gW (s ¥ (Ha) W 1)es)

Yiclf.oo) dn()e Vs,V €5 ends = #s nlt)
(5, R)eSAN € REETAWCR= (s, N)€ES

(s w,R)eS AN € RSET

Aends begin®W Aend¥ bepnuw | = (s w RUNjeS
AV(La)e® (s (1a),R 1) ¢S5

Proof: We prove each result in turn. Let § = d5({A).

1.

Axiom B4 of M g states that there is some offer relation C such that (¢,C,<>) € 4.
Then () ~ <> and {} € ref(0,C, <) 50 ((},{}} € S.

I (s w,®) € S then for some &', w', 7, C we have s ~ &', w ~ w', RC ref(7.[, ¢ w)

and (1,C,4 w') € A. Then by axiom B3, {begin w,C begin w,s’) € A. Also X
begin w C ref (beginw,C begin w,s') and so (s, X begnw) € §.

. It is sufficient to show that if s ~ &' and 5 = w then w ~ &', which follows directly from

the definition of ~.

. Suppose (5,8} € S At 0. Then there is some {r,C,s'}) € A such that (s,R) ~

(7,C,s'). Let 7/ = 7Ut. Then 3C' C' 7=LC A (v,C'.5 <) € A by axiom B5.
Let ¥ = ref{7',C’,s' <»). Then ¥ € RSET by lemma 6.1.5; ¥ C R’ by comstruction;
(5,R®) € S by definition of fig: and if ' t A (¢, 0) Nthenw & Tt (t,a) 0 5" 1 ¢
by definition of ref, so ' + 1w (¥, o) € itemsC’ and so (¥, C' ¢ ' (#,6)) € A by
axiom B3, and hence (s ' (', a),® t') € Ssince (s ¢ (¥ ,a),® =¥ T ¢ ¢

(', a)).

5. This follows directly from axiom BIl.
6. Suppose (5,8) € § AW € RSET AW € R. Theo Hr,C.8) € A {(s,R) = (1,C,s).

Hence ¥ C ref(7,C,s') so (s, ®') = (7,2, ¢') and 50 {5, W) € §.

. Suppose the antecedents hald. Then IH{7,C.s' wl e A s~ Aw~w ARC

ref (1,25 w'). Thenvit,a) €X' (1,.C f,s (t.a)) ¢ AsosTiw(t,a)¢itemsC,
from axiom B3, so & C ref(7,C,s" w'). Hence (s w,MUR) € 5.

[m]

112 Probabilities and Priorities in Timed CSP

Hence #(M g} lies within Mp.

Recall that the metric on M pp is defined by
dp(Sp.85g) =inf({27F | Sp t = Sg t}u{1}) where S £={(s,¥)€ §|endls,) 1}

We state a series of lemmas concerning this metric. i two processes “agree” up until some
time in the Prioritized Model, then they “agree” up until that time in the Failures Model

Lemma 6.3.10: [Ap 1= Ag (thenfg(Ar) t=406a(Ag) ¢ Q

Proof: This follows immediately from the fact that the failures of a process up to some time ¢
depend only upou the prioritized bebaviours up to time ¢, i.e. {§5{A)) £=0a(4 t). a

Processes are “closer” under the failures metric than under the priorities metric.
Lemma 6.1.11: For all sets Ap and Ag of prioritized behaviours,
dr(f5(Ar),05{Aq)) da{Ap, Ag)
where dg is the metrie in Mrg. Q

Proof: This follows immediately from the previous lemma and the definition of the metrics.
O

Lemma 6.1.12: The mapping @5 is continuous with respect to the metrics dp and dg.
Q

Proof: Suppose {(X; | 1 €) has limit X in Mrg. Then we claim that (#5{X,}]: € | has
limit p(X). Pick £ > 0; then there is some N such that ¥1 > N de(X;, X) < ¢, s0 by the
previons lemma, ¥t > N dp(8p(X,),05(X)) dp(X., X) <e. D

6.1.3 The mapping Afr

The folowing theorem describes the effect of . Afr on the syntax of BT CSP.
Theorem 6.1.13: The function Apr satishes the [ollowing properties:

Arr STOP o= {((),R) | K€ RSET)

Apr WAIT to = {((1HR)] €I HIu{({(t, DR ta ¢ ETLED)

Apr SKIP o = {{{,¥)}] ¢ BRPU({(4, R ¢ R(R)}
Appr Xa=0 X

6.1 An abstraction result 113

Arr a2 Po=
{(0,R) |a g TR} U{((t,a) sp+t.R)|a g DN t) A(sp,R~t) € Apr P o}
Apr o —s P o=
{0 e ¢ ERIU{((¢ha) sp+ 1+ R)[a¢ TN) A(sp,R—t—1t') € Apr P 5}
Apr P Qo C
{(3,%)] ¢ZsAVIeTINT (s, RUIlx(})€Apr P o}
U{(s,R) |3t @25 HAals ¢ & pR tud)x{ })€Adpr P o
Ast+8 =0A(s—-t=86R~L—0) € Apr Q o}
Apr WAIT t ;P o = {(s+ ,8) | {s,R— 1) € Apr P o}
Apr PNQ o=Apr PoUApr Qo

Aer Poo =\ Aer Pooliel}

Arr POQ 0, Apr POQ e C
{0 [(QR) € Apr P aNApr Q o}
W) | s# AR €EApr PoUApr G o
AR begnsg) € Apr P aNApr Q o}
_Ap-rc?a:A&Pﬂai

{{0W) | A0 ER = {}}

U{((t,c?a) s+t+1, R |acdAcAnEM §)={}A(5,R~t 1) € Apr P, o}
Arr P4 Q o, Apr P @ o T {{s.8p URg)| (5,8p) € Apr Po’A(S,NQ)G.ApT Q o}
Arr PX4Y Q o, Apr PAHY Qo C

{(S,RPUNQUNZH(S X, Rp) € Apr PGA(S Y,NQ)E.AFT QoALsCXUY

AERpPC X ATRQC Y ARz CE\ X\ Y}
Arr P+—Q o, Apr P Q ag

{(s, 8} | (5p,N) € Apr Pan(sq,R)€Apr Qo As€Esp sg}

Arr P Q o Apr PR Qo C

{(J,N)I(sp,ﬂp)eApTPO’A(SQ‘Nq]EAFTQJASESP!‘!'SQ

AR C=(NpUNg) CAR\C=(HpeNRg)\C}
Arr PN X o={(s\ X,N)| (s,RU[0,end(s, %)) x X) € Apr P o}
Apr fIP) o = {(F(s),R) | (s,f 7T (N)) € Apr P o}
A P QacC

{(s,8) | begins ¢ A(s,%) € Apr P o}

V{5, R) [begins L4+ AN t)eApr PoA(s,R)—t-6¢€ Apr Q o}
-AFTPtQO'Q

{{s.R) | beqn(s t) f+8A(s LR DeApr PaA(sV)-t-d€Arr @ o}
Arr PV @ o C

{{s.R) | e ¢ ZAs.¥) A {5, R) € Apr P a}

U{(s,®) |3t s &t e={{t.elAedT(R }Abegin(s ¢} t+8

Als t\NeN eApr PoA(8R) -t —-0€ Apr Q o}

114 Probabilities and Priorities in Timed CSP

v

The reader will have spotted a great similarity between the expressions in this theorem and the
semantic equations for the Timed Failures Model; this is because in developing the semantic
equations for the Prioritized Model, we have at all times tried to follow the Failures Model.
In some places in the ahave the relationships are those of inclusion rather than equality; this
is a result of our operators heing refinements of the corresponding TCSP operators.

Proof: Most of the proofs are straightforward; we prove three cases for illustration.

Case external choice:

Let 0 =85 o p. Then we have

Apr PDQ @
= <deﬁnition>
8p({(r,CpDCpq, <*) | (r.Cp,<>) EAgr P pA{T,Cq,<~) € ApT @ p}
U{(r,CpDCq.s) | s # <~ Abegins =t A{1,Cp,5) € Agr P p
AL Co, <= € Apr @ pA(sttDp(tf))vaett ¢ itemsCq)}
W(r,EpMEg, s} {8 # <~ Abegms =L A(4,Ep, <) € Agr P p
AlrEqus) € Apr @ pAastt 2p (8D
c <deﬁnition of 03)
{(0R): TF{R G ref(r,CpDZg, <)
AT Cp, <>} € Agr P pA (1,0, <) €457 @ o}
V(s \R): TF{a' £} Abegind =t A\ R) = (r.CpMLCyq, %)
A{r,Cp.s) € ApT P pA (3, Cq,<>) € Agr @ p}
W{(s' R): TF | s' £ } Abegins' = t A (&' R) =~ (1,CpmLCgq)
A(LCp <) €Apr P pA(T,Cq,8) € Apr @ o}
< <deﬁnitions of ref, EpD Eq)
{(G. ™) {0 R) € Apr P anNApr @ a}
V(s R) | s # D Abegina=tA(s,)€ dpr P oA (R 1) € Apr @ 0}
Ul{s,®) |s#{(}Abeging =t A{(},R t) € Apr P o A(s,R) € Apr @ o}
= <rea.rranging; part 2 of theorem E.l.9>
{ORY (), R) € Apr P oD Apr @ o}
(e ®W) | s£ AR edpr PoUdpr Qo
AR begins) € Apr P aNApr @ o}

Case hiding:

6.1 An abstraction result 115

Firstly, if C'\ X =, we have

ref(r.C,s)
(deﬁnition of ref)
closure{(¢,a) | E < TASsSTiW(L,a) AsTi}
(deﬁnition of C'\ X>
closure{(t,a) | ¢ < T A(sT W (t. a) {itemsT v ﬂ‘\x(s tiuw(t,a)) ;I‘rE‘,‘x(s 1)}
(deﬁnition of ﬂ'E\x> B
closure{(t,a) | t < T A ([ff‘\x(s T1))w (¢ a) ¢ items C’
VXt e (e g s T)

i

N

(rearra.nging)
closure{(t.a) | £ <7 AUWTY s) 1w (ta) 27 (0% 6] 1)
= (deﬁnmon)
ref(r.C', 0¥ s)
NOW, let o0 = BB o p. Then

Apr P\ X o
(deﬁm'tion)
Bo{(r.C.8) (Yt stteitemsCAAL C'\X =CA(nC 15") € Aar P o)
(deﬁmtlon of 6'B>
{s' R} : TF | (", Ry = (7,C,5) AVt stt€itemsC
AT C\X=CA{nC 2% s) € Apr P p)
C (usiug the above result> B
{(+,R): TF | 5~ s/\ 3T RCref(r, T s A (T ¥ s) € Agr P)
putting " = ﬂc s, 8 ="\ X for appropriate s” such Lhat 8"~ g
<[0 end(s, N)) x X C ref(r,C’ 1]‘) by definition of ‘frc,)
[(s"\ X,R) | & ~ s" AR € RSET B
AJC RU[G, end(s,R)) x X Cref(r,C, ¢") A (7,C,5") € Apr P p}
(deﬁnition of A FT)
{E" VX)) | (5", RO, end(5,R)) x X} € Apr P o}

It

Case variables:

let o=fpop,then Apr X 0 =8plp X J)=0 X . o

This completes the proof. a

116 Probabilities and Priorities in Timed CSP

6.1.4 The abstraction result
We are now able to prove our abstraction result.

Theorem 6.1.14: YP: BTCSP Apr PoC Fry¢P o v

Proaf: We prove the result by structural iuduction. All cases except for recursion follow
casily from theorem 6.1.13. We give the proofs for parallel composition as an example.

Case parallel composition:

(s,8) € Apr P4 Q o)
= (iheorem 6.1.13)

dRp,Ng R=RpUNRgA (s,Rp) e Apr P o A (S,NQ) € Aer Q o

' = <inductive hypothesis)

IRp,Rg R=RpURgA{s,Np)EFr pP oA (5,Rg)E FrpQo
< (deﬁnition of parallel composition in M rp}

(5. R EFr P lyQ o
Rod (deﬁnition of p

(s.R) € Fr o(P4 Q) o

We now prove the result for recursion.

Case immediate recursion:
Let ¢ = #g o p. Then we have
ApruX Po
= deﬁnition}
Bp{fir(Ma{X, P}p))
= (Bama.ch’s fixed point Lheorem>

b5 (im (M4(X, P)o)" (STOPs))

= (continu.ity of 9,_:;}
lim_#a((Ma(X, P)p)"(STOP))

where Mg(X,Plp =AY Agr P p[Y/X)and STOPg = Agr STOP p. Similarly,
FropX P)o= lm (Mp{X.pP)o)"(STOPP)

where Mp(X, Qo =AY Fr Q o[Y/X]and 5TOPr = Fr STOP o. To prove our result,
we mnake use of the following lemma:

6.1 An abstraction result 117

Lemma 6.1.14.1: If o = g o p, then for all natural numbers n
6a((Ma(X, P)o)"(STOP3)) € (Mr(X,P)o)" (STOPF)
<

Proof of lemma: We proceed by numerical induction. The base case follows immediately
from theorem 6.1.13. For the inductive step, assume that

Gp((Ma(X, P)p)?{STOPR)) C (M§(X,pP)o)"(STOPF)
Then we have

Ba{(Ma(X, P)p)"* (STOPg))
= <rea.rra.nging
(M A(X, P)p({Ms(X, P)o)"(STOPB)})
= {definition of Ma(X,F)p)
8p{Agr P o[(Mal{X, P)p)"(STOPg)/X])
<deﬁn.ition of Apr
Agr P ol6g{(Ma(X, P)p}"(STOPg)}/ X]
structural inductive hypothesis)
Fr P o[@p((Ma(X, P}e)"(STOPR))/ X]
c <numerica1 inductive hypothesis; >
monotonicity of Fr ¢P with respect to the subset relation
Fr P ol(Mp(X,pP)o)"(STOPF)/X)
<deﬁuition of Mp(X, @P)a)
Mp(X, pPlo{(Mr(X,pF)a)"(STOPy))
= {rearranging
(Mp(X, pP)a)™ (STOP)

[a}

o
Hence, by continuity of the subset relation, we have
lim 85((Ma(X, PYpI™(STOPR)) € lim (Mp(X,P)o)" (STOPE)
So we have shown
Apr pX PoCFrelpX Floa
o

Case mutual recursion:

We only consider the case where the vector of terms P is constructive for the vector of
terms X. Recall from chapter 4 that

Apr (X, = P}, p< 5, where § is a unique fixed point of M{X, P)p

118 Probabilities and Priorities in Timed CSP

In that chapter we defined a subsidiary vector @ by
Q. = P@y/ X, |5 € seq(i)]

and showed that M (X, @)p is a contraction mapping whose unique fixed point is also the
unique fired point of M (X, P)p. As in the previous case, we can show that

Arr (X, = Py o= lim 05 ((MalX. Q)" (STOPp)),
where STOPg = {(Apr STOP p|icl); and
Fr ¢((X, = P)j) o = lim ((Me(X.9Q)0)"(STOP)),
where STOPg = (Fr STOP o |i € I}. As in the previous case, it is easy to show
05 ((Ma(X, Q)0)"(5TOPs)), € ((Mr(X.0Q)0)"(STOPE))

(for all € I) by numerical induction, thus completing the case. o

This completes the proof.]

6.1.5 On recursion

I this section we study the semantic value of the recursive process 4 X P in the space M Tr.
We will show that if =8 o p then Apr X P o is the unique fixed point of the relation
850 My(X,P)pobz’

Note that fig o Ma(X, P)o o8z’ is not always a function. Let X; = Agr (bDdMa)\d p
and Xp = Agr (amdDb)\ d p. Then 8g5(X;) = P5{Xe); call this image 'Y’. However,
consider M4 (X, P)p(X;) and Ma(X,P}p(Xz) where P = X O{b ¢— ¢). Note that these
are both members of (MA(X,P)p o 9;‘)(1’]. It is easy to see that Ma(X,P)p(X,) can
performa b and refuse a ¢ (having an offer retation with {4} 3 {&, <} 2 <} 2} 23 {af ini-
tially), whereas M4(X, P}p(X,} cannot (having an offer relation with {Ja]} 3 {4, c[} 2 {&} 3
{lcl 3 { initially, and {cf} D {}} after performing a b). Hence we have 85{ Ma(X, P)p(X;)) #
O (Ma(X,P)p(Xz)). So(@geMa(X,P)p}X,})and (BgeMa(X, P)p}(X2) are distinct mem-
bers of (g o Ma(X, Pjpe GE")(Y).

We show that Arr p X P o is a fixed point of 850 Ma[X,P)po8p':

Lemme 6.1.15: If ¢ = 850 p then
Apr 4 X P o€ (0o Mi(X,P)peby')(Apr pX P o)
Q

Proof: let @ = Apr X P o and let Q' = Agr # X P p. Then from the definiticns
of #p and recursion we have @' € 63/(Q) and Q@ € (85 o Ma{X, P)p} Q") so we have
Q@ € (fa0 Ma(X,P)oodz')(Q) o

6.1 An abstraction result) 119

To show that Apr 4 X F o is the umique fixed point is a little harder. Recall that we only
define the recursive term u X P for terms P that are constructive for the variable X, where
P is {-constructive for X {w Mg if

Yig: TIME ; p: ENVg Agy Pp tp+i=Apr Polp X 1p/X] o+t
We shall say that BTCSP term P is {-constructive for X in Mqp if

Yig: TIME, 0 : ENVr Apr Po lLy+t=Apr Poalo X to/X] W+t
The following lemma relates these two coucepts:

Lemma 6.1.16: If P is t-constructive for X in Mg, then P is t-constructive for X in M pp.
Q

Proof: Note that for any Y € Mg we have
6a(Y) L1=0a(Y 1) ()

by the defimtion of # 5. Suppose then that P is t-constructive for X in Mgg and let o = Bgop;
we have

AF‘TPG’[O’X fg/X] tg+ i
= <deﬁnition of Az, using () applied to p X >
fg(Apr P plp X /X)) o+t
{by ()}
93(.43'}“ P P[p X tp/X] fo +t)
= <P is t-constructive for X in MT3>
GB(-ABT Pp tg+14)
(by ()}
Og{Agr P p) to+t
(deﬁnition oprT>
Arr Pa tg+1t

i

il

[m]

Suppose then that Y is any fixed point of 850 M4{X, P)poGE’. The following lemma shows
that it is also a fixed point of A ¥ Apr P o[Y/X], where ¢ =0 0 p.

Lemma 6.1.17: If g =fpop and Y is a fixed point of 85 o Ma(X, P)po 8y’ then

¥ = Apr P o[Y/X]

120 Probabilities and Priorities in Timed CSP

Proof: For some Y’ € AMrg we have ¥ = 8p(Y’') = (fgoMa{X, P)p)(Y’). Hence we have
Y
(hypothesis)
(6g 0 Ma(X,P)p)(Y")
(definition of Ma(X, P}o)
8p(Apr P olV'/X])
= (definition of Apr; ¥ = 05(Y"))
Apr P o[Y/X]

We can now show that the fixed point is uunique,

Theorem 6.1.18: Apr pX P o is the unique fixed point of 85 0 M4(X, P)poﬂg' where
a==68gep. v

Proof: We have already shown that Arr pX P o is a fixed point of g o MA{X,P)pe
65’. For uniqneness, suppose ¥ € Mqp is an arbitrary fixed point. Suppose that P is
t-constructive for X and assume that

Y ty=ArruX Po & (=)
it is encugh to show that ¥ ity +t=Apy u X P o t; +t We have

Y g+t
= (previous]emma>
Apr P o[Y/X] t5+1
= (P is t-constructive for X}
App P G'[Y tng] tg +1¢
(from (-)>
Agp P o[AFT rX Po tg/.x'] tg +1
(P is 1~-constructive for X>
Agp P alApr 0 X PajX] tg+1t
previous lemma applied to Apr 2 X P a>
Arr X Poa g+t

I

as required.]

6.2 Using the abstraction result to simplify proofs

We now prove a result which will allow us to translate specifications on BTCSP processes
into specifications on TCSP processes. We claim that the failures specification §(s,¥) can
be translated into the priorities specification ©g8(r,C,s), where we define the mapping
©pg : (TF = Bool) = (BEH — Bool) by:

Definition 6.2.1: 855(7,C,5) = V(s X): TF (s’ R) =~ (,C,s5) = S(s', R} o)

6.2 Using the abstraction result to simplify proofs 121

The specification © g8 is true of a behaviour (7,C,s) if all correspording failures (s°, X)
satisfy S(s',R).

We can now state our abstraction resnlt.

Rnle 6.2.2 (Abstraction)

wplPjsat, S(s,R)inMrp
P sat, ©58(r,C,s) inMrg

[a:ﬂgop]

FAY

If a TCSP process satisfies specification 5{s,R), then all its prioritized refinements satisfy
the specification ©5.5(7.C, 5). Put another way, in order to show that a BTCSP process P
satisfies a specification 5'(7,C, 3), we need to find a failures specifieation S(s,R) such that
©55 = &, and then use the proof rules for the Failures Model to show that the TOSP
abstraction of P satisfies S(s, R).

Proof: Assume the premise. Then we have hy the definition of sat:
V(s",R): TF (s ,R) € Fr pg(P) a = 5(s". W}
= <the0rem 6.1.14 using the side condition
V(s',R): TF (s \R) € fgldpr P p) = S(s',¥)
o <deﬁnition of 93>
V(s',®): TF (A C.sl€dpr Pp (5" R) = (7,C,5) = S5\ V)
o <predicate calcu]us>
¥(r,C,5) € Apr Pp V(&' ®): TF (&"\R)=(r,C,5) = 5" 1)
4 {definition of sat; definition of ©55)
P sat, 8g8(r,C,s)

m]
The following version of the rule will prove to he mare useful:
Rule 6.2.3:
wa(P) sat, S{s, R} in Mrp
855(r,C,s) = 5'(7,C.4)
2SO oo
P sat, 5'(7,C,9) in Mg
A

This can be proved using the previous rule and rule B.1.3.
The following rule provides a way of reduveing proof obligations on probabilistic processes to
proof obligations on processes in the Failures Model.
Rule 6.2.4:
(95 0)P sat. §(s,X) in Mrr
BpS5(r,C,s) = S'(r,C,s)
P sat, §'(r,C, s) in Mprg

[J:Q,Bow,op]

122] Probabilities and Priorities in Timed CSP

This can he proved using the previous rule and the abstraction rule from section 5.2. Note
that ppo @E.,B) is the mapping that removes all prohabilities and priorities from the syntax
of PBTCSP.

To makeit easier to use these rules, we would like ways of translating specifications from the
Prioritized Model to the Failures Model: given a specification $'{r,C, s) we want to be ahle
to find 2 corresponding specification S(s,®) such that ©55 = 8. 1n the next section we
develop a number of rules for aiding us in this.

6.2.1 Translation of priorities specifications into failures specifications

In this subsection we investigate which specifications translate easily under Bp: given
a specification §'(7,C,s) we want to be ahle to find a specification S(s,®) such that
Sg5(r,C,s) = §(r,C,s). In particular, we give a number of results which show that many
predicates written in our specification language will not change form when transformed hy € g;
for example, we will show that ©g(a at ¢ = b live fram ¢ + 1) = (a at t = b live from¢ + I).
Most of the results of this section were proved in [Low92b].

The at operator is preserved hy ©pg since if 5 ~ s’ then s and ' contain the same events.
Lemma 6.2.5: ©p(Aat" f)=Aat" I and Op(no Aat® f) =no A at" . v
Qur result for the live operator is slightly weaker:

Lemma 6.2.6: Op(A live™ f) = A live™ 1. v,

Fortunately this implication is strong enongh for our purposes so long as we do not use live
in negated farm or on the left hand side of implications. If the interval [is open on the right
then we have a stronger result:

Lemma 6.2.7: If [is open on the right then ©p(A live™ 1) = A live™ 1. Q
So in particular

Lemma 6.2.8: Op(A live® from ¢) = A live” from ¢, v
For the beyond macro, note that (s',R) o {7,C,s) = end(s',R) 7 so we have

Lemma 6.2.9: ©g{beyond) = beyond ¢. v

History predicates

Many of our specifications are of the form § = ¢ o M where M is a projection mapping from
traces n the prioritized model to some type T, and v is a predicate on T If there is a similar
projection mapping function M’ from traces in the Timed Failures Mode! to T, giving the
same value as M on related traces, then S translates to ¢ o M.

Lemma 6.2.10: If the projection mappings M : TT - T and M’ : TI} — T are such
that
5~ g = M{s) = M'(s")

then go M = Bg(po M'). Q

6.2 Using the abstraction result to simplify proofs 123

We will be particnlarly interested in those mappings M and M’ that take the same form in
our two specification languages. For example, the projection functions count and alphabet
do, so we have for example

Opg(count A during I < 3) = countA during/ < 3
Bp(alphabet C A) = alphabet C A

il

The operators first and last need some care. In the Prioritized Model these operators return
a pair consisting of a time and an action (which could contain more than one event), whereas
in the Failures Model they return timed events, i.e. pairs consisting of a time and a sngle
event. However, we have

s ~ 5 = (first A during {)(s"} € (first A during f)(s)
and so
Opg(first Aduring [= (t,8)) = (t,a) € first A during [
where we define the € operator on offers by (t,a) € (t',a) & ¢t =t/ A a € @ The bllowing
lemma is slightly stronger. Let a” denote the action containing n as.

Lemma 6.2.11: @ g{first A during I = (¢,a)) =3n: *t firstAduring! = (¢, a"). v

If the first timed event of a trace in the Failures Model is (t,a}, then the trace of the
corresponding prioritized behaviour must have started with a number of as at time . Note
that some other part of the specification will often be enough to ensure that only one a
occurs. A similar result holds for the Jast macro.

The name of and time of operators hehave as one would expect. We have

Og(time of first A during [=£) = time of first 4 doring / = ¢
B g(name of first A during / = a)

In: * nameof first A during / = o"

Similar results hold for the last operator or when the ‘='is replaced hy an inequality; so, for
example, we have

O p(time of last A during / %) = time of last 4 during { 3

Environmental assurnptions
Recall the definition of the environmental condition internal in the Failures Model:
{(internal A)(s, ®) = [0, end(s,R)) x AC N

If we calculate B g(internal A)(7, C, s) we see that it is equivalent to false {for A # [}) because
©g{internal A)(7, €, s) is the condition that all refusal sets relating to hehaviour (r,C, s) —
including the empty refusal — contain the elements of 4 at all times. A similar result holds
for the open and accessible operators. Thus we find that we cannot translaie these predicates
directly.

