
A REFINEMENT CALCULUS FOR Z

by

Ana Cavalcanti

Technical Monograph PRG-123
ISBN G.902928-97-X

August 1997

Oxford University Computing Laboratory
Programming Research Group
Wolfson Building, Parks Road
Oxford OXl 3QD
England

,
Cx~ord Unbe:"sity Cr"'"\' ,"" It:

VI/c'.f :-·-;, f'~'

F t::.;;',S ;- ~ .. '.;

Oxford CO :O~i)

A REFINEMENT CALCULUS FOR Z

Ana Cavalcanti

Wolfson College

Thein:; submil.ted for the Degree of Doctor of Philosophy

at the UniIJemty of Oxford

Hilary Term, 1997

Abstract

The lack of a method for developing programs from Z specifications is a difficulty that is
now widely recognised. As a contribution to solving this problem, we present ZRC, a refinement
calculus based on Morgan's work that incorporates the Z notation and follows its style and con
ventions. Other refinement techniques have been proposed fOr Z; ZRC builds upon some of them,

but distiuguishes itsplf in that it is completely formalised.
As several other refinement techniques, ZRC is formalised in terms of weakest preconditions. In

order to dpfine the semantics of its language, ZRC-L, we construct a weakest precondition semantics
for Z based on a relational semantics proposed by the Z standards paneL The resulting definition

is not unexpected, but its construction provides evidence for its suitability and, additionally,
establishes connections hetween predicate transformers and two different relational models. The

weakest precondition semantics of the remaining constructs of ZRC-L justify several assumptions
that permeate the formalisation of Morgan's refinement calculus. Based on the semantics of ZRC-L,
we derive all laws of ZRC.

Typically the refinement of a schema in ZRC begins with the application of a conversion law
that translates it to a notation convenient for refinement, aud proceeds with the application of

refinement laws. The conversion laws of ZRC formalise the main strategies and rules of translation
available in the literature; its set of refinement laws is extensive aud includes support for procedures,
parameters, recursion, and data refinement.

Morgan and Back have proposed different formalisations of procedures and parameters in the
context of refinemeut techniques. We investigate a surprising and intricate relationship between
these works and the substitution operator that renames the free variables of a program, and reveal

an inconsistency in Morgan's calculus. Back's approach does not suffer from this inconsistency,
but he does not present refinement laws. We benefit from both works and use a model based on

Back's forrnalism to derive refinement laws similar to those in Morgan's calculus. Furthermore, we
derive additional laws that formalise Morgan's approach to recursion.

Three case studies illustrate the application of ZRC. They show that ZRC can he useful as a
technique of formal program development, but are by no means enough to ascert.ain the general
adequacy of its conversion and refinement laws. Actually, since Z does not enforce a specific style
of structuring specifications, it is likely that new laws will be proved useful for paJ'ticular system

specifications: two of our case studies exemplify this situation. Our hope is that ZRC and its
formalisation will encourage further investigation into the refinement of Z specifications and the
proper justification of any emerging strategies or techniques.

Acknowledgments

I would like to express m)' gratitude to my supervisor, Jim Woodcock, for many valuable discussions

and suggestions, and for his expert advice and guidance. He bas been a major source of inspiration

and encouragement.
My examiuers, Paul Gardiner and Bernard Sufrin, ha..-e contributed valuable suggestions and

corrections. The thesis has improved a lot due to their comments.
Special thanks are due to Will Harwood. Steve King, Carroll Morgan, and Augusto Sampaio,

who have read and commented on drafts of parts of this thesis. Will Harwood has suggested
the study of the relationship between weakest preconditions and relations in a general framework,
rather than in the context of Z. Carroll Morgan bas called to my attention the existence of a
relationship between positively conjunctive weakest preconditions and relations The parts of
this thesis concerned with procedures and parameters are the result of joint work with Augusto

Sampaio. Our many discussions with Carroll Morgan on this subject have been of great help;
anonymous referees have also commented on this work.

Thanks to Paulo Borba for many helpful discussions during earlier stages of my work. Many

thanks also to Paul Gardiner who has answered my many questions about recursion, and to Andrew

Martin and Andrew Stevens for patiently explaining their work to me.
I am also grateful to some members of the Wol£Son College staff for their friendship and support

in difficult moments. Thanks to Roger Hall, Angela Moore, Jane Scriven, and Heather Waring.

My deepest gratitude goes to my husband for his caring love and dedication. He has left his
famil)'. his friends. and his job to come to England with me. I will never forget that.

M)' parents and my aunt have suffered a great deal from my absence, but never failed to sbow
their support and encouragement. I will never be able to properly acknowledge everything they

have doue for me.
I am lucky enough to be ahle to say that I could not possibly name all m)' friends in this space.

Their practical and emotioual support has heen an invaluable asset. To all of them, a big thanks.

The work described in this thesis has been financially supported by the Brazilian government
through one of its research agencies, CNPq, grant 204.527/90-2.

Contents

1 Introduction	 1

1.1	 A Simple Development 2

1.2	 Overview
 9

2 A Weakest Precondition Semantics for Z	 11

2.1	 The Relational Semantics 11

2.1.1 Syntax .	 12

2.1.2 Semantic Universe
 12
2.1.3 The Semantics of Schemas .	 14

2.2	 A Weakest Precondition Semantics 16

2.2.1 Predicate 'Transformers and Relations	 17

2.2.2 The Different Relational Models	 21

2.2.3 The Definition of wp	 25

2.2.4 Healthiness Conditiolis .	 31

2.3	 Schema Expressions 32

2.4	 Conclusions
 35

3 ZRC	 36

3.1	 ZRC-L ...
 37

32 Primitive Statements, Composition, Variables, and Constants 39

3.3	 Refinement 44

3.4	 Procedures, Parameters, and Recursion 48

3.4,1 Exploring the Effect of Substitution 48

3.4.2 Semantics
 51

3.5	 Scope Rules . 54

3.6	 Conversion Laws
 55

37 Refinement Laws
 64

3.7.1 Pracedures and Recursion
 65
3.7.2 Parametrised Statements	 67

3.7.3 Data Refinement
 70

3.8	 Conclusions . .
 74

viii CONTENTS

4 Case Studies 77

4.1 The Class Manager 77

4.2 The Text Editor 90

4.3 The Airbus Cabin-Illumination System. 103

4.4 Conclusions 116

5 Conclusions 118

5.1 Related Work 119

5.2 Future Research 121

A Mathematical Notation 123

B Proofs of Some Theorems 125

C Weakest Precondition Definitions 129

D Laws of ZRC and Their Derivations 131

D.l Conversion Laws 131

D.2 Refinement Laws 147

Chapter 1

Introduction

Z [58, 81 is a well-estabHshed formal specification language that has a distinguishing mechanism of

modularisation: the schema calculus. Its success is evident: many case studies [25, 27] have already

been developed, some of which involve industrial applications; a wide range of tools [57, 31, 24J

that support several aspects of its use have been implemented; and several courses and textbooks
are at our disposal [52, 16, 65J. In spite of all this, a drawback has been recognised in the use

of Z: the absence of a well-defined and provably correct method of moving from the specification
phase to the later stages of program development.

Several proposals for solving this problem can he found in the literature. Some results have been

achieved on methods of prototyping Z specifications [17, 13, 29, 54J which focus on the production
of low cost prototypes with the aim of capturing requirements and validating speci6cations. In all

cases, the prototypes can be generated mainly by translating restricted forms of specifications.

Another line of research considers the use of refinement techniques to develop implementations

for Z specifications. As opposed to prototyping methods, a refinement technique aims at the pro

ductiou of efficient imperative programs. Its major features are a unified language of specification,
desigu and programming, a refinement relatiou, aud a stepwise style of program development. In
tbe particular case of a refinement calculus, refinement laws are used to derive programs from

specifications.

King proposes in [34J the comhiued use of Z and Morgan's refinemeut calculus. In this work the
differences between Z and the notation of Morgan's calculus [45J are analysed and, in the light of

these considerations, laws that translate schemas and some schema expressions to programs of this

refinement calculus are suggested. In [64J, Woodcock indicates one additional translation law: a
form of promotion is implemented as a call to a procedure with a value-result parameter.

Iu [66] Wordsworth proposes a refinement technique for Z where schemas themselves are re
garded as commands. In this work, refinement is accomplished either hy laws that are similar to

the translation rules of [34] that apply to schema expressions, or by verification instead of calcu
lation, when none of these laws apply. There is no equivalent to the law of [34] that can translate

every schema.

Other proposals that present characteristics of both prototyping and refinement techniques, or

that present just some characteristics of one of these approache.s, are also available. The objective
of the work presented in [61], for instance, is the definition of a method for implementing Z
specifications using a functional language. In this case, an executable subset ofZ (Z--) is identified,

2 Chapter 1. Introduction

and refinement occurrs in a unified framework for specification and programming. Nevertheless,
the exemplified refinement does not follow any formal techniqne and it is hoped that the Z-

programs can be employed as final products Of that comparison of test results can be used in
validating an eWlItual translation to another programming language.

A notation for documenting the development of Ada programs from Z specifications is defined
in [56]. Despite the fact that a language similar to that of ~·forgan'5 refinement calculus is used,
the proposal consists of designing the programs directly in Ada and then providing an account of
their correctness using thp notation and literate progTamming. Refinement laws are not used.

The objectives of producing efficient programs, and of applying a dewloprnent method that
is mathematically sound and allows the use of calculational techniques are best served by the

approaches in [34, 66, 64, 65]. In particular, the proposals in [34, 64, 65] distinguish themselves
by encouraging and enabling the construction of programs by calculation, instead of verification,

to a much greater extent.
In this work, we prp8ent ZRC, a refinement calculus for Z whose design is based mainly on [34,

64, 65] and MQrgan's calculus. Following the lines of [64, 65], ZRC employs a notation compatible
with the Z style at all stages of development. Most of its laws are ba.'3ed on those of [34, 64,
65, 45], but we consider exteusions and adaptations, and introduce new laws in order to comply

with the Z notation and facilitate the application of ZRC. As Morgan's calculus. ZRC provides
8upport for procedures, recursion, and data refinempnt. We prove the soundness of all its laws
and this is probably its most remarkable feature. As far as we know, no attempt has been made

to formalise [34, 64, 65]. Our work uncovers a few mistakes, and indicates simplifications and
generalisations. We also point out an inconsistency in [41].

At the moment, there is an effort to standardise Z, and a fairly complete account of the language
has already been given in [8]. We assume familiarity with Z as presented in this document, which

we use as a basis for our work. A conformant and more accessible presentation can be found in [65].
In the uext section we provide an overview of ZRC by means of a very simple example: the

birthday book that is specified in [58]. In Section 1.2 we describp thp subsequent chapters and

appendices.

1.1 A Simple Development

The starting point of a system development in ZRC is, in general, a concrete Z specification
whieh is expressed in terms of data types available in the target program.miog language. This

specification can be, for iIlStance, the result of applying the Z data refinement technique to an

abstract spt'Cification.
In this section, we apply znc to derive all impJpmentation for a birthday book which was first

specified. aDd data-refined in [58]. This is a small system that records birthday dates and is able
to issue remindeffi. In what follows, we reproduce its concrete speci£ca.tion as presented in [58J.

The birthda.y book deals with names and dates from the sets NAME and DATE, which are

introduced as given sets.

[NA.lfE.DATE]

People's names and birthday dates are registered in the arrays name.~ and date.:; which are rep

resented. as total functions from Nt; for simplicity, in (58] potentially infinite arrays are assumed

3 1.1 A Simple Development

Operation Precondition

AddBirthday1

FmdBirthday 1

Vi: 1 .. hwm. name? #- names i
3l: 1 .. hwm. name? = names,

Table 1.1: Operations Preconditions

to be available in the target programming language. The birthday of the person whooe name is
recDrded at the Hh position of names is on the date recorded at the i-th position of dates.

BlrthdayBookl.::-;-;;:;- _

names: N1 NAME
dates: N1 DATE
hwm: N

Vi,) : 1 .. hwm • i #- j :::} names ii-names j

The additional state component hwm dptermines the portion of names and dates tha_ is in use: the
positions frDm 1 to hwm. The state invariant ~tabJishes that no name is recorded in thesp positions

[hore than once.
The hirthday book has three operations. The first that we specify adds a perscm's name and

birthday, inputs name? and date?, tD names and dates.

AddBirthday1 _

ti.BirthdayBookl

name?: NAME

date?: DATE

Vi: I .. hwm. name? #- names I

hwm l = hwm + I

nllmes l = names'<B {hwm l H name?}

datd = dates <B {hwm l

H date?}

This is a partial operation: name? can bp added to names only if it is nDt already recorded there
in the positions from 1 to hwm. The preconditions of AddBirihday1 and FindBlrlhdayl, tbp next

Dperation that we specify, are shown in Thble 1.1.
The operation FindBirihdayl finds tbe birthday, output date!, of the person called name?

FindBirihday1 _

3BirihdayBook1
name?: NAME
date!: DATE

3 i : 1 .. hwm _ name? = names l 1\ date! = date!' i

Tbis Dperation can he successfully executed only if name? is recorded in names (see Table 1.1).

The last operation, Remind1, retrieves the names Df the people that have their birthday on an
input date today? The Dutputs are an array cardltsH, which records these names, and a natural

4 Chapter 1. Introduction

number	 ncards! that identifies the section of cardli8t! that is beiug used.

Remindl _

I
~B<rthdaYBaakl
today? : DATE
cardlist!: N1 -t NAME
ncards! : N

{ i : 1 .. ncards! • cardlist! i } = {) : 1 .. hwm I dates j = today? • names} }

As opposed to AddBirthdayl and FindDirthdayl, Remind! is a total operation: its precondition
is true.

With the assumption that uames, dates, arrays, and natural numbers are available in the

target programming language, we start the refinement of the operations. In this stepwise process,

intermediary and fiual programs are "..titten in ZRC-L, the language ofZRe. Besides the Z notation.
this language embodies specification and programming constructs typically found in refinement

techniques; it is an extension of Dijkstra's language of guarded commands [14], which we assume
to be known. Final programs are written with the llse of e.xecutable constructs only. Translating
tllcm to an imperative target language should not be difficult, hut is not in the scope of ZRC.

The first step of the birthday book development consists of transforming the schemas that
specify operations into specification statements. This change of notation is the concern of the so

called conversion laws of ZRC. Here,'t' use that named bC (basic conversion).
A specification statement has the form w : [pre, post], where w, the frame, is a list of variables,

and pre, thl' prt.>condition, and po.~t, the postcoudition, are predicates. This program cau change
only the value of the variables in wand, when executed from a state and with inputs that satisfy

pre, terminat.e~ in a state and with outputs that satisfy POHt. By applying bC to AddBirthdayl

(and then simplifying the precondition of the resulting specification statement), we obtain the spec
ification statement shown below. For clarity, we stack the coujuucts of its pre and postcondition.

and those of many other predicates that follow.

AddBirthday 1

~ be

(
'tI i,) : 1 .. hwm • i ¥- } => nameH i ¥- names})

'til: 1 .. hwm. name'! ¥- name/l j •

nameH. dates, hwm :
V,,} , \., hwm'., "j => nam'" i, "
VI: 1 .. hwm. name? ¥- nameH I

hwm' == hwm + 1

name<' j]
(i)

[names' = names ill {hwm' >--+ name?}

dateJ':=:. dates \fl {hwm' >--+ date?}

As AddBirlhdayl, this program can change the values of the state components. Its precondition in
cludes the state invariant and the precondition of AddBirthdayL The postcondition comprises the
invariant of the after-state and the predicate of AddBirthdayl. Altogether, the specificatiou state
ment (i) and AddBirthdayl spe<:ify the same operation. The advantage of writing AddBirlhdayl

as a specification statement is that, even though they are abstract programs which, as schemas,

cannot be executed, specification statements are better suited for refinement.

5 1.1 A Simple Development

In ZRC, specifications (schemas, specification statements, and other constructs that we in

troduce in Chapter 3) and designs, which mix programming and specification constructs, are all
regarded as programs. In this more general context. we can say that refinement is a relation

between programs. Informally, a program P2 refines a program Pl when P2 is acceptable as an
implementation (or design) of Pl.

Refinement laws characterise properties of the refinement relation. The refinement process
consists of repeatedly applying them to derive an efficient and ex~utable program from a speci

fication. A conversion law is a refinement law that transforms a specification written in Z into a
program of ZRC-L In general, they are applied at the beginning of the refinement process only.

As an example, we present below the refinement law a.,.,lgI (assignment introduction), which

can be used to refine a specification statement to an assignment.

Law asstgI Assignment introduction

w, vI: [pre,post]

~ assigI

vi := el

provided pre => pO.'lt[el/vi'][_/']

Syntactic Restrictions

• vi contains no dnplicated variables;

• vI and el have the same length;

• el is well-scoped and well-typed;

• el has no free dashed variables;

• The corresponding variables of vi and expressions of el have the same type.

The symbol ~ represents the refinement relation and, ase mentioned above, assigI is the law
name. Since the assignment vl:= el potentially modifies the variables of vi, they must be in the

frame of the specification statement. The proviso ensures tiIat, when the pr~onditiDn of the sp~i
fication statement holds, its postcondition is satisfied if the after-state variables assume the values

established in vI := el. To pnt it more simply, it certifies that this assignment really implements
the specification statement. The predicate post[el/vl'][_/'J is tbat obtained by substituting t.he

expressions of el for the corresponding variables of vI' and removing the dashes from the free vari
ables of post. The syntactic restrictions guarantee that the assignment is well-formed, well-scoped.

and well-typed.
The operation AddBirthday1 can be implemented by an assignment whose introduction can be

justified by an application of asstgl to the specification statement (i).

(I) ~ assigl

hwm, names,date.'l:= hwm + 1,namesED {hwm +1....-+ name?},dates ffi{hwm + 1....-+ date?)

As required, hwm, names, and dates are in the frame of (i). Also, this list has no repetitions

and has the same length as hwm + 1, names ED {hwm + 1-+ name?}, dates at fhwm + 1-+ date?},

whose expressions refer only to variables in scope: either state or input variables. Finally, these
expressions have the same type as the corresponding variables of hwm, name!, dates.

6 Chapter 1. Introduction

As to the proof-obligation ensIled by the proviso of assigI, we observe that the second conjunct

of the postcondition of (i) is in its precondition, and the last three conjuncts are the equalities that

characterise the assignment. Therefore, the interesting part of this proof-obligation is prompted by

the first conjunct a.od amounts to showing that the assignment maintains the state invariant. Since

the array names ~ {hwm + 1 o--t name?} coincides with names in all positions except htJml + I, the

precondition of(i) (or, more precisely, the state invariant) guarantees that it contains no repetitions

in the positions from 1 to hwm. Our concern is, therefore, only with the introduction of name?

in t.he position hwm + 1. The precondition, however, also states that name? is not recorded in

(1 .. hwm) <J names, and consequently its insertion does not lead to repetitions.

In general, the refinement of an operation comprises several applications of different laws. Pro

gramming constructs are introduced gradually and their components are developed independently.

The refinement of FindBt,thdayl provides an example.

The specification statement obtained by applying the conversion law be to FindBirthdayL
which provides a.n alternative definition for this operation, is presented in the sequeL

FindBirthdayl

= be

't/ i, j : 1 .. hwm _ i #- j => names i #- names j)]
date! [(3 i : 1 .. hwm _ name'? = names i ' (;,)

3 i : 1 .. hwm _ name? = names I 1\ date! = dates t

Since FindBirl.hdayl cannot change the state, only the output variable is in the frame of this

specification statement. Its precondition includes the state invariant and the precondition of

FmdBi,thdayl. The postcondition, however, is simply the predicate of FindBirthday1: by not

changing the state, FindBirlhdayl trivially maintains its invariant which, therefore, does not need

to be enforced in the postcondition of (Ii).

This opera.tion can be implemented by an iteration that records in an auxiliary variable the

position where name? occurs in names, foUowed by a proper assignment to date!. The declaration

of the auxiliaIj' variable can be introduced by applying the vrbI (variable introduction) law to (ti).

The resultiIlg program is shown below.

i;: v,bI

I[vad,~ •

y;,"l..hwm""J=>nam",,,nam"J)]
k, date! : (3 t : 1 .. hwm _ name? = names t <J

[3 t : 1 .. hunn _ name? = names I 1\ date! = dates z

JI

This program is a variable block that introduces the auxiliary variable k of type ~. The scope of

k is restricted to the body of the variable block: the specification statement obtained by adding k
to the frame of (Ii). In the refinement of this program we can rely on the fact that kENt. The

symbol on the right margin indicates the program that is refined subsequently: the specification

statement a.s opposed to the variable block as a whole.

The assignment to date! can he introduced by the fassigI (following assignment introduction)

law, which splits a specification statement into the sequential composition of another specification

7 1.1 A Simple Development

statement with an assignment.

i; jasslgI

'I ;,j , J.. hwm 0 ; t J => nam" ; t names j)]
k, date! : (3 i ; 1 .. hunn. name? = names i ' <l

[3 i : 1 .. hwm _ name'? = names i 1\ dates k' = dates i

date!:= dates k

In order to introduce the iteration, we need to identify its invariant: a predicate whose validity
is established right before the Heratiot! and that is preserved by it. In our example, a proper
invariant is the predicate below.

(3 i : 1 .. hwm • name? = names l) 1\ (V 1 : I .. k - 1 • name? i=- names i)

We can introduce this predicate in our specification hy splitting the above specification statement
into a sequential composition of two other specification statements with the use of setjcl (sequential
composition introduction). This law introduces an intermediate goal which must beestablished by
the first specification statement in the sequential composition and may be assumed by the second
one. The first specification statement may assume the precondition of the original specification
statement, and the second specification statement must establish its postcondition. In our example,
we take the iteration invariant as the intermediate goal.

i;seqcl

'I ',J , J.. hwm 0 i t j. => nam" , t names j) ,
31: 1 .. hwm _ name? = names l

k, date! : <l
31: 1 .. hwm. name? = names i)[(
V I : I .. k' - 1 • name? i=- namell i

3, , 1.. hwm 0 name? ~ nam" ,)]

k, date! : (V: : 1 ., k - 1 _ name? i=- names i '
 (iii)

[
3 j ; 1 .. hunn • name? = names 1 1\ dates i/ = dates i

The first specification statement above establishes the invariant. It can be refined to an a..qgjgnment
as shown in the sequel.

i; assigI

k:= 1

The proof-obligation associated to this application of assigI is trivial, because the first conjunct
of the invariant is in the precondition of the specification statement and, when k l is 1, the second
conjunct is a universal quantification over the empty set.

The law sP (strengthen postcondition) refiues a specification statement by strengthening its
postcondition under the assumption that its precondition holds. We apply this law to (Iii) in order

8 Chapter 1. Introduction

I[var k,N,.
k ,= 1 ;

do name? #- names k ~ k := k + 1 od ;
date!:= dates k

JI

Figure 1.1: F1ndBirthdayl Implementation

to express itg pQStcondition in terms of the iteration invariant.

(Iii) r;;;;. sp

3 i : 1 .. hwm • name? = names i)
(Vi: 1 . k - 1 • name? #- names i '

k.date! : 31' 1 . hwm • name? = names i)
VII . e - 1 • name? #- names 1

(
name? = names k'

Applications of sP give rise to proof-obligations. In this case, we have to show that the ahove

postcondition implies the postcondition of (Iii), when its precondition holds. In order to conclude
from name? = names k l and dates k l = dates k' that k l is the I characterised hy the existential

Quantification in the postcondition of (iii), we have just to show that it is in the interval 1 .. hwm.
This follows from the observation that thp precondition of (iii) states that name? occurs among
the first hwm elements of names, and k' is thp first position of names where name? occurs.

The above specification statement is in a form appropriatp for the application of the it! (it

eration introduction) law, which introduces an itpration that prf."Serves the invariant and, in this
case, keeps executing until name? = names k holds. In order to guarantee termination, we have

to identify a variant: an integer expression whose valup is decreased by each step of the iteration,
but is bound below by O. An appropriate variant for our example is hwm - k.

!;it!

do name? #- names k ~

3 l : 1 .. hwm • name? == names i)
Vi: 1 .. k - 1 • name? ':f:. names l ,

k,date! ;
(

name? #- names k

3 i : 1 .. hwm • name? == names i)

(
V I: 1 .. k l

- 1 • name? #- names j

o :<; hwm e < hwm - k

od

The precondit.ion of the specification statement in the body of the iteration includp.s, be.sides the

iteration invariant, its guard: name? #- names k, which certainly holds at that point, as othprwise
the iteration would have not proceeded. Under this assumption, the task of this specification

I

9 1.2 Overview

I[var LN.
ncards!,k :=0,0;
do k #=- hwm-+

k:=k+l;

if dates k = today? -+

cardlistt, ncards! := cardlist! tIl {ncarris! + 1 H names k}, ncards! + 1

o dates k ¥ today -+ skip

fi

ad

II

Figure 1.2: Remmdl Implementation

statement, namely, decrease the variant while preserving the invaria.nt, can be accomplished by
tlte aasignment that increases the valne of k by 1.

(;;	 assigI

k,~ k + 1

Since name? is not in the first k - 1 positions of names, and is not in its k-th position either, then
obviously name? is not in the first k positions of names. By increasing k, we certainly decrease the

value of hwm - k. And since name? is among the first hwm elements of names, then hwm > k, so
that O:S hwm - (k + 1). These observations account for the proof-obligation that is generated by

the above application of assigI.
The implementation of FindBinhdayl that we have just derived is presented in Figure 1.1. For

the sake of conciseness, we do not refine Remindl, but in Figure 1.2 we present an implementation

for it that can be derived in ZRC.
'The conversion and refinement laws that have been used in this section are presented in Ap

pendix D. There we specify precisely the transformations that ca,n be achieved by e<ll:h of them

as well as the proof-obligations that they generate. The main subject of the neJet chapters is the
definition of a model that supports the derivation of these and many other laws.

1.2 Overview

The formalisation of ZRC is based on weakest preconditions. In the next chapter, we present a
weakest precondition semantics for Z which we construct from a relational semantics that has been

proposed by the Z standardisation committee. Although the weakest precondition semantics is
not surprising, its construction gives reassura.nce as to its adequacy and is itself of interest. To

begin with, we establish an isomorpbism between predicate transforms and a relational model that
has been used elsewhere to formalise the data refinement rules of Z. In second place, we compare
this relational model to that used in the Z relational semantics and, finally, we define tbe weakest
precondition semantics. As it consists of a unique definition that considers schemas that specify

10 Chapter 1. Introduction

operations in general, compositional formulations for the weakest precondition of some schema
expressions are also provided. in Chapter 2.

Chapter 3 concludes the semantics definition of ZRC-L by defining the weakest precondition of
its remaining constructs. They are similar to those of Morgan's refinement calculus and, in speci
fying their1;'a.kest precondition, we explain many assumptions of its formalisation. In Chapter 3,

we also introduce the definition that we adopt for refinement, and the scope rules of ZRC-L.
The formali..-.atioo of ZRC is highly based 00 that of Morgan's calculus, however, our treat

ment of procedurl.'s, parametl'TS, and recursiOIl follows Back's approach. In Chapter 3, we uncover

a rather subtle and unexpected relation between Morgan's and Back's formalisms and the sub
stitution operator that renames the free variables of a program, and show that Morgan's work

presents an inconsistency. As a consequence, even though most laws of ZRC I..:oncerned with the
development of (recursive or parametrised) procedures are similar to those of Morgan's calculus,

the model that we present in Chapter 3 to support their derivation is based on Back's work.

Yet in Chapter 3. we present the conversion laws of ZRC and exemplify their application. For
the sake of conciseness, we do not discuss each of the refinement laws individually: we concentrate

OUl' attention on those that support procedure developments and data refinements. Several of
the laws that deal with procedures have no counterpart in Morgan's calculus a.nd formaliBe its
approach to recursion.

The a.pplication of ZRC in the refiuement of a small system has already been illustrated in thc
previous section. Three more sizeable examples are provided in Chapter 4. The first one is a class

manager that King has used as a case study for his approach to the refiuement of Z specifications.
The second example is part of a text editor for which a C implementation has been obtained

using a technique mostly based on verification rull's. The third and final example is an Airbus

cabin-ilumination system. Its development and that of the text editor suggest the introduction of

two additional Conversion laws, which we prl'sent in Chapter 4 itself.
The last chapter presents our conclusions, discusses some related works, and proposes directions

for further research. Finally, four appendices complement the material presented in Chapters 2

and 3. Appendix A explains the less familiar symbols of the mathematical notation employed
in Chapter 2, and Appendix 8 presents proofs for some of the theorems introduced. in this same
chapter. The weakest precondition semantics of ZRC-L is summarised in Appendix C. Lastly,

ApPl'ndix D presents the conversion and the refinement laws of ZRC along with their derivation.

Chapter 2

A Weakest Precondition Semantics
for Z

In the same way as a number of other refinement techniques [47, 48, 4, 45J, ZRC is formalised in

terms of weakest preconditions (wp) [14J, which are used to define both the meaning of ZRC-L
and the refinement relation. This cha.pter is concerned with the wp sernalities of ZRC-L or, more

specifically, of Z. The remaining constructs of ZRC-L, which are not pact of the Z notation, are
considered in Chapter 3.

In the next section we reproduce part of the Z relational semantics; this work, which is presented

in [8) by the standardisation commiltee, is the responsibility of Brien. In SectioIJ 2.2 we provide
an equivalent wp semantics for Z which is constructed with basis on the relational semantics

itself and on an isomorphism between weakest preconditions and relations. The wp semantics
is composed of a single definition that contemplates schemas that specify operations in general.

In order to facilitate its application, in Section 2.3 we derive compositional formulations for the
weakest preconditions of some schema expressions. Finally, Section 2.4 discusse~ some aspects of
the wp semantics and examines some related works.

2.1 The Relational Semantics

Tbe pact of the Z relational semantics presented in this section is that concerned with the definition
of scbemas. As a wp semantics considers only the meaning of operations, and these are specified

in Z by schemas, we concentrate here on their definition. Basically, we introduce the definitions

used in Section 2.2. The complete specification is presented in [8].
The relational semantics is defined in a denotational style. It is based on an abstract syntax.

a.nd on semantic functions which map schemas, declacations, or predicates, for instance, to values
of a semantic universe. These functions are specified compositionally.

12 Chapter 2. A Wea.kest Precondition Semantics for Z

2.1.1 Syntax

The abstract syntax of Z is partially defined below using a BNF-like notaliOll. We write terminal
symbols enclosed in quotation marks and non-terminal symbols in italics.

Schema SComtructio11

SConsiT"tJetion "= '(' Decl 'I' Pred ')'

Decl ,,- S~mpleDecl

CompndDccl

SlmpleDecl ::= VarName, VarName",., VarName ':' Exp

CompndDecl ,,- Ded 'i' Decl

Schema Text ,,- SimpleScT

CompndScT

SimpleScT ,,- Ded

CompndScT ,,- Ded 'I' Pred

The :<;yotactic ca.tegories Pred, VarName, and Erp correspond to the Z predicates, variable names,
and expressions, respecti vely.

2.1.2 Semantic Universe

The semantic universe is based on ZF set theory. It comprises denotations for names, types, values,
and specifications as a whole.

The langua.ge used in the specification of the semantic universe (and of the semantic functions)

is defined in [8). It consists mainly of conventional mathematical or Z notation together with some
set and relational operators. The unusual operations used here and in Section 2.2 are enumerated
and briefly explained in Appendix A.

Names and Types

The paragraphs of a Z specification introduce names and associate with each of them a type. We

can distinguish different sorts of names: schema, variable, and constant names. Therefore, the
set Name, which contains all names that Can be lliied in a specification, is partitioned by the
sets SchemaName, Variable, and Constant, which contain, respectiveLy, all valid schema, variable,
and constant names. The set of given set names, which is called G1venSetName, is a subset of
Constant,

A type is either a given set, a power set, a cartesian product or a schema type. As a cousequence,
Type, the set of all valid types, is partitioned into the sets Glype, Plype, Ctype and Slype, Tbe
structure of Type is defined by the constructors givenT, power-T, cproductT and schemaT.

givenT: GivenSetName >--+ Gtype

powerT : Type >--+ Ptype

cprooudT : Type+ Clype

schernaT ; S1gnature >--+ Stype

A given set type is constructed out of its narne by givenT; a power set type is constructed by

13 2.1 The Relational Semantics

powe"T from its hase type; cproductT constructs a cartesian product type out of the tuple com
posed of its base types; finally, schemaT takes a signature and constructs a schema type. A
signature is a finite partial function from Variable to Type.

Each type is associated with a set of values, which is called its carrier set. This association is
established by a function named Carner.

Elements

A pair formed by a type and a value of its carrier set is called an element. The set Elm, that
contains all these pairs, is defined as a relation between types and values.

Definition 2.1 Elm == Carrier Ii 31

The membership relation for elements (3) associates an element whose value is a set with
elements whose values belong to this set. The type in a set-valued element is a power set.

Definition 2.2'3 == (powe"T-lx 31)

In this definition, (_ x _) is not used as the traditional ZF operator; (powerT- 1 x 3) relates a pair
formed by a power set type pt and a set s (a set~valued element) to the pairs formed by the base
type of pt and a member of s. The definition of (_ x _) adopted here is presented in Appendix A.

An association of variahle names with elements is called a situation. The set Siluation contains
all finite partial mappings from Variable to Elm.

Definition 2.3 Situation == Variable -lit Elm

The typing and value constraints in a generic definition (schema or constant) may be specified
in terms of its parameters. As a consequence, generic types and generic elements have to be
considered.

Generics

A generic type is either a type itself or a function. The type of a generic schema or constant is
represented hy a fnnction which defines the type of each of the schema or constant instantiations.
The type of an instantiation is determined by the value it ascribes to the parameters. The set of
all generic types is called GenType.

Definition 2.4 GenType == Type U U,,>o(Ptype" --+ Type)

Similarly, a generic element can be an ordinary element or a function from tuples of set-valued
elements to elements. The set containing all set-valued elements is Pelm. In its definition, Elm is
viewed as a relation.

Definition 2.5 Pelm == Ptype <l Elm

The set of generic elements is GenElm. Its definition is very much like that of GenType.

Definition 2.6 GenElm == Elm U U,,>o(Pelm" --+ Elm)

A declaration, predicate or schema, for instance. can he defined in terms of names that have
been previously introduced in the specification. As a result, their meaning depends, in general. on
the types and values of these names or, in other words, on the environment.

14 Chapter 2. A Weakest Precondition Semantics for Z

Environments

An environment records a particular association of types and values with names, The set of all
environments, EnlJ, contains all finite partial functions from names to generic elements.

Definition 2.7 Enu == Name ~ GenEim

Environments and situations playa major role in the relational semantics of schemas. In what
foUows, we reproduce its definition.

2.1.3 The Semantics of Schemas

The semantic function that defines the meaning of schemas is (_Y·-1 s , which maps schpmas to
relations between environments and situations. For a schema S, the relation {SDMS associates an

environment with each of the situatious that assign elements to the components of S according to

its definition.

{SDMs : Env H SittJation

As the definition of S may depend on the environment, different situations may be a.."-Sociated with
different environments.

The meaning of a schema {D I P} is defined in terms of the meaning of its declaration
(D]M - and of its schema te.xt - {D I p}M. These are defined in the spquel.

I(D I PIP~' ~ IDI~ n (ID I PI~. ;:J)

The relation lD I P)1-1 associates an environment p with each of its enrichments that include the
variables declared in D and satisfying the restrictions in D and P. The composition (D I P}1-1 ~ ~

relates p to all subsets of thesp enrichment!:i_ The intersection rules out the subsets that are not
situations that assign values to precisely the variabJps declared in D.

The Semantics of Declarations

The function (_]1-1 establishes the mpaning of declarations. For a declaration D, (D]l-1s is the

relation that associates an environment with all situatiollS that assign values to exactly those
variables declared in D in accordance with its restrictions.

(D]-"-1: Env H SiltJ.ation

If the type dpfinitions of D rely on the environment, then in general (DD M relates diffprent sets of

situations to different environments.
The definition of (_DI-1 is given by recUI!:iion O\Tr Ded. The base case is a simple declaration

of the form n1,".' nrn : 3.

Inl, ... ,nm"l~ ~ ['I~.((nl°,3), .. ,(nm',3)I~(.. ·}

The relation [sJI-1 defines the meaning of the set expression 3: a function that associates an
environment with the element that represents the type and the value of 3 in that environment.

This element i!:i related by {(nl", 3), ... , (nm" , 3)} to every m-tuple of pairs of the form (n" x),

15 2.1 The Relational Semantics

where i is the position of the pair in the tuple and x, an element of s. Finally, {... } associates
each of these tuples with the corresponding situation (set of pairs). Altogether, {nt, ... nm : S]M
relates an environment to all situations that associate any value of s to each n,.

A compound declaration has its meaning specified as follows.

!D,; D21M = (!D,IM,!D,IM) ~ U

The relation ({D1D M , ~D2]M) associates an environment p with the pairs of situations that relate
elements to the variables declared in D t and D2 in a way that respects their definitiolL'l. The pairs
that are compatible as functions (in the sense that variables that belong to the domain of both of
them are associated with the same value) are related to tbeir union by U.

The set of names introduced by a declaration is known as its alphabet. This set is specified
by the function Q, which is defined as shown below. Application of this particular function to a
declaration D is represented simply by juxtaposition: QD.

Q(nl ,n",:s)={nl, .. ,n... }
cr(Dli D2) = aD I UcrD2

The alphabet of a simple declaration contains exactly the variable names nt, .. ., nm that it in
troduces. In the case of a compound declaration, its alphabet is the union of the alphabets of its
components.

The Semantics of Schema Texts

The meaning of schema. texts is defined by ~_)M. This function associates a schema text with a
relation between environments: for a schema text St, ~St)M associates an environment with all
its enrichments by situations that assign elements to the components of St in accordance with its
definition.

(St)M : EntJ H Enu

As in the case of schemas and declarations, the definition of St may depend on the environment
and, that being so, different environments may determine different sets of situations.

The definition of ~_)M is by recursion over Schema Text. The base case is a declaration.

{DIM = (1, {DIM) ~ $

The relatiou (D) M associates an environment p with each of the environments that can be obtained
by enriching p with a situation that is related to it in {D]M.

The semantics of a compound schema text is defined as follows.

M
{D I PI = {DIM" {PD M

The set «p»M contains the environments that satisfy the predicate p, While (D)M , as mentioned
above, relates an environment to each of its enrichments that takes the declaration D into account,
(D 1 P}M relates that environment just to those of these enrichments that satisfy P.

16 Chapter 2. A Weakest Precondition Semantics for Z

The Semantics of Predicates

A predicate P bas its meaning defined by the set {PH''''', which. as already said, contains the
environments in which P holds. This set is defined as the intersection of the set of environments
in which P i'> well-typed and the set of environments in which P is supported. A predicate is
supported in an environment if it is true in that environment. For example, ..., (x EX) is supported
in all environments, since the axiom of regularity ensures that x E .:l is false. Nonetheless, ..., (x EX)

is not well-typed in any euvironment, so that its meaning is the empty set of environments.

Here, we pre:;ent only the definition of ~pn v, the set of environmeuts in which P is supported,

and actnally restrict ourselves to negations, conjunctions, implications, aI\d existential and univer

sal quantifications. These are the definitions used in Section 2.2.
An environment supports a negation -. P if it does not support P.

«~PD'=Env\{PD'

The set of environments in which a conjunction Pi t\ P2 is snpported is the intersection of the set

of environments in wbich PI is supported with the set of environments in which Pz is supported

«PI A P,/, = «PID' n {P,D'

An implication P1 ::::} P2 is supported in any environment that snpports -. PI or Pz.

«PI => P,D' = «~PID' U{P,D'

Existential qua.ntifications have the form 3 St. P, where SI is a schema text and P is a predicate.
An environment p supports a predicate :3 St • P if P is snpported in some enrichment of p that

takes the definition of St into account.

«3 St. PD' = dom({StjM c> {PD')

As previonslyexplained, {SI}M associates an environment p with all its enrichments that consider

St. The relation {Sir" c> ~P» v associates p only to those enrichments that support Pi its domain
contains exactly the environments that support 3SI.• P. Universal quantifications are defined in

terms of existential quantifications.

{[VS"PD'={~ 3S'.~PDv

This definition relies on de Morgan's law; 'V St. P is snpported in an environment p if P is

supported in all enrichments of p that reflect St.
This rel.a.tional semantics is, as pointed out before, a subset of that specified in [8]. In the next

section we present an equivalent weakest precondition semantics for Z.

2.2 A Weakest Precondition Semantics

In [14], where weakest preconditions were first introdnced, they are used to define the semantics of
a programming language. A semantics based on weakest preconditions consists of the definition of
a function called, in general, wp. This function determines, when applied to a program P and to

2.2 A Weakest Precondition Semantics 17

a predicate Jj;, the weakest precondition that guarantees that P terminates in a state that satisfies

¢. Tbe predicate wis called a postcondition.

Itl this section we construct a wp semantics for Z or, more precisely, based on the relational

semantics presented in the previous section, we determine the result of applying wp to a schema that
specifies an operation. This is a predicate transformer: a function from predicates to predicates.

We establish a correspondence between relations and predicate transformers, and use ~_D.Ms, the
semantic function that defines the relational model of a schema, to specify its weakest precondition.

The wp function so defined specifies a weakest precondition semantics for Z that is equh"3lent to
its relational semantics in the sense precisely defined by the correspondence betweeurelations and

predicate transformers.
Firstly, we consider an alternati\'e relational model where initial states and inputs are related

to final states and outputs. The correspondence hetween this model and predicate transformers

is examined in a general setting rather than in the particnlar context of Z. Secondly, we present

a way of expressiug the relational model defined by ~_DMS for schemas that specify operations in

terms of the alternative relational model. Finally, we define wp.

2.2.1 Predicate Transformers and Relations

Weakest precondition semantics is based on the principle that the meaning of a program is properly

charactl'rised ouly if, for every postcondition JjJ, the preconditions that guarantee termination in
a statl' that satisfil'S .,p can be identified. In other words, wp is supposed to be well-defined for all
postconditions il!. For this reason, we impose no restriction over their sets of free variables, which,

in the contl'xt of Z, may includl' those that represent the final state and the outputs, and those

representing the initial statl' and the inputs as well.

At this stage, we repn'8l'nt prl'dicates as sets. We consider a set I of all possible initial states,

and a set F of all final states. Inputs arl' regarded as part of the initial states, and outputs, as
part of the final statl's. Prl'dicates over initial states (and inputs) are elements of lP' I, with 0

representing false and I, true, for instancl'. Postconditions, which an> prl'dicates over the initial
and final statl'S, are repn'8l'nted as l'lements of IP(I x F). or rathl'r, as relations between initial

and final states. Altogl'ther, the domaiu of predicate transformers that we consider is the set of
total functions Y(I x F) ---+ IP I.

In contrast with Dijkstra's wp, the posteonditions to which these predicate transformers can

be applied represent statl' transitions instead of fiual states. They determine, when applied to

a postcondition v." t.hl' wl'akest precondition that guarantees that the program that it represents

perform tbe state transition specified by 1/;.

As a matter of fact, we identify two healthiness conditions and consider only the predicate

transformers that satisfy them. The first of these healthine.<>s conditions is positive conjunctivity.
A predicate transformer pi is positively conjunctive if it distributes over non-empty intersections:

pt.(n{ I • Si }) = n{ I • pt.S, } provided { i. S, } =1=-" (2.1)

Except when traditional mathematical notation is used, function application is represented by a pe

riod, so that, for instance, pt.(n{ t • S; }) is the application of pi to the postcondition n{ t. S; }.

At this point, we depart from [8], where function application is represented by subscription. This

18 Chapter 2. A Weakest Precondition Semantics for Z

notation is not convenient for our purposes because, in many cases, we apply this operator re

peatedly and to lengthy expressions. Positively conjunctive predicate transformers correspond to

operations that do not present angelic nondeterminism [6J. Mouotonicity with respect to ~ is a

consequence of positive conjunctidty [15J.

The second healthiness condition is concerned with the specification of initial states in post

conditions:

; E p<.«(U} x F,) u 5) => , E pt.({,} x F,) foc any F, £; F, 5 £; (l \ (i}) x F (2.2)

If i belongs to pt.(({i})(Fd US), then we can conclude that pI either is miraculous at I or,

when executed in i, is guaranteed to lead to a final state iu F1 • In both cases, i must belong

to pt.({t} x FLl, An operatioo is miraculous at a state i if it ('.an achieve whatever postcon

dition is required, including false, when executed from i [47]. Monotonicity implies that, since

{i} x F 1 0;;;; ({ t} X F]) US, we can actually strengthen (2.2) to an equivalence.

The lemma below identifies a property of the predicate transformers that satisfy both (2.1)

and (2.2). This result is used later on in this section.

Lemma 2.1 For every predicate transformer pt that satisfies both (2.1) and (2.2). initial state

i E I, and se/. of final states F1 ~ F,

i E pt.({I} x Ft} =: i E pt.(I x Fd

Proof

(=*) By {i} X F 1 ~ I X F, and monotonicity.

(<=) By [x F, ~ ({.J x F,j U «(I \ (i)) x F,j and (2.2).
o

The reJational model that we consider at this point is !.L f-I. f.l' the set of relations between

1.J.. and F..l, where !.L is the set I U {l.} and, likewise, FJ. is F U {.1.}. In this model, a relation

associates an initial state i with a final state f when the execution of the ope:ration that it represents

may lead to state f from state i. The distinguished state .1. represents nontermination: it is the

state reached when an operation fails to terminate. A partial rE'lation represents an operation that

is miraculous at the states that are not in its domain.

An operation that (for a particular initial state) always fails to terminate is not regarded as

being any worse than another ODe that may fail to terminate just sometimes. Consequently. there

is no interest in distinguishing these cases and we further restrict our model by assuming that,

when an operation may fail to terminate, it may also terminate and establish any arbitrary result.

Formally, we assume that the relations R of our model satisfy the following healthiness condition.

V. , h • .L E RO {.} D=> RQ (i) D= F" (2.3)

In words, if, when executed in a state i, R may lead to .1., then it may lead to any final state

whatsoever.

19 2.2 A Weakest Precondition Semantics

When an operation fails to terminate, it is not possible to execute another operation and recover

from this situation. Therefore we impose yet another restriction on the relatIOns of our model:

.LR.L (2.41

This healthiness condit.ion gnarantees that, whenever an operation is executed after some other

operatiou has failed t.o t.erminate, it also leads to nontennination.

The domain of predicate transformers and the relational model we have just present.ed are

isomorphic. In order t.o prove this result, we define the weakest preconditiou of a relation; define a

function that gives a relational semantics for predicate transformers; and show that these functions

are each other's inverse.
The function r2wp can be applied to a relation R and to a postcondition S to determinf' t.he

weakest. precondition t.hat guarantees that R establishes S. Its definition is as follows.

Definition 2.8 For eve'ry ,'dalton R and postcondition S,

r2wp.R.S ~ dom (R \ S)

By considering R \ S, we identify all possible ways in which R may fail to establish S. Therefore,

the complement. of the domain of this relation contains exactly those initial stat\'S in which t.he

execution of R is guaranteed to achieve S. Whatever postcondition S is considered. thp states that

are uot in the domain of R are always included in dom(R \ S). This is in accordance with our pre

vious observation that R is miraculous at these states and therefore can achieve any postcondition

required.
By way of illustration, we consider I = {il'~' is} and F = {1I,h,h}. If R is the relation

(.L, .L), (.L,h), (Lhl, (.L,h),

(;, ,j, I, (i"hl,

('"h)

we call deduce that r2wp.R.{(ll,h), (i3,!sH is equal to {l2,13}' Indeed, if executed from .1, R is

not even guaranteed to terminate, and from 1l, it may achieve II as well a.s h. On the other hand,

R is miraculous at ~ and, if executed from I.), it is guaranteed to reach h·
The theorem presented below shows t.hat the predicate transformers defined by r2wp satisfy

t.he healthiness conditions we proposed abovp.

Theorem 2.1 For every relation R, rw2p.R satisfies the hcalthrnesti conditions (2.1) and (2.2).

Proof

Healthiness condition (2.1):

r2wp.R.(n (i 0 S, })

~ dom(R \ (n(i 0 S, i)) [by definition of r2wp]

~dom u{. oR\S,} [by a property of sets]

~ U{ i 0 dom(R \ S,I } [by a property of dom]

20 Chapter 2. A Weakest Precondition Semantics for Z

=n{ i.doro(R\S;)} [by a property of sets]

= n{ i • r2wp.R.S; } [by definition of r2wp]

Healthiness condition (2.2):

i E rZwp.R.(({i} x F1) U 5)

'" I E dom(R\(({i} x FduS)) [by definition of r2wp]

= i li' dom(R \ «({>} x Ftl US)) lby a property of sets]

={i} <JRC;({i}xFtluS [by a property of sets]

={>} <JRC;{i}xFj [by S C; (/\{i})xF]

'" i E r2wp.R.({i} x Fj) [by definition of r2wp and the previous steps]

o
The relation corresponding to a predicate transformer is determined by wp2r. The definition

of this function is presented in the sequel.

Definition 2.9 For every predIcate truns/OrTner pt,

wp2r.p' = { i , h; I; F" I. E p'.(/ x {I, .iTI }

The postcondition I x {f,.l} simply specifies all final states different from f, since no particular
initial state is determined. The predicate pt.(l x {f,.l}) characterises the initial states in which

execution of pi is not gJ.lara.nteed to avoid / or, to put it more simply, the initial states in which

execution of pI may lead to f.
For ever~' monotonic predicate transformer pt, the relation wpZ,-.pt satisfies the healthiness

conditions (2,3) and (2.4). This can be proved by relying on the definition of wpZ'- and by
observing that pt.(l x {.l}) = pt.(1 x F) and.l is not in the range of predicate transformers. For

the sake of conciseness, we do not present the details here.
The theorems that follow establish that ,-2wp and wpZ,- are each other's inverse, and therefore

establish an isomorphism between the relational and the predicate transformer model.

Theorem 2.2 Fo,- every predicate truns/onTte,- pi that satufies the healthiness conditions (2.1)

and (2.2),

r2wp.lwp2,-.pt) = pt

P roof For every postcondition S,

,-Zwp.(wpZ,-.pt).S

~ dom«wp2r.pl) \ S) [by definition of r2wpJ

~ dom({ • ; h; I; FL 1i E pl·U x {f~) } \ Sl Iby definition of wp2,-j

=dom{ i, Ie; I' FL 1(i,/) li' S A i E pt.(l x {f,.i})} [by a property of sets]

21 2.2 A Weakest Precondition Semantics

= {i' h I (31' SO Ii) D" E pt.(I x {f,ol)))} [by definition of dorn]

= {i' h I (VI' SO Ii) D"' E p'.(1 x {f,ol)))} [by a property of sets]

= {i' hi' E n{ I' SO Ii} D' pl.(I x {f,ol})} } [by a property of sets]

= {i' hi' E pt.(nu, SO {'I D' 1 x {f,ol}}) } [byol E SO Ii} D#0 and (2.1)]

~ { i 'h I ' E pl.(I x Sa Ii} D) } [by a property of sets]

= {" h liE pl·(U} x sO {'I D)} [by Lemma 2.1J

~ { , , h liE pt.S } [by S ~ ({i) x Sa Ii} D) U ({i) ",5), and (2.2)]

=pl..S [by a property of sets)

o

Theorem 2.3 For every relation R that sal.isfies the healthiness conditions (2.3) ~fid (2.4),

wp2r.(r2wp.R) = R

Proof

wp2r.(r2wp.R)

= {i' h; I; FL liE r2wp.R.(I x {f,ol})} [by definition of wp2rJ

~ { i , h; I ; FL liE dom(R \ (1 x {f, ol}») } [by definition of r2wp]

~ { i , h; I ' FL , i E dom(R \ (I x {f, ol}») } [by a property of sets]

= { i , h; I ' F L liE dom(({ol} <J R) U (R c> {f, ol})) } [byRC::1.LxF~1

~{i'h;I,FLli~olViR/V,Rol } [by properties of relations]

~ {i' h; I' FL I i~ol ViR I} [by i Rol=> i R I, by (2.3)1

~{i'h; I ,FLI iR/} [by i ~ ol => , R I, by (2.4) and (2.3)]

~R [by a property of sets]

o
In the next section, we show that the model used for schernas that specify operations in the

relational semantics of Z is isomorphic to a model defined in terms of an instance of the relational
model we have presented above.

2.2.2 The Different Relational Models

The Z relational semantics models schemas as relations between environments and situations. In
particular, schemas that specify operations are modelled by relations MR that have the property

below, where St, St', lnp?, and Out! are sets which, together, contain all the schema components.
The set St contains the names of the variables that represent the state compocents, and St', the
variable names that are formed by suffixing a dash (') to the names of St: they represent the

22 Chapter 2. A Weakest Precondition Semantics (or Z

components of the after~state. The sets lnp? and Out! contain the names of the input aud output
variables, respectively.

