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Chapter 1

Introduction

1.1 The application

This case study is a reduced version of a real development by the NatWest
Development Team (now platform seven) of a Smartcard product for electronic
commerce. This development was decply security critical: it was vital to ensure
that these cards would not contain any bugs in implementation or design that
would allow them to be subverted once in the field.

The systemn consists of a number of electronic purses that carry financial
value, each hosted on a Smartcard. The purses interact with each othervia a
communications device to exchange value. Once released into the field, each
purse is on its owm: it has to ensure the security of all its transactions without
recourse 1o a central controller. All security measures have to be implemented
on the card, with no real-time external audit logging or monitoring.

1.1.1 Models

We develap two key models in this case study. The first is an abstract model,
describing the world of purses and the exchange of value through atomic trans-
actions, expressing the security properties that the cards must preserve. The
second is a concrere model, reflecting the design of the purses which exchange
value using a message protocol. Both models are described in the Z notation
[Spivey 1992b] [Woodcock & Davies 1996] [Barden etf al. 1994], and we prove
that the concrete model is a refinement of the abstract.

Abstract model

The abstract model is smail, simple, and easy to understand. The key operation
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paving purse atomic payment receiving purse
—

Figure [.1: Ah atomic transactioni in the abstract model

{1) request

{2} paymert
receiving purse

paying pursce

(3) acknowledgement

Figure 1.2: Part of the n-step protoco] used to implement the atomic transaction.
in the concrete model.

transfers a chosen amount of value from one purse to another; the operation is
modelled as an atomic action that simultanecusly decrements the value in the
paying purse and increments the value in the receiving purse (figure 1.1). Two
key system security properties arc maintained by this and other operations:

+ no value may be created in the system; and

« all value is accounted in the system (no value is lost).

The simplicity of the abstract model allows these properties to be expressed in
a way that is easily understood by the client.

Concrete model

‘The concrete modcl is rather more complicated, reflecting the details of the real
systern design. The key changes from the abstract are:

* trapsactions are no longer atomic, but instead follow an n-step protocol
(figure 1.2);
« the communications medium is insecure and unreliable;

« transaction logging is added to handle jost messages; and
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= there are no global properties—each purse has to be implemented in iso-
lation.

The basic protocol is:

1. the communications device ascertains the transaction to perform;

2. the receiving purse requests the transfer of an amount from the paying
purse;

3. the paying purse sends that amount to the receiving purse; and

4. the receiving pursc sends an acknowledgement of receipt to the paying
purse.

The protocol, although simple in principle, is complicated by several facts: the
protocol can be stopped at any point by removing the power from a card; the
communications medium could lose a message; and a wire tapper could record
a message and play it back to the samne or different card later. In the face of
all these possible actions, the protocol must implement the atomic transfer of
value correctly, as specified in the abstract model.

1.1.2 Proofs

All the security properties of the abstract model are functional, and so are
preserved by refinement.

The purpose of performing the proof is to give a very high assurance that
the chosen design (the protocol) does, indeed, behave just like the abstract,
atomic transfers. We choose to do rigorous proofs by hand: our experience is
that current proof tools are not yet appropriate for a task of this size, We did,
however, type-check the statements of the proof obligations and many of the
proof steps using a combination of fuzz [Spivey 1992a] and Formaliser [Flynn
et al. 1990] [Stepney]. As part of the development process, all proofs were also
independently checked by external evaluators.

1.2 Overview of model and proof structure

The specification and security proof have the following structure (summarised
in figure 1.3}
+ Security Properties, SPs:

- The Security Properties are defined in terms of constraints on secure
operations; they are formalised in terms of the appropriate model
concepls (see later).



4 CHAPTER 1. INTRODUCTION

| SEFs
| security enlfarcing
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Figure 1.3: Overview of document organisation, with model and proof structure

- In some cases, where it may nat be evident that a model captures a
particular constraint, the desired property is recast as a theoren and
proved.

« Abstract model, 2A: We define an abstract model (Chapter 3), which forms
the Formal Security Policy Model: it consists of a global model in terms of
a simple state and operations:

- the state is a world af (abstract) purses; and
- the operations are defined on this state.

+ Between model, B; Next we build a ‘between' levels model. This is the first
refinement towards the implementation of purses consisting of local state
information only. This model, B, is structured as a promoted state-and-
operations model:

- The state of a single (concrete) purse, and the corresponding single-
purse operations, are defined (Chapter 4).

- The purses and operations are promoted 10 a global state and oper-
ations (Chapter 5). Constraints are put on this promotion ta enable
the correctness proofs to be performed.
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« Concrete model, ¢ Our final mode! is the concrete level model, which
forms the Formal Architectural Design. This model, C, is structured as a
promoted state-and-operations model, very similar to B, except it has no
constraints on the promotion:

- The state of a single (concrete) purse, and the corresponding single-
purse operations, are defined (Chapter 7).

- The purses and operations are promoted to a global state and opera-
tions, with no constraints (Chapter 7).

Security proof AA-B: The security palicy is proved 1o hold for B by proving
that & is a refinement of A. This forms the first part of Fxplanation of
Consistency.

- The retrieve relation Rab, relating the B and A worlds, is defined
(Chapter 10).

- The securily policy is shown to hold for B by proof that B refines A,
using the ‘backward’ proof rules (Part II). This proof comprises the
bulk of the proof work.

Security proof B-C: The security policy is proved to hold for € by proving
that C is a refinement of # (and hence of A, by transitivity of refinement).
This forms the remaining part of Explanation of Consistency.

- The retrieve relation Rbc, relating the € and B worlds, is defined
{Chapter 26).

- The security policy is shown to hold for C by proof that C refines B,
using the ‘forward’ proof rules (Part I1}). These two levels are relatively
close, so this proof is relatively straightforward.

The mathemarical operators and schemas defined in this document are in-
cluded in the index at the end of the document.

1.3 Rationale for model structure

As noted above, this case study has been adapted from a larger, real develop-
ment. In order to produce a case study of a size appropriate for public pre-
sentation, much of the real functionality has had to be removed. Some of the
structure of the larger specification has remained present in the smaller one,
although it might not have been used had the smaller specification been wril-
ten from scratch. This omitted functionality, whilst important from a business
perspective, is peripheral to the central security requirements.
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1.4 Rationale for proof structure

Imagine two specifications A and €, which describe executable machines. Irnag-
ine thal, on every step, each machine consurmnes an input and produces an out-
put. Finally, imagine that every execution of C, viewed solely in terms of inputs
and outputs, could equally well have been an execution of “A. In this sense,
A can simulate any behaviour of C, If this is the case, then we say that Cis a
refinement of A.

This is exactly what we want to prove in our case study: that the concrete
model is a refinement of the abstract one.

Refinement is an ordering between specifications that captures an intu-
itive notion of when a concrete specification implements an abstract one. This
allows us to postpone implementation detail in writing our top-level specifica-
tion, focussing only on essential properties. The cost of this abstraction is the
need (o refine the specification, reifying data structures and algorithms; refine-
ment is a formal technique for ensuring that essential properties are present
in a more concrete specification.

Nondeterminism is used in an abstract specification to describe alterna-
tive acceptable behaviours; in choosing a concrete refinement of an abstract
specification, some of these nondeterministic choices may be resolved. Since
we view A and C only terms of inputs and outputs, nondeterminisin present
in A may be resolved at a different point in C.

Our abstract model, chosen to represent the difference between secure
and insecure transactions very clearly, has nondeterminism in a different place
from the implementation. In fact, it has it in a place that precludes proof using
the forward rules of {Spivey 1992b, section 5.6]. For this reason we use the
backward rules to prove against the absiract model.

Al the concrete level, we must describe the purse behaviour in a way that
closely mirrors the actual design. An important (and obvious) property of the
design 1s that the purses are independent, that is, each purse acts on the basis
of its own, local knowledge, and we have no control over the communications
medium between purses. This can be expressed cleanly in Z by building a
mode! of an individual purse in isclation, and then promoting [Barden et al.
1954, chapter 19] this model to a world with many purses. To express the fact
that we have no global control over the purses nor over the commmunications
medium, we must use an unconstrained promotion. This we do in the € model.

Why do we not, then, do a single backward proof step from the A model
to the € mode]?

For technical reasons, the backward proof rules need the more concrete
specification to be tghtly constrained inits state space. The forin of the proofs
forces the description of the state space to include explicit predicates excluding
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all but valid states. However, these predicates are not expressible locally o
purses, and hence cannot be mcluded in specification derived by unconstrained
promotion. That is, we cannot express the predicates needed for the proof in
the C model.

We therefore introduce an intermediate model, the B model, which is a
constrained promotion, and hence can contain the predicates neceded for the
backward proofs. We then prove a refinement from A to B using the backward
rules. But now the constrained promotion B is very close to the uncenstrained
promotion C, and in particular the nondeterminism is resolved in the same
place in both models, allowing the forward rules to be used. This we do inour
proof of refinement from 2 to C.

1.5 Status

The specification and thecrems have been parsed and type-checked using fuzz
[Spivey 1992a]. There is no use of the %%unchecked parser directive in the
specification, in the statement of theorems, or in the statement of most cf the
intermediate goals; however, some reasoning steps have hidden declarations
to make them type-check and some do not conform to fuzz’s syntayx at all.
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Chapter 2

Security Properties

2.1 Introduction

This chapter gathers together the Security Properties (SPs) definitions, for ref-
erenice. The SPs are formalised in terms of the abstract and concrete models,
making use of definitions in Chapters 3 and 4. (The index can he used to find
the definitions of these terms.) The full meaning and effect of a SP can be seen
only in the context of the model that includes it.

2.2 Abstract model SPs

The following SPs are expressed in terms of the abstract model A, defiped in
chapter 3.

2.2.1 No value creation

Security Property 1. No value may be created in the system: the sum of all the
purses’ balances does not increase.!

_ NoValueCreation _
AsAbWorld

totalAbBalance abAuthPurse’ < totalAbBalance abAuthPurse

'Proved to hold for the model, section 2.4. NoValueCreation requires that the sum of the
before balances is greater or equal to the sum of the after balances. The abstract model enforces
a stronger condition; that ransfers change only the purses involved in the transfer and only by
the amount stated in the transfer.



12 CHAPTER 2. SPS

2.2.2 All value accounted

Security Property 2.1. Al value must be accounted for in the system: the sum
of all purses’ balances and lost components does not change.?

AllValueAccounted
AAbWorld

totalAbBalance abAuthPurse’ + totalLost abAuthPurse’ =
totaldbBalance abAuthPurse + totalLost abAuthPurse

2.2.3 Authentic purses

Security Property 3. A transfer can occur only between authentic purses.’

Authentic
AbWorld
name? : NAME

name? € dom abAurthPurse

2.2.4 sufficient funds

Security Property 4. A Iransfer can occur only if there are sufficient funds in
the from-purse, 4

SufficientFundsProperty
AbWorld
TransferDetails?

vaiue? < (abAuthPurse from?) .balance

2.3 Concrete model SPs

The following SPs are expressed in terms of the between (and concrete) model
B, defined in chapter 4.

!Proved 1o hold for the model, section 2.4. The concrete level SP 2.2 uses logging to support
this SP.

3Used in the definition of: AbTransferOkay and AkTransferlast, section 3.3.3,

“Used in the definition of: AbTransferOkay and AbTransferLost, section 3.3.3. Used in the
proof of: $P1, section 2.4.1, secton 2.4.3; $P2, section 2.4.2, section 2.4.4. Note thar the model
also ensures that the balance and value? are non-negative.
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2.3.1 Exception logging

Security Property 2.2. If a purse aborts a transfer at a point where value could
be lost, then the purse logs the details.®

__LogIfNecessary . _
AConPurse

‘_exLog’ = exLog u (if status € {epv, epalthen{pdAuthlelsed)

The only times the log need be updated are if the purse is in epv (having sent
the reg message) or in epa (having sent the val but not yert received the ack).
In all other cases the transfer has not yet got far enough for the purse tobe
worried that the transfer has failed, or has got far enough that the purse is
happy that the transfer has succeeded.

2.4 SPs and the models

All the $Ps hold in the appropriate models.

In most cases, this is obviously true, by construction: the SPs appear as
explicit predicates in the relevant definitions. However, NoValueCreation and
AllValueAccounted are not explicitly included in the operation that changes the
relevant components: AbTransfer. In this section, we demonstrate that the
ahstract model indeed satisfies these SPs. That is:

AbTransferQkay + NoValueCreation n AllValueAccounted
AbTransferLost — NoValueCreation » AllValueAccounted

Ablgnare — NoValueCreation n AllValueAccounted
In the proofs below, we use the TD form of the definitions, by [cufting in the

appropriate TransferDetails.

2.4.1 Transfer okay, no value creation

AbTransferOkayTD + NoValueCreation

SUsed in the definitlon of. AbortPurse, section 4.8.2.
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Proof:

totalAbBalance abAuthPurse’

= totalAbBalance{{from?, to?} <« abAuthPurse’)
+ (abAuthPurse from?).balance
+ (abAuthPurse’ to?). balance [ totalabBalance]

totalAbBalance({ from?, to?} 9 abAuthPurse)
+ [ {abAuthPurse from?) balance — value? )
+ ({abAuthPurse ta?).balance + value? ) [AbTransferOkay]

i

totalAbBalance abAuthPurse
< totalAbBalance abAuthPurse

1241

2.4.2 Transfer okay, all value accounted

AbTransferOkayTD ~ AllValueAccounted
Proof:

totalAbBalance abAuthPurse’ + totallost abAuthPurse’

totalAbBalance({from?, to?} 4 abAuthPurse’)
+ (abAuthPurse’ from?).balance
+ (abAuthPurse’ to?), balance | totalabBalance]
+ totalLost({from?, to?} < abAuthPurse’)
+ {abAuthPurse’ from?) lost
+ {abAuthPurse’ to?).lost {totalLost]

i

totalAbBalance( [ from?, to?} < abAuthPurse)
+ ({abAuthPurse from?).balance — value? )
+ {{abAuthPurse [07) .balance + value?)
+ totalLost({from?, to?} < abAuthPurse)
+ (abAuthPurse from?) . lost
+ (abAuthPurse to?).lost [AbTransferOkayl

totalabBalance abAuthPurse + totalLost abAuthPurse

[

m242
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2.4.3 Transfer lost, no value creation

AbTransferLostTD + NoValueCreation
Proof:

totalAbRalance abAuthPurse'

totalAbBalance({from?, t0?} < abAuthPurse’)
+ (abAuthPurse’ from?) balance
+ (abAuthPurse’ t0?).balance [totalAbBalance}

"

totalAbBalance({from?, to?) 4 abAuthPurse)
+ ({abAuthPurse from?). balance — value? )
+ {abAuthPurse to?).balance [AbTransferlost]

totalAbBalance abAuthPurse — vaiue? {totalAbBalance]
= totalAbBalance abAuthPurse

A

N 2.4.3

2.4.4 Transfer lost, all value accounted
AbTransferLostTD - AllValueAccounted
Proof:

totalAbBalance abAuthPurse + totall.ost abAuthPurse

= totalAbBalance({from?, to?} <4 abAuthPurse’)
+ {abAuthPurse’ from?).balance
+ (abAuthPursée to?).balance [totalAbBalance]
+ totalLost({from?, to?} <« abAuthPurse’)
+ (abAuthPurse’ from?) lost
+ {abAuthPurse’ to?) lost {totalLost]

= totalAbBalance({from?, 10?} < abAuthPurse)
+ { (abAuthPurse from?).balance — value? )
+ {abAuthPurse to?).balance
+ totatLost{{from?, to?} 4 abAuthPurse)
+ ( (abAuthPurse from?).lost + value?)
+ {(abAuthPurse to?).lost [AbTransferLost]

= totalAbBalance abAuthPurse + totallLost abAuthPurse
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w244

2.4.5 Transfer ignore

Ablgnore — NoValueCreation A AllValueAccounted

Proof:
Follows directly from the definition of 4blgnore, which changes none of the
relevant values.

w245

m24

w2




Chapter 3

Abstract model: security policy

3.1 Introduction

The abstract model specification has the following parts:

« State: the abstract world of purses
« Operations: secure changes from one abstract state to another
« Initialisation: the abstract world starts off secure

+» Finalisation: a way of observing part of the abstract world to determine
that it is secure

3.2 The abstract state

3.2.1 A purse

An abstract AbPurse consists of a balance, the value stored in the purse; and a
lost component, the total value lost during unsuccessful transfers. {The unsuc-
cessful, but still secure, transfer is defined in section 3.3.3.)

AbPurse = [ balance, lost 1 N

3.2.2 Transfer details

Each purse has a distinct, unigue name.

[NAME)
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The details of a particular transfer include the names of the from and to purses
and the value to be transferred.

TransferDetails
from, to : NAME
value : N

Although it is not permitted to perform a transfer between a purse and itself,

the constraint from = to is checked during AbTransfer, rather than put in

TransferDetails, since it is permitted to request a transfer with from = to.
Transactions involving zero value are allowed.

3.2.3 Abstract world

The abstract world meode] containg a mapping from purse names to absiract
purses. The domain of this function corresponds to authentic purses, those
that may engage in transfers!. We allow only a finite number of authentic
purses, to ensure a well-defined total value in the system,

AbWorld = [ abAuthPurse : NAME -+ AbPurse]

3.3 Secure operations

Having defined our absiract world, AbWorld, we now define operations on the
world that respect the relevant SPs. We call these secure operations. They
comprise:

» Ablghore: securely do nothing

+

+ AbTransfer: securely transfer halance between purses, or securely ‘lose
the balance

3.3.1 Abstract inputs and outputs

We are to prove that the implementation is a refinement of the ahstract security
policy specification. This is made simpler if every operation has an input and
an output, and if all operations’ inputs and outputs are of the same type.

So we define the inputs and outputs (some being ‘dummy’ values) using a
free type construct:

AIN = aNuilln
| transfer{{TransferDetails))
1P 3, 'Authentic purses’, section 2.2.3.
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AOUT ::= aNullQut

Every abstract operation has the following properties:

__AbOp
AAbWorld
a? AN, a' . AOUT
al = aNullOut

The output is always aNullOut (that is, we are not interested in the abstract
output).
3.3.2 Abstract ignore

Any operation has the option of securely doing nothing.

Ablgnore
AbOp

abAuthPurse’ = abAuthPurse

3.3.3 Transfer

The transfer operation changes only the balance and lost component of the
relevant purses.

AbPurseTransfer = AbPurse \ (balance, lost)

The secure transfer operations charnge at most the from and to purse states: all
other purse states are unchanged.

__ AbWorldSecureOp
AbOp
TransferDetails?

@7 € ran lransfer
@TransferDetails? = transfer™a?
{from?, to?} « abAuthPurse’ = {from?, to?} < abAuthPurse
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A transfer can securely succeed berween two purses if they are distinct, both
purses are authentic?, and the frowm purse has sulficient funds?3.

_-AbTransferOkayTD
AbWorldSecure Op

Authentic[ from? / name?]
Authentic[to? jname?)
SufficientFundsProperty

to? + from?

abAuthPurse from? = (u AAbPurse |
BABPurse = abAuthPurse from?
~ balance’ = balance — value?
A lost’ = lost
A ZAbPurseTranster
« §AbPurse’ )

abAuthPurse’ to? = ( u AAbPurse |
@AbPurse = abAuthPurse to?
A balance' = balance + value?
A lost” = lost
A BAbPurseTransfer
e 0AbPurse’ )

The operation transfers vaive? from the from purse to the o pursed. All the
other components of the from? and {o? purses are unchanged, and all other
purses are unchanged.

The model is more consirained than required by the SPs, and hence it
represents a sufficient, but not necessary, behaviour to conform to the SPs.

Hiding the auxiliary inputs gives the Okay operation as:
AbTransferOkay = AbTransferOkayTD \ (to?, from?, value?)

Atransfer can securely lose value between two purses if they are distinct, both
purses are authentic®, and the from purse has sufficlent funds®.

2gP 3, 'Authentic purses’, section 2.2.3.
Isp 4, 'Sufficient funds', section 2.2 4.
48P 1, *No value created’, section 2.2.1,
3SP 3, *Authentic purses’, section 2.2.3.
5SP 4, ‘Sufficient funds', section 2.2.4.
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AbTransferLostTD
AbWorldSecureOp

Authentic[ from?name?)
Authentic(ro? fname?]
SufficientFuhdsProperty

to? = from?

abAuthPurse’ from? € { AABPurse |
@AbPurse = abAuthPurse from?
A balance' = balance — value?
A lost’ = lost + value?
A ZAbPurseTransfer
s 9AbPurse’ }

|l abAuthPurse to0? = abAuthPurse to?

The operation removes valie? from the from purse's balance,” and adds it to
the from purse’s lost component.? All the other components of the from? purse
are unchanged, The to purse and all other purses are unchanged.

Hiding the auxiliary inputs gives the Okay operation as:

AbTransferLost = AbTransferLostTD \ (to?, from?, value?)

The full transfer operation can also securely do nothing, Ablgnere. The full
transfer operation is

AbTransfer = AbTransferOkay v AbTransferLost v Abignore

3.4 Abstract inidal state

One conventional definition of the initial state of a system is as being empty; op-
erations are used to add elements to the state until the desired configuration is
reached. However, we do not wish to add new abstract purses to the domain of
abAuthPurse, 50 we cannot start with a system containing no authentic purses.
So we set up an arbitrary initial state, which satisfies the predicate of AbWorld’,

AbinitState = AbWorld’

7SP 1, 'No value created’, section 2.2.1.
BSP 2, 'All value accounted', section 2.2.2.
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So we say that AbInitSrate has soine particular value, we just do nor say what
that particular value is. The particular value chosen is irrelevant to the security
of the system; any starting state would be securc.

Inidalisation also defines the mapping from global (that is, observable)
inputs to abstract (that is, inodelled) inputs. This is just the identity relaticn in
the ‘A model:

AbInitin = {a?,g?: AIN | a7 = g7 ]

3.5 Abstract finalisation

We must ‘ohserve’ each security relevant component of the world, in order to
determine thal the security properties do indeed hold. Observation is usually
performed by enquiry operations, and any part of the state not visible through
soIme enquiry operation is deemed uniinportant. However, in our case there are
no abstract enguiry operations to ohserve state components, but there are secu-
rity properties related to them, and so they are important. We use finalisation
to observe them.

Finalisation takes an ahstract state, and ‘projects out’ the portion of it
we wish to observe, into a global state. Here we choose to observe the entire
abstract state.

The global state is the same as the abstract state;

GlobalWorld = [ gAuthPurse ;: NAMF - AbPursel

Finalisation gives the global state corresponding to an abstract state. These are
mnostly the identity relations {n the A model:

AbFinState
AbWorld
GlobalWorld

gAuthPurse = abAuthPurse

Finalisation also defines the mapping from abstract outputs 1o global {that is,
observabhle) cutputs.

AbFinOut = [al, g : AOUT } a! = g']



Chapter 4

Between model, single purse
operations

4.1 Overview

This chapter covers the purse-level operations, which are: abort, the start op-
erations, the transfer operations reg, val and ack, read log, and clear log.

For the sake of simplicity, we assume that concrete and abstract NAMEs
are drawn from the same sets.

In this section we refer to ‘concrete’ rather than ‘between' purse, because,
as we see later, there is no difference between the two structurally. The only
difference between the B and C worlds is fewer global constraints in the latter.

4.2 Status

A concrete purse has a status, which records its progress through a transaction.

STATUS ;= eaFrom | eaTo | epr | epv | epa

The statuses are: eaFrom ‘expecting any paver', eaTo ‘expecting any payee’,
epr ‘expecting payment reg’, epv ‘expecting payment val', and epa 'expecting
payment ack’,

4.3 Message Details

The abstract level describes the operations that transfer value, Purses are sent
instructions via messages, and we present the struchure of compound messages
in this section.
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The abstract level describes a transfer of value from one purse to another.
We implement this at the concrete Jevel by a protocol consisting of messages.

» Asingle transfer involves many messages. So we need a way to distinguish
messages: we use a tag for reg, val or ack.

s We have no control over the concrete messages, and cannot forbid the du-
plication of messages. 50 we need a way to distinguish separate transac-
tions: we use sequence numbers that are increased between transactions.
(The transaction sequence number is implemented as a sufficiently large
number. Provided that the initial sequence number js quite small, and each
increment is small, we need not worry about overflow, since the purse will
physically wear out first.)

4.3.1 Sltart message counterparty details

The counterparty details of a payment, which are transmitted with a start mes-
sage, identify the other purse, the value to be transferred, and the other purse's
transaction sequence number.

CounterPartyDetails
name ;: NAME

value ' N

nextSegNo 1 N

43.2 Payment log message details

Purses store current payment details, and exception log records that hold suf-
ficient information about faited or problematic transactions to reconstruct the
value lost in the transfer?. The payment log details identify the different from
and to purses and the value to be transferred (as in the abstract TransferDelaits)
and also the purses’ transaction sequence numbers. The combination of purse
name and sequence number uniguely identifies the transaction.

PayDetails
TransferDetails

fromSegNo, toSegNo @ N

from = to

1 Concrete SP 2.2, ‘Exception logging', section 2.3.1.
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We can put the constraint about distinct purses in the PayDetails, because this
check is made in ValidStartTo/From, before the details are set up.

4.4 Clear Exception Log Validation

CLEAR is the set of clear codes for purse exception logs. A clear code is pro-
vided by an external source (section 5.7.1} in order to clear a purse's exception
log (section 4.10.2). The function image calculates the clear code for a given
non-empty set of exception records. image takes a set of exception logs, and
produces another value used to validate a log clear command. For each set of
PayDetails, there is a unique clear code.

[CLEAR]

| image: P, PayDetails — CLEAR

The BetweenWorld model is designed so that no logs are ever lost. Indeed,
we must prove that no logs are lost in the refinement of each operation — this
is an implicit part of the refinement correctness proofs. The BetweenWorld
mechanism to ensure that no logs are lost relies on two assumptions.

The first is that clear codes are only ever generated from sets of PayDetails
that are stored in the archive (a secure store of log records introduced later).
The second is that clear codes unambiguously identify sets of PayDetails. The
second of these assumptions is captured formally by the imjective function
image.

In practice, image is not injective on general sets of PayDetails, but it is
injective when restricted to the sets actually encountered.

4.5 Messages

There are various kinds of messages:

The first group of messages may be unprotected. Their forgeahilityis mod-
elled by having them all present in the initial message ether (see section 6.1).

The second group of messages are all that need to be cryptographically
protected. Their unforgeability is modelled by having them added to the mes-
sage ether only by specified operations.

1, ‘Torged’, is a message emitted by operations that ignore the (irrelevant)
input message, or emitted by non-authentic purses. It is also the input mes-
sage to the Ignore, Increase and Abort operations. L is implemented as an



26 CHAPTER 4. B MODEL, PURSE

unprotected status message, as an error message, as a ‘forged’ message, or as
‘silence’. As far as the model is concerned, we choose not to distinguish these
messages from each other, only from the other distinguished ones. (Sce alse
section 5.8.)

MESSACGE ::= startFrom({ CounterPartyDetails})
| startTo{{CounterPartyDetails))
i readExceptionLog

| req{{PayDetails))

| val({{ PayDetails))

| ack{{PayDetails))

| exceptionLogResult {(NAME x PayDetails))
| exceptionLogClear ({NAME x CLEAR})

| L

A complete payment transaction is made up of a startFrom, startTo, req,
val, and ack message.

4.6 A concrete purse

A concrete purse has a current balance, an exception log for recording failed
or problemaric transfers, a name, a transaction sequence number to be used
for the next transaction, the payment details of the current transaction, and a
stams indicating the purse's position in the current transaction.

— ConPurse
balance: N

exlLog - P PayDetails
name . NAME
nextSeqNo : N
pdAuth : PayDetalls
status : STATUS

¥ pd . exLog « name € {pd from, pd.to}

status = epr = name = pdAuth.from
A pdAuth value < balance
A pdAuth fromSeqNo < nextSeqNo

status = epv = pdAuth.toSeqgNo < nextSeqNo
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status = epa = pdAuth.fromSegNo < nextSegNo

The name is included in the purse’s state so that the purse itself can check itis
the correct purse for this transaction.
The predicate on the purse state records the following constraints:

P-1 ¥ pd : exLog « name € {pd.from, pd.to}
All log details in the exception log refer to this purse, as the from or the
to party<.
P-2 status = epr =
hame = pdAuth.from
A pdAuth.value < balance
A pdAuth.fromSeqNo < nextSeqNo
If the purse is expecting a payment reguest, then:

{a) it1is the from purse of the current transaction?,

(b) it has sufficient funds for the request 4 (this condition is required be-
cause there is no check for sufficient funds on receipt of the request)

(c) its next sequence number js greater than the current transaction’s
sequence number?

P-3 status = epv = pdAuth.toSeqgNo < nextSeqNo
If the purse is expecting a payment value, then its next sequence number
is greater than the current transaction's sequence numnber®

P-4 status = epa = pdAurh.fromSeqNo < nextSeqNo
If the purse is expecting a payment acknowledgement, then its next se-
gquence numnber is greater than the current transaction's sequence num-
ber?

4.7 Single Purse operations

4.7.1 Overview

The concrete purse specification is structured around the various purse-level
operations:

2Used in: AuxWorld does not add constraints, section 5.2.1.

3Used in: CReq, B~9, section 29.4,

4Used in: Req, case 1, SufficientFundsProperty, section 18.7.2; Req, case 2, SufficientFunds-
Property, section 18.8.2; Regq, case 3, SufficientFundsProperty, section 18.9.2.

5Used in: CReq, B-3, section 29.4.

8Used in: CAbort, B-6, section 28.5.

TUsed in: CAbore, B-5, section 28.5,
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« Invisible operations

- IncreasePurse
~ AbortPurse

» vaiue transfer operations

- StartFromPurse
- StartToPurse

- ReqPurse
ValPurse

- AckPurse

1

« cxception logging opcrations

- ReadExceptionlogPurse
- ClearExceptionLogPurse

4.8 Invisible operations

Several concrete operations have a common effect on the state visible in the
model (they affect only implementation state not visible in the model}).

4.81 Increase Purse

The IncreasePurseOkay operation is used to model actual purse opcrations that
do not have any effect on the state visible in this model, except far increasing
the sequence number.

In a simple increase transaction, only the purse's sequence number may
change. All other components remain unchanged.

ConPurseincrease & ConPurse \ (nextSeqNo)
__IncreasePurseOkay

AConPurse
m?, m! : MESSAGE

EConPurselncrease
nextSeqNo" = nextSeqNo

ml = L
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4.8.2 Abort Purse

The AbortPurseOkay operation is used to model actual purse operations that
do not have any effect on the state visible in this model, but that abort and log
incomplete transactions.

In a simple abort transaction, only the purse’s sequelce number, exception
log, pdAuth and status may change. All other components remain unchanged.

ConPurseAbort = ConPurse \ (nexiSeqNo, exLog, pdAuth, status)

AbortPurseOkay places the purse in status eaFrom (where the pdAuth compo-
nent Is undefined), logging any incomplete transactions if necessary®. No other
component of the purse is altered, except for nextSegNo, which may increase
arbitrarily.

FAborrPurseOkay
AConPurse
nm?, m . MESSAGE

ZConPurseAbort
LogifNecessary

stahis’ = eafrom
nextSeqgNo' = nextSegNo

We do not, at this stage, put apy restrictions on the output message m!. Later,
we either compose AbortPurseOkay with another operation, using the latter’s
m!, or we promote AbortPurseOkay to the world level, where we define ml = 1.

4.9 Value transfer operations

The StartTo and StartFrom operations, when starting from eaFrom, change only
the sequence number, the stored pdAuth, and the status of a purse.

