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Chapter 1 

Introduction
 

1.1 The application 

This case study is a reduced version of a real devdopment by the NatWes[ 
Development Team (now platform seven) of a Smartcard product for electronic 
commerce. This development was deeply security critical: it was vital to ensure 
that these cards would not contain any bugs in implementation or design that 
would allow them to be subverted once in the field. 

The system consists of a number of electronic purses that carry financial 
value, each hosted on a Smartcard. The purses interact with each other via a 
communications deVice to exchange value. Once released into the field, each 
purse is on its own: it has to ensure the security of all Hs transactions y.,.ithout 
recourse to a central conttollcr. All security measures have to be implemented 
on the card, with no real-time external audit logging or monitoring. 

1.1.1 Models 

We develop two key models in this case study. The first is an abstract model, 
describing the world of purses and the exchange of value through alOmic trans­
actions, expressing the security proper lies that the cards must presen'e. The 
second is a concrete model, reflecting the design of the purses which exchange 
value using a message protocol. Both models are described in the Z notalion 
ISpivey 1992b) [Woodcock & DaVies 19961lBarden et al. 1994), and we prove 
that the concrete model is a refinement of the abstract. 

Absrract model 

The abstract model is small, simple, and easy to understand. The key operation 
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paying purse I atomic payment receiving purse 

-----~ 

Figure 1. L An atomic transaction in the abstract model 

(1) request 

~ 
(2) payment 

paring purse receiving purse 

~ 
(3) ackno .....ledgement 

Figure 1.2: Part of the n-step protocol used to implement the atomic transaction_ 
in the concrete model. 

transfers a chosen amount of value from one purse to another; the operation is 
modelled as an atomic action that simultaneously decrement s the value in the 
paying purse and increments the value in Ihe receiVing purse (ftgure 1.1). Two 
key system security properties arc maintained by this and other operations: 

• no value may be creared in the system; and 

• all value is accounted in the system (no value is lost). 

The simplicity of the abstract model allO\""s these properties to be expressed in 
a way that is easily understood by the client. 

Concrete model 

The concrete model is rather more complicated, reflecting the details of the' real 
system design. The key changes from the abstract are: 

transactions are no longer atomic, but instead follow an n-step protocol 
(figure I.2); 

the conununications medium is insecure and unreliable; 

transaction logging is added to handle lost messages; and 
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there are no global properlies-each purse has to be implemented in iso­
lation. 

The basic protocol is: 

1.	 the communications deVice ascertains the transaction to perform; 

2.	 the receiving purse requests the transfer of an amount from the paying 
purse; 

3.	 the paying purse s('nds that amount to the reeching purse; and 

4.	 the receiving purse sends an acknowledgement of receipt to the paying 
purse. 

The protocol, although simple in principle, is complicated by several facts: the 
protocol can be stopped at any point by removing the power from a card; the 
communications medium could lose a message; and a wire tapper could record 
a message and play it back to the same or different card later. In the face of 
all these possible actions, the protocol must implement the atomic transfer of 
value correctly, as specified in the abstract model. 

1.1.2 Proofs 

All the security properties of the abstract model are {unctioniJl, and so are 
preserved by refinement. 

The purpose of performing the proof is to give a very high assurance that 
the chosen design (the protocol) does, indeed, behave jusl like the abstract, 
atomic transfers. We choose to do rigorous proofs by hand: our experience is 
that current proof tools are not yet appropriate for a task of this size. We did, 
however, type-check the statements of the proof obligations and many of the 
proof steps using a combination of fuzz [Spivey 1992aJ and Formaliser [Flynn 
et at. 1990J [Stepney]. As part of the development process, all proofs were also 
independently checked by external evaluators. 

1.2 Overview of model and proof structure 

The specification and security proof have the follo\\ing structure (summarised 
in figure 1.3): 

• Security Properties, SPs: 

- The Security Properties are defined in terms of constraints on secure 
operations; they are formalised in Ienus of the appropriate model 
concepts (see later). 
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I SEFs I 

I, secunty enforcing ..-1' "ty " . I 
I functions, ,secufl properties I 

Cha la,2 "~'Fn'i;,'~~=rChaPla, 3 
~ of: 

" prool, using 
, backward rules 

" Parlll , 
constrained -;---- -----l 
promotion I 'B I 

constrained world 
I 'B p : Chapter 5 ~----l----J 
: single purse I Chapter 4 I 

proof, using 
forward rules 
Parllll 

uncons.lrained ~----- -----1 
promotion', C 

I unconstrained

i singl~ gu,:l---------'tw,,~d,_"~ap~er_'~ 
I. Chapter 7 _IL 

Figure 1.3: Overview of document organisation, \\-ith model and proof structure 

- In some cases, where it may nor be evident that a model captures a 
particular constraint, the desired property is recast as a theorem and 
proved. 

• Abstract model, -'2\.: \Vc define an abstract model (Chapter 3), which forms 
the Formal Security Policy Model; it consists of a global model in terms of 
a simple state and operations: 

- the state is a world of (abstract) purses; and 
- the operations are defined on this state. 

Between model, B: Next we build a 'between' levds modeL This is the first 
refinement towards the implementation of purses consisting of local state 
information only. This model, B, is structured as a promoted state-and­
operations model: 

- The state of a single (concrete) purse, and lhe corresponding stngle­
purse operations, are defined (Chapter 4). 

- The purses and operations are promoted to a global state and oper­
ations (Chapter 5). Constraints are put on this promotion to enable 
the correctness proofs to be performed. 
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Concrete model, C: OUf final model is the concrete level model, which 
forms the Formal Architectural Design. This model, C, is structured as a 
promoted state-and-operations model, very similar to B, except it has no 
constraints on the promotion: 

- The state of a single (concrete) purse, and the corresponding single­
purse operations, are defined (Chapter 7). 

- The purses and operations are promoted to a global state and opera­
tions, with no constraints (Chapter 7). 

Security proof .Jt-'B: The securitypolicy is proved to hold for 'B by prming 
that 'B is a refinement of 5l. This forms the first part of Explanation of 
Consistency. 

- The retrieve relation Rab, relating the B and .A worlds, is defined 
(Chapter 10). 

- The security policy is shown ro hold for 'B by proof thar 'B refines.5\., 
using the 'backward' proof rules (Part 11), This proof comprises the 
bulk of the proof work. 

Security proof 'B~C: The security policY is proved to hold for C by proving 
that C is a refinement of 'B (and hence of A, by transitivity of refinement). 
This forms the remaining part of Explanation of Consistency. 

- The retrieve relation Rbc, relating the C and 'B worlds, is defined 
(Chapter 26). 

- The security policy is shown to hold for C by proof that C refines 'B, 
using the 'forward' proof rules (Part III). These two levels are relatively 
close, so this proof is relatively straightforward. 

The mathematical operators and schemas defined in this document are in­
cluded in the index at the end of the docwnent. 

1.3 Rationale for model structure 

As noted above, this case study has been adapted from a larger, real develop­
ment. In order to produce a case study of a size appropriate for public pre­
sentation, much of the real functionality has had to be removed. Some of the 
structure of the larger specification has remained present in the smaUer one, 
although it might not have been used had the smaller specification been VvTiI­

ten from scratch_ TIlis omitted functionality, whilst important from a business 
perspective, is peripheral to the central security requirements. 
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1.4 Rationale for proof structure 

Imagine two specifications.J\ and C, which describe executable machines. Imag­
ine thai, on every step, each machine consumes an input and produces an out­
put Finally, imagine that every execu[ion of C, ....iewed solely in terms of inputs 
and omputs, could equally .......ell have been an execution of .J\. In this sense,
 
.J\ can simulate any behaviour of C. If thJs is the case, then we say that C is a 
refinement of .J\. 

This is exactly what we want to prove in our case study: that the concrete 
model is a refinement of the abstract one. 

Refinement is an ordering bet'\veen specifications that captures an intu­
itive notion of when a concrete specification implements an abstract onc, This 
allows us to postpone implementation detail in \';THing OUT top-level specifica­
tion, focussing only on essential properties. The cost of this abstraction is the 
need to refine the specification, reifying data structures and algorithms; refine­
mem is a formal technique for ensuring that essential properUes are present 
in a more concrNe specification. 

Nondeterminism is used in an abstract specification to describe alterna­
tive acceptable behaviours; in choosing a concrete refinement of an abstract 
specification, some of these nondeterminisUc choices may be resolved. Since 
we view J' and C only terms of inputs and outputs, nondeterministtl present 
in ~~ may be resolved at a different point in C. 

Our abstract model, chosen [Q represent the difference between secure 
and msecure transactions very clearly, has nondeterministtl in a different place 
from the implementation. In fact, it has it in a pJace that precludes proof using 
the forward rules of {Spivey 1992b, section 5.61. For this reason we use the 
backward rules to prove against the abstract modeL 

Al the concrete level, .....e must describe the purse behaviour in a way that 
closely' mirrors the actual design. An important (and obvious) property of the 
design is that the purses are independent, that is, each purse acts on the basis 
or its ovm, local kno\'V-ledge, and we have no control over the communications 
medium between purses. This can be expressed cleanly in Z by building a 
rnodel of an indi\idual purse in isola lion, and then promoting [Barden et aI. 
1994, chapter 19] this model to a world Mth many purses. To express the fact 
that we have no global control over the purses nor over the communications 
medium, we must use an unconstrained promotion. This we do in the C model. 

Why do we not, then, do a single backward proof step from the J' model 
to the C model? 

For technical reasons, the backward proof rules need the more concrete 
specification to be tightly constrained in its state space. The form of the proofs 
forces the description of the state space to include exphci t predicates excluding 
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all but valid states. However, these predicates are not expressible locally [0 

purses, and hence cannot be included in specification derived by unconstrained 
promotion. That is, we cannot express the predicates needed for the proof in 

the C model. 
We therefore introduce an intermediate model, the 1J model, which is a 

constrained promotion, and hence can contain the predicates needed for the 
backward proofs. We. then prove a refinement from.Jt to 1J using the backward 
rules. Bul now the constrained promotion 'B is very close to the unconstrained 
promotion C, and in parlicular the nondetcrminism Is resolved in the same 
place in both models, allO\\oing the forward rules (Q be used. This we do in our 
proof of refinement from 'B to C. 

1.5 Status 

The specification and theorems have been parsed and typc-checked using fuzz 
[Spivey 1992aj. There is no use of the %.%unchecked parser directive in the 
specification, in the statement of theorems, or in the statement of most of the 
intermediate goals; however, some reasoning steps have hidden declarations 
to make them type-check and some do not conform to fuzz's syntax at all. 





Chapter 2 

Security Properties 

2.1 Introduction 

This chapter gathers wgether the Security Properties (SPs) definitions, for ref­
erence. The SPs are formalised in terms of (he abstract and concrete models, 
making use of definitions in Chapters 3 and 4. (The index can be used (0 find 
the definitions of these terms.) The full meaning and effect of a SP can be seen 
only in the context of the model that includes it. 

2.2 Abstract model SPs 

The following SPs are expressed in terms of the abstract model 5\., defined in 
chapter 3. 

2.2.1 No value creation 

Serurity Property 1. No value may be created in the system: the sum ofall the 
purses' balances does not increase. l 

NoValueCreatiml _ 

6AbWorid 

wtalAbBalance abAuchPurse' :s toraLAbBalance abAuthPurse 

lPro\'ed to hold for the model, section 2,4, NoValueCreation requtres lhat the sum o[ the 
be[ore balances is greater or equal to the sum of the after balances. The abslTact model enforces 
a stronger condition: that trans[ers change only the purses Involved in the transfer and only by 
the amount slated in the transfer. 
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2.2.2 All value accounled 

Security Property 2.1. All value must be accounred for in the system: the sum 
o( all purses' balances and lost components does not change. 2 

A.. llVa!ueAccounted _ 

f~Abworld 
totalAbBalance abAuthPurse' + totalLost abAuthPurse' "'" 

rotalAbBalance abAuthPurse + totalLost abAuthPurse 

2.2.3 Authentic purses
 

Security Property 3. A transfer can occur only between authentic purses.)
 

Authentic
 
AbWorld
 
name?: NAME 

name? E dom abAuthPurse 

2.2.4 Sufficient funds 

Security Property 4. A transfer can occur only if there are sufficient funds in 
the from~purse, 4 

SufficienfFundsProperty _ 

AbWorld 
Trans(erDerails? 

value? $. (abAuthPurse (rom?) .balance 

2.3 Concrete model SPs 

The following SPs are expressed in terms of the between (and concrece) model 
'B, defined in chapter 4. 

Ipro\'ed to hold for the model, section 2.4. The concrete level SP 2.2 uses logging to support 
mls SP. 

lUsed in th~ d~f1nition of: AbTrans(erOkar and AbTrans(erlost, Sl'ction 3.3.3. 
~Used in the defmition of: AbTrans(erOka)' and AbTrans(erLost, section 3.3.3. Used in the 

proof of: SP1, sl'ction 2.4.1, section 2.4.3; SP2, section 2.4.2, section 2.4.4. Note that the model 
also ensures that the balance and value? are non-negative. 
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2.3.1 Exception logging 

Security Property 2.2. If a purse aborts a transfer at a point where value could 
be lost, then the purse logs the details. s 

_Logl(Necessary ------------­
[ 6.ConPurse 

~xLog{ = exLog U (if status E {epv, epaHhen{pdAurh}else0) 

The only rimes the log need be updated are if the purse is in epv (having sent 
rhe req message) or in epa (having sent the val but not yet received the ack). 
In all other cases the transfer has not yet got far enough for the purse to be 
worried that the transfer has failed, or has got far enough that the purse is 
happy 'hat the transfer has succeeded. 

2.4 SPs and the models 

Alilhe SPs hold in the appropriate models. 

In most cases, this is obviously true, by construc[ion: the SPs appear as 
explicH predicates in the relevant definitions. However, NoValueCreation and 
AllValueAccounted are not explicitly included in the operation that changes the 
relevant components: AbTrans{er. In this secUon, we demonstrate that the 
abstract model indeed satisfies these SPs. That is: 

AbTrans{erOkay l- NoValueCreation 1\ AllVafueAccounfed 

AbTrans{erLost l- NoValueCreafion 1\ AllValueAccounted 

AbIgnore l- NoValueCreation 1\ AlIValueAccounted 

In the proofs below, we use the 1D fonn of the definitions, by [cutjting in the 
appropriate Trans{erDetails. 

2.4.1 Transfer okay, no value creation 

AbTrans{erOkayTD I- NoValueCreatiotl 

sUsed in the. de.finitton of: AbortPurse, section 4.8.2. 
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Proof: 

totalAbBalance abAuthPurse' 

= totalAbBalance{ {(rom?, Co?} ""'3 abAuthPurse') 
+ (abAuthPurse' from?),balance 
+ (abAuthPurse' to?).balance [totalAbBalance] 

= totaL4.bBalance( {from?, to?} <El abAuthPurse) 
+ { (abAurhPurse (rom?) .balance ­ value? ) 
+ ((abAuthPurse to?).balance + value?) (AbTransferOkay] 

= totaL4bBalanceabAurhPurse 

s rotalAbBalanceabAuthPurse 

.2.4.1 

2.4.2 Transfer okay, all value accounted 

AbTmnsferOkayTD I- AlIValueAccounted 

Proof: 

totaLAbBalance abAuthPurse' + rotalLost abAuthPurse' 

= totalAbBalance( {from?, to?} <EI abAuthPurse') 
+ (abAuthPurse' {rom?J.balance 
+ (abAuthPurse' ro?).balance [toraL4.hBalance] 

+ toralLose( {from?, to?} <El abAurhPurse') 
+ (abAuthPurse' from?).losf 
+ (abAurhPurse' to?),losr [tatalLostJ 

= toraL4bBalance( [from?, to?} ""'3 abAuthPurse) 
+ ( (abAuthPurse from?) .balance - value? ) 
+ ({abAuthPurse ro?l.balance + value?) 

+ totalLost( {from?, to?} <El abAurhPurse) 
+ (abAuthPurse from?).losr 
+ (abAuthPurse to?)./ost [AbTrans(erOkayj 

= roraL4bBalanceabAuthPurse + totalLost abAuthPurse 

• 2.4.2 
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2.4.3 Transfer lost, no value creation 

AbTransferLostTD I- NoValueCreation 

Proof: 

totaL4.bBalance abAuthPurse' 

= totaL4bBafance( {from?, to?} ""il abAuthPurse') 
+ (abAuthPurse' from?).balance 
+ (abAurhPurse' to?Lbalance [totalAbBalanceJ 

= totalAbBalance( rfrom?, to?) <El abAuthPurse) 
+ «abAurhPurse (rom?).balance - value?) 
+ (abAurhPurse to7).ba/ance [AbTrans{erLost] 

= totalAbBalanceabAurhPurse- value? ItotalAbBa/ance] 

:$ totalAbBalance abAurhPurse 

• 2.4.3 

2.4.4 Transfer lost, all value accounted 

AbTrans(erLosrID I- AllValueAccounted 

Proof: 

total4.bBalance abAuthPurse' + toralLost abAuthPurse'
 

= totalAbBalance( {from?, to?J <El abAuthPurse')
 
+ (abAuthPurse' from?).balance 
+ (abAuthPurse' to?).balance ItotaL4bBalanceJ 

+ totaILosl([from?, to?} <El abAuthPurse') 
+ (abAuthPurse' from?) ,lost 
+ (abAuthPurse' to?).lost [totalLost] 

= totalAbBalance( {from?, to?} <El abAurhPurse) 
+ ((abAuthPursefrom?).balance - value?) 
+ (abAuthPurse to?).balance 

+ totalLost( {from?, to?} <El abAuthPurse) 
+ «(abAuthPurse from?).1ost + value?) 
+ (abAuthPurse to?).lost [AbTrans(erLost] 

= totalAbBalance abAuthPurse + totalLost abAuthPurse 
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.2.4.-1 

CHAPTER 2. SPS 

2.4.5 Transfer ignore 

AbIgnore f- NoValueCreafion /\ AliVaJueAccounted 

Proof: 
Follows directly from the definition of AbIgnore, which changes none of the 
relevant values. 

• 2.4.5
 
.2.4
 
.2 



Chapter 3 

Abstract model: security policy
 

3.1 Introduction
 

The abstract model specification has the following pans:
 

• State: the abstract world of purses 

• Operations: secure changes from one abstract stale to another 

• Initialisation: the abstract world starts off secure 

• Finalisation:	 a way of obsening part of the abstract world to determine 
that it is secure 

3.2 The abstract state 

3.2.1 A purse 

An abstract AbPluse consists of a balance, the value stored in the purse; and a 
lost component, the total value lost durIng unsuccessful transfers. (The unsuc­
cessful, but still secure, transfer is defined in section 3.3.3.) 