"Is: ranMR" doms = StUStlU Inp?U Out! (2.5)

A relation betwee[l environments and situations models a schema Op hy associating, with an envi
ronment P, the sitnations that represent possible a.<;,signments of types and values to the components
of Op, according to its own definition. The domain of these situations is always the same: the

components of Op. This is basically the property asserted by (2.5), which considers schemas whose
components are the variables in St U St' U lnp? U Out!.

The alternatiYe model that we propose for these schemas consists of (unctions from envirou
ments to relations. In this model, the function that represents a schema Op associates, with an

environment P, the relation that models the operation defined by Op in p. The relational model
used is an instance of that presented in Section 2.2.1. The particular sets of initial and final states
that we consider are IStlnp and FStOui, which we define below.

ISl./np = { $: Situation,. dom s = St U lnp? }
FStOut = { s : Situation,. dom s = St' U Out! }

Altogether, the model that we suggest is a subset of Env --1 (lStlnpl.. f--Io FStOutl..), where Env is

the set of environments defined in Section 2.1.2. The functions that we consider have only relations
that satisfy the healthiness conditions (2.3) and (2.4) iu their range. Moreover, since miraculous

operations cannot be specified in Z [42], these relations are total as well.
In what follows, we show that this model is isomorphic to that used in the relational semantics of

Z. Firstly, we define a function r2f that transforms a relation between environments and situations

into a corresponding function from environments to relations between situations Secondly, we
define f2r, which transforms a function from environments to relations back into a relation between

environments and situations. Finally, we prove that r2f and f2r are inverse to each other, if applied

to relations or functions that satisfy the previously mentioned restrictions.
The definition of r2f is presented below.

Definition 2.10 For ~v~ry relation MR between environments and situations, and environm~nl

p.

r2f·MR.p { j$j ; IStlnpl..; fso: FStOutl.. ,.

(31': Situation.p MR s 1\ I> = i

--., (3s: Situahon" p MR s 1\ isi ~

St

s)

ufso) V (2.6)

(2.7)

provided p E dom MR.

The domain of the function r2f.MR is that of MR. For every environment p in the domain of MR,
the relation r2f.MR.P is defined by considering the situations related to p in MR. Each of them
assigns types and values to the before and after-state, input, and output variables, and di'Scribes a
possible behaviour of the operation, when executed in the initial state and -with the inputs defined.
All pairs of situations from IStlnp and FStOut that can be obtained by spHtting these situations

23 2.2 A Weakest Precondition Semantics

are associated in r2f.MR·P - disjnnct (2.6) in Definition 2.10. Moreover, if a particular situation
lsi of IStlnpl. is not included in any of them or, in other words, the operation aborts (does not
terminate or terminates in an arbitrary state) if executed from the state and with the inputs
specified by isl, then it is associated in r2f.MR.P to all situations of FStOut.l. - disjunct (2.7).

The relation r2f .MR.p is total since, for any situation isi of lStInpl., either it i5 included in
a situation of MRO {p} D - disjunct (2.6) - or it is not - disjnnct (2.7). If it is iDcluded, it is

related in r2f.MR.p to sitnations fso that are also indaded in situations of MRO {p} ~. Therefore,
isi cannot possibly be related to 1-. On the other hand, if iSI is not included in any situation of

MRO {p} D. then, as already remarked, it is related to all situations of FStOutl.. In conclusion,
r2f .MR.p satisfies the healthiness condition (2.3). Finally, since 1- is not included in aIly situa.tion of

MRq {p} D, we conclude that it is related to 1- in r2f.MR·P, and so, the healthiness condition (2.4)
is satisfied by this relation as well.

The function f21· is defined in the sequel.

Definition 2.11 For every funchon MF from environments to relatJOns, environment P, and sit

uation 8,

p U2r.MF) s ==
-l~ (MF.P)O irS' U Inp?) <l ,j 0A

3 isi ; IStInp; fso : FSlOut I (isi,!:w) E MF.p • s = isi U fso

(2.8)

(2.9)

provided p Edam MF.

An environment p in the domain of MF may be related by f2r.MF to a situation s anI,,!, if the initial
state and inputs defined by !J are not related to 1- in MF.P or, to put it another VNJ.y, the operation
is guaranteed to terminate when executed in tbis state and with these inputs - conjunct (2.8) of

Definition 2.11, In this case, if s can be ohtained by combining situations iBi and /!1o related in
MF.P - conjunct (2.9), then p (/2r.MF) s holds.

A direct consequence of the definitions of IStlnp and FStOut is that all situations in the range

of f2r.MF have domain St U lnp? U St' U Out!. In other words. f2r.MI' satisfies the healthiness

condition (2.5).
As we have already hinted, r2f and f2r are each other's inverse. This is proved hy the theorems

below.

Theorem 2.4 FOT' every function MF from eml1rQrlments to total relations between situationli of
lStinpl. and FSlOutl. that 8alisfy the healthiness condihons (2.3) and (2.4),

r2f·(f2r.MF) = MF

Proof For every environment p in tbe domain of MF,

,'2f.(f2r.MF).p

={ tsJ ; IStlnp1.; fso: FStOull. • [by definition of r2f]

(3s: Situation. p (j2r.MF) 8 fI!J = lsi ufso) V

-. (3 s: Situation. p (f2r.MF) s fI iSJ c;;: s)

24 Chapter 2. A Weakest PrecondiHon Semantics for Z

= {	 iat ; IStInp.l..; Iso: FStOul.L • [by definition of /2,.]
(3 oS	 ; Situation.

"((MF·P)O {(Stu Inp') <l ,} 0,
(3istl: IStInp; fsol: FStOul I (IStl,fsoIl E Mp.p • .5 = ISII UjSOI) /\

$ == lSI ulso) V

...., (3 s : Situati.on •

ol ((MF.P)O {(SI U Inp?) <l'} 0'
(3 isi} : IStlnpi /SOI : FStOut I (lsi} ,/sod E Mp.p • s = isi, U jsod 1\ lsi ~ s)

= {isi: IStfnp.L; Iso: FStOutJ.. [by (tsiUfso:::: isilUjS01) == (isi = iSI) I\/so =jsollJ
(.i¢ (Mp.p)O {in} D1\ (isi./so) E Mp.p 1\ isi #-.1./\ Iso #-.1) V

---, (35 : Situal.ion •

ol ((MF.P)O {(SI U Inp') <l ,} 0'

(3 is!l : IStInp; /SOI : FStOut I (isi} ,/sot} E Mp.p • s :::: WI U [sod 1\ iSI ~ s)

= { lsi: IStlnp.l..; Iso: FStOutl-. [by s = lStl ufsoJ ~ (iSI C;;; S == iSll = iSl)]

("((MF.p)O I''') 0 ,(.,i,/,o) E MF.p' i,i #ol' />0 #ol) V

...., (.1. ¢ (Mp.p)O {iS1} D1\ (3/so\ ; FStOut • (isi,fsoll E MF.p) 1\ is;" #-.1)

={ isi: /StInp.L; Iso: FStOtlh • [by predicate calculus]

((~i,/,o) E MF·P' /'0 #ol) Vol E (MF.p)O {i,,) 0 V

---.(3/s01 : FStOut. (isi,fsotl E MF.P) V isi =.i

= { iSl IStInpl..; Iso: FStOutl... [by (tsi,fso) E Mp.p II Iso =.i.=::>.i E (Mp·p)C {isi} DJ

(",'/'0) E MF.p volE (MF·P)Q {"ij 0V

., (3/so}: FStOut. (isi,lsod E MF.p) V:st =-1

= { 1St: IStInPl-; Iso: FStOutl.. • [by iSl ;=.i =::>.i E (MF.plO {tsi} D, by (2.4)J

(m,lso) E Mp.p V.iE (MF'p)O {isi} 0V 3/s01: FStOut. (isi,fso]) E Mp.p

= { lsi: IStlnpl..; Iso: FStOutl... (isi,jso) E MF.p V.l E (MF·p)O {isi} 0}
[by Mp.p is total]

= { ~Ij: IStInpl..; Iso: FStOutl... (isl,lso) E MF.P}

[by .i E (Mp.p)G {isi} 0=::> (Isi./so) E Mp.p, for every Iso, by (2.3»)

= MF.P [by a property of sets]

o

25 2.2 A Weakest Precondition Semantics

Theorem 2.5 For every relation MR between environments and situations that sattsfies (2.5),

f2r.(r2f·MR) = M R

Proof For every environment p in the domain of MR , and situation s,

p (f2r.(r2f·MR)) ,

,,1- ¢ (r2f.MR.P)O ((SI U lnp?) <] ,j D A [by definition of f2r]

3 i5i : 1St/np; Iso: FSlOut I (m,fso) E r2f .MR.p • S = 1si U fso

=: «(351 : Situation _ P Mn SI 1\ sl = (St U Inp?) <J s U 1.) V [by definition of r2JJ

..., (3 SI : SituatIOn. p MR SI 1\ (St U Inp?) <J s ~ sIl) 1\

:3 i5i : 1St/np; Iso: FStOut •

((3 SI : Situation. p Mn 51 1\ 51 = lSi Ufso) V

...... (3s 1 : Situahon. p Mn S1 1\ iSI ~ S1)) 1\

s = isi U fso

=: (3 SI : Situation. p MR sll\ (St U 1np?) <J 5 ~ sd 1\ [by 1. is included in no situation]

:3 i.n : 1St/np; Iso: FStOut •

«3 Sl : Situation. p MR S1 1\ SI = iSI U fso) V

...... (3 SI : Situation. p MR Sl 1\ i5i ~ sil) 1\

s = i5i Ufso

=: (351 : Situation - p MR 51 1\ (St U Inp?) <J 5 ~ sd 1\

(p MR 5 V -, 3 Sl : Situation. p Mn 51 1\ (St U Inp?) <J s ~ sd

[by 5 == isi Ufso = (isi = (St U Inp?) <J s 1\ fso = (St' U Out!) <J s)]

= (351 : Situation. p MR 51 1\ (St U Inp?) <J s <;;;; S1) 1\ p M n s [by predicate calculus]

=: p MR 5 [by p Mn s => P MR S 1\ (St UInp?) <J s ~ s]

o
In the next section, we use r2f and r2wp to determine the weakest precondition of a schema that

specifies an operation in an arhitrary environment p.

2.2.3 The Definition of wp

Every schema that specifies an operation may be written in the form (d; d'; di?; do! Ip), where d
declares the variables that represent the state components, d', the corresponding dashed variables,

di?, the input variables, do!, the output variables, and p is a predicate. In order to determine the

weakest precondition of these schemas or, in other words, the weakest precondition semantics of

Z, we consider initially the model assigned to them by (_DMs. If Op is a schema that specifies

an operation, r2f.{ OpDMs defines it as a function from environments to relations between situa

tions. For an environment p in the domain of this function, r2f.(OpDMs.p is the relation between

situations that represents Op in this environment. Finally, r2wp.(r2f.(OpDMs .p) is the weakest

precondition of Op in p.

26 Chapter 2. A Weakest Precondition Semantics for Z

The expression r2wp.(r2/.(Op]J-As.p) is a function from sets to sets: a predicate transformer

as defined in Section 2.2.1. Nonetheless, for practical reasons, we want to define wp <loB a function

{rom Z predicates (elements of the syntactic category Pred) to Z predicates. With this aim, we

define an interpretation for them as sets: a function [_], which specifies a set representation for Z

predicates in p.

In order to define this function, first we define a set interpretation for declarations: another

fUDction which we also name [-l

[dl = {s : Situation .p (d]M S }

The relation (dD M associates p with all situations that assign types and values to the variables

declared by d acrording to its definition. These are the situations that characterise d.
In defining a set representation for the Z predicates, we con~ider only those predicates that

are relevant here. A predicate p over the variables defined in p and the alphabet of a declaration

d; d'; di?; do! is represented by a set of pairs of situations from [d; di?] and [d'; dol].

[pI ~ { i", Id, d,'); /'0' Id', do'l I p CF i'i EfJ /'0 E Up~M }

As explained in Section 2.1.3, fip]J.A contains all the environmeut.s in which p is satisfied. A pair

(isi,lso) of situations belongs to [p] exactly when the environment pm is'i EEl Iso belongs t.o ~p~J.A

or, in words, exactly when p is satisfied in p EB isi ffi Iso.

For a predicate p over the variables in p and the alphabet of d; di?, we have the followillg very

similar definition.

Ip) ~ {"', Id, d,?) I pEfJ "i E Up~M }

In this case, p is represented hy a set of situations instead of a set. of pairs of situations.

The set representations of conjunctions and implications involving predicates over the variables

in p and those in the alphabet of d; d'; di?; do! can be expressed compositionally in the usual

way. This is established by the lemma below.

Lemma 2.2 For all predicates p and q over the variables in the domain 01 p and those In

oed; d'; di?; do!),

Ip A q); [pI nlql

Ip => ql ~ [PI U [q)

Proof For the sake of brevity, we consider just. implications; the proof for conjunctions is similar.

As mentioned in Section 2.1.3, fip~J.A is the conjunction of the set. of environments in which p is

well-typed with the set of environments in which p is supported. Here, however, we consider only

predicates that are ",-ell-typed in the environment p and in view of the declarations d: d'; di?; doL

More precisely, we consider only predicates that are well-typed in any environment p ffi 1.'li liB Iso,

where lSi and Iso are situations th.at belong to the set representation of d; di? and d' ; do!, respec

tively. For such a predicate, pEEl iSJ 1:B Iso E l[p]M is equivalent to pEEl isi EB Iso E ~p] v, where, as

explained in Section 2.1.3, ~p]V is the set of environments that support p, This fact is used below.

[p => ,)

= { IJJ; [dj di?]; Iso: [d'; do!] I p EEl isi EEl Iso E ~p ~ q»J.A } [by definition of [_]]

27 2.2 A Weakest Precondition Semantics

={iSI:(d; di?J; /so:[d/; do!]lp\f1isi@/soEll-,pn V Ullqn
V

}

[by the above comment and the definition of {[-n V]

~ ('''' Id; de); /'0' [d'; do'll pCB;'. CBf,o E EnvlU- pDo U UqDO)

[by definition of ([-n Vj

= {lsi: [d; di?]; jso: [d/; do!] I p@isiffjJwE {[pn v
} u [by a property of sets)

{isl: [d; di?]; jso: [d'; do!] I pEEl iSI tBfso E llqn V
}

~[Plu[ql [by deEnition of [-II

o
The next lemma provides a compositional formulation for the set. representation of existential
quantifications of the form 3 d/; do~. p and universal quantifica.tion~ of the form V d'; do! • p.

Lemma 2.3 For every predicate p over the variables irj p and thO_'ll;; in o:(d; d/: ddj do!),

13d'; do!. pI ~ { i,', [d; d.?] I (3/'0' Id'; do!l· (i,i,fM) E [pI))
[V d'; do!. pi ~ { ". , [d; d.?) I (V/M' Id'; do!l· ("i,f,o) E [PI))

Proof For the sake of brevity, we consider just universal qnantifications; the proof for existential

quantifications is simpler.

[V d'; do!. p]

= { isi : [d; di?] I p tI: iSI E fv'd/; do! • pnM } [by definition of [_]]

=:: { isi : ~ d; di?] I p ffi isi E fv'd/; do! • pnv }

[by Vd'; do! • p is well-typed (see comment in the proof of Lemma. 2.21

'-"= {lsi: [d; di?] I pffiisi Ell...., 3d'; do!. -,pn V
} [by definition of ll_n V]

~ (',i, [d; di'll_ pCB i,i E dom«(I,ld'; do!I M
) ;CB) t> U- pDO)) [by definition ofU-Do]

={ i,n:[d; di?]I, 3/so:Sittlation.pffilsi[d/; do!]MjsoAPfflisi(fJjsoE[....,pV}

[by properties of relations]

= {isl: [d; di?] I...., 3jso: Sltuation.p ~d/; dO!]MjsoA ptil isitI:jso E {...,pn v }

[by the variables of Q(d; di?) are Dot free in d; do!]
v = { isi : [d; di?] I --. 3/so : [d/; do!]. p (fJ isi EEl Iso E {...., pn } [by definition of [-]1

=:: { isi: [d; dl?] I .., 3/so: [d'j do!} • .., p tI: isi (fJ Iso E l1P»v) [by definition of ll-n Y]

~ ("i' [d; di?11 _ 3/'0' [d'; do!). - (i'i,/'o) E [PI) [by defioition of [-II
= { isi: [d; di?] I Vjso: [d'; do!]. (isi,/so) E (P] } fby predicate calculus]

o
The two lemmas above are used in the sequel in the proof of Theorem 2.6.

Below we consider a postcondition 1/J expressed as a Z predicate and define (the set represen
tation of) wp.Op."ljJ, for an arbitrary schema Op that specifies an operation.

28 Chapter 2. A Weakest Precondition Semantics for Z

Definition 2.12 For every schema (d; d'; dl?; do! J p), envIronment p, and postcondition tjJ,

[wp.(d; d'; d;1; do! I p)."1 ~ r2wp.(r2/.l(d; d'; d;1; do! I p)IMs.p).!.,!

The environment is an implicit parameter of wp. As a consequence of Definition 2.12, for every

environment p, the predicate transformer that wp associates with a 6cherna (d; d'; di?; dot I p)

that specifies an operation is equivalent, in the sense precisely defined by r2wp and r2f, to the

relational model of this schema specified in the relational semantics of Z.

Theorem 2.6 in the sequel presents a definition of wp in terms of Z predicates. Its proof relies

on Lemma 2.4, which identifies properties that characterise the representation of a, schema that

specifies an operation in the relational Semantics of Z.

Lemma 2.4 For every schema (d; d'; dz?; doll p), envinmment p and situation s,

pHd; d'; dl?; do! IpW".(,s s == p (d; d l
; di?; dOW~A S 1\ (pEB s) E fuJl"'!

Proof

pHd; d l
; di?; do! I p)D''''!s s

== (p, s) E ~d; dl
; di?; do!D M n ((d; d l

; di?; do! I p~""';; 2) [by definition of (_D.MsJ
== p (d; d': di?; do!~"'" S 1\ 3a: Env. (p, a) E {d; d'; d~?; do! I p),l.4 1\ S ~ a

[by properties of sets and relations]

== p (d; d'; di?; dolD M s 1\ [by definition of {_},l.4]

3 a: Env. (p,a) E (I, (d; dl
; di?; do!D,l.4) ;; EEl) l> ~pll,l.4 1\ S <;;; a

== p (d; d'; di?; doW"(3 1\ [by properties of relations]

:3 a: Env • (3 v: Situation. p (d; d'; di?; do!D M v 1\ a = p EEl v) 1\ a E fuJ]}M 1\ s <;;; a

==p (d; d'; di?; dotD M s 1\3a:Env.a=ptBsl\aE~pllM

!bydoms=domv=a(d; d'; d1?; do!)and8oa=piIlv~(s<;;;a=s=v)]

=' p (d: dl
; di?; do!D.M s 1\ (pl1l s) E -[PV' [by predicate calculus]

o
The operation (d; d'; di?; do! I p} is guaranteed to terminate exactly when there is a final

state and outputs that satisfy p. Furthermore, it is guaranteed to establish '1/; upon termination

if, whenever p holds, so does '1/.1. In the theorem below, termination is captured by (3d'; do!. p).

Correctness or, more precisely, the establishment of 1/.1, is captured by (V d'; do!. p => 1/.1).

Theor~m 2.6 For every schema (d; dl
; dt?; do! 1 p), and postcondihon 1jJ,

wp.(d: d'; di?; do! I p).1/; == (3d'; do!. p) 1\ (Vd'; do!. p ~ -1jJ)

Proof We assume that (d; dl
; di?; do! I p) is named Op.

[wp.Op·~1

~ r2wp.(r2/·IOpIMs·p)·I~1 [by definition of wp}

~ dom((r2/·IOpIMs.p)\[~]) [by definition of r2wp]

'" '"

U
I

<

.§

1•.. '" o c

~ • o uPo.
..

»
.:i :;

c

<

<

U
I

m

<

c

<

U
I

••
<

c

<

U
I

:;
-

<
<

>

<

c U
I

8
5

.g .g

30 Chapter 2. A Weakest Precondition Semantics for Z

{ lsi: ISt/rtp. 35 : SItuation. p 40P~MS s II lsi ~ s } n
{ lsi: ISi/np _

";/ s : Situatton •

pdOpDMs S /\ isi=(aduadl?) <lS=>(iS1,(crd'uado!) <Js) E[tI']

[by s == lsi u i/so == isi = (ad U Qdi?) <l S 1\ i/so = (ad' U ado!) <l 51

{ 'lsi: ISt/op •

38: Situation. p 44; d'; d£?; dO!D'M s II (P$ s) E ~pnM 1\ lSi ~ s

} n
{ iSI : IStfnp •

VS : SItuation _

p (d; d'i di?; dO!)M s 1\ (p ffi s) E np]M 1\ iSI = (ad U Qdi?) <J S =>

(isi, (ad' U o:do!) <l s) E [1/']
} [by Lemma 2.4]

{ iSl : [Strop •

j Sl : IStInp; 82 : FStOut •

p (d; d'; dl?; do!V" (SI iB 82) 1\ (p ill 81 EF 82) E «p]M 1\ isi = 81

} n
{ lsi: ISt/op •

'rI SI : ISt/np; 82 : FStOul, •

P ~d; d'; di?; do!V" (SI ffi 81) 1\ (p ill 81 ill 82) E Up]M 1\ isi =8\ =>

(i,i,,,1 E [,p]
[by p (d; d'i dl?; dot)M s implies dams = ad; d'; dl?; do!J

{ lsi: IStInp •

382 : FStOut. p fd; dl?D M isi 1\ p ~d/j doW"" 92 1\ (p EEl ~9i EB S2) E Qpj}-'"
} n
{ isi: IStlnp •

II S2 : FStOut •

p ~d; dl?D-'" tsi 1\ p ~dl; do!D-'" S2 1\ (p EB ,si ff; 52) E fu1j}M => (tsi, S2) E [w]

[by p~d; d'; dt?; do!D-'" (o9l@52) == p ~d; dl?D M
Sl 1\ P ~d'; do!~-'" S2]

{ isl : [d; d1?] • (3s2 : {d'; do!] • (p EB io9i EEl 52) E Qp]-'")} n

(u;, [d; d;?). (\I", [d'; do!]. (PEll i,; Ell ,,) E «p~M => ("",,) E [,pl)}
[by definition of 1_] for declarations]

((3 d'; do!. p) 1\ ('V d'j do! • p => W)] [by definition of 1_] for predicates]

o
In order to rule out the possibility of scope conflict, we assume that the before and after~state, the
input, and the output variables are not free in the declarations. The free variables of a declaration
are those that occur free in the type definitions.

In the next section we consider a few healthines:; conditions that are satisfied by wp.

31 2.2 A Weakest Precondition Semantics

2.2.4 Healthiness Conditions

In [14] four properties of wp that reflect characteristics of programming languages are pointed

out: law of excluded miracle, monotonicity, A-distributivity, and continuity. As we show in the se

quel, from these, just continuity is not satisfied by the wp function that we have defined. The law of

excluded miracle holds because miraculous operations cannot be specified in Z, and A~distributivity,

because angelic operations cannot be specified either. On the other hand, continuity does not nec

essarily hold because operations of unbounded nondetermiuism can be defined.

Theorem 2.7 Law of Excluded Miracle.

Ulp.(d; d'; di?; do! I p).false.= false

Proof

Ulp.(d; d'; di?; do!,. false

:=(3d'; dO!.p)A(Vd'; do!.p::::}faise)

:=(3d'; dO!.p)A(Vd'; do~.-'p)

==(3d'; dO!.p)A-,(3d'; do!.p)

.= false

[by definition of wp]

[by predicate calculus]

[by predicate calculus]

[by predicate calculus]

o
Monotonicity and A-distribntive are a direct consequence of Theorem 2.1, since wp is defined in

terms of r2wp.
A predicate transformer pt is continuous if, for every indexed family { t : N. p, } of predicates

such that p; ::::} P.+l for aU i E N, we haV€ that pt.(31 : N. p,) .= (3 i : N. pt.p;). As mentioned

before, wp does not necessarily defines a continuous predicate transformer. A cOlillterexample can

he provided if W€ consider the operation that chooses an arbitrary positive integer and the family

of predicates { i : N. p,(x') } where p,(x') == x' < f, This operation can be specified as follows.

CH _

x: Z
x': Z

x' > 0

According to Theorem 2.6, wp.CH.1/1 =: (V x' : Z. x' > o::::} 1/1). The family of predicates consid

ered satisfies the property alluded in the characterisation of continuity: p,(x'):::} Pi+-l(X'), for all

i E N. Nevertheless, wp.CH does not satisfy the corresponding property. First of all, as we show

below, for every i, Ulp. CH .p,(x') =: false.

wp.CH.p.(x')

=: ('V Xl : z. x' > 0 => p;(x')) (by definition of wpJ

32 Chapter 2. A Weakest Precondition Semantics for Z

== (V x' : Z. x' > 0 ~ x' < i) [by definition of P.{x')]

::= false [by a property of <]

In conclusion, (3 I : N • wp. CH .po(x')) is false. On the other hand, wp. eH .(3 i : N. p. (x'») is true.

This is proved below.

wp. CH.(3;, N. Pi (x'))

== (V x' : Z.x' > 0 =;- 3i: N. p,(x')) {by definition of wp)

=- (V Xl : Z. x' > 0 =;- 3 i : N. x' < i) [by definition of p;(x')]

=- true [by a property of <]

So, wp.CH .(3 i: N. Pi(X' ») is not equivalent to (3 i : N. up.CH .p,(x')) and therefore, wp.CH is

not cont.inuous.

In the next section we introduce a number of theorems t.hat help in calculating the weakest

precondition of some schema expressions.

2.3 Schema Expressions

A Z schema call be specified by an expression of the schema calculus and, although we can calculate
the weakest precondition of every schema that specifies an operation by first expanding it to

the form (d; d' ; di?; do! I p), ideally we should be able to express and calculate the weakest
precondil.ion of a schema expression compositionally. Unfortunately, wp does not distribute nicely

through moot schema operators. In what follows, we present a number of results that can be

applied in some particular cases.

The theorem below presents a compositional formulation of wp which can be obtainpd in the

case of a schema disjunction, if the disjuncts are operations over the same state and with the same

inputs and outputs.

Theorem 2.8 For all schema., 0Pl and 0P2 that spenfy operutiO'lS over the same state and with

the same mputs and outputs, and for evef1l postcondition 1J;,

Wp.(Opl V 0",).>1' '=

(llIp.Opl.true V wp.OP2.true) 1\

(WP.Opl.true =;- WP.Opl.1,IJ) 1\ (wp.OP2.true::::> wp.0P2.1,IJ)

The operation 0Pl V 0P2 terminates if either 0Pl or 0P2 does. When 0Pl (similarly 0P2) termi
nates, 0PI V 0P2 can bphave just like it and, in this case, 0Pl V 0P2 is guaranteed to establish 1,IJ

only if 0Pl (0P2) is. Of course, when both 0Pl and 0P2 terminate, then OPl V 0P2 can behave
like either of them and therefore both have to guaranteedly establish 1/..'. A proof for Theorem 2.8
and for some other tht'Orems we introduce in this section can be found in Appendix B.

As irnplicatioo can be expressed in terms of disjunction, we can, based on Theorem 2.8, for

33 2.3 Schema Expressions

mulate the weakest precondition of a schema implication compositionally.

Theorem 2.9 For all schemas OPI and 0P2 that spec1fy operations over the same state and with

the same inputs and outputs, and fo,. every postcond1tion 1/1,

wp.(Opl => 01'2)1;;:
(wp, 0pI.true V wp.OP2.true) II
(wp, 0PI.true => wp 0pI.1/1) II (wp.OP2.true => wp.OP2.v.,)

pT"OV1ded OPt 18 normalised.

Requiring 0Pl to be normalised is necessary as, otherwL<;e, the schema expressions OpJ => 0P2 and

..... OPt V 0P2 are not equivalent, as expected.

Since Pt {:} P2 is equivalent to (PI II P2) V ..., (Pt V p:d, we can express wp.(0Pl ~ 0P2) in terms

of Wp.(Opl II 0P2) and wp (Opi V 0h), if 0Pl and 0P2 are normalised.

Theorem 2.10 FOT all .'!chemas 0Pl and 0P2 that .~pecify operniions ove,. the same state and with

the same inputs and outputs, and fo,. every postcondition 1/;,

WP·(Opl {:} OP2).1jJ:=

(wp.(OPt /\ 0P2).trueV wp (OPt V OP2).true) II

(wp.(OPt /\ OP2).true => WP.(Opl II 01'2).1/1) II

(wp (Opi V OP2).true=> wp (OPt V Op2)·1j;)

provided 0P1 and 0P2 are f1ormalised.

Existential quantifications that are applied to and yield schemas that define operations are

considered in the next theorem.

Theorem 2.11 Fo,. every .'!chema Op that specifies an opemtion, ail declamtioflS d, d' , di? and

do! that mtruduce components of Op, and every posteofldition :p,

wp.(3d; d'; di?; do!. Op).1j; ==

(3 d; di? wp.Op.true) II (Yd; d1? wp.Op.true => wp.Op.1/1)

provided the variable.'! of od, adl , odi?, and odo! do not occur free in :p.

Biding is a special form of existential quantification. The schema Op\ad,ad',adi?,ado! is
equivalent to 3 d; d ' ; di?; dol. Op, so that, under the restrictioI1.5 imposed on d; d' ; di?; do!,

and 1/1 in Theorem 2.11, wp.{Op\ad,odl,adi?,odo!).:p == wp.(3d; d'; d1?; do!. 0p}.v.'. Actually,
ad, od', odi?, and odo! are sets of variable names and what the hiding operator takes as argument

is a comma-separated list of variable names. Nonetheless, we allow ourselves this minor abuse of
notation and assume that ad,odl,odi?,odo! does denote a list of the variables declared in d, d',

di?, and do!.

Schema projection can be defined in terms of conjunction atId hiding. The schema defined by

OPt r 0P2 is equivalent to (OpI II OP2)\od,adl ,odi?,adoL where d, dl , di?, and do! declare the

34 Chapter 2. A Weakest Precondition Semantics for Z

components of 0PI that are not components of 0P2.

Theorem 2.12 For all schemas 0P1 and 0h that sper4y operations, and every postcondition t/J,

wp"(0Pl r 01'2)">1>"

(3 d; di? Wp.(Opl 1\ 0h).true) 1\

(Vd; di? WP.(OPI/\ 0h)·true=} WP·(OPI/\ OP2).t/J)

where d and di? declar'e the slate components and the input vanables of 0P1 that are not compo

nents o/OP2. We assume that all components of 0P1 that are not components 0/ Oh are not free
in 1/J.

The form oE a schema renaming is S[nv/ov], where S is a schema, and nv and ov are lists
of variables. The schema S[nvjov] is obtained from S by substituting the variables of nv for

the corresponding ones in av. 'We consider the case Op[ns, ns', ni?, na!/os, as', oil, oo!]. where
renaming is applied to a schema that specifies an operation and produces another schema that
specifies an operation. As expected, os' (ns') is the list of variables obtained by dashing the
variables of os (ns).

Theorem 2.13 For every schema Op that specifies an operation, all lists of vanables os, oi?, oo!.

ns. ni?, ana no! unthout duplicates, and every postcondition t/J where the variables of os, os', oi?,

and oo! do not occur free,

wp.Op[ns, ns', ni?, no!/os, os', oi?, oo!J.t/J ==

(wp.Op.t/J[os, OSI, o'/.?, oo!/ns, ns', ni?, nol])[ns, ni? los, o~?]

We assume thot the variables of ns, ns', ni?, and no! are not components of Op: and that the

variables of os. oi?, ns, nl, ni?, and no! do not occur as global variables In Op.

If we rename the components of a schema, we can calculate its weakest precondition with respect
to a postcondition t/J by expressing t/J in terms of the original component names and calculating
the weakest precondition of the original schema with respect to this postcondition. The resulting

predicate is expreSS('(} in terms of the original state and input variables, which then have to be
renamed.

The schema expression called generic schema designator has the form S[el, e2," . , en], where
S L.<; the name of a generic schema with n parameters and el, e2, ... , en are set-valued expressions.
Since the parameters of a generic definition are used as ordinary given sets, we can ignore the pa~

rameters of a generic schema Op that specifies an operation and calculate its weakest precondition
as if it were an ordinary schema. The next theorem shows how this result can help in calculating

the weakest precondition of Op[el' e2, .. , en]'

Theorem 2.14 For every generic schema designator Op[el' e2,.'" en), where Op tS a generic
schema thaI specifies an operatwn and has parameters Xl, X2, . .. , X,.,; ana for every postwndition

1/' where Xj.Z2, ... ,Xn do not occur free.

wp.Op[eb e2, ... , en],t/J == (wp.Op.1fI)[e}, e2,' .. , C,.,/Xl, X7., . .. ,x,.,]

proVided the components of Op are not free in e" ez, ... , en'

If the weake6t precondition of Op is known, the weakest precondition of Op[el, ez, ... , e,.,] can be
obtained 5imply by substituting el, e2, . .. ,e" for the occurrences of the corresponding parameters
of Op in this predicate.

35 2.4 Conclusions

2.4 Conclusions

With tbe objective of formalising ZRC, we have presented a weakest precondition semantics for
Z equivalent to the relational semantics defined in [8], which is an official document of the Z

standardisation committee. Actnally, we have constructed a up semantics for Z based on this

relational semantics. The outcoming definition is neither complex nor surprising, but its calculation
provides evidence for its adequacy and is itself of interest.

An isomorphism between a relational model and weakest preconditions has been established.

This relational model is along the lines of that presented in [28], and is used in [65] to formalise
the data refinement rules of Z. A connection between it and the relational model assigned to

schemas that specify operations in [8] has been presented as well. This is the link to the standard

Z semantics that is missing in [65].
In [26J, an isomorphism between a relational model and a predicate transformer model based

on ·weakest preconditions and weakest liberal preconditions (lJJlp) is established. In this work, the

behaviour of operations in states where they may fail to terminate is of int.erest, hencc the nse of
weakest liberal preconditions. Correspondingly, the relational model adopted there does not satisfy

our healthiness condition (2.3). Moreover, .1 (or 00, as it is called in [26]) is not in the domain of
the relations that are considered there, so that (2.4) is not necessary. As far as predicate trans
formers are concerned, the healthiness conditions imposed in [26] restrict t.he model to universally

conjunctive weakest liberal preconditions, and relate wp and wlp. Together, these healthiness con

ditions imply that wp is positively conjunctive, which is our healthiness condition (2.1). Since the
postconditions of [26] specify states, as opposed to state transitions, our healthiness condition (2.2)

is not an issue there.
An innovative aspect of OUr work is to formalise the Oxford-style of specifying operations using

wp. The only other formalisation that we are aware of is the relational WOrk in [65]. On the

otber hand, as opposed to the relational semantics, the weakest precondition semantics of Z does
not define it completely: while the relational semantics ascribes a meaning to all its syntactic

strnctures, the up semantics is restricted to a subset of the syntactic category Schema. As already
noted, however, the motivation fOr the definition of a wp semantics for Z was not the provision of

an alternative account of its semantics, but the formalisation of ZRC.

Chapter 3

ZRC

In this chapter we present ZRC: its language (ZRC~L), its conversion and refinement laws, and

its formalisation. Most conversion laws are based on those of [34, 64]; we give them a uniform
presentation in a. style closer to the Z notation. The refinement laws are, on the whole, based

on those of Morgan's calculus. Again, in order to conform to the Z style, adjustments have been

necessary and, in several cases, we adopt refinement laws similar to those of [65J. Furthermore, we
introduce additional conversion and refinement laws.

Our main enterprise, however, bas been the formalisation of ZRC. Apparently, there bas been

no effort to esta.blish the soundness of the translation rules of [34, 64J, and so formalisation is a

distinctive attribute of ZRC.

Most of this work is based on the formalisation of Morgan·s calculus [47, 45]. Nonetheless,

due to an inconsistency we have found in [41J, we adopt Back's approach [3] in our treatment
of proeedurcs and parameters. Additionally, we formalise the use of variants presented in [45];

thro refinement laws of ZRC concerned with the development of recursive procedures support the
technique suggested in Morgan's calculus and have no equivalent there. Our approach to data

refinement is based on that of [46], which, as shown in [39], is more general than that of [45], which
is based on the auxiliary variable technique.

Section 3.1 provides an informal description of ZRC-L; its weakest precondition semantics is

presented in Appendix C. In the previous chapter we have considered the semantics of Z. In

Section 3.2, we discuss the semantics of several constructs of ZRC-L that are not part of the Z
notation, and in Section 3.3 we formalise our notion of refinement.

The semantics of procedures, parameters, and recnrsion is considered separately in Section 3.4.
There we examine a connection between Morgan's and Back's formalisIIlB and the substitution
operator that renames the free variables of a program, and unveil an inconsistency in Morgan's

work. Furtb.ermore, we define the semantics of the variaut blocks used in Morgan's approach to

recursion [45J. Much of the material in this section also appears in [11].

In Section 3.5, we define the scope rules of ZRC-L. The conversion laws are presented in

Section 3.6, where we also exemplify their application. Section 3.7 discusses the refinement laws;
for the sake of conciseness, we focus on those related to the development of procedures and data
refinement. Appendix D lists all conversion and refinement laws and their derivations. Finally,
Section 3.i summarises the results obtained and discusses a few related works.

37 3.1 ZRC-L

3.1 ZRC-L

As with the languages of several other refinement techniques, ZRC-L is an extensioD of Dijkstra's
language of guarded commands. It includes additionaJ statements so that specifications as well
as programs can be written and more sophisticated program design mechanisms can be used.

Specifications, in particular, can be exprl'SSed in ZRC~L with the use of the Z notation. However,
a Dumber of statements which express specifications in a form better suited fOr relinement are also

available. One of them is the specification statement, which bas been presented in Section 1.1. The
other oDes are assumption and coercion, which can be regarded as special specification statements.

The state components, or rather, the before-state variables, and those that are introduced

by variable blocks, are collectively named program variables. This is in contrast with Morgan's

calculus where the variahles that represent the before-state are o-subscripted and called initial
variables. In ZRC, as in Z, the after-state variables are those that are decorated.

The frame of a specification statement can contain only program and output ydtiables. Since

preconditions do uot characterise state changes, they cannot contain free occurrencfS of after-state
variables. There is here a significant difference from the use of o-subscripted variables in [45,47].
It is not only the case that we decorate a different set of variables. but also we use the initial (in
our terminology, the program) variables to write the preconditions.

The program skip can be considered as an abbreviation for; [true, true]. It does not change

any variable, as it has an empty frame, and always terminates. Assumptions and coercions, which

are called annotations, can also be viewed as specification statements with empty frames. An
assumption {pre} corresponds to the specification statement: [pre, true], which acts as skip if

executed from a state that satisfies pre, and aborts otherwise. A coercion [post] corresponds to
: [true, post]. If executed from a state that satisfies post, it acts as skip as well, but otherwise it is

a miracle, as it establishes post without modifying any variable. Programs of the form {pre} ; p
and [post] ; p can be written as {pre} p and [post] p, respectively.

A miracle is a program that is miraculous at some initial states so that, as already explained
in Chapter 2, it can achieve any postcondition when executed from these states. These programs

violate the law of excluded miracle; they cannot be refined by allY executable program. Miracles

may arise by mistake during the refinement process, but they may be nseful, as shown in [40,42].
A variable block: has the form I[VfJ.r dvl • p]1, where dlJl declares variables with no decoration

that may be referred to in the program p along with their da..<>hed counterparts. We assume
that program variables. their dashed counterparts, and input and output variables are not free in

declarations.
The design of programs may require the use of logical constants. These can he introduced by a

constant block of the form \[con del • p]1, where del declares logical constants and p is a program.
AB opposed to variable blocks, constant blocks are not executable and have to be eliminated during

refinement.
Procedures, possibly recursive, are declared in blocks as weU. In order to illustrate the notation

we employ to write procedure blocks, we consider the example below.

I[proc Inc 3: X :== X + 1 • Inc; Inc JI

This very simple program uses the procedure Inc to increase the value of x by 2. The program
:r ;== x + 1 is the body of Inc, and Inc; Inc is the main program (the scope of the procedure).

38 Chapter 3. ZRC

The general form of a procedure block is I[proc pn := body • mp 11, where pn is a procedure Dame;

Ixxly is indeed a procedure body: a program or a parametrised statement (a construct we introduce

below), and finally mp is a main program.
Parametrised procedures can be defined with the use of parametrised statements. These can

have the form (wi dvJ • p), (res dvl. p), or (val-res dvl. p), which correspond to the traditional

conventions of parameter passing known as call-by-copy: call-by-value, call-by-result, and call-by
value-result, respectively. In each case, dvl declares the formal parameters, and p is a program.

As opposed to assignments, for instance, parametrised statements are not programs by them

selves. Nevertheless, a parametrised statement (or the name of a procedure whose body is a

parametrised statement) can be applied to a list of actual parameters to yield a program which acts

as that obtained by passing the actual parameters to the program in the body of the parametrised.

statement. The number of actual parameters must be the same as the number of formal param

et.ers; the correspondence between them is positional. As an example, we present the procedure

block below.

I[proc Inc == (val-res n : N. n := n + 1) • Inc(x); Inc(y) 11

This program increments the variables x and y using a parametrised procedure Inc.

Parametrised statements whose parameters use different mechanisms of transmission can be

defined as welL For instance, (val x: N; val-res y : Z. y ;== y + x) has a value parameter x of

type N and a value-result parameter of type Z.
In the case of a call-by-result or a call-by-value-resuJt, the list of actual parameters must be

duplicate-free. In [41, 3, 45] this list is also supposed to contain only variables. In ZRC-L, however,

we allow for function applications as well. The idea is that, if the function is implemented by an

array, then the function application corresponds to an array indexing, which in most program

ming languages is acceptable as an actual parameter irrespective of the mechanism of parameter

transmission used.. This generalisation is needed in the treatment of promotion (see Section 3.6).
The development of recursive procedures requires the use of variants. Recursion may be used if

the refinement of a program (parametrised statement) p leads to another program (parametrised

statement) that contains p itself as a component. Due to termination concerns, however, the

introduction of recursion requires the definition of a varia.nt: an integer expression whose value

must be decreased. by each recursive call, but caunot assume negative values (cf. iteration variant

in Section 1.1). From a theoretical point of view, the type of a variant can be any well-fonnded

set, but in practice it is enough to consider that the variant is an integer bounded below by O.

As suggested in [45], a variant is declared in a new kind of procedure block called a variant

block. Its form is I[proc pn == body variant urt is e. mp 11, where un is a name for the variant

expression e. As constant blocks, variant blocks are not executable and have to be refined away.

By way of illustration, we consider the program that assigns to the vaeiable x the factorial of y,

x : [true, x':::: y!]. If, when refining this program, we decide that we waut to devt>lop a recursive

procedure that implements the factorial function, we have to introduce a varia.nt block like that

presented below, which declares a procedure Fact.

I[proc Fact £: (val n : N. {N = n} x : [true,x' = n!]) variant N is n.
x: [true, Xl == y!)

II
At this point, we can refine the body of Fact to obtain a recursive implementation for this pro

3.2 Primitive Statements, Composition, Variables, and Constants 39

cedure, and refine the main program to introduce the appropriate procedure call. The variant N
plays the role of a logical constant in the body of Fact. The assumption {N = n} in the body
of this parametrised statement fixes the initial value of N as being n. Recursive calls may be
introduced only at points where this value has been strictly decreased. In Section 3.7.2 we return
to this example and show in detail how Fact can he refined to a recursive procedure,

In Sections 3.2 and 3.4 we consider the weakest precondition semantics of the statements we
have informally introduced in this section, and of a few others. The entire set of definitions that
compose the wp semantics of ZRC-L is presented in Appendix C.

3.2 Primitive Statements, Composition, Variables, and Constants

In this section we discuss the wp semantics of the primitive statements (specification statement,
skip, assignment, etc.) of ZRC~L, of sequential composition, and of the variahle and constant
blocks. Our definition of the alternation semantics is the same as that in [47]. Procedures and
recursion are considered in Section 3.4. The semantics of iteration is defined in terms of recursion

in the usual way.
In the formalisation of Morgan's calculus [42, 45J, the weakest precondition of a specifica

tion statement is defined as shown below, where vI is the list of all variables, and vIa the list of
corresponding O-subscripted (initial) variables.

wp.w: [pre,postj.¥ =pre /I. (Vw. post => ¥)[vllvIaj (3.1)

In comparison, onr definition is as follows.

Definition 3.1 For every postcondition ¥ with no free program vanabies,

wp.w : [pre,post).¥ == pre /I. (V dw'. post => ¥H-tJ

where dw declares the variables of w.

This definition considers the type of the variables in the frame when quantifying over them. Since
the frame lists the program variables that can he modified, instead of their dashed counterparts,
we have to consider the declaration dw l instead of dw. What we are using is a decoration operation
that applies to declarations. In general, the declaration ds differs from d just in the names of the
variables that it declares: the alphabet of ds can be obtained by appending the symbol "5" to the
name; of the non-decorated variables in the alphabet of d.

The purpose of the substitution in Definition 3.1 is the same as that in (H): to eliminate
the variable decorations. The predicate p[-tJ is that obtained by removing the dashes of the free
variables of p. More precisely, p[-tJ is an abbreviation for p[vii vI'], where vi is the list of all
program variable; and vJl is the list of variables obtained by dashing the variahles in vI. In more
general terms, for every list of variahles I, il can be obtained by dashing the non-decorated variables
in i. The list vi of program variable;, in particular, does not contain any decora.ted variables and
so, vI' is the re;ult of dashing all variables in vi.

Definition 3.1 and other weakest precondition definitions presented in the sequel contemplate
only postconditions that do not contain free occurrences of program variables. Nevertheless, as
already remarked in Chapter 2, wp seIllAntics relies on the principle that the meaning of a program

40 Chapter 3. ZRC

is precisely specified only if, for every postcondition fj.J, the preconditions that ensure termination
in a state that satisfies 1j; can be characterised. Therefore,e must be able to calculate weakest
preconditions with respect to postconditions that are expressed in terms of program variables as

well. For this reason we introduce another definition.

Definition 3.2 For every program p and postcondition fjJ, mcluding those that contain free occur

rences of program variables,

wp.p.,p =(wp.p.,p[d/vlJ)[vi/dJ

whef"€ vi is the list of all program variables and cl is a IMt of ft-esh constants, none of Wh1Ch 15 free
m p or 1/),

The weakest precondition of x ; [x ~ 0, x' = JX 1with respect to x' == x, for instance, is x ;:: 1,
as expected. On the other hand, according to [42, p. 11J, wp.x: [x 2: 0, x = y'XO].x = X() is

x 2: 0 1\ .jX = .T(I, with XcI as an ordinary constant or variable which might as well have been called
,II. Definitions 3.1 and 3.2 together formalise the use of decorations both in the postconditions of

specification statements and in postconditions of wp.

The free names (variables, logical constants, etc.) of a program are precisely identified in
Section 3.5. Informally, these are the names that are not bound by a declaration. We must note,

however, that not only the variahles explicitly introduced by a variable block, but also their dashed
counterparts, are bound in this program. Also, we regard both the components and the global
variables of a ochema as its free variables. Nonetheless, if p is a scbema, and nv and ot! lists of

variables, p[nv/ovJ is not a substitution, but a renaming, which affects the components of p only.
Theorem 3.1 below shows that Definitions 2.6 and 3.2 are not in contradiction.

Theorem 3.1 For every schema (d; d'; di?; do! I p) and postconditwn 7jJ,

wp.(d; d'; di?; do' I p).,p =(wp.(d; d'; di?; do! Ip).,p[d/adJ)[ad/cl]

where d is a list of fresh constants, which are not free in (d; d'; di?; do! Ip) and 1/;.

Proof

wp.(d; d/i di?; do! I p).1/;

~ (3d!; do!. p) 1\ ('V d'; do!. p ~ 1/;) [by Definition 2.6J

=' (3 d'; do! • p) A (II d'; do'. p => ,p[cl/ad)[ad/ dJ) [by d are not free in 1/'J

= «3d'; do!. p) A (lid'; do!. p => ,p[d/adJ))[ad/cl]

[by d are not free in d', do!, and p, and ad are not jn ad' and ado!]

= (wp.(d; d'; di?; do! Ip).,p[d/adJ)[ad/dJ [by Definition 2.6]

o
As defined in Chapter 2, ad is the set of variables declared by d, or rather, its alphabet. In the
above the<lrem ad is used in substitutions as a list of variables. For the sake of simplicity, we
employ this notation whenever the order in which the ".(LTjables of the alphabet of a declaration is

listed is not relevant. In Theorem 3.1, for example, it is not necessary to determine the particular

41 3.2 Primitive Statements, Composition, Variables, and Constants

fresh constant of d that replaces each of the variables in the alphabet of d. Nonetheles,<;, we assume
tbat tbe list of variables denoted by ad is always the same and, also, that ad~ lists tne alphabet

of the decorated declaration tis in tbe same order as ad lists the corresponding variables in the

alphabet of d. In this way, the predicate p[ad'lad], for instance, is tbat obtained hy dashing the
free occurrences of the variables of the alphabet of d in p.

In (43. 45], types are treated as special forms of invariants. However, the notion of invariant in
these works and tbat of Z are different. While in (43] iovariants compose a context for programs.
in Z the operations themselves contain the invariant as part of their specification. As the variable

blocks with invariant and the invariant blocks of (43, 451 are not considered here, types are treated

directly in ZRC: the type dfflarations are regarded as axioms, as in [2]. Moreover, as we have
already seen, the weakest precondition of schemas and specification statements tal<e the types of
the variables into account, and so do the other weakest precondition definitions that follow.

Annotations and skip can be explained in terms of specification statements, as noted in the

previous section. These interpretations explain tbeir weakest precondition semaotics, which we

present below.

Definition 3.3 For every p<Jslcondit1on t// wlth no free program vanables.

wp.skip.1,// =:: 'IjJ
wp.{pre}.1,// =:: pre /\ t/J
wp.[po,,].,p' '" po,'[-/'J => ,p

The predicate 1,//, or more generally, a predicate p' is that obtained by dashing the free program

variables of p; p' is an abbreviation for p[vt'/vl], where vi is the list of program variables.
The weakest precondition of assignments is defined below.

Definition 3.4 For every p<Jstconditton tt/ with no free progmm variable.9,

wp.vl;= el.tl/ := 1,/J[ellvl]

If vl:= t:l is to establish t/JI, tben tbis predicate must hold wben the variables of vi' assume the
values denoted by the corresponding expressions of d and all other variables assume the values of

their undasbed counterparts. This is exactly the property characterised by 1,/J(e1lvlj.
Sequential compositions are considered in the definition that follows.

Definition 3.5 For every postcondition t/J with no free pTOgmm variables,

WP·(PI ; 1'2)." '" wp.pt-{wp.P2.,p)'

Usnally, sequential composition is defined by weakest precondition composition. In our case, an
intermediary substitution is necessary. because postconditioDS are expressed in terms of dashed

variables, and weakest preconditions, in terms of program variables.
The weakest precondition of a variable block is usually defined just for postconditions in which

the variables that it declares are not free. As far as the calculation of weakest preconditions is

concerned, this restriction introduces no loss of generality since these variables are bound in the
variable block and, therefore, can be renamed in case of clasb. Nonetheless, proofs are usually

carried out under tbe assumption that tbey are not free in the postconditioDS involved and it
might not he entirely clear why this assumption is legitimate. We clarify this point by proposing a

more general definition for wp. I[vat dvl. p]1 .t/J and introducing theorems tnat back up the usual
assumption later in Section 3.3.

42 Chapter 3. ZRC

Definition 3.6 For every postcondition 1/J with no free program variables,

wp. II var d,l. PII.>/>" 'if dl. wp.pII, I' /vl, vi'].>/>

prov1ded dvl and dl declare the variables of vI and I, respectively, and differ just in the names of

the vanables that they declare; and the names of land" are not free in p and'lj.J.

By way of illustration, we calculate the weakest precondition of I[var x : N " x := 1]1 with respect
to x' = 1. In this example, we are working with different variables of name x. According to

Definition 3.6, WI.' ruust, as shown below, rename the occurrences of x inside the variable block

wp.1[var x: N. x := 1 JI .x' = 1

== Vy : N. wp.(x := l)[y, y' Ix, x'l.x' = 1 [by Definition 3.6J

=Vy: N.wp.y:= l.x' = 1 [by a property of SUbstitution]

"'ify , N. (z ~ l)[l/y] [by definition of wpJ

::SOx=1 [by predicate calculus]

Surprising as it might be, this result is in accordance with the fact that I[var z : N. x := I JI is

equivalent to skip, since it dOes not change any external variable and always terminates.

Theorem 3.2 shows that when only postcondition..c; that do not contain free occunences of thl:'

names in vi and vi' are considered, Dl:'finition 3.6 coincides the with the usual definition of the

weakest precondition of a variable block. The proof of tillS theorem relies on Lemma 3.1. This

lemma establishes that, if we systematically change the names of the free variables of a program

and of a postcondition without causing any clashes, then the result of applying wp to them is not

altered, except only for the names of its free variables.

