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Introduction

In these notes we present material designed to support an explanation of how to
conduct proofs using the deductive system presented in the draft Z Staniard.
This is, of course one of several possible deductive systemns for Z. We ain to
presentan account of the varicus components of the deductive system, showing
how they are used together, and how they permit the formal proof of theerns
involving sizeable Z specifications.

The method of proof is supported by Jigsa)V, a theorem proving assitant
into which the dedudtive system of standard Z has been incorporated. Wefur-
ther aim to show how JigsaW's support of the tactic language Angel alows
proofs to be defined in a more general and reusable way.

An appendix gives the relevant sections of the current draft standard We
do not aim to explain every rule, but merely enough to allow the reader torad,
understand, and use the standard’s deductive system. Our work on logics for Z
has been greatly helped by collaboration with Jim Woodcock, and review rom
other members of the Z Standards Panel. In particular we have benefited tom
the work of Jones (1990) and Harwood (1990).

Most of the material used here is derived from the project Models, Algbra,
and Mechancial Support in Z, funded by EPSRC grant number GR/J46630.
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Part I
Motivation, and Simple Proofs

This first part of the tutcrial illustrates the issues arising from conducting proofs
by means of Spivey’'s well-knowr BirthdayBook example. We then introduce the
deductive system used in the standard [a Gentzen-style sequent calculus) and
show how to construct proofs using it. The familiar rules of the propositional
calculus are given to iHustrate the format of rules.

Having provided a basic minimum of deductive rules, we can develop tac-
tics for completing proofs. We show how tactics in Angel are canstructed and
how to build a general tactics to simplify propositions and solve tautcloges.
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1 Specifications and Proofs

Most readers will be familiar with Spivey’s BirthdayBook specification (Srivey
1992), and so we use it as a running example here. Recall that two sets are given,
denoting the collection of pecple whose birthdays are to be recorded, and the
set of possible birthdays:

[NAME, DATE)

The state of the system is given by a schema BirthdayBook, which has two
components: a mapping of names to dates, and a set of those people whose
birthdays are known. These components are linked via an invariant.

Lknoum = dom birthday

Initially, no birthdays are known.

InitBirthdayBook
BirthdayBook

knoun = 2

We provide an operation to add a birthday to the book. The operation akes
as input a person’s name and birthday, and suoceeds providing the name i not
already known, updating the state, but produdng no output.

AddBirthday
ABirthdayBook:
name? : NAME;
date? : DATE

— {name? € knoun}a
birthday' = birthday U {{ngme?, date?)}

1.1 Theorems of the Specification

We define an entailment relation between a spexification and a predicak, to
mean that the spedfication guarantees the truth of the predicate.

A Sequent comprises a specification, followed by an assertion sign (the 'um-
stile'], followed by a predicate:

Sequent = Spec+ Pred
Thus a sequent appears as;
M- E P



These paragraphs provide a context for the predicate on the right-hand side,
(for the sequent to be well-formed, the free variables of P must be declared in
I3 --- {T1,) and may be considered to be (part of) the specification in which the
conjecture is evaluated.

Any of the paragraphs of the specification can be explicitly included in the
antecedent as follows:

TIMOLFP = (D)ILDFFP

We can now use this sequent notation to express theorems about the birth-
day book. The initial state may be shown to satisfy the state invariant:

t AinitBirthdayBook « true

The schema AddBirthday entails an update of known as well as of birthday.
AddBirthday + known' = kntown U {name? }

1.2 Informal Proofs

Spivey provides an informal proof of the theorem about AddBirhday using an
equational reasoning proof style as follows:

known' = dombirthday' [invariant after]
= dom(birnthday U {name?  date?}) [spec of AddBirthday]|
= dom birthday U dom{name? — date?)} [fact about ‘dom’]
= dom birthday U {name?)} [fact about ‘dam’]
= known \J {name?} {invariant before)

This proof cogently displays the top level reasoning required to justify the
theorem. Its clarity and simplidty is based on the fact that it can cail on obvi-
ous facts about the spedification and on general properties of the dorm operator.
Such appeals to “obvious' facts are entirely appropriate when considering such
a small and well understood example,

1.3 Why Formalize?

A proof of a property of a larger and more complex specification will not be
able to appeal so easily to obvious facts. The larger a proof becomes the more
the need for formality to provide the necessary assurance of correctness. How-
ever, the problem with adopting a fully formal approach to proof is that there is
a large amount of exacting checking that needs to be done. This checking com-
Prises ensuring that rules are properly applied, the discharging of provisos, and
trivial type checking. Such an overhead quite naturally creates quite a signifi-
cantdisincentive for anyone to tackle a substantial proof in a formal manner.
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The suppott that can be provided by theorem proving assistants such as
JigsaW and Isabelle makes the task of format proof mudh simpler and also in-
creases assurance of correctness. In this tutorial we shall present the logic for
Z that is in the draft standard and show how it is supported in JigsalW. The
support for proof provided in JigsalV cames in three forms. Firstly, the simple
mechanical application of the rules, secondiy the automatic discharging of pro-
visos, and thirdly the provisian of a tactic language for describing and diredting
proofs.

2 Simple Rules And Proofs

The deductive system we use is a Gentzen-style sequent calculus based on W,
a logic for Z (Woodcock and Brien 1992), though we use only one consequent.
The deductive system consists of a number of rules for manipulating sequents,
and a method of combining rules to generate proofs.

2.1 Rules

Inference rules will be written as follows:

Premnises

Rule == -
e Conrlusion

MName

The premises are a (possibly empty]} list of sequents:

Premises = Sequent .. Sequen!

The conclusion is aiways a single sequent:

Concluston :;— Sequent

2.2 Proofs

Proofs in the deductive systemn proceed in the way that is usua! for sequent cal-
culi: proofs are developed backunrds, starting from the sequent which is te be
proved. A rule is applied, resulting in fresh sequents which must be proved.
This process continues until there are no more sequents requiring proof, in
which case the original sequent is now proved.

Proof Trees A completed proof may thus be represented as a tree, with the
proved sequent as the root node, and every leaf node containing an empty list
of sequents.! An example of such a tree foilows; its contents will be explained
later.

THowever, il somne of these lists in the leaves are non-empty, then the derivation tree is stilluse-
ful, although it does not represent a proof, it represents a partial proof.
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Theorems A sequent is a theorem if there is a completed proof for it. The re-
lationship between theorems and completed proofs is given as follows:

The rule T~ p issound if and only if the sequent ' P is a theorem.

2.3 Structural Rules

The first rules that we consider are those that allow us to manipulate the infor-
mation contained in the antecedent. We shall consider the case where the only
types of paragraphs in the antecedent are constraint paragraphs. They are in
effect simple predicates,

Assumption The most general way of completing a proof isto arrive at a stage
where the predicate to be proved is contained in the definition of the specifica-
tion that is being assumed.

m AssumPred

Thinning Any theorem that can be proved using some set of axioms can also
be proved with extra ones added. The first thinning rule states that it is al-
ways safe to thin from the left of a specification in the antecedent. This repre-
sents the fact that the information is built up incrementally. The second thin-
ning rule states that a predicate can always be safely removed from the right of
a specification.?

TrP rer

TP P Thinl m Thinr

Shifting The order of the predicates in the antecedent can be shifted

TiPyiPi}- Py b R
T1P11-- - 1PalQ R
There are extra conditions required for the general paragraph case.

Shifi
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Figure 1: The Propositional Calculus

2.4 Propositions

The definition of the boolear algebra using deduction rules is presented i1 fig-
urel,

Proofs of Propositions Using the rules of the propositional calculus, w:can
construct proofs for propositional rautologies. For example, the commutaivity
of A

_FFE.‘HI.T""“

!’:_Q:T}mm_]x PIQ_"J_’M—I""

Frarg " Fagrs ot

PAQFQAF Andl
~PAQ=QnPF

2.5 Derived Rules

We can generate derived rules from partial proof trees. Once derived, and given
a name, a rule can be resued, in different drcumstances, The construction of a
derived rule is based on the notion of tree-squashing,.

Tree Squashing Suppose that we have the derivation tree:

S5 --- Sim
5 ... S;
Seq

[Ri] s,

[R]
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Figure 2: Equality

where each of the rules R and R; are sound rules, then the derived rule

Si ... Su ... Sim ... Sa
Seq

(R

is also sound. By repeating this application many Himes a large tree can be com-
pressed into a compact rule, A simple example of a derived ruleis the cut rule.

Cut Rule The cut rule is used to structure proofs into lemmas: it permits the
addition of hypotheses to the antecedent; these hypotheses may be discharged
separately:

[${PFQ TFP

Tro Cut

This rule is derived from the proof-tree that combines implication introduc-
tion and elimination:

TtPFQ |
Trrsg ™I Lt
TFoQ P

It is the responsibility of the user of the cut rule (and those for implication
and disjunction elimination) to ensure that the well-typedness of the sequent
is preserved by the addition of new predicates. New declarations can be cut in
using an existentially quantified predicate.

2.6 Equality

In order to provide a basiclanguage with which to reason, we assume that there
are expressions with an equality relation between them. Equality is a reflexive,
commutative and transitive relation. These rules are given in figure 2.

Proofs using Equality The properties of equality can be used to prove that for
the birthaday book in an intialised state, the domain of the birthday function is

empty:
InitBirthdayBook - dom birthday = @
Having extracted the property of the schema we can complete the proof as
follows:3
IThe rules for extracting the property of a schema will be given later.
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- - - thnown = dom birthday + knoun = dom birthday };eﬂ
~ tknoum — Gom birthday © Gom birthday = known 0
T Pknown = dom birthiday1@ = known - dom birthday — Kiown T
"~ Phrount = dombirthday}@ = knoun  dombirthday = 7 _ Trans
fkrioum = dom birthdayfknown — @ F dombirthday — 2 0

3 Simple Tactics

The languages used in theorem-proving assistants to direct proofs are often
called fachics.

In order to collect inference rules together into derived rules (proof proce-
dures), we employ a simple tactic language which is a subset of the language
Angel, described by Martin, Gardiner and Woodcock {1996). The chief tactic
constructions we use at this stage are sequential composition, and paraliel compo-
sition. Such tactic combinators are sometimes called tacticals,

Tactics will be defined by paragraphs with the form
tacriame = definition
and may be parametrized.