ConPurseStart = ConPurse \ (nextSegNo, pdAuth, status)

The Req operation change only the balance and the status of a purse.
ConPurseReq = ConPurse \ (balance, status)

The Val operation change only the balance and the status of a purse.

ConPurseVal £ ConPurse \ (balance, status)

8Concrete SP 2.2, ‘Exception logging', section 2.3.1.
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The Ack operation changes only the status of a purse, and allows the pdAuth
to change arbitrarily.

ConPurseAck = ContPurse \ (status, pdAuth)

4.9.1 StartFromPurse

A startFrom message is valid ondy af it refers to a different purse from the
receiver, and mentions a value for which the from pursce has sufficient funds.

ValidStartFrom __ _ I
ConPurse
m?: MESSAGE

cpd : CounterPartyDetails

m? < ran startfrom
cpd = startFrom™m?

cpd.name = name
cpd.value < balance

To petform the StartFromPurseEafromOkay operation, a purse must recejve a
valid startFrom message, and be in eaFrom.

— StartFromPurseEafromOkay _
AConPurse
m?, ml; MESSAGE

cpd . CounterPartyDetails

ValidStartFrom
status = eaFrom

EConPyrseStart
nextSeqNo' > nextSegNo

pdAuth’ = ( u PayDetails |
from = name
A o = cpd.name
A value = cpd.value
n fromSeqNo = nextSegNo
A loSeqNe = cpd.nextSeqNo)




4.9. VALUE TRANSFER OPERATIONS il

status’ = epr

m= 1

The StartFromPurseEafromOkay operation stores the payment details consist-
ing of the counterparty details and irs own name and sequence number (for
later validation), moves to the epr state, increases its sequence number, and
sends an unprotected status message.

The StartFromPurseOkay operatjon first aborts (logging the pending pay-
ment if hecessary, and moving to eaFrom), then performs the StartFromPurse-
EafromQkay operation.

StartFromPurseQkay =
AbortPurseQkay § StartFromPurseEafromOkay \ {cpd)
4.9.2 StartToPurse

A startTo message is valid oniy if it refers to a different purse from the receiver.

_ ValidStartTo
ConPurse
m? : MESSAGE

cpd : CounterPartyDetails

m? € ran startTo

cpd = startTo~m?

cpd.name + name

To perform the StartToPurseEafromQkay operation, a purse must receive a
valid startTo message, and be in eaFrom.

— StartToPurseEafromOkay
AConPurse
m?, ml: MESSAGE

cpd : CounterPartyDetails

ValidStartTo
status = eaFrom

SConPurseStart
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nextSegNo' > nextSeqNo

pdAuth’ = ( u PayDetails |
{0 = name
A from = cpd.name
A value = cpd.value
A loSeqgNo = nexiSegNo
A fromSegNo = cpd.nextSegNo )

status’ = epv

m! = req pdAuth’

The StartToPurseOkay operation logs the pending payment, if necessary; it
stores the payment details, consisting of the counterparty details and its own
name and sequence number, for {ater validation: it moves to the epr state;
it increases its sequence number; and it sends a reg message containing the
stored payment details.

The StartToPurseOkay operation first aborts (logging the pending pay-
ment if necessary, and moving to eaFrom), then performs the StartToPurse-
EafromOkay operation.

StartToPurseOkay =
AbortPurseOkay § Start ToPurseEafromOkay \ (cpd)
4.93 ReqPurse

An authentic request message is a reg message containing the correct stored
payment details {(which were stored on receipt of the startFrom message).

AuthenticRegMessage
ConPurse
m?: MESSAGE

m? = req pdAuth

To perform the ReqPurseCkay operation, a purse Imust receive a req message
with the payment details, and be in the epr state,

ReqPurseOkay

AConPurse
m?,ml : MESSAGE
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AuthenticRegMessage
status = epr

EConPurseReqg

balance’ = balance — pdAuth.value
status’ = ¢pa

ml = val pdAuth

The purse decrements its balance, moves to the epa state, and sends a val
message containing the stored payment details.

4,94 YValPurse

An authentic valuc message {s a val message containing the correct stored pay-
ment details (which were stored on receipt of the startTo message),

__AuthenticValMessage
ConPurse
m? : MESSAGE

m? = val pdAuth

To perform the ValPurseOkay operation, a purse must receive a val message
with the payment details, and be in the epv state,

_ ValPurseOkay
AConPurse
m?, m; MESSAGE

AuthenticValMessage
status = epv

SConPurseVal

balance’ = balance + pdAuth value
status’ = eaTo

m' = ack pdauth

The purse increments its balance, moves to the eaTo state, and sends an ack
message containing the stored payment details.
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4.9.5 AckPurse

An authentic acknowledge message is an ack message containing the correct
stored payment details (which were stored on receipt of the startFrom message).

AuthenticAckMessage _
ConPurse
m? : MESSAGE

m? = ack pdAuth

To perform the AckPurseOkay operation, a purse must receive an ack message
with the payment details, and be in the epa state.

_ AckPurseOkay
AConPurse
m?, m! . MESSAGE

AuthenticAckMessage
status = epa

EConPurseAck

status’ = eaFrom

m = 1

The purse moves to the eaFrom state, and sends an unprotected status message.

4.10 Exception logging operations

4.10.1 ReadExceptionLogPurse

To perform the ReadExceptionlogPurseEafromOkay operalion, a purse must
receive a readExceptionLog message and be in the eaFrom state,

__ ReadExceptionLogPurseEafromOkay
EConPurse
m?, ml: MESSAGE

m? = readExceptionLog
status = eaFrom

mte {1} u [Id: exLog’ = exceptionlogResult{name, Id) }




4.10. EXCEPTION LOGGING OPERATIONS 35

The operation sends an unprotected status message (modelling ‘record not
available’) or a protected exceptionLogResult message containing one of the
cxception logs tagged with its name®.

The ReadExceptionLogPurseGkay operation first aborts (logging any pend-
ing payment, and moving to eaFrom), and then performs the Read ExceptionlLog-
PurseEafromOkay operation.

ReadExceptionlLogPurseOkay =
AbortPurse Okay § ReadExceptionLogPurseEafromQOkay

4.10.2 ClearExceptionLogPurse

During a <lear log transaction the purse’s exception log may change, but no
other component can change.

ConPurseClear = ConPurse \ (exLog)

To perform the ClearExceptionLogPurseOkay operation, a purse must have a

non-empty exception log and receive a valid exceptionLogClear message. If

the purse receives a valid exceptionLogClear message, has no transaction in

progress and has an empty exception log, then the pursc ignores the message.
First we define how the purse clears its log in eaFrom:

__ ClearExceptionLogPurseEafromOkay
AConPurse
m?, mt: MESSAGE

exlog+ @
m? = exceptionlogClear (name, image exLog)
status = eaFrom

SConPurseClear
extog’ = @
m =1

The purse clears its exception log, and sends an unprotected status message.

The image ensures that log messages have at least been read and moved
to the archive (see AuthoriseExLogClear, section 5.7.1). Procedural mechanisms
must ensure that archive information is not lost!?,

9This gives a non-detenmznistic response, because we do not mode! exception log record num-
bers.

I’Concrete SP 2.2, ‘Exception loggng’, section 2.3.1.
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There is a Four stage protocol for reading and clearing exception logs:
reading a log 1o the ether, copying a log from the ether to the archive, autho-
rising a purse exception log clear based on what's in the archive, and clearing a
purse’sexception log having received authorisation. We note that as a result of
this pretocol, if ClearExceptionLogPurseOkay aborts and logs an uncompleted
transaction, then the purse’s exception log will not be cleared. The reason for
this is as follows. The purse gets to eqFrom by aborting any uncompleted trans-
action. If this would create a new exception record, the clear transaction couid
not occar, because the (imaged) exception log in the message would not match
the actual exception log in the purse.

The full clear exception log operation for a purse is thus defined to abort
an uncompleted transaction first, and then clear the log if appropriate.

ClearExceptionLogPurseOkay
= AbortPurseOkay § ClearExceptionLogPurseEafromOkay




Chapter 5

Between model, promoted world

5.1 The world

The individual purse operations are promored to the ‘world of purses’. This
world contains the purses, a public ether containing all previous messages sent,
and a private archive, which is a secure store of exception logs, each exception
log tagged with the purse that recorded it. Information cannot be deleted from
the archive, so that the store of exception logs is persistent. This is to be
implemented by mechanisms outside the target of evaluation.

Logbook : P(NAME — PayDetails)

Logbook = P({PayDetqils « from — @PayDetails)
U {PayDetails » to -~ @PayDetails))

A Logbook is a set of log details, each tagged with a name, where that name is
either that of the to purse or that of the frem purse in the log details.
In addition, the archive's tagged log details

ConWorld
conAuthPurse: NAME » ConPurse
ether | P MESSAGE

archive . Logbook

¥ n:dom conAuthPurse » (condAuthPursen).name = n
¥ nld : archive « first nld € dom conAuthPurse

The archiveis a Logbook. In addition, the archive's tagged log details are tagged
only with authentic purse names.



38 CHAPTER 5. B MODEL, WORLD

from | epr ) epa ( difftrans )
incl eaFrom
to no log log
epv 0 ? 0 7
ealo X Q 0 0o
~{ diff trans nolog | Q 0 0 0
(im:l eaFrom) log 0 1 0 1

Figure 5.1: The amount lost on the current transaction for each possible state
of the purses. ‘0’ means the value has definitely not been lost; ‘1’ means the
value has definitely been lost; “?' means the value may be lost; ‘x’ means that
this state is impossible.

5.2 Awuxiliary definitions

We define some auxiliary components, for case of proof later. These compo-
nents are described in detail after the schema. The set definirelyLosr captures
those transactions that have proceeded far enough that we know they cannot
succeed. The set maybelost captures those transactions that have proceeded
far enough that they will lose money if something goes wrong, but that could
equally well continue to successful completion. In the other transactions, ei-
ther the transaction has not procecded far enough to lose anything, or has
proceeded so far that the value has definitely been received.

The way in which the concrete state of the purses relates te the amount
of value 'lost’ in the transaction can be represented by the table shown in fig-
ure 5.1, where the amoumnt lost on the current transaction is shown for each
possible state of the purses, including purses that have moved on to a different
transaction, with or without logging this one.

_AuxWaorld _ _

| ConWorld

aliLogs : NAME + PayDetails
authenticFrom, quthenticTo ; P PayDetails
fromlLogged, teLogged = P PayDetails
tolnEpv, telnEapayee, frominEpr, frominEpa : F PayDetalls
definitelyLost ; P PayDetails
maybeLost : [ PayDerails
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allLogs = archive
v { n: dom conAuthPurse;, pd : PayDetalls |
pd € (conAuthPurse n).exlog }

authenticFrom

= { pd : PayDetails | pd.from € dom conAuthPurse)
authenticTo

= { pd : PayDetails | pd.to € dom conAuthPurse }

fromLogged = { pd : authenticFrom | pd.from ~ pd € allLogs}
toLogged = { pd: authenticTo | pd.to — pd € allLogs }

tolnfpv = { pd : authenticTo |
(conAuthPurse pd.to).status = epv
A (conAuthPurse pd.to) . pdAuth = pd }

tolnFapayee = | pd : authenticTo |
(conAuthPurse pd.to).status = eaTo
A (conAuthPurse pd.to) pdAuth = pd }

frominEpr = { pd . authenticFrom |
{conAuthPurse pd.from).status = epr
A {conAuthPurse pd.from).pdAuth = pd }

fromInEpa = { pd : authenticFrom |
(conAuthPurse pd.from).status = epa
A (conAuthPursepd.from).pdauth = pd}

definitelyLost = toLogged n (fromLogged U fromInEpa)
| taybelLost = (fromInEpa v fromLogged) n toInEpv

35

These auxiliary definitions put no further constraints on the state, but simply
define the derived components. Hence they do not need to be implemented.
They are defined merely for ease of use later. We prove that this is so in sec-
tion 5.2.1 below.

The auxiliary components represent the following:

« allLogs: All the exception logs; all those logs in the archive, and those still

uncleared in purses.

= authenticFrom, authenticTo: All possible paytnent details referring to au-
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thentic from purses, and authentic ¢o purses.
fromLogged: All those payment details logged by a from purse.
toLogged: All those details logged by a to purse.

tolnEpv: All those details for which the to purse is authentic, and is cur-
rently in epv with those details stored. This is a finite set, because con-

AuthPurse is a finite function,

tolmEapayee: All those details for which the to purse is authentic, and is
currently in eaTo with those delails stored.

fremInEpr. All those details for which the from purse is authentic, and is
currently in epr with those details stored.

frominEpa: All those details for which the from purse is authentic, and is
currently In epa with those deiails stored,

definitelyLost: All those details for which we know now that the value has
been lost. The val message was definitely sent and definitely not received,
50 ultimately both purses will log the transaction. The authentic fo purse
has logged, which it would not have done had it sent the ack, and the
authentic from purse has sent the val and not received the ack, and so

never will. See figure 5.2

maybelost: All those details that refer to value that may yet be lost or may
vet be transferred successfully from this purse, but which have already
definitely Jeft the purse. This occurs when the authentic from purse has
sent the val and not received the ack and the authentic to purse isin epv,
waiting for the val that it may or may not get. See figure 5.2 It is a finite
sel, because tolnfpv is a finite set.

We have the identity

AuxWorld
}_
definitelyLost U maybelost =
(fromInEpa U fromLogged) n (tolnEpv U toLogged )

The later proofs of operations that change purse status (the two start, three
protocol and log enquiry eperations} are based on how the relevant pd moves
in and out of the sets maybelost and definitelvLost. (These sets are disjoint
in the BetweenWorld, because of the BetweenWorld constraints on log sequence
numbers; see lemma ‘lost’, section C.13.)
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Figure 5.2: The sets definitelyLost (vertical hatching) and maybelLost (horizontal
hatching) as subsets of the other auxiliary definitians.

5.2.1 AuxWorld does not add constraints

AuxWorld introduces some new variables, but does not add any further con-
straints on ConWorid. We define the schema that represents just the new vari-
ables introduced by AuxWorld.

NewVariables = 3 ConWorld « AuxWorld

We prove that no further constraints are added by proving the following state-
ment.

ConWorld v 3; NewVariables « AuxWorld

Proof:

First we prove existence. We normalise the schemas, drawing out any predicates
hidden in the declarations for the new variables. Only one predicate appears,
limiting allLogs to be a valid Logbook.

ConWorld — 3, NewVariables » AuxWorld ~ alilogs € Loghook

Rewrite all the equations for the new variables so that each new variable in
AuxWorld is defined only in terms of variables of ConWorld. We then use the
one point rule to remove the existential quantification. This leaves just the
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normalised predicate in addition to ConWorld.

ConWorld
-
ConWorld
A archive U { n; dom conAuthPurse, pd : PayDetails |
pd € {conAuthPurse nj.exlLog }
€ Loghook

From the definition of archive, archive is in Logbook. From constraint P-1 in
ConPurse, the set of named exception logs is also in Logbook. This discharges
the existence proof.

To prove uniquencss, we need only note that the equations defining the
new variables arc all equality to an expression, and by the transitivity of cgual-
ity, all possible values are cqual.

w52l

5.3 Constraints on the ether

We put some further constraints on the state to forbid 'future messages’ and
'future logs’, and to record the progress of the protocol.

__BetweenWorld
AuxWorld

v pd : PayDetails | veq pd € ether » pd € authenticTo

¥ pd : PayDetails | reqpd € ether »
pd .toSeqNo < {conAuthPurse pd.to).nextSeqNo
¥ pd : PayDetails | val pd € ether a
pd.toSeqNo < {(conduthPurse pd.to}.nextSeqNa
A pd.fromSegNo < (conAuthPurse pd.from).nextSeqgNo

¥ pd : PayDetails | ack pd & ether =
pd.toSegNo < (conAuthPurse pd.to}.nextSegNo
A pd.fromSegNo < (conAuthPurse pd.from).nextSegNo

¥ pd : fromLogged »
pd.fromSegNo < (conAuthPurse pd.from).nextSegNo

¥ pd : toLogged » pd.toSeqNo < (conAuthPurse pd.to).nextSeqNo
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¥ pd : fromLogged |
(conAuthPurse pd. from).status € {epr,epal »
pd.fromSegNo
< (conAuthPurse pd.from). pdAuth.fromSegNo

¥ pd : tologged | (conAuthPurse pd.to).stalus € [epv,ealo} «
pd.toSeqgNo < {conAuthPurse pd.to).pdAuth.toSegNo

¥ pd : fromInEpr » disjoint {{val pd, ack pd}, ether}

¥ pd : PayDetails »
(req pd & ether ~ ack pd ¢ ether)
< (pd € tolnEpv U tologged)

Y pd : PayDetails | val pd € ether A pd € toInEpv =
pd € frominEpa L fromLogged

Y pd : fromInEpa L fromLogged = req pd € ether
tologged & [F PayDetails
¥ pd : exceptionLogResult~( ether ) = pd € allLogs

Y pds : Py, PayDetails, name: NAME |
exceptionlogClear (name, image pds) € ether =
{name} x pds < archive

Y pd : fromlogged U toLogged = req pd € ether

These constraints express the following conditions (numbered for future refer-
chce in the refinement proofs):

B-1 All reg messages in the ether refer to authentic to purses !,

B-2 There are no 'future’ req messages 2: all req messages in the ether hold
a to purse sequence number less than that purse’s next sequence mim-
ber. (It puts no constraint on the from purse's sequence number, because
the from purse mentioned in a reg message need not have started the
transaction yet, and need not even be authentic.)

B-3 There are no ‘future’ val messages 3: all val messages in the ether hold a
to purse sequence number less than that purse’s next sequence number

LiJsed in Regq, case 4, section 18.10.

2Used tn: StartTo, location of pdThis, section 17.3; CStartTo, B-16, section 29.3; (Reg, B-3,
section 29.4.

3Used in: CStartFrom, B-9, section 29.2; CStartTo, B-11, section 29.3. (Val, B-4, section 29.5.
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and a from purse sequence number less than that purse’s next sequence
number.

B-4 Therc are no ‘future’ ack messages *: all ack messages in the ether hold
a to purse sequence number less than that purse’s next sequence number
and a from purse sequence number less than that purse’s next sequence
numnber.

B-35 There are no ‘future’ from logs based on the nextSegNe of the from purse
s

B-6 There are no ‘furure’ to logs based on the nextSegNo of the to purse 8.

B~7 There are no ‘future’ from logs based on the pdAuth. fromSeqNo of a purse
in epr or epa 7: all from logs refer only to past from transactions. So all
from logs referring te a purse that is currently in a transaction as a from
purse (that is, in epr or epa), hold a from sequence number strictly [ess
than that purse's stored current transaction sequence number.

B-8 There are no ‘furure’ to logs based on the pdAuth.toSegNo of a pursc in
epv or eaTo 8: all to logs refer only ro past to transactions. So all to logs
referring to a purse that is currently in a transaction as a (o purse (in epy),
hold a to sequence number strictly less than that purse’s stored current
transaction sequence number.

B-9 If the from purse is in epr then there is no val message ® or ack message!®
in the ether.

B-10 There is a req message but no ack message in the ether preciscly when
the to purse is in epv or has logged the transaction !*.

B-11 If the to pursc is in epv and there is a val message in the ether, then either
the from purse is in epa or has logged the transaction 12,

3Used in: CSrartfrom, B-9, section 29.2; CStartTo, B-10, secdon 293,

iUsed in: CSrartFrom, B-7, section 29.2.

SUsed in: CStartTo, B-8, 29.3. 29.3

"Used m: StartFrom, location of pdThis, section 16.3; CReq, B-7, section 29.4; lemma ‘not-
LaggedAndln’, section C.12.

8Used in: CVal, B-8, section 29.5; lemma 'notLoggedAndln', section C.12.

9Used 1n: CVal, B-9, section 29.5.

MUsed 1n Reg, case 4, section 18.10,

{LUsed in: StartTe, location of pdThis, section 1 7.3; Req, case 4, section 18.10; Ack, bebaviour
of definftelyLost, section 20.6.5; Ack, behaviour of maybelost, section 20.6.6; CAbert, B-10, sec-
don 28.5; CAbort, B-16, section 28.5; CAck, B-11, secnon 29.6.

12Used 1n: Val, behaviour of mavbeLost, section 19.6.7.
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If the from purse is in epa or has logged the transaction, then there isa
req in the ether 13.

The set toLogged is finite. This is sufficient to ensure that definitelyLost is
finite 14.

Log result messages are logged. The log details of any exceptionLogResult
message in the ether is either archived or in a purse transaction exception
log 15,

Exception log clear messages refer only to archived logs '8,

For each PayDetalls in the logs there is a correspending PayDetails in a
req message in the ether 17,

That the actual implementation does indeed satisfy this predicate needs to be
proved, by a further, small, reﬁnement! that ConWorld and the operations refine
BetweenWorld and the operations {see Part III).

5.4

Framing schema

A framing schema is used to promote the purse operations.

¢BOp
rABerween World
AConPurse
m?, ml . MESSAGE
name? : NAME

m? € ether

name? € dom conAuthPurse
8ConPurse = conAuthPurse name?

conAuthPurse’ = conAuthPurse ® {name! — 8ConPurse’}
archivé’ = archive

ether’ = ether v {m!}

Dysed in StartTo, location of pdThis, section 17.3; CAbort, B-12, section 28.5; CAbort, B-16,
section 28.5.

14Ysed in: various Rab schemas, section 10.1

15Used in; Archive, section 24.2; CArchive, section 29.10.

15Used In: ExceptionLogClear, invoking lemma ‘lost unchanged® sectlon 22.2; CExceptionLog-
Clear, section 29.8.

17Used in; CStartTo, alternative to lemma ‘logs unchanged’, section 29.3.
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The predicate ensures the following properties common to all promoted oper-
ations:

5.5

m? c ether

the input message is in the ether, which ensures it was either previously
sent by anather purse (req, val, ack, etc.), in the ether since initialisation
{(startFrom, startTo, etc), or input by a special global operation (that is,
AuthoriseExLogClear).

name? € dom conAuthPurse
the purse is in the world of authentic purses.

PConPurse = conAuthPursename?
The before state of ConPurse we are operating on is the state of the purse

identified by name?

conAuthPurse’ = conAuthPurse @ {name? — 6 ConPurse’}

The after state of The purse system has name? updated to the after state
of ConPurse (which particular state depends on rhe particular operation
details) and all other purses are unchanged 8.

archive’ = archive
The archive remains unchanged.

ether’ = ether U (m!}
the oulput message is recorded by the ether.

Ignore, Increase and Abort

There are various gencral behavicurs that operations may engage in: ignore
the input and do nothing; ignore the input but increase the sequence number;
ignore the input but abort the current payment transaction.

Ignoring is modelled as an unchanging world:

Ignore = [ SBetweenWorld, name? : NAME; m?, ml: MESSAGE | m! = 1]

Increase has been modelled at the purse level, and is now promoted and to-
talised:

Increase = Ignore
v (IAConPurse « $BOp A IncreasePurse Okay)

'8Used in Reg proof, section 18.7.2.
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Abort has been modelled at the purse level, and is now promoted and totalised:

Abont = Ignore
v (JAConPurse » AbortPurseCkay A [®BOp | m! = 11}

5.6 Promoted operations

We promote the individual purse operations, and make them total by disjoining
themn with the operation defined above that does nothing,

5.6.1 Value transfer operations
The promoted start operations are:

StartFrom = Ignore
v Abort
v (3 AConPurse » ®BOp A StartFromPurseCkay }

StartTo = Ignare
v Abort
v (3 AConPurse » $BOp A StartToPurseOkay)

For use in the proofs, we also promote the Eafrom part of the operations on
their own:

StartFromEafromOkay = 3 AConPurse «
$BOp A StartFromPurseEafromOkay

StartToEafromOkay = 3 AConPurse »
&BOp A StartToPurseEafromOkay

The promoted protoco] operations are:

Req 2 Ignore v (3 AConPurse « $BOp A ReqPurseOkay)
Val = Ignore v (3 AConPurse » $BOp A ValPurseOkay)
Ack & Ignore v (3 AConPurse « ®BOp A AckPurseOkay )

5.6.2 Exception log operations
The promoted log enquiry operation is:

ReadExceptionlog = Ignore
v { 3AConPurse s $80p » ReadFxceptionLogPurseOkay )
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The promoted exception log clear operation is:

ClearExceptionLog = Ignove
v Abort
v {FAConPurse » $BOp A ClearExceptionLogPurseOkay }

For use in the proofs, we also promote the Eafrom part of the operations on
their own:

ReadExceptionLogEafromOkay & 3 AConPurse »
4 BOp A ReadExceptionL ogPurseEafromOkay

ClearExceptionLogEafromOkay = 3 AConPurse «
®BOp A ClearExceptionLogPurseEafromQkay

5.7 Operations at the world level only

There are some operations on the world that do not have equivalents on indi-
vidual purses. These are not implemented by the target of evaluation, but need
to be implemented by some manual means or external systern.

To retain the simplicity of our proof rules, these operations take the same
input and outputs as all the purse operations.

5.7.1 Exception Log dlear authorisation

The message to clear an exception log can be created only for log details which
are already recorded in the archive. The clear code of the message is based
on the selected logs in the archive, The exception log clear message couples
this clear code with the name of a purse. This supports constraint B-15 which
requires that this operation not put a clear message into the ether if the relevant
logs have not been archived.

__AuthoriseExLogClearOkay
ABetweenWorld

m?, m!: MESSAGE

name? : NAME

I—
conAuthPurse’ = conAuthPurse

Jpds : P| PayDetails »
{nrame?} x pds < archive
A ml = exceptionLogClear (name?, image pds)
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ether’ = ether U {m!}

archive = archive’

AuthoriseExLogClear = Ignore v AuthorisefxlegClearOkay

Exception logs must be kept for all time to ensure thar all value remains ac-
counted for. The operation to clear purses of their exception logs must be
supported by a mechanism to store the cleared logs. This is what the archive
supplies.

The purse supports the ReadExceptionLog operation, which puts an excep-
tion log record into the ether as a message. As the system implementers have
no control over the ether, we have modelled it as lossy at the concrete level,
allowing for messages to be lost from the ether at any time.

The archive is a sectire store for information, and to support the security
of the purse there must be a manual mechanism to move log messages from
the ether into the archive for safe keeping. This is modelled by the Archive
operation, and is implemented by some mechanism external to the target of
evaluation.

__Archive
ABetweenWorld
m?, mt . MESSAGE
name? : NAME

conAuthPurse’ = conAuthPurse
ether’ = ether

archive
archive’ €
archive U { log : NAME x PayDetails |
exceptionLogResult log € ether )

m=1

This operation non-deterministically copies some exception log information
from messages in the ether into the archive. It ignores its inputs. As one pos-
sible behaviour is to move no messages into the archive, it can behave exactly
like Ignore. The operation is therefore total, and we do not need to disjoin it
with Ignore.
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5.8 Forging messages

If arbitrary messages can be sent, then obviously the security can be compro-
mised. We can build into the definition of the ether that it is possible to forge
only some kinds of messages. The only messages it is possible to forge are

« replays of earlier valid messages (added to the ether during an earlier
operatiofn)

s unprotected messages (modelled by being in the initial ether, and hence
being replayable at any time)

= messages it is possible to detect are forged {(modelled by the L message,
present in the initial ether)

This allows us to capture the encryption properties of messages: a message
encapsulating arbitrary details cannot be forged by a third party.
5.9 The complete protocol

The complete transfer at the between and concrete levels can be described,
informally, by the following sequence of operations:

StartFrom 3 StartTo $ Reg § Val § Ack

Other operations may be interleaved in an actual transfer.
The refinement proof in the following sections demonstrates that none of
the individual concrete operations violates the security policy.
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Between model, initialisation and
finalisation

6.1 Initialisation

As with the abstracr case, we set up a particular initial between state. We do not
want to model adding new authentic purses to the system, since some of the
operations involved are outside the security boundary. So we allow the warld to
be ‘switched oft" and a new world ‘switched on’, where the new world consists
of the old world as it was, plus the new purses. So our initial state must allow
purses to be part-way through transactions.

We set constraints on the initial state of the between system 1o say that
there are all the request messages in the ether, any current transactions must
be valid, and there are no future messages.

BetweenlnitsState
BetweenWorld’

{readExceptionLog, 1}
v
\U{ cpd : CounterPartyDetails » {startFrom cpd, startTo cpd) }

< ether’

The initial ether contains {or may be considered to contain) the following mes-
sages:

» the log enquiry and L messages (hence a purse can always have a forged
message senl to it)

» all possible start messages, even those referring to a non-authentic purse
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« no future messages {ensured by the constraints in BetweenWorld')

So any purse, at any time, can be sent a read log message, or an instruction
10 start a transfer; this saves us having to model the IFD sending these mes-
sages. Since the IFD does not authenticate start messages, we cannot insist on
auchentic purses at this point.

The inability to forge messages means that a req message always mentions
an authentic to purse, and a val message an authentic from purse. 5o a val
message sent on receipt of a reg will mention authentic to and from purses.

We must also initialise our concrete inpuls, since they are different from
the global inputs. This defines how concrete inputs are interpreted.

Betwinitin _
g7t AIN

m? : MESSAGE
name? : NAME

m? € ranreg =
g? = transfer{ u TransferDetails |
from = (req~m?).from
A to = (reqg-m?).lo
A value = (reg™m?).valye)

m? ¢ ranreq = g7 = aNullin

6.2 Finalisation

Finalisation maps a BetweenWorld to a GlobalWorld, to specify how the various
concrete state components are ohserved abstractly.

We finalise by choosing o assume that all the transactions in maybeLost
actually are lost. (In some sense, finalisation trears incormplete transactions as
if they would *abort'.)

BetwFinState
BetweenWorld
GlobalWerld

dom gAuthPurse = dom conAuthPurse
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¥V name : dom conAuthPurse »

{gAuthPurse name).balance = (conAuthPurse name).balance

A (gAuthPurse name).lost =
sumValue( (definitelyLost U maybeLost)
0 { 1d ; PayDetails | Id.from = name})

There is a simple relationship between concrete and global balance compo-
nents. The global lost component is related to the concrete maybeLost and
definitelyLost logs (the function sumValue is defined in section D.3).

We must also finalise our concrete outputs, since they are different from
the global outputs. This defines how concrete outputs are interpreted.

__BetwFinOut
gl AoUT
mil : MESSAGE

g! = aNullOut

All concrete outputs are interpreted as the single abstract output, aNuliOut.
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Concrete model: implementation

7.1 Concrete World State

The C world state has the same components as the B state; we decorate with a
subscript zero to distinguish like-named B and C components.

Since AConWorldy has components dashed-then-subscripted, whereas we
require subscripted-then-dashed, we defined our own A and E schemas.

AConWorld0 £ ConWorldy A ConWorld),
EConWorld0 = [ AConWorldO | 6 ConWorldy = 0 ConWorld), |

7.2 Framing Schema

The concrete world C has the same operations as the B model.

The world we promote to is ConWorld, not BetweenWorld. (Remember
ConWorld has the same structure as BetweenWorld, but none of the constraints
about future messages.) We are also allowed 1o ‘lose’ messages from the public
ether, which models the fact that the ether may be irnplemented as a lossy
medium.

So the € framing schema is used to promote the purse operations.

¢ COp
AConWorldQ
AConPurse

m?, m! . MESSAGE
name? . NAME
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m? € ethery

name? € dom conAuthPursep
8ConPurse = conAuthPurse, name?

conduthPurse; = conAuthPurseg & {name? — 8ConPurse’}

archivey, = archivey

ethery < ethery U {m!)