Lemma 3.1 For all lists of variables I and til, and f07' every pmgrom p,

wp.p.i'" (wp.pII, I' /vl, vl'].>/>{I, I' /vl, vl'])[vl/I]

provided the names of I and [I are not free in p and ¢.

Proof Structural induction over p.

o
As au example we take thl:' programs x: [true, x' ::::: X + IJ and y : [true, y' == y + I], observing

that the latter can be obtained by suhstituting in the former y and y' for x and Xl, respec

tively. Similarly, we con..c;ider the postconditions Xl > 0 and y' > O. It is not difficult to Bee that

wp.X : [true, x' ::::: X + I].x' > 0 == x > -I and that wp.y : [true, y' = y + [J-y' > 0 == Y > -1, and

80 wp.y : [true, yl = Y + I].yl > 0 =- (wp.x: (true, Xl = x + I].x' > D)[y/x].

Theorem 3.2 For every postcondition ¢ In which netther program vanables nor names of vi and

vi' are free,

wp.lf var dvl. p]1 .1/J =0 V dvl. wp.p.l/J

provided dvt declares the vanables of vi.

43 3.2 Primitive StateIIlents, Composition, Variables, and Constants

Proof

wp. II va, dvl. p]1 ."
:::::; 'V dl • wp.p[l, elvI, vll1/J [by Definition 3.6]

'" Vdl • wp.p!', I' / vi. vl'HIl,l' /vl, vl'l [by vi and vi' are Dot free in f/'J

'" Vdvl. (wp.p[I, I' /vl, vl'J.,,[I, I' /vl, vl'])[vl/I)

[by vi are not free in wp.p[I, l'lvl, vl'].f/'[I, l'lvl, vl'J (by Theorem 3.9)]

:::::; 'V dvl • wp.p."1jJ [by Lemma 3.1]

o
For example, we can use Theorem 3.2 to calculate the weakest precondition of the variable block
I[var x : N. x :== 1]1 with respect to y' == 1 in a much simpler way than that dictated by Defini

tion 3.6.

wp.l!var x: N. x:= l]l.yl == 1

;:=: V x: N. wp.x := I.yl == 1 [by Theorem 3.21

'" Vr , N. (y ~ 1)[I/r) [by definition of wp]

=y=1 [by predicate calculus]

In this case, since neither x nor x' are free in the postcondition, the variable x declared by

I[vnr x : N. x ;= 1]1 does not have to be renamed.
Our definition of tbe constant block semantics also generalises its usual definition.

Definition 3.7 For every postcondition~} with no free progrnm variables,

wp.l[con del. p II" '" 3dl. wp.p[l/clJ."

proVided del and dl declare the constants of el and I, respectively, and differ Just in the names of

the constants that they declare; and the names of land l' are not free in p and ~'.

The generaliBation follows the same lines used above in tbe case of variable blocks. If just post
conditions not containing free occurrences of the names of el and ell are taken into account,

Defiuition 3.7 is equivalent to the usual weakest precondition definition of constant blocks. This
result is established by Theorem 3.3. Before introducing this theorem, we presellt a lemma that is
m;ed in its proof.

Lemma 3.2 For all lists of constants land el, and for every program p,

wp.p." '" (wp.p[l/elJ.'Wclll[cl/IJ

provided the names of l and II are not free m p and '1/1.

Proof Structural induction over p.

o
This lemma is similar to Lemma. 3.1. In this case, the systematic change of names of constants,
rather than variables, is considered.

44 Chapter 3. ZRC

Theorem 3.3 For every postcondJtion 'Ii' In which neither program variables nor names Df d and
el' are not free,

wp.l[con dc/. p 11·'1/;::::: 3dcl. l.lIp.p.'l/J

provided del dec/arn; the constant3 of C/.

Proof

.",·11 con del. p II .,p

=3dl. wp.p[l/d].,p [by Definition 3.7]

=3dl. wp.p[l/dJ,"''illdj [by cl are not free in 1/>J

=3 dd .(wp.p[l/dj.""II/dJlld/lj [by cl are not free in wp.p[l/clhb[l/cl] (by Theorem 3,9)J

== 3 del. wp.p.'l/J [by Lemma 3.2]

o
If we take the constant block Hcon c : N. x : [x = c, Xl = C + IJ II, then we can use Theorem 3.3

to calculate its weakest precondition with respect to x/ = 1 as follows.

wp.![con c : N. x : [x = c, x' == c + 1] 11 .x' =1

=:3c: N.wp.x: [x = e,x' = c+l].x'= 1 [by Theorem 3.3]

=-3c:N.x=c/\c=O [by defin.ition of wp]

=x=o [by predicate calculus]

As Xl = 1 contains DO free occurrence of c or c', no renaming is necessary.

In Chapter 2, we have shown that, from the healthiness conditions pointed out in [14], just
continuity is not satisfied when weakest preconditions of schemas are considered. On the other

band, when programs are taken into account as well, tup satisfies only Ulonotonicity. Tbe law of
excluded miracle is not satisfied by specification statements, and A-distributivity is not satisfied

by constant blocks.
As already mentioned, the semantics of procedures and recursion is the subject of Section 3.4.

In the next section we formalise the notion of refinement adopted in ZRC.

3.3 Refinement

The definition that we adopt for ~, the refinement relation, is that in [47], which embodies the

concept of total correctness.

Definition 3.8 For all progroms PI and P'l, PI ~ 'Pl if and only if, for all postcnnditionll 1/;,

WP,Pl.t/J :::;. wp.f'2.t/J

Intuitivety PI I; P'l exactly when 'Pl terminates whenever PI does, and produces only results that

are acceptable to Pl' Therefore, if PI !; 'Pl, then P'l is always satisfactory as a substitute for Pl·

45 3.3 Refinement

A more formal justification of Definition 3.8 can be found in [42. 4J.
The derivations of the conversion and refinement laws of ZRC rely 00 Definition 3.8 and.

consequently, consist of establishing implications bet....-een weakest preconditions. The theorems
that follow allow us to assume that the postconditioDS involved. in these proofs satisfy certain
restrictions concerning their sets of free variables. These assumptions simplify the proofs and are
also exploited in the formalisation of Morgan's calculus.

The first theorem allows us to consider only postronditions that do not contain free program
variables.

Theorem 3.4 If, for every postcoTld~tion ljJ that does not contain free program vanables, we have

that Wp.pl.ljJ::::> wP'P2.ljJ, then UP.PI·O =} wp.P2'o for every posteondihon O.

Proof

Wp·Pl·O

" (wp·PI.o[cllvl])[vl/cl] [by definition of wpJ

=> (wp.p,.o[cllvl])[vl/cl] [by assumption]

" wp.p,.o [by definition of wp]

o
The corollary below is useful if we want to prove tbat Pl is equal to P2 (their weakest preconditions
are equivalent), and not only refined by it.

Corollary 3.1 If, for every postcnndition V-' that does not eontam free program vanables, we have

that WP.Pl.ljJ == wp.P2.ljJ, then Wp.Pl·O == wp.P2.o, for every postcondition O.

The proof of this corollary is a straightforward application of Theorem 3.4.
In the case where PI is a variable block, Theorem 3.5 is of use as well. Provided neither the

variables introduced by Pl nor their dashed counterparts are free in P2 (which is often the case),
only postconditions that do not contain free occurrences of these variables have to be examined.
For the>e postconditions, the simpler definition of the weakest precondition of a variable block
introduced by Theorem 3.2 applies.

Theorem 3.5 Suppose that, for every postcLJnditlon V-' in whieh progmm variables and the name.'l

of 111 and vi' are not free, wp. I[var dtll • P 11 .V-' => wp.P2.V-'. Then wp. I[var dvl • p II .0 => wp.P2'o,

for ellery postcondition 0 WIth no free program vanables, provided dvl deelares the vanables of vi

and the names 0/ vI and tit are not free in P2.

Proof If the names of vi (and ve) are in scope as variables, the proof is as follows.

U'P. I[va< dvl • P 11 .1

= (wp. I[var dvl • P JI [I, I' lvi, vl'].o[l, I' lvi, vl'])Ivlll] [by Lemma 3.1J

~ (wp.l[var dvl' pJI.![I,I'lvl,vl'])[vlll] [by a property of substitution]

=> (wp.p,.o[l, I' lvi, vl'])[vl//] [by assumption]

46 Chapter 3. ZRC

~ (wp.", II,/' /,1, ,1'1.0[1, I' /vl, '/'))[,//11 [by vl and vII are not free in P2J

~ wp·Pl·o [by Lemma 3.11

If the names of vI are in scope as constants (in which case, the variables of vi' are not in scope),
the proof is similar, but uses Lemma 3.2, instead of Lemma 3.1.

o
A similar result holds when P2 is a variable block.

In the event that PI is a constant hlock, Theorem 3.6 allows us to confine our attention to
postconditions in which the constants that it introduces and the dashed variables named after
them are not free. In this way we can make use of Theorem 3.3 which gives a simple but restricted

definition of constant blocks.

Theorem 3.6 Su.ppo:>e thal, for evety postconditwn 1/J in which program variables and the names

of cl and el' are 1Wt free, wp.l[con del. pJI.1/; => wp.P2."p. Then wp.![con del. p 11 .5:::? WP,P2·6,

for every posicondrlion 5 with no free program variables, provided del deelare~ the constants of el,

and the name~ of cl and el' are not free in P2.

Proof Similar to that of Theorem 3.5.
o

A similar theorem covering the case in which Pl is a constant block can be proved. Appendix D

presents many law derivations which make use of the theorems listed above.

An important result about ~, which can be easily proved by structural induction, is that it

distributes through the program structure: the program constructors are monotonic with respect

to it. This means that the different components of a program can be refined separately.

As shown later on in Section 3.7.3, a possible way of refining a variable block is by data refine

ment. This consists of replacing the variables that it declares and modifying its body accordingly.

The objective is to rewrite the progranl using data structures which, for instance, can be more

efficiently implemented. The variables declared in the original variable block are called abstract.,

and those declared in the new variable block, concrete. A data refinement relation characterises

the programs that can replace the body of the original variable block.

Our definition for this relation has been suggested by the work in [33], where a proof-obligation

expressed in t,erms of weakest preconditions characterises data refinement between schema." that

specify operations. We adopt the notation of [46] and write PI ~afJf,cvl,ci P2 to mean that PI is

data~refined by P2. The lists of variables avl and cvl enumerate the abstract and concrete variables,

respectively; ci is the coupling invariant, a predicate that specifies how the abstract and concrete

variables are related. The concrete variables must be fresh.

Definition 3.9 FOT all programs PI and Pl' ltsts of variables avl and cvl, and predicate ci,

PI ~afJf,cfJl,,, 112 if and only if

ci 1\ up.pI.1/.! ~ wp.P2. 3 davr • ci' 1\ 1/'

fOT all 1'Ostcondtttons 1/.! in which the variable.~ of cvl and cvl' are no~ free. Thc declara~ion davl

introduces the variables of avl. The variable.s of cvl and cvl' must not be free in Pl. MOTWveT, avl

and cvl mu.st be dwjoint.

\Vhen avl, cvl, and ci can be deduced from the context, we write the data refinement relation

47 3.3 Refinement

simply as ~,

For reassurance, we observe that if both Pl and 1'2 are schemas, PI ~avl,,,vl,,,i P2 holds ex
actly when the corresponding Z proof-obligations for data refinement can be discharged. This
relationship is precisely formulated in Theorem 3.7.

Theorem 3.7 For all schemas A and C that define, respcctlvely, an abstract and a concrete state;

schema R that defines a retrieve relation between A and C; and schemas OPt and 0P"l,

R 1\ Wp.OpI.lj; '* wp.01'2.(3A' • R' 1\ '1/))

if and only if

"I Aj C. pre 0Pl 1\ R => pre 01'2 and VA; C; C' • pre 0PI 1\ R 1\ 01'2 => 3.A' • OPt 1\ R '

A proof for this theorem is not provided here, since this result is not used further ahead.

The next theorem establishes that our definition coincides with that iu (46, 5(J]. This result
guarantees that our definition does not incur extra complexity to the derivation of the data refine

ment laws of ZRC.

Theorem 3,8 For all programs PI and P"l, lists of abstract and concrete variablfs avl and cvI,

and coupling invanant CI, PI ~ 1'2 if and only if
(3 davl • ci /\ WP,Pl.lj;) :=} wp.1'2.:3 davl' • ci' 1\ lj;

for every postcondition lj; in which neIther program variables nor variables of cvl' are free. The

variables of avl and avl' must not be free in 1'2. Thc dedaratwn davl introduces Ihe variables of

avl. The variables of cvl and cvl' must not be free in Pl. Moreover, avl and cvl must be disjol,nt.

Proof At first, suppose that Pt ~ P"l.

3davl. ci 1\ wp.Pt.lj;

=> :3 davl. WP.P2. 3 davl' • ci' 1\ lj; [by Definition 3.9]

== wp.1'2.:3 davl l ci' 1\ lj; [by avl are not free in wp.1'2.:3 davl' • ci' 1\ 'IjJ (by Theorem 3.9)]•

Conversely, suppose that (3 davl • ci 1\ WP.Pl.'I/)) :=} Wp.p"l.:3 davl' • ci' 1\ lj; holds for every post

condition lj; in which neither program variables nor variables of cvl' are free. For a postcondition
& in which the variables of cvl and cvl l are not free,

ci 1\ wp.Pt.&

~ "A (wp.PI.o[d/vl])[vl/d] [by definition of wp]

~ (ei A wp.PI.o[d/vllllvl/d] (by cl are not free in ciJ

:::} (3 davI. ci 1\ wp.PI.6[cI/vIJ)[vl/cl] {by predicate calculus]

:=} (wp'1'2.3 davl / • ci' 1\ 8[cI/vl])[vl/cI] [by assumption]

~ (wp.",.(3 davl' 0 d A !Hd/vllllvl/d]
[by vI are not free in davl and ci', and d are not in avl/]

_ wp.1'2.3 davl' • CI /\ 8 (by definition of wp]'

o
The characterisation of data refinemeut in this theorem considers just postconditions that do not

48 Chapter 3. ZRC

contain free occurrences of program variables. Tbe existence of this simpler specification of the

data refinement relation is not surprising, since Corollary 3.1 and Theorem 3.1 establish that the

semantics of a program is completely defined by the restriction of wp to postconditions with DO

free occurrences of program variables. The derivations of the data refinement laws of ZRC rely on
Theorem 3.8, rather than on Definition 3.9 directly. These laws are discussed in Section 3.7.3 and

listed in Appendix D.

3.4 Procedures, Parameters, and Recursion

Back [3] and Morgan [41J have both formalised the USe of procedures and parameters in the context
of refinement techniques. These works are connected in a perplexing and unanticipated way to the

substitution operator that renames the free variables of a program. In this section we examine this

relationship a.nd give our reasons for adopting Back's approacb in the treatment of proeedures in

ZRC; also in this section we define a semantics for procedures and recursion.

3.4.1 Exploring the Effect oC Substitution

Both Back and Morgan adopt the copy rule of Algol 60 when defining a semantics for non-recursive

procedures. According to this rule, a program that contains a procedure call is equivalent to that

obtained by substituting the procedure body for the procedure name. Variable capture must be

aYoided, in order to ensure that the scope of variables is static. As an exa.mplc, we take the

procedure block below, which bas been presented in Section 3,2.

l[proc inc 5: x:= x + 1. inc; inc]1

As expected, this program is equivalent to x := x + I ; x:= x + 1.

In order to illustrate the concerns related to the capture of variables, we consider the program

below which assigns I to a global variable x.

I[p<oc P S X ,~ 1 • II var x , N. P II II (3.2)

In the maiD program oftbis procedure block, the variable block I[Vllr x ; N. p]1 declares a variable

x local to its body, P. Since there is a variable x free in the body of P. we cannot, as in the previous

cxample, apply the copy rule and substitute x := 1 for P. This substitution would lead to the

capture of the global variable x mentioned in the body of P by the local declaration of x in the

main program and, therefore, would violate the Tules of static scope. Before applying the copy

rule to (3.2), 'We have to rename the local variable x.
The refinement law lJ.,.bR (variable renaming), which is presented and derived in Appendix D,

can be used. to rename the variables introduced by a variable block. By applying this law, we con

clude that, since z is not free in P, (3.2) is equivalent to 11 proc P == x := 1 •)[var z • P[z Ix] 11]1·
At this point, our main concern is tbe result of P[zlxj.

Thcn' seems to be two acceptable possibilities: P and z := 1. In the first case, the substitution

operator acts on the name P and, since x is clearly not free in this program, P is itself the result;

substitution is a syntactic operator, and is referred to as syntactic substitution. In the s~ond

case, the substitution operator acts on the body of P and yields the result of substituting z for x

49 3.4 Procedures, Parameters, and Recursion

in that program. The behaviour of substitution is dependent on the context in which it is applied,
and this operator is referred to as context dependent substitution. This somewhat \lnusual form
of substitution is adopted in [55] and, as we explain later, is part of a possible solution to the
problems we uncover here.

Both forms of substitution can be defined by recursion in the usual way. The interesting part
of their definitions is that concerned with the application of substitution to a procedure narnp. In
the case of syntactic substitution WP have that, for a procedure name pn and lists of variables Vll

and v12, pn[vl2/v1Jl = pn. For context dependent substitution, if p is the body of the procedure
pn, then pn[vl2/vlt] = p[vl:2/v1d· The main purpose of this section is to show that either definition
of substitution leads to inconsistency in Morgan's formalisation of procedurps and parameters.
Moreover. we show that Back's formalisation presents no problems, provided we adopt syntactic

substitution.
If we assume that P[z/x] is z := 1 (context dependent substitutiou), we call deduce that

I[var z : N. P[z/x]]1 is equivalent to I[var ;; : N. z := 1JI. This program, however, can be shown
to be eqnivalerlt to skip: it does not change any variable other than the local variahle that it in
troduces, and always terminates. Overall, we can prove that (3.2), which is supposed to assign 1
to x, is equivalent to skip.

In [55], Sampaio avoids this problem by restricting the applicatiou of the law that accounts for
the renaming of the variables declared by a variable block. He defines the notion of contiguous
scope and establishes that the renaming is pos.."ible only if the variables have a contiguous scope
in the body of the variable block. A variable is said to have a contiguous scope in a program if
either this program does not contain procedure calls or the variable is not free ill the bodies of
the procedures that are called. In the above example, since x does not have a contiguous SCope
in P, because x is free in the body of this procedure, we cannot deduce, accordin.g to [55], that
It var x: N. PJI = I[var z : N. P[z/x]]1· Consequently, the undesired deduction that we have
presented cannot be carried out.

Although it might be considered a solution to the problem, we cannot adopt this approach if
we accept the usual wp semantics of variable blocks presented in [3, 47, 45] or t.hat adopted in
ZRC, which is similar. In all these models, the equality I[var x : N. PJI = I[vaT Z : N. P[z/xJ]1

can be deduced. provided z is a fresha.riable. As a consequence, if we assume COQtext dependent
substitution, the undesired deduction can be carried out in these models.

Sampaio gives an algebraic semantics for the language introduced in [55J. In tbis semantiCB,
the restricted renaming law that he proposes (based on the notion of contiguous srope) is regarded
as an axiom and no model is presented for the language.

In summary, if v.-e discard the possibility of changing the semantics of variable blocks, we have
to assume that P[z/:tJ is eqnal to P, or, in more general terms, that, substitution is a syntactic
operator. This is the form of substitution adopted by both Back and Morgan, and adopted in
ZRC-L as well.

While this decision avoids the problem discussed above, we show below that it leads to another
problem in Morgan '8 formalisation of parameters [41, 45J. In his calculus, the use of pararnetrised
procedures is made possible by substitutions which define both the formal and actual parameters
of a procedure at the point(s) of call rather than definition. The forms of substitution available
correspond to call-by-value, call-by-result, and call·by-value-result. For example, a substitution
by result has the form p[result v12/vh], where p is the program to which it appHes, vlt, the list

50 Chapter 3. ZRC

of formal parameters, and viz, the list of actual pararneters. The main program of the procedure
block below, for instance, is composed by two substitutions by result.

I[proc Zem == n:= O. Zero [result zln] ; Zero [result yin] 11

This program assigllli 0 to the variables x and y using a procedure Zen>.

In [41] Morgan provides a wp semantics for substitutions, but they can also be defined in terms
of variable blocks. For instance, from the weakest precondition of a substitution by result, -we can
derive the equality below, where I is a list of fresh variables.

p[res vl2llild = I[var I. p[l/vltl; viz := 11l (3.3)

The variable block a.bove implements a call-by-result using the well-known technique of assignment

from a local variable. This is the definition actually adopted in [45J.
In order to explain the problem with this approach to parametrised procedures, we consider

the program that assigns 1 to a variable z using the procedure P of (3.2).

I[proc P == x := 1 - P[result z/x] Ii (3.4)

As we show below, in view of our comments about procedures and result substitutions, and as
suming that syntactic substitution is adopted, we can get to an unexpected conclusion. Namely,
this procedure block is equivalent to l[var l- x;=: 1; z:== IJ), a program that assigns 1 to x and

an arbitrary value (that assigned to I upon declaration) to z.

I[proc pi":; x:= 1_ P[result z/x] 11

~ ![pror P '" I ,= ,. I[var I. PII/I); ,,= 1]111 [by (3.3})

= I[pror P '" ro= lol[var I. P; ,,~I]III [by PII/I] = P]

=: I[var I _ x := 1; z:= 1JI [by the copy rule]

It might appear that an immediate solution to this problem is to adopt context dependent rather

than syntactic substitution. In this case, P[l/xJ, in the second line of the above derivation, would
be replaced by I ;= 1 (ratber than by P), and the overall result of the derivation v.uuld be z := 1, as
expected. Nevertheless, Wl! have just concluded that substitution must be regarded as a syntactic
operator, since otherwise we run into the problem raised earlier in this section.

If we apply the copy rule at an earlier stage, before replacing the result substitution by the
variable block defined by (3.3), the resulting program assigns 1 to z as well. The development is

shown below.

\(proc P == x := 1 - P[resultz/zJ JI

= x:= l[resuJt z/xJ [by the copy rUle}

= livar I. (I ,= 1J1I/IJ; ,,= III [by (3.3)J

~llvarl.I,~1; ro~11I [by a property of substitution)

=: z := 1 [by properties of assignments and variable blocksJ

In conclusion, the order in which the laws are applied influences the result.

51 3.4. Procedures, Parwneters, and Recursion

In [45], Morgan uses the strategy illustrated by our second development above. However, the
laws that can be derived from tbe model of procedures and substitutions provided in [41, 45] do
not enforce the application of tbis strategy: the order of application used in the first development
is also supported by this model.

Altogether, whatever definition we adopt for the substitution operator, we run intO problems if
we consider Morgan's formalisation of procedures. If we assume that P[zlxJ is z:= lor, in other
words, context dependent substitution, we run into the problem illustrated by our first example.
Alternatively, if we assume that PIzlx] is P (syntactic substitution), the problem posed by our
second example comes about. This problem is not specific to result substitutions: similar difficulties
would arise if we had used value or value-result substitutions.

In Back's approach, which we adopt in ZRC, this problem does not occur if we define that tbe
substitution operator is syntactic. In his work. as in ZRC, parametrised procedures are defined
with the use of parametrised statements. Their applicatiou to actual parameters is defined in
terms of variable blocks. For example, call-by-result is defined by the equation below, where I is a
List of variables that are not free in p, and are not in v12'

(res Vll- p)(vI2) = I[var l_ p[llvllJ; v12:= III

The right-hand side of this equation is identical to that of (3.3).

Using Back's parametrised statements, we can write the procedure block (3.4) in the following
way:)[proc P == (res x _ x:= 1). P(z)JI. Since the result of applying a procedure name to an
actual parameter cannot be established without investigating the body of the procedure, when
reasoning about P(z), the only way to reduce it to a variable block is by first applying the copy
rule. Consequently, within Back's framework, tbe unwanted deduction that could be carried out
nsing Morgan's approach cannot arise.

As already explained, Sampaio avoids the undesired deductions we have presented by adopting
context dependent substitution and introducing a notion of contiguoUB scope which is used to
restrict the application of the law that renames local variables. If we assume that variables cannot
be redeclared, or in other words, if we rule out the possibility of using nested scope, the variables
always have a contiguoUB scope. In this case, the usual law that renames local variables can be ap
plied witbout further constraints. Tbis restriction over variable declarations, however, is generally
too severe. Moreover, as Sampaio's formalisation of procedures and parameters is essentially the
same as that of Back, he could have defined substitution as a syntactic operator, aud then avoided
the restriction imposed on the renaming law.

A negative aspect of Back's work is the introduction of an additional construct: the paramet
rised statement. Before laws can be derived, the notion of refinement bas to be extended to these
statements, and properties of the new refinement relation have to be proved. Tbis is accomplished
in the next section, where we also define the semantics of variant blocks.

3.4.2 Semantics

As already remarked in Section 3.1, the forms of parametrised statement that we consider in ZRC
correspond to call~by-vaIue, call-by-result, and call-by-value-result, instead of call-hy-reference as
in [3). The semantics of these statements, or more precisely, of the programs obtained by applying

52 Chapter 3. ZRC

them to lists of actuaJ parameters is not surprising, The definitions are as foHows.

CalJ-by-value (val dvJ. p)(ell = I[var dl • I := el; pli, t lvI, vI']]I provided dvl and dl de
dani! the variables of vI and I, respectively, and differ just in the names of the variables that
they declare; and the Dames of l and I' are not free in p and el.

Call-by. result (res dvll • p)(vJ2) = I[var dt • p[I, [' Ivh, vlll; v~;= ill provided dvll and dl de-
clare the variables of uiI and I, respectively, and differ just in the names of the variables that they
declare; and the names of I and [I are 1I0t free in p, aod are not in v12>

Call-by-vaJue-result (va.l.resdvll.p)(vI2) = Ifvardlel:=v1z; p[l,l'/vh,vlf]; vh:=tJI
provided dvh and dl declare thE! variables of ViI and I, respectively, and differ just in the names of

the variables that tbey declare; and the names of land il are not free in P, and are not in Vl2'

As mentioned in Section 3.1, in ZRC-L a function application can be the actual parameter of a
call-by-result. The semantic.."l of programs of this form is defined below in terms of ordinary ca.lls.

Call~by-result (with a function application as actual parameter)

(res v : t • p}(J x) :::: If var u ; t • (res v : t • pH u) ; f := f ill {x H u}]/

provided tl and tl' are not free in p.

The variable block that corresponds to a call-by-result whose actual parameter is a fnnction ap
plication introduces a fresh auxiliary variable u. In this program, tl is used as actual parameter,
instead of thf:' function application, and subsequently the function is updated accordingly. A call

by value-result ca.n also take a function application as actual parameter. The definition of it:;
semantics is similar to that of a call-by-result and is presented in Appendix C.

Para.metrised statements that combine different forms of parameter transmission are defined
by composition. For a mechanism of parameter passing par, and a formal parameter declaration

fpd (either an ordinary declaration or a declaration that combines different forms of parameter
transmission itself), we have the definition below.

Multiple parametrisation mechanisms

{par dlii1; fpd. p){dI , el:;1:l = (par dvll • (Jpd. p){el2)(eld

provided the variables declared by dvll are not free in eh.

This definition expresses io a general way the definitions of [3J.
The definition of refinement that v..e adopt for parametrised statements is that oC [3].

Definition 3.10 For all paromel.rised statements (fpd. pd and (Jpd. p<!), with the same formal

pammeter declamtiDn, (fpd • pt} ~ (Jpd. P2) If and only if, for allli!Jts al Df actual pammeters,
Upd • p,)(al) [;; 1Jpd. ",)(al).

SurprisingJy, maybe, PI r;, P2 is not equivaleot to (Jpd. PI) !;;; (Jpd. P2). As shown iII [3],
parametrised statements are monotonic with respect to the refinemeot relation, so that PI !; P2
implies (fpd • pd ~ (Jpd. p<!). Nevertheless, there are cases in which Upd. PJ! ~ (jpd.]>2)'

but PI [; P2 does not hold. For instance, by applying the definition of call-by-value, it is not diffi~

cult to prove that both (val n ; N. n := n + 1){ m) and (val n ; N. n := n + 2)(m) are eqnivalent

53 3.4 Procedures, Parameters, and Recursion

to skip. Therefore, we deduce that (val n : N. n := n + 1) ~ (val n: N. n ;== n +2). Never
theless, n := n + 1 is not refined by n := n + 2.

In order to simplify the presentation and derivation of the refinement laws, we establish that a
parametrised statement may declare no formal parameters. These special parametdsrd statements
are actually programs themselves and we define that, for every program P, (• p) == p.

The main program of a procedure block and the body of a recursive procedure may refer to
the procedure name, so they are not conventional programs. From the semantic point of view,
they are contexts: functions from programs (parametrised statements) to programs (parametrised
statements). If c is the main program of a procedure block or the body of a recursive procedure,
it corresponds to the function that, when applied to a program (parametrised statement) P, yields
the result of substituting P for the free occurrences of the procedure name In c.

The semantics of a procedure block, which we define below, is based on the copy rule of Algol 60
and on least fixed points, as adopted, for example, in [3, 47, 45].

Procedure block I[proc pn == (Jpd. Pl)(pn) • P2(pn)JI == P2(J1(fpd. PI))

Since, as we have already said, programs can be seen as special parametrised statements, this
definition (and others that follow) contemplates procedure blocks that declare either parametrised
or non-parametrised procedures. It states that a procedure block is equivalent to the program
obtained by applying its main program to the least fixed poiut of the procedure body. A more
usual notation for the least fixed point of a function (fpd. pI) is JI pn • (Jpd • Pl)(pn), where
(jpd. pl)(pn) is the application of the context (fpd. Pl) to the program pn (and not the appli
cation of the parametrised statement (Jpd • PI) to the actual parameter pn). Nonetheless, for the
sake of hrevity, we will adopt the more concise notation J1(Jpd • PI).

The existence of jj(Jpd • pt} has to be justified. According to Knaster-Tarski [60], we can es
tablish that J1(Jpd • pI) exists by showing that the set of programs and the sets of parametrised
statements with the same formal parameter declaration are complete lattices, and that (fpd. Pl)

is mOllotollic. As expected, the partial order of interest is refinement. Programs are modelled as
monotonic predicate transformers, which, as shown in [7), form a complete lattice. The bottom ele
ment of tbe set of parametrised statements with formal parameter declaration fpd is (fpd • abort).
Moreover, the least upper bound of a set of parametrised statements {i. (fpd • P,)} can be defined
as (U{ i • (fpd • Pi)})(all = u{ i • (jpd • p;)(al)}, for all lists al of actual parameters. Finally, the
program constrnctors are monotonic with respect to !,;;;. Consequently, (fpd • ptl is a monotonic
function, as required.

In the case where (fpd • PI) does not contain free occurrences of pn or, in other 'WOrds, pn is not
a recursive procedure, Jj(Jpd. pd is (fpd. pd itself. Therefore, j[proc pn == (jpd. PI) • P2(pn) JI
is the program obtained by substituting (jpd • Pl) for the calls to pn in P2, P2(fpd • pd. as expected.

The variant name introduced hy a variant block is a logical constant whose scope is restricted
to the procedure body. This logical constant is supposed to assume ever decreasilIg values in the
successive recursive procedure calls. Accordingly, the semantics of a variant hlock is as follows.

VariWlt block

I[proc pn ~ (jpd. pd(pn) variant n is e. Pl(pn)]1 ==P2(J1(Jpd .I[con n:Z. PIli))

The fact that variant names are logical constants implies that, as mentioned before, variant blocks

54 Chapter 3. Zll.C

are not executable.
In order to consider data refinement of procedure and variant blocks, we have to extend tbe

data refinement relation to contexts.

Definition 3.11 For all contexh from programs to progmms pel and pe2, lists 01 abstract and

concrete variablcs avl and cvl, and predicate d, PCI ~ pe2 il and only ii, lor all programs PI and

P2 such that PI ~ P2, pe2(Pt) ~ pe2(P"1)·

Actually, we have adopted the definition proposed in /18J.
The definitions that we have introduced in this and in previous sections are used in Appendix D

to derive conversion and refinement laws. In the next section we consider the scope rules of ZRC.

3.5 Scope Rules

The scope rules of ZRC-L are those that a programmer with experience in a langnage like Pascal,
for instance, might expect. Tbeyare defined below by a fnnction (fnp) that associates a program

or a parametrised statement witb the set of its free names.
The function Inp is defined recursively. The function Inpd, which is lliled in its definition, gives

the free names of a predicate; /n~ defines the free names of an expression; finally, Ind specifies
the free names of a declaration: those that are free in the expressions that define the types of the
variables in its alphabet. These functions are defined (under other names) in [8].

/np.(d I p) = ad U/n,.d U /n".p

/n'P.pn = {pn}, where pn is a procedure name.

/np'w : [prf,post] = elem.w U Inpd.pre U Inpd.posl

Inp.skip = 0"

Inp' {pre} 0= fnpd.pre

Inp-[post] 0= /npd .post

Inp.vl :0= el:= elem.vJ U In~.el

Inp·(PI ; P2) Inp .pl U fnp.P20=

Inp.if 0j. gi -t Pi fi = U{ i_ Inpil.g. U Inp'p, }

Inp.do 01. g. -t p, od:= U{ i. IRpd·gi U fnp.p, }

fnp. Il""'" d.l - p II ~ /n,.d.l U /np.p\(ad.l U nd"l')

Inp·l[con del- p 11 := Ind..del U /np.p\cr.del

fnp.(fpd. p) = fn,.fpd U fn,.p\(afpd uafpd')

fnp·llpwc pn '" (fpd - pd- ",II = (fnp.(fpd - pd u/np.",)\{pn)

Inp.l[proc pn == (Jpd • pd variant n is e • P2 JI :=

f",.fpd U/np·PI \(pn, nj ufn,.<\afpd ufn,.",\{pn)

Th~ function elem gives the set of elements of a list. The a fUDction, which is usually applied
to ordinary declarations to determine the set of variables that they declace, is applied above to

formal parameter declarations as well.

55 3.6 Conversion Laws

A progra.m or parametrised statement is well-scoped if its free variables are before or after-state,
input, or output variables, or still global variables of the Z specification in wnich it is inserted.
A well-scoped constant block, in particular, satisfies yet another restrktion: the da.<;;hed variables
named cUter the constants it introdnces are not free in its body. Our definitions. theorems, lemmas,
corollaries, and laws contemplate only well-scoped programs and parametrised statements.

The following theorem is extensively used throughout this work.

Theorem 3.9 If a variable (constant) v and Its dashed counterpart tI' are not free in Ihe program
p and in the postcondit10n 1/J, then v is not fn:e In wp.p.'ljJ.

Proof Structural induction over p.

o
As a matter of fact, this theorem has already been mentioned in proofs presented in the previous
section. It is used again later in this chapter and in Appendix D.

The lemma below is also used in subsequent proofs.

Lemma 3.3 For every program p, postcrmdition 'ljJ, and predicate 6 such that rte~ther lts free

variables nor their undoshed counterparts are free in p,

(wp.p.,,') 1\ 1 => wp.p.(V> 1\ I')

Proof Structural induction over p.

o
Intnition might snggest that equality and not only implication holds in the ahove theorem. How
ever, we should note that in the case where p is a miracle, it will establish 61 under any circnm

stances.
The next sections discuss the conversion and refinement laws of ZRC. They all take the scope

rules of ZRC-L into account.

3.6 Conversion Laws

The majority of the ZRC conversion laws are based on those in [34, 64J. The most general of these
laws, which can convert any schema that specifies an operation, is named be (basic conversion).
Its two formulations hay£, alr£'.ady been used in Section 1.1. The first one is shown below: it can
be applied to every schema of the form (6.S: di?; do!) p) in order to translate it to an equivalent
specification statement. Its derivation and those of all other ZRC conversion laws are presented in
Appendix D.

Law be Basic conversion

(AS; do?; do' I p)

be

ad. ado! : [inv A 3 dl
; do!. inv' A p, inv' A p]

where S == {d I inv)

The predicate inti 1\ 3 d'; do!. inv' A p is a conjunct of pre (6.S; di?; do! I p), which also includes

56 Chapter 3. ZRC

the restrictions owr the state and input variables that are introduced by d and di? Nevertheless.
the methods forcalcLllating pre {AS; di?; do! J p) which are often employed in practice [66, 16,65,

52] leave both inv and thp restrictions of d and di? implicit, and point out just 3 d'; do!. inv' 1\ 11
as the precondition of (Ll5; di?j do! j pl. Consequently, when determining the result of applying

be to a particulllT schema that specifies an operation, we can rely on the calculations that establish
its precondition.

By way of illustratioo, we consider tbe specification of a simple bank account presented in [16].
In tbis example, the state is formed by two components: 001 and odt. They are both integers wbich
represent, respectively, the balance and tbe overdraft limit of the acconnt.

_Account _

bal,odl,Z

Iodl 2: 0

odl + 001> 0

An account overdrawn by an amount of money b has a negative balance: - b. The state invariant
establishes that the overdraft limit of an account cannot be negative and cannot be over!>tepped.

\Ve examine the operation Withdrnw which withdraws money (rom the account. It has an
input, with?, which determines the amount of money to he withdrawn.

I Withdmu/

I L},Acco~nt

with?: Z

o < W1th? :s odl + bal

bal' = hal - with?

odl':= odl

According to [66, 16,65,52], the precondition of Withdraw is 0 < with? .$ adl + bal. The amount
of money to be withdrawn must be positive and must be available in the account. The result of
applying be to Withdraw is the following specific..\tion statement.

odl' ,,0 1odE > 0 odl' + bal' > 0

bal,OOI: I (odl ~ hal 2: 0), 0 < with? .s odl + bal
o < with? .$ 001 + bal (bar:::::; hal - with?

OOI' = adl

When be is applied to a schema that specifies an operation, its precondition sbould pr-pferably be
already av.Lilable in a simplified form. Nonetheless, this should not be seen as an extra burden
of the refirlempnt process. On the contrary, calculating the precondition of the operations is a

recommended part of the specification phase [66, 65, 52] and, tberefon', be actually encourages
the rellS(> of an existing result.

In [341 King writes specification statements using the O-subscript convention for initial variables
adopted ill [41, 45J. We have followed, however, the lines of [64, 65J and kept thp dashing convention

57 3.6 Conversion Laws

of Z to maintain the compliance with this notation. Moreover, in [47, 45J the names ofthe variables
are usually very short probably to make their copying ea.<>ier. Following this guideline, King has

suggested the shorteuing of the variable names of the Z specifications when traru:;lating them to
the notation of the refinement calculus. Nevertheless, we believe that a tool can make all the

necessary copying, understanding the designs is important, and the collected code gives guidance
to the developer. Therefore, we have suppressed this shortening pha.<>e.

Schema.<> which specify operations that do not change the state or, more precisely, schemas of
the form (35; d-i?; do! Ip), can be written as (6.5; dl?; do! I p A cJ =; cl A ... A c~ = en), where

c1,' .. ,cn are the components of 5: the state components. As a consequence, we can use be
to transform ('=-5; di?; do! I p) into a specification statement. Nonetheless, since schemas of this

form occur very frequently in Z specificatious, we propose an additional conversion la.w, or rather,
an additioual formulation of bC that considers their particular features.

Law bC Basic conversion (operations that do not modify the state)

(2S; do?; do' I p)

bC

ado! : [-in-u A 3 do!. p[adjad'J, p]

where 5 == (d I in-u)

The specification statements generated by this formulation of bC do not include the state com

ponents in their frames. Moreover, their postconditions do not enforce the maintenance of the
invariant because, since the state components are not modified, the state invariant is necessarily

maintained. The predicate :3 do! • p[adjad'J is what is commonly regarded as the I'recondition of

(35; di?; do! Ip).
As an example, we consider the operation Balance, which retrieves the balance (jf the bank

account. This operation does not change the state and has an output: balL

Balance _

3Account

ball : Z

baJ! = bal

This is a total operation: its precondition is true. By applying the ahove formuJaticm of bC to
Balance, we get the specification statement below.

ball: [odt 2: 0 1\ odl + bat 2: 0, ball = ball

This is a much more concise result than that we would obtain if we used. the firs~ formulation of

bC.
Every schema that specifies an operation can be written in a form appropriate to the application

of bC and, therefore, this law can he used to transform any such schema into a ~pecification

statement. Nonetheless, before bC can be applied to a schema defined with the lL.'€ of schema
operators like conjuuction, disjunction, and otbers, the schema expressions have to lie expanded.

As pointed out by King, however, some schema expressions can be translated directly into more

structured programs.

58 Chapter 3. ZRC

Schema disjunctions can be transformed into alternations if the operations involved act over the
same state and have the same inputs and outputs. In ZRC, this can be effected by an application
of tbe conversion Jaw sdi5]C (schema disjunction conversion), whicb has three formulations. Its

first formulation is shown helow.

Law sdts]C Schema disjunction conversion

0Pl V 01>2

!;	 sdisjC

if pre! ---t OPt 0 pre2 -t 01>2 fi

where

•	 pre OPt;:::; preJ II inv /I. t;

•	 pre 0P'l == pre2 /\ inv /I. t;

•	 inv is the state invariant;

•	 t is the restriction that is introduced by the declarations of the state components and

input variables.

Syntactic Restriction 0Pl aud 01'2 act over the same state and have the same input and

output variables.

The guards prel and PTe2 are supposed to be the preconditious of OPt and 0P2 as calculated
in [66, 16, 65,52]. Their characterisation in terms of pre OPt and pre 0P2, however, does not
uniquely identify them, since conjunction is idempotent. Nonetheless, any of the predicates pre}

and pre2 that satisfy this characterisation can be used as guards. The same observation holds for

the other formulations of sdisjC, which also refer to prel and PIe2·

As an example, we consider once again the bank account operation Withdraw, which is partial.

[f it takes as input an integer that is not positive or that represents an amount of money not
available in the account, then its behaviour cannot be predicted. In the Oxford style of writing Z

specifications, treatment of this error case consists of defining a robust operation using a disjunction
like (Wlthdrow /I. Succe,~5) V WithdrnwError, where WithdrawError is a schema that specifies the
effect of the operation in an error situatiou. Typically, Succes5 is a schema 8..<; that we present
below.

SucceS5 _

result! : MESSAGES

rnlult! == ok

The set MESSAGES contains the possible error messages and ok, the message that signals success.
The operation Withdmw /\ Success behaves as Withdmw. except that it has an output, result!,

which indicates that the withdrawal lias been successfully accomplished. Its precondition is that

of Wlthdrow [65]. The schema WithdmwErrnr that we present below defines that, in case of error,

59 3.6 Conversion Laws

the stat.e is not changed and the message en'or is output.

WithdrowError _

2Account

with? : Z
result!: MESSAGES

With'? ~ 0 V WIth'? > odt + bal

result! := error

In the absence of error, (Withdraw 1\ Success) V Wil.hdrawEn'or acts as Withdraw /I Succe8s; oth

erwise, it bebaves as W:thdmwError. By applying sdl,s)C to thi~ operation, we can get the alter

nation belo'.'...

if 0 < with? :::; odl + bal --+ Withdraw 1\ Sllcces.~

owith? ~ 0 V w1th7 > odl + bal--+ WilhdmwEn'Or

fi

The schemas Wlthdmw 1\ Success amI WlfhdmwEn'Of' tbat compose the branches of this alterna

tion can be com,prted to specification statements by the bC law. Later on we present another law,

sconjC (schema conjunction conversion), which can also be applied t.o Withdraw t, Sllccess.

The second formulation of sdisjC introduces a fresh boolean variable used to record the pre

condition of tbe first disjunct.

Law sdisjC Schema disjunction convprsion with boolean variable introduction

0Pl V 0Pl

~	 !JdisjC

If var b : Boolean. b : [true. b' ¢:} prer]; if b --+ Op! 0 pre2 --+ 0P2 fi 11

where

•	 pre Op! := Pr-el 1\ inv 1\ t;

pre OP2 := pre,! 1\ 11lV 1\ t;

•	 inv is tbe state invariant;

•	 t is the restriction tbat is introduced by thp declarations of the state components and

input va.riables.

Syntactic Restrictions

•	 0Pl and OP'l act over the same statp and have the same input and output variables;

•	 band b' are not free in 0Pl and 0pl.

For example, (Withdruw 1\ Success) V WithdruwError can be transformed into the variable block

60 Chapter 3. ZRC

below using this formulation of sdill}C.

)[var succs : Boolean _

SUCCs : [true, succs' <=} 0 < wirh? S adi + ball;

if succs --t W1thdmw 1\ Success

owah? ~ 0 v with? > 001 + hal, WithdrawEr7'01"

fi

II

The specification statement registers the precondition of Withdraw 1\ Su.ccess in thp local variahlE'

SUGCS. Thp Boo/enn type is not Olll:' the Z primitive types and is not defined in the Z mathematical

toolkit, but can be specified using the Z notation without difficulties. As a matter of fact. the

formulation of sdisjC above is a specialisation of that we present below, which introduces a fresh

variable v of an arbitrary type t. Examples of the applicatiou of this formulation of sdisjC can be

fOllod in the next chapter.

Law sdisjC Schema disjunction conversion with variable introduction

0Pl V 0P2

1; sdisjC

I[var v: t. v; [true,¢[v'/vJ J; if 1/'1 --t {¢ /\ v>J} OPt 0 1P2 ---t {¢ /\ W2} 01'2 fill

provided

•	 ¢ 1\ (prel V pre2) => V>t V 1./.'2

•	 ¢ 1\ (prel V pre'l) => ('¢. :::} pre;) for i ;= 1,2

where

•	 pre 01)1 == pret 1\ iTlu /\ t;

•	 pre 01>2 '= pre'l /\ mv /\ t;

•	 17lV is the state invariallt;

•	 t is the restriction that is introduced by the declarations of t.he stat.e components and

input variables.

Synt.actic Rest.rictions

•	 fjJ, 'It'I' and v>z are well-scoped and wPll-t.yped predicates;

•	 ¢, V>t, and '1)'2 have no free dashed variables;

•	 OPt and Op'2 act over the same state and have the saml" input and output variables;

•	 t' and v' are not free in OPt and 0P2.

This forrnlllation of sdisjC generalises the corresponding translation rule of [34]. The latter converts

OPt and 01'2 to specification statements.

A schema conjunction may be translated into a sequential composit.ion if the conjuncts act on

61 3.6 Conversion Law-s

different state components. This can be achieved by applying the conversion law scoujC.

Law- sennjC Schema conjunction

Opl/\ 0P2

~ sconJC

0Pl; 0P2

Syntactic Restriction OPt and 0P2 have no common free variables.

As an example, we take Withdraw /\ Success; by applying sconJC t.o this operation, we can get the

seQll('ntial composition Withdraw; Success. This method of translating schema conjuuctions wa,.<;

proposed in [34J. There, although the conversion procedure is clearly explained, the formulation

of the law is mistaken. It was due to our effort to formalise ZRC that we uncovered this problem.

As a matter of fact, the relationship between the Z relational and weakest precondition se

mantics presented in Chapter 2 does not acconnt for schemas which. like Success, have no statt'

components and initial variables. It is to be expeetecl, however, that their weakest precondition sat

isfies the characterisatiou presented in Theorem 2.6 for schemM that specify operatIons in general

and that, consequentl:v. the laws of ZRC can be applied to them as well.

Due to the form of its predicate, Success can be translated to an a..'lsignment; the law asse (as

signment conversion) ClUJ perform this task. ft is suggested but not actually formnlated in [34J.

Law assC Assignment conversion

(~Sj dl?; do! I L~ = el 1\. /\ c~ = e" /\ Ol! = en+l'" /\ om! = en+mJ

l:; assC

Ct, ... ,Cn,OI!,' ,Om!:=el, ... ,e,,+m

provided inv(el, ... ,en!clo""G,,)

where

• S == (d I inv)

• Ct, ... , Cn are state components (clements of ad) j

• 01!"'" o.... ! are ontput variables (eleDlents of ado!).

Syntactic Restriction ad' and ado~ are not free in el,' ., f n+m.

The syntactic restriction guarantees that no after-state or output variable is free in any of the

expressions el"'" e n+rn , and so, the equalities C1 = el, ... , c~ = en, Ol! = en+t····, om! = en+m
can be p.5tablished by ct, ... , Cn, Ot!,···, o,,,!:= el,· .. , en+m. The proviso guarantees that this

assignment maintains the state invariant. Dy applying a<i!jC to Success, we get result! := ok.

Tbe formulation of the next law, scompC (schema composition conversion), has been motivated

by comments in [58, 52J. This law applies to schema compositions 0Pl ;; 01'2, where OPt and 0P2

are operations that act over the same state and have no commOn output variabll'S. Using scompC,

we can translate a schema composition like this into a sequential (program) composition, as long

as the preconditiou of 0P2 is guaranteed to be established by OPt, provided the precondition of

0Plli 0P2 balds. This restriction is enforced by the proviso. The restriction on the output variables

is necessary because, if 0PI and 01'2 have a common output variable, then OPt ~ 0P2 produces an

62 Chapter 3. ZRC

output that takes the specificat.ion of both OPl and 0P2 into account, and 0Pl 0P2, an output
that considers just the spedfication of 0P2

Law scnmpC Schema composition conversion

0Pl ~ 0P2

!;:;;	 sCQmpC

OPt; 0P2

provided (prre II Opd =? p~

where

•	 pree =: pre(OPt ~ 0P2) II inv II t II t1 1Il:2;

•	 pre 0P2 =: P1~2 II inv II t II t2;

•	 mv is the state invariant;

•	 t, t1 , and l:2 are the restrictions that are introduced by the declarations of the state
components, of the input variabk'S of OPt, and of the input variables of 0P2, respectively.

Syntactic Restrictions

•	 Op] aDd 0P2 act over the same state;

•	 0Pl and 0P2 have no common output variables.

As in the case of sdisjC, pree and pre2 are supposed to be what is commonly regarded as the

precondition of OPt ~ 0P2 and 0P2, respectively.
To illustrate the application of scompC we adapt the example of [58], a counter with a limit.

Its state is formed by the components value, which records the current value of the counter, and
limit, which records the positive natural number that. limits the value of the counter.

COIJflter	 _

vaIU" lim" , N

value.:::: limIt
[limit> 0

This counter has a reset (Reset) and an increment (Inc) operatiou.

Reset _

c,un,,,

~IJaJue' = 0

Ilmlf = bmit

IrIC	 _

tlCounter

value' := value + 1
lirnit' = limit

The application of scompC to Reset il Inc yields the program Reset; Inc. As Reset; Inc is a total

63 3.6 Conversion Laws

operation, the proof-obligation generated is Reset => value' < limif. Since Reset specifies that

value' = 0 and the state invariant guarantees that limit' > 0, we can conclude that value' < limit'
and the implication above is valid. This reflects the fact that, after resetting the cOUDter, it is

always possible to increment it.

In [64) Woodcock presents and derives a law that implements a promoted operation using a

call-by-value-result. This work has motiated the formulation of pramC (promotion conversion),

a law that applies to a promoted operatiou 3 tJ.L. ~ /\ Op. The operation Op acts over a (loca.!)

state L and has no inputs or outputs. The schema <It defines a mixed operation: it acts on the local

state L and on the global state G. The latter contains just one component: a function! from an

arbitrary type X to L. The purpose of <fJ is to specify how an operation on the locaJ state can be

used to update the global state. Its iuput, x?, identifies an element in the range of j.

Law promC Promotion conversion

36.L.<It/\ Op

= pmmC

I[proc pn == (val-res r: L. (r, r l : L I (mv /\ inv' /\ p)[r.x;, rl,xl> !xi,x[})l • pn(J x?)]1

where

L:= (Xl: 1·1; ... ; Xn : tn 1 inv)

Op;= (t>L I p)

G ;= (J , X -» L)

~-------------------
ilG
ilL
z?: X

X? E dom!

8L =! x?

{x'}'" f' ~ {x'} .. /

}' x? = 6Lt

Syntactic Restriction pn, r, and! are not free in Op.

The procedure block introduced by pramC declares a procedure pn that implements the local

operation Op. This procedure has a value-result parameter r whose type is 1: that of the eJ

empnts in the range of !. The body of pn is not Op itself, but a correspllnding operation

that acts on the state formed by the single component r, instead of on L. The substitution

(inv /\ inv' /\ p)[r .x" rl.z;, / x;, x:) replaces all references to the components of the original state in

the predicatp of Op with references to the corresponding components of r or rIo The main program

Consists only oC a procedure call with the actual parameter! x?

By way of illUBtration, we consider the specification of a registration and booking system of a

holiday playscheme for children presented in [52]. In this example, a child representation is defined

by a schema named Child which records its age and other details that may be relevant to the

6. Chapter 3. ZRC

system: a value of the given set. CHILDINFO.

Child----:----: _

la;; 516
~ails : CHILDfNFO

We define an operation Birthday, which increases the age of the child by 1.

Birlhday _

~Child

age' = age + 1

details l
::: detalk!

The registration system associates identifiers to children. Its specification uses another given set,
CHILDlD, which contains all child identifiers.