In this tutorial, we will frequently give proof trees as well as tactics when
derived rules are discussed. Tactics may, however, describe proof procedures
which are too complex (or simply oo large) to be presented as trees.

3.1 Primitive Inference Rules

Use of primitive inference rules may be indicated by the keyword rule. Inthe
account which follows, this will frequently be omitted, for ease of reading. In-
stead, we adopt a convention that inference rules are written with an initial cap-
ital letter, whereas other tactics wiil be entirely in lower case.

Examples of primitive inference rules already encountered are Assumif'red,
Andl, and Thinr.

3.2 Sequential Composition

Sequential composition simply entails applying inference rules [or tacticsj one
after the other;

simplify-iff .= IffDef . Andl

Corresponding to the proof tree

TFP=Q LrQ=p .
TPP:}QAQ:&-PWA"
TFP&Q
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3.3 Parallel Composition

When a proof tree bifurcates, parallel compaosition allows the application of dif-
ferent tactics to different portions of the tree. For example, the derived rule of
Cut above may be represented as a tactic:

cut-tacp := impEp; {impl || skip)

After application of impE, the right-hand branch is left alone (skip is a tactic
which leaves its goal unchanged), and the left-hand branch has imp! applied to
it
CtPEQ
reP=Q
r+Q

i
P rrp i

Note that this parallel combinator is merely a binary operator; in the event
of multiply branching trees, the tactic structure reflects the structure of the tree,
For example, the rules and tactics already given can be used to simplify a con-
junction in the antecedent:

and-right = cut-tac{P):
(AndEr(Q): AssumPred

I
Ishift2; cut-tac(Q); (AndEI(P); AssumPred || Ishift 2; thinrl))

e soumPred T IR g
CiPPAQ P AR AndEIE) TiPYIP A Q FR hit2
o AssumPred rnpagrQ [tPiP~ Qi@ R cut-tac(Q)
OrAQrPrQ s TP AQER g
riPAQrp T{iPAQIF+-R cur-tac(P)
T{PAQHFR

However, good style will frequently mean that tactics are not presented in
sucha tree-structured way. Many inferences return a pair of gaals, one of which
is a minor condition which is easily dispatched, the other which represents, in
some sense, the ongoing ‘real’ proof.

For example, in the above proof, after P has been provided by the cut, it
might be seen as desirable to discharge the goal P A Q + P, before proceeding
with the rest of the proof. Hence, an altemative, more linear structure for the
tactic is as follows:*

and-right := cut-tac(F);
(AndEr(Q); AssumPred || skip);
Ishift2; cut-tac(Q);
(AndENP): AssumPred || skip):
Ishift2; thinrl

In this way, many tree-like proofs can be reduced to an essentially linear
form (similar to equational reasoning)—see eqtac in Section 6.3, below.

4The equivalence of these two definitlons can be proved using the tactic caloulus of Martin et al.
[1596).
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3.4 Combining sequential and parallel

Occasicnally it is useful to apply the same tactic to each branch of a bifurcating
proof tree. A decarated form of sequential composition ‘7' is used to acoomplish
this. For example, following simplify-iff, above, each branch can be further sim-
plified using impl.

simplify-iffz -= IffDef; Andl 5 impl

Corresponding o the proof tree

TIPFQ . TQF P
rrrso ™ frgsp

l'l—P:&QAQ::»fIﬁD;"dI
I'FPeQ

3.5 Alternation

The tactics we have seen so far are entirely deterministc; each ane performs
exactlv one task. In order to write more genaral proof procedures, additional
control structures are needed.

The tactic combinator '|" combines tactics in alternation, so that the second
one is attempted only if the first fails Lo apply. For exampie the following tactic
applies any introduction rule which will succeed:

prop-left := Andl | Orlr | Orll | imip!
s it is capable of both the following inferences:

CHP THOQ TP+ Q
TrpAg Pl Trpog P

Altemation is intended to be interpreted in an angelically nondeterministic
manner.” That is, the choice of which rule to apply is not merely governed by
which is presently the most useful, but which will be useful later in the proof
(this will, in general, be accomplished via backtracking). Hence, when prop-leff,
above, is presented with a disjunction, it may choose to eliminate the left orthe
right disjunct-—the choice of which will depend on which disjunct is needed for
the remainder of the proof. This behaviour is characterised by the following
tactic equivalence:

(t1|ta);ta =1 [tz |t 13

Such backtracking will sometimes be undesirable (for reasans of efficency,
or for guaranteeing termination of recursive tactics) 50 an operator ‘cut'—
written 'Y, and not to be confused with the logical cut rule—is provided, Back-
tracking is restricted to the scope of the cut.®

In contrast to, say, the TLS¥ tactical of Edinbusgh LCE
8 Hence, for non-backtracking !, and f;, '(#, , t2) behaves like LCF's tyZL8Ttg,
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3.6 Pattern Matching

When parametrised tactics are used, it is frequently useful to have some of the
parameters extracted from the current goal—this both saves typing and adds
tothe gemerality of the tactic. For example, the tactics for and-night above must
know the values of P and (Q found in the goal to which they are applied, so that
they can be cut in at appropriate points, The tactical 7 is used to accomplish this.
The tactic me,p » G — t(e, p) matches the terms ¢ and p against the current goal,
acrording to the pattern given by G, and then behaves like tactic f, parametrised
bye and p. Thus, and-right can be made fully general by writing

and-t :=wC,p.q,re (Ttprqlbr)—
cut-tacip);
(AndEr(q); AssumPred || skip}:
Ishift2; cut-tac(q);
(AndEl{p); AssumPred || skip):
Ishift2; thinrl

37 Comumon Derived Tacticals
Using the tacticals above, some common patterns of tactic application can be
defined as derived tacticals.

tryt applies ¢ if possible, but succeeds whether t applies or not.

tryt == (| skip)
exhaust t applies t as many times as is possible.

exhaustt := t; exhausi t | skip

exhausts generalizes exhoust, by applying it to all of the resulting goals after
tisapplied.

exhaustst ;= ! ; exhausts t | skip

4 A Tactic for Proving Tautologies

By combining the proof rules given so far and the tacticals described above, we
can give a tactic which simplifies terms of the propositional calculus—and dis-
charges goals which are tautologies.

Application of the propositional rules will be governed by a tactic props.
This is composed using a number of tactics of the form -« and »-t. The former
simplify terms in the consequent; the latter, those in (at the right-hand end of)
the antecedent. The code for znd-t has already been given; the others are similar.

An exception is the tactic f-or, which, rather than applying the OrI rules, im-
plements a more obviously constructive rule:
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Ir't-Q+F

TFPvO tor

Tt is also unclear what rules to use for not-t and imp-t; we choose the follow-
ing:

rerPvQ PFRVP TIQFR,
ri—pPrg "ot TP=0grrR

There is a danger that net-t and 1-or will create cycles, if applied indiscrim-
inately. Therefore, props arranges that rtoi-t will be applied only if all of the t-«
have failed (so Q is ‘atomic’—its outermost connective is not one of the five
proposibicnal connectives), and after application of net-t: t-or, one of the t-»
succeeds—thereby ensuring that P is not atomic,

props .= (t-and | t-not | t-or | t-iff | t-imp | t-true
|(not-t; t-pr; (t-not | t-imp | £-iff | t-and | t-or})
lard-#|or-t | imp-t | iff-t | false-1)

By applying this tactic exhaustively, we ensure that the consequent must be
atemic, and the right-most antecedent must be atemic, or the negation of an
atomic proposition. In this way, an alinost normal form is achieved. If it denotes
a tautology, this must be determined by application of the assumption rules.

The tactic assum-tac is defined in Section 8.1. Amongst other things, it at-
tempts to apply the rule AssumPred; iter-assum-tac thins the goal repeatedly, ap-
plying assum-iac after each thinning.

iter-assum-tac := Nassum-tac | (thinr-tacl; ter-gssum-tacy)

In order to be ready for iter-assum-tac. the goal in normal form must be mas-
saged, to remove any possible negations: ali negated terms in the antecedent
must be brought into the consequent {using not-t), and the resulting disjunc-
tions simplified by use of Orll and Orfr—using the angelic nondeterminism of
altemation so that whichever disjunct is retained is the one which will match a
term in the antecedent, via the assumption rules.

hyper-not := (tryhypershift ; not-1)

clever-assum := exhaust hyper-not;;
exhaust(Orll | Orlr);
(t-true | iter-assum-tac)

fiyper-not uses a tactic hypershift which brings the leftmost-possible an-
tecedent to the right of the antecedent list. Informally, this can be defined as
follows; a maore general version could be defined by pattern-matching.

hypershift := (Ishift 12 | Ishift 11 | Ishift 10 |
Ishift9 | Ishift8 | Ishift7 | Ishift6 |
Ishifts | Ishiftd | Ishift3 | ishift)

15



Over-all, then, the strategy of the tactic will be first to try and simplify the
consequent and the right-most term of the antecedent, removing as many as
pessible of the resulting goals via the assurnption rules. If there are any re-
maining goals, we will attempt to re-order the antecedenit, and begin to simplify
again. Re-ordering of the antecedent is conditional on the term thius selected not
being atomic—that is, the shift is made only if it can be followed by a successful
application of props.

recurse := (hypershift; props) ; prop-tac

prop-tac := (! exhausts props+
Ytryclever-assum)
tryrecurse)

Using prop-iac, then, tautologies can be proved automatically.
For example, the commutativity of A:

cumae P L B
Q- Q PQ+ P QiE+ P QFrQ
mmd—f PAQFPM'H QAPFFM“-I OnPrQ and-{
PAQI QAP Andl QAl-PAQ Andi
FPAQ=QAP FQAP=PAQ

FPAQ=QAPAQAP=PAQ
FPAQ& QAP

Uil

The commutativity of V is significantly different; it {llustrates the use of
hyper-not,

Q-"Q ﬂs‘ul‘;—lﬂ.l.‘ _P_P ﬂSS(l;"lI;M
OFPvQ (:' ‘ PFrQwv P h’ ot
, o § .
~QiFr P -oigrr MM Shigro WM™ —ppig
~@PVQrP R -PIQVPrQ L
Pvot~grp Tt gvrorrg et
Pvarovr overPvo "
—  rimp —_———— Limp
FPVQ=QuP FAQVFFPVO
FPvQsQvP WD Andf

FPVQ=2QVPAQVPHPVYQ

Of course, some further work is needed here. prop-tac is dearly not optimal,
and we should prove that it terminates (easy, with the right bound function)
and that it solves all tautologies (harder). To see that it is not optimat, consider
the proaf of - P v = F:

axsum-fac
hyper-nol
i-mat

Fer

- PP+ false

W"w
-=PvyP

—'*—'P"F roi-{

T Pv-P t-gr

Choice of the dual version of t-or would have rendered the initial goal immedi-
ately irreducible—and gssum-tac would apply.
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F
£P ior

rPvap

However, such considerations are part of proof theory, and need not concern us
here.
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Part II
Expressions, and the Toolkit

Having used the propositional calculus as a vehicle for ilustrating the style of
proof used and the design of tactics, we are now in a position to consider exten-
sions to the language that will provide the opportunity to do useful proofs.