AbPurse ~ [balance. lost: N ] 

3.2.2 Transfer details
 

Each purse has a distinct, unique name.
 

[NAME] 
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The details of a particular transfer include the names of the from and ro purses 
and the value to be transferred. 

[	 TransferDetaiis
 
(rom, to : NAME
 
value: N
 

Although it is nol permitted to perform a transfer between a purse and itself, 
the consrraint from':/:- to is checked during AbTransfer, rather than put in 
Trans{erDetails, since it is permitted to request a transfer with from = to. 

Transacrions involving zero value are allowed. 

3.2.3 Abstract world 

The abstract \\o'orld model contains a mapping from purse names to abstract 
purses. The domain of this function corresponds to authentic purses, those 
that may engage in transfers l . We allow only a finite number of authentic 
purses, to ensure a well-defined total value in the system. 

AbWorld ~ [abAuthfurse: NAME - Abfurse] 

3.3 Secure operations 

HaVing defined our abstract world, AbWorld, we now define operations on the 
world that respect the relevant SPs. We call these secure operations. They 
comprise: 

• AbIgnore: securely do nothing 

AbTransfer: securely transfer balance between purses, or securely 'lose' 
the balance 

3.3.1 Abstract inputs and outputs 

We are to prove that the implementation is a refinement of the abstract security 
policy specification. This is made simpler if e'/er}' operation has an input and 
an output, and if all operations' inputs and outputs are of the same type. 

So we define the inputs and outputs (some being 'dummy' values) using a 
free type construct: 

A1N > aNul/In
 
I rransfer((TransferDecails))
 

1SP 3, 'Authentic purses', secrlOn 2.2.3. 
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AOUT ::~ aNul/out 

Every abstract operation has the follo\\ing properties: 

AbOp-,--,- _ 

~AbWorid 

a? : .4IN; a! : AOUT 

a! = aNullOu.t 

The output is always aNullOut (that is, we are nOl interested in the abstract 
output). 

3.3.2 Abstract ignore
 

Any operation has the option of securely doing nothing.
 

Ablgnoye _ 
AbOp 

abAurhPurse' = abAuthPurse 

3.3.3 Transfer 

The transfer operation changes only the balance and lost component of the 
relevant purses. 

AbPurseTrans(er ~ AbPurse \ (balance, lost) 

The secure transfer operations change at most the from and co purse states: all 
other purse states are unchanged. 

AbWorJdSecureOp . _
 

AbOp
 
Trans{erDerails?
 

a? E ran transfer
 

oTransferDetaiIs? = transfer-a?
 

{from?, to?} <EI abAuthPurse' = lfrom?, to?} -<El abAuthPurse
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A transfer can securel,· succeed between two purses if they are distinct, both 
purses are authentic2 , and the from purse has sufficient funds:'!. 

AbTransferOkay71J _ 

.4bWorldSecureOp 

Aurhenfic[(rom?! name?} 
Aurhentic[ to? / name?] 
Su{ficientFundsProperty 

to? "* from? 

abAuthPurse' from? = (J16AbPurse I 

I1AbPurse = abAuthPurse (rom? 
1\ balance' = balance - value? 
A lose' = lost 
1\ 2AbPurseTrans(er 

• OAbPurse' ) 

! abAuthPurse' to? = (J1 t'iAbPurse I
 
0 AbPurse = abA uthPurse to?
 
A balance' = balance + value?
 
1\ lost' = Jose
 

I 

1\ 2AbPurseTransfer 
• (}AbPurse' ) 

I 

The operation transfers value? from the {rom purse to the to pursc4 . All the 
olher components of {he from? and CO? purses arc unchanged, and all other 
purses arc unchanged. 

The model is more constrained than required by the SPs, and hence it 
represents a sufficient, bUI not necessary, behaviour to conform 10 the SPs. 

Hiding the auxiliary inputs gives lhe Okay operation as: 

AbTransferOkay:; AbTrans{erOkayTD \ (to?,{rom?, value?) 

Atransfer can securely lose value between m'o purses if they are distinct, both 
purses are authenlic 5 , and the from purse has sufficient funds6 . 

2SP 3, 'Authentic purses', section 2.2.3.
 
3SP4, 'Sufficient funds', section 2.2.4.
 
4.SP 1, 'No value creaTed', section 2.2.l.
 
SSP 3, 'Authentic purses', section 2.2.3.
 
6SP 4, 'Sufficient funds', section 2.2.4.
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I AbTransferLostTD 
I AbWorldSecureOp 

Authentic[{rom? j name?] 
AuthenCic[ to? I name?] 
SufficienrFundsPropeyty 

to? '* from? 

abAUfhPurse' from? E { ~AbPurse I 
8AbPurse = abAuthPurse from'? 
1\ balance' == balance - value? 
1\ lost' = lost + value? 
1\ 3AbPurseTransfer 

• eAbPurse' J 

abAuthPurse'to? == abAuthPurse to? 

The operation removes value? from the (rom purse's balance,7 and adds it to 
the from purse's lost component.s All the other components of the from? purse 
are unchanged, The to purse and all other purses are unchanged. 

Hiding Ihe auxiliary inputs gives the Okay operation as: 

AbTransferLost ~ AbTransferLostTD \ (to?, from?, value?) 

The full transfer operation can also securely do nothing, AbIgnore. The full 
transfer operation is 

AbTrans(er ~ AbTransferOkay v AbTrans(erLost v AbIgnore 

3.4 Abstract initial state 

One conventional definition of the initial state of a system is as being empty; op­
erations are used to add elements to the state until the desired configuration is 
reached. However, we do not "'ish to add new abstract purses to the domain of 
abAuchPurse, so we cannot start vvith a system contajning no authentic purses. 
So we set up an arbitrary initial state, which satisfies the predicate of AbWorld'. 

AblnitState ~ AbWorld' 

7SP 1, 'No value cr('ated', section 2.2.1.
 
BSp 2, 'All value accoumed', section 2.2.2.
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So we say that AblnitState has some particular value, we just do not say what 
that particular valu~ is. The particuJar value chosen is irrelevant to the ~ecurity 

of the system; any' starting state would be securC'. 
Initialisation also defines the mapping from global (that is, observable) 

inputs to abstract (that lS, modeUed) inputs. This is jusl the identity relation in 
the..J\ model: 

Al>InirIn ;; [ a?, g7 : AIN I a? ~ g7 ] 

3.5 Abstract finalisation 

We must 'observe' each security relevant component of the world, in order to 
dNNmine that the security properties do indeed hold. Observation b: usuallr 
performed by enquiry operations, and any part of the state not visible through 
some enquiry operation is deemed unimportant. However, in our case there are 
no abstract enquiry operations to observe state components, bm there arc secu­
rity properties related to them, and so they are important. We use finalisaUon 
to observe them. 

Finalisation takes an abstract state, and 'projects our' the portion of H 
we \\ish to observe, inlO a global state. Here we choose to observe lhe entire 
abstract state. 

The global state is (he same as the abstract slate; 

GlobalWorld ~ [ g.4uchPurse : NAME - AbPurse] 

Finalisalion gives rhe global state cortesponding to an abstract stale. These are 
mostly the identity relations in the..J1. model: 

AbFinState _ 

AbWorld 
GfobalWorld 

gAuthPurse = abAuthPurse 

Finalisation also defines the mapping from abstract outputs to global (that is, 
observable) outputs. 

AbFinOur ~ [al, gl : AOur I a! ::= g!] 



Chapter 4 

Between model, single purse 
operations 

4.1 Overview 

This chapter covers the purse-level operations, which are: abort, the starl op­
erations, the transfer operations req, val and ack, read log, and clear log. 

For the sake of simplicity, we assume that concrete and abstract NAMEs 
are dra\oVIl from the same sets. 

In this section we refer to 'concrete' rather than 'between' purse, because, 
as we see later, there is no difference between the two structurally. The only 
difference betvveen the 13 and C worlds is fewer global constraints in the latter. 

4.2 Status 

A concrete purse has a status, which records its progress through a transaction. 

STATUS ::~ eaFrom I eaTo I epr I epv I epa 

The statuses are: eaFrom 'expecting any payer', eaTo 'expecting any payee', 
epr 'expeeling payment req', epv 'expecting pa}ment ""al', and epa 'expecting 
payment ack'. 

4.3 Message Details 

The abstract level describes the operaUons that transfer value. Purses are sent 
instrllcUons Via messages, and we present the structure of compound messages 
in this secUon. 
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The abstract level describes a transfer of value from one purse to another. 
We implement this at the concrete level by a protocol consisting of messages. 

• Asingle transfer involves many messages. So we need a way [0 distinguish 
messages: we use a fag for req, valor ack. 

•	 We have no control over the concrete messages, and cannot forbid the du­
plication of messages. So we need a l ....ay to distinguish separate transac­
tions: we usc sequence numbers that are increased between transactions. 
(The transaction sequence number is implemented as a sufficiently large 
number. Provided that the initial sequence number is quite small, and each 
increment is small, we nc('d not worry about overflow, since the purse \ll,i11 
physicall,' wear out first.) 

4.3.1 Start message counterparty details 

The counterparty details of a payment, which are transmitted -with a start mes­
sage, identify the other purse, the value to be transferred, and the other purse's 
transaction sequence number. 

counrerpartYDetails
 
name: NAME
 
value: N
 
nextSeqNo : N
D 

4.3.2 Payment log message details 

Purses store current payment derails, and exception log records that hold suf­
ficient information abom failed or problematic transactions to reconstruct the 
value lost in the transfer l . The payment log details identify the different from 
and to purses and [he value to be transferred (as in the abstract TransferDerails) 
and also the purses' transaction sequence numbers. The combination of purse 
name and sequence number uniquely identifies the transaction. 

PayDer-atls _ 

TransferDerails 

fromSeqNo, faSe.qNo : N 

from oF fa 

1Concrete SP 2.2, 'Exception logging', section 2.3.1. 
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We can pur the constraint about distinct purses in the PayDetails, because this 
check is made in VaUdStartTo/ From, before the details are set up. 

4.4 Clear Exception Log Validation 

CLEAR is the set of clear codes for purse exception logs. A clear code is pro­
vided by an external source (section 5.7.1) in order to clear a purse's exception 
log (section 4.10.2). The function image calculates the clear code for a given 
non-empt}' set of exception records. image takes a set of exception logs, and 
produces another value used to validate a log dear command. For each set of 
PayDetails, there is a unique clear code. 

[CLEAR] 

,I image: 111'1 PayDetaiIs ,..... CLEAR 

The BetweenWorld model is designed so that no logs are ever lost. Indeed, 
we must prove that no logs are lost in the refinement of each operation - this 
is an 1mplicit part of the refinement correctness proofs. The BetweenWorld 
mechanism to ensure that no logs are lost relies on two assumphons. 

The first is that clear codes are only ever generated from sets of PayDetails 
that are stored in the archive (a secure swre of log records innoduced later). 
The second is that clear codes unambiguously idenlify sels of PayDetai/s. The 
second of these assumpUons is captured formally by the injective funcllon 
image. 

In pracUce, image is not injechve on general sets of PayDetails, but it is 
injective when restricted to the sets actually encountered. 

4.5 Messages 

There are various kinds of messages: 
The first group of messages may be unprotected. Their forgeabihtyis mod­

elled by having them all present in the initial message ether (see section 6.1). 
The second group of messages are all that need to be cryptographically 

protected. Their unforgeability is modelled by having them added to the-IDes· 
sage ether only by specified operations. 

1., 'forged', is a message emitted by operations that ignore the (irrelevant) 
input message, or emitted by non·authentic purses. It is also the input mes­
sage to the Ignore, Increase and Abort operations. 1. is implemented as an 
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unprotected status message, as an error message, as a 'forged' message, or as 
'silence', As far as the model is concerned, we choose not to distinguish these 
messages from each other, only from (he other distinguished ones. (See also 
section 5.8.) 

MESSAGE ::= starrFrotn ({ CounterPartyDelails»
 
I startTo{( CounterPartyDetails)
 
I readExceptionLog
 

I req«PayDerai!s))
 
I val «PayDerails»
 
I ack«PayDerailsIJ
 
I exceprionLogResulr((NA.ME x PayDerails»
 
I exceptionLogClear«NAME x CLEAR»
 

I 1. 

r\ complete payment transaction is made up of a startFrom, startTo, req, 
val, and ack message. 

4.6 A concrete purse 

A concrete purse has a current balance, an exception log for recording failed 
or problemaric transfers, a name, a transaction sequence number to be used 
for the next transaction, the payment details of the current transaction, and a 
stams indicating the purse's position in the currenr transaction. 

ConPurse 
balance: N 
exLog : [fll PayDetails 
name: NAME 
next5eqNo : N 
pdAuth : PayDetatls 
starus : 51'.4.TUS 

"if pd: exLog. name E {pd.(rotn, pd. to} 

status = epr :0:> name =: pdAuth.from 
1\ pdAuth. value:::; balance 
1\ pdAuth.fromSeqNo < next5eqNo 

starus = epv :0:> pdAuth. toSeqNo < nextSeqNo 
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I status ~ epa,", pdAuth.(romSeqNo < nextSeqNo 

The name is included in the purse's state so that the purse itself can check it is 
the correct purse for this transaction. 

The predicate on the purse state records the foUmving constrainls: 

P-l	 't pd: exLog • name E {pd.(rom, pd. '0) 
All log details in the exception log refer to this purse, as the from or the 
to party2. 

P-2	 status = epr =>
 

name = pdAurh.{rom
 
1\ pdAurh.va!ue s balance
 
1\ pdAurh.(romSeqNo < nextSeqNo
 
If the purse is expecting a paymenr request, then: 

(a)	 it is the from purse of the current transaction]. 
(b)	 it has sufficient funds for the request 4 (this condition is required be­

cause there is no check for sufficient funds on receipt of the request) 
(c)	 its next sequence number is greater than the current transaction's 

sequence numbers 

P-3	 status = epv => pdAuth.toSeqNo < nextSeqNo 
If the purse is expecting a payment value, then its next sequence number 
is greater than the current transaction's sequence number6 

P-4	 status = epa => pdAuth.fromSeqNo < nextSeqNo 
If the purse is expecting a payment acknowledgement, then its next se­
quence number is greater than the current transaction's sequence num· 
ber i 

4,7 Single Purse operations 

4.7.1 ~ervie\¥ 

The concrete purse specification is structured around the various purse-level 
operations: 

2Used m: AuxWorid does not add consrraints, section 5.2.1.
 
3Used in: CReq, B-9, section 29.4.
 
4Used in: Req, case 1, Su(fidentFundsProperty, section 18.i.2; Req, case 2, SufficientFunds·
 

Property, section 18.8.2; Req, case 3, Su(ficientFundsPropeny, section 18.9.2. 
SUsed in: CReq. B-3, section 29.4. 
6Used in: CAban, B-6, section 28.5. 
7Used i.tL CAban, B-5, section 28.5. 
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• invisible operations 

- IncreasePurse
 
- AbortPurse
 

value transfer operations 

- StartFromPurse
 

- StartToPurse
 

- ReqPurse
 

- ValPurse
 

- AckPurse
 

• exception logging operations 

- ReadExceptionLogPurse
 
- ClearEx.ceptionLogPurse
 

4,8 Invisible operations 

Several concrete operations have a common effect on the state \isible in the 
model (they affect only implementation state not visible in the model). 

4.8.1 Increase Purse 

The IncreasePurseOkay operation is used to model actual purse operations that 
do not have any effect on the state Visible in this model. except for increasing 
the sequence nwnber. 

In a simple increase transaction, only the purse's sequence nUIhber may 
change. All other components remain unchanged. 

ConPurselncrease;; ConPurse \ (nextSellNo) 

IncreasePurseOkay _ 

tiConPurse 
m?, m!: MESSAGE 

3ConPurselncrease 

nextSeqNo' ~ nexrSellNo 

m! =.l 
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4.8.2 Abort Purse 

The AbortPurseOkay operation is used to model actual purse operaHons that 
do not have any effect on the state visible in this model, but that abort and log 
incomplete transactions. 

In a simple abort transachoD, only the purse's sequence number, exception 
log, pdAuth and status may change. All other components remain unchanged. 

ConPurseAbon ~ ConPurse \ (nexcSeqNo, exLog, pdAurh, status) 

AborrPurseOkay places the purse in status eaFrom (where the pdAurh compo­
nent Is undefined), logging any incoffilJlele transactions if necessary8. No other 
component of the purse is altered, except for nexrSeqNo, Which may increase 
arbitrarily. 

AbortPurseOkay _ 

D.ConPurse 
m? ml : MESSAGE 

::::ConPurseAbort 
LogI{Necessary 

stQtus' = eaFrom 
nextSeqNo' ~ nextSeqNo 

We do not, at this slage, put any restrictions on the output message m!. Later, 
we either compose AbortPurseOkay with another operation, using the latter's 
m!, or we promote AbortPurseOkay to the world level, where we define m! = J.. 

4.9 Value transfer operations 

The SeareTo and SeartFrom operations, when starting from eaFrom, chahge only 
the sequence number, the slored pdAuth, ahd the status of a purse. 

ConPurseSfarr;' ConPurse \ (nextSeqNo, pdAuth, status) 

The Req operation change only the balance and the status of a purse. 

ConPurseReq :; ConPurse \ (balance, status) 

The Val operation change only (he balahce ahd the status of a purse. 

ConPurseVal:; ConPurse \ (balance, status)
 

8Concrete SP 2.2, 'Exception logging', section 2.3.1.
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The Ark operation changes only the status of a purse, and allows the pdAnth 
to change arbitrarily. 

ConPurseAck ;; ConPurse \ (status, pdAuth) 

4.9.1 StartFro~rse 

A startFrom message is valid only If it refers to a different purse from the 
receiver, and mentions a value for which (he from purse has suffIcient funds. 

ValidStartFrom 
ConPurse 
m7 ; MESSAGE 

cpd : CounterPartyDetails 

m7 E ran sfartFrom 

cpd '=" startFrom- m? 

cpd..name':l: name 
cpd. value :s; balance 

To perform the StarrFromPurseEa{romOka)' operaUon, a purse must receivC' a 
valid startFrom message, and be in eaFrom. 

I
StartFromPurseEa{rOmOkay 
6.ConPurse 
m?, m! : MESSAGE 

cpd: CounterPartyDewils 

ValidStartFrom 
status = eaFrom
 

2ConPurseScan
 

nextSeqNo' > nextSeqNo 

pdAuth' ~ (~PayDetaiis I 
from =" name 
1\ CO = cpd..name 
J\ valu~ '=' cpd. value 
A fromSeqNo nextSeqNo0:= 

A toSeqNo = cpd.nextSeqNo) 
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I status' = epr 

m! =.1 

The StartFromPurseEafromOkay operation stores the payment details consist­
ing of the counterparty details and ils ovm name and sequence number (for 
later validation), moves to the epr state, increases its sequence number, and 
sends an Wlprotected status message. 