ChildR'9.~:;-;;::----;:;;_;_:------------------1'''9 'CHILDID -.. Ch,ld

The following mixed opera.tion is used to promote operat.ions on Child. to act all a particular child
registered in the system.

<l>lC
<:>'Ch;/dReg
~Child

c?: CHILDID

c? Edam creg

() Child = ereg c?

{c?} <9 creg' = {c?} <9 crey

cregl c? = (}Child'

The operation that updates the age of the child creg c? can be specified by the schema expression
36. Child. He 1\ Birthday. By applying the conversion law promC to this promoted operation.
we can obtain the procedure block below.

I[proc bd'= (val-res c: Child - (c, c' : Child I c'.age = c.age + 11\ c'.details = c.details») _
bd(creg c?)

Two additional conversion laws are presented in Chapter 4. In the next section, we discuss the
refinement laws of ZRC.

3.7 Refinement Laws

The refinement laws of ZRC are presented and derived in Appendix D. They are similar to the
corresponding laws of Morgan's calcnlus that deal with initial variables, but some modifications

II

3.7 R~fin~m~nt Laws 65

have been necessary to take the Z decorations into account. As a consequence, in many cases the
ZRC refinement laws correspond more closely to tho..o;;e in [65]. The application of seyeral of th~se

laws has already been illustrated iu Section 1.1. Many more examples can be found in Chapter 4.
Her~, we discuss the refinemeut laws concerned with the development of procedures aud data

refinement.
In the next section, we present laws that can be used to introduce procedure and variant blol:ks.

and procedure calls. These laws have no counterpart iu [45] and support Morgan's technique of

procedure development. In Section 3.7.2, we present refinement laws that can be used to intro

duce parametrised statements. These correspond to the laws of [44J that introduce substitutions.
Fiually, Section 3.7.3 contemplates the data refinement laws, which are based on [46], instead

of [451.

3.7.1 Procedures and Recursion

The refinement law that can he employed to introduce a procedure block is presented below.

Law prc! Procedure introductiou

f'l
pITI

][proc pn;: (Jpd. PI)' f'lll

Syntactic Restrictions

• pn is not free in fi7.i

• (fpd. pd is well-scoped and-ell-typed.

This law allows any program P"l to be transformed into a block that declares a procedure pn not

called in Pl, and whose main program is P2 itself. Calls to pn can be introduced subsequently in

P1 using the pcaill (procedure call introduction) law preseuted later on.
As melltiolled in Sectioll 3.4, a program can be regarded as a parametrised statement with an

empt.y formal parameter declaration. Therefore, even tbough the body of pn is presented above

as being a param~tri3ed statemeut, pre! can also be used to introduce a block that declares a
non-parametrised procedure. Similar comments apply to the other laws that we present in this

section.
The introduction of a variant hlock can be achieved with the use of the refinement law below.

Law t'rt/ Variant introduction

P2

vrlI

I[proc pn == (fpd. {n = e} pI) variant n is e. P2JI

Syntactic Restrictions

• pn and n are not free in e and P2;

• (jpd. pI> and e are well-scoped and well-typed.

Recursion can be introduced by refining Upd • {n = e} pt} and suhsequently replacing occurrences

66 Chapter 3. ZRC

of (fpd • {O:S n < e} pd in the resulting program by procedure calls (using peal/I).

The prollI law bas three formuJations. The first of them is aimed a.t the introduction of
procedure calls ill the main program of procedure blocks that declare non-recursive procedures.

Law pcallI Call to a non-recursive procedure introduction

I[proc pn" (fpd. PI)· p,[(!Pd. p,)111

proW

I[proc po'" (jpd. p,) • p,[pnlll

Syntactic Restriction pn is not recursive

We identify an occurrence of a program (parametrised statement) PI in a context c by writing C[Pl]'
Subsequent references to c~] denote the context obtained by substituting P2 for tha.t particular
occurrence of PI in c. The program clP21 should not be confused witb c(P'l). As already explained.
tbp latt.er, is the result of substituting P2 for the free occurrences of the procedure name, as opposed

to a particuJar occurrence of Pl, in c·

The introduction of a procedure call in the main program of a variant block can be accomplished
by the following formulation of pcalll.

Law paJUI Procedure call introduction in the main program of a variant block

I[proc pn == (jpd • PI) \l8.riant n is e. • P2[(fpd. pall JI

i;;;;; pcaW

I[prOf: pn 2: (Jpd • pd \l8.riant n is e • P2[pn] JI

provided {n :::: e} pa i;;;. Pi

Syntactic Restrictions

• pn is not free in PI;

• n is not free in e and P3.

Recursive calls can be introduced with the use of the last formulation of pcalll, whicb is presented
below.

Law pcalll Recursive call introduction

II proc pn 2: (Jpd • PI [(Jpd • {O ~ e < n} PJ)j) variant n is e • P2]1
!; pro/II

nproc pn == (fpd • PI [pn]) • P2]1

provided {n :::: e} P3 i;;;;; pd(fpd. {a -:::: e < n} P3J].

Syntactic Restriction n is not free in P3 and PI[pnJ

In the next section, we present. an example that illustrates the application of this and several other

67 3.7 Refinement Laws

refinement laws we have presented here.

3.7.2 Parametrised Statements

The pcalll law allows the substitution of parametrised procedure llames for pararnetrised state

ments. We still need. however, laws that introduce parametrised statements. Iu this section, we

present three such laws, which account for value, result, and value-result parametrised statements.

They correspond to the laws of [44J that introduce substitutions that apply to specification state

ments. The laws of [45J combine an application of these simpler lal'.'S with an application of a law

that introduces procedure calls.

The law that introduces a call-by-value is as follows.

Law vS Value specification

w: [pre[ellvl), post[el, ee Ivl, vi']]

,S

(val dvl. w: [pre,post])(el)

where dvl declares the variables of vi.

Syntactic Restrictions

• The variables of vi are not in W;

• The variables of w are not free in el.

The introduction of a call-by-result can he achieved with the refinemeut law that is presented

below.

Law rS Result specification

W, vl2 : [pre, post]

rS

(res dvlt • tv, vi! : [pre,post[vltfvl21))(Vl2)

where dvl) declares the variables of vit.

Syntactic Restrictions

• vii and v~ have the same length and contain no duplicated variables:

• The variables of vlt are not in wand are not free in pre;

• The variables of vI, and vi: and are not free in post.

Another formulation of rS allows the introduction of a call-by-result whose actual parameter is a

68 Chapter 3. ZRC

function application.

Law rS Result specification (function application as actual parameter)

w,1 , lpn;, {x?} .. f' ~ {x?} .. I A po,t!j' x? IIp']]
,S

(,es fp, t. w,jp' [pn;,po,t])U x?l

where t is the type that contains the range of f.
Syntactic Restrictions

• f is of a function type;

• I and ip are not in w;

• f and t and are not free in post.

The program w,1 : [pre, {x?} <t(;j r = {z?} <td f 1\ postlf' x? lip']] modifies f only by changing f x?
as specified in pmtV' x?/IPl The program w,lp: [pre,post] changes Jp in the same way. So, by

passing the parameter f x? to (res ip. w,lp: [pre,postJ), we obtain the desired effect on f.

The law vrS (value-result specification) presented below introduces a call-by-value-result.

Law vrS Value-result specification

W, vtl : [pre[vI2lvh],post[vtllv1d J

v'S

(val-res dvll. w, vlt : [pre,post[vlUv12J])(vtl)

where dvh declares the variables of vh.

Syntactic RestrictjoIlB

• The variables of Vll are not in w;

• The variables of vlf are not free in post;

• The variables of v12 and vl2 are not free in w: [pre, post].

As rS, this law also has an extra formulation which contemplates calls that have function applica

tions as actual parameters. This additional formulation of vrS is similar to the second formulation
of rS presented above, and can be found in Appendix D. As a matter of fact, yet a third formula

tion of urS is presented (and derived) there. It is more general than tbe above formulation of vrS,
3..<; it can be applied to any form of program and not only specification statements.

The mpS (merge pararnetrised statements) law, which can also be found in Appeudix D, com
bines parametrised statements. The three laws mentioned above introduce parametrised state

ments that use a single mechanism of parameter passing and mpS allows us to merge them. if
they are compatible (in a sense precisely defined by the formulation of this law). The mpS law
corresponds to the law of [44] that merges substitutions.

As an example, we refine the program x : [true, Xl = y! 1mentioned in Section 3.1. As suggested
there we implement by recursion a procedure Fact that assigns to x the factorial of its value

69 3.7 Refinement Laws

I[proc Fad == (val n: N _ if n = 0 -t x:= IOn> 0 -t Fact(n -1) ; x;= x x n fi)
Fact(y)

Ii

Figure 3.1: Collected code for the factorial program

parameter. The first step in our development is the introduction of the variant block that declares

Fact.

x; [true, Xl = y!]

= v,tI

![proc Fact == (val n; N_ {N = n} x: [true. x' = n!l) variant N is n_

x: [trne,x' = y!) <l

JI

Obviously, we want to implement the main program of this variant block hy a call to Fact. With

this purpose we introduce an appropriate parametrised statement.

=	 vS

(val n: N. x: [true, x' = n!])(y)

At this point we can introduce the procedure calL

I[proc Fact 2:: (val n : N _ {N = n} x: [true, x' = n!]) variant N is n _

(val n : N _ x : [true, x' = n.' D(y)

Ii
~	 pcaUI

If proc Fact == (val n : N - {N = n} x: (true, x' = n.' J) variant N is n - Fact{y)]1

The proof-obligation that is generated hy this appllcation of pca[ll amounts to shOWing that

{N ::: n} x ; [true, x = n!], is refined by itself, which is trivial since refinement is reflexive.

It is not difficult to verify that the program in the procednre body can be refined to the following

alternation.

jf n = 0 -t X := 1
On> 0 -t x: [n > 0 AN = n,x' = (n -1).']; <l

x := x x n

1\

The remaining specification statement assigns to x the factorial of n - 1. It can he implemented
by &. recursive call First we introduce a parametrised statement using the vS law again.

=	 vS

(val n: N _ x: [n+l > DAN = n+l,x' = n.'))(n-l)

The body of this parametrised statement can be refined to {OS n < N} x: (true, x' = n! \. Now

70 Chapter 3. ZRC

we can apply puUlJ to introduce the recursive call to Fact. TlIe resulting procedure block is
presented in Figure 3.1. The proof-obligation that is generated is shown below.

{N = n} x: [true,z' = n!J

I; i.f n = 0 --+ x := 1

On> 0 --+ (val n : N. {O $ n < N} x : [true, %' = n/])(n - 1) ; x:= x x n

Ii

This is exactly tbe result that we have obtained when developing the body of Fact. Therefore, we
do not need to provide any additional justification to discharge this proof-obligation.

In general, if we apply pcallJ in the way illustrated above, with P3 a.'l the program in the

original specification of the procedure, the discharge of the proof-obligations generated is trivial.

This strategy of refinement produces developments that follow Morgan's approach to recursion.

3.7.3 Data Refinement

As already mentioned in Section 3.3, a variable block can be refined using data r€finement. This
can be accomplislled by the refinement law dR (data refinement) which we present below. The
list of abstract variables is avl, the concrete variables are those of evl, and ci is the coupling
invariant. When applied to a variable block that declareB the abstract variables, dR generates
another variable block that declares the concrete variables instead and whose body data-refines
the body of the original variahle block.

There are t!lree formulations of dR. The first one is as follows.

Law dr Data refinement (restricted)

II"'" dv/; davl 0 pdl

[; dR

Il"'" dvl; d,v/ 0 P2 II

provided

• Pi ~ P2;

• Vdcv/ • 3 davl • Cl.

where davl and dcvl declare the variables of avl (the abstract variables) and cvl (the concrete
variables); and ei is the coupling invariant.

Syntactic Restrictions

• The variables of cvl and cvl' are not free in PI, and are not in aul;

• The variables of avl and avl' are not free in P2;

• CI is a wen-scoped and well-typed predicate.

The first proviso of this formulation of dR obliges PI and 1'2 to be related by data refinement. The
syntactic restrictions enforce the freeness conditions imposed by the definition of data refinement
and guarantee that ei is well-scoped and well-typed.

71 3.7 Refinement Laws

The second proviso requires that any combination of values that can be assumed by the concrete
variables correspond to some comhination of valnes that can be assumed by the abstract variables.
This proviso is very restrictive, but it is necessary since the initial valne of a variable after its

declaration is arbitrary_ By way of illustration, we take the mean calculator that has been presented
in [46]. In its abstract specification, a bag b is used to store a collection of numbers with the

objective of calculating its mean: L b/#b. The operators Land # are not part of the Z (ZRC)
nota.tion, but, for simplicity, we adopt the notation of [46J at this point and assume that L: b is the
sum of the elements of b, and #b, its size. In [46] Morgan and Gardiner suggest a data refinement

that replaces b with the variables sand n which record, respectively, the sum and the size of the
bag. The coupling invariant is 5 = L bAn = #b.

Although it can be easily proved. that x, y := L b, # b is data-refined by x, y := S, n, the refine
ment below does not hold.

I[var b, bagN. r,y'~ i::b,#bll <:; llvar ',n' N. r,y'~ "nil

We ohserve that the weakest precondition of I[val' b : bag N - x, Y := L b, # b JI ~'ith respect t.o
x > 0 ~ Y > 0, for instance, is true, since any bag that has a sum greater than 0 has some element.

On the other hand, the weakest precondition of I[val' 5, n : N - x, Y := 5, n JI with respect to the
same postcondition is false. Upon declaration sand n may get any value and, in particular, they

may get values such as 3 and 0, which do not correspond to the sum and size of any bag.

The second formulation of dR considers variable blocks whose bodies start. with an initialisation

of the abstract variables and so do not depend on their initial arbitrary values. In this case, the
restrictive proviso of the first formulation may be dropped.

Law dR Data refinement (variable blocks with initialisation)

I[val' dvl; davl _ avl : [true, init'] ; Plli

<:; dR

I[var dvl; dcvl - cvI : [true, (3 davl - ci 1\ itlit),J; P2 JI

provided PI ~ P2

where davl and dcvl declare the variables of av! (the abstract variables) and wl (the concrete

variables); and ci is the coupling invariant.

Syntactic Restrictions

_ The variables of cvi and cvI' are not free in init and PI, and are not in avl;

_ The variables of avt and avl' are not free in P2;

_ ci is a well-scoped and well-typed predicate.

In 146] just variable blocks with invariants are considered. In these blocks the initialisation is

implicit.

The third and last formulation of dR applies to every variable block that dl'<'lares the abstract
variables, irrespective of any particular property of the abstract or concrete variables, or of the

72 Chapter 3. ZRC

coupling invariant.

Law dR Data refinement

I[var dvl; datil - Pi]1

!; dR

I[var dvt; dcvl. cvl : [true, (3 datil • c~)'l ; P2 JI

provided Pi ~ 1>2

where davl and dcvl declare the variables of avi (the abstr3(;t variables) and cvl (the concrete

variables); and ci is the coupling invariant.

Syntactic Restrictions

• The variables of cvl and cvl' an' not free in Pl, and are not in a"li

• The variables of avi and avl l are not free in P7.;

• CI is a I\'pll-scoped and well-typed predicate.

The variable block that. is generated by this formulation of dR contaius an initialisation of the con

crete variables, and so, before they are used, these variables are assigned values which correspond

to some combination of values of avi.

The program 1>2 mentioned in all formulations of dR can most of the times be calculated from
PI, aul, cui, and ci using data refinpment laws. These are enumerated and derived in Appendix D.

They are based on those of[46]' but as those of[45], which support the auxiliary variabte technique,
they can be applied to programs with free initial (or in the terminology adopted here, program)
variables. More specifically, the data refinement law that deals with specification statements
cont.emplate~ the possibility of program variables occurring free in them. This law is shown below.

Data Refinement Law Specification statement

vi, w; LP~, P(utj

~

![con davl • cvl, W : [ci A pre, 3 davl' _ ei' A ul' = ul A post] jl

where

• davl declares the variables of avi;

• avl = vI, ul, and vI and ul are disjoint.

Syntactic Restriction The variables of avi are not in w.

The list of \'ariables ui contains the abstract variables that are not in the frame of the specification

stat.ement.

The program P obtained by data-refining a specification statement s with thp use of this law

is always the most general data refinement of s. This result is established by Thoorem 3.10, which
shows that there is no program that data~refines s that cannot be obtained by refining p: nothing
is lost by taking p as the data refinement of s.

73 3.7 Refinement Laws

Theorem 3.10 For all programs vI, w: [pre,post] and p, lists of abstract and concrete va,'iables

avl and evl, and coupJing invariant ci, ifvl,w: [pre,post] ~ p then

I[con davl • evl, w : [ei /I. p'"e, 3davl' • el' /I. ut == ul /I. post] JI ~ p

The l1sts of variables vi and ul partttion avl. The declaration davl introduces the variables of avl.

The variables of evi and evl' must not be free in vI, w : [pre, post], and avl and cvi must be d~joinl ..

Proof

wp.ll con davt • evl, w : rei /I. pre, 3 davl l
• ei' /I. ut == ul /I. post]]1 .1/J

::::::: 3 davl. ci 1\ P'"e /I. (V dcvi'; dll/ • (3 davl' • C1' /I. ul' ;;;; ul /I. post) => 1/J)[-tJ

[hy definition of wp)

-= 3 davl • ci 1\ pre /I. (V devl'; dw'; davl' • 0' /I. ul' = ul /I. post => ',pH-t]

[by avl l are not free in ',p]

_ 3 davi. ei f\ P'"e /I. (V datil'; du/ • ul l = ul /I. post => V devl' • ei' => 1/JH-t]

[by cvi' are not in ut and are not free in davl'. dw' , and post]

= 3 davl. ei /I. pre /I. (V dtll'; dw' • post ~ Vdev/'. ei l ~ 1/J)[ullu(lH-tJ

[by predicate calculus]

=- 3 davl • ct 1\ pre /I. (V dvl'; dw' • post ~ 'rJ devl' • cr' ~ 1/JH-tJ
[by a property of substitution]

::::::: 3 davl • ci 1\ wp.vl, w : [pre, post]. 'rJ devl' • ejl ~ 1/J [by definition of wpJ

~ wp.p.3 davl' • ci' /I. 'rJ devl' • ei' ~ 1/J [by assumption]

~ wp.p. 3 davl' .1/J [by monotonicity of wp]

::::::: wp.p.1/J [by avl' are not free in ',p]

o
The data refinement laws that apply to annotations are special cases of the law that considers
specification statements. Therefore, it is a direct consequence of the theorem above that, when
applied to a program p, all these laws produce the most general program that data-refines p.

Schemas and assignments can be data-refined by first transforming them into ~uivalent spec
ification statements and then using the appropriate data refinement law. In the case of schemas.
the conversion law be (basic conversion) can be used to perform the transformation; in the case
of assignments the refinement law s5 (simple specification) is suitable.

In general, data refinement distributes tbrough the program structure. This means t.hat the
structure of the program is preserved wben it is data-refined. Procednre and variant blockB. how
ever, may be lost. Procedure blocks that declare non-parametrised procedures, whether recursive
or Dot, can be data-refined by merely data-refining their bodies and main programs. The same
cannot be said about procedure blocks that introduce parametrised procedures and about variant
blocks.

Parametrised procedures bave to be removed before the application of the data refinement
laws of ZRC can proceed. In the case where the procedure is not recursive, the first formulation of

74 Chapter 3. ZRC

pcaill (procedure call introduction) caD be used to remove the procedure calls and then pre! (pro
cedure introduction) can be used to remove the procedure block. Unfortunately, if the procedure
is recursive, it does not seem to exist a simple way to do that. Applications of parametrised

statem(>nts to actual parameters can be data-refined by transforming them into equivalent variable
blocks. These transformations can be guided by the definition of the parametrised statements
.semantics itself.

As far as variant blocks are concerned, even though in theory we can data-r(>fine those that do

not declare parametrised procedures by data-refining their procedure bodies and main programs,
this is not really worthwhile. If we are not able to redefine the variants in a way that guarantees

that their relationship to the procedure bodi~ is maintained, th(!n they will be of no use to the
process of refining the procedure.

In face of these restrictions, and also observing that a<>signments are transformed into specifi
cation statements during data refinement, we conclude that any necessary data refinement should
be carried out a.<i early in the refinement process as possible. The later the data refinement occurs,
the greater is the chance that part of the effort to refine the program is wasted.

The data rE'finement relation is not reflexive in general. However, if the abstract variahles and
the global variables that are free in the coupling invariant, and t.heir dashed counterparts are not
free in a program, then it is data-refined by itself. Tbis is established by the theorem we present
in the sequeL

Theorem 3.11 For el'ery program p, all lists oj ablltrnct and conere/.e variables avl and evl,
aTld every eoupliTlg mvanant ci, iJ the variables oj avl, the Jree variables oj ei, and theil' dashed

counterparts are not Jree in p, then p ~ p. The vanables oj evl and evi' must not be Jree in p
either. and al,1 l'.lTld evl must be disjoint.

Proof

3 davl • ci 1\ wp.p. t/J

'=? 3 davl. wp.p.(fj1 1\ d) [by Lemma 3.3]

•~ 3 davl _ wp.p. 3 davlJ ei J 1\ 1/J [by roonotonicity of wp]

== wp.p.3 davlJ ei' 1\ 1/J [by avl are not free in wp.p. 3 davl' • 0' 1\ 1/.J (by Theorem 3.9)J•

o
Applications of this theorem may save effort during the data refinement of a variable hlock.

3.8 Conclusions

Our main objective has been the proposal and formalisation of a refinement calculus for Z whose
design builds upon results already available in this area and which employs a notation that is
compatible with the Z style. Indeed ZRC includes conversion la.ws that correspond to those that
have been initially presented or suggested in [34, 64, 58], but uses the decoration conventions of
the Oxford style of writing Z specifications. Furthermore, its refinement laws are based mainly on

those of {45] with adaptations and extensions tha.t contemplate the Z style as in [65J.

75 3.8 Conclusions

In Appendix 0 we prove the validity of all conversion and refinement laws of ZRC. To make this
possible, we have provided a weakest precondition semantics for ZRC-L and defined a refinement
relation. The scope rules of ZRC-L bave also been specified and the syntactic restrictions of the
laws take these rnles into account. As a consequence of this effort offormalisation, we have clarified
many deta.ils of the original presentation and formalisation of the conversion and refinement laws.

Another method for refining Z specifications is presented in [32]. This work, which is discussed
in more detail in Chapter 5, defines wp as a schema operator and proposes a refinement-wp
calculus for Z. Both in [32J and bere. the postconditions of wp define state transitions instead of
states as in [47, 45]. We have chosen this alternative approach because it seems to be difficult to
justify differences in the treatment of dashed and undashed variables in the context of Z. We have
managed, however, to deal separately with the additional complication that has been introduced
due to the treatment of these more complex postconditions. As a consequence, theZRC laws are
derived in Appendix: D in much the same way as the corresponding laws of Morgan's calculus can

be derived in the framework of [47,45].
In \1, 2, 4], where another formalisation of the stepwise refinement technique is proposed,

specifications employ the dashing convention of Z (and ZRC). Nevertheless, dashed variables are
regarded BS local to specifications and cannot occur free in the postconditions of wp. In other

words. as in [47, 451, these predicates are assumed to specify states.
Our definition for the data refinement relation also considers postconditions that define state

transitions. This definition is equivalent to the Z characterisation of data refinement and to
the definition presented in [46], which takes into account only postconditions that define states.
Therefore, once again no extra complexity has been introduced in the derivation of the ZRC laws.

The data refinement laws of ZRC are based on those of [46], but apply directly to programs
with free occurrences of program variables. In particular, the data refinement law of ZRC that
applies to specification statements does not seem to have been proposed before.

The technique of data refinement that is presented in [45J makes use of auxiliary variables. As
shown in [39, 46], this technique is equivalent to the application of two data refinements: a first data
refinement introduces the concrete variables, the abstract variables are then made auxiliary (in a
sense precisely defined in [39]), and finally they are removed by a second data refinement. These
data refinements are special in that they take an empty list of variables as argument. There are
no abstract variah1es in the case of the first data refinement, and no concrete variables in the case
of the second data refinement.

Functional data refinement [46, 45] is yet another specialised technique alBO described in [58, 65J.
In this case, the coupling invariant is a conjnnction between a concrete invariant (a predicate over
the concrete and global variables) and a nnmber of equalities. For each abstract variable there is
an equality that defines its value as a function of the values of the concrete variabJp.s (and, possibly,
of the global variables) when these satisfy the concrete invariant.

Our treatment of procedures follows the approach of [3], because we have found the formalism
in [41 J to be inconsistent. As we have explained, there is a subtle interaction between substitution,
procedures and parameters. Of particular importance is the definition of the substitution operator
when applied to a procedure name. Two alternatives have been analysed: one of them establishes
that the substitution operates on the procedure body (context dependent substitution); the other
one specifies that the procedure name itself is taken into account (syntactic substitution). Unfor
tunately, whichever option is chosen, Morgan's approach to procedures and parameters runs into

76 Chapter 3. ZRC

difficulties.
To our knowledge, the interaction between procedures, paraml'ters, and substitution that we

have discussed was originally pointed out in [55]. Sampaio's idea of restricting the application of

the renaming law can be considered as a solution to the problems found in Morgan's approach, but
this restriction turns out to be too severe in practice. Also, Sampaio has presented no mathematical

model to justify the restricted version of the renaming law.

The problem with Morgan's work seems to be a consequence of an unfortunate design deci

sion: formal parameters are not regarded as local variables in the procedure body. This decision

was perhaps an attempt to avoid parametrised statements, a.<; suggested by Back. They do indeed

increase the complexity of Back's formalism, which involves a greater number of definitions and

theorems that Morgan's. However Back's approach does not present any of the complications we

have uncovered in Morgan's work and does not impose restrictions as the solution ptoposed by

Sampaio. Therefore, it seem.',; to be the right direction to follow. Regarding formal parameters as

ordinary (global) variables causes problems, as revealed by our study.

As far as the development of procedures is concerned, however, we follow Morgan's style. Ul [3J
Back presents rules to prove the correctness of (recursive) procedures. In contrast, the development

of procedures in ZRC is supported by refinement laws. Some of theta have a counterpart in

~,1Dl"gan's calcuius and others are additional laws that support the use of variants he proposes

ill [451.
Another analysis of the llsage of procedures in the refinemeut calculus is presented in [20]. This

study, however, concentrates on the methodological aspects of the development of procedures.

In [20], the suitability of the refinement laws presented in [45) is discussed and an alternative

strategy of program refinement, where (non~recursive) procE'dures are introduced in the final phase

of development, is suggested. In [49], Morris presents another formalisation of procedures and

parameters. Vie have not considered this work in our study because it is similar to Back's.

Completeness has not been tackled here. We have proved that the ZRC laws are sound. but

have not considered whether or not they are enough to derive any possible program. Actually, since

we cover only downward simulation [5], our set of refinement laws is not going to be complete.

Apparently, a complete data refinement method for a language with recursion and unbounded

nondet.erminiBm is yet to be found [19J.

In the next chapter we apply ZRC to refine (some of) the operations of three different system

specifications. There we discuss a few issues concerning the use of ZRC.

Chapter 4

Case Studies

A few short program developments that illustrate the application of ZRC have already been pre

sented in Chapters 1 and 3. In this chapter we present three more substantia,] rase studies. Iu
the next section we develop an implementation for a cla.'>s manager; in Section 4.2e present a

development of (part of) a text editor; finally, in Section 4.3 we refine some operationB of an Airbus
cabin-illumination system. In Section 4.4 we finish this chapter by presenting a few conclusions

that we have drawn from these case studies.
The examples considered have llot heen tailored to ZRC. The class manager specification has

been originally written by Jones [30] using VOM and in [34] King uses this example a.s a case study
for his technique of refining Z specifications. The text editor has been specified by Neilson in [51],

where a. technique based mainly on rules of verification is nsed to develop a C implementation for
this system. The illumination system has been specified in [23).

4.1 The Class Manager

]n [34] King presents initially a concise Z specification of the class ma.nager, which is then data
refined with the use of the Z rules. In what follows, we reproduce the more concrete specification.

The class manager records the students that are enrolled on a class, distinguishing those tha~

have done the midweek exercises. The set of stndent identifications is called Student and is

introduced as a given set.

[Student]

A global constant max establishes the maximum size of a class: a positive natural number.

I max ,N

max >0

The state components are el, which records the identification of the students that are registered
in the class; ex, which singles out the students that have done the exercises; and num, the number

78 Chapter 4. Case Studies

of students which are enrolled.

ClasLl _

el : 1 .. max -4 Student
ex : 1 .. max -+ Boolean
num : 0 .. mat

«(1 .. num) <l cl) E (N,..... Student)

The components cl and ex are both arrays (total functions), with index set 1 .. max, and num is

a natural number in the interval from 0 to max. The information about the num students that

are enrolled in the dass is held in the positions from 1 to num of cl and ex. If i is an index that

identifies one of these positions, then the student cl i has done the midweek exercises exactly when

ex i. The state invariant establishes that, when restricted to 1 .. num, cl is injfftive, so that the

record of enrolled students does not contain repetitions.

The class manager operations are specified by Enrol-oLI, CompLok_l, and Leave_oLl. The
first of these 8ch€rnas defines the operation that enrolls a student on the class. Its input, s?, is the
student identification.

EnroLoLl	 _

a ClasS-!
s? : Student

5? i. { I : 1 .. num • d i }
num <max
el' cltB{num' H 57}=0

ex' :::: ex EEl {num' H false}
num' :::: num + I

The success of thL<; operation depends on s? not being already registered and the class not being
full. If registered, 5? is supposed not to have done the exercises. The schema CompLoLl defines
the operation that remrds that a student has completed the exercises. It also takes as input

an identification represented by 57, which must be that of a registered student who has not yet
completed toe exercises.

CornpLoLl	 _

A Clatls_I
5?: Student

31 : I	 .. num • ef i :::: s7 A e:t i = false A

el' = ef II ex':::: ex EEl {I H true} Anum' = num

The operat.ion Leave_o,Ll, which records that a student has left the class, is not actually considered
in [34J, but we propose a definition for this operation and refine it below. As EnroLoLl and
CompLok-I, it takes as input an identification s?, which in this case must be among those recorded

79 4.1 The Class Manager

Operation Precondition
Enrol_ok_l s? f/. { J : 1 .. num _ el 1 } /\ num < max

Compl_ok_l 3 i : 1 .. num _ cl i = s? /\ ex i = false
Leave_ok 1 3 i : 1 .. num _ cl l = s?

Table 4.1; Precondition of the Operations

in the first num positions of el.

Leavej)k_l _

D,Clasa-l
s? : Student

3 i : 1 .. nurn _ el i = s1 /\
(1 .. i-I) <J el' = (1 .. J - 1) <J el /\
(1 .. i ~ 1) <J ex' = (l .. i-I) <J ex /\
(i .. nurn -1) <J el' = (~+ 1 .. num) <J cl /\
(i .. nurn - 1) <J ex' = (l + 1. num) <J ex /\
nurn' = num-l

Table 4.1 shows the preconditions of Enrol-ok_I. CompLok_l, and Leave_ok_L
As part of the error treatment, we extend the set of messages Response that is defined in [34].

Response ::= ok I full I found I missing I noLfound

The specification of the case of success is as indicated in the Oxford styte of writing Zspecifications.
Success _

n,",! , R"p<>n"

_ resp! = okE
The error cases of the operations are defined by the schemas that follow. The firs~ schema specifies
the error case of EnroLok---.l in which the class is fuU.

~;l~~_l
resp! : Response

num = max

resp! = full
 ~

The error case in which the student is already recorded is contemplated by Found_I.

Found_l _

::::Class-l
s1 : Student
resp! : Response

3 i : 1 .. nurn • cl i = s1
resp~ = found

The schema Missing_l defines the error case of CompLok_l: the student is not enrolled or has

80 Chapter 4. Case Stndies

Operation

FulL!
FOtlnd_l

Missing_l

~tFotJ.nd_~

Precondition ~
num _ max

3i:l .. ntJm.cl~::::s? j
V I : 1. Rum. cl i ?:- s'? V ex I = true

'V1:l .. numec/ij.s? .

Table 4.2: Precondition of the Error Conditions

already completed the exercises.

Missing_l _

2ClasLI
5? ; Student
resp! : Response

V I : 1 .. 1l'llm • cl I #- 5? V ex ~ = true
,"e8p! = mi.uing

The final error case is that of Leau€_oLL the student is not registered ill the class.

NotFOTifld_I _

:=:Clasd
.OJ? : StlJdenl

Teljp! : Response

V I. : 1 .. Rum. cl I i=- s7
resp! = nol-found

The preconditions of FuILI, Found_I, Mi~ing_l, and NotFound_l a.re presented in Table 4.2.

The schemas EnroLl, Complete_I, and LeauLI give a robust defiuition for t.he operation.'> of
the class manager.

EnroLl:= (EnroLaLIA Sucress) V P.uILI V Found_l

Compleie_l =. (CompLo..Ll II Success) V Mlssiny_l

Leave_l::S; (Leave_ok_l II Succe~s) V NotFound_l

These definitions complete the specification.

ln order to develop an implementatioll for the class manager, we consider each of the schemas
EnroLl, Complete_I, and Loove_l in successiOn We convert all of them to alternations that

implement the successful and error cases separately. In the case of Complete_1 and Leavel we

apply the third formulation of sdujC (schema disjunction conversion). In the case of EnroLl,

since it is specified as a disjunction of three scbemas, we use a more general formulation of this

conversion law. The actual formulation of sdujC that we apply is a straightforward extension of

it.'! third formulation and as such is not presented here. In all cases, the variable that is introduced

by 3dis}C is named w. If 5? is already in cl (the student is already enrolled on the class), then w

is initialised with its position. Otherwise, w takes the value num + 1. Its type is l..max + I.
By applying 3du}C to EnroLl, we can obtain the variable block shown below. The guard

w = num + I II num < max identifies the sllccessful case of EnroLl, num == max identifies the

81 4.1 The Class Manager

case in which the class is full, and finally wEI .. num identifie5 the case in which s? is already
enrolled on the class.

EnroLl

~ sdtSjC

Il var w ; 1 .. ma.r + 1 •

w: [true,(w' E l..num Ad Wi == s?)V(w' == num+1 A s? rt {i: l..num' cl i })J;
if w == num + 1 Anum < max --+

{w = num + 1 A s? rt {i; 1 .. num. cl i} Anum < max} (EnroLokJ A Success)

onum = max-t

(w E 1 .. num A el w:::: 5?) V (w == num +1 A s? ¢ { i : 1 .. nurn' cl i }))}
{(num == max

FulL!

OWE 1 .. num -t {w E 1 .. num A cl w := s?} Found_l

fi

II

The four proof-obligations generated by this application of sdisjC are implications whose an~

tecedent we simplify below.

«(w E 1 .. num A cl w == s?) V (w:= num + 1 A s? ¢ { i: 1 .. num. cl i })) A

(pre (EnroLok_l A Success) V pre FulLI V preFQund_l)

.= «w E 1 .. num A el w:= s?) V (w == num + 1 A s7 ¢ { i: 1.. num. cl i })) A

(pre EnroLoLI V pre FulLl V pre Found_I) [by a property pointed out in [65, p.211] J

.= «w E 1 .. num A cl w:::: s7) V (w == num + 1 A s7 rt { i: 1 .• num. cl i })) A

«s7 ¢ { i : 1 •. num. cI i } /\ num < ma.r) V num == max V 3 i : 1 .. nurn' cl i = s7)

[see Tables 4.1 and 4.2J

== (w E 1 .. num A cl w == s7) V (w "'" num + 1/\ s7 rt { i: 1 .. num. cl i})

[by num :s max since num : o.. max J

Since pre distributes over disjunctions [65], pre (EnroLok....! /\ Success) V pre FUlL! V pre Found_l
is the precondition of EnroLl. A~ this is supposed to be a rohust operation, it should not come as

a surprise the fact that, as shown above, this predicate can be reduced to true. The consequents
of the proof-obligations are enumerated below.

(a) (w = num + 11\ num < ma.r) V num = maz V wEI .. num;

(b) w == num + 1 1\ num < max ::::} s? ¢ { i: 1 .. num. cl i } /\ num < ma.rj

(c) num = max => num == max; and

(d) wEI. num=>3i:l .. num.cll::::s?

We consider the cases wEI .. num A cl w == s7 and w == num + 1 /\ s? rt { i: 1 .. num • cl i }

82 Chapter 4. Case Studies

separately. lfw E 1 .. num and cl w 5?, then, obviously, wEI .. nUffl, so (a) holds; if we suppose::;0

a.dditionally that w:::: rwm + 1, we ha\'c a contradiction, so (b) holds; and finally, w is a witness for
3! : 1 .. nUffi • cl 1 =$?, and so (d) holds. Since (c) is trivial, it does not have to be considered.
If w = num + 1 and 5? ¢ { i: 1 .. num. ci i }, then, since (a) can he written more simply as
w = num + 1 v num =max V wEI .. nurn (by num :S max), it follows from w = num + 1; (b)
holds triVially; and if we assume that wEI .. m"m, then there is a contradiction, and conseqnently
(d) hold"

The operation EnroLok_l A SlJcces.'l can be converted to a sequential composition by an ap

plication of .'JeonjC (schema conjunction conversion).

EnroLaLI 1\ Succe!Js

J:,;:: seanje

EnTOLo~d ; Success

An application ofthe assC (a.c:;signment conversion) law justifies the conversion of Sl.lccess to an
assignment.

Sl.lccess

r; assC

resp!:= ok

In [34], the fact that EnroLoLl and SucceSs act on different states is not exploited and this

conjunction is expanded before being translated. This is perhaps because the translation rule that
applies to schema conjunctions presented in [34J is not properly formulated and has proved to

be misleading. Conjunctions like EnroLaLI A Sl.lccess are used in the definition of most robust

operations specified in accordance with the Oxford style.

By applying the bC (basic conversion) law to EnroLaLI, we obtain the following specification

statement.

d, \1" nurn) <j d) E (N ~ Stud,,'))
s.¢{t:I .. nl.lm.eli} ,ex,

(nurn num < max

((1 .. num') <l el') E (N >+> St1Jdenf.)

s? ¢ { J : 1 .' nl.lm • cl i }
nl.lm < max
cl' = dEB {num' --+ s?}

ex' == ex EB {nl.lm' >---)0 false}
n1Jm' = num + 1

This program can be implemented by a multiple assignment that inserts s? in d and adjusts ex
and nl.lm.

!;;;	 IJJsigI

d,ex,nl.lm:= elffi {nl.lm + 1 >---+ s?}, ex EB{rmm + 1>--+ fal:se},nl.lm + 1

The proof-obligation associated with this application of assigI (assignment introduction) is an

83 4.1 The Class Manager

implication. Its antecedent is the conjunction of the predicat~ (ad to (aJ) listed below,

(al) «1 .. num) <J el) E (N~ Student);

(a2) s? ¢ { i : 1 .. num • cl i); and

(a3) num < max.

The consequent of this implication is the conjunction of the following predicates.

(cd (1 .. num + 1) <l' (d G:! {num + 1 f-t s?})) E (N ~ Student);

(C2) s7 ¢ { J ; 1 .. num • d i };

(cJ) num < max;

(c,d cl ffi {num + 1 t-jo s?}:::: el EfJ {num + 1....-+ s?};

(cs) ex ijj {num + 1-+ false}:::: ex EF {num + 1 f-t false}; and

(C6) nurn + 1:::: num + 1.

The proof of (cd arnounUi to ~tablishing that the invariant is maintained by the assignment. This

follows from (ad and (a2)'
Since the specification of EnroLok_l explicitly states its precondition, it appears in hoth the

pre and the postcondition of the specification statement that is generated by applying bC to

EnroLok_l. As a consequence, the precondition of EnroLok-l appears above as (C2) and (C3),
and we have to prove that it holds. Fortunately, this kind of proof does not really add up to the

complexity of the proof-obligation: in this case, (C2) and (cJ) also appear as (a2J and (a3)' The

conjunctions (C4) to (ctil hold trivially.
The application of bC to FulLI generates the following specification statement.

resp! : [«1 .. nurn) <J el) E (N ~ Student) 1\ nurn:::: max, num :::: max 1\ resp!:::: full]

It can also be implemented by an assignment.

l;; almgl

!'esp! := full

In this case the proof-obligation generated is the much simpler implication below.

«1 .. nurn) <l' el) E (N .- Student) 1\ num = max ::::} num = rnax 1\ full = full

It is a trivial task to discharge this proof-obligation.

In much the same way, Found_l can be refined to the assignment resp!;= found. The as

sumptions that remain in the branches of the alternation can be refined to skip by applying the
assurnpR (assumption removal) law, and then eliminated by the slC (skip left composition) law.

The only program that still needs to be refined is the specification statement that initialises w.
We implement it with an iteration whose development can be carried out in a standard way and, for
the sake of conciseness, is not presented here. This iteration can be found in Figure 4.1, where we

84 Chapter 4. Case Studies

I[var w : 1 .. max + 1 •

w:= 1;

do w:f:. nurn + 1 1\ cl tv #- 8? -t W := tv + 1 ad ;

if w :::: nurn + 1/\ nurn < max -t

eI, ex, nurn := cl iP {rmm + 1 >--; 5?}, ex a" {nurn + I >--; false}, num + 1

D-=-~-!=~ _
L]1 ~ wEI .. num ~ ,""p! ,~found

Figure 4.1: Implementation of EnroLl

presented the collected code of EnroLl. Its invariant is UI S num + 1/\ s1 1. ran«(l .. w - 1) <I el)
and its variant is nurn + 1 - w.

The developmpnt of Complete-l is similar to that of EnroLl and is not presented in as many
details. The application of sdisjC to Complete_l can introduce the variable block below. The

guards of the alt£'rnation are wEI .. nurn 1\ ex w = false and w = num + 1 V ex w = t.rue. They
identify whether or not the student if> enrolled and has not yet complptpd the exercises.

Complete_l

~ sdisJC

I[vax III ; 1 .. max + 1 •

w: [true, (Wi E 1 .. nurn 1\ cl w' = 5?) V (w' = nurn + 1 /\ s? ri { i : 1 .. nurn _ cl i })] ;

if U' E 1 .. nurn /\ ex w = false -t

{w E 1 .. nurn /\ cl w = s? 1\ ex w =false} (CornpLok_l 1\ Succe85)

oI!/ = num + 1 V ex w = true --Jo

(w E 1 .. nurn /\ cl w "= s1) V (w = num + 1/\ 81 1. { l; 1 .. nurn _ cl i}))}
{(tv = num + 1 V ex w = true

MU5ing,_1

fi

JI

Three proof~obligations are generated by this application of 8disjC. They are all implications
with antecedent (w E 1 .. num /\ cl w = s?) V (w = nurn + 1/\ s? ri { i : 1 .. nurn _ cl i }). The

consequents are the predicates l\,{, show below.

(cd (w E 1 .. nurn /\ ex w =false) V w = nurn + 1 V ex w = true;

(C2) wEI .. nurn /\ ex w = false::::> 31 : 1 .. nurn _ cl i = 5? /\ ex I = false; and

(CJ) W = nurn + 1 V ex w = true::::> Vi: 1 .. nurn _ cl i #- s? V ex i ==:: true.

It i.s not difficult to discbargp these proof-obligations if the cases wEI .. nurn /\ cl tv = s1 and

85 4.1 The Class Manager

!(var w: 1 .. max + I.
w:= 1;

do w t- num + 1 A cl w t- s7 --Jo w := w + 1 od ;
if w E 1 . num A cx w == false --Jo ex := ex EEl {w t-4 true}

ow = num + 1 V ex w == true ~ resp! :== missing
fI

II

Figure 4.2: Implementation of Complete-l

w == num + 1 A s7 ¢ { i : 1 .. num • cl i } are considered separately.

As EnroLok_l f\ Success, CompLok_l A Suuess can be converted to the sequential compo
sition CompLok_l; Success by an application of sc.onjC. In order to refine CompLok_1 to an

a.'Ssignment, first we apply bC to this schema, and then use abA (absorh assumption) to 00
tWo the specification statement below, whose precoudition incorporates the assumption preceding
CompLok_l A Success in the program generated by the application of sdisjC to Complete_I.

w E 1 .. num A cl w = s7 A ex w == false A «I .. num) <J cl) E (N H-+ Student), l
01,

.	 (((1 .. num') <J d) E (N ~ Student))jex. . 3 i : 1 .. num •
num [

cl i == s7 A ex i:<:: false A ctt = cl A ex' = ex ffi {i t-4 true} A ntlm! = num

This program can be refined to the assignment that follows.

!;;;	 assigl

ex:= ex EB {W true}

The interesting part of the proof-obligation generated by this application of assigl consists of
showing that the existential quantilication below holds under the a.'Ssumption that the precondition
of the above specification statement is satisfied.

3 i : 1 .. num • cl i = s7 A ex i == false A ex EEl {w ...-) true} = ex ED {i t-4 true}

Since wEI .. num, cl w == s'!, and ex w = false, it is clear that w satisfies the requirements im

posed by this existential quantification.
The schema MissJng_l can be refined to resp! := m~sing in much the same way as FulLl has

been refined to resp! := full (and Found_I to resp! := found) in the d~lopmentof EnroLl. The
code for Comp/ele-l is presented in Figure 4.2.

The development of Leave_I is again similar. For brevity, we do not present the variable
block that we introduce with an application of SdlS}C. It also introduces w and the guards of the

alternation in its body are w E l .. num and w = num + 1. In what follows, we present only the
refinement of Leave-ok_1.

initially, we apply bC to this schema. Afterwards, we incorporate in the precondition of the
resulting specification statement the assumption that reflect6 the characterisation of w and the

86 Chapter 4. Case Studies

guard of the branch in which Leave_oLI occurs. This is accomplished by an applicatioll of abA.
The program that we obtain is presented below.

II' E 1 .. nurn II cl w = s? II ((1 .. num) <J cl) E (N H-t Student),
((1 .. num') <J en E (N H-+ Student)
31:	 1 .. num.cl i=s?1I

(1 .. i-I) <J el' = (1 .. i ~ 1) <J d II
el, ex, nurn :

(1 .. i-I) <J ex' = (1 .. i-I) <J ex II
(i .. nurn -1) <J d' = (1 + 1 .. nurn) <l cl II

(t .. nurn -1) <l ex' = (i + 1 .. nurn) <l ex II
"urn' = nurn ~ 1

The precondition of this specification statement establishes that el w = s? Moreover. the charac

terisation or el' acauurn' and the fact that t·he invariant holds for cl and nurn imply that it holds

for el' and nurn' a.~ well. Consequelltly, we Can use sP (strengthen postcondition) to simplifY the

postcondition of this specifica.tion statement. If afterwards we apply wP (weakening precondition)

to eliminate the invariant from the precondition of the resulting specification statement, we obtain

the program below.

(I .. w - I) " d' ~ (I .. w - I) " d J
(1 .. w -1) <l ex' = (1 .. w -1) <l ex

cI,ex,nurn: IWEl .. numlldw=s?, (w .. num-l)<lcl'=(w+l .. nurn)<ld

((w .. n"rn -1) <l ex' = (w + 1 .. nurn) <l ex
num' = nurn-l

This program ran be implemented by an iteration that shifts the elements of cl and ex, and an

assignment that decrements nurn. The assignment can be introduced by an application of the

jassigl (following assignment introduction) law.

~ jassig!

01,
ex,
nurn

(I .. w - I) " d' ~ (I .. w - I) " 01 1
(1 .. w - 1) <l ez' = (1 .. w - 1) <J ex

wEI .. m.m II cl w = s?, (w .. nurn - 1) <I cl' = (w + 1 .. nurn) <l cl " [(w .. num -1) <l ex' = (w + 1 .. num) <l ex
num' = num

n"m;"", num - 1

Since nurn is not modified by the specification statement, we can simplify it by applying the

cjR (contract frame) law to remove num from its frame.

r;; efR

(
(I"W_I)"d'~(I"W-I)"d I]

. I _? (I .. w -. 1) <l ex' := (1 .. w ~ 1) <J ex
IC,ez. WE1 .. numllc w-s., (

w .. nurn - 1) <l c/' = (w + 1 .. nurn) <l d[
(w .. nurn - 1) <l ex' =: (w + 1 .. num) <l ex J

In order to introduce the iteration, we need a. variable to range over tbe indexes of cl and ex. We

87 4.1 The Class Manager

introduce the variable i by applying the IJrbl (variable introduction) law.

!;;; IJrbl

l[vari:1 .. mlU_

. [((1. w .. 1) <l d' ~ (1. w - 1) <l d)]
" 1 I? (1. W --1) <l ex' = (1 .. w - 1) <J ex
el,: wE .. Ruml\c w=s., ,

(w. num-1)<Jd =(w+l .. num)<lcl
ex (w .. num-1)<lex'=(w+l .. num)<lez

il

The seqcl (sequential composition introduction) law \s used to introduce the Heration invariant.

The restriction over i that is imposed by it (w::; J $" num) is normally introduced separately by
means of a variable block with invariant in \45J. Since this block is not available in ZRC, we have

to deal with a slightly longer iteration invariant.

!;; seqcl

I(con CL: 1 .. maz -+ Student; EX ; 1 .. maz -+ BOOWJ-n •

wEl .. numl\dw=s?,

Vj, J.. w -1. d' J =d j A ex' j = ex j J
i, d, ex: 'V j : w .. j' - 1. el' j = el (j + 1) 1\ ~, j = ex (j + 1J <l

'Vj : i' .. num. el' j = el j 1\ ex' J = ex j
(

w::; i'::; num

Vj : 1 .. w - 1 • el j = CL j 1\ ex j = EX j J
Vj : w .. j - 1 • el j = CL (j + 1) 1\ ex j = EX {) + 1)
Vj: i .. num _ cl j = CL j 1\ ex} = EX j ,

w ::; i $" num
i,d, ~: (;)

(1. w - 1) <l d' = (1 .. w - 1) <l CL)
(l .. w - 1) <l e~' = (l .. w - 1) <l EX
(w .. num - 1) <l el' = (w + 1 .. num) <J CL

(w .. num - 1) <l e:t' -= (w + 1 .. num) <J EX

II

We can implement the first specification statement by initialising i with w.

!;;; a.myl

i:= w

By not changing el and ex, l're establish the first and third conjunct of the postcondition of this

specification statement in a triviaJ way; by assigning w to i, we also establish the second conjunct,
which, when i' is w, becomes a qnantification over the empty set: w .. w - 1; finally w :::; num is a
consequence of wEI .. num, which is a conjunct of tbe precondition of the specification statement.

These comments account for the proof-obligation associated with the above ilPplication of assigl.

88 Chapter 4. Case Studies

Before applying it! (iteration introduction), we have to use.sP to rewrite thp postcondition of
(,).

(1)~fjP

vj : 1 .. w - 1 • cI j = CL j /\ ex j = EX j
Vj : w .. i-I. cl) = CL (j + 1) /\ ex j = EX (J + 1)
Vj : i .. num • cl J = CL j /\ ex j '== EX j).
W~ISrHJm

i, el, ex:
V j : 1 .. w - 1 • el' j = CL J /\ exl j = EX }

V j : w .. i' ~ 1 • el' j = CL (j + 1) /\ ex' 1 = EX (j + 1))
V j : i l

.• num • el' j = CL) /\ ez/ j = EX j

w S i' '5 nurn /\ i' = nurn

It is not difficult to see that when the iteration invariant holds aud t = nurn, the requirements

imposed by the postcondition of (~) arc satisfied.

!,;;;itI

do i #- nllm ---+

I,
d.

a

ad

vj : 1 .. w - 1 • cl J = CL j /\ ex J = EX)

V j : w .. i-I. cl j = CL (; + 1) /\ ex j = EX (j + 1) }
V j : i .. nurn • cJ j = CL J /\ ex j == EX j

w SiS nurn /\ i #- nurn

V j : 1 . _w - 1 • el' j = CL j II ex l j = EX J

V j : W .. it - 1 • el' J = CL (j + 1) /\ ex' } = EX (j + 1))
Vj : it .. nurn • d j = CL j /\ ex' J = EX j

w $ e S nurn fI nurn ~ i' < nurn - i

The body of the iteration can be implemented by the assignment below.

~	 assigI

el, e:z:, i:= cl {fl {i H cl (i + I)}, ex {fl {i H ex (i + In, 1+ 1

The proof-obligation generated by this application of aS3igl consists of showing that the assignment

above preserves the iteration invariant when the guard if- nurn holds. Namely, we have to prove

an implication whose antecedent is the conjunction of the predicates (all to (as) below.

(ad v) :1..to-1. elj = CLjflexj =EX j;

(802) Vj: It' •• i-I. cl j = CL (j + 1) fI ex) 0::: EX (j + 1);

(a3) V) : I .. nurn • cl j = CL j fI ex j = EX j;

(~) w S. i S. nurn; and

(805) Ii- num.

'rhe consequent of the implication is the conjunction of (cd to (cs).

