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Abstract

We propose a new semantics for rewrite systems based on interpreting tewrite rules as in-
equations between terms in an ordered algebra. In particular, we show that the algebra of
normal forms in a terminating system is a unignely minimal covering of the term algebra. In
the non-terminating case, the existence of this minimal covering is established in the comple-
tion of an ordered algebra formed by rewriting sequences, We thus generalize the properties
of normal forms far non-terminating systems to this minimal covering. These include the
existence of normal forms for arbitrary rewrite systems, and their uniqueness for confluent
systems, in which case the algebra of normal forms is isomorphie to the canonical quotient
algehra assgciated with the rules when seen as eqnations. This extends the benefits of alge-
hraic setnantics to systems with non-deterministic and non-terminating computations. We
first study properties of abstract orders, and then instantiate these to term rewriting systems.

1 Introduction

Term rewriting is the the basic computational aspect of equational logic and is fundamental to
prototyping algebraic specifications. The vast majority of the literature in this area focnses on
terminating rewrite systems, i.e., systems where no infinite rewriting sequence occurs But there
is now increasing research on the semantics of non-terminating systems. Non-strict functional
languages such as MIRANDa [23] provide a practical reason to study such systems, since one can
write non-terminating functions that “compute” jufinite structures, such as the list of all prime
numbers. Moreover, it is often desirable to write terminating functions using other functions
whose termination cannot be established. Such use of intermediate non-terminating fonctions
may seem less peculiar if we note an analogous technique in imperative languages: it is not
unusual to see in a terminating C program a loop of the form
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4 1 INTRODUCTION

while (1) { ... }

Another application is in specifyiug reactive or stream-based programs: for example, an operat-
ing system should not terminate. Also, studying non-terminating rewrite systems deepens our
knowledge of rewrite systems in general. More specifically, it shows us which properties of a
terminating rewrite system arise just because it termipates, and which are independent from
termination.

The usual semantics for rewrite system is hased in interpreting rewrite rules as equations
and rewriting as a particniar case of equational reasomng, Our proposal is different. Rules have
a computational meaning ~ rewriting a term is computing it, i.e., findiug its value, which is just
a non-reducible term (a normal form). The conuection with equations is seen in auother way —
in certain cases, we can replace equational reasoning by another type of reasoning: two terms
are equal if they have the same value, i.e., if the result of computing them is equal. This can
only be done if we guarantee that every term has a vnique value and every term is equal to its
value. The termination of a rewrite system ensures that every term has a value (normal form).
But, in general we cannot guarantee this.

‘The research that has been done on non-terminating rewrite systems [21, 4, 6, 17. 20, 22. 7,
5, 16] is centered on seeking semantics for these systems where the usual properties of confiuent
systems (like uniqueness of normal forms) still hold. Most research that has been done on the
semantics of non-terminating rewrite systems follows ideas of the ADJ Group on continuous
algebras [12], where the authors give an elegant algebraic definition of finite and infinite terms
as a way of completing the term algebra: they show not only that the algebra of fiuite and
infinite terms is continuous but also that every infinite term is the least upper bonnd of a set
of Bnite terms. These approaches exteud the original set of terms (with infinite terms) in such
a way that every term has a value. The problem with these approaches is that the connection
referred above between rewriting and equatioual reasoning is not preserved: terms that are not
equal can have the same value! Kennaway ef al. (16] show that even in confiuent systems, the
w-normal forms defined iu [7} are not unique. Also the existence of these w-normal formns, as
well as infinite normal forms [16] is not only dependent ou the coufinence of a rewrite system,
but on other properties like left-linearity and top-termination.

Our apswer to this problem is to interpret rewrite rules as inequations. We then have a
variant of equational logic {the logic of replacing equals for eqnals) called inequational logic
- the logic of replacing terms by larger terms!. The models in this logic are preordered
algebras - algebras whose carrier is a preordered set. The term algebra is uow a preorder —
a term { is above a term #' iff all values of t are values of &' — and the set of values is uothing
more than the maximal elements in this preorder. This view of rewriting is spmehow similar
to the algebraic definition of refinement {e.g. [14]). This view is also consistent with the work
of Meseguer [19, 18], where it is argued that rules express change in a computational system.
The main difference from inequational logic and Meseguer's rewriting logic is that, apart from
limiting ourselves to the unconditional case, we do not record in any way how & reduction was
performed. Inrewriting logic, each reduction =% ¢’ is associated with the sequence of (parallel)
rule applications. Since we omit this information, we cannot distinguish between two different
reductions with the same start and end points. However, the simplicity of our approach makes
it quite elegant where it applies, as demonstrated by the proofs of completencss and soundness
of inequational logic given in Section 4.

'In standard rewriting texts {(e.g., [15]) rewriting is often associated with simplification; thus we should have
said replecmg lermo by srnaller lerms. The reason for using our terminology comes from the fact that ju a great
part of the examples of non-terminating rewrite systems, rewnitiag increases the size of terms.



In the case of terminating and confluent rewrite systems, normal forms constitute an igitial
algebra, We show that this algebra has a very special property: it is 2 uniquely minimal
covering of the term algebra. It is this property that makes it the obvious choice for imple-
menting the abstract data type described by the rules, and moreover, its initiality is provable
from just that property. We also show that for globally finite rewrite systems, the results proved
by Goguen [8] follow from the existence of a uniquely minimal cavering of the term algebra.

