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Abstract 

The notions of state and observable behaviour are fundamental to many areas of computer 
scjpnce. Hidden sorted algebra, an extension of many sorted al~bra. captures these notions 
through hidden sorts and the behavioural satisfaction of equations. This makes it a powerful 
formalisation of abstract machines, and many results suggest that it is also suitable for the 
semanticl:i of the object paradigm. Another extension of many sorted algebra, namely order 
sorted algebra, hM proved useful in system specification and prototyping because of the way 
it handles subtypes and errors. The combination of these two algebraic approaches, hidden 
order sorted algebra, has also heen proposed as a foundation for object paradigm. and has 
mnch promise as a foundation for Software Engineering. 

This paper extends recent work on hidden order sorted algebra by investigat.ing: tbe re
finement and implementation of bidden order sort.ed specificatious. We present definitions of 
rpfint'ment and implementatiou for such sppcifications, and tl'{:hniques for proving tbat one 
specification refines or implements another. It is important that the notions of relinement 
and implementation be tractable, in the sense that there are efficient techniques for proving 
their correctnpss. The proof techniques given in this paper lead, we believe, to correctness 
proofs that are much simpler than others in the literature. \Ve found that proving refinement 
is an effective way to prove implementation correctness. Some examples are given. 

AllY foundation for the spmantks of programming should also support modular specifi
cations. The 'institutions' developed hy Goguen and Bllrstall are useful for this purpose. 
Institutions formalise the notion of logical system, and provide an encapsulation property for 
specifications: when oue specification is imported into another, properties that hold of that 
specification in isolation remain true in its uew context. An important technical r€Sult of this 
paper is that hidden order sorted algebra forms au institution, and therefore supports the 
modular specification of systems of objects. The paper also includes an exposition of hidden 
order sorted algebra, and brief introductions to many sorted algebra, order sorted algebra, 
and institutions. 
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INTRODUCTION 1 

1 Introduction 

ThiB paper presents an algebraic account of refinement and implementation that is applica~ 

hie to a very general notion of abstract machine; in particular, it is applicable to the object 
paradigm. We define notions of refinement and implementation of specifications of observed 
bebaviours, and develop a proof technique that supports simple and direct proofs of correct
ness 

A key notion in the object paradigm is that of state: objects have local states that are 
observable only through their outputs; that is, objects may be viewed as abstract machines 
with hidden local state [17J. Accordingly, a correct refinement or implementation of an object 
specification need only ha·.e the required tI1.!nb/e behaviour. 

Our approach uses hidden order sorted algebra, which can be seen as a formalisation of 
the object paradigm [9,10, 15]. The advant.ages of an algebraic approach include a high level 
of intellectual rigour, a large body of supporting mathematics, and simple, efficient proofs 
using equational logic. A wide variety of extensions to equational logic have been developed 
to treat various programming features while preserviug its essential simplicity. Th€ particular 
extension com;idered in this paper combines order sorted and hidden sorted equational logics. 
Order sorted equational logic uses a notion of subsort to treat computations that may raise 
exceptions or fail to terminate, and hidden sorted logic extends standard equational logic 
to capture the important distinction between Immul,able data types, such as booleans and 
int,egers, and mutable obJectj. such as program variables and datahase entities. The terms 
abstract data type and abstract object class refer to these two kinds of entity. Tne formel" 
represeut 'visible' data values, while the latter represent data stored in a hidden state. In 
hidden sorted equational logic, an equation of hidden sort need not be satisfied in the usual 
sense, but only up to observability, in that only its visible consequences need bold. Thus, 
bidden sorted logic allows greater freedom in refinements and implementations. 

The simplicity of the underlying logic is important because we want a tractable approach 
in whicb refinements and implementations are as easily expressed and proved as possible. 
Both refinement and implementation invoj..'e moving from an abstract specification to a more 
concrete specification which displays the same behaviour. In our approach, a specification 
has syntactic and semantic components: the syntactic part declares a number of op~ations, 

which may manipulate either data or object states, while tbe semantic part consists of a 
set of equations wbich describe the beba·..iour of the declared operations. In other words, a 
specification is a theory. A model of a such a specification is something which implements the 
declared operations in such a way that the given equations are satisfied (up to obsernbility). 
A refinement is expressed by a mapping from the syntax of the abstract specificatiou to the 
syntax of the concrete specification; the refinemeut is correct if every model (Le., implemen
tation) of the concrete specification gives rise to a model of the abstract specification. We 
present a proof technique for showing correctness of refinement. which is based on pro'ving 
that tbe equations of the abstract specification are satisfied up to observability in the con
crete specification. Moreover, our definition of refinement is transitive in the sense that if 
specification 51 is refined by 52 and 52 is refined by 53, then 51 is refined by 53: this allows 
the familiar process of 'stepwise refinement', where a refinement is arrived at via a number 
of intermediate specifications, proceeding in small, manageable steps. 

Our notion of implementation, on the other hand, is more concrete: we require tbe concrete 
specification to satisfy (again, up to observability) only the gnll.lnd equations (Le., equations 
with no variables) of the abstract. specification, This makes sense if we consider terms built 
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from the operations of the abstract specification to be programs, beC-allSe we would not expect 
programs ~o contain variables. This definition of implementation would be a specialL<;ation of 
the definition of refinement, in the sense that all reachable models of the concrete specification 
(i.e., models whose carriers are generated by the operations of the signature) give rise to 
models of Ihe abstr<U:'t specification. However, we illustrate the power of order sorted ness by 
defining a notion of'la.:t:y' implementation, whereby we further require that the error-handling 
behaviour of the abstract specification is also captured by the concrete specification. This is 
treated in detail in Section 3.3. The proof technique that we give for showing correctness of 
refinement also applies to correctness of implementation. 

In a model-based approach, like that of Hoare [251, where refinement is a relationship 
bctween particular modcls, it makes sense to map from the concrete variahles to the abstract 
objects thil.t they represent. However, such all approach has difficulties with the (often) 
complex I€presentatious of the concrete program, and the (usually) complex semantics of the 
programming language in which it is expressed. Om approach simplifies the first problem 
by consid€ring th.eories for both the concrete and the abstract levels, while the complexity 
of the programming langnage scmantics becomes a completely separate issue. In particnlar, 
our more &bstrad definition of refinement in terms of specifications and their models allows 
the process of stepwise refinement to begin before any concrete representation for variables 
has been chosen. In fad, choosing a concrete representation corresponds to choosing one 
particular model of a specification: it makes sense to delay such a commitment as long as 
possible. The correctness of a concrcte representation now becomes the problem of showing 
it to be a model of the concrete theory, which should be mnch easier than showing that 
it satisfies the abstract specification, because of the closer match of representatious. The 
perhaps initially mysteriolls fact that mappings go in opposite directions for specifications 
and models is explained at a higher level of abstraction by the theory of institutions [13], 
which is briefly discussed in Section 2.3. Hence this duality L" very natural. 

Finally, note that our use of hidden sorts allows some subtle changes of representation 
to be proved correct more easily. Indeed, the main motivation for OUf approach is to make 
proofs of correctness just as easy as possible. 

This paper is organised as follows. The next section introduces notation for hidden order 
sorted sp~dfications, and summarises the main algebraic notions and results used in this pa
per. Section 3 presents refinements and implementations of hidden order sorted specifications, 
and a technique for proving correctness. We believe thL" technique leads to proofs that are 
simpler than those of other approaches. Section 4 gives examples of correctness proofs. In 
particular, Section 4.2 applies this technique to the refinement of collections of objects. 
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2 Hidden order sorted algebra 

Many sorted algebra (hereafter, '1·1SA') was put into a form that is convenient for applications 
in Computing Science by Goguen [B] and wa.<; further refined by the ADJ group [22] and applied 
to abstract data types and other topics. The logic of MSA is first order equational logic, which 
provides a simple and familiar technical framework in which intuitions about data types can 
be realised. Several variations on the basic framework hav{' been developed, indlding order 
sorted algebra {14] and hidden sorted algebra [10J, in order to study such concepts as error 
handling and uidden local statt'. The following section summarises the main d(>fiuitions and 
results of ~fSA, while Sections 2.2 and 2.4 desnibe order sorted specification alld hidden 
order sorted specification, respectively. Section 2.5 gives further tec:huical details necessary 
for the definition of refinement. given in Section 3.1. 

2.1 Many sorted algebra 

An unsorted algebra is a set with 'structure' given by some operations and equahons. The 
set is referred to as the carrier of the algebra. ~·ISA extends this traditional view by letting 
an algebra have any number of carriers. For example, what we might call a 'list a.lgebra' is 
a quadruple (C,17,$,e), where the carriers are Cnt and GList, and where 1]: CE::ll-+ GLi6t 

is a unary function and EO CLis<t xCList -+ CLiIl<t is an associative binary operation with 
neutral element e E eLJ.st; that is, the following equations are satisfied for all x, 1), 2 E GList: 

xGl(yGlz) (xiBy)EOz 

x
 

x(;Be x
 
'Ellx 

This specification of list algebras has three components: the carriers, named by the 'sorts' 
Elt and List; the operations 11, EO and e; and the three equations above. We addreS9 each of 
these aspects in turn. 

The notion of sorted set is used to ~pecil]r the names of the carriers of algebras. 

Definition 1 Given a set 5, an 5-sorted set is a collection of sets As indexed by dements 
s E 5. All set theoretic operations can be extended to operations on 5-sorted sets; for 
example, if A and Bare S-sorted sets, then Au B is defined by (AUB). "= As U Bs' and 
A <;; B mearu3 that A. <;; B s for each s E 5. 

An 5-sorted function 1 : A -+ B is a collection of functions indexed by S such that 
1s : As -+ B. for each ,~ E S. Similarly, an 5-sorted relation R from A to B is a colloction 
of relations indexed by S such that Rs is from As to B. for each s E 5, We write the identity 
relation on an 5-sorted set A. as idA. 0 

For example, the carrier of a list algebra is an {Elt, Li6t }-sorted set. 
The notion of sorted set is also useful in specifying the names and types of the operations 

of algebras. The following definition introduces s~gnatures, wllich specify l,ue carriers and 
operations of algebras; equations are considered from Definition 8 onwards, 
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Definition 2 A many sorted signature is a pair (5, E), where S is a set of sorts and E 
is an (S* xS)-sorted set of operation names. Thus, if 111 E S· and s E S then EUJ,~ is a set 
of operation names. If E is clear from the context, we sometimes write a : 111 --t S instead of 
(j E I:\IJ,S to emphasisp that (1 is intended to denote an operation mapping the sorts denoted 
by w to the sort denoted by s. Usually we abbreviate (5, E) to E. Elements of E1].5 are 
referred to as constants of sort s. 

An operation can be dl'rlared to have more than one type; for exampll', we might have 
a E E w ,. n EW',,' where w, s is different from w', 8'. In this ca.<;e, a is said to be overloaded. 
o 

Signatures provide a uniform notation for specifying the carriers and operations of many 
sorted alg~bra.<;. Later sections consider refining one specification by another; in order to 
compare two spocifications, we use signaftlTe morphtsms, which view one algehraic structure 
in terms or another. 

Definition 3 A signature morphism ¢ (S,E) -+ (S',E') is a pair (j,g), where f: S-+ 
5' maps sorts in 5 to sorts in 5', and g is a collection of functions indexed by S* XS such that 
9W,9 : .E w ,. -+ E/O(W).!(5) for each w, s E S* x S, where j*(w) denotes f applied componemwise 
to the list Wj Le., !*([]) = [] and r(sw) = (J(s))U*(w)). We usually write dJ instead of 
both J and gW,5' so that if a E E""., then ¢(a) E ~~'(W),4'(5}. 0 

A useful example of a signature morphism is the inclusion of one signature in auother: if 
5 ~ 51 and E ~ E', then there is an iuclusion L: (5,E) -+ (S',L:'). 

Signatures may be thought of as specifying algehra.s with no eqnations, and so we may 
speak of the algebras of a signature. An algebra for a signature L: is an 5-sorted set with the 
structure specified by the operation names of E. 

Definition 4 For a many sorted signature E, a E-algebra A is given hy the following data: 
an 5-sorted set, Ilsually denoted A. called the carrier of the algebra; an element A.,. E As for 
each s E S and a E E lJ,9; and for each non-empty list w E S*, and each s E 5 and cr E Ew ,., 

an operation A.,. : A", ----+ A., where if w = s1 ... sn then A", = Ad x· - . xA.n. 
Given L:-algebras A and B, a E-homomorphism h : A -+ B is an S-sorted function 

A ----+ B such that: 

• given a constant cr E E[).s' then hs(A".} = B".; 
• given a non-empty list ll' = s1 ... ,'HI and cr E E w ,. and aj E A.; for i = 1, ... , n, then 

h.(A,,(al, ... , an)) = B,,(h'l(a1), ... , h81\(an)). 

o 

Thus, an algebra for a signature interprl'ts the sort names as sets and the operation names as 
operatioas, while homomorphisms preserve the structure ofthe algebra in that they distribute 
over the operations of the algebra. 

Given any signature, Wl' can construct an algehra whose carriers are sets of terms built 
IIp from the given operatioD names viewed as symbols of an alphabet. 

Definition 5 Given a many sorted signature E, the term algebra TE is COnstructed as 
follows. Let UE bo the set of all operation naml"..s in E; then TI; is the least S-sorted set of 
~ltrings over the alphabet (UE) U H, Hsuch that: 
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•	 for each constant symbol (1 E ~[],J' the string (1 E (TE),; 
•	 for eaA:'b non-empty list w == ,'11 ... 8n E S\ and each a E ~w,s, and all it E (TrJ•• for 

'i = 1, ... ,11, the string aitl . . tnl E (TE ) •. 

The special symbols '(' and ')' are uspd to emphasise that the carriers afTE are sets of strings; 
from now on we usually write 'a(tl, ... , tn)' for 'a(tl . . tn)'. 