89 4.1 The Class Manager

\[VBJ' w: 1 .. max + 1.
w:= 1;
do w #- nurn + 1/\ cl w #- s? -+ w := w + 1 od ;

if wEI .. num -+
I[var i: 1 .. max.

i;=w;
do i # nurn -+ el, N:, i := el EB {i H el (i + In, ex EB {l H ex (i + I)}, i + 1 od

II
1Jum := num - 1

Ow:::: num + 1 -+ resp! ::::: n{JLj{Jund

fi

II

Figure 4.3: Implementation of Leave_l

(cd Vj , 1.. w - 1 • (d <B {i >-> d (i + 1)}) j ~ CL j ~ (" <B {i >-> ex (i + I)}) j ~ EX j;

(c,) Vj, w .. i.(d<B{. >-> d (i+1)})j~ CL (j+1) ~ ('x EB{i >-> ex (i+ 1)))j~EX (j +1);

(C,1) 'V) : i + 1 .. nurn. (cl EB {i H cl (i + In) j = CL j /\ {ex ffi {i H e:t:: (1 + I)}) j = EX j;

(C4) w s i + 1 :::; num; and

(cs) nurn - (i + 1) < num - i.

From (al) and (~), we can deduce that (cd holds, since (cl EB {i H el (i + I)}) j = cl j and,
similarly, (ex EB {i H e.:t:: (i + I)}) j = e.:t:: j, for any j in the interval from 1 to i-I. Likewise,
from (aa), we deduce (C,1). For (C2), we have the result below.

(d<B{i>-> d (i+l))) i

= d (i + 1) [by a property of functioru;]

~CL(i+l) [by (',), (a.), and (..)1

Similarly, (ex ffi {i 1-1 ex (i + I)}) i = EX (i + 1). From this and (a2), we infer that (cz) holds.
.AB a consequence of (a.a) and (<\5), we have that w:::; i < nurn: (c,d follows from this; (cs) is trivial.

.AB we observed earlier on, we had to define an iteration invariant which is longer than that
we could define if we had variable blocks with invariants in ZRC. As a consequence, the proof·
obligations that were generated during the refinement were longer a.s well. Namely, we had to
add (C4) in the previous proof-obligation and had to observe that w :::; nurn when assigning w to
i. Had we introduced the constraint w SiS nurn in a variable block with invariant, this could
be avoided. However, in a later stage, when removing the invaeiants. we would have to prove
that both (C-t) and w S nurn hold anyway. These proofs would require further manipulation of
the program already obtained and therefore would lead to a longer development. Of course, they
could be omitted if regarded as trivial; this is the strategy employed in {45].

90 Chapter 4. Case Studies

A"

1 LP RP Max

I Positions occupied by the documenl

oFree positions I

I ~

Figure 4.4: State of the Text Editor

The constants CL and EX are not in use anymore and so we can use conR (constant removal)

to eliminate them. The resulting collected code is shown in Figure 4.3.

4.2 The Text Editor
Our second case stndy is a screen-oriented text editor which, as said before, has heen specified

by Neilson in [51J. There, Neilson uses what is called a hierarchical approach to specification: he

defines the state and operations of the text editor incrementally, and groups the definitions in

levels. At each level a new model (state and operations) is defined: the new state includes that of

the previous level, and some of the new opetations are promotions of previous levels' operations.

There are nine levels and each of them contemplates a different aspect of the text editor; the ninth

level defines it as a whole. In this section we consider the states aud some operations of the first

two levels.

As already remarked, in [51J a C implementation is developed for the text editor. The levels

of the specification are considered separately and, in each case, the first development step is data

refinement. Here, we actually ronsider the resulting concrete specifications.

The doclilUents manipulated by the text editor are sequences of characters or. more precisely,

elements of a given set Char. A global constant Max determines the maximum size of these
documents.

The (concrete) state at level 1 can be specified as we show below.

ConcDOcl _

AfT: 1 .. Max --+ Char
LP,RP, CP: 0 .. Max

LP $. RP
CP $. Max + LP - RP

The component AfT is an array that holds the document (sequence of characters) being edited;

LP, RP, and CP are pointers. The document is in the positions from 1 to LP and froOl RP + 1 to

Max of AfT (see Figure 4.4), and CP is the cursor position: an index of this subsequence of Arr.

91 4.2 The Text Editor

The operation that moves the cursor to the left by a character can be specified as follows.

LeftMuChar-v<>el C _

A.ConcDocl

CP l' 0
ArT' = ArT
Lpt = LP
RP' = RP
cpt = CP - 1

This operation is partial: the cursor can be moved to tbe left if it is not at the top of the docu~

ment (CP -f:. 0). In this case, moving the cnrsor to the left corresponds to decrementing CP.
In [51] the error cases of all abstract operations are treated using the Oxford style of writing

Z specifications. The concrete operations presented there, on the other hand, correspond to the
robust abstract operatiol15, but are not specified in a structured way. Here, for the sake of concise
ness, we consider concrete operations which correspond to successful cases of abstracts operations.

The longer concrete operations of [51] can be refined by, for instance, wTiting them using the

Oxford style oferror treatment and applying the strategy exemplified in the preceding section. Al~

ternatively, they can be transformed into specification statements using the bC (basic conversion)

law and refined to alternations. In both approaches, operations that contemplate successful cases
eventually emerge in the development, and cau be refined as we show here.

By applying bC to LeftMuCharvocl C, we get the following specification statement.

i,;;bC

An-,
LP 5 RP 1\ CP 5 Max + LP - RP 1\ CP -f:. 0,]

LP,
: LP' < RP' 1\ cpt < Max + LP' - RP'

RP, [(CP:; 01\ Arr' = ArT 1\ LP' = LP 1\ RP' = RP 1\ CP' = CP - 1)
CP

This program can he implemented by an assignment.

!,";; alMigJ

CP,~ CP-1

The proof-obligation generated by this application of assigJ is trivial.

Every operation that modifies the document is specified by a composition whose first schema is
Standardize. This is an operation that Bets the state to a standard configuration without modifying

either the document or the cursor position. The second schema of the composition defines the effect
of the operation on a state in this standard configuration.

The operation Standardize can be defined as shown below.

Standardtu _

.Q.ConcDocl

LP' = CP
CPI = CP
(1 .. LP' URP' + 1.. Max) 1 ArT' = (l..LPURP+ 1 .. Max) 1 AfT

When the state is in the standard r.onfiguration, CP and LP are equal. Operations that modify the

92 Chapter 4. Case Studies

document can be more easily specified under the assumption that the state is in this configuration
because changes are always made at the cursor position.

As an example. we take the LeftDeleteCharC operation which deletes the character to the left
of the cursor.

LeflDeleteCharC := Standardize Ii LeftDeleteCharCStandard

The operation LejtDeleteCharCStandarn can be spedfied as follows.

LeftDeleteCharCStandard _

.6. ConeD/)(; 1

CP" 0
Arr' = ArT

LP'=LP-I

RP' == RP

CP' = CP-l

The precondition of this operation is CP:f:. 0 /\ LP =F O. If the cursor is at the top of the docu
ment (CP = 0), there is no character to its left to be deleted. If, otherwise. CP '" 0, as the state is

assumed to be in the standard configuration, the character to the left of the cursor can be removed
by simply decrementing LP and CPo

By applying the law :JcompC (schema composition conversion) to LeftDeleleCharC we can
transform it into a sequential program composition.

LeftDdeteCharC

[; :JcompC

Standardize; LeftDeleteCharCStandard

The precondition of LeftDeleteCharC is CP =F O. Therefore, the proof-obligation generated by the
above application of scompC consists of proving that CP =F 0 and Standardize imply CP' =F 0 and
Lpl =F O. Since Standardize does not modify CP and sets LP to CP, this implication can be easily
established.

The resuJt of applying bC to Standardize is the following specification statement.

A,.,.,
LP,
RP,
CP

LP $ RP" CP ~ Max + LP - RP,

~S_A~S_+~__)

(Lpi = CP
Cp l = CP
(1 .. LP'URP' +1 . Max) 1 An' = (1..LPURP+ 1 .. Max) 1A,.,.

We implement Standardize with an alternation that distinguishes the cases LP ~ CP and LP ~ CP.

93 4.2 The Text Editor

Before introducing it, however, we remove CP from the frame of the above specificationstatement.

r; cfR

LPSRPA~S~+LP-RP,]An-,
LP' S RP' A CP S Mo:c + LP' - RP'

LP,
LP'= CP

RP
((I .. LP'u RP' + 1. Max) 1 An-' ~ (I .. LPuRP+ I .. Max) IAn-)

r;altI

if LP 2 CP--+

LP> CP A LP < RP /\ CP < Max + LP - RP,

Arr, LP' < Rpi A CP < Max +-LP' - Rpl

<lLP, . LP':' CP
[

RP CI. LP' u RP' + 1. Max) I Ace' ~ (I .LP u RP +I.. M",) 1 An-)

oLP S CP-t

An- [LP S CP A LP S RP A CP :s Max + LP - RP,]
, LP'<~A~<~+~_~' .

~'LP:& - (.)
RP Cl .. LP'URP' + I.. Max) I An-' = (I.. LPuRP + I .. M",j I An-)

fl

HLP 2 CP, Standardize can be implemented by an iteration that moves the part of the document
in the positions between CP + 1 and LP to the right and joins it to the part in the positions from
RP + 1 to Max. In order to express the invariant of this iteration, we need logical constants.

r;jiV

I[con ARRC : 1 .. Max -t Cha,.; LPC, RPC: 0 .. Max

~2~/\LPSVA~:S~+LP-RP)
An-, I (ARRC == Arr /\ LPC = LP A RPC = RP ,

LP,: (LP 1 S RP'/\ CP S Max + LP' - Rp
i

)

RP LP' = CP
(1 Lp i u RP' + 1 .. Max) 1A,.,.' == (1. LP u RP + 1 .. Max) 1 An-

II
Using ,P (strengthen postcondition) and wP (weakening precondition) we can refine the above
specification statement to that presented below, which is written in a form appropriate to the
application of the it! (iteration introduction) law.

LP < RP ACP < Max + LP - RP)
(1 .. LP U RP + 1.. Max) I An- = (I .. LPC u RPC + 1.. M",) I ARRC ,

(
An-, I LP ~ CP

LP, ' W<~A&<_+W-~)
(I .. LP' U RP' + I .. Max) 1An-' = (I .. LPCu RPC + 1 .. .\lax) I ARRC
LP' ~ CP

RP (LP' = CP

The proof-obligations generated by sp and wP in this case are trivial. The ,ariant of the iteration

94

II

Chapter 4. Case Studies.

if LP ~ CP-t
do LP # CP -+ Arr, LP, RP,~ Arr EB {RP H Arr LP}, LP - I, RP - I od

oLPSCP->
do LP # CP -+ An-, LP, RP ,~ An- \Il {LP + 1 H An- (RP + I)}, LP + I, RP + I od

Figure 4.5: Implementation of Standardize

is LP - CPo

~itl

do LP # CP-+

LP < RP 1\ CP < Max + LP - RP)
(I..LPuRP+I..M,x)1An-~(I..LPCuRPC+I..Max)IARRC,

(AfT, LP> CP

LP,: I - (LPI < RP' 1\ CP < Max + Lpl _ RP') I <JRP
(1. .LP' u RP' +L.Max) 1ArTl = (1. .LPG U RPC+ 1 .. Max) 1ARRe
LP' ;::: CP 1\ LP' - CP < LP - CP

od

The body of this iteratioll is refined by the following assignment.

~ assig!

Arr,LP,RP:= An-ttl {RP H ArT LP},L? -l,RP-l

The interesting part of the proof-obligation generated by this application of w;sigl (assignment
introduction) consists of showing that the predicate below is satisfied when the precondition of the

above spt'dfication statement holds.

(1.. LP-l u RP .. Max) I (An-\Il(RP HAn- LP}) ~ (I..LPC u RPC + I. .Max) 1ARRC

'VI;' establish this equality as follows.

(I .. LP- I u RP .. Max) 1(An- EB (RP H An- LP})

~ (I .. LP -I u {RP} uRP + I .. Max) I (An- EB {RP H An- LP}l [by. pmpe,'y of sets]

= ((I.. LP - I) 1(An- \Il (RP H An- LP})) ~ ({RP} 1(An- \Il (RP >-> Arr LP}))~

((RP + I .. Max) 1 (An- EB (RP H An- LP})) [by. pmpe,'y of II

~ ((I.. LP - I) 1 Arr) ~ (An- LP) ~ ((RP + 1.. Max) 1 An-) [by LP S RPJ

~ ((1.. LP - I) 1 Arr) ~ ({LP} 1 An-) ~ ((RP + I .. Max) 1 An-) [by. pmpe,'y of 1J

= (I .. LP - I u {LP} u RP + I .. Max) 1 An- [by a pmpe,ty of 1J

= (1 .. LP u RP + 1 .. Max) 1AfT [by a property of sets]

= (1 .. LPG u RPG + 1 .. Max) 1ARRG lbyassumption]

Now, since ARRC, LPG, and RPG are not in use anymore, their declarations can be removed by

95 4.2 The Text Editor

an application of conR (constant removal). The specification statement (i), which standardises
the state when LP:$ CP, can he refined to an iteration in a similar way. Figure 4.5 presents the
collected code of Standardize.

In order to obtain an implementation for Le/tDeleteCharC we still have to refine the operation
Le/tDeldeCharCStandard. This program can be implemented by LP, CP;= LP - 1, CP - 1; this

assignment can be derived by an application of bC and a subsequent application of IJ.ssigl. The
proof-obligation that arises is trivial.

The operation that inserts a character in the document is InsertCharC. As Le/tDeleteCharC,
it is specified by composing Standardlze with an operation that acts on a state in the standard

configuration. In this case, the operation is InserlCharCStaudard.

InsertCharC == Standardize ~ InserlCharCStandard

The operation InsertCharCStandard (lnsertCharC) takes as input the character x? to be inserted

in the document. If this character is a tab, it is not inserted. Instead, spacE'-S are inserted until the
cursor reaches the next tabstop or the documeut reaches its maximum sixe. The case in which x?

is a tab is distinguished in the specification of InserlCharCStandard.

InserlCharCStandard =- InserlNonTabCStandard v lusertTabCStandard

The operation InsertNonTabCStandard inserts in the document a character different from tab.

InsertNonTabCStandard _

f:l.ConcDocl
x? : Char

x? f; tab
LP",RP
AfT = Arr EEl {LP + 1 H x?}
LP' = LP +1
CP' = CP + 1
RP' =RP

The precondition of this operation is x? f; tab 1\ LP i- RP. If LP = RP, the document has already

got to its maximum size and no additional character can be inserted. The case in which x? = tab
is contemplated by InserlTabCStandard.

InsertTabCStandard _

f:l.ConcDocl
x? : Char

x? = tab
LP",RP
let Inl == max({ i : 1 .. CP. AfT i = ni } U{O})

nsp == mm{ tabstop - (CP - lni) mod tabstop, RP - LP} •
AfT' = AfT \II { i : LP + 1 .. LP + nsp. I H sp }
LP' = LP + nsp
CP' = CP + nsp
RP'= RP

The character nl (newline) marks the end of the lines. The local variable Ini records the position

96 Chapter 4. Case Studies

where the line above that in which the cursor is positioned finishes. If the cursor is in the top line,
tnt takes the value O. The variable nsp records the number of space:; that must be inserted: either
the Dumber of positions between the cursor and the next tabstop or the number of characters that
can be inserted in the document before it reaches its maximum size, whichever is smaller. The
tabstop positions are those that are exact multiples of the constant talJstop.

As LeftDeleteCharC, InsertCharC can be converted to a sequential program composition using
scompC.

InsertCharC

i; scompC

StandardIZe; InsertCharCStandard

The precondition of Inse1'tCharC and of InsertCharCStandard is LP '# RP. Therefore, this appli
cation of scompC gives rise to the proof-obligation LP :f= RP A Standardize ~ Lpi '# Rpl. Since
Standm'dize establishes that (1 .. Lpi U RP' + 1,. MlU) 1ArTl = (1 .. LP U RP + 1 .. Max) 1 ArT,

we dednce that [he sizes of these sequences are equal and so Lpi + Max - RP' = LP + Max - RP.
As a consequence, we have that Lpi

- RP' = LP - RP, As LP < RP (by LP :$ RP, according to
the state invariaot, and LP i- RP), then LP! - Rpi < LP - LP = O. Therefore, Lpi < RP' and,
in particular, Lpl,# RP' , as required.

\Ve implement the operation [nliertCharCStandard using an alternation that we introduce
applying the law sdisjC (schema disjunction conversion).

[nsertCharCSlandard

~ sdisjC

if x? -; tab 1\ LP :f= RP -+ InliertNonTabCStandard

oz? -::;; tab A LP :f= RP -+ InsertTabCStandard

fl

Since LP #- RP is a conjunct of both guards of this alternation, it can be eliminated by an appli
cation of the refinement law wG (weakening guards).

~ wG

if x? #- tab -+ InsertNonTabCSlandard

o j;? = tab -+ InsertTabCStandard

fl

It is not difficult to verify that the operation InsertNonTabCStandard c.an be refined to the assign
ment ArT,LP, CP:= ArT EB {LP + 1 t-+ x?},LP + 1, CP + 1.

97 4.2 The Text Editor

Our.first step in the development of InsertTabCSlandard is the application of bC.

InsertTabCStandani

~bC

LP .::; RP /\ CP ~ Mcu: + LP RP /\ x? = tab /\ LP -;;f; RP,
Lpi

~ RP' /\ CPI ~ Maz + LPJ RP' /\ r.? = tab /\ LP i= RP

Arr, letlnl==max({ i:l .. CP.A7Ti=nl }U{O})
LP, nsp == min{tabstop - (CP - lnt) mod tabstop, RP LP} •
RP, AfT' = ArT EEl { i : LP + 1 .. LP + nsp • t I-t ap }
CP Lpi = LP + nsp

CP' = CP+ nsp
RP' = RP

At this point we introduce the program variablp-s pvlnl and pvmp. As the local variables Inl and
nsp defined in the postcondition of the above spe<.:ification statement, they are used to record the
position of the last n/ that appears before the cursor and the number of spaces to be inserted.

~ iv8

I[var pvlnl, pvnsp : 0, . Mcu: •

LP < RP /\ CP < Mcu: + LP - RP /\ z? = tab /\ LP i= RP, 1
pvlnl, rLP' ~ Rp

i
/\ CPI :S Max + Lp

i
- Rpi

/\ x? = tab /\ LP # RP \r pvnsp, letlnl==max({ J 1 CP.AfTt=nl }U{O})

Arr, nsp "="= mm{tabstop - (CP -Inl) mod tabstop, RP - LP} •

<J
LP, Arr' = AfT Ell {t LP + 1. LP + nsp • 1 I-t sp }

RP, Lpi = LP + nsp

CP CPI = CP + nsp

RP' =RP

]1

Using seqeI (sequential composition introduction), we refine the body of this \'ariable block to a
sequential composition.

~ seqcI

LP < RP /\ CP < Mcu: + LP - RP /\ z? = tab /\ LP -;;f; RP,]

pvln/ :

[(

pvlnl,
pvnsp,

Arr,
LP,
RP,
CP

LP ~ RP /\ CP :S Max + LP - RP /\ x? = tab /\ LP i= RP) ;
pvlnl' = max({ i : 1 .. CP • Arr i = nl } U {O})

LP S RP /\ CP ~ Max + LP - RP /\ x? = tab /\ LP #- RP)
(pvlnl=mcu:({i:l.CP.A7Ti=nt}U{O}) ,

LP' :S RP' /\ CP' ~ Max + LP' - RP' /\ r.? = tab /\ LP i= RP

letlnl == max({ i: 1.. CP. An- i = nt }U {OJ)
nsp == min{ tabstop - (CP - Inl) mod tabatop, RP - LP} • <J

A7TI = Arr EEl { 1: LP + 1 .. LP + nsp. i>-+ sp }
LP' = LP + nap
CPI = CP + nsp
Rpi =RP

The first program of this sequential composition initialises pvlnl with the position of AfT in which

98 Chapter 4. Case Studies

the last nl appearing hefore the cursor occurs. This program can be implemented using an it
eration (see Figure 4.6). Its development presents no surprises a.nd is not presented here. The

invariant of the iteration is nl rt ATTa pvlnl + 1 .. CP Dand the variant is putnl.

In the development of the second specification statement above we introduce yet another se

quential composition.

~seqcI

(

punsp;

(

pulnl,

pvn!Jp,

Arr,

LP,

RP,

CP

LP'; RP A CP ,; Mox + LP - RP A.1 = tab A LP " RP)]
pvLnl=max({i:l .. CP-AfTt=::nl}U{O}) ,

LP :S RP /\ CP s: Max + LP - RP /\ x? =:: tab /\ LP i=- RP
pvlnl = max({ i: 1 .. CP. ArT i = nl} U {OJ)

punsp' = mini tab,tap - (CP - pvtnt) mod tab'tap, RP - LPj)

LP :S RP A CP :S Max + LP - RP " x? = tab /\ LP -# RP)
pvlnl = ma:z:({ i: 1 .. CP. ATT i = nl} U {OJ) ,

(pvnsp = min{tabstop - (CP - puln/) mod tab!ltop,RP - LP}

LP' s Rp i /\ Cpt s: Max + Lpl - RP' /\ x? = tab /\ LP 1=- RP

let lnl == max({ I ; 1 .. CP _ AfT j = nl } U {O})

<l
nsp == mm{ tabstap - (CP - Inl) mod tab$top, RP - LP}

AfT' = AfTffi{ i:LP+l .. LP+nsp_il-tsp}

LP' = LP+ nsp

CP'= CP+nsp

RP' ~ RP

The first of these specification statements intialises pvnsp. With an application of assigI 'we can
refine it to ptJnSp ;= mm {tabstop - (CP - pvlnl) mod tabstop, RP - LP}. The proof~obHgation

originated can be discharged with no difficulties.

The second specification statement inserts the spaces in AfT, and adjusts LP and CPo The

appropriate assignment to these pointers can be introduced by fassigI (following assignment in·

traduction).

~ fassigl

LP :S RP 1\ CP :S Mas + LP RP 1\ x? = tab 1\ LP # RP)

pvlnl,
(

pvlnl=max({i:l .. CP_AfTi=nl}U{O})

pvnsp = min {tabstop - (CP pvtnl) mod tabstap, RP - LP}

,

pvmp. LP' :S RP' 1\ CP' ::::; Max + LF' RP' 1\ x? = tab 1\ LP #- RP

Arr,

LP,

letlnl == mas({ 1: 1 .. CP. ArT i = nl} U {OJ)
nsp == min{tabstap - (CP -tnl) mod tabstop, RP - LP} _

<l

RP, AfTJ = AfT EB { i : LP + 1 .. LP + nsp _ i I-t sp }

CP LP' + PU1Up' = LP + nsp
CpJ + ptmSp' = CP + nsp

L RP'=RP

LP, CP := LP + pvnsp, CP + pvnsp

In order to simplify the above specification statement we use the cfR (contract frame) law to

99 4.2 The Text Editor

reduce its fra.me to AIT, and then apply sP and wP to obtain the program below.

Arr: [true,Arr' = Arr EEl { i: LP + 1 .. LP + pInup. i H sp}]

This specification statempnt can he implemented using an iterat.ion.

Below, we introduce an auxiliary variahle), which ranges over indices of Arr.

!; vrbI

Ilvarj:O .. Max.

j,Arr: [true,Arr' = ArrEEl { i: LP+ 1 .. LP +punsp. t H sp)] <J

II

Using seqc/, we introduce the iteration invariant.

!; seqc/

I[con ARRC: 1 .. Max -t Char.

j,Arr: [true,Arr' = Arr$ {i :j' + 1 .. pvnsp. LP + I H sp}];

. [Arr = ARRG EB { i :) + 1 .• pvnsp. LP + i H sp),]

), Arr: Arr':::: ARRC q, { i : LP + 1 .. LP + pllnsp. i,...., sp }

II

It is not difficult to verif)' that the first specification statement is refined by) := punsp.

After using sP to write the second spedficatioll statement above in a form suitable to the

application of it!, we can apply t.his law to introduce the iteration bplow. Its variant is j.

doj-F0-t
Arr = ARRCEEl{ i j+l .. pTmsp.LP+iHsp }I\} -FO,

j, AIT:
[Arr' := ARRC EEl { i : i' + 1 .. PIiRSP • LP + i H sp } 1\ °$ j' < j

od

The body of this iteration is refined by the following assignment.

!; assig/

Arr,j := Arr EB {LP + j H sp},j - 1

The proof-obligation that arises from this application of assigI can be easily discharged. At this
point, conR (constant removal} can be used to remove the declaration of ARRG. The collected
code for InsertCharCStandaro can be found in Figure 4.6.

The level 2 of the text editor specification defines a model for an unbounded display: basically
a non-empty sequence of lines and a sct'e€n cursor identified by a pair of coordinates. At this level
no length restrictions apply: neither the length of the lines nor the length of the sequence itself are
restricted. A line is a sequence of characters that does not include nl among its elements.

The concrete state at this level includes that of levell, GoncDoc1, and introduces additional

100 Chapter 4. Case Studies

if x? 1: tab -+ A,..,-, LP, CP:= Arr ffi {LP + 1 i--f x?}, LP + 1, CP + 1
ox? = tab-+

I[var pvlnl, pvosp ; 0 .. Ma:t •

pvlnl:= CP;

do pvlnl i- 0 " A,..,.. plllni t- 01 --+ plIlnl := plIlnl - 1 od ;
ptrn.'Jp:= min{tabstop - (CP - plIlnl) mod tabstop,RP - LP};

I(var j :O .. Mru.

j := plJ7lSP ;

do] t- 0 --+ A,..,.,j := A,..,. S {LP + j i--f sp },j -1 od

JI
LP, CP:= LP+ptmsp, CP+ pvnsp

II
fi

Figure 4.6: Implementation of InserlCharCStandaro

components tl18t represent the unbounded display. Its specification is as follows.

ConcDoc2 _

ConcDocl
StariJn, Endln, DocNL : 0 .. Max
CurX,CurY: 1 .. Max + 1

Star-Un S CP S Endln
"I Ii <au«Slartln + 1 .. Endln) 1«1 .. LP u RP + 1 .. Max) 1Arr))
Starlin i= o::} «(1 .. LP u RP + 1 .. Max) 1A".-) Startln = nl
E"dl, " Max + LP - RP => «1 .. LP u RP + 1 .. Max) 1Arr) (Endln + 1) ~ nl
DocNL ~ #(((1 .. LPuRP + 1 .. Max) 1Arr) ~ {nl})
CurX = CP - Startln + 1
CurY = #«(1 .. CP) 1«1.. LP u RP + 1 .. Max) 1Arr)) ~ {nl}) + 1

The sequence or lines of the unbounded display is that determined by the contents of the document
in the obvIous way. The components Startln and Endln are pointers; StarlIn determines the

position of tile document that precedes the start of the cursor line, and Endln, the position where
this line ends. The component DocNL records the number of occurrences of the nl character in
the document. Finally, CurX and CurY record the cursor coordinates in the display. The top left

position has coordinates (1,1)

The first four conjuncts of the CtJncDoc2 invariant characterise Startln and Endln. The first
conjunct states that the cursor is in the line delimited by these pointers. The second conjunct

establishes that they indeed delimit a line: there is no nl in the positions from Start.ln + 1 to Endln

of the document. The third and the fourth conjuncts require that this line is as long as possible: if
Startln is not pointing to the beginning of the document, then it is pointing to a nI; similarly, if

Endln is not pointing to the end of the document, then it is pointing to a position preceding a nl.

101 4.2 The Text Editor

The states at levels 2 and 3 have the same components and differ only in their invariants: the
sta.te at level 3 includes that at level 2 and has a stronger invariant. For this reason, perhaps.
in [51], the state at level 2 is data-refined dnring the development of the level 3. Consequently,
t.here ConcDoc2 includes two additional components that are related to restrictions introduced at
level 3. Here, for brevity, and as we do not consider the level 3. we omit thf'"se components.

The operations at level 2 are promotions of the operations at level 1. They are all defined as
the conjunction of a level 1 operation with ~ ConcDoc2. Below, we present an example.

LejtDeleleCharDoc2 == LejtDeleteCharC 1\ ~ConcDoc2

This is the level 2 operation tbat deletes the character to the left of the cursor.
Intnition snggests that we can implement a level 2 operation as the sequential composition of the

operation that it promotes with a program that updates the additional components of ConcDoe2

and so implements .6.ConcDoc2. The conversion law seonjC (schema conjUIlcti()n conversion)

transforms schema co~junctions into sequential compositions, but cannot be applied to the level 2
operations, since ConeDocl, the state over which the levell operations act, and ConcDoe2 are not
disjoint. Nevertheless, motivated by this example, we present below an additional formulation oC
!JconjC which can be nsed convert the level 2 operations. Its derivation can be (oundin Appendix D.

Law !JconjC Schema conjunction conversjon (hierarchical specification)

(.6.51; dil?; dOl! IPI) 1\ .6.52

r;;; !JeonjC

I[con del •

(.6.81 ; dil?; dOll IPl);

(SSl; d2 ; d.i I invt.[cljadd 1\ intl2[cljadd 1\ pdcl/adl][_I'] 1\ 1ml:i)

II
provided (prec 1\ invl 1\ mv{ 1\ pt) =} pre2

where

•	 51 == (dl I invt.) and 52 :2 (81; ch I in~);

•	 pre((.6.81; dil?; dOl!lpl)I\.6.82)=prr;cl\invll\in~l\tc;

•	 pre(.6.52 1\ 2St} =: pre2 1\ intll 1\ 1nt12 1\ t2;

•	 tc and t2 are the restrictions introduced by dl ; chi dil? and dl ; t:h. respectively;

•	 del declares the constants of d.

Syntactic Restrictions

•	 The components of .6.S1 axe the only common free variables of (~Sl; di1?; dOl! I PI) and
6.S2 ;

•	 The names of el and cl' are not free in (6.81; dJl?; dOl! IPI) and ~S2;

•	 el and adl have the same length;

•	 The constants of cl have the same type as the corrf'sponding variables of adl .

The state 52 includes and extends the state SI. The constants of cl are used to represent the

102 Chapter 4. Case Studies

initial values of the corresponding variables of ad,: those held by them before the execution of

(6.S!; di17; dOl! IPI)' The second schema in the sequential composition establishes int-'l without
modifying the components of 81, but assuming that inV:! and intJ:l bold before the execution of

(6.81 ; di l 7; dOl! IPI) and that this progra.m establishes Pl. The proviso guarantees that this is

not an impossible task. The predicates prec and pre2 are supposed to be those that are usually

regarded as the precondition of (6.SL; dil?j dOl! IPl) 1\ 6.S2 and 6.82/\ 281, respectively.

By way of illustration, we take the level 2 operation that moves the cursor to the left by a
character.

LeftMvCharO<x2C =LeftMl!CharDocl G 1\ 6.GoncDoe2

We can refine Le/tMvCharDoc2C to the constant block below by applying sconjC.

Le[tMvCharDuc2 C

~ sconjC

I[con ARRC : 1 .. Max --+ Char-; LPC, RPC, CPC : 0., Max.

u/IMvGha"Docl C; UpdateConcDoc2

II

The schema UpdateConcDoc2 can he defined as follows.

UpdateConcDoc2 _

3CotlcDocl
Startin, Endln, DocNL, Starlln' , Endln', DocNL' : 0 .. Max
CurX,Cur-Y, CmX',Cur-Y': 1 .. Max + 1

LPC s: RPG 1\ CPC :oS Max + LPC - RPC
Startln $ CPC :oS Endln
nl ¢ ,an«Sta,tln + 1.. Endln) 1«1.. LPC u RPC + 1.. Maz) 1ARRC))
Startln -# 0 => «1 .. LPC u RPC + 1 .. Maz) 1 ARRC) Starlin = nl
EndJn :# Max + LPG - RPC =>

«1 .. LPC u RPC + 1 .. Maz) 1ARRC) (Endln + 1) = nl
O",NL = #«(1 .. LPC u RPC + 1 .. Max) 1ARRC) t> {nl))
CurX = CPC - StarlIn + 1
Ca'Y = #«(1 .. CPC) 1«1 .. LPC u RPC + 1.. Maz) 1ARRC) t> {nl}) + 1
cpe" 0
A1T= ARRG 1\ LP = LPC 1\ RP = RPC 1\ CP = CPG-l
StartIn' :oS GP :S Endln'
nI ~ ran«Starlln' + 1 .. Endln') 1 «(1 .. LP u RP + 1 .. Maz) 1 Arr))
StarlIn' -# 0 => «1 .. LP u RP + 1., Max) 1 Arr) StarlIn' = nl
Endln' -# Max + LP - RP => ({I .. LP u RP + 1,. Max) 1Arr) (Endln' + 1) = nl
O"NL' = #«(1 .. LP uRP + 1.. Max) 1An-I t> {nl})
CurX' = CP - Star-Un' + 1
C",Y' = #«(1.. CP) 1«1 .. LP u RP + 1.. Maz) 1Arr)) t> (nl}) + 1

The extra components of GoncDoc2, namely, StartIn, Endln, DoeNL, Cu,X, and CurY, are derived
components. Their values are well~defined for all possible vaJues of the compoueuts of ConcDocl.

103 4.3 The Airbus Cabin-Illumination System

if (CP < LP A Arr (CP + 1) = nl) V (CP ~ LP A Arr(RP - LP + (CP + 1)) ~ nl)-->
Starlln := CP ;

do StarlIn f; 0 J\

((Starlin 5: LP J\ An° Starlln f; nl) V (Startln > LP J\ AIT (RP - LP + Startln) t nl)} --?

Startin ;= Starlln - 1

od;

Endln, Cl.lrX, CurY:= CP, CP - Startln + I, CurY-l

o~ «CP < LP A Arr (CP + 1) ~ nil V (CP ~ LP A Arr(RP - LP + (CP + 1)) ~ nl)) -->
Cl.lrX := CurX - 1

fi

Figure 4.7: Implementation of UpdateConcDoc2

Therefore, pre(L\ConcDoc2 J\ 2ConeDocl) is true and the proof--obligation generated by the above
application of sconjC is triviaL

For the sake of brevity, we do not refine UpdateConcDoc2 here. Since LejtMvCharDoc1 C does
not change the contents of the document, Updal.eConcDoc2 does not need to updaf.e DocNL. The
values of Starlin, Endln, CurX, and Cl.lrY, however, may have to be changed. Theimplementation
that we present in Figure 4.7 for UpdateConcDoc2 performs the necessary modifications taking into
account that the invariant held before the execution of LeltMvCharDod C and that this operation
simply decrements the value of CP hy 1. This is the information recorded in UpdateConcDoc2

using the constants ARRC, LPC, RPC, and CPC. The alternation in Figure 4.7 identifies whether
or not moving the cursor to the left has changed the cursor line.

4.3 The Airbus Cabin-Illumination System

The last case study that we present here is based on a Z specification presented in [23] for an Airbus
cahin-illumination system. This specification has been intentionaHy written using mostly concrete
data types. Therefore, only a few minor modifications are necessary to make it appropriate as a
starting point for the development of an implementation for the illumination system using ZRC.

The Airbus cabin is divided into three zones and two entry areas; a <:one may, for instance,
accommodate the first class or the husiness class seats. The illumination system provides separate
control for each of these parts of the cabin. The lights in a cabin zone or entry area are dimmable;
they have three illumination levels. Additionally, the cabin zones may have an extra set of special
night lights; if not, the ordinary lights are used to provide a night light service.

The free types ZONES and EA presented below contain identifiers for the cabin zones and the

entry areas.

ZONES z 1 I z2 I z3
EA fwd I aft

In [23] the zone and entry area identifiers are introduced. as constants of a free type L 0 CATI ON,

and ZONES and EA as ahhreviations for the sets {zl, z2, z3} and {fwd,alt}, respectively. Here,

10. Chapter 4. Case Studies

CAElI/IIJ:ONEII

~1 _(2 UlNEl

~[d][d]

~~~ 
~~~ 
~ldJ~

-
~~

m

[d]~

~~
~~

Figure 4,8: Command Panel of the Illumination System

since LOCATION is not used in the specification of either the state or the operations we examine,
we omit its definition.

Figure 4.8, which has been extracted from [23J, presents the panel used b,Y the attendant~

to command the illumination system. For each of the cabin zones, this panel contains four but

tons labelled BRIGHT, DIM1, DIM2, and NIGHT. For each of tlIe entr,Y areas, there are three but
tons: BRIGHT, DIMl and DIM2. A light indicator is associated with each of these buttons. The set

DIMo defined in the sequel contains constants that represent the light indicators of a particular
cabin zone or ('ntry area. These constants are elements of the free type DIM, which is u$ed to

represent the light brightness levels.

DIM ..=- dim! I dim2 I bright I off I onNl2
DIMo {dim!, dim2, bright, Off}

The free type SWITCH contains the constants active and passIve which are used to indicate

whether or not a light indicator assoclated to a NIGHT button is on.

SWITCH ::= achve I passive

Actually, SWITCH is used in this specification for two different purposes. The second use of

SWITCH is explained later on.
The BRIGHT, DIMl, and DIM2 buttons of the command panel are used to switch on and off and

to adjust the level of brightness of the cabin zones and entry areas. The function of the NIGHT

buttons and the way in which the night light service is controlled is determined by the value of

the global variable CAMJlLAUTO defined below.

CAMJiLAUTO, FEATURE

Its type. FEATURE, is specified as follows.

FEATURE ::= disabled I enabled

If the value of CAM ...NLA UTO is enabled, then the illumination system provides a night light
autoservice. In this case the night lights and night light indicators in the command panel are

105 4.3 The Airbus Cabin-Illumination System

automatically switched on (off) wben the ordinary lights are switched off (on) and the NIGHT
button is used only to switch off the night lights. If, otherwise, CAM....NLA UTO is equal to

di!Jabled, then the NIGHT buttotLS control the night lights. When a NIGHT button is pressed, the
corresponding night tight indicator is turned on, and the night lights are turned on if or when the

ordinary lights are turned off. When the NIGHT hutton is pressed again the indicator and the night
lights, if necessary, are turned off. Also, when any other button of the same zone is pressed, the
night lights are turned off if they ace on.

The schema ZONEINDstate defined below specifies part of the illumination system state. The

component zoneJnd represents the light indicators associated with the BRIGHT, DIMl, and DIM2
buttons that control cabin zone lights. Since, for each zone, at most one of these ino'licators is on,

zoneJnd is defined as a total fundion from ZONES to DIMo. For a zone z, zoneInd z is the light
indicator that is on in that zone: diml, dim2, or bright, or takes the value off whell none of them

i..:; on. The component nlInd represents the night light indicators; it is a function from ZONES to
SWITCH: nllnd z is either active or pa!Jsive depending on whether the NIGHT indicator of zone z

is on or off.

ZONEINDstate __-,-,--- _

zoneInd : ZONES -+ DIMo
nllnd: ZONES -+ SWITCH

'r/ z : ZONES. nllnd z = active::::} (zoneInd z = off V CAM fiLA UTO = disabled)

The invariant in ZONEINDstate establishes that, in all zones, if the NIGHT indicator is on, then

either the dlml, dim2, and bright indicators are off so that the ordinary lights in the zone are off,
or the night light autoservice is disabled so that the NIGHT button has been pressed to pre-select

the night light service.
The diml, dim2, and bnght indicators of the entry areas are represented by the state component

eaInd, which is introduced by thc following schema.

EAIND!Jtate _

I mInd: EA -+ DIMo

By analogy with zoneInd, mInd is a total function from EA to DIMo.

When the Airbus is on the ground, the cabin illumination can be controlled from a MAIN
button. Its indicator is represented by the state component mainInd, which is introduced by the

schema MAININD!Jtate that follows.

MAININD!Jtate _

ZONEINDstate
EAINDstate
mainInd : SWITCH

mainlnd = pas!Jive ¢}

ran nllnd =: {passive} 1\ ran zone.Jnd =: {off} 1\ ran wInd = {offl

The type of mamInd is SWITCH. If mainInd is equal to passive, the MAIN indicator is off and so
are all other indicators. This is the property stated by the invariant of MAlNIND!Jtate.

106 Chapter 4. Case Studies

The lights are identified by addresses in a bus, which, in [23J, ace elements of a given set
ADDRESS. Here, in order to obtain a more concrete specification. we define that addresses are
numbers in the interval from 1 to maxad, a global variable introduced below.

maxad : N

maxad > 0

The addresses of the lights and night lights in each of the zones and entry areas are identified by

tables: partial functions from 1 .. maxad to ZONES or EA.

CAM_CAB: 1 .. TUllXad -l7 ZONES
CAM....EA: 1 .. maxad ~ EA
CAM JiLl: 1 .. maxad ~ ZONES
CAMJiL2: 1 .. maxad ~ ZONES

CAMJ/Ll" CAM_CAB
dam CAM_CAB n (dam CAM-EA Udom CAM....NL2) = (2J

dom CAM-EA n dam CAM....NL2:= (2J

The addresses in (the domain of) the table CAM_CAB are those of the ordinary lights in the cahin

zones; if the address a is in CAM_CAB, then it identifies a light that is in the zone CAM_CAB a.

Similarly, CAM--EA distinguishes the addresses of the lights in the entry areas. If the cabin zones
have special night lights, then their addresses are recorded in CAM....NL2. Otherwise, CAM....NLI

singles out the ordinary lights that are used to provide the night light service. The addresses
in CAM....NLI are also in CAM_CAB; and the sets of addresses in CAM_CAB, CAM--EA, and

CAM....NL2 are pairwise disjoint.
The last component of the illumination system state, ill, represents the cabin zOne, entry area,

and night Ughls; it lB introduced by the schema ILLstate.

ILLstate _

ill : 1 .. maxad -1- DIM

Va: 1.. maxad. ill a = onNl2::::} a ~ (dom CAM_CAB UdomCAM_EA)

The light addresses of interest are those in the tables CAM_CAB, CAM-EA, CAM....NLl, and
CAM_NL2. The constant onN12 represents the on state of a special night light; it is different

from dlml, dlm2, and bright, since the special night lights and the ordinary lights are of different
types. The invariant of ILLstate asserts that, for every address a, if 111 is onNl2, tben a does

not identify an ordinary light: it is either in CAM_NL2 or is an unused address. In [23], iiI is

defined as a partial function whose domain is the set of addresses in CAM_CAB, CAM -.EA, and

CAM_NL2. We define it as a total function (an array) as this data type is more readily available

in most programming languages.
The first operation of the illumination system that we examine is MAINop, which is triggered

by pressing the MAIN button. This operation has no effect if the Airhus is not on ground. The

global constant LGEARst defined below determines the current state of the landing gear; with
this information, it is possihle to work out whether or not the Airbus is on the ground.

LGEARst : LGCIU

The free type LGCIU contains three constants that represent the possible states of tbe landing

107 4.3 The Airbus Cabin-Illumination System

gear.

LGCIV ::=: down Compressed I downLocked ! upLocked

Tbe Airbus is in tbe ail' when the landing gear is either downLocked or upLocked. This situation
is characterised by tbe schema MAINisBlocked.

MAINlsBlocked _

[LGEARst E {downLocked, upLoeked}

In this case, MAINop does not change the state: it behaves like the operation NOop defined below.

NOop--::-:::- _

=ZONEIND.~tate

2EAINDstate

'E.MAININDstate

S/LLstate

Iftbe Airbus is ou the ground, the effect of MAINop depends on whether the MAIN indicator is on

or off. If it is on, it is turned off, and so are all other light. indicators. In the specification below,
the new values of zonelnd, nlInd, and ealnd are determined by the state invariaDt.

MAININDopPassive _

aMAININD.~tate

mamlnd = active
mainlnd' = passive

The lights themselves are turned off as well.

MAINILLopPassive _

ti./LLstate

ill' "'" { a : 1 .. rnaxad • a H off }

If the MAIN indicator is currently turned off, then MAINop reinitialises thf system.
indicator is turned on.

The MAIN

MAININDINITop

MAININDstate'

_

malnlnd' =: adlue

The BRIGHT indicators are turned on and the NIGHT indicators are turned off. This is specified by

108 Chapter 4. Case Studies

the schema::; ZONE1NDINITop and EAINDINITop.

ZONEINDINITop
ZONEINDstate'

zonelnd'::; { z: ZONES. Z 0--+ bright}
nlInd' =:: { z : ZONES. Z H passIVe}

EAINDlNITop
EAINDstate'

ealnd' = { z : EA • z >----t bright }

Finally, the ordinary lights are switched to bright and the special night. lights, switched. off.

lLLINITop _

lLLstate'

{ a: (dom CAM_CAB U dom CAM....EA). a H bright} u
{ a : dom CAM flL2 • a H off } <;;; ill'

The initialisation operation is defined as the conjunction of the last four schema:; presented above.

INITop:= ZONEINDINITop /I. EAINDIN1Top 1\ MAININDINITop 1\ ILLINITop

The MAINop operation is specified as follows.

MAINop= (MAINisBlocked 1\ NOop) v

(-, MAINisBlocked 1\

(MAINILLopPassive 1\ MAININDopPassive V

[MAININDstate I mainlnd ::::: passive] 1\ INITop))

The precondition of the first disjUllct of MAINop, namely, MAINisBlocked f\ NOop, can be ex
pressed as LGEARst = downLocked V LGEARst = upLorked; the precondition of the second dis

jUDct of MA1Nop is LGEARst = down Compressed .

By applying the first formulation of sdisjC (schema disjunction conversion) to MAINop, we

can obtain the following alternation.

if LGEARst = doumLocked v LGEARsl = upLocked --+

MAINisBlocked 1\ NOop <l

oLGEARst = downCompre.ssed --+

., MAINisBlocked 1\

(MAINlLLopPa.sstve 1\ MAININDopPassiue V (i)

[MAININDstate I mainlnd = pasSlve] 1\ INITop)

fl

If we a.pply to MAINisBlocked 1\ NOop the second formulation of bC (basic conversion), which

109 4.3 The Airbus Cabin-Illumination System

I[var i: l .. maxad+l.
i:= 1;

do t #- maxad + 1 -+
if i E set -+ ill := ill ED {i I--t dim} 0 i ¢ set -+ skip fi. ;
i:= i+l

ad

II

Figure 4.9: Implementation of updILL

deals with operations that do not modify the state, we obt.ain the specification statement below.

!;; bC

MAININDstate 1\ ILLs/.ate 1\ LGEARst = downLocked V LGEARst = upLocked,]
. [zoneInd' = zonelnd 1\ ntInd' = nUnd 1\ eaInd' = eaInd 1\ mainIndl = mainlnd 1\ ilf = ill

This program can be refined to skip using the law skI (skip introduction).

!;;skl

skip

The proof-obligation that arises requires us to prove that the state components are equal to them
selves, which obviously is triviaL

The application of the first formulation of bC to the schema (i) generates the following speci
fication statement.

zoneInd,
nllnd,

eaInd,
mainInd,

ill

MAININDstate 1\ ILLstale 1\ LGEARst = downCompressed,
MAININDstatel1\ ILLstate l 1\ LGEARst = down Compressed

mainlnd = act",)
mainInd' = passive V

(iW = { a : 1. . maxad • a I--t off }

mainInd = passive

(,i)
zoneInd' ={z ; ZONES. z I--t bnght }

ntInd' = { z ~ ZONES. z I--t paSS1ve }

eaIndl = { z : EA • z I--t bright}

mainInd' = active

{ a: (dom CAM_CAB U dom CAM.-EA) • a I--t bnght } U
{a: domCAMJlL2. a I--t off} 0:;;:: ilf!

We implement this program using an alternation that distingnishes the cases mainInd = active and
mamInd = passive. Before we introduce this alternation, however, we use the law prr:.I (procedure
introduction) to declare the procedure updILL presented helow, which is used later on to update til.

110 Chapter 4. Case Studies

updILL(l.. mazad, off) ;
zonelnd,nUnd,ealnd, mainlnd := {zl Hoff, z2 H off,z31--t off},

{z1 H passive, z2 H passUJe, z3 I-t ~sive},

{fwd I-t off, afl, I-t off},passive

Figure 4.10: Implementation of (iti)

The procedure block that is introduced by the application of pre] has the specification statement
(it) as its main program.

updILL == (val set; IF(l .. maxad); dim: DIM. dl : [true, ill' =:: ill EO { a : set _ a H dim }])

The procedure updILL has two value parameters: set and dim. It updates III by setting to dim the
brightness level of the Hghts whose addresses are in set. \Ve assume that a data type corresponding

to the type cOl1Structor :IF is available (or has been implemented) in the target programming
language. In fact, the majority of the traditional imperative programming languages do not include

a type constructor like IF, but in the library of most object-oriented programming languages there
is a class that defines a set type.

The specification statement in the body of updlLL can be implemented using an iteration; a

possible implementation for this program is presented in Figure 4.9. Its refinement is not difficult

and, for the sake of conciseness, is not presented here.

Applying aJtI {alternation introduction} to (ii) and then using sP (strengthen postcondition)
and wP (weakening precondition) to simpHfy the specification statements in the branches of the

resulting alternation, we cau obtain the following program.

if mainIud =: active ---+

'ondnd, []nlInd, true,. .

mamInd l = passwe

(iii)eaI~d, ; (ran nlIndl
=: {passive) 1\ ranzonelnd' =: {off} 1\ ran eaInd l

=: {Off})
mamInd,
ill itt =: { a ; 1 .. maxad - a H off }

omainlnd = passive ~

zoneInd,
nUnd,

eaInd,
mamInd,
ill

zoneInd' = { z : ZONES _ z H bnght }
nlInd' :::: { z : ZONES _ z H passive}

ealnd':::: { z : EA - z H bright}
(w)Itrue, mainInd' :::: active

{ a: (dom CAB_CAB U dom CAM-EA) _ a t-+ bright} U

{ a: dom CAM...NL2 _ a Hoff} <;;;; ill'

B

The specification statements (iIi) and (iv) can he refined in much the same way and here we
proceed to refine only (iv). In Figure 4.10 we present an implementation for (Iii).

111 4.3 The Airbus Cabin-Illumination System

By applying fassig/ (following assignment introduction) to (tv) we can introduce assignments
to zone/nd., nUnd., eaInd., and mainInd..

~ fassigI

zone/nd.,

nUnd., t,ue, j'
ea/nd., : {a: (dom CAM_CAB U dom CAM...EA) _ a I-t bright} U

[
main/nd., { a: dom CAM....NL2 _ a I-t off } ~ ill l

ill

zoneInd., niInd., ealnd., mamInd. := {zll-t bnght,z2 I-t bright, z3 H bright},

{zl H passive,z21-t passive,z31-t passive},

{fwd. H bright, aft H bnght}, active

With a view of updating ill using calls to updlLL, we use cfR (contract frame) to reduce the frame
of the above specification statement to ill, and then apply sP to obtain the program below.

_ I

ill: ill' = illEB {a: (domCAM_CABUdomCAM_EA) - a I-t bright} EEl j

[
 {a:domCAM....NL2-al-tojJ }

Two calls to updlLL are necessary to update ill in the required way. We introduce the sequential

composition aB follows.

~ seqcI

I[con CILL : 1 .. maxad. -+jo DIM

ill: [true,ill' = iiI EB { a: (dam CAM_CAB Udom CAM...EA) - a H bright}]; (v)

;/1 ~ CILLa> { a, (domCAM_CABudomCAM-.EA). a >-+ bright),]
ill: ill' = CILLfE {a: (domCAM_CABUdomCAM...EA) - a H bnght } EEl (vi)

[{a: domCAM....NL2 _ a Hoff}

JI

Using vS (value specification) we can refine (v) to a parametrised statement which, with an
application of pcallI (procedure call introduction), can be transformed into a call to updILL with
parameters (dam CAM_CAB U dom CAM...EA) and off. The dom operator is not available in
most programming languages. We assume, however, that a data type called Table, for instance, is
used to represent CAM_CAB, CAM...EA, CAM....NLl, and CAM....NL2, and that it has operators
like dom and others we use use in the sequel.

AE to (vi), we would rather simplify it before applying vS; using sP and then wP we refine it
to the following program.

ill: [true, ill' = ill EEl { a : dom CAMNL2 - a H off }]

As with (v), this program can be refined to a call to updILL with parameters dam CAMNL2 and
off with the use of vS and pcallI.

As the constant CILL is not being used anymore, we can apply conR (constant removal) to
eliminate its declaration. This concludes the refinement of MAINop.

112 Chapter 4. Case Studies

Another operation of the illumination system that we consider here is EAop, which controls

the illumination of the eotry areas. This is the operation activated by pressing the DIM1, DIM2,

or BRIGHT button of one of the entry areas. In the specification of EAop. the input variables ea?
and dim? determine, respectively. the chosen entry area and brightness level. The type of dim? is

the subset of DIM defined below.

DIM! == {dlmL dim2, bright}

If the cockpit door is open and the ojl presSurp is high, which iIldicates that there is an engine

running. the illumination of the fwd entry arpa cannot be changed arbitrarily to avoid blinding

the cockpit personneL The table CAM-EAD rst.ablisbes the maximum brightness to which some

of the fwd entry areas lights can be switched in t.his situation.