To deal with arbitrary non-terminating systems, instead of extending the preorder of terms,
we use another preorder - of the rewriting sequences - together with an injective embedding from
the original precrder into this other one. This preorder has the important property mentioned
above about the preorder of terms in the terminating case: all elements have a value, that we
call a nermalizing sequence. In other words, this preerder has a minimal covering. Inthe case of
confluent systems these values are unique, allowing us to generalize the properties of the algebra
of normal forms to this one. Among the differences between the results obtained hereand in the
cited approaches, we would emphasize the existence of normal forms for arbitrary systems, the
uniqueness of these normal forms in confluent systems, and in this last case. the isomorphism
between these normal forms and the canonical quotient algebra. We feel that the sucress of the
approach presented here paves the way to applications of rewrite systems to concurrency, e.g.,
results along the lines of Hennessy [13] and Meseguer [19, 18].

Section 2 introduces the notation that we will use. In Section 3 we present some abstract
properties of complete preorders and minimal coverings. Finally, we apply these properties to
the particular case of term rewriting systems in Section 4. For simiplicity of exposition we present
here only the unsorted case, but everything extends smoothly to the many-sorted case.

2 Preliminaries

A preorder (X,Cy) consists of a set X and a reflexive and transitive binary relation Cx over
X. A preorder i3 a partial order iff Cx is anti-symmetric; it is an equivalence iff C x is
symmetric. Let (A, =) be an equivalence; for each ¢ € A, let [a]= denote theset {b € 4| a = b}
and let A/— denote the set {[a]= | ¢ € A}. Given preorders (X,Cx) and (¥,Cy), a mapping
f: X o Y is monotonic iff f(z) Cy f(y) whenever £ Cy y. It is an order embedding iff
forevery z,y € X,z Cx v iff f(z) Cy f(y). Given a subset X of 4, an upper bound of X is
an element a € A such that ¥z € X 7 C a. An upper bound a of X is a least upper bound
{lub) iff for any upper bound 2’ of X, a C a".

Given a preorder A, a non-empty subset C of A is a chain iff it is totally ordered (ie., for
every zy,4p € C either 1y € 3y or 1; C 1;). A chain is an w-chain iff it is denumerable. A
non-empty subset A of A is directed iff for every pair of elements d) and d; of A there exists
an element d in A such that both 4; T d and dy T4 d. A preorder A is w-complete iff every
w-chain has a lub in A, and is complete iff every directed subset of A has a lubin A. If C
is a partial order then the Inb of any set A, if it exists, i8 unique and is denoted by [JA. A
monotonic mapping f : A — B between w-complete preorders is w-continuous iff it preserves
least upper bounds of w-chains, i.e., for every w-chain X, if 7 is a lub of X then f{z] is a lub
of f(X). Similarly, if A and B are complete preorders, f is continuous i for every directed
subset X of A, if z is a lub of X then f(z) is a lub of f{X).

Given a preorder A we define its kernel, denoted =, as the largest equivalence contained in
it. l.e., forall z in A,

x~y iff zCy and yCr
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We also define the partial order A/~ = (A/~, C.) by
[Fl=Coly)le M =Ty

For each menotonic mapping f : A =+ B, we define the monotonic mapping f : A/~ = B/~ to
send each [a]. to [f(a)]~.
Given a preorder A = (A,C), we define (A, <) to be the preorder where A, is the set of
w-chains of elements of 4, and
ag b iff Yidjae Ch

For each monotonic mapping f : A — B, we define the mapping £, : A, —» B, by

fw((aﬂl apy -, }) = U(aﬂ):f(ﬂl ): ‘- )
It is well known (3] that A, is an w-complete preorder, and that f. is w-continnous. Moreover,
Proposition 2.1 ([1]} If A 1s denumerable then A, 15 complete and ., is continuous.

Given a preorder (A, 4), let =4 be defined as a =4 b if there exists a sequence {ap,....0n)
of elements of A such that @ = g, ¥ = a,, and foreach 0 <2 <n a; C 4 o, Or @41 CA .
In other words, =4 is the symmetric and transitive closure of C4. We denote by A= the set
{[el=, | a € A}. Given a monotonic mapping f : 4 = B, f= : 4= = B= sends each [g]=, to

[f{a)l=g-

2.1 Algebras and Equations

A signature T is a family & = {Z,},c.,. An element 0 € Z, is called a function symbol of
arity n, and in particular, an element of T, is called a constant symbol. A signature ¥ where
o = & forall n > 0 is called a ground signature, and is basically just a set of symbols.
Given signatures . and £ their union ZU 1] is defined as (EU2), = . U §2,; T and 2 are said
to be disjoint if |J,, £, and {J,, {2, are disjoint.

The set Ty, of all X-terms is the smallest set of strings over {{J, Z,) U {(.),,} {where (, ),
and , are special symbols disjoint from E) that contains T, and such that r_r(_t{i. -ostn) € Ty
whenever each ¢ € Tn. We will often omit the vnderlying of these symbols, For a ground
signature X, we denote by Ty (X) the Z-algebra Tox.

A X-algebra is a set A together with a fupction A, : A™ — A foreach ¢ € £,. In particular,
if n =0, A, is just an element of A. A T-homomorphism between Z-algebras A and B isa
mapping h: A = B such that h(A,(er,...,a,)) = Bo{h{a1),....k{a,)) for every ¢ € T,..

Tx canbe seen a Z-algebra in the obvious way. A key property of this 33-algebra is initiality:

Theorem 2.2 For gny Z-algebra A, there exists a unique E-homomerphism from Tx lo A.

Corollary 2.3 For any ground signature X disjeant from Z, D-algebre A, and mappingf: X —
A (such a mapping is often called an assignment ). there emsts o unigue X-homomorphiim
0 : Tg(X) > A thet extends 8 m the sense that 8(x) = 8{z).