One of the most important activities in proof is that of substitution. So given
a theory about names and equality we can see how substitution works not only
for predicates but also for declarations. This will allow schemas and other def-
initions to be expanded safely.

With the rules for generic definitions and expression constructs availableto
us we can prove properties about such objects as the empty set and the domain
operator. The techniques used here iltustrate how general properties of the cb-
jects defined in the toolkit can be proved using tactics. These tactics can then be
re-applied whenever it is necessary to appeal to such properties in other proofs.
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5 Paragraphs

The propesitional calculus on its own is 2 barren language. Inorder to be able ts
use it to reason about real specifications, it is necessary to introduce expressions
into the languagie. The given set declaration and the other means of definition
provide a way of introducing new names. The membership and equality rels-
tions provide a way of writing propositions fram expressions constructed from
these new names.

5.1 Names and Scope

We use scope rules to define which names may be referred to at which poirt.
The region of an expression (or even a specification) within which a variable can
be referred to is called its scope. Z operates a systemn of nested scopes (Sennett
1987).

Each paragraph may use names defined in previous paragraphs and names
introduced may be used in later paragraphs. When a variable is declared its
scope extends to the end of the construct within which it was declared, except
for any other sub-scopes within which the same name is re-declared.

‘We define the scope rules by giving a definition of the names introduced by
paragraphs (alphabet) and the names used in them [free variables). The inter-
action between these two definitions defines the scope of variables.

Free Variables We define two different free variable functions: one for pred-
icates, the other for expressions:”

¢ :Expr — EFName |
3 : Pred - ©Name .

The definition of these functions is given in the appendix.
Alphabet The alphabet function gives the set of names introduced by a para-
graph, or sequence of paragraphs:

a: Spec —» B Name

The alphabets of the other simple paragraphs are the sets of names declared.
The definition of this function for all paragraphs is given in the appendix.

Scope Term  The scope introduction termn x* used in the rules below is not part
of Z proper. It is used to denote the introduction of a new variable x and noth-
ing more. It is a useful device for allowing paragraphs to be manipulated by

TWhen the free variables of schemas are caloulated, we will need to be able to distinguish the two
uses. We shall also calculate the free variables of paragraphs in the same way, interpreting them as
expressions or predicates, as appropriate.
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splitting them into ones which have no free variables and those that have no
alphabet. The scope paragraph x* has an alphabet conkaining just x:

ax® = {x}
Such a scoping paragraph has no free variables:

¢x* = @

Thevalues of the set of free variables for other paragraphs are therefore derived
from the free variables for their characteristic predicate.

5.2 Paragraph Rules

Given Sets A given set is a basic set from which others are constructed in a
spedtication. The details of its membership are not given. ® Agiven set intro-
dudion provides scoping information only:

x*~P

feenPre
[x]I-PG'm oF

Definitions The definition x := e introduces the new name x whose value is
equal to the expression e. By using the notation x* to indicate the introduction
of the scope of the variable ¥ we can explain the two declarations in terms of an
introduction of scope and a constraining predicate:

[ix*fx =eF P F'Fwflx:=¢
T'fx:=e+ P

) DefProp

The second sequent that must be satisfied T' ~ wf(x := ¢} is a condition that
thename x is not used as a free variable in the expression e. In the event of such
a condition not being satisfied, a judicious renaming will be needed to provide
ameaning.

Declarations The declaration x : s intreduces a new name x whose value is
contained in the set s. The rule for declaration foliows the same structure as
that for definition:

I'ix*tx e s+ P I'~wf(x:e)

P
[tx:s+P Declrop

Well-formedness Conditions Any name introduced which is already part of
a specification is given a potentially new value. The side conditions on the dec-
laration and definition rules given above guarantee that the new names intro-
duced are not also free variables of the expressions used to define their values.
The scoping rules make it impossible to have rules that use both the old and new

¥MNoa prior assum ptions are made about any internal structure which it might have. These sets
canbe empty, finite ar mfinite. Any further assumptions must be made explict in the spedfication.
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values of the variable in the same scope. This is a very common condition, 50 a
special symbol wi IT will be used to state that the paragraph IT is well formed;
its free variables are disjoint from its alphabet:

will & ¢(I) Nalll) = & .

5.3 New Structural Rules

Thinning The three types of declaration paragraph can be removed from the
right only when the variable they declare is not a free variable of the predicate
under consideration, The Thunr rule given for predicates is expanded to cater
for the other forms of paragraph as follows:

[-rP Fl—aan&P:ra_,n_
THIF P THLF

Swapping Two paragraphs can be swapped when there is no interaction be-
tween the names declared and their free variables. So the shift nule likewiseis
generalised as follows:

TVt iTsFP Dibalh¢la=a Ty Fal,nell, =@ oﬂxﬁnfeﬂsm
Tt F P A

Rule Reversing The annotation 1) indicates that the rule can be appliedin
both directions—that is, the rule

L'+
'~

T4

denotes both of the following inference rules

I'Fg I'-&
IE9 g Lo
rre M Tre

6 Substitution and Equality

Predicates An predicate to be evaluated under a substitution is often con-
structed during a proof. It usually has a temporary existence and is rarely used
in spedifications. However, rather than just give substitution rules that can be
used to eliminate all occurrences of such a term, we shail give it a full meaning
like all other terms.

[fx=erP

Trixmepp

Expressions The notation for expression substitution is different to that for
predicate substitution so as to prevent any parsing ambiguities when schemas
are used as expressions and as predicates. The use of this notation can be seen
in the Leibniz rule for paragraphs.



6.1 Leibniz

Leibniz’ rule states that an expression ¢ may be substituted ina predicate P for
ancther expression u, providing that ¢ and u are equal;

Leibniz' Rule Leibniz’ rule can be derived from the properties of equality and
substitution:
F-{x=vhoP Fre=w
FH{x=c)oP

iz

Derivation of Rule We can derive this rule as follows:
F'F{x=ujoP
Ttx*fx=ut P
Cte=u 'fx*fx=efe=ubP

F'tx*tz=eb P
Tix=e¢erP
F'F{x=e}aoP

Allernate Versions [n practice, a more sophisticate version of the rule is used.
We normally find that we want to substitute one expression for another thatis
equal to it. In order to do this we need to construct an imaginary substitution
instance and apply the rule of leibniz. For example if the predicate P could be
rewritten as { x:=¢ } P’ then we could apply the rule of leibniz to the following
sequent:

T'ie=ukP
to give us the following:
T'k{x=uper
and applying the substitution we have the following derived rule:

reQ L
Tie=urpP letbrez
where for some predicate R and variable x:

P = (x=e}2R
Q {X'.:l«tP@R

This derived rule can be seen in practice in the proof of the property of
AddBirthday given earlier:

-+ - - dom{brthday U {{name? dale?)}} = kaown U {mame?)}

lebniz
Ihirthday’ — birtiday U { (mame?, &afe? )} - dombirhday’ = kmoom o {name?} o
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6.2 Leibniz for Paragraphs

We can substitute equals for equals within paragraphs in the antecedent, fol-
lowing the rule of Leibniz. This again is a derived rule:

Iflzx=v} IIFP The=v
TH{x=e}o O+-P

P.Leth
A useful version of this rule for expanding schema definitions can be de-
rived using DefProp:

TP
ST Fp rlebt
In the introduction, we postulated a thoerem about AddBirthday:
AddBirthday + knoum’ = knoun U {name?}

We can expand the definition of AddBirthday by applying a tactic constructed
from S-Fxp followed by thinl [to remove the definition once applied) as follows:

ABirthdey: rame? : N: date? 1D § .- F kK =k U (mame?)
AddBirthday = ABirthday; name? : N; date? : D | - }AddBirthday b &' = k J {name?}

x-sch-leib-t

6.3 Equational Reasoning

In order to prove the property of AddBrithday, Spivey uses an equational rea-
soning style. He transforms the left hand side of an equality into the right by
substituting expressions for gther equal expressions. The proof is presented us-
ing informal justifications about these equalities. Here we shall follow the equa-
tional style, but also provide a framework in which the justifications can be dis-
charged.

To set up the equational proof in our sequent style we arrange that esch
step involves the cut of a lemma [generally some equality], and uses leibniz to
rewrite the current goal according to the equation that has been introduced.

——— 12 —
1 TrFw=x THA=D

TFu=u r'-A=C
TFA=B

cut-tac; letbniz
cut-tac; leibniz

The general tactic  In this way, many tree-like proofs can be reduced to anes-
sentially linear form. Each equational reasoning step ts accomplished by a tactic
egtac, which cuts in the predicate p, proves it using the supplied tactic t, and uses
it to rewrite the goal.

egtac tp := cut-tacp; (¢ || leibniz)

To make presentation of such trees easier we move the justification into the
proviso, to produce a more vertical format:
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TFA=D . _

w=x
TFA=C %"
TFa-g """

The over-all AddBirthday proof can be set up equationally, following the
structure of Spivey’s proof. The lemmas will be discussed below.

spivey-5 .= eqtac(lemmal)

(known' = dom birthday');
eqlac{lemma?)

(birthday’ = birthday U {(name? date?)});
eqlac{lernma3)

(dom(birthday U {(name?,date?)}) =

{(dom birthday) U (dom | (name? date?)})):

eqtac{lernmad)

(dom{(name? date?)} = {name?});
eqtac(lemmad)

(dom birthday = known);
Ref

This tactic can generate the following tree

R
AB kU {a?} =ku (n?} d::im‘;—k
=4d 7 B
ABHEU {n?} amb U {n?} dom{n? — d7} = {7}

AB F kU {n?} =damb Udom(n? — d7}
ABF ko {n?} =dombuU {n? — d7}
ARk kU [n?} = domb’

AP+ ku {nt} =i’

domd U {n? — d7} = domd Udom {n? > d7}
b =bU{n? +d7}
k' = dom b’

7 Quantification

There are four quantifier rules presented in figure 3, The first rule, which gives
an introduction and elimination procedure for universal quantification, is suf-
ficient to define the other three [assuming the de Morgan correspondence be-
tween universal and existential quantification).