CAMJ:AD, ADDRESS +l {off, dim], d'm2}

dom CAM-EAD" dom(CAM-EA '" {fwd»

The operator _ <dim _ defines an order for the brightness levels according to their intensity.

- <dim _: DIMo +-+ DIMo

Off <d,m dim2 1\ dim2 <dIm d~mll\ d!ml <dim bright
Va, b, c: DIMo I a <dim b 1\ b <dIm C. a <dIm C

The global variables cockDoor and oi/Pres determine, respectively, whether or not the door is open

and the oil prffiSnre.

cockDoor: DOOR

I oilPres: PRESSURE

Their types are defined as follows.

DOOR ::== closed I open
PRESSURE ;:= low I hIgh

The behaviour of EAop depends on whether the tight indicator associated with the button pressed

is on or off. If it is on, the lights are at the brightness level chosen and both they and the light

indicator are turned off. If it is off, then it is turned on and the lights are switched to the chosen

brightness level. If the chosen entry area is fwd, the cockpit door is open, and the oil pressure

is high, then the lights addressed in the table CAM-BAD are switched to the chosen brightness

level or to the level indicated in CAM-EAD, whichever is lower. The effect of EAop on the light

indicator is specified by EAINDop.

EA/NDop _

D..EAINDstate
2.Z0NEINDstate
ea? :EA
dim?: DIM}

eaInd(ea?) == dim?:;:} eaIndl = eaInd ffi {ea? Hoff}
eaIfld(ea?) I- dim? => eaInd' = eaInd ffi {ea? f-1- dim?}

The schema EAILLopPassilJe defines the effect of EAop on ill when the light indicator associated

113 4.3 The Airbus Cabin-Illumination System

with the button pressed is on.

EA/LLopPassitJe _

6./LLstate
EAINDstate
ea?: EA
dim?: DIMl

eaInd(ea?) = dim?
illl == ill $ { x : dome CAM...EA t> {ea?}) • x l---j. off }

The effect of EAop on ill when the indicator is off is specified by EAILLopActitie.

EAILLopActitie _

6.ILLstate
EAINDstate
ea? : EA
dim?: DIM}

eaInd(ea?) '# dim?
illl == ill EEl if ea? == fwd II cvckDoor == open II oilPres == high

then {x: dom(CAM...EAt> {ea?}) _ x l---j. dim?} ffi
{x : dom CAM...EAD I CAM...EAD x <d"n dim? _ x H CAM...EAD x }

else {x: dom(CAM...EA t> {ea?}) _ x l---j. dim?}

The definition of EAop is as follows. The precondition of this operation is true.

EAop'= EAINDop II (EAILLopActive V EAlLLopPassive)

The refinement of EAop can start with an application of the first fonnulation of be. Since this
operation does not modify Lone/nd, however, we can transform it into a shorter program using a
third formulation of bC that we present below. Its derivation is presented in Appendix D.

Law bC Basic conversion (operations tha.t do not modify some state components)

'Il.S; 3T; d;?; do! Ip)

!;;; bC

ads, ado! : [invs II intiT II 3 ds ; do!. (intis II p)[adT/erdj.], (invs II p)[erdT/adrl]

where S == (Tj ds I intis) and T =(dT I invT)

The sta.te is specified by S, which includes T. The operation (6.S; ?:T; di?; do! I p) modifies the
state, but not the components of T. Therefore, the specification statement generated by be does
not include them in its frame and does not enforce in its postcondition the maintenance of the
part of the state invariant defined in T. The predicate 3ds ; do! _ (invsIIp)[erdT/adrl is (what
is commonly regarded as) the precondition of (~S; ?:T; di?; do! 1p).

114 Chapter 4. Case Studies

The application of this formulation of be to EAop yields the specification statement below.

ZOA'EINDslate 1\ ILLstate,
ILLstate!
ealnd(ea?) = dim? :::} eaInd' = ealnd En tea? Hoff}
ealnd(ea?) # dim? => ealnd l = ealnd ED {ea?., dim'!}

,aInd(w?) = dim?)
eaInd, (ilf = ill EB { I: dom(CAM_EA po tea?}) _ x 0--+ off} V

ill ealnd(ea?) #- dim?

tie = ill ffi if ea? = fwd A eockDoor = open II mlPres = high

then {x: dom(CAM-EA l> tea?}) _ x I-i' dim? } Er

{ x: dam CAM_EAD I CAM-EAD x <d,m dim?_
x 0--+ CAM_EAD.T}

else {x; dom(CAM-EA [> tea?}) _ x H dim? }

We use the aU/law to introduce an alternation that determines whether the indicator a.'isodated
with the button pressed is on or off. After applying sP and wP to the branches of this alternation,

we obtain the following program.

if ealnd = dim? -t

'aInd, [(wInd' ~ wInd ffi {w' >-+ aff))]
 (vii)
ill : true, ill'=illEB{x;dom(CAM_EAl>{ea?}).xl---;lofj}

oeaInd -# dim? -t

truE',

eaInd' = eaInd Efl {eo? dim?}

eaInd, .

ill

iit = illl;fl if ea? = fwd 1\ eockDoor = open II ol/Pres = high

then {x; dom(CAM-BA l> {ea?}). x f--+ dim? } ED

{ x: dam CAM-BAD I CAM -BAD x <dim dim? •

(vin)

x 0--+ CAM-EAD x}

else {x: dom(CAM-BA l> {ea?}). x 1---;1 dim? }

fi

In what follows we refine the specification statement (viii). The refinement of (vi~) is similar and
simpler.

Applying fassJgI to (viii) in order to introduce an assignment to ea!nd, and cfR in order to
simplify the remaining specification statement, we derive the following program.

true,
ill' = ill EB if ea? = fwd 1\ coekDoor = open II ollPres = hIgh

ill; I then { x : dom(CAM -.EA l> {ea?}) • X I-i' dJm? } ED
{x: dam CAM-.EAD ICAALEAD x <d;m dim? x I-) CAM-BAD x}

else {x: dom(CAALEA l> {ea?!). x I-i' dIm?}

eaInd:= eaInd EB {ea? >-+ dim?}

The form of the postcondition of the above specification statement suggests the introduction of
an alternation. With this purpose, we apply aU! to this specification statement and, following

115 4.3 The Airbus Cabin-Illumination System

if enlnd = dim? ---+
updILL(clom(CAM -EA " {"")), off); ",Ind;~ ",Ind ffi (",1 0-; off)

omInd ':f; dim? -+
if ear = fwd f\ cockDoor = open f\ oilP~s = high-+

I[var i ; 1 .. maxad + 1 •

j:= 1 ;

doi':f;maxad+l-+

if i E dom(CAM.-EA [> (ea?})-+

if i E dom CAM ...BAD 1\ CAM...EAD i <d,m dim?--+

ill := ill ~ {i >-+ CAM-BAD i}
0.., (i E dom CAM .-EAD 1\ CAM...EAD i <dim dim'?) -+

ill:= ill ~ {i >-+ dim?}

8
o i ¢ clom(CAM _EA " ("'?)) -t ,kip
8;
i:= 1 + 1

od

II o..., (oo? = fwd 1\ C1XkDoor = open 1\ oilPres = high) --+

updILL(clom(CAM-EA" {ea?)), dim')
ft

ealnd := ealnd ~ {en? 0--+ dim?}

8

Figure 4.11: Implementation of EAop

the application of sP and wP to the branches of the resulting alternation, we get to the following

program.

if ea? = fwd 1\ cockDoor = open 1\ oilPre.s = high -+

true,]
ill: ill l = ill EEl {x: dom(CAM_EA t> {ea?}). x >-+ dim? } ~ (iz)

[{ x: dom CAM.-EAD I CAM...EAD x <dam dim? • x 0--+ CAM...EAD x }

o.., (en? = fwd 1\ cockDoor = open 1\ oilP~s = high) ----l

ill: (true, ill' = ill EEl {x; dom(CAM_EA t> (ea?}). x >-+ dlm? l] (x)

fi

With an application of uS followed by an application of pcalU, we can refine (x) to a call to
updILL with parameters dom(CAM.-EA t> {ear}) and dlm? As to (ix), since this program does
not switch lights to a common brightness level, we would rather implement it without using updILL;

Figure 4.11 presents an implementation for (xit) that uses an iteration directly. The development
of this program poses no difficulties and is not discussed here.

116 Chapter 4. Case Studies

In Figure 4.11 we present the collected code of EAop. The other operations of the illumination

system either can he refined in much the same way as MAlNop aud EAop or have specifications
that are too long to be considered here.

4.4 Conclusions

In this chapter, with the objective of showing that ZRC is a suitable starting point for the study
of refinement of Z specifications, we have preseuted three case studies. The example!'l we haY('

discussed are not exactly realistic. The cla.<;s manager and the text editor do not beloug to the

class of systems that motivate the study of formal methods of software developmeut and, due to

space restrictions, we have considered only two of the simpler operations of the cabin-illumination
system. Even so, our case studie; bring forward a few important poitlts about ZRC.

Since the Z style of structuring specifications is open, the schema calculus can be employed to

specify opE-rations in a wide variety of ways. For this reason, it is to be expected that the proposal of
additional (:Onve~ion and even refinement laws become uecessary or appropriate as ZRC is applied

in the development. of a larger range of systems. The refinement of the text editor. for instance,

has prompted the introduction of a formulation of sconjC (schema conjunction conversion) that
had not been included in the original set of conversion laws. Also, in the development of the

cabin-ilh.lrninatiou system, the proposal of an additional formulation of bC (bMic couversion) has
been proved to he useful.

In thi,~ respect, what distinguishes ZRC from other methods of refining Z specifications is its

formalisation. Based on this work, the soundness of any new conversiou or refinement law that
becomes necessary can be established and the risk of mistakes minimised. The mauy examples of

law derivations provided in Appendix D can be of assistance in this kind of effort. Altogether,
ZRC is not only a collection of laws that can be applied to refine Z specifications, but also a theory
of refinement for Z.

The use of the Z dashing convention, as opposed to the o-suhscript conventiou adopted in
Morgan's calculus to represent initial variables, may have caused some coucern as to the complexity

of the refinement laws. Indeed, if compared to corrE-sponding laws of Morgan's calculus, some of
the ZRC refinement laws have a slightly more complex formulation which involves additional

substitutions to remove or introduce dashes. By now, however, it should be dear that this does
not lead to more complex proof-obligations and that refinements in ZRC can be carried out in

much the same way as they can in Morgan's calculus. Furthermore, we believe that, at lea.<;t for
those used to the Z style, the formulations of the ZRC laws are not obstructive.

As with Morgan's calculus, the application of ZRC may involve long programs and proof

obligations. Even though the conversion laws of ZRC aim at exploiting the structure of the sch(~ma

definitions and avoiding unnecessary expansions, lengthy schemas, specification statements, and

proof-obligations may eventually come about or be part of the initial specification. The text editor
case study, for iIl.'ltance, involves quite a few long programs and, as we have said, this is not even a
realistic example. Specifications of systems whose development requires the use of formal methods

are usually much more complex and lengthy. The effective application of ZRC to refine these
systems require> the assistance of a tool. Without this support, since the activities involved in the

refinement process are extremely error-prone, the reliability or the results obtained is compromised.

117 4.4 CDnclusiDns

In the next chapter, we conclude our presentation of ZRC by considering related works and

possible lines of future research. There we compare ZRC to the techniques employed hy King and
Neilson to develop implementation.<i for the class manager and the text editor.

Chapter 5

Conclusions

At present, if the use of a formal method covering all phases of software development, possibly
with the support of a tool, is required, then Z is not a feasible or a straightforward answer. This is
one of the major criticisms that have bE!€Il levelled at Z. which, nevertheless, is a highly successful
specification language. In this context, ZRC COffies as a modest but promising step forward in

the direction of mrther encouraging the application in practice of Z and, more generally, of formal
methods.

As a refinement calculus, ZRC integrates a successful specification language to a most promising
method of developing programs. The refinement calculus builds upon results of years of resf:'atch
on (formal) program development. As with Back's [1, 4] and Morris's [48, 501 work, 1forgan's

calculus formalises the stppwise refinement technique of program development, but goes further
and prop06eS an innovative style of presenting developments and calculating programs based on
an extensive set of refinement laws.

The possibility of calculating, as opposed to verifying, programs accounts foc developments that
call be uniformly presented. as sequences of simple refinement steps. Each step Can be justified by

the appncation of a refinemPllt law and, possibly, the discharge of corresponding proof-obligations.
Moreover, refinement laws provide guidance on the construct.ion of programs.

Although there seems to be no report of applications of the refiuement calculus in industry or
of case studies of substantial sizp, we are convinced that external factors are responsible for this

situation. The rdinement calculus is still in its relatively early days: it was only in 1990, when the
first edition of Morgan's book [44] went into press, that the refinf'ment calculus was put together
and more widely publicised.

Moreover, the application of the refinement calculus involves heavy formula manipulations and

the proof of long theorems, and so is practically infeasible without the support of a tool when larger
examples are considered; apparently, at the moment, no reliable and effective tool that supports

the application of the refinement calculus on this scale is available. Also, the benpfits of applying
the refinement calculus in a rigorous way, leaving proof-obngations unproven or providing only
informal arguments to discharge them, do not seem to have been emphasised.

The specification facilities of th(' refinement calculus are also a cause of concern because the
lack of a structuring mechanism like the schema calculus can be a difficulty in the treatment of
morc complex examples. With ZRC, this last problem is solved. Nevertheless, it must be said that
a lot of effort is still required before the use of a refinement calculus becomes widespread.

119 5.1 Related Work

The integration of Z to a refinement calculus was first proposed in [34] by King, and, in [64, 65]
and [661, Woodcock and Wordsworth also follow this approach, To the best of our knowledge,
however, ZRC is unique in that it is completely justified in terms of a well-established mitthematical
model of program development: weakest preconditions. Moreover, ZRC adopts the conventions
of Z, avoiding a change of style during the development process, and includes support for the
development of, possibly recursiV€ and pararnetrised, procedures and a calculational. technique of
data refinement.

In summary, ZRC is a compreheusive technique of program deV€lopment which can be used to
calculate programs from Z specifications in a smooth way, and which is firmly based on mathemat
ical principles. Its design has taken advantage of existing resnlts on refinement of Z specifications
and, furthermore, its formalisation makes it extensible. In view of that, we believe ZRC to be
a source of encouragement for further study on refinement of Z specifications; the application of
ZRC in the development of complex realistic systems in a rigorous way or with the support of a
tool can teach us many lessons. In tbe next section, we discuss related works and in Section 5.2
we propose a few lines for fnture research.

5.1 Related Work

Most conversion laws of ZRC are based on those proposed by King in [34J. There are, however, some
fundamental differences between ZRC and the techniqne proposed in [34J to refine Z specifications.
In general terms, King's work is not a refinement calcnlus for Z, as ZRC is, \.lIlt a method for
integrating Z with Morgan's calculus. As such, King's technique provides tile same specification
and design resources of Z and the refinement calculus, but, on the other hand, its application
requires a change of notation and style during the development of a program.

When refining a schema using King's technique, we first translate it to a program of the
refinement calculus. In this process, the decoration conventions of Z are forgone, the O-subscript
convention for initial variables of Morgan's calculus are adopted, and the names of the state
components and of the input and output variables are shortened. For those familiar with both Z
and the refinement calculus, this change of notation may not be a major hindrance, but ZRC is
a proof that it is not necessary. Moreover, we believe that, for Z users, the notation employed by
ZRC is both natural and elegant.

In [34] Z specifications are translated to modules; the structure employed is tilat presented
in [45]. The clause var is used to declare the state components, the and clause, to introduce the
state invariant, and the operations are declared as procedures. In contrast, as we point out in
the next section, ZRC is concerned only with the translation of individual. operations. We further
discuss the issues of modules and invariants in Section 5.2.

The techniqne proposed by Wordsworth in [66J to refine Z specifications is, as ZRC, tailored
to the Z notation and style. In tbis work, Wordsworth defines a refinement relation between
schemas using the relational view of operations (instead of weakest preconditions). Assignment
is defined as a schema, so that refinement of a schema by an assignment can be proved using
the definition of refinement between schemas. Other programming constructions (alternation,
sequential composition, variable blocks, and iteration) can be introduced using refinement rules;
some of them correspond to conversion rules of [34] and some of them correspond to laws of

120 Chapter 5. Conclusions

Morgan's calculus. As in ZRC, schemM are regarded as commands. In [52], Potter, Sinclair, and

Till provide an alternative presentation of Words\\-nrth's technique.

Specification statements are not part of the language considered by \Vordsworth. Even the

refinement rules of [66] that correspond to laws of Morgan's calculus apply to schema<;. As a

consequence, they give rise to more complex proof-obligations and provide little guidance to the

development; they are better suitl"d to thl' vprification, rather than to the cakulatioD, of programs.

Wordsworth proposes the use of schemns as procedures. More precisely, he presents an example

where a parametrised call to a procedure (schema) with an input and an output is equivalently

defined as a schema and can, therefore, be used as a command; refinement can proceed as usual

since procedure calls are schemas. As a matter of fact, \Vordsworth does not present his approach

to proced mes and parameters ill details, but it is clear that it is not as general as Back's approach,

in which procedures may be defined by any form of program aud not only schema.".

As ffil':'nt.ionPd in Chapter 4, in [51] Neilson develops a C implementation for a text editor bused

ou its Z specification; there he also introduces the technique of de\'elopment that he employs.

Besides considering the development of programs from concrete Z specifications, Neilson proposes

a tcchniqne for data refining Z specifications different from that in [58. 52. 16, 65]. Since ZRC is

not concerned with this stage of the refinement of a Z specification, we do not discuss this part of

Neilson's \\:ork here.

There are many similarities between Neilson's and Wordsworth's technique for (algorithmically)

refining schemM. Neilson defines refinement between schemas in the same way as \Vordsworth

and proposes the same refinement rules to introduce programming constructs (except for that

concerning assignment). As oppoSfti to Wordsworth. however, Neilson does not present refinement

rules corresponding to King's conversion rules. Instead, Neilson prows a number of properties of

the refinement relation and pn"Scnts several refinement rnles that are uscd in the development of

the text editor. In order to justify his refinement rules, Neilson defines the programming constructs

as schemas.

Another approach to the refinement of Z specifications is suggested in [63]. There Ward intro

duces in the language of Morgan's calculus generalisations of the Z conjunction and disjunction

schema operators so that specification statements can be combined and the Z incremental style

of b\IUding specifications can be used. The aim is to achieve a refinement calculus that can cope

with larger specifications itself.

\Vard, however, does not consider the ot.hpr Z schema opNators, which also contribute to the

success of the Z style, and it is not clear how they can be added to the refinement calculus. More

over, the conjunction and disjunction operators that he defines are not monotonic with respect

to the refinement relation. The techniqne that Ward suggests for refiuing programs built as con

junctions or disjunctions consists of using either the weakest precondition definitions directly or

refinement laws similar to the rules presented in [341 for translating schema expressions.

In [16J Diller proposes a ml'"thod of program verification for Z. As King integrates Z with

Morgan's calculus, Dillpr integrates Z with a Floyd-Hoare logic. In developing a program to

implement an oppration specified by a Z schema using Diller's technique, we first transform the

scbema into a Hoare triple and then proceed t.o write and verify the program a.<; usual in methods

based on Floyd-Hoare logics. The conversion procedure prilSented by Diller transforms a schema

that specifies an operation into a Hoare triple whose pre and postcondition are determined by the

schema (a.nd program variables) in consideration and whose program component is to be guessed.

121 5.2 Future Research

This work does not take advantage of the structure of schema expressions.

AB we have hriefly mentioned in Chapter 3, in [32] Josephs defines wp as a schema operator.

For a. schema Op that specifies an operation over a state defined hy a schema S, and for a schema R

that specifies a postcondition, wps' (Op, R) is definpd in [32J as a schema that specifies the weakest

precondition that guarantees that Op terminates in a state that satisfies R. In spite of this, our

characterisation of wp in terms of Z predicates (Theorem 2.6 in Chapter 2) is similar to that in [32J.
Operations with input and output, however, are not treated in [32].

The wp schema operator is used in [32] to define schemas and schema operators that represent

programs and program constructors of Dijkstra's langnage of guarded commands, and to define a

refinement relation between schemas. Based on these definitions, Josephs proposes a few refinement

rules. These rules mention the wp operator and, in summary, JDSephs's method is a refinement

wp calcnlus for Z. As in [66], specification statements are not. considered in Josephs's work; t.he

comments made above about Wordsworth's refinement rules are also valid for Josephs's rules; they

are in general difficult to apply and more appropriate for program verification instead of calculation.

5.2 Future Research

Throughout this work, we have assumed that the components of a schema that spf'cifies an oppra

tion are the before and after-state, input, and output variables. Initialisation operations, however,

characterise states, and not state transitions. Therefore, their components are just the after-state,

input, and output variables. As a consequence, ZRC cannot be used to refine initialisation opera~

tions. This is not a major problem because in general initialisation operations are very simple so

that their implementation does not require the use of a refinement calculus. Nevf'rtheless, it should

not be too difficult to exteud ZRC (and its formalisation) to deal with initialisatiou operations.

Schemas with no state compouents and initial variables, like that uamed Success which has been

defined in the specification of the class manager (see Section 4.1), aud which are often used in the

Oxford style of error treatment, are yet to be considered as well.

The formalisation of ZRC involves several proofs of theorems, lemma.<J, and corollaries, and,

in particular, many law derivations, all of which have been carefully checked. Since the activities

involv<ld in the elaboration and presentation of proofs are admittedly very error-prone, however,

by using a theorem prover to check the formalisation of ZRC, we can improve its reliability and,

consequently, that of the ZRC laws. A similar work is presented in [7], where Back and Wright

describe how the HOL proof assistant system can be used to formalise a refinement technique

largely based on Back's work.

The vd.tiable blocks with invariants (and invariant hlocks) of Morgan's calculus are [lot part of

ZRC-L. Their treatment incurs in considerable modifications to the wp semantics of ZRC-L, to the

definition of refinement, and, consequently, to the whole formalisation of ZRC. The definition of

an invariant in a variable block has influence on the beha"'iour of the program in its body: it may

assume and must preserve the invariant. In [43], Morgan defines weakest preconditions in relation

to an invariant, which is an additional parameter of wp. The task of establishing a correspondence

between the weakest precondition of a schema relative to an invariant and its relational semantics

may not be trivial. Moreover, as far as ·we know, the formalisation of invariants has not yet

been cOIl8idered in conjunction with procedures and data refinement. Invariants can be of help

122 Chapter 5. Conclusions

in rigorOllS developments, where their elimination is either ignored or justified informally. Their
usefulness in completely formal developments, however, can be discnssed.

As already remarked, King implements a Z specification using a llJodule written nsing the

language of Morgau's calculus. In [52], Potter, Sinclair, and Till show how to implement a driver
program which controls the execution of the operations of a Z spffification. In contrast, ZRC

concentrates ooiyon the refinement of individual operatioos. The ultimate implementation of a Z

spffjfication does involve the embedding of its operations, Of rather, of their implemelLtations, in
a program that provides an interface for them. The development of these programs, however, may

not be t.rivial and involve complex questions of modularisation. \\'e do not helieve that this issue
can be addressed lightly in a general context.

The schema ralruJus is largE'ly responsible for the success of Z, a.<; it encourages and supports
the development of st.ructnred specifications. r...lany have argued that the sclIema calculus is not

l'uough and have proposed modular extensions to Z [38, 9, 37, 59, 36J. Whether or not the sttllctnn>

of a specificatioJl should be used in its implementation, however, is still an open question. Works
on this area indllde [12, 53, 101. Our hope is that, as the issue of modularisation seems to be fairly

iudependent from that of implementing individual operations, znc can be integrated without
many difficulties with design methods concerned with the architectural aspects of programming.

The fact that the use of a refinement calculus in practice requires the support of a tool is widely
recognised. The works in [62, 21, 7, 68, 67, 22] describe different tools that have been developed

to support thi> llpplic.ation of Morgan's calculus and other refinement techniques. Before ZRC can
be seriously considered in practice, a tool that supports its application has to be made a\-ailable.

The consolidation of ZR.C also depends on the development of more case studies. Our ambition

is that, by establishing a solid foundation for the refinement of Z specifications, ZRC and its

formalisation become an additional motivation for further investigations in this field. Mnch work
is yet to be done on strategies for refining Z specifications.

Appendix A

Mathematical Notation

In Chapter 2 we have used the semantic metalanguage introduced in [8]. In this appendix. which
is partially extracted from [8J itself. we summarise the less familiar symbols of thi~ language that

we ha.ve actually employed.

:3 Choice relation: associates a set. with each of its elements. It is the inverse of the element

celation.

X3y~yEx

{... } Set extension function: takes a tuple of values as argument and yields the set containing
them.

{ ... }.(X!, ... ,Xn) = {rh""xn}

Constant function constructor

xO.y = x

U Compatible union: this function forms the union of compatible functions or, in other words.
functions wh~ uniou is still a function.

f U 9 =jUg provided T/x; dom! ndomg .f·x = g.x

Relational Constructors

(R1 , ••• , Rn) Tupling construction

x (Rl,' .,R,,}(Y1> .. ·,Yn) # X Rl Yl A ... A X R" y..

(R1 X ••• x R ..) Product of relat.ions

(XJ, ... ,x..)(Rjx ... xR,,)(YI, .. ,y,,) {:;l x,R1y, A .. /\ x"R" Y"

R- 1 Relatioual inverse

X R- 1 Y {:;l Y R x

124 Appendix A. Mathematical Notation

Cartesian products

A Jl Enumerated product: set of tuples (Xl, ... ,xn) such that XI, ... , Xn E A.

A+ Generalised product

A+ = Ui>oA'

Appendix B

Proofs of Some Theorems

In this appendix we present the proof of some of the theorems that have been proposed in Chapter 2,
but first we introduce a lemma.

Lemma B.l FDr every schema (d; d'; di?; do! Ip), and postcondition 1/;,

(V d'i do! • p =} 1/;) ;:::::

wp.(d; d'; di?; do! I pl· true => wp.(d; d'; dJ?; do! Ip).w

Proof

'<:Id'; do!.p=>1/;

== \:f d'; do! • «3 d'; do!. p) 1\ (p => w») V (..., (3 d'; do!. p) 1\ (p =} w»
[by predicate calculus]

=. \:f d'; dol. {(3d'; do!. p) 1\ (p => tP)l V (-, (3 d'; do!. p) 1\ P 1\ (p:::} 1,iI))

[by predicate calCUlus]

== V d'; do!. «3 d'; do!. p) 1\ (p => t/J)) v...., (3d'; do!. p) [by predicate calculus]

== ({3d'; do!. p) 1\ ('td'j do!. p => t/J» v...., (3d'; do!. p) [by predicate calculus]

== wp.(d; d'j di?; do! I pl· true => TVp.(d; d'; di?; do! I p}.1/J [by definition of of wp]

o
This lemma is used in the proof of the next two theorems.

Theorem 2.8 For all 5chemas OPt and 01'2 that Spe.CIJy operations over the same state and WIth

the same inputs and outputs, and Jor every postcondition 1j.J,

wp.(0Pl V 0",)." "

(wp.OPt.true V wp.OP2.lrue) 1\

(wp. 0Pt.true :::} u>p. 0PI'V') 1\ (u>p. 0P2.true => wp. 0pl.1j.J)

126 Appendix B. Proofs of Some Theorems

Proof Without loss of generality, we assume that OPt and DIn can be written in the form

(d; d'; di?; do! I Pl) and Cd; d'; dl?; do! IP21, respectively.

wp.(OPt V 0",)."

== wp.(d; d'; dz?; do! I PI V P2).1jJ [by a property of schema disjunction]

== (3 d'; do!. PI V Pl) /\ (V d'; do! • PI V P2 ::::} 1/;)	 [by definition of wpJ

=:«3d'; do!.pt}v(3d'; do! eP2» 1\ (Vd'; dO!'PI VP2::::}"l/J) [by predicate calculns]

== (wp. 0pi. true V !lip. 01'2- true) /\ (V d'; do! • PI V P2 ::::} tI;) [by definition of wp]

== (wp. 0pI. true V wp.OP2.true) /\ ('tid'; do!' PI::::} 1/J) /\ ('tid'; dol'P2"*1/J)

[by predicate calculus]

==	 (WP.Opl.true V wp. 0P2. true) /\ [by Lemma B.1J

(WP·Opl.true::::} Wp.Opl.1/J) /\ (wp.OP2. true::::} wp.OP'}..1/J)

o

Theorem 2.11 For every schema Op I.hat 5pecifies an operalJon, all declarations d, dl , di?, and
do! that introduce component!! of Op, and every postconditzon 1/;,

wp.(3dj d'; di?; do!. Op).1/; ==

(3 d; di? wp.Op.true) /\ (V d; di? wp.Op.trne =? Wp.Op:I!J)

provided the variable!! of ad, ad', adi?, and ado! do not occur free in 1/J.

Proof We consider an existential quantification 3 dl ; d~; dil?; dOl! • Op, where Op is the schema
(dl ; d2; df;~; dil?; di2 ?; dOll; dD:lllp),andadl nad2 =0,adinad2=0, adll?nad~?=0,

and ado l !na:d02! = 0.

wp.(3d]; d~; dil ?; dOll. Op).1/J

::= wp.(d,; d2; di2?; dD:l! I 3 d1 ; df; dil?; dOll. p).1/J

[by a property of schema existential quantification]

== (3~; dD:ll • 3 dl ; df; dil?; do1l.p)/\(Vd2; d02!.(3dl ; d~; dil ?; dol!.p)=?'¢!)

[by definition of wp]

== (3~; d02!. 3dl ; di; dil?; d01!.P)/\(\fd2; d02!.Vdl ; di; dil ?; dOll.p=?1/J)

[by adl' adi, ad11?, and adol! are not free in 1/J]

== (3d]; di l? 3d{; d2; dOll; dD:ll.p)/\(Vdl ; di]?Vd~; d2; dOl!; d02!.P=?1/J)

[by predicate calculus)

== (3 di; dil? wp.Op. true) /\ (V dl ; dil? wp. Op. true =? wp.Op.1/J)

{by definition of wp and Lemma B.IJ

o

127

Theorem 2.14 For every schemCJ Op that sPfOcifies an o~rut1on, ailluts a/variables 09, oi?, oo!.
ns, nl?, and no! without duplicates, and every postcondition!/J where the variables of 09, os', oj?,
and oo! do not occur free,

wp.Op[ns, ns' , m?, no'/os, os', oi?, oo!].tjJ ==

(wp. Op.w[os, ol, oi?, 00!/n5, TIS' ,ni?, no!])[n5, ni?/ as, oi?J

We assume that the variables 0/ ns, TIS', ni?, and no! are not eomponents 0/ Op; and that the
variables %s, oi?, ns, TIS', ni?, and no! do not occur as global variables in Op.

Proof We consider a schema Op of tbe form {d; dos; d l
; dos'; dt?; doi?; do!; doo! I p}, where

aos, dos', doi.?, and doo! declare the variables of Os, os', Oi?, and DO!, respectively. We assume
tbat d, d', di?, and do! declare the components not affected by the renaming. We also assume
that the 'ffil'iables of ns, ns', ni?, and no! are declared by dns, dni, dn1?, and dno!.

wp.(Op[ns, ns', ni?, noll os, os', oi?, oo!)).1/;

'= (3 d'; dns'; do!; dno! _ pIns, n51
, ni?, nollos, OSI, oi?, oo!]) /\

('rid'; dns'; do!; dno!_p[ns,ns',m?,no!/os,os',oi?,oo!]:::}1/;)

[by a property of renaming and the definition of wp]

'= (3d'; dos'; do!; door - p)[ns, ni?los, 01'1]/\

('rid'; dns'; do!; dno! - p[n8',ns',ni?,no!jos,os',oi'?,oo!] => 1/;)

[by 1~' and no! are not free in p, and os and oi? are not free in d', dos', do!, and doo~]

-= (3d l
; dos l

; do!; doo~ - p)[1~,ni?/os,oi?] 1\ [by os, os\ oi?, and oo! are not free in 1/;J

(V d'; dns'; do!; dno! _ pIns, ni?/os,oi?][ns', no!/o8', oo!J =>
1/;[os, os' , oi?, oo!/r~, nsl

, ni?, no!][ns, nl?los, ot?][nsl
, noll OSI, oo~])

'= (3d'; dos'; do!; door _p)[ns,ni?/os,oi?]/\

(Vdl
; dos'; do~; doo!. p:::} 1/;[os,os',oi?,oo!jns,ns',ni?,no!])[ns,ni?lo.'i,oi?]

[by ns' and no! are not free in p, and os and oi? are not free in d', dos', do!, and doo!J

'= «(3 d'; dos l
; do!; door _ p) /\ [by a property of substitution]

(V d'; dos l
; do!; door _ p :::} 1/;[os, os', oi'?, oo!/ns, ns', ni?, no!]))[ns, m?/os, oi?]

'= (wp.Op.1/;[os, os', oi?, oo!/ns, ns', ni?, n01})[ns, ni?/ os, oi?] /by definition of wpJ

o

Theorem 2.15 For every generic schema deSignator Op[CI, e2, en], where Op is a generic

schema that specifies an operation and has parameters Xl, X2, ... , Xn; and for every postcondition

1/J where Xl, X2, ... , Xn do not occur free,

wp. optej, e2, .. , enJ. 1/J '= (wp. Op.1/;)[el, e2, .. " en/'Ll, X2,. ., Xn]

provided the components of Op are not free In el, e2,.'" en'

128 Appendix B. Proofs of Some Theorems

Proof As Op is a generic schema that specifies all operation and has parameters Xj,X2, .. ,Xn ,

we can assume that it can be writ~en in the form (d; d'; dt?: do! I p)[Xl. X2, ..• , x.. l. In this case,
the generic schema designator Op[el, e2, ... , en) can be expanded to the schema below. since the

variables of ad, ad', adi? 1 and ado! are not free in e\, f2,· .. ,en'

(d[fl, e2, ... , en/XlI :1:2,. ., xnJ; d/[el, C2, ... , en/Xt, I'2" .. , xnJ;

d1?[el, e2,·.·, e.".!Xj, X2, , In]; do![el, e2,· .. en/Xl, X2, ... , Xn] I

p[el, e2,·.·, en/ Xl, X2, Xn])

Theorem 2.6 applies to this schema and hence we can make the following deduction.

wp.(Op[el' f2, ... , en]).1/!

= (3d l
[ej,f2," ,e.".!xt,X2, .. ,x"]; do![el,e2, ... ,en /Xl'X2" •• xnJe

p[C\.f2, .. ,e",.!Xl,X2, ... ,XnJ) 1\

('It d'[el' f1, .. , en/Xl, I2,···, Xn); do![el, e2,· ., en/XI, X2,'" .Xn]

pre!. e2,' .. , en/Xl, X2,· ., Xn] => 1/;) [by definition of wp]

== ((3 d' ; do! • p) 1\ ('It d' ; do! • p => "l/J))[el, e2,.··, en/Xl, X2, ... , In]

lby Xl,:t;?, ... , X~ are not free in 1/1, and adl and ado! are not free in el, e2, ... , en]

== (wp. Op.rjo)[ej, e2,' .. , en/Xl, X2,. ., xn] [by definition of wp]

o

Appendix C

Weakest Precondition Definitions

In this appendix we provide a. weakest precondition semantics for ZRC-L, Most of the definitions
that we present have alIeady been intrOduced and discussed in Chapters 2 and 3; tllis appendix is

a summary.
For every program p and postcondition 1/J which possibly contains free program varia.blli'.s, we

have the definitiol1 below, where vi is the list of all program variables and cl is a list of fresh

constants, none of which is free in p or 1j).

wp.p.,p ~ (wp.p.,p[cllvl])[vllcl]

For postconditions 1/J that do not contain free occurrences ofprograrn variables. we define wp.p.'IjJ

by recursion over the structure of p as follows.

1.	 wp.(d; d'; di?; do! I p).tjJ =0 (3 d'; do!. p) 1\ (\I d'j do!. p::::} 1jJ)

2.	 wp.w; [pre l past].1j' == pre 1\ 01 dw' • post. =} 1,b)[-/'J

provided dw declares the variables of w.

3.	 wp.skip:tj/ == t/J

4.	 wp.{pre}.lj/ =: pre A 1/J

5.	 wp.[po,,).,p' '" po"[~1'1 ,*,p

6.	 wp.vl,~ d.,p' '" ,p[dlvl]

7.	 WP.(Pl; ",).,p '" Wp·Pl.(WP·"'·,p)'

8.	 wp.if 0 i • 9i --+ Pi fl.'¢ == (V i • gi) A (/\ i • gi =} wp.p•.1/J)

9.	 wp. II var dvl. p]1 .,p '" Vdl'. wp.p[l, I' lvi, vi']"

provided

•	 dvl and di declare the variables of vi and I, respectively, and differ just in the names of
the variabll:".s that they declare;

•	 The naml:".s of i and I' are not free in p and 1j).

130 Appendix C. Weakest Precondition Definitiol15

10.	 wp.llcon dcl,pll.,p=3dlowp.pll/clj.,p

provided

•	 del and dl declare the constants of cI and t, respectively, and differ just in the names

of the variables that they declare;

• The names of land [' are not free in p and u.' •

11.	 (val dvl 0 p)ld) ~ II vae dl • I ,~ e1; p[I.I' /vl, vi') II

provided

•	 dvl and dl declare the variables of vI and I. respectively, and differ just in the names of

the variables that they declare;

•	 The names of I and II are not. free in p and d.

12.	 (res dv1l • p)(Vl2) = I[var dl • prj, (/ / vi}, vlU; vb.:= I JI
provided

•	 dvlt and dl declare the variables of vlt and l, respectively, and differ just in the names

of the variables that t.hey declare;

•	 The names of l and I' are llot free in p, and are llot in Vl2'

13.	 (val-res dtlh • p)(v12) = I[var dl • I := v12; p[l, [/ /vlt, vlll j vh:= IJl
provided

•	 dvll and dl declare the variables of vI] and l, respectively, and differ just in the names

of the variables that they declare;

e The names of I and II are not free in p, and are not in vI2.

14.	 (resv:tep)(jx)::::I[varu:te(resv:tep)(u); j:::::jEB(XHU} JI

provided u and u' are not free in p.

15.	 (val-resv:tep)(jx)==I[varu:teu:=jx; (val-resv:tep){u); j:::::jEB{XHU} 11
provided u and u are not free in p.'

16.	 (par dvll; jpd e p)(elL, el2) == (par dvl] e (jpd e p)(e~))(eld

provided the variables declared by dvlt are not freoc in e~.

17.	 I[peoe pn '" (jpd 0 P,)(pn) 0 p,(pn)]I~ p,(~(jpd 0 Ptl)

l8.	 do 01 • g• p; od =: I[proc It == if 0i e g, Pi; it 0 ..., (V I - g.) -+ skip fi - ~t 11

provided it is not free in g, and P•.

19.	 l[procpn == (Jpd e pd(pn) variant n is e - P2(pn)ll= P2(J.j(jpd -I[con n: Ze PIJl))

Appendix D

Laws of ZRC and Their Derivations

Tbis appendix enumerates the conversion and refinement laws of ZRC, together wilD their deriva,
tions. The data refinement laws come at the end.

D.I Conversion Laws

Some conversion laws of ZRC apply to schemas of the form {as; dl?; do! Ip}. The lemma below

characterises their weakest precondition.

Lemma 0.1 For every postcondition W,

wp.{.6.S; di?; do! Ip).w =- inv /\ (3d'; do!. InV' /\ p) II ('V d/; do! • mv' 1\ p '* t/J)

where S :2 (d I inv).

Proof

wp.(L'>S; di'; do! I p)."

== wp.(d; Il; di?; do! I inv /\ mv' /\ p).1/J [by a property of b.-schemas and inclusion]

== (3 d'; do! • inv 1\ inuJ
/\ p) /\ (\I d'j do! • inv /\ inv' 1\ p ~ t/J) [by definition of wp]

== inti 1\ (3 d'; do!. inv' /\ p) /\ (Vd'; do!. inv /\ iml' /\ p ~ 1,b)

[by ad' and odo! are not free in inv]

== (3d'; do!. inv' /\ p) II (Vd'; do'. inti II (into /\ inti' /\ p => 1,11))

[by od' a.nd odor are not free in inuJ

:;: (3 d'; do!. inu' /\ p) /\ (V d' ~ do! • InU /\ (inu' lip=> tP)) [by predicate calculus]

=- inti /\ (3 d'; do! • intl l II p) /\ (\I dl
; dot. inti' /\ P => 1/;)

[by od' and od!)! are oat free in inti)

o
In this proof we have relied on the fact that the after-state and output variables are not free in
inti. This is a. consequence of our assumption that the decorations "I", "?~ and "!" are not used

for any purpose other than those established by the Oxford style of writing Z specifications.

132 Appendix D. Laws of ZRC and Their Derivations

Basic Conversion

Law be Basic conversion

(""8; di'; do' I p)

bC

nd,odo! : [inv 1\ 3 d'j do!. iov' 1\ p, mv' 1\ p]

where S == (d I iov)

Derivation

wp.(6.S; d,:: do! I PI:I/;

= inv 1\ (3d'; do!einv'l\p)I\(Yd': do!einv'l\p=o:}1P) [by LemmaD.1J

=: inti 1\ (3d'; do!. inu' 1\ p) 1\ (V d'; do!. inv' 1\ p =0:} 1fJ)[od/od'J [by od' are not free in d']

== wp.tJdl,Cldo! : [i1w 1\ 3 d'; do!. inv' i\ p, inv' 1\ p) [by definition of wpJ

o

Law be Basic conversion (operatiolls that do not modify the state)

(38; dr"!; do! I p)

bC

odo!: [inv 1\ 3do!. p[O:d/Cl:d'J,pJ

where S £ (d I inv)

Derivation

(2S; dl?; do! I p)

= by ell ... , en are the state components (elements of od)

(6.5; di?; do! I p 1\ c~ = C1 1\. . 1\ c~ = en)

~ bC

InV 1\ 3 d'; do!. inti' 1\ p 1\ c; = c\ 1\ ... 1\ c~ = en,]
od,ado! ; I[InV 1\ P 1\ c; = C1 1\ ... /\ c~ = Cn

= by predicate calculus

ad.ado! : [inv /\ :3 do!. p[od/odl
], inu ' /\ p /\ c; = ct /\ ... c~ = en}

= efR

ado! : [inv /\ 3 do! • p[od/od']' inv /\ pJ

= 3P (in both directions)

ado!: [inv /\ 3do!. p[od/o:d'],p]

o

133 D.l Conversion Laws

Law be Basic conversion (operations that do not modify some state components)

(as; 8T; di?; do! Ip)

[:; bC

ods,odo! : [invs /\ invT /\ 3dg; do!. (invg /\ p)[odTlod;"J, (invg /\ p)[odTlodTJ]

where S == (T; ds I invs) and T == (dT I mVT)

Derivation

(as; 8T; dl?j do! I p)

~bC

mvs /\ invT /\ 3 dgj d;"; da!. invs /\ mv;" /\ p /\ 2.T,]
ods,odT,ado! :

invg /\ invr /\ p /\ 2.T

[:; cfR

invs /\ invT /\ 3 dg; d;"; do! • invg /\ inv;" /\ p /\ 2. T,]

ods,odo! : [invg[odTlodrJ/\ invT /\ p[odTlod;"J

!;;; sP

ads. ado! : [invs /\ invT /\ 3 dg; dTj do! • invg /\ invr /\ p /\ 2. T, (invs Ap)[odT lad;" J]

!;;;wP

ads, ado! : [invs /\ mVT /\ 3 dg; do!. (invg /\ p)[odTlad;"], (invs /\ p)[adT lad;"] 1

o

Schema Disjunction

The lemma below is used in the derivation of two formulations of sdis]C (schema disjunction

conversion).

Lemma D.2 For all schemas OPt and 0P2 that specify operations which aet over the same state

and have the same input and output variables,

wp.(OPt V 0fJ2).1/J ~ (prel V pre2) /\ (prel ~ WP.Opl·1/J) /\ (pre2 => wp.OP2.'l/J)

where pre OPt == pret /\ inv /\ t, pre 01"2 == pre2 /\ inv /\ t, mv is the state invariant, and t is the

restriction that is introduced by the declarations of the state components and mput variables.

Proof The schemas OPt and 01"2 can be written as (as; di?; do! I pd and (as; di?; do! I P2),

respectively, where S == (d I inv).

(Case pret =: inv /\ 3 d1j do!. inv l
/\ Pl and pre2 == inv /\ 3 d/j do!. inv l APl)

wp.(OPI V 0",).,;,

==	 (wp.OPt·trueVwp.OP2.true)/\ [by definition of wpJ

(wp.OPt. true => wp.OPt.'l/J) /\ (wp.OP2' true => wp.OP2.'l/J)

134 Appendix D. Laws of ZRC and Their Derivations

=- «(inti 1\ 3d'; all!. InV' 1\ pt} V (inv 1\ 3d'; do!. inv' 1\ P2)) 1\ [by Lemma D.I]

«inv 1\ 3d'; dol_ InV' 1\ PI) =} WP·Opl.1tJ) 1\ «inti 1\ 3 d'; do! • inv' 1\ 1>2) ==> wp.OP2:Ij;)

(Case prel =. inti 1\:3 dl ; do!. inv' 1\ PI and pre2 =- 3 d'; do! • inv' /\ P2)

WP·(Opl V 0P2).1j;

== «(inv 1\ 3d'; do!. InV' 1\ pt} V (inv 1\ 3d'; do!. inv' 1\ P2}) 1\ [by the previolls case]

«inv 1\ 3d'; do!. in v' 1\ Pl) ~ wp.OPt.'ljJ) 1\ «inti 1\ 3 d'; do!. inv' to. V2) => wp.OP2:Ij;)

_ «(inti 1\ 3d'; do!. InV' 1\ pJJ V (3d'; do!. in v' 1\ 1'"2)) 1\ HlV 1\ [by predicate calculus]

«inv 1\ 3d'; do!_ inv' I\pJl =} WP.Opl.1/J) 1\ «mu 1\ 3d'; do!_ InV' 1\ P2) ==> wp.Opz.lj;}

=> «inv 1\ 3d'; do! • iml' /I.. pt) V (3 d' ; do!. inv' 1\ Pl)) /\ [by predicate eatculus]

« InV 1\ 3 dl
; do!. InV' 1\ pd => wp. 0Pt·1/-·') 1\ (3 d' ; do!. InU' 1\ P2) => wp.OP2.lj;)

The eases in which pre} =. 3 d' ; do!. mu' 1\ PI and pre2 -= inv 1\ 3 d'; do! • intI' 1\ P2, and in which

pret -= 3 d'; do! • inv' 1\ PI and pre2 :::; 3 d'; do!. inv' 1\ P2 are similar. Sinee t is an axiom (it
reflects type declarations), we do not need to consider the cases in which t is a conjunct of pre] or

pre2'

o

Law sdls]C Schema disjunction conversion

0Pl V 0P2

i; sdisjC

if pre] ---t 0PI 0 PTe2 ---t 0P'l fi

where

• pre OPt ::= prel 1\ inv 1\ t;

• pre 0P2 ::;;:: pre2 1\ inv 1\ t;

• inv is the state invariant;

• t is the restriction that is introduced by the declarations of the state components and

input variables.

Syntactic Restriction OPt and 0P2 act over the same state and have t.he same inpnt and
output variables.

Derivation

WP·(Opl V 0P2).Tj.J

==> (pre. V pre2) 1\ (p''et =} UP.Opl.Tj.J) 1\ (p''e2 ::} Ulp.OP2.lj;) [by L.mma D.2]

-= wp.if prel ~ OPt 0 pf'e2 ~ 0P2 fi.Tj.J [by definition of Ulp]

o

135 D.l Conversion Laws

Law sdisjC Schema disjunction conversion with variable introduction

0Pl V 0P2

!;;;; sdisjC

II var v , t • v , [',ue, ¢Iv' Ivll; if,p, --> {¢ A ,p,} Op, 0 >h --> {¢ A ,p,j 0", fi II

provided

•	 1> /\ (pre} V pre2) ::::} Th V Th

•	 ¢ /\ (prel V pre2) ::::} (l/Ji ::::} PTei) for i := 1,2

where

•	 pre 0PI = pre} /\ inv /\ t;

•	 pre OP2 = prf!'}. /\ inv /\ t;

•	 inv is the state invariant;

•	 t is the restriction that is introdueed by the declarations of the stat.e components and
input variables.

Syntactic Restrictions

• 1>, '!h, and lh are well-seoped and well-typed predica.tes;

• 1>, WI, and tP2 have no free dashed variables;

•	 0PI and 0P2 act over the same state and have the same input and output variables;

•	 v and Vi are not free in OPt and 0pl.

Derivation

"",.(Op, V O",).,p

== 'iv: t. Wp.(OPl V 0P2).W [by v and Vi are not free in Opl, 0P2, and wJ
::::} 'iv: t. (prel V pre2) /\ (prel ::::} WP·OPI·W) /\ (pre2::::} wp.OP2·w) [by Lemma D.2]

::::} 'iv: t • ¢::::} ¢ /\ (prel V p1"'e'z) /\ (prel ::::} WP,OPl.W) /\ (pre2 ::::} wp.OP2.f/:)

{by predicate calculusJ

::::} 'iv: t. ¢::::} (WI V W2) /\ (tPI =:} WP·OP1·W) /\ (W2::::} wp.OP2,W) [by the provisos]

'" If v , t • ¢ => (,p, V ,p,) A (,p, => ¢ A ,p, A wp.Op,.,p) A (>h => ¢ A ,p, A "",. O",.,p)

[by predicate calculus]

== 'i v : t • 'i v : t • ¢ =:} [by v is not free in t]
(,p, V ,p,) A (,p, => ¢ A,p, A "",.Op,.,p) A (,p, => ¢ A,p, A ""'.0l'l.,p)

== 'i v : t. ('i Vi: t • ¢[vl/v] =:} [by predicate calculus]

«,p, V >h) A (,p, => ¢ A,p, A wp.Op,.,p) A (,p, => ¢ A,p, A wp.O",.,p))[v'lv])

== 'i v: t • ('i Vi: t • ¢[v'/v} =:} [by a property of substitution]

«,p, V ,p,l A (,p, => ¢ A,p, A "",.Op,.,p) A (>h => ¢ A,p, A "",. O",.1/»)[v'l vJ')[_1'l

136 Appendix D. Laws of ZRC and Their Derivations

='Vv: t. (lflll : t. ¢[vllv]:::} ((Vt V If'2) /\ la property of substitution]

(", 0> ~ /\ '" /\ wp. Op,.") /\ (", ~ ~ /\ '" /\ wp.O",.") IIv' Ivl'lIvIv'II_I']
~ wp.l[va, '" t. v, Itme,~lv'lvJ J; if ",-+ {~/\",} OP,O '" -+ {~/\ 'i~} 0", fill·"

[by definition of wp]

o

Law 9dis)C Schema disjunction conversion with boolean variable introduction

OPl V Op2

~ sdisjC

I[vat b : Boolean. b : [true, b' ¢;l prell; if b -t OPt 0 pre2 -t 0P2 ft 11

where

•	 pre OPt == pret /\ inv /\ t;

•	 pre Om == prel /\ inv /\ t;

•	 inv is the state invariant;

•	 t is the restriction that is iutroduced by the declarations of the state components and

input variables.

Syntactic Restrictions

_ 0Pl and 0P2 act over the same state and have the same input and output variables;

•	 band bl are not free in OPl and 0Pl'

Derivation

OPt V 0P2

~ sd,j"jC

I[vat b : Boolean

b, Itme,(b <> pre,)[b'lb] J; (i)

if b -+ {(b <> pre,) /\ b) Op, (ii)

o pre2 -t {(b '¢> prell /\ pre2l 0P2 (i1i)

fi

JI

The proof-obligations that are generated by this application of sdi5jC are discharged in wha.t
follows.

(b ~ prel) /\ (prel V PT'e2)

" (b<> pre,) /\ (b V pre,) [by predicate calculus]

=> b V pre2 [by predica.te calculus]

137 0.1 Conversion Laws

(b <=> pred /\ (pre} V pre2) /\ b

=:	 (b <=> prell/\ (pre, V pre2l /\ prel [by predicale calculus]

=} pre}	 [by predicate calculus]

(b <::? pre,) /\ (prel V pre2) /\ pre2

=} pr€2	 [by predirE.te calculus]

The programs (i), (ii), and (iil) are further refined below.

(i) \; ,p

b : [true, b' <::? prell

(ii)	 !,;; assumpR

skip; Op}

=slC

Op,

(iii) !,;; assumpR

skip; 0P2

==	 siC

0",

The coUected code is exactly the variable block in the above formulation of sdtSjC.

o

Schema Conjunction

Law sconjC Schema conjunction conversion

OPt /\ 0rJ2
!,;; sconjC

0PI; 0Pl

Syntactic Restriction 0PI and OP2 have no common free variables.

Derivation The schemas 0Pl and OP2 can be written in the form (dl ; d1i di1?; dOl! I PI) and
(d2; ~; di2?; dO]! I P2), respectively.

wp.(Op, 1\ 0",)."