In the particular case where 4 is Te{¥') then an assignment 8 is often referred as a substitution
and & is the mapping that applies the substitution 8 to terms.

Given a signature X, a T-equation (or equation if the signature is understood from the
context) is a triple (X, !, r) where X is a set of variables (i.e., a ground signature) disjoint from
L, and [ and r are T-terms. We often write an equation in the form (Vv.X) I = r. A T-algebra
A satisfies the equation (YX) ! = r if for all assignments 8 : X — 4, 8(I} = 8(r}. A T-algebra
A satisfies a set £ of equations if it satisfies each of the equations in that set.

Given a set £ of Z-equations, {Tx,=g) is the least equivalence that such that
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o for all equations (¥X)!=rin £ and assignments §: X — Ty, 8({} =¢ a(r),

s for each g € T, o(ty,. -, fa) = o(d]...., I} whenever forall 1 € 1 < n, ¢, =g .
We can make Tg/z, into a E-algebra:

s for each o € Xy, (T‘J/Eg)a =[ol=g,

+ for each ¢ € ¥a, (Pr/=glolltilzgy - [tn]=g) = [ty - b dl=g
Again this algebra has an important property:

Theorem 2.4 For any I-clpebra A that solisfies the egualions i E, there exists 0« umique
%-homomorphism from Tr/=, lo A.

2.2 Preordered Algebras and Inequations

A preordered (resp. partially ordered) T-algebra is a preorder (resp. partial order) (A, C 4)
called the carrier of the algebra, together with a monotonic mappiug A, : A™ — 4 for each
7 € Dy,. A preordered Z-algehra is continuous {resp. w-continuous) if its carrier is complete
(resp. w-complete) and each of the functions is continuens {resp. w-continuous).

Given a preordered algebra A we define:

+ the partially ordered E-algebra A/. as having carrier {A/~,C.), and for each ¢ € I,
(Afm)e = (Ao)~;

e the w-continwous precrdered I-algebra A4, as having carrier (A4, «), and for each ¢ € I,
(Aw)(r = (Aﬂ)w;

s the S-algebra A= as having carrier A= and for each o € I, (A=), = (Ay)=.

Given a signature I, a E-inequation (or just inequation if the signature is understood from
the rontext) is a triple (X,{,r) where X is a set of variables disjoint from ¥ and { and r are
T-terms. We often write an inequation in the form (VX) [ C r. A preordered T-agebra A
satisfies the inequation (¥X) I C r if for all assignments & : X — A, E(l) Ca B(r); Asatisfies a
set R of inequations if it satisfies each of the inequations in that set.

Theorem 2.5 If A s a preordered T-algebra that satisfies a set R of inequations then so do
Al and A, (and thus AL/f).

The relation between equations and inequations is expressed by the following:

Theorem 2.6 If A is a preordered Y-algebre thot salisfies the inequation (VX ) { T r then A=
satisfies the equation (VX) I =r.

The implication is proper and truly characterizes the relationship between equations and in-
egquations.
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3 Complete Orders and Minimal Coverings
A preorder {4,C) is terminating if there exists no infinite chain
wlCaC---Caoa,C---

where a o' iff a C o’ and a # a’.

The first and more obvious order theoretical property that termination establishes is that
any terminating preorder is a partial order. Moreover, if {A,C) is terminating then for any
(possihly infinite) sequence

agC o C-- Cag -

there exists an N 2 0 such that, for alt i, a; Can. if t < N then o, C 6,49 C--- C ay and so
a, C ay;if1 2 N, thea a, = ay and so a; C ap. In other words, for any chain ' there exists &
finite sub-sequence €' of C that dominates it. This can be used to show that any terminating
preorder is a a complete partial order. And thus we may establish that any preordered I-algebra
whose carrier is terminating is in fact a complete partially ordered X-algebra.

A covering of a preorder (4,C) is a subset X C A such that for every a € A there exists
a £ € X such that o C z. A covering X is minimal if no proper subset of it is a covering of
(A, C) {or equivalently, of (X,C)}). The relation of terminating relations with the existence of

minimal coverings is expressed by:

Proposition 3.1 If (4,C) s terminating then Ny = {a € A | a 1s mammal} is a minimal
covering of (A, C).

The following examples show that this implication is proper:
Example 3.2 Consider the preorder
a \
ag 4 S — Oy — - -

There ezusts a minimal covering of {a.}i30 U {a}, namely the set {0}. However the preorder is
non-terminating.

Example 3.3 Other examples of non-terminating preorders where there ezists a minimal cov-
ering are:

/a /“\
4 —e 3] — - — Oy —— e -+ Qg —dad] — - ——+ Ay —> A2p4] —— - - -

N N

In both coses the set {a, o’} i a minimal covering of the depicted preorders and these are non-
terminating.



The main difference between these and Example 3.2 is that in the first one the minimal covering
has an extra property: for each ¢ € A there exists a umque element in A" above a. This
maotivates the foilowing definition:

Definition 3.4 Given a preorder (4,C), a mimmal covering X of A4 15 ¢ uniguely minimal
covering if for any element a of A there ezists o unique element £ X such thet aC .