7.3 Ignore, Increase and Abort

The B operations Ignore, Increase and Abort have C equivalents, working on
the ¢ world instead of the B world. These operations are not named operations
of the purse, i.e. they are not visible at the purse interface. We define them so
that they can be used as components in C purse operations.

Clgnore = [ EConWorld0; name? : NAME;, m?, m!: MESSAGE | m! = 1]

CIncrease = Clgnore
v (FAConPurse s $COp A IncreasePurseOkay )

CAbort = Clgnore
v (3 AConPurse s AbortPurseCkay A [$COp | mt= 1])

All subsequent operations defined in this chapter correspond ro the actual op-
eratians of the purse.

74 Promoted operations

As with the B promoted operations, the C promoted operations are made total

by disjoining with Clgnore.

74.1 Value transfer operations

The promoted start operations are:

CStartFrom = Clgnore
v CAbort
v (FAConPurse « $COp ~ StartFromPurseOkay )
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CStartTo = Clgnore
v CAbort
v { FAConPurse » & COp A StartToPurseOkay )

The promoted protocol operations are;

CReq = CIgnore v { AAConPurse « ®COp A ReqPurseOkay )
CVal = Clgnare v (3ACanPurse » ® COp ~ ValPurseOkay )
CAck = Clgnore v { A AConPurse « ®COp ~ AckPurseQkay )

7.4.2 Exception log operations

The promoted log enquiry operation is:

CReadExceptionLog = Clgnore
v { 3 AConPurse « COp A ReadExceptionlogPurseOkay )

The promoted clear operation is:

CClearExceptionLog = Clgnore
v CAbort
v (A AConPurse « $COp A ClearExceptionLogPurseQkay )

7.5 Operadons at the world level only

As with the B model, there are some operations that act on the world, rather
than on individual purses. These operations are specified exactly as they are in
the B mode], but acting on ConWorld instead of BetweenWorld.

7.5.1 Exception Log clear authorisatdon

The message to clear an exception log is generaled external to the model.

CAuthoriseExLogClear = Clgnore

v (3EConPurse « [$COp | (3 lds: Py PayDetails |
{name?} x Ids < archivep »
m! = exceplionLogClear (name?, image lds) } ])

The operation to move exception log information from the ether to the archive
is
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CArchive
’—AConWorIdO
m?, m! . MESSAGE
name? : NAME

conAuthPurse = conAuthPurse
ether < etherg

archiveg <
archivey
archiveg U { log : NAME x PayDetails |
exceptionLogResult log € ethery }

m=1

7.6 Initial state

The initial state of the C world has an ether that (s a subsel of one that satisfies
the ‘ne future messages’ constraints placed on the & world (the subset is needed

because the C ether is lossy).

ConlnitState
ConWorld,

3 BetweenWorld' | BetweenlnitState »
conAuthPursey = conAuthPurse’
A archivey = archive’

A {1} c ether) < ether’

7.7 Finalisation

The B finalisation is defined for any ConWoerld:; we reuse it for the € finalisation.

ConFinState
AuxWorldg
GlobalWorld

dom gAuEhPurse = dom conAuthPurseg
¥ name : dom conAuthPursey «
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(gAuthPurse name) .balance
= (conAuthPurseg name).balance

A (gAuthPurse name) lost =
sumValue((definitelyLosty U maybeLosty)
M {id : PayDetails | id.from = name})
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Model consistency proofs

8.1 Introduction
In order to increase confidence that the specifications written are not meaning-
less, it is wise 10 prove some properties of them.

The least that should be done is to demonstrate that the constraints on
the state and those defining each operation do not reduce to false. So for each
model, the consistency proof obligations are:

« Show it is possible for at least one state to exist (which demonstrates that
the state invariant is not contradictory). If we choose this state to be the
initial state, we also demonstrate that initialisation is not vacuous, too.

+ 3 State’ » Statelnit

« Show that each operation does not have an empty precondition (which
demonstrates that no cperation definition is contradictory).

+ 3 State; Input » pre Op

In fact, here we show that all our operations are total, which is the much
stronger condition

+ V State; Input = pre Op

We present these proofs for each of our three models below.
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8.2 Abstract model consistency proofs

8.2.1 Existence of initial abstract state

- I AbWorld" « AbinitState

Proof:
It is sufficient to find an explicit abstract world that satisfies the constraints of
AblnitState. Consider the abstract world with the components:

abAuthPurse’ = @

This satisfies the constraints of AbWorld, so is clearly a suitable initial state.
’8.2.1

8.2.2 Totality of abstract operations

Abfgnore is total.
Proof:

pre Abignore

= pre [ AAbWorld; a? . AIN; a!: AOUT |
abAuthPurse’ = abAurhPurse
A al = aNuillOut ) [defn. Abignore]

= [ AbWorld; a? : AIN |
J AbWorld’; al: AOUT |
abAuthPurse’ = abAuthPurse
A al = aNullOwt | {defn. pre |

= [ AbWorld; a? 1 AIN |
JabAuthPurse : NAME -+ AbPurse, al: AOUT |
abAuthPurse” = abAuthPurse
A q! = aNullour |
lone point rule]

= [AbWorld; a?: AIN ]
.

All the abstract operations are total.
Proof:
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They are total by construction. They are all of the form AbOpOkay v
Akblgnore, so:
pre AbOp
= pre {AbOpOkay v Ablgnore)
= pre AbOpOkay v pre Ablgnore
= pre ABOpQkay v [ AbWorld; a? . AIN }
= [ AbWorld; a?: AIN )
|

m 822
w2

8.3 Between model consistency proofs

8.3.1 Existence of between initial state

~ 3 BetweenWorld' » BelweeninitState

Proof:
It is sufficient to find an explicit between world that satisfies the constraints of
BetweenWorldInit.

A world of no purses, an ether that consists of exactly the messages ex-
plicitly allowed of BetweenWorldInit, and an empty archive, is sufficient.

conAuthPurse = @

ether’ = {readExceptionLog, 1}
u UJ{ cpd : CounterPartyDetails o {startFrom cpd, startTo cpd} }

archive’ = @
This satisfies the constraints in ConWorld. It also satisfies the extra constraints
of BerweenWorld: all the quantifiers are over empty sets (of purses or messages)

and hence are trivially true.
m 8.3.1

8.3.2 Totality of between operations

All between operations are total.
Proof:
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They all offer the option of Ignore (explicitly by disjunction, except for Archive,
which offers it implicitly). Ignore is the total identity operation.

n8.32

m83

8.4 Concrete model consistency proofs

8.4.1 FExistence of concrete initial state

+ 3 ConWorld; « ConlnitState

Proof:
The concrete state is identical to the between state, except for fewer constraints.
Therefore as a between state exists, so does a concrete one.

m8.4.1

8.4.2 Totality of concrete operations

All concrete operations are total.
Proof:
The concrete operations are identical to the between ones. Therefore if the
between operations are total, so are the concrete ones.
m 342
B34
m3
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Chapter 9

Refinement Proof Rules

9.1 Security of the implementation

We prove the concrete model C is secure with respect to the abstract model A
in two stages. We first show (in this part) that B refines A then we show (in
part I that C refines ‘B. '

To show that B refines A we show that every (promoted) B operation
correcily refines some A operation. )

Much of what the B (and C) operations achieve is invisible at the A4 level,
so many B operations are refinements of Abignore (abstractly ‘do nothing’).
Some of the ‘B operations that are refinements of Ablgnore do serve to resolve
ahstract non-determinism.

The refinements are

AbTransfer € Req

Abignore © StartFrom
v StartTo
v Val
v Ack
v ReadExceptionlog
v ClearExceptionLog
v AuthoriseExLogClear
v Archive

v Ignore
v Increase
v Abori
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A’ Aln A Aln ACQp A" AQur A; ACur
Al - ¥ - ¥ AFin
- 1 [ .
‘ R R R R R
Rin Rln | ROu ROut ;
! 1
Bl ! ! BFin
. - e
B'; Bin B; Bln ROp B'; BOu: 8; BOu:
Intalisation Correctness Finalisation

Figure 9.1: A summary of the backward proof rules. The hypothesis is the
existence of the lower (solid) path. The proof obligation is to demonstrate the
existence of an upper (dashed) path.

Each of these refinements must be proved correct.

For the .A to B refinement proofs, the following set of ‘upward’ or ‘back-
ward’ proof rules are sufficient to show the refinemem [Woodcock & Davies
1996]. For the B to C refinement proofs, the ‘downward’ or ‘forward’ proof
rules are sufficient to show the refinermnent.

These rules are expressed in terms of a ‘concrete’ {lower) and ‘abstract’
{upper) model. In this first refinement the ‘abstract' model is A4 and the ‘con-
crete’ model is B. In the second refinement the ‘abstract’ model is now B and
the ‘concrete’ model is C.

9.2 Backwards rules proof obligations

Appendix A describes the syntax for theorems, and how we lay out the proofs.
The backward proof rules are summarised in figure 9.1, and described below.

92.1 Initialisation

We start from some global state G, and initialise it to an abstract initial state
A’ and concrete initial state B’. These must be related by the retrieve.

+ ¥ G; Gin; B'; Blm, A’; AIn| BInitState A BInitih A R* ARin «
AnitState ~ Alnitln

Given any global initia] state G, if we initialise it with Binit to B’, then retrteve B’
to A', we must get the same abstract initial state as if we had initialised directly
to A’ using Alnit.
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This can be simplified to:

BlnitState; R' +— AlnitState
Binitin; RIn + Alnitin

9.2.2 Finalisation

We start from some abstract final state A and concrete final state B, related by
the retrieve, and finalise them to the same global final state G'.

- ¥ G, GOut; B; BOut | BFinState ~ BFinOut =
J4; ACut » R A ROut » AFinState A AFInCut

Given any concrete final state B that finalises with BFin to &', then it is possible
to find a corresponding abstract final state A, that both retrieves from B and
finalises with AFin to the same ¢'.

This can be simplified to:

BFinState — 3 A « R A AFinState
BFinOut + 3 AQut » ROut ~ AFinOut

9.2.3 Applicability
VB BIn| (VY A; AIn| R A RIne«pre AOp) « pre BOp

For each operation: if we are in a concrete state, and if all the abstract states-
to which it retrieves satisfy the precondition of the abstract operation, then we
must also sarisfy the precondition of the corresponding concrete operation.

For our case, AOp is total (this needs to be proved for each of the abstract
operations — see section 8.2.2). So pre AOp = true. So

(VY A; AIn| R A RInepre AOp)
= (¥ A; Alns R A RIn= pre AOp)
= (VA Alne RA RIn= true)
= (¥ A, Aln»s true)
= {rue

So, for total abstract operations, the applicability proof obligation reduces to
B; Bin+ pre BoOp

That is, a proof that BOp is total, too. This is discharged in sectjon 8.3.2.
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9.2.4 Correctness

FVYE Bin[{(VA AN RARmepre AOp) »
{Y A", AOut; B'; BOut | BOp A R A ROut =
(3A; AlIns RARInA AOp))

For each operation: if we start in a concrete state corresponding te the precon-
dition of the abstract operation (the applicability condition ensures we then
satisfy the concrete operation's precondition), and do the concrete operation,
and then retrieve to the abstract state, then we end up in a state that we could
have reached doing the abstract operation.

Using pre AOp = true (proved during applicability), this reduces to

Y B; Blns (VA AOutf; B'; BOut | BOp A R A ROul =
(A; AIns RARInA AOp))

Moving the quantifier into the hypothesis:

B, BIn; A'; AQut; B’; BOut | BOp n R ~ ROut
—3dA; Alns RA RInn AOp

Then rearranging the schema predicates from the predicate part te the decla-
ration part, and removing the redundant declarations, gives the final form we
use:

BOp; R, ROut -3 A; Alne R A Rinn AOp
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A to B retrieve relation

The purpose of the retrieve relation is to capture the details of the various states
the concrete world can be in, and which abstract state{s) these correspond to,
and the relationships between the concrete and absiract inputs and outputs.

Far the first refinement, we talk of Rab: the Retrieve from A to B. Later,
for the second refinement, we talk of Rbc: the Retrieve from B to C.

10.1 Retrieve state
The domains of the B and A ‘world" functions define the authentic purses.
__AbstractBetween

AbWorld
BetweenWorld

dom abAuthPurse = dom conAuthPurse

A balance and lost are related to ‘B balance and exLogs. The relationship is re-
lational, not functional, and highly non-deterministic part-way through a trans-
action.

10.1.1 Exposing chosenlost

chosenLost is a non-deterministic choice of a subset of all the maybeLost values
that we ‘choose’ to say will be lost.
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__RabCl
AbstractBetween
chosenLost : P PayDetails

chosenlost © maybelost
¥ name : dom conAuthPurse »

(abAuthPurse name).lost =
sumValue((definjtelyLost U chosenlost)
N { pd : PayDetails | pd.from = name })

A (abAuthPurse name) . balance =
{(conAuthPurse name).balance
+ sumValue{{maybelost \ chosenLost)
N { pd : PayDetails | pd.to = namel)

The predicate links the & and A values!:

« For a purse rame, its lost value is the sum of the values in all those trans-
aclions thac are definitely lost or that we have chosen 1o assume lost with
name as the from purse. {(Note the deliberate similarity of this definition
and that in BetwFinState.)

« The A balance of a purse is its B balance plus the value of all those trans-
actions we have chosen to assume will not be lost, with name as the to
purse. (For a give name, there is at most one such transaction.)

A consequence of this relationship is that the abstract lost and balance values
of apurse can depend on the corresponding values of more than onc concrete
purse.

10.1.2 Hiding chosenlost

Theretrieve relation is then RabCl with the non-deterministic choice chosenlost
hidden?:

Rab = 3 chosenlost : P PayDelails « RabCl

We define the retrieve in this way because in the proof we need to have direct
access to chosenlost.

"It is valid to apply sumvalue in this predicate, because both definitelvLost and maybelost
are finite, definitelvLost Is finite because of BetweenWorld constraint B-13. maybelost is finite
because IpInEpv is finste: each pd in the set comprebension for lo/nEpv comes from a distinct
purse in conduthPrrse, which itself is a finite function.

2We use this form to simplify the general corTectness proofs, section 14.4.3.
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10.1.3 Exposing pd This

In the proof, we find that we wish to focus on a single pd (any pd}. We define
a new schema, RabCIPd, identical to RabCl except for an extra declaration of a
pd.

RabCiPd
Rab(l
pdThis : PayDetails

We split the predicate part of RabClPd into two cases that partition the possi-
bilities:

« ¥V name : dom conAuthPurse | name ¢ {pdThis.from, pdThis.to}
purses not involved in the pdThis transaction.

« V¥V name: dom conAuthPurse | name € {pdThis.from, pdThis.to)}
purses involved in the pdThis transaction.

In all cases the purses other than the from and to purses retrieve their balance
and lost values in the same way, so we factor this part of the predicate out into
a separate schema, OtherPursesRab, which we include with the remaining part
of the predicate.

__ QOtherPursesRab
AbstractBetween
chosenLost : P PayDetails
pdThis : PayDetails

¥ name : dom conAuthPurse | name ¢ {pdThis.from, pdThis.to} «

{abAuthPurse name) lost =
sumvValue({definitelyLost u chosenlost)
n { pd : PayDetails | pd.from = name})

A (abAuthPurse name).balance =
{conAuthPurse name).balance
+ sumValue((maybelost \ chosenLost)
n { pd : PayDetails | pd.to = name})

We split RabCIPd into four cases that partition the possibilities:

« RabOkayClPd: pdThis € maybelLost\chosenLost half way through a trans-
action that will succeed. Since maybeLost refers only to authentic purses,
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we know that {pdThis, from, pdThis.to} & dom conduthPurse, and so the
remaining quantifier is reduced to these two cases.

RabWillBeLostCiPd : pdThis € chosenLost half way through a transaction
that will lose the value (the e purse has not yet aborted, but we choase
that it will, rather than receive the val). Since chosenlLost = maybelost
refers only to authenric purses, we know that {pdThis.from, pdThis.to} ¢
dom conAuthPurse, and so the remaining quantifier is reduced 1o these
two cases.

RabHasBeenLostCIPd . pdThis € definitelyLost half way through a trans-
action that has lost the value (the fo purse has already moved on). Since
definitelyLost refers only to authentic purses, we know that {pdThis.from,
pdThis.toe} © domconAurhPurse, and so the remaining quantifier is re-
duced to these two cases.

RabEndCIPd : pdThis ¢ definitelyLost u maybelost At the beginning or
end of a transaction, so there is no non-determinism in the lost or balance
components. A general pdThis may refer to non-authentic purses, so the
quantifier is reduced no further.

In the later proofs of operations that change purse status {Abort, Reg, Val and
Ack), we argue how the relevant pd moves in and out of the sets maybeLost
and definitelyLost, and thereby choose the appropriate one of the four cases of
the retrieve to use before and after the operation.

We perform this split by systematically subtracting out the chosen pd from

the lost and balance expressions. If the pd was in fact in the relevant set, we
then have to add the subtracted value back in, otherwise we do nothing, since
we have made no change to the exprésston.

RabOkayCIPd
AbstractBetween
chosenLost : P PayDetails
pdThis : PayDetails

chosenLost © maybeLost
pdThis ¢ maybeLost \ chosenlost

{abAuthPurse pdThis.from).balance =
(conAuthPurse pdThis.from). balance
+ sumvalue(((mavbeLost \ chosenlLost)
N { pd : PayDetqils | pd.to = pdThis.from}}
vipdThis})
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(abAuthPurse pdThis.to) .balance =
pdThis.value
+ {conAuthPurse pdThis.to) .balance
+ sumValue({((maybeLost \ chosenLost)
N { pd : PayDetails | pd.to = pdThis.to}}
\{pdThis])

¥ name ; {pdThis.from, pdThis.to) =

(abAuthPurse name).lost =
sumValue({{definitelyLost U chosenLost)
n { pd : PayDetails | pd.from = name})
\{pdThis})

OtherPursesRab

In the Okay case, pdThis is not lost, so its value has to be added back into the
to purse’'s balance component.

_ RabWillBeLostCIPd

AbstractBetween

chosenLost : P PayDetails
pdThis : PayDetatls

chosenLost © maybeLost

pdThis € chosenLost

(abAuthPurse pdThis.from).lost =
pdThis.value
+ sumValue(((definitelyLost U chosenLost)
n { pd : PayDetails | pd.from = pdThis.from})
\{pdThis})
(abAuthPurse pdThis.to).lost =
sumValue(((definitelyLost U chosenLost)
n { pd : PayDetails | pd.from = pdThis.to })
\{pdThis}}

¥ name : { pdThis.from, pdThis.to} «

(abAuthPurse hame).balance =
(conAuthPurse name).balance
+ sumValue{{(maybeLost \ chosenLost)
N {pd : PayDetails | pd.to = name})
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\ipdThis) )
Bt‘herPursesRab

In the WillBeLost case, pdThis is chosen lost, so its value has to be added back
into the from purse's fost component.

RabHasBeenlLostClPd _
AbstractBetween
chosenlost : P PayDetails
pdThis : PayDetails

chosenLost € maybeLost
pdThis € definitelyLost

{abAuthPurse pdThis.from).lost =
pdThis.value
+ sumValue(((definitelyLost  chosenLost)
n { pd . PayDetails | pd.from = pdThis.from })
\{pdThis})
(abAuthPurse pdThis.to) lost =
sumValue({(definitelyLost L chosenlost)
r { pd: PayDetails | pd.from = pdThis.to })
\ipdThis})

¥ name: {pdThis.from, pdThis.to} »

{abAuthPurse name) balance =
(conAuthPurse name).balance
+ sumValue(({maybeLost \ chosenlost)
M { pd : PayDetails | pd.to = name})
VipdThis})

‘ OtherPursesRab

In the HasBeenlost case, pdThis is definitely lost, so its value has to be added
back into the from purse’s lost component.

RabEndClPd
AbstractBetween
chosenlost ; P PayDetails
pdThis : PayDetails
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chosenLost = maybeLost
pdThis ¢ definitelyLost v maybelost
¥V name : dom conAuthPurse n {pdThis.from, pdThis.to} =

(abAuthPurse name).lost =
sumValue(((definitelyLost U chosenLost)
N { pd : PayDetails | pd_from = name))
\(pdThis})

A (abAuthPurse name) . balance =
(conAuthPurse name) .balance
+ sumValue{((maybelost \ chosenlost)
N { pd : PayDetails | pd.to = name})
\{pdThist)

OtherPursesRab

In the End case, pdThis is in neither component, so its value does not have to
be added back in anywhere.

10.1.4 Partition

We have the identity3:

RabClpPd
-
RabClPd <
(RabOkayClPd
v RabWillBeLostCiPd
v RabHasBeenLostCIPd
v RabEndCIPd)

Proof:
The four cases differ in the predicate on pdThis, which together partition the
possibilities. It is obvious that the four cases cover the possibilities, We use
Lemma ‘lost’, which says that definitelyLost and maybeLost are disjoint, to show
that the four cases are non-overlapping.

m10.14

IUsed in: Reqg check-operaton, splitring into four cases, sectian 1B.6.
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10.1.5 Quantified forms

Becausethe intraoduction of the pd in RabClPd is arbitrary, we have the following
identities:

RabCl - RabCl < ( ¥ pdThis : PayDetails « RabClPd )
and
RabCl +— RabCl « (3 pdThis : PayDerails ¢« RabCIPd )

Proof:

Thatboth these identities hold may seem odd, but can be intujtively understood
by logking at a similar, smaller example. Consider a non-empty subset of N
called X. Then it is certainly true that

Ix: X e X =X\ {x}u{x]
and also
Vx:XeX=X\{x}u{x}

| 10.1.5
We have just chosen 1o extract an arbitrary element from the set for special
naming. We do the same with RabCl, selecting an arbitrary pdThis for special
naming, but without changing the meaning of the schema. This means that we
can split up Rab(l into a collection of four disjunctions on a pd in different
ways as the proof dictates?,

10,1.6 The full Retrieve state relation

We also define versions of these schemas with the pdThis and chosenLost hid-
den (so they have the same signature as Rab):

RaboOkay = RabOkayCIPd \ (pdThis, chosenLost)

RabWiilBelLost = RabWiliBeLostCIPd \ (pdThis, chosenLost)
RabHasBeenlost = RabHasBeenLostCIPd \ (pdThis, chosenLost)
RabEnd = RabEndClPd \ (pdThis, chosenLost)

1Used in: lemma 'deterministic’, exposing pdThis (twice), section 14.4.3.
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10.2 Retrieve inputs

Each A operation has the same type of input, an AIN. Each B operation has
the same type of input, a NAME and a MESSAGE. The input part of the retrieve
captures the relationship between these A and B inputs,

RabIn = BetwInitin[a?} g7}
The B inputs are related to A inputs in the following manner:

RI-1 Req: the A transfer details are in the reg
RI-2 All other B inputs: the A input is aNuilin.

10.3 Retrieve outputs

The output retrieve is particularly simple: all B outputs retrieve to the single
A output.

RabOut = BetwFinOut[a'/ g']
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A to B initialisation proof

11.1 Proof obligations

The requirement is to prove that the between initial state correctly refines the
abstract initial state, and the between inputs correctly refine the abstract inputs.
That is,

BetweeninftState, Rab’ — AblnitState
Betwinitln, Rabin + Abinitin
11.2 Proof of initial state

We successively thin the hypothesis to expose the consequent.

BetweenWorldInit A Rab’ (hypi
= Rab’ {thin)
= AbWorld' [thin]
= AbInitState [defn AbInitState]

m1li.2

11.3 Proof of initial inputs
Expand Rabln and AbInithn,

Betwinitin; Betwinitin[a?/g?] + a? = g?
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Betwinitln defines g? as a total function of (m?, namnie?); call it f. Thin.

g7,a? : AIN | 3f : MESSAGE x NAME — AIN «

¥ m: MESSAGE; n: NAMFE «
gr=fimn}ra?=fimn)

Fa? = g7
Simplify and thin.

ghat . AN g?l=a?+a? = g?

all.3
mll
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A to B finalisation proof

12.1 Proof obligations

The requirement is to prove that the between final state correctly refines the ab-
stract final state, and the between outputs correctly refine the abstract outputs.

That is,

BetwFinOut +— d gl : AQUT « RabOut A AbFinOut
BetwFinState + 3 AbWorld « Rab A AbFinState

This proof obligation is summarised in figure 12.1.
chosenLost = maybeb;.ﬂ\i\ A

choserlost = @ — = q ? ? ~. AFin
LU | S

W BFin

Figure 12.1: Backwards rules finalisation proof obligation

12.2 OQutput proof

Expand RabOut and AbFinOut.
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BerwFinOur — 3 al : AOUT » BetwFinOutia!'/g'] A a' = g'

lone point} away the a! in the consequent
BetwFinQut v BetwFinOut(g!/g!]

ml22

12,3 State proof
We [cal] in an ABWorld, and put it equal to the GlobalWorld.

BetwFinState; AbWorld | abAuthPurse = gAuthPurse
}_
A AbWorld = Rab A AbFinState

Curting in this new hypothesis requires us to discharge a side-lemnma about the
existence of such an AbWorld. This is trivial to do, by the [one point] rule,

We use [consg exists] to remove the existential quantifier in the consequent,
by using the value just cut in:

BetwFinState; AbWorld | abAuthPurse = gAuthPurse
[
Rab ~ AbFinState

Weprove each of the conjuncts in the consequent separately [ consg conjl, drop-
ping unneeded hypotheses as appropriate [thin|.

12.3.1 Case 4bFinState

BetwFinState; AbWorld | abAuthPurse = gAuthPurse v AbFinState

The predicates in AbFinState occur in the hypothesis, so are satisfied trivially.
ml231

12.3.2 Case Rah

We expand cut Rab into its conjuncts:

BetwFinState, AbWorld | abAuthPurse = gAuthPurse — Rab
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Retrieve of equality

We have the equation
dom abAuthPurse = dom conAuthPurse

which can be shown from the equality of gAuthPurse and conAuthPurse in BFin-
State, and between gAuthPurse and abAuthPurse in the hypothesis.

Similarly, in each case the part of the retrieve to be praven has an equality
between the abstract and concrete. We show this holds from an equality in
that component between global and concrete in BetwFinState, and and equality
between global and abstract in the hypothesis.

w1232

Case Rab

BetwFinState; AbWorld | abAuthPurse = gAuthPurse +— Rab

Expanding BetwfinState, thinning unwanted predicates, substituting for global,
and expanding Rab, we get:

AuxWorid, AbWorld |
¥ name : dom conAuthPurse »
(abAuthPurse name) lost =
sumvValue(( definitelyLost U maybeLost)
r { pd : PayDetails | pd.from = name?l)
A (abAuthPurse name) . balance = (conAuthPurse name) balance
}._
J chosenlost : P maybelost »
¥ name: dom conAuthPurse »
(abAuthPurse name).lost =
sumValue((definitelyLost u chosenLost)
N { pd: PayDetails | pd.from = name))
A (abAuthPurse name).balance =
(conAuthPurse name) . balance
+ sumvValue((maybeLost \ chosenLost)
N { pd : PayDetails | pd.to = name})

We [one point] away the chosenLest in the consequent by putting it equal to
maybelost (having [cut] in such a value and proved it exists). We also simplify
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the equations, now that maybeLost \ chosenLpst is empty:

AuxWorld;, AbWorld, chosenLost : P PayDetails |
chosenlost = maybeLost
A (¥ name : dom conAuthPurse «
(abAuthPurse name).lost =
sumValue( (definitelyLost U maybelast)
N { pd : PayDetails | pd.from = name })
A tabAuthPurse name).balance
= (conAuthPurse name).balance)
-
¥ hame : dom conAuthPurse »
{(abAuthPurse name).lost =
sumValue({definitelyLost U maybelLost)
n { pd : PayDetails | pd.from = name))
~ {abAuthPurse name) .balance = (conAuthPurse name}.balance

The consequent also appears as an hypothesis, so the proof is complete.
m1232
niz2.3.2
mi123
=12
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A to B applicability proofs

13.1 Proof obligation

In section 9.2.3 we showed that it is sufficient to prove totality of the concrete
operations.

13.2 Proof

Totality for each between operation was shown in the specification consistency
proofs, section 8.3.2.
w13
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Lemmas for the ‘A to B correctness
proofs

14.1 Introduction

The correctness proof obligation, to be discharged for each abstract operation
AOp, where AOp € BOpFull = BOp) v BOp, v ... is the corresponding refine-
ment, is:

BOpFull, Rab’; RabOut + 3 AbWorld; a?: AIN » Rab » Rabin ~ AOp

This proof obligation is summarised in figure 14.1. There are multiple lower
paths both because the concrete operation is non-deterministic, and because
the retrieve is non-deterministic. For each lower path triple of (B, B', 4'), we
have to find an A that ensures the existence of an upper path; it does not have
to be the same A in each case.

There are various classes of B operation depending on which .4 operation
is being refined. There are commonalities in the proof structures for these
classes. This chapter develops general mechanisms and lemmas to facilitate
proving most operations. This fits into the following main areas

» lemma ‘multiple refinement”. When the B operation that refines an A
operation in a disjunction of several individual B operations, the proof
obligation can be split into one for each individual B operation.

+ lemma ‘ignore’: The ignore branch, and any ‘abort’ branch, of each B op-
eration need be proved once only.

» lemma ‘deterministic’: A simplification of all correctness proofs, by ex-
posing the non-determinism in the retrieve, to the three cases exists-pd,
exists-chosenLost, and check-operation (with the introduction of two ar-
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8: m?. name?

BOplgnore

Figure 14.1: The correctness proof. The hypothesis is the existence all of the
lower {sclid) paths. The proof obligation is to demonstrate the existence of an
uppet {dashed) path in each case.

bitrary predicates P and 2, instantiated ditferently depending on the par-
ticular operation).

s lemma ‘lost unchanged”: Where maybelost and definitelyLost are uncha-
nged, the exists-pd and exists-chosenLost obligations can he autornati-
cally discharged.

+ lemma ‘Ablgnore” A further simplification of the check-operation proof
obligation, for the operations that refine Ablgnore, 1o check-operation-
ignore.

« proof that concrete Ignore refines Ablgnore

= proof that concrete Abort refines Ablgnore

» lernma ‘abort backward': For an operation expressed as Abort composed
with a simpler version of the operation, we need prove only that the sim-
pler operation is a refinement

The lemmras developed in this chapter are collected together in Appendix C for
ease of reference.

14.2 Lemma ‘multiple refinement’

[n most cases of AOp, the corresponding BOpFull is a disjunction of many
individual B operations, BOp v BOp; v ... whose differences are invisible
abstractly. For example, Abignoreis refined by a disjunction of several separate
operations.

We use the inference rule [hyp disj] to split these large disjunctions into
separate proof abligations for each of the B operations.
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14.3 Lemma ‘ignore’ separating the branches

Each between operation BOp is promoted from BOpPurseOkay, disjoined with
Ignore, and sometimes with Aborr. Call the first disjunction BOpOkay:

BOpOkay = 3 AConPurse » @BOp » BOpPurseCkay

We use the inference rule | yp disj], to split the correctness proof into two (or
three) parts, one for each disjunct, each of which must be proved.

Abort: Rab", RabOur + 3 AbWorld; a?: AIN » Rab A Rabin A AQOp
Ignere, Rab’; RabOut — 3 AbWorld, a?: AIN « Rab » Rabin A AOp
BOpOkay;, Rab'; RabOut + I AbWorld, a?: AIN « Rab A Rabln A AQp

All the abstract operations include an option of failing (equivalent to the con-
crete Ignore), which results in no change to the abstract state. We can therefore
strengthen the conclusion of the fgnore and Abort theorems and prove

Ignore, Rab’; RabOut + 3 AbWorld; a?: AIN « Rab A Rabin ~ Ablgnore
Abort; Rab’; RabOut +~ 3 AbWorld; a?: AIN s Rab A Rabln n Ablgnore

These are independent of the particular operation AOp. Thus we need prove
these theorems only once (which we do in sections 14.7 and 14.8). To prove
the correctness of BOp we need additionally to prove the remaining BOpOkay
theorem.