== wp.(d1; d2; d:; ~; dil?; dJ2?; dOl!; dD:2! I PI /\ P'2).TjJ

[by 3. property of schema conjunction]

-	 (3 d;; d~; dOL!; dD:2!. PI /\ P2) /\ ('9' d:; ~; dOl!; dD:2! • PI /\ P2 =} TjJ) [by definition of wp]

138 Appendix D. Laws of ZRC and Their Derivations

= (3 d1i dOl!. PI 1\ 3 d2; do:/ - P2) /\ (\I d1; ~; dOl!; d02! • Pl 1\ P2 "* 1/1)

[by frd~ and ad02! are Dot free in pd
= (3d~; do t !,pJ}I\(3d2; d02!'p':dl\(Vd;; d2; dOl!; d021-PIAP2::::}1/J)

[by ad1and OdD}! are not free in d.2, dQ;<!, and P2l

- (3d{; dOl!.pdl\(3d~; d02!'P2)I\{\id~; do 1!epl::::?Vd2; d02"P2::::}l,i:)

[by Q~ and ad02! are not free in pd
== (3d{; do\!ept}1\ (Vdf; dOl!' (3d.2; d02!'P2)I\(PI::::}(Vd1; d021,P2=>w)))

[by ad{ and ado l ! are Dot free in d.2, d02!, and P21

=>(3d1i dOl!.pdl\(V~; dO\!'Pl::::} (3d.2; do/'P2)1\ (Yd2; dO;l!'P2=>'l/J))

[by predicate calculus]

== (3d{; do1!.pd 1\ (Vd{; d01!'Pl:::}{(3d2; d02!'P2)/\(\id2; d021'P2::::}lj!»)[odlladd)

[by adl are not free in d2, dQ:2!, P2, and '~bl

== wp.(Op) ; OP2).'ljJ [by definition of wp]

o

Law sconjC Schema conjunction conversion (hierarchical specification)

{ASI ; dl]?; dOl! IPI} /\ tlSz

~ sconjC

I[con del •

(AS1; diJ?; dOl! IPt);

(2S,; d,; <J; I ;n",ld/ad,] A ;n",ld/add A p,[d/add[_I'] A ;nu!,)

II
provided (prec /\ inVJ /\ inv~ /\ PI) ::::} P~

where

• 51:: (dl I invI) and S1. == (Sl; dz I inL'l);

• pre((ASI; dil ?; dOl! I PI) /\ A51) -= prcc /\ inVJ /\ inL'l/\ tc;

• prl'(A52 /\ 3Sd == prez 1\ inVl /\ inL'l/\ ~;

• tc and t2 are the restrictions introduced by dj ; d2i dil ? and dl i d2, respectively;

• del declares the constants of d.

Syntactic Restrictions

• The components of ASI arc the only common free variables of (AS1; dil?; dOl!) PI) and

Afh

• The names of cl and el' are not free in {AS1; dil?; dOl! IPI} and LlSz;

• el and ad1 have the same length;

• The constants of cl have the same type as the corresponding variables of adl.

139 D.I Conversion Laws

Derivation

(Li.Sl ; di11; dOl! J Pll/\ Li.Sz
= by a property of schema conjunction

(Li.Sz; di11; dOl! I PI)

~ bC

o:dl , adz, adol! : [invI /\ inVz /\ 3 d~; ~; dOl! • inv~ /\ inu.£ /\ PI, inv~ II inu2 /I PI]

~seqc1

I[con del •

,.[inU1/\inVz/\3dl;~;dOI!.inV~/\jnu2/\Pl']
0:dl,ad01·· <]

(3 d{; ~; dOl! • lnVi /\ lnV2 /\ PI) /\ lntJ:i /\ lnVz II mv~ II PI

3 d(; <12.; do,! • i~v; A >nO; A p,) Id/ad,][_/'], j
ad1,odoz,adot !: (mVl /\ lnt.'2 /\ mVI /\ PI (0)

[
{inv~ /\ inv;2 /\ pt}[eljo:dd

II
~ sP

o:dl , adot ! : [inU1 /\ inVz /\ 3 d1; ~; dOl! • inv~ /\ inu2 /\ Pt, invl/\ pd

~ wP

adl1 o:dol ! : [inU1 /\ 3 di; dOl! • invl/\ PI, invl/\ PI]

=bC

(Li.Sl ; dil 1; dOl! I PI)

The refinement of (i) proceeds as follows.

(0) [; ,p

o:d l , ~ d~; ~.; dOl! ~ invf /\ inv2 /\ PI) [eljo:dIH_I'],

ad" lntJ:i II mt.'2 /\ mVl/\ PI
(

[

o:dol ! inv1/\ invl(eljadll /\ inVz(eljadtJ /\ Pl[eljadl][_I'] /\ in~ II 281

Below we discharge the proof-obligation generated by this application of sP.

«3 di; ~; dOl! • invl/\ inu.£ /\ PI) /\ inU1 /\ IrlVz /\ invi /\ ptl[eljo:dIH-tJ II

invi /\ intlJ.(cljo:dd /\ inVz[cljo:d1] /\ Pr[cljadIH-tJ /\ inu.£ /\ 381

:::> invi /\ int4 /\ PI [cljo:d1H_t] /\ :::81 [by predicate calculus]

= invl/\ inu.£ /\ pdcljo:dlH-tHadUo:dtJ /\ 281 [by d1 declares the components of 81]

= inv~ /\ lnu2 /\ pdcljo:dl] /\ 3S1 [by o~ are not free in PI]

:::> (invi /\ inv;2 /\ ptl[eljadt] [by predicate calculns and a property of substitution]

140 Appendix D. Laws of ZRC and Their Derivations

We continue as follows.

~ wP

adl ,
. [wVL 1\ 3d2. inV:l[cljadJ) A. int./;![djodd /\ pdclladl)f~/] /\ inU~[adtladJ].]

ad2 ,
invj/\ int!J.[clJadJl /\ 1TU-'l[eljodIJ /\ PI [cl/oddl-tl /\ mtlf /\ 3S1

UdOI!

This application of wP gives rise to the proof-obligation that we discharge below.

({3 di; dl; dOl!' mv{ /\ UIV~ /\ pd /\ inti) 1\ Int/;! /\ inv{ /\ pIl[cljad1H-I'J
:= !nVt 1\ intIJ.[cljadlJ /\ int./;![cljad1J /\ pdcljaddl-I'l/\ [by a property of SUbstitution]

((3 dL d2; dOl!. invi 1\ mV2 /\ pd 1\ intll 1\ int>z 1\ invj 1\ pd[cljad1H-Fl

~ invI/\ mudd/ad}] 1\ inp,![cljadtl/\ pdcljaddl-I'J 1\ (3d2. in~[oddad1Jnclloddr-J'J

[by the proviso (in its weakest form)}

= intll 1\ intl][cljlldd /\ int./;![cljodd /\ pzlclladl][~I'J 1\ (3d.i. invHadljodtJ)

[by ad; and ad2 are not free in ~J

= Ult!t /\ 3 d2. invt[cljod1]/\ 1nt./;![cljodd 1\ pt[cllodl][~I'J /\ invHoddodll

[by od2 are not free in intlj[cI/odd, inVl[d/odl], and rdcl/odIH_/']]

Finally we get to the required result.

[; ,/R
inul fl3d2. int.r:l[d/odd /\ InVl[cl/odll 1\ rdfl/odlH-l'l /\ mt~[odJ!adn,]

od1,odz : [inu(/\ inuJfcl/od1l /\ inV:2[cl/od1l /\ rdcl/odd[-I'] /\ Wv2 /\ 2:S1

~bC

(3Sl ; d2 ; ~ I inudcl/odll /\ inU:2[cl/od1l fI rdcl/od]H-l'l /\ inv;)

o

Assignment

Law assC Assignment conversion

(~S: di?; do! I c~ = el /\ ... /\ c~ = en fI oJ! = en+l /\ ... fI om! = en+m)

~ assC

ct,.-., e", 0l!,"" o.... ! := et,···, en+m

provided inu[el,' ., enl CI, ... , en]

where

• S =(d I inti)

• ct , Cn are state components (elements of ad);

• Ot!, , om! are output variables (elements of ado!).

Syntactic Restriction ad' and ado! are Dot free in eJ, .. . ,en+....

141 0.1 Conversion Laws

Derivation

wp.(C>.S; di?; do! I cl = CI /\ ... /\ c~ = en /\ 01! = en+l /\ ... /\ om! = en+m}.1,b'

=>(Vd'; do!" inti' /\ c1= el/\'" /\ c~ = en /\ 0l! = en+l /\ /\ om! = en+m => 1//)

[by definition of WPJ
=> (V d'; do! ,. inv' /\ cl = e1 /\ ... /\ c~ = en /\

C~+l = Cn+l A ... A c~+/ = cn+//\ Ol! = en+1 A ... A om! = en+m => 1jJ')

[by predicate calculus (Cn+l,' .. ,Cn+l are the state components not in CI, ... , cn)J

inv'[el,' ., IOn, Cn+l,"" cn+l/c;, ... , c~+d =>

~l[el,' " IOn, Cn +(,···, Cn+1. IOn+I,· ,lOn+ m /ci,.··, C~+/, Ol!,"" om!]

[by ad' and ado! are not free iii el, ... , e n+ m]

_ tnv[CI , en/CI,"" cn] => ",p[el,"" en+m/CI, ... , Cn, 01 t, ... , om~]

Iby Cn+1,'" , Cn+l are the state components not in Cj, ... , cn]

=> ~[el,"" en+m/CI'.'" cn, 011, ... , o",!J [by the proviso]

== WP,Cl,"" en, 01!,"" om! := e}, . . , en+m.1// [by dlOfinition of wp]

o

Schema Composition

Law scompC Schema composition conversion

0PI ~ 0P2

~ scompC

0Pl; 0P2

provided (p~c A Opd => pre.2

where

,. pre(0Pl Q 0P2) == pree A inv A t A tl A t2;

,. pre 0P2 == pre2 /\ inv A t A t2;

,. inv is the state invariant;

,. t, t l , and t2 are the restrictions tha.t are introduced by tbe declarations of the state

components, of the input v3l"iables of 0PI, and of the input variables of 0112, respectively.

Syntactic Restrictions

,. Opr and 0P2 act over the same state;

,. OPt and 0P2 ha.ve no common output variables.

142 Appendix D. Laws of ZRC and Their Derivations

Derivation The schemas OPt and 0P2 can be written in the form (~S; di1?; dOl! IPi) and
(6.8; di2?; do<.!! I 1'2), respectively, where S:= (d I tnv) and ado1 ! n ado:.!! = 0.

(6.8; di1?; do,! I PI) \I (L~S; di2?: do:!! I P2J

= by a propert.y of schema composition

(6.8; dil 7; d~2?; do]!; d02! I 3 d ll
• inv" 1\ Pilod" (ad'] 1\ P2[ad" (ad])

i;;OC

, I [inVl\3d1j dOl!; d021.int/1\3d". mv" I\pdad"/od'J 1\ P2[Od fl /QdJ,]
ad, adot ·.ad02_: inv' 1\ 3 d" • mv'l 1\ Pl [adll fod'] 1\ P2[adlt (ad]

~ !ieqcl

I[con del.

ad, [imJI\3d/; dOl!; dO:lleinv'1\3dlletnt/ll\pdodll/adl]I\P2[adll/crdj.l

1\ 3 dlladot !,: (~d'; dOl!; d02! • Int" • inv" 1\ pt{ad ll (ad']" P2[ad" lad]) j; <1

odQ1! tnV 1\ tnV 1\ PI

3d'; dOl!; dQ;?!. trW' 1\)

ad, , ,I 3 d" • on," A pJ!ad" (ad'J A "'lad" (ad) id(adll_('], I (')
ad0l->_ (. . I I

mv 1\ tnV 1\ PI
ad0'2! (inti' A :J d ll

• inv ll A pdad" (ad'] A p'l!ad"(adl)[cl(ad]

JI
~	 sP

ad,
~nvA:Jd'; dOl!; d02l.imlA3d".mvIlAPI[ad"(ad'jAP2[ad"(ad],]

ado l !, [mv' APt
adO;;?!

r; wP

ad, o:dOl!' ad02!: lmv A 3 d' ; dOll. inv' A Pl. inv' A Pl]

The pTOof~obligation that is generated by the applic-ation of wP is discharged below.

tnv A 3d'; dOl!; d02! • inv' A 3 dll
• int''' A pdod" (ad'] A P2(ad" (ad]

=* iuv A 3 d'; dOl!; dO;;?! • 3 d" • inv ll A PI [ad ll (ad'] [by predicate calculus]

~ inv A 3d' ; dOl!. 3d". mv ll Apdad"(ad'] [by ad0:2! are not free in dll
, inv", and PI]

= inu A 3 d'; dOl!. 3 d" • (inu' A Pl)[adll (ad'] [by a property of substitution]

= InlJ A 3 d'; dOl!. 3 d' • InV' A PI [by ad" are not free in im.:' and Ptl

= inv A 3 d' ; dOl!. inv' A P1 [by ad' (ado l !) are not free in dOL! (d ')]

The refinement proceeds as follows.

r; c]R

ad,adol ! : (inti A 3 d'; dOl! • tntl' A PI, inv' A PI]

143 0.1 Conversion Laws

~bC

(~S; diI ?, dOl! IPI)

The refinement of (i) is as follows.

U) [;; erR

3d'; dOl'; d",!. onv' A)

3 ~" • mvll A PI [adll lad'] A Pl[ad" lad) [cllod][_/]'
ad, adO:l! ; (mv A mu' A PI

[
(inv' /\ 3dll • mvll A pdad"lad'] A Pl[ad"ladJ)[cllad]

~sP

3d'; dOl!; d",'. inv' A)]

3 dJlad. ad02! : . inv" /\ pdadl/ lad'] A P2[adll lad] [cllad]I_I'J, in v' /\ P2
[(

•

mv A 1RV' A Pl

TlIe application of sP generates a proof-obligation that is discharged below.

l ll
~ d ; dOl!; d02!. inv' A 3 d" • inv" /\ Pl[ad lad') /\ P2[od

ll
Iad]) [cllad][_t]/\ invl /\

(1RV /\ 1RV' /\ PI Pl

~ inv' /\ (i~w' /\ pr)[cllad][_t] A P2 [by predicate calculus]

~ mv' A 3 dll
• (inv' /\ PI)[cl/od][_t][adll lod] A P2[od" lad] [by predicate calculus]

-=- inv' A 3 d". (inv' /\ Pl)[cllad][adll lad'} A P2ladl/lad]
[by d declares the state components (program variables)]

= invl A 3 d". (inv' A PI)[adlllad'][cllad} /\ P2[od"/od] [by cl are fresh]

= inv' A 3d". (inv' A pd[odll/od'][clladJ A P2[adl//od][cllad]

[by a property of substitution)

'- mv' /\ (3 d" • (inv' /\ pd[ad tl Iad'] /\ P2[ad" lad))[ellad]
[by ad are not free in d" and cl are fresh]

= 1RV' A (3 dll
• inv'l /\ pdadll lo:d'J AP2[od" lad])[elladJ [by a property of substitution]

Below we continue with the refinement.

~wP

od,ad02! : [inv A 3 d'; d02!. inv' A P2, inv' A Pl]

The application of wP generates a proof-obligation that is discharged below.

ll ll~d'; d.DI!; d02!. inv' A 3d • inv A pI!od"/o:d'J/\ P2[ad"lad]) [cllad][_I']
(mu /\ mv' /\ Pi

~ (inv /\ 3d'; d02!. inv' A P2ncl/odH-1'l [by the proviso (in its weakest form)]

== inu A 3 d'; d02! • inv' A P2 [by a property of substitution]

144 Appendix D. Laws of ZRC and Their Derivations

Finally, we get to the conclusion below.

~bC

(Ll<S, d~?, do,' 11'l)

As the constants of cl are not free in eitller (AS; di1?; dOL! I PI) or (6..5; dt2?; d02! I P2), 'We can
use canR to remove the coru;tant block.

o

Promotion

Law promC Promotion conversion

3LlL. ifl/\ Op

~ promC

I[proc pn == (val-res,.: L. (1',1" : L I (i1tlJ /\ inu' /\ p)[1'.x., 1".x" IL" x1])) • pn(j x?) JI

where

L=(X1:[1; ... ; xn:tnlinlJ)
Op £ (Ll<L Ip)

G '" if ' X ->t L)
4> _

Ll<G
Ll<L
x?: X

x?E domf

O£ = f x?

{x'} <3/' ~{x?}<3/

!' x? = OL1

Syntactic Restriction pn, 1', and f are not free in Op.

Derivation This proof relies on the lemma below which defines the precondition of a promoted
operation in terms of that of the local operation. This result was presented in [64], but here we
express it in a slightly different way.

Lemma D.3 If L, op, G, and 4> are defined as abolJe,

pre (3AL. 4> /\ Op) = (G; x?: X I x? E dom f /\ (pre Op)[(J x?).x;jx.])

Proof

pre (3.6.L. ifl/\ Op)

= 3£_ pre 4> /\ preOp [by a theorem in [64, p.356]]

145 D.I Conversion Laws

= 3 L - [by a property of pre]

C; L; x' 0 X I)
(3G'; L' - x? E doml 1\ OL=I x? 1\ {x?} <tid/' = {x?} <s1 /\/' x? = BLI

/\

pre Op

= 3L. (G; L; x?: X 1 x? E doml 1\ 9L = 1 r.?) 1\ pre Op [by predicate calculus]

= (G; x?: X 13L- x? E doml I\(JL=I x? I\preOp)

[by properties of the schema calculus]

= {G; x?: X I 3 r: L. (x? E doml /\ OL =1 x? /\ pre Op)[r.x,/xiJ)

[by a. property of bindings]

=(G; x?:X 13r:L-(x?Edoml /\~ X;:==Xi ~ =1 x? 1\ pre Op)[r.x,/xiJ)

[by a property of 8J
= (G; x? : X 13 r : L. x? E doml /\ 4 x; := r .Xi ~ = 1 x? 1\ (pre Op)[r.x,/x,])

[by a property of substitution]

== (G; r.?: X 13 r : L. x? E doml 1\ r = 1 x? /\ (pre Op)[,·.x./x;])

[by a. property of bindings]

= (G; x?: X I x? E doml 1\ (pre Op)[(f x?).x,/x,]} [by predicate calculus]

o

3~L.4>I\Op

= by properties of the schema calculus

C>C.X'.XI)
(3 6.L _ x? E doml 1\ OL =1 x? 1\ {x?} <tid /' = {x?} <s 1 /\!' x? =8 L' 1\ Op

~ be

X? E cloml A (p'eOp)[(f x?).x,/x;],]
I: [36L_ x? E doml I\OL=I x? 1\ {x?J <sf' = {x?} <s1 1\ f' x? =6£1/\ Op

~ pre]

I[proc pn =- (val-res r: L. (r, r': L I (inv 1\ inv l 1\ p)[r.xi, '·'.X,,/Xi,XiJ))

I [x, E cloml A (p,e Orll(1 x?).x;/x;],]
: 36.L_ x? E doml 1\ OL=I x? 1\ {x?} <tid!':::= {x?} <tid 1 I\/' x? = 8LI 1\ Op <J

II
= by a property of bindillgs

x? E cloml A (p,e Op)[(f x?).x,/x;],]

3 r,,.'; L.

10 ('x. E clam /\OL=I x.) I ,
I'[
{x?} <sf' = {x?} <tidl I\/' x? = OL' 1\ Op [,·.xi,r .:z:;/x"x,]

146 Appendix D. Laws of ZRC and Their Derivations

= by a property of (J

x? E domJ 1\ (pre Op)[(J X?),Xi/X,],

3,,"£_
I' ,.

x? Edam! 1\ 4 Xi := Xi ~ = J x1
[

(A Op) [u" ,'.xofx" X:J]{x?} <t!!JJ' '= {x?} <t!i3J I\/' x? = ~ x.:= x: ~

= by a property of substitution

x? E doml A (p,e Op JI(J x?).x,/x;],

I, (3c,"'Lo
x? E dom! 1\ ~ xi:= "xi ~ =1 x? 1\

[
{x?} <t!i3 l' = {x?} <td J 1\ I' x? = 4 x,:= ,I .x, ~ A Op[u" ,'.x,/x" xii)

= by a property of bindings

x? E doml A (p'eOp)[(J x?).x,/x,l,]
J:	 I 3r,,':Le

x? E dom! 1\ r =f x? 1\

({x?} .. J' ~ {x?} "I A J' x? = " A Op[,.x" ,'.xofx" Til)

= by predicate calculus

I , [x? E doml A (p" Op)[(J x?).x,/x,j,]
x? E dom! 1\ {x?} <t!i3J' = {x?} <t!i3j 1\ Op[r.x;, r'.x./x,,:r:JrJ x?,1' x?lr, rJ]

!;;;; sP

I, [XC E doml A (p,eOp)[(J xn·x,/x,],]
{:z:?} <td/' = {x?} <t:3J 1\ Opfr.x"r'.x;jxi,X:][f x?,r x?lr,,-']

= by r is Dot free in pre Op

I' [(x? E dom! 1\ pre Op)(r.x";xiH/ x?lr],]
. {x?} <t!i3J' = {x?} <t:3J 1\ Op[r.x"r'.x.:/xi,xmf x?,1' x?jr,r']

~ vrS

(val-res r: L. r: [(x? E dom! 1\ pre Op)[r.x;jxiJ, Op[,.x" ,'.ro/x" xn])(J x?)

The body of the above parametrised statement ca.n be refined as follows..

r : [(x? Edam! /\ pre Op)[r .x,/x,], Op[r .X;, r'.x,/x" x:]]

!; wP

r : [(pre Op)[r .x,/x,), Op[r.x" r' .x;/Xi, x:/ 1
= by definition of Op

r : !(inv /\ 3 x~ : tl; ... ; x~ : tn • mu ' 1\ p)[r.x,/x.]. (inti 1\ inu ' 1\ p)[r.x" r'.x;fx;, xn]
=	 by a. property of substitution and bindings

. [mv(r.x,/x,j 1\ 3r': L. mu'[r.xi/x:] 1\ p[r.x;, r'.xi/x" x:J,]

r .	 (tnv 1\ inti' 1\ p)[r.x;, r'.x,/x;, xn J

147 D.2 Refinement Laws

r; sP

. [mu[r.x;! Xi] A 3 r' : L. invl[r'.x;/xiJ A p[r.x" r'.x"/x,, xiJ,]
r. inv'[r'.Xi/xfJ A p[r.x;,rl.x;/x"x:]

~bC

(r,r ' : L I (inv A !nU' Ap)[r.x"rl.xi/x"X:])

At this point we can apply prolll to the procedure block and transform the parametrised statement
into a call to pn.

o

D.2 Refinement Laws

In this section we present the ZRC refinement laws in alphabetical order, and the data refinement

laws.

Law abA Absorb assumption

{prell w: [pre2,post]

abA

w : [pret A pre2, post]

Derivation

wp.{pred w : {pre2, postJ.1f.'

== pre} 1\ PTe2 1\ ('17' dw l • po!Jl ::::} 1f.')[-1'1 [b)" definition of wpJ

:= wp.w : [prel A pre2,po!Jtj.1,b !b.\· definition of wpJ

o
Law abC Absorb coercion

'" , [pre, Po".); [po,"J
abC

w : [pre, postl 1\ pos~]

Derivation

wp.w: [pre,postd; [po!Jt2]'1,b'

:= pre A ('17' dw' • PO!Jt} ::::} (poSt2[_/'J ::::} 1,b),)[-I'] [by definition of wp]

'" pre f\ IV d"" • PO'" => (po,,, => ,,'))[-1'1 [by a property of substitution]

== pre 1\ ('17' dw' • po"tL A POS~ ::::} Tf.")[-/'] [by predicate calculus]

== wp.w : [pre, post l A post]J.Tf." [by definitiOil of wp]

o

148 Appendix D. Laws of ZRC and Their Derivations

Law aUf Alternation introduction

w: [pre,post]

~ aUI

if 0 i • 9; --+ w ; [9; /\ pre, post] fi

provided pre. "" (V i • gt)

Syntactic Restrictions

• Each 9, is a well-scoped predicate;

• No 9; has free dashed variables;

• { i • 9, } is non-empty.

Derivation

wp.w: [pre.,JlOst].1/'

== pre 1\ (Vdw l post ==> 1/')[-/J [by definition of wpJ
•

== (V t • gil /\ pre /\ ('v'dw' • post ~ lj',)[_I'] [by the proviso]

"'* (V i • g,) 1\ (/\ i • g. ==> 9; /\ pre /\ (V dw' • post ==> V')[-I']) [by predicate calculus]

== wp.ifDi. go --t w: [9i /\ pre,post] ft.1/' [by definition of wp}

o
Law assigI ~ignment introduction

w, vi, [pre, po,']

~ a:;sigI

til :::::: el

provided pre ==> post[eljveJ[_/'J

Syntactic Restrictions

• "I contains no duplicated variables;

• vi aod el have the same length;

• el is well-scoped and well-typed;

• eI has DO free dashed variables;

• Tb.. corresponding variables of vi and expressions of el have the same type.

Derivation

wp.w,vl: [pre,post/.1//

== pre A ('v' dw'; dvl' • post ~ wl)[-I'J [by definition of tvpl

=? post[d/vl'][_/'] A (V dw'; dvl' • post ~ 1//)[-1'] [by the proviso]

=> "",t(d/vl'][_/'!/\ (po,t[d/"l'] => ,p'[d/"I'DI_/'] [by predicate calculw;]

149 D.2 Refinement Laws

" po"lellvl'II_I'] A (po,'[ellvl'II-I'J '" >/;'lellvl'II-1'1I [by a property of substitution]

'" >/;'[ellvl'lI-1'l [by predicate calculus]

" >/;[ellvIJ [by a property of substitution]

:= wp.lJl:== el:¢' [by definition of wp]

o

Law a5sumP Assumption

{p",)

a5sumP

: [pre, true]

Derivation

wp.{pre }.lj/

== pre 1\ 1/.' [by definition of wpJ

== pre 1\ (true::::} "'·)[-1'] [by predicate calculus and no dashed variable is free in 1/.'J

"P'" A (true'" >/;'JI-I'l [by a property of substitution]

== wp. : [pre, trueJ.1/.,1 [by definition of wp}

o

Law assumpI Assumption int.roduction

[po"1

assumpI

[po"](pos' [-1'])

Derivation

wp.[po,,].,p

[by definition of wp]

"1"','[-1'1 '" pos'l-1'l A >/; [by predicate calculus]

" wp.[po"]{pos'I_I'])·>/;' [by definition of wp)

"1""'[-1'] '" >/;

o

Law assumpR Assumption removal

{p",}

C; assumpR

skip

150 Appendix D. Laws of ZRC and Their Derivations

Derivation

wp.{p",j.>I!

==preAT/'

'*>/>
== wp.skip.~/

Law cfR Contract frame

w, x : [pn:,post]

<:; c/R

x , [P"" ","lw/w'l I
Syntactic Restriction The variables of w are not in x.

Derivation

wp.w,Z : [pre,]XlstJ.lf.'

== pre /I, ('1/ dw'; dz' • post;::> w)[-I']

~ pn, /I, (V dx' • post ~ ¥')[_I']

~ p", 1\ (Vdx' .po"lw/w'l =>>/>)[-1'1

~ wp.xfp""po,t[w/w'] J.>/>

Law cO Coercion

[po"1
cO

: [true. post]

Derivation

Wp.[po8t].W'

" 1'0,'[-1'1 "" "
" (po,' '* ,,)'[-/')
== (post;::> t?,I)[-I']

== wp.: [true,post].'Ij/

Law col Coercion introduction

skip

~ col

{p'''J

[by definition of up]

(by predicate calculus]

[by definition of up]

o

[by definition oC up]

[by predicate calculus]

[by w are not in x]

[by definition of wpJ

o

[by definition of wp]

jby a property of substitution]

[by a property of substitution]

[by definition of wp)

o

151 D.2 Refinement Laws

Derivation

wp.skip.ttl

[by definition of wpJ"" {by predicate ca.lculusJ => postl_1'1 => "

== wp.[post]·ttl [by definition of wpJ

o

Law conI Constant introduction

p

ron!

lIeon del. {init} p]1

provided 3 del • init.

Syntactic Restrictions

• init is well-scoped and well-typed;

• init has no free dashed varia.bles;

• The constants declared by del and their dashed counterparts are not free in p.

Derivation

wp.p."

:= (3 del. init) A wp.p.Vi [by tbe proviso]

:= 3 del. init A wp.p,1/; [by add and adct are not free in p and 1/;J

"wp·11 con dol. (inil} p II·"	 (by definition of wp]

o

Law conI Constant introduction (specification sta.tement)

11}: [pre,postJ

~	 conI

I[con del. w: [npre,postJ JI

provided pre ::::;. 3 del • npre

Syntactic Restrictions

• npn: is well-scoped and ~ll-typed;

• npre has no free dashed variables;

• The consta.nts declared by del and their dashed counterparts are not free in w : [pre, post).

152 Appendi.x D. Laws of ZRC and Their Derivations

Derivation

wp.w: [pre,po.ltJ.'lj>

== pre 1\ (V dw'. post.:::} w)[_(] [by definition of WPJ

::::> (3 del • npre) 1\ (V dw' • post::::> 1/1)[_/J [by the proviso]

= 3 del. "prY 1\ (V dw'. post.:::} w)[-(] [by add and odei' are not free in dw' , pO.'lt, and w]

wp·l[con del. w : [npre,p(l3t] JI.'lj; {by definition of wp)

o

Law conR Constant removal

I[eon dd.pll

ccnR

p

Syntactic Restriction The constants declared b}' del are not free in p.

Derivation

Wp·11 con dol. p II .,p
=- 3 del. wp.p.'ljJ (by definition of wpJ

'= wp·p·W [by add and add are not free in p and 1jJ]

o

Law coR Coercion removal

{pre 1[P",']

ccR

{pre)

Derivation

up.{pre)[p,"'].,p'

== pTf'. 1\ (pre'[_I'] .:::} Vi) [by definition of !Up]

:;: pre 1\ (pre -:::> Vi) rby a property of substitution]

=prel\'ljJ [by predicate calculus]

'= "".(pre }.,p' [by definition of wp]

o

153 D.2 Refinement Laws

Law dimG Diminish guards

ira i. 9i -+ Pi fi

r,;::, dlmG

if a1 • hi -+ Pi fl

provided

• (V 1. g;J => (V i • h,)

• (V I • gil => (h, => gi), for each L

Syntactic Restrictions

• Each h, is a weD-scoped and weD-typed predicat.e;

• No hi has free dashed variables;

• { i • gi } and { 1 • h, } have thp same numbpr of elempnts.

Derivation

wp.if a1 • gi ---+ Pi fl.-I/'

=0 (V;. gi) " (II. gi => wp.p,.,p) [by definition of wp]

=> (V i • gi) " (/I • hi => Wp.pi.,p) (by the second proviso]

=> (V·; • h;) " (/I • Ii; => Wp.pi.,p) [by the first provisol

:= wp.if 0i. hi -+ P, fl.f,i! [by definition of wp]

o

Law dR Data refinement (restricted)

I[var dvl; davi. PI lJ
~ dR

1[_ dvl; devl. ",II

provided

• PI '=$ P2

• 'r/ dcvl • 3 davl • c!

where davi and dcvl declare tbe variables of avl (tbe abstract variables) and cvI (the concrete
variables); and C1 is the coupling invariant.

Syntactic Restrictions

• The variables of cuI and cvf are not free in PI, and are not in avl;

• The variables of aul and avl l are not free in P2;

• ci is a well-scoped and well-typed predicate.

154 APPendix D. Laws of ZRC and Their Derivations

Derivation

wp. I[vaT dvl; davl - PI JI·1jJ
== 'r/ dvf; davie wp.Pl.1/J [by definition of wpj

== VdvZ. (V dcvl.:3 davie ct) A ('rt davl. Wp.PI.1/J) [by the second proviso]

~Vdvl; dcvl.(3davl. ci) 1\ ('r/davl. WP,Pl'W)

[by cvl and e"l' are not free in davl, PI, and wJ
=: V dill; devie 3 davl • ci 1\ Vdavl , WP.Pl'V,' [by avl are not free in davl]

=> Vdill; devl.:3 davl , ci 1\ Wp.pl.1jJ [by predicate calculus]

=> 'rt dul; devl. wp.P2.:3 davI' • ct 1\ 1/J [by the first proviso]

== V dul; devle wp.P2. ((3 davl' • d) 1\ ll') [by at'1' are not free in 1/IJ

=> V dvl; dcvl. tilp.P2."1jJ [by mono tonicity of wp]

=: wp. l[var dul; dc.t'l • P2 11 .1/1 [by definition of wp)

o

Law dR Data refinement (variable blocks with initialisation)

I[vaT dvl; dad, avl : [true, mit'] ; PI JI
C; dR

I(var dul; devi' cv/ ; [true, (3 davl • ei 1\ mit)']; P2 JI

provided PI ~ P2

where davl and dcvl declare the variables of avl (the abstract variables) and evl (the concrete

variables); and ci is the coupling invariant.

Syntactic Restrictions

_ The variables of evl and evl' are not free in init and PI, and are not in aul;

_ The variables of avl and avl' are not free in P2;

- C1 i.~ a weU-scop(.'<1 and well-typed predicate.

Derivation

wp.l[var dvl; davl_ avl: [true,init']; PI JI.1jJ

::= 'ltdvl; davl_ ('1davl' - init' '* (wp·Pl.1/;)'ll-1'J [by definition of WPJ

= Vdvl; davl_ (Vdavl_ init 0:=} (wp.PI.1/;)y[-/'j [by program variables are not free in davl'}

= Vdvl; davl _ mit 0:=} WP.Pl''l,/J [by a property of substitution]

= V dvl; devl; davi - mit => wp.p,.'l,/J

(by c!Jl are Dot free in davi, init, Pt, and W, and evi' are not free in PI and 1/;]

155 D.2 Refinement Laws

::::} Vdt'l; dClJl; dalJI e ci /I. init ::::} ci /\ WP,PI:Ij; [by predicate calculus]

::::} VdlJl; delJt; davIe el /I. init::::} 3davle eJ /\ WP'Pl''Ij; [by predicate calculus]

:= 'rI dlJI; delJI e (3 davI e Cl /I. init) ::::} 3 dalJI e ei /\ Wp.Pt. 'Ij; [by alJI are not free in dalJI]

::::} 'rI dvl; devl e (3 davI e ei /I. init) ::::} wp.Pl. 3 davl' e eil /\ 'Ij; [by the proviso]

== 'rI dvlj devl e (3 davt e ei /\ init) ::::} wp.P2.(3 davll e ell) /\ 'Ij; [by avt' are not free in 'Ij;]

=> 'rI dvlj devl e (3 davI e el /I. imt) ::::} wp.Pl.'Ij; [by monotonidty of wp]

:= 'rIdvl; devl. (Vdevle (3davle ei /I. mit)::::} wp.Pl.'Ij;) [by predicate calculus}

== 'rI dvl; devI e (V devl e (3 davl e el /\ Imt) ::::} wp.Pl.1j-·Y[_/'] [by a property ofsubstitmion]

== 'rIdvIj devle (Vdcvf e (3davle ei /\ init)[evf/evl]::::} (wP'P2.'Ij;)[evll /evl]),[_rJ

[by evIl are not free in davl, e1, and initJ

== 'rIdvl; devIe (Vdevl'. (3davle ei /\ imt)'::::} (wp.Pl.'Ij;)')[-I']

[by a property of substitution]

== wp. I[var dvlj devle elll : [true, (3 davl e el /I. init)'] ; Pl JI .'Ij; [by definition of wp]

o

Law dR Data refinement

I[var dill; dalli e PI JI
[; dR

I[var dill; delll. elll : [true, (3 davi e ct)1] ; Pl]1

provided PI ~ Pl

where davl and delJl declare the variables of avl (the abstract variables) and cvI (the concrete
variables); and ci is the coupling invariant.

Syntactic Restrictions

_ The variables of cvl and clJf are uot free in PI_ and are not in all/;

e The variables of av/ and avl' are not free in P2;

e ei is a well-scoped and well-typed predicate.

Derivation

wp. I! var dill; dalJI e pIli .'Ij;

== V dvl; davie WP.PI.'Ij; [by definition of wpJ

== 'rI dvl; dCIlI; dalll _ Wp.PI.'Ij; [by cvl and evI' are not free in PI and 'Ij;]

::::} 'rI dill; dCIlI; dallI _ CI ::::} ci /\ wp.Pl.'Ij; [by predicate calculus]

::::} 'rIdIlI; devl; davIe el::::} 3dallf e CI /\ WP.PI.'Ij; [hy predicate calculus]

== Vdvl; devIe (3dallle eJ)::::} 3davle ci /\ WP.PI.'Ij; [by ~IJI are not free in datil]

156 Appendix D. Laws of ZRC and Their Derivatiol18

::} Vdvl; dcvl. (3 davl • n) ~ wp.])2. 3 davl' • d 1\ 1/J [by the proviso]

== Vdvl; dcvl. (3 davl • ci) ~ wp.P2.(3 davl' • ci') 1\ 'I/-' [by aul' are not free in 1/')

=> \f dvl; dcvl. (3 davl' ci) ~ WP.1'l.1/J [by monotonicity of wp]

= 'rI dvl; ded_ (V delil. (3 davl • ci) => wp.P2.1/.!) [by predicate calculus]

= \f dvl; dcvl. (V dcvl • (3 davl , ci) => wp,P2 .l,")'[_I'] [by a property of substit.ution)

=- V dvt; det'!. ('t:t devI' • (3 davl , 0)[evl' / evl] :'7 (wp.P2.1/J)[evi' / cvIJl'[_/'}

[by evIl are not free in davl and ell
== Vdvl; dcvl- (Vdcvl ' • (3davl. elY => {wp·Pl·1t,j')[-I'J [by a property ofslIbstitntion]

== Wfl. I[var dvlj dcvl. cvi : [true, (3 davl , elY]; P211 .1/) [by definition of wpJ

o

Law efR Expand frame

Ii) : [pre, po.5t]

efR

w,x: [pre,posl/\ x' = x}

Syntactic Restriction The variables of z are in scope, are not in w, and are not dashed.

Derivation

wp.w: [prf,post).'ljJ

=: pre 1\ (V dw' • post .:::>rp)[-I'J [by definition of wpJ

== pre 1\ (V dw' • post.:::> 1/')[z/x'][_I'] [by a property of substitution]

== pre A (It dW'; dx' • x' = x A post ~ 1/1)[-1'1 [by x arc not in w]

== wp.w,x : [pre, post A x' = xl·'1f! [by definition of wpJ

o

Law esA Establish assumption

w : [pre}, post]; {pre2}

esA

w : [preL A (V dw' • post => Pre2}[-I'], post]

where dw declares the variables of w.

Derivation

WP.W:[Prel,post); {pre2}.1jJ'

=: preJ A (V dw' • post => (pre2 A1/')')[-1'] [by definition of wpJ

=- pret A (\I'du/ • (pO:it => pre~) A (post => 1/.1'))[_/'] [by predicate calculus]

157 D.2 Refinement Laws

=: prel 1\ (('<I dw ' • post =? pre2) 1\ ('<I dw ' • post =? 1/;'))[~/'J [by predicate calculus]

=: pret 1\ ('<I dw' • post =? pre~)[_I']1\ (V' dw' • post =? 1/;')[-1'] [by a property of substitution]

== wp.w : [pre, A ('t/ dw' • po~l =? Pre2)[-tJ, postJ.1/;1 [by definition of WPJ

o

Low fassigl Following assignment introduction

w, vl : [pre, post]

~ fassigl

w,vl: [pre, post[el[w!,vl'lw,vll/vill 1; vl:= el

Syntactic Restrictions

•	 lJl contains no duplicated variables;

•	 vi and eI have the same length;

•	 el is W'ell~scoped and well-typed;

•	 el has no free dashed variables;

•	 The corresponding variables of vi and expressions of el have the same t~'pe.

Derivation

w, vi: [pre, post]

~seqcl

I[con del •

w,vl: [pre,post[el[w', vl'lw, vlJlvl'] J;
w, vi , [po,t[d[w', vi' Iw, vl]/vl'lIdlw, vlll_I'I, post[dlw, vi]] <J

]1

~	 assigl

vl:= el

The application of assigl generates the proof-obligation that we discharge below.

po,'[d[w', vi' Iw, vll/vl'lIcllw, viII_I']

" po,t[cllw, vllld[w', vl'lw, vl]/vl'II_I'] [by a property of substitution]

"po,t[dlw, vllldlvl'II_I'] [by a property of substitutionl

As tbe constants of el are not free in w, vI : [pre, post [el[Wi, vi' I w, vl]1 Vii]] and vi := el, we can
remove the constant block by applying cnnR.

o

158 Appendix D. Laws of ZRC and Their Derivations

Law fiV Fix initial value

w : [pre,post]

~	 fiV

I[con del. w.' [pre 1\ cl = f'j f\ ... f\ en = €n,post] 11

where CI,' .. ,en are the constants declared by del.

Syntactic Rpstrictions

•	 The expressions of e1, , en are well-scoped and well-typed;

•	 The expfl.'ssions of e1, , en have no fn'€ dashed variables;

•	 The corresponding constants of ct, ... ,en and expressions of 1:'\, ..• , en have the same
type;

•	 Cl,"" en and c~, ... , c~ are not. free in w .' [pre, PO,9t] and in the corresponding expressions

of el, .. , Cn·

Derivation Direct application of conI. The generated proof-obligation can be discharged as
follows.

p"

== (3dcl_q = eJ f\ f\ en:=;;;; en) II pre	 [by predicate calculus)

== 3 del. Cj = e\ 1\ 1\ en = en 1\ pre [by el,· ., en are not free in pre]

o
Law at! Jtpration introduction

tv: [mv, mv[w' Iw] /\, (V i_ g;[w1lwJ)]

kit!

do 0j' g; -----+ W : [inv /\ gIl inv[tL/ Iw) /\ 0 :s tl'l'"t[w'lw] < vrtJ od

Syntactic Restrictions

_ vrt is a well-scoped and v,rell-typed int.pger;

_ Each g; and vrt have no free dashed variables. expression.

Derivation

II) : [inv, inv[w' ltv] /\...., (V i. g;[w'lw])]

~ vrlJ

I[proc it =- {n = tl'l'"t} w; [inv,tnv[w'lw]/\"'" (Vi _ g,[w'lwj)] variant n is vrt.

w : [inv, inv[w' Iw]/\, (V i • g.[w'lw])J

II

~ ""ull

I[proc it == {n = vrt} tv : [inv, inv[w l Iw] /\ ... (V i_ g.[w'lw])] variant n is v,t - It JI

159 D.2 Refinement Laws

The procedure body can be refined as follows.

I,;;; ahA

w: [n = uri /\ InV, inv[w'/w] 1\...., (V i • g.[w' /w])]

~ aUf

if 0i. g; -+ w: [g; /\ n = vrt /\ inv, Inv[w'/w] /\ ..., (V i. g,[w'/w])J <J

o ~ (V;. gil --> W' [~(V;. 9;) A n ~ vrt A inv, inv[w'/wJ A ~ (V i. 9,[W'/W])] (,)

fl

I,;;; scqc/

I! con del.

w: [g; 1\ n =: vri /\ inv,n = wt /\ inv[w'/w]/\ 0 ~ vrt[w'/w] < vrtJ; <J

w. [(n = vet A mv[w'/w] AD <; vrt[w'/wJ < vc/.)[d/wll_/'J,] (,i)
. (mv[w' /wJ A ~ (V; • 9;[W'/wJ))[d/w]

II
~ sP

w : [g; /\ n = vd /\ inv, invlw'/w]/\ 0:S vrt[wl/w] < vrt]

~ wP

w: (inv 1\ 9;,inv[w'/w]1\0 :S vrt[w'/w] < vrt]

The refinement of the specification statement (ii) is as follows.

(ii) I,;;; sP

w, [(n ~ vrl A inv[w'/w] A 0 <; vrt[w'/w] < vet)[d/wll_/'J,]
inv[w'/w]/\ ..., (V i • g,[w' /wD

~wP

w : [0 :S vri < n /\ inv, inv[w'/w] /\ ..., (V 1. gdw' /w])J

= ahA

{O:S vn < n} w: [inv,inv[w'/w] /\..., (Vi. g,[wl/w])]

At this point, we can apply paUll to the variant block to replace the a.bove program by a. recursive

call to it (and the variant block by a procedure block). Afterwards, we can apply CQnR to remove

the constant block. The refinement of (i) proceeds as shown below.

(i)	 [;; ski

skip

The resulting program is presented below.

I[proc it =. if 0 i. 9; -+ w: [mv /\ g;,jnv[w'/w] /\ 0:S vrt[w'/w] < wt]; It

0...., (V I gil -+ skip
•

fl.

it

II

160 Appendix D. Laws oC ZRC and Their Derivations

This procedure block. by definition, is equal to the iteration below.

do 0I. go ---Jo w: [inti A g" tnv[w' /w] A 0:::; urt[w'/w] < v7"t] od

o

Law iassigI Leading assigumellt introduction

W, vi, [p",[,llvIJ,po,l{dlvl]]

~ la,~sigI

vI :::;0 el; w, vi : [pn~, post]

Syntactic Restrictions

•	 vi contains uo duplicated variables;

•	 vi and el have the same length;

•	 el is weJl-scoplXl and well-typed;

•	 el bas no free dashed variables;

•	 The corresponding variables of vI and expressions of eI have the same type.

Derivation

W, vi, [p"'ldlvl],po,'[dlvl]]

~ seqd

I[con del •

ul: [pre[el/vI],pre' A vi' = elJ <J

w,vl, [(p",' A vi' = d)[d/vlll_I'],po,'[dlvllld/vl]] (,)

II
~	 asslgJ

vl := eI

The application of asslgI generates the proof~obligation that we discharge below.

p",[dlvl]

" p«'[dlvl'II_I'1 [by a property of substitution]

" p",'[dlvl'II_1'1 A d = d [by predicate calculus]

"(pIT,' A vi' = d)[dlvl'II_1'1 [by a property of substitution]

\Ve proceed with the refinement as follows.

(i) r:;;: sP

w, vi: [(pre' A Ill' = el)[cl/vi][_/j, post]

161 D.2 Refinement Laws

We discharge the proof-obligation that arises from the application of sP as follows.

(pn'< A vi' = el)[cllvl][_I'] A po,t

== pre 1\ vI = el[cl/vIJ 1\ post

"pre A vi ~ eI[cllvll A po,'[el[d/vll/v~

=> po,tlel/vl][cl/vl]

We finish the refinement with an application of wP.

[;;;	 wP

w, til: [pre, post]

The proof-obligation generated is trivial.

Law rnA Merge annotations (assumptions)

{prel}(pre, }

rnA

{pret 1\ pre2}

Derivation

WP·{prel }{pre:2} .1//

== prel 1\ pre2 ,A.. oJ'

== wp.{prel I\. pre:2}.1L"

Law rnA Merge annotations (coercions)

[po"l][po",]
rnA

[post} 1\ post:2J

Derivation

wp .[posttJ[post:2J.1//

"PO", [-/'J => (po't,I_I'! => V')

== (post} I\. post:2)[_I'] ::::} 1/;

== WP.[postl 1\ post2].1L/

(by a property of substitution]

[by predicate calculus]

[by predicate calculus]

o

[by definition of wpJ

[by definition of wpJ

o

[by definition of wpJ

[by predicate calculus}

[by definition of wp]

o

162 Appendix D. Laws of ZRC and Their Derivations

Law mpS Merge para.rnetrised statements

(par2 dv~ • (par} dvll • p)(e1d)(eh)

mpS

(parI dvh; par2 dvh. pHd}, e~J

where dvh and dvl2 declare the variables of vii and vI:!, respectively.

Syntactic Restrictions

• vil and v/2 are disjoint;

• The variables of vl2 are not free in eit;

• If par] and par2 are either result or valUl?-TPsult, then eli and el2 arc disjoint.

Derivation By definit.ion.

o

Law pcall[CaD to a non-recursive proccdnre introduction

i[proc P" " (Ipd. pd· ",[(fpd. pdJiI
pcalli

[[procp"" (fpd. PI). ",[pnlll

Syntactic Restriction pn is not recursive.

Deriva.tion

I[proc P"" (fpd • pd • p,[(lpd. pdll!

~ p,[(fpd. pd](~(fpd· PI) [by definition]

~ p,[(fp'. PI)](fpd· pd [by pn is not recursive]

~ P2 [pnIIfpd • pd [by a property of substitution]

~ ",[pnJ(~(fpd. pd) [by pn is not recursive]

"'= I[proc pn 2= (jpd. pIl • P2[pn)]/ [by definition]

o

Law pcaliI Procedure call introduction in the main program of a variant block

I[proc pn:= (fpd - pd variant n is e - P2[(fpd - P3)J11

b pcalU

i[proc pn := (jpd _ PI) variant n is e. P2[pnlJl

provided {n = e} P3 t;;;; PI

Syntactic Restrictions

• prt is not free in PI;

• n is not free in e and P3'

163 D.2 Refinement Laws

Derivation

I[proc pn == fJpd • pd variant n is e • P2 [(jpd • P3)J JI

~ p,[(jpd • p,l](p(jpd • I[con n , Z. p,]I)) !by definition]

~p,[(M 'I[con n, Z. (n ~ oj p,]D]lp(h>d 'I[con n, Z. pdD)

[by n is not free in e and P3]

= p,[(jpd • I[con n' Z. pdD]lp(jpd • I[con n ,Z. pdD) [by the proviso}

~ p,[(M • I[con n' Z. pdD!(jpd • II con n , z. pdD [by pn is not free in p d
~ p,[pn)(/pd • II con n , z. p<lll [by a property of substitution]

~ p,[pn]lp(fpd • I[con n , Z. p, ID) [by pn is not free in PI]

=)[proc pn == (fpd. pd variant n is e. P2[pnIJI [by definition]

o

The derivation of the next formulation of pcallI relies on Lemmas D.5 and 0.6, which we

present below. In [35, p.73], we can find a more restricted version of Lemma D.5, where just
programs (parametrised statements with empty formal parameter declarations) are considered.

Since [35] outlines a proof of this special case, for the sake of brevity. 'we consider just parametrised
statements with ordinary (non~empty) formal parameter declarations in the proof of Lemma 0.5.

This proof relies on the following additional lemma.

Lemma D.4 Let a family of programs p. be such that, for any i, P. (;;; c(jpd. U{j I j < i • Pi}),
for a non-empty formal parameter declaration fpd, and monotonic c. Then Pi ~ c(Jl(fpd. c)),

for all i.

Proof By induction:

(Case i =0)

Po

~ c(M • U{j IJ < 0 • Pi}) [by assumptionJ

= c(jpd. Ul2J) (by a property of numbers]

= c(fpd • abort) [hy abort is the least refined programJ

~ c(p(jpd • c)) [by {fpd • abort) is the least refined parametrised statement]

(Case i > 0)

p;

!;; c(fpd. U{j Ii < i. Pi}) [by assumption]

~ e(M • U{j I j < , • e(p(jpd' e))}) [by induction hypothesis]

=e(M • c(p(M • elll thy a property of least upper bounds]

164 Appendix D. Laws of ZRC and Their Derivations

~ ,((Ipd • ,J(~ljpd • c))) [by a property of eontexts]

~ c(~(jpd • ell [by a property of fixed points)

o

Lemma D.5 If. for an mtcger CDnstant n. an integer eJ:pre88~on e. a fonnal parameter' declaml.ion

fpd, and a progromp, WE have thai {n = e} p (;;; c(Jpd. {O::; e < n} p), then we can deduce that

(fpd. p) ~ Jl(Jpd. c), provided c is a monotonic context, and n is not free m p and c.

Proof Theassurnptioncanbewritte-nas{n=e}p [:;; c(jpdeU0!j<n.{j=e}p}),aswe
show below.

wp.{O ~ e < n} p..1jJ

::= wp.{Vli I J < n .) = c} } p.rt' [by predicate eulcullIsJ

=. V{j 11 <n e) = e} /\ wp.p.1/' Iby definition of wp]

;;=; V{} I} < n • j = e /\ wP,P.'I/}} [by predicate calculus)

'" VU I j < n. wp·U ~ ,j p.,,} [by definition of wp]

== wp. u{] I j < n. {j = e} pr·1/; [b:r a property of u]

So, by Lemma D.4, {n == e} P G c(Jl(Jpd. c)), for all n. Consequently. as we prove below,

p <;; e(~(fpd. c)).

Illp.p.¢

=: (:3n. n = c) /\ wp.p.l.iJ (by predicate c:alculusJ

_ :3 n • n c::: e /\ wp.p ..1/J [by n is not free in wp.p.'I.,/I]

= 3n.wp.{n = e} p.¢ lb:r definition of wp]

"=? 3n. wp.c(JlUpd. c))·V' [by the conclusion above]

'" wp.e(~(fpd. e))." [by n is not free in wp.c(J.I.(jpd • C))'~"l

Using this result, we can get to the required conclusion as follows.