We give TE the structure of a L-algebra by interpreting e-ac.h operation name of E: for each 
a E Ell,s, the constant (T-:;J! is the string a E (Tr;).; for each non-empty list w = ~1 ... sn E S* 
and operation name (1 E L ... ,s, the operation (TE),,· : (Tdw -+ (TrJ. maps a tuple of strings 
tl, ... , tn to the string a(tI, . . , tn). 0 

If E cootaiIl.5 no overloaded symbols, then Tr;. has the special property of being an mitial 
E-algebra. 

Definition 6 An initial E-algebra is a E-algebra A such that for each ~-algebra B there 
is exactly one ~-homomorphism A ~ B. 0 

Proposition 7 If ~ contains no oveI"ioaded operation names, then Tr; is an init.iai ~-a.lgebra. 

For any "E-algehra A, the unique ~-homomorphism h T~ ~ A is defined recursively as 
follows: 

•	 for each constant symbol a E :Sl],j' let h3 (a) = A,,-; 
•	 for each non-empty llst w;::::. 81 ... sn and a E ~w,s and ti E (TE)si for 'I, = 1, ... , n, let 

h,(a(tI, . . ,tn)1 = (A.)(h,l(tI), .. ,h,.(tn). 

o 

The homomorphism h assigns valups in A to ~:-terms by interpreting the operation names 
in ~ as the corresponding operations on A. If E contains overloaded operations, an initial 
algebra can still be constructed as a term algebra in whicb opNation names are distinguished 
by 'tagging' them with their result sorts [14J. 

Let us now consider algebras with equations. An equation is usually presented as two terms 
(the left- and right-hand sides) which contain variables. For example, one of the l'quations 
for list algebras was (xEBY)EBz = xffi(yffiz), where x, y and z arp variables that range over 
eLl-no Because variables only serve as placeholders for values of thp sorts that they range 
over, any signature of constant symbols can be u~ to provide variables. 

Definition 8 A ground signature is a signaturp (S.~) such that for all w E S· and s E S, 
if w =F [] then Ew,~ = 0, and such that the sets E w ,. are disjoint; that is, the operation names 
of ground signatures are distinct constants. 0 

\Ve assume disjointness so that distinct variables cannot be identified by signature morphisms 
(d. Proposition 45 below). 

Ground signatures are essentialiy the same thing as disjoint. S-sorted set.s, because any 
disjoint S-sorted set X can be viewed as a ground signature according to the following equa
tion: 

X,i(U'~[1 
X w ,. = { 0 otherwise. 



2 HIDDEN ORDER SORTED ALGEBRA 6 

Moreover, aground signature E can be viewed as the S-sorted set (E[],~)"ES' This determines 
a bijection between ground signatures and S-sorted sets; we sometimes take advantage of this 
by treating ground signatures as S~sorted sets. 

It is now a simple matter to introduce terms containing variables: 

Definition 9 Given a many sorted signature (5,1:) and a ground signature (5, X) such that 
1: and X are disjoint, terms with variables from X are l'lements of TEUX. The term 
algebra TEUX can be viewed as a I:-algebra if we forget about the constants in X; when we 
view Tr;ux as a E-algebra, we write it as TE(X). 0 

This prepares us for the following 

Definition 10 A E-equation is a triple (X,l,7') where (S,X) is a ground signature and l 
and T are terms in TdX) of the same sort; i.e., l, T E Tr:(Xl s for some s E S. If X = 0, i.e., 
if land T contain no variables, then we say that the equation is ground. \\'p write equations 
in the form (\7X) l =1'. 

A specification is a t.riple (5. E, E) where (5, E) is a signature and E is a set of E
l'yuations. We usually abbreviate (5, E, E) to just (E, E). 0 

Our llmation for equations makes explicit the intended universal quantification over vari
ablps. Wothout this, the usual rules of deduction from uusortes equational logic are unsound, 
as shown in [18]. 

The models of a specification are the I:-algebras that satisfy the equations; we now consider 
what it means for an algebra to satisfy an equation. Thp first issue is hoW" to interpret the left
and right-band sides of an equation in an arbitrary E-algebra. A I:-algebra is not in general 
a (I:uX)-algebra, because we do not know how to interpret the variables in X. However, if 
we can assign values to those variables, then we can assign values to terms containing those 
variables. That is the main idea of the following result: 

Proposition 11 Given a E-algebra A and an S-sorted function B : X ~ A (called an 
assignment or an interpretation of variables), there is a unique E-homomorphism B; 
TdX) -t A such that 8(£(x)) = 8(x) for all variables x, where I: X -+ Tr:(X) maps x E X s 
to the strlllg x E TE(X)s. The homomorphism is defined as follows: 

• for each x E X~, let 83 (x) = 83 (x); 
• for each constant symbol a E EI],3' let 8s(a) = Ao-; 
• for each non-empty list 1L' = sl ... sn, a E E,."s. and ti E TdX)S1 for i = 1, ... , n, let 

Ii,(ortl, ... , tn)) ~ Aa(Ii,,(tl), ... , Ii,"(tn)) . 

o 

The following little result is used several times in this paper; its proof is left as an exercise 
in initiality. 

Lemma 12 Given E-algebras A and B, a E-homomorphism h : A ----) B, and an assignmpnt 
8: X -tA, then 

tho (J) = hoe 

o 
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An algebra satisfies a given equation iff the left- and right-hand sides of the equation are 
equal under all interpretations of the variables: 

Definition 13 A :L-algebra A satisfies a E-eqllation (VX) l = r iff 8(l) =: 8(r) for all 
B : X ---t A. We write A F e to indicate that A satisfies the equation e. F{lr a set E of 
equations, we write A F= E iff A F e for each e E E, and we write E F e iff A F E implies 
A F e for all L-a.lgebras A. 

Given a specification (E,E), a (E,E)·model is a E-algebra A such that A FE. 0 

Just as each signature has an initial algebra, each specification has an initial model. The 
initial model is constructed from the term algebra by identifying exactly those terms that are 
'equal' as a consequence of the given equations. 

Each equation gives rise to a relation in the following way: 

Definition 14 Given a E-algehra A and a ~-equation e of the form (VX) I = f, define- the 
relatiou RA(e) on A by a RACe) b iff a = B(l) and b = 0(,) for .'lome () : X -+ A. 0 

In other words, a is related to b by RA(e) iff a is an instance of the left-hand side and b is an 
instance of the right-haud side, under !2'ome interpretation of the variables. \\'e will use tbis 
in defining an equivalence relation that contains all the relations derived from the equations 
of a specification, and that allows the substitution of equals for equals, This is forIllalised by 
the notion of congruence given below: 

Definition 15 Given a E-algebra A, a E-congruence on A is an S-sorted eqnivcJence rela
tion R sucb that the following substitutivity property holds: for all a E Ew,~ and x, y E Au,. , 

if x Rw y then A.,.(x) R 8 A.,. (y), where if UI = s1 .. .'In, then;17 E A w means x;=; xl ... xn 
with xi E A~l' and x Rw y means xi R 8 ; yi for i = 1, .. ,n. 

If E is a set of 1:-equations and A is a E-algebra, then =A.E denotes the lea.'lt E-congruence 
on A which contains each equatiou in E; that is, such that RA{e) ~ =A,E for each fEE. We 
usually write =E instead of =TE,E. 0 

Definition 16 Given a E-algebra A and a L-congruence R on A. we construct the ~-algebra 

AI R, called the quotient of A by R, as follows: 

•	 for.5 E 5, let (AIR). = {[alia E .4,}, where [a] is the equivalence class of a under R 
(i.e., the set of x such that a R x); 

•	 for each constant symbol Cf E E[l,s, let (AIR)" = [A.,.J; 
•	 for each non-empty list 111 = 81 , . . 8n, a E 1:",.• , and [ail E (AI R)8' for i = 1, .. ,. n, let 

(A/ RJ.([al], ... , [an]) ~ [(A/R).(al,. " an)] . 

The last equation is well-defined by the substitutivity property of the congruence R. 
Given a set E of 1:-equations, we often write AlE instead of AI=A,E. 0 

By construction, AlE FE; in fact, it is the 'least' eE, E)-model which can be comtructed 
from A, in the sense of t.he following 

Fact 17 Let A be a E-algebra, let E he a set of L-equations, and let 7] : A -+ AlE be the "E
homomorphism which maps a to raJ. Then for any (E, E}-model B and any E-homommphism 
h ; A -+ B, there is a unique E-homomorphism hb : AlE -+ B such that h'> 0 7] = h (i.~ .. such 
t.hat hb[a] =h(a)). The situation is summarised in the following diagram. 



2 HIDDEN ORDER SORTED ALGEBRA 8 

" 
A~Ai:' 

B 

o 

The I:-congruence =E identifies those terms that are equal as a result of the equations in 
E, and allows the construction of an initial model for a given specification, as follows: 

Proposition 18 Given a specification CEo E) where E contains no overloaded operations, the 
initial (E, E)-model is the quotient term algebra T'f:"Eo which is the quotient Tr)=E ofT~ 

by =e. By construction, Tr;,E satisfies the equations E. 0 

The above proposition refers to 'the' initial (I:, E)-model, although a specification may 
have more than one initial model. Howe....er, any two initial (E, E)-models are isomorphic, 
because the unique homomorphisms from each model to the other are inverses. Thus all 
initial models are 'abstractly the same'. ADJ [22J define an abstract data type to he the 
collection of initial models of a specification. Such a collection is an equivalence class, since 
being isomorphic is an equivalence relation, and t.his equivalence class may be represeoted 
by T"L.,E. The importance of initiality is that it explains what u the abstract data type of a 
specificatioo. 

There is a useful relationship between the congruences =..1,£ and satisfaction of equations: 

Proposition 19 Let E be a set of !::-equations; then for allE-algebras A we haw A FE iff
 
=A,E = ~dA'
 

Proof Note that idA ~ =A,E holds because =A,E is a congruence. Because idA is a congru

ence, it follows from Definition 15 that =A,E ~ tdA iff RA{e) ~ idA for all e E E. For any
 
('. E E of the form ("IX) l = r, we have
 

RA(e) ~ ~dA .,. 
(VB, X -t A) 8(1) ~ 8(,) .,. 
A f=' 

Thus RA(e) s::; idA iff A 1=== e for all e E E, that is, iff A 1=== E. 0 

\\'e also have the following relationship between congruences and entailment of equations. 

Proposition 20 E F e iff =A,{e} ~ =A,E for all 'E-algebras A. 

Proof First Dote that by Proposition 19, E 1=== e is equivalent to 

(1) =A,E s::; idA implies =A,{e) s::; idA for all 'E-algebras A. 
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This makes the 'if' direction immediate; we now show the 'only if' direction. Suppose E t= e: 
then because AlE FE, 'Ml have AlE ~ e. so by Fact 17 there is a homomorphism 11k 
A/{e} ---+ AlE such that 1]£ 0 1]" == TIE, where T),,: A ---; A/{e} takes a E.4 to it, equivalence 
class modulo =A,{e}, and TIE : A -t 04/E t.akes Q E A to its equivalence class modulo =A,E. 

This is summarised in the following diagram. 

'I, 
A A/I,} 

~j"~ 
A/E 

Now. 

a =A,{e} b 

'* 
'Ie(a) ~ ",(b) 

0> 

"~I",(a») ~ "~('i,(b)) 

'* 
'lEla} ~ 'lElb) 

'* 
a =A.£ b 

which shows that =A,{e} ~ ~A.E as desired. 0 

2.2 Order sorted algebra 

Partial operations and error handling play an important. role in many computer science appli
cations. A partial operation produces well-defined valnes only on Some subsort of its domain. 
For example, division of numbers produces a weU~defined value only when the denominator is 
not zero. Order sorted algebra (hereafter, 'OSA ') is a variation on ?vlSA that. allows algebras 
in which partial operations are treated as t.ot.al operations on a subdomain, just as division is 
total on the subdomain of non-zero numbers. It also provides a model of inheritancf that is 
useful in forrnalising the object paradigm. This sub.o;ectiou summarises definitions and results 
of OSA that are relevant to this paper. A comprehensive survey is given by GOgllen and 
Diaconescu in [14]. 

Both OSA and MSA are based on the notion of 5-sorted sets, but whereM in MSA 5 is a 
set, in OSA 5 is a partially ordered set. If 5 is a set of sort names, the partial order indicates 
the subsort relations between the carriers of algebras. Given a partially ordered set (5, ::;), 
we refer to ::; as the Bubsort ordering. We sometimes extend this ordering to lists over 5 
of equal length by til ... sn ~ sl' ... sn' iff si ~ si' for i = 1, ... , n. 

Definition 21 Given a partial order (5,~), an equivalence class of the transitive symmetric 
closure of 'S is called a connected component, and two elements of the same connected 
component are said to be connected. A partial order (5,:::::;) is locally filtered iff any two 
connected sorts have a common supersort, t.hat. is, iff whenever 8 aud 8' are connected, there 
is an .~" such that s, 8' .::; SII. 0 
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The notion of local filtering is surprisingly powerful, and allows many results of ~-ISA to 
extend to GSA [14J. The main difference between MSA and OSA is captured in the following 
definition of sorted sets. 

Definition 22 An (5, '::;)-sorted set is an S-sortpd set A such that whenever s .::; g' then 
As ~ AS" An (5, :S;)-sorted fWlction f : A ~ B is an S-sorted function such that whenever 
s :S s' then f~ ~ fsl. An (5, '::;)-sorted relation R from A to B is an S-sorted relation such 
that if 8 S i and .1: E As aud y E Bs' then I R~ y iff x Rs' y. We sometimes abbreviate 
'(5, "S:)-sorted' to 'S-sorted'. 0 

Most drlinitious of :\[5:\ apply, mutatis mutandis I , to GSA; the main differences coucern 
JIlonotonirity. 