14.4 Lemma ‘deterministic’; simplifying the Okay branch
The Okay branch of the correctness proof is, in general,
BOpOkay; Rab’; RabOut — 3 AbWorld, a?: AIN « Rab » Rabin » AOp

In order to find an AbWorld that is appropriate, we expose the non-determinism
in the retrieve. The non-determinism occurs in the Rab branch of the retrieve
in terms of uncertainty about which transactions still in process will terminate
successfully, and which will terminate with a lost value.

We also expose the transaction that is currently in progress, to make it
available to the proof.
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14.4.1 Choosing an input

We choose a value of a? that is consistent with Rabfn. Since Rabin is functional
from m? and name? 1o q?, we know this choice of a? is uniquely determined.
We [cuf] this value for a? into the hypothesis, and remove the quantifier on a?
by the [consg exists] rule.

We note that Rgbln in the consequent is independent of the choice of
AbWarld, so can be pulled out of that guantifier.

BOpOkay; RabOut; Rab'; a?: AIN | Rabin
.
Rabin ~ (3 AbWorld « Rab » AOp)

We sphit the proof into two on the conjunction in the consequent [consg conjl,
one for Rabin, onc for 3 AbWorld « Rab ~ AOp.

RabIn is trivially satisfied by this choice of a? in the hypothesis.

The declaration of q? in Rabln allows us to drop the explicit declaration
in the hypothesis, giving

BOpOkay; RabOut, Rab’; Rabin+— 1 AbWorld « Rab A AOp

14.4.2 Cutting in AConPurse

It helps to work with the unpromoted form of the operation. We do this
by expanding BOpOkay, according o its promoted definition, And [cutlting
AConPurse into the hypothesis such that BOpPurseOkay and ¢BOp hold. (The
side-Jemma is satisfied from the expanded definition of BOpOkay in the hy-
pothesis; which states that such a AConPurse cxists.)

(I AConPurse » ¥BOp ~ BOpPurseOkay );
RabQut; Rab’: Rabin, AConPurse |
¢BOp ~ BOpPurseOkay
l,_.
A AbWorld » Rab ~ AOp

We rearrange the hypothesis, moving $BOp and BOpPurseCkay from the pred-
icate part to the declaration part. Since $BOp declares A ConPurse, we remove
the latter. We Ithin| the hypothesis of the expanded definition of BOpOkay.

$B0p; BOpPurseOkay; RabOut, Rab’, Rabin~ 3 AbWorld « Rab A AQp
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14.4.3 Exposing chosenlLost and pdThis

We need to make some of the internal components visible to the proof to enable
us to break the proof into sections.
We replace Rab’ with the quantified form of RabCl’ (section 10.1.2), giving

& B0, BOpPurseOkay; Rabout;

{ I chosenlost’ : P PayDetails « RabCl’ ); Rabin
l_
3 AbWorld = Rab A AOp

We now usc [hyp existst to remove the quantification, giving us

®BOp; BOpPurseCkay, RabOut; RabCl’; Rabin
)_
I AbWorld » Rab A AOp

Next, we fcut] in a declaration of an arbitrary payment detail pdThis. In practice,
this is the pd for the payment being processed by BOpOkay, but in this general
manipulation we don't have enough information to specify this. We therefore
constrain the pdThis with some arbitrary predicate 2.

This generates a non-trivial lemma, exists-pd, to be proved in each specific
case, as

®B0Op;, BOpPurseOkay, RabQut;, RabCl'; Rabin
i_
3 pdThis : PayDetails » P

and leaves our proof obligation as

$BOp; BOpPurseOkay; RabOut; RabCl’, Rabln, pdThis : PayDetails |
r

'_

3 AbWorld « Rab A AOp

In the hypoathesis we rewrite RabCl’ as the universally quantified form of Rab-
CIPd (section 1(.1.5).

$BOp, BOpPurseQOkay; RabOut;
(¥ pdThis’ : PayDetails « RabCIPd’ );
Rablin; pdThis : PayDetails |
P
l_
J AbWorld « Rab A AOp
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Rather than hypothesising this is true for all pdThis’'s, we choose a particular
value in the quantification. (This is valid, [hyp uni], because assurming it true
for only a particular value is weaker than assuming it is true for afl values.} The
value we choose for pdThis” is that of the value pdThis. This substitutes the
value pdThis for pdThis’ i the Rab’ schema. This gives

$BOp, BOpPurseOkay, RabOut; RabCIPd'[pdThis|pdThis’]; Rabln;
pdThis ; PayDetails |
P
P—
3 AbWorld « Rab n AOp

The declaration in RabCIPd’ allows us to drop the explicit declaration of pdThis.
So we rewrite this more simply as

$BOp; BOpPurseOkay, RabOut; RabCiPd'[pdThis/pdThis']; Rabln |
P

}_

I AbWorld « Rab » ACp

In the consequent we do a similar thing: expose chosenLost, and rewrite Rab
as the existentally quantificd form of RabCIPd (section 10.1.5)

& B0p;, BOpPurseOkay; RabOut,; RabCIPd'[pdThis/pdThis']; Rabin |
P
'_
3 AbWorld «
( 3 chosenLost : P PayDetails; pd : PayDetails
» Rab(IPd|pd/ pdThis])
~ AOp

We sirengthen the consequent by adding the requirement that the value of pd
claimed to exist on the right hand side is actually equal to the value pdThis
declared on the left hand side. Similarly, we constrain chosenLost sufficiently.
This we do by adding one requircment we always need (narnely, that chosenLost
¢ maybeLosr), and one arbitrary predicae 9, as we did with pdThis. This pred-
icate is instantiated to some specific predicate each time this general inanipu-
lation is invoked.

®BOp; BOpPurseOkay, RabOut; RabClPd’ [pdThis; pdThis']; Rabln |
?
i_
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J AbWorld «
{ 3 chosenLost : P PayDetails, pd : PayDetails »
pd = pdThis n Q
A chosenLost = maybeLost
A RabCIPd[pd/ pdThis] )
A AOp

We can remove the pd in the consequent with the |orne point] rule, because we
have an explicit value for it (namely, pdThis).

& BOp;, BOpPurseOQkay; RabOut; RabClPd’ [ pdThis/pdThis’']; Rabin |
?
'_
3 AbWorld «
(3 chosenLost : P PayDetails «
Q A chosenlLost € maybelost
A RabClPd)
~ AOp

We [cut] into the hypothesis a chosenlost with the same properties as it has
in the consequent (that is, the predicate @ A chosenlost & maybelost). This
generates a side lemma that such a value exists, exists-chosenLost, which must
be discharged in each specific case, as

$&BOp; BOpPurseOkay,; RabOut; RabClPd' [ pdThis/pdThis']; RabIn |
P

)_

I chosenLost : P PayDetails « @ » chosenLost © maybeLost

This leaves:

&BOp; BOpPurseOkay; RabOut;, RabClPd’' [pdThis/pdThis']; Rabin;
chosenLost : P PayDetails |
P A 2 ~ chosenLost < maybeLost
|_.
J AbWorld =
( 3 chosenlost : P PayDetails »
@ A chosenLost © maybeLost
A RabClPd)
~ AOp
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We remove the existential quantification using the [consg exists] for chosenlLost

$BOp; BOpPurseOkay; RabCut; RabClPd'{pdThispdThis’); Rabm;
chosanLost : P PayDetails |
P A Q A chosenlost € maybelost
-
1AbWorld « RabCIPd ~ AOp

We break this into two parts, separating the two rettieves in the conseguent
frem AOp. We then prove each part.

Cut in AbWorld such that RabCIPd holds. This creates a side lemma to
prove that such an AbWorld exists, consisting of just the retrieve. (This is
discharged in sectjon 14.4.4.}

We arc left with

$BOp; BOpPurseOkay; RabOut; RabCIPd'| pdThis/ pdThis'];
AbWorld;, RabCiPd; RablIn, chosenlLost : P PayDetails |
P A @ A chosenlost © maybeLost
|.1
RabClIPd » AOp

We discharge the retrieves in the consequent directly from the hypothesis, and
remove chosenlost and chosenLost € maybeLost as these already occur in Rab-
CiPd, leaving

& BOp; BOpPurseOkay; RabOut; RabCIPd' | pdThis/pdThis'];
AbWorld; RabCiPd; Rabin |
Pag
=
ACp

» 1443

14.4.4 The existence of AbWorld

We have to prove the side condition generated when we cut in an AbWorld
{above).

$BOp; BOpPurseOkay, RabOut, RabClPd’ [pdThis/pdThis'], Rabin;
chosenLost ; P PayDetails |
F A Q A chosenLost ¢ maybeLost
|,_
3 AbWorld » RabClpd
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We can prove this by invoking lemma ‘AbWorldUnique' (section C.15), provided
we can show that the constraints of the hypothesis of that lemma hold.
Certainly we have BetweenWorld (from $BOp), a pdThis and a chosenLost
such that the constraint chosenlost ¢ maybeLost holds. This is sufficient 1o
invoke the lemma.
m14.44

14.4.5 Statement of lemma ‘deterministic’
We summarise the resutts that section 14.4 has developed as a lemma.

Lemma 14.1 (deterministic) The correctness proot for a general Okay branch
consists of the following three proof obligations:
exists-pd:

$BOp; BOpPurseQkay; RabOut, RabCl’; Rabln
’-
A pdThis : PayDetails » P

exists-chosenlLost:

®BOp; BOpPurseOkay; RabOut, RabCIPd’ [ pdThis/pdThis'); Rabln |
P

-

JchosenLost : P PayDetails « Q ~ chosenlost & maybeLost

check-operation:

®BOp; BOpPurseOkay; RabOut, RabCiPd’{ pdThis/pdThis'],
AbWorld, Rab(IPd, Rabin |
Pag
-
AOp

m1l4.4

14.5 Lemma ‘lost unchanged’

Many operations do not change maybelost or definitelyl.ost. We call 4 general
such operation BOp=Lost.
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Lemrna 14.2 (lost unchanged) For BOp=Lost operaticns, where maybelost =
maybelost’ and definitelyLost’ = definitelyLost, the proof obligations exists-pd
and exists-chosenLost are satisfied automatically by the instantiation of the

predicates P and © as:

P« true
¢ < chosenlost = chosenlost’

leaving the remaining check-operation proof obligation as

®ROp;, BOpELostPurseOkay;, RabOut; RabCIPd' [ pdThis/ pdThis'];
AbWorld, RabClPd; Rabin |
chosenLost = chosenLost’
A maybelost = maybeLost’
A definitelyLost’ = definitelyLost

F
AOp
-
14,5.1 Proof

We add the hypotheses maybeLost = maybeLlost’ and definitelyLost’ = de-
finitely Lost 1o the proof obligations for these BOpELost operations.

exists-pd
&BOp; BOpELostPurseOkay, RabOut; RabCl'; Rabin |
maybeLost” = maybeLost
A definitelyLost’ = definitelyLost
'_
A pdThis : PayDetails  true

This is trivially true.
| 14.5.1

existschosenLost

$BOp; BOpELostPurseOkay,; RabOut, RabCIPd' {pdThis/pdThis'};
Rabin |
maybelLost’ = maybeLost
A definitelyLost’ = definitelyl ost
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3 chosenlost : P PayDetails «
chosenlLost = chosenLost’ » chosenLost © maybeLost

We apply the {one point] rule to remove the existential quantifier in the conse-
quent, substitute for maybelLost, and |thin).

RabClPd'[pdThis{pdThis'] - chosenLost” = maybeLost’

The hypothesis RabCIPd' [ pdThis/pdThis'] has chosenLost’ = maybeLost'.
m14.5.1
m 145

14.5.2 Sufficient conditions for invoking lemma ‘lost unchanged’

Since #BCp gives us thal archiveis unchanged, sufficient conditions for invok-
ing lemma ‘lost unchanged’ are that the operation in question changes neither
the purse's status (hence no movement into or out of epv or epa) nor its excep-
tion log (hence no change to from logs or to logs).

14.6 Lemma ‘Ablgnore’: Operations that refine Akignore

As shown in section 14.2, to prove the refincment of the abstract identity op-
eration Ablgnhore, we can separalely prove correctness for cach of the between
operations StartFrom, StartTo, Val, Ack, ReadExceptionLog, ClearExceptionlog,
AuthoriseExLogClear, Archive, Ignore, Increase, and Abort,

For those which are structured as promoted operations (that is, all except
Archive and Ignore), consider a general such operation, call it BOplg. We note
that all BOplg operations have the properties:

+ BOpig is a promoted operation, and thus alters only one concrete purse.
It has the form

3 AConPurse « DBOp » BOplgPurse

« for any purse, the name is unchanged (by definition of the single purse
operadons)

« the domain of conAuthPurseis unchanged (by construction of the prome-
tion}

« for any purse, either nextSeqNo is unchanged, or increased.

V¥ BOplgPurse « nextSeqNo < nexiSeqNo’
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We use these properties to simplify the proof obligation for the BOplg opera-
tions.

We invoke lemma ‘deterministic’ {section 14.4) to reduce the BOplg proof
obligation to exists-pd, exists-chosenLost and check-operation:

$ROp; BOpIgPurse, Rabout, RabCIPd'[ pdThis/pdThis"];
AbWorld: RabCIPd; Rabin|
PaAg
J_
Ablgnore

Lemma 14.3 (Ablgnore) For a BOplg operation, the check-operation proof obli-
gation reduces to check-operation-ignore!:

&BOp; BOplgPurse, RabCIPd’ [pdThis/pdThis']; AbWorld; RabCiPd |
PAg

=

¥ n: dom abAuthPurse »
(abAuthPurse’ n).lost = {abAuthPursen) . lost
A (abAuthPurse’ n).balance = (abAuthPurse n).balarnce

Proof:

We take the check-operation proof obligation, and expand Ablgnore. The
BOpIgPurse operations have certain properties in common; we explicitly state
these in the hypothesis.

&BOp; BOpIgPurse, RabOut, RabCIPd' [pdThis/ pdThis’];
AbWorid, RabCiPd: Rabin |
PAg
A name' = name
A nextSeqNo' = nextSeqgNo
[_
AbOp A abAuthPurse’ = abAuthPurse

We use [consg conj] to split this proof into two parts. The AbOp part is trivial:
there are no constraints. This Ieaves the other conjunct to be proven, which is

1Used in: Ignore, 14.7.2.



rewritten as follows:

$BOp; BOpigPurse; RaboOut, RabCIPd’' [ pdThis/pdThis’|;
AbWorld; RabClPd; Rabin |
PAQ
A hame = name
A nextSegNo' > nextSeqgNo
'_
¥ n:domabAuthPurse » abAuthPurse’ n = abAuthPursen

We prove this component by component. From $BOp in the hypothesis, all
concrete purses other than purse name? remain unchanged. For the purse
name?, we also have the equality of the pre and post states of name. This leaves
the components balanace and lost. We use this with [consg conj] to reduce our
proof requireinent to the following:

$BOp;, BOpigPurse, RabOut; RabCIPd’ [pdThis/ pdThis’];
AbWorld, RabCiPd; Rabin |
PAg
A name’ = name
A nextSegNo' z nextSegNo
[
¥ n: domabAuthPurse »
(abAuthPurse’ n).balance = (abAuthPurse n).balance
A (abAuthPurse’ n).lost = (abAuthPursen).lost

We then [thin] the hypothesis to get the following, which proves the Ahignore
lemma.

®BOp;, BOpigPurse; RabCIPd' [pdThis/pdThis']; AbWorld; RabCIPd |
PArQ

._

¥ n:domabAuthPurse »
{abAuthPurse’ n).balance = (abAuthPursen) . balance
A {(abAuthPurse’ n).lost = (abAuthPurse n).lost

m 14.6
14.7 Ignore refines Ablgnore
As we saw at the end of section 14.3, by splitting up promoted operations, we

have generated a requirement to prove the correctness of the Ignore branch
once only. We do that here.
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14.7.1 Invoking lemma ‘deterministic’

Lemma ‘deterministic’ (section 14.4.5) cannot be applied as-is, because Ighore
s not written as a promoton (in order to ensure it is total). However, the argu-
ments to sphit the proof obligation into three parts follow in exactly the same
manner even if the unpromoted purse is not exposed. The proof obligations
simply have BOpOkay in the hypothesis, instead of ®BOp; BOpPurseCkay. We
use that form to simplify the Ignore proof obligation to three parts, and then in-
voke lemma ‘lost unchanged' to discharge the first two obligations. We similarly
use lemina ‘Ablgnore’ to simplify the third proof obligation to check-operation-

ignore.

14.72 check-operation-ignore

Ignore; RabCIPd’' [ pdThis{ pdThis']; AbWorld; RabCiPd |
chosenLost = chosenLost’
A maybelost = maybelost’
A definitefylost = definitelyLost’

.

¥V n:domabAuthPurse «
(abAuthPurse’ n}.balance = {abAuthPurse n) . balance
A (abAuthPurse’ n).lost = (abAuthPursen) lost

The proof of this is immediate: Ignore changes no values, definitelyLost, maybe-
Lost and chosenLost do not change, from the hypothesis; so the abstract balance
and lost, which depend only on these unchanging values, are unchanged.
w14.7.2
|47

14.8 Abort refines Ablgnore

As we saw at the end of section 14.3, by splitting up promoted operations, we
have generated a requirement to prove the correctness of the Abort branch
once only. We do that here. We cast it as a lemmmna, because we also use it to
simplify the proofs of operations that first abort (lemma ‘abort backward’).

lemma 14.4 (Abort refines Ablgnore) Concrete Abort refines abstract Ignore?

Abort; Rab'; RabOut v 3 AbWorld, a?: AIN « Rab A RabiIn n Abignore

¢Used in proof of lemma abort, 14.9
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Proof:

Abort is written as a disjunction between Ignore and a promoted Abort-
PurseCkay. We use lemma ‘ignore’ (section 14.3) to simplify the proof obliga-
tion to the correctness of Ignore (which we discharge in section 14.7), and the
Ckay branch, which we prove hcere.

14.8.1 Invoking lemma ‘deterministic’

We use lemma ‘deterministic’ (section 14.4.5) to simplify the proof obligations
and then lemuma ‘Ablgnore’ (section 14.6) to simplify the check-operation step.

We have to instantiate the predicates P and 2.

T is a predicate identifying the pdThis involved in the transaction. This is
the pdauth stored in the aborting purse, unless the aborting purse is in eaFrom,
in which casc we don't have a defined transaction. We cater for the case of no
transaction in the £ predicate, so 2 can safely be defined as

P «= pdThis = pdAuth

0 is a predicate on chosenLost. The after set chosenLost’ either has pdThis
removed (if the transaction moves it from chosenLost to definitelyLost), ot is
unchanged (because pdThis was not in chesenLost to start with) or is unchanged
because there was no transaction to abort., Hence

Q<=
(pdThis € maybelLost A chosenLost = chosenLost’ U {pdThis})
v (pdThis ¢ maybelost A stgtus + eaFrom A
chosenlost = chosenlLost’)
v (status = eaFrom ~ chosenLost = chosenLost’}

14.8.2 exdists-pd

The unpromoted operation AbortPurseOkay is incomplete. The output, m' = 1,
is not provided until promotion.

$BOp; AbortPurseCkay; RabOut;, RabCl'; Rabln | m' = L
.
A pdThis : PayDelails » pdThis = pdAuth

This is immediate by the ane point rule.
H14.8.2
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14.8.3 Three cases

We split the remaining two proofs, of exists-chosenLost and check-operation,
into three cases each, for each of the three disjuncts of ©. We start by arguing
the behaviour of maybeLost and definitelylLost im the three cases,

» Case 1: aborted transaction in ‘Timbo”. The aborting purse is the te purse
in epv; the corresponding from purseis in epa or has logged. Hence abort-
ing the transaction will definitely lose the value.

pdThis € maybeLost

« (Case 2. aborted tramsaction not in ‘limbo” The aborting purse is not
the to purse in epv, or the corresponding from purse is npot in ¢pa and
has ner logged. The transaction has either not got far enough to lose
anything, or has progressed sufficiently far that the value was already
either successfully transferred or definitely lost.

pdThis € maybeLlost A status = eaFrom

» Case 3: no transaction to abort: The aborting purse is in eaFrom, so has
no defined transaction. Nothing is aborted, so no value is lost.

status = eaFrom

Case 1: old transaction in limbo

pdThis € {frominEpa'J fromLogged) n toInEpv

We argue about the behaviour of maybelost and definitelyL ost using the fact
that the purse is the to purse [nitially in epv in the aborting transaction, and it
logs the old transaction and moves to eaFrom. We argue that the transaction
pdThis, initially in maybeLost by construction, is moved into definitelyLost” by
this case of the Abort operation. The transaction was far enough progressed
that value may be lost, and it is lost in this case.

Behaviour of fromInEpa and fromlogged pdThis is in toInEpv (by our case
assumption), so the only purse undergoing any change (narre?) is the to purse;
hence there can be no change to the status or logs of any from purse. Hence
fromiInEpa = fromInEpa’
fromLogged = fromLogged’
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Behaviour of toInEpv  pdThis is in tolnEpv (by our case assumption); pdThis
is not in toInEpv’ (Abort puts the purse into eaFrom); all other purses and
transactions remain unchanged. So

tolnEpv = tolnEpv’ U { pdThis)

Behaviour of toLegged pdThis is not in tologged (using lemma ‘notLogged-
AndIn’ with pdThis € tolnEpv); pdThisis in tologged’ (the purse makes a iolog
when it aborts from epv); all other purses and transactions remain unchanged.
So

toLogged = tol.ogged’ \ {pdThis)

Behaviour of definitelyLost

definitelyLost
= tologged n (fromLogged L frominEpa) [defn definitelylost]
= (toLogged’ \ {pdThis}) n (fromLogged’ U frominEpa’) {above)
= (toLogged' n (fromLogged’ U frominEpa’)) \ {pdThis} {rearrange]
= definitelyLost’ \ {pdThis} [defn definitelyLost’]

Behaviour of maybeLost

maybel ost

= (fromInEpa L fromLogged) n toInEpv [defn maybelost]
= (fromInEpa’ v fromLogged’) n (tolnEpv' U {pdThis}) above]
= ((fromInEpa’ U fromLogged') n tolnEpv’)

u ({fromInEpa’ U fromlogged’) 0 {pdThis}) [Spivey]
= ((fromInEpa’ U fromlLogged’) n tolnEpv')

v {pdThis} [case assumplion]
= maybel.ost’ U { pdThis} [defn maybelost’]

Case 2: old transaction not in limbo

pdThis ¢ (fromlnEpa U fromlLogged) n tolnEpv A status = eaFrom

We argue that the transaction pdThis is not moved into or out of maybeLost or
definitelyLost by this case of the Abort operation.
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Behaviour of fromInEpa U fromlogged If pdThis is in fromInEpa it is also in
fromLogged’ (the purse is in epa, 50 it makes a from log when it aborts); if
bdThisis in fromLogged it is also in fromlogged’ (logs cannot be removed); if
pdThis is not in fromInEpa U fromLogged it is not in fromLegged' (the purse is
not in epa, so does not make a from log when it aborts), and not in fromInEpa’
(because it ends in eaFrom); all the other purses and transactions remain un-

changed. So

frominEpa v fromlLogged = frominEpa’ © fromLogged’

Behaviour of definitelvLost The cases allowed by our case assumption are:
» pdThis refers to the to purse in epv, bence is not in
frominkpa v fromlogged

and hence not in definitelyLost.
Alsoitis notin frominEpa’ v fromlogged’, and hence not in definitelyLost’.

So definitelyLost is unchanged.

« pdThis refers to the to purse, but not in epv, or pdThis refers to the from
purse. Hence tologged is unchanged, since no to log is written, and logs

cannot be lost.
Also frominEpa v fromLogged is unchanged, and so deffnitelyLost is un-

changed.
So

definitelyLost’ = definitelyLost

Behaviour of maybelost The cases allowed by our case assumplion are:
« pdThis refers to the ro purse in epv, hence is not in
fromInEpa U fromlLogged
and hence not in maybelost. Alsoitis not in frominEpa’ u fromLogged’,

and hence not in maybelost’, so maybeLost is unchanged.

= pdThis refers to the {o purse, but not in epv, or pdThis refers to the from
purse. Hence tolnEpv is unchanged, since no purse moves out of or in
to epv. Also fromInEpa v fromlogged is unchanged, so maybeLost is un-
changed.
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So

maybelost’ = maybelost

Case 3: no transaction to abort

status = eaFrom

107

From AbortPurseOkay, no purses change siate and no logs are written. There-

fore, definitelyLost and maybeLost don't change.

definitelyLost’ = definitelyLost

maybelLost’ = maybeLost

14.8.4 exists-chosenLost

We now use the behaviour of maybeLost and definitelyLost in the three cases

10 prove exists-chosenlost.

& BOp; AbortPurseOkay, RabOut; RabCIPd'[ pdThis/pdThis’]; Rabin
ml= L
A pdThis = pdAuth
’_
A chosenLost : P PayDetails »
(pdThis € maybeLost A chosenLost = chosenLost” U {pdThis}
v pdThis ¢ maybelLost A status = eaFrom
A chosenLost = chosenLost’
v status = eaFrom A chosenLost = chosenlost’)
A chosenLost = maybelLost

We push the existential quantifier in the consequent into the predicates:

&BOp; AbortPurseOkay, RabOut; RabCIPd’[ pdThis/pdThis']; Rabin|
m=1
A pdThis = pdAuth
i_
pdThis € maybelost
A (3chosenLost : P PayDetails «
chosenl.ost = chosenLost’ U {pdThis)
A chosenlLost € maybelost)
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v pdThis ¢ maybelLost A status = eaFrom
a (A chosenlost : P PayDetails «
chosenlost = chosenlost’
A chosenlLost € maybelost )

v status = eafFrom
A (A chosenLost : P PayDetails »
chosenlost = chosenlost’
A chosenlost = maybeLost )

In each case, we |one point| away the chosenlost because the predicate includes
an explicit definition for it.

$BOp; AbortPurseCkay; RabOut; RabClPd’(pdThis/pdThis']; Rabin |
mi= 1
A pdThis = pdAuth

l_

pdThis € maybeLost
A chosenLost’ U {pdThis} © maybeLost

v pdThis ¢ maybelLost n stqtus = eafrom
A chosenLost’ € maybelLost

v status = eaFrom
n chosenlost’ € maybelost

In each case, the predicate is of the form {(a A &), and we argue below that
a = b. This allows us to replace {a A b) with a. If we do this, we gbtain

$BOp; AbortPurseOkay; RabOul; RabClIPd' [ pdThis |/ pdThis'); Rabin |
m =1
A pdThis = pdAauth

-

pdThis € maybeLost

v pdThis ¢ maybelost ~ status + safrom

v stalus = eafFrom

which is true.
We now carry out the argument as described above for each of the three
disjuncts.
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Case 1: old transaction in limbo
We must show that under the assumptions of this lemma and in this case

pdThis € maybelost =
chosenLost’ U {pdThis} = maybelost

This follows by:

chosenLost” U {pdThis}

< maybelLost’ U {pdThis} [hypothesis]
c maybeLost [previous argument for case 1}
w1484

Case 2: old transaction not in limbo

We must show that under the assumptions of this lemma and in this case

pdThis ¢ maybeLost A status + eaFrom =
chosenLost’  maybelost

This follows by
chosenLost’ = maybeLost’ [hypothesis|
= choseniLost’ < maybelost [previous argument for case 2]
| 14.84

Case 3: no transaction to abort

We must show that under the assumptions of this lemma and in this case

status = eafrom =
chosenlost’ = maybeLost

This follows by

chosenLost’ < maybelost’ [hypothesis]
= chosenlost’ < maybeLost [previous argument for case 3]
m14.84

m14.84
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14.8.5 check-operation-ignore

We now use the behaviour of maybeLost and definitelyLost in the three cases
Lo prove check-operation-ignore.

$BOp. AbortPurseOkay, RabClPd’'[ pdThis/pdThis'|;
AbWorld; RabClIPd !
pdThis = pdAuth
A (pdThis € maybeLost A chosenLost = chosenLost’ U {pdThis}
v pdThis ¢ maybelLost A status + eaFrom
A chosenLost = chasenLost’
v status = eaFrom A chosenLost = chosenLost’)
-
¥ n:dom abAuthPurse »
(abAuthPurse' n) . balance = (abAuthPurse n). balance
A {abAuthPurse’ n). lost = (abAuthPursen).lost

We can prove this for each of the three disjuncts in the hypothesis by [hyp disjl.

Case 1: old transaction in limbo

fost is a function of definitelyLostu chosenLost. The pdThis moves from chosen-
Lost to definitelvLost’, so the union is unchanged.

balance is a function of maybelost \ chosenLost, The pdThis moves from
chosenlLost, and hence from maybelost, so the difference is unchanged.

m 1485

Case 2+3: old transaction not in limbo or no transaction

From choseniost = chosenlost’ and the arguments above, all the relevant scis
are unchanging, so lost and balalnce are unchanging.

m14.85

m 1485

m148

14.9 Lemma ‘abort backward’: operations that first abort

Some of the concrete operalions are wrilten as a composition of 4bortPurse-
Okay with a simpier operation starting from eaFrom (StartFrom, StartTo, Read-
ExceptionlLog, ExceptionLogClear).
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Lemma 14.5 (abort backward) Where a concrete operation is written as a com-
position of AbortPurseOkay and a simpler operation starting from eaFrom, it
is sufficient to prove that the promotion of the simpler operation alone refines
the relevant abstract operation.

J AConPurse = @BOp ~ {(AbortPurseCkay § BOpPurseEafromOkay);
Rab’; RabOut,
(¥ BOpEafromQkay; Rab’; RabOut «
3 AbWorld; a?: AIN « Rab n RabIn n AOp)
F
JAbWorld, a? : AIN « Rab A Rabln n AOp

]
Proof

+ Use lemma ‘promoted composition’ (section C.11) to rewrite the premo-
tion of the composition to a composition of promotions, yielding

(AbortOkay § BOpEafromQkay);
Rab’; RabOut;
( ¥ BOpEafromQOkay; Rab’; RabCut »
JAbWorld; a?: AIN » Rab n Rabln n ACp)
'_
I AbWorld; a?: AIN » Rab A Rabin n AOp

« If BOp]1 refines AOp1l and BOp? refines AOp2, then BOpl § BOp?2 refines
AOp1 3 AOp2 {invoke lemma 'compose backward', section C.9).

+ Take BOpl = AbortOkay, AOpl = Abignore, and invoke lemma ‘Abort
refines Ablgnore’ (section 14.8), to discharge this proof.

» Take BOp2 = BOpEafromOkay, AOp2 = AOp, and note that we have that
BOp refines AOp in the hypothesis.

« Note that AbIgnore § AQp = AQp, to reduce this expression in the conse-
quent.

»14.9

14.1¢ Summary of lemmas

In section 9.2.4 we reduced the refinement correctness proof for an operation
to:

BOp; Rab’; RabOut + 3 AbWorld; a? . AIN » Rab ~ Rabln n AOp
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We then buiit up a set of lemmas which may be used te simplify this proof
requirement.