These definitions of coverings, minimal coverings, aud uniquely minimal coverings, correspond to
the definitions of floorings in [9]. The only difference is that we are defining these corepts with
respect to an arbitrary preorder rather than for the particular case of the underlying preorder
of a given category. The importance of uniquely minimal coverings is that:

Lemma 3.5 Given an preordered D-algebra (A, T} and o untquely minimal covering N of 4 then
the unique mapping nfq : A = N sabisfying a C nf 4(a) for any element a i A. olso satisfies:
(1) if a C o' then nfa{a) = nfa(a"); (2) for any element o € A, nfa(nf a(e)) = nfs(a); (3) for
any element e ¢ N C A, nfa(a) = @,

Proof. Note that of 4 sends eachk element a of 4 to the unique element a’ of A" such that
@ C a’. Then, as ¢ C a' C »fs(a’), and nf.(a} is the unique element of A" abowe a, then
uf4(a) = nfs(a’), proving {1). Using the above and the fact that ¢ T nfa{a) we have that
nf 4(nfa(a)) = nf4(a), proving (2). Finally (3) follows because s € A and ¢ C a. D

Using this Lemma we can show that

Proposition 3.6 Given a preordered L-algebra A and ¢ umguely mimamal covering N of dts
cerrier then we can make N info a Z-algebra: for eaeh o € T, we define N, as

Nﬂ(ﬁlv' . :En] = ﬂfA(Aa(E]: e 7Eﬂ)

for all elements 5, € A. Moreover the mapping of 4 as defined alove is a E-homomorphism
from A (when seen as a T-algebru) to M.

A preorder (4,C) is confluent if, whenever a C a; and a T e; there exists o' such that
ay C o and oy C g’

Remark 3.7 If (A,C) s confluent then, for every a € A, the set {a’ | o C o'} is dircted.

Hence, if {A,C) is also complete, the least upper bounds of these sets exist, The following
Proposition shows how uniquely minimal coverings ate related to confluent preorders

Proposition 3.8 Given a preorder {A,C), a mnemal covering N of 4 is uniquely minimal iff
C 15 confluent.

Proof. We prove the ‘if’ part by contradiction. Assume that A is a minimal covering of A and
that there exists a € A for which there exist a;, a2 € M such that ¢ C ¢) and a C ay and a3 # as.
Then there exists a’ € A such that ¢ C @’ and gz C a’. Let 4" be an element of A snch that
a' C a”; this element exists because A is a covering of 4. Then the set (N — {a1, &}) U {a"}
is a covering of A and is a proper subset of A because g # az. Thus A" is not a minimal
covering contradicting the assumption. Hence a; = gz. For the ‘only-if’ part assume that for
some a, @1, a; € A we have that ¢ C a; and a C ap. Let a},a} € A be such that g C a and
a; C a}; these elements exist because & is a covering of A. But then ¢ T ¢} and s C af. As
there exists a unique element of A" above a, a{ = o) and 50 a; C of and a3 C=a{. O
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Uniquely minimal coverings need not be unique. Consider the preorder

a—=p

/|

d' -—
Any of the sets {b}, {¢}, or {d} i3 a uniquely minimal covering of {a, b, ¢, d}. However,

Proposition 3.9 Given a preordered T-algebra A and two umquely minimal coverings A and
AN of its carrier, the asseciated L-algebras N and N’ are 1somorphic.

But in the case where A is a partial order, uniquely minimal coverings are indeed unique. We
can now relate the completeness of a partial order with the existence of a uniquely minimal
covering.

Proposition 3.10 {f A is a complete and ronfluent partral order then there ezists a umquely
minimal corering of A.

Proof. forany a in A4 let @ be defined as @ = | |{a’ | @ C @’}. That A is confiuent ensures
that this set is directed and as A is complete that lub exists. Define N as A" = {@ | a € A}.
We show that A7 i3 a unignely minimal covering of A by showing that (1) it is a covering, (2} it
is minimal, and (3} it is uniquely minimal. To prove (1},let a in A. Then @ in A and o C @.
Now, let A C A be another covering of 4. We show that A’ C A’ and thus &' = N’ proving
(2). Let ne A; then, for some a € A, n = | [{o’ | 0 T a’}. Let n' € A” be such that n C n' (n’
exists because by assumption N is a covering of A and n € N'C A); then s CnC n’ and son'
belongs to the set {a' | ¢ C a’}. As n is the maximnum of this set, 2’ C n. The auti-symmetry
of C establishes that n = n’ and thus n € A”. (3} follows directly from Proposition 3.8 O

Lemma 3.11 If A 15 a complete partial order and N is o uniquely minimal covering of A, then
the mapping nf 4 : A =+ A is a continuous mapping from A lo the complete partial order (N, =).

Proof. Let A be a directed subset of A whase lub is d. Note that as A7 is a uniquely minimal
covering, there exists n € A such that d C n = nf 4{d) for all d € A. Moreover d C n = ufa(d).
Then,
U(ata(8) 16 € A} = Li{n} = n = nfa(a)
=nfa(Ll &)

The results we have presented so far can be extended to some kind of non-termination,
namely [or globally finite preorders. A binary relation C over A is globally finite if for any
a € Atbeset {a’'] e C o'} is fimite.

If C is a globally finite binary relation, then for any sequence

wEmE---CaC---

there exists an N 2 0 such that o, C ay for all 1 2 0. This allows us to show that any globally
finite preorder is in fact a complete preordered set. And so, we can show that a preordered E-
algebra whose carrier s globally finite is a complete preordered I-algebra. The main differeuce
from the terminating case is that here we cannot ensure that C is a partial order.



If (A4,C) is a globally finite and confluent preorder we define {_| as the mapping fram A4 to
A/, that sende each e € Ato the class

tad = L Hla')~ 1o C o'}

The well-definedness of {_) follows from the fact that if C is confluent the set {a’ | s &’) is
directed and so is {[a’]~ | 6 C a'}; if C is globally finite, A/ is complete and so that lub exists.