However environmental conditions are normally used on the left hand side of implications,
for example in specifications such as internal A = a at 2. It is normally the case that the

124 Probabilities and Priorities in Timed CSP

consequent of the implication does not talk ahout the elements of A being refused. In this
case we can show that ©g(internal A = S§) implies imernalA = ©p5S5. We say that the
specification §(s, ®) is A-refusal independent if the addition of elements of 4 to the refusal
set makes no difference to the truth of S.

Definition 6.2.12: The specification 5 : TF — BHool is A-refusal independent iff
v(s,N): TF YW :RSET ER' C A= (5(s,R) & §(s, RUN))

&
In this case, the specification (internal A = $)(r,C, 5) translates easily.
Lemma 6.2.13; If § is A-refusal independent then
Bg(internal A = §} = (internal A = 8g558)
o

A similer result holds for the open operator. We say that the specification S(s, &) is (4, I)-
refusal independent if the addition of elements of A during the iuterval I to the refusal set
makes 1o difference to the truth of S.

Definition 6.2.14: The specification S : TF — Boal is (A, I)-refusal indepeudent iff there
is some J 2 I such that J is a finite union of half-open time intervals and

Y(s,R): TF YN :RSET R CJxA= (5(sR) & 5(s RUN)

¢
We then have the following result:
Lemma 6.2.15: If § is {A, I}-refusal independent then
©p{Aopen™ I = S) = (Aopen™ f = 855)
o
The closed macro translates very easily:
Lemma 6.2.16: ©5(A closed I) = (A closed [), C

The accessible or predicate is highly dependent upon prierities, and so it is harder to translate
it into a specification without priorities. We give a partial result for when o is a singleton
action. Firstly we define a failures specification accessible by

(a accessible (s, R) = (Yt el aat!In(o,t]Vareft)(sR)
We have the following result:

Lemma 6.2.17: If the interval I is open on the right, and § is ({a}, J)-refusal independent
then
Spg(a accessible I = §) = (a accessible I = 8g85)

6.2 Using the abstraction result to simplify proofs 125

In particular we have
Lemma 6.2,18; If .5 is ({a},[t, o0})-refusal independent then

© p{a accessible from t => §) = (a accessible from{ = ©55)

Boolean operators

Recall that we have lifted the booleau operators, so that (5 A S){(s, R} = S(s.N) A §'{(s, 1),
for example. The predicate ©5(S5 A §') is the same as 655 A 655",

Lemma 6.2.19: ©p(S A 8') =655 A655". Q
For implication, our result is not quite so strong.
Lemma 6.2.20: ©5(5 = S')1,C,8) = (855 = 655)(r,L, s). Q

Luckily this implication is strong enough for use with rule 6.2.3.

For negation, we have a rule of similar strength
Lemma 6.2.21; 85(~S5) = ~(655) v}
Unfortunately, we do not have such a result for disjunctions. For example, let
S{s,R) =(0,a) €R S, W)= (0,a) ¢ R
It is easy to see that (5 v §')(s,R} = true so ©5(5 V §')(7. T, s) = true. However.
OpS(r,C,8) & YRCref(r,C,8) [0,8)ER = false

and
55 (r.C,5) & VYRCref(r.C.5) {0.a)gR & (0.a) ¢ ref(r,C,35)

50 8p(SvS)# OgSvegs.

Surmmary

These rules will be enough to translate most of our specifications into failure specifications.
We are not claiming that tbis is a complete set of rules for translating specifications — indeed
we helieve that there are many more such rules. A library of more rules conld be huilt up
by pursning further case studies. Also, whenever we add a new construct to our specification
language we will have to give it a definition in both the Prioritized and Faitures Models, and
investigate how the construct translates from one model to the other.

126 Probabilities and Priorities in Timed CS.E'

6.3 An example using the abstraction result

In this section we deal with an example of a clock that will offer a tick every second, except for
every Tseconds when it will prefer a tock (where T > 1), Although this example may seem
rather atificial, we believe that it demonstrates one particular aspect of priorities quite well,
nairely interrnpts: the tocks can be seen as interrupting the “normal” behaviour represented
by the ncks.

When nodelling an interrupt mechanism, the iuterrupting event should be given a higher
priority than the thing being interrupted. We nced a prioritized model in order to describe
this; however, the process being interrupted and the interrupt handler will ofteu not make use
of priorilies, and so in order to argue about them it is simplest if we use the Timed Failures
Model.

The clotk can only perform the events tick and tock:

alphabet C {tsck. tock]

Initially. it will offer both fick and tock:

tick, tock hve from 0

It cannot perform two events within one second of each other:

tick, tock at L = no lick, tock at {t,t + 1}

tocks must occur at least T seconds apart:
fock at t = no tock at (¢,1 4+ T)
If the cloek hasn’t performed either a tick or a fock in the last second, then it sheuld offer a
tick — ie. it is willing to perform a tick one second after the previous event:
no tick,tock at (! ~ 1 ¢} = hick live £
If the clock hasn’t performed a fock in the last T seconds, and hasn’t performed a f1ck in
the last second, then it will be willing to perform a tock:
no tock at (¢ — T, t) Ano fick at (¢ — 1,1} = tock live ¢
If the process is able to perform either a tick or a lock, then it prefers the fock to the tick:

tick offered ¢ A tock offered t = lock preferred to tick @ ¢

Putting these together, we get the following specification:

S = alphabet C {tick, tack}
A tick, tock live from
A tick, tock at t = no fick. lock at (L.t + 1)
A fock at i = no fock at {1, ¢t + T)
A no tick. tack at (t — 1. 1) = tick live ¢
Ano fock at (1 — T.1) Ano tick at {({ - 1.¢) = tock live t
A tick offered £ A tock offered t = tock preferred to tick @ ¢

6.3 An example using the abstraction resuft 127

Our method of implementing this will be to firstly produce a TCSP process which nearly
satisfies the above specification: more precisely we will produce a TCSP process all of whose
BTCSP refinements satisfy all but the last conjunct of the specification. We will then study
which of the refinements also satisfy the final conjunct.

6.3.1 TCSP “implementation”
We seek a TCSP process CLOCK, all of whase BTCSP refinements satisfy the predicate

§'(1,C,s) = alphabet C {urck, tock}
A tick, tock live from &
A tick, tock at t => no tick, tock at (1,1 + 1}
A tock at ¢t = no tock at (£, L + T)
A no tick, tock at {{ — 1,t) = tick live |
Ano tock at (1 — T,4) Ano tick at (t — 1,1) => tock live t

Using rule 6.2.3 we see that we waut a specification Sp(s,R), such that 868, = & and a
TCSP process CLOCK, such that CLOCK; sat Sp(s,®) in AMqpp. Using the results of
section 6.2.1, we see that Sy can take the obvious form:

Sa(5, W) = alphabet C {tick, tock}
A tick, tock live from 0
A ick,tock at ¢ = no #ack, tock at (2, ¢+ 1)
Atock att = no teck at (£, 41+ T)
Ano tick,tock at (1 — 1,¢) = Hick live ¢
Ano tock at (# — T,t) A no tick at (I — I1,£) = fock live ¢

We implement CLOCK) as the parallel composition of two processes, P and ¢. P will
ensure that the events are available at the desired intervals; @ will ensure that two events
are not available within one second of each other. Reeall the TCSP proof rule for paraliel
composition from [DS&%h):

P sat Sp(s,)

@ sat Sg(s,R)

Sp(s,Rp) A SQ(S,RQ] = S(s,Rp URQ]
P|| @ sat 5{s,X)

Let

Sp(s,R) = alphabet C {tick, tock}
A lick, tock live from ¢
Atick at t = no tsck at (2,8 + 1)
Atockatt = noteckat{t,t+ T)
Ano tick at (¢ — I,t) = tick live from ¢
A no fock at (f — T, 1) = toek live from ¢

128 Probabilities and Priorities in Timed CSP

Sgo(s.R) = alphabet C {tick, tack}
A tick, tock live from 0
A tick, tock at t = no hick tock at (it + 1)
A no Hck, tock at (¢ — 1.1} = tick. tack live from ¢

Then it is casily seen that Se{s,Rp) A So(s,Rg) = S5, Rp URg).

We now seek a process P satisfving Sp. We implement P as an interleaving, P; Pp; the
process Py will provide the ticks, while P, provides the locks, Recall the proof rule for
interleaving from [DS89b].

P] satS,(s,N)

Pg sat 5p(s,R)

s€u vAG{uR)A Sp(v. W)= 5(s,X)
P (sat 5(s5,R)

Let

S/(s,®} = alphabet C {itck}
A tick live fram 0
Ahckat i = no tack at (1,1 + 1)
A na lick at (§ — 1,1} = bck live from ¢

52(s,®) = alphabet C {iock}
A tock live from 0
Alockatt=>noteckat (LE+ T)
Ano tock at (¢ — T, §) = tock live from ¢

Then we have s cu v A Sp(u,R) A S2(v, W) = S(s,N). It is also an easy exercise to show
that pX tick -5 X sat §,(s,®) and n X tock Ty X sat Sz(s,N). Hence

pX ek - X pX tock —T» X sat Sp(s. 1)

We non seek a process @ satis{ying Sq. We will implement @ as a recursion, p X P. Recall
the proof rule for recursion (rom [DS80]:

X sat $(5,N) = P sat 5(s,R)

uX Psat S(s. R}

So we need to find a term P (dependent on X) such that P sat Sg(s.R) whenever X sat
$4{s.R). We implement P as an external choice. P = Py Pp. The proof rule for external
choice is

PJ sat S;(h‘.N)

Py sat Sa(s N)

(Si{s, W)V 82 (5. 0)) A 5 ()1 begins) A Sp((},R begms) = S(5, %)
P, P,sat §{(s.R)

6.3 An example using the abstraction result 129

Let

5:{s,N) = alphabet C {tick, tock}
A tick live from &
A tick, tock at § = no tick, tock at (¢t + 1)
A tick, tock at [0, — 1] A no tick, tock at (¢ — 1,t) = tack, tock live from ¢

Ss(s,R8) = alphabet C {tick, tock}
A tock live from &
A tiek, tock at ¢ = no tick, tock at (£, + 1)
A tick, tock at [0, 0 — I] A no tick, tock at (1 — 1,1) = tick, tock iive from ¢

Then it is easy to show that
(S1(5,0) v Sa(a,R) A S (0.8 beging) A Se{(},R begins) = 5(s,R)
Hence it only remains to find processes P; and Pp such that P, sat 5;(s,%) and P2 sat
Sg(s,R) whenever X sat Sg(S,R). Our intuition suggests
Pr=tick-4 X Pyaiock 14X

These definitions can be shown to satisfy the specifications by a simple application of the
proof rule for prefixing,

Hence we have shown that the process

CLOCK; =pX tick—9X puX tock L+ X
I

uX ek 5 X tock -5 X

satisfies the specification Sp(s,N). and so all its BTCSP refinements satisfy the specification
§'(r,C, 5).

6.3.2 First BTCSP implementation

We seek a BTCSP proecess CLOCK such that wp{(CLOCK) = CLOCKp and CLOCK sat
S{r,C, s} in M7p. We already know that any pricritized refinement of CLOCK, will satisfy
all but the Jast conjunct of S, bence it is enough to find a refinement that satisfies §(r, C, g)
where

§ = tack offered ¢ A tock offered ¢ = tock preferred to f1ck @ ¢

Our first implerrentation will make CLOCK the left biased parallel composition of two pro-
cesses P and @ where

pX tick 5 X uX tock 4 X
uX tick 5 X toek-Lyx

pg(P}
we(Q)

130 Probabilities and Priorities in Timed CSP

From the proof rule for lefi-biased parallel compositiou, given in appendix B.1, we see that
we need to find predicates Sp and Sg for P and @ such that

5p(r.Cp.8) A Sg(r.Cg.8) = S(r,Crdt Cq.6) (%

We set Sp = & and set Sg = true. Then hy the definition of parallel composition of offer
relations we see that (+) is satisfied. Also Q sat Sy for any @. Heuce it only remains for us
to find P such that P sat Sp.

‘We shall implement P as the right biased interleaving u X tick “x —su X tock 4 x.
Recall fram the previous section that u X fick L3 X sat alphabet C {tick); hence

n X tick 4 X sat no tock offered

Similarly
nX lock I, X sat no tick offered

It is easy to show
pX tock —v X sat tock offered ¢ = tock preferred ta {}at

From the proof rule for right biased interleaving we see that we must prove

{no tock offered)(r, ,,¢;C I:, -
A [ro tick offered A (tock offered ¢ = tock preferred to {J} @ ¢))(7,C ¢, ch)
=2

Sp(1,Ef —+Cg, 5)

If (tick offered t A lock offered l)('r C; —+ Cg.s) and (no tock offered)(r, E;,ﬂ;c s) and
{no tiuckoffered){r, C,, L'FSC) then we must have that (tick offered #}(r, ;. Wc < s} and
(tock oflered ¢j(r, g,ﬁkcﬂ c, s) Thus (tock preferred to {} @ #){r,C», 45C Hence by

the dehnition of inter]eavmg of offer relations, (tock preferred to hick @ t)_(TfE, —+ Ly,),
as required. Hence

nX !ick—’rX—rpX tock 13 X aat
tick offered { A tock offered t = lock preferred to lick @ ¢

Thus, we have shown that both of the processes

(WX tick X ——pX tock D X) 4 (X tek - X @ tock - X)
and
(X tick = X — uX tock - X) 4 (uX tick "> X 10 tock > X)

satisfy our original predicate §.

6.3 An example using the abstraction result 131

6.3.3 Second BTCSP implementation

We will now try to implement the clock using a right biased parallel composition of processes P
and @ such that

wp(P) = uX tick-5 X pX tock L X
wp(Q) = pX tick + X tock D X

Examining the proof rule for right biased parallel composition we see that we must find
predicates Sp and Sg for P and @ such that

Sp(r,Cp,8) A Sg(1,Cg,5) = 3{(r.Cp $ Cq,5)

We instantiate Sp with true and Sg with 5. As in the previous subsection, it only remains
for us to find a process @} satisfying S¢q.

Following the results of section 6.3.1 we implement @ as a recursion u X Q' such that
wa(Q) = tick Lo x o tock L X, and if X sat 5 then Q' sat 5. We then implement Q'
as the right hiased choice tick —— X 0 tock —3 X. We seek specifications 8h for tick Lx
and S"Q for tock -5 X that allow us to prove that tick 2y X Otock 2 X sat §. We
instantiate Sp and S§; by

8p = tick preferred to {JJ from 0
A tick offered ¢t A tock offered ¢ = tock preferred to tick @ |

Sy = teck preferred to {} from 0
A tick offered ¢ A tock offered ¢ = tock preferred to tick @ ¢

From the proof rule for right-biased choice we see that we have the following proof obliga-
tions:

Sp(r,Cp, <=) A ShH{r,Cq, <) = §(r,Cpalyq, <>)
5 # <> Abegins = t A Sp(1,Cp,s) A S(t,Cg, <) Astt Ag (1, {}) = S’(T,QPD]EQ,.;)
(3 # <> Abegins =t A Sp{i, Cp, <>) A Sa(r,l;Q‘s)

Alstedg (Ll vstigitemsCp)):}S(T’Epmg"’”

These are easily praven using the definition of right biased choice of offer relations.

It remains to show that fick —+ X sat Sp and tock 13 X sat §g- We prove the former
resylt; the latter is identical. From the proof rule for prefixing, remembering that X sat 8,
we see that we have the following proof obligations:

Spl{r, [0, 7] ® {rick}, I}, <>)
U Tt + 1= 5p(n [0, {tckh 4D (7] @ {B). (1, tick) =)
Sr—1—t,Ca)lar t'+1=

Spir, [0, @ {tck} A1) (K ¥+ 1){E) S+ + 1, tick) s+ + 1)

132 Probabilities and Priorities in Timed CSP

These can be proved by careful checking. Hence tick —+ X sat Sp, and so we have shown
that both of the processes

(uX tick =5 X e~ p X tock =+ X) b {(uX tick - X mteck -5 X)
and
X tick = X —sp X tock =+ X) b {uX tick < X Otock - X)

satisfy ow original predicate $.

Chapter 7

Specification and Proof of
Probabilistic Processes

In chapter 5 we developed proof rules that could be used for preving that a probabilistic
process satisfies an unprobabilistic specification, i.e. a specification that is supposed to hold
of all behaviours of a precess. Our proof rules allowed us to translate a specification on a
composite process into specifications on its subcomponents. In this chapter we aim to extend
the proof system so that it can deal with probabilistic specifications.

In section 7.1 we will describe the form of our specifications: we will write P satf" Si1,C,8)
to specify that, whatever the environment offers, the probability that process P performs a
behaviour {r,C,s) that satisfies the predicate S(r,E,s) is at least p. We will ako define
conditional probabilities: we will write P satf” S{r,C.s) | G(m,C,s) to specify that the
probability that P performs a behaviour that satisfies S given that it satisfies G is b least p.
We will present a number of proof rules which are independeat of the syntax of our language.
In section 7.2 we will explain, via a number of examples, why proving specifications for
probabilistic specifications can be considerably harder than in the unprobabilistic case: a
number of factors introduce difficulties not present in the unprobabilistic case. We will show
how to produce proof rules that overcome these difficulties. In section 7.3 we derive proof
rnles for all the constructs of the language.

In section 7.4 we presgent a large case study., We describe a protocol transmitting messages
over an unreliable medium. We show that it acts like a buffer, and perform an analysis of
its performance: we prove a result thal gives the probability of a message being correctly
transmitted within a certain amount of time.

7.1 Specification of probabilistic processes

I this section we introduce the form of our probabilistic specifications and give a few basic
rules for manipylating them which are independent of the syntax of the language. We be-
gin by considering the basic specification statement; we then go on to consider conditional
probabilities.

133

134 Probabilities and Priorities in Timed CSP

7.1.1 The basic specification statement

We will write P satf” S(r,E,s) to mean that in all epvironments the probability of P
performing a behaviour (r,C,s) that satisfies the predicate § is at least p. To define tbis
formrally we want to be able to discuss the probability of a process P satisfying some be-
havioural specification S(r,C,s) in a given environment and with variable binding p; we
will write this as ‘,}‘" S(7,C,s) . Recall that we allow the environment to be a function of
the offer relation of a process: we write () when we want to stress this.

Definition 7.1.1 (Probability of satisfaction) If P € PBTCSP, 2 € OFFREL —
EQFF, pc ENV, and § € BEH — Bool, then

% S(r,Cis) = Y{Pror P o(r,C.s) [S(r.C.5) A (7,L.s) compat Q(C)]
¢

‘,}P S(r,C,s) is the probability, given variable binding p, of P performing a hebaviour
that is compatible with and that satisfies 5. We will drop the P, the §2, the p, and the
argumen (1, C,s) of a predicate where this will not cause confusion.

We can 10w formally defipe our specification statement:

Definition 7.1.2 (Probabilistic satisfaction) If P € PETCSP, p € ENV, S € BEfl —
Bool, ard p € [#, {], then

Psat2? S(r,C,s) & YQ:EOFF §* S(r.C,s} p
o4

P satf’ §(r,C, s) if in all environments 2 the probability that P performs a behaviour that
satisfies S is at least p. If P is a process (as opposed to a term) then its semantic value is
independent of the variable binding so in this case it makes sense to omit reference to the
variable binding and to write P sat®? S(r,C,s). We will also drop the argument (r,.C, s)
of § where this will not cause confusion.

7.1.2 Conditional specifications

‘We will sometirnes want to say that with some probability a process satisfies some specification
S given that it satisfies some other specification G.

Defirition 7.1.3 (Conditional satisfaction) If P € PBTCSP, S and G are predicates,
g€ ENV, and p € [0, 1] theu

P satz? §(r,C,8) | G(r.C,3) &
Y EOFF %% S(rC,s)AG(rC.s) p 57 G(r.L.s5)

7.1 Specification of probabilistic processes 135

In the case where r‘;"’ G{7,C,s) > 0 this reduces to the more familiar

22 §5(r,C,5) A G(r,C,5)
e G(r,C.9)

We sball normally adopt the convention of writing G, G’ etc. for the Given predicate.

The reader should note that conditional specification is different to specification of an impli-
cation, i.e. P sat? 2P S(r C,5)| G{r,C,s) is not the same as P satf" G(7,C,s) = §[r,C,s).
Consider the process P2 {a — (6N, c)) Ny STOP. Let 5, be the specification that an
a is performed; let S, be the specification that a b is offered. Then P satff’ Sy | S, (but it
doesn't satisfy this with any higher probahility} wbile P sat%”"”' Sy => Sy. In section 7.1.4
we will give some rules relating these two concepts.

In the following sections we give a number of proof rules fer probabilistic specifications that
are indepcndent, of the syntax of the language.

7.1.3 Basic proof rules for probabilistic specifications

If a process satisties a specification with same probability, then it certainly satisfies that
specification with any lower probability.

Rule 7.1.4 (Lower probabilities)

Psat”S|G[]

Psat2?1 S| G
fa¥
Every process obeys every predicate witb probability at least zero,
Rule 7.1.5 (Zero probability}
fa

The following rule allows us to weaken the given predicate and strengthen the cemjunct of
the two predicates.

Rule 7.1.6 (Weaken and strengthen specifications)

P sat 2P & G

S'(r, E L8 A G'(7,C,s) = S{7.C, s) A G(r.C,35)
G(r,C,s) = G'(r,C,s)

Psat?2r 5| G

136 Probabilities and Priorities in Timed CSP

The following rule can be derived from the above by taking & = G'.
Rule 7.1.7 (Weaken specifications)

Psat} 5| G
§'(r,C,8) = 5{7,C,3)
Poaty §|G

A process satisfies specifications § and G whenever it satisfies G and § | G.
Rule 7.18 (Conjunction of specifications)

Pgat’? G
Psat}? St G
Psat} S A G

The following is an easy corollary of this:
Rule 7.1.9:

PaalZf ¢
Psalz? 5| G
Poat7 §

7.1.4 Relating conditional and unconditional specifications

The following rule shows that the gpecifications § | true and § are equivalent:
Rule 1.1.10:

PwatZr § P sat?? § | true
Psat2f § | true Psat?? §
Ja

Proof This follows from the law of PBTCSP that states that in any environinent the sum
of the probabilities of all possible behaviours is one, i.e. 2"” true = 1.]

This rule can be used to adapt many of the other rules so as to apply them to unconditional
specifcations. For example taking G = G’ = true in rule 7.1.7 we get the rule

Rule 7,1.11:

Psmtfl‘i Ly
8(r,C, s} =+ S(7.C, s)
Psat%’ N

7.1 Specification of probabilistic processes 137

We can relate conditional specification to specification of an implication:

Rule 7.1.12:

Psat?? 5| @
Psat?? G = S

Fa
Proof: It is enough to show that
SAG
G=5
G
which follows easily via algebraic manipulations. u]
In the case where p = ! we also have the converse:
Rule 7.1.13:
Psat, G= 5.
Psat?! §|G
fa
Proof: Suppose P sat, G = §. Then for all environments (}:
a,
P’ S AG
= {definition)
S{Prar P olr.C.s) | 5{r,2,5) A G(.C,5) A (,C, s) compat 01}
= (P sat, G = .5')
Y{Pror P o(7.C.5)| Gr.C,s) A (7, B,) compat 2]
= (deﬁnition)
[1¥
G
Hence % 5AC 1x ¢ s0 Peat?’ 5| G. o

If a process always satisfies some predicate, then it satisfies it with probability one.
Rule 7.1.14 {Certainty)

Psat, S
Psatz! §

138 Probabilities and Priorities ip Timed CSP

Proof: This follows by taking G = frue in the previocus rule, and making use of rule 7.1.10.
[m]

If we know that all behaviours of a process satisfy a particular predicate, then we can add
this predicate to a probabilistic specificatiou without affecting its truth:

Rule 7.1.15:

Psat,§
Prat?? §'| G
Psat?? SAS'| G

JAY
Proof: Assume the premises; then for all environments §2,
b SASAG
= <deﬁnition of >
EﬂPPBT P p(7,C,8) | (1,C,8) compat QA S(7,C,8) A S'(,C,5) A G(r, Q,s)l}
<‘PPBT P p(1,C,s) > 0= (1,C,s) € Apgr P p= S(1,C,)>
by axiom P4 of the semantic space and premise 1
Y{Peor P o(r.C,8) | (7,5, 5) compat 2 A S'(1,T,9) A G(7, &, 9)}
{premise 2)
P P ° G
So Psnt%P sAS|G.]

This isa particularly useful rule: often in proving a probabilistic result one begins by proving
a number of lemmas that do not involve probabilities: one proves properties that hald of all
behaviours of a process. This rule means that we can make use of the leminas by adding
their results to any probahilistic results we can prove about the processes: for example,
if we know that all behaviours of P satisfy §, and we want to make use of the fact that
P sat?? § A §'| € then it is enough to prove P satZP §'| G. In section 7.4 we will consider
a prolocol: we will begin by proving that it acts like a one place buffer; in doing this we will
prove a number of results, for example about the order in which events are performed, that
will prove useful when we consider the probabilistic aspects of the protocol.

7.1.5 Simplifying conditional specifications

The following two rules allow us to simplify conditional specifications. It will often be the
case that the left hand side of a conditional specification is of the form E = § for some
environmental condition E, and the right hand side also has a conjunct depending on E. i.e
of the form E =+ G. In this case we can drop the E from the right hand side.

7.1 Specification of probabilistic processes 139

Rule 7.1.16:

Psat2F E= 5| GAG
PsatZF E= S| (E=> G)A G’

A

Note that not all of the right hand side has to depend upon the environmental condition E.

Proof: It is encugh to show that,

(E=5AGnG (E=S)A(E=>GIAG
GAG (E=>GYA G
which can be easily proved by algebraic manipulations. a

If 2 conjunct appears on both sides of a conditional specification then we can drop it from
the right hand side.