Definition 23 An order sorted signature is a triple (5, S". E) where (5,'::;) is a locally 
filtered partial order and (5, E) is a many sorted signature which satisfies the monotonicity 
requirement: if a E Ew,s n Ew'.s' and w ~ 11./ then s :s; 51. We u..o;ually abbreviate (S,:S;.~) 

to just ~. 

An order sorted signature morphism ¢ (S,.::;,~) ~ (S',S',E' ) is a many sorted 
signatnre morphism such that / : (S,~) --+ (5' ,.::;1) is monotonic. A signature morphism 
¢ = (/, g) preserves overloading iff whenever a E Lw,snE...",., then gw,,, applied to a E Ew,s 
gives the same result as gw',s' applied to a E Ew',s" 0 

A form of mono tonicity is also needed for the algehras of an order Borted signature. 

Definition 24 Given an order sort.ed signat.ul'{' (S,:S;, E), an order sorted !::-algebra is a 
many sorted E-algehra A such that. ,4 is au (S, :S;)-sorted set and A is monotonic, in the 
sense that for all (f E E w ,. n Ew'>,s' ifw :s; Wi and s :5 i then A". : A w ~ A. is equal to 
A,,- : A w ' -+- As, on All" 

For order sorted E-algehras A and B, an order sorted E-homoIIlorphism h : A ~ B 
is a many sorted E-bomomorphism (f,g) which satisfies the restriction condition: if s:S; ,</ 
then h .• =' h.•,IA, where h.'IA. denotes the restriction of hs' ; As, ~ B., to As. 0 

Thp construction of the term algebra is as in ;"1SA, hut requires the carrier of TE to 
hp (5, "Sl-sorted. so that (TEl. t;; (To:)., whenever s ~ 51. In general, TE is not an initial 
E~algebra unless E satisfies a regularity condition [20J: 

Definition 25 An order sorted signature E is regular iff for any a E Ewl,sl and any wO :5 wI 

there is a least pair (w, 5) such that wO :s; wand (f E Ew.s • 0 

The importance of regularity is that terms can he parsed as baving a least sort. Goguen and 
Diaconescu [14] note that regularity is not essential, in that OSA can be developed in greater 
generality uuder the assumptiou only of local filtering. The construction of an initial algebra 
is t.hen more complicated, and we do not give details here, as all the specifications in this 
paper are regular. 

Unlike in MSA, the left- and rigbt-hand sides of an equation need not have the same sort; 
their sorts need only be connected. 

l 'S-sort.ed' ~b{1uld be chiUlged to '(5, $)-sorted'. 
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Definition 26 Given an order sorted signature (5, $, E), a E-equation is a triple (X,i, r), 
where X is a ground signature disjoint from E with l E Tr:(X)& and r E Tr:(X)s' for some 
connected 8,8' E S. We use the notation ('Q'X) I == r. 0 

The definitions of satisfaction of equations and congruence in GSA are as in MSA, but 
with IS-sorted' everywhere cbanged to '(5, ::;)-sorted'. An ot"der sorted !ipecification is 
an order sorted signature together with a set E of E-equations, and a (E, E)-model is a 
E-aJgebra which satisfies all equations in E. The quotient term algebra Tr:.,E is constructed 
a<; in MSA, dividing by the lea'll (5, S)-sorted E-congruence which extends the equations of 
the specification. If the signature is regular, this gives an initial (E, E)-model [20]. 

We end our summary of OSA with 'retract specifications', which allow operations to be 
applied to argnments which may lie outside their domain of definitiou, possibly resulting in 
values that are 'ill-defined' in the sense that they involve the special retract operations. This 
allows order sorted specifications to model partial operations and prror-handling (see [20, 14] 
for a full treatment). 

Definition 27 Given an order sorted specification P :::; (3,.$, E, El, we write p~ for its 
retract extension (5,.$,1::0 , £,6), where E0 is 1:: extended with a new oppration rd,~2 

81-+82 for each lI1,82 E 3 such that 82 .$ .s1, and E"?J is E extended. with an equation 
("IS: 82) r3 1,s2(S) = S for each s2 5: 81 a.'3 above. 0 

For example, consider a specification which declares a sort Na"t of natural numbers to be 
a subsort of Ra't, the rationals. This specification would be extented with a retract operation 

THat ,Nat : Ra"t -+ Na"t 

and an equation 

("IN: Na't) T'Rat.N;se(N) = N. 

If this specification also declares an operation f (think of factorial) which takes naturals a.'3 

arguments, then 1(6/3) is not a term of TE ; however, f(T'Rat,Jfae(6/3)) is a term of T.r;@; 
moreover, if the specification is such that 6/3 =E 2, then f(1"Rat,lfat(6/3)} =E@ f(2). Thus, 
if we consider the term f(THat,Nae(6/3») as a program, thl.'o we might say that it produces 
a 'well-defined' value, f(2), in the,sense that this lattl.'r term contains no retracts. On the 
other hand, the term f( THat ,Nae(5/3)) does not produce a well-defined value, because it is not 
equal to any term of Tr:,; that is, every term equal to f(1"Rat,Nat(5/3» contains the retract. 
operation T"Jiat .Nat. We refer to such terms as error terms. 

We wish the result of adding retracts to be a collBervative extension of the given 
specification, in the sense that for all tl, t2 E TE, we have t1 ""'E t2 iff tl =E® t2, i.e., the 
new equations added by introducing retracts do not cause distinct terms of T.r; to bl'come 
identified. Goguen and Meseguer [20) give !'luffident conditions on specifications for adding 
retracts to be conservative. These conditions go beyond the scope of the present paper, 
hnt we note that all of our example specifications are such that their retract extensions are 
conservative. 

Finally, we note that Definition 27 can be generalised in that every (E, E)-model can bl' 
freely extended to a (1::°, ~)-model. This extension will be used. when we define satisfaction 
of eqnations in hidden order sorted algebra, and is defined. as follows. 
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Definition 28 Let A he a (~,E)-model; the free retract extension of A. denoted A0, is 
defined to be the least S-sorted set such that: 

(1) .4... ~ A~ for each oS E S; 
(2) a(a) E A~ for each a E r~, .. and a E A~; 

(3) ora) =: A".(a) for each C1 E ~W,8 and a E Aw ; 

(4) 7'51,da) = a for each 81,82 such that 82 ~ .~l and a E A.2 · 

A0 is giwD. the structure of a r;0-algebra by defining A~(x) o(x) foI:' each (J E ~1I'.8 and::0= 

x E A~. 0 

For an arLitrary r:-algebra A, A0 can he thought of a.-; being built from Tr;@(A), i.e., tf~rms 

with variahles which are elements of A. and then quotiented by the equations given in (3) 
and (4) of the above definition. Moreover, Tl = Tr;@. 

Because ~ <; r;0, we can form the reduct N?Jb~ (d. Section 2.3), and by the nhove 
definition we have an iuclusion homomorphism J.A A Yo A0 IE. The freeness of A0 is 
expressed by the following. 

Proposition 29 Let A be a r;-algebra. Given a ,Eo-algebra B and a ,E-homomorphism 
h : A ----+ Bb:::, there is a unique r;0-homomorphism h~ : A0 ---lo B such that iA; h~lr; = h.. 

'A 
A0A A0b::: 

~ I h' I" 1
h~ I 

h' 

BBI" 

Proof The homomorphism h~ is defined inductively following Definition 28: 

(1) h.:(a,):= hAa) for a EA.: 
(2) h~(a(a)):::: B".(ht{a)) for a E S~" and a E A;;;. 

Because B is a ,Eel-algebra, this definition is well-defined with respect to the equations in (3) 
and (4) in Definition 28. Thp uniqueness of hl can be proved by induction on A0. 0 

Finally, a property of rptraet extensions that we need later on is given in the following, 
which follows directly from Definition 28. 

Fact 30 For all a E r;~. and all x E A~, if a(x) E As then x E A w • 0 

2.3 Institutions 

In:-;titutions were introduced by Goguen and Burstall [13] as an abstract model-theoretic 
formalisatioll of logical systems. An institution consists of notions of signatures, of models, of 
sentencE'S (in the case of MSA, sentences are equations), and of satisfaction, with a tpchnical 
requirement, called the 'Satisfaction Condition', which can be paraphrased as the statement 
that 'truth is invariant under change of notation'. The Satisfaction Condition is essential for 
reuse of specifications: it states that all properties that are true of a specification remain true 
in the context of another specification which imports that specification. 
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Definition 31 Given signatures E ~ E' and a I:;'-algebra AI, we write A'I~ for A' viewed as a 
r:-algebra by forgetting about all the sorts and operations in 1:' that are not in:E. Moreover, 
given a I:;'-bomomorphisrn h : All -+ A~, we can form the r.:-homomorphisrnhIE : A11£ -+ A~IE 
by defining (hiE), = hs for.EJ E S. More generally, given a signature morphism ~ : E -t E' , 
we can define the E-algebra ,pA', called the reduct of A'to r:, by setting <pA~::;; A¢{~) for 

s E S and ¢A~ = A~(<7) for <7 E 1:1,8. 0 

Similarly, given a r:'equatiou e of the form (\iX) I =7', we define ¢(e) to be the I:'-equation 
("IX') 1>(1) =- ¢(r'), where X' is the 5 '-sorted set of variables with X~, = U/(S):8' X, for::;' E 51, 
and wbere ¢(l) is the r;1(X')-t.erm obtained by replaciug each operation name a which occurs 
it,l by 1(0-) (in tbis case, we view ¢ as the unique l:-homomorphism from T:dX) to o(Tl:'(X')); 
see Proposition 4,) in Subsection 2.5 below). 

The Satisfaction Condition states that 

M' F e ;f! A' F ¢(e) 

for all signature morphisms ¢: 2: -t E', all BI-algebras AI aud all .B-equations e. 

Tbe Satisfaction Condition was shov.;n to hold for MSA in [13J, thereby showing rhat MSA 
constitntes an institution, aud Goguen and Meseguer [20] sbow that OSA is au institution. 
GOgUPll and Diaconescu [1.)] show that biddpn sorted algebra forms au.institution, and discuss 
the significance of this for reusing object specifications and constructing systems of interacting 
objects. Section 2.4 shows that hiddeu order sorted algebra also forms an institution. 

2.4 Hidden sorts 

Hidden sorted algebra (bereafter 'HSA') was developed as a variation on MSA for objects 
with local states [10, 15]. In a hidden sorted specification, tbe set of sort names is partitioned 
into 'visible' and 'hidden' sorts. Operations wbich return hidden sorted values correspond 
to thp internal operations of an object, wbile visible sorted values correspond to an object's 
inputs and outputs. That is, visible !Iorts represent abstract data types, while hidden sorts 
represent abstract object classes. Subsection 2.4.1 summarises the bask definitions of HSA, 
and Subsection 2.4.2 combines HSA with OSA to gi\-e hidden order sorted algebra (bereafter, 
'HOSA') and proves that HOSA is an institutiou. 

2.4.1 Hidden sorted algebra 

Signatures in HSA are defined with respect to a fixed universe of data values, which may 
be thought of as containing standard abstract data types such as the numbers, BMleans, 
lists, etc. This fixed universe is given by a triple (V, 11', D) where V is a spt of visible sort 
names, (V, '1J) is a many sorted signature, and D is a w-algebra sucb that for each d E D1) 
with v E V, tbere is a constant operation 'IjJ E ilI/l,e such that D..;, = d. 

Definition 32 A hidden sorted signature (over (V,w,D» is a pair (H,E) surh that 
(VuH,2:) is a many sorted signature witb 11' ~ r:, and such that tbe following two conditions 
bold: 

(51) if wE V* and v E V, tben 1:"',1) = ww ,,,;
 

(S2) for each 0- E BID,., at most one element of w is in H.
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The elements of V are referred to as visible sorts, and elements of H as hidden sorts. 
A hidden sorted signature morphism ¢ : (H, E) --t (HI, E') is a many sorted signature 

morphism (VUH, E) --t (VUH', E') which is the identity on visible sorts (i.e., ¢I(v) =v for all 
v E V) and which maps hiddensarts to hidden sorts (i.e., ¢(h) E H' for all h E H). Moreover, 

(M1) ¢(i') ~" 10' all" E 'li wm and
 
(M2) for any c! E E~,8' if some sort in w is in ¢(H) then a' = .p(a) for some a in E.
 

We often abbreviate (H, E) to E. 
A hidden sorted E-algebra is 3n (HUV, E)-algebra A such that AI'I' = D; that is, A 

interprets the visible sorts and operations in exactly the same way as D. 
A hidden sorted specification is a hidden sorted signature together with a set E of 

I::-equations (in the sense of MSA). 0 

The HSA definition of satisfaction differs from that of MSA in that only the visible con
sequences of an equation need hold. The notion of 'visible consequence' is made precise by 
defining contexts for terms: 

Definition 33 Given a term t E (TL;)~' a context for t of sort s' is a term e E Td{z})st 
where z is a new variable of sort 8, Le., a context is just a term which contains a distinguished 
variable of the right sort. We write Tdz] instead of Td {z}), and if e is a context for t, we 
write eft] for the result of substituting t for z in e. 0 

A context of visible sort can be considered an experiment which, applied to an object's 
hidden state, gives a visible output. In HSA, two states are distinguished iff they give different 
results for some experiment, and an equation is behaviourally satisfied if its left- and right
hand sides cannot be distinguished by any experiment. The definition of satisfaction uses the 
following 

Notation 34 For a :E-equation e of the form ('v'X) 1= r and a context c E T~[zJv, we write 
ele] IOelhe B-equation (VX) e[l] ~ e[r]. 0 

Definition 35 A hidden sorted E-algebra A behaviourally satisfies a :E-equation e (indi
cated A ~ e) iff A t== e[e] for all v E V and c E TE[z]v. Implicitly, the variable z has the same 
sort as I and r. For a set E of E-equations, we write A ~ E iff A ~ e for all e E E. 