(fpd.p)

<;; Ifpd • e(~(fpd. ell) [by the result above]

= Ifpd • e)(~(fpd. c)) [by a property of contexts]

= plJpd. c) [by a property of fixed points]

o

165 0.2 Refinement Laws

Lemma 0.6 For any prngrom t:on~~2:~ t:[pnJ, IJ t:[p t:[pnJ] !; IJ t:[pn].

Proof IJ t:[pnJ is a fixed point of t:[1J t:[pnJJ, as we show below.

'I~ ,[pnJJ(~ ,(pn])

~ clpn](~ ,(pnJ) [by a property of su bstit u tion1

~ ~ ,(pn] [by a property of fixed points]

Therefore, Ii c[1J t:[pn]] ~ IJ t:[pn], as required.

o

Law pt:aUl Recursive call introdut:tion

I[proc pn == (fpd. pdUpd. {O ~ e < n} P3)]) variant n is e. P211
!; proW

IIpwe pn ~ (fpd 0 pdpn]) 0 p,]1

provided {n = e} PJ !; ptlUpd. {O:S: e < n} PJ}]·

Syntactic Restriction n is not free in PJ and Pl{pnJ

Derivation

I[proc pn =: (fpd. pJ[Cfpd. {O S e < n} PJ)]) variant n is ~. 1'2JI

~ 1'2(~(fpd 0 II con n , Z 0 Pli(fpd 0 {O S , < n} P3)]]1I1 (by definition]

[;; p,(~(fpd 0 II con n ,Z 0 p,[Upd 0 P3)] II)) [by assumpR and slCJ

[;; 1'2(~Upd 0 II con n , Z 0 pd~(fpd 0 PI [pnlllIlJI [by Lemma 0.5 and the proviso]

[;; p,(~(fpd 0 pd~Upd 0 PI [pn])])) [by n is not free in prJ

[;; 1'2("(fpd 0 pdpn])) [by Lemma D.6]

~ Ilpcoe pn ~ (fpd 0 Pl[pn]) 0 1'211 [by definition]

o

Law prel Prot:edure introduction

1'2
p.d

II pme pn f' (fpd 0 prJ 01'2]1

Syntactic Restrictions

• pn is not free in 1'2;

• (fpd • PI) is well-seoped and well-typed.

166 Appendix D. Laws of ZRC and Theil" Derivations

Derivation

'"
 ~ ",(~(fpd. pll) [by pn is not free in P21

~ I[proc 1'" " (fpd • pll • '" II [by definition]

o

Law r$ Result specification

w, vl2 : [pre, post]

rS

(res dvlt. w, vii : [pre,posl[vlllv~J])(v~)

where dull declares the variables of vii_

Syntactic Restrictions

• ViI and Vl2 have the same length and contain no duplicated variables:

• The variables of vir are not in w, are not free in pre, and are not dasbed;

• The variables of vlt and vi: and are not free in post;

• The variables of vl2 are not in w.

Derivation

WP·W,VI2: [pre,post].tI/

== pre II (V' dw'; dvl!.? post::::} ttI)[-tl [by definition of wp]

=- pre II (V dw'; dt. po5t[I'lvLl] ::::} -I//ll'lvI2J)[-tJ [by i' are fresh and v~ are not in Wi]

== pre II ('<I dw'; dt. post[vl{/l't2JW/v~]'* 1P'[l'/vt2J)(~n [by vl{ are not free in post]

== 'v' dl. pre 1\ ('<I du/; dl'. po"t[vlUv~][I'/v1n =} If''[l'/ vl;\])[_t] [by I are fresh]

:= 'It dl. prell/viI] /\ (V dw/j dl'. postlulllv~][l,l'jvlI' v1n =} ¢/[l'/vl2]H-tl

[by ViI are not free in pre and post]

" Vdl. pn[l/vlll /\ (V du/; dl' • post [vi: /v~lIl.1' /vl" vlll => .,,[1/ vl,III' /IJ')[I/I'][_/']
/by a property of substitution]

=:: up·l[var dl.(w,v!t: [pre,posl[vll/v12J]Hl,e/vll,vl;j; vlz:= 1]1.-1// [by vh are not in wJ
=:: wp.(res dvll • w, vh ; [pre, post[vlUv~] J)(v0.).T/J' [by definition]

o

167 D.2 Refinement Laws

Law ,.S Result specification (function application as actual parameter)

w,[, [pIT, {x?} .. I' ~ {x'} .. I ~ po,,[t' x'! Ifp'} I
rS

(res Ip , , • w, fp , [pIT, po,'])U I')

where t is the type that contains the range of f.

Syntactic Restrictions

• f is of a function type;

• f and fp a.re not in w;

• f and f' and are not free in post.

Derivation

w,[, [pIT, {I?} .. I' ~ {x'} .. I ~ po,,[t' I'! Ifp'])

~ vrbI

I[varv:t.

"w,f' [pIT,{I?}"I'~{x?}"1~po,,[t' I'llpll

II
~ fassigI

',w,1 ' [pre, {x?} .. U' <Jl{I? >-> ,'}) ~ {I?) .. I ~po,,[t' I'llp'][f' <Jl Ix' ,'} II'J I;
I '=/<Jl{x? >->,1

~ sP

',w,[, [pre,{x'/}"I' ~ {I?}"I ~po"["llp'l I

<l

<l

" rlR
v, w: [pre,post[v'/fpl]]

1; rS

(res fp, t. w,fp, [pre,po,'])(,)

Therefore, we have proved that the refinement below holds.

"
w,[, [pre, {x?}"1' ~ {x'}"1 ~po,,[t' I'Illp] I
II var , , , • (res Ip , , • w,[p , [pIT,po,'])(') ; I'~ I <Jl {x' >-> ,} JI

By definition, this variable block is (res fp : t • w,fp : (pre,posl])(J x?), as required.

o

168 Appendix D. Laws of ZRC and Their Derivations

Law seqcI Sequential composition introduction

W,X: [pne,ptl.'lt)

~	 seqcI

tv: [pre,rntd[w'/w] 1; W,X: [m,d,post]

Syntactic Restrictions

• mid is well·sooped and well4 typed;

• mid has no free dashed variables;

• No fr~ variable of post is in w.

Derivation

wp.W,:t" : [pre, post].'ljJ

0=. pre 1\ (Vdw' ; /h'. post:::} 'ljI)[-tl	 [by definition DC wp]

=? pre 1\ (l:Idw'. mid[w'lw) =} mld[w'/wJ 1\ (V dwl; <ix'. PO" => ,,))[_1']
[by predicate calculus]

== pre 1\ (If dw' • mid{w'lw] :::} mid[w'/w) 1\ (V dw'; dx' • post =} 1//)[-1'1) [-I'J
[by w' are not free in dw']

== pre 1\ ('1dtr/ • mid[w'/wJ =? mld[w'lw] 1\ (t1 dw'; dx'. post => !j,')[-/T[-I'])[-I'j
[by a property of substitution]

=- pre 1\ ('rI dw l midlwl/w] => mid[ttlJwJA (V dw'; dx' • post =} '¢}[-/TH-/'J•

[by tv are not free in dwl, dx', post, and 'ljJ, and w' are not free in dw']

- pre f\ (Vdw'. mid(w'/w] =} (mld II (Vdw'i dx'. post, =? v,)[-I'ln[-F]
(by a property of substitution]

=	 wp.(U'; [pre, mid[w'/wJ J; w,x: [mid,postJ).v" [by definition of wp]

o
Law seqcI Sequeutial composition introduction

w,x,y!,z!: (pre, post]

~ seqcI

I[condd. w,y!' [pno,midJ; W,I,y',,!, [m.d[cilwll_l'J,po,'[cilw] J II
where del declares the constants of cl.

Syntactic Restrictions

• mid is well-scoped and v.ell-typed;

• The names of cl and el' are not free in mid and w, X, y!, z! : [pre, postJ;

• cl and w have the same length;

• The constants of cl have the same type as the corresponding variables of w.

169 D.2 Refinement Laws

Derivation

wp.w,x,y!,z!: [pre,postJ.'f/I

== pre /\ (\1' dw'; dI'; dy!; dz!. post::::} t,b)[-I'l [by definition of tL'p]

::::} pre /\ (\1'dw/; dy!. mid::::} mid /\ (\1'dw'; dI'; dy!; d,! • p,,,t => ,,))[_/']

[by predicate calculus]

== pre /\ (\1' dw'; dy!. mId::::} mId /\ (\1' dw'j dI'; dy!; dz!. post::::} '/f))[el/wJ[w/el][_1'l

[by el are not free in dw', dy!, mId. dx', dz!. post, and t,b]

== pre /\ (3 del • el "=' w /\ [by predicate calculnsJ

(\1' dwl; dy! • mId::::} mid /\ (\1' dw'; dI'; dy!; dz! • post::::} '/f))[cl/w])[_/']

== pre /\ (3 del • el "=' w /\ [by a property of substitution]

(Vdw'; dy!. mid ==> mld[el/w]/\ (\1'dw'; dx'; dy!; dz!. post[el/w]::::} 'f/I))[cl/w]H_/']

== pre /\ (3 del • c.l "=' w /\ [by predicate calculus]

(V dw'j dy!. mid ==> mld[c.l/w]/\ ('Ii dw'; d~/; dy!; dz!. post[c.l/w] ::::} '1,[0)))[-/']

::::} pre /\ (3 del • [by predicate calculusJ

(V dw'; dy!. mid::::} mid[el/w] /\ ('I dw'; d::'; dy!; dz!. post[cl/wJ ::::} 1')))[-1']

== pre /\ 3 del • [by dashed variables are not free in del]

(V dw'; dy!. mid::::} mld[el/w] /\ (\1' dw'j dI'; dy!; dz!. post(el/wJ ::::} 11-'))[-/']

_ 3 del • pre /\ [by el are not free in pre]

(\1' dw'; dy!. mid::::} mid[el/w]/\ (\1' dw'; dx'; dy!; dz!. post[cl/w] ::::} 'w))[_/']

= 3 del. pre /\ [by a properly of substitution]

(V dwlj dy!. mid::::} mid[c.l/w][_/T /\ (\1' dw'; dIl; dy!; dz!. postlel/u'] ::::}~I))[-/'J

== 3 del • pre /\ [by w' are not free in dw'J

(\1' dw'; dy!. mid::::} mid[el/wJ[_/'J' /\ (\1' dw'; dI'; dy!; dz!. pos/·ret/u'] ::::}~I)[-/'J)[_/,]

=- 3 del. pre /\ (\1' dw'; dy! • mid::::} [by a property of substitution]

mid!d/ w][_/'I' A (If dw'; dx'; dy!; dz! • po"ld/w] =>,,11-/'1'[-1'])[-1'1
_3del.pre/\

(If dw'; dy'. mid => mid[d/w][_/']' A (If dw'; dx'; dy'; dz' • po,tld/wl => ")[-/'I')[-I'J
[by w are not free in dw',d::', dy!, dz!, post[d/w], and 1./', and w' are not free in dw'J

::::} 3 del. pre /\ (\1' dw'; dy!. mid::::} [by a property of substitut.ion]

{mid[cl/wll_1'l A (If dw'; dx'; dy!; dz'. po,tld/w] => ,,)[-/'1),11-1']
== wp.11 con del. w, y! : [pre, mid] ; w, x, y!, z! : [mid[cl/w][_/'],post[el/w]] JI .1/J

[by definition of wp]

o

170 Appendix D. Laws of ZRC and Their Derivations

Law skI Skip introduction

w : [pre, post]

~ ski

skip

provided pTe => post[_l'l.

Derivation

wp.w : [pre,post].ll',!

=: pre 1\ ('v'dw' • post::::} 1/,1)[_1'] [by definition of wp]

=} post [-1'1 1\ ("I dw'. post => 1//)[-1'] [by the proviso]

=> po"[_/'] "(po" => ,")[_1'] [by predicate calculus]

'" po,'[_I'] " (po"[_/'I =>,,) [by dashed variables are not free in w]

[by predicate calculus]=>"

=. wp.skip.dl' lby definition of wp]

o
Law siC Skip left composition

skip; p

,Ie
p

Derivation

"",.(skip; p)."

=: wp.skip.(wp.P:Ip)' [by definition of wv]

=. wp.p.V [by definition of wp]

o
Law sP Strengthen postcondition

tv : [pre, post]

~ sP

tv : [pre, npost]

provided pre A npost ::::;. post

Syntactic Restriction npost is well.scoped and well~typed.

Derivation

"",.W ; [pre, po"]."

= pre 1\ (\0' dw' • post::::;. lJJ) [-1'1 [by definition of wp]

171 D.2 Refinement Laws

~ pre A (V dw' • pre A npost ~ t,lJ)[-I']

= (pre A ("I dw' • pre A npost =>- t,lJ))[-/'J

= (V dw' • pre 1\ (pre A npost =>- ¢))[_/']

~ (Ydw'. pre 1\ (npo,' => ,,)11-/'1
= pre A (V dw' • npost => 1j;)[_/']

= wp.w : [pre, npost].t,lJ

Law srC Skip right composition

p; skip

"c
p

Derivation

wp.(p; skip).1j;'

=wp.p.(wp.skip.1j;')'

=wp.p.t,lJ1

Law sS Simple specification

vl:= el

,5

vi : [true, vi' = ell

Derivation

wp.vl := el.1//

="[eI/v'!

= ,/[eI/vI'J[_/'1

:::; (V dul' • vl' = el ~ v'/)[-/']

:::; wp.vl: [true,vl' = el].l,b'

[by the proviso]

[by no dashed variable is free in preJ

[by w' are not free in preJ

[by predicate calculus]

[by no dashed variable is free in pre J

[by definition of wpJ

o

[by definition of wpJ

[by definition of wp]

o

[by definition of wp]

[by a property of substitution]

[by predicate calculus]

[by definition of wp]

o

172 Appendix D. Laws of ZRC and Their Derivations

Law vrbJ Variable introduction

w : [pre, post)

vrbI

livar dvl. vl,w, [pf",po,t] II

whe.e duf declares the variables of vI.

Syntactic Restrictions

• aul is well-scoped and well-typed;

• The variables of vi and t'l' are not free in w : [pre, post] and are not dashed.

Derivation

wp. w : [pre, post]:",

:=: pre 1\ (V dUl' • post => 1/')[-1'] [by definition of wpJ

=:=: "t auf. prt 1\ ('V dvl'; dw'. post => u:)(vi / vl'][_tl

[by vi and vl' are not free in pre, dvl\ dw', post, and ~l

'= wp. I[val' dvl • vt, W : [p,-e,postj 11.1/J [by definition of wv]

o
Law vrbR Variable renaming

I[var del. pil
vrbR

I[val' dljl • plul, ui' (vi, vii) JI

where dul and aul declare the variables of vi and ul, respectively.

Syntactic Restrictions

• The variables of u1 and ut' are not free in p;

• The variables of u1 are not dashed.

Derivation

wp.llvar dvl. pII·"
== 'V dtll. wp.p.1/J [by definition of wpJ

== 'V dtd • (wp.p.1/')[ullvl] [by ul and ul' are not free in p and 1/']

=:; 'V dill. (wp.p[ul, ul'lvi, vl'].1J.'[ul, ut' lvi, vf])[vllul][u1Ivt) [by Lemma 3.1]

=:; 'V dut • wp.p[w, ul' lvi, vl'].1/' [by vi and vi' are not free in p[uI, ul'lvl, Vii] and v.o]

=:; wp. II var dut • p(ui, uf lvi, vi'} JI .'Ij; [by definition of wp]

o

173 0.2 Refinement Laws

Law vrS Value-result specification

p[vl" v~/vl" vlll

vrS

(val~res ddt. p)(VI2)

where dvlt declares the varia.bles of vll'

Syntactic Restrictions

• The variables of viz and vl2 are not free in Pi

• The variables of vh and vtl are not dashed.

Derivation

wp.p[fII2, vl2/vlt, vln·1,II

?- wp.p[l, 11
/ vh, vlf][vI2' vl2/I, 1'].'1,/1' [by 1and l' are fresh]

"wp.p[l, l' lvi" vlmvl" v~/l, 1'].,p'[I'lv~Jlv~/I'] [by i' are fresh}

'" (wp.p[l, 1'1 vi" vlll.,p'[I'Iv~])[vl,ll]

[by vl2 and v12 are not free in p and v,'[l' /v12J, and Lemma 3.1]

=: (wp.p[l, I' / vh, vl~]:¢[l/vi2]'[l' /l])[vi2/ 1] [by a property of substitution]

'" Vdl • (wp.p[l, I' lvi" vIll.,p[llvl,I'[I'II])[vl,ll] [by predicate calculus]

== wp. I[var dl • 1 := viz; p[l, l'/vh, vl~] ; viz := i]1 .1)J' [b)' definition of wp]

== wp.(val-res dvll • p)(v12):~l [by definition]

o
Law vrS Value-result specification (specification statements)

w, vi, , [pre[vl,lvl,], po,![vl,lvld I

vrS

(val-res dvlt • w, vII: [pre, post[vtllvl2J J)(vl:2)

where dvll declares the variables of Vii'

Syntactic Restrictions

• The variables of vlt are not in wand are not dashed;

• The variables of vi; are not free in post;

• The variables of vl2 and vl2 are not free in w : [pre, post].

Derivation

w, vI, , [pne[vl,lvl,], po,'[vl,lvld]

= by vi~ are not free in post

w, vl2 : [P~[vldvhJ, post[vIUv12Hvl2/vifJ[vi2/viJl J

174 Appendix D. Laws of ZRC and Their Derivations

::0- by 'VII are not in w

(w, vlt : [PTf,post[vl~/v1211)[vI2' v12/vlx,vlll
== 1JrS

(val-res dvh. w, vi} : [pre,post[vlUv12]))(vI2)

o

Law 'VrS Value-result specification (fnnction application as actual parameter)

w,f 0 [Pceif x?I fp), {x'} "I' ~ {x?} "f A post if x?,/' .x?I fp,fp'J]

"s
(val-res fp: t. w,/p: [pre,post])(f x?)

where t is tbp type that contains the range of f·

Syntactic Restrictions

• f is of a function type;

• f and fp are not in W;

• f and I' and are not free in post.

Derivation

w,f 0 [,celf x?lfpj, {x?} "I' = {x?} "f A postIf x?,1' x?lfp,fp']]

!;;; vrb/

I(var II: t.

v. w.f 0 [Pcelf x?I fp]. (x?) "I' = {x?} "f A post if x', I' x' I fp. fp']] <J

II
!; seqcI

v 0 iP"'lf x?lfp].pcelf x?lfp]' A v' = I' x?]; <J

v. w,f 0 [pcelf x'lfp] A v = f x?, (x?) "I' = {x?} "f A po"if x',f' x'lfp,fp'J] (.)

~ assigI

v := f x?

The specification statement (i) can be refined as follows.

(i) !; faJ8igl

pcelf x'lfp) A v = f x?]

[
v,w,fo (x?) "(I'E!l{x'o-;v'))={x?}"f

(po'tif x?,1' x?lfp,fp']if' f!J (x? 0-; v'}II'])

<J

f o=fE!l{x'o-; v}

175 D.2 Refinement Laws

~	 sP

v,w,J, [preV x?llp] A v ~I x?,{x?} .. !, ~ (x?}"1 A po,tV x?,v'lfp.fp']]

" clR

v, w : [preff x? / /pJ I\. v = / x?, postfJ x?, Vi / /p,/p'J]

r; sP

v, w , [preV x? IIp] A v ~ I x?,po,'[v, v'llp,fp']]

Below we discharge the proof-obligation generated by this application of sP.

pn~lf x?//p] 1\ v =/ x? I\.post[v,vl//p,fp/J

'" preV x'llp] Av~1 x? A po,tlv,v'lfp,Jp']V x?lv] [by pm:iicate calculus]

== prelf x?/fp] I\. v =/ x? I\.postlf x?,vl//p,jp'J [by v is not free in post]

::;. poMfJ x?, Vi /fp,jp'] [by predicate calculus]

We proceed as follows.

~u'P

v, w , [pre Ivifp], po,tlv, v' IIp,fp']]

The proof-obligation generated by wP is discharged below.

prelf x'lfp] A v ~ I x?

'" prelvllp)[f x? Iv] A v ~ I x? [by V is not free in preJ

'" pre[vlfp) 1\ v ~ I x' [by predicate calculus]

*	 prelvlfp] [by predicate calculus]

The refinement continues as shown below.

~	 vrS

(val-res Ip, t. w,fp' [pre,po,tll(v)

Therefore, we have proved that the following refinement holds.

w,I' [preV x?llp],{x?),,!, ~ {x?}"1 A po,tV x?,J' x?lfp,Jp']]

"llvar v, t. v '~I x?; (val-res fp, t. w,Jp' [pre,po,tll(v) ; I '~/ffi {x' >-> v} II

By definition, this variable block is (val-res /p : t _ w,/p : [pre, post]}(J x?), as required.
o

Law vri! Variant introduction

1'2

vrlI

I[procpn == (Jpd - {n = e} ptl variant n is e - P2JI

Syntactic Restrictions

_ pn and n are not free in e and Pt;

-	 (Jpd - pt} and e are well-scoped and well-typed.

176 Appendix D. Laws of ZRC and Their Derivations

Derivation

]>,

= ",(I[con n ,N. "Up<!. {n ~ ,j pdlll [by pn is not free in P2J

= I[proc pn == (jpd. {n == e} pd variant 11 is e - P211 [by definition]

o

Law vS Value specification

w , [pre[d/d],po,'[d, d' /01, vl'J]

vS

(val dvl. u' : [p1'e,postJ)(el)

where dvl dedares the variables of vi.

Syntactic Restrictions

• The variables of vi are not in wand are not dashed;

• The variables of w are not free in ei;

• el has no free dashed variables.

Derivation

wp.w : [pre[e//ul], post[el, eli/vi, vl']].w

=0: pre[e/jvl]/\ 01 dw' • post[el, el' lvi, vi'] :o:}1jo)[-l'l [by definition of wpJ

'" pre{I/"llId/l] A (V dw' • po,'[I, I' / 01, oI'lId, d'/1, I'] => "JI-/'] [by I and l' are fresh]

'" pre[I/"llid/I) A (V dw' • po,'[I, I' /vl, vi'] => >I'lld, d'/1,1'][-1']

[by land e are fresh, and Wi are not free in el']

=: pn~[Ilvl)[elll] 1\ {Y dw'. post[l, l' Jvl, vi'] ~ l,!J)[I/I'][_I'Hel/IJ (by a property of substitution]

== (prell/vilA (V dw l - post[i, If lvi, vl'] => vJ)[III'][_I'])felll] [by a property of ,substitutionJ

'" V dl. (pre[l/vl] A (V dw'. po,,[/, I' /vl, vi'] => "III/I'Il-/'I)[d/l] [by predicate calculus]

:= wp. i[var dl - I := el; (w: [pre, post])[l, 11 lvI, Vii] JI .w {by vi are not in wJ
=: wp.(val dvl_ w: [pH:,post])(el).t/' [by definition]

o
Law wG Weakening guards

ira i_ g; 1\ 9 -+ P, ft

r;;; wG

ifOi-g.-+p. ft

177 D.2 Refinement Laws

Derivation

if 0 -I • gi 1\ 9 -+ Pi fi

(;;dimG

ifD!·gi-+p,fi

The proof-obligations generated by this application of dimG can be discharged as follows.

(Vi·goAg)

=' (V •• g;) A g

'* (V· • g.)

(V i • 9, 1\ g) 1\ g.

== (V -I • go) 1\ 9 1\ g,

=>9,1\9

Law wP Weakening precondition

w: [pre, post]

(;; wP

w: [npre, post]

provided pre => npre.

Syntactic Restrictions

• npre is well-scoped and well-typed;

• npre has no free dashed variahles.

Derivation

wp.w: [pre,postJ.1,b

== pre 1\ (If dw' • post ::::} 1,b) [-I'J
::::} npre 1\ (If dw' • post::::} 1{J)[_I']

== wp.w: [npre,post].1,b

Data Refinement Laws

thy predicate calculus]

[by predicate calculus]

[by pr€dicate calculus]

[by predicate calculus]

o

[by definition of wp]

[by the proviso]

[by definition of wp]

o

In what follows, we present and derive the data refinement laws of ZRC. The lists of abstract and
concrete variables are avl and evI, respectively, and the coupling invariant is ei. The refinement

178 Appendix D. Laws of ZRC and Their Derivations

law dR (data refinement), which can actually be used to data-refin~ a variable block, has been

presented earlier on in this appendix.

Data Refinement Law Specification statement

vI, w : [pre, post)

~

I[con davl • clIl, W; [CI 1\ pre, 3davl' , ci l 1\ ul' :;:;; ul 1\ post] JI

where

• datil declares the variables of Gvl;

• avl = vi, ul, and vi and ul are disjoint.

Syntactic Restriction The variables of alll are not in w.

Derivation

3 davl • ci 1\ wp.vl. w : {pre,po.'ltj.V'

= 3 dall{ • Cl 1\ pre 1\ ('<I dull; dw' • post =} 1,b)[-I'J [by definition of wp]

= 3 davl. et 1\ pre 1\ (V dul'; dw'. post =} 1,b)[uljul'][_l'l [by a property of substitution]

= 3 davie ci 1\ pre 1\ (V dull. ul' = ul =} ('<I dvl'; dw l
• post, =} V'))[-/']

[by predicate calculus]

= 3 davl. ci 1\ pre 1\ (\I'davl'; dw'. ul' = ul 1\ post =} 1j,')[-/'J
[by lJl' and w' arc not in ul', and avl = vi, ul)

=: 3 dav{ • ei /\ pre /\ (V devi'; dw'; davl'. ut' := ui/\ post '* 1,b H-/'l
[by evt' are not in ul', and are not free in dw', davt', post, and 1,b]

~ 3 davl' Cl /\ pre /\ (V devll; dw'; davl'. ei l
/\ Ul' '=" ut/\ pust => n' /\ .,p)[-I'J

[by predicate calculus]

=> 3 davie ei /\ pIT /\ (V devl'; dw' ; davl' • ci' /\ Ul' = ut/\ post => 3 davI' • ei' /\ .,p)[_/']
[by predicate calculus]

= 3 dam. ei /\ pre /\ (V devI'; dw' • (3 davl' • d /\ ut' = Ill/\ post) ::;. 3 davl' • n ' /\ 1,bH-I'J
[by alll' are not free in davl'J

_ wp.l! con dalJl • evi, W : ICI /\ pre, 3 dalll' • cz' /\ IIi = Ui' /\ post] JI .3 davl' • el' /\ 1,b
[by definit.ion of wpJ

o
Data Refinement Law Skip

skip

~

skip

Derivation This law is an application of Theorem 3.11.
o

179 D.2 Refinement Laws

Data Refinement Law Assumption

(pre }

'" Il con davl - cut; [Ct /\ pre, d[avt/avll]]]1

where davl declares the variables of avl.

Derivation

{pre }

= at/sumP

: [pre, true]

'" I[con davl - cvl : [Cl /\ pre. 3 dave. £:1' /\ avll = avl]]I

= sP (in both directions)

I[con davl - £:vl : [ei /\ pre, d[avl/ avl']] JI

o
Data Refinement Law Coercion

[po,']

'" I[con datil - evl; [n, (d /\ pastHavl/avl']]1

where davl declares the "ariables of avt.

Derivation

[po,']

= cO

; [true, post]

'" I[con datil - cvl : [el, 3 dave. £:1' /\ avl' = avt /\ post]))

= sP (in both directions)

I[con datil - cvl ; [ei, (d /\ past)[avl/avl']),1

o
Data Refinement Law Sequential composition

Pl ; ql

'" P'2;1/'l

provided PI ~ 11'2 and ql ~ rn.
Syntactic Restriction The variables of avl and avl' are not free in P2 and rn..

180 Appendix D. Laws of ZRC and Their Derivations

Derivation

3 datil. ca: 1\ wp.(PI ; qt}.1,b

== 3davl. ci II wp.PL.(wp.ql'~')' [by definition of wp)

=;>- wp.P2. 3 davl' • d 1\ (WP.ql· t/J)' [by a proviso]

= wp.IJ2. 3 datil. d[avl/ aVl'] t\ (wp.q] .W)/[atlll avl'] [by predicatc calculus]

= wp.]J2.(3 davl' C~ 1\ Wp.Ql·1/.!)1 Iby a property of substitution]

=;>- wP'P2.(wp.q2.3davl'. d 1\ 1/Jy [by a proviso and monotonicity of wpJ

:0;:: wp.(P2 ; Q2).3 davl', el' 1\ 1/J [by definition of wpJ

o

Data Refinement Law Alternation

ifOi-g,-'Pi fi

"
1/ con davl_ if 0 i • ci 1\ 9. -+ q, fi 11

provided Pi ~ q.

Syntactic Restriction The variables of avl and atll' are not free in qo.

Derivation

3 datil. CIA wp.if 0i • g, -+ p, fl.l/!

== 3 davie ci 1\ (V j. gil 1\ (/\ i. 9, =;>- wp.p,.1/!) [by definition of wpJ

::::} 3 datil. {V j • ci 1\ go} II (/\ i • (ci 1\ g.) :::} ci /\ wp.p,.!/J) [by predicate calculus]

:::} 3 davl. (V i • C1 /\ g,) /\ (/\ i • (ci /\ g;) :::} 3 davl • ci 1\ wp.p, .ljJ) [by predicate calcnlus]

:::}- 3 davl • (V i • ci /\ g.) /\ (/\ i • (ei /\ g;) :::}- wp.q•. 3 davl' • el' 1\ 1/') [by the provisoj

=0: wp.l[con davl • if 0 i • Ci /\ g,, q, fi 11 .3 dave. ei' /\ "¢ lby definition of wpJ

o

The derivation of the Ilext data refinement law relies on the lemma that follows. It establishes

that, when variables that are not involved in the data refinement are renamed, the resulting

programs are related. by data refinement if they were befOre.

Lemma. 0.7 For all progmms Pi and P2, li.!Jts of ab~traet and concrde vanable.!J avl and evl, and

coupling iflvarianl Gi, If Pl ~ 112 then PI [I, l' Ivl. ul'J ~ 112[l, /'/lil, vi'} pmvided the variable.!J of vI

are nol In aliI and are not free in ci, and the lIanables of 1 and l' are not free in PI and]>2, are

not 1n at'l and cui, and are not free in Cl. The variables of cvI and cvl' must not be free In Pi; the

variables of avl and avl' must no be free in P2: and avl and cLi must be di8joint.

181 D.2 Refinement Laws

Proof

3 davl. ci /\ wp·pdl, l' lvi, v1lt,b

_ 3 davl • ci 1\ (wp.pdl, l'lvi, vll][m, m ' lvi, vl'].t,b[m, m ' lvi, vl'])[vilmJ [by Lemma 3.1J

= 3 davl • ci 1\ (up.pdl, l'lvl, vll].1/'[mllvl'])[vllm) [by program variables are not free in 1/1]

_ 3 doel. vi 1\ (up.p,[l, l'/el, el'lIel, el'II, I'J.,plm' lel'lIel'11'])ll/elliellm] [by Lemma 3.1]

= 3 davl. ci 1\ (wp.Pl.1/'[m'lvl/][vl'll'])[llvlJ[vllm] [by 1 and II are not free in pd

~ (3 doel • vi 1\ wp.Pl.,plm'lel'lIel'11']W/elliellm]

[by vi are not free in davl and ci, and 1 and vi are not in avl, and m are fresh]

=} (wp.Pl.3 davl' • d /\ t,b[m' Ivl'][vl' 111])[llvl][v1lm] [by assumption]

~ (wp.P2.(3 dael' • d A ,pJlm' lel'lIel'I1'])ll/elliellm]

[by vi' and I' are not free in davl' and ci /, and are not in avll, ao.d m are fresh]

_ (wp.P2[I, I' lei, el'lIel, el'11,1'].(3 doel' • d A ,pJlm' lel'lIel'11'])[l/elliellm]
[by l and II are not free in Pl]

~ (wp'P2[I, l' Ivl, vl'].(3 davll • d /\ 1/')[mllvi'])[vllm] [by Lemma 3.1]

= wp.P2[l, l'lvl, vllj. 3 davi' • ci' /\ t,b [by Lemma 3.1]

o
Data Refinement Law Variable block

II var del. pIiI

'" livar del. 1'211

provided Pi ~ Pl

Syntactic Restrictions

• The variables of advl are not in avl and are not free in ci;

• The variables of avl and avll arc not free in Pl.

Derivation

3 davl • ci /\ wp. I[var dvl. PI]I .t,b

== 3 davl • ci /\ V dl • wp.pdl, l'lvl, vl'].1/' [by definition of wp]

== 3davl. Vdl. CI /\ wp.pdl,lllvl,vl/J.1/I [by I are not free in ci]

=} Vdl • 3 davl • ci /\ wp.pdl, l'lvl, vl'].t,b [by predicate calculus]

=}Vdl. wp'P2[I,l'lvl, vl'j. 3davll • ci' /\ t,b [by Lemma D.7 and the proviso]

== wp.l[var dvl.Pl]I·3davll • ci l
/\ 1/' [by definition of wpJ

o

182 Appendix D. Laws of ZRC and Their Derivations

The lemma below, which is used in the derivation of thp data refinement law that applies to

constant blocks, is similar to Lemma D.7, but considers constants instead of variables.

Lemma 0.8 For ail progmms Pi and P'l, ItSts of abstmcf and concrete variables avl and wi, and

coupling invariant ci. Ifpl -4 P2 then pdl/el] ~ P2[ljclJ provided the constant.s of cl aTe not in
aul and are not free in el, and the constants of J are not free in PI and P2, are not m aui and cvl,

and are not free In CI. The variables of cvl and evI' must not be fn~e in PI'- the vanablrs of aul
and aul' must. not be free in pz; and avl and cvl must be dlsJomt.

Proof

3 davl_ Cl A wp.pdljclj.lj!

=0 3davl. ci' (wp.pdl/elJlm/el].v[m/d])[d/mJ [by Lemma 3.2]

3 davl • ci /\ (wp.pdl/ elJ,~'[m/el]l[el/m] [by a property of substitution]

_ 3 dav!." /\ (wp.p,/i/elJlel/I] ..~lm/elJlel/IIi/i/dJlel/m] [by Lemma 3.2)

~ 3davl." /\ (wp.p,.,plm/elJlel/lll[l/dJlel/m] [by l 4re not free in Pi]

~ (3 davl.ci /\ wp.p,.,p[m/elJlel/!])[I/elJlel/m[

[by cl are not free in davJ and ct, land cl 4re not in avl, and mare fn-sh]

=> (wp.P2.3dav/' _ ci' /\ t,b[m/cl][cl/l])[l/cl][cl/m] [by assumption]

~ (wp.l'2.(3 dav!' • ci' /\ ,p)[m/d][d/I])[I/ d][eI/mJ
[by cl and J are not free in dal!i' and CI, cl are not in avl', and m are fresh]

~ (wp.?1[I/d][el/IJ.(3 davl' • co' /\ ,pllm/clJlel/l])[l/cI][cI/mJ [by I 4re not free in P2]

~ (u7'p,ll/ell.(3 davl'. c,' /\ ,pllm/d]lIel/m] [by Lpmma 3.2]

_ wp'P"1[l/clJ.3 davl' - ci' /\ w [by Lemma 3.2]

o
Data Refinement Law Constant block

I[can del - PI II
~

II con del • '" JI

provided PI 0:$ P2

Syntactic Restrictions

_ The constants of adel are not in avl and are not free in ct;

_ The variables of avl and avl' are not free in P2.

Derivation

3 davl - ci /\ wp.11 con del - PI]1 .ow

~ 3davl. Ct /\ 3dl_ tup.pdl/cl].ow (by definition of wp]

183 0.2 Refinement Laws

== 3dl. 3davl _ ci /\ wp.pdljclj:'f! [by I are not free in ci and davlJ

=> 3 dl • wp.P2(ljd1. 3 davl' • cz' /\ 1/J [by Lemma D.8 and the proviso]

== wp.l[con del_ P211·3davl'. d /\ 1/J [by definition of wpJ

o
In the lemma that follows we rephrase a result presented in [181: data refinement distributes

through fixed points. This lemma is used in the derivation of tbe next data refinement law.

Lemma D.9 For all progmm contexts pel and pe2, 11sts oj abstract and concrete varIables avl and

cvl, and coupling Invariant ci, iJPCl ~ PC2, thenJ1.pcl ~ J1.PC2.

A proof for this lemma is presented in [18).

Data Refinement Law Procedure block

IlpWC pn '" p, (pn) • ",(pn) II
~

Ilproc pn '" P3(pn) • p,(pn) II

provided Pi ~ P3 aud P2 ~ P4·

Derivation

I[proc pn '" p,(pn). ",(pnlll
= ",(~p,) [by definition]

~P4(J1.P3) [by Lemma D.9 and the provisos]

= Ilpwc pn '" ",(pn). p,(pn))1 [by definition]

o
Data Refinement Law Iteration

do 0i • gi -+ P. do

~

do 0i • (\::I davl • c; => g.) -+ q, od

provided

• (3 davl • ci /\ (V i • g,)) => (V i • V davl. CJ ::::} g;}

• Pi ~ qi

Syntactic Restriction The variables of avl and aul' are not free in qi

Derivation

doDi·g,-+Pi od

= by definition

I[proc it == if 0i • g; -+ Pi; It 0 ..., (V i • g,) -+ skip fl • it 11

1B4	 Appendix D. Laws of ZRC and Their Derivations

"'
I[proc It == I[con	 davl •

if 0I • ci 1\ go ---+ q.; it 0 ci A ..., (V I • g;) --t skip fi
 " II
;t

II
I.;;;	 dimG

if 0i • (V dad. ci ~ 9,) ---+ q;; It 0...., (V i • 'V daul • C~ .=} g,) --t skip fi

The consequent of the first proof-obligation generated by this application of dimG is a tautology.

...., (V i • V davl. ci ~ 9,) V (V i • 'tt davl. Cl ~ 9.l

The second proof-obligation can be discharged a'i follows.

{(V i • ci 1\ g,) V (el 1\..., (V i. 9.))) 1\ ("I davi. ci.=} g;)

«c! 1\ (VI. g,)) V (ci 1\...., (V i. g,l)~ 1\ (Vdavl. CJ::::} gil [by predicate calculus]

= ci 1\ «V I. g,) V ..., (V i • g,» 1\ (\I dauJ • ci:::} g,) [by predicate caltulus]

:::}cil\{ci~g;) [by predicate calculus]

:::} go [by predicate calculus]

The last proof-obligation is discharged below.

«V i. CI/\ g;) V (ei 1\..., (Vi. g,))) 1\...., (Vt .'Vdavl. n:::} go)

== Cl 1\..., (V i • Vdavl • ci :::} g.) [by predicate calculus]

:::} ci 1\ -. (3davl. Cl/\ (V i. g;)) [by the proviso]

== ci 1\ (V davl • ei :::}, (V i • 9.) [by prerlicatp calculus)

:::}...., (Vi. 9.)	 [by predicatp calcnlus)

Since the variables of avl a,rp not. fn>p in the alternation generated by the application of dimG,

we can use conR to remove thp constant hlock that declares these variables as constants. The

resulting procedure hlock is shown below.

If proc it == if 0I _ (V dalJl - C1 => g,) --t qi ; it 0..., (V I - V dalJl _ ci ~ g;) ---+ skip Ii - it II

By definition. this program is the iteration do 0i _ (V dalJl _ CI => g,) ---+ q, od, as required.

o

Bibliography

[1]	 R. J. R. Back. On The Correctness 01 Refinement Steps in ProgrTJ.m Development. PhD thesis,
Department of Computer Science, University of Helsinki, 1978. Report A-1978-4.

[2]	 R. J. R. Back. Correctness Preserving Program Refinements: Proof Theory and Applications.
'ThcbnicaJ Report Tract 131, Mathematiscb Centrum, Amsterdam, 1980.

[3]	 R. J. R. Back. Procedural Abstraction in the Refinement Calculus. TechnicaJ report, Depart
ment of Computer Science, Abo - Finland, 1987. Ser. A No. 55.

[4]	 R. J. R. Bade. A Calculus of Refinements for Program DerivatioDB. Acta Informatica, 25:593

- 624, 1988.

[5]	 R. J. R. Bade. Data Refinement in the Refinement Calculns. In Proceedings 21!nd Hawai

International Conference of System Sciencea, 1989.

!6J	 R. J. R. Ba.ck and J. Wright. Refinement Calculus, Part I: Sequential Nondeterministic Pro
grams. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Stepwise Refinement

of Distributed Systems: Models, FonnGlism, COrTECtness, volume 430 of Lecture Notes in
Computer Science, pages 42 - 66, Mook, The Netherlands, 1989. Springer·Verlag.

[7]	 R. J. R. Back and J. Wright. Refinement Concepts Formalised in Higher Order Logic. Fonnal

Aspects of Computing, 2:247 - 274, 1990.

(8]	 S. M. Brien and J. E. Nicholls. Z Base Standard, Version 1.0. Technical Monograph TM
PRG-107, Oxford University Computing Laboratory, Oxford - UK, November 1992.

[9J	 D. Carrington, D. Duke, R. Duke, P. King, G. A. Rose, and G. Smith. Object-Z: An Object
oriented Extension to Z. Fonnol Description Techniques, II (FORTE'S9j, pages 281 - 296,
1990.

[10]	 D. Carrington, D. Duke, I. Hayes, and J. Welsh. Deriving Modular Designs from Formal
Specifications. ACM Software Engineering Notes, 18(5):89 - 98, December 1993.

~11]	 A. L. C. Cavalca.nti, A. Sampaio, and J. C. P. Woodcock. An Inconsistency in Procedures,
Parameters, and Substitution in the Refinement Calculus. Science of Computer Programming.

To appear.

112]	 V. A. O. Cordeiro, A. Sampaio, and S. R. L. Meira. From MooZ to EifTel - A Rigorous A~

proa.ch. to System Development. In M. Naftalin, T. Denvir, and M. Bertran, editors, FME'9-4:

186 BIBLIOGRAPHY

Industrial-Strength Formal MethlJli.J, volume 873 of Lecture Notes m Computer SCIence, pages
306 - 325, Barcelona, Spain, October 1994. Springer-Verlag.

[13J	 A. J. J. Dick, P. J. Krause, and J. Cozens. Computer Aided Transformation ofZ into Prolog.
In J. E. Nicholls, editor, Z User Workshop, Workshops in Computing, pages 71 - 85, Oxford

- Ul<, December 1989. Springer-Verlag.

[14]	 E. W. Dijkstra. A Disciplme of Programming. Prentice-Hall, 1976.

[15]	 E. W. Dijkstra and C. S. Scholten. P~dJC(Jte Calculus and Program Semantics. Texts and
Monographs in Computer Scienn>. Springer-Verlag, 1989.

[Hi]	 A. Diller. Z: An Introduction to Formal Methods. Jobn Wiley & Sons, 2nd edition, 1994.

[17]	 V. Doma and R. NicholL EZ: A System for Automatic Pcototyping of Z Specifications.
In S. Prehn and W. J. ToeteneL editors, VDM' 91 Formal Sojtwa", Developmenl Methods,
volume 552 (J(Lecture Noles in Compuler Science, pages 189 -. 203. Springer-Verlag, 1991.

[18]	 P. H. B. Gardiner and C. C. Morgan. Data Refinemeut Df Predicate TransfDrmers. Theoretical

Computer Science, 87:143 - 162, 1991.

[19]	 P. H. B. Gardiner and C. C. MDrgan. A Single CDmplete Rule for Data Refinement. Formal

Aspecb of Computing, 5(4):367 - 382, 1993.

[20]	 L. Groves. Procedure8 in the Rl'finement Calculus: A New Approach? In H. Jifeng, l'ditor,

7th Refinement Workshop, Bath ~ UK, July 1996.

121]	 L. Gro\'es, R. Nickson, and M. UUing. A Tactic Driven Refinement TDol. In C. B. JOlle8,
R. C. Shaw, and T. Denvir, editors, 5th Refinement Workshop, Workshops in Computing,

page.... 272 - 297. Springer-Verlag, 1992.

(22]	 J. Grundy. A \\'indow Inference Tool fDr Refinement. In C. D. Jones, R. C. Shaw, and
T. Demir, editors, 5th Refinement Workshop, Workshops in Computing, pages 230 - 254.

Springer-Verlag, 1992.

[23]	 U. Harner and J. Peleska. Z Applied to the A330/340 CIDS Cabin CDmmunication System. In

M. G. Hinchey and J. P. Bowen, editors, Applications of Fonnal Methods, cbapter 11, pages

253 - 284. Prentice-Hall, 1995.

[24)	 W. T. Harwood. ProDf Rules for Dalzac Technical Report WTH/P7/001, Imperial Software
Technology, Cambridgl' - UK, 1991.

l25]	 I. Hayes, editor. Specification Case Studies. Prentice-Hall, 2nd edition, 1993.

[26]	 W. H. Hes~link. Progmms, Recursion and Unbounded ChOfce - Pt'edicaie Trans/ormation
Semantics and TraWl/ormation Rules. Cambridge Tracts in TheoreticaJ Computl'r Science 27.

Cambridgl' University Press, 1992.

[27]	 M.G. Hinchey and J. P. Bowl'n, editors. Applications of Formal Methods. Prentice-Hall, 1995.

187 BIBLIOGRAPHY

[28]	 C. A, R. Hoare and Jifeng He. The Weakest Prespecification. Technical Monograph TM
PRG-44, Oxford Uniwrsity Computing Laboratory, Oxford - UK, June 1985.

[29J	 M. Johnson and P. Sanders. From Z Specifications to FunctionallmpJementatioIlll. In J. E.
Nicholls, editor, Z User Workshop, Workshops in Computing, pages 86 - 112, Oxford ~ UK,
1989. Springer-Verlag.

[30]	 C. B. Jones. Software Developme.nt: A Rigorous Approach. Prentice-Hall, 1980.

[31]	 R. B. Jones. ICL ProofPower. BCS FAGS FACTS, Series nr, 1(1):10 - 13, 1992.

[32]	 M. B. Josephs. Formal Methods for Stepwise Refinement in the Z Specification Language.
Technical Monograph TR-PRG-1-86, Oxford UDi~rsity Computing Laboratory, Oxford - UK,

1986.

[33J	 M. B. Josephs. The Data Refinement Calculator for Z Specifications. Information Proce.ssing
utters, 27(1):29 - 33, February 1988.

[34]	 S. King. Z a.nd the Refinement Calculus. In D. Bj0rner and C. A. R. Hoare, editors, VDM'90
VDM and Z - Fonnal Method.s in Software Development, volume 428 of Ltxture Notes in
Computer Science, pages 164 - 188, Kiel- FRG, April 1990. Springer~Verlag.

[35]	 S. King and C. Morgan. Exits in the Refinement Calculus. Fonnal Aspects oj Compu.ting,
7(1),54 - 76, 1995.

[36J	 K. Lano and H. Haughton, editors. Object-oriented Specification CQ1Je Studies. The Object
oriented Series, Prentice-Hall, 1994.

[37J	 S. R. L. Meira and A. L. C. Cavalcanti. Modular Object-Oriented Z Specifications. In
J. Nicholls, editor, Z User Workshop, Workshops in Computing, pages 173 - 192, Oxford
UK, December 1990. Springer-Verlag.

(38J	 S. R. L. Meira and A. Sampaio. Modular Extensions to Z. In VDM'90: VDM and Z· Fonnal
Methods in Sojtware Development, volume 428 of Lecture Notes in Computer Science, pages
211 - 232, Kiel - FRG, April 1990. Springer-Verlag.

!39}	 C. C. Morgan. Auxiliary Variables in Data Refinement. Injonnabon Processing Letters,
29(6),293 - 296, 1988.

[40]	 C. C. Morgan. Data Refinement by Miracles. Injormation Processing Letters, 26(5), January
1988.

[41]	 C. C. Morgan. Procedures, parameters, and abstraction: Separate concerns. Science oj
Computer Programming, 11:17 - 27, 1988.

[42}	 C. C. Morgan. The Specification Statement. ACM Transactions on Programming Languages
and Systems, 10(3):403 - 419, 1988.

[43J	 C. C. Morgan. Types and Invariants in the Refinement Calculus. In J. L. A. van de Snepscheut,
editor, Mathematics oj Program Construction, volume 375 of Lecture Notes in Computer
Science, pages 363 - 378. Springer-Verlag, 1989.

188 BIBLlOGRAPHY

[44J	 C. C. Morgan. Programmzng from Sped.jiwti.ons. Prentice-Hall, 1990.

[45)	 C. C. Morgan. Programming from SpeCljications. Prentice-Hall, 2nd edition, 1994.

[46]	 C. C. Morga.n and P. H. B. Gardiner. Data Refinement by Calculation. Acta Informatica,

27(6),481 - 503, 1990.

[47]	 C. C. Morga.n, K. Robinson, and P. H. B. Gardiner. On the Refinement Calculus. Technical
Monograph TM-PRG-70, Oxford University Computing Laboratory, Oxford - UK, October
1988.

[48]	 J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Programming Calculus.

Scienee of Computer Programming, 9(3):287 - 306, 1987.

[49J	 J. M. Morris. Invariance Theorems for Recursive Procedures. Technical report, Department

of Computer Science, University of Glasgow, 1988.

[50)	 J. M. Morris. Laws of Data Refinement. Acta Infonnatica, 26:287 - 308, 1989.

(51]	 D. S. !'-:eilson. From Z to C: Illustration of a Rigorous Development Method. PhD thesis,
Oxford University Computing Laboratory, Oxford - UK, 1990. Technical Monograph TM

PRG-lOl.

!52]	 B. F. Potter, J. E. Sinclair, and D. Till. An Introduction to Fonnal Specificatton and Z.

Prentice-Hall, 2nd edition, 1996.

[53]	 G. B. Ra£9anjani. :From Object-Z to C++: A Structural Mapping. In J. P. Bowen and J. E.
Nicholls, l'ditors, Z User Workshop, Workshops in Computing, pages 166 - 179, London· UK,
1992. Springer-Verlag.

[54J	 D. Rann, J. Thrner, and J. Whitworth. Z: A Begmner's Gu.ide. Chapman & Hall, 1994.

[55]	 A. Sampaio. An Algebraic Approach to Compder Design. PhD thesis, Oxford University
Compnting Laboratory, Oxford - UK. 1993. Technical Monograph TM-PRG-llO. Revised

version to appear as volume 4 of AMAST (Algebraic Methodology and Software Technology)
Series in Computing, World Scientific, 1997 (in press)

[56)	 C. T. Sennet. Demonstrating the Compliance of Ada Programs with Z Specifications. In
C. B..Jones, R. C. Shaw, and T. Denvir, editors, 5th Refinement Workshop, Workshops in

Computing, pages 70 - 87, London - UK, 1992. Prentice-Hall.

[57J	 J. M. Spivey. The fuzz Manual. Computing Science Consultancy, 34 Westlands Grove,

Stockwn Lane, York Y03 OEF, UK, 2nd edition, July 1992.

[58]	 J. M. Spivey. The Z Notation: A Reference Manu.al. Prentice-Hall, 2nd edition, 1992.

[59]	 S. Stepney, R. Barden, and D. Cooper, editors. Object-onentation in Z. Workshops in

Computing. Springer-Verlag, 1992.

[60]	 A. Thrski. A Lattice Theoretical Fixed Point Theorem and its Applications. Pacific Journal

of Mathemahcs, 5, 1955.

189 BIBLIOGRAPHY

[61]	 S. H. Valentine. Z--, an Executable Subset of Z. In J. E. Nicholls, editor, Z UtlfT Workshop,

Workshops in Computing, pages 157 - 187, York - UK, 1991. Springer-Verlag.

[62]	 T. Vickers. An Overview of a Refinement Editor. In 5th Australian Software. Eflgineering
Conference, pages 39 -. 44, Sidney - Australia, May 1990.

[63)	 N. Ward. Adding Specifica.tion Constructors to the Refinement Calculus. In J. C. P. Woodcock

and P. G. Larsen, editors, FME'9S: Industrial-Strength Formal Methods, volume 67()of Lecture

Notes in Computer Seience, pages 652 - 670. Springer·Verlag, 1993.

164]	 J. C. P. Woodcock. Implementing Promoted Operations in Z. In C. B. Jones, R C. Shaw,
and T. Denvir, editors, 5th Refinement Workshop, Workshops in Computing, London - UK,

1992. Prentice-Hall.

[65]	 J. C. P. Woodcock and J. Davies. Using Z - Specification, Refinement, and Proof. Prentice

Hall, 1996.

[66]	 J. B. Wordsworth. Software Development. with Z. International Computer Srience Series.
Addison~Wesley, 1992.

[67J J. Wright. Program Refinement by Theorem Prover. In D. Till, editor, 6th Refinement

Workshop, Workshops in Computing, pages 121 - 150, London ~ UK, 1994. Sprjnger~Verlag.

[68]	 J. Wright, J. Hekanaho, P. Luostarinen, and T. Langbacka. Mechanizing Some Advanced
Refinement Concepts. FOfTnal Methods in System Design, 3:49 - 81, 1993.