Free Variables Quantified predicates introduce a new scope, In the universal
quantification Vx : s « P, the scope for the variable x is the predicate P, so if
x is a free variable of the predicate P, it is captured. The free variables of the
quantification are calculated as follows:

PVx:seP = gs U (&P {x})

The free variables of the other quantifiers are calculated in the same way, and
the definitions of themn are given in the appendix,
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rir:s+pF TF3Ax:seP Tir:84PHQ

Trve ser ¥ TrQ Erisnilx ¢ & Q)
T-vr:seP Tlregs F-{x=¢)? ThHecs
LCH{xi=e)pp T-3r:sef Existel

Figure 3: The Quantifier Rules

Substitution The result of applying a substitution to a quantified predicate
depends on whether the substitution can be performed without capture, and
whether the variable being replaced is bound by the quantifier.

The only ocourrences of the variable r that may be substituted are the free
oocurrences. So if a component of the substitution is bound by the quantifier,
then only the free variables of that component in the declarations will change.

{(y=v}h(Vy:seP) = Vy:{y=vhseP
(x=v}(Vy:seP) = Vy:{x=v)cse{x:=v}P
wherey ¢ ¢guv.

7.1 Renaming

In the textual evaluation of the substitution { x:=e )P the free variables of e stand
in danger of being bound in P. So the substitution rules have a side condition
to prevent variable capture, When a clash oocurs, renaming can take placeto
avoid unwanted variable capture.

In the predicate Yx : 5 « P the variable x is said to be bound. This nameis
not significant and can be systematically replaced in the predicate without any
change in meaning. It acts as a place hoider. Syntactic renaming is safe only
when it does not capture any new free variables,

F¥y:se{x=y P

Fvr:se{y=x}P ™

FVy:se{x=y}P

y:six:=yk+P
r:sty=xr-P
x:skH{y=x}P

FVx:se{y=x)}P

Sofory € & P we have
Vrx:seP=Vy:se{x=yj}P .

Similar rules apply for set comprehension and existential quantification,
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7.2 Tactics for Quantifiers

When a universal quankifier is encountered in the antecedent, can be removed
by supplying a binding which is suitable to specialize it for the task at hand.
all-th =75, p,ge¥Septg—
cut-tac(b € S); (skip || ishift2;
cut-tac(b © p); (AIES ; iter-assum-tac || skip))

bESIVSapr vSep Ml VS apr b s Mo osamler
A
bESIVSaprbap be SIVSaplhIph g
YSaprbcs FEStvSepha cuttag
Cul-lag

YSephg

For symmetry, t-all is defined (as Alll). Likewise, we define exists-t, which
simply converts the quantified predicate into a schema paragraph and predi-
cate:

exists-t:=n 5. p,ge3ISeprg—
ExistsESp; (assum-tac || skip)

_ESOPJ—EIS-p assum-tac stoh g

JSephg

ExistsE

A tactic t-exists can be defined (using Existsl) in a way aralogous to all-f—
i.e. it takes as a parameter a binding which is to be used to provide a witness
for the existential quantification. Frequently, however [especially when the rule
of set comprehension is used—see below), the ‘one-point’ rule is useful in this
situation:

l-onept:=wS,e,x - S ee=x —
Existsl{ x := ¢ }; (subst-tac; Refl || skip)

l_e—:eREﬂ—subS!-Mc
Flx:=e}ole=1x) Flx:=e}eS
F3Seeg=1x

Exists]

8 Derived Structural Rules

8.1 Generalized Assumption
The new sorts of paragraphs introduced in Section 5 give rise to some additional

assumption rules. By the use of the scoping term, these can be derived rules, but
they are presented as primitive in the appendix.
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AssumDefin(wf(x .= &)}

r=eklrxr=e¢

AssumDecl (wt(x : 5)) =——= SchemaAss(wf(S})

r:s+x €s S-S

(In the last rule, the schema is playing the réle of a predicate in the conse
quert, and a declaration in the antecedent. Schemas will be discussed more
fully in Sections 11-13). These assumption rules are collected together into the
tactic assunt-fac

assum-tac := AssumPred | AssumDefin | Assumdect | SchemaAss

We have already seen the definition of iter-assum-tac, which thins the goal
repeatedly, applying assum-tac after each thinning {see Section 4).

8.2 par-pred-t
It is sometimes desirable to extract the predicate component of a paragraph

without splitting it into a scoping term/predicate pair.” The tactic par-pred-t
uses the assumption rules to copy the paragraph as a predicate.

par-pred-t := (mx,e, Qex:=ehk Q— cut-toc(x =¢) |
rx,e,Qex: ek Q— cul-tac(x €¢) |
75 e Sk Q= cut-tac(8));
(assum-tac || skip)

An examnple of the application of par-pred-t:

Mix:efreet-P

The et p PorPredt

8.3 up-down-tac

Many of the rules for expressions carry the 1} annotation. Whilst the down-
wards instance of the rule is not generally useful in its own right (as it creates
complex terms from simpler ones), it can be used to apply a similar inference in
the antecedent. As this will be a common pattern of reasoning, we have a bactic
up-down-tac, which accomplishes this.

For example, for the inference rule

rp
Tra ¥

90One example is when the paragraph declares a schema. By splitting it up, we loose the ability
to cakulate the schema's alphabet.
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may be applied on the left as follows:

TIQF Q SsUm e ppp g

TIQr P | TIOPF R 7™ FiQIRF R Sssum-tec
TtOFPVRE Orlr
WR— OrEFR

The tactic up-down-fac determines the parameters for OrE by pattern-matching,
so that we have:

LEP ., TiQF R
TFQ TIPFR

This means can be used to define some tactics which operate on terms in the
antecedent. Again, their application will frequently be combined with simple
propasition/ predicate calculus rules. Moreover, it is often valuable to be able
to apply the antecedent tactics in a single step to declarations and definitions,
as well as membership and equality predicates. Therefore many tactics are pre-
ceded by an optional par-pred-1, which converts paragraphs to predicates where
recessary.

up-douwn-tacr

84 Apply-inwards

We have given various rules which act on the antecedent, but irt general they
work only on the lefumost paragraph of the antecedent. The nule of shift can be
use to reorder the terms in the antecedent, but often it is useful to leave the order
unchanged, applying a rule or tactic ko one of the internal paragraphs.

One way to accomplish this is to make use of a number of reversible rules
which take antecedent paragraphs, and make them into part of thie consequent.
We have already encountered these rules:

s+ P Tib+ P

rPrQ
trvser M TGP

T+ UseBind m

T

Tactics can be used to apply whichever of these rules is applicable, to move
terms from left to right, or right to left.

left-right := ANI + |UseBind 1 [ifff +
right-left := ANl | |UseBind | [IfT |
By repeatedly applying these rules, we may apply a chosen tactic arbitrarily
far inside an antecedent,

apply-inwards n t 1= repeat-tac n left-right ; 1 | repent-tac n righ t-left

We will generally denote apply-inwards n t by “a't, omitting the 1 when just
one inwards movement is needed. For example,
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TiVx:texesiTiUF P
It e PsiTIV P

“Nup-down-tac Powerset x)

9 Expressions

In Z, we are able to discuss a variety of expressions—sets, cartesian products, la-
belled products (schema bindings), and functions. Inference rules are provided
to permit these expressions to be simplified, and expressed in terms of one an-
other, The basic rules are given in the appendix.

In general, however, those basic rules make steps which are unnecessarily
small, so here we discuss some tactics offering derived rules which are mcre
generally useful.

9.1 Expressions in the Consequent

Set Comprehension The rule for set comprehension converts a comprehen-
sion into an existential quantification, In the event that the comprehension de-
clares exactly one variable, the one-point rule can be used to simphify the result-
ing predicate.

t-setcomp := Setcomp ; t-one-pt

Fxes H{y=x}joPF
Fxe{y:s|Pey}

t-setcomp

Powerset The powerset rule will always be followed immediately by Al

t-powerset := Powerset x; Allf

x:ekFx€Eu

I-powerset
FecPu

Prodmem

t-pradmermn : = Prodmem; exhausts Andl

Fules; -+ Funcs,
FuEs % - X5,

{-prodmern:

We will use a large number of such derived rules, without giving all thedef-
initions.
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9.2 Expressions in the Antecedent

Whilst the rules for expressions are all expressed using termns in the consequent,
the tactic up-doum-tac previously presented can be used to apply then equally
well in the antecedent.

Set Comprehension Set comprehension in the antecedent can be followed by
erists-t, to remove the existential quantifier.

setcomp-t .= !(skip | par-pred-t);
up-down-tac Selcomp; exists-t

_TiSte=utP setcomp-t Tie:{Seu}tSfe=uir P

Pl } -¢
Tfee {Seu}F P andalso ~ Ti {SealFP o

9.3 Larger derived Expression Rules

Singleton in powerset

sing-power ;= t-powerset; extmem-t; I-leibriiz; thinr-tac?