The StartFromPurseOkay operation first aborts (logging the pending pay­
ment if necessary, and moving to eaFrom), then performs the StartFromPurse­
EafromOkayoperation. 

StartFromPurseOkay ~
 

AbortPurseOkay ~ StartFromPurseEafromOkay \ (cpd)
 

4.9.2 StartToPurse 

A startTo message is valid only if it refers to a different purse from the receiver. 

ValidStartTo _ 

ConPurse 
m?: MESSAGE 

cpd : CounterPartyDetails 

m? E ranstartTo 

cpd = startTo-m? 

cpd.name"* name 

To perform the StartToPurseEafromOkay operation, a purse must receive a 
valid startTo message, and be in eaFrom. 

StartToPurseEafromOkay _ 
/),ConPurse 
m?, m! : .MESSAGE 

cpd : CounterPartyDetails 

ValidStartTo 
status = eaFrom 

3ConPurseStart 
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ne.xtSeqNo' > nextSeqNo 

pdAuth' ~ (p PayDeraiis I
 

to = name
 
1\ from"" {pd. name
 
1\ value = cpd.value
 
1\ toSeqNo = nex.c5eqNo
 
A (romSeqNo = cpd,nex.tSeqNo)
 

status' = epv 

m! = req pdAurh' 
-----------._--­

The SrartToPurseOkay operation logs the pending payment, if necessary; it 
stores the paYIDCnl details, consisting of the coumcrparty details and its own 
name and sequence number, for later validation; it moves to the epr state; 
it increases Hs sequence number; and it sends a req message containing the 
stored payment details. 

The StartToPurseOkay operation first aborts (logging the pending pay­
ment if necessary, and mming to eaFrom), then performs the StartToPurse­
EafromOkayoperation. 

StarrToPurseOkay ~
 

AbortPurseOkay 9StartToPurseEa(romOkay \ (cpd)
 

4.9.3 ReqPurse 

An authentic request message is a req message containing the correct stored 
payment details (which were stored on receipt of the startFrom message). 

AurhenfiCReqMessage 

~
ConPurse
 
m?: MESSAGE
 

m? = req pdAuth 

To perform the ReqPurseOkay operation, a purse must receive a req message 
mth the payment details, and be in the epr state, 

ReqPurseOkay
 
.1ConPurse
 
m?,m!: MESSAGE
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AlllhenticReqMessage 
SCQtus"" epr 

2ConPurseReq 

balance' '" balance - pdAuth.value 
status' = epa 

I ml = val pdAulh 

The purse decrements its balance, moves to the epa state, and sends a val 
message containing the stored pa}ment details. 

4.9.4 ValPurse 

An authentic value message is a val message containing the correct stored pay­
ment details (which were stored on receipt of the srartTo message), 

AurhenticValMessage -'-- _ 

ConPurse 
m?: MESSAGE 

m? = val pdAurh 

To perform the ValPurseOkay operation, a purse must receive a val message 
v.ith the payment details, and be in [he epv state, 

VaIPuyseOkay _ 

tlConPurse 
m?, m!: MESSAGE 

AuthenticValMessage 
status = epv 

3.ConPurseVal 

balance' = balance + pdAuth.value 
scatus' = eaTo 

m! = ack pdAuth 

The purse increments its balance, moves to the eaTo state, and sends an ack 
message containing the swred payment details. 
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4.9.5 AckPurse 

An authentic acknowledge message is an ack message containing the correct 
storedpajment details (whlch were stored on receipt of the startFrom message). 

AuthenricAckMessage _ 

ConPurse 
m?: MESSAGE 

m? = ack pdAuch 

To perform the AckPurseOkay operation, a purse must receive an ack message 
with the pajmenl details, and be in the epa state. 

AckPurseOkay _ 

b.ConPurse 
m?, m!: MESSAGE 

AuthenticAckMessage 
status = epa 

SConPurseAck 

status' "" eaFrom 

m! =-l 

The purse moves to the eaFrom state, and sends an lmprotected status message. 

4.10 Exception logging operations 

4.10.1 ReadExceptionLogPurse 

To perform the ReadExceptionLogPurseEafromOkay operation, a purse must 
receive a readExceptionLog message and be in the eaFrom state. 

ReadExceptionLogPurseEafromOkay _ 

2ConPurse 
m?, m!: .~SSAGE 

m? = readExceptionLog 
status = eaFrom 

m! E {l.} U ! ld: exLog' • exceptionLogResult(name, Jd)} 
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The operation sends an unprotected status message (modelling 'record not 
available') or a protected exceptionLogResult message containing one of the 
exception logs tagged "\i.th its name9. 

The ReadE'(ceptionLogPurseOkay operation first aborts (logging any pend· 
ing payment, and moving to eaFroml, and then performs the Read£x.ceprionLog­

PurseEafromOkayoperation. 

ReadExceprionLogPurseOkay ,;
 
AbortPurseOkay;; Read£x.ceptionLogPurseEa{romOkay
 

4.10.2 ClearExceptionLogPurse 

During a clear log transaction the purse's exception log may change, but no 
other component can change. 

ConPurseClear;; ConPurse \ (e;'<.Log) 

To perform the C[earExceptionLogPurseOkay operation, a purse must have a 
non-empty exception log and receive a valid exceptionLogClear message. If 
the purse receives a valid exceptionLogClear message, has no transaction in 
progress and has an empty exception log, then the purse ignores the message. 

First we define how [he purse clears as log in eaFrom: 

Clear£x.ceptionLogPurseEafromOkay _ 

6.ConPurse 
m?, m! : MESSAGE 

exLog *- 0 
m? 0;; exceptionLogClear(name, image exLog) 
status = eaFrom 

'::'ConPurseClear 

exLog' 00;; 

m! = .1 

The purse clears its exception log, and sends an unprotected status message. 
The image ensures that log messages have at least been read and moved 

to the archive (see AuthoriseExLogClear, section 5.7.1). Procedural mechanisms 
must ensure that archive information is not 10stIO . 

~ I hlS gives a non-dNenmnistlC response, because we do not model exc('pdon log record num­
bers. 

IDConcrete SP 2.2, 'Exception loggmg', senion 2.3.1. 
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There is a four stage protocol for reading and clearing exception logs: 
reading a log to the ether, copying a log from the ether lO the archh'e, autho­
rising a purse exception log clear based on ,..'hat's in the archive, and clearing a 
purse's exception log having received authorisation. We notc that as a result of 
this protocol, if CJearEx.ceptionLogPurseOkay aborts and logs an uncompleted 
transaction, then the purse's excetJtion log ""ill not be cleared. The rcason for 
this is as follows. The purse gets to eaFrom by aborting any uncompleted trans­
action. [f this would create a new exccplion record, the clear transaction could 
not occur, because the (imaged) exception log in the message would not match 
the actual exception log in the purse. 

The full clear exception log operation for a purse is thus defined to abort 
an uncomplE'ted [ransaction first, and then ckar [he log if appropriate. 

ClearExceprionLogPurseOkay
 
;; AbortPurseOkay ~ ClearExceptionLogPurseEafromOkay
 



Chapter 5 

Between model, promoted world 

5.1 The world 

The individual purse operations are promoted to the 'world of purses'. This 
world contains the purses, a public ether containing all previous messages sent, 
and a private archive, which is a secure store of exception logs, each exceptlon 
log tagged with the purse that recorded H. lnfonnation cawol be deleted from 
the archive, so that the store of exception logs is persistent. This is to be 
implemented by mechanisms outside the target of evaluation. 

Logbook: B'(NAME - PayDetails) 

Logbook ~ 0'( {PayDetaiis. (rom - ePayDetailsj 
u {PayDerails • fa·- ePayDerails J ) 

A Logbook is a set of log details, each tagged with a name, Wh€Ie (hat name is 
either that of the to purse or that of the from purse in the log details. 

In addition, the archive's tagged log details 

ConWorld _ 

conAuthPurse: N4ME ,..... Con Purse 
ether: 0' MESSAGE 
archive: Logbook 

'if n: domcon4.uthPurse. (conAuthPursen).name = n 

'rf 1I1d : archive. first nld E dom COnAuthPurse 

The archive is a Logbook. In addition, the archive's tagged log details are tagged 
only with authentic purse names. 
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I epr Iepa 

a 7 

x a 
a a 
a 1 

( dill trans )from 
incl el1From 

no log logto 
epv a ? 

a aeaTo 
TIolog a a( diff trans ) 

indeaFrom log a 1 

Figure 5.1: The amoum lost on the current transaction for each possible slate 
of rhe purses. '0' means the value has definitely not been lost; '1' means the 
value has definitely been lost; '?' means the value may be lost; 'x' means that 
this state is impossible. 

5.2 Auxiliary definitions 

We define some auxiliary components, for ease of proof later. These compo­
nents are described in detail after the schema. The sel definitelyLost captures 
those transactions that have proceeded far enough that we know they cannot 
succeed. The set mtlybeLost captures those transactions that have proceeded 
far enough that they will lose money if something goes "'Tong, but that could 
equally well continue to successful completion. In the other transactions, ei· 
ther the transaction has not proceeded far enough to lose anything, or has 
proceeded so far that the value has definitely been received. 

The way in which the concrete stah~ of the purses relates 10 the amount 
of value 'lost' in the transaction can be represented by the table shov.ll in fig­
ure 5.1, where the amount lost on the current transaction is sho\\'Il for each 
possible st<:tte of the purses, including purses that have moved on to a different 
transaction, v-.'ith or \,ithout logging this one. 

-AUxworld
 

r ConWorld
 
I 

allLogs : NAME ........ Pu)'Details 
authenricFrom, authemicTo : ltD PayDetails 
{romLogged, toLogged: IF PayDecaiIs 
tolnEpv, tolnEapayee, (romInEpr, (romlnEpa: IF PayDerails 
de/1nitel}'Lost : !P PayDetails 
maybeLost : IF PayDerails 
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al1Logs == archive
 
u { n: domcon.4urhPurse; pd: PayDetails I
 

pd E (conAurhPurse n),exLog}
 

authenticFrom 
= {pd: PayDetails I pd.from E dom con4.uthPurse}
 

authenticTo
 
= {pd: PayDetails I pd.ro E domconAuthPurse}
 

fromLogged ~ {I'd: authenticFrom I pd.(rom - I'd E aI/Logs I 
toLogged ~ {I'd: authenricTo I pd. to - I'd E aI/Logs} 

toInErv = {pd: aurhenticTo I
 

(conAuthPursepd,to).status = epv
 
1\ (conAurhPurse pd.to).pdAurh ~ I'd)
 

colnEapayee = [pd: authenticTo I
 
(conAurhPursepd,to).starus = eaTo
 
1\ (conAuthPurse pd. to).pdAurh ~ I'd)
 

{romInEpr = {pd: aurhenticFrom I
 
(conAurhPursepd.from).status = epr
 
1\ (conAurhPursepd·from).pdAuth ~ I'd I
 

fromInEpa = {pd : authenticFrom I
 
(conAuthPursepd.{rom).status = epa
 
1\ (conAurhPursepd.(romJ.pdAurh ~ I'd)
 

definitelyLost ~ roLogged n ((romLogged u (romInEpal 
I 

I	 maybeLost = (fromInEpa u (romLogged) () tolnEpv 

These auxiliary definitions put no further constraints on the state, but simply 
define the derived components. Hence they do not need to be implemented. 
They are defined merely for ease of use later. We prove that this is so in sec­
tion 5.2.1 below. 

The auxiliary components represent the folloWing: 

•	 allLogs: All the excep[ion logs; all those logs in [he archive, and those still 
uncleared in purses. 

• authenticFrom, aurhenticTo: All possible payment derails referring to au­
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thenne from purses, and authentic co purses. 

fromLogged: All those payment details logged by a from purse. 

roLogged: All those details logged by a to purse. 

tolnEpv: All those details for which the to purse is authentic, and is cur· 
rentl).' in epv with those details stored. This is a finite set, because con­
AuthPurs€ is a nnHe function. 

tolnEapayee: All those details for which the to purse is authentic, and is 
currently in eaTo With those details stored. 

•	 {romlnEpr: All those details for \.....Wch the (rom purse is authentic, and is 
currently in epr \\lith those details stored. 

•	 fromlnEpa: All those details for which the from purse is authentic, and is 
currently in epa mth those details stored. 

• de(1nite/yLost:	 All those details for which h'e know now that the value has 
been lost. The val message was definitely sent and definitely not received, 
50 ultimately both purses \\111log thl.:. transaction. The authentic to purse 
has logged, which it would not have done had it sent the ack, and the 
authentic from purse has sent the val and not received the ack, ahd so 
never will. See figure 5.2 

• maybeLost: All those details that refer to value that may yet be lost or may 
yet be transferred successfully from this purse, but which have already 
definitely left the purse. This occurs when the authentic from purse has 
sent the val and not received the ack and the authentic to purse is in epv, 
waiting for the val thaI it mayor may not get. See figure 5.2 It is a finite 
sel, because toInEpv is a finite set. 

\Ve have the identity 

AuxWorld 
I­

definilelyLost u maybeLost =
 

((romInEpa u (romLoggedJ n (tolnEpv u roLogged)
 

The later proofs of operations that change purse status (the two start, three 
protocol and log enquiry operations) are based on how the relevant pd moves 
in and out of the sets maybeLost and definitelyLost. (These sets are disjoint 
in the BenveenWorld, because Df the BenveenWorld constraints on log sequence 
numbers; see lemma 'lost', section C13.) 
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rOWg8r'd//' II!!I
 j,."mwgged 
./' 

iY""~' ,
/ . c/ 

jromlnEpa ,~I"EP' 

Figure 5.2: The sets defjnirelyLost (vertical hatching) and maybeLost (horizomal 
hatching) as subsets of the other auxiliary definitions. 

5.2.1 AuxWorld does not add constraints 

AuxWorld introduces some new variables, but does not add any further con­
straints on Con World. We define the schema that represents just the new vari­
ables introduced by AuxWorld. 

NewVariables ~ 3 ConWorld • AuxWorld 

We prove that no further constraints are added by proving the followtng state­
ment. 

ConWorld t- 3} NewVan"ables • AuxWorld 

Proof:
 

First we prove existence. We normalise the schemas, draWingou{ any predicates
 
hidden in the declarations for the new variables. Only one predicate appears,
 
lim..iting a/ILogs to be a valid Logbook.
 

ConWorld f- 3 r NewVanables. AuxWorld i\ allLogs E Logbook 

Rewrite all the equations for the new variables so that each new variable in 
AuxWorld is defined only in terms of variables of Con World. We then use the 
one point rule to remove the existential quantification. This leaves just the 
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normalised predicate in addition to Conti/orld. 

Conl1'orJd 
c 
Conl1'orld 
II archive u {n: domconAuthPurse; pd: PayDetaifs I 

pd E (conAuthPursen).exLog)
 
E Logbook
 

From the definition of archive, archive is in Logbook. From constraint P-l in 
ConPurse, the set of named exception logs is also in Logbook. This discharges 
the existence proof. 

To prove uniqueness, we need only note that the equations defining the 
new variables arc all equality 10 an expression, and by the transitivity of equal­
ity, all possible values are equal. 

.5.2.1 

5.3 Constraints on the ether 

We put some further constraints on the state to forbid 'future messages' and 
'future logs', and to record the progress of the protocol. 

BetweenWorJd _ 

AuxWorld 

'V pd : PayDetaiis I req pd E ether. pd E authenticTo 

~ pd: PayDetai}s I req pd E ether. 
pd.toSeqNo < (conAuthPursepd.to).nextSeqNo 

~ pd : PayDetails I val pd E ether. 
pd.roSeqNo < (conAuthPursepd.to).nextSeqNo 
1\ pd .fromSeqNo < (conA.uthPurse pd.from). nextSeqNo 

~ pd: PaYDetails lack pd E ether. 
pd.toSeqNo < (conA.uthPursepd.co).nextSeqNo 
,'I pd .(romSeqNo < (con..4uthPurse pd.from). nextSeqNo 

~ pd : fromLogged • 
pd.{romSeqNo < (conA.uthPursepd.(rom).nextSeqNo 

~ pd: CaLagged. pd.wSeqNo < (conAuchPursepd.to).nextSeqNo 
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V pd : (romLogged I 
(conA.uthPurse pd.from).stacus E {epr, epa J • 

pd.(romSeqNo 
< (conAuthPurse pd.from) .paAuth.{romSeqNo 

\;j pd: (oLagged I (conAurhPursepd.to).staeusE {epv,eaTo}. 
pd.toSeqNo < (conAuthPursepd.to).pdAuth.toSeqNo 

V pd: (romInEpr • disjoint «val pd, ack pd). ether) 

\;j pd: PayDetails • 
(req pd E ether A ack pd ~ ether) 

~ (pd E tolnEpv u toLagged) 

V pd : PayDetaifs I val pd E ether 1\ pd E folnEpv • 
pd E (romInEpa u (romLogged 

V pd : (romInEpa u (romLogged • req pd E ether 

(oLagged E IF PayDetails 

\;j pd : exceptionLogResult- ~ ether D • pd E allLogs 

V pds : 3', PayDetails; name: NAME I 
exceptionLogClear(name, image pds) E ether. 

{name} x pds £: archive 

\;j pd: {romLogged u toLagged • req pd E ether 

These constraints express the following conditions (numbered for future refer­
ence in the refinement proofs): 

B-1	 All req messages in the ether refer to authentic to purses I, 

B-2	 There are no 'future' req messages 2: all req messages in the ether hold 
a to purse sequence number less than that purse's next sequence num­
ber. (It puts no constraint on the (rom purse's sequence number, because 
the from purse mentioned In a req message need not have starred the 
transaction yet, and need not even be authentic.) 

B-3	 There are no 'future' val messages 3: all val messages in the ether hold a 
to purse sequence number less than that purse's next sequence number 

lUsed in R~q, case 4, section 18.10. 
2Used tn: Stal'tTo, location of pdThiS, section 17.3; CStaI'tTo, B-16, section 29.3; CReq, B-3, 

section 29.4. 
3Used In: CSrarrFrom, B-9, section 29.2; CScanTo, B-11, section 29.3. CVal, B-4, section 29.5. 
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and a {rom purse sequence number less than that purse's next sequence 
number. 

8-4	 There are no 'fufUre' ack messages 4: all ack messages in the ether hold 
a to purse sequence number less than that purse's next sequence nwnbcr 
and a {rom purse sequence number less than that purse's next sequence 
number. 

8-5	 There are no 'future' {rom logs based on the nextSeqNo of the {rom purse 
s 

8-6 There are no 'future' ro logs based on the nextSeqNo of the to purse G. 