Proposition 3.12 Let A de e preordered L-algebra end C be a minimal covering of A, Then
the set

Cle={ldv € Afns|c € C)
is a minimal covering of A/~. Moreover, if C is uniquely minimal €/~ is the (unique) uniquely
minymal covering of A/~

The proof of this Proposition, shows that we could also prove that if A is a preorder such
that there exists a (uniquely) minimal covering of A/, then there exists a (uniquely; minimal
covering of A. This proof uses the Axiom of Choice. It can also be shown that in fact it is
equivalent to this Axiom. Another use of the Axiom of Choice, or more precisely of Zorn’s
Lemma, is in the proof of the following generalization of Proposition 3.1:

Proposition 3.13 If (A.C) 1s e complete preorder then there enisis o minimal covenng of 11,
From which we can immediately establish that:

Carollary 3.14 If (A, ) is a globally finite preorder then there ezists a miramal covering of it.
We can strengtheu this result for the case of confluent prearders:

Proposition 3.15 If(A,C) is a globally finite and confluent preorder then there erists o uniquely
minimal covering of #, and d unique uniquely minimal covering of the partis] order A/,

These results can again be lifted to algebras.

We bave seen in the previous sections how termination ensures the existence of 2 minimal
covering {which is uniquely minimal in the case where C is conHluent). We have alsoseen that
in some cases of non-termination (giobal finiteness) these properties still hold. But in general
they don’t: just consider the natural numbers ordered in the usual way; then the chain

0,1,2,..,n,..)

doesn’t have any upper bound; moreover there is no minimal covering of w.
£

4 Applicatidns to Term Rewrite Systems

Given a signature £, a S-rewrite rule (or simply rewrite rule) is a triple (X, !, r] where X
is a set of variables disjoint from ¥ and I and r are (£ U X)-terms. It is often required that
the variahles that occur in r alse occur in [ and that ! is not a single variable. In the present
work we do not impose cither of these restrictions. We often write a rewrite rule in the form
(vX) !> r. A term rewrite system (TRS) is just a set rewrite rules.

Given a TRS R and a ground signature X, the one-step rewrite relation is denoted by
—+5 and defined as the least relation over Tr{X} such that
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e for al rewrite rules (¥A) [ — r in R and assignments & : A — Tg(X), 6(1)—=x 8(r),

* for exh operation symbole € E,, o(ti, -, f—10 By bet1e - - - - tn)—og oltie ot B terr -

whenever t, 35 t].

We define the rewrite relation —+% as the reflexive and traositive closure of =4 |, and say that
a rewrite srstem R is confluent if for all X, —5 is conflnent.

The simtlarities between the definition of a rewrite rule and an inequation are very important.
In fact, wken we see cach rule (VX) I — r of a TRS R as the Z-inequation (VX) { C r. the
definition of the rewrite relation establishes that {Tg(X),—=% ) is a preorder. Moreover, this
enables usto define the preordered T-algebra 0Tt g(X) as having carrier (Tp(X). —% ) and,
for each operation symbol o, the corresponding function (0Ts z(X)), defined as

(OTS,R.(X))-’“'I~~--~tr\) = (TE(X}).‘,“[....J“) = D’(tl,. .. ,ln)

That thest functions are monotonic follows because alfi.....ta)2% o(tl,..., &), whenever
t.—% &/ for all .. The above definition of the rewrite relation shows that OTg g (X'} satisfies the
inequations in R. allowing us to establish the following roinpleteness result:

Theorem 4.1 If, for some set of inequations R, an ineguation (WX)#, C & ss sahwsfied by all
preordered S-algebras that satisfy R, then h—% &

Moreover,

Proposition 4.2 Let A be a preordered S-algebra satisfyang R and A : X — A; then the unique
E-homomerphism 8 : Te(X) — A that ertends 8 15 @ monolonic mapping from OTy (X)) to A.

This allows us to establish:

Theorem 4.3 Given a ground signature X, ¢ preordered T-algebra A sabisfymng R, and on
assignment § : X = A, there exists a unique ordered S-homomorphism 6 : OTg g(X) — A that
eztends 6.

And thus, for any preordered T-algebra A satisfying R, there exists a unique monotonic E-
homomoerphism from OTx g to A. In other words, OTg x is initial in the class of preordered
T-algebras that satisfy the inequations of R.

These results point out the benefit of treating rules as inequations. They do not depend on
confluence, termination, or any other property of R, thus representing t he answer to the problem
of providiag an algebraic semantics for rewrite rules with a much wider field of application than
the traditonal (equational) solution (e.g., Huet and Oppen [15). Goguen [8]). A typical example
appears it [19]: the specification of a non-deterministic operation CHOICE described by the two

rules
(Vz,y) CHOICE(z,y) — =

(Vz,y) CHOICE(z,y) =y

It does not make sense to interpret these rules as equations: only the trivial model satisfies them!
But taking this new approach, models of this rewrite system are preordered algebras where all
the values of the expressions E and E’ are possible values of the expression CHOTCE(E, E*). The
initiality of OTg r states that for any such model there exists a unique way of interpreting
a term, and that this interpretation is in fact monotonic. Furthermore, Theorem 2.4 can be
obtained as a corollary of this last one. Notice that the preorder { 7={X), >3 )} is nothing
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more then the underlying preorder of the category Tr(X) defined by Meseguer [19] Hence,
the differences with Meseguer's approach are that we do not distinguish different rewritings
between two terms (for a careful comparison of these two formalisms see Section 3.6 of [19]).
The simplicity of our definitions is reflected in the proof of the Completeness Theorem above
and of the following soundness result:

Theorem 4.4 Let R be a TRS, X a ground signature and 11, ty € Te(X). Then, for any pre-
ordered T-algebra A that satisfies the mequations m R, if =% t then A satisfies the inequation
(VX)) H Tt

Proof. Let :X — A be any assignment. As 8 is monotonic then 8(t;) T, 8(&). D

4.1 Terminating Rewrite Systems

A TRS is terminating if the one step rewrite relation is a terminating relation. This. in con-
junction with the results of the previous section, allows us to conclude that, given a terminating
TRS R and an arbitrary ground signature X disjoint from I, the preorder (Tg(X}). 0% ) is
complete, and OTy g(X) is a continuous E-algebra satisfying the inequations in R. Further-
more, if A is a continuous preordered X-algebra satisfying the inequations of R, and 8: X — 4
is an assignment, then the unique monotonic I-homomorphism that extends # is continnous.
This enables us te prove the following [reeness result:

Theorem 4.5 Let R be a terminating TRS. Then, qrwen a ground signature X, a continuous
E-aigebra A satisfying R, and an assignment § : X — A, there erisis ¢ unigque confinuous

T-homamorphism § : OTg r{X) = A that eztends 6.

Thus, if R is a terminating TRS, OTg x is initial in the class of continnous E-algebras that
satisfy the inequations of R. We can now use the results of the previous section to show:

Proposition 4.6 If R is confluent and (Toc(X},—% ) is a continuous Z-algebrn, then for eack
term t, the normal form [tr, of it ezists, is defined as [{Jr = J{V' | to% ¢}

Propasition 4.7 If R is a terminating and confluent TRS there ezisls a (unique) uniguely
manimal covering of the set of termas.

This minimal covering is exactly the set of normal forms ~ A’z z(X). We can now use Proposi-
tion 3.8 to justify the following:

Definition 4.8 Jf R is confluent and (Te(X), 5% ) is a continuous E-algebra, we define the
T-algebra Ng r{X) as having as carrier the set N x(X) and for each o € I, the corresponding
operation in Ny n(X) is defined as

(NE‘R(X))U(TH A :?'\) = ﬂd(?h LR 1IH)ER
forall T, € Nz r(X)

Using Proposition 3.8 again, we can show that

Lemnma 4.9 The mapping [_]r : Te(X) - Ngr(X} as defined above is a T-homomorphism.
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This result, which was proved using only the order theoretical properties of confluent and ter-
minating systems, allows us to show a hasic property of normal forms ~ that, for any o € &,
and terms #; € Tg(X),

[o{t. . ... ta)lr = Ve r(X))o([t]n, - . [ta]lm)
= [o{ltlx.-. .. [&Ir)Ix

Aunother property that follows from these order theoretical resnlts is well known [8]:

Theorem 4.10 [f R is a terminating and confluent TRS, the algebra A'g r{X) 15 instral in the
class of T-algebras that satisfy the equations of R.

The pevious section pointed out how rewriting is naturally linked with preordered algebras.
We showel here which order theoretical properties are associated with termiuvating systems.
These include the existence of a minimal covering of the preorder (Tg (&), >% ) and the fact
that this preorder is a complete partial order.

The rewrite relation partitions the set of terms into connected componcents. Each of these
compouerts corresponds to an equivalence class when we forget the orientation of the rules, that
is, when we consider the reflexive-transitive-symmetric closure of — 5 , lL.e., when we see rules
as equations. Termination ensures that we can fiud a minimal covering of the set of terms. This
minimal covering corresponds exactly to the set of values mentioned in the Iatroduction; the
fact that it is a covering means that every term has at least one value, ie., that every term
is compwable. This minimal covering is composed of the maximal elements of each connected
component: for a given term a maximal elemeut of the component where it lies is a value of
it. Additionally, if the system is couflueut then this coveriug is uniquely minimal, meaning that
maximal elements in each componeut are unique. This implies that each term has a unique
value.

When we see eacb rewrite step as a step iu the computation of a term, and each rewriting
sequenceas a computation of its first element, the completeness of 0Tt »{X ) means that we will
always find the result of a computatioun. In tbis perspective, the confluence of a system means
that any computation of a particular term 1, represented by the set A*(¢) = {t' | 1% t'} will
always give the same result — the least upper bound of A*(¢).

The minimal covering referred above is what Bergstra and Tucker [2} call a traversal of the
quotient induced by the rules when seen as equations. Qur starting poiut is the ordered set of
terms, rather than that quotient. As a consequence, our winimal covering is uuique whereas
their traversals aren't. Stilt according to these authors, the choice of a particular traversal fixes
an operaiional view of the ahstract data type defined by the rules (when seen as equations). But
this is exactly the point of the present paper — the meauing of rewrite rules is primarily linked
with computation. This view is cousistent with the ideas put forward by Meseguer in [19, 18]
where it is argued that we sbould see rewtite rules as expressing change in a computational
system rather than expressing static properties as equations do. Another related formalism is
the conept of canonical term algebra [11], As proved by Goguen [8]. the algebra of normal
forms is a canonical term algebra. However this property does uot follow from the fact that it
is a uniquely minimal covering.