A behavioural (E, E)-model is a hidden sorted E-algebra A such that A ~ E. 0 

If an equation has visible sort, then behavioural satisfaction is the same as satisfaction in 
MSA, because for c we can always choose the 'empty context' z E T:r;[z]v' 

The notion of refinement that we use in the following sections is based on the idea that 
an object is refined by a behavioural model of its specification. Behavioural satisfaction of 
equations in HSA can also be expressed in terms of relations, as follows: 

Proposition 36 A ~ E iff (=A,E)l v ;:. idAlv where Rlv is the restriction of an S-sorted 
relation R to the sorts of V Le., Rlv is the V-sorted relation (R,,)vEV. 

Proof: Note that idAlv ~ (=A,E)lv because =A,E is a congruence, so 'We need only show 
that A ~ E iff (=A,E)lv ~ idA Iv. The 'if' implication is straightforward; 'We show the 'only 
if' implication. We construct a relation R on A such that =A,E <;;;; Rand Rlv c;: idAlv so 
that (=A,E)lv c;: idAlv as desired. Note that any context c for t E (Tds of sort s' gives rise 
to an operation As --t As, by composing the interpretations of the operation names in c; let 
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us denote this operatiou by cA. Now we define the relation R by aRb iff <0(u) == eA(h) for 
all v E V and c E Tdz]". If a and b are of visible SOrt, then we can take c to be the empty 
Context (i.e., c == z). which shows that Rl v ~ tdAl y . It only remains to show =A.E ~ R. It 
is straightforward to see that R is a E-congruence. so this in.c!usion follows by Definition 15 
from R(e) ~ R for each e E E. To show this inclusion, let e E E be an equation of the form 
(VX)1 == r and suppose that aR(db so that a == B(l) and b == 8(.) for some (): X ~ A. For 
any context e of visible sort, we have cA(ol == 8(c[l]) and eA(b} == 8(c[r]). If A F E then by 
Definition 35 we have A t= (YX) ell] == c[r], and therefore cA(a) == 8(c[lJ) == &(c[r)) == cA(b) so 
that a Rb. This shows that R(e) ~ R and concludes the proof. 0 

This proposition can b{' read as saying that E does not ideutify distinct visible elements of 
A, which we might summarise by saying there is no confusIOn. 

It is worth noting that with these definitions, HSA forms an mstituhon, as shown in 
[15J; this also follows from the corresponding r{'suIt for hidden order sorted algebra given 
b{'low. The fact that HSA is au institution implies that inheritance and encapsulation of 
HSA modules behave in a coherent way: if a specification S is included in another, then 
things that are true of S in isolation remain true in the context of the signature in which S 
is included. In terms of obj{'cts, this means that the behaviour of an object is preserved if 
that object is included in d system of other objects. (See [15J for a more detailed discussion 
of these issnes, with some examples.) 

2.4.2 Hidden order sorted algebra 

We now give the hidden sorted version of OSA. assuming a fixed universe (V, :S;, w, D) of data 
values; this differs from the HSA case in that (V, :S;, w) is an order sorted signature and D is 
an order sorted algebra. 

Definition 37 An HOSA signature is a triple (H,:S;, E) such that (VuH,:S;, E) is an order 
sorted signature where the subsort ordering :s; does not relate any visible sort. to any hidden 
sort, and such that (H, E) is a hidden sorted signature. 

An HOSA signature morphism ¢: (H,:s;,E) -1- (H',:5',E') is hath an order sorted 
signature morphism (VuH, $, E) -+ (VUH', :S;', E') and a hidden sorted signature morphism 
(H,E) -+ (H',E') which satisfies the following additional requirements: 

(El) for any (1' E t::.." ... , if some sort in w IS in ¢(H) then there is a uuique (1 in E with 
(1' "'= ¢(q): 

(E2) if ¢(h) < fi" then there is a unique hi E H such that ¢(h' ) "'= h" aud h :5 hi. 

Au HOSA E-algebra is an order sorted E-algebra which is also a hidden sorted E
algebra. An HOSA specification is a quadruple (H,:s;, E,E) where (H,:S;, E) is an HOSA 
signature and E is a set of E-equations (in the sense of OSA). 0 

As in HSA, satisfaction of eqnations in HOSA only requires that the visible consequences 
of an equation hold, and in this case the uotion of vlliible consequence is defined in terms of 
cont{'xts that contain retracts. 

Deflnition 38 An HOSA E-algebra A behaviourally satisfies a E-equation e iff Ae t= e[e] 
for a.I..I v E V and C E Tr;I&l[z]". We write A 1== e to indkate that A behaviourally satisfies e, 
and A 1== E to indicate that A behaviourally satisfies each equation in E. A behavioural 
(1:, E)-model is an HOSA E-algebra A such that A behaviourally satisfies E. 0 
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Analogously to Proposition 36, we have the following reformulation of behavioural satisfaction 
in terms of u-congruences. 

Proposition 39 An HOSA E-algebra A behaviourally satisfies E iff the free retract extension 
of A has no confusion in the sense of Proposition 36, i.e" (=A@,e)lv = idA@l v - 0 

The proof is similar to that of Proposition 36. As stated in the following theorem, this 
definition of satisfaction makes ROSA into an institution. The institution of hidden order 
sorted algebra presented here is different from that given by Burstall and Diaconescu [3], 
because they define satisfaction using a retract extension that interprets operations strictly, 
i.e., if a retract is applied to something that does not belong to the carrier of the subsort, then 
the result is 'undefined' (a distinguished value denoted ..i), and all operations of the retract 
extension are strict in that they take ..i to ..l. 

Lemmas 4.2 and 43 below prove the following Satisfaction Condition for ROSA: 

Theorem 40 The Satisfaction Condition holds for HOSA, i.e., 

¢,4 i"" e if! A I"'E' ore) 

for all ROSA signature morphisms </J : E ~ E', hidden order sorted E'-algebras A, and
 
~-equation8 e. 0
 

The proof of this tbeorem is given by Lemmas 42 and 4.3 below. For the purposes of these
 
two lemmas we assume given such a ¢ and A, and a E-equation e of the form (VX)l::::r.
 

However, first we need tbe following
 

Lemma 41 (</JA}8l ~ ¢8lA0.
 

Sketch of proof: Tbe conditions (El) and (E2) of Definition 37 allow the construction of a
 
~@-homomorphism 9 : ¢® A0 ~ (¢AY21 whicb is tbe inverse of ia : (¢A)@ ~ ¢@A@, induced
 
by i : </JA ""---t (¢@A®)IE- Tbe morphism 9 is defined inductively on (¢0 A0)h:::: A:(h):
 

,. for x E A 4J (h), let g(x) :::: x; 
,. for er' E E~,4J(hl' by (El) there is a unique er in E with er':::: ¢(a); then for y E A~ let 

g(.'(y) ~ a(g(y); 
,. for ¢(h) :S hll 

, by (E2) tbere is a unique hi such that ¢(h') :::: h", so for y E A~" let 

g(r'(h),h"(y)) ~ rh,h'(g(y»· 

Conditions (El) and (E2) of Definition 37 are necessary to make 9 a E0-homomorphism. For 
example, (El) ensures that er is uniquely chosen in the following calculation, which shows 
that 9 is a E-homomorphism. 

g(". A"l.(x» 

g(A:1.(x)) 

g(¢a(x» 
{ (EI) } 

a(g(x» 

(¢A)~(g(x)) 
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Similarly, (E2) can be used to show that 9 distribut.es over retract operations, and is therefore 
a r;0-homomorphism. 0 

Lemma 42 If ¢A ~E e then A 'FE' ¢'(e). 

Proof: Assnme ¢A ~r; e so that ¢A& Pr:0 clIO] for all :B0-contexts c; we have to show that 
A0 PE/0 c[¢I(e)] for all E'0-cootexts c. If c is a E'0-context, then by properties (52) and 
(M2) of Definition 32, c[z] = ct[¢'0{c2)[z)J for some l:10-context (1 and r;0-context C2, so that 
¢A0 /=1:0 c2[e]. Now we can reason as follows; 

¢A& FE. e,lel 
<::> { Lemma 41 } 

¢0A0 PE0 c2[e) 
~ { Satisfaction Condition for OSA ~ 

.4° FE'. ¢0(c,[eJ) 

'" AD FE'. ¢"(e,)[¢(e)) 
=> 

A0 FE'. cl¢(e)J 

o 

Lemma 43 If A ~Ef ¢(e) then ¢'A ~r: e. 

Proof: Assume that A FE' ¢(e) so that A0 t=E'0 c[¢i(e)] for all E'0-contexts c. If c is any 
E®-context then ¢'{c)0 is a :B'G-context, and so we have 

A@ h" ¢~(e)[¢(e)l , 

and we reason further as follows: 

A@ FE'. ¢0(e)[¢(e)J 

'" A0 FE'. ¢0(e[eJ) 
¢o> { Satisfaction Condition for OSA } 

¢0A0 FEo elel 
¢'>' { Lemma 41 } 

¢.4° FEo ele] 

o 

These two lemmas establish the Satisfaction Condition for HGSA. In fact, with a little 
more work (showing fUDctoriality of the constructions for equations and algebras with respect 
to signatures) we can show that HGSA forms an institution. 

2.5 Horizontal and vertical signature morphisms 

Signature morphisms perform two distinct roles. One role is to express the importation of one 
specification into another or the passing of spl"Cifications as parameters; this is often referred 
to as horizontal compositIOn [12,28], and pertains to the modular structure of a system spec
ification at a given level of abstraction. For instance, in the example of Subsection 4.1 below, 
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a specification of the na.tural numbers is imported into a specification of stacks. It is desirable 
that such importation take place within an institution, for then the Satisfaction Condition 
guarantees that the inclusion morphism from the one signature to the other preserves prop
erties of the imported module /13, 51· The definitions of HOSA signature morphism in the 
previous subsection capture such encapsulation properties, so that when a specification of a 
class of objects is imported into a larger specification, the properties of the imported object 
classes are preserved [15]. 

The other role performed by signature morphisms is to compare two different specifica
tions. This is referred to as vertical composItion, and pertains to relationships between layers 
in a hierarchical system structure. Iu particular, a vertical signature morphism might express 
the fact that one specification in some system is refined by another specification, in the sense 
of Section 3.1 below. In such a case, we would not expect that signature morphisms encap
sulate object class specifications, but rather expect that signature morpbisms preserve the 
hehaviour of object classes, in a sense that will be made precise in Definition 50 below. In this 
case, signature morphisms describe how the sorts and operations of the abstract specification 
ace to be realised in the more concrete one. The following definition makes this precise: 

Definition 44 Let (H, $, 1:) and (H', $', E' ) be two HOSA specifications over (V,:o:;, 11f, D). 
A vertical signature morphism ¢: (H, $, E) --t (H', :0:;', E') is an OSA signature morphism 
(VUH, $,E) --t (VUH', $', E') which maps hidden sorts to hidden sorts and is the identity 
on (V, $, if). 0 

That is, we no longer require conditions (EI) and (E2) of Definition 37. 
A vertical signature morphism also provides a translation from terms to terms. In the case 

of a refinement, this states haw programs of the abstract specification are to be 'compiled' 
into more concrete programs of the concrete specification. Often the ahstract signature is 
contained in the concrete, that is, all the sorts and operations of the abstract specification 
are availahle in the concrete one, in which case all terms over the abstract signature are also 
terms over the concrete signature. How-eYer, non-inclusion translations are sometimes llSeful 
(see Subsection 4.1). The follOWing states how an arbitrary (vertical) signature morphism 
extends to a translation of terms; 

Proposition 45 Any OSA signa.ture morphism ¢ == (f,g) : E --t 1:' that preserves overload
ing can be extended to a function ¢ with ¢, (Tds --t (TEI)j{s) for all 8 E 5, defined as 
follows; 

• for each constant symbol a E E[],s' let ¢,(a) == g(o); 
• for each non-empty sort list w == 81 >. >811, 0 E !:U.',5' and ti E (TE )si for i = 1,. >' n, let 

~.(a(tl, ... ,tn)) ~ (g(a))(¢oI(tl), ... ,~"n(tn)). 

In fact, ¢ is a E-homomorphism TE --t ¢(T~I). If f is an inclllSion of 5 into 51 then ¢ is 
an S-sorted fnnction TE --t TEl and if E ~ E' then ¢ is the unique inclusion homomorphism 
Tr;. -+ TE', so that all terms ofTE are also terms ofT!:,. 

Moreover, ¢ extends to ¢0 : TE@ --t TE'0 by setting g0(rs l.s2) = rJ(sl).J(s2) > Finally, 
given any ground signature X of variable symbols, ¢ extends to ¢s : TE(X)~ --t TEl (X')!(s) 
for each 8 E 5, where X~' = {x E Xs I f(fj) = ~'}; thug, ¢ may change the sort but not the 
naml.' of a variable. Note that because all the variables of X are distinct (cf. Definition 8), ¢ 
(>annol identify distinct variables. 0 
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Our definition of refinement in the following section is phrased in terms of vertical signature 
morphisms. Because these need not satisfy conditions (El) and (E2) of Definition 37, we 
cannot use any of the results of Section 2.4.2. However, given a vertical signature morphism 
¢: ~ -+ E' and a ~'-algebra A, we can establish a llseful relation between (¢A)® and ¢0A®, 
m,ing the homomorphism i~: (¢A)0 -t q/!JA0. 