8-7	 There are no 'future' {rom logs based on the pdAuth.{romSeqNo of a purse 
in epr or epa ': all from logs refer only to past (rom transactions. So all 
from logs referring to a purse that is currently in a transaction as a (rom 
purse (that is, in epr or epa), hold a from sequence number strictly less 
rhan that purse's stored current transactJon sequence number. 

8-8	 There are no 'furure' to logs based on the pdAwh.toSeqNo of a purse in 
epvor eaTo 8: all CO logs refer only to past to transactions. So all to logs 
referring to a purse that is currently in a transaction as a to purse (in epv), 
hold a to sequence number strictly less than that purse's stored current 
transaction sequence number. 

8-9 If the (rom purse is in epr then there is no val message () or ack message lO 

in the ether. 

B-IO	 There is a req message but no ack message in the ether precisely when 
the to purse is in epv or has logged the transaction II. 

8-11	 If the to purse Is in epv and there is a val message jn the ether, then either 
the (rom purse is in epa or has logged the transaction 12 . 

.jUSi'd in: CSrartFrom, 8-9. secTion :!9.2; CSIl1rtTo, B-I0, si'ction :!9,3.
 
'USi'd in: CSrQrtFrom, B-7, si'cTion 29.:?
 
6USi'd)n' CSrartTo, B-8, 29.3, 29.3
 
'Used m: StanFrom, location of pdThis, section 16.3; CReq, B-7, section 29.4: lemma 'nDI'
 

LcggedAndIn', sectIOn L12.
 
aUSi'd in: CIl'I/, B-8, section 29.S; lemma 'notLoggedAndln', sectIOn C 12.
 
9Used m: CVal, 8-9, section 29.S.
 

IOUsi'd U1 Req, case 4, section 18.10. 
iLUsed in: SranTo, locatton of pdThiS, si'ction 17.3; Req, case 4, Si'CtiOll 18.10; Ack, bebaviour 

of definltelyLosr, section 20.6.S; Ack, behaviour o[ maybeLost, sec non 20.6.6; CAban, B-1O, sec· 
!:Ion 28.S; CAban, 8-16, section 28.S; CAck, 8-l 1, secnon 29.6. 

12Used In: Val, behavlour of maybeLost, section 19.6.7. 
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B-12 If the from purse is in epa or has logged the transaction, then there is a 
req in the ether 13. 

B-13 The set (oLagged is finite. This is sufficient to ensure that definitelyLost is 
finite 14. 

B-14	 Log result messages are logged. The log details of any exceptionLogResu]t 
message in the ether is either archived or in a purse transaction exception 
log 15. 

B-15	 Exceprion log clear messages refer only to archived logs 16. 

B-16 For each PayDetails in the logs there is a corresponding PayDetaUs in a 
req message in [he ether 17. 

That the actual implementation does indeed satisfy this predicate needs to be 
proved, by a further, small, refinement, that ConWor/d and the operations refine 
BetweenWorld and the operations (see' Part III). 

5.4	 Framing schema 

A framing schema is used to promote the purse operations. 

4>BOp	 _ 

!:l.BetweenWorld 
!:l.ConPurse 
m? m! : MESSAGE 
name?: NAME 

m? E ether 

name? Edam conAuthPurse
 
BConPurse == conAuthPurse name?
 

conAuthPurse' == conAuthPurse EEl {name? ...... eConPurse'}
 

archive' == archive
 

ether' == ether u {m!}
 

BUsed in SeareTo, location of pdThis, section 17.3; CAb<m, B-12, section 28.5; CAbon, B-16, 
section 28.5. 

14Used1n: various Rab schemas, section 10.1 
15Used in: Archive, section 24.2; CArchlve, section 29.10. 
16Used In: ExceptionLogClear, invoking lemma 'lost unchanged' section 22.2; CExceprionLog­

Clear, section 29.8. 
17 Used 1n: CStartTo, alternative to lemma 'logs unchanged', section 29.3. 
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The predicate ensures the folloWing properties common to all promoted oper­
ations: 

m? E ether 
the input message is in the ether, which ensures it \\'35 either previously 
sent by another purse (req, val, ack, etc.l, in the ether since initialisation 
(sfarrFrom, startTo, etc.), or input by a special global operation (that is, 
AuthoriseExLogClear). 

name? E dorn con4.lJ.thPurse 
the purse is in the world of authentic purses. 

eConPurse =: conAuthPurse name? 
The before state of ConPurse we are operating on is the stale of the purse 
identified by name? 

• cOMurhPurse'	 = conAuthPurse'I! {name? ...... eConPurse'} 
The after state of the purse system has name? updated to the af[er state 
of ConPurse (which particular state depends on rhe particular operation 
details) and aU other purses are unchanged lB. 

archive' = archive 
The archive remains unchang~d. 

•	 ether' = ether u {rn!l
 
the output message is recorded by the ether.
 

5.5 Ignore, Increase and Abort 

There are various general behaViOurs that operations may engage in: ignore 
the input and do nothing; ignore the input but increase the sequence number; 
ignore the input but abort the currem payment transaction. 

Ignoring is modelled as an unchanging world: 

Ignore:; [3BetweenWorld; name? : NAME; rn?, rn! : MESSAGE I m! = 1.-] 

Increase has been modeHed at the purse level, and is now promoted and to­
talised: 

Increase'; Ignore
 
v (3 t1ConPurse. 4JBOp t\ IncreasePurseOkay)
 

1BUsed in Req proof, section 18.7.2. 
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Abort has been modelled at the purse level, and is now promoted and totalised: 

Abort ~ Ignore 
v (3 C>.ConPurse. AbortPurseOkay A [<I>BOp I m' ~ ~ )) 

5.6 Promoted operations 

We promote the individual purse operations, and make them total by disjoining 
them with the operation defined above that does nothing. 

5.6.1 Value transfer operations 

The promored start operations are: 

StartFrom ~ Ignore
 
v Abort
 
v ( 3 ~ConPurse • 4>BOp /\ StartFromPurseOkay)
 

StartTo ~ Ignore 
v Abort 
v ( 3 6ConPurse. 4>BOp /\ StartToPurseOkay) 

For use in the proofs, we also promote the Eafrorn part of the operations on 
their own: 

StarlFromEafromOkay ~ 3 6ConPurse •
 
4> BOp /\ StartFrornPurseEa{rornOkay
 

StartToEa(romOkay ~ 3 6ConPurse • 
4>BOp /\ StarlToPurseEa{romOkay 

The promoted protocol operations are: 

Req :;;; Ignore v (3 6ConPurse. 4>BOp /\ ReqPurseOkay) 

Val';; Ignore v (3 6ConPurse • 4>BOp /\ VafPurseOkay) 

Ack .;; Ignore v (3 6ConPurse. 4>BOp /I AckPurseOkay) 

5.6.2 Exception log operations 

The promoted log enquiry operation is: 

ReadExceptionLog :; Ignore 
v (3 t:J.ConPurse. ¢BOp /I ReadExceptionLogPurseOkay 1 
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The promoted exception log clear operation is: 

ClearExceptionLog :; Ignore 
v Abort 
v (3 6.ConPurse. 4.>BOp 1\ CIearExceptionLogPurseOkay) 

For use in the proofs, we also promote the Eafrom pan of the operations on 
their o\,·:n: 

ReadExceptionLogEafromOkay ;; 3 6ConPurse •
 
4BOp 1\ ReadEx.ceptionLogPurseEafromOkay
 

ClearExceptionLogEa{romOkay ;; 3 6.ConPurse •
 
¢ BOp 1\ ClearExcep{(onLogPurseEafromOkay
 

5.7 Operations at the world level only 

There are some operations on the world that do nol have equivalents on indi­
Vidual purses. These are not implemented by the target of evaluation, but need 
to be implemented by some manual means or external system. 

To retain the simpHcity of our proof rules, these operations take the same 
input and outputs as all the purse operations. 

5.7.1 Exception Log dear authorisation 

The message to clear an exception log can be created only for log details which 
are already recorded in the archive. The clear code of the message is based 
on the selected logs in the archive. The exception log clear message couples 
this clear code with the name of a purse. This supports constraint B-15 which 
requires that this operation not put a clear message into the ether if the relevant 
logs have not been archived. 

_AuchoriseExLogClearOkay _ 

t1Betweenl1'orld 
m?, m' : MESSAGE 
name?: NAME 

conAur-hPurse' conAuthPurse:-0 

3 pds: ~l PayDetails •
 
{name?} x pds £ archtve
 
1\ m! = exceptionLogClear(name?, imagepds)
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ether' = ether u {m!} 

archive = archive' 

AuthoriseExLogClear ~ Ignore v AuthoriseExLogClearOkay 

Exception logs must be kept for all time to ensure that all value remains ac­
counted for. The operation to clear purses of their exception logs must be 
supported by a mechanism to store the cleared logs. This is what the archive 
supplies. 

The purse supports the ReadExceplionLog operation, which puts an excep­
tion log record into the ether as a message. As the system implemcnters have 
no control over the ether, we have modelled it as lossy at the concrete level, 
allowing for messages to be lost from the ether at any time. 

The archive is a secure store for information, and to support the security 
of the purse there must be a manual mechanism to move Jog messages from 
the ether into the archive for safe keeping. This is modelled by the Archive 
operation, and is implemented by some mechanism external to the target of 
evaluation. 

Archive _ 

6.BetweenWorld 
m?, m! : MESSAGE 
name?: NAME 

conAuthPurse' = conAuthPurse 
ether' = ether 

archive £: 

archive' £: 

archive U { log: NAME x PayDetails I 
exceptionLogResult log E ether} 

m! =-l 

This operation non-deterministically copies some exception log information 
from messages in the ether into the archive. It ignores its inputs. As one pos­
sible behaviour is to move no messages into the archive, it can behave exactly 
like Ignore. The operation is therefore total, and we do not need to dIsjoin it 
with Ignore. 
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5.8 Forging messages 

If arbitrary messages can be sent, then obviously the sccuriry can be compro­
mised. We can build into the definition of the ether that if is possible to forge 
only some kinds of messages. The only messages H is possible to forge are 

• replays of earlier valid messages (added to the	 ether during an earlier 
operation) 

• unprotected messages (modelled by being in the initial ether, and hence 
being replayable at any lime) 

• messages it is possible to detect are forged (modcl1ed by the .1- message, 
present in the initial ether) 

This allows us [0 capture the encryplion properties of messages: a message 
encapsulating arbitrary details caIU101 be forged by a third party. 

5.9 The complete protocol 

The complete transfer at the between and concrete levels can be described, 
informally, by the following sequence of operations: 

StartFrom ~ ScartTo ~ Req ~ Val ~ Ack 

Other operations may be interleaved in an actual transfer. 
The refinement proof in the follOWing sections demonstrates that none of 

the individual concrete operations violates the security poUcy. 
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Between model, initialisation and 
finalisation 

6.1 Initialisation 

As with the abstract case, we set up a particular initial between state. We donOI 
want to model adding new authentic purses to the system, since some of the 
operations involved are outside the seclUity boundary. So we allow the world to 
be 'sMtched off' and a new world 's\\'itched on', where the new world consists 
of the old world as it was, plus the new purses. So our initial state must allow 
purses lO be part-way through transactions. 

We set constraints on the initial state of the between system to say that 
there are all the request messages in the ether, any current transactions must 
be valid, and there are no future messages. 

BetweeninitStace _ 

BetweenWorld' 

{readExceptionLog, .l} 

u
 
U{ cpd: CounterPartyDetails. {startFromcpd,startTocpd}}
 

~ ether' 

The initial ether contains (or may be considered to contain) the foUo\-\ing mes· 
sages: 

the log enquiry and .1 messages (hence a purse can always have a forged 
message sen I to it) 

• all possible start messages, even those referring to a non-authentic purse 
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• no future messages (ensured by the constraints in BetweenWorld') 

So any purse, at any time, can be sent a read log message, or an instruction 
to start a transfer; this saves us haVing to model the IFD sending these mes­
sages. Since the IFD does not authenticate start messages, we cannot insist on 
authentic purses at this point. 

The inability to forge messages means that a req message always mentions 
an authentic to purse, and a val message an authentic {rom purse. So a val 
message sent on receipt of a req ",ill mention authentic to and {rom purses. 

We must also initialise our concrete inputs, since they are different from 
the global inputs. This defines how concrete inputs are interpreted. 

BetwlnitIn _ 

g?: AlN 

m?:MESSAGE 
name? : NAME 

m? E ranreq "'> 

g? ~ rransfer{ J.l Trans{erDerails I 
{rom = (req-m?).(rom 
1\ to = (req-m?).to 
1\ value = (req-m?).value) 

m? It ran req ~ g? = aNuJIIn 

6,2 Finalisation 

Finalisation maps a BetweenWorld to a GlobalWorld, to specify how the various 
concrete state components are observed abstractly. 

We finalise b)! choosing to assume that all the transactions in maybeLost 
actually are lost. (In some sense, finalisation treats incomplete transactions as 
If they would 'abort'.) 

BetwFinState~ _ 

BetweenWorld 
GlobalWorld 

dorn gAuthPurse = dom con4uthPurse 
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V name: dam conAuthPurse • 

(gAurhPurse name) .balance = (conAuthPurse name) .balance 

1\ (gAurhPurse name)./ost = 

sumValue( (de(initelyLost u maybeLost) 
n { ld : PayDetaiis I ld.{rom ~ name} ) 

There is a simple relationship between concrete and global balance compo­
nents. The global lost component is related to the concrete maybeLost and 
de{initelyLost logs (the function sumValue is defined in section D.3). 

We must also finalise our concrete outputs, since they are different from 
the global outputs_ This defines how concrete outputs are interpreted. 

BetwFinOut _ 

9!:AOUT 
m!:MESSAGE 

[ g! == aNullOut 

All concrete outputs are interpreted as the single abstract output, aNullOut. 
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Concrete model: implementation
 

7.1 Concrete World State 

The C world state has the same components as the ~ state; we decorate with a 
subscript zero to distinguish like-named ~ and C components. 

Since tiConWorldo has components dashed-Then-subscripted, whereas we 
require subscripted-then·dashed, we defined our own 6 and'::: schemas, 

tiConWorldO';' ConWorldo 1\ ConWorld~ 

2ConWoridO ~ [ClConWorldO I eConWorldo ~ OConWorld~ I 

7.2 Framing Schema 

The concrete world C has the same operations as the 'B model. 
The world we promote to is ConWorld, not Bern'eenWorld. (Remember 

ConWorld has the same structure as BetweenWorld, but none of the constraints 
about future messages.) We are also allowed to 'lose' messages from the public 
ether, which models the fact that the ether may be implemented as a lossy 
medium. 

So the C framing schema is used to promote the purse operations. 

oJ>COp _ 

ClConWorldO 

L'iConPurse 
m?, m! : MESSAGE 
name?: NAME 
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m? E etherQ 

name? E dorn conAuthPurseo 
8ConPurse = conAuthPurs£?{) name? 

conAuthPurse~:.:: conAuthP'urseo Gl {name? ...... eConPurse'} 

archiveQ = archiveo 

ether~ s; ethero u {m! 1 
~---"-------'-------------

7.3 Ignore, Increase and Abort 

The 11 operations Ignore, Increase and Abort have C equivalents, working on 
the Cworld instead of the 13 world. These operations are not named operations 
of the purse, Le. they are not Visible at the purse interface. We define them so 
that they can be used as components in C purse operations. 

CIgnore ~ r3ConWorldO; name?: NAME; m?, m!: MESSAGE I m! = 1.) 

CIncrease .; CIgnore
 
v (3 6ConPurse. ~COp A IncreasePurseOkay)
 

CAban;;: Clgnore 
v (3 6ConPurse. AborrPurseOkay A [oI>COp I m! ~ ~ ] ) 

All subsequent operations defined in this chapter correspond to the actual op­
erations of the purse. 

7.4 Promoted operations 

As wHh the 13 promoted operations, the C promoted operations are made total 
by disjoining with Clgnore. 

7.4.1 Value transfer operations 

The promoted start operations are: 

CStartFrom ;; Clgnore
 
v CAban
 
v ( 3 .6.ConPurse .. ¢ COp 1\ SlartFromPurseOkay )
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csrarlTo ,; CIgnore
 
v CAban
 
v (3 .6.ConPurse. 4JCOp 1\ StartToPurseOkay)
 

The promoted protocol operations are: 

CReq'; CIgnore v (3 .6.ConPurse. <fJCOp !\ ReqPurseOkay) 

CVal ~ CIgnare v ( 3 t.CanPurse • 4> COp A VaIPurseOka)') 

CAck'; CIgnore v (3 tiConPurse • <fJCOp !\ AckPurseOkay) 

7.4.2 Exception log operations 

The promoted log enquiry operation is: 

CReadExceptionLog ,; CIgnore 
v (3 ~ConPurse. ttJCOp 1\ ReadExceptionLogPurseOkay) 

The promoted clear operation is: 

CClearExceptionLog ,; CIgnore 
v CAban 
Y ( 3l::iConPurse. 4JCOp 1\ ClearExceptionLogPurseOkay) 

7.5 Operations at the world level only 

As with the 1j model, there are some operations that act on the world, rather 
than on individual purses. These operations are specified exactly as they are in 
the 'B model, but acting on Con World instead of BetweenWorld. 

7.5.1 Exception Log dear authorisation 

The message to clear an exception log is generated external to the model. 

CAuthoriseExLogClear ~ CIgnore 

v ( 32CanPurse. [4>COp I (3Ids: 0') Pa)'Detaiis I 
{name?} x Ids ~ archiveo • 

m! = exceprionLogClear(name?, imagelds))]) 

The operation to move exception log information from the ether to the archive 
is 
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~~:~h;:r-ld-O-------------------

r m?, m!: MESSAGE
 
name?: NAME
 

conAuthPurse~ :=: conAuthPurseo 
ether~ £; echero 

archiveo £; 

archiveo £ 

archiveo u {Jog: NAME x PayDerails I 

exceptionLogResu!r log E ethero } 

m!:=:-.L 

7.6 Initial state 

The initial state of the C world has an ether thal is a subset of one that satisfies 
the 'no future messages' constraints placed on the 13 world (the subset is needed 
because the C ether is lossy). 

ConInirState _ 

ConWarldb 

3BetweenWorld' I BetweenInitState • 
conAurhPurseo:=: conAuthPurse' 
1\ archiveo = archive' 
!\ {-.L} s; ether;; £; ether' 

7.7 Finallsation 

The 13 finalisation is defined for any ConWor/d; we reuse it for the C finalisation. 

ConFinState _ 

~~:b:~~~~ld 

r dam gAuthPurse "" dam conAuthPurseo 

'r;/ name: dam conAurhPurseo • 

I 
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(gAuthPurse name).balance
 
= (conAuthPurseo name).balance
 

1\ (gAuthPurse name).lost = 

sum\/alue((definitelyLosto u maybeLosto) 
n { Id: PayDetails Ild,from ~ name II 
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Model consistency proofs
 

8.1 Introduction 

In order to increase confidence that the specifications written are not meaning­
less, it is ""lse (0 prove some properties of them. 