4.2 Globally Finite Systems

A TRS R is locally finite if, for any term ?, the set {t' | £—=5 t'} is finite, and is globally
finite if +3% is globally finite. The systems that we are interested in are locally finite: we caly




4.2 Globally Finite Systems 15

consider finite stes of rules and each rule is composed only by finite terms. In these conditions
it is straightforward to show that global finitness is a proper generalization of termination.
The practical motivation for the study of globally finite rewrite systems was pointed out by
Goguen [8] and comes for instance from the difficulty of dealing with a commutative rule: in
fact if we add a commutative rule to a terminating systems we end up with a globaly fnite
but not terminating TRS. We show in this section that, with the belp of the kernel operation of
preorders we can extend the results presented above to this particular kind of non-termination.
As we will see, this process will not be enough to extend these results to arbitrary systems,

From an order theoretical point of view, the main difference between globally finite and
terminating systems is that in the former, tbe rewrite relation is ne longer a partial order. We
can however use the results abont the kernel of a preorder to establish that:

Theorem 4.11 Let R be a globally finste TRS. Then, given a ground signature X, a confinuous
partially ordered L-algebra A satisfying R, and an gssignment 8 : X — A, there ezista o unique
continuous T-homomorphism 0% ;. (OTgr{X))/~ — A that extends 8, i.e., such that 6{z) =
8% ([z]~).

From this Theorem we can immediately establish that OTxg » /~ is initial in the class of contin-
uous X-algebras that satisfy the inegnations of R.
We can again use Proposition 3.10 to justify the following:

Definition 4.12 Jf R is o globally finite and confluent TRS, for a gtven ground signature X
disfomt from £, we define the T-algebra NF p(X) as having carrer the set

NER(X) ={lthr | t € To(X}}
and, for each o € Ly,
(NER(X)e (fubr, - (tadr) = fo (b, ta)bm
The above observations atlow us to prove that

Theorem 4.13 [f R is « globally finite and confluent TRS, the algebra NE (X)) is isomorphic
to Tex(X). The somorphism h: NEg(X) = (Ts(X)) /=, sends each (thr to [t]=.

From this it follows immediately that if R is a globally finite and confluent TRS, then the algebra
NEg lie, NEn(@)) is initial in the class of X-algebras that satisfy the equations of R. This
extends Theorem 4.10 for the case of globally finite systems. We could use the results of the
previous section to show that for globally finite systems, there exists also a uniquely minimal
covering of OTp r{X). This implies that this covering is also isomorphic to (Te(X))/z,. But
in this case we cannot guarantee tbat this minimal covering is a canonical term algebra. We can
prove {with a proof along the same lines of the one presented in [11]} that in the case of global
finiteness, there exists oae such minimal covering.

The ease which this extension was done is due ta the fact that we are using very abstract
properties of rewriting. As we will see, witb anotber smooth step we can extend te arbitcary
confluent systems.
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4.3 Non-terminating Rewrite Systems

Other approaches to non-terminating TRS's extend the set of terms with infinite terms, in order
that thisextended set satisfies these properties. In this paper we use a different method: instead
of extending the set of terms we use a different set, the set ®_.(X} of term rewriting sequences,
to which there exists an injection? from the set of terms (Ts(X)): the mapping that sends
each term { to the rewriting sequence {¢,¢,...}. As we will see, this set fulfills all the desired
properties, i.e., the properties of the set of terms in the terminating case.

The major constraint that we will assume is the finiteness of the signatures involved (£ and
X). Thishas as major consequence the denumerability of the set of terms Tx( X},

The first observation that we can make about R (X) is that it is a w-complete preordered
algebra sitisfying the inequations of R. Furthermore. for every w-continuous T-algebra A4 in
these conditions and mapping #: X — A, tbere exists a uuigue w-continuous T-homomorphism
8% : R [X)/~ — A that extends 0, i.e., that. for each 1 € X, 8(2) = 8#([{z,z,...)]~). This
implies that R../. is initial in the class of w-continuous E-algebras that satisfy the inequations
of R. Mureover, if both T and X are finite theu the preorder (R..(X), <) is complete aud the
operations of R,(X) are eontinuous, allowing us to prove:

Theorem 4.14 If both X and X ere finite then for every continuous partiaily ordered T-glgebra
A satisfying the ineguations in R and mapping 0 : X — A, there erisis ¢ umigue confmnuous
T-homomorphism 8% : Ro(X)/~ —+ A that eztends 0, re.. satisfying 0(z) = 8%5{([lz.7,.. )]~}
forallzin X.

Again this implies that if ¥ is finite, then R, /~ is initial in the class of continuous X-algebras
that satisfy the inequations of R. Another implication of the conpleteness of R, is that we can
use Proposition 3.13 to establish:

Proposition 4.15 The set
NER(X) = {t € Ru(X) | t 15 mazimal wrt <}
5 @ mintmal covermg of (R, (X)) /.

Each rewriting sequence can be seen as a computation of its first element. The ordering «
between these sequences is then a measure of relative accuracy between these computations. For
[s]~ in M€ (X} we call each ¢ € (5]~ a normalizing rewrite sequence. Each normalizing
sequence {fo, #1,...) being a maximal element wrt <, represents a very particular computation:
none is more accurate than it. It is therefore a good substitute for the concept of normal form.
Note that, unlike the other approaches to this problem, we impose no requirements to tbe rewrite
system in order that these sequences exist.

If % is a confluent TRS then, for any term rewriting sequence £, the set A%{t} = {[¢']. | t <
'} is directed. A direct consequence of this is that the preorder R, (X) is confluent. Hence,
the limit | | A2 (&) exists. This allows us to defiue, for any confluent TRS R, the mapping
{_br i Ru(X) /o - Ry(X) /o that sends each class [~ to {|AL(E).