Fa€A
x i {a}ixy =akaeA
T :falixi=akFx €A
n:{alFxeA
F {a} e PA

Tuple in Product
onesel :=wa,b A o+ (a,b).1 €A —

cut-tac((2,b).1 = a); (I-iupleequ: Refl
|x-geni-t-leibniz: thinr-tacl)

—iiiifﬂmmmw Faea M
F{a,b)l=a (@b)l=ak (a,b).leA

Fla,b)leA

t-letbniz
cut-tac

tuple-in-prod := I-prodmem; {onesel | lwosel}

FacA onesel Fbeb
Fabica " Fab2eB

F(ab)€AxB

twosel
t-prodmem
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Singleton in Power Product
pair-pow~prod-mem ;= sing-power; tuple-in-prod
FaecA +beh

Fla,b)eAxB N
Fl@,b)] € PlA x B) & PO

tuple-in-prod

9.4 Using The Toolkit
9.41 Related Definitions

Whenever a predicatc appcears in the consequent requiring the proof that a cer-
tain term belongs to a partial functicn space, we will generally need to invoke
the definition: of partiai functions,

pfun-is-rel-and-fun ;= tleibniz ; L-setcomp ; SchamaMem ; subst-tac ; t-and;
(BindProd ; subst-tac: thinr-tacl || thinr.rac2}

FEEY N ¥ VL X Y e
“reX ey (T14n) €f Alar,2) €f =1 =42}
X s Y={: XYYy Xy, p5:Ye
(rig) € Al €f =y =zl

plur-is-rel-gnd-fun

-

YEX »Y

Likewise, membership of a relation space can be reduced to membership of
the powerset of a cartesian product.

rel-is-power := t-leibniz; thinr-tac]

FxePXxY)
XOY=>BXxYrxeX+Y

rel-is-power

9.42 Harwood’s Theorem

In order ta illustrate the use of some of these rules aboutexpressions, we present
a proof of a simple property derived from the toolkit definitions. It has been
called ‘Harwood's Theorem',

dom{(e.b)) = {a}

To make this amenable to proof, we state it, suitably quantified, together
with the relevant definitions, in a sequent:
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NAME « DATE = P(NAME x DATE)t
VR : NAME & DATE ¢ domR =
{.'(3 :NAME; y : DATE | (x3,y) €Rex3}
.
Va : NAME; b : DATE » dom{(e,b)} = {a)

The first step in the proof is to strip off the quantifier, and since this produces
adeclaration in the antecedent, the next stage is to extract the predicate content
of that declaration.

unquantify = t-all: sand-t; bindprodp; apply-inwerds(1)bindprodp

Giving

NAME & DATE = PNAME x DATE}
VR : NAME + DATE s dJomR =
{xa: NAME; y : DATE | (xy,¥) e Re 13}
@ : NAME A b : DATEY
a € NAMEYL
b € DATE
F.
dom {{a,b)} = {a}

Next, the definition of dom must be specialized for this particular instance—
itis brought to the right-hand end of the antecedent, and then afi-t is applied.

instantiate-definition := Ishift4; all-t{ R := {(a,b}} }

This gives two subgoals: one to prove that the supplied singleton is indeed
arelation; the other to use the property of the definition to prove the main goal.

NAME & DATE = PNAME x DATEY
a: NAME A b : DATEL
a € NAMEL
b € DATE}
YR : NAME «» DATE s domR =
{xa: NAME; y : DATE | (x3,4) € R ¢ x5}
-
{R:={{a,b)} } € [R: NAME & DATE)



NAME & DATE = P NAME x DATE}
a : NAME A b : DATE]
a € NAME}
b € DATE}
{R:= {{a,t)} } € [R: NAME & DATE]{
VR:NAME o DATE ¢« domR =

{x3: NAME; y: DATE | (x3,y) € Re x3}}
(R:= {(@pb)} )odomR =

{x3 : NAME; y : DATE | (x3,y) € R ® 13}
E
dam {(a,b)} = {a}

First Subgoal The first subgoal is approached by rewriting the consequent us-
ing the rule schema binding membership, discarding the definition of dom,and
rewriting using the definition of <.

binding-suits-decl := BindProd; subst-tac; thinr-tacl;
Ishift 4; x-gen-t-leibniz; thinr-tacl

a :NAMEAMbB : DATEYL

a € NAMEY

b € DATE

}_

{(a,B)} € PINAME x DATE)

This is finally completed by appealing to the tactic pgir-pow-prod-memn de-
fined above, followed by iler-assum-tac.

Second Subgoal  First, the substitution introduced by afl-t must be made, and
then the transitivity rule used to rewrite the consequent. The information about
dom can then be thinned.

use-instantiation := subsi-tac; trans-tac; thinr-tac3

a: NAME b : DATEY
a2 € NAME}
b e DATE

'_
{a} = {xa: NAME; y : DATE { {x3,¥) € {(a,b)} s x5}

The resulting goal is an equality. To prove that the two terms are equal, we
use the rule of extension, modified by a tactic to remove the quantification, giv-
ing two stibgoeals.
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x:skxet x:thxes, .,
Fs=t

ex)

a: NAME Ab : DATEL
¢ € NAME}

b € DATE}

x: {a}

'_

x € {x3: NAME; y : DATE | (x3,¥) € {(a,b)} ¢ x5}

a: NAME A b : DATEY

a € NAMEL

b € DATF}

x:{xy: NAME: y : DATE | (x3,y) € {{a,b)} »x3}
}_

x € {a}

Simplification of the first of these subgoals entails rewriting the singleton ex-
presison in the antecedent, and using this to simplify the comprehension in the
consequent, before applying the rule of set comprehension. After this, a sim-
pleapplication of the one-point rule does not suffice, since a value must also be
supplied for y. Once again, this gives two goals; one to prove that the supplied
binding belongs to the schema part of the set comprehension, the other to us-
ing that binding to simplify the comprehension. These are readily discharged;
one by substitution and reflection; the other by schema membership, schema
conjunction, and extension.

singleton-mem-t .= par-pred-t; extmem-t; x-gen-t-leibniz:
thinr-lac2; x-t-setcomp;
(subst-tac; Refl || skip};
t-schmern; (t-sandh ; iter-assum-tac
\t-extmem; Refl

x-t-setcomp := Setcomp: t-exists{x;:=a,y:=bh}

The final remaining goal is solved by a broadly symmetric tactic. Exten-
sion membership is applied in the consequent, and set comprehension in the
antecedent. Rules for tuple selection and equality complete the proof.

t-singleton-mem := t-extmem; setcomp-f; trans-tac; thinr-facl;
drop-snd; drop-snd; sconstrddag-t; extmem-t;
up-doum-tacTupleSel: and-t; thinr-tacl:
trans-tac; t-tupleequ; Refl



Collecting these parts together, then, we have
harwood—tac := unquantify; instantiate-definition;
(binding-suits-decl;, pair-pow-prod-mem ¢ iter-assum-tac
[luse-fnstantiation; t-seteq;
(singleton-mem-t || t-singleton-mem)}

10 Generics

The uses of tooikit definitions given above have overlooked the fact that the
usual definitions are stated using generics, not with ready-supplied parameters
suitable to the problem at hand.

Inorderto specialize a generic abbreviation for a particular instantiation, we
use the rule GenSpe.

Tixfy):=eF{y:=ulzeev
Tixly) =2k x|u] € v

GenSper

A similar rule is provided for generic paragraphs (see the appendix), butits
use entails slightly more work if the paragraph does not uniquely define the
names it introduces.

Using this rule, we can define a tactic which implements a version of the
assumption rules for generic terms.
genspec-assum =7 n, X, teuenXj:=tknfe)=u—

cut-tac(nfel € {z : Pulz=u});

(GenSpec; t-seicomp: t-schemamem; {-and
(+-bindprod; t-powerset; assum-tac
||subsi-tac: Refl)

!

selcomp-{; trans-iac; thinr-tacl:

SConstrDdag; symm; assum-tac)

This tactic gives the following proof tree, provided {( X :=¢ } - tand u are
identical.

z:{X:=eypglt-1€u
~{X:=e)pgtEPu

* Fu=(X:=¢epg!

b hind:

o subr

F{{z={X:=ehal) elr: Pu] Fif2=(Xi=t) gl O u=12) voand
Fllz={ X =elglr)eR:Pua{u=2)@w=2)

F(z=(X=¢)pttelt:Pulu=1] !

F{X=¢pote {z:Pu|z=u}

nXj=tF nlei€{z:Pulz=u}

&

t-setcomp
GenSper: subst

Siprm; assum-lac

.. iPut=wiru=x
iz———-'SC-‘)l'I&'rDaiag;s_l,lvrn-n

{z:Pujr=u-u=z

rumy -tac; trnr

Az Pulz=ufnfef=2-nle|=u

tnlee 2Py lz=uibne) = x

1

d

rXli=I-nel=u
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10.1 Properties of the Empty Set

InPowerset The empty set belongs to the powerset of its generic parameter:
2[5) € FS. To prove this, first we specialize the instance of the empty set in the
consequent, then apply the powerset rule. This givesusy € {x : 5§ | false} as
an antecedent; by set comprehension and schema construction this simplifies
to {imter alia) false as an antecedent. Thus the goal is proved.

empiy-in-power := GenSpec ; subst-foc ; t-powerset;
setcomp-t ; thinr-tacl ; SConstrDdag ; false-t

oty {x:s|falseex}tIx:s | false ey =xtx:stfalse-y €S
iy cf{xis|falseex}iIxcs | falseay =xix s ifalseyc S
oty {xcs|falseex)}idx s | falseay =xfx: s ifalsely =xFy el
Lty {xislfaleex}yeS
obVy:{x:s|falseax}ey €S
.. F{xs|falseax} €S
@Xli={x:X|falsesx}-{X :=s),{x:X|false ex} € F5
2[X] :={x:X|falsee x}  B[s] € PS

Empty set has no members: y € @ - faise. To prove this, we expand the defi-
niton of & using a cut, using genspec-assum to discharge the resulting goal,

in-empty-t := cui-tac(y € {x : 5| false});
(cut-tac(@(S] = {x - 5 | false] );
(thinr-tacl ; genspec-assum
|[symam-t ; t-leibniz ; thinr-lac 1 ; assum-lac)
||setcomp-t1; thinr-tac1; SConstrDdag ; false-t)

iter-assum-fac
€ @S]t
{x:5|julse} = 2|S)

-

y € o8]
1-lnibniz
—_ pesec-ossum - W€ DIS)E
aiX] ={x. X false} {x: S false} = @[S
s =
o[S) ={x : S | fulse} YE {x: 5| faise}
o EE— 1T 4 ——— symm-l
AN ={r:X false}: Sy e o8
¥ G alf) o8] = {x:5  fise}
- =
28 =r:$ fale} yE {x.5 " folse]
cul-rac 1y : Stfalse ~ false fulse L
2(X] = {x: X | false} § oo WS T Y onstrDdeg
y € 2[s; 1y : § | folse - fabe thimr
- 1y :S ! falsedy = x —false
¥ € {x:5 | olse} € {155 fulse) + fulse g
cul-tac

B[X] 1= {z - X | folse}dy € D[S] - false
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This lemama offers an altemative proof of the previous one—expand the
powerset first, and then do the generic instantiation in the antecedent. This
tums out to take many more steps.