The leasl Iha I should be done is to demonstrate that the constraints on 
the state and those defining each operation do not reduce to false. So for each 
model, the consistency proof obligations are: 

Show it is possible for at least one slale to exiSI (which demonstrates thaI 
the stale invariant is not conlradictory). If we choose this state to he the 
initial state, we also demonstrate that initialisation is not vacuous, too. 

I- 3 State' • StateInit 

Show that each operalion does not have an empty precondition (which 
demonstrates that no operation definition is comradiclory). 

I- 3 State; Input. pre Op 

In fact, here we show thar all our operalions are (Qral, which is the much 
SlTonger condition 

I- V State; Input. pre Op 

We presenr rhese proofs for each of our rhree models below. 
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8.2 Abstracl model consislency proofs 

8.2.1 Existence of initial abstract state 

\-- 3AbWorJd' • AblnitSrate 

Proof:
 

It is sufficient to find an explicit abstract world that satisfies the constraints of
 
AblnilsrQte. Consider the abstract world with the components:
 

abAuthPurse' "" 0 

This satisfies the constraints of AbWorld, so is clearly a suitable initial state. 
• 8.2.1 

8.2.2 Totality of abstract operations 

AbIgnore is total. 
Proof: 

prc AbIgnore 

~ pre [l>AbWorld; a?: AIN; a! : AOUT I 
abAuthPurse' = abAuthPurse 
1\ a! "" aNullOUl J (defn. AbIgnore) 

~ [AbWorld; a7 : AIN I
 
3 AbWorld'; a! : AOUT I
 

abAurhPurse' = abAuthPurse
 
1\ a! = aNullOl.{{ ] [defn. pre I 

~ [AbWorld; a7 : AIN I 
3abAuthPurse' : NAME _ AbPurse; a! : AOUT I 

abAuthPurse' = abAurhPurse 
1\ a! = aNullOut J 

lone point rule] 

~ [AbWorld; a? : AIN ] 

• 
All the abstract operations are total. 
Proof: 
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They are total by construction. They are all of the form AbOpOkay v 
AbIgnore, so: 

pre AbOp
 

~ pre (AbO pOkay v AbIgnore)
 

= pre AbOpOkay v pre AbIgnore
 

~ pre AbOpOkay v [AbWorld; a?; AIN ]
 

= [AbWorld; a7; AIN]
 

• 
• 8.2.2
 
.8.2
 

8.3 Between model consistency proofs 

8.3.1 Existence of between initial stare 

)- 3 BetweenWorld' • BetweenlnitState 

Proof:
 
J[ is sufficient to find an explicit between world that satisfies the constrainls of
 
BetweenWorldInit. 

A world of no purses, an ether that consists of exactly the messages ex­
plicitly allowed of BetweenWorldInit, and an empty archive, is sufficient. 

COnA.urhPurse' = (3 

ether' = {readExceptionLog, J...} 
u U{ cpd : CounterPartyDetails • {startFrom cpd, srartTo cpd) } 

archtve' = 0 

This satisfies the constraints in ConWorld. It also satisfies the extra constraints 
of BetweenWorld: all the quantifiers are over empty sets (of purses or messages) 
and hence are trivially true. 

• 8.3.3 

8.3.2 Totality of between operations 

All between operations are total. 
Proof: 
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They aU offer the option of Ignore (explicitl}' by disjunction, except for Archive, 
which offers it implicit}r). Ignore is the total identity operation. 

• 8.3.2
 
.8.3
 

8.4 Concrete model consistency proofs 

8.4.1 Existence of concrete initial state 

f- 3 ConWorldb • ConlnitStare 

Proof: 
The concrete state is identical to the bef1.\'een state, except for fewer constraints. 
Therefore as a between state exists, so docs a concrete onc. 

• 8.4.1 

8.4.2 Totality of concrete operations 

All concrete operations are total.
 
Proof:
 
The concrete operations are identical to the between ones. Therefore if the
 
between operalions are total, so are the concrete ones.
 

• 8.4.2
 
.8.4
 
.8
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Chapter 9 

Refinement Proof Rules
 

9.1 Security of the implemenlation 

We prove the concrete model C is secure v,rith respect w the abstract model.J1. 
in two stages. We first show (in this part) that 'B refines.J1. then we show (in 
part III) that C refines 13. . 

To show that 'B refines .J\ we show that every (promoted) 'B operation 
correctly refines some .J1. operation. 

Much of what the 'B (and C) operations achieve is inviSible at the .J1.level, 
so many 'B operations are refinements of AbIgnore (abstractly 'do nothing'). 
Some of the 'B operations that are refinements of AbIgnore do serve to resolve 
abstract non-determinism. 

The refinements are 

AbTransfer i;; Req 

AbIgnore £::: StartFrom
 
v StartTo
 
v Val
 
v Ack
 
v ReadExceptionLog
 
v ClearExcepfionLog
 
v AuthoriseExLogClear
 
v Archive
 

v Ignore
 
v Increase
 
v Abort
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A'; Aln A; Aln AOp A'; AOu/ A; AOul 

c:?' ", AFin ,A:':'/l r------1
R' R I R' 

Rln Rln ROuI ROUli R~:: ' 
B/nll ______ ,.l. I BFin ~ 

B'; BIn B; BIn BOp B'; Haul B; BOul 

InIIlalisation Correctness Flnalisation 

Figure 9.1: A summary of the backward proof rules. The hypothesis is the 
existence of the lower (solid) path. The proof obligation is to demonstrate the 
existence of an upper (dashed) path. 

Each of these refinements must be proved correct. 
For the.Jl to 'B refinement proofs, the following set of 'upward' or 'back­

ward' proof rules are sufficient to show the refinement rWoodcock & Davies 
19961. For the 'B to C refinement proofs, the 'downward' or 'forward' proof 
rules are sufficient to show the refinement. 

These rules are expressed in terms of a 'concrete' (lower) and 'abstract' 
(upper) model. In this first refinement the 'abstract' model is .Jl and the 'con­
crete' model is 'E. In the second refinement the 'abstract' model is now 'E and 
the 'concrete' model is C 

9.2 Backwards rules proof obligations 

Appendix A describes the syntax for theorems, and how we lay ou( the proofs. 
The backward proof rules are sununarised in figure 9.1, and described below. 

9.2.1 Initialisation 

We start from some global state G, and initialise it to an abstract initial state 
A' and concrete initial state B'. These must be related by the retrieve. 

I- V G; GIn; B'; BIn; A'; AIn I BIntlState 1\ BInitIn /\ R' 1\ RIn •
 
AInitState /\ AInitIn
 

Given any global initial state G. if we initialise it with BInit to B' , then retrteve B' 
to A', we must get the same abstract initial stale as if we had initialised directly 
to A' using Alnit. 
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This can be simplified to: 

BlnitState; R' I-- AlnitState 

BlnitIn; RIn I- AlnUln 

9.2.2 Finalisation 

We start from some abstract final state A and concrete final state B, related by 
the retrieve, and finalise them to the same global final state G/. 

f- 'I G'; GOut; B; BOut I BHnState A BHnOut •
 
3 A; AOm • R /\ ROut /\ AFinStare /\ AFinOut
 

Given any concrete final state B that finalises \\-1th EFtn to G', then it is possible 
(Q find a corresponding abstract final state A, that both retrieves from B and 
finalises with AFtn to the same G' . 

This can be simplified to: 

BFinState I- 3 A • R /\ AFinState 

BFinOut I- 3 AGut • ROut /\ AFfnOuf 

9.2.3 Applicability 

f- 'I B; BIn I ('I A; AIn I R A RIn • pre AOp) • pre BOp 

For each operaUon: jfwe are in a concrete state, and if all the abstract states· 
to which it retrieves satisfy the precondition of the abstract operation, then we 
must also satisfy the precondition of the corresponding concrete operation. 

For oUI case, AOp is total (this needs to be proved for each of the abstract 
operations - see section 8.2.2). So pre AOp = true. So 

( 'I A; AIn I R A RIn • pre AOp ) 
=:> (VA; AIn. R 1\ RIn =:> pre AOp) 
=:> (V A; AIn. R 1\ RIn =:> true) 
=:> (V A; AIn. true) 
0> true 

So, for total abstract operations, the applicability proof obligation reduces to 

B; BIn f- pte BOp 

That is, a proof that BOp is total, too. This is discharged in section 8.3.2. 
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9.2.4 Correctness 

e ~ B; BIn I ( It A; AIn I RA RIn • pre AOp) •
 
( It A'; AOut; B'; BOut! BOp A R' A ROw.
 

( 3 A; AIn • R A RIn A AOp ) )
 

For each operation: if we start in a concrete state corresponding to the precon­
dition of the abstract operation (the applicability condition ensures we then 
satisfy the concrete operation's precondiHon), and do the concrete operation. 
and then retrieve to the abstract state, then we end up in a state that we could 
have reached doing the abstract operation. 

Using pre AOp = true (proved during appHcability), this reduces to 

e It B; BIn. ( It A'; AOut; B'; BOut I BOp A R' A ROut.
 
(3A; AIn. R A RIn A AOp))
 

Mming the quantifier into the hyPothesis: 

B; BIll; A'; AOut; B'; BOut I BOp A R' A ROut
 
I- 3 A; AIn. R A Rln 1\ .4.0p
 

Then rearranging the schema predicates from the predicate part ID the decla­
rarion part, and remO\ing the redundant declarations, gives the final form we 
USe: 

BOp; R'; ROut l- 3A; Aft!. R /\ Rin /\ AOp 
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.J\. to 'B retrieve relation
 

The purpose of the retrieve relation is to capture the details of the various states 
the concrete world can be in, and which abstract slatc(s) these correspond to, 
and the relationships between the conerNe and abstract inputs and outputs. 

For the first refinement, we talk of Rab: the Retrieve from 5t to 11. Later, 
for the second refinement, we talk of Rbc: the Rerricve from 'B to C. 

10.1 Retrieve state 

The domains of the 'B and 5t 'world' functions define the authentic purses. 

AbstractBetween _ 

AbWorld 
BetweenWorld 

dom abAuthPurse = dom conAuthPurse 

.A balance and lost are related to 'B balance and exLogs. The relationship is re~ 

lational, not functional, and highly non~deterministic part-way through a Irans­
action. 

10.1.1 Exposing chosenLost 

chosenLost is a non-detenninistic choice of a subset of all the maybeLost values 
that we 'choose' to say VoIill be lost. 
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RabC/	 _ 

AbstraetBen.veen 
chosenLost : lIP PayDecails 

chosenLosr f;; maybeLosc 

'rj name: dom conAuthPurse • 

(abAuthPursename).lost = 
sumValue«de{initelyLosc u chosenLost) 

n {pd: PayDetaiis I pd.from ~ name)) 

t\ (abAuthPurse name).balance = 

(con4.uthPurse name).balance 
+ sumValue( (maybeLosl \ chosenLost) 

n {pd : PayDeraiis I pd.to ~ name I ) 

The predicate links the ':B and Jl values1: 

For a purse name, its lost value is the sum of the values in all those trans­
aclions that are definitely lost or that we have chosen to assume lost with 
name as the from purse. (Note the deliberate similarity of this definition 
and that in BetwFinState.) 

•	 The Jl balance of a purse is its '13 balance plus the value of all those trans­
actions we have chosen to assume will not be lost, with name as the to 
purse. (For a give name, there is at most one such transaction.) 

A consequence of this relationship is that the abstract lose and balance values 
of a purse can depend on the corresponding values of more chan one concrete 
purse. 

10.1.2 Hiding chosenLosr 

TherNrieve relatton is then RabCI \\1th the non-detcrminis[ic choice chosenLosr 
hidden': 

Rab ,; 3 chosenLosr : !P PayDerails • RabCl 

We define the retrieve in this way because in the proof we need to have direct 
access to chosenLost. 

lIt is valid to apply sUTTItialul! in this predicate, because both de(tnitel:-'Lost and maybeLosr 
are finite. de(tnlrelyLosr Is finite because of Bet\ll.'l!l!nWorld constraint B-13. may~Losr is finite 
because folnEpv Is firute: each pd in the set comprebension for ro/nEpv comes from a dJstinct 
purse in cortAurhPurse, whlch Itself is a finite function. 

2We use th.ls form to s1mplify tbe general correerness proofs, secOOD 14.4.3, 
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10.1.3 Exposing pdThis 

In the proof, we find that we \\-ish to focus on a single pd (any pd). We define 
a new schema, RabCIPd, identical to Rabel except for an extra declaration of a 
pd. 

RabClPd	 _ 

I RabCl 
~Thjs: PayDerails 

We split the predicate part of RabClPd into (\....0 cases that partition the possi­
bilities: 

•	 'rj name: dam conAuthPurse I name r£ {pdThis.(rom, pdThis.ro}
 
purses not involved in the pdThis transaction.
 

•	 'rj name: dam conAurhPurse I name E {pdThis.(rom, pdThis.to}
 
purses involved in the pdThis transaction.
 

In all cases the purses other than the from and to purses retrieve their balance 
and lost values in the same way, so we factor this part of the predicate out into 
a separate schema, OtherPursesRab, which we include 'rvHh the remaining part 
of the predicate. 

OtherPursesRab	 _ 

AbstractBetween 
chosenLost: iP PayDetails 
pdThis : PayDetails 

V name: dorn conAuthPurse I name ft {pdThis.from, pdThis.to} • 

(abAuthPursename).lost ::=: 

sumValue( (de{initelyLost u chosenLostl 
n { pd : PayDerails I pdfrom ~ name)) 

/\ (ahAuthPursename).balance::=:
 
(conAuthPurse name) .balance
 
+ sumValue((mayheLost \ chosenLostJ 

n {pd: PayDerails I pd.ro ~ name}) 

We split RahClPd into four cases that partition the possibilities: 

RabOkayCIPd: pdThis E mayheLost\ chosenLosr half way through a trans­
action that Will succeed. Since maybeLost refers only to authentic purses, 
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"ve know that {pdThis.{rom, pdThis.to} ~ dam conAuthPurse, and so the 
remaining quantifier is reduced to these two cases. 

RabWtllBeLostClPd: pdThis E chosenLost half way through a transaction 
that will lose the value (the to purse has not yet aborted, but we choose 
that it Will, rather than receive the val). Since chosenLosr ~ maybeLost 
refers only to authentic purses, we know that {pdThis.{rom, pdThis.to} £; 

darn conAurhPurse, and so the remaining quantifier is reduced TO these 
{1\'O cases. 

•	 RabHasBeenLostClPd: pdThis E de{initelyLost half way through a trans­
action that has lost the value (the to purse has already moved on). Since 
de{initelyLost refers only to authentic purses, \\'e know that {pdThis.{rom, 
pdThis.to] s;:: domconAuthPurse, and so the remaining quantifier is re­
duced to these two cases. 

• RabEndClPd	 : pdThis $ definite/yLosr u maybeLosr At the beginnmg or 
end of a transaction, so there is no non-determinism in the lost or balance 
components. A general pdThis may refer ro non-authenric purses, so the 
quantifier is reduced no further. 

In the later proofs of operations that change purse status (Abort, Req, Val and 
Ackl, we argue how the relevant I'd moves in and out of the sets maybeLost 
and definitelyLost, and thereby choose the appropriate one of the four cases of 
the retrieve to use before and after the operation. 

We perform this split by systematically subrracring out the chosen I'd from 
the lost and balance expressions. If the I'd was in fact in the relevant set, \ve 
then have to add the subtracted value back in, othen\iise we do nothing, since 
we have made no change to the expression. 

RabOkayCiPd	 _ 

AbstractBetween 
chosenLost : lP PayDetails 
pdThis ; PayDetails 

chosenLost c;: maybeLost 

pdThis E maybeLost \ chosenLost 

(abAuthPurse pdThis.from).balance = 

(cOnA uthPurse pdThis .from). balance 
+ sumValue(((maybeLost \ chosenLost) 

n [pd: PayDeraiis I pd.ro ~ pdThls.(rom} ) 
\{pdThls}) 
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(abAuthPurse pdThis.to).balance = 

pdThis. value 
+ (conAuthPurse pdThis.ro).balance 
+ sumValue«(maybeLosr \ chosenLost) 

n ( pd: PayDetaiis I pd.to ~ pdThis.to}) 
\ (pdThisJ) 

'if name: (pdThis.{rom, pdThis.to) • 

(abAurhPurse name).losr = 

surnValue« (de{inifelyLost u chosenLost) 
n { pd : PayDetaiis I pd.{rom ~ name} ) 
\ (pdThisj) 

OtherPursesRab 

In the Okay case, pdThis is not lost, so its value has to be added back into the 
to purse's balance component. 

RabWillBeLostCIPd _ 

AhstractBerween 
chosenLosf : IP PayDetaifs 
pdThis : PayDetails 

chosenLosr £;; mayheLost 

pdThis E chosenLosr 

(abAuthPurse pdThis.{rom).lost ~ 

pdThis. value 
+ sumValue( «definitelyLosr u chosenLosr) 

n (pd: PayDetaiis I pd.{rom ~ pdThis.{rom}) 
\ (pdThis}) 

(abAuthPurse pdThis.to).lost ~ 

sumValue( «definirelyLost u chosenLost) 
n (pd: PayDetaiis I pd.(rom ~ pdThis.to)) 
\ (pdThisJ) 

'if name: {pdThis.{rom, pdThis.to} • 

(abAurhPurse name).balance =
 

(conAurhPurse name) .balance
 
+ sumValue( «mayheLost \ chosenLost) 
n ( pd : PayDetaiis I pd. to ~ name}) 
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\ {pdThis) I 

OtherPursesRab 

In the WillBeLosf case, pdThis is chosen lost, so its value has to be added back 
into the from purse's lost component 

RabHasBeenLosrCIPd 

IAbstraClB€eween 
chosenLost : lP PayDetails 
pdThis: PayDetai!s 

chosenLosr <;::; maybeLosr 

pdThis E definite/yLosf 

(abAuthPursepdThis.{rom).fost ~ 

pdThis.value 
+ sumValue«(definitelyLost u chosenLost) 

n {pd: PayDefails i pd.(rom ~ pdThis.(rom}) 
\{pdThisJ) 

(abAuthPurse pdThis.to).lost =
 
sumValue( (defin.UelyLost u chosenLostl
 

n {pd: PayDerails I pd.(rom" pdThis.to)) 
\ {pdThis)) 

't name: {pdThis.(rom,pdThis.toj. 