Rule 7.1.1T:

Psat?? SAS' | G
Psat??P SAS | GAS

Proof: Assume the premise of the proof rule. Then we have

(SAS)A(GAS)
predicate calcn]us)

(SASYAG
premise

predlcate ca.lculus>
GAS

S
e
!

So PsatF SAS | GAS.]

7.1.6 Disjoint specifications
We define a vector of predicates to be disjoint if no two of them can be true at the same time:

Definition 7.1.18 (Disjointness of specifications) For all ¢« € [let §; be a predicate of
type X — Bool; then we say that the vector of predicates {5,(z) | + € [} is digjoin! iff

i,7:0:20:X v#3 A8 (z) ASi{z)

140 Probabilities and Priorities iu Timed CSP

We use this definition in the following rule:
Rule 7.1.19 (Disjoint specifications)

Yi:] Psat?™ S| Gi
¥i:l S(r,C,s} A Gi(r,C,5) = 5(7,C,s) A G(1,C,)
Vi:l G(T';v’) = G,‘(’T,E,J)

Peati™iP 5| G

[(3i(r.C.s) | + € 1) disjoint

where 5,(r,C, 5} 2 §,(1,C,) A Gi(7, 5, 5). Fa)

The rule allows us to add the probabilities of a gumber of disjoint specifications to obtain
the probsbility of one of them occurring.

Proof: Assume the premises of the proof rule. Then for any environment £ we have
e snc
= (deﬁnition of >
YfPrar P o(r,C,9) | $(7,5,8) A G C,9) A (7, B, 5) compat 2ff
(partitioning using the side condition>
ie fﬂ

S(r,C,s} A G{r,C, 8} A S\(7,E,)
EﬂZﬂ‘PPBT P p{r,C,5) A G C, 8 A (r.C,5) compat Q [}
= <premise 2)
LA {Prer P o(r.C.8) | 8.(r.C.9) A GArCy9) A (1., 5) compat 0]t 11 € 1]
premise 1

Ve YPesr P o(r,C,9) | Gitr,5,5) A (7,C,5) compat 2 17 € 1]

(premise 3)

Eﬂp.. Z{]ppgr P p{r,C,s) | G(r,C,s) A (1,C, 3) compat .QH» | i€ I[}
= (rearranging; definition of >

Zﬂpiliefl}. ‘;"" G

Hence P satZ5 P §| G o

The pllowing rule is an easy carollary of this:
Rule 7.1.20 (Disjunction}

Paatzr §
PsatZ? §'

_FPeat7? s C.s).8'(r.C, cioint
P satf’” Sv g [(S(T’ C,), 8 &, o)) disjoin]

7.1 Specification of prebabilistic processes 141

7.1.7 Inductive proof rules
We bave an inductive principle for our specifications:
Rule 7.1.21:

Psat?? 59| G
Ym: Psat:,/”' Smt1 | Sm A G

Psat?? " 5.1 G

TaN

Proof: By numerical induction on n. The base case follows immediately from the first
premise. For the inductive step,

Sapi A G

(strengthenmg predtcate)
Sats A8 A G)

< premise 2)

g. S, AG

<u:|duct1ve hypotbe:ns)

9.9.9 G

nl

So Peat?rd" " 5.4, | G. n|

The following version or the induction rule will prove useful:

Rule 7.1.22:

Psat)" Sg’G
Ym: Psat’95m+;|5 AG
Psat.”S,:,H}S AG

Psat.;'” A LA]

TaN

This will be used as follows: G will represent some initial state; the 5.5 will represent some
‘desirable states'; the S,s will represent states from which it may still be possible to reach a
desirable state. The rule then gives the probability of a desirable state being reached. This
is illustrated in figure 7.1.

Proof: Using the first two premises and the previous proof rule we have that P sat2?-1"
5, | G. Then as abave, using the third premise,

Sppr AG Seri A (SaAG) p 5.AG ppgt. G

So PsatZ?#4" &, | G. m|

142 Probabilities and Priorities in Timed CSP

e
"
I
N

Figure 7.1: Representation of rule 7.1.22

S

In section 7.4 we will apply this to a protocol transmitting over a medium that correctly
transmits messages with probability p. G will represent the state where an input is received;
&n will epresent the state where it tries transmitting for the n+ Ith time. With probability p
the message is correctly transmitted, which is represented by state S}, ,; with probability ¢,
the mesage is not correctly transmitted and the protocol will try retransmitting, ie. it
will go into state S,y . The rule then gives the probability of the message being correctly
transmiited at the n + Ith attempt.

7.2 Complications with probabilistic proofs

The reader may not be surprised to find that proving prebabilistic specifications of processes
is considerably barder than proving unprobabilistic specifications: there are a number of
complications which make the proof rules more difficult to use. In this section we give
a number of examples which demonstrate these complications and show how they can be
overcome.

Recall the proof rule for proving that an unprobabilistic specification holds for a parallel
compuasition:

Pat, Sp
Qsat, Sg

sCAUBASP(r,Cp.3 A)ASg(r.Cq.s B) = 5(r,Cp "4 Cg,5)
PAY Qaat, §

By analogy with this, we would expect the following proof rule for probabilistic specifications
to hald

PSﬂt%P SP

Qsat%" Sg

SCAUBASp(7,Cp,s A)ASg(T,Ca,s B)= S(r,Cp4f g9
PAE Q sat??? §

7.2 Complications with probabilistic proofs 143

P A(-H-B 2 satisfies some specification with probability p.g if P and @ satisfy corresponding
specifications with probabilities p and g. This rule is indeed true. However, we shall see that
this rule is not strong enough for all our purposes.

7.2.1 Conditional specifications

Consider first of all conditional specifications. We would like to be able to reduce a conditional
specification on a parallel composition to conditional specifications on the subcomponents.
The following rute does this for us:

P satf” Sp ‘ Gp

Q sat?? Sg | Gg

sCAUDASH(T,Cp,g AYAGp(T,.Cp,3 A)ASg(r.Cp,s B)A Gg(r,Cg.s B)
= S(r,Cp 2P Co,9) A G(r,Cr "7 Cg.5)

SCAUBAG(TLp 4 Ce.9)= Gp(r.Cps A) A Gg(r.Cq.s B)

PtY Qeatzr? 5| G

Informally, if G holds of a behaviour of P AfH-H @ then premise 4 tells us that Gp and Gg
hold of the corresponding behaviours of £ and Q. Premises 1 and 2 then tell us that with
prohability p, the behaviour ol P satisfies Sp and Gp, and with prebability ¢, tbe behaviaur
of @ satisfies Sg and Gy Premise 3 is then enough to deduce that § and G hold of P’tfﬂ-s Q's
behavionr.

The following slightly simpler rule is an immediate corollary of this:

P slatfF Sp | Gp

Q S&t%" SQ I GQ

sCAUBASp(T,Cp,s A) A Sgir.Cg.s B)= S(r,Cp 47 Cq.s)
sCAUBAGCp P Cy,5) & Gp(r.Lpys AVA Go(r,Cq,s B)
P47 Qsatz™ 5| 6

7.2.2 Multiple possibilities

Consider the process P4} @ where P = ay 5Mp.7 b and Q = a g gMg 4 b. We would ike to be
able to be able to prove that this deadlocks immediately with probability 8.3 x 8.4+ 0.7 x
0.6 = 0.54; ie. Pdf Q sat??* silent where silent(r,C,5) = 5 = <>. However, there are
not predicates Sp and Sg that allow this to be proved using the ahove rule. The reason for
this is that a deadlocked behaviour can come about in two ways: either from P offering o
aud @ offering b, or vice versa.

The following proof rule meets our requirements: a proof obligatiou on P A48 0 isreduced
to a number of proof obligations on the subcomponents.

Yi:] PsatZ™ Sp,
Yi:J Qsatz® 55,
Yi:] sCAUBASp,(1,Cp,a A)ASqir.Cgs B)=>
5(r.Cp 4% Cq. 1) [(E.IT.EP,EQ.S))]
PAYE @ sat’f“:‘ mhog disjatnt

144 Probabilities and Priorities in Timed CSP

where
S{rCp.Eg.3) 2 sC AVBASpi(r.Cp.s AYA SQilr.Cq,s B)

Any pair of specifications Sp, and Sg . is enough to ensure that § holds of P A4E 0. Note
that our criginal proof rule is a special case of this where I is a singleton set. We need
to avoid double counting: hence we need the side condition, which ensures that we never
consider the same pair of behaviours (for P and Q) twice.
We illustrate this proof rule by applying it to our example. Define the predicate only offers
by

only offers ¢ = ¢ live from 0 A no T\ ¢ offered

only offerse is the predicate that specifies that the process is only willing to perform the
event c, Let

Sp,s = only offersa =03
Sp2 = only offers b pp = 0.7
Sg,r = only offers ¥ gr = 0.4
Sg.e & only offersa gz = 0.6

Then it is easily seen that
Yi£{1,2} Psat’?h SpinQ satf?' Sa.,

and
Vi€ {1,2} Sp.(r.Cp,3) A Sqin,Cq,s) = silent(r,Cpdf Cg,s)

So we can use our rule to show that
Pd Q satfa“” silent

since ¥; piqi = 0.54, and Sp ; and Sp 2 are digjoint so the side condition bolds.

Larsen and Skou [LS92) have also investigated compositional verification of probabilistic
processes, and they also find that they have to reduce a proof obligation on a compasite
process to a numher of proof ohligations on the subcomponents.

7.2.3 Combining multiple possibilities with conditional specifications

If having to deal with one of the above complications i3 not eacugh, we have to he able
to desl with the case where both apply. The following proof rule covers both conditional
specifications and multiple possibilities:

Yi:1 PseatZ™ Sp,| Gp,
Yol Qsatfq' Sg. | Gga
(a CAUBASpi(t,Cp,s A)AGp.(1,Cp,s A)) -
ASg.(r,Eg,8 B)A Ggiln,Cg.s B}
S(r.Cr 4 Cq.5) A G(r,Cp*4° Cq.s)
Vi:l] sCAUBAG(HCp49Cq, 9=
Gpi(r,Cp,s A) A Ggu(r.Cg.s B) [(3,(f,v;p,|;q,s))]

P A‘H_B Q sat?z'p”‘ 516G disjont

vi:l

7.2 Complications with probabilistic proofs 145

where A
5i(r,Cp,Cq8) =5 CAUBA Sp(r,Cp,s A} A Sqg.(r.Cg,s B)

It is our sincere hope that we never have to use this rule, but that we can always make do
with a simpler one

7.2.4 Universal quantification

Note that the specification ¥1:7 P sat?? S, is not the same as the specificatian P sat 2P
¥i: I § — universal quantification does not commute with probabilistic specification. This
is rather unfortunate as it means that we have to make a lot of our grantifications explicit
when in a pon-probabilistic setting we would normally make them implicit.

For example, consider a medinm that loses a proportion of its inputs:
W==upX in— (out — X Mg X)
Let S, {for ¢ € TIME) be defined by
S¢ Ean att = out live from ¢ + &

8, is the condition that if an m occurs at time { then it is correctly transmitted. It is
certainly true that ¥¢: TIME W sat?” §;: the prohability of an input received at time ¢
getting througb is p. However, it is not the case that W sat?? Vi : TIME §,. This latter
specification says that the probability of all messages getting through is at least p.

It is interesting to note that this latter specification is satisfied by
Wi=pX in—out — X)pN (pX 1n — X)

The difference hetween the two specifications is related to the fact that recursion does not
distribute through probabilistic choice.

We will sometimes want to prove that a composite process satisfies a number of related
specifications; we can reduce this obligation ta proving a number of specifications for the
suhcomponents, for example by using the following rule:

¥i:I Psat?™ Sp;

Yii I Qaatl® Sg

Vi:] sCAUBASp,(r,Cps A)ASqi(r,Cg,s Bj = S{r,Cprdf Cg.8)
Yi:l PP Qsath 8,

When we have quantification of this form we will often make it implicit: we will pick an
arbitrary ¢ € J and prove that P A4-? @ satZ™ ¥ §; via the proof rule

Psat?™ Sp,

Q sat;fq‘ SQ],‘

sCAUBASp(r,Cp,s A)ASgir,Cg,s B)= S(r.Cp 4P Cq.s)
PAYH g sat?™ % 3,

146 Probabilities and Priorities in Timed CSP

For example, consider what happens when we chain two unreliable media together. For
simplicity, assume the media are eacb only able to deal with one message: let

W, = in -5 (mid — STOP N, STOP)
We 2 mid < (out — STOP Ny STOP)
W= W, P W,

where A 2 {in, mid}, B = {mid, put}. We would like to shew that if the environment always
allows rmd to occur, then ou! is offered within 2 secounds of an in with probability pp’. Pick
t € TIME; we will show

W sat?”"' S where S = internal mid A fn at ¢ = out live from ¢ + 2
Let
8 = in at t = mud live fromi + f Sp = mid att + 1 = out live fromt + 2
It should be obvious that we can reduce the proof obligation to
w; satf” 5 and W» sat?’f Sz

since if £y C AU B then 5;{7,C;,5 A) A Sp(1,Cg,8 B) = S(r,C; A+|+B Cz,5). Note that
we have had to choose Wp's predicate very carefully so that the consequence of §; matches
the antecedent of Sp.

As another example, suppose Wy is as above but W, outputs after either one or two seconds:
W =in -5 (mid — STOP ,N, WAIT 1 ; mid ~— STOP)

We will show)
Wi 4t° Wesat?” s

where

5 Zinternal mid A at ! = out live from{ + 2 V out live from !t + 3
where we are implicitly quantilying over ¢. Let

S11 = inati = md live from! + !

Ste = matt = no md offered [t + 1,7 + 2) A rmud live fromit + 2

$34 = midat i+ 1 = ouf live fromi + 2

Sg2 = mud at ¢ + 2 = oul livefromt + 3
It should be obvious that
W, satf” 511 W, satp?“ Sie Wy sat?”' Sa.1 Wo sat?"‘ Se.»
and
vie{1,2) sCAUBAS . (1.Cys A)AS2.(r.Cos Bl = S(r,C, 47 Co,s)

so we can use the rule for parallel composition with multiple possibilities, as in section 7.2.2,
to deduce that W, "'fH—B W, satf” S since pp' + gp’' = 9, and 51 ; and §; ¢ are disjoint.

7.3 Derivation of the inference rules 147

7.2.5 Simultaneous proof of several specifications

For recursion it is often not easy to prove that a process satisfies some probabilistic specifi-
cation directly; it is more convenient to infer it from some more general result.
For example, consider the process P = p X a -4, srop 172Nz WAIT 15 X, We want
to prove that this process offers an @ within 3 seconds with a probability of at least 90%,
jie Psat??® 5 where § =3t €[0,3] o livet. We will prove this as a corollary of the
following more general result:
Yi: Psatdh 5,
gl
where
§=3tel0,] alvet pi=1—(1/2)F
S; is the specification that an a is offered within 1 seconds. Note that $s(7,C, s) = 8(r,C, s}
and ps > 0.9 so this will prove our requirement.
We have the following proof rule for recursion:

(F: X sat?® §;)= (V1 Psat?™ &)
Vi puX PsatZ™ s,

Assume then that ¥i X sat?® 5, and pick 1 € ; we must show P satfp‘ S,. We have the
following rule for probabilistic clioice:

Psatfpf Sp

Q sat2? 5g

SP(Ts E,S) v SQ(T,;,S) = S(T,;‘S)
PN, @ .-Jat‘?l”'l”*“i"*‘r 8

Let Sp = Sp, p' = 1, Sp = 85, and ¢' = 1 — {1/2)". Evidently Sp(7.C,s) v Sp(r,.C,s} =
5:(m,C,s), and p, = 1/2.p° + 1/2.¢4' so we have reduced our proof obligation to

a1y STOPsat?! 8, and WAIT 1; X sat?!~(/2)" g,

To prove the first of these, we can use rnle 7.1.14 to reduce our proof cbligation lo a 4
STOP sat, Sp, which can be easily proved using the proof rule for prefixing. When 1 = ¢
the second proof obligation follows from rule 7.1.5; for i > &, we use the proofrule for

delay to reduce the proof obligation to X sat;,-)’r_“/z)‘ S,_;, which we have by the inductive
hypothesis.

7.3 Derivation of the inference rules

In this section we derive proof rules for some of the constructs of our language. Rules for
the rest of the constructs can be derived similarly. We handle the constructs in the lollowing
order:

« the basic processes STOF, WAIT { and SKIP;

¢ the one-place operators of prefixing, delay, hiding and renaming;

148 - Probabilities and Priorities in Timed CsP

« probabilistic choice;
& the two-place operators of external choice, paralle] composition and irterleaving;
+ the iransfer operators: sequential composition, timeout, timed transfer, and interrupt;

& recursion.

Most of the proofs were given in [Low92c]. Rules for all the operators are given in ap-
pendix BJ3.

7.3.1 Basic processes

The basic processes STOP, SKIP and WAIT t are all completely deterministic, so the rules
have the same form as in the unprobabihstic model. For example, we have the following rule
for §TGP.

S(r.. 7@ qh <)
STOP sat?! §

7.3.2 One place operators

In this section we state a theory that can be used to derive a proof rule for the one place
operatars for prefixing, delay, hiding and renaming.

Theorem 7.3.1: Let F be a one place operator on tbe syntax of PBTCSP where if the
environment condition 4 compat Q is satisfed the semantic equation for F is of the form

Pppr F(P) pb =
1 if R{Q)Ab=f(0)
0 if R Ab#)
S {Pear P ot | b= (", 2) A Tt} A b compat (@) if - RIY

for some functions R : EOFF = Bool, [: EOFF - BEH and Q' - EOFF - EOFF such
that
- R(S) A b compat Q'(82) = T(b') A C(b',) compat O (*)

Then (he following proof rule is sound:

PsatZ? Sp(b) | Gp(b)

R A b =f(0 A G(B) = S(b)

Sp(bY A Gp(b) A T18) = S(C{b, Q) A G(C(b,))
GICB)) A T(b) = Gp(b)

F(P}satZ? 5(b) | G(b)

7.3 Derivatior of the inference rules 149

Tn the case of some of the one place operatars, the behaviours of £ (P} may not always depend
upon the hehaviours of P. Far example, a hehaviour of a 4P ending at time 7 will not
depend upon any behaviaur of P unless the environment offers an a no later than time 7 — ¢,
We will define R({2} to be the predicate that is true precisely when the environment is such
that the hehaviour of F(P) daes nat depend upon the behaviour of P. When R({2) bolds, the
behaviour of P will be a function of the environment, i.e. for some f we bave & = f(Q2) with
probability one. Premise 2 of the proof rule ensures that in this case S(&} holds vhenever
G(#) holds. For the hiding and renaming operators the behaviour of £(P) will always depend
upon the hehaviour of P so we will take R(Q2) = false.

If R(§}) does not hold, then a behaviour of F({P) will be a lunction of the corresponding
behaviour of P and of the environment: b = C(¥,Q). Only certain behaviours of P are
allowed: for example, if F{P) = P \ X, then P can only perform those bebaviours where
elements of X occur as soon as they are offered. The bebaviour §' of P will be compatible
with some environment ¥ which is a function of £2; the condition (+) relates € to ©¥'. In
this case, premise 4 ensures that Gp holds of P’s bebaviour whenever G holds of F{P)'s
behaviour; premise 1 then ensures that with probability p, Sp holds of 2's bebaviour, in this
case, premise 3 then ensures that S holds of F'(P)’s behaviour.

This theorem was proved in [Low92c].
We can use tbe theorem to derive proof rules for the one place operators. For example,
taking

R(Q) = false

C{mL.5),) 2 (nE\ X5\ X)
T(rL.s) 2 s =107 (s \ X}
26N 2 {v|v\ X eQ)

we get the following rule for hiding:

Psat3? 5p | Gp

Sp(rCAE% 8) A Gr(r,C 0¥ 8) = S(RE\ X,8) A G(r,C\ X, 5)
G(r,C\ X,8) = Gp(r, T, 15" s)

P\Xsat?* 5| G

Since R({Y) = false, the second premise in the general proof rule, above, disappears.
The above rule can be simplified to deal with unconditional specifications by taking
G(m\C,s) = Gp(r,C,3) = true:

P satf’ Sp
Sp(r,CAE" 8) = S(r,E\ X,8)
P\X satf’ s

150 Probabilities and Priorities in Timed CSP

7.3.3 Probabilistic choice
We havethe following proof rule for unconditional specifications.

P sa2?’ Sp

Q sat%q' Sg

Sp(r,C.8) v Sp(7,C,5) = §(r,C,s)
PN, QsatZP?ted §

The probability of Py @ performing a behaviour that satisfies 5 is the probability of P being
chosen /p) times the probahility of P performing a behaviour that satisfies § (at least p')
plus the prohability of @ heing chosen (¢] times the probability of Q performing a behaviour
that satisfies § (at least g).

For conditional specifications, the rule is slightly different.

P sat2? Sp| Gp

Q Sat%”' Sg | Gg

SP(T,E,S) A GP(‘T,E,S) v SQ(T: E’ 3) A GQ('-":I;‘ SJ = S(T- E,S) A G(T! ;,S)
G(rC,5) = Gp(r,C,s5) A Gg(r.C, 5)

P, @satF S| G

The reader may have been expecting a stronger rule than this, for example of the form

Psat?"' Sp | Gp

Q sat?‘f Sq1 G

Sp(r,C,s) A Gplr,C,s) v Sg(7,C, 8) A Gg(7,C,s} = §(7,C,8) A G(7,C, 9)
"Gir,G,8) = Gp(r, L, 8) A Gg(r,E,s)

P, @sat2rr e §| G

The reason we do not have a rule of this form is that given the premises and given that G
hoids of a behaviour of P ,1N, ¢, we can say nothing about wbether this s a behaviour of P
or of ¢. For example, let

P2la—5 (b, pc)) gl STOP Q2 (a5 {boM,_gc)) g=Ny_gr STOP
and let
SP:Sq:.S':invef Ge=Gg=G=aatl

Then clearly all the premises of tbe above rule are satisfied, but for an enviroument §2 that
offers an o at time 0 o
pegg 5AC p'p"+dq
1] - " o
Pore C '+

which could be anything between p’ and ¢' depending on the choice of p” and ¢".

7.3.4 Two place operators

In this section we state a theorem that can he used to derive proof rules for the external
choice, parallel eomposition and interleaving operators.

7.3 Derivation of the inference rules 151

Theorem 7.3.2: Let & be a hinary operator on the syntax of PBTCSP that lLas a semantic
equation with the following form:

Pear P& Q pb =3 {Prgr P pbp.Prar Q pbo | b=bp @ bg A T(bp. bl
where & is some binary operator ou behaviours such that whenever T'{bp, bg) Lolds we have
bp compat Q2p(§2, bp.bg) A bg compat Qg(Q bp,bg) & T{bp.bg) A bp & bg comp! O (¥)
for some functions {2p aud g, Then the following proof rule is sound:

VeI PsatZ® Spi(h)| Gp.(b)
Vil QeatZ® Sg.(h) | Ga.(b)
Vi:l Spa(bp) A Gru(be) A Sgulbg) A Gg.lbgh A Tlbr bo) =
S(be @bg) A Clbp B bg)
Ve:l Glbp @ bo) A Tlhp, bg) = Gp,(bp) A Gg.{bg) [(S‘.(bp, boll i I)]
V]

P& @ satZh "% 5(b) | G(b) dispoin)
where 8,(bp,bg) = T(bp,bg) A Sp.lbp) A Gra(br) A Sq.lbg) A Gg.lbg).

If a belaviour of P & ¢ satisfies G then premise § ensures that the corresponding behaviours
of P and () satisfy Gp; and Gg,, for all 7. P and @ are evaluated in environmeuts Qp
and §lg; (+) relates these to the eunvironment for 7 @ €. Premise 1 then ensures that the
behaviour of P satisfies §p; with probability p,, and premise 2 eusures that the behaviour
of @ satisfies Sg,, with probability ¢;. Premise 3 then tells us that the behaviour of P & @
satisfies §. Because of the side coudition, it is valid to sum over all t, so we see that the
behaviour of P & @ satisfies § with probability at least 3, p,¢,.