AOp and BOp are often disjunctions of simpler operations, and leinmas
‘multiple refinement’ {section 14.2) and ‘ignore’ {(section 14.3) are used to prove
that any Ignore or Abort branches of FOp need be proved once only for all
BOps. These two branches are proved in lemmas later on, after further sim-
plification for a general disjunct (Ignore, Abort or Okay) of BOp. This sim-
plification starts with lemma ‘deterministic’ (section 14.4) which removes the
3 AbWorld in the consequent of the correctness obligation. In doing so, it re-
quires us to prove three side-lemmas {exists-pd, exists-chosenlost, check-
operation). Lemma ‘lost unchanged' (section 14.5) allows the side-lernmas
exisis-pd and exists-chosenLost to be discharged immediately given certain
conditions. Lemma ‘Abignore’ (section 14.6) then provides a simplification of
the side-lemma check-operation when AOp is Ablgnore.

We can now prove that the Ignore and Abort branches of BOp are correct
with respect to AOp. Section 14.7 proves that Ignore refines Ablgnore, and
lemma ‘'Abort refines Abignore’ (section 14.8) handles the Abort branch. With
lemmas ‘multiple refinement’ and ‘ignore’, this has now proved the correctness
of the Ignore and Abort branches of all BOp.,

Where the Okay branch of an operation is composed of Abort followed
by the *active’ operation, lemma ‘abort backward’ gives us that we only need to
prove the ‘active’ part.

Returning to the proof obligation written above, any of the Jgnore or Abert
branches of a BOp operation are dealt with by the lemmas. This leaves the
Okaqy branch (if this contains an initial Abort, this can be ignored — [rom
lemma ‘abort backward’ we need only prove the non-aborting part). Usually, we
then apply lemma ‘deterministic’ yielding a number of side-lemmas. These may
sometimes be further simplified using lemunas Gost unchanged’ and ‘Ablgnore'.
The remaining proof is then particular to the BOp.
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Correctness of Increase

15.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ {section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

= We use lemma ‘ignore’ (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore {in section 14.7), leaving the Okay
branch to be proven here,

» Weuse Jemma ‘deterministic’ (section C.1} to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

= Since this operation leaves the sets maybeLost and definitelyLost uncha-
nged, we use lemma ‘lost unchanged’ (section C.2) to discharge the exists
pd-and exists chosenLost-obligations automarically.

s Since this operation refines Abignore, we use lemma 'Ablgnore’ (from sec-
tion C.3) to simplify check-operaton to check-operaton-ignore.

15.2 Invoking lemma ‘lost unchanged’

Secrion 14.5.2 gives sufficient conditions to be able to invoke lemma ‘lost un-
changed'. These are thart the unpromoted operation changes neither the status
nor the exception log of the purse. Increase includes EConPurselncrease, which
says exactly that. We can therefore invoke lemma 'Lost unchanged’,
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15.3 check-operation-ignore

$BOp; IncreasePurseOkay;, RabOut; RabCIPd [ pdThis/pdThis'];
AbWorld; RabCiPd; Rabin |
chosenlost’ = chosenLost
A maybeLost' = maybeLost
A definitelyLost’ = definitelylost
Y n:domabAuthPurse »
(abAuthPurse’ n).balance = (abAuthPurse n) . balance
A (abAuthPurse’ n) lost = (abAuthPurse n).lost

Proof: We have that maybelost and definitelyLost are unchanged from the hy-
pothesis. This shows that the balance and fost components of all the abstract
purses remain unchanged.

w153

| B
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Correctness of StartFrom

16,1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.1 we give a general simplification of the correctness proof. We use lemma
‘muitiple refinement’ {section 14.2) to split the proof obligation for each A
operation inte one for each individual ‘B operation.

This chapter proves the B operation.

« We use lemina ‘ignore’ (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), and Abort (in sec-
tion 14.8), leaving the Okay branch to be proven here.

« Since the Okay branch of this operation is expressed as a promotion of
AbortPurseOkay composed with a simpler EafromPurseQOkay operation,
we use lemma ‘abort backward' (section C.5), and prove only that the pro-
motion of the simpler operation is a refinement.

+ We use lemma “deterministic’ {section C.1) to reduce the proof obligatlon
to the three cases exists-pd, exists-chosenlost, and check-operation.

« Since this gperation refines AbIgnore, we use lemma ‘Ablgnore’ (from sec-
tion C.3) to simplify check-operation to check-operation-ignore.

16.2 Instantiating lemmma ‘deterministic’

We take the pdThis to be the pdAduth created by the start operation, and chosen-
Lost 1o be unchanging.



116 CHAFPTER 16. STARTFROM

P < pdThis = (conAuthPurse’ name?).pdAuth

¢ & chosenLost = chosenLost’

16.3 Behaviour of maybelost and definitelyLost

We argue that pdThis is not in frominEpa or fromLogged before or after the
operation, where pdThis = (conAuthPurse’ pdThis.from).pdAuth.

First, before the operation the purse is in eafrom, and after it is in epr,
and hence pdThis can never be in frominEpa.

From BetweenWorld constraint B-7 if pdThis were in fromLogged’ then we
would have

(conAuthPurse name?).pdAuth. fromSegNo > pdThis.fromSeqNo

but we know these two pdAuths are equal, so pdThis cannot be in fromLogged’.
If the log isn’t there after the opcration, it certainly isn't there before, so pdThis
is not in toLogged either.

Only the from purse changes in this operation, so the sets fofnEpv and
tologged can't change. Hence

tolnEpv’ = toInEpv

tologged’ = toLogged

frominEpa’ = fromInEpa

fromlogged’ = fromLogged

It follows that maybeLost is unchanged:

maybelLost’

= tolnfpv' 0 (frominEpa’ o fromLogged’)

]

tolnEpv n (frominEpa U fromLogged)

i

maybel.ost
Also, definitelyLost is unchanged:
definitelyLost'
= toLogged' n {fromInEpa’ © fromLogged')
= toLogged n (fromnEpa v fromlogged)
= definitelyLost
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16.4 exists-pd

117

&BOp; StartFromPurseEafromOkay; RabOut; RabCl’; Rabin

-

3 pdThis ; PayDetails « pdThis = (conAuthPurse’ name?).pdAuth

Proof

Use the (one point] rule with the expression for pdThis in the quantificr,

® 164

16.5 exists-chosenlost

$BOp, StartFromPurseEafromOkay; RabOurt,
RabClPd' [ pdThis/pdThis']; Rabin |
pdThis = (conAuthPurse’ name?).pdAuth
.
3 chosenLost : P PayDetails »
chosenlost = chosenl ost’
A chosenlLost © maybeLost

Proof:
We use the [one point] rule on chosenlost to give

dBOp; StartFromPurseEafromOkay; RabOut;
RabClPd’ | pdThis/pdThis'); Rabin |
pdThis = (conAuthPurse’ name?). pdAuth
F
chosenlost’ < maybelost
We then have

chosenLost’ = maybelost’

< maybeLost

m 165

16.6 check-operation

[RabCipd’]
[unchanging maybelost]

®BOp; StartFromPurseEafromOkay; RabCIPd' [pdThis/pdThis'];

AbWorld, Rab(ClPd |
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pdThis = {conAuthPurse’ name?).pdAuth
A chasenlost = chosenLost’
l_
¥ n: domabAuthPurse »
{abAuthPurse' n).balance = (abAuthPurse n).balance
~ (abAuthPurse n).lost = (abAuthPurse n) lost

Proof:
From Rab, we have that lost is a function of definitelyLost U chosenLost, which
is unchanging, and that balance is a function of maybelost \ chosenlost, which
is also unchanging.

® 166

ml6
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Correctness of StartTo

17.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

We use lemma ‘ignore’ {sce section 14.3) to simplify the proof obligation
by proving the correctness of Ignore {in section 14.7), and Abort (in sec-
tion 14.8), leaving the Ckay branch to be proven here.

Since the Okay branch of this operation is expressed as a promotion of
AbortPurseOkay composed with a simpler EafromPurseOkay operation,
we use lemma ‘abort backward' (section C.5}, and prove only that the pro-
motion of the simpler operation is a refinement.

We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenlost, and check-operation.

Since this operation refines Ablghore, we use lemma ‘Ablgnore’ {(from sec-
tion C.3) to simplify check-operation to check-operation-ignore.

17.2 Instantating lemma ‘deterministic’

We take pdThis to be the pdAuth created by the start operation, and chosenLost
to be unchanging.
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P = pdThis = {conAuthPurse’ name?}.pdAuth

9 < chosenlLost = chosenlost’

17.3 Behaviour of maybelLost and definitelyLost

We argue that pdThis is not in any of the before sets frominFpa, fromLogged,
tolnEpv, or toLogged, where we have pdThis = (conAuthPurse’ name?).pdAuth.

(conAuthPurse name?) nexiSeqNo |defn. StartTo)
= (conAuthPurse’ name?) pdAuth.toSeqNo

= (conAuthPurse name?). nextSegNo |defn. pdThis)
= pdThis.toSegNo

= req pdThis ¢ ether [BetweenWorld constraint B-2]

= pdThis ¢ frominEpa v fromLogged|BetweenWorld consiraint B-12)
A pdThis ¢ toInEpv U tologged |BetweenWorld constraint B-10]

The operation moves one purse from eafrom into epv; no logs arc written.
Hence pdThis is in tolnEpv', but not newly added to any of the other after sets.
So

tolnEpv’ = toInEpv L {pdThis}
tologged' = toLogged
frominEpa’ = frominEpa
fromLogged’ = fromLogged

It follows that maybelLost is unchanged:

maybelost’
= toInEpv' N (freminEpa’ U fromiogged’)
= {tolnEpv U {pdThis} n (frominEpa O fromLogged)
= maybeLost U {{pdThis} n (frominEpa U fromLogged))
= maybelost

Also, definitelyLost is unchanged:

definitelyLost’
= toLogged’ n (fromnEpa’ v fromLogged’)
= loLogged n {frominEpa v fromLogged)
= definitelvLost
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17.4 exists-pd

@ BOp; StartToPurseEafromOkay, RabOut, RabCl'; Rabin

'_
3 pdThis : PayDetalls » pdThis = {conAuthPurse' name?).pdAuth

Proof:
Use the [ene point] rule with the expression for pdThis in the quantifier.

@174

17.5 exists-chosenlost

$&BOp; StartToPursefafromQkay; RabOut, RabCIPd’ [ pdThis/pdThis']
Rabln |
pdThis = (conAuthPurse’ name?).pdAuth
}_
3 chosenLost ; P PayDetails »
chosenLost = chosenLost’
A chosenLost < maybeLost

Proof:
We apply the [ene point] rule for chosenlost in the consequent to give

$BOp; StartToPurseEafromQOkay, RabQut; RabCIPd' [ pdThis/pdThis'];
Rabln |
pdThis = {conAuthPurse’ hame?).pdAuth

'_

chosenLost’” = maybelLost

chosenlLost’ = maybeLost’ [RabClPd’]
< maybeLost [unchanging maybelost]
®17.5

17.6 check-operation

$&BOp; Start ToPurseEafromOkay; RabCIPd'[pdThis/pdThis'];
AbWorld; RabCiPd |
pdThis = (conAuthPurse’ name?). pdAuth
A chosenlLost = chosenLost’
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V n:domabAuthPurse »
{abAuthPurse' r).balance = (abAuthPurse n).balance
A (abAuthPurse n) . lost = {abAuthPurse n).lost

Proof:
From Rab, we have that lost is a function of definitelyLost  chosenlost, which
is unchanging, and that balance is a function of maybeLost \ chosenLost, which
is also unchanging.

|l76

ul7



Chapter 18

Correctness of Reqg

18.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

« We use lemma ‘ignore’ {sce scction 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), leaving the Okay
branch to be proven here.

+ We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

18.2 Imstantiating lemma ‘deterministic’

We must instantiate two general predicates relating to pdThis and chosenlost.
The choices for these predicates are based on the fact that the important trans-
actionlIs the one referred to by the req message being consumed by the ReqOkay
operation, and that before the operation, the set of transactions choscn to be
lost should be all those chosen to be lost after the operation, but specifically
excluding the transaction pdThis. Thus

P « req~m? = pdThis
@ = chosenLost = chosenLost’ \ {pdThis}
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AbTransferkay A% gt
_____________ A al
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Figure 18.1: The correctness proof for Req.

18.3 Discussion

The correctness proof for Req is summarised in figure 18.1. There are three
cases:

« The 10 purse for the transaction is in epv, and we choosc that the transfer
will succeed.
Before the operation, pdThis ¢ maybelost O definftelyLost, and the appro-
priate retrieve is Rabend.
After the operation, pdThis € maybeLost’ \ chosehLost’, and the appropri-
ate retrieve is RabOkay’; the abstract operation is AbTransferOkay.

The to purse is in epy, and we choose the transfer will fail (the (o purse
will move cut of epv before receiving the val).

Before, pdThis ¢ maybeLost U definitelyLost, and the appropriate retricve
is RabEnd’.

After, pdThis e chosenlost’, and the appropriate retrieve is RabWiilBe-
Lost’; the abstract operation is AbTransferLost.

The to purse has already moved out of epv, so will not receive the val: the
transfer has failed.

Before, pdThis ¢ maybelost L definitelyLost, and the appropriate retrieve
is RabEnd.

After, pdThis € definitelyLost’, and the appropriate retrieve is RabHas-
Beenlost'; the abstract operation is AbTransferLost.

The following proof cstablishes that these are indeed the only cases, and that
ReqQOkay correctly refines AbTransfer in each case.
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18.4 exists-pd

®80p; ReqPurseOkay, RaboOut; RabCl'; Rabin
=
A pdThis : PayDetails « req™m? = pdThis

Proof:
We discharge this by removing the existential for pdThis because we have an
explicit equation for it, using the |one poind rule.

m 184

18.5 exists-chosenlost

&BOp; ReqPurseOkay, RabOut; RabCIPd' [pdThis/pdThis']; Rabin |
req~m? = pdThis

=

A chosenlost : P PayDetails «
chosenlLost = chosenLost’ \ {pdThis)}
A chosenlLost © maybeLost

Proof:

That we can construct a chosenLost as the set differcnce is true because set

difference is always defined. That the subset constraint holds follows as below:
chosenlLost’ < maybelost’ [RabClPd’]
chosenLost’ \ {pdThis} ¢ maybelost' \ {pdThis} |property of set minusj
chosenlost € maybelLost’ \ {pdThis} [eqn for chosenLost]

chosenlost = maybelost [lemma ‘not lost before’, section C.14 |}

m 185

18.6 check-operation

bBOp; RegPurseOkay;, RabOut, Rab(ClPd'[pdThis/pdThis’'];
AbWorld, RabCIPd: Rabin |
req~m? = pdThis
A chosenlost = chosenlost’ \ {pdThis}
F
AbTransfer
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Proof:

We invoke lemma ‘not lost before’ to add constraints on rmmayvbelost and de-
finitelyLost to the hypothesis. This allows us to further alter the hypothesis by
replacing RabCIPd with RabEndCiPd.

$BOp; ReqPurseCkay; RabOut; RabCIPd' [pdThis/pdThis'];
AbWorld: RabEndCIPd; Rabn |
req~m? = pdThis
A chosenlost = chosenLost’ \ {pdThis}
A maybeLost = maybelost’ \ {pdThis}
» definitelyLost = definitelyLost’ \ { pdThis}
I__
AbTransfer

Weuse [hyp disf] to split RabCIPd’[. . .} into four separate cases (section 10.1.4)
to prove (using identity in section 10.1.5). In each case, we strengthen the
consequent by choosing an appropriate disjunct of AbTransfer.

« case 1: We choose that the value is not lost, so the corresponding abstract
opetation is AbTransferOkay

$BOp. ReqPurseQkay; RabOut;, RabOkay(IPd’[ pdThis/pdThis'];
AbWorld; RabEnd(CIPd; Rabin |
req” wm't = pdThis
A chosenlost = chosenLost’ \ {pdThis}
A maybelLost = maybeLost’ \ | pdThis}
A definitelyLost = definitelyLost’ \ { pdThis}
-
AbTransferOkay

« case 2: We choose that the value will be lost, so the corresponding abstract
operation is AbTransferLost

&BOp; ReqPurseOkay, RabOut;
RabWillBeLostCIPd' | pdThis/pdThis'];
AbWorld; RabEndCIPd, Rabin |
reg~m? = pdThis
A chosenLost = chesenLost’ \ { pdThis}
A maybeLost = maybelost’ |\ { pdThis}
A definitelyLost = definitelylost’ \ { pdThis}
b
AbTransferLost
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= case 3: We say that the value has already been lost, so the corresponding
abstract operation is AbTransferLost

& BOp; ReqPurseOkay, RabOut;
RabHasBeenLostCIPd' (pd This/pdThis’ ;
AbWorld; RabEndCIPd; Rabin |
req~m? = pdThis
n chosenlLost = chosenLost’ \ {pdThis}
A maybeLost = maybelLost’ \ {pdThis}
A definitelyLost = definitelyLost’ \ {pdThis}
e
AbTransferLost

» case 4: The fourth case is impossible. We choose RabEndCIPd’, and prove
that the hypothesis is contradictory, so the choice of carresponding ab-
stract operation is unimportant.

&BOp; ReqPurseOkay, RabOut; RabEndCIPd' [ pdThis} pdThis');
AbWorld: RabEndClPd; Rabin |
req~ m? = pdThis
A chosenLost = chosenLost' \ {pdThis}
A maybelost = maybelost’ \ {pdThis}
A definitelyLost = definitelyLost’ \ {pdThis)}
—
AbTransfer

We now have four independent cases to prove, The next four sections each
prove one case.

18.7 case 1: ReqOkay and RabOkayCIPd’

®BOp; ReqPurseOkay; RabOut, RabOkayCIPd' [pdThis/pdThis'];
AbWorld, RabEndClPd; Rabin |
req~m? = pdThis
A chosenlost = chosenLost' \ { pdThis}
A maybelost = maybeLost’ \ {pdThis]
A definitelyLost = definiielyLost’ \ {pdThis)
-
AbTransferOkay
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18.7.1 The behaviour of maybelost and definitelyLost

We argue that the transaction pdThis is initially not in maybelost or definitely-
Lost, and is moved into maybeLost’ \ chosenLost’ by this case of the RegOkay
operation. The transaction initially was not far enough progressed to have the
potential of being lost; afterwards it has progressed far enough that it may be
lost, but we are actnally on the branch thal will succeed.

We have from RabQkayCIPd" that

pdThis € maybelost’ \ chosenLost’

Thercfore pdThis ¢ chosenlost’ (by the definition of set minus) and pdThis ¢
definitelyLost’ (by lemimna ‘lost’). So we have

definitelyLost = definitelylost’
maybelLost = maybelost’ \ {pdThis}

chosenLost = chosenLost’

18.7.2 AbTransferOkay

Inthis section we prave that an AbWorld that has the correct retrieve properties
also satisfies AbTransferOkay. Rerall that our proof cbligation is

$BOp; ReqPurseOkay; RabQur: RabOkayCIPd' [ pdThis [ pdThis'];
AbWorld; RabFndClPd; Rabin |
req™m? = pdThis
A chosenlLost = chosenLost’ \ {pdThis}
A maybelost = maybelLost’ \ {pdThis)
A definitelylost = definitelyLost” \ { pdThis)
-
AbTransferOkay

Each element of AbWorld is defined by an explicit equation in RabEndCIPd, and
we show that this value satisfies AbTransferOkay by showing each predicate
halds,

A-1 AbOp: This trivial: AbOp imposes no constraints.

A-2 AbWorldSecureOp

« a? € rantransfer
true by construction of a? from m? in Rabin.
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« ne purses other than from? and 07 change
For balarice and lost we show that RabEndClPd and

RabOkayCIPd' [ pdThis/pdThis")

arc essenytially the same. This is immediate because in both cases the
relevant predicates are captured in the same schema OtherPursesRab.

A-3 Authentic| from? |/ name?], Authentic[ to? | name?)
We have pdThis € maybelost’, hence it is in both authenticFrom’ and
in authenticTo’. Hence, by ®BOp and AbstractBerween, it is also in both
authenticFrom and in authenticTo.

A-4 SufficientFundsProperty
true from ConPurse constraint P-2b

A-5 to? = from?
true because pdThis is a PayDetails.

A-6 abAuthPurse’ from? = ..., abAuthPurse to? = ...
Each of the four elements {from and to purses, each with balance and lost)
are handled below, followed by all the other elements in one section.

The from purse’s balance component

(abAuthPurse pd This. from).balance

= (conAuthPurse pdThis.from).balance
+ sumValue(({(maybeLost \ chosenLost)
N { pd : PayDetails | pd.to = pdThis.from}}
\ (pdThis}) [RabEndCIPd]

= (conAuthPurse pdThis.from).balance
+ sumValue(({(maybelost’ \ {pdThis}) \ chosenlost’)
" { pd : PayDetails | pd.to = pdThis.from})
\ {pdThis}) [section 18.7.1]

= (conAuthPurse pdThis.from) .balance
+ sumValue({(maybeLost’ \ chosenlLast’)
n { pd : PayDetalis | pd.to = pdThis.from )}
\ {pdThis}) [rearranging]
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= pdThis.value + (conAuthPurse’ pdThis from).balance
+ sumValue({{maybelLost’ \ chosenlost’)
n { pd : PayDetails | pd.to = pdThis.from})
\ {pdThis]) [RegPurseOkay]

= pdThis.value + (abAuthPurse’ pdThis.from).balance
| RabOkayClPd’[...]}

Se

{abAuthPurse' from?).balance = (abAuthPurse from?) balance - value?

The from purse’s lost component

(abAuthPurse pdThis. from).lost

= sumValue{{{definitelyLost v chosenLost)
N { pd : PayDetails | pd.from = pdThis.from }}
\ {pdThis}) |[RabEndCIPd]

= sumValue(({definitelvLost’ v chosenLost’)
N { pd : PayDetails | pd.from = pdThis.from})
v\ {pdThis}) [section 18.7.1)

= (abAuthPurse' pdThis.from).]lost [RabOkayCIPd'(. . .]]

The fo purse’s balance component

(abAuthPurse pdThis. to).balance

= {(conAuthPurse pdThis.te) balance
+ sumVatue! ((maybelost \ chosenlost)
n { pd : PavDetails | pd.to = pdThis.to })
\ {pdThis}) [RabEndClPd]

= (conAuthPurse pdThis.to).balance
+ sumValue{{((maybeLost’ \ {pdThis}) \ chosenlost’)
n { pd . PayDetails | pd.to = pdThis.to }}
\ {pdThis}) [section 18.7.1]

= (conAuthPurse pdThis.to).balance
+ sumValue{ ((maybeLost’ \ chosenLost’)
n { pd : PayDetails | pd.to = pdThis.to}}
\ [pdThis]) [rearranging]
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= {conAuthPurse’ pdThis.te). balance
+ sumValue{((maybelost” \ chosenLost’)
n { pd : PayDetails | pd.to = pdThis.to})
\ {pdThis}) [®B0p]

= {abAuthPurse’ pdThis.to).balance + pdThis . value
{RabOkayCIPd'[.. 1]

From the form of (abAuthPurse’ pdThis.to). balance = pdThis.value + n in Ab-
TransferOkay, we see that this last subtraction gives a positive result. So

(abAuthPurse’ to?).balance = (abAuthPurse to?) balance + vahie?

The ro purse’s lost component

(abAuthPurse pdThis.to).lost

= sumValue({(definitelyLost U chosenLost)
m { pd : PayDetails | pd.from = pdThis.te })
\ {pdThis}) [RabEnd(CIPd)

= sumValue(({definitelyLost’ U chosenlost’)
N { pd : PayDetails | pd.from = pdThis.to})
\ {pdThis}) [section 18.7.1]

= (abAuthPurse’ pdThis.to).lost [RabOkayCIPd']. . . ]|

The remaining from and to purse components

These are unchanging, by 2ConPurseReq, and that the retrieves each define a
unique abstract world.

m18.7.2

u18.7

18.8 case 2: ReqOkay and RabWillBeLostPd’

¢ BOp; ReqPurseOkay; RabOut; RabWillBelostCIPd' [ pd This/pdThis'};
AbWorld; RabEndcClPd, Rabin |
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req™ m? = pdThis

A chosenlost = chosenLost’ \ { pdThis}

A maybeLost = maybeLost’ \ {pdThis}

A definitelyLost = definitelyLost’ \ {pdThis}
)_
AbTransferLost

188.1 The behaviour of maybel.ost and definirelyLost

Weargue that the transaction pd is initially not in maybel ost or definitelyLost,
and is moved mto chosenLost’ by this case of the ReqOkay operation. The
transaction initially was not far enough progressed tc have the potential of
being lost; afterwards it has progressed far enough that it may be lost, and we
choose that it will be Jost.

We have from RabWillBeLostCIPd'[...] that

pdThis € chosenlost’
Therefore
pdThis € maybelost’

because chosenlost’ © maybeLost’. But we can say that pdThis ¢ definitelyLost’
{by lemina 'lost’). So we have

definitetyLost = definitelyLost’
mayvbelost = maybelost’ \ [pdThis}

chosenlost = chosenlost’ \ { pdThis)

18.8.2 AbTransferLost

In this section we prove that an AbWorld that has the correct retrieve properties
also satisfies AbTransferiost. Recall, our proof obligation is

®BOP, ReqPurseCQkay; RabOut, RabWillBeLostCIPd' [ pdThis/ pdThis'Y;
AbWorld; RabEndCIPd; Rabin |
req~m? = pdThis
A chosenlost = chosenLost’ \ {pdThis}
A maybelost = maybelost' \ { pdThis}
A definitelylost = definitelylost’ \ [pdThis}
-
AbTransferLost
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Each element of AFWorlkd is defined by an explicit equation in RabEndCIPd, and
we show that this value satisfies AbTransferlost by showing each predicate
holds.

A-1 AbOp: This trivial: 4bOp imposes no constraints.
A-2 AbWorldSecureOp

s g? €ran transfer
true by construction of a?

» no purses other than from? and to? change
For balance and lost we show that RabEndC!Pd and RabWillBelost-
CIPd [ pdThis/pdThis'] are essentially the same. This is immediate
because in both cases the relevant predicates are captured in the same
schema CtherPursesRab. '

A-3 Authentic[from?/name?], Authentic[fo?{name?]
We have pdThis € maybelost’, hence it is in both authenticFrom’ and
in quthenticTo’. Hence, by $BOp and AbstractBetween, it is also in both
authenticFrom and in authenticTo.

A-4 SufficientFundsProperty
true from ConPurse constraint P-2b

A-5 to? = from?
true because pdThis is a PayDetails.

A-6 abAuthPurse’ from? = ..., abAuthPurse to? = ...
Each of the four elements (from and to purses, each with balance and lost)
are handied below, followed by all the other elements in one section.

The from purse’s balance component

(abAuthPurse pdThis.from).balance

= {conAuthPurse pdThis.from) balance
+ sumValue(({maybeLost \ chosenLost)
n { pd : PayDetails | pd.to = pdThis.from})
\ {pdThis}) [RabEndCIPd]

= (conAuthPurse pdThis.from).balance
+ sumvValue((({maybeLost’ \ {pdThis}} \ chosenLost’ \ {pdThis})
N ( pd : PayDetails | pd.to = pdThis.from})
\ {pdThis}) [section 18.8.1)
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= {conAuthPurse pdThis. from) balance
+ sumValue(((maybelLost’ \ chosenlLost’)
m { pd : PayDetails | pd.to = pdThis.from})
\ {pdThis}) {rearranging]

= pdThis.value + (conAuthPurse’ pdThis.from) balance
+ sumValue(({(maybelLost’ \ chosenlost')
™ { pd : PayDetails | pd.to = pdThis.from})
\ {pdThis}) [RegPurseOkay]

= pdThis.value + (abAuthPurse' pdThis.from).balance
[RabWillBeLostCIPd'[.. ]l
S0

(abAuthPurse’ from?).balance = (abAuthPurse from?)}_balance — value?

The from purse’s los! comporent

(abAuthPurse pdThis.from). lost
= sumValue(((definitelylost U chosenLost)

N { pd : PayDetails | pd.from = pdThis from})
\ {pdThis}) [RabEndCipd)

= sumValue(((definitelylost’ U chosenLost’ \ {pdThis})
N { pd : PayDetails | pd.from = pdThis.from )
\ {pdThis}) [section 18.8.1]

= sumValue(((definitelyLost’ U chosenLost’)
N { pd ; PayDetails | pd.from = pdThis.from})
\ {pdThis}) [rearrange]

= (abAuthPurse’ pdThis.from).lost — pdThis.value
[RabWHIBeLostC.!P_d'[. .l

The to purse's halance component

{(abAuthPurse pdThis.to}.balance

= {conduthPurse pdThis.to) .balance
+ sumValue(({maybeLost \ chosenLost)
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n { pd : PayDetails | pd.to = pdThis.to})
\ {pdThis}) [RabERdClPd|

= (conAuthPurse pdThis.to).balance
+ sumValue((((maybeLost’ \ {pdThis}) \ chosenLost’ \ {pdThis})
n{ pd : PayDetails | pd.to = pdThis.to})
\ {pdThis]) [secton 18.8.1)

= {conAuthPurse pdThis.to).balance
+ sumValue(((maybeLost’ \ chosenLost’)
n { pd : PayDetails | pd.to = pdThis.to})
\ {pdThis}) |rearranging]

= {conAuthPurse’ pdThis.to).balance
+ sumValue({(maybeLost’ \ chosenlost’)
M { pd : PayDetails | pd.to = pdThis.to })
\ {pdThis}) [$BOp)

= (abAuthPurse’ pdThis.to).balance [RabWillBeLostCIPd'|...]]

The to purse’s lost component

(abAuthPurse pdThis.to).lost

= sumValue(({definitelyLost U chosenlost)
n { pd : PayDetails | pd.from = pdThis.to))
\ {pdThis}) [RabEnd(CiPd]

= sumValue(((definitelyLost’ U chosenLost’ \ {pdThis})
n { pd : PayDetails | pd.from = pdThis.to })
\ {pdThis)) [section 18.8.1)

= sumValue{{({ definitelyLost’ U chosenLost’)
n { pd : PayDetails | pd.from = pdThis.to })
\ {pdThis}) [rearrange)

= (abAuthPurse’ pdThis.to).lost [RabWillBeLostCIPd'[. . 1]

The remaining from and to purse components

These are unchanging, by ZConPurseReq, and that the retrieves each define a
unique abstract world.
m 18.8.2
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m 188

189 case 3: RegOkay and RabHasBeenlostPd’

$BOp; ReqPurseOkay, RabOut; RabiHasBeenLostCIPd’ [ pd This/pdThis'];
AbWorld, RabEndClPd; Rabin |
req~m? = pdThis
A chosenLost = chesenLost” \ { pdThis}
A maybeLost = maybeLost’ \ {pdThis}
A definitelylost = definitelyLost’ \ {pdThis}
-
AbTransferLost

189.1 The behaviour of maybeLost and definitelyLost

We argue that the transaction pd is initially not im maybel ost or definitelyLost,

and is moved into definitelyLost’ by this case of the RegQOkay operation. The

transaction initially was not far enough progressed to have the potential of

being lost; afterwards it has progressed far enough that it has in fact been lost.
We have from RabHasBeenLostCIPd' that

pdThis € definitelyLost’

Therefore pdThis ¢ maybeLost’ (by leinma ‘lost”), and also pdThis ¢ chosenlLost’
(because this is a subset of maybelost’). So we have

definitelyLost = definitetyLost’ \ {pdThis}
maybelost = maybeLost’

chosenlost = chosenLost’

189.2 AbTransferLost

In this section we prove that an AbWorld that has the correct retrieve properties
also satisfies AbTransferLost. Recall, our proof obligation is

b BOp; RegPurseOkay; RabOut, RabHasBeenLostCIPd [ pdThis/pdThis'];
AbWorld, RabEndCIPd; Rabin |
req~m? = pdThis
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A chosenLost = chosenlost’ \ {pdThis]

A maybeLost = maybeLost’ \ {pdThis}

A definitelyLost = definitelyLost’ \ { pdThis}
P,
AbTransferLost

Each element of AbWorld is defined by an explicit equation in RabEndCiPd, and
we show that this value satisfies AbTransferLost by showing each predicate
holds.