When a specdalized versian of the generic definition is already available the
proof of this lemma can be considerably simplified.

in-empiy-tt .= lebniz-i; setcomp-t; thinr-tacl; SConstrDdag; false-t

Jalse-t

{x:5 | falsesx} = @S]} Ix : S | false o y = x¥x : SYflse I fulse SConstrDdag

{x:8 | falsesx} = @[S|tIx : S | false o y = x}x : S | false - false .
x5 | false & 7] = @511 27 S [fulsc oy = 7+ S | folsely = x I false '™
{x:5|false ox) = 28]ty € {x: S| false ex} + false . setcomp-t
oS = {z S | false ex}ly € @S| F false  ‘comizt

The Empty set is a partial function 2 € § -4 T. The proof of this lemma
appeals to some of the simpler lemmas already proven.

emnply-tr-pfun ;= pfun-is-rel-and-fun;
(rel-is-porwer; t-bindprod; empty-in-power || empty-is-fun)

———————————— empiy-in-power
B[X.Y] := {x : X|false}
-
BSxT e P(S «xT)
ok t-bindprod
XY= {x: X | .
= emply-i-fun
=5 T P(S % T 20X, Y] == {x: X | fuise}t
{f=2[5xT|} € [[:PISxT)] relispouer 50 T = P(S xT)
SX. Y= {z: X | false)L =

S50T=PSxT) ¥i;:5 yi.ya:Te
" r1,m) € 25 xTiA
{f=28=xTIy €l:50T] {ri.¥z) € 2[5 x T} = y1 =y}

pfun-is-rel-and-fun

(X, Y] = (x: X ] fudse}

SeT=PSxNt

S aT={:54T|vx1:5 ¥ 42:Tn
Z1.4) €/

(ry,y2) €f = y1 = y2}
.

PExTES =T

An additional lemma is needed, to show that has the hmctional property
given in the partial function definition.
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emply-is-fun = cut-tac(@[S x T} = {x : § x T | fakse});
(thinr-tacl ; genspec-assum||
tall; t-imp ; and-t;
Ishift4 ; lshift2,
leibniz-1 ; selcomp-t ; thinr-fac1;
SConstrDdag ; false-t)

The domain of the empty function is the empty set: & = dom @.

empty-dom := Ishift4 ; all-t{ R := @[NAME x DATE] };
(BindProd ; subst-tac ; Ishift4;
i-leibniz ; thinr-tac2 ; emply-in-power
I
subst-tac ; frans-tac ; -seteq;
(drop-snd ; drop-snd ; drop-snd;
dec-in-t ; in-empty-t-NAME
|isetcomp-t;
thinr-tac1 ; SConstrDdag,
Ishift3; thinr-tac1 ; falseE;
Aathinr-facd ; in-enpiy-t))

Discovering how empty-dom works, and improving on its structure, Is left as an
execise for the reader,



Part 111

Schemas, and
Proofs about Specifications

For the purposes of constructing proofs about ‘real’ Z specdifications, we must
be able to use the scherna calculus and to be able to expand schema definitons.
This means that we must have ways of considering schemas as expressions and
as predicates, as well as declarations.

The schemna calculus has evolved from a particular view of the semantics of
schemas. Rather than considering the view of schemas as expressions, having a
type and a valueas a set of bindings, these operations have been defined using a
view based on signatures and properties. Such a view is somewhere in between
an expression and a predicate.

This final part of the tutorial gives a comprehensive definition of schemas
and uses these rules in constructing the proofs of the two thecrems about the
birthday book set out in part one.
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11 Schema Declarations

Schemas are used as declarations in many places within a specification. Scme
of these occurrences are not immediately obvious. So we begin by looking at
the three way's in which a scherna as a declaration can arise.

The purpose of a declaration is to introduce new names and to give them
values. So from a schema declaration we must be able to extract its property.
This extraction process allows us to reason about the values of the variables.
However due to the encapsulation of names by schemas, great care must be
taken when calculating the side conditions.

11.1 Instances of Schema Declarations

A schema can be used to introduce its component names whose values satisfy
its property. When used in a sequent a schema declaration appears in the an-
tecedent as follows:

S48t b

This feature of schemas is used in three different ways: as a schema-text, a
schema-inclusion, or as an axiomatic definition.

Axiomatic Definition An axiomatic definition is a particular pjece of syntax
used to introduce new names into a specification. For example the {ollowing
definition

xy:Z

x4y

introduces two numbers r and y and states that they are not equal. The schema
%,y Z { x 9 y contains the same information and could just as well havebeen
used to introduce the twe names:

ey &lrdy
So, for any schema we can introduce its component names together with its

property simply by stating it as a declaration. In the notation used in the an-
tecedent of a sequent we would write the following:

ctryElxdytoo b

Schema Inclusion The typical example of a schema inclusion is found in def-
initions of mre complex schemas. In the birthday book exampie, the schema
AddBirthday is defined in terms of ABirthdayBook and other variables:
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AddBirthday
r ABirthdayBook;

neme? . NAME;

date? : DATE

— (name? € known)A
birthday' = birthday U {(nome?, date?)}

This paragraph comprises a definition of a schema name AddBirthday using a
schema constructed from an inclusion. We would write it in the sequent nota-
tion as follows:

ABiridayBaok;
rthday = "’NUA.Mi: — (name? & kaownA _
i date : DATE | birthday' = birthday U {{name?, date? )}

This is a schema composition of the form [§ | I} where the schema S is included
in the schema, together with the predicate P.

The rule SchConstrFar allows us to split a schema-construction into its
schema inclusion and predicate making them into a schema declaration and a
constraint paragraph:

SiPHQ

m SchConstrPar

Schema Text A schema text is used in quantified predicates such as V5 e P.
The rule ANT

riSrpP
FEYSeP Al
decomposes a universal quantification by generating a schera declaration and
a simpler predicate.

The rules for set comprehension and definite description give us quantified
predicates that are also proved using AN, Thus this is a very common route for
introducing schema declarations into the antecedent of a sequent.

Bindings The generalisation of the meaning of paragraphs to encompass arbi-
trary schemas can be repeated for substitutions. A substitution { x:=¢ } is a par-
ticuiar form of a binding. We can use the same techniques for taking a schema
and making it a declaration and give a substitution semantics for any binding
orappropriately typed expression.

112 Properties of Schema Declarations

Given a schema dedlaration in the antecedent of a sequent, we can alse assume
its property. We use square brackets to indicate that we are interpreting it as a
scherna predicate:



al§|P) = af

a8 = aS
a%¢T = aSUaT
avSeT = aT\ as

a3SeT = aT\ al§

Figure 4: The Alphabets of Schemas

TiSt[S) - P
TISHP SchProp(wi§)
Since the alphabel of a schema 5 is dependent on its definition, we cannol use
the scoping wvariable technique in this case.
In order to take sequents of this form any further, we must look at schemas
as predicates.

1.3 Alphabet

The alphabet of a schema declaration is dependent on the context in which it
is calculated. The alphabet schema reference can be calculated only when the
signature of the schema has been discovered. The discovery process follows the
definition of the schema reference using the following rule:

IfS:=T+raS=aT
The alphabets of composite schemas are defined in terms of the alphabels of
their sub-schemas. The rules for this calculation are given in figure 4.
11.4 Free Variables and Substitution

The free variables of a schema deciaration are the same as the free variatles of
the schema as an expression.

The substitution rules for schema declarations are the same as for schema
expressions.

12 Schema Predicates

Schema predicates are just a spedial form of predicate. When treated as pred-
icates, schemas behave in exactly the same way as ordinary predicates. 1t is,
however, immportant to distinguish the two forrns of connectives. Though they
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Figure 5: The Schema Predicate Catculus

look the same the propositional and schema connectives operate in subtly dif-
ferent ways. For all well formed instances of schemas, there is no difference.

We first look at what it means to view a schema as a predicate, and then look
at the [aws governing the schema vonnectives,

121 Interpretation
The simple schema
x:s
can be said to be true whenever the variable x has a value which is a member

of the the set s. This condition can be expressed as foliows:

TrFxes N

TFx:sl Hwhx:s)

This more general case of the schema $ raises some problems. What does it
mean to say that 5 is true?

122 Definition of Schema Connectives

When we consider the schema operatars corresponding to predicates, they have
the same properties as ordinary predicates. The schema construction S | P can
(when viewed as a predicate) be considered to be a conjunction of a schema
predicate and an ordinary predicate. The rules illustrating these properties are

given in figure 5.



Simplifying Schema Predicates Just like the for the predicate calcutus, we
can develop a tactic for simplifying schema predicate formulae. Since we will
want it to work for schema predicates in both the antecedent and the conse-
quent we makee use of the reversible rules and generate two-sided tactics:

sond-p = up-doum-tacSAndp
bindprod-p := up-down-tacBind Prodp
srmemi-p := up-down-lacSchemaMernp
We can examine how these rules are used to simplify the property of theex-
panded Birthday schema:

kPN tbeNwD tk=domb + F

k€PN ip:N-D| (k=domb T pg’;:::’rfzp

k:PN]{B:N»D] tk=domb + P

kK :PN|AP N = D] tk —domb F P:;":i;_p

k- PN.b:N=oD] jk=domb - P

[k PN.b.N= DAk =dombs + P ond!
srmem-p

%:PN,b:N=»D|k=domb] F P

The tactic sch-pred-110 follows the pattern in this simplification by splitting
the schema predicate into a conjunction of schema predicates, and then sepa-
rates them and repeats the process on both of the sub-expressions:

sch-pred-t .= [{bindprod-p | smem-p | sand-p | skip);
(and-1; wsch-pred-t; sch-pred-t | skip)
! skip)

12.3 Schema Predicate Substitution

The free variables of a schema as a predicate are generated from two sources.
The first is the free variables of the schema as an expression. The second seurce
is the alphabet of the schema. These component names are newly introduced
by the scherma. So we have the following equality:

&5 = ¢Sual

The additional free variables in a schema predicate result in a different sub-
stitution. Not only can the expression level variables be substituted, but also
the component vartables. Sometimes they can be the same names. This can
cause some ccmplications for the quantified schemas. The substitution rules
for schema predicates are given in figure 6.