Lemma 46 For all:r; E (¢A)P, we have i~(x) E A,p{.) iff:r; E A4'(~)' 

Proof The 'if' direction is straightforward, because if I E A,¢>(J) tben i~(x) = x. To see the 
'only if' direction, an inductive argument can be sketched as follows. Let x E (¢A);' be such 
that j:(x) E A¢(.). By Definition 27, either x E (,pA.)., i.e" x E A¢(J) as desired, or x is of the 
form a(y) for some cr E r:~,~ and y E (¢A)2. In this case i~(x) := ""(i~(y», and by Fact 30 we 
get i~(y) E A4>(w)' so that by tbe induction hypothesis y E A4>(w), and therefore 

i'(x) ~ a(i'(y)) ~ aryl ~ x 

and so x E A</I(.,) as desired. 0 

As a consequence, we have 

Lemma 47 i~ is injective. 

Proof An inductive argument can be sketched as follows. Let x,y E (¢A)~ and suppose 
that i~(x) = ·i~(y). If eitlIer one of x or y is in A4>(s) then so is the other, and we have 
x -= j~(x) = i~(y) = y. If neither x nor yare in A4>(&)' then both must have the same 
outermost symbol, e.g., x = O"(x') and y = O"(y'), in which case i~(X') il(y'); by the=0 

induction hypothesis it follows that x' = y', so tha.t x = y. 0 

Now we can obtain our relationship between (¢A)18l and .p0A0: 

Proposition 48 For all f:0 -equations e, if .p~.4® Fe then (1)A)0 F e.
 

Proof Suppose that ,p0A0 F e, where e is of the form (V'X)I=r, and let {}: X --t (¢A)0.
 
Then we have i' 0 {} : X -f ¢18l A <;), and because .p® A \8> satisfies e we have
 

(i'oO}(I) ~ (i'oO)(r) 

and therefore, by Lemma 12 

i'(O(I)) ~ i'(O(r}) 

so, by Lemma 47,0(1) "= 8(r), which shows that (1J.4)0 F f' as desired. 0 

The above proposition is used in Sect.ion 3.2 to give a sufficient condition for correctness 
of refinement. An interesting corollary is that one half of the Satisfaction Condition holds for 
vertical signature morphisms. 

Corollary 49 For all vertical signature morphisms ¢: ~ --t !:', all ROSA 1:'~algebras A, and 
all f:-equations e, 

A FI::' .p(e) implies ¢A FI; e . 

Proof 
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¢A ~E e.. 
.. 

(V, E TE.[z]") (¢A)0 FE e[e]
 
<= { Proposition 48 }
 

(VeE TE.[z)") ¢0A0 FE e[e]
 
{ Sal.isfaction Condition for OSA }
 

(V, E TEO!z]") .40 FE' (¢&e)[¢(e)]
 

..<= 
IVe E TE,.[z]") A0 FE' e[¢(e)] 

A ~E' ¢Ie) 

0 

3 Refinement and Implementation 

This section defines refinement and implementation for hidden order sorted specifications, 
and presents a proof technique for proving correctness of refinement which leads to simple 
cOirectn~s proofs. The proof technique is also applicable to proofs of correctness of imple
mentation. 

For the remainder of this section, we fix a uniV€rse of visible data values (V,:::;:, lIr,D) 
and two ROSA specifications, A = (HA, :5A, EA, EA) and C = (HG, Sc, Ee, EC), where 
A is for 'abstract' and C is for 'concrete', plus a vertical signature morphism ¢ : EA ---+ 
EC which preserves overlo3lling. In many examph>s of refinement and implementation, the 
morphism ¢J is an inclusion of signatures, so that all of the sorts and operations in the abstract 
specification are also available in the concrete specification. HoweY€r, there is no need for 
such a restriction on rP, and indeed it is sometimes useful to allov.· rpfinements that do not 
use signature inclusions; an example of this is given in Section 4.1. 

3.1 Refin.ement 

Refinement is the process of moving from one specification to another, more concrete, specifi
cation which displays the same behaviour. The phrase 'more concrete' is generally understood 
to refer to a specification which can, in some sense, be more efficiently or more directly imple
mented. The requirement that the concrete specification display the same behaviour means 
that aU models of the concrpte specification are implementations, Le., models, of the original, 
'abstract' specification. 

The standard definition of refinement of algebraic specifications, whether in MSA, OSA 
01' HSA [27, 28, 24J, is this: for every modp} M of the concrete specification C, the reduct 
¢.\I is a model of the abstract specification A. We define refinement of HOSA specifications 
in the same way. 

Definition 50 A is refined by C iff for all ROSA C-models M, the reduct,pM is a HOSA 
A-model. 0 

If we ignore, for the moment, thp hidden sortedness of A and C, tbis means that for every 
EC-algcbra M, if M F EC then rPM F EA; or equivalently, by the Satisfaction Condition 
for OSA, M F rP(EA). If ¢ is an inrlusion of signatures, the latter fonnula is the same 
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as M F EA, 60 that 'e refines A' means that all models of C are models of A. However, 
because ¢ is a vertical signature morphism and not an HOSA signature morphism, this line of 
reasoning; in particular the appeal to to the Satisfaction Condition, is not valid. Nevertheless, 
the main point is that 'A is refined by C' means that aU models of C give rise to models of 
A by red net along ¢. 

The following subsection investigates ways of proving refinement, and develops a proof 
technique which is exemplified in Subsections 4.1 and 4.2. 

3.2 Proofs of refinement 

Henniker [24J proposes a technique for proving correctness of refinement for HSA specifications 
which is based on showing that all visible consequences of the equations of the abstract 
specification are satisfied by the concrete specification. The notion of visible consequence is 
defined in terms of contexts, and Henniker's proof technique is based on induction over the 
size of contexts. Such induction proofs are often surprisingly complicated (cf. the statement 
in [7J that 'putting context induction into practise was less straightforward than expected'), 
so we seek both to extend Henniker's results to the order sorted case, and to simplify the 
inductive proofs. A useful hint as to how this can be achieved is obtained from the work 
of Schoett [29], which is concerned with data representation rather than refinement, and is 
set in the context of partial algebras rather than OSA. Schoett shows conectness of data 
representations by constructing congruence relations between the carriers of models, with the 
idea that these congruences relate behaviourally equivalent values. 

In this section we present a variety of ways of proving correctness of refinement. First, 
we extend Henniker's technique to the order sorted case, to give a proof technique based on 
showing that visible consequences of the equations of the abstract spedfication are satisfied in 
the concrete specification. Then we generalise this by coll.'lidering arbitrary congruence rela
tions which relate the left~ and right-hand sides of the equations of the abstract specification. 
Finally, we consider splitting the signature of the abstract specification into 'generators' and 
'derived functions'; this gives rise to a proof tec.hnique which can greatly simplify proofs of 
refinement. 

For the purposes of this subsection, we suppose a fixed pair of HOSA specifications A 
and C and a vertical signature morphism ¢ : EA -)- EC as above. We also use the following 
abbreviations: 

Notation 51 We write TA for the carrier of the term algebra TEA; TA0 for that of T EA0 (d. 
Definition 27); TA[zl for the contexts in TI:A[Z] and TA0[zJ for TEA,0[Z] (d. Definition 33), 
and similarly for C; and we write ¢ for ¢ : TA -t TC as well as for ¢0 : TAO -)- TC0 (d. 
Proposition 45). We also write SA for YuBA and SC for VUHC. 0 

First of all, we want to reduce correctness of refinement to showing that the visible con
sequences of the equations in EA are consequences of EC. We require the following lemma. 

Lemma 52 For all HOSA specifications Sp :::: (B, S, r::, E) and all HOSA Sp-algebras /l-f 
and all visible r::0-equations e, if E~ Fe then M® F e. 
Proof Suppose M is an HOSA Sp-algebra, so that by Proposition 39 we have 

(2) (=M0.E0)lv ~ id Mr8I 

Suppose also that E® F e so that by Proposition 20 and the fact that =M0,E0 is a congruence, 
we have 
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(3) RM@(e) ~ '=M®,EI.iJ . 

We need to sbDIV that O=M0,{~J ~ l,dM0 ; becanse td .\tl.iJ is a congruence, it is sufficient to show 
that RMI.iJ(e) ~ idMI.iJ. If x R,\.fl.iJ(e) y then by t3) we have x=M@,E0Y, and becanse e is of 
visible sort, so too are I and y, so (2) gives :r ld .\4;9 Y as desired. 0 

This allows us to reduce proofs of refinement to showing that the concrete specification 
satisfies all visible consequences of the equations in the abstract specification. 

Theorem 53 A is refined by C if EC0 F ¢/~(c[e]) for all e E EA and visible contexts 
'E TA0[z]_
 

Proof Suppose that EC0 F 1J0(c[eJ) for all e E EA and visible contexts c E TA0[z], and let
 
M he a HOSA C model. Then for any e E EA,
 

.. ".If po e 

IV' E TAO[z]") ("M)" F'leJ 
~ { Proposition 48 } .. IV' E TAO!z]") ,,0M0 F ,[eJ 

IV' E TA0[zl") MO F "O(ele]) 
~ { Lemma 52 } 

(V, E TAO[z]") ECo F 0° ('Ie]) 

which show~ that ¢M is a HOSA A-model as desired. 0 

This theorem states that A is refined by C if the left- and right-hand sides of each equation 
in EA are rela.ted by::::; EC0 in all visible EA®-contexts. We can generalise this to a requirement 
that the left- and right-hand sides are related by a certain kind of congruence relation. 

Definition 54 Let ¢: E --+ ~I, and let R be an equivalence relation on some E'-algebra M'. 
We say that R is a iPE-congruence iff for all a E Ew,s and all x, y E M,p(w)' if :r R. y then 

M,,(.)(x) RM,,(,,(y) 0 

We also require the following notations. 

Definition 55 If R is a relation on M' and f: M ---t M', then we write RI for the relation 
on M such that x RI 'Y iff J(x} R-f(y). 0 

Definition 56 If R is a relation on TC e and X is a set of SC-sorted variables, then we write 
R(X) for the relation on TC"'(X) such that 

t R(X) t' if! (Ve , X --+ TCo) 9(t) R 9(1') _ 

o 

Now we can generalise Theorem 33 by allowing the left- and right-hand sides oC each of 
the abstract equations to be related by a ¢E-congruence whose restriction to visible sorts 
implies equality. 

Theorem 51 A is refined by C if there exists a ¢EA0-congruence R on Teo such that 
I R(X)¢ r for all equations ('IX) 1= r in EA0 and such that R.lv ~ =EC@· 0 
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The proof of this theorem requires the following version of soundness for GSA [20), which 
says that all models of a specification satisfy an equation if the initial model satisfies it. 

Lemma 58 For alII, r E Tr:(X) and sets E orr-equations, if 1=E(X) r then E F (YX) 1=r. 
o 

Proof of Theorem 57 Let R be a rjJL:A@-congrUl>nce satisfying the above conditions. By 
Theorem 53 it suffices to show that Ee0 F ¢0(c/ell for each e E EA and c E TC®[z]". Let 
e E EA be of the form (ltX)l=r. Then 

I R(X)' r
 
¢} ( Dl"finition 55 }
 

¢(l) RIX) ¢(r) 
'=> { R is a IjJ~A0-congruence } 

(Ye E TA0[,].) ¢0(C)[¢(l)J R(X) ¢0(c)[¢(r)] 
=? ( Rlv t; =ECS } 

(Ye E TA0[z),) ¢0(c)[8(¢(I))] ~EC. (XI ¢0(c)[Ii(¢(r))[ 
=} ( Lemma 58 } 

(Ye E TA®[eJ,) Ee0 F o0(c[e]) 

An obvious candidate for the relation R of this theorem is behavioural equivalence, 
which is defined as follows: 

Definition 59 For t, t' E TC'='J, let t ,....., t ' iff ¢>0(c)[t] =EC'RJ ¢0(c)ft'J for all tl E V and 
c E TA0[z].,. 0 

This relation dearly satisfies the conditions of Theorem 57. However, using this can still 
lead to complicated proofs by context induction. A simpler proof method is obtained by 
splitting the signature of A0 in two: suppose that EA0 = G U D. (The letters stand for 
'Genl"tators' and 'Defined functions' to suggest the decomposition that we have in mind; 
however, the only assumption we make about G and D is that their union is equal to EA0.) 
Typically, in proving that an equation is behaviourally satisfied, we wish to show that it 
holds in contexts made from defined functions only. This agrees with the intuition behind 
behavioural equivalence, that two terms are behaviourally equivalent if the same visible infor
mation can he extracted from each of them. Extracting information corresponds to applying 
a defined function, whereas constructors may be thought of as adding new information, This 
gives a notiOn of behavioural equivalence that is easier to check: two terms are behaviourally 
equivalent iff they give the same result in all visible contexts built from the operations of D. 

lDefinition 60 For t, t' E TC B, we define t '----' t iff ¢0(c)[t] -= 6C0 ¢@(c)[t' ] for all t' E V and 
c E TD[z]v. 0 

A useful consequence of this definition is that terms of hidden sort are behaviourally equivalent 
iff their images under each operation of D ace behaviourally equivalent. This is used in 
Subsections 4.1 and 4.2, in examples whpre all derived functions are unary, an assumption 
that allows us to state the property concisely: 

Proposition 61 If all the opl"rations of D have only one argument, then for h E HA and 
t,e E TC~, we have t '----' t iff (¢o)(t) '-' (¢o)(t/) for each r E SA and 0 E DIj,r' 0' 
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The relation ........ is an equivalence relation, it contains =EC0, and its restriction to visible 
sorts implies equality; moreover, '- is a ¢D-congruence, so to use Proposition 57, we need 
only show that it is also a I,!JG-congruf'nce. In fact, there is a nice relationship hetween our 
two notions of behavioural equivalence: frOiD D <; EA0, it follows that ...., ~ '"--""; moreover, if 
--- is also a ¢G-congruence then the following proposition shows that '---"' ~ "', and so ........ = "'. 