A-1 AbOp: This trivial: AbOp imposes no constraints.
A-2 AbWorldSecuireOp

» g7 € ran transfer
true by construction of a?

« ng purses other than from? and t0? change
For balance and lost we show that RabEndClPd and RabHasBeenlLost-
CIPd' {pd This/ pdThis] are essentially the same. This is immediate be-
cause in both cases the relevant predicates are captured in the same
schema OtherPursesRab.

A-3 Authentic{ from?{name?), Authentic[t0?/name?)
We have pdThis € maybeLost’, hence it is in both aquthenticFrom’ and
in authenticTo’. Hence, by ®BOp and AbstraciBetween, it is also in both
authenticFrom and in authenticTo.

A-4 SufficientFundsProperty
true from ConPurse constraint P-2b

A-5 to? = from?
true because pdThis is a PayDetails.

A-6 abAuthPurse’ from? = ..., abAuthPurse to? = ...
Each of the four elements (from and to purses, each with balance and {ost}
are handled below, followed by all the other clements in one secticn.

The from purse's balance component

{abAuthPurse pdThis. from).balance

= {conAuthPurse pdThis.from) .balance
+ sumValue({{maybeLost \ chosenLost)
n { pd : PayDetalls | pd.to = pdThis.from})
\ [pdThis}} [RabEndCIPd)
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= (conAuthPurse pdThis. from) .balance
+ sumValue(((maybeLost' \ chosenLost’)
N { pd: PayDetails | pd.to = pdThis.from})
\ {pdThis}) [section 18.9.1]

= pdThis.value + (conAuthPurse’ pdThis.from).balance
+ sumValue(((maybeLost’ \ chosenLost’)
n {pd: PayDetails | pd.to = pdThis.from})
\ {pdThis}) [ReqPurseOkay|

= pdThis.vaiue + (abAuthPurse’ pdThis.from).balance
[RabHasBeenLostCIPd'[. . .]]
50

(abAuthPurse’ from?). balance = {abAuthPurse from?).balance — value?

The from purse’s lost component

(abAuthPurse pdThis.fromi.lost

= sumValue((tdefinitelyLost U chosenLost)
N { pd : PayDetails | pd.from = pdThis.from}]
\ {pdThis}) [RabEndCiPd)

= sumValue({{definitelyLost’ \ { pdThis} u chosenlLost’)
n { pd : PayDetails | pd.from = pdThis.from})
\ {pdThis}) |section 18.9.1]

= sumValue(({definitelyLost’ U chosenlLost’)
r { pd . PayDetails | pd.from = pdThis.from?})
\ [pdThis}) [rearrange]

= (abAuthPurse' pdThis. from).lost — pdThis, value
[RabHasBeenLostClPd'[. . .]]

The to purse’s balance component

(abAuthPurse pd This.10).balance
= (conAuthPurse pdThis.to) balance
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+ sumValue(((maybeLost \ chosenlLost)
M { pd : PayDetails | pd.to = pdThis.to})
\ {pdThis}} |RabEndClpPd|

= (condAuthPurse pdThis.to).balance
+ sumValue(((maybeLost’ \ chosenLost”)
" { pd : PayDetails | pd.to = pdThis.to})
v\ {pdThis}) [section 18.9.1]

= (conAuthPurse pdThis.to).balance
+ surmValue{{{maybeLost’ \ chosenlLost’)
N { pd : PayDetails | pd.to = pdThis.to })
\ {pdThis}) [$B0p]

= (abAuthPurse’ pdThis.to).balance |RabHasBeenLostCIPd'[...]]

The to purse's lost component

{abAuthPurse pdThis.to).lost

= sumValue(((definitelyLost U chosenLost)
" { pd : PayDetails | pd.from = pdThis.to})
\ {pdThis}) [RabEndCiPd)

= sumValue({{definitelyLost’ \ {pdThis} U chosenLost’)
n { pd ; PayDetails | pd from = pdThis.to})
\ {pdThis}) [section 189.1]

= sumValue({{definitelyLost’ U chosenLost’)
m { pd : PayDetails | pd.from = pdThis.to}}
\ {pdThis}) [rearrange]

= (abAurthPurse’ pdThis.to).lost [RabHasBeenLostClPd'[.. 1]

The remaining from and fo purse components

These are unchanging, by EConPurseReq, and that the retrieves each define a
unique abstract world.

m189.2

m 189
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1810 case 4: ReqOkay and RabEndPd’

$BOp, ReqPurseOkay, RabOut; RabEndCiPd' [pdThis f pdThis’ ],
AbWorld; RabEndCiPd; Rabin |
req~m? = pdThis
A chosenLost = chosenLost’ \ { pdThis}
A maybeLost = maybeLost’ \ {pdThis}
A definitelyLost = definitelyLost” \ {pdThis)
l_
AbTransfer

Weshow that RabEndCiPd’[...] is false under ReqOkay, and then proceed by
[ contradiction], becausc this shows the antecedent of the theorem is false, and
hence the theorem is true.

®B0Op; RegPurseQkay;, RabOut; AbWorld';
pdThis : PayDetails; chosenlost’ : P PayDetails |
req~m? = pdThis
[

-~ RabEndCIPd’ [ pdThispdThis')
Tt suffices to show that pdThis € definitelyLost’ U maybelost’. We have

definitetyLost’ © maybeLost’
= (frominEpa’ U fromlogged') n (tolnEpv’ U tol.ogged’)

RegPurseOkay gives us that the after state of the purse is epa; pdThis is in
aulhenticFrom, from ®BOp; hence pdThis is in frominEpa’. So it is sufficient to
show either pdThis is in tolnEpv' or in toLogged’.

We know from the existence of the req, with BetweenWorld consiraint B-1,
that pdThis € authenticTo. There is no ack in the ether':

pdThis € fromInEpr [precondition ReqPurseOkay]
= ack pdThis & ether [BerweenWorld constraint B-9]
= ack pdThis ¢ ether’ [defn. ReqPurseOkay and ¢ BOp)
Hence
req pdThis € ether’ [precondition ReqPurseOkay]
A ack pdThis ¢ ether’ [above]

= pdThis € toInEpv’ U toLogged’ {BetweenWorld constraint B-10]
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as required.
m 18.10
m 18.6
w18
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Chapter 19

Correctness of Val

19.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ {section 14.2) to split the proof obligation for each A
operation into one for each individual B operation,

This chapter proves the B operation.

* We use lemma ‘ignore’ (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), leaving the Okay
branch to be proven here.

+ We use lemma ‘deterministic’ (section C.1} to reduce the proof obligation
to the three cases exists-pd, exists-chosenlLost, and check-operation.

« Since this operation refines Ablgnore, we use lemma ‘Ablgnore’ (from sec-
tion C.3} to simplify check-operation to check-operation-ignore.

19.2 Instantiating lemma ‘deterministic’

The choices for the predicates relating o pdThis and chesenLost are based on
the fact that the important transaction is the one stored in the purse performing
the ValOkay operation, and that before the operation, the set of transactions
chosen to be 1ost should be all those chosen to be lost after the operation. Thus

P < pdThis = (conAuthPursename?).pdAuth
Q < chosenlost = chosenlost’
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19.3 exists-pd

®BOp; ValPurseOkay; RabOut; RabCl'; Rabin
|7
3 pdThis : PayDetails « pdThis = (conAuthPurse name?). pdAuth

Preof:
This is immediate by the [one point] rule, as we have an explicit definition of
pdThis.

m19.3

19.4 exists-chosenlost

®BOp; ValPurseOkay, RabOut; RabCIPd’ [ pdThis/pdThis']; Rabin |
pdThis = (conAuthPurse name?).pdAuth

|7

3 chosenlost ;. P PayDetails o
chosenlLost = chosenLost’
A chosenlost © maybelost

Proof:
Wecan {one point] away the quantification because we have an explicit definition
of chesenLost (as chosenlLost’). We show that the constraint holds by

chosenlost = chosenLost’ [defn.)
< maybeLost’ [RabCIPd'[...]]
< maybelost \ {pdThis) {see 19.6.7]
c maybeLost [defn. \)
H 194

195 check-operaticn

$BOp, ValPurseOkay; RabCIPd’(pdThis/pdThis']; AbWorld;, RabCIPd |
pdThis = (conAuthPurse name?).pdAuth
» chosenLost = chosenLost’
L
¥ n: dom abAuthPurse «
(abAuthPurse’ n).balance = (abAuthPurse n}.balance
A {abAuthPurse’ n) lost = (abAuthPurse n).lost
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We prove this first by investigating the way in which the key sets definitelyLost
and maybeLost are modified by the operation. Having got equations for these
changes, we then look at the equations for the components balance and lost
for two types of purses: the to purse in the transaction pdThis, and all other
purses.

19.6 Behaviour of maybelost and definitelyLost

We argue that the transaction pdThis is initially in maybeLost, and is moved
out of it, but not into definitelyLost’, hy the ValOkay operation. This operation
determines that the transaction is successful,

19.6.1 fromLogged

No logs change, so

fromlogged’ = fromlogged

19.6.2 tologged
No logs change, so
tologged' = toLogged

After the operation the purse is in eaTo, and pdThis is in authenticTo, from
®B0p, hence pdThis € tolnEapayee’. Lemma ‘notLoggedAndIn' (section C.12}
gives us:

pdThis ¢ toLogged’

19.6.2 tolnEpv

From the precondition of ValPurseOkay we know the purse is in epv, and we
know that the name of this purse is equal to pdThis.to. After the operation,
this purse is in eaTo (that is, not in e¢pv). No other purses change.

tolnEpv’ = toinEpv \ {pdThis}
tolnEpv = toInEpv’ U {pdThis}
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196.4 fromInEpa

Only the to purse changes.

frominEpa’ = frominEpa

19.6.5 definitelyLost

definitelyLost’

= toLogged’ N (fromLogged’ U frominEpa’) {defn]
= toLogged n (fromLogged v fromInEpa) [above]
= definitelylost {defn]
1956.6 choseniosl
chosenlost’ = chosenLost
by choice. So
definitelyLost U chosenlost = definitelyLost’ U chosenLost’
19.6.7 maybeLost
maybeLost’
= (frominEpa’ L fromLogged’) N tolnEpy' [defn]
= {fromInEpa U fromLogged) n {toIinEpv \ {pdThis}) [above]
= {{frominkpa v fromLogged) n toinEpv) \ {pdThis} {Spivey]
= rmaybelost \ {pdThis} [defn]
val € ether A to.status = epv [precondition ValPurseOkay]
= pdThis € fromInEpa U fromLogged [B-11]
= pdThis € maybelost ftoInEprv, defn maybelLost]
pdThis € maybeLost [above]
A pdThis ¢ chosenLost’ [because pdThis ¢ maybelost’]

= pdThis € maybelost A pdThis ¢ chosenlost
= pdThis € maybeLost \ chosenlost
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Also

maybeLost \ chosenlLost = (maybelost’ \ chosenLost’) u {pdThis}

19.7 Clarifying the hypothesis

We can show that the hypothesis is actually stronger than it looks, in that we can
replace RabClPd with RabOkayCIPd and replace RabCiPd’ with RabEndCIPd’.
This is because pdThis € maybelost \ chosenlost, implying that RabOkayClPd
hiolds.

pdThis ¢ maybeLost’ (see construction of maybelost’) and so it cannot
be in chosenlLost’. pdThis ¢ maybeLost’ and so it cannot be in maybelost’ \
chosenLost’. pdThis ¢ definitelylLost’ because it is not in toLogged’.

This implics that RabEndCIPd'[...] holds. So we have to prove

$BOp; ValPurseOkay, RabEndCIPd’ [ pdThis{pdThis' ];
AbWorld, RabOkayCIPd |
pdThis = (conAuthPurse name?).pdAuth
A chosenLost = chosenLost’
i_
V n:domabAuthPurse s
(abAuthPurse’ n).balance = (abAuthPurse n) . balance
A (abAuthPurse' n).lost = {(abAuthPurse n) lost

We do this for each of the three components, for all the purses other than
the to purse engaged in this transaction, and for exactly the to purse in this
transaction.

19.7.1 Case balance component for non-pdThis.to purse

Vv n: domabAuthPurse | n = pdThis.tos
(abAuthPurse’ n).balance
= (conAuthPurse’ n).balance
+ sumValue({(maybelLost’ \ chosenLost’)
n (pd : PayDetails | pd.to = n}) \ [pdThis})
[RabEndCIPd’ [ pdThis [ pdThis' 1]

= (conAuthPurse’ n).balance
+ sumValue(({{maybeLost’ \ chosenLost’') U {pdThis)}
N {pd: PayDetails | pd.toe = n}) \ {pdThis})
|union and subtraction cancel]
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= (conAuthPurse' n). balance
+ sumValue(({maybeLost \ chosenLost)
r {pd : PayDetails | pd.to = n}) \ {pdThis})
[equation earlier]

= (conAuthPurse n).balance
+ sumValue({(maybeLosi \ chosenLost)
N {pd . PayDetails | pd.to = n}) \ {pdThis})
[$BOp]

= {abAuthPurse n}.balance [RabOkayClPd)

m 15.7.1

19.72 Case lost component for non-pdThis.to purse

In this case the defining equations in the retrieve depend upon definitelyLost u
chosentLost, which we derived as unchanging earlier. $ BOp does not change the
concrete values, so the abstract values do not change either.

m19.7.2

19.7.3 Case balance component for pdThis.to purse

{abAuthPurse pdThis.to).balance

= (conAuthPurse’ pdThis. to).balance
+ sumValue(((maybelLost’ \ chosenlLost’)
N {pd : PayDetails | pd.to = pdThis.to}) \ {pdThis})
[RabEndCiPd'[.. .]]

= {conAuthPurse' pdThis.to).balance
+ sumValue((((maybeLost’ \ chosenLost’) U { pdThis})
n ipd : PayDetails | pd.to = pdThis.to}) \ {pdThis})
|union and subtraction cancel]

= (conAuthPurse’ pdThis.to).balance
+ sumValue{{(maybeLost \ chosenlLost)
r {pd : PayDetails | pd.to = pdThis.to}) \ {pdThis})
[equation earlier|
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= (conduthPurse pdThis.to).balance + pdThis. value
+ sumValue(((maybelost \ chosenLost)
N {pd: PayDetalls | pd.to = pdThis.to}) \ {pdThis})
[ValPurseOkay)

= (@bAuthPurse pdThis.to).balance [RabOkayCIPd)

m19.7.3

19.7.4 Case lost component for pdThis.to purse

In this case the defining equations in the retrieve depend upon definitelyLostu
chosenlost, which we derived as unchanging earlier. ValOkay does not change
the concrete values, so the abstract values do not change cither.

& 19.7.4

a19.7

|19



Chapter 20

Correctness of Ack

20.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘muitiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

+ We use lemma ‘ignore' (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), leaving the Okay
branch to be proven here.

+ We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenlost, and check-operation.

« Since this operation refines Ablgnore, we use lemma ‘Ablgnore’ {fromsec-
tion C.3) to simplify check-operation to check-operation-ignore.

20.2 Instantiating lemma ‘deterministic’

We must instantiate two general predicates relating to pdThis and chosenlost.
The choices for these predicates are based on the fact that the important trans-
action is the one stored in the purse performing the AckOkay operation, and
that before the operation, the set of transactions chosen to be lost should be
all those chosen to be lost after the operation, because this operation plays no
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part in deciding which transactions succeed and which ones lose. Thus

P <> pdThis = (conAuthPurse name?). pdAuth

8 e chosenLost = chosenLost

203 exists-pd

&BOp; AckPurseOkay; RabOut; RabCl'; Rabin
",_

3 pdThis : PayDetails « pdThis = (conAuthPurse name?).pdAuth

Proof:
This is immediatc by |orne point] rule, as we have an explicit definition of pdThis.
m 203

204 exists-chosenlost

dBOp;, AckPurseQOkay; RabOut; RabCiPd’' [ pdThis/pdThis']: Rabln |
pdThis = (conAuthPurse name?).pdAuth

l_

A chasenLost : P PayDetails «
chosenlost = chosenLost’
A chosenLost © maybelost

Proof:
Wecan [one point] away the quantification because we have an explicit definition
of chosenLost (as chosenLost’). We show that the constraint holds by

chosenlost = chosenLost’ [def]
< maybeLost’ [RabCiPd'{...]]
< maybeLost [sec 201 6.6]
| 20.4

205 check-operation

D BOp; AckPurseOkay; RabCIPd' [pdThis/pdThis'); AbWorld; RabCiPd |
pdThis = {conAuthPurse name?).pdAuth
A chosenLost = chosenLost’
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V¥ n:domabAwithPurse »
{abAuthPurse’ n) balance = (abAuthPurse n).balance
A (abAuthPurse n) lost = (abAuthPurse n).lost

Proof:
We prove this by investigating the way in which the key sets definitelyLost and
maybeLost are modified by the operation.

20.6 Behaviour of maybelost and definitelyLost

We argue that the transaction pd is initially in neither maybeLost nor definitely-
Lost, and is not moved into either of thein by the AckOkay operation. The
transaction was initially far enough along to have already succeeded.

20.6.1 Behaviour of fromLogged

From ¢BOp, which says that only the purse name? changes, and then only
according to AckPurseOkay, and from the definition of AckPurseCkay, in which
extog’ = exLog, we can see that

fromlogged’ = fromlogged

20.6.2 Behaviour of tologged

Exactly as we argued for fromlogged,

toLogged’ = toLogged

20.6.3 Behaviour of tolnEpv

If toInEpv’ + tolnEpv, there must be some pd in one and not in the other. From
the definition of toInEpv, this means that for some purse that changes, either
before or after the operation its status must equal epyv. That is,

(conAuthPurse pd.to).status = epv
v
{conAuthPurse’ pd.to}.status = epv
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From $BOp we have that the only purse that changes is name?. From AckPurse-
Okay we have that

(conAuthPurse name?). status = epa

{conduthPurse’ name?}.status = eaFrom
{neither equal to epv). Therefore, no such pd exists, and we have

toiInEpv’ = tomEpv

206.4 Behaviour of frominEpa

If frominkpa’ + frominEpa, there must be some pd in one and not im the other.
From the definition of fromInEpa, this means that for some purse that changes,
either before or after the operation its status must equal epq. That is,

(conAuthPurse pd.from).status = epa
v
(conAuthPurse’ pd.from).status = epa
The only name that changes is name?, and from AckPurse Okay we have that

{conAuthPurse name?}.status = epa

(conAuthPurse’ name?).status = eaFrom
Therefore, we have
frommmEpa’ = fromiEpa\ { pd : PayDetails | pd.from = name?
~ {conAuthPurse name?) . status = epa

A (conAuthPurse name?) . pdAuth = pd }

In fact, the last predicate in this set limits the pd to a single value, equal to
pdThis, so we have

frominkpa’ = frominEpa \ {pdThis)

We now build up the two sets definitelyLost and maybelost.
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20.6.5 Behaviour of definitelyLost

definitelyLost” = toLogged’ n (fromLogged’ U fromInEpa’) [defn]
= toLogged {above identities|
N {fromLogged U (frominkpa \ {pdThis}))
= toLlogged [pdThis ¢ fromLogged, see below]|
N {(fromLogged U frominEpa) \ {pdThis}}
= {fromLogged v frominEpa) [algebra]

n (tolLogged \ {pdThis})
= (fromLogged u frominEpa) n toLogdpdThis ¢ toLogged, see below|
= definitelyLost [defn]

We have pdThis ¢ fromlLogged, from the fact that pdThis & fromiInEpa (because
the before purse state is epa, and $BOp gives pdThis &€ authenticFrom), and
using lemma ‘notLoggedAndin'.

We have pd ¢ toLogged:

ack pd € ether [precondition AckPurseCkay]
= pd ¢ tolnEpv U toLogged {BetweenWorld constraint B-10)
= pd ¢ tolLogged llaw]

Thus we have

definitelyLost’ = definitelyLost

20.6.6 Behaviour of maybelost

maybeLost’ = (fromInEpa’ u fromLogged’) n toinEpv’ |defr.]

= {fromInEpa u (fromLogged \ {pdThis})) N toInEpv
{above identities]

= ((fromInEpa U fromLogged) \ {pdThis}) N toInEpv
[pdThis ¢ fromlLogged, as above]

= {frominEpa u fromlLogged) n {tolnEpv \ {pdThis}) [algebra]
= {fromInEpa u fromLogged) n tolnEpvlpdThis ¢ tolnEpv, see below]
= maybeLost {defr.]
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We have pdThis ¢ tolnEpv:

ack pd ¢ ether [precondition AckOkay|
= pdThis ¢ tolnEpv U toLogged [BetweenWorid constraint B-10]
= pdThis ¢ tolnEpv {law]

Thus we have

maybeLost’ = maybeLost

20.7 Finishing proof of check-operation

The above shows that none of the three sets definitelyLost, maybeLost or chosen-
Lost changes. As AckOkay does not alter any concrete balance or lost, and
given that the abstract values are defined solely in terms of these (unchanging)
values, it follows that the abstract values don't change, thus discharging the
check-operation proof obligation.

m 20.5

m20
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Correctness of ReadExceptionLog

21.1 Proof obligation

We hiave to prove the correct refinement of each abstract operation. In section
9,2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A
operation into one for each individual B operation.

This chapter proves the B operation.

» We use lemmna ‘ignore’ (see section 14.3} to simplify the proof obligation
by proving the correctness of Ignore {in section 14.7), and Abort (in sec-
tion 14.8), leaving the Gkay branch to be proven here.

s Since the Okay branch of this operaton is expressed as a promotion of
AbortPurseOkay composed with a simpler FafromPurseOkay operation,
we use lemma ‘abort backward' (section C.5), and prove only that the pro-
motion of the simpler operation is a refinement.

+« We use lemma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenlLost, and check-operation.

» Since this operation leaves the sets maybeLost and definitelyLost uncha-
nged, we use lemma ‘lost unchanged’ (section C.2) to discharge the exists
pd-and exists chosenlLost-obligations automatically.

» Since this operation refines Ablgnore, we use lemma 'Ablgnore’ (from sec-
tion C.3) to simplify check-operation to check-operation-ignore.
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21.2 Invoking lemma ‘lost unchanged’

We have the constraint EConPurse in the definition of ReadExceptionLogPurse-
EafromOkay. From ®BOp and ZConPurse, we know that archive and conAuth-
Purse remain unchanged, as do definiielyLost and maybeLost. Hence we can
invoke lemma ‘Lost unchanged’.

21.3 check-operation-ignore

$BOp; ReadExceptionLogPurseEafromOkay;
RaboOut; RabCIPd’ [ pdThis/pdThis'];
AbWorld, RabClPd; Rabin |
chosenLost’ = chosenlLost
~ maybeLost’” = maybeLost
A definitelyLost’ = definitelyLost
}_
¥ 1 : dom abAucthPurse «
(abAuthPurse’ n).balance = (abAuthPurse n).balance
A (abAuthPurse n).lost = (abAuthPurse n}.lost

Proof:
we have that maybelost and definitelyLost are unchanged from the hypothe-
sis. Hence the balance and lost components of all the abstract purses remain
unchanged, satisfyirig our procef requirement.

2l3

w2l
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Correctness of ClearExceptionlLog

22.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ (section 14.2) to split the proof obligation for each A4
operation into one for each individual B operation.

This chapter proves the B operation.

We use lemumna ‘ignore’ (see section 14.3} to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), and Abort (in sec-
tion 14.8), leaving the Okay branch to be proven here,

Since the Okay branch of this operation is expressed as a promotion of
AbortPurseCkay composed with a simpler EafremPurseOkay operation,
we use lemma ‘abort backward' (section C.5), and prove only that the pro-
motion of the simpler operation is a refinement.

We use lernma ‘deterministic’ (section C.1) to reduce the proof obligation
to the three cases exists-pd, exists-chosenlost, and check-operation.

Since this operation leaves the sets maykeLost and definitelyLost uncha-
nged, we use lemma 'lost unchanged' (section C.2) to discharge the exists
pd-and exists chosenlost-obligations automatically.

Since this operation refines Ablgnore, we use lemma *‘Ablgnore’ (from sec-
tion C.3) to simplify check-operation to check-operation-ignore.
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22.2 Invoking lemma ‘Lost unchanged’

The purse’s exception log is cleared, so we cannot use the ‘sufficient conditions’
to invoke lemma ‘lost unchanged”: we need first to show that fromLogged and
toLwgged are unchanged.

We have from the operation definition that the exception log details in the
purse that are to be cleared match the ones in the exceptionLogClear message.
We have, from constraint B-15 that the Jog details in the message are already
in the archive. So deleting them from the purse will not change allLogs. But
fromLogged and tol. ogged partition alil.ogs, so these do not change either.

Hence we can invoke lermma ‘Lost unchanged’.

22.3 check-operation-ignore

$&BOp; ClearExceptionLogPurseEafromQOkay;
RabOut; RabClPd' [ pdThis{ pdThis'1;
AbWorld:, RabClPd; Rabln |
chosenlost’ = chosenLost
A maybelost' = mavbel ost
A definitelyLost’ = definitelyLost
-
V¥ n: domabAuthPurse »
(abAuthPurse' n).balance = (abAuthPurse n).balance
A (abAuthPurse’ n).losc = (abAuthPurse i) ost

Proof:
We have that maybelost and definitelylost are unchanged from the hypothe-
sis. Hence the balance and lost components of all the abstract purses remain
unchanged.

w223
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Correctness of AuthoriseExLogClear

23.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ to split the proof obligation for each A operation into
one for each individual ‘B operation.

This chapter proves the B operation.

» We use lemma ‘ignore’ to simplify the proof obligation further to proving
the correctness of Ignore (section 14.7), leaving the Okay branch to be
proven.

We cannot use any of the other simplifications directly for AuthoriseExLogClear,
since it cannot be written as a promotion. So the correctness proof obligation
for AuthoriseExLogClear is

AuthoriseExl ogClearOkay; Rab’; RabOut
F
3 AbWorld; a?: AIN « Rab A Rabln A Ablgnore

23.2 Proof

First we choose an input. We argue exactly as in section 14.4.1 to reduce the
obligation to:

AuthoriseExI ogClearOkay, Rab’; RabOut; Rabin
F
3 AbWorld = Rab A Ablgnore
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We [cut] in a before AbWorld equal to the after AbWorld” in Rab’ (the side lemma
is trivial), and use [consqg exists] 1o remove the quantifier from the consequent.

AuthoriseFxLogClearOkay; Rab’; RabOut; Rabin; AbWorld |
0AbWorld = 0 AbWorld’

).,

Rab A Ablgnore

Abignore is certainly satisfied by the equal abstract before and after worlds.

1t remains to show that Rab is satisfied. The only difference between
the concrete before and after worlds, as given by AuthoriseExLogClearOkay, is
the addition of an exceptionLogClear message in the ether. But Rab does not
depend on exceptionLogClear messages, and so we can deduce Rab directly
from Rab’

. 23.2

=23



Chapter 24

Correctness of Archive

24.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9,2.4 we give a general simplification of the correctness proof. We use lemma
‘multiple refinement’ to split the proof obligation for each A operation into
one for each individual B operation.

This chapter proves the B opetation.

We cannot use any more of the usual simplifications directly for Archive,
since it cannot be written as a promotion. So the correcmess proof obligation
for Archiveis

Archive, Rab’: RabOut v 3 AbWorld; a? : AIN « Rab A RabIn A Ablgnore

24.2 Proof

First we choose an tnput. We argue exactly as in section 14.4.1 to reduce the
obligation to:

Archive, Rab’; RabOut; RabIn+ 31 AbWorld « Rab » Abignore

We [cut] in abefore AbWorld equal to the after AbWorld' in Rab’ (the side lemma
is trivial), and use [consq exists] to remove the quantifier from the consequent.

Archive, Rab’; RabOut, Rabin, AbWorld |
6AbWorld = e AbWorld’

}—

Rab A Ablgnore
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Ablgnore is certainly satisfied by the equal abstract before and after worlds.

It remains to show that Rab is satisfied. The only difference between the
concrete before and after worlds, as given by Archive, is the inclusion of some
log details in the archive. We have, from BetweenWorld constraint B-14, that
the log details added to the archive from the exceptionLogResult message arc
already in allLogs. So, although the archive grows, the operation does not add
anynew logs to the world. Thus fromLogged and foLogged don't change. Hence
mayveLost and definitelyLost don’t change. Therefore, nothing that Rab relies
upon changes in the concrete world, and so we can deduce Rab directly from
Rab'.

m 242
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Second Refinement: B to C
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Chapter 25

Refinement Proof Rules

25.1 Security of the implementation

We prove the concrete model € is secure with respect to the between model
B by showing that every concrete operation correctly refines a between opera-
tGon. The concrete and between operations are similarly-named. The full list of
refinements is:

StartTo € CStartTo

StartFrom © CStartFrom

Req = CReq

Val = CVal

Ack © CAck

ReadExceptionlog c CReadExceptionlog
ClearExceptionlog c CClearExceptionLog
AuthoriseExLogClear = CAuthoriseExLogClear
Archive c CArchive

Abort € CAbort

Increase © CIncrease

Ighore € Cignore

25.2 Forwards rules proof obligations

Fach of these refinements must be proved correct,

[Spivey 1992b, Chapter 5] presents the theorems that need to be proved
for the most comrmonly-occurring case of non-determinism, sometimes cailed
‘downward’ or ‘forward’ conditions, where the abstract and concrete inputs and
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outputs are identical. These, augmented with a finalisation proof, are appro-
priate for the B to C refinement proofs.

The forward rales are summarised in figure 25.1. Note how the paths are
different from the backward case (figure 9.1} because of the direction of the R
arrows.

25.2.1 Retrieve

The retrieve relation has one part that links the abstract and concrete states,

25.2.2 [nitialisation
CInit ~ 4B’ » BInit A R’

252.3 Finalisation

K, CFin - BFin

25.2.4 Applicability
R; Bin | pre BOp - pre COp

252.5 Correctness
R, COp |pre BOp+— 1B « R ~ BOp

We can simplify the correctness condition because we know that all the
between operations are total, ie.

pre BOp = true

This was proved earlier, in section 8.3.2.
We can therefore simplify the carrectness condition to

R, COp+ 3B «R A BOp
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Figure 25.1: A summary of the forward proof rules. The hypothesis is the
existence of the lower (solid) path. The proof cobligation is to demonstrate the

existence of an upper (dashed) path.



Chapter 26

B to C retrieve relation

26.1 Retrieve siale

The B and C worlds are identical, except that the C world can ‘lose’ ether mes-
sages.

Rbc _
BetweenWorld
ConWorldy

conAut-hPurse{J = conAuthPurse

etherg c ether

archiveg = archive

The subscript zero on the concrete world serves to distinguish like-named be-
tween and concrete components.
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Initialisation, Finalisation, and
Applicability

27.1 Initialisation proof
ConlnitState — 3 BetweenWorld' » BetweeninitState »n Rbc’

Proof:
We expand ConInitState in the hypothesis according to its definition.

ConWorldy |
(3 BerweenWorld' | BetweeninitState »
conAuthPursey = conAuthPurse’
A archive’ = archive'
A {L]) < ether) c ether')
)_
J BetweenWorld' « BetweeninitState A Rbc’

From the definition: of Rbc’, we can see that the consequent follows directly
from the hypothesis,

m27.1
27.2 Finalisation proof

Rbe; ConFinState — BetwFinState

Proof:
We have defined ConFinState and BetwFinState to have the same mathematical
form.
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Rbc in the hypothesis requires the concrete and between purse states and
archives to be identical, and allows the between ether to be bigger than the
concrete ether.