Given a confluent TRS R we defiue the S-sorted set Ny p(X) as

tr(X) = {{h= |t € R.(X))}

2Recall that the existence of an injection 3 : A -+ B 15 an ahstraction of ihe fact that A4 is contained in 5.
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This set has an important property: it is a uniquely minimal covering of (R, (X))/. This
allows us to use the results of the previous section and define the algehra AF 5 (X) has having
AN 5 (X) as its carrier, and for each o € Ty,

WERX Dt - ") = (RU)6 (', Mhr

Moreover {_}r i5 a2 E-homomorphism from Ro (X) {when seen as a E-algehra) to Mg o(X). If
we compose this L-homomorphism to the one that sends each term ¢ to the class [{]., we get a
T-homomorphism from Tr{X] to A¥p(X) that sends each term ¢ to {{¢,¢.. )hg.

Lemma 4.16 Let R be a confuent TRS, t a term, and t! and £* term rewriting sequences such
that th—% t g—t2. then, if [al]l > and {e?] = are arbitrary elements of ALY} and AL{1?)
respectively, there emists a clags [b). € AL{tY) U AL(tY) such that both a' < b und o® « b.

This shows that in these conditions {f'}= = {t?*}». Heuce
Theorem 4.17 {f R 15 @ confluent TRS, the algebra N¥ z{X) 15 somorphic to {T=(X)) /= .

From which it follows immediately that Mg 5 (i.e., N¥ (D)) is initial in the class of Z-algebras
that satisfv the equations of R.

Each normalizing sequence {{§.¢,...} € {¢,¢,.. .}r, being the least upper bound of the set
of computations of # represents a very particular computation: it is at least as accurate as any
other! Note that, unlike the other approaches to this problem, confluence is the only requirement
that we impose to the rewrite system to gnarantee the uniqueness of this set of sequeunces,

We end onr exposition hy presenting an example that has an intriguiug solution inthe other
approaches to this problem. Let ¥ he defined as g = {0,1}, &) = {¢}, and Zn =S for v > 2.
Consider the TRS's:

Ry = {(¥2)1 = q(1). (v&)0 -+ (0)}

Ry = {(v&)q(1) — 1,(v¥2)¢(0) -+ 0}

Iu the equational interpretation of rewriting, these two systems are indistinguishable - the
orientation of the rules is irrelevant when we see them as equations. This means that all models
of one system are models of the cther. The initial model has a two paint set as carrier and
interprets g as the identity mapping.

fn the other approaches to the semantics of gon-terminating rewriting these systems have
very different interpretations: only the trivial model satisfies Ry {cf. [7]) whereas the initial
model that satisfies Ro has a two point set as carrier and interprets ¢ as the identity mapping.

CQur approach allows us to view these systems in two different perspectives:

e when we see the rules as inequations, the models of Rq are models of Ry with the reverse
ordering.

& applying the construction descrihed in this section we have that NER‘ {X) and -’VE.RZ[X}
are isomorphic: A§ 5 has carrier the set {((0, ¢(0),..., ¢"(0),...}]=, ({1, ¢(1),- ... g™(1),.. )]=)
and Mg ¢, the set {0,1}. Tn hoth cases g is interpreted as the idertity.
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5 Conclusions

We have presented an algebraic semantics for rewrite systems that does not depend on any special
assumptions about these systems. Our approach views rewrite rules not as equations, but as
inequations. This allows us to use (non-conflueut) rewrite systems to specify non-deter minism.
For confluent systems, we have shown how rewriting, even in the non-terminating case, can be
seen as an alternative to equational reasouiug.

Otherapproaches to this problem have extended to the non-terminating case by using infinite
terms as normal forms of non-terminating computatious. The difficulties of these approaches
are shown by the counter examples of Kennaway ef al. [16]. These difficulties have made it
hard to apply these formalisms to applications like reactive systemns. We feel that the solution
presented in this paper paves the way for such applicatious, along the lines of Hennessy {13] and
Meseguer [19, 18]. It was for this reason that we avoided the usual restrictions to the form of
the rewrle rules.

One particular difference between onr approach and the others referred is the réle played
by the “tonverging” sequences. Consider the signature T with X = {a.b,c}, &) = {f}, and
E, =@ forall n> 1, and the TRS

R ={(v@) a = b,(¥a) b - a.(¥@) ¢ = f(c)}

Then bath of the sequences {a.b,a,b,...) and {c, f(c), f(f{€)},.-. . F"(e),...} are normalizing
sequences, and so are equally important for us. But in the previous approaches, ouly the second
sequence has an important property - it converges. This ensures that ¢ can be assigned a normal
Jorm, whereas a does not have one. As a result most of the important results of these approaches
cannot te applied to systems like the one above. One might think that this restriction is
reasonable and desirable; but it rules out some interesting exazaples of non-terminating processes:
just think of a scheduler in an operating system - its behaviour does uot converge to any
particular state (apart from deadlock in some cases); nevertheless the scheduler is a “respectable”
and important part of the operating system, it would be good to study. Finally notice that
establishing a convergence criteria is not incompatible with our approach; the difference (or
more accurately, the novelty) is that we do uot need such a restriction.

One extension of the results preseuted here is rewriting modulo a set of equations. One
approach is to consider the rewrite relation modulo the equations, i.e., to use the quotient induced
by those equations as the set of the preorder. This solution follows the lines of Goguen [10] and
Meseguer [15]. Another solution is to add for each equation (¥X) {;, = ¢, the rules (VX) t; — t;
and (¥X) ty — ;. Note that if the system is confluent modulo that set of equations then this
new rewTite rewrite system is coufluent, so these two approaches give the same results. The ease
with which we can treat this extension is a direct consequence of the abstract approach that we
have taken.
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