1PWe demonstrate a simplified tactic that only considers three tvpes of constructor: these that
gemerate predicate conjunctions.
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be[S|P = baSAbOP
bo[-5) = oS
boSeT] = baSebeT
bo[vSeT] = VboS+beT
abgS)N{gboTUab) = @
bc|35eT)] = 3b 5ebaT
apoS) N (pbTUak) = @

Figure 6: Substitution into Schema Predicates

13 Schema Expressions

A more complete definition of schemas is obtained from looking at them as ex-
pressions. These schema expressions are sets of bindings. We characterise these
sets by defining the property of membership. So each rule considers what it
means for a binding to be in a particular schema construction. The rules for
scherna expressions are given in figure 7.

Schema Expression Substitution The difference in free variables for schemas
as expressions and as predicates means that there are two types of substitution
that must be considered. Substitution into schema expressions is a homomor-
phism. The rules for schema expression substitution are given in figure 8.

14 Specification-Level Proofs

We can now revisit the proofs presented at the beginning of the tutotial.
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Figure 7: The Schema Expression Caleulus

bo[S[P = BoS|boF
whenabnaS=9g
bz[SIPl = boS|F
whenabndP C al
bs[-85] = [$,9]
bplS§el] = [boSeboT)
bo|VSeT] = [NboSeb,T]
bo[3SeT] = [BboSeb 1]

Figure 8; Substitution into Schema Expressions
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141 Theorem about AddBirthday

Section 6.3 demonstrated how the proof given by Spivey can be set up as a tactic
over the inference rules presented here.

spivey-5 := eqtac(lemmal)

{knoun’ = dom birthday'};
eqtac{lemmual)

(birthday' = birthday U {({namc?, date?)});
eqtac(lernmad)

{dom{birthday ' {(name? date?)}) =

(dom birthday) U (dom{ (name? date?)}));

eqtac {lemmad)

{dom{(name? . date?)) = {name?});
eqtac{lemma’)

(dombirthday = known):
Reft

In grder to complete the proof, we must siriply demonstrate that the five
lemmas used above follow from the definition of AddBirthday.
AddBirthday - knoun’ = dom birthday'
AddBirthday - birthdey' = birthday U {(name?, date?)}

AddBirthday - domibirthday U {{name?, date?)}) =
{(dombirthday) U (dom {{name?, date?)})

AddBirthday v dom{(name? date?)} = {name?}
AddBirthday v dom birthday = known
Several of the lemmas arise directly from the definitions in the antecedent.

The tactic gen-expand expands schema definitions as far as possible. It works on
goals such as

5, =Tt

Sy i= () | Pt
Sy = [Sq; Sh)f
Sy -Q

inwhich 53 is rewritten to give
neEnr e Q

ete (Here F; is the predicate which results from replacing all those variables in
P which belong to the alphabet of T by their primed versions.)

First, the schema expressions are expanded, according to their definitions;
thon any resulting decorated schemas are rewritten so that only variable names
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are decorated; a predicate copy of the schema is made, and then it is simplified
into {-separated components.

gen-expand ;= l(exhaust ledbmiz-t; try decorate-left); par-pred-t; sch-pred-t

When gert-expand is applied to our initial goal, or one of the lemmas which
remains to be proved, the result is as follows:

knows : P NAME A birthday . NAME - DATE | knsgm = dam hirthdey A
tnowm’ : PNAME A birtuday' : NAME < DATE | known’ = dom birthday’ A
narne? : NAME A date? : DATE |
— (name? € known) A birthday” = Uibinhday. {(name?, date?}] )
krown & PPNAME}
firthday © NAME - DATE}
kmown = dom birthdayt
krown’ & IPNAME}
birthday' € NAME —» DATE}
krown’ = dam birtkday’' ¢
name? & NAME}
date? € DATE}
= (name™ € knoum)3
birfday' = J(birthday, {(name? duic?)])
-
Q
BirkdayBoak = [known : PNAME; drthday : NAME - DATE | knownt = dom birthdayt g
ABirthdayBook = [BirthdayBock, (BirthdayBenk)']}
AddBirthday 1= [ABinhdayBook; name? : NAME, date? : DATE |
= (mame? € kroun) Abinhdey’ = binkday U {{name? daie?)}]3

-expand

Add Birthdayy
"
2

Having done this, in order to discharge a goal which appears somewhere in
the schema antecedent, we need simply the tactic és-known:

is-knowm := gen-expand: iter-assum-tac

Simple Lemmas Therefore, the tactics to prove some of the lemmas are now
entirely trivial,

lemma 1 = is-knoum
lemma 2 = is-knoum

lemma 5 = fs-known

Lemmas that use the toolkit The remaining two lemunas rely on properties
of the toolkit definitions, some of which were proved earlier. Since a common
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form for these lemmas arising from the toolkitis - ¥ S ¢ P, we provide a tactical
tookit, which takes three arguments—the tactic used to prove the lemma, the
predicate which is the lemma, and a binding showing how the quantification
is b be specialized in this case---and retums (assuming the tactic succeeds) the
requirement to show that the binding belongs to the schema in the quantifier
[ie that it has the right type}.

This last requirement is generally covered by the tactic is~known-type, which
takes this resulting goal, simplifies it, and applies is-known where possible.

is-known-type := {Sand | BindProd | SchemaMem);
t-and 3 |(subst-tac; isknown | subst-tac)

Lemma 4 The fourth lemma uses the so<alled ‘Harwood’s Theorem’:
Ya:A; b:Bedon{(e b)) = {g])
This has been proved elsewhere, by harwood-tac.

lernmad .= toolkit (harwood-tac)
{¥a: NAME; b : DATE « dom{({a.b)} = {a})
{a :=name? b := date? };

is-known-type

is-dknoum-type

AddBirihdey - (@ := mome?, & ;= daie? } € @ : NAME; b : DATE
d Pe L Tookifiharwood -1ac) .

AddBirthday - dom [ (mme?, dale?}} = {mame?}

Lemma 3 The third lemma depends on the ‘toolkit’ lemma
vf.g: NAME » DATE e domif Ug} = domf Udomg

which will be proved by dom-cup-lenima — omitted. In this instance, the toolkit
tadic produces the subgoal

AddBirthday
'_
{f := birthday, g := {{name?,date?)} } € |[f,g - NAME -+ DATE]

which simplifies—via the first part of is-known-iype—to

AddBirthday + birthday € NAME - DATE
AddBirthday \- {(name?, date?} € NAME + DATE

The first of these is discharged immediately by isknoum; the second requires
mare work—making use of the tactics relating partial functions, relations, sin-
gleton pairs, powersets, etc,, in Section 9, above.
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use-dorncu ;= dorn-cup-lemma

lerrirnald = toolkit (use-domcup)
(Vf,g : NAME » DATE s dom{fUg) =
domf U domg)
{f = birthday, g := {(neme? date?)} };
iskrowm-type; nd-fun

nd-fun := [shift T, Ishift8; pfun-is-rel-and-fun;
(rel-is-power; patr-pow-prod-mem;
(thinr; is-knourt)
I
(tall; t-imp; and-t; extmem-t, tuplesel-t:
thinr-tac2; extmem-t; tuplesel-t;

Reft})

Of course, this proof has been arranged for readability, It is very far from
being an efficient proof—expanding AddBirthday separately for each lemma is
very costly. Conversely, part of the power of Z is in the ability it gives the user
to wrap up information in a schema—and experience shows that with proofs
involving sizeable specifications it is most important not to expand schema def-
initions fully untl the information they contain is needed.

14.2 Initialization Theorem

The tactic that follows is perhaps a more honest ‘first-cut” proof of the initializa-
tion theorem. It begins by providing a witness for the existential quantifier—the
empty function kirthday and empty set kriown. Using this binding, it is easy to
discharge the original gaoal; the new goal is to prove that this binding does in-
deed belong to InitBirthdayBook.

This is dane by replacing InitBirthdayBook by its definition (using Lebniz).
The predicate part of InitBirthdayBook is then quickly solved by Refl. The re-
maining goal is further expanded by use of the definition of Birthdey—which
was inctuded by InitBirthdayBock. After making all the resulting substitutions,
and applying t-and several times, we are left to demonstrate three properties of
the empty set; these were proved in Section 3.
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init-tac := t-exists( knoum := @[NAME), birthday -= S[NAME x DATE) };
(subst-tac ; t-true || skip);
t-letbniz ; SchBindMem;
subst-tac ; {and;
(skip || Refl)
thinr-tac2 ; t-leibniz;
thinr-tacl; i-and;
{t-and || skip};
{(empty-in-power || empty-in-pfun) || ermpty-dom)

ignoring the minor subgoals, then, the tactic above produces a proof with
thisoutline form:

r-in-pous £t =
T GINAME € BRAME T T o NAME % DATE € NAME = DATE © PP TS INAME, — dom ZINAME » DATE © "";"
1-an,

bindknoun 1= &\NAME], birthday := @[NAME » DATE]®
tenguen : PNAME, birthday - NAME — DATE | knowa = dom birthday|

1-labmiz
BirthdayBook ;= {krow - PNAME: birthday : NAME — DATY  kneum = dom birthday
.
{ Ruount 1= @ [NAME| birthday := #{NAME x DATE" @ BinthdayBock
FNAME] = & [NAME]
1-Leibmiz
BirthdayBook := known : PNAME; birthday : NAMF. — DATF  known = dom binthday;}
it BirihdayBock := |BirthdayBook | knoun = 9[NAME
-
{knoun .= S{NAME| birthday := @ [NAME x DATE! ¢ InitBirhdayBook )
{-exists

BirthdayBook := Krigun : FNAME; birthday : NAME -+ DATF | knouut = dom birthday, t
InitBirthdayBook := [BirthdayBock | knoun = @[NAME;]

N

2 frritBerthdayBook s true
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Appendix

This appendix records the text of the relevant parts of the current draft 7, stan-
dard. This is by no means in its final form, but represents the best available so
far.
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A Deductive System from Draft Z Standard

A.1 Free variables and alphabets

411 Paragraphs

olx]

&P

o)

¢lx :8)
plx=¢)
&([x]5)
o(x(y] =€)
#(T, { IL,)

alx)

as

aix :s)
a{x:=¢)
a([x]9)
alx[y] =e)

o

aP =

L L.l

oIl 1112} =

a5\ {x}
ce
Il U (@Il oIly)

{x)
=]

See below
{=}

{x}

aS

{x}

ﬂr.[] U (‘ln?