Finalisation of the purses depends only on the purse states (identical by
hypothesis) and on the sets deftnitelyLost and maybelost. These sets them-
selves depend only on purse states and on the archive {also identical for con-
crete and between worlds by the retrieve in the hypothesis). As result, gAuth-
Purse for betwecen finalisation is identicai to that for concrete finalisation.

»27.2

273 Applicability proofs

Applicability follows auromatically from the totality of the concrete operations
as shown in section 8.4.
m273
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Lemmas for the B to C correctness
proofs

28.1 Specialising the proof rules

For each concrete operation COp and corresponding between operation 80p
we have to show

Rbc; COp — 13 BetweenWorld’ « Rbe’ A BOp

Many operations are defined as the disjunction of other operations. A COp
will have the same branches as a corresponding BOp: a Clgnore branch, and
cither a CAbort or COpOkay hranch, or both. We split the proof obligation into
Clgnore, CAbort and COpQkay branches, as we did in section 14.3. This gives
some or all of the following proof requiretnents, depending on which branches
are in COp:

Rbc; Clgnore — 3 BetweenWorld” = Rbc’ A Ignore

Rbc, CAbort + 3 BetweenWorld' = Rbc” A Abort

Rbc, COpOkay + 3 BetweenWorid « Rbc’ A BOpOkay
The correctness of the Clgnore branch is dealt with below in section 28.2. We
then develop the correctness proof for the CAbort and COpOkay branches, and

introduce a lemma applicable to certain operations. Following this, we present
the proof of correctness of two common branches — Cincrease and CAbort.

28.2 Correctness of Cignore

The correcmess of the Clgnore branch follows trivially by choosing
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fBetweenWorld’ = GBetweenWorld

m 282

283 Correcmess of a branch of the operation

283.1 Choosing Benweeniorld’

In choosing BetweenWorld’, we base our choice of the conAuthPurse’ and ar-
chive’ components on Rb¢’, and our choice of the ether’ component on BOp-
Okay'.

We have conAuthPurse; and archivey in the hypothesis, and we use this
to pravide the value for conAuthPurse’ and archive’, respectively (this satisfies
the constraint on conAuthPurse’ and archive’ in Rbc¢').

conAuthPurse’ = conAuthPurse),
archive’ = archive,

m! and ether are declared in the hypothesis, and ether’ can be constructed
deterministically from these (note that the following constructon satisfies the
relevant constraint in BOpOkay — cither in ¢ BOp or explicitly as in Archive).

ether’ = ether U {m'}

We need 1o show that the chosen BenweenWorld” and m! satisfy each of the
conjuncts in the consequent (retrieve Rbc’ and opceration BOpOkay),

We also need to show that this choice is indced an after BetweenWorlid’
(that it satisfies the constraints on BetweenWorld specified in section 5.3).

283.2 Case BOpOkay

From the choice of ether” above, the relevant constraint on ether’ in BOpOkay
is satisfied by construction.

At most one purse changes in COpOkay. Let us call this new purse value
p. This gives

conAuthPurse, = conAuthPursey & {p}

conAuthPurse] = conAuthPurse & {p} IRbc]

conAuthPurse’ = conAuthPurse @ {p} [choice of conAuthPurse]

This satisfies the constraint on conAuthPurse’ in BOpOkay (where at most one
purse changes in an identical manner to COpCkay).
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archive’ is a function of archive and m!, defined in BOpOkay. Call this
function f:

| f:Logbook x MESSAGE — Logbook

Because COpOkay is defined in an analogous way, [ also relates archive; to
archives and mi.

From the hypothesis we have COpOkay and Rbc, and with our choice of
archive’ we have, respectively

archive), = f{archivey, m!)
A archive = archiveg
A archive’ = archive

Substituting the latter two equations into the first gives the predicate in 5Op-
Okay.

Thus, the BOpOkay constraints on all the components of our choscn Be-
tweenWorld" are satisfied under the correctness hypothesis and choice of Be-
tweenWorld'.

m 28.3.2

28.3.3 Case Rbc’

Both the conAuthPurse’ and archive' components of BetweenWorid’ satisfy Rbc’
from the choice of BetweenWorld' .
All COpOkay operations constrain ether’ as

ether; ¢ etherg U {m!)

either through & COp, or explicitly in CArchive. Hence for ether’ we have

ether’
= ether U {m') [choice of ether’]
2 etherg W (m') [Rbc]
3 ether; [ COpQkay]

This satisfies the constraint on ether’ in Rbc’.

28.3.4 Case ‘obey constraints’

We know from the hypothesis that the before BetweenWorld satisfies the con-
straints, so we need check only that the chosen message m!, and any change of
purse state during the operation, maintains this constraint.
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Lemma 28.1 {(constraint) If an opcration obeys the following properties, then
it preserves the BetweenWorld constraints:

« it does not change purse status or current transaction details (pdAuth)
+ it does not change allLogs

+ it does not change the payment detail messages, exception log read mes-
sages or exception log clear messages in the ether (cither by not emitting
such a message, or by emitting an already existing message)

» no sequence number decreases {all concrete operations have the property,
s0 it is automatically satisfied)

Proof:
The BetweenWorld constraints refer only to certain ether messages (reg, val,
ack, exceptionLogResult and exceptionLogClear), and relate their presence or
absence to pursc status (status, pdAuth and nextSeqNo) and alllogs. From the
hypothesis we can invoke lermma ‘logs unchanged’ (section C.7) to say that, as
alllzgs does not change, not does alLogs. So operations that do not change the
purse status, dono! change allLogs, and do not emit any relevant new messages,
will automatically preserve the constraints.

m 2834
Even when lemma ‘constraint’ does not apply, we know from the form of the
operation that at most one purse changes, and one message is emitted. As
at most one purse changes, the proof that the BetweenWorld constraints are
preserved need refer only to this purse; the constraints hold on the other purses
before the operation by hypothesis, and so they hold afterward, tea.

2835 Summary of ConOkay proof obligation

For each operation, we have to show that cither lemma ‘constraint’ holds or
that the choice of BetweenWorld’ obeys the constraints (see section 5.3).

284 Correctness of Clhcrease

Cincrease does not change status or pdAuth, does not log, and no relevant
message is emitted to the ether, so lemna ‘constraint’ (section C.6} is applicabie,
w284
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28.5 Correctness of CAbort

Lemma ‘censtraint’ is not applicable, because CAbgort moves one purse into
eaFrom, and it may not have been in this state before, and it may log a pending
transaction. Therefore we have to show that our chosen BetweenWorld™ obeys
the constraints.

B-1
B-2
B-3
B-4
B-5

One | message is emitted, and (possibly) one log is recorded.

req = authentic fo purse. No new req messages.
No future regs. No new req messages.
No future vals. No new val messages.
No future acks. No new ack messages.

No future frorn logs. The purse moves into eaFrom, possibly logging a
transaction, and possibly increasing nextSegNo. This does not invalidate
this constraint for any previous logs. To create a new from log, the purse
would have had to have been in epa (from LogifNecessary). Hence, using
ConPurse canstraint P-2, we have

pdAuth. fromSeqgNo < nextSeqNo
From AbortPurse, we also have
nextSegNo < nextSeqNo'
This gives
pdAuth. fromSegNo < nextSeqNo’

The pdAuth is logged when the pre-state purse is in epa, and thus the new
log obeys the constraint,

No future to logs. The purse moves into eafrom, possibly logging a trans-
action, and possibly increasing nextSegNo. This does not invalidate this
constraint for any previous logs. To create a new fo log, the purse would
have had to have been in epv (from LogIfNecessary); hence, using ConPurse
constraint P-2a, we have

pdAuth_teSegNo < nextSeqNo
From AbortPurse, we also have

nextSeqNo < nextSeqNa'
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This gives
pdAuth.toSegNo < nextSeqNo'

The pdAuth is logged when the pre-state purse is in epv, and thus the new
log obeys the constraint,

B-7 fromin {epr, epa}, so no future front logs. The purse moves into ealrom,
S0 NO hew purses in epr or epa.

B-3 to in {epv, eaTo}, so no future to logs. The purse moves into eaFrom, so
no new purses in epv or eaTo.

B-9 epr = - val A - ack. The purse moves into eaFrom, and so does not
move into epr.

B-10 reg A — ack < tolnfpv v toLogged.

« case =
No new reg messages; no ack messages removed from the ether.
The purse may have moved out of epv, but in such a case Loglf Ne-
cessary says that it logs, hence re-establishing the condition.

* Case ¢
No purses newly in epv.
There might be a new to log, in which case we must show there was
a req, but no ack before. A to log can be made only by a purse mov-
ing out of epv. Then the BetweenWorld constraint B-10, on telnEpv,
before the operation gives us the required req and lack of ack.

B-11 epv A val = frominEpa v fromlogged. No purses newly in epv; no new
val messages.
The purse may have moved out of epa. But in such a case LoglfNecessary
says that it logs, hence re-establishing the condition.

B-12 fromInEpa v fromLogged = req. No purses newly in epa.
There might be a new from log, in which case we must show there was
a req before. A from log can be made only by a purse moving out of
epa. Then the BetweenWorld constraint B-12, on fromInEpa, before the
operation gives us the required req.

B-13 tologged finite. At most one to log written, so finite before gives finite
after.

B-14 exceptionLogResults in allLogs. No new exception log result messages.

B-15 Cleared logs archived. No exceptionl.ogClear messages are added, and the
archive is unchanged.
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B-16 reg for each log. If there are no new logs, then the constraint holds from
the pre-state.
If a transaction exception is logged, then the purse starnis must have been
either epv or epa. From constraints B-10 and B-12, there was a req in the
pre-state ether for the transaction which was logged. This reg will alsc he
in the post-state ether.

m 285

28.6 Lemma ‘logs unchanged’

Lemma 28.2 {logs unchanged) When the grchive and the individual purse logs
do not change, and when no new reg messages are added ro the ether, the set
of PayDetails representing all the logs dees not change either.

BOpOkay | archive' = archive

A reg b ether' = reg ether

A ¥ n:domceonAduthPurse »

{conAuthPurse' n).exLog = (conAuthPurse n).exLog

i_
allLogs’ = allLogs
A toLogged’ = toLogged
A fromlogged’ = fromlogged

[
Proof:

alll.ogs = archive
u { n : dom conAuthPurse; Id : PayDetails |
Id € (conAuthPursen).exLogt
[defn]

= archive’
U { r : dom conAuthPurse’; Id : PayDetails |
Id € {conAuthPurse’ n}).exLog}
[assumption and ®BOp]

= allLogs’ [defn)

allLogs = { n : dom conAuthPurse, pd . PayDelails |
n+~— pd € alllogs A req pd € ether)
|defn]
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= { n:dom conAuthPurse’; pd . PayDetails |
n— pd € allLogs' ~ reqpd € ether' }
[assumption and above])

allLegs’

[defn]

The arguments for toLogged and fromlLogged follow in exactly the same way.
B 28.6

28.7 Lemma ‘abort forward” operations that first abort

Some concrele operations are written as a composition of Abort and a simpler
operation starting from eaFrom (StartFrom, StartTo, ReadExceptionLog, Clear-
ExceptionlLog, etc.).

Lemma 28.3 (abort forward) Where a € operation is written as a compaosition
of CAbort and a simpler operation starting from eaFrom, and the corresponding
B operation is structured analogously, it is sufficient 1o prove that the simpler
€ operaticn refines the corresponding B operation.

(CAbort § COpEafrom); Rbc;

(V COpEafrom;, Rbc » 3 BetweenWorld' « Rbc” A BOpEafrom)
F
3 BetweenWorld' » Rbc' A (Abort 3 BOpEafrom)

Proof We have already proved in section 28.5 that CAbort refines Abort. Adding
this 10 our hypothesis, we get

{CAbort § COpEafrom); Rbc;

(V¥ CAbort; Rbc « 3 BetweenWorld' « Rbc’ A Abort),

(V¥ COpEafrom; Rbc » 3 BetweenWorld” « Rbe’ A BOpEafrom)
'_
3 BetweenWorld' « Rbc' A (Abort t BOpEafrom)

The hypothesis is now in precisely the form required to use lemma ‘compose
forward', (seclien C.10) and we do so to prove the consequent.
m 28,7



Chapter 29

Correctness proofs

29.1 Introduction
Many of the following arguments are about constraints of the form
antecedent = consequent

The correciness arguments are of three kinds:

B-1 Argue that the operation leaves the truth values of both antecedent and
consequent unaltered, so that the truth before the operation establishes
the truth afterwards.

B-2 The operation might make the antecedent true after when it was false
before, by adding a new message to a set, or moving a purse into a set. In
this case it is necessary to show that the consequent is true after.

R-3 The operation might make the consequent false after when it was rue
before, by moving a purse out of a set, In this case il is necessary to show
that the antecedent is false after.

Note that we do not need to argue that a constraint cannot be changed by
removing a message; messages stay in the ether once there.

29.2 Correctness of CStartFrom

StartFromOkay comprises AbortPurse followed by Start FromEafromPurseOk-
ay al the unpromoled level. As a result, we can apply lemma ‘abort forward’
(section C.8), leaving us to prove the correctness of StartFromEafromPurseOkay.
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Lemma ‘constraint’ is not applicable, because StartFromEafromPurseOk-
ay changes status: it moves the purse from eaFrom into epr. Therefore we
have to show that our chosen BetweenWorld' obeys the constraints.

One L message is emitted, and no logs are recorded.

We can invoke lemma ‘logs unchanged’, section C.7, because no new reg
messages are produced, no new purse logs are produced, and the archive docs
nof change, Therefore, the scts aliLogs, fromLogged and toLogged remain un-
changed.

B-1 reg = authentic to purse. No new reg messages.
B-2 No future regs. No new reg messages.

B-3 No future vals. No new val messages.

B-4 No future acks. No new ack messages.

B-5 No future frem logs. No new logs.

B-6 No future to logs. No new logs.

B-7 frotnin {epr, epa} = no future from logs. There are no new logs, but the
purse moves into epr, so we must prove that the constraint for this purse
holds (for all other purses in epr, the constraint holds beforehand, and
so holds afterwards). In StartFrom, the post-state pdAuth'.fromSegNo is
equal (o pre-state nextSegNe. Coupling this with constraint B-5 we have

V¥ pd : fromLogged | pd.from = name? »
pd.fromSeqNo < (conAuthPurse’ pd.from).pdAuth fromSegNo

Since the logs don’t change we have

¥V pd : fromLogged’ | pd.from = name? »
pd.fromSegNo < (conAuthPurse’ pd.from).pdAuth.fromSegNo

which proves the constraint for purse name?,

B-8 toin {epv, eaTo] = no luture to logs. No new logs, and the purse moves
into epr.

B-9 epr = - val A — ack. The purse moves into epr, so it is nccessary to show
there was n¢ val or ack before.

The pd we are considering is given by

pd == (conAuthPurse’ name?}.pdAuth
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Noting that pd.from = name?, the definition of StartFrom then gives us
that

(conAuthPurse name?).nextSeqNo
= (conAuthPurse’ name?).pdAuth. fromSegNo

= (conAuthPurse pd.from).nextSeqNo = pd.fromSegNo

= val pd ¢ ether {BetweenWorld constraint B-3]
A ack pd & ether [BetweenWorld constraint B-4]

B-10 reg A - ack <= toInEpv v toLogged.

« case =
No new reg messages. The purse moved froem eaFrom to epr without
generating new logs. Hence, true before implies true after.

« case =:

No purses newly in epv and no new logs. No acks added to the ether.

B-11 epv A val = frominEpa v fromLogged. No purses newly in epv; no new
val messages. The purse did not move out of epa.

B-12 frominEpa v fromLogged = req. No purses newly in epa; no new logs.
B-13 tologged finite. No new logs.

B-14 exceptionLogResults in allLogs. No new log result messagces.

B-15 Cleared logs archived. No new exceptionLogClear messages.

B-16 req for each log. No new elements added to fromlogged or lof.ogéed.

m 29.2

29.3 Correctness of CStartTo

StartToOkay is composed of AbortPurse followed by StartToEafromPurseOkay
at the unpromoted level. As a result, we can apply lemma “abort forward’ (sec-
tion C.8), leaving us to prove the correctness of StartToEafromPurseQkay.

Lemma ‘constraint’ is not applicable, because StartTofafromPurseOkay
moves one purse inte epv, and it was not in this state before. Therefore we
have to show that our chosen BetweenWorld’ obeys the constraints.

One reqg message is emitted, and no new logs are recorded. We cannot
invoke lemma ‘logs unchanged' because we do have a new req message, but
constraint B-16 gives us the same result, This is not a circular argumernt,
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B-1 reg = authentic to purse. One new reg, which refers to the name? purse
as the to purse. ®BOp states that this purse is authentic,

B-2 No future regs. SiartToPurseEafromOkay emits one reg message, which
has its nextSeqNo in it by construction. It also increases nextSeqNo. The
req message Imeets the constraints because the referenced to purse (itself)
has a larger nextSegNo after the operation.

B-3 No future vals, No new val messages.
B-4 No future acks. No new ack messages.
B-5 No future from logs. No new logs.

B-t No future fo logs. No new logs.

B-7 fromin {epr, epa) = no future from logs. There are no new logs and the
purse moves into epv, so this constraint does not apply to this purse.

B-§ to in {epv,eaTo} = no future fo logs. There are no new logs, but the
purse moves into epv, so we must prove that the constraint for this purse
holds (for all other purses in epv, the constraint holds beforehand, and so
holds afterwards). In StartTo, the post-state pdAuth’.toSegNe is equal to
pre-state nextSegNoe. Coupling this with constraint B—-6 we have

¥ pd : toloaged | pd.to = name? «
pd.toSeqNo < {conAuthPurse’ pd.to).pdAuth. toSeqgNo

Since the logs don’r change, we have

¥ pd : toLogged’ | pd.to = hame? »
pd.toSeqgNe < (conAuthPurse’ pd.to) pdAuth. toSegNo

which proves the constraint for purse name?.
B-9 epr = - val A - ack. No purses newly in epr; no new vals or acks.

B-10 req A — ack < tolnEpv v toLogged. We claim that there is a new reqg for
which there is no ack in the ether, and the purse moves into epv. As a
result, we prove the consequent for each implication direction.

s case =:
We must prove tolnEpv v toLogged. The purse moves inte epv, thus
establishing the conscquent.

s case <«

The purse moves into epv, s0 we must show that there is a reg, but no
ack, for the purse’s pdauth’. From StartTe, we have ml = reg pdAauth’,
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so the reqg is in the cther. It is then necessary to show there is no ack
before. The pd we arc considering is given by

pd == (conAuthPurse’ name?).pdAuth
Noting that pd.to = name?, the definition of StartToe gives us thar

(cortAuthPurse name?). nextSeqNo
= (conAuthPurse’ name?).pdAuth.toSeqNo

= (conAuthPurse pd.to).nextSeqNo = pd.toSeqNo
= ack pd ¢ ether [BetweenWorld constraint B-4]
Hence, we have the corresponding reg but no ack.

B-11 epv A val = frominEpa v fromLogged. To prove this constraint, we
demonstrate that the antecedent is false; the purse moves into gpv, sowe
must show that there is no val before. The pd we are considering is given
by

pd == (conAuthPurse’ hame?).pdAuth
Noting that pd.to = name?, the definition of StartTo gives us that

{conAuthPurse name?).nextSegNo
= (conAuthPurse’ name?).pdAuth.toSeqNo

= (conAuthPurse pd.to) .nextSeqNe = pd.toSeqNo
= valpd ¢ ether [BetweenWorld constraint B-3]
Hence, there is no val before, and no val is emitted by this operation.
B-12 frominFpa v fromiogged = req. No purses newly in epa; no new logs.
B-13 tologged finite. No new logs.
B-14 Read exception record messages are logged. No new log result messages.
B-15 Cleared logs archived. No new exceptionLogClear messages.

B-16 req for each log. No new elements added to fromlLogged or toLogged.

m29.3
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294 Correcmess of CReq

Lemma ‘constraint’ is not applicable, because a purse moves from epr to epa
and emits a val mmessage. Therefore we have to show that our chosen Between-
World’ obcys the constraints.

We can invoke lemma ‘logs unchanged', section C.7, because no new reg
messages are produced, no new purse logs arc produced, and the archive does
ng! change. Thercefore, the sets allLogs, fromLogged and toLogged remain un-
changed.

B-1 reg = authentic te purse. No new req messages.
B-2 No future regs. No new req messages,
B-3 No future vals. Req puts a val in the ether’. Let pd be the pay details of

the val. Hence,

pd == {conAuthPurse name?) pdAuth
m? = req pd
m! = val pd

To show that the new wval message upholds this constraint, we have to
demonstrate that this is not a future message with respect to purse hame?.

pd.toSeqNo < (conAuthPurse pd.ro).nextSeqNo
pd.fromSegNeo < {conAuthPurse’ pd. from).nextSeqgNo

Since req pd is in the ether, from B-2 we can then satisfy the requirement
for the lo sequence number. Since the pre-state status was epr, using
purse constraint P-2¢ we know that

pd.fromSeqNo < nextSeqNo
Since Req does not alter nextSeqNo, we thus have
pd.fromSegNo < (conAuthPurse’ pd.from).nextSeqNo

B-4 No future acks. No new ack messages.
B-5 No future from logs. No new logs.
B-6 No future to logs. No new logs.

B-7 fromin {epr,epa} = no future from logs. No new logs.
The from purse moves from epr into epa. BetweenWorld constraint B-7
held on epr.



28.5. CORRECTNESS OF CVAL 189

B-8

B-9

B-10

B-11

B-12

B-13
B-14
B-15
B-16

ton {epv, eaTo} = no future to logs. No new logs; no purses newly in epv
or eafo.

epr = = val A — ack. No purses newly m epr; no new acks.

We need to show the emitted val does not have the same pd as the stored
pdAuth of any purse currently in epr. It has the same pd as the pdAuth
stored in the purse from which it was emitted, which moved from epr
and is how iIn epa. No other purse can also have this pdAuth, because
pdAuth mcludes the namne of the purse (ConPurse constraint P-2a), and
purse names are unique.

reg A - ack <= toInEpv v toLogged.

= case =: No new regq or ack messages.
« case «=: Nog purses newly in epv; no new logs.

epv A val = frominEpa v fromlLogged. The from purse emits a val. It
also moves into epa, thereby establishing the constraint.

frominEpa v fromlogged = req. The purse moves into epa. The opera-
tion precondition gives the presence of the required reqg.

teLogged finite. No new logs.
Read exception record messages are logged. No new log result messages.
Cleared logs archived. No new exceptionLogClear messages.

req for each log. No new elements added to fromLogged or toLogged.

=294

29.5 Correctness of CVal

Lemma ‘constraint’ is not applicable, because a purse moves from epv o eg-
Pgyee and emits an ack message. Therefore we bave to show that our chesen
BetweenWorld' obeys the constraints.

We can invoke lemma ‘logs unchanged’, section C.7, because no new req

messages are produced, no hew purse logs are produced, and the archivedoes
not change. Therefore, the sets ailLogs, fromlLogged and toLogged remain un-
changed.

B-1
B-2
B-3

req = authentic tc purse. No new req messages.
No future reqs. Val emits no new req messages.

No future vals. Val emits no new val messages.
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B-4 No future acks. ValOkay puts an ack in the ether’, but it has the saine pd
as the val read from the ether, which obeys BetweenWorld constraint B-3.
So the ack’s pd obeys the constraint.

B-5 No future from logs. No new logs.
B-6 No future to logs, No new logs.

B-7 fromin {epr, epa} = no future from logs. No new logs; no purses newly
in epr or epa.

B-8 toin {epv,eaTo} = no future to logs. No new logs.
The to purse moves from epv into eaTo. BetweenWorld constraint B-8
held on epv.

B-9 epr = - val n - ack. No purses newly in epr.
We necd to show the cmitted ack does not have the same pd as any
purse currently in epr. 1t has the same pd as the val message, and so
BetweenWorld constraint B-9 on val gives us the required condition.

B-10 reg » - ack < tolnEpv v toLogged.

« case =: ValOkay emits an ack, making the antecedent false.

« case «: From lemma ‘notLoggedAndln’, section C.12, the purse can-
not be in tologged. ValOkay moves the purse out of epv without
logging, making the antecedent false.

B-11 epv ~ val = frominEpa v fromlegged. No purses newly in epv; no new
val messages; no purses leaving epa, no changing logs.

B-12 fromInEpa v fromLogged = req. No purses newly in epa; no new logs.
B-13 toLogged finite. No new logs.

B-14 Read exception record messages are logged. No new log result messages.
B-15 Cleared logs archived. No new exceptionLogClear messages.

B-16 reg for each log. No new clements added to fromlogged or tologged.

H29.5

296 Correctness of CAck

Lemima ‘constraint’ is not applicable, because a purse mowves from epa to ea-
Payer. Therefore we have to show that our chosen BetweenWorld' obeys the
constraints.

It emits a 1 message. We can imvoke lemma ‘logs unchanged’, section C.7,
because no new req messages are produced, no new purse logs are produced,
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and the archive does not change. Therefore, the sets allLogs, fromlogged and
toLogged remain unichanged.

B-1 req = authentic to purse. No ncw reg messages.
B-2 No future reqgs. No new req messages.
B-3 No future vals. No new val messages.
B-4 No future acks. No new ack messages,
B-5 No future front logs. No new logs,
B-6 No future to logs. No new logs.
B-7 fromin {epr, epa} = no futurc from logs. No purses newly in epr or epa.
B-8 toin {epv, eaTol = no future to logs. No purses newly in epv or eaTo.
B-9 epr = = val A - ack, No purses newly in epr; no new vals or acks.
B-10 req n — ack <= tolnEpv v tologged.

« case =: No new reqs; no new acks; no purses moving out of epv, no
logs lost.

+ case «=: No purscs newly in epv; no new logs.

B-11 epv A val = frominEpa v fromLogged. No purses newly in epv, nonew
vails.

The purse moves out of epa without logging, so we need to show that the
antecedent is false for this pursc. It is sufficient to show the antecedent is
false before the operation (sitice the operation does not change it). Thereis
an ack message, AckOkay's inpul, s0 BetweenWorld constraint B-10 gives
us pd ¢ tolnEpv.

B-12 frominEpa v fromlogged = req. No purses newly in epa; no new logs.
B-13 toLogged finite, No new logs.

B-14 Read exception record messages are logged. No new log result messages.
B-15 Cleared logs archived. No new exceptionlogClear messages.

B-16 req for each log. No new elements added to fromLogged or toLogged.

m 296
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29.7 Correctness of CReadExceptionLog

RendExceptionLogQOkay is composed of AbortPurse followed by ReadException-
LogEafromPurseOkay at the unpromoted level. As a result, we can apply lemma
‘abort forward’ (section C.8), leaving us 1o prove the correctness of Read Except-
fonlogEafromPurseOkay.

This operation does not change any purse, but it does emit an exception-
LogResult message. As a result, lemma ‘constraint’ is not applicable.

We can invoke lemma ‘logs unchanged’, section C 7, because no new reg
messages are produced, no new purse logs are produced, and the archive does
not change. Therefore, the sets altLogs, fromLogged and tologged remain un-
changed.

B-1 reg = authentic to purse. No new req messages.
B-2 No future regs. No new req messages.
B-3 No future vals. No new val messages.
B-4 No future acks. No new ack messages.
B-5 No future from logs. No new logs.
B-6 No future to logs. No new logs.
B-7 fromin {epr, epa} = no future from logs. No purses newly in epr or epa.
B-8 toin {epv,eaTo} = no future to logs. No purses newly in epv or eaTo.
B-9 epr > - val A - ack. No purses newly in epr; no new vals or acks.
B-10 reg » - ack < teInEpv v toLogged.

= case =: No new regs; no new acks; no purses moving out of epv, no
logs lost.
« case «: No purses newly in epv; no new logs.

B-11 epv A val = frominEpa v fromLogged. No purses newly in epv; no new
vals; no purse moves out of epa; no logs lost.

B-12 fromInkpa v fromlogged = req. No purses newly in epa; no new logs.
B-13 toLogged finite. No new logs.

B-14 Read exception record messages are logged. There may be a new ex-
ceptionLog Result message. If this is so, then we must show that this refers
10 a stored exception log record. From ReadExceptionLogPurseEafrom-
Okay, we have

mle {1} u(ld: exLog’ e exceptionlogResult(name, Id)}
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Hence, if there is an exceptionl.ogResult message, it refers to an exception
record which is in the log of purse name?, and so is in aliLogs’. This
upholds the constraint.

B-15 Cleared logs archived. No new exceptionLogClear messages.

B-16 req for each log. No new elements added to fromlogged or tologged.
| 29.7

29,8 Correctmess of CClearExceptionLog

ClearExceptionLogOkay is composed of AbortPurse followed by ClearExcept-
iohLogEafromPurseQkay at the unpromoted level. As a result, we can apply
lemma ‘abort forward’ (section C.8), leaving us to prove the correctness of
Clear Exceptionlog EafromPurseCkay.

The operation changes only one purse, and emits a 1 message. The only
change to the purse is that its exception log is cleared. However, we have the
pre-condition that the input message matches the the exception log {exLog).
The input message comes from the ether, and hence from constraint B-15 we
know that the purse's exception log must have already been recorded in the
archive. In this way, clearing the purse’s log does not affect allLogs. So lemma
‘constraint’ {section C.6) is applicable,

2938

29.9 Correctness of CAuthoriseExLogClear

Lemma ‘constraint’ is not applicable, because an exceptionlogClear message is
emitted to the ether. So, we must show that the constraints hold afterwards.

No purses are changed.

We can invoke lemma ‘logs unchanged’, section C.7, because no new reg
messages are produced, no new purse logs are produced, and the archivedoes
not change. Therefore, the sets allLogs, fromLogged and tologged remain un-
changed.

B-1 regq = authentic to purse. No new req messages.
B-2 No future regs. No new reqg messages.
B-3 No future vals. No new val messages.
B-4 No future acks. No new ack messages.

B-5 No future from logs. No new logs.
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B-6 No future to logs. No new logs.
B-7 from in {epr, epa} = no future from logs. No purses newly in epr or epa.
B-8 toin {epv, eaTo} = no future o logs. No purses newly in epv or eaTo.
B-9 epr = — val A = ack. No purses newly in epr; no new vals or acks.

B-10 req A —~ ack < toinEpv v toLogged.

» case =: No new regs; no new acks; no purses maoving out of epv; no
logs lost.
« case <! No purses newly in epv; no new logs.

B-11 epv A val = fromInEpa v fromlLogged. No purses newly in epv; o new
vals; no purse moves out of epa; no logs lost.

B-12 fromInEpa v fromlogged = req. No purses newly in epa; no new logs.
B-13 rologged finite. No new logs.

B-14 Read exception record messages are logged. No new exception log read
messages.

B-15 Cleared logs archived. There is a new exceptionLogClear message. How-
ever, the operation contains the pre-condition that the log records for
which the message is generated must be in the archive. Hence, the con-
straint is upheld.

B-16 req for each log. No new elements added to fromLogged or tologged.

29.10 Correctness of CArchive

This operation archives the contents of some of the exceptionLogResult mes-
sages in the ether, It does not change any purse, or change the ether.

From B-14, we know that those exception records referred to by the ex-
ceptionLogResult messages are already in allLogs. As a result, adding them to
archive does not change allLogs. This operation does not change any purse, and
does not emit a payment details message. So lemma ‘constraint’ is applicable.

m29.10
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Summary

The proofs presented in this report constitute a proof that the architechural
design given by the C model is secure with respect to the security properties as
described in the Formal Security Policy Model (the A model) and the Security
Properties.