Proposition 62 If '---"' is a ¢G-congruence then '"--"" ="'. 
Proof: We have already noted that '-' ;2 "', so it sufficps to show that ~ "'. Now'---' 
is a ¢D-congruence. so if it is also a o;!>G-congru('nce, then because EA0 GuD, it is a 
Q:EA0-congruerrce. So: 

t '-' t'
 
=} { --- is a ¢EA0-congruencc }
 

(V" E V)(Vc E TA0[z],,) ¢(c)(t] ~ olc)(l'J 
=} { ---Iv <; =EC'/; } 

IV" E V)(Vc E TA0[z],,) ¢(c)(tJ ~ECe ¢(c)[t']
 
~ { Definition 59 }
 

t"" e .
 

o 

Theorem 57 and Proposition 62 together give the following sufficient. condition for refine
ment: 

Proposition63 A is refined by C if 1 ,"--""(X)<f> l' for each ('r/X)l=T in EA and if '---' is a 
¢lG-congruence. 0 

The importance of this result is that it gnoatly simplifies correctness proofs. With thi.<> 
Proposition. the correctness of a refinement is shown by proving that '- is a ¢G-congruence, 
and that th~ equations of the abstract specification are satisfied in the concrete specification 
in all D-conlexts. This latter proof obligation can be shown by indnetion on the structure 
of D-contexts; because D is a subsignature of E, there will be fewer cases to consider in 
the indnction steps. This is illustrated in the example proof in Section 4.1 below. In fact, 
sometimes it completely eliminates the need for an inductive proof altogether! Section 4.3 
gives an example of a refinement where there is essentially only one D-context, and the proof 
can proceed by simple equational reasouing (the example is takeu from Henniker [24], but 
there the correctness proof uses a rather complicated indllctiou on r:-contexts). 

3.3 Implementation 

Our notion of refinement is based on the idea that the concrete specification should displa.y 
'the same risible behaviour a.'> the abstract one; that is, the reduct of any model of the 
concrete specification behaviourally satisfies all the equations of the abstract specification. 
If we regard terms over the abstract siguature as programs that the concrete specification 
should implement, then we need consider only terms without variables: that is, our notion of 
behaviour is given hy the ground equations of the abstract theory. If we ignore hidden and 
order sortedness, then we might say that A is implemented by C iff all ground equalities of 
A, when translated by 6, also hold in C; i.e., 
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(4) tt =EA t2 implies 4'(td =EC 4>(t2) for aU t" t2 E TA. 

This is only a partiaJ definition of correct implementation (see Definition 67 below); in fact, 
this definition is sometimes referred to as 'simuLation' [27]. The intuitive meaning of (4) can 
be seen by considering t 1 to be a program that gives a result t2 in the abstract specification; 
then the translation of t 1 should give the corresponding result in the implementation. More 
formally, (4) states that the (,irtransLations of the ground consequences of the equations in EA 
are entailed by EG. This is equivalent to requiring the q....translations of ground instances of 
the equations in EA to be entailed by Ee, i.e., that 

(5) 0(0(1)) ~EC 4>(O(r)) fo, each (VX)I = r E EA and each e, X .... TA 

To see that (4) implies (5), note that for any equation (VX)1 = r in EA and any assignment 
0: X-+ TA, we have 9(1) =EA 0(1'), from which by (4) we conclude that ¢(O(l)} =ec ¢(8(r)) as 
rlesired. To see the converse implication, note that (4) may he reformulated as;; EA ~ (= Be)<1>, 

and this follows by definition of =EA (Definition 15) from 

R(e) <;; (=Ec!- for each e E EA. 

To show this, let e E EA he an equation of the form (VX) 1 = 1', and suppose that a R(e) b, 
so that 0. = B(l) and b = 0(1') for some 8: X-+TA. By (5) we have ¢(a):OEc¢(b), i.e., 
a(=£c.)<1>b as desired. 

Although (4) and (5) are equivalent, the formulation in (5) is generatly easier to prove, in 
that one need only show that ground instances of each of the equations in EA are satisfied in 
the concrete specification, rather than considering all consequences of these equations. 

If we take hidden sortedness into account, we need only consider equalities of visible sort, 
so that the requirement (4) for implementation becomes 

(6) tl =EA t2 implies ¢(tr) =EC ¢(t2) for all t' E V and t},t2 E TA lI • 

This is the definition given by Henniker [24J, though only for the case that rP is a signat Ure in
clusion. Henniker also proposes an inductive method for proving implementation correctness, 
by restating this condition in terms of behavioural equivalence, which is defined as follows: 

Definition 64 t, t ' E TC are A-behaviourally equivalent, written t,.... A e, iff for all v E V 
and c E TA[z}tJ, we have rP(c)[t] =EC ¢(cHt']. Implicitly, if the variable Z has sort 5, then t 
and t' have sort $1(8). We will generally omit the subscript A on "'A· 0 

We can use the notion of behavioural equivalence to reformulate (6) in terms of ground 
equalities of arbitrary sort: 

Proposition 65 (6) is equivalent to 

(7) t 1 =EA tz impUes ¢(td,...., ¢(t2) for all s E SA and t), t2 E TA 3 . 

Proof: Th show that (6) implies (7), let t1 =EA t2 for some s E SA and tl,t2 ETA" and let 
v E V and c E TA [z]". We have c[t}l =eA C[t2]' and because both terms are of visible sort, (6) 
g;ve, 4>(C['I]) ~EC ",(c[t,]), ;.e., 4>(cllo(tl)J ~EC 4>(ell4>(t,)), which shows that ¢(td - 4>(t,) 
as desired. To show that (7) implies (6), let tl =EA t2 for some v E V and tll t2 E TAti • By 
(7) we have ¢(tt} ......, ¢(t2). Both terms are of visible sort, so taking c to be the empty context 
(Le., c = z), Definition 64 gives ¢(td =EC ¢(t2) as desired. 0 
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Once again, this condition for implementation can be reformulated in terms of the ground 
instances of each equation in EA. In particular, Henniker shows that (6), and therefore (7), 
is equivalent to: 

(8) ¢(ii(/)) - ¢(ii(,)) foreach ('v'X)I=rEEA and {}:X-tTA. 

Proposition 66 (7) is equivalent to (8). 

Proof: That (7) implies (8) is ~traightforward: for any equation (\IX) I = r in EA and any 
(): X-tTA we have B(l) =EA B(r), whence hy (7) we have ¢(B(l)) ~ (,'>(B(r)) as desired. To 
show the converse implication, note that (7) can he reformulated as =EA ~ ~¢, which follows 
from R(e) ~ ......¢for aU e E EA. To show this. let e be of the form ('IX) I = r, and let a,R(e) bso 
that a ~ ii(l) >oct v ~ ii(,) fm ,arne e , X--+TA. By (8) we get ¢(a) = ¢(ii(l)) - ¢(ii(r)) = o(v) 
as desired. 0 

The equivalence of (4) and (5) is mirrored in that of (7) and (8). Both (5) alld (8) hav{' a 
form that simplifies the proof obligations. Henniker [24] investigates proofs of (8) by a form 
of induction on the size of contexts c E TA[z],.; however, such proofs can be very complicated. 

The situation is more complex for HOSA because the definition of implementation has 
to consider the well-defined ness of terms, which may amount to termination of programs. 
Schoett [29J defines implementation for partial algebras, and gives a necessary and sufficient 
condition in terms of a congruence between models of the abstract and concrete specifications. 
Schoett's defirrition is stronger than that given below: he restricts attention to terms all 
of whose sublerms are equal to a well-defined value (in our setting this means that they 
contain no retract operations). For {'xampte, consider an ahstract specmcation of stacks with 
operations top, pop, empty and push (as in Section 4.1 below), where top and pop both 
require a nOll-empty stack as argument, and suppose further that the specification contains 
the equation 

('IX: lIat, S: Stack) top push(X, S) = X . 

The term top push(O, pop empty) can he viewed in two different w:ays: it either gives the 
value O. or else it is an error term. The first is a lazy evaluation view of error-handling. 
where terms with error subterms can still bave well~defined values; the second view, which is 
implicit in Schoett.'s definition, corresponds to call-by-value, where any term with an undefined 
subterm is itself undefined. In Schoett's call-by· value approach, correct implementations of 
stacks ma)' allow top push(O, pop empty) to take any value at all. We consider 'lazy' 
implementa.tion important because many programming languages either have lazy evaluation 
Or else facilities for error handling. Moreover, we can handle the strict view by adding some 
'error equa.tions', which identify some error terms, as discussed by Goguen and Diaconescu 
in [141. 

Our drfinition of implementation in HOSA is that C implements A iff whenever a visible 
sorted term t of TAO is not an error term (Le., is equal to a term t of TAj. then the ¢>' 
translation of t is equal to the 1-translation of t' in Te. 

Definition 67 An HOSA 8pecification C is a partial behavioural implementation of 
an HOSA specification A "'La the vertical signature morphism ¢ (we 'Write ¢ : A !;; C) iff 
t =EA0 t' implies ¢(tJ =EC0 Q(t') for all v E V, t E TA~ and t' E TAl!' We say that C 
behaviourally implements A iff the above implication is an equivalence. 0 
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This definition of partial implementation generalises (6) to the hidden order sorted case. 
The difference between partial implementation and implementation is that in the latter the 
mapping ¢ from TAO to TC 0 , or more properly from TEA@,EA@ to TEC.s,EC@, is injective 
on the visible sorts in the sense that it doesn't confuse distinct data values. Consequently, 
'trivial' implementations, in which all equations are satisfied by identifying some or eveo all 
data values, are aUowed for partial behavioural implementations, but not for behavioural 
implementations proper. In the following. we concentrate on proofs of partial implementa
tion, i.e., on showing that visible terms equal in the abstract specification are equal in the 
concrete. Additional techniques are required for showing correctness of ·total' behavioural 
implementation. 

The notion of partial behavioural implementation is also significant at the kvel of algebras 
of a specification: if ¢ : A 1;: C, then for any C-algebra M and any gro1.l1uJ EA-equation e 

such that EA t== e, we have ¢J\J 1= e. 

3.4 Proofs of partial implementation 

In this subsection we formnlate a sufficient condition for partial behavioural implementation 
. which simplifies the proof obligations in the same way that (5) and (8) simplify (4) and (7). 

Much of the technical development in this section is analogous to that of Section 3.2 above. 
The main differences are that in tbis section we are concerned with ground equations rather 
than with arbitrary equations, and we treat error terms in a 'lazy' way. A sufficient condition 
for correctness of partial implementation is given iu Corollary 73 below. Instances of this 
corollary may be proved by induction on contexts; the technique presented in Section 3.2, 
of splitting the abstract signature into generators and derived functions, can be adapted to 
proofs of partial implementation. This proof technique is presnted in Proposition 76, which 
corresponds to Proposition 63 in Section 3.2. 

One way to show that C is a partial behavioural implementation of A is to ooDstruct an 
intermediate relation R ou ECI"'J-ternl8 such that: (a) if t = EA/i) t' then the .p-translations 
of t and t' are related by R; and (b) the restriction of R to visible sorted IjI-trauslaHons is 
contained in = ECG. Such a relation bridges the gap between the antecedent and consequent 
in the definition of partial behavioural implementation (Definition 67). If R<f> is also a EA0_ 
rongruence, then (a) holds iff R<f> extends the ground instances of the equations in EA0. This 
is the intuition behind Proposition 68 below, which is our main technical result. Its statement 
uses the following: 

Proposition 68 If there exists an equivalence relation R on TeO such that Ii¢ is a EA0_ 
congruence and 

(9) 8(1) R¢ 01') foreach (VX)I=rEEA0 and 8:X-+TA0 , 

(10) if t R<f> t f theu ¢(t) =EC® 4>(1') for all v E V, t E TA~ and t' E TAl!, 

theu4>:A~C. 

Proof: The relation =EA@ is by definition the least EA0-congruence satisfying (9), so ::::: EA® ~ 

R<f>. To show that 1>: A ~ C, fix v E V, t E TA~, t l E TAl!; if t =EA@ tl theu because 
=EA@ C; R<f>, we have t R<f> f, and since t and (' are of visihle sort, (10) gives ¢(t) =EC@ ¢(e) 
as desired. 0 

A weaker, but very useful version of this result is obtained by strengthening (9): 
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Proposition 69 For any relation R on Teo, condition (9) of Proposition 68 follows from 

(11) =EC~ <;;; R, 

(12) 0(0 RO Orr) for each (VX) l=r E EA and (): X-tTA0 . 

Proof: EA® consists of EA plus equatiow of the form ("IS s2) Tsl.sZ(S) = S. By 
construction, Bee contains the equation ('TIS' ¢(.s2)) rq;(slj,<f>(s2) (S') = 8', so for any 
(} {S}-tTAe·, we have ¢(9lr.l .•2(S])j = TO(Sl).4>(S2)(¢(8(S))) =EC® 1,6(8(8)). Therefore 
by (11), O(rsl,dS)) Rrf> 9(5), and combining this with (I2) gives (9). 0 

The weakening of Proposition 68 by replacing (9) with (ll) and (12) is useful becanse with 
(11). in proving that two terms are ff~lated by R we may freely rewrite those terms using the 
equations of Eeg ; moreover. the example relations R that we llse below satisfy (11), so that 
in proving partial implementation, we may concentrate on proving (12), ignoring the retrad 
equations. 

To use these results, wp need a suitable relation R. A likely candidate is behavioural 
equivalence, which we COllJd define as in Definition 64; but the following relation is more 
general: 

Definition 70 For t,t l E TC0, equivalence up to definition, denoted t -:::: t', means that 
1. =ECe til iff!' =EC eJ l"for all til E TC. 0 

Note that if (,(' E TC. then t ~ e iff t =EC0 e. 