A.1.2 Predicates

dle € 5)
Ble=v)
btrue

Pfalse =

&(-F)
S(PAQ)
IPVQ)

®(P = Q)
PP = Q)
¢VSeP
$35«PF
$3, 5P
3(5)
e P)

[ L T P | B

I

no

&P

PP U B0

PP U Q)

P U BQ

®F U Q
dSU(PP \ af)
#SU(BP \ aS)
PSULPP \ aS)
aSUuU s

P U (PP ab)
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Al.3 Schemas

Bx1:51; - i XaiSa] = GS1)U - U(S,)
@S| F] = 4SU(EP\af)
#(-8) = &S
SEAT) = dSuT
EVT) = aSugT
S =>T) = SugT
dSwT) = opSuel
@SIT) = oSusT
d(S\[x1.. ... Xal) = ¢S
o(VSeT) = &SUpT

HASeT) = @SUST
§3,SeT) = ¢SUpT

(Sl1 /Yy, XafYp)) = 45
#SeT) = aSugT
8% = o
alryrsy, x50 = {xg, ... %)
alS{P] = af
a(-5) = aS
alSAT) = aSuaT
¢(SvT) = aSUal
al§=T) = aSual
alSeT) = oSuaT

alS[T) = aSnaT
alS\[t,.... 5} = aS\{n,... %)
) = al\aS
) = al\oeS
a3, 5eT) = aT\aS
SISy Anfgy)) = @SV [y XY,
)
)

a(Sg =
alSH = (aS)?
alx=e,... %= ) = {x1,..., 1}



Al.4 Expressions

olx) = {x}
plrlel) = {xjuee
o) = @
oz = @
ofery.eestn) = @le)U--- U dlen)
d{See} = dSu(de ab)
¢(Ps) = o)

B(E10..on8n) = Qle)U---Ugle,)
G5y X - x8p) = sV Ublsy]

dlerf) = gle)
olxy=€,.. Xa=en ) = ole)U-- Unle)
o{#S) = BS
obx) = o)
sife) = ¢f Ude
GuSee) = aSUBe \a5)
G(if Pthene, elsees i) = &P ) dey U e,
qﬁ(b@e) = ¢buUlde\ ab)
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A2 Substitution

All Predicates

bo(e=u}
boEc s)
b & true
b & false
by~ P
boPAQ)
bz (PvQ)
b (P=Q)
ba(PeQ)
When b N dPCaS:
boVSeP
b 3SeP
b3, 5P

When ab N asSn &P=
boVSeP
bm3ASeP
be3,5eP
WhenabneS = 2:
b3S
When wib:
boSs

{y=vioy=u}=2p)
{x=vic({y=u}=P)

boe=byu
bge€ bes
true

false
“hoP
baPAbeQ
baPVEDQ
baP=buQ
bePebaQ

L1 ]

W

Il

il

W

VbaSeP
JbeS e P
3,bcSe P

@ and aS N ¢b=@:
YhoSeb o P
bcSeb P
d,beSeba P

]

1]

11l

[}

bS]

= bop.S

= (y={y=vicu}pzP
= {y={x=v)oul{{x=v}aP
wherey ¢ dv
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A.2.2 Schema predicates

b, xn: 8
bao[S|F

& [-S8]
ba[SAT)
bolSvT]
telE=T]
ba[S e T

... X%q} = a8\ aT
beiS 1)

b o S\[x1,.. ,xi]

When {x,,.

11| I A 1

ll

box1 €EbesA
boSabG P
$as
basSaboT
boSvbaT
boS=2baT
baSobaT

b 5 [xq 2 e1; -

b fxices -

When aSN{¢boT L ab} = @:

b [vSeT]

b [ASe7]
bo(3,8eT]
bea[Sheafy, . ot fy,]]
b [S:T)

b [5Y

VoS eb T
JbaSebe T
3, beSeboT
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i xnien)eb@ (SAT)
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A3 Expressions

box = x whenxgab
(bx=eppx = ¢
{hx:=e}oy = (bhoe
boxly] =
boi = i
boz = z
bolery.oveny = {boery....bata}
When ab N ¢geCas:
by{See} = {(baSecr)
boiuSee) = uboSee
When ab N aS N de= & and ol Ngh=2:
b,{S5ee} = {bcSebcee}
boiuSee) = uboSeb e
boPs = Pbgs
bollen,..ove)) = (boe.. .. bse,)
bo(six--x8g) = bosyx---xbos,
boled) = (boelf
bo{xi=€1,....In =} = {m:=boer,... . Xp=boen}
WhenabNas =2
bo85 = 6b,5
When ob = oS
b,85 = &
biobx = (bhob)x
by(fe) = bofibge)
b . (if Pthene elsee; i) = ifb & Pthenb . eelseb ¢ ¢2
by (boe) =

{x:={x:=v)oujce
{x={y=vijcu}m

({y=vhoe)
whenx ¢ ¢uv.

{x=vpai{x=ujoe)
{y=v)ol{x:=ujoe)

iwom



A24 Schema expressions

bolr,...xn:58]
When obNalS =@
bo[S|P]
When aob N ¢PCa$s
bo[S|F]

bo{-5]
bolS5AT]

by [SVT]
bolS=T]
bolSe ]
bolST]

b, S\[x1,...,Xa]
bolvSeT)
bo(35«T]
hol3,5eT)
bo (S fy, - xa /Y|l
bolseT)

b 59

i

hi

1L T [ 11 O 1B | 1 I 1
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fy,...Xn 10 o8]
[pcS b @ P

eS| F)

(-b®S]

[paS AbeT)

pesS v baT)

[beS = beT)

BaS & beT)
BoSibeT]
(beSi\[xX1,.. .5 xp]
[¥beS e bT]
[3b25 e beT]

[3, bS5 e b T

b SUx1 /.- 2 /5]
BoSzbeT]

It o 5]



A3 Inference rules
A3.1 Structural rules

Assumption rules

m AssumbPred

m ASSHmDeﬁH (wf(x =e))

Thsrres AssumDect (wf(x : 5))

SchermaAss (oS N ¢S = @)

TiSF s
Parzgraph and thinning rules
PARFQ ,
W tPredConf
TiStP - Q
T | P Q t1SchPred
rLp .
m Thini
r'tpP R
r—tm Thinr (allN P = o}
T1iT4Il - P

aEmﬁH:z)

Shij
it ( allNel, =@

T,fl{T, - P

A.3.2 Equality and substitution

-— R
I‘)—e:e rtﬂ
Thryu=e¢ S
T'be=u L

Ttu=¢tov=e

- Trans
Tiu=¢erov=u

Tip+P

m TLUS eBind

Tthtu=e¢

m TLEtulﬂd (abNou = @)



A3.3 Propositional calculus

THP r-Q
~TrrAao A
T'FPAQ
-_FTP— AndEr
THPAQ
Tro AndEl
T+P

____T'I—PVQ Orir

THQ

Treva o

I'~PvQ@ TiPFR TiQHR

TFR Ort

TIP-Q .
Trers g Ml

TrP T'HP=(Q

Tro impE
I' I false
TTrp JalseE
=P+ f
T} 1_.!’F Palse _
'k P = false
TTrop ThetDd

T+ false = falseDef

I'+-F = true truellef

FTFP=0QAQ=2P .
THPoQ e

&7



A3.4 Quantifier rules

TrvyseP TrbeS ..
THbOP

”b?iasf‘:bes Exists!

PH3SeP TiSIPFQ ... 0

rFQ

TF 35« P ASOMETHING

_—
Tr3,SeP NUnigLists

A35 Expressionrules

Sets
THx)TH{{x:=5},Tey} €Pe
t4GenMem (y € aT, wf T
Tix]Ttyg ce v )
I (Vi:sexel)A(Vx:texes) +1Seleg (x & ¢5 U 1)
T'ks=t
Trv=e V...Vu=¢g,
tmi
Thve {e,. . .e) TEximem
TF3See=u
- 4] =
Trec(Seu) tlSetcomp (¢ N oS = @)
THYx:lexes .
- owersel
T 1 cps TLPowerset (x & ¢s)
Cartesian products
I‘I—v:e,-

. . <j<
Tru={e,... e)i Tupleequ (1 < i < n)

FFule€s A...AUNES,

rodmtem
THues x---x8, TP

Tru=le,...e)
Trul=¢ A...Aun—=g,

1 Tuplesel
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Labelled products
BindEqu (1 <i < n)

ThH{x :=e,.... 0=y bx; = ¢

Thyx, = A.. . Auxy=e, R
Trys (mmer..m=e) +|BindSel

m BindMem (x € ab, wib)

Schemas
Flhexy =x,A--Aex,=1, )
T'lhe=65

ThetaEqu

I = e, XXy .
{x: x"k’s" VES L RindSeh (oS- (x1.. .. %))

Description

Fhfu)efavy:feyl= 2= .
e el ;rfugfe “rido o T unctApp (y & de U )

I'tees
Trlx=e)oP
Tly:st{x=y}oP=>y=¢
TFte=px:s|P

DefnDescr

F'rP=2ey=eA-P=ze=e

CHif Pthene, elsee, fi=¢ TfThenklse

rl—vzt_t;:u_m
Tix :=uluv=e Tl Usedef (x & dv)

A.3.6 Schema calculus

Phue€lr 55 ...: 200 5,) .
. ind
Thux; €5;A... Aux, €5, tBindrmd

rreesSrbor

Trbefs p | ochemaMen

I'Hbw S .
Trves t1SchBindMem (wES)
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Lroofbos) ;Ti [2 < Si iSchBindMem’ (wtb)
11:%:—'3% t1SNot (W S)
—'——rlf}_bf:(gi?; TISAnd (WS A T)
%GE(;?,—%T tiSor (wfSv T)
r_r}_,_bf_—‘és(;}: %T 11SImp (wfS = T)

I+ T
baSebul o s wis e )

Trbc(S=1)

% TUSExists (6T N (ab U nS) = @)
i_:x_;”s‘?_;: 1LSAIL(¢T 1 (ab U aS) = @)
ﬁ%{]:?; t15UnigExists (¢T M (ab U aS) = &)
Trbedx :5;; 1 Xp:5, 98

TISHide

TrbeS\[xy,...,x4]

Trbe(SAT\. .. 2
I‘l—béSfT

t15Proj (oS \ aT = {xy....,x,})

SOMETHING _
“Trgs7r P
SOMETHING

TFS° t1SDecor

Pt