We have presented the proofs In a logical sequence, but even so, it can
be hard to be sure that no steps have been missed. The following table gives a
hierarchical view of the proof, showing at each level how a proof goal is satisfied
by a number of subgeals. Each line in the table is one proof goal, together with
a section reference for where that proof goal is addressed.

If the proof goal has child goals (goals one level of {ndent deeper) then the
section reference explains how it is that the goal can be satisfied by its collection
of subgoals. For example, goal 1.4 {AbTransfer upholds properties) is proved
by proving three subgoals: 1.4.1 (SP 1), 1.4.2 (SP 2.1) and 1.4.3 (SP 6.2). The
reference for goal 1.4 is to section 2.4, where it is argued that we have only to
prove the three $Ps 1, 2.1 and 6.2 because all other $Ps can be proved trivially.

If a goal has no further subgoals, its section reference is the proof of this
goal directly.

[t can be seen that all proof geals have section references, and all steps
have been addressed.

System secure by definition
1. Abstract preserves security properties by definition
1.1. Ablgnore upholds properties 2.4
1.2. AbTransfer upholds properties 2.4
1.21. SP1 2.4

1.2.1.1. Okay 2.4.1
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1.2.1.2.  Lost 2.4.3
L.2.2. SP21 2.4
1.2.2.1. Okay 2.4.2
1.2.2.2. Lost 2.4.4
2. Concrete preserves security properties by definition
2.1. Each concrete operation upholds proper- 2.4
lies
3. Abstract operations are total 8.2.2
4. Aisrefined by B by definition
4.1.  Init by definition
4.1.1. stale initialisation 11.2
4.1.2. inpurt initialisation 11.3
4.2. Applicability 9.2.3
4.2.1. pre AQp = true 8.2.2
4.2.2. simpler applicability by definition
4.2.2.1. pre BOp = true 8.3.2
4.3. Correctness 9.2.4
4.3.1. pre AOp = true B.2.2
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Appendix A

Proof Layout

A.1 Notation

The notation
Abs c Conc

says the the Abs operation is refined by the Conc operation.
In order to prove that Abs is indeed validly refined by Conc, we nesd to
prove various ‘correctness conditions', expressed as theorems (section 9).
That the predicate

¥YD[Peq
is always true is expressed as the theorem
FYD|P=.0QQ
which is equivalent to
DIiP+-Q

This can be read as a theorem that states that, under hypothesis 2 | P (dec-
larations D constrained by predicates P), consequent  {a predicate) hasbeen
proved to hold. D | P isusually written as a schema text, and Q may be written
using a schema as predicate.

A.2 Labelling proof steps

In labelling various steps of the proofs below, we use the following notation.
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« |[defn P]: from the definition of the schema predicate P
« |hyp]: from the hypothesis of the theorem
« [prop x]: from a property of the Z operator x

s [name)]: use of inference rule name

. PROOF LAYOUT



Appendix B

Inference rules

The proofs presented are rigorous, but informal, in that they have not been
checked by a inachine proof-checker.

We present below the sort of inference rules we have used. Such explicit
use of inference rules improves the readability of the proofs by showing exactly
what steps of mathematical reasoning are being made. These inference rules
are not intended as a definition of the logic being used, but as guidance about
the reasoning steps.

The inference rule

Pl P2 ... Pn
C

[ rulename |

says that conclusion C can be inferred if every premiss Pi can be proved. (The
rule name is used for labelling proof steps.}
The inference rule

Pl P2,. . ,Pn
Ci— [ rulename ]

says that conclusion C can be inferred if any premiss Pi can be proved.

B.1 Universal quantifier becomes hypothesis

S+P

— [unih
FYSeP ve ]
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B.2 Disjunction in the hypothesis

Given an hypothesis containing a disjunct, it is sufficient 1o prove the theorem
for each case.

R-P S+P

[ hyp disj ]
RvS+P Y

B.3 Disjunction in the consequent

Given a consequent containing a disjunct, it is sufficient to prove the theorem
for cnly one case (since this is a harder thing to prove).

Rr-P,R+-Q
R-PvQ

| consg disj }

B.4 Conjunction in the consequent

Given a consequent containing a conjunct, it is sufficient to prove the theorem
for each case separately.

R-F R+Q
R-PAQ

— [ consg conj ]

We can add conjuncts to the consequent {(since this is a harder thing to prove).

R-PAQ { " }
————— | strengthen consg
R P g

B.5 Cut for lemmas
Cut is a way to introduce new hypotheses, and discharge them as lemmas.

BDIQr-P Rr+-3D0«Q
R+~P

[cut]
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B.6 Thin

We can remove assuinptions.

——— [ thin]
P~R

B.7 Universal Quantification
Universals can be replaced by a particular choice in the hypothesis

xeEX=>Px)+-R
Vx:X=P(x)-R

[ hyp uni]

B.8 Negation
In order to prove something, you can asswme its negation.

-Pr

I negation ]
P g

R.9 Contradiction

If R can be proved, assuming its negation allows you to prove anything (because
false = anything).
R

[ contradiction ]
- R+ anything

B.10 One Point Rule

In order to prove there exists a value with a property, it is enough to extibit
such a value.

- Pltix]

FdxePAX=1

[ one point ]

provided x is not free in t.



208 APPENDIX B. INFERENCE RULES

B.11 Derived Rules
We find it useful to derive some compound rules. These make the proofs in the

body of the document easier to follow, and can themselves be proved from the
inference rules above.

B.11.1 One point cut

PrQ
——— [ consg exists ]
Pr3P«Q
and very similarly
PraQ
—————— [ consq exists ]
P-AP)AQ

B.11.2 Existential in the hypothesis
x: X, D|P+
Didx: X« P

[ hyp exists ]

B.12 Proof of the Derived Rules

We derive each of the derived rules above from the main inference ruies.

B.12.1 Derivation of One point cut

We can derive the first one-point curt rule ([consg exists|) as follows. First, we
expand P into a declaration D and a predicate p.

Dlp-3Depnrg [starting point)
D|lpr3D «p[D' /D) A glD D] [rename bound declaration]
Dipr3D « p[D'/DI A g[D}/DIAD =D [strengthen consequent]
DiprplDiDID/D]1A gD /DID/D'] [one point rule)
Diprpag [simplify renaming]
Diprg |discharge p from hyp]

The second onepoint-cut rule follows exactly the same way, except that g is not
bound by the existential, and so none of the renamings alters it.
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B.12.2 Derivation of existential in the hypothesis

Di3x:X+P)+ [starting point]

Dx:X|Par((Ax:XeP)- D|(Ax:XeP)+3Ax:X P
[cutin x: X | P}

Dyx:X|PAa(Ax:XeP) |discharge side lemma from hyp]
Dyx. X | P+ [thin]

as required.
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Lemmas and their proofs

C.1 Lemma ‘deterministic’

Lemma 1 (deterministic) The correctness proof for a general Okay branch con-
sists of the following three proof obligations: !
exists-pd:

$BOp, BOpPurseOkay; RabOut; RabCl'; Rabln
=
3 pdThis : PayDetails « P

exists-chosenLost:

¢ BOp; BOpPurseOkay; RabOut; RabClPd' [pdThis/pdThis']; Rabin |
P

.

I chasenlost : P PayDetails « @ A chosenlLost © maybelost

check-operation:

4 BOp; BOpPurseOkay; RabOut, RabCIPd' (pdThis/pdThis'];
AbWorld; RabClPd; Rabin |
PArAg
.
AOp

lUsed in: lemma 'Ablgnore’. section 14.6; lemma 'fgnore’, section 14.7; lernma 'Abort refines
Ablgnore’, section 14.8; used to simplfy every A-B operation proof,
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Proof:
See section 14.4.5.
nC1

C.2 Lemma ‘lost unchanged’

Lemma 2 {lost unchanged) For BOpELost aperations, where we have that may-
belost’ = maybeLost and definitelvLost’ = definitelyLost, the proof obligations
exists-pd and exists-chosenlLost are satisfied automatically by the instantiadon
of the predicates P and 2 as: ?

P < true
@ < chosenLost = chosenLost’

Proaf;
Seesection 14.5
mC2

C3 Lemma ‘Ablgnore’

Consider an operation BOplg which refines Ablgnore. The operation should
have the following properties.

« BOpIg is a promoted operation, and thus alters only one concrete purse.
+ for any purse, the name is unchanged.

« the domain of corcduthPurse is unchanged (by construction of the promo-
tion)

« for any purse, either nextSeqNo is unchanged, or increased.

Where these properties hold for BOplg, we can apply lemma AbIgnore.

Used in ExceptionLogEnguiry, chapter 21; ExceptionLogClear, chaptex 22.



C4. LEMMA "ABORT REFINES ABIGNCORE" 213

Lemma 3 (Ablgnotre) For a BOplg operation, the check-operation proof obliga-
tion reduces to ?

$BOp; BOplgPurse, RabCIPd’ | pdThis/pdThis']; AbWorld; RabCIPd |
PAQ

}_

¥ n:.domabAuthPurse
(abAuthPurse’ n).lost = (abAuthPurse n}.lost
A (abAuthPurse’ n).balance = tabAuthPurse n) balance

Proof:
See secton 14.6.
mC3
C.4 Lemma ‘Abort refines Ablgnore’
Lemma 4 {Abort refines Ablgnore) Concrete Abort refines abstract Abighore.

Abort; Rab’; RabOut ~ 3 AbWorld; a?: AIN « Rab » Rabln A Abignore

Proof:
See section 14.8.
mC4

C.5 Lemma ‘abort backward’

Lemma 5 {abort backward) Where a concrete operation is written as a compo-
sitton of AbortPurseOkay and a simpler operation starting from eaFrom, it is
sufficient to prove that the promotion of the simpler operation alone refines
the relevant abstract operation. *

IUsed in: ‘Ignore’, section 14.7; lemma ‘A bort refines Ablgnore’, secrion 14.8; used to simplify
every A-B operabon proof that refines Ablghore.

4Used in: lemuma *abort backward®, section C.5

SUsed in: StartFrom, secton 16; StartTo, section 17; ClearExceptionLog, section 22; ReadEx-
ceptionlog, section 21
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{3 AConPurse « PBOp ~ (AbortPurseOkay 5 BOpPurseEafromOkay) );
Rab’; RabOut;
(¥ BOpEafromOkay, Rab’; RabOut «
3 AbWorid; a? : AIN « Rab A Rabin n AOp)
'_
J AbWorld; a?: AIN « Rab ~ Rabin n AOp

Proof:
Sce section 14.9.
mC5

C.6 Lemma ‘constraint’

Lemma 6 (constraint} If an operation does not change purse status and does
not change the presence of payment detail messages in the ether (either by not
emirting such a message, or by emitting arn already existing message), then [t
preserves the BetweenWorld consiraints. © m

Proof:
See section 28.3.4.
mC6

C.7 Lemma 'logs unchanged’

Lemma 7 (logs unchanged) When the archive and the individual purse logs do
not change, and when no new req messages are added to the ether, the set of
PayDetails representing all the logs does not change either. 7

BOpOkay | archive’ = archive
~ (ranreq) N ether’ = (ranreg) n ether «
A ¥ n:dom conAuthPurse »
{conduthPurse’ n).exLog = (conAuthPursen}.exlLog
[
allLogs’ = allLogs
A toLogged’ = toLogged
A fromLogged’ = fromLogged
$Used in: Increase, section 28.4; CClearExceptionLog, section 29.8; CArchive, section 29.10,
"Used in: lemma ‘constraint’, section 28.3.4; CSrartFrom, section 29.2; CReq, section 29.4;
CVal, section 29.5; CAck, section 29.6; CReadExceprionlog, section 29.7; CAuthornseExLog(lear,
section 29.9.
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Proof:
See section 28.6.
nC7

C.8 Lemma ‘abort forward’

Lemma & (abort forward) Wherce a C operation is written as a composition of
CAbort and a sunpler operation starting from eaFrom, and the corresponding
B operation is structured similarly, it is sufficient to prove that the simpler
operation refines corresponding B operation 8.

(CAbkort s COpFEafrom): Rbc,

{ ¥ COpEafrom; Rbc « 3 BetweenWorld' » Rbc’ » BOpEafrom)
)_
d BetweenWorld' « Rbc" A (Abort § BOpFafrom)

Proof:
See section 28.7.
mC8

C.9 Lemma ‘compose backward’

Lemma C.1 (compose backward) If, under the backwards refinement rules, a
concrete operation COp, is a refinement of abstract operation AOpy, and COp»
is a refinement of AQp,, then their composition is a refinement of the abstract
composition %,

(COp 3 COp2). R'; ROut;
(¥ COp1; R, ROut«(dA; AIne RA RIn A ACpy ) ),
(V COpy; R, ROut« (3A; Alne RA RIn A AOp2 ) )
F
JA; Alne R A RIn A (AOp| § AOR)

8Used in: CStartFrom, section 29.2; CStartTo, section 29.3; CReadExceptionLog, section 29.7;
CClearExceptionLog, section 29.8,
%Used in: lemma ‘abort backward’, section C.5.
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Proof:

Thisresult is reasonably self-evident, from the definition of refinement in terms
of complete programis.

We show that the particular form of the thecrem holds here. Without loss
of generality, assume that the concrete and abstract state schemas have a single
component, ¢ and a respectively. (A mulli-component state is isomorphic to a
single component state consisting of all the multi-compaonents bundled into a
single schema or Cartesian product.)

Expand the compositions, and rename the quantified variables in the hy-
pothesis.

(3C e COm/c'] A COp[co/c]); R ROUL;
(¥ COm[co/c']; Ro; ROut» (3A; Alne R A RIn A AOp [an/a’]});
(¥ COpz[cpfcl; R'; ROut « (A Ag; Aln» Ry A RIn A AOp2[an/al))
'_
JA; Alne RARIMA(TAge AOM[ao/a’ ] A AOps[ag fal}

Use [hyp exists{ 1o drop the 3 in the hypothesis, then simplify.

COpila/c’); COpalca/c); R ROUL,
(Vv COpm(co/c']; Ro; ROut «
(3A; Alne R A RIn A AOP[anla’]) );
(V COm[caic); R; ROut »
{3 Ag; Ale Ry A RIn A AOp2[ag/al))
'_
34; Aines RARINnA (FAge AOpilas/a’]l A AOp:[an/al)

Use D A (VD « P}y = P 1o simplify the second universal quantifier in the
hypothesis.

COpla /'], COpzico/cl; R'; ROut,
(¥ COpilco/c’]; Ro; ROUL «
(3A; AIne R A RIn A AOm[apg/a’])) |
JAg; Alne Ry A RIn A AOp:lag/a)
)_
d4; AIne Ra RIn A {3Age AOM[ap/a’] A AOpa[aan/al)
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Use [hyp exists] to drop the 3 in the hypothesis, then simplify.

Copla/c’]; COpco/c]; Ro: R'; ROut; Rin, AOp;[ag/al;
(v COp][CO/C’]; RU; ROut »
(14, AlmeRARINAAOD [ap/a’[))
F
34; AIneRA RInA (A0 AOm[ag/a’]l A ADp:lao/al)}

Repeat the previous three steps to simplify the remaining quantifier in the hy-
pothesis.

COp[cpfc’], COp2lopic]; Ry Roy R ROut; Rin,
AOp|ay/a’); AOp:2lag/al

)_

J4; Alme RA RIna (A e AOp[ag/a’]l A ADpa[ag/al)

Move the inner J in the consequent outwards.

COp1(co/c’); COp2leo/c]; Ry Ro; R, ROut; Rin;
AOp [ap/a']; AOp:|ao/a]

-

JA; Ag; AIme RARInA AOp [ag/a’] A AOpu[agfal

All the terms are in the hypothesis.
mC9

C.10 Lemma ‘compose forward’

Lemma C.2 (compose forward) If, under the farwards refinement rules, con-
crete operation COp is a refinement of abstract operation AOp;, and COp; is
a refinement of AOp,, then their composition is a refinement of the abstract
composition 10,

(COp1 3 COp); R
(YCOp; Re (1A « R A A0 ) );
(Y COpz; Re (34 o R A AOP:))
-
JA" e« R A (AOp| § AOP:)

" 19Used in: lemma 'abort forward', section 28.7.
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Proof:
Follows as far lemma ‘compose backward', above.
mC.10

C.11 Lemma ‘promoted composilion’

Lemma C.3 (promoted composition) The promotion of the composition of two
operations is equal to the composition of the promotions of the two operations
1

Assume the existence of a local state Local, which, without loss of gencr-
ality we assume has a single variable x; a global state Glehal, with a standard
promotion framing schema, ¢

Local

M

Global
Elocals : NAME -+ Local

_ ¢
AGlobal
Alocal
n?: NAME

n? ¢ dom lecals
locals n? = BLocal
locals’ = locals @ {n? — BLocal’}

. Op1; Om
'_
dALocal » ¢ A {Opy § Op2)
=(JdALocal s ® A Op; ) s (FALocal « & A Opy)

1Used 1n: lemma 'abort backward', section C.5
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Proof:
We prove this by expanding the defirrition of composition as an existential quan-
tification, and then showing that this guantification and the quantification used
in the promoation commute.

Expand the composition on the right hand side, and then expand the def-

inition of &.

(JALocal s ® A Op}e(IALocal e @ A1 Opa}

= A Globaly » {3 ALocal « $[localsy/locals’] » Op,)
A (3 ALocal » @[localsy/locals] » Opn )

= J Globaly «
(IALocal «
[ tocals; localsy : NAME - Local |
n? € dom locals
A locals n? = OLocal
A localsy = locals @ {n? — 8Local’} |
A Opr)

A{3ALocal «
[ localsy; locals’ : NAME - Local |
n? € don lecalsy
A localsg n? = @Local
A locals” = localsy @ {n? — @Local’} ]
A Opz)

Rename the after state in the first operation to Local, and the before state in
the second operation to Localy. Choosing different names makes it casier to
combine the schemas across the quantifiers.

= 3 Global; «
(3 Local; Local, »
[ tacals; localsg : NAME —» Local |
n? € dom locals
A locals n? = 8Local
A locaisp = locals @ {n? — 8Local,} ]
A Op1[xa/X'T)

A (3 Localy; Local’ »
[ localsy; locals’ : NAME - Local |
n? € dom localsg
A localsg n? = 8Localy
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A locals’ = localsop ® {n? — BLocal'} ]
A Opa[xp/x])

Combine all these as a single schema, putting the quantifications into the pred-
icate.

= [ locals; locais’ : NAME —+ Locatl |

Jlocaly; Local, Local’; Locals; Localy »
n? € dom locals
A locals n? = 8Local
A localsy = locals & {(n? — 8Local,}
A h? € dom localsy
A localsy n? = 0Localy
A locals’ = localsy & {n? — OLocal’}
A Opy[Xafx')
A Opzlxp/x]]

We can remove the quantification of localy because we have a full definition of
it in terms of other variables. This leaves the following equations relating the
remaining variables.

= [ locals; locals’ : NAME — Lacal |
I Local; Local’; Local;; Localy »
n? € domlocals
n locals n? = 8Local
A @Localy = 8Local,
A locals’ = locais @ {n? — 0Local’}
A Opy[xg /x']
A Opalxg/x]]

Using the equation that 8Localy = @Local,, rename Local; and Lecaly both o
Localy.

= [ locals; locals’ : NAME — Local |
3 Local; Local’; Localy «
n? € dom locals
A locals n? = 8Local
A locals’ = locals & {n? — B8Local’}
AOpy[x0/X'}
A Opalxg/x] ]

Redistribute the quantifications



= 3 Local; Local’ «
( locals; locals’ : NAME — Local |
n? € dom locals
~ locals n? = OLocal
A locals” = locals ® [n? — OLlocal’}
A (3Llocaly « Op[xp/x'] ~ Op2lxa/x]) )

and rewrite in terms of composition

= 3 Local; Local’ « & A (Op; 3 Op2)
=3JALocal « ¢ A {Op, 3 0p:)

This is the left hand side of the equation, and hence the proof is complete.
mCll

C.12 Lemma ‘notLoggedAndIn’

Lemma C.4 (notLoggedAndIn} If a purse is engaged in a transaction, it does not
have a log for that transaction 2.

BetweenWorld

-

(frominEpr U frominEpa) n fromlogged = @
» {(tolnEpv U tolnEapayee) n tologged = @

Proof:
Consider the fo purse case. We consider the pd stored in the to purse, so

pd € (tolnEpv u tolnEapayee) =
pd_toSeqNo = (conAuthPursepd.to). pdAuth.toSeqNo

We have, from BetweenWorld constraint B-8, that
pd < tologged = pd.toSeqNo < (conAuthPurse pd .to). pdAuth.toSeqho

Hence there can be no pd in both sets.
The arguments for the from cases follow similarly, from BetweenWorld
constraint B-7.
mC.12
2ysed In: Val, behaviour of tologged, section 19.6.2; Ack, behaviour of definitelylLost, sec-

tion 20.6.5; CVal, B-10, section 29.5; lemma ‘lost’, section C.13; lemma ‘not lost before', sec-
rion C.14.
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C.13 Lemma ‘lost’

Lemma C.5 (lost) The sets definitelyLost and maybeLost are disjoint: a pd can
never be in both. 3

BetweenWorld + definitelyLost n maykelost = @
[
Proof:

definitelyLost n maybeLost
= tologged n (fromlLogged U fromInEpa)

i

n (frominEpa U fromlogged) r tolnEpy |defn.|
= toLogged n tolnEpv n (fromlLogged O fromInEpa) [rearranging]
=0 |Lemma ‘notlLoggedAndin’ (section C.12)]

mC.13

C.14 Lemma ‘not lost before’

Lemma C.6 (not lost before) pdThis is not lost before the Reg operation, al-
though it maybe lost after, 4

$®BOp; ReqPurseOkay; pdThis : PavDetails | (req~m?) = pdThis
l_

definitelyLost = definitelvLost’ \ [ pdThis)

A maybeLost = maybelost' \ {pdThis}

Proof:
From the definition of the way the state changes in RegOkay we can say that
the following sets are the same before and afterward:

fromlLogged = fromlogged’
A toLogged = toLogged’
A folnEpv = toInEpv’

UiJsed in: Regq, case I, section 18.7.1; Req, case 2, section 18.8.1; Req, case 3, section 18.9.1.
liUsed in; Req, existschosenLost, section 18.5; Reg, check-operation, section 18,6,
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For the set frominEpa, we know from ReqOkay that beforehand this pdThis was
notin the set and afterward it was. So

pdThis € frominEpa’
A frominEpa = frominEpa’ \ {pdThis)

From Lemma ‘notLoggedAndln’ (section C.12), we have:
pdThis € fromintpa’ = pdThis ¢ fromLogged’

Reminding ourselves of the definitions of definitelyLost and using rhe identitics
above, we have

definitelvyLost
toLogged r (fromlogged L frominEpa) [defn]
roLogged’ n (fromLogged’ U fromInEpa’ \ {pdThis}) labove]
teLogged’ n (froinLogged’ O fromInEpa’) \ {pdThis}

|pdThis ¢ fromLogged’]
= (tolegged’ n (fromlLogged’ u fromInEpa’)) \ {pdThis) [Spivey]
= definitelyLost’ \ { pdThis] [defn]

Similarly for maybelLost:

maybelost
= (frominEpa U fromLogged) r tolnEpv [defn]
= {{fromInEpa’ \ {pdThis}) U fromLogged') N toInEpyv' |above]

= {(fromInEpa’ U fromLogged') \ {pdThis}) n toInEpv’

|[pdThis ¢ fromlogged’]
= ({fromInEpa’ U fromLogged’) n toInEpv’) \ {pdThis) [prap \]
= maybelLost’ \ {pdThis} {def]

mC.l4

C.15 Lemma ‘AbWorld unique’

Lemma C.7 (AbWorld unique) Given BetweenWorld and a choice of which trans-
actions will be lost, there is always exactly one AbWorld that retrieves.l®

BetweenWorld; chosenLost : P PayDetails, pdThis : PayDetails |
chosenlLost < maybelLost

-

3, AbWorld « RabCiPd

15(Jged in: letruna ‘determunistic’, section 14.4.4.
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Proof:
Each element of AbWorld has an explicit equation in Rab defining it uniquely
in terms of BeweenWorld components, The components are entirely indepen-
dent, and the only constraint that ties any together is that on chosenlost and
maybeLost, which we have directly in the hypothesis.

The constraints required of any AbWorld can be shown to hold as follows:

v gbAuthPurse : NAME -+ AbPurse
conAuthPurse is a finite function. From the retrieve AbstractBetween the
domain of abAuthPurse equals the domain of corAuthPurse, and so0 is
finite, too.

w15
uC
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Auxiliary toolkit definitions

D.1 Total abstract balance

The function tetalAbBalance returns the total value held in a finite collection
of purses.

totalAbBalance : (NAME -+ AbPurse}) — N
totalAbBalance @ = Q

¥ w: NAME - AbPurse, n: NAME; AbPurse| n ¢ domw e
totalAbBalance{({n — 8 AbPurse} L w) =
balance + totalAbBalance w

This recursive definition is valid, because it is finite, and hence bounded.

D.2 Total lost value

The function totall.ost returns the total value lost by a finite collection of purses.

totallost . (NAME w AbPurse) — N
totallpst @ =0

Y w: NAME -+ AbPurse;, n: NAME; AbPurse| n¢ domw «
totallost{{n — OABPurse} U w) = lost + totall.ost w

This recursive definition is valid, because it is finite, and hence bounded.
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D.3 Summing values

We define the sum of the values in a set of exception logs, or a set of pay-
ment details. This recursive definition is valid, because it is finite, and hence

bounded.

| sumValue: F PayDetails — N

sumValue® =0

¥ pds : [ PayDerails; PayDetails | OPayDetails ¢ pds »
sumValue({@PayDetails} u pds) = value + sumValue pds
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Index
$B0p, 31 allLogs;, AuxWorld, 28
$C0p, 37 AllValueAccounted, 13
1,20 aNuwliin, 16
aNullout, 16
abAuthPurse; AbWorld, 16 AOUT, 16
AbFinOHr, 18 Archive, 34
AbFinState, 18 archive, 27

Ablgnore, 16

Ablnitin, 18
AbInitState, 17

AbOp, 16

Abort, 32
AbortPurseQOkay, 22
AbPurse, 15
AbPurseTransfer, 16
AbstractBetween, 45
AbTransfer, 17
AbTransferLost, 17
AbTransferLostTD, 17
AbTransferOkay, 17
AbTransferOkayTD, 17
AbWorld, 16
AbWorldSecureOp, 16
Ack, 33

ack, 20
AckPurseOkay, 24
AIN, 16

Authentic, 13
AuthenticAckMessage, 24
authenticFrom; AuxWorld, 28
AuthenticRegMessage, 24
authenticTo;, AuxWorld, 28
AlthenticValMessage, 24
AuthoriseExLogClearOkay, 33
AuxWorld, 28

balance, AbPurse, 15
balance;, ConPurse, 20
BenrweenlinitState, 35
BetweenWorld, 30
BerwFinOut, 36
BetwEinState, 36
Berwinitin, 36

CAbort, 38
CAck, 38
CArchive, 39
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CAuthoriseExLogClear, 39

CClearExceptionLog, 38

check-operation, 58

Clgnore, 38

CIncrease, 38

CLEAR, 19

ClearExceptionLog, 33

ClearExceptionLogEapayerOkay, 13

ClearExceptionLogPurseEapayerOkay,
26

ClearExceptionLogPurseOkay, 26

ConFinState, 39

ConnitState, 39

ConPurse, 20

ConPurseAbort, 22

ConPurseAck, 22

ConPurseClear, 26

ConPursefncrease, 21

ConPurseReq, 22

ConPurseStart, 22

ConPurseVal, 22

consequent, 114

consgconj, 116

consadisj, 116

consqgexists, 117

contradiction, 117

ConWorld, 27

CounterPartyDetails, 19

cpd; StartFromPurseEapayerOkay, 22

cpd; StartToPurseEapayerOkay, 23

cpd;, ValidStartFrom, 22

cpd; ValidstartTo, 23

CReadExceptionLog, 38

CReq, 38

CStartFrom, 38

CStartTo, 318

cut, 116

CVal, 38

definitelyLost; AuxWorld, 28
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eaPayee, 18

eaPayer, 18

epa, 18

epr, 18

epv, 18

ether; ConWorld, 27
exceptionLogClear, 20
exceptionLogResult, 20
exists-chosenLost, 58
exists-pd, 58

exLag, ConPurse, 20

from, TransferDetails, 16
frominEpa; AuxWorld, 28
frominEpr; AuxWorld, 28
fromLogged; AuxWorld, 28
fromSegNo; PayDetalls, 19

GlobalWorld, 18

hypdisj, 116
hypexists, 117
hypuni, 116
hypothesis, 114

Ignore, 32, 55

image, 19

Increase, 32
IncreasePurseOkay, 21

lemma ‘Abort refines Ablgnore, 61
lemma ‘Ablgnore, 119

lemma ‘abort backward’, 65, 119
lemma ‘abort forward’, 120
lemma ‘Abort refines Abignore, 119
lemma ‘AbWorld unique’, 125
lemma ‘compase backward’, 121
lemma ‘compose forward’, 121
lemma ‘constraint’, 100, 120
lemma ‘deterministic’, 58, 118
lemma ‘ignore’, 55

lemma ‘logs unchanged’, 120
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lemma ‘Jost unchanged’, 59, 119
lemma 'lost’, 124

lemima ‘not lost before’, 124

lemma ‘notLoggedAndln’, 124
lemma ‘promoted composition', 122
Loghook, 27

LoglIfNecessary, 13

lost; AbPurse, 15

maybeLost;, AuxWorld, 28
MESSAGE, 20

NAME, 15

name, ConPurse, 20

name;, CounterPartyDelails, 19
negation, 116

nextSeqNo; ConPurse, 20
nextSeqNo; CounterPartyDetails, 19
NoValueCreation, 12

onepoint, 117
OtherPursesRab, 46

PayDetails, 19
pdauth; ConPurse, 20
purse, ConWorld, 27

Rab, 46

Rab(l, 45

Rab(lIPd, 46

RabEnd, 49
RabEndcClPd, 48
RobHasBeenLost, 49
RabFasBeenLostClPd, 48
Rabin, 50

RabOkay, 49
RabOkayClIPd, 47
RabCut, 50
RabWillBeLost, 49
RabWillBeLostCIPd, 47
Rbc, 96
ReadExceptionLog, 33
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readExceptionLog, 20

ReadExceptionLogEapayerOkay, 33

ReadExceptionl.ogPurseEapayerOkay,
25

ReadExceptionLogPurseOkay, 25

Reg, 33

reg, 20

ReqPurseOkay, 24

RetryAck, 25

RetryReq, 25

RetryVal, 25

StartFrom, 32

startFrom, 20
StartFromEapayerOkay, 33
StartFromPurseFapayerOkay, 22
StartfromPurse Okay, 23
StartTo, 32

startTe, 20
StartToEapayerOkay, 33
StartToPurseEapayerOkay, 23
StartToPurseOkay, 24
STATUS, 18

status; ConPurse, 20
strengthenconsg, 116
SufficientFunds Property, 13
sumValue, 127

thin, 116

to; TransferDetails, 16
toinEapayee; AuxWorld, 28
toinEpv;, AuxWorld, 28
toLogged; Auxivorld, 28
toSeqNo;, PayDetails, 19
totalAbBalance, 126
totalLost, 126

transfer, 16
TransferDetailys, 16

utiihyp, 115

val, 33
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val, 20

ValidstartFrom, 22
ValidstartTo, 23
ValPurseOkay, 24

value; CounterPartyDetails, 19
value, TransferDetails, 16