Definition 7l For any relation R on TCo, behavioural R-equivalence, denoted R, is 
defined for t.t' E TC0 by f R t l iff ¢>(c)[t] R ¢(c)[t'J for all v E V and c E TA~[:J[I' 0 

Two natural choices for R in this definition are =EC!;l and ~. The first is sufficient for the 
e-xample-s given below, but the second is more general. Each choice satisfies condition (11): 

Proposition 72 When R is =EC0 or~, then =EC0 <; it 
Proof: When R is =EC0, the result is immediatf'. For the ca:;e t,hat R is~, let f=EC0t'j 

for any cont.ext c we have ¢(c)[t] =EC0 ¢(c)[t']. so for any t" E TC we have ¢(c)[t] =ECe til iff 
Q(c)[t'J =ECe t". That is, ¢(c)[t] ~¢(c)lt']. and so t Ii t'. 0 

\\'e note tha.t behavioural =EC~)-equivalenc(' is the same as =ecG for visible sorts. because 
if t and t' are of visible sort, t.hen we may take- c to be the empty context, that is, c = z, so 
that t =EC8 t'. 

In the sequel, we use only behavioural ~-f'qni"ale-nce. which we denote ~, and refer to 
simply as behavioural equivalence i.e., 

113) t~(' if! (Vv E V)(Ve E TA[zl~) Ole)[t] '" ole)[t'] . 

However, the results of this section can equa]]:y well be developed for behavioural =EC0

equivalence. 
Because ~ satisfies all requirements of Proposition 68 except (9), we obtain the following 

from Propositions 69 and 72: 
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Corollary 73 If all NJuations of EA a.I"€ ~haviotlrally satisfied by C, L€., if 6(1) ~<!> B( r) for 
each (VX)l=r in EA and (): X-tTA@,then ¢: A s. c. 
Proof: We need to show that;:.:: satisfies all requirements of Proposition 68 e.:'{cept (9). It is 
straightforward to sho..', that:::;:: is an equivalence relation and that :::;::4> is a :LA-congruence; 
the only remaining requirement is (10), Le., 

if t:::;::¢ t' then ¢(t) =EC0 1>(tl ) for all v E V, t E TA~ and t' ETA" 

Suppose ¢(t) ~ ,pU'); since bath terms are of visible sort, w(' may c_hoosp the empty context 
c = z in (13) to obtain ¢(t) ::: ¢(t'). Because tf E TAu we have ¢(t' ) E rev, and by 
Defi Ditlon 70 we get ¢(t) =EC@ ¢(n iff ¢(f) =6C« ¢(f), so that ¢(t) = EC0 ¢;I(t') as desired. 
o 

This result can still lead to complicated proofs by context induction, but we can apply the 
proof technique of Section 3.2 of splitting the abstract signature into generators and derived 
functions: snppose that ~A0 == G u D (again, there are no further assnmptjons about G and 
D). We define behaviOural equivalence nnut'r D-contexts as follows, 

Deflnition 74 For t, tl E TC'f>, we define t '-" t ' iff ¢(c)/t) ::= ¢(c)[t'] for all v E V and 

c E TD[')" 0 

The rela.tion "'-' is an equivalence relation, it contains = EC& 1 and its restriction to visible sorts 
is the same as behavioural equivalence; moreover, corresponding to Proposition 62 we have 
the following 

Proposition 75 '-" = ~ if t '.-' t' implies (¢aHt) '-" (¢aHf) for all a E GIL',. and t, t f E 

TC:_(w)' 

Proof: We have already noted that '-" ;2 ::::::, so it suffices to show that -... ~ ::::::. NO'\\' ",-,'" is a 
D-congruence, so if it is also a G-congruence (as stated in the condition above). then because 
EA@ = G u D, it is a EAI8I-congruence. So: 

f "'-' t l 

:::} { ,-,'" is a congruence}
 
(Vv E V)(Vc E TA01'],,) ¢(c)[tJ ~ ¢(c)[t')
 

=> { ~lv <;; ~ }
 
(Vv E V)(Vc E TAO!,),,) ¢(,)[t] ~ qI(c)it')
 

<> { (13) }
 
t:::::: f . 

o 

Corollary 73 aod Proposition 75 together give the following sufficient condition for partial 
implementation: 

Proposition 76 If U(i) -...'i> 8(r) for each {VX){=r in EA and (J : X-:loTA®, and if t "'-' t' 
implies (¢ a )(t) -... (q'J aHf) for all a E CUI" and t, t l E TC1.(UI)' then ¢ : A ~ C, 0 

The main differences with Proposition 63 for refinement are our use of behavioural equiv
alence up to termination, and the fact that this proposition considers only ground instances 
of equations. 
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4 Example Proofs 

This section uses the results of Sectioo 3.2 to prove the correctness of a number of examples 
of refinement. 

4.1 Example: a stack object 

In our first example, the abstract ~pecificatioo defines a sort of stacks; a subsort relation 
makes operatioos top and pop defined only on non-empty stacks. The concrete specification 
refines stacks by arrays and pointers. This example, adapted from [9J, is \vell-known, but we 
present it here to demonstratp that. the proof we give is every bit as trivial as one could hope. 
The example also demonstrates refinement for the order sorted case, and a refinement that 
does not use it straightforward inclnsion of signatures. 

The OBJ code which defines the abstract specification of stacks is given in the following 
two mod ules: 

obj NAT is obj STACK is pr NAT . 
sort Nat cla13ses NeStack Stack 
op 0 -> Nat subcla13s NeStack < Stack 
op 8 Nat -> Nat op empty -> Stack 
op p Nat -) Hat op push Nat Stack -) NeStack 
var N Nat op top_ NeStack -> Stack 
eq p(OJ "" 0 op pop_ NeStack -> Stack 
eq p(5(NJ) "" N var S : Stack var I Nat 

endo eq top push(I.S) = I 
eq pop push(I,S) = S 

eDdo 

Thp OBJ keyword sort precedes the declaration of a (Visible) sort name, while for the 
purposes of this paper, we adapt staudard OBJ notation to let cIass(es) declare a hidden 
sort. name or names. The keyword op precedes the declaration of an operation name; t.hese 
dpclarations define the signature of the module. Equations are preceded by the keyword 
eq; these and the signature constit.ute the specification of the module. The keyword pr (for 
'protecting') indicates that one module inberits the declarations of another; thus the module 
STACK conta.ins all the declaratiolls of the module NAT. 

We let the fixed universe of data values be given by the module NAT, together with its 
standard interpretation as "-"', the naturals. (Technically, we require that the signatnre of 
NAT be extended with a constant for each nat-nral number in w, cr. the comments preceding 
Definition 32. This means that NAT should be extended with an infinite number of constants 
1, 2, etc.) Thus, in the above specification the visible sort is Nat and the hidden sorts are 
NeStack and Stack. 

In order to demonstrate the use of signature morphisms in refinement, we give a concrete 
refinemen, of stacks using arrays and poiuters that does not distinguish a subsort of non-empty 
stacks. Tne DBJ code for the concrete specification is given below: 

ob] ARR is pr NAT
 
'lass Arr.
 
op Dil ; -> Arr
 
op put : Nat Arr Nat -> Arr
 
op _[_] : Arr Nat -> Nat
 
var I M. N Nat Vat" A Arr
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.q nil[N] = 0
 

.q put (I,A,H)[N) if H == N then I elae A[N] fi
 
eodo
 

abj STACK is pr AM . 
class Stack 

op «-; -» Nat Arr -> Stack 
op 1st_ Stack -) Nat 

op 2nd_ : Stack -> "rr 

op empty : -) Stack 

op pueh Nat Stack -> Stack 
op top_ Stack -> Nat 
op pop_ Stack ~) Stack 
var I N Na' vax 5 Stack vax A : Axx 

eq 1st « N ; A » . N 
eq 2nd « N ; A » . A 
eq em.pty 0 ; nil »· « 
•q push eI,5) . « sClat 5) put (I, 2nd S. aClst 5» »
 
eq top 5 (2nd 5) ( 1st S ]
 · 
.q pop 5 « pCht 5) ; 2nd 5 »· 

Bodo 

The signature morphism ¢ from the abstract to the concrete specification maps both 
NeStack and Stack to the single Sort. Stack, aud leaves the names of the operations un
cbanged. Note that the types of the operations are changed, because ¢ identilles NeStack 
and Stack. Specifically, ¢ is defined as follows. 

Nat .... Nat 

Stack, NeStack .... Stack 

empty ; -> StaCK >-> empty -> Stack 

push : Nat Stack -> NeStack >-> push Nat Stack -> Stack 

top : NeStack -> Nat .... 'op Stack -> Nat 

pop : NeStack -> Stack .... pop Stack -> Stack 

If we let EA denote the signature of the abstract module, then LA~ also contains the retract 
operation 

rJleS1;8ck,Stack Stack -> NaStack 

Because ¢ identifies Stack and NeStack, this operation is mapped to (cf. Proposition 45) the 
operation 

r S'tack,S'tack : Stack -> Stack. 

But by Definition 27, the retract extension of the concrete specification includes the equation 

(\is : Stack) rStac:k.St8.ck(S) = S , 

which means that rStaek,Stack is the identity function in the concrete specification, so we 
may safely ignore retracts in what follows. Moreover, because the names of the operations 
are unchanged by this mapping, we can denote the 4>-translation of a term hy the term itself. 

We now prove the correctness of this refinement of STACK, where the set of visible sorts is 
{Nat}. For G, the set of generators, we take {empty, push}; for D, the set of defined functions, 
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we take {top, pop). By Proposition 63, tb('re are two proof obligations. The first is that the 
left- and right-band sides of each equation are related by'-". 

(14) top pU5h(I,S) 1 

(15) pop push(I, S) S 

The second proof obligation is that ....... is preserved by the operations of G. Since empty is a 
constant a.nd ......, is reflexive, we need only consider push: 

(16) x1~·x2 and 51 s2 imply push(xi,I51) ....... push(.x2,s2).
 

Requirement (14) is trivial, because the left-hand side is equal, in the coucrete specification,
 
to r. To show (15) and (16). we use the following lemma, which states that values on the
 
'wrong side' of the pointer can he ignored.
 

Lemma 77 « 1st 5 ; put(x,2nd s,n) »'--./ IS if for all i '2: 0 it is not the case that.
 

p'(1st 5) =EC~ n (i.e., ifn > 1st 5).
 

Proof: To show that lhs "--/ rhs, it is sufficient to show that c[lhsJ '="'EC~ c[rhsJ for all contexts
 
c built from top and pop. Such context.s are necessarily of the form top pop' z, where pop'
 
denotes i appLcations of pop. We proceed by induction on i. For the basis we have (writing
 
',=",' for ',=", EC!i; '):
 

top « 1st 5 ; put(x,2nd 5,n) » 

put(x,2nd 5,n) [1st 5] 

{ n > 1st s } 
(2nd 6) [1st s] 

top s 

For the induction step, 

top popi pop« 1st 5 ; put(x,2nd 6,n) :>:> '='" top pop' pop s 

"" top pop'« pCi5t. 5) ; putCx,2nd s,n) »'='" top popi pop S 

"" top pop'« 1st pop 5 ; put (.x,2nd pop s,n) »'='" top pop' pop 6 
¢::: { "mduction hypothesis} 

(Vj ~ 0) ~(P'(l't pop ,) ~ nJ 
{= 

(VJ ~ 0) ~(P'(lst ,) ~ nJ 

o 
This lemma is the heart of the correctness proof; the remaining proof obligations are straight
forward. To show (15): 

pop pusbCI,S)......-S 
*? { reduce left-hand side} 

« 16t S ; putCI, 2nd S, sC15t S» »"--/ S 
~ { Lemma 77 } 

true 
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Similarly, (16) is demonstrated as follows: 

push(Xl, sl) ...... push(x2. 82) 

<=> { Proposition 61 } 
top push(xl,sl)--top push(x2,s2) f\ 

pop push(xl,sl),-,pop push(x2.s2) 
<=> { top puab.{X,S) reduces to X } 

x1,---,x2 /\ pop push(xl,s1),-,pop push(x2,s2) 

"" { (15) }
 
xl'-'x2 1\ 51"-"52
 

This concludes the proof of refinement. Lemma 77, which relates pop push(I. s) to S, 
is the only part of the proof that is not extremely trivial: the remainder of the proof consists 
of rewriting terms by using the pquations of the concrete specification; this can easily be done 
using a system like OBJ3 [23]. 

4.2 Example: several stack objects 

Hidden sortpd specification is well suited to the object paradigm because objects may be 
thought of as automata with hidden local states, whose behaviour is observable only through 
their visible inputs and outputs. The object oriented language FOOPS [19) di..<;tinguishes 
between sorts and classes; the former refer to abstra.t:'t data types; the latter to abstract 
object classes. Thus, a FOOPS specification distinguishes between hidden sorts for classes, 
and visible dat<;:l, sorts. A class of objects is specified by declaring some methorif, operations 
that modify fhe state of an object, and some attributes, which give access to parts of an 
object's state. A method is typically defined by equations which state how that. method 
modifies an object's attributes. Our proof technique is particularly useful in this context 
becaU& the operations in a FOOPS specification are divided into methods and attributes, 
which correspond to generators and definpd functions. In the following example, we do not 
give all formal details, but rather the broad outlim'S of the proof. In particular, we do not 
consider order sortedness. 

The abstract specification (adapted from (I9]) describes a class Stackvar of stack vari 
ables. The signature comprises that of NAT, as in the previous subsection, the class Stackvar, 
and the foUowing operations: 

m. push Nat Stackvar -> Stackvar 
m. pop Stackvar -> Stackvar
 
at top Stackvar -> Nat
 
at rest Stackvar -> Stackvar
 

The POOPS keyword 'me' declares a ml"thod; 'at' an attribute. The attribute rest is intended. 
to represent the 'ta.i..l' of a stack variable. Note that this attribute bas object values: one may 
think of stack variables as linked lists, whosl:' state consists of a natural number (its top), and 
a pointer to another stack variable (its rest). 