(abAurhPurse name),balance:=
 
(conAuthPurse name).ba/ance
 
+ sumValue«((maybeLosl \ chosenLost) 

n ( pd : PayDetails I pd fo ~ name J) 

\ (pdThis}) 

OtherPursesRab 

In the HasBeenLost case, pdThis is definitely lost, so its value has to be added 
back into the from purse's lost component. 

RabEndC1Pd _ 

iAbstracrBerween 
chosenLosr : lP PayDerails
 
pdThis : PayDerails
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chosenLost ~ maybeLost 

pdThis r£ definitelyLost u maybeLost 

'r;j name: dorn conAuthPurse n {pdThis.(rom, pdThis.to} • 

(abAuthPurse name) ,lost = 

sumValue( «de{initelyLost u chosenLost) 
n [pd: PayDetaiis I pd.(rom ~ name)) 
\ (pdThis)) 

A (abAuthPurse name).balance =
 

(conAuthPurse name) .balance
 
+ sumValue«(maybeLost \ chosenLost) 

n {pd: PayDetails I pd.to ~ name)) 
\ {pdThis)) 

OtherPursesRab 

In the End case, pdThis is in neither component, so its value does not have to 
be added back in anY"o'here. 

10.1.4 Partition 

We have the identity3: 

RabClPd 
t-

RabCIPd = 
(RabOkayClPd
 

v RabWillBeLostClPd
 
v RabHasBeenLostCIPd
 
v RabEndCLPd)
 

Proof: 
The four cases differ in the predicate on pdThis, which together partition the 
possibilities. It is obvious that the four cases cover the possibilities. We use 
Lemma 'lost', which says that de{initelyLost and maybeLost are disjoint, to show 
that the four cases are non-overlapping. 

• 10.1.4 

3Used in: Req check-operation, splltring into four cases, sectton 18.6. 
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10.1.5 Quantified forms 

Because the introduction of the pd in RabC1Pd is arbitrary, we have the folloWing 
identities: 

RabCI f- Rabel ¢> ( 'I pdThis : PayDetaiis • RabClPd ) 

and 

Rabel f- RabCI ¢> (3 pdThis : PayDeraiis • RabClPd ) 

Proof: 
That both these identities hold may seem odd, but can be intuitively understood 
by looking at a similar, smaller example. Consider a non-empty subset of N 
called X. Then it is certainly true that 

3x: X • X ~ X \ [xl u [xl 

and also 

'I x: X • X ~ X \ {xl u [xl 

• 10.1.5 

We have just chosen to extract an arbitrary element from the set for special 
naming. We do the same with Rabel, selecting an arbitrary pdThis for special 
naming, but without changing the meaning of the schema. This means that we 
can split up Rabel into a collection of four disjunctions on a pd in different 
ways as the proof dictates4 . 

10,1.6 The full Retrieve state relation 

We also define versions of these schemas with the pdThis and chosenLost hid­
den (so they have the same Signature as Rab): 

RabOkay '" RabOkayelPd \ (pdThis, chosenLost)
 

RabWillBeLost'" RabWiIIBeLostCIPd \ (pdThis. chosenLost)
 

RabHasBeenLost ~ RabHasBeenLostCIPd \ (pdThis, chosenLost)
 

RabEnd '" RabEndCIPd \ (pdThis, chosenLost)
 

4Used in; lemma 'delenninistic', exposing pdThis (twice), section 14.4.3. 
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10.2 Retrieve inputs 

Each .A operation has the same rype of input, an AlN. Each 'B operation has 
the same t,)-'Pe of input, a NAME and a MESSAGE. The input part of the retrieve 
captures the relationship between these .A and 'B inputs. 

Rabin;;; Betwlnitln[a?! g7J 

The B inputs are related to .A inputs in the following manner: 

Rl-l Req: the .A transfer details are in the req 

Rl-2 All other 'B inputs: the .A input is al\;'ulUn. 

10.3 Retrieve outputs 

The output retrieve is particularly simple: all 'B outputs retrieve to the single 
.A output. 

RabOut ;;; BetwFinOut[a!! g!] 



Chapter 11 

.Jl to 'B initialisation proof
 

11.1 Proof obligations 

The requirement is to prove that the between initial state correctly refines the 
abstract initial state, and the between inputs correctly refine the abstract inputs. 
That is, 

BetweenlnitState; Rab' J- AblnitState 

BetwlnitIn; RahIn J- AhlnirIn 

11.2 Proof of initial state
 

We successively thin the hypothesis to expose the consequent.
 

BetweenWorldIniC 1\ Rab' IhypJ 
~ Rab' (thin] 

=> AbWorld' [thin] 

~ AblnitState [defn AblnitStare] 

.11.2 

11.3 Proof of initial inputs 

Expand Rabin and AblniUn. 

BetwlnitIn; Betwlnitln[a7/g?] J- a? = g7 
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Betwlnitln defines g7 as a total function of (m?, name?); call H {. Thin. 

g',a?: NN I 3(: MESSAGE x NAME - NN.
 
'<I m : MESSAGE; n: NAME •
 

g7 ~ ((m, n) A a? = ((m, n)
 
l-- a? = 97 

Simplify and thin. 

g?, a? : AlN I g7 = a? f- a? = g7 

.11.3
 

.11
 



Chapter 12 

.J\. to 13 finalisation proof
 

12.1 Proof obligations 

The requirement is to prove that the between final state correctly refines the ab­
stract final state, and the between outputs correctly refine the abstract outputs. 
That is, 

Bel1YFinOut I- 3 a! : AOUT • RabOut /\ AbFinOut
 

BetlYFinState I- 3 AbWorld • Rab /\ AbFinState
 

This proof obligation is summarised in figure 12.1. 

cho.fenW.~1 = maYbeL(lst~ A 

cho.JenW.\'/ = 0 ~~ ~ ?' "' "" AFin 
\ \ I " 

\ \ I " 

\ \ I Rab 
\'."I

'" BFin 

B 

Figure 12.1: Backwards rules finalisation proof obligation 

12.2 Output proof 

Expand RabOur and AbFinOur. 
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BetwFinOur I- 3 al : AOUT • BetwFinOur[a!/ gl] 1\ a! = g! 

lone point} a\\iay the a! in the consequent 

Befl.YFinOut I- BetwFinOut[gl/ g! I 

.12.2 

12.3 State proof 

We leut] in all AbWorld, and put it equal to the GlobafWor/d. 

BerwFinSrQfe; AbWorfd I abAurhPurse = gAurhPurse 
f­

3 AbWorld • Rab /\ AbFinSrare 

Cutting in this new hypothesis requires us to discharge a side-lemma about the 
existence of such an AbWorld. This is triVial to do, by the [one point! rule. 

We use {consq exists] to remove the existential quantifier in the consequent, 
by using the value just cut in: 

Bef1.vFinSrate; AbWorld I abAuthPurse = gAuthPurse 
f-

Rab /\ AbFinState 

Wcprov(' each of the conjuncts in the consequent separately (consq con)], drop­
ping unneeded hypotheses as appropriate rrhinl. 

12.3.1 Case AhFinState 

BetwFinState; AbWorld I abAuthPurse =:: gAu.thPurse I- AbFinState 

The predicates in AbFinState occur in the hypothesis, so are satisfied triVially. 
• 12.3.1 

12.3.2 Case Rob 

We	 expand out Rab into its conjuncts: 

BerwFinState; AbWorld I abAuthPurse = gAuthPurse I- Rab 
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Retrieve of equality 

We have the equation 

dam abAuthPurse = dam conAurhPurse 

which can be sho',vn from the equality of gAurhPurse and conAuthPurse in BEn­
State, and between gAutllPurse and abAuthPurse in the hypothesis. 

SimilarlY, in each case the pan of the retrieve to be proven has an equality 
between the abstract and concrNe. We show this holds from an equality in 

that component between global and concrete in Bern'FinState, and and ('quality 
between global and abstract in the hypothesis . 

• 12.3.2 

Case Rab 

BetwFinState; AbWorld I abAurhPurse = gAuthPurse f-- Rab 

Expanding BetwFinState, thinning unwanted predicates, substituting for global, 
and expanding Rab, we get: 

AuxWorld; AbWorld I 
V name: dam conAuthPurse • 

(abAuthPurse name).lost = 

sumValue(( definirelyLos( u maybeLost) 
n { pd : PayDeraiis I pd.(rom ~ name)) 

f\ (abAurhPurse name),baJance = (conAuthPurse name).ba/ance 
I­

3 chosenLosr : [j) maybeLost • 
V name: dam conAuchPurse. 

(abAuthPurse name).lost := 

sumValue( (defiHitelyLost u chosenLost) 
n {pd : PayDetalis I pd.(rom ~ name) ) 

/\ (abAuthPurse name).balance "'" 
(conAuthPurse name).balance 
+ sumVa!ue«maybeLost \ chosenLost) 

n (pd: PayDeraiis I pd.ro ~ name I) 

We [one potnt] away the chosenLosr in the consequent by putting it equal to 
maybeLosr (haVing [curlin such a value and proved it exists). We also simplify 
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the equations, now that maybeLost \ chosenLost is empty: 

AuxWor/d; AbWarld; chosenLost: IF PayDerails I 
chosenLosr = maybeLost 
!\ ('rt name: dom conAuthPurse. 

(abAuthPurse name).lost = 

sumValue( (de{jnitelyLost u maybeLost) 
n {pd: PayDerails I' pd.{rom = name}) 

!\ (abAuchPurse name) .balance 
= (conAurhPurse name).baJance) 

r 
'r;j name: dam conAurhPurse •
 

(abAuthPurse name).1osr =
 

sumValue({definitelyLost u maybeLost)
 
n [ pd : PayDetaiis I pd.from ~ name I ) 

!\ (abAuthPursename).balance = (conAurhPurse name).balance 

The consequent also appears as an hypothesis, so the proof is complete. 
• 12.3.2 
• 12.3.2 

• 12.3 

• 12 



Chapter 13 

.Jt to 13 applicability proofs 

13.1 Proof obligation 

In section 9.2.3 we showed that it is sufficient to prove totality of the concrete 
operations. 

13.2 Proof 

Totality for each between operation was sho,""ll in the specification consistency 
proofs, secrion 8.3.2 . 

• 13 



Chapter 14 

Lemmas for the j\ to B correctness 
proofs 

14.1 Introduction 

The correctness proof obligation, to be discharged for each abstract operation 
AOp, where AOp !; BOpFull BOPI v BOP2 V ... is the corresponding refine­0: 

ment, is: 

BOpFal/; Rab'; RabOat f- 3 AbWorld; a?; AlN • Rab A RabIn A AOp 

This proof obligation is summarised in figure 14.1. There are multiple lower 
paths both because the concrete operation is non-deterministic, and because 
the retrieve is non-deterministic. For each lower path triple of (B,B',A'), we 
have [0 find an A that ensures the existence of an upper path; it does not have 
to be the same A in each case. 

There are various classes of 'B operation depending on ,.,.,Weh.Jl operation 
is being refined. There are commonalities in the proof strucnrres for these 
classes. This chapter develops general mechanisms and lenunas to facilitate 
proving most operations. This fits into the follovving main areas 

lemma 'multiple refinement'; When the 'B operation that refines an .Jt 
operation in a disjunction of several individual B operations, the proof 
obligation can be split into one for each indi\.idual B operation. 

• lerruna 'ignore': The ignore branch, and any 'abort' branch, of each 'B op­
eration need be proved once only. 

lemma 'deterministic': A simplification of all correctness proofs, by ex­
posing the non-determinism in the retrieve, ro the three cases exists-pd, 
exists-chosenLost, and check-operation (with the introduction of two ar­
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B: m? /lam!'? 
BOplgl1or., 

"' 

Figure 14.1: The correctness proof. The hypothesis is the existence all of the 
lower (solid) paths. The proof obligation is to demonstrate the existence of an 
upper (dashed) path in each case. 

bitrary predicates 'P and,Q, instantiated differently depending on the par­
ticular operation). 

• lemma 'lost unchanged': Where maybeLost and definite/yLosr are uncha­
nged, the exists-pd and exists-cbosenLost obligations can he automati­
cally discharged. 

• lemma 'AbIgnore': A further simplification of the check-operation proof 
obligation, for the operations that refine Ablgnore, to check-operation­
ignore. 

proof that concrete Ignore refines Ablgnore 

proof that concrete Abort Tefinl'S AbIgnore 

lemma 'abort baclG\'ard': For an operation expressed as Abon composed 
with a simpler version of the operation, we need prove only that the sim­
pler operation is a refinement 

The lemmas developed in this chapter are collected together in Appendix C for 
case of reference. 

14.2 Lemma 'multiple refinement' 

In most cases of AOp, the corresponding BOpFuIl is a disjunction of many 
individual 'B operations, BOp} v BOP2 v ... whose differences are invisible 
abstractly. For example, Ablgnore is refined by a disjunction of several separate 
operations. 

We use the inference rule [hyp diS)1 to split these large disjunctions into 
separate proof obligations for each of the 'B operations. 
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14.3 Lemma 'ignore': separating the branches 

Each between operation BOp is promoted from BOpPurseOkay, disjoined With 
Ignore, and sometimes V\'ith Abort. Call the first disjunction BOpOkay: 

BOpOkay ~ 3 C:!.ConPurse. ¢BOp /\ BOpPurseOkay 

We use the inference rule [11ypdisj], to split the correctness proof into m'o (or 
three) parts, one for each disjunct, each of which must be proved. 

Abort; Rab'; RabOut I- 3 AbWorld; a?: AlN • Rab 1\ RabIn 1\ AOp 

Ignore; Rab'; RabOut I- 3 AbWorld; a?: AlN • Rab /\ RabIn 1\ AOp 

BOpOkay: Rab': RabOut e 3 AbWorld: a?: AIN • Rab A Rabln A AOp 

All the abstract operations include an option of failing (equivalent to the con­
crete Ignore), which results in no change to the abstract state. We can therefore 
strengthen the conclusion of the Ignore and Abort theorems and prove 

Ignore; Rab'; RabOut I- 3 AbWorld; a7: AlN • Rab 1\ RabIn 1\ AbIgnore 

Abort; Rab'; RabOut I- 3 AbWorld; a?: AlN • Rab 1\ RabIn 1\ AbIgnore 

These are independent of the particular operation AOp. Thus we need prove 
these theorems only once (which we do in sections 14.7 and 14.8). To prove 
the correctness of BOp we need additionally to prove the remaining BOpOkay 
theorem. 

14.4 Lemma 'deterministic': simplifying the Okay branch 

The Okay branch of the correctness proof is, in general, 

BOpOkay; Rab': RabOut f- 3 AbWorld: a?: AJ]V. Rab A Rabln A AOp 

[n order to find an AbWorld that is appropriate, we expose the non-determinism 
in the retrieve. The non-determinism occurs in the Rab branch of the retrieve 
in terms of uncertainty about which transactions still in process will terminate 
successfully, and which will terminate with a lost value. 

We also expose the transaction that is currently in progress, to make it 
available to the proof. 
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14.4.1 Choosing an input 

We choose a value of a? that is consistent with RahIn. Since RabIn is functional 
from m? and name? to a?, we know this choice of a? is uniquely determined. 
We (run this value for a? into the hypothesis, and remO\-e the quantifier on a? 

by the [consq exists] rule. 
We note that RabIn in the consequent is independent of the choice of 

AbWorld, so can be puHcd out of that quantifier. 

BOpOkay; RabOuf; Rab'; a?: AIN I RabIn 
e 
RabIn A ( 3 AbWoy[d • Rab A. AOp) 

We split the proof into two on the conjunction in the consequent Iconsq conjj, 
one for RabIn, one for 3 AbWorld • Rab 1\ AOp. 

RabIn is trivially satisfied by trus choice of a? in the hypothesis. 
The declaration of a? in RabIn allows us to drop the explicit declaration 

in the hypothesis, giving 

BOpOkay; RabOuf; Rab'; RabIn>- 3 AbWoy/d • Rab A AOp 

14.4.2 Cutting in ~ConPurse 

It helps to work with the unpromoled fonn of the operation. \Ve do this 
by expanding BOpOkay, according to its promoted definition, And [cut]ting 
6ConPurse into the hypothesis such 'hat BOpPurseOkay and 4>BOp hold. (The 
Side-lemma is satisfied from the expanded definition of BOpOkay in the hy­
pothesis; which states that such a 6ConPurse exists.) 

(3 6ConPurse. ¢BOp 1\ BOpPurseOkay); 
RabOut; Rab'; RabIn; 6ConPurse I 

¢'BOp 1\ BOpPurseOkay 

>­
3 AbWorld • Rab 1\ AOp
 

We rearrange the hypothesis, moving ¢BOp and BOpPurseOkay from the pred· 
icate part to the declaration part. Slnce 4>BOp declares 6ConPurse, we remoVe 
the latter. We Ithin] the hypothesis of the expanded definition of BOpOkay. 

4>BOp; BOpPuyseOkay; RabOuf; Rab'; RabIn>- 3 AbWoy/d. Rab A AOp 
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14.4.3 Exposing chosenLost and pdThis 

We need to make some of the internal components Visible to the proof to enable 
us to break the proof into sections. 

We replace Rab' with the quantified form of Rabel' (section 10.1.2), gi'ving 

/PBOp; BOpPurseOkay; RabOut;
 
( 3 chosenLost' : IP PayDerails • Rabel' ); RabIn
 

f­

3 AbWorld • Rab A AOp 

We now usc [hyp exists} to remove the quantification, giving us 

/PBOp; BOpPurseOkay; RabOut; RabCI'; RabIn 
f­

3 AbWor/d • Rab A AOp 

Next, we [cut] in a declaration of an arbitrary payment detail pdThis. In practice, 
this is the Vd for the payment being processed by BOpOkay, but in this general 
manipulation we don't have enough infonnation to specify this. We therefore 
constrain the pdThis with some arbitrary predicate T. 

This generates a non-trivial lemma, exists-pd, to be proved in etlch spectfic 
case, as 

/PBOp; BOpPurseOkay; RabOut; RabCI'; RabIn 
f­

3 pdThis : PayDetails • 'P 

and leaves our proof obligation as 

/PBOp; BOpPurseOkay; RabOut; RabCI'; RabIn; pdThis: PayDelails I 
'P 

f­

3 AbWorld • Rab A AOp 

In the hypothesis we rewrite Rabel' as the universally quantified form of Rab­
ClPd' (section 10.1.5). 

/PBOp; BOpPurseOkay; RabOut; 
( '<t pdTh/s' : PayDetaiis • RabC/Pd' ); 
RabIn; pdThis: PayDetails I 

'P 

f­

3 AbWorld • Rab A AOp 
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Rather than hypothesising this is true for all pdThis's, we choose a particular 
value in the quantification. (This is valid. [hyp um], because assuming it true 
for only a particular value is weaker than assuming it is true for all values.) The 
value we choose for pdThis' is that of the value pdThis. This substitutes the 
value pdThis [or pdThis' in the Rab' schema. This gives 

~BOp; BOpPurseOkay; RabOu'; RabCIPd'[pdThis(pdThis']; RabIn; 
pdThis: PayDetails I 

'P 
f­

3AbWorld • Rab A AOp 

The declaration in RabC1Pd' allows us to drop the explicit declaration of pdThis. 
So we rcmite this more simply as 

~BOp; BOpPurseOkay; RabOut; RabCIPd'[pd7his/pdThis']; RabIn I 
'P 

f­

3 AbWorld • Rab A AOp 

In the consequent we do a similar thing: expose chosenLost, and reMite Rab 
as the eXistennally quantified form of RabCfPd (section 10.1.5) 

4>BOp; BOpPurseOka)'; RabOut; RabClPd'[pdThis/pdThis']; RabIn I 
'P 

f­

3 AbWor/d. 
( 3 chosenLost : [pi PayDetails; pd : PayDerails 

• RabCIPd[pd/pdThts])
 
1\ AOp
 

We strengthen the consequent by adding the requirement that the value of pd 
claimed to ex1st on the right hand side is actually equal to the value pdThis 
declared on the left hand side. Similarly, We constrain chosenLost sufficiently. 
This we do by adding one requirement we always need (namely, that chosenLost 
&; maybeLosr), and one arbitrary predicate.Q, as we did \\lith pdThis. This pred­
icate is instantIated to some specific predicate each time this general manipu­
lation is invoked. 

4>BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn I 
'P 

I­
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3 AbWorld. 
( 3 chosenLost : IP' PayDetails; pd; PayDetails •
 

pd ~ pdThis A Q
 
A chosenLost £;; maybeLost
 
A RabClPd[pdjpdThis])
 

A AOp 

We can remove the pd in the consequent with the lone point] rule, because we 
have an explicit value for it (namely, pdThis). 

"'BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThisjpdThis']; RabIn I 
l' 

~ 

3 AbWorld • 
( 3 chosenLosr : IP' PayDetails •
 

e 1\ chosenLost £; maybeLost
 
A RabCIPd)
 

1\ AOp 

We [curl into the hypothesis a chosenLost with the same properties as it has 
in the consequent (that is, the predicate .Q A chosenLost ~ maybeLost). This 
generates a side lemma that such a value exists, exists-chosenLost, which must 
be discharged in each specific case, as 

"'BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThisjpdThis']; RabIn I 

l' 
~ 

3 chosenLosr : IP' PayDetails • .Q 1\ chosenLost ~ maybeLosr 

TIlls leaves: 

"'BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThisjpdThis']; RabIn; 
chosenLosr : lP' PayDetails I 

'P /\ Q 1\ chosenLosr £; maybeLost 
~ 

3 .4bWorld. 
( 3 chosenLost : lP' PayDetails •
 

Q /\ chosenLost £; maybeLost
 
A RabCIPd)
 

/\ .40p 
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We remove the existential quantification using the [consq exists] for c1lOsenLost 

~BOp; BOpl'lmeOkay; RabOut; RabCIPd' [pdT/lis / pdThis']; RabIn; 
chosenLost : [P PayDetails I
 

'P 1\ .Q 1\ choserzLost £;; maybeLost
 
f ­

lAbWorld • RabC1Pd A AOp 

We break this into two parts, separaUng the m'D rClrl('ves in the consequent 
from AOp. We then prove each part. 

Cut in AbWorld such that RabClPd holds. This creates a side lemma to 
prove that such an AbWorld exists, consisting of just the retrieve. (This is 
dischargl'd in section 14.4.4.) 

We arc left with 

~BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; 
AbWorld; RabCIPd; RabIn; chosenLosf: [P PayDetails I 

'P 1\ .Q 1\ chosenLost £; maybeLost 
f ­

RabC1Pd A AOp 

We discharge the retrieves in the consequent directly from the hypothesis, and 
remove chosenLoSl and chosenLost £ maybeLos{ as these already occur in Rab­
CIPd, leaVing 

<PBOp; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis'];
 
AbWorld; RabClPd; RabIn I
 

TAQ 
f ­

AOp 

• 14.4.3 

14.4.4 The existence of AbWorld 

We have to prove the side condition generated when we cut in an AbWorld 
(above), 

il>BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThis/pdTl1is']; RabIn; 
chosenLost: [P PayDetails I
 

'P /\ .Q 1\ chosenLost £; maybeLost
 
f ­

3 AbWorld • RabCIPd 
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We can prove this by invoking lemma 'AbWorldUnique' (section C.IS), provided 
we can show that the constraints of the hypothesis of that lemma hold. 

Certainly we have Betv.'eenWorJd (from ~BOp), a pdThis and a chosenLosr 
such that the constraint chosenLosr £ maybeLost holds. This is sufficient (I) 

invoke the lemma. 
• 14.4.4 

14.4.5 Statement of lemma 'deterministic' 

We summarise the results that section 14.4 has developed as a lemma.
 

Lemma 14.1 (deterministic) The correctness proof for a general Okay branch
 
consists of the follo¥.wg three proof obligations:
 
exists-pd:
 

<l>BOp; BOpPurseOkay; RabOur; Rabel'; RabIn 
I~ 

3 pdThis : PayDetails • T 

exists-chosenLost: 

<l>BOp; BOpPurseOkay; RabOur; RabClPd'[pdThls/pdThls'); RabIn I 
T 

I ­

3 chosenLost : IP PayDetails • Q. i\ chosenLosr 5; rnaybeLost
 

check-operation: 

<l>BOp; BOpPurseOkay; RabOur; RabClPd' [pdThis / pdThis'];
 
AbWorld; RabClPd; RabIn I
 

TA~ 

I ­

AOp 

• 
.14.4 

14.5 Lemma 'lost unchanged' 

Many operations do not change maybeLosf or definirelyLost. We call a general 
such operation BOp3Losr. 
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Lemma 14.2 (lost unchanged) For BOpELosC operations, where maybeLosc 0: 

maybeLost' and definitefyLosr' == definitelyIosr, the. proof obllgations exists-pd 
and exists-<:hosenLost are satisfied automatically by the instantiation of the 
predicates 'P and Q as: 

'P ¢=:> true 

Q ¢=:> chosenLost == chosenLosc' 

lea\ing the remaining check-operation proof obligation as 

~BOp; BOp2LosrPurseOkay; RabOur; RabCIPd'[pdThis/ pdThis']; 
AbWorld; RabCWd; Rabin] 

chosenLosr chosenLost'0:= 

/\ maybeLost == rnaybeLost' 
/\ defil1iCelyLosr' == definitelyIost 

~ 

AOp 

• 
14.5.1 Proof 

We add the hypotheses maybeLosr == maybeLost' and definfrelyLost' = de­
{initelyLosl to the proof obligations for these BOpSLosr operations. 

exists-pd 

<l>BOp; BOpSLosrPurseOkay; RabOut; RabCl'; Rabin I 
maybeLosr' == maybeLost 
1\ definitely'Lost' "" definirelyLos( 

~ 

3 pdThis; PClyDecaifs • true 

This is trivially true. 
• 14.5.1 

exists-chosenLost 

<I> BOp; BOp:'LosrPurseOkay; RabOur; RabCIPd' [pdThis /pdThis']; 
Rabin I 
mClybeLosr' = mCl}'beLosc 
1\ de(inirelyLosc' = de(inirelyLosc 

~ 
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3 chosenLosc : IP PayDetaiIs •
 
chosenLost = chosenLost' 1\ chosenLost s; maybeLost
 

We apply the [one point] rule to remove the existential quantifier in the conse­
quent, substitute for maybeLost, and [thin]. 

RabC1Pd'[pdThis/pdThis'] I- chosenLost' s; maybeLost' 

The hypothesis RabC1Pd'[pdThisjpdThis'] has chosenLost' s; maybeLost', 
.14.5.1 
.14.5 

14.5.2 Sufficient conditions for invoking lenuna 'iosl unchanged' 

Since <"PEOp gives us thai archive is unchanged, sufficient conditions for invok­
ing lemma 'los1unchanged' are thaI the operation in question changes neither 
the purse's status (hence no movement into or out of epv or epa) nor its excep­
tion log (hence no change 10 from logs or to logs). 

14.6 Lemma 'AbIgnore': Operations thaI refine AbIgnore 

As sho\'.'n in section 14.2, 10 prove Ihe refinement of Ihe abslracl idenlity op­
era lion AbIgnore, we can separalely prove correctness for each of Ihe between 
operalions SrarlFrom, Stm1To, Val, Ack, ReadExcepcionLog, ClearExceptionLog, 
AuthoriseExLogClear, Archive, Ignore, Increase, and Abort. 

For those which are structured as promoted operalions (that is, all except 
Archive and Ignore), consider a general such operation, call it BOpIg. We note 
(hat all BOpig operations have the properties: 

• BOpig is a promoted operation, and thus alters only one concrete purse. 
II has the form 

3 D.ConPurse • 4>BOp 1\ BOpIgPurse 

• for any	 purse, the name is unchanged (by definilion of the single purse 
operations) 

• the domain of conAuthPurse is unchanged (by construction of the promo­
lion) 

• for any purse, either nextSeqNo is unchanged, or increased. 

V BOpIgPurse. nexcSeqNo s: nexlSeqNo' 
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We use !hese properties to .simplify the proof obligalion for the BOpIg opera­
lions. 

We invoke lemma 'det£'rministic' (section 14.4) to reduce the BOpIg proof 
obligation to exists-pd, exists-cbosenLost and check-operation: 

~BOp; BOpIgPurse; RabOue; RabClPd'[pdThisjpdThis'];
 
AbWorld; RabClPd; RabIn i
 

TAQ 

" AbIgnore 

Lemma 14.3 (Ablgnore) For a BOpJg operation, the check-operation proof obli­
gation reduces to check-operation-ignore1: 

~BOp; BOpIgPurse; RabCIPd'[pdThisjpdThis']; AbWorld; RabClPd I 

TAQ 
f ­

'rj n : dam abAuthPurse •
 
(abAurhPurse' n).lost ~ (abAuthPursen).lost
 
1\ (abAuthPurse' n).balance = (abAuthPursen).balance
 

• 
Proof: 

We take the check-operation proof obligation, and expand Ablgnore. The 
BOpIgPurse operations have cerlain properties in common; we explicitly state 
these in the hypothesis. 

<l>BOp; BOpIgPurse; RabOue; RabCIPd' [pdThis j pdThis'];
 
AbWorld; RabClPd; RabIn I
 

'PAQ 
1\ name' = name 
1\ nextSeqNo' ?: nextSeqNo 

f-

AbOp 1\ abAuthPur-se' = abAuthPurse 

We use [consq conjl to split this proof into two parts. The AbOp part is trivial: 
there are no constraints. This leaves the other conjunct to be proven, which is 

I Used in; Ignore, 14.7.2. 



rewritten as follows: 

<l>BOp; BOplgPurse; RabOut; RabC1Pd'[pdThislpdThis'];
 
AbWorld; RabClPd; Rabin I
 

'PAQ 
1\ name' = name 
1\ nextSeqNo' 2: nextSeqNo 

f-

V n: domabAuthPurse. abAuthPurse' n = abAwhPursen 

We prove this component by component. From <PROp in the hypothesis, all 
concrete purses other than purse name? remain unchanged. For the purse 
name?, we also have the equality of the pre and post states of name. This leaves 
the components balanace and lost. We use this ....ith (consq corul to reduce our 
proof requirement to the following: 

<l>BOI'; BOpIgPurse; RabOut; RabClPd' [pdThis I pdThis'];
 
AbWorld; RabClPd; Rabin I
 

'PAQ 
1\ name' = name 
j\ nextSeqNo' 2:: nexcSeqNo 

f-

V n : dam abAuchPurse •
 
(abAuthPurse' n).balance = (abAuthPurse n).balance
 
j\ (abAuthPurse' n).lost = (abAuthPursen).lost
 

We then [thin] the hypothesis to get the following, which proves the Ablgnore 
lemma. 

<l>BOp; BOpIgPurse; RabClPd'[pdThislpdThis']; AbWorld; RabClPd I 

'PAQ 
f-

V n: domabAuchPurse.
 
(abAuthPurse' n).balance = (abAuthPurse n).bafance
 
j\ (abAuthPurse' n).losC = (abAurhPursen).lost
 

.14,6 

14.7 Ignore refines AbIgnore 

As we saw at the end of section 14.3, by splitting up promoted operations, we 
have generated a requirement to prove the correctness of the Ignore branch 
once only. We do that here. 



102 CHAPTER 14. j\ TO 11 LEMMAS 

14.7.1 Invoking lemma 'detenninistic' 

Lemma 'deterministic' (section 14.4.5) carmol be applied as-is, because Ignore 
is not \\Titlen as a promotion (in order to ensure it is total). Hmvever, the argu­
ments to split the proof obligation into three parts follow in exactly the same 
manner even if the unpromotcd purse is not exposed. The proof obligations 
simply have BOpOkay in the hypothesis, instead of lflBOp; BOpPurseOkay. We 
use Ihat form to simplify the Ignore proof obligation to three parts, and then in­
vokelemma 'lost unchanged' to discharge the first two obligations. We similarly 
use lemma 'AbIgnore' to simplify the third proof obligation to check-operation­
ignore. 

14.7.2 check-operation-ignore 

Ignore; RabCIPd'[pdThis/pdThis-]; AbWorld; RabClPd I
 
chosenLost = chosenLost'
 
1\ maybeLost = maybeLost'
 
1\ definite/yLost = definitelyLost'
 

r 
'r:/ n: dom abAuthPurse.
 

(abAuthPurse' n).balance == (abAuthPurse n).ba/ance
 
1\ (abAurhPurse' n).1osf = (abAllfhPursen)./ost
 

The proof of this is immediate: Ignore changes no values, definilelyLost, maybe­
Lose and chosenLosf do not change, from the hY'Pothesis; so the abstraCl balance 
and lost, which depend only on these unchanging values, are unchanged. 

• 14.7.'2
 
.14.7
 

14.8 Abort refines AbIgnore 

As we saw at the end of section 14.3, by splitting up promoted operations, we 
have generated a requirement to prove the correctness of the Abort branch 
once onJy. We do that here. We cast it as a lemma, because we also use it to 
simplify the proofs of operations that first abort (lemma 'abort backward'). 

Lemma 14.4 (Abort refines Ablgnore) Concrete Abort refines abstract Ignore. 2 

Abort; Rab'; RabOur r 3 AbWorld; a?: AlN • Rab /\ RabIn 1\ AbIgnore 

• 
2Used in proof of lemma abort, 14.9 
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Proof: 
Abort is written as a disjunction between Ignore and a promoted Abon­

PurseOkay. We use lemma 'ignore' (section 14.3) to simplify the proof obliga­
tion to the correctness of Ignore (which we discharge in section 14.7), and the 
Okay branch, which we prove here. 

14.8.1 Invoking lenuna 'deterministic' 

We use lemma 'deterministic' (section 14.4.5) to simplify the proof obligations 
and then lemma 'AbIgnore' (section 14.6) to simplify the check·operation step. 

We have to instantiate the predicates P and Q. 
'P is a predicate identifying the pdThis involved in the transaction. This is 

the pdAuth stored in the aborting purse, unless the aborting purse is in eaFrom, 
in which case we don't have a defined transaction. We cater for the case of no 
transaction in the .Q predicate, so P can safely be defined as 

'P <'> pdThis ~ pdAuth 

Q is a predicate on chosenLosr. The af[er set chosenLost' either has pdThis 
removed (if the transaction moves it from chosenLost to de{inicelyLost), or is 
unchanged (because pdThis was not in chosenLosr to stan with) or is unchanged 
because there was no transaction to abort. Hence 

12<'> 
(pdThis E maybeLost 1\ chosenLosr = chosenLost' u {pdThis)} 
v (pdThis ff maybeLost 1\ status *- eaFrom 1\ 

chosenLosc = chosenLosc') 
v (status = eaFrom 1\ chosenLost = chosenLosr') 

14.8.2 exists-pd 

The unpromoted operation AbortPurseOkay is incomplete. The output, m! = .i, 

is not provided until promotion. 

4>BOp; AbortPurseOkay; RabOut; Rabel'; Rabin I m' ~ ~ 

f­

3 pdThis: PayDetaiis • pdThis ~ pdAUlh 

This is immediate by the one point rule. 
• 14.8.2 
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14.8.3 Three cases 

We spIlt the remaining two proofs, of eJdsts-chosenLost and check-operation, 
into three cases each, for each of the three disjuncts of Q. We staTt by arguing 
the behaViour of maybeLost and de{initelyLost in the three cases. 

•	 Case 1: aborted transaction in 'limbo': The aborting purse is the to purse 
in epv; the corresponding from purse is in epa or has logged. Hence abort­
ing the transaction ""'ill definitely lose the value. 

pdThis E maybeLost 

case 2: aborted transaction not in 'limbo': The aborting purse is not 
the (0 purse in epv, or the corresponding from purse is not in epa and 
has not logged. The transaction has either not got far enough (Q lose 
anything, or has progressed sufficiently far that the value was already 
eirher successfully transferred or definitely lost. 

pdThis fi maybeLosf /\ status '* eaFrom 

• Case 3: no transaction to abort: The aborting purse is in eaFrom, so has 
no defined transaction. Nothing is aborted, so no value is lost. 

status == eaFrom 

Case 1: old transaction in limbo 

pdThis E «(romlnEpa U (romLoggedJ n rolnEpv 

We argue about the behaViour of maybeLost and de{initefyLost using the fac! 
that the purse is the to purse initially in epv in the aborting transaction, and it 
logs the old transaction and moves to eaFrom. We argue that the transaction 
pdThis, initially in maybeLost by conslruction, is moved into de{initelyLosr' by 
this case of the Abort operation. The transacHon was far enough progressed 
that value may be lost, and it is lost in this case. 

Behaviour of fromInEpa and fromLogged pdThis is in tolnEpv (by our case 
assumption), so the only purse undergoing any change (name?) is the to purse; 
hence there can be no change to the sta£us or logs of any from pmse. Hence 

(rornlnEpa ~ (rornlnEpa'
 

(romLogged ~ (romLogged'
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Behaviour of tolnEpv pdThis is in wInEpv (by our case assumption); pdThis 
is not in [oInEpv' (Abort puts the purse into eaFrom); all other purses and 
transactions remain unchanged. So 

roInEpv = tolnEpv' u {pdThis} 

Behaviour of [oLagged pdThis is not in toLagged (using lemma 'notLoggcd­
AndIn' 't\-1th pdThis E toInEpv); pdThis is in (oIagged' (the purse makes a to log 
when it aborts from epv); all other purses and transactions remain unchanged. 
So 

toLogged ~ roLogged' \ (pdThis) 

Behaviour of definite/yIost 

definHeJyLost 

~ toLogged n (fromLogged U (romInEpa) [defn definite/yLost) 

~ (toLogged' \ (pdThis}) n ((romLogged' u (romInEpd) [abovel 

~ (roLogged' n ((romLogged' u (romInEpa')) \ (pdThis) [rearrange) 

~ definiteIyLosr' \ (pdThis) [defn definite/yLDSt'] 

Behaviour of maybeLost 

maybeLost 

~ ((romInEpa u (romLogged) n tolnEpv [defn maybeLosrl 

~ ((romInEpa' u (romLogged') n (tolnEpv' u (pdThis) [above] 

~ «fromInEpd u (romLogged') n tolnEpv') 
u (((romInEpd u (romLogged') n (pdThisJ) [Spivey] 

~ (((romInEpd u (romLogged') n tolnEpv') 
u (pdThis) {case asswnption] 

~ maybeLosr' u (pdThis) [defn maybeLost') 

Case 2: old lransaction not in limbo 

pdThis q: (fromInEpa u fromLogged) 11 toInEpv /\ status *- eaFrom 

We argue that the transaction pdThis is not moved into or out of maybeLost or 
de(initelyLost by this case of the Abort operation. 
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Behaviour of {romInEpa u (romLogged If pdThis is in fromInEpa it is also in 
{romLogged' (the purse is in epa, so it makes a (rom log when it aboTts); if 
pdThiJ is in fromLogged it is also in (romLogged' (logs cannot be removed); if 
pdThis is not in (romlnEpa U fromLogged i( is not in (romLogged' (the purse is 
not in epa, so does not make a (rom log when it aborts), and not in (romlnEpa' 
(because it ends in eaFrom); all the other purses and transactions remain un­
changed. So 

{romInEpa u {romLogged ~ (romInEpa' u {romLogged' 

Behaviour of de(initelyLost The cases allowed by our case assumption are: 

• pdThis refers to the to purse in epv, hence is not in 

(romInEpa u (romLogged 

and hence not in de(1nirelyLost. 

Also it is not in (romlnEpa' u fromLogged', and hence not in defjnitefyLost'. 
So dennitdyLost is unchanged. 

• pdThis refers to the to purse, but not in epv, or pdThis refers (Q the from 
purse, Hence toLogged is unchanged, since no to log is written, and logs 
cannot be lost. 
Also frornInEpa u (romLogged is unchanged, and so de{tnitelyLost is un­
changed, 

So 

defjnitelyLost' = definitelyLost 

Behaviour of maybeLost The cases allowed by our case aS5umplion are: 

•	 pdThis refers w the ro purse in epv, hence is not in 

(romInEpa u (romLogged 

and hence not in maybeLosl. Also it is not in fromlnEpa' u (romLogged', 
and hence not in maybeLost', so maybeLost is unchanged. 

•	 pdThis refers to the to purse, but not in epv, or pdThis refers to the from 
purse. Hence tolnEpv is unchanged, since no purse moves out of or in 
to epv. Also fromInEpa u fromLogged is unchanged, so maybeLost is un­
changed, 
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So 

maybeLost' = mayheLost 

Case 3: no transaction to abort 

status = eaFrom 

From AbonPurseOkay, no purses change state and no logs are written. There­
fore, de{initelyLost and maybeLost don't change. 

de{initelyLost' = de{initelyLost
 

maybeLost' = maybeLost
 

14.8.4 exists-chosenLost 

We now use the behaviour of maybeLost and de{inirelyLost in the three cases 
to prove exists-chosenLost. 

4> BOp; AbortPurseOkay; RabOur; RabClPd'[pdThis/pdThis']; RabIn I 

ml = 1­

A pdThis ~ pdAuth 
f­

3 chosenLost : l? PayDetails • 
(pdThis E maybeLost 1\ chosenLost = chosenLost' u {pdThis} 

v pdThis rf maybeLosf 1\ status =1= eaFrom 
1\ chosenLost = chosenLost' 

v status = eaFrom 1\ chosenLosr = chosenLost') 
1\ chosenLost ~ maybeLosr 

We push the existential quantifier in the consequent into the predicates: 

4>BOp; AbortPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn I 
m! = 1­

A pdThis ~ pdAuth 
f­

pdThis E maybeLost
 
1\ ( 3 chosenLost : IP PayDetaiIs •
 

chosenLost = chosenLost' u {pdThis}
 
1\ chosenLost £ maybeLost)
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v pdThis rt maybeLost 1\ statUs '* eaFrom 
1\ ( 3 chosenLosr : lP PayDetails •
 

chosenLost = chosenLost'
 
1\ chosenLosr £; maybeLost)
 

v status = eaFrom 
1\ (3 chosenLosr : I!» PayDefai/s •
 

chosenLosr = chosenLosr'
 
A chosenLosf c;;;: maybeLost)
 

In each case, we lone poind away the chosenLosrbecause Ihe predicate includes 
an expliCit definition for it. 

<PROp; AbortPurseOkay; RabOut; RabClPd'[paThis/pdThis']; RabIn I 
m! = J. 

A paThis ~ pdAuth 
f­

pdThis E maybeLost
 
A chosenLost' u {pdThis} c;;;: maybeLost
 

v pdThis rt maybeLost A status *- eaFrom
 
1\ chosenLost' c;;;: maybeLosr
 

v status = eaFrom
 
1\ chosenLost' <;; maybeLost
 

In each case, the predicate is of the form (a 1\ b), and "...e argue below that 
a ~ b. This allows us to replace (a 1\ bJ with Q. If we do this, we obtain 

<PROp; AbartPurseOkay; RabOut; RabCIPa'(paThis/pdThis']; RabIn I 
m!= ..L 

A paTh is = paAuth 
f­

pdThis E maybeLost
 

v pdThis rt maybeLost 1\ starus '* eaFrom 

v starus ~ eaFrom 

which is true. 

We now carry out the argumem as described above for each of the three 
disjuncts. 
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Case 1: old transaction in limbo 

We must show that under the assumptions of this lemma and in this case 

pdThis E maybeLost =­
chosenLost' u {pdThis} ~ maybeLost 

This follows by: 

chosenLosr' u {pdThis} 

" maybeLost' u {pdThis) [hypothesisl 

~ maybeLost [preVious argument for case 1\ 

• 14.8.4 

Case 2: old transaction not in limbo 

We must show that under the assumptions of this Lemma and in this case 

pdThis f! maybeLost A status :I: eaFrom => 

chosenLost' f; maybeLost 

This follows by 

chosenLosr' s;;; maybeLosr' [hypothesisI 

=> chosenLost' s;; maybeLost [preVious argument for case 2] 

• 14.8.4 

Case 3: no transaction to abort 

We must show that under the assumptions of this lemma and in this case 

status = eaFrom => 

chosenLosr' s;; maybeLost 

This follows by 

chosenLost' <;::;:: maybeLost' [hypothesis] 

=> chosenLost' c;::; maybeLos( [preVious argument for case 3J 

• 14.8.4 
• 14.8.4 
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14.8.5 check-operation-ignore 

We now use the behaviour of maybeLost and definitelyLost in the three cases 
10 prove check-operation-ignore. 

~BOp: AbortPurseOkay: RabC/Pd'[pdThisj pdThis'l:
 
AbWorld: RabC/Pd !
 
pdThis ~ pdAurh
 
1\ (pdThis E maybeLost 1\ chosenLost chosenLost' u {pdThis}0: 

v pdThis fi maybeLost A status "* eaFrom 
A chosenLost = chosenLost' 

v status = eaFrom A chosenLost = chosenLost') 
,. 
'r/ n: dam abAuthPurse •
 

(abAuthPurse' n).balance = (abAuthPurse n).balance
 
1\ (abAuthPurse' n)./ost = (abAuthPursen).lost
 

We can prove this for each or the three disjuncts in the hypothesis by [hyp disj]. 

Case 1: old transac lion in limbo 

lost is a function of de{'initelyLosru chosenLost. The pdThis moves from chosen­
Lost to definiteJyLost', so the union is unchanged. 

balance js a function of maybeLost \ ehosenLosr. The pdThis moves from 
chosenLosf, and hence from maybeLosc, so the difference is unchanged. 

• 14.8.5 

Case 2+3: old transaclion not in limbo or no transaction 

From ehosenLosr = ehosenLosc' and the argUJm~nts above, all the relevant sets 
are unchanging, so lost and balalnee are unchanging. 

• 14.8.5 
• 14.8.5
 
.14.8
 

14.9 Lemma 'abort backward': operations that first abort 

Some of the concrete operations are writlen as a composition of AbortPurse· 
Okay ""ith a simpler operation starting from eaFrom (StarrFrom, StarrTo, Read~ 

ExceptionLog, £x.ceptionLogClear). 
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Lenuna 14.5 (abort backward) Where a concrete operation is \'oJritten as a com· 
position of AbortPurseOkay and a simpler operation starting from eaFrom, it 
is sufficient to prove that the promotion of the simpler operation alone refines 
the relevant abstract operatlon. 

3 tiConPurse • 4lBOp 1\ (AbortPurseOkay ~ BOpPurseEa{romOkay); 
Rab'; RabOut; 
('t BOpEa(romOkay; Rab'; RabOut • 

3 AbWorld; a?: AIN • Rab A RabIn A AOp)
 
f­

3 AbWorld; a? : AlN • Rab 1\ RabIn 1\ AOp 

• 
Proof 

Use lemma 'promoted composition' (section Cll) to rewrite the promo­
tion of the composition to a composition of promotions, yielding 

(AbortOkay; BOpEa(romOkay); 
Rab'; RabOut; 
( 't BOpEa(romOkay; Rab'; RabOut • 

3 AbWorld; a?: A1N • Rab 1\ RabIn 1\ AOp) 
f­

3 AbWorld; a?: A1N • Rob /\ RabIn /\ AOp 

If BOpl refines AOpl and BOp2 refines AOp2, then BOpl ~ BOp2 refines 
AOpl ~ AOp2 (invoke lemma 'compose backward', section (9). 

Take BOpl ~ AborlOkay, AOpl : AbIgnore, and invoke lemma 'Abort 
refines AbIgnore' (section 14.8), to discharge this proof.
 

Take BOp2 = BOpEafromOkay, AOp2 = AOp, and nOle that we have that
 
BOp refines AOp in the hypothesis.
 

Note that AbIgnoYe ~ AOp = AOp, to reduce this expression in the conse­

quent .
 

• 14.9 

14.10 Summary of lemmas 

ill section 9.2.4 we reduced the refinement correctness proof for an operation 
to: 

BOp; Rab'; RabOut f- 3 AbWorld; a?: AIN. Rab A RabIn A AOp 
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We then built up a set of lemmas which may be used to simplify this proof 
requirement. 

AOp and BOp are often disjuncHons of simpler operations, and lemmas 
'muhiple refinement' (section 14.2) and 'ignore' (section 14.3) are used to prove 
that any Ignore or Abort branches of BOp need be proved once only for all 
BOps. These two branches are proved in lemmas later on, after further sim­
plification for a general disjunct (Ignore, Abort or Okay) of BOp. This sim­
plification starts v.ith lemma 'deterministic' (section 14.4) Which removes the 
3 AbWorld in the consequent of Ihe correctness obligation. In doing so, it re­
quires us to prove three side-lemmas (exists-pd, exists-chosenlost, cbeck­
operation). Lemma 'lost unchanged' (section 14.5) allows the side-lemmas 
exists-pd and exists-chosenLost to be discharged immediately given certain 
conditions. Lemma 'AbIgnore' (section 14.6) then proVides a simplification of 
the side-lemma check-operatioD when AOp is AbIgnore. 

We can now prove that the Ignore and Abort branches of BOp are correct 
wifh respect to AOp. Section 14.7 proves that Ignore refines AbIgnore, and 
lemma 'Abort refines AbIgnore' (section 14.8) handles the Abort branch. Wilh 
lemmas 'multiple refinement' and 'ignore', this has now proved the correctness 
of the Ignore and Abort branches of all BOp. 

Where the Okay branch of an operation is composed of Abort followed 
by che 'active' operation, lemma 'abort backward' gives us that we only need to 
prove the 'active' part. 

Returning to {he proof obligation wrilten above, any of the Ignore or Abort 
branches of a BOp opera{ion are dealt with by {he lemmas_ This leaves the 
Okay branch (if this contains an initial Abort, this can be ignored - from 
lemma 'abort back\\'ard' we need only prove the non-aborting part). Usuall)', we 
then apply lemma 'determin1stic' yielding a number of side-lemmas. These may 
sometimes be further simplified using lemmas 'lost unchanged' and 'AbIgnore'. 
The remaining proof is then particular to the BOp. 
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Correctness of Increase
 

15.1 Proof obligation 

We have to prove the correct refinement of each abstract operation. In section 
9.2.4 we give a general simplification of the correctness proof. We use lenuna 
'multiple refinement' (section 14.2) to split the proof obligation for each .J\. 
operation into one for each individual B operation. 

This chapter proves the 'B operation. 

We use lemma 'ignore' (see section 14.3) to simplify the proof obligation 
by proving the correctness of Ignore (in section 14.7), leaving the Okay 
branch to be proven here. 

•	 We use lemma 'determ1nistic' (section C.1) to reduce the proof obligation 
to the three cases exists-pd, exisls-ehosenLost, and check-operation. 

Since this operation leaves the sets rnaybeLost and de/initelyLost uncha­
nged, we use lemma 'lost unchanged' (section C.2) to discharge the exists 
pd.-and exists chosenLost-obllgations automatlcally. 

• Since this operation refines Ablgnore, we use lemma 'Ablgnore' (from sec­
tion C.3) to simplify check-operation to check-operatlon-lgnore. 

15.2 Invoking lemma 'lOSl unchanged' 

Section 14.5.2 gives sufficient conditions to be able to invoke lemma 'IOSl un­
changed'. These are that the unpromoted operation changes neither the status 
nor the exception log of the purse. Increase includes SConPurselncrease, which 
says exactly that. We can therefore invoke lemma 'Lost unchanged'. 
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15.3 check-operation-ignore 

~BOp; IncreasePurseOkay; RabOut; RabCIPd'[pdThisjpdThis']; 
AbWorld; RabClPd; RabIn I
 

chosenLosc' = chosenLosc
 
A maybeLost' = maybeLost
 
A definitelyLost' = definifelyLost
 

r 
'rJ n: dam abAuthPurse.
 

(abAuthPurse' n).balance = (abAuthPurse 11).balance
 
A (abAuthPurse' n).fost = (abAUlhPursenJ.lost
 

Proof: We have that maybeLos( and definilelyLost are unchanged from the hy­
pothesis. This shows that the balance and lost components of all the abstract 
purses remain unchanged. 

• 15.3
 
.15
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Correctness of StartFrom
 

16.1 Proof obligation 

We have to prove the correct refinement of each abstract operation. In section 
9.2A we give a general simplification of the correctness proof. We use lemma 
'multiple refinement' (section 14.2) to split the proof obligation for each J\ 
operation into one for each individual 'B operation. 

This chapter proves the 'B operation. 

•	 We use lemma 'ignore' (see senion 14.3) to simplify the proof obligation 
by proving the correctness of Ignore (in section 14.7), and Abon (in sec­
tion 14.8), leaving the Okay branch to be proven here. 

• Since the Okay branch of this operation is expressed as a promotion of 
AbortPurseOkay composed with a simpler EafromPurseOkay operation, 
we use lemma 'abort backward' (section C.5), and prove only that the pro­
motion of the simpler operation is a refinement. 

•	 We use lemma 'deterministic' (section CO to reduce the proof obligation 
to the three cases exists-pd, exists-chosenLost, and check-operation. 

• Since this operation refines Ablgnore, we use lemma 'Ablgnore' (from sec­
tion (3) to slInplify check-operation to check-operation-jgnore. 

16.2 Instantiating lemma 'deterministic' 

We take the pdThfs to be the pdAuth created by the start operation, and chosen­
Lost to be unchanging. 
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'P ¢=;> pdThis = (conAuthPurse' name?).pdAuth 

.Q ¢=;> chosenLosr = chosenLost' 

16.3 Behaviour of maybeLost and definitelyLost 

We argue that pdThis is not in (romInEpa or (romLogged before or aher the 
operation, where pdThis = (canAuthPurse' pdThis.(roml.pdAwh. 

First, before the operation the purse is in eaFrom, and after tt is in epr, 
and hence pdThis can never be in {romInEpa. 

From BetweenWorld constraint 8-7 if pdThis were in (romLogged' chen we 
would have 

(conAur-hPurse name?).pdAuth.fromSeqNo > pdThis.{romSeqNo 

but we know these two pdAuths are equal, So pdThis cannot be in {romLogged'. 
If the log isn't there after the operation, it certainly isn't there before, so pdThis 
is not in toLogged either. 

Only the {rom purse changes in this operation, so the sets tolnEpv and 
roLogged can't change. Hence 

colt1Epv' = tolnEpv
 

(aLagged' = (oLagged
 

(romInEpa' ~ (romInEpa
 

(romLogged' ~ (romLogged 

It follows Ihat maybeLost is unchanged: 

maybeLost'
 

= rolt1Epv' n «(romIt1Epa' u (romLogged')
 

'== talt1Epv n ({romInEpa u (romLogged)
 

= maybeLost 

Also, definitelyLost is unchanged: 

defit1irelyLost'
 

~ roLogged· n «(romInEpa' u (romLogged')
 

~ roLogged n ((romInEpa u (romI,ogged)
 

= definirelyLost
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16.4 exisls-pd 

4>BOp; SrartFromPurseEafromOkay; RabOur; RabCl"; Rabin 
,.. 
3 pdThis: PayDetails. pdThis "" (conAuthPurse' name?).pdAuth 

Proof 
Use the [one point] rule \"/ith the expression for pdThis in the quantifier. 
• 16.4 

16.5 exisls-chosenLosl 

4>BOp; SrarrFromPurseEafromOkay; RabOur;
 
RabC/Pd' [pdThisj pdThis']; RabIn I
 
pdThis == (conAuthPurse' name?),pdAuth 

,.. 
3 chosenLosr: (pl PayDerails •
 

chosenLosr = chosenLost'
 
/\ chosenLost s; maybeLost
 

Proof: 
We use the [one poine] rule on chosenLosr to give 

4>BOp; StarrfromPurseEafromOkay; RabOur;
 
RabClPd' [pdThis j pdThis']; RabIn I
 
pdThis = (conAuthPurse' name?).pdAuth 

,.. 
chosenLost' ~ maybeLosr 

We then have 

chosenLost' ~ maybeLost' [RabC/Pd'] 

£ maybeLost (unchanging maybeL,sr] 

• 16.5 

16.6 check-operation 

4>BOp; SrartFromPurseEafromOkay; RabC/Pd' [pdThis I pdThis']; 
AbWor/d; RabClPd