The proof appeared in [Low92c].
We can use this theorem to derive rules for the two-place operators. For example, taking

= (rp,Cpd Cq.5}

(TP,EPnSP}@(TQuEQJQ)
) = Tp=Tg ASsp = 5Q
)
)

T{(rp, Ep.sp) (79, Eg,30)
2p(Q, (TP, Ep,sp), (1@, Cg. 9¢)
Qg(Q,{rp, Ep,sp) (19, Cga9g)

= QnitemsCgq
= ((Luca(QttnitemsCo)l [t 7p)

we have the following proof rule for parallel composition

¥: Psat?™ Sp;| Gp,
Y QuatZh So.,| Ggi
(SP,t(T,EPas) A Gp(r,Cp,s)) - (S(T-EP"H' Cy.9))
A Sqa(T Eg,s) A Gg,{r,Eq.5) AGTCprdt Cy.s)
Vi G{r,Cpdt Cg,s) = Gp,lr,Cp,9) A Ggalr,Cg,s) _[(S‘(TvEP‘EQ,S)):I
P QsatZ™hn 5| @ disjomt

where 5,(r,Cp,Cg,) = 5pi(r,Ep.5) A Sga(7.Cq.9).
Note that there are simpler forms for this rule where we consider unconditional specifcations,
or we reduce the proof obligation to a single proof obligation on the subcomponents:

152 Probabilities and Prigrities in Timed CSP

* where we consider unconditional specifications:

¥, P sat"" Sp.,

v1 Qsat?® §g,

Vi 8pu(r,Ep,s) A Sg.(r,Cq.8) = S(n,Cpd Cg.5) [{5’;(1‘, Cp Co. sj)]
P Q sat%S‘P‘“ s disjoint

where 8,(7, Cp. Cg,s) = Spa{T,Ep.8) A Sg.(1.Eg, 5)-
« vhere we reduce the proof obligation to a single proof obligation on the subcomporents:
P sat>? Sp| Gp
Q satp?“ Sg | Gg

Sp(r,Ep,8) A Gp(r,Cp. 8}
S(r, Cpo,.8) AG(T,E Ca,
(ASQ(T,;Q,s)AGQ(«;Q,s) = S0 Epdh Los) 1 Gl Lpdr Lans)

G(r,Cp4 Cq,5) = Gplr,Cp,s) A Go(r,Cg, 5)
Pdt Qsat?r 5| G

» where we make both simplifications:

Psat:"’ Sp
Q sat?¢ SQ
Sp(r,Ep,s) A SQ(T;EQJ) = S5(r,Cp4Cq,9)
Py Q sat’

7.3.5 Transfer operators

In this section we state a theorem that can be used to derive rules for the sequential compo-
sition, timeout and timed transfer operators. If we write ~» for one of these operators, then
P~ @ iitially acts “like” P (strictly the behaviour of P ~~ @ is derived from a behaviour
of P); then, according to certain circumstances, control is transferred to . Writing fp
for Ppar P ¢ and fp for Ppar @ p, the probability function for each of these operators can
be written as

Ppar P~ Q p(7,C,) =
ok(tp,Cp,5p} A no traosfer(rp,Cp, 3p) G
A7, C,8) = C(1p,Cp, 5p)

E{JIP(Tm Cp, sp}
+Z{]fP(TPs Cp,sp) ok(‘rp, Cp,sp) A(rp.Cp,sp) transfer at ¢ l}
T<t+6A(T,C,8) = Cl{rp,Cp,sp) emptyq, -
fp(7p. Cp, 3P)-fQ(TQsl;QaSQ) |
+): ok(tp,Cp.sp) A{rp,Cp,sp) transferat t AL+ & 7
A{r.C,s) = Clrp,Cp,5p) emptyq 4q (7q.Tg.s5g) +i+4

The predicate (7,C, s) transfer at ¢ is true if control should he removed from P at time ¢,
for sequential composition it is the condition that { = 7 and a occurs at {. The predicate
no transferr, C, s) is equivalent to ¥¢ 1 - (r,C,s} ¢ transfer at ¢ it is true if control

7.3 Derivation of the inference rules 133

should remain with. P throughout the behaviour (7, C, s); for sequential compositiou it is the
condition that no occurs. The function C' changes a behaviour of £ into ane of P ~ @;
for sequential composition it hides all s. The predicate ok{bg) is true if &p is a bebaviaur
that P could perform while in the combination P ~~ @; for sequential compositionit is the
condition that 2 is never refused. empty; is the empty behaviour during time interval I:
for example, (1,C,5) emptyy = (r,C (L, 7]@{bs <)

For each of these operators there is a function §¥ ; EOFF -+ EOFF such that whenever
ok(bp) holds,

C{bp) compal Q & bp compat V()
Cibp) empty(,) compal 1 & bp compal () ¢
C(bp) emptyy cpsy bo+t+ 8 compat @ & bp compat () ¢ A bg compat Q= t —§

Informally, (¥'(?) is the environment that P encounters up until the time of transfer when
P ~+ @ is iu environment . For sequential composition it is the environment that offers
whatever (2 offers along with as many s as P can perform.

We have the following proof rule:
Rule 7.3.3 (Transfer operators)

Vi Psat?™ $p,{(b)| Gpi(b) A ok{b] A no transfer &
vi P satfp‘ Sp (b)) | Gp;(b) A ok(b) A b transfer at ¢
Yi @ satp;q‘ 50.,i(b) | Gg.(b)
Vi Spi(b) A Gp(b) A ok(b) A 1o transfer b = S(C(b)) A C(C(B))
Vi Sp () A Gh () A ok(b) - 5(C(6) emptyy, 1)
: . :
Abtransferat tAt T<t+ 4 A G(C(b) emptyy)
Spalbp) A Gp (bp) A Sq,(bg) -
A Gga(bg) A ok(d) A bp transfer at ¢
(S(C(b.p) empty(e 4q) P +E+14))
A G(C(bp) empty(,',M] bq +t+4)
Vi G{C(b)) A ok(b) A no transfer b = Gp i(d)
(G(C(b) empty(, -} A ok(b)) = G, ()

V1

Abtransferat LAt T<L+ 48
G(C(b) empty(, pqy bo+£+8)
A ek(b) A b transfer at ¢

P Quat?E? (b)) G{b)

) = Gp,(8) A Ggilbe) (5:(8)) disjoint
(5/(8)) disjoint
L, P: & Lip:

where i ranges over some set J and

i(6)
A

11}

ok(b) A no transfer b A Sp (6] A Gpi(b)
ok(b) A b transfer at § A Sp (6) A G ;(8)

m

154 Probabilities and Priorities in Timed CS5P

This rule was proved sound in [Low92c]. The first three premises give predicates satisfied
by P and @: note that we give different predicates for P in the cases where transfer does
or does not kappen; in many applications we will take these predicates to be the same.
The next three premises say that if behaviours of P and satisfy their predicates then the
resulting behaviour of P ~+ @ satisfies jts predicates. The last three premises say that if a
behaviour of P ~+ @ satisfies G then the corresponding behaviours of P and @ satisfy their
“given” predicates (i.e. the predicates appearing on the right hand of the *|’ in the first three
premises).

We will now use this rule to derive a rule for the timed transfer operator, P . Q. We take

(r,C,s) transferat £’ ¢ t =t =7
no transfer(7,C,s) < 1< 1
ok{r,C.s) < lrue
Clr,C,5) = (7.C,35)

Q) =Q
This gives us the following rule:
Vi PsatZ® Spi(r,C,s) | Gp,(r, T,) AT < ¢t
Vi Psat}” §h(r,C,) | Gh l(Cos)ar=t

Vi @satZ® Sq.(r.C,s) | Gga(n.C,s)
Ve Spa(7,C,8) A Gpo(r,Es) AT <t = §{r,C,8) A G(7,CE
Vi Sp (6 EskA G (LE,s)AL r<t+i

§((t.C,5) empt)"n) A G((LE,s) emptyg o)
(Sfo_.(t_:n, sp) A Gp {6, Cp,sp)
A 8qilrg.Cg.50) A Gg.lrg.Co,90)

(S({t- Cp.sp) empny(t!l+,§) (TQ; EQ:SQ] +t+4))

AG((5,Cp,sp) emptyy 5 (79, Cg,5Q) +1+05)
Y: G(r,C, s) AT <t = Gpifr,L.5)
Vi G{{t,C.5) empty) At T<l+6= Gp (LG s
Y1 G({(LEp,sp) empty,ps (70:Co.sg)+t+8) = :
G (1Cp, 5p) A Ggilrg: Cgysq) Ny dispornt

P ST 5 G -[{517, &, 5))

. @ sat; | disjont
Eipg Eipi

Vi

{8:(r,C,8))

where 1 ranges aver some set { and
.’3'.(7,*,) & T<tASpilr,Cs) A Gp,ulr,C,s)
S(rC,s) 2 7=tA §p . (1.E,8) A Gp ,(7,C, 3)
The above rule can be simplified in the normal ways by considering unconditional specifica-
tions, or by considering ouly single specifications for the componenta.
Interrupts

By analogy with the previous operators, one might expect to have a proof rule for the interrupt
operator of the fellowing form, ignoring conditional specifications and considering only a single

7.3 Derivation of the inference rules 155

specification for each component:

Psat%" Sp

Qsat%“ Sg

Sp(nCs)red Bs= S(r.Cdes)

Splt,C,s)negBant T<i+d=8(({,Cde,s (te)) emptyy)

S5p(t,C,s) Ae@ TaASolbg) = S((t,Che,s (f.e)) emply, yg bg+t+1)
PV Q sat%m 5

However, this is not the case. Consider the processes
P=(a 15 SKIP 4N, WAIT 1);0X o X Q= STOP

It is easily seen that in an environment that is always willing to perform as, the probability
that P performs an even number of as is f/2:

P sat%ffz Sp where Sp = internala = count ¢ even

and @ performs no as:
Qsat?! §5 where Sg=counte=4

If we define § by
5 = internal 6 = count a even

then it is easy to see that the third, fourth and fifth premises of the “proof rule” are satisfied.
However, we do not have the consequent, for consider an environment that always offers the
interrupt event after one a has been performed — an environment that cao be achieved by

. . . . 1/% . R
placing this process in parallel with & LIL QN STOP, for example: in this case the process
always performs precisely one a, so S is never satisfied. In a sense this is because the interrupt
mechanism conspires against the predicate S, forcing the interrupt at a time that makes S
false.

However, the above rule is correct if we restrict Sp to being a safety predicate; a predicate
such that if it is true of a behaviour iy also true of any prefix of that behaviour. We formally
define ralfety predicates by:

Definition 7.3.4: A predicate § is a safety predicate if whenever §(,C,s) holdsand ¢t =
then we have S({,C t,s t). O

We have the following rule, which was proved in {Low$92c|.
P sat%” Sp
@ satZ? Sg
Sp{r,C,s)Aed Es= S(r,Cde,s)
Sp{t,C,eyhed TsAl 7<it+d=
S({(t,Cde,s (1,8)) empt}'(t,-r])
Sp(t,C,a) Aed Es A Sglhg) =
S{t,C@e, s (Le)) emptyy,ys bg+1+6)
PV Q satZr §

S5p is a safety predicate]

156 Probabilities and Priorities in Timed CSP

7.3.6 Recursion

In this section we derive proof rules for immediate recursion. Rules for delayed recursior and
mutual recursion can be derived stmilarly.

If P is constructive for X then we have the following proof rule for immediate recursion:
Rule 7.3.5:

YY:PPrg R(Y)= R(Fpgr P olY/X])
RiFpgr X P p)

[R continnous and satisﬁable]

Fay
Proof; The proof of this is identical to the proof of rule 5.4.3.]
We have the following proof rule for probabilistic specifications:
Rule 7.3.6 (Recursion)
(Vi X satd™ 5) G) = (Vi Psat}™ 5|6
¥i pX Psat?h 56,
for P constructive for X, where 1 ranges over some set J. o

We need the following result adapted from {Ree8g]:
Theorem 7.3.7: A specification R is continuous if for all X in PP g such that R{X} = false:

3t:TIME VY :PPrg Y t=X t= R(Y)= false

We can now prove the inference rule sound:
Proof of rule 7.3.6: In order to nse rule 7.3.5 we only need to prove that the predicate
R(Yievi va T 5A6 p TG

is continuous and satisfiable, where the notation is extended to arbitrary members of PP 13
in the obvious way:

%5 2 T naX(7.C,8) | (7, C,s) compot @ A 5(r,C,8) |}

To show continuity, suppose that X € PPrg and R(X) = false, Then for some {¥ € EOFF

and i €7

S 5AG <p % G

7.3 Derivation of the inference rules 157

Let £ = end (2 and pick ¥ € PPyrpsuchthat ¥ t =X (In order to apply theorem 7.3.7
we must show R(Y'} = false. For any behaviour (r,C,s), if {r,C,s) compat §2 then 7 = ¢
and so 7 Y{r,C,8) =mpX(r,C,s). Hence for any predicate T,

SO A Z{Iﬂ-z Y{(r,C.s) | (r.C,s) compat §t A T{T.Q:S}[}

= Zﬂﬁ'gx(T, C,5) | (1,C, s} compat {1 A T('r,[;,s)[}

= %7
50 in particular
Tsac = §s5A6
< p 2 G,
=p %G

so R(Y) = false, a3 required.
For satisfiahility, consider X = ({},A(.C,s) 0). Then for all £ € I and € EOFF we
have f}(G, =0, s0 ?(8 A G; Pi- {,} G, - Hence R(X) holds. a

Note that in proving the premise of the proof rule we cannot assume that X is a member
ol PPrg: we may not assume that any of the axjoms are satisfied hy X. This it rarely a
problem.

For uncenditional specifications we have the following proof rule:

Rule 7.3.8:
(Vi X sat?® §;)=(¥i
¥t pX PsatZ™ §

2P
Peat;" 5) [vi ve b0 by compat 22 A 5i(bn)]

TaN

where P is constructive for X. The stde condition says that for each environment we can
find a behaviour that satisfies §;.

Proof: As in the previous case, it is enough to show that the predicate
R(Y)=vi v %5 p

is continnous and satisfiable. The proof of continuity is as before. For satisfiability. consider
X = ({}.Mr,C,s) I). For all environments £ and for all 1, we have, by the side condition,
N 8 mpX(ba) =1 p,. Hence R{X) holds as required. o

The form of the side condition is not very convenient. The following rule has a side condition
that is generally easier to prove.
Rule 7.3.9 (Delayed recursion)
(Vi X sat?P 5)= (Vi PsatZ® 5
Vi uX Psatf"‘ 5,

)[v, 3P PBTCSP P sat, S:]

158 Probabilities and Priorities in Timed CSP

1t is enough to find, for each 1, a process that satisfies S,.

Proof: We will show that the side condition of this rule implies the side condition of the
previous rule. Pick 1; ther there exists a process P such that P sat, 5. Now for all
environments 2,

S {Pear P o(r,C.5) [(r,C,3) compat @} = 1
by theorem 4.2.2. In particular, there is sorme hehaviour bg such that bp compet §2 and

Ppar P p(ba) > 0. Then bn € Apgr P p by axiom P4 of the setnantic space, and so §,{bq}
since 7 sat, 5. O

Note that all the above rules can be simpbfied by takiug J to be a singleton set.

7.4 Case study: a simple protocol

In this section we consider a very simple communications protocol, illustrated in figure 7.2.
Messages are input on the channel in. § then tries transmitting them over the medium M,
which loses a proportion of its inputs. If the message is received by R then it is acknowledged
and then output. If § does not receive an acknowledgement within a certain time then it
times-out and re-transmits.

out

Figure 7.2: A simple pratocol

We shall write in for {tn.z | £ € X}, etc.,, where X is the type of the data transmitted. We
shall also fee! {ree to abuse notation by writing, for example, im, rmm for im U rm.

The definitions of the processes are

PROT = PROT'\ A
PROT = (54 m) 4 M
conf fro, rm

13

5 = m?’t — lm'z — 5'(z)
¢
§'"z) = confy —— confs — § © Imiz — §'(2)
M 2 im?r =% (rmlz — M N, WAIT §; M)
R =2 ma?z — confy — out!lts — confy — R

where A 2 {im,rm,conf}. The length of the time out is chosen to emsure that 5 does
not time out before the acknowledgement can get through. For convenience we name the
alphabets of § and R:

As 2 {in, Im, conf} Ap = {rm, out, conf}

7.4 Case study: a simple protocol 159

In section 7.4.1 we will prove that the protocol acts like a one place buffer, t.e. the gutput
stream of data is a prefix of the inpnt stream of data and is at most one item shorter. This
praof will not require any treatment of probabilities: it can be carried out wsing enlv the
proof system presented in chapter 5. In section 7.4.2 we will examine the performance of the
protocal and prove a result giving the probability of a message being correctly transmitted
withio a certain time. [t will turn ont that this latter proof will make use of many results
proved during the former proof: in section 7.4.1 we will prove many results about theordering
of events that will prove useful in section 7.4.2.

We introduce a piece of notation which will be usefn] in the proofs. We want to be able
to talk about the order in which events occur witbout mentioning the times exphicitly. We
shall write untimed u, where u is a sequence of untimed events, to specify that events are
performed in the order given by u:

funtimed w){(r,C,s) =Vs' Ctabrips § u

where tsirap 3 returns the set of all sequences of untimed events corresponding to the trace s,
and is the prefix relation on traces.

7.4.1 Safety
We begin by showing that the protocol acts like a one place buffer:
Theorem 7.4.1: PROT sat, § where
S=3n: Izl I,: X untimed (in.r;.out.1;,....1n.I,,0ut.7,)

<

Proof: We nse the proof rule for hiding (rule 3.1.25) to reduce the proof obligation toshowing
that PROT' satisfies the predicate

internal A =» An: ;17,....7,: X untimed {in,oul} (in.ay, out.zy,... AR Tn, 0ub Ty,)

Note that the predicate on the right hand side of the implication is A-independent and
implies S. This predicate can be strengthened to

rm.z at! = lmratt— iy
S'2internald = | Adn: s, p X imp o ta: b ountimed s, s2 .. s,
where s; = {tn.z,} {(bn.z,)™ (rm.z,, confy, oul.r,, confa}
All rms musl have been caused by an lm f; time nnits previously; the protocol repeatedly
performs tbe events i, cne or more fns, rm, conf;, out, confs, in that order.

We now seek specifications for M and 5 :jt] R. Let Sy and Ssg be given by

Sy = rmmz att = name of last before 1 = jm.x
Almxac t = (rm.1 live from 2 + {g ¥ no rm offered (¢.time of first after ¢}
Al o separate

160) Probabilities and Pricrities in Timed C-'SFf

internal conf
A rm.z at t = rame of lastim, rm before t = Im.z

Ssp & - =
rm.z accessible from { + 1,
Alm.rati= .
v na rm at (¢, time of first Im, rm after ¢]
rr.zati=>lmzatt—1{
Adn: sTi o Te:Xing.,n T untimed g sp ... 8,

where 5, = {in.7,} {lm.5,}" {rm.z;, conf,, out.z,, confe)
A rm, conf , out separate
Abnat i Ainlivefromi' >t =
Tty te, by <ty <lp <ig <V Aconf;atd; Aoul at tg A confs at by

The three conjuncts of Sp state that

s rms must be preceded hy corresponding Ims;

s ifan Im is performed, then either an »m will be offered until it is performed, or no rm will
be performed until after another im — tLe. the message is either correctly transmitted
aor lost; and

¢ the medium offers Ims and rms separately.

The first conjunct of Ssp states that if the environment is such that

e conf is always available;
¢ all s are preceded by corresponding Ims; and
» after an /m occurs, an rm is either offered until accepted or pot offered at all;

then

e each rm occurs #y after a corresponding Im; and
e the trace is of the required form.

The second and third conjuncts say that at most one of rm, conf and out are offered at a
time, and that conf;, out and corfpy occur between each Im and 1.

We want to reduce our proof obligation to proving that M sat, 5y and § ﬁf fl sat, Sgg.
From the proof rule for parallel composition, it is enough to prove the following:
Lemma 7.4.1.1: If £5 C {sn, Im, rm, conf, out} then

Su(r,Cu,a {im,mm}) A Ssr(7,Csr, 9) = §'(7,Csn Jﬁm Cuy.9)

Q

Proof of lemma: Let C = Cgy h‘* Cas. Suppose the premises of the lemma bold, and
m
suppose internal A{7.C, s}. We will aim to prove
rmratt=Imzatf—ip
Adn: sz, .z Xing,..,nn: tountimed s, sy ... s, | {REL5)

where s, = {tn.z,) {lm.z;}™ {rm.z, confy, out.z;, confs)

7.4 Case study: a simple protocol 161

by induction on tbe number of events in 5.
Suppose then that the lemma holds for all traces of length less than {, and let #s= 1. We
begin by showing

internal conf
A rm.z at £ = name of lastim. rm befare § = lm.z

) (T, ;.S'Rvs) (")

rm.z accessibie from & + &y

Adm.zatt= . .
¥ no rm at (£, time of first after ¢}

The crux is the third conjunct, for which we need the inductive hypothesis. (*) maiches the
left hand side of the first conjunct of Ssg, which will enzble us to deduce the result.

The first conjunct of (*} follows immediately from the assumption and the second conjunct
follows from the first conjunct of Su. For the third conjunct, suppose (Im.z at t)(r.Cgp, 5).
Then the second conjunct of Sy gives us

{rm.z live from £ + {5 v no rm offered (¢, time of first after ¢])(r,Cpy.s {in, out})

If (no rm offered (¢, time of first after ¢]){(v,Cp, s {in,out}) then we have (norm at
(t.time of first after ¢])(r,Cgn, 5), as required. So suppose (rm.z live fromt 4 1p) (7.0 4, 5
{in, out}); we will show (rm.z accessible from t + #3)(7, Cgsg,s). Taking ¢ = rm, €= {rm}
in corollary $.3.2, we need to show

(internal rm) (7, C, 5) (7.1)
rm, {in, out, conf} separate from ¢ + 2y (7.2)

(7.1) follows from the hypothesis internal A. To show {7.2), suppose for some ¢' t+1t; we
have (¢, rm) € items C; then from the second conjunct of Ssp we have (¢', out), (', conf) ¢
items C. It remains to show (t',in) ¢ items ©. Suppose otherwise: in this case, the m must
bave been caused by au earlier im, but for § to be willing to perform :n, there must have
beeu a conf,. out, ¢onfp in between the Im and in (by the third conjunct of Ssg):
s4 R . m confr out confs mn
conf
M: ... im rm

Suppose the out occurs at time 7. Consider the behaviours (r',Cp 7,5 {Im,rm} 7} and
(r,\Csp 7,8 7'). These satisly Sy and Ssp respectively, so by the inductive hypotlesis the
behaviour of the compaosite process. (+',C r’,s '), should satisfy the result of the lemma.
However, it clearly doesr’t as 2 conf, follows an !m. Hence we reach a contradiction and so
conclude that (7.2) holds, and 8¢ (rm.z accessible from ¢ + ¢5){m. Cgg. s).

Hence we have proved (+) and so can use Ssg to deduce

rm.z att=Im.zatt -l

+

Adn: zp,.. . ,Tn Xinge . B untimed s; $2 ... S5 (T Csns)

where 5, = (n.r,} {Im.g,)™ {(rm.z,, conf;, out.z,, confo)
and heuce
rm.ratt=>Imratt—t;
Adn: iz I Xnp..., . T untimed s, sz ... s, | (7.C.Y

where 5, = {in.z,) {Im.z,)™ {(rm.z,,conf;,oul.z,, confz}

162 Probabilities and Priorities in Timed CS,F_’

as required. o

We now prove that M and § % R satisfy their specifications. We start by proving M sat, Sy.
con,
We assume X sat, Sy and nse the proof rule for recursion to reduce the proof ohligation to
tm?z <& {rmlz — X M1, WAIT §; X) sat, Sp
Using the proof rule for prefixing, it is enough to prove that
rmlr — X N, WAIT é; X sat, (rm.z live from § v no rm at [0, time of first])
Amameof fist=my=y=1x
Tatt
- a. =» name of last before ¢t = Im.z
At > time of first
rm.z hive from i + to
Alm.zatt = A .
v no rm offered (2, time of first after]

A Im, rm separate
We now use the proof rule for probabilistic choice to reduce the proof obligation to
rmlz — X sat, rm.z live from ¢
Anameaf first=rmy=>y=1x
A rm.z at { > time of first = name of last before ¢ = Im.x
Alm.z at t = {rm.z live fromt + £; v no rm affered (2, time of first after 1])
A Im, 7 separate
and
WAIT §: X sat, no rm at [0, time of first]
Anameof fist=rmy=>y=r
A rm.x at { > time of first = name of last before ¢t = Im.z
Aldm.z att = (rm.z live from ¢ + ¢y v no rm offered (¢, time of first after t]]
A Im, rm separate
These are easily proven using the proof rules for prefixing and delay, making use of the
assumption about X.
We uow turn our attention ta proving that § cjtf R sat, Scp. We seek specifications for §
and R. Let
8 =3m: ,zy,...,Tn: X 0.0t ountimed sr 52 ... 5.
where 5; = (in.z;) (Im.3,)™ {conf;, confp)
Alm.z at t = conrfy live [t + &1+ I + 8] A no Im offered (£,t + &y + 4]
Sp = rm?z at t = conf; live from! + 4§
Aconfp att = rm livefromt +§
A rm live from 0
Adn: ;z5,...,Z4: X untimed s; 55 ... s,
where s; = {rm.x,, conf;. out.1;, confp)
A rm, conf, out separate

7.4 Case study: a simple protoco] 163

We have the following proof obligation:
Lemma 7.4.1.2: If s C {Im, rm, in, out, conf} then
Ss(r,Cs.5 As) A Sp(r.Trs An) = Ssa(r.Cs & Caus)
v
Proof of lemma: The second conjunct of Sgg follows from the last conjunct of Sg; the
third conjunct of Sgp follows fromn the first conjunct of S5 and the fourth conjunet of Sg.

We concentrate on proving the first conjunct of Sgg.
Let C=Cg “H‘f C . Assume the premises of the lemma, and suppose
CAny

internal conf
A rm.z at t = name of last im,rm before { = Im.z

. (r.C.s) (*)
.z accessible fromt + #p
Alm.z at t = .
¥ no rm at (¢ time of firstim, rm after ¢
We want to prove
rmaxatt=Imratt—1Iy
Adn: sz, In:Xmp . ..n,: 1 ountimed s; sz ... s | (T.C, 8}

where 5 = {in.7;} (Im.z)™ {rm.5;, conf;, oul.z;, confz)

We concentrate on the second conjunct; the first conjunct is proved in passing. We consider
in what order the parallel composition performs events.

The first event (if it performs any eveuts) of s Ag is in.zr for some z; and the first event
of s Agis rm.x for some z. But from (#) we have mn.z at { = name of lastim, rm before
t = im.z 5o rm.x cannot be the first event. Hence the first event must be in.z; for some z;.
We consider now the identity of the second event (if there is a second event). The next event
of 5 Ag is Im.z,, while the next event of 5 Apg is rm.z for some z. But, as in the previous
paragraph, an rm cannot yet be performed. Hence the second event is im.z;.

Suppose the process performs {m.x, at some time ¢, and an rm has not yet been performed.
Then from (*) we have

(rm.z accessible from ¢ 4 {5 v no rn at (¢, time of firstim, rm after ¢])(7,C, s}

We consider these two disjuncts separatejy.

o If the first disjunct holds, then since (rm lve from 8)(7, Cg. s Ag) we have rm.z at i+ {p.
From the second conjunct of Sg we have no {m at (¢, p] 50 the next event is rm.z. Note
that this rm occurs {p after a corresponding {m, as required by the first clause of our
desired result.

s If no rm at ({,time of firstim, rm after t])(7,C.s) then tbe next event must be an-
other Im.x, by the first clause of Sg and the fourth clause of Sg.

164 Probabilities ard Priorities in Timed CSP

Suppose then that the first 7.7 occurs at some time ¢. Then from the previous paragraph,
we must have had Im.z at £ — tg. So from the first conjunct of Sg we have (conf; live from { +
8)(1,Cgp,s Agr). Also from the second conjunct of S5 we bave (conf, live [— g +4,t + 48] A
no imat{t —i5, ¢t +&)j(r.Cg.s Ag) so the next event is conf; which occurs at time ¢ + 4,
since we have internal conf by assumptiou.

Now suppose that a conf, occurs at some time and the previous event was rm.z. Then the
next two events of s Apg are out.z and confs and the next event of s Ag is confs, so the
next two events are out.z and eonfy.

Now suppose a confy occurs at some time. Then the next event of s A g is rm.z for some T,
and the next two events of s Ag are in.z and {m.z for some z. But as above, the rm.z
cannot occur before the im, so the next two events are in.z and Im.z.

Suppos now that an {m.z occurs at time 1, and au rmn has occurred previously. Then from the
above a epnfp must have occurred at some time t', before !. Then from the second conjunct
of Sg we have (rm live from ¢ + 6){r,Cp.s Ap), so (rm livefromt + 8){7,Cr,5 Ag). Also,
from {+) we have

(rm.T accessible from ¢ + tp V no rm at (f,time of firstIm, rm after ¢]}(r.C, s)

Then as above, we either have the pext event an rm.z at time i + #;, or the next event is

another Im.z. Note that in the case where the rm.z occurs, it bappens ¢y after a correspond-

ing {m, as required by the first clavse of our desired result.

Finally, suppose an rm.z occurs at time # and this is not the first 7m. Then from the previous

paragraph, we must have had an Im at ¢ — #. So, a5 above, the next event must be a conf;.
[n]

It remains to show that 5 and R meet their specifications. These are easily shown using the
proct rules for recursion, prefixing and time out. This completes the proof. O

7.4.2 Liveness

We will now consider the liveness properties of the protocol. We want to calculate the
probability of a message being correctly transmitted within a certain time. For n € let

T2t4+8 To2aT+6

T is the time between successive attempts at trapsmission; T, is the time taken for the
message to get through if the nth atternpe at transmission is snceessful. Let G be the
predicate that an z is input at time £; let 5, he the predicate that the output occurs within
time T, (br n > 0):

G = inzatt Sn = out.z live from(i, 1 + Ty

where we overload the live from construct to specify that an event hecomes available at some
time during an interval:
alivefrom/ =3t e glivefrom?

Informally, 8, is true if the message is transmitted within = attempts. We want to prove (for
all ¢ and z)

Theorem 7.4.2: ¥a: * PROTsatZ’~%" 5,(G. v

7.4 Case study: a simple protocol 165

Proof: We fix n and attempt to prove PROT s.at:f’_“'n Sn 1 G. We consider the case where
the message is correctly transmitted on the mth attempt; for m € ¥, let

S

= no out offered (#,t + Tn_;] A out.z live from(t + Ton_s,t + T}

S}, is the condition that the message is correctly transmitted on the mth attempt. We use
rule 7.1.19 to reduce our proof obligation to

Ym PROTsat???" ' 5! |G
using $; ... 5}, to prove S,. We have the following proof obligations:
e¥m n 8§ (1,C,5) A G(r,C,s) = 5.(r,C,s5) A G{r,C.s);

o (ST, C,8) A G(T,5,8),..., 80(7.E,5) A G(7. T, 5)} disjoint;
n
e > pg™t I-gn
m=]1

These are all trivial.
We fix m € * and seek to prove PROT sat2F-4
hidiug to reduce our proof obligatiou to PROT' sat?”"’m_l St | G where

m—j

55, | G. We use the proof rule for

S = internal A = no out offered (¢, + Tm—y] A out.z live from{t + Ty, 1 + Ty
To prove this specification, we introduce the following specification {for { €)
5" = internal A = no out offered (1,t + T)) A {beyondt + Ty = im.x at t + T))

31" is the condition that the first attempts at transmission are unsuccessful, and the protocol
tries transmitting for the { + Ith time at ¢t + T;. We use rule 7.1.22 to reduce the proof
ohligation to the following:

1. PROT sat?' S| G,

2.¥{: PROT' sat29 8", |SI" A G;

3. PROT' satZ? Sl | S A G.

We prove each of these in turn.

Condition I: We can rule 7.1.13 to reduce the proof obligation to
PROT' sat, in.z at t = no ouf offered (£, ¢ + 3] A Im.z live fromt + 4

By the results of section 7.4.1, if an #n occurs at time ¢, then out does not occur during
(t,t+ 4], and the medium must be ready to receive an Im from time { + 4, 50 we can use the
prool rule for parallel composition to reduce the proof obligation to

S C‘jtf Rsat,m.zatt= Im.x live fromt + 4

We can use the proof rule for parallel composition again to reduce the proof obligation to
Ssat,mratt = Imzlivefromi+4 and R sat, irue

The proof obligation for R is trivial; the proof obligation for S can be discharged using the
proof rules for prefixing and recursion.]

166 Probabilities anq_Prioritf&i in Timed CSP

Condition 2: We must prove ¥/ : PROT' sat?? S/{, | §" A G. Pick L € ., The
condition 5}; , | ${ A G is equivalent to
B A \ internal A =
internal A =
i b offered (1,4 + Trys) no out offered (t, ¢ + Ty
otlere
ne ou ! i Aheyondt + T; = im.x att + T}
Abeyondt + Ty = tmratt+ Ty
A,z at i

which is the condition that the first [+ I attempts are unsuccessful given that the first { are
unsuccessful. By rule 7.1.16 we can reduce this to S}, | G; where

Gy = na out offered (1.1 4+ T;] A (beyond i+ Ty = bz at t + Ti) A fn.z at ¢

We will reduce the proof ohligation to

§ c:f'tf R Sat%f Ssp| Gsg and M Sat%q Su | Gum

where

Ssg = internal conf Amormat [t + Tt + Ti + o] =
no out offered (¢, £+ Tiy] A nx live from ¢ + Ty
Gsr = no out offered (4,1 + T1] A (beyond t+ Ty = Im.zatt + T;} A dnzatt
Sy & lmrati+ Ti=normoffered (¢ + T, 0+ T+ dp] Almlivefromé+ Ty +tp + &

Gy = true

Ssr | Gsg 13 the condition that, given that an Im occurs at t + T}, if an rm does not occur
within the next {5, then an Im is offered at time £+ Ty, i.e. the condition that the protocol
tries to retransmit as it should. Sz | Gy is the condition that the medium loses a message
that is igput at time ¢ + T}, and then hecomes ready for another input.

We have the following proof ohligation:

Lemma 7.4.2,1: If s C {in, out,Im,rm,conf} and & = Cgp :mﬂtm Cas then
S, C C
sa(r, Csr,8) A Gsr(T,Zsr, 9) s S (R E,3) A Gi{r,C8)
A Sy{T,Cu,s {Im,rm}) A Gu{7,Cavs {Im,rm})

and
Gi(r,C,5) = Gsr(r.Csp,) A Gu{7,Ep,s {Im,rm})

Proof of lemma: For the first obligation assume

Ssp(7.Csr 9} A Gsr(7,Csg.8) A S, Carvs {Im,rm}) A Gu{r,Cas {Im,rm})

Then G; bllows immediately from Gsg. To prove §Jf,, assume (internal A)(r,C,s). We

must show (no out offered (¢,¢ 4+ Tiy;] A (beyond ¢+ Tryy = Imz at £ + T4y))(7.C, 5).

74 Case study: a simple protocol 167

If - beyond{ + T then the result is trivial from the first conjunct of Ggp. So suppose
beyond ¢ + T;; then from the second conjunct of Gsg we have Im.z at £ + Ti. Thenfrom Sy
we have no rm at (¢ + Ty, L+ T + tg], so Ssg gives us (no ou! offered (£, ¢ + Tiyy] Alm.x live
fromt+ Tiy 1 }(r,Csr, 9)- Also, Sy gives us (Im live fromé+ T+ tp + 8){(1,Cpe, 8 {im, rm}),
and so we have

{(no out offered (¢, ¢t + Tiy;] A {beyondi + Tiy; = lm.z at ¢t + Tiy4)) (7, B, 5)

from the assumption (internal A){7,C,s) and the definition of parallel compaosition of offer

relations.
For the second obligation, assume Gi(7,C,s). Then Gy (7,C 8 {im,rm}) is trivially true
and Gsp(7,Csp, s) follows immediately from the assumption. o

We now prove that § 'H‘IR satisfies its specification: S:J{'!R sat?’ Sep | Gsp. By rule 7.1.13,

we can reduce the proof obligatien to 5 ‘H’j R sat, (Gsp = Ssi}. The predicate Ggz = Ssp
e,

can be strengthened to Sip(t + Ti) where

Sgr{t’) = internalconf Adm.zatt’ Ano rmat [t 0"+ {g] =
no out offered (t'.t' + T] A Im.z live fromt' + T

We show that St {t') is met for all i, We reduce the proof obligations to proving that
5 sat, S5 and R sat, Sg where the predicates S5 and Sg are given by
Sg
Sr

IH

tm.ratt' Anoconfy at[t', t'+tg+ 8] = Imzlivefromt' + T
no rm at [time of last conf before t" ¢t - §] = no conf; at "

14

S§’s specification says tbat if it does not receive a confy within ¢y +4 of performing an im, then
it tries retransmitting. R's specification says that if a conf occurs then it cannot perform
another conf; until at least 4 after an rm occurs.

We have the following proof obligation:

Lemma 7.4.2.2:
S5(r.Cs,5 {wn,Im,conf}) A Sp(r,Cgr, s {rm, conf,out}) = Sip{r,Cs "H'f Cas)
oon,

&

Proof of lemma: LetT =Ly ‘ﬁf C g and assume the premises. Suppose
comy

internal conf Alm.z at Anormat [t ¢+ 1p]M+.C,s
—3

We will show (no out offered (t',#' + T| A lm.z live from?' + T)(7,C,s}. From the re-
sults of section 7.4.1 we have no rm at [time of last conf before ¢',1'). and from the as-
sumption we have no rm at [i,i' + #y]; hence for all t¥ € [t + tp + 6] we have
no rm at [time of last conf before ¢, ¢" — §], so from Sz we have no confy at t’. Hence
we have no conf; at [2/,¢ + to + 8], so from Ss we have im.z live from?' + T. Also, from
the results of section 7.4.1 we have out offered t” = rm at (time of lastim,1” — 26). hence
no out offered (', # + T}, as reqnired. o

168 Probabilities and Priorities in Timed C'Sl’

‘The proofs that S and R satisfy their specifications are completely routine.

We now prove that M satisfies its specification: M sat2? Sy | Gu. Since Gy = Irue, the
preof obligatiou can be reduced to M sat?? §4,(¢ + T}) where

84, () = Im.z at ' = no rm offered [t',t' + ta) A lm live from ¢' 4 45 4+ 4

We use the proof rule for recursion to show V' M satZ? 8y, (t'), Note that STOP sat,
Sy ()50 84 (t') is satisfiable (so the side condition of the proof rule for recursion is satisfied).

We assume V' X sat?7 S}, (¢'); we must show ¥t Im7z 2% (rmlz — X 0, WAT 6
X} sat?? Sy, (¢'). The following result about Af is trivial to prove and will be useful:

M sat, im live from 0 (#)

Pick t' and suppose Im.z at t'. We have two cases to consider.

» Ifthe im at time !’ is the first fm then we use the proof rule for prefixing to reduce the
proof obligation to

rmlz — X 1, WAIT &, X Sat;%‘? S
where 53 = no rm offered ¢ A im live from §

We can then use the proof rule for prohahilistic ¢hoice to reduce the obligation to
mals — X sat?? 8y and WAIT §; X sat?? §)

The first obligation follows from rule 7.1.5; the second ohligation follows from (*) and
the rule for delay.

« If the first Im occurs at some time ¢ < {' then we can use the proof rule for prefixing
to reduce the proof ohligation to

mmlz — X ,Ny WAIT §; X sat2? 54 (#' —t" ~ £o)
Tke proof rule for prohabilistic choice can then he used to reduce this to

iz — X sat?? 8, (1 —1" - ty) (7.3)
WAIT §; X sat2? Sp(t' -t —t5) {7.4)

For {7.3), suppose the first rm occurs after a delay of ¢"'; then the proof rule for prefixing
can be used to reduce the ohligation to X sat2? (1" — ¢ — ip — t"" — §), which follows
immediately from the hypothesis. For (7.4), we can use the proof rule for delay to reduce
the proof obligation to X sat?" Sy (&' — t" — t; — 8), which again follows immediately
from the hypothesis.

This completes the proof of condition 2. a

7.4 Case study: a simple protoco! 169

Condition 3: We must prove
PROT sat?? 81, | Sm A&

The condition $) ; | §m A € is equivalent to

int id internal A =
internal A =
no eut offered (¢, ¢ + T
no out offered (£, + T}
. Abeyondt+ T = Im.Tati+ Ty,
A out.z live from(t + Toyt 4+ Tyl
Aan.r at t

which is the condition that the m + Ith attempt at transmission is successful, given that the
first m are unsuccessful and another attempt at transmission is made. We can use rule 7.1.16
to simplify this to S}, ; | Gm where

Gm = no oul offered (t,# + Tr] A (beyond t + T = Im.zat t+ T} Adin.zatt

We will use the proof rule for parallel composition te reduce the proof obligation to showing
5 "H‘f R sat?! Ssg | Gsg and M sat?? Sy | Gu where
COn,

Sen £ (internal conf /\ normat([t+ Tm,t+ T + ta)) = out.z live from ¢ + Ty
A rm.z accessible fromt + T, + &

Gsr £ no out offered (¢, t + Tm] A (beyond{ + Ty = bz at £ + Tpy) Adn.zatt

Su = Imzatt+ Tpbnomat{t+ T, t+ T+ 8p) A vz live fromt + T + £

Gu = true

Su | G is the condition that the input is correctly transmitted. Ssr | Gsg is the condition
that il an rm is offered by the medium at time ¢+ Tp, + ¢4, then it becomies ready for output
from t + Tryr. We have the following proof obligation:

Lemma 7.4.2.3: If ©5s C {in, oul,im,rm,conf} and C = Cgp lm(lltm Cy then

C C
Ssr(r,Csp.s) A Gsp(r,Csg.9) = 8", (,C,5) A Gu(r.C, 2)
ASu{r,Cu,s {Im,rm}) A Gu(r,Cpy.s {im,m})

and
Gm{7,E.5) = Gsp(r,Cgp,9) A Gu(r,Cy,s {Im,rm})

Proof of lemma: For the first obligation, assume

Ssr(7.Csr,8) A Gsp(r,Csn. s) ASy(T.Cy.s {bn.rm}) A Gu(7,Cpy, s {im,rm})

Then Gr, follows immediately from Gsg. To prove S, ;, suppose internal A. Then from Gsp

we have no out offered (£, t + T} It remains to show out.x live from(¢ + Ton, 8 + Touyy). If
- beyond [+ T, then this is vacuously true, so suppose beyond t + T,,,. Then from Gsp we

170 FProbabilities and Priorities in Timed CSP

have im.x at {+ Ty, and so from Sy we have (no mm at [#4 Tom, i+ T+ Lg) A rm.x live from £+
Tra+to}{7,Epe 5 {Im, rin}). We want to prove {rm.z accessihle from ¢ + Ton + t9) {7, Cgp, 5):
but this follows from corollary 5.3.2 by taking ¢ = mn.z and C = {rm} aud using the results
of section 7.4.1. Hence the premises of Sgr are satisfied, so we have out.r live fromt + Trmy .

The second obligation follows trivially from the definitions. o

‘We now prove that § ‘ﬁ'}R satisfies its specification: § ﬂ'}:jﬁ satf’ Ssn | Gsg. By rule 7.1.13
con, o

we can reduce the proof obligation to § rﬁ! i sat, Ggq = Ssp. The predicate Gsg = Ssp

can be strengthened to S;a(t + T), where

Im.z at t' A internal conf

. , = oul.z livefromt' + T
Ana rm at [, 1"+ 13} A rm.z accessible from ¢/ + &

Seait} = (
We will prove § *H'J, R sat, Sip(t') for oll #'. We reduce the proof obligation to 5 sat, S5
and Rsat, Sq, where

Sy = Im.zatt’ = conf; live [t +6,t' + tp + 6]
conf; live from ' + 45 + 6)

Sp 2 rmzatt +1 = .
2 9 nconfrat '+t + 8= outz livefromt' + T

We have the following proof obligation:

Lemma 7.4.2.4:
Sslr.Cs,s {in,im,conf}) A Sa(T.Cpr,s {rm, conf , out}) = SéR[Tv Csg :a!tf Cr.s)

v

Proof of lemma: Let C = (g :H*] Cp and assume the premises. Suppose
con,

In.z at £ A internal conf A no rm at [t', ' + tg) A rm.z accessible from t' + {5

We must show out.z live from¢’ + T. By the results of section 7.4.1 we know that R is
ready to perform an rm from time ¢ + ¢, so rm.z at ¢ + t;. Hence from Sy we have
{confy live fromt’ + t + 8)(r,Cg,s {rm, conf,out}) and from Sg we have (conf; tive [’ +
St 4+ tg+8))(1,Cg, s {m,Im, conf}) so conf; at '+ tp+ 4 since internal conf. Then from Sg
we have out.z live from ¢ + T, as desired. o

It is very easy to show that S and R satisfy their specifications using standard techniques.
We now prove that M satisfies its specification: M Satf” Sm | Gu- Since Gy = true, the
proof obligation can be reduced to M satZ¥ Sj,(f + Tm) where

Syt Elmzatt = normat [t ¢ + i) A rm.z live fromt’ + &

We use the proof rule for recursion to prove Vi M sat?? §),(¢'). Note that STOP sat,
534 (¥') o the side condition of the proof rule is satisfied. Assume V' X satZ*), (¢'); we
will show V¢! Im?z 2 (rmlz — X ,N, WAIT & X) sat?P Si{t'). Pick t'. We have two
cases to cousider:

7.4 Case study: a simple protocol 171

o If the first Im oceurs at ¢/, then we can use the proof rule for prefixing to reduce the
proof obligation to

mlz — X Ny WAIT §; X satZ? rm.z live from 0
We can then use the proof rule for probabilistic choice to reduce the proof obligation to
mls — X sal;fi rm.z live from¢® and WAIT§; X satfa rm.z live from 7

The first result follows from the rule for prefixing and the second result follows from
rule 7.1.5.

« If the first im occurs at time t” < ¢’ then we can use the proof rule for prefixing to
reduce the proof obligation to

iz — X Ny WAIT &, X sat?? Syt — 1" — 1)
We can then use the proof rule for probabilistic choice to reduce the proof obligation to

rmiz — X sat2P Sy (' —t" - t) (7.5)
WAIT &, X satZP Syt —t" - ty) (7.6)

For {7.5), suppose the first rm occurs after a delay of t”'; then we can use the proof
rule for prefixing to reduce the proof obligation to X sat2F i, (¢' — t¥ — t5 — " — &),
which follows immediately from the hypothesis. For (7.6), we can use the proof rule for
delay to reduce the proof abligation to X sat2P §j, (' — "~ tg —), which again follows
immediately from the hypothesis.

This completes the proof of condition 3. u]

This completes the proof. [m}

7.4.3 Lessons learnt

We believe that we have learned a lot about doing proofs concerning probabilistic processes
during the course of the above case study. Firstly, it’s hard! One has to consider condi-
tional specifications, which makes all our predicates more complicated than in unprobabilis-
tic proofs. This factor also complicates our proof rules, as does the problem of sometimes
having to reduce a proof obligation on a composite process to several proof obligations on
the subcomponents. One also has to be very carefu) about quantification, because of the fact
that universal quantification does not distrihute through probabilistic specification; to get
around this one has to be fairly explicit about when one is quantifying,.

We believe that there are a number of ways that proofs involving probabilities can be made
easier. Firstly, doing proofs about non-probabilistic aspects of the system can often help. In
the example of a communications protocol, we began by proving a safety property that did
not involve probabilities. During this proof we proved various results — particularly about
the ordering of events — that were useful in the liveness proof.

It is also worth keeping the predicates involved as simple as possible. In particular, the
right-hand sides of conditional specifications shouid be simplified wberever passible. For

172 Probabilities and Priorities in Timed CSP

example, when using the proof rule for parallel composition to reduce an chligation of the
form P4 @ satf” § | ¢, one normally seeks predicates 5p, Gp, Sg and Gg such that
P sat?? 5p | Gp and Q sat2? §q | Gg, and such that

S5p{7,Ep,5) A Ge(r,Ep,5) A Sg(m,Eg.s) A Gg(r,Cq,s) = §(7,Ep 4t Cg,5)

and
G{r.Epdt Cg.8) & Gp{r,Cp, s} A Gu(r.Cg, 5}

It is the last condition that seems to cause the problems. If G is a complicated predicate
it is often not possible to find suitable predicates Gp and Gg. This is hecause one can
often nat prove results about the behaviour of P simply from knowledge about tiie behaviour
of P4} Q: one needs to know about the bebaviour of @ as well. Fortunately the right hand
side of conditional specifications can normally he simplified, for example via rules 7.1.16
and 7.1.I7.
Parameterization of predicates is a nseful technique: this allows a result to be deduced
as a patticular jnstance of a more general result. For example, in proving condition 3 in
section 7.4.2 we had to show that the medium satisfied the conditicn that if an input was
received at time ¢ + T, then with probability p it was offered for output after a delay of
length t;:

M sat?? im.z at i + T = Tz live from £ + Ton + 20

where .
M = tn?z =% (rmls — M N, WAIT §; M)

We deduced this from the more general result

VI Msat?? Sy(t') where Sy(t)Ednzatt = rm.xlivefromt’ +

Using the proof rule for recursion we assumed ¥t' M sat2? Sy (t') and sought to prove
¥t Im7z -5 (mmlz — M N, WAIT 6; M) sat2? Sy (1)

To do this we had to consider the case where the {m.z resulted from a recursive call to M:
if this recursive call started at time (” then we used Syr(f — ¢") to deduce our result. The
point is that we could not have done this witbout the geperalization of the result we were
seeking to prove.

Chapter 8

Conclusions

In this thesis we bave produced two languages based upon Timed CSP which can be used for
arguing about prierities and probabilities i timed, communicating processes.

We have produced a language where many of the CSP operators have been refined so as to
intreduce a notion of priority. We have given a semantics for this language which models a
process by the set of behaviours that it can perform, where the representation of a behaviour
includes a record of tbe priorities given to different actions.

We have tben extended the language to include a probabilistic choice operator. This has
allowed us to present a semantics which models the probabilities of different behaviours
OCCUITIng.

We presented a proof system for proving that a prieritized process meets its specification. We
have also presented ahstraction theorems from the Probabilistic and Determiaistic Models to
the {unprobabilistic) Prioritized Model, and have shown that a uen-probabilistic specification
on a probabilistic or deterministic process can be proved by showing that the corresponding
prioritized process meets the same specification.

We have presented a specification language that allows one to make statements about when
a process should perform events, when it should offer events, and what priorities differeut
actions should bave. The language is structured so as to make our specifications as readable
as possible. It also has the advantage that the syntax is fairly independent of our semantic
model — indeed much of the syntax is the same as the specification lauguage in [DRRS93]
— which means that most of our specifications can be interpreted in other models.

We have presented a complete set of proof rules for proving that a prioritized process meets
its specification. These allow a proof obligation on a composite process to he reduced to
proof obligations on its subcomponents. We bave illustrated the proof system with several
examples.

We have investigated how the Prioritized Model relates to tbe Timed Failures Model, and
used this so show how results about prioritized processes can be proved by arguing in the
Failures Model. We described which failures could have resulted from a particular prioritized
behaviour, and used this to give an abstraction mapping from the Prioritized Model to the
Timed Failures Mode)l. We derived a proof rule that allows us to prove that a BTCSP
process satisfies some specification if its uoprioritized abstraction satisfies a corresponding
specification. The Timed Failures Model is easier to reason with, and so this method shounld
simplify many of our proofs. We then showed that our specification language was designed

173

174 Probabilities aﬂi Priorities in Timed CSP

ir such a way that the forms of many of our specifications were unchanged when Lranslated
ioto the Failures Model. This method was illustrated by an example where we implemented
a BTCSP specification by firstly finding a TCSP process that satisfied nearly all of the
conjuncts of the specification, and then examining which of the BTCSP refinements satisfied
the rest of the specification.

Finally, we presented a proof system that can he used for proving that a process meets a
probabilistic specification. Proofs of probabilistic processes are considerably barder than in
the unprobabilistic case. We have described various difficulties that arise when one has to
consider probabilities, and have shown how these can be overcome. We have illustrated the
proof systern by using it to analyse the performance of a communications protocol.

We hope that the work presented in this thesis will make it easier to reason formally about
priorities and probabilities in timed communicating processes.

In this final chapter we make some comparisons with related work, and give some pointers
to future work using the models presented in this thesis.

8.1 Related work

In this section we discuss other models of concurrency that include either probabilities or
priorities.

8.1.1 Probabilistic models

The work nearest to our own is Karen Seidel’s [Sei92]. She has produced a probalilistic model
of untimed CSP. She defines a semantics for her model in tcrms of probability measures on
the space of infinite traces, She writes P A for the probability that process P performs a
trace from set A. For example, the process STOPF is defined hy

1 if{rve A

STOP A= :
J otherwise

where {r}* is the infinite sequence of invisible events 7.

Operators are defined as transformations on probahility measures. The probahilistic choice
operator , N chooses in favour of its first argument with probability p and in favour of its
second argument with probability f — p. It has a semantic definition given by

P,NQA2p PA+(1-p). QA

The probability of P, N @ performing a trace from A is the prohability tbat P is chosen
times the probability that P performs a trace from A. plus the probability that @ is chosen
times the prohability that @ performs a trace from A.

The prefixing operator is defined by
a— P A= P (prefin;’(4)) where Yu prefiz,(u) = {a} u

The process ¢ — P can perform a trace from A if P can perform a trace from prefir; ! A.

8.1 Related work 175

Paraliel composition is defined hy
PlQ A=(P x Q Npor~'(4))
Fue
where VYu,v par(u,v) = ru=v

u
{fu n) (r)¥ fu n=v AU Ftn

where P x @ is a product measure. P || {} can perform a trace w from A if P and @ can
perform traces u and o such that ¥ = v = w, or u and v first differ in the nth pesition and
w consists of their common prefix followed hy Ts.

However, she is unable to give a definition for external choice in this way, for much the same
reasons that external choice caused us problems: it is not possible, for example, to give the
prohability of ¢ — STOP b — $TOP performing an a.

In order to give a semantics to external choice she defines conditional probability measures,
For all processes P, sets of traces A, and traces y, the expression (P){A, y) represents the
probability that P performs a trace from A given thaet the environment is willing to perform
the trace y (and notbing else). For example, prefixing can be defined by

(Ph(prefis;* A,9") y=la) ¢
la— P)A,y) =<t fypFan(r e A
[otherwise

Using this model, she defines an external choice operator. Informally, the process P 5 @
behaves like P when offered a trace in §, and like @ when offered a trace not in 5. The
semantics for this process is given by

{P)A, ¥} fyes

{QNA,y) ify¢s

This is only defined in the case tbat for all finite traces ¢

Ps QMAy = {

YESAZESAyz€ A= PNA ¥} =(QN(A z)
whbere A = {t u | u is an infinite trace}

otherwise the probability of an action occurring could depend on what the environment offers
at some time in the future. This definition eflectively refines the external choice operator so
as to make it deterministic.

Unfortunately, it is not possible to give a semantic definition for hiding in this way: for any
trace y offered by the environment to tbe process P \ X, there is not a unique y' that is
offered to P: when X is hidden, the process P should be able to perform any trace §* such
that '\ X = y.

It 1s intcresting that — as in the language presented in this thesis — her languages are based
upon deterministic subsets of CSP.

Most otber probabilistic process algebras are based upon CCS [Mil89], with operational
rather than denotational semantics. For example, Giacalone et al. [GJS90] have introduced
a probabilistic version of SCCS, called PCCS. The nondeterministic process summation is
replaced by a probabilistic counterpart: 3, [p]E, (where p, € {0.1], 3 p, = 1) is the

176 Probabilities and I_’rioritr'ﬁ in Timed CS:‘_J

process that offers a probahilistic choice between the processes P;. If more than one process
could be chosen, then they are chosen with relative probabilities p;. If the choice is being
made between two processes then this is written [p]P + [¢]@. Their work differs from the
work described in this thesis by not differentiating between internal and external choice; they
use Lhe probabilistic cboice cperator for both. For example, our process P M, ¢ would
be written [p]v.P + [g]7.@Q. where the v i3 an invisible action which can he thought of as
representing the choice being made.

Van Glabbeek et al. [vGSST90] discnss reactive, generative and stratified models of proba-
bilistic processes.

¢ They define a reacfive model to be one where the environment may only offer one
event at a time. If the process can perform the offered event then it makes an internal
state transition according to some probability distrihution. For exampie, the process
Le.P + £0.Q + b.R will. after an a, act like P with probability 4 and like Q with

probability £ 4. They give an operational semantics for this language, writing P —— alrl P
to mean that P can perform the action a and with probability p become P'. For
example, the probabilistic choice operator is given a semantics hy

Y lpslai B e/l E; where r; = Z{]F’J ljelna,= a‘[}
el

Here r, is tbe sum of the probabilities associated with all a;-transitions; the probability
of acting like E, after performing a, is therefore p;/ri. The subscript i on the arrow is
to distingnish between two otherwise identical transformations; for example:

a[!/2] i

a.nud + T]I‘—} U
—a.n —a. n
o ?G 1 1

%a.m’[+ %a.nil L%, ni
» Ina generative madel, the environment car offer a choice hetween two or more events,
and the process makes the choice according to some probability distribntion. For ex-
ample, if the process £a.P + £a.Q + £ 6.R is offered an a or a b then it chooses the o
with probability % and the b with probability %; if the a is chosen, then the process
acts like P with probability é‘ and like @ with probability % [f it is offered just an a,
then the a will be performed {with probability 1), and it will then act like P with
probability 4, and like Q with probabilicy 3. The give an operational semantics for

this model, writing P ——= ol pr to mean that with prohability p, P will perform an a
and then act like P'. The rnle for choice is

BB s Y E e
ef

In order to give a rnle for the restriction operator, they define a function v such that
vG(E, A) gives the prohability of process E performing an event from the set A:

vo(B.4)2 3 pi |30, B E "B Enaeaf
Restriction is then defined by

gl g 5 B AR B A4 {a€Ar=uvg(E,A4)

8.1 Related work 177

* A stralified rmodel allows closer control over probabilistic choices. Consider a process
that should choose an a with probability %, and otherwise choose between b and ¢
with equal probabilities. The obvious definition of this is P = o + 4 + Lc. Consider
however the case when the ¢ is unavailable; with this definition, the a and the b are
each chosen with probability %, rather than the desired % and %. The process we
require is Q = fa + £(4b + fc). I the c is unavailable then the a is chosen with
probability é, and the & with probabihity %. The stratified model allows probabilistic
choices between arbitrary processes. However it has no mechanism for allowing the
environment to make a choice between processes. The operational semantics is defined

via two transition relations:
— an aclien transition relalion, written P 23 (): this has the normal definition
except there is no rule for summation;
— a probabulity fransation relation, written P 4 @, meaning that witb probability p,
P will act like Q.

The rule for the choice operator is
Z[P|]E: "ﬂ‘h Ei
S
For the restriction operator, they define a function v sucb that vg(E, A) gives the sum
of the probabilities associated with transitions from A.
1 if E-2,, foragd
ve(E,A) =40 #fEL, for B A
Zﬂp; | E 2y, B Avg(Ei A) # 0[} otherwise

Restriction is then defined by
EvZy E'Avs(E\A)#0 = E AMNE A wherer=vs(E A)

The clause vg(E’, A) # 0 prevents the process from making a probabilistic traesition
into a state from where it can make no further A-transitions,

For each model they use the operational semantics to define strong bisimulations. They then
give abstraction mappings between the three models.

The model described in this thesis does not fit comfortably into any of these categories. We
can model the two processes P and @ that the stratified model is designed to distinguish by

P=a 3Nz (572002 ¢) @=a,3Nes(bise 42 0)

We can distinguish these processes because we have included separate operators for internal
and external choice. However, unlike in the stratified model, we are able to describe processes
that offer the environment a choice between actions.

Tofts [Tof90} uses a weighted version of SCCS [Milg3]. For example, he writes mP + n)
{m,n €)forthe process which will perform m occurrences of P for every n occurrences of .

178 Probabilities and Priorities in Timed CSP

The advantage of using weights rather than probabilities is that it makes renormalization
unnecessary. For example, the rule for restriction is

ES E

doeso{ E')

E A E A

where doesa{E') is true if &' can perform an event from A; it is defiued by

Et—ﬂ-} EJ

o doesa (B’
5 E [aEA] oesa(E')
doesy (E) does 4 (E)

Jou and Smolka [J390] discuss various notions of process equivaleuce for probabilistic pro-
cesses. They lift the notions of trace [Hoa83], maximai trace [BW82], failures [BHR&4), max-
imal failures, ready jOH83] and bisimulation [Mil89] equivalence to the probabilistic case.
They show that, nnlike in the unprobabilistic case, maximal trace equivalence is na stronger
than trace equivalence, and maximal failure equivalence is no stronger than failure equiva-
lence. They also show that trace equivalence and failures equivalence are not congruences.
For example, consider the processes

a (ia+lb+£c)
A8 3 3

1 (ia+1b+£c)+ia (£-a+ib+ic)
@=gelzetebts 29 \3° % T g

1

P

I

P and @) are trace and failures equivalent, but P {a,c} and @ {a.c} are not since P {a.c}
will perfarm the trace {a,c} with probability 1/2 while @ {a.c} will perform this trace
with probahility 7/15. This result explains why we were not able to give a compositional
denotational semantics based upon failures for our language — the result can be adapted to
any language with a probabilistic external choice operator. Jou and Smolka then go on to
give a complete axiomatization of probabilistic hisimulation.

Christoff [Chr90] defipes threc equivalences based on testing. He defines a test to be an
unprobabilistic transition system that offers events to a process; he defines a sequential test
to be a test that offers at most one eveut at a time. Note that the probability of a process
performing a particular trace depends upon the test that provides its cnvironment. He defines
three equivalences as Iollows.

Probabilistic trace equivalence: He writes 5 =, s’ if, for all traces o and all sequential
tests I, processes s and s have the same probability of performing trace ¢ in environment &.
Note thal Lhe restriction to sequeniial tests means that this is equivalent to the reactive
model of ¥GSST90].

Weak prohabilistic test equivalence: He writes s =, s’ if, for all tests, after performing
trace o the processes s and s’ have the same probability of deadlock.

Strong probabilistic test equivalence: He writes s =, s if, for all tests, s and s’ have
the same probability of performing any trace o.

8.1 Related work 179

He then defines three denotational functions. He defines an offering o to be a sequence of
sets of events: intuitively these are the sets of events offered to a process at each stage. He
defines a function u such that u(s,0 L,o o) is the probahility tbat process s, given that it
performs trace ¢ when offered o, goes on to perform an a when offered L. He uses this to
define three denotational models, each representing a process by a probability function.

Probabilistic trace result systems: He defines the probability function u,. by
13,(0) = (s, Sets(ar).)

where for example Sets{a,b,c) = {{a}, [d}. {c]}). Intuitively this gives the probability of
performing the last element of o, given that the environinent offers this but nothing else, and
given that the process has already performed the rest of .

Weak probabilistic test result systems: He defines the probability function 4, by

paelo Lo} 2 Y {u(s0 Lo o)ae i}

Intuitively this is the probability of not deadlocking when offered L alter performing trace o
when offered o.

Strong probabilistic test result systems: He defines the prabability function y,, by
itc(0,0) Z pfs,0,0)
Intuitively this is the probability of performing trace o when offered o.

For each denotational model and corresponding testing equivalence, he shows that two pro-
cesses are equivalent in the denotational model if and only if they are equivalent under the
testing equivalence.

Hans Hansson [Han91] has produced a discretely timed probabilistic process algebra based
upon CCS5, called TPCCS. Processes in his language alternate between probabilistic states
{(denoted by P, P/, etc) and action states (denoted by N, N', etc). In action states, the pro-
cess offers the environment a choice between a number of different actions; after performing
an action, the process evolves into a probabilistic state; the environment is only allowed to
offer one action at a time, so this i3 a reactive model in the terminclogy of [vGSST0]. Tn
probabilistic states, processes evolve into action states according to some probability distribu-
tion. Like us, he differentiates between exterpal and probabilistic cboice, writing 3~ ¢, a, P,
for an external choice and 3., ;[p.]N. for a probabilistic choice.

He begins by discussing an untimed language. Writing £p for the probabilistic states and
Ey for the action states he defines two relations ——: Ex x (Act U {r}) x Ep and —:
Ep % [0,1] x Ey, such that N <2, P means that ¥ can perform an ¢ and become P, and
P %y N means that P can act like N with probability p. For example, the probabilistic
choice operator is given a semantics by

E[Pi]N:lLPN, whmp:Zﬂp, |NJEN.AJelﬂ
L

Because his probabilistic choice operator is, like ours, internal rather than external. the
definition for restriction is very straightforward:

180 Probabilities and Priorities in Timed Cﬁ:’

g
PN N P B#B]
P\aly N\a Nyet,Pra

He then extends this language to a timed language by adding a special actiou x which
represents the passage of one unit of time. For example, he has the rule

3 aiP, <501 Z a,.P,

il il
{The [!] here is to maintain the alternation between action and probabilistic states.) He then
defines a timeout operator by

NP X, p
— [Cr # X] N P

N PP
If ¥ can perform an action to become P’ then ¥ P can perform that action to became P/,
alternatively the process can timeout by performing a x, and then act like P.
Unfortunately, the semantics defined by this relation does not satisfy the maximal progress
assumption: a process may perform a x when it could alternatively have performed a 7. To
overcome this he defines a new relation —: Ex % (ActU {r, x}) x Ep by

NP
NP -
e #] Nef

N 5P

Now N can only perform a y if it is unahle to perform a 7.

He then defines a branching time temporal logic TPCTL, based upon CTL [CES83|, which
allows one to specify properties such as “after a request for service there is at least a 98%
probability that the service will be carried out within 2 seconds™. He describes an algorithm
for checking whether a TPCCS process satisfies a TPCTL specification.

Fang et. al. [FZHS92] have produced a probabilistic version of PARTY [HSZFH92]. They
define three transition relations:

& they write P -23 @ to denote that P caa perform an a to become @;
» they write P —w to denote that P can perform an a and terminate;
s they write P =£s @ to denote that with probability p, P acts like Q.

The deficitions of these are quite straightforward. For example

Z[Pi]P. B

s€f

8.1 Related work 181

They specify tbat probahilistic choices take one unit of time to he resolved. They use this to
define a process {t} that terminates after ¢ time units by
{1)
{t

iy

[1]r
()it -1) fort>1

I

Larsen and Skou [LS92] have investigated compositional verification of probabilistic processes.
They define a logic, Prababilistic Model Logic (PML) with syntax givea hy

Fustrue | FAF | ~F | (a),F

Intuitively {a)pF specifies that a process can perform an ¢, and then with probability at
least p go into a state that satishes F'. They define a simple reactive probabilistic language
and then attempt to produce a system for decomposing logical specifications wilh respect
to the unary operators of the language: for each unary operator O they seek a specification
transformer Wy such that for any specilication § and process P

Q{P)= 5 ifandonlyif P EWp(5)

In other words they seek to find the weakest specification Wy {5} for a component P that
implies that a specification § holds for a composite process O(P). However they shaw that
this is not always possible using PML, for much the same reasons that in chapter 7 we were
not always able to reduce a probabilistic specification on a composite process to a single
specification on the subcomponents. They therefore introduce Extended Probabilistic Logic
with the following syntax:

Fu=strue | FAF | = F | [{a)s, Fr,... {a)z, Fn where g{z;,...,5,)]

The final clause has the intuitive meaning that the process can perforin an g, and then with
probability z, go into a state that satisfies &, (for each i), where tbe z;s satisfy the formula
@(zi,...,2n). They then show that this extended logic does support decomposition.

Jansson and Larsen [JL91) have studied refinement between probabilistic processes, and used
this as a method of proving that processes meet specifications. They represent a specification
as a probabilistic transition system where each transition is labelled with a set of prahabilities.
They then define a satisfaction relation hetween processes and relations with the intuitive
meaning that P sat S if the probability that labels a transition of 7 must be a memher of
the set. of prohabilities that labels the corresponding transition of 5. They define refinement
hetween specifications by saying that S refines T [written S C T) if P sat T whenever
P sat 5. In the case where § can he considered a process (i.e. if transitions are labelled with
a single probability) then § sat T precisely when § C T. They present a complete, although
complex, method of verifying that a process meets a specification. They then define another
relation on specifications: T simulates S if whenever § can do a probabilistic trapsition,
T can do likewise (but not necessarily vice versa). They show that if T simulates § then
5 € T. The advantage of nsing simulation over the previous verification method is that it is
easier to test.

182 Probabilities and Priorities in Timed CSP

8.1.2 Prioritized models

In this subsection we discuss other models of concurrency that include priorities. In [CHS88],
Cleaveland and Hennessy describe a process algebra that uses prioritized actions rather than
having prioritizing operators. They write g for a prioritized version of the action a. They
define the semantics of their language in two stages. In the first stage, they define a relation
—— which gives the normal seinantics of CCS, ignoring pricrities. They then define a relation
—+b which takes account of priorities by

1. i[pﬁqthenp-ﬁqu;
2. if p -24 ¢ and there are no ¢’ and 4 such that p -—E;a. g, then p =5 g.

This allows unprioritized events to happen only if no prioritized event can be performed.
Nate that the prioritized event a can synchronise only with the prioritized eveat & and so
they awid the problem of opposing priorities on either side of a parallel composition. A
strong bisimulation ~, is defined from this relation in the normal way. However this is not a
congruence because it identifies processes that can intuitively be distinguished: for example,
a.p+bg~papbut (ap+bg)\as, {ap)\ e (where\ aisthe CCS restriction operator
that prevents a from occurring) because the former process can perform a b whereas the
latter cannot. They therefore define a new relation > by

1. ifp 25 g then p »25 q;
2. ifp -+ g and there is no ¢’ such that p =3 ¢, then p »%5 q.

As before prioritized events are not constrained, but now unprioritized events are pre-empted
only by r. This relation is used to define a strong bisimulation, which they show to be a
congruence.

Baeten et al. [BBKB5] have produced a prioritized version of ACP called ACPy. They assume
the existence of a partial ordering > such that a > & if a has a higher priority than . They
define an auxiliary operator <1 by

Pl a<ab=aifnot (b > a)
P2 aab=6ifb>a

where ¢ denotes deadlock, a < b is equal to a unless b has a higher priotity than a. They
introduce a priority operator 8 such that §(z) gives the behaviour of z in the given context.
They define ACP; by adding the axioms P1-P6 and TH1-THS3 to ACP:

P3zaygz=zqy
Pdzaly+z)=(zay)<z
P5 rydz=(za:)y

P6 (z+y)<z=xcdz+yd:z
THI 6(ai=a

8.1 Related work 183

TH2 8(z.y) = 8(z) Hly)

TH3 8(z+y)=6(z)ay+8yiar

This means that in a context where a has a higher priority than & (a > b), we have
Pla+d)=8a)db+h)da=adb+bda=a+d=c¢

so the a takes precedeunce over the & The difference between this and other models is that
priorities between actions caunot change: if @ > & in some state then a > b in all states.

In [CamBg}, Camilleri defines a version of CCS {Mil89] with a left biased choice operator, 4
{confnsingly, his arrow points away from the prioritized process, contrary to our convention
of having arrows pointing towards prioritized processes). He defines the acceptonces of a
process: £ acc A if A is the set of complements of the events that ¢t cap perform. He then
defines the semantics of his language in terms of a transition system where 5 tp -2 ¢
denotes that if the process {; is placed in an environment that refuses to perform events from
R, then it can perform the event p and then act like ¢}. He defines the biased choice operator
by

Frts 25 8 Friy 254

2 A
Failsdt 2t L[
Frighty 254

ACR]

The non-prioritized process can only perform an event if the environment refuses to synchro-
nise with any of the events of the prioritized process. So for example

FratgH bl 1ty forany R
Fratgd bl 2t fagRr

This relation is used to define a strong bisimulation ~, which turns out to be a congruence.
The problems of Cleaveland aud Henunessy, described above, do not arise because by, a.p4

b.q X5 g, whereas a.p caunot pecform a b, s0 a.p4) b.4 %, a.g. This model fails, however,
to adegnately model the case where processes with opposing priorities are placed in parallel:
the process (a.P ¥ 3.Q) | (5.Q'# a.P') deadlocks immediately despite the fact that both
sides of the parallel composition are able to perform either an a or a b.

Smolka and Steffen [S590] consider priority as an extreme form of probability. Ther work
is based upon the stratified model of PCCS described above, but extended so as ta allow
zero probabilities. For example, {e.P + 0b.@ will perform a b with probahility 0, which they
equate with impossibility. However (7a.f + 0b.Q) b can perform a b. Thus this is a sort
of prioritized choice in that Ie.P + 6b.Q can only perform a b in a context where an a is
unavailable. However. as in the stratified model, processes cannot give the environment a
choice between events. They give an operational semantics to this language in the same way
as for the stratified language. The rule for restriction is

B B AN (B AV#L = E A5 E A (r=p(E Ap)) (%)

184 Probabiﬁti&&j and Priorities in Timed CSP

Informally, v (E’, 4) gives the sum of the probabilities of transitions from E' labetled with
events from A, where the empty sum s taken to be L; hence the clause v((E’, A) # L is true
if E' can do same A-transition {possibly with prohability 0). v¢ is defined by

1 fE-2 forae A
ve(E,A) = ¢ L £E 2y ford¢ A
Zﬂp; | EvIy, B, Avc(E,, A) #J_[} otherwise

The term p(E, A, p) which gives the probability of the transition in (#) is then defined by

L ifu (B, A) =L
p(E A py=L if (B, A) = 0 where n = #{i | E -%3; E, Ay {E., A) L1}
plv(E Ay iy (E,A) >0

If no A-ransitions are availahle for E then the right hand side of (=) is uever applied, so in this
case p; is defined to he .L. If only O prohability transitions are available then the transitions
are {arbitrarily) given equal prohabilities. Otherwise, the probahilities in the non-restricted
case are divided by the normalization factor v.

Tofts [Tofdd] extends the calculns of relative frequency, described above, to allow infinite
weights. For example, he writes wP+ /@ for the process that performs P infinitely more often
than Q, i.e. the process that has an absolute priority towards P. The semantic definitions
for this language are the same as for the language without infiuite weights.

The programming language occam is closely based upon CSP. Therefore, it is useful to
formally relate the two languages, and to use our experience of huilding models for CSP
to produce models for occamn. Brian Scott [Sco92] is currently working en this, and in
particular he is working on a prioritized model of occam, based upon the prioritized model
in this thesis.

8.2 Future work

The languages and models described in this thesis have opened up many directions for future
work, I would like to:

* undertake further case studies;

e refine the models so as to make them easier to use;

* extend them so as to make them more expressive; and

* develop a tool for aiding reasening ahout probabilistic processes.
In this thesis I have developed a numher of techniques and useful rules for arguing about
prioritized and probabilistic processes; however, [do not helieve that our armoury is yet as
complete as it could be. In order to further develop the craft of proving specifications for

prioritized and probabilistic processes, and to find where further infereuce rules are needed, it
will be necessary to carry out more case studies. In particular, proofs of probabilistic systems

8.2 Future work 185

seem to be very different from proofs for unprobabilistic systems, so I would like to concentrate
on these. There are a number of candidates for possible case studies, such as probabilistic
consensus protocols [AH30, Sei2], mutual exclusion [PZ86), self stabilization [Her90], and
communications protocols such as the alternating bit protocol [PS88, DS92b).

Wlen proving that a process satisfies a specification, we are often faced with a situation
where the specifications for the process and its subcomponents are expressed in terms of the
specification language. To show that the specifications for the subcomponents are enough
to imply the specification for the composite process we expand tbe macro definitions for the
specifications — so as to express them in terms of our semantic representations of behaviours
— and then apply the relevant proof rule, arguing at the level of thie semantics. For example,
if we want to show that the process A(H-B } sat a live from ¢, where &4 € A\ B, we might
try to reduce this to proving that P sat o live from{. We cau do this by expanding the
specification a live from ¢ to

vie(t,oo) @ e[t aes("Y VY rvsttw(f efjast!

In order to use the proof rule for parallel composition, noting that we must have { sat brue,
we have to show that
YU e[too) (3t et t] aes(t") AVE rvs Attt fel)des ATH
A lrue
YiVet,oo) (Ft"eft,t] etV rvstrw(t falyastt

=

A simpler way to argue would be if we had a rule of the form

P sat a live from ¢t
P A({]LB 2 sat g live fromt

[aea\B]

Then this rule could be applied directly. This would make our proofs easier to carry cut, and
easier to read. Equally, it would be useful to have similar rules for the Probabilistic Model,
such as

P sat?? g live from ¢
P AJLE ¢} sat?? 4 live from ¢

ECERE]

It would be useful to produce a library of such derived proof rules that argue at the level of
the specification language. Jim Davies and Steve Schuneider are currently developing rules of
this form for the Timed Failures Model; these rules could be adapted to the prioritized and
probabilistic models, and rules particular to these models could be developed by pursuing
further case studies.

The probabilistic language described in this thesis is based upon a prioritized langnage;
however, it is normally the case that when studying a particular probabilistic process, the
choice of priorities upon the operators is completely arbitrary. It would therefore be useful
to consider a language that includes probabilities but not priorities. In order to do this we
will have to find a way of modelling nondeterminism in a probabilistic setting. I believe that
in order to do this we wil} have to represent a process as a sef of probability fnnctions, one
function for each way the nondeterministic choices can be made. As we will no longer have

186 Probabilities and Priorities in Timed CiP

to madel priorities, it may be possible to base our representation of behaviours upon timed
failures. However, developing the semantic definitions is likely to be particularly difficult.
These changes will considerably complicate the semantic medel, but may lead to a proef
system that 35 easier to use. For example, recall how the prebabilistic rule for parallel
compesition —

Pﬂat%p Sp

Qsat?” 8g

Sp(r,Cp,9) A 8g(r,Cgq.9) = 8(r.Cpit Cq,9)
P§Qsazm 5

-— is related to the corresponding rule in the unprobabilistic, Prioritized Model —

P sat, Sp

Qsatp Sg

Sp{1,Cp,) A SQ(T)EQng) = S(TIQP(IH- Cg.s)
Py Qsat, S

Similarly, 1 believe that we should be able to adapt the rule for parallel cemposition in the
Timed Failures Model —

P sat, 5p

Q2 sat, 8¢

Sp(a,Rp) A Sgp(s.Rg) = 8{s,Np URy)
Pl Qsat, S

— to a rorresponding rule for a probabihistic model based upon timed failures —

P sat?P Sp

Qsat%'i' Sq

Sp(s,Rp) A SQ(.S,RQ) = 8{s,Rp URQ)
P QEEL%W S

The models described in this thesis have been timed. However, many systems can be ade-
quately described without including timing infermation. It would be useful te have untimed
models of probabilistic bebiaviour since this will make reasoning about such systems easier.

In this thesis we have only dealt with processes that can choose probabilistically between a
countable number of behaviours. In order to reason about processes that can probabilistically
choose between an uncountable number of behaviours — for example, the process tbat will
perform an a after a random amount of time between 0 and 2 seconds with a uniform
probability density — it will be necessary to extend the semantic model.

Proofs uging the proof system for the probabilistic model tend to be extremely complicated.
It would therefore be useful to have a proof tool to assist in these proofs.

I believe that it would also be useful to have a tool based upon the notion of refinement be-
tween probabilistic processes. The Failures, Divergences Refinement Checker {FDR) is a tool
developed at Oxford for automatically testing whether a CSP process meets its specification,

8.2 Future work 187

Formally it takes two untimed processes P (the specification) and @ (the implementation),
and tests whether @ refines P {written P C @), in the sense that Q can only behave in ways
that P can behave. This corresponds to @ being more deterministic tban P, or formally
that Fy P 2 Fy Q and Py P 2O Dy Q where the functions Fy and Dy give the un-
timed fatlures and divergences of a process. | would like to extend FDR in order to model
probabilities.

Since the tool is based upon an operational — rather than a denotational — semantics, [
will have to develop an operational semantics for a probabilistic language. There will be no
real need to include priorities in this language: we included priorities in the language in this
thesis only in order to rid ourselves of nondeterminism, s¢ that we could actually predict
the probability of any behaviour in a given situation; with au operational semantics tbere is
no need to do this: indeed, since onr notion of refinement is that of one process being more
deterministic than anotiher, it is essential for ns to include nondeterminism in our language. I
therefore intend to base the syntax upon untimed CSP, extended with a probabilistic choice
operator. Producing an operational semantics for this language should be straight forward,
following, for example, the work of Hansson [Han91].

I will also need Lo formally define what it means for one probabilistic process to refine anotber.
I believe the correct definition will be to make the refinement relation the smallest relation
such that

s PNQ P

s PNY &

» PN Q PN, Q for any probabilities p and ¢ such that p + ¢ = f;
o all the CSP operators are mongtouic with respect to

Looking at this another way, we will have P @ if there is some way of replacing some
of the nondeterministic choices of P with probahilistic chaices so that it is indistinguishable
from @: i.e. after any trace they have the samne probability distributions on refusals.

This definition of refinement will, I believe, prove useful in aliowing us to write specifica-
tions as probabilistic processes. For example, modelling the passage of time by the visible
event lock, we can test whether a process performs the event @ within 2 seconds with a
probability of 99%, by testing whether it refines the process

(@ — CHAQS N tock — a — CHAOQS)
.98Mor
CHAQS

where CHA QS is the most nondeterministic process. This specification says that with prob-
ability 99% an a must be performed after at most one tock.

Appendix A

Summary of Semantic Definitions

A.1 Subsidiary functions

f(r,G,38) i (r,C.5) € domf

fillout f (7,C,s) = { 0 if {r.C,s) ¢ dom f

Ucp{wp €itemsCp j wp Cw A w — wp € items T}

=4
I

if Jwp €itemsCp,wg EltemsCgy w = wpWuwg

3
1i»

T Tepg®
if Jwp € itemelp,wg €itemsCg w = wp W wg

Uc{w' € itemsC | gw’' = w}. if Ju' €itemsT g’ = w

=

a
g
1

M{X,P)p =2 XY Fpgr P p|Y/X]

Wi = XY Fpgr WAIT§, X plY /X]
My(X,Flp = M(X Pipo Wy
M(X,Blp 2 Y Fppr P plY./X |i€]]

A.2 Operations on offer relations

v(CpMCqlw < vCpw
ViwgitemsCp A Lw £} AveitemsTg \ itemsCp
Vorw¢itemsCp AvCq w

vWCp Y Colw & (v XCpw Xve X=w XAv YCgquw Y)
Av Xw XcitemsCpav Y,w Y €itemsCy
AZv,EwC XUY

188

A.3 Semantic definitions 189

v(Cp+—LCglw & Juvp € jtcmsgp,u’q €itemsCqp v =1p8 v
Adwp €itemsCp, wy €itemsCyq Wiw},tﬁwb
Avp CpuwpVrp=uwpAh UQEQuJQ
where vp = dfxgp‘lgqv g = ¢C_F.EQU
P = L‘PEPEQw we = ¢’§P«§qw

v(C\ X)w v w €itemsE I\ X =vAw \X=wA Moo

<
vigO v @ v eitemsC g’ =vaJw' €itemsT gw’' =wANLCHlw

I

Coa =2 C—ICe {0}

A.3 Semantic definitions
Let Ap = Apgr P p, Aq = Appr @ p.fp = Pray P p. fo = Ppar Q p.

Apyr STOP p = {(=.[0,7] & {}). 4}
Pegr STOP p & fillout{(r, [0, 7] & {}). 1) — /}

Apgr WAIT L p=
{(nlo 2 Abir<t)
Jinloozdh tred Bdb.<-)]r 4
uinle. @b [Leled bh oo dh. <, =) ¢ 1}
Pray WAIT ¢ p=
fllout ({(r, [0, 7] @ {I}. <) > 1 |7 < ¢}
vinfe.oedh [Lled Bk <= =117
vitr,le.y e db Lrled LI e b, < J=)— 2t ¢ 1}
Fear X p=p X

Apgr a L p p=

{(r.[0.7) @ (el J}), <~)}

O{{(r.[0. 80 @ el b} Cr+t.{ta) sp+t)]

(r—to@{l}}) Cp,sp)eAprr 1}

Pesr a - P p=

fillout ({{7,[0, 7} & ({aft. ()}, <=} — I}

U{(Tv [D:!I @ (U“ﬂ:ﬂﬂ) Cp+ 1,(f,d) s+ 1) '—’fP(T -LO0@ ({]D’) EP!S) l
"

190 Probabilities and Priorities in Timed CSP

Apgr P @ p=
{{+,.Cp,8p)| Vi sptteEitemsCp
AIEp Cp\ =CpA(nChig se)edp A ¢ S(137 se))
WinCp (LoD {h).ep) |
t r<t+nvy sth'Eu:emst
AICh Chy =CpAlt EP,ﬂ-,:. sp)eAp,«beg.‘n((E):sP))=t}
UifrCp (t,t +6) 3) gq+t+ésp sg+t+6)|
t T—6AYE sptt €itemsCp
A3Ch Ch\ =CpA(tCh, ﬂ-\’sP)eapAbegm((@;sP) Y=t
/\(T—(I+(5),|;Q,.5Q EAQ}
Pear P Qp=
(r,C,s) —
Z{!fPTsEPsﬂEP 5)ICp\ =CA ¢E(ﬂ_v H
2, C=Cp\ (Lradh
+Z{]f”(t Cefic Abegm(m-\’) Y=tAL T<t+d
fp(t.l;P,TE,, (s felr —(t+8),Cq.s—t—0}|
+35 T=Ce\ (Lit8B{} Co+t+4
Abegin((i s) J=tAt T4
Vi sti€Eitems
Apgr WAIT ¢, P p=
{((ni,rledbhAb) lt>r}u{(n.C+t.s+8) |t TA(r-tLC.8) € Ap}
Pppr WAIT t P p =
fout ({{7,[0, 7] @ Y1 IP = 1 1t > 7}
U{(r,C.s) = fp(r—t,C—tis— 8|t 1hAs t=<=AC t={(0,)@{H}
Apar PNy @ p= ApuU Aqg
Pear Py @ p(r,C,5) = p.fp(7.C,5) + ¢.fo(7, 5, 5)
Arar P p 2| {ApPer Poplic i}

Prar lwilPi p(r,C,s) = Z{]p. x Pppr P, p{1,C,s) | i € I[}
Apar PDQ p=
{r,CrmEq, <=} [(1,Cp,=<>) € Ap A (7,Cg,=<>) € Ag}
U{{rCpmCq,8) | 97 <~ Abegins =t A (4, Cp,~>) € Ap}
Alr,Cq.8) e Agast e (I}
U{(rCpDLCg,s) |
s# <= Nbepina =LA (r,Cps) € Ap A (1, Cq, <) € Ag
ATt Dp (4} Vst €itemsCg)}

fillout <

Prar POQ p(1,5,~) 2 Y {fr(r,Cp, <>)folr.Cq, >} | T = Cr D Cql

A.3 Semantic definitions

Pppr PO Q p(7,C,5)

Y {fett.Cp <) fo(7.Cq,8) |E=CpDEq As 2 2p (1} [}
Z fr(r,Cp.5)fqlt, Co, <) |

C—CPDEQA(sTt:p(t {ih VsTtgltemsEQ)ﬂ
ifs# < Abegins =t
Apgr cta: AL P,p=

{(.[0.7] ® {7}, ﬂﬂ-). <>=) | T € TIME}
u{(r.fo e el lh) E+1.(tc73) s+t)]
aEAAt Talr—t {0} @ {}} C.)€ Apur Pap}
PraT eta: A P, p=

fillout({(r, [0, 7] @ {lc?af}, I}, <) — [| 7 € TIME}
U{(.[0,t] @ {letal,)} S+t (t,c%a) s+ 1)
= Prar Pup{r -t {0} @b C.9)|
geAAL T}
"Qop=

{(rCp a7 Co. 9|
Peor PX47 Q p=

Appp P¥

(r.Cp

8 X)eApAn(rCg,s YIEAgAEsCXUY)
ﬁllout{(f,_,s).—»E{],rprf,gp,s X)fglr.Cos Y)|C=Cp 47 C [}|
TsC XU ¥}

Appr Po— Q@ p = {(r

p Lol (T.;mtpép‘;qs) € Ap

A (Ta Eq.ib

EPEQS) € Aq}

Prer P e Q plr

S elfe(r _p.Q;Pl;oS}JQ(TEQ‘@EP o)
AJ’BT P\X pg

{{(nc

Cq ;[}
Pppr P\ X p=

Ep—
s1 |Vt sTi€itemsC AT CANX=CAnCL 2% s) € dp)

C,s)| vt

s
fllout{{r,C, s) — E{lfp(r, ', ft _\x VXY = C[} | ¥t stte€itemsT}
Appr 9P p={(

Ppgr gP p = fillout{{r

sTtElt.emsgAEH;' geoC =CAf

i

rS)EAP}

I—)Zﬂfp et lgel = E[}I‘v’t st1€itemsC}
AFBTP!QPQ{(T,E,S)IT tA(T,C,s) € Ap}

U{{r,C (tLr]@dll)s <~)lt<T<t+6A(LE.s) € Ap}

U{(r.Cp (Lt 480D Cott+dsp <~ sgtt+8)|

T i+§A(tCpsp)EAp A(r—1t -4 Cg,sq) € Ag}

192 frobabiﬁtfeq and Priorities in Timed CS.E

Pppr P Q p(7,Cis} =

fP(TIE)S) if r t
fel{r. st t) Htorct+bns £= <>
AL t= (t.T]@({l]})

fe{{r,Cs) D) Sg{{r,C,s)—t—4) ifr tAst({{t+8) =<~
ACT{tLL+ 8 =(t+8) o {D
g otherwise

Apsr PV @ p=
{{nEde,s)|(r.C,s) € Ap A e ¢ Ts}
Uin,Cwe (tr]@ s <(t,e)=)jt rt<t+8redTsn{tC.s)e Ap}
UinCrde (L,1+8) @) Eg+t+dsp <(te) sg+t+48)]|

T t+dAegNspA(t,Cp,sp) € ApA{T—1-6Cp,89) € Ag}
Prar PV Q p(r,L,5) 2

Ip(T,Ep,s) fE=Cpdenecg¢ls

fe(£,Cp, sp) ft r<tAs=sp =<(l,e)~ Aeg Zsp

AC=Cpde (7)ol
(6, Cp,5p).fq((r,C,s} —t -4} fr t+dAned Esp

As t+d=sp <(l.e)-

AL t+d6=LCpade (1 t+dia{h
0 otherwise

Fpar uX P p = the unique fixed point of the mapping M;{(X, P)p
Fpar pX P p = the unique fixed point of the mapping M (X, P)p
Fegr (Xi=P, |1 €1}, p= 5, where § is a fixed point of M (X, P)p

A.4 Derived operators

SKIP = WAIT ¢
s P2 warTe; P
PoQ@ =QoP
Pe Q=2 (PDQ) N, (POQ)
P Q = P
PHQ = QT
PX-H:‘YQE QY#XP
P—Q=Q+«—P

P Q= (POWAIT ttng — Q)\ trig

A.4 Derived operators

193

aod
P Q= ci(P) 47 r(Q))

a ifae
l.a otherwise

where [(a) = {

PR Q=P "7 r(Q)
. cla)=a fac ¢
_|a ifagC)
rla) = {na otherwise clla)=a itag C
cfraysa ifag C

and AZUS— ClUC B2r(T-C)uC and(E)NC=rEINC =]}

Appendix B

Inference Rules

B.1 Proof rules for prioritized processes

In this appendix we give a complete set of proof rules for proviug specifications on BTCSP
processes.
B.1.1 Auxiliary rules

Rule B.1.1 (Null specification)

P sat, true

Rule B.1.2 (Conjunction)

P sat, S
Peat, T

Psat, AT

Rule B.1.3 (Strengthen specification)

P sat, 5
F(r,Ee) = T(r,C)
Psat, T

194

B.I Proof rules for prioritized processes 195

B.1.2 Basic processes
Rule B.1.4 (STQP)

Sir 0,718 {ih), <>)
STOP sat, S

Rule B.1.5 {SKIP)

Strforled bgb, -
t r=smlo.ded BB (e b < >)
SKIP sat, §

Rule B.1.6 (WAIT t)

T<it= 8{r |0, 7] {}), <

T oi= 8o nedh [H]@({} b AH.=>)

t t r=28E00dh Llod B ¢Lrledhh =<)
WAIT t sat, S

B.1.3 Sequential composition
Rule B.1.7 (s -Z3 P)

S(r(0.7)® {al. B, <>)
P sat, 5p

Sp(r—t,{0} @ {]}) CpspiAT 1= 50,1 {ab)} Ep+t.(t,8) sp+t)
a—an"satps

Rule B.1.8 (¢ = P)

5(n (0,71 @ dalAlB, <>)
Forct'+t= S0, 0] @ {ap, 8 (¢ 7] @ b, =<, a)>)
P sat, Sp
Sp(r—t -1t ,Cp,sp)AT t'+t=>
S(r[0, 1@ Qe il (1Y + 0 Cpt+t +t(tha) sp+t+1)

a—'iPsatpS

196 Probabilities and Priorities in Timed CSP

Rule B.1.9 (P Q)

Psat, Sp
@ sat, Sq
C'y =CAVt stecitemsCA ¢ 5D s) A Sp(r, T Y s) = S(r,C,s)

t+6AT =C AV ¥ ¢ items -
for<t+sACY CA st GJEmS_):’S(T!E (t. 1)@ i)

Abegn((hD))=t A Sp(t,C A0 s)
t 7-8ACh\ =LCpAYY sptt€itemsCp
A begm((fr‘\: sp))=t ASp(LC D 5) A Solr — (t +8),Cq, s}

S(r,Cp {t,:+6)®(ﬂ|}) Cgtt+édsp sg+t+d)
P Qaat, S5

Rule B.1.10 (WAIT t; P)

r<i= 8,072} <)

P zat, Sp

Sp(nC,s) = S(r+ L C+t,s+1)
WAIT t; P sat, §

B.1.4 Nondeterministic choice
Rule B.1.11 (P11 Q)

P sat, Sp

Q sat, Sg

Sp(7,C.s) V Sq(r.C, 5) = 8(7.C, s}
PN Qaat, S

Rule B.112 (. P.)

Yie] Posat, 5
Yiel §(r,C.38) = S5(r.Cs)
iy Pisat, §

B.1 Praof rules for prioritized processes 197

B.1.5 External choice

Rule B.1.13 (PD @)

P sat, Sp

@ sat, Sg

Sp(1,Cp,<>) A Sq(r,Cq, <) = S(r,CpOLg, <>)
s# <> Abegins =1t A Sp(r,Cp,s) A Sp(t,.Lg, <>}
Alsttdp (L{B) VTt ¢itemsCg)

(s # <> Abegins =1 A S8p(t,Cp,<>)
A Sg(r,Co,s) As Tt e (LR

) = §(r,EpDCq,+)

) = S(T! ;P [in} gQ'ﬁs)

POQ@sat, S
AN
Rule B.1.14 (PO Q)
P sat, Sp
Qsat, Sg
Sp(r,Cp, ==} A Sg(1,Cg, <) = §(r.CpOCTq. <>}
(s # <= Abegins =t A Sp(r,f;p,s)) = S(1,CpOCq.s)
A Sglt, Cg. ~<>)Asti Da (f{”})
s# <> Abegins =t A Sp(E.Cp, <) A SQ(T,EQ‘S)) = $(r.CpOCars)
AlstETg (4, v s 1t gitemsCTp) EPEEe
Pm@sat,§
AN

Rule B.1.15 {c?a: A % P,)
VYae A P,sat, S,
S(r.[0.7]2 {c?al (. <)
Ya€eAd t 1<t+t,= 8701 b 0B (.71 dh, <(t a)-)
Va€A 7 4+ taASfr—1—1,,C8)=
S{r.[o.)e{{c?e}) (Le+t) Ol E4+t+ta=<(tia)> s+t+t,)
cla: A P, sat, 5

Fay

B.1.6 Parallel compaosition

Rule B.1.16 (P4 @)
P sat, Sp
Q sat, Sg
Sp(r,Cp, 8} A Sg(1,Cq,8) = S{r,Cp4 Cg, s}
P4 Q sat, §

198 Probabilities and Priorities in Timed CS}?

Rule B.1.17 (P 4 Q)
Psat, Sp
@ sat, Sg
Sp(r,Cp,5) A Sq(r,Cq,9) = 8(r,Ep # Ty, 5)

P @ sat, S

Rule B.1.18 (P4 ¥ Q)

P sat, Sp

@ sat; 8¢

S5pir,Cp,s X)ASg(r,Cg,s Y)AEsCXUY = 5(rCp dt¥ Co.s)
PXLY Qsat, §

Rule B.L.19 (P X 47 @)

P sat, Sp
Q sat, Sg
Sp(r.Ce,s X)A Sg(nCg s Y)ALsCXUY = SCp Y Cg,9)

PYXpY Qsat, §

B.1.7 [nterleaving
Rule B.1.20 (P +— @)

P sat, Sp
Q Sﬂtp SQ
SP(T:EPs‘:P!:F’EQ3) A SQ(T,EQ,ﬁcp‘Cqs) = §(r,Cp+—Lgq,s)

P+—(Qsat, §

Rule B.1.21 (P — Q)
F sat, Sp
Q sat, Sy
SP(T’E”"#gq,cP’) A SQ(T,EQ,APEQ‘EPSJ = 8(r,Cp—Lg,3)
P—@sat, §

B.1 Proof rules for prioritized processes

Rule B.1,22 (P<+C+ Q)
P sat, Sp
@Q sat, Sg
sp{r,gp,l}stp Eas),\sq qj;)y = S(r, cpfﬁ Lg,s)

c="= c-
P4 Qsat, §

Rule B.1.23 (P -ﬂj Q)

P sat, Sp
@ sat, Sg
SP(T,EP,TbEQ ASQ(T:EQ1APE s):S(T.EP-E?EQ»S)

c
P?QsatpS

B.1.8 Abstraction and renaming
Rule B.1.24 {P \ X)

P sat, Sp
C'\X =CAVE stteitemsT A Sp(r,C\ 12" 5) = S(7,C,5)

P\ X sat, §

Rule B.1.25 (P \ X}

P sat, internal A = S(r,C, 5)
P\ Asat, §

{ Sis Afindependeut]

Rule B.1.26 (f{7))

P sat, 5p
JC'=CAVYE sTt€EitemsC A Sp(,i,frlcs)::oS-rE 5)
f(P)satpS

199

200 Probabilities and Priorities in Timed CSP

B.19 Transfer operators

Rule B.1.27 (P ' Q)

Psat, 8p

Qsat, Sy

T tASp(r,C.s) = 5(r,C,9)

bepns ¢t A Sp(r,C,5) = 5(1,C,9)

t<T < t+48ASp(LC, <) = S(r,C (t7]& {}) =)

T t+5."\Sp(i.Ep,%%)/‘\Sq(T—-’.—J,EQ,SQ)#
S(r.Cp (Lt +) Q) s+t+8, <> sg+i+d)

P Qsat, s
Py
Rule B.1.28 (P Q)
P sat, Sp
@ sat, 5g
T A 8p(r,C,8) = §(r,C, s}
t<r<t+8ASp(t,C, 8= S(r,C (t,7]©{ih) s <>)
T l+5/‘\5p(i,gp,sp)I\SQ(T—f—a,Eq,SQ)ﬂ
SrCp (L,i+8) @) CEg+i+dsp «» sq+t+4)
P @sat, 5
P
Rule B.1.29 (P ? Q)
P sat, Sp
@ sat, 5g
eg Ean Sp(r,C,5) = S(r,Cde,s}
£ T<t+dAegEsASp(L,C8) = S(,Cde (Lr]@{}),s ~(te)-)
T t+6."\e¢ESPASP(LEP,SP)ASQ(T—E—J,QQ,SQ)é
S(r.Cp (t,i+8 @ Ui} Ca+t+dsp <€}~ sgp+t+48)
P?Qsatp.ﬁ'
A

B.1.10 Recursion
Rule B.1.30 (u X P)

X sat, § = P sat, §
#X Psat, S

B.2 Proof rules for unprobabilistic specifications ou probabilistic processes 201

Rule B.1.31 (1 X P)

X sat, (S({7,C,s)—8) Abegins AL §=]8,8)&{{]}) = P sat, §(7.C.5)
uX FPsat, S

Fay
Rule B.1.32 ({X; =p. |1 € 1};)
(¥i:f X,sat, S,)=¥j3:I1 P sat,$5,
{X, = P}, sat, S,
A

B.2 Proof rules for unprobabilistic specifications on proba-
bilistic processes

The following rule can be nsed to reduce a preof obligation in M prp to a proof cbligation
in Mg:

Rule B.2.1 (Abstraction}

W(PB)(P) saty Sin Mrp
P sat, S in Mprp

[¥X VAR m(p X)=4¢' X |

P

All the rules from appendix B.1 can be used for proving that probabilistic processes satisfy
hard specifications, except the rules for nondeterministic choice should be replaced by the
following rules for probabilistic choice:

Rule B.2.2 (£ 1, Q)

P sat, Sp

Q sat, Sg

Sp(r,C,5) v Sg(7,C,s5) = §(r,C,s)
P, @sat, S

Rule B.2.3 { ,[m])P:)

Vi€ [P sat, 5;
Yief Sit,C,s)= 5(r,C,s)

vt [P Py sat, S

202 L Probabﬂ ties and Priorities in Timed CSP

Rule B.2.4 (P, , Q)

Po@Qsat, S
Py sat, §
P, ;Qsat, s

B.3 Proof rules for probabilistic specifications

B.3.1 Basic processes
Rule B.3.1 (STOP)

5(=.[0,7] @ i), <~)
STOP sat?! S

Rule B.3.2 (WAIT t)

T <= 50, [0.7] & b, <=)

v t=2 8 g0ed{hn Lasdkg b

t T:*S(T aedh Lrladid b ¢.redb. <,)
WAIT ¢ sat?r 5

Rule B.3.3 (SKIP)

rie.n s bl B, <)
t T2 S0 g @b b (e b«
SKIPwat?! §

B.3.2 Sequential composition

Rule B.34 (2 -2 P)

P sati? 5p | Gp
Gir, (0.7} @ el {B). <) = S(r. (0,712 Qal. {}), <)
Sein 0a{)) S o) nGelr, 02dh Tos)=
Sir+t, [0 t] % {al)} T+ (La) s+ 1)
(AGT+! [@.)@ {al. i) T+t (4 a) s+t))
Glr+r {0, 8¢ {ah i} CT+1, {t.a) s+r]=> Geir. 0&{}) C, s)

(:—*Psat%”Sh?

B.3 Proof rules for probabilistic specifications 203

Rule B.3.5 (a - P)

Psat%" Sp| Gp
Gz, [0,71@ {al, b}, <=) = S{r, [0.7) & {ab. {0). <)
¢ r<t+tAGH [0, V] LD (Tl < a)-) =
S(r, [0, e {ab I (C.ri0), <t a)>)
Spir, 0 () T, s)nGe(r. 0 () T 8) =
Str+ e+, (0,1 {a 0} t+)e)y CHe+t, (Ha) s+t+t))
(A Gir+t+t, [0 e dal) F b+l THe+0, (Ea) s+1+1t)
Glr+t+ 2, [0, {al D e+t {h T+i+t, () s+i+t) =
Ge(r. 0@ {} G s)

a-—‘+PsatfPS|G

Rule B.3.6 (P)
Yi P sat?"‘ Sp.| Gpin ¢ Is Ainternal
vy P sat?P: Spyi| Gp; ninternal Atime of first =1
vi Qsat?® Sg.| Gg.,
Y1 SpinGp, Adnternal A ¢35 =
S(NE\ L8)AGREN L)
(S};],(t,;, §) A Gp (1,C, s} A (internal 3¢, C, s)) -
Atbegin(s J=tAtl T<I+4
(S(u. T\ s\) emptygq))
A G((t»;\ 75\) Pmpt)’(r‘r])
ve (s;,,,(t,r;, §) A Gh (£, C,8) A Sg,lbg) A GQ_,(bQ)) N
A (internal)({,5,8) A begin(s) =t
(S(UsE\ 8\) empty, g bo+t+46))
AGE.CN s\) emptyy g bp+!+8)
¥Ye G{r.C\ ,s)A (internal)(r,E.s} A ¢ Zs= Gp,(r,C,s)
GiLEY s\) empty(t‘,.])
Yi | A(internal)(§,C,) = Gp,(L.C,s)
Abegin(s) =tAt T<t+4

vi (G((t,g \ a8\) empty g bott +5)) - i
A{internal }{(t,5,5) A beqin(s)=t (& {r. ;s 5)}
G (5,5, 8) A Ggalbg) . disjoint
ot s 1 (31(r. €, 5)
disjont
where i ranges over some set J and N P:q;' Iim

5i(r,C,s) = (intenal)(r.C,s) A € Ns A Spa{r,C,s) A Gpi(r,C.3)
Si(r.C.5) = (internal)(r,C,s) A begin(s)=t ASp(r,E,4) A Gp,(r,C,s)

204 Probabulities and Pr_it)rit:'es in Timed CSP_‘

Rule B.3.7 (WAIT t; P)

Psatf” Sp | Gp
<t n Glr, [0, 7] @i, <) = S, [0.7) 2 (i), <=)
Spir,C,s) A Gp(7,C, 8} =
Sr+t, [00ah C+ts+AGEr+L[e02dl) S+t s+1)
Gir+e, [0Sl T+ s+ 1) = Ge(r,C,5)
WAIT t: Psati? 5| G

13.3.3 Probabilistic choice

Rule B3.8 (P ,N,; @, unconditienal specifications)
Psatz? Sp
@ ﬂﬂtfq' Sg
Sp(r.C.s) v S5o{7,C,s) = 5(1.C,s)

e
PN, QaatzePtad g

Rule B3.9 (P N, @, conditional specifications)
P sal?? 5p | Gp
Q satfg’”' 5q | Gg
Se{rnC.8) A Gp(r,C,5) V Sgi(r. C,s) A Gp(r,E.5) = S(r.C,5) A G(7.L.)
ClnCis} = Gp(1,C,8) A Gg(r,G, 5
PN, Qsatz* §1G

Rule B.2.10 (,[p:]P:, unconditional specifications)

Y1 Psatl® 8,
Vi 5(r.C,s) = §(r,C,s)

)E 14
wcrlnlP, satZ= o s

Rule B.3.11 (,,[p.]P,, conditional specifications)
vi P sat;/"’ S| G;
Vi SinC.s)AG(nC,s)= S(r,C,5) A G(r.C,s)
Vi Gr,C,s) = G,(7,C.5)
.eI[P!]’D| sat;f” S

B.3 Proof rules for probabilistic specifications 205

B.3.4 External choice
Rule B.3.12 (PD Q)

Y: Psatih Sp;| Gp.,
Vl Q satjq‘ SQ‘,' | qui

Yy (SF,I('T: ;P: ‘<>‘] Al G.P,I(T1 EP;**)) -
A S 1, Cag, <) A Ggu(r,Eg,<>)
S(r,CpOCg <) A G{T,EpD g, <>)
§#£ <> Abegins =1t
vi Alstedp (L) v st itemsCp)

fal Sp‘,'(f, _I:P,S) A GP,l(T, Cp.s}
A Sga{t,Cg. <) A Gg (6, Eg, <)
S(r,CpDCq s}~ G(T,CpDCy.3)
s# <= Abegins=tAstEAp (LD
Yi |ASp.(§,Cp, <) A Gp,(t,Cp,<>) =
A Sgu(r. Cg,8) A Ggi(r,Cg,8)
S(r,EpDCqg,s) A G(r,EpOEg, ¢}
Vi G(r,EpOCgq,<>)= Gp,(r,Cp,<>) A Ggi(r, Eg,<r)
(s;é <= Abegpins=1A G('r.gpu:lgq,s)) N
AlsttDdp (Ll Vet ditemsTy)
Gp. (T, Cp,8) A Gg.lt,Cg,<>)
(s # <~ A begins = |) - (Gp_,'(l,gp,‘<>-})

~ Astédp (L1 A G(r,EpDEq.s) AGg. (T Cg.s)
FOQ satfz‘P‘q’ S| G

(8.(m CrCq,8))
disjomt

where i ranges over some get J and

3.(r,Cp, g, s = 8p(1.Cp, <r) A Squlr, g <>) A s = <>
V S5p.(r.Cp.8) ASqt.Cg, <) As# <= Abegins = ¢
A (head s Dp (L.{|}) V head s ¢ itemsCg)
V Spi(t,Cp,<r) A Sgilr,Cg,8) A s # <>
Abemns =t A head s Ap (7p,{})

206 Probabilities and Priorih'is n Timed CSP

B.3.5 Parallel composition
Rule B.3.13 (P4 @)

Y, Psat?'”" Sp.| Gp,
Vi Q@sat2" 5o, Go.
v, (s,,,,(»r,;,,, §) A Gp(r,Cp,s)) . (S(T,EP# Eq,s))
A Sga(T,Cg.5) A Go.lr.Cg,s) AGITCpd Lo, 8)
Vi G(r.CpdhCqu8) = Gra(r,Cp.s} A Goulr,Co,s) [(9.&,;,»,;0»))}
P4 QsatZ™ P 5| ¢ disoint

where (1, Cp,Lg.5) = Spn.Cp,a) A Sp.(1.Cp, 5). Fa¥

Rule B.3.14 (P 4¥ @)

Vi Psati®™ §p.| G,
Vi Qsat’? S5, | Gou
i (Zs CXUVY ASpir,.Cp,s XA Gp,ir,Cp,s X)) N
A SQ,,(T,EQ,S Yra GQ_,(T,QQ.S Y)
Str.Cp 4t Cous) A G, Cp Y7 L. s)

v (Es CXuy) (GP‘,fr,gp,s X))
1
AGEp*¢Y Cous A Goa(r,BEg,s ¥ (5ilr.Cp, g, 9}
p X‘_H_Y 0 satfr" US| G disjoint

where %i(r, 5p, Cg,) 2 s C XU Y A Sp(r,Cp,s X) A S5qilnEg.s Y} A

B.3.6 Interleaving
Rule B.1,15 (P +— @)

v1 Psat?? Sp.| Gp,
Vi Qsat;)q‘ Sq.| CGo.-
Spalm, g”‘%cp\cqaj A GP,:(T<EP-£PEP oo

2) =
A Sgulr.Ca. ﬂ’gp.gd‘) A GgalT, EQ.¢;EPEQ.§]
S{r.Cp+—Lq.5) A G(r,Ep +— Lg,9)
G-”.x("'-gPr . 5}
Vi GIr,Cp+—Cyqy.5) = ¢ E%EP,EQ
o A Q,.(r‘_o,ti;'gngqs (8. Con Cqus)
P— ¢satZ>mes 5| g diszornt

where S,(.—,QP, Cp.8) & Spatr, EP"?EP-EQS) A SQ_,(r,QQ,dng!;Qs), Fa

B.} Proof rules for probabilistic specifications 207

B.3.7

Abstraction and renaming

Rule B.3.16 (P \ X)
P sat2? Sp | Gp
8p(r,C.02%) A Gplr. _,ﬂL 5= S(nC\X.8)AGIT,C\ X.5)
(1'C\)(.~;)=:»Gp('rIZ1‘]E 5)

P\Xsat;PSlG

Fay
Rule B.3.17 (f{P))
P Sat>p Sp| Gp
sp[r,g L s) A Gp(r, At 9) = S(r.JC.s) A G{r, [T, ¢}
G(r,fC,8) = Gp(r,C, 1 9
f(P)sat?* 5| G
Fay
B.3.8 Transfer operators
Rule B.3.18 (7 ' Q)
¥: PsatZ™ Sp.| Gp AT <tV ibeprs £)
Y1 Psatfp: Sh | Gh AT=1AS= <>
Y @ Sat’q' So.il Goa
Yi Sp(rC.8) A Gp,(r,Cs)AlT<tVbegms ()=
S(r,C,5) A G(r,C, 5}
Ve Shi(fC <) A Gpit,C,<=)at T<t+d=
S({t,C, <) empty,) A G({t,C, <») emptyy)
vi (Si:.‘(f,';m**)f\Gi»,JLE_p.«»)):>
A Sgilrg, Cg.9g) A Go.ilmg.Eq.sg)
(S((t,gp,-o—) empty, .45 (7g.Cg o)+t +98))
A G((t,Cp,<=) empty, .5 {rg,Cg,s@)+2+4)
Vi GnEsIA(r<tVbegims)= Gp;(r,C, 9}
Y G((t,l;.-<>) empty) At T <t+d= Gp (1, C<>)
Y1 G((#,Cp,~<>) emptyy, 16 (170:Cqsg)+t+4d =
Gpa(t.Cpy<>) A Gg.ilrg.Eq: 5Q) (5,(7.C. 5)) dipornt
(,’('r s)) disjoint
P’ Qeat?Sh 5| ¢ Tira Zom
where 1 ranges over some set f and
5(r,C,8) = (T < tVbegins {}ASpi(r.C,8) A Gpy(r,C,3)
BrCis) & r=tns =< AS8p,(r,C,5) A Gh,(r.C,s)

208 Probabilities and Priorities in Timed CSP

Rule B.3.19 (P . Q)

Y P satfp' Spy | GP', AT <l
Vi Peat)” Sp,(Gp AT =1t
vy QsatZ® Sq.| Go.
Yi Sp7,C,8) AGpi(r.C,s) AT <t = 8(r,C.5) A G(r,C.s)
Y1 Sp {t,C.5) A G JdLEsIAL Tttt

S({t,C.s) emPtyy) A G((1,C,s) empty)
vy S (L, Cpuspl A Gp {t,Cp,sp)

A Sg.alrg,Cg.sq) A Gg,ilrg, Eq, sg)
(5((‘v§P,5P) enpty(, 5 {Tg.Eq,5q) +1+38))
n G((ts EP?-‘;P) empt)'(t,H»J] (TQ|;Q=SQ) + ¢ +§)

Y1 G(r,C,s) a7 <i= CGpi(r.C.s)

Y1 G((t,Cos) emptyg At T<l+d= Gp {tCs)

Vi G((t.Cp,spj emptyg s (7g.Cg.sgl+it+4) = (57, C,5))
desjoint

GL (8, Cp,sp) A Gg,(7g,Cp. s .
palt Episp) A Ggalrg, Eg.5q) (80 C. o)

P, @ sat?5F 5| G diszomt
Z.opa Lip
where 1 ranges over some set [and
5(r.E,9)
3, C,5)

I

T ASe,(r.C.5) A Gp(T,C.8)
TE=LA SAJD,I(T7E7£) A GJP,t(T’ E,S]

Iy

Rule B.3.20 (P V Q)

P satZ? 5p
@ sat?? Sg
Sp(r.C,e)neg Es= S(r.CFe.s)
Sp(l.C,s)negSsnt 17<t+é=>
S{t,Cdes (te)) omptY(t,7])
Sp(t,C,s) ne g Ss A Sqlbg) =
S((HC@es (tie}) emptyy s bg+i+8)
PYQ sat?P §

Sp is a safety
predicate

B.3.9 Recursion

Rule B.3.21 (¢ X P, conditional specifications)

(¥i Xsat}™ 5] G) = (Vi Psatz™ 5| G)
Y1 pX Psat}™ 5, |G,

B.3 Proof rules for probabilistic specifications 209

FAN
Rule B.3.22 (u X P, unconditional specifications)
(Vi XsatZP 8)= (Vi Psat?™ 5) [v: 3P : AMurg
Y1 pX Psatl™ s, P sat, §,
FAN
Rule B.3.23 (21 X P, conditional specifications)
(W X sat3™ ({(7.C08) = 6) A begins 8| G((.Cos) = 8) Abegms 8\ _
AL S=[0.9) e dh AE b=[0.H2dh
(v Psati™ 5, | G,)
Y1 uX Psat?h 5|6
fas
Rule B.3.24 (4 X P, unconditional specificatians)
Vi X sat?“ S.(r,C,5) —8) Adegins & .
Al s={0.9)odh
(vt PsatZ™ 5, Y1 3P : Mprp
Yi uX Psati™ s, P sat, S;
faX
Rule B.3.25 ({X, = P.};, conditional specifications)
(ve:1;3:0 X; sat?p"’ Sej | Gey) =
(Veil;5:0 Pisat}™ S| G,,)
Vi:J (X, =Pirsat;™ S, | G,
[l

Rule B.3.26 ({X; = Pi}, unconditional specifications)

(Ve:lip:J X; snt’p”S‘,)=

Fiilij:0 Posaty™ 85) [Vi:Ij:J 3P Mgy
Vi:d (X, =P}y sat, 5, P sat §,,

Bibliography

[AHS0)

[BBKS5]

[BHR34)

[BW82|

[Cam8y)

[CES83|

[CHRg)

{Chraq]

[Dav91]

[DRRS93)

[DS89a)

[D$89b)

James Aspnes and Maurice Herlihy. Fast randomized consensus using shared
memory. Journal of Algorithms, 11:441--461, 1950,

J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Syntax and defining cqnations
for an interrupt mechanism in process algehra. Technical Report CS-R8503,
Centre for Mathematics and Computer Science, Amsterdam, 1985.

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of CSP. Journal of
the ACM, 31(3):560--599, 1984,

M. Broy and M. Wirsling. On the algebraic specification of finitary infinite
communicating sequential processes. In D. Bjorner, editor, Working Conference
on Formal Description of Programming Concept [, Amsterdam, 1982, North
Holland.

J. Camilleri. Introducing a priority operator to CCS. Technical Report 157,
Cambridge, 1989.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications: A practical ap-
proach. In Proceedings of 10th ACM Symposium on Principles of Programming
Languages, pages 117-126, 1983.

R. Cleaveland and M. Hennessy. Priorities in process algebras. In Proc. 3rd
Sympoeswm on Logic in Compuler Science, Edinburgh, 1988.

Ivan Christoff. Testing equivalences and fully abstract models for probabilistic
processes, In Concur 90, LNCS 458. Springer Verlag, 1990.

Jim Davies. Spectfication and Proof n Real-Time Systems. D. Phil thesis, Oxford
University, 1991. Published as Oxford University Computing Lahs, Technical
Monograph PRG-93,

J. Davies, G. M. Reed, A. W. Roscoe, and S. A. Schneider. Rea! Twne CSP.
Prentice Hall, 1993. Forthcoming,.

Jim Davies and Steve Schneider. An introduction to Timed CSP. Technical
Monograph PRG-75, Oxford University Computing Labs, 1989,

Jim Davies and Steve Schneider. Factorising proofs in Timed CSP. Technical
Monograph PRG-75, Oxford University Computing Labs, 1989.

210

Bibliography I 211,

[Ds90] Jim Davies and Steve Schuneider. Waiting for Timed CSP. Technical Report
PRG-TR-3-90. Oxford University Computiog Labs, 1990.

[DS92a] Jim Davies and Steve Schneider. A brief bistery of Timed CSP. Technical
Monograph 96, Oxford University Computing Labs, 1992

[DS92b) Jim Davies and Steve Schneider. Using CSP to verify a timed protocol over a
fair medium. ln CONCUR "2, LNCS 630, 1992.

[FZHS92] M. Fang, H. 8. M. Zedan, and C. J. Ho-Stuart. A theory for timed-probabilistic
behavieurs. Report YCS 175, University of York. Department of Computer
Science, 1992.

G J590] A. Giacalone, C. Jou, and S. A. Smolka. Algebraic reasoning for probabilistic
concurrent systems. In Proceedings of Working Conference on Programmung
Concepts and Methods, IFIP TC 2, 1990.

[Hau91] Hans A. Hansson. Time and Probabulity in Formal Deswgn of Dhstributed Systems.
PhD thesis, Swedish Institnte of Computer Science, 1991. Published as SICS
Dissertation Series, number 05.

[Her90j Ted Herman. Probabilistic self-stabilization. Infersnafion Processing Letters,
35(2):63 -67, June 1990.

[Hoa8s) C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[HSZFH92] C. J. Ho-Stuart, H. 5. M. Zedan, M. Fang, and C. M. Holt. PARTY: A pro-
cess algebra with real-time from York. Report YCS 177, University of York,
Department of Computer Science, 1992,

[JL91] Rengt Jonsson and Kimn G. Larsen. Specification and refinement of probabilistic
processes, In Proc. LICS '91, 1991,

[J590) Chi-Chang Jou and Scott A. Smolka. Equivalences, congrnences and complete
axiomatizations for probabilistic processes. In Concur 98, LNCS 455, 1990.

{Lowdla] Gavin Lowe. A probabilistic model of Timed CSP. D. Phil qualifying thesis,
Oxford, 1991.

[Low9lb] Gavin Lowe. Prioritized and probabilistic models of Timed CSP. Technical
Report PRG-TR-24-91, Oxford University Computing Labs, 1991.

[Low52a] Gavin Lowe. Some extensions to the Probabilistic, Biased Model of Timed CSP.
Technical Report PRG-TR-9-92, Oxford University Computing Labs, 1992.

[Low92b] Gavin Lowe. Relating the Prioritized Model of Timed CSP to the Timed Failures
Model. Technical Report PRG-TR-18-92, Oxford University Computing Labs,
1992.

[Low92c) Gavin Lowe, Specification and proof in probabilistic, prioritized, Timed CSP.
Technical Report PRG-TR-23-52, Oxford University Computing Labs, 1992.

212

Probabilities apd Priorities in Timed CSP

[LS92)
[Mil83)
[Mil8g]
[Mord0]
{OH83)
(Ps28)
[PZ86)
[Ree88]
[Ros82]

[RR36]

[RR87)

[Sch90)

[Sco92)
[Seio2]
[SS90]

[Sut7s)

| Taf30]

Kim G. Larsen and Arne Skou. Compositional verification of probabilistic pro-
cesses, In Coneur '92, LNCS 630, 1992,

Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25(3):267-310, 1983.

Robin Milner. Communication arnd Cencurrency. Prentice Hall International,
1989.

Carroll Morgan. Programming from Specifications. Prentice Hall, 1990.

E. R. Olderog and C. A. R. Hoare. Specification-oriented semantics for commn-
nicating processes. In J. Diaz, editor, 10th fCALP, LNCS 154, pages 561-572,
1983.

K. Paliwoda and J. W. Sanders. The sliding window protocol in CSP. Technical
Monograph PRG-66, Oxford University Computing Labs, 1988.

A. Pnneli and L. Zuck. Verification of multiprocess prohabilistic protocols. Dis-
tributed Comgputing, 1(1):53-72, 1986.

G. M. Reed. A Uniform Mathematical Theory for Real-Time Distributed Com-
puéing. D. Phil thesis, Oxford University Computing Labs, 1988.

A. W. Roscoe. A Mathematical Theory of Communicating Processes. D. Phil
thesis, Oxford, 1982,

G. M. Reed and A. W. Roscoe. A timed mode] for CSP. In Proceedings of
ICALP86, LNCS 226; Theoretical Computer Science 58, pages 314-323. Springer
Verlag, 1986.

G. M. Reed and A. W. Roscoe. Metric spaces as models for real-time concur-
rency. In Proceedings of the Third Werkshop on the Mathemaiical Foundalions
of Programming Semantics, LNCS 298, pages 331-343. Springer Verlag, 1987.

Steve Schneider. Correctness and Communication wm Real Time Sysiems. D.
Phil thesis, Oxford University, 1990. Published as Oxford University Computing
Labs, Technical Monograph PRG-88.

Brian Scott. Denotatignal semantics for occam 2. D. Phil qualifying thesis,
Oxford, 1882.

Karen Seidel. Prababilistic Cemmunicating Processes. D. Phil thesis, Oxford
University, 1992

Scott A. Smolka and Bernhard Steffen. Priority as extremal prohability. In
Concur '90, LNCS {58. Springer Verlag, 1990.

W. A, Sntherland. Introduction te Metric end Topological Spaccs. Oxford Uni-
versity Press, 1975,

Chris Tofts. A synchronous calenlus of relative frequency. In Concur 90, LNCS
458. Springer Verlag, 1990.

Bibliography 213

[vGSST90] R.J. van Glabbeek, S. A. Smolka, B. Steffen, and C. Tofts. Reactive. generative
and stratified models of probabilistic processes. In JEEE Sympoesium on Logic in
Computer Science, 1990.

Index

Syntax

STOP
SKIP
WAIT

WAIT t; P
n
iEIPl'
cla: A— P,

A"B
|

Ip)
=Py
4

uX P
nX P
(Xl = PI)J
TCSP

of Notation

deadlock

successful termination
delayed termination
prefixing

sequential composition
delay

nondeterministic choice

indexed
nondeterministic choice

external choice
prefix choice
fockstep parallel
alphabet parallel
interleaving
sharing parallel
hiding

renaming

inverse renaming
timeout

timed transfer
interrupt

delayed recursion
immediate recursion
mutual recursion
Timed CSP terms

R R I B I N S R L |

-1 ®™ ®» ® G e ® o 0 @

=
et
I~

o
= =+ £ o0 B
>}

S B

»
3
4

vel[pl]Pv

BTCSP
DTCSP

PBTCSP

left-biased choice
right-biased choice
left-biased lockstep
parallel

right-biased lockstep
parallel

left-biased alphabet
parallel

right-biased alphabet
parallel

left-biased interleaving
right-biased
interleaving
left-biased sharing
parallel

right-btased sharing
parallel

probabilistic choice
indexed probabilistic
choice

probabilistic external
choice

Biased, Timed CSP
terms

Deterministic, Timed
CSP terms
Probabilistic, Biased,
Timed CSP terms

26

26

26
26

26

26

67
67

67

27

67

IudeiofNotation

Semantics

4 non-event

termination event

TIME the time domain |2, 20)
b)) all visible events
T all timed events

HOTINT half-open time intervals

Timed Failures Model

5 a timed trace

—

the empty trace

I a refusal set
ey all timed traces
ATO all refusal tokens

RSET all refusal sets

Operations on timed failures

concatenation of traces

in contiguous subsequence

It}

permutation of traces

times time values present
begin start time
end end time
first first event
last last event
head first timed event
Joot last timed event
1 during

hefore

oC o Qo Q0 =] O

o e o o & oo

=R = = - I -2 ===

_
o

TINT

VAR

M(X.P)
Ms(X, P)

+ -

1

all time intervals
distance metric
process variables

a variable binding
mapping for p X P
mappiug for pn X P

all timed failures

all sets of timed failures
Timed Failures Model
variable bindings

timed failures

after

strictly before

strictly after

at

restriction

hiding

events present
temporal shift forwards

temporal shift
backwards

interleaving of traces

interleaving of traces
sbaring C

215

37
11
12
12
16

11
11
12
12

10
10
10
10
10
10
10
10
19

14
14

216

Probabilities and Priorities in Timed CSP

The Prioritized Model

5
-
X ¥
&’lg

v, w

T

2

a timed trace
the empty trace
bags of events
actions

offers

an offer relation; offered
less strongly than

offered strictly less
strongly than

offered stronger than

offered strictly stronger
than

end time

an environmental offer

The Deterministic Model

Mprg

Deterministic, Timed
Model using Biases

The Probabilistic Model

PFrp

PPrp

Mprp

probability functions
on timed biased
behaviours
probabilistic pairs
using timed biased
behaviours
Probabilistic, Timed
Model using Biases

30
30
30

30
30

31

31

31
38

65

68

68

TT
OFF
ACT
OFFREL
BEH

EQFF

Sta
Mg

ENV
Apr

Abpr

Appr

PppT

FppT
Allout

all timed traces

all offers

all actions

all offer relations

all prioritized
behaviours

all environmental offers

all sets of prioritized
behaviours

Timed Prioritized
Model

variable bindings

prioritized behaviours

deterministic
behaviours

behaviours of
probabilistic process
probability functions
on prioritized -
behaviours

probabilistic pairs

extend partial fonction

a0
30
63
30
34

38
39

39

40
40

65

Index of Notation

Operations on prioritized behaviours

=} bag union 31 compat behaviour compatible 37
. ith environmental
- bag subtraction 31 wi
28) offer
concatenation 33 CpOCg biased choice composi- 43
i time interval 31 tion of offer relations
hmes titne values present 31 Cp 45 Eg biased paralle]l compo- 44
begin start time 32 sition of offer relations
art of off fi
end end time 32 LPEP';Q part of offer performed 46
by master of
first first action 32 interleaving
last last action 32 ‘17[,, tq part of offer performed 46
head first timed action 12 by slave of interleaving
N .) Cp+— Cg biased interleaving 47
Joot last titned action 3z composition of affer
1 during 32 relations
before 32 4“: c part of offer performed 48
after 32 ¢=F=9 by master of sharing
a paralkl
strictly before 32 tbc c part of offer performed 48
strictly after 32 c=F=a by slave of sharing
1 at 32 M parallel
c [i i
restriction 33 =Fc=9 biased s.h.a.rmg paralel 48
composition of offer
\ hiding 33 relations
bM events present 33 ﬂ{;’\x v offer performed by P 51
+ temporal shift farwards 33 when P\ X
. performs v
- Ib)em}? ora:i shift 33 ﬂJC v offer performed by P 51
Ackwards - when f(P) performs v
items set of all offers made 3 CAX hiding on offer relation 51
® enumeration of offer 83 fog renaming of offer rela- 52
relation X
tion by f
Ucft preferred elements of @ 34 Cgi addition of event to of 56

fer relation

218

Probabilities and Priorities in Timed CSP

Specification

Timed Failures Model

sat

sat,

at
ref
beyand

live

from
first
last

after

Prioritized and Probabilistic Models

sat

sat,

%P s

sat??

2p
satp

sia

digjoint
at
ref
beyand
offered

live

from

satisfies

satisfies in variable
binding p
performance of eventa
refusal of events
time at least
willing to perform
events

all times after
first timed event
last timed event

after

satisfies

satisfies in variable
birding g
probability of
satisfying S

satisfies with
probability p
satisfies with
probability p in
variable binding p
conditional
specification
specifications disjoint
performance of events
refusal of events

time at least

event offered by process

willing to perform
events

all times after

17
17

18
19
19
19

20
20
20
20

30
30

134

134

134

134

139
83

84
84
85

85

before

during

time of
name of

alphabet
count

open

closed

internal

separate

preferred to
first
last
after
before
during
time of
name of

alphabet
count

open

closed

internal

accessible

before

during interval

time of timed event
name of timed event

set of all events
performed

number of events
performed

affered by environment

not offered by
environment

internal events

two events not offered
at the same time

priorities on actions
first timed event
last timed event
after

before

during interval

time of timed event
name of timed event

set of all events
performed

number of events
performed

offered by environment

not offered by
environment

internal events

action offered by
environment

20
20
20
20
21

21

21
22

22

86
87
87
87
87
87
87
87
87

87

88
88

88
89

Index of Notation

Abstraction

@EPB) unprobabilizing
syntactic abstraction

gs:)B] noodeterminizing
syntactic abstraction

wB unprioritizing syntactic
abstraction

~ equivalence of traces

vef total refusal set
relating to prioritized
behaviour

tlosure left hand closure of

refusal sets

81

83

107

108

109

109

6>
o
g

Apr

compatibility of timed
failure with prioritized
bekaviour
unprobabilizing
semnantic abstraction
nondeterminizing
semantic abstraction
unprioritizing semantic
abstraction

timed failures of
prioritized process
abstraction mapping
for specifications

218

109

81

83

110

110

120