The methods push and pop are defined by the following equations, where N is a variable 
ranging over Nat, and SV is a variable ranging over Stackvar: 

top pop SV '" top rest SV .
 
rest pop SV ~ rest rest SV
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top push(N,SV) = N
 
rest push(N,SV) = SV
 

The postfix operation ! in the last equation is a polymorphic operation thM. ex..ists for all 
FOOPS classes. Its operational semantics is t.hat SV ! creates a copy of the object SV that 
has the same attribntes. That is, for any attribute a and object 0, we have 

a(o !) " aCo) 

We show that this specification is refined by a concrete specification which uses the ab
stract data type of stacks as defined in the previous subsection (though, for the sake of 
simplicity, we ignore its order sorted aspects). The concrete specificat.ion comprises the class 
name Stackvar, and two operations, one which assigns a value to a stack variable, and Olle 

which gives the value held by a stack variable: 

me ." Stackvar Stack -> Stackvar
 
at val Stackvar -> Stack
 

The assignment method (:=) is defined by the following equation, where SV is a variable 
ranging over Stackvar, and S is a variable ranging over the sort Stack: 

val (SV := S) = S 

Thns stack variables in the concrete specification may be thought of as cells which hold values 
of sort Stack. 

The refinement of the methods pusb and pop, and attrihutes top and rest, is given by 

thE' following equations. 

pusb(Ii,SV) = SV := push(N, val SV)
 
pop SV = SV := pop val SV
 
top SV = top val SV
 
rest SV = SV ! := pop val SV
 

The operations push, etc., in the right-hand sides of these equations are tbe operations from 
STACK. The last equation perhaps requires some explanation. In t,he abstract specification, 
the attribute rest returns an object that is different from its argument (hence'! '), wit,h value 
the 'taU' of its argument (hence 'pop'). 

The visible equations of the abstract. spE'cification hold in the concret.e as a result of these 
equations. .:o a proof of refinement need only consider the hidden equations: 

rest pop SV rest rest SV 
rest pusb(N,SV) SV ! 

We use Proposition 63, with G = {pusb.pop} and D = {top,rest}. This division is 
natural. because G contains all the methods of the abst.ract specification, and D all the 
attribut.es. The proof obligations are: 

(17) rest pop SV "--' rest rest SV 

(IS) rest pusb(N,SV) ~ SV 1 

(19) SVl .....- SV2 0::> push(N,SV1) '-' pusb{N.SV2) 

(20) SVl ~ SV2 0::> pop SVl ~ pop SV2 

We use the following lemma: 



Lemma 78 If val SVl :::: val SV2 then SVl --- SV2.
 

Proof: To show that, SVl '-' SV2, it sufficell to show that c[SVl] c[SV2J for all visible contexts
0::: 

c built from top and rest. Such contexts are necessarily of the form top reSt; z for some 
i E w. We pwceed by induction on i. For the basis, we have: 

tOll SVl top SV2.. 0::: 

top val SVl =:= top val SV2 

<= 
val. SVl val SV20::: 

For the induction step, 

top rest' rC2st SVl -== top resti rest SV2.. 
top rest i (SV1! := pop val SV1) top rest' (SV2! := pop val SV2)0::: 

{= { induction hypothesis }
 .. val (SV1! := pop val SV1) 0::: val (SV2! .= pop val SV2)
 

pop val SVl = pop val SV2 

<= 
val SVl = val SV2 

o 
Now (17) and (18) are easy cunsequences To sbow (HI) we calculate as follows: 

push(N, SV1) '- push(N. SV2) 
{:} { Proposition 61 }
 

top push(N,SV1) '-' top pushCN,SV2) fI
 

rest pushCN,SVl) -...- rC2st pushCN".SV2)
 
{:} { first conjunct trivial, definition of push}
 

rest (SVl :~ pushCN, val SVl)
 
rest CSV2 : .. pushCN, val SV2»
 

{:} { definition of rest }
 
(SV1:= push(N,val SV1»! val SVt
';r 

(SV2:= push(N,val SV2»)1 :z val SV2 , 
{= { see below}
 

SVl ----- SV2
 

The last step uses t.he fact that SV : ~ val SV' '-" SV', which is a consequence of Lemma 78 
and the transitivity of ~'. 

Finally, (20) is demonstrated by the following calculation. 

pop SV1---pop SV2
 
{:} { Proposition 61 }
 

top pop SV1 top pop SV2 A rest pop SV1--rest pop SV2
 
{= { visible equation.~ hold; (17) }
 

top rest SV1-----top rest SV2 A rest rest SV1 reat rest SV2
 
{= { '"--' is a V-congruence }
 

SV1,--,SV2
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We conclude that the refinement is corrcct. 

4.3 Example: history lookup 

This example is based on Henniker [24J. \....hpI1' the correctness proof is performed by context 
induction. Our proof does not need induction at all. 

The abstract specification defines a. class of abstract machines: 

obj STATE is pr NAT 
pr QID 

class State 
op init -> State 
op update : Id Nat State -> State 
op lookup Id State -> Nat 
vars X Y : Id 
vars H N : Nat 

vars S : State 

eq lookup(X,init) = 0 
eq lookupeX. update(Y,N,S» = if eqeX,Y) then N else lookup(X.S) fi 
eq update(X. H. update(Y,N,S» = if eqeX,Y) then update(X.H.S) 

else update(Y,N,update(X,H,S» fi 
endo 

where QID is a module which defines a sort Id of identifiers: we assume that tbis has an 
equality predicate eq. Henniker [24] proves that this specification is correctly rrfined by an 
abstract macliine that keeps a history of all updates; this abstract machine therefore does not 
satisfy the third equation of the above specification, although it does behavionral!)' satisfy it. 

However, the third equation of this specification is superfluous, because any algebra which 
satisfies the first two equations (which are ofvisihle sort) will necessarily behaviourally satisfy 
the third equation. Formally. we have E ~ e, where E is the set consisting of the first two 
equations, and e is the third equation; in other words, all bebavioural E-models behaviourally 
satisfy e. We can prove that E 1= e using the proof technique of Section 3.2. because what 
we are provmg is that the specification STATE is refined by STATE', where STATE' is STATE 
minus the third equation. 

To show the correctness of this refinement, let G = {init, update} and D = {lookUp}, 
We must show that all equations of the abstract specification are related by '---', and that 
-' is a G-congruence. Obviously, the first two equations of STATE hold in STATEI, and are 
therefore related by '---'; as for the third equation, note that the only D-contexts are of the 
torm lookupeV, z) for some identifier V. Therefore we need only show that for all identifiers 
v, the foll(Jwing equation holds in STATE': 

eVX,Y, K, N, S) 

lookup(V, updateeX, K, update(Y,N,S))) 
look'Up(V, if eq(X,Y) then update(X,K,S) 

else update(Y,N,updateeX,K,S)) fi). 

This can be shown by case analysis on the equality of x, Y and V. For example, if V = X = Y 
then 
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lookup(V. update (X. H, update(Y,N,S») 
•	 H
 

lookup (V , updateeX,H,S»
 
:	 lookup (V , if eq(X,Y) then update(X,H,S)
 

else update(Y,N,update(X.H,S» fi)
 

andifV=X::j:. Y then 

lookup (V. update(X, H. updateCY,N,S») 
H 

~	 lookup(V, update(X,M,S» 
lookupeV, update(Y,N.update(X,H,S») 
lookup(V. if eq(X,Y) then update(X,H,S) 

else update(Y,N,update(X,H,S» fi). 

The Case where V -I- X is similar. 
Finally, to .show that. '- is a G-congruence, we need only show the following implication 

for all states 81 and 82: if 

lookupev, 81) ~ lockupCV, 52) 

for all V, then 

lookup(V. update(X,N,Sl» ~ lookupeV, update(X.N,S2» 

for all V,X and N. This is straightforward to show by Coa..-<>e ana.lysis on eq(X,V). 
Note that in this example we do not need induction on contexts; becau~ the set D 

of derived functions contains no 'recursive' operations (i.e., operations which take states to 
states), unlike the stack examples above, we need show satisfaction of the abstract equations 
in only a finite number of contexts built from D, which leads to very simple proofs. 

5 Conclusion 

We have given definitions of refinement and implementation for hidden order sorted specifi
cations, and a technique for proving cOrrectness of refinement which is ba.'3ed on splitting the 
abstract signature into generators and derived functions. This technique leads to proofs based 
On equational logic which seem much simpler than other correctness proofs in the literature. 
Moreover, 'We have shown that this technique also applies to proofs of correctness of partial 
implementations. Our approa,,:h applip,s directly to the object paradigm by associating vL<;ible 
sorts with data types, and hidden sorts with object classes. The proof technique is being 
implemented in the mechanised theorem prover 20BJ [21, 30]. 

AB noted in Section 3.1, our definition of refinement generalises that of Henniker [24] 
to the order sorted CMe. Henniker proposes a form of context induction as a technique for 
proving correctness of refinements; the proof technique we develop in Section 3.2, based on 
splitting a signature into generators and derived functions, seems to simplify such proofs 
by redUcing the number of case analyses in induction steps. Moreover, 8.'l is clear from the 
example in Section 4.3, induction on contexts is only necessary when an object has attributes 
(Le., derived functions) of hidden sort, such 8.'l pop in the stack example. H there are no 
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attributes of hidden sort, then the number of contexts is essentially the same as the number 
of attributes, and behavioural satisfaction can be proved very simply. 

The proof technique of Proposition 63 first appeared in [16]. A recent technical report 
by Bidoit and Henniker [IJ uses a similar approach to provide a technique for proving he
havioural satisfaction of equations in maay sorted algebra. In particular, they are interested 
in identifying sets of contexts whicb are sufficient to establish behavioural equivalence, in the 
sense that if e[l] = c[r] for all c in a given set. of contexts then land T are behaviourally 
equivalent. They use a notion of 'Observability Kernel', a finitary first order formula which, 
in the terminology of our Proposition 63, states the following: behavioural D-equivalence ig 
equal to behovioural equivalence if hehavioural D-equivalence is a ¢G-congruence, particular 
r:a.se where Q is the identity signature morphism, where D contains all operatiom; in 'E which 
take a hidden sort to a visihle sort, and G conta,jns all operations taking hidden sorts to 
hidden sorts. For example, this very special case handles the division into generators and 
derived functions used in the example of Section 4.3, but is not appropriate for either of the 
other examples we give. Bidoit and Henniker develop some general sufficiency results for setg 
of contexts to prove behavioural equivalence, but we believe that in most applications. guch 
sets of contexts will be those arising from subsignatures of generators and derived functiong. 

The main difference between our definitions of implementation and refinement is that 
refinement requires all models of the concrete specification to give rise to models of the ahstract 
specification, while implementation simply requires all ground equations of the abstract theory 
to be satisfied, up to observability and termination, in the concrete theory. The notion 
of implementation, whose definition depends on the notion of term, and in particular on 
the notion of error term, is therefore less abstract and less easily understood than that of 
refinement. In general, it is more difficult to prove the correctness of an implementation than 
a refinement, since proving equivalence up to termination may be very complex. However, 
the notion of refinement seems sufficiently powerful for most examples that arise in computer 
science: we did not succeed in finding a convincing example of an implementation that was 
not actually a refinement. 

Our use of hidden order sorted algebra leads to an abstract treatment of states of ob
jects, and to a similarly abstract treatment of object refinement. Although our use of vertical 
signature morphisms IIleans that refinements are not, in general, expressed by theory mor
phisms, our definition of refinement nevertheless exploits the duality between theories and 
models that is captured by the theory of institutions. In particular, because refinements in our 
approach are expressed by hehaviour-preserving vertical signature morphisms, a refinement 
simply translates the syntax of the abstract theory into the syutax of the concrete theory, 
thus avoiding the possibly IIlessy details of how states are represented. In particular, we do 
not rely upou a mapping from the concrete representation to the abstract representation, as 
do many other approaches, e.g., [25. 2, 6, 4]. This can be a significant simplification. 

One issue not addressed in this paper is concurrency. Hidden sorted specifications can 
be thought of a.., specifying systems of concurrent, interacting objects. Our approach to 
refinement i.., obviously applicable to serial evaluation by t.erm rewriting (as in OBJ), but 
less obviously to concurrent models of computation. Goguen and Diaconescu [15] give a 
constructlon for the concurrent interconnection of a collection of objects, and show how such 
interconnections can be enriched with interactions between component objects. 'Ve hope to 
develop a sheaf theoretic sem.aotics for FOOPS objects (3S in [11]) whlch addresses such issues 
and extends our notion of refinement to concurrent, interacting systems_ 

Another issue not addressed is that of 'bounded refinements' [26, 27J. where some kind 
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of size restriction is imposed on the concrete object. For example, stacks might be refined 
by stacks of a fixed maximum depth. ]0 such cases, the concrete specification raises errors 
where the abstract does not, which is exactly the opp06ite of our definition of refinement, 
which allows the concrete specification to handle errors raised by the abstract one. It would 
be interesting to investigate whether our approach could be adapted to cover bounded reBne
ments, for example by using sort constraints [31] to treat the case where au error is raised by 
a bound beiug exceeded, in much the same way that Kamin and Archer [26} use preconditions 
to specify when a bound will not be exceeded. 

A final area worth further investigation is the relationship between vertical and horizontal 
structuring operations. This issue was raised in an abstract way by Goguen and Burstall 
in [12], who pointed out the desirability of a 2-dimensional category structure, and it has 
been further investigated by SannelJa and Tarlecki [28], Ehrig [6J and others, for a variety of 
different notions of refinement. Our definition of refinement is transitive in the seDse that if 
<)1 : SI -t 52 is a refinement and ¢2 : 52 --+ 53 is another, tben so is ¢l; dJ'l : 51 -t 53, i.e., 
refinement is compositional. We intend to explore our definition of refinement in relation to 
some of the other 'Laws of Software Engineering' ment.ioned in [12J. 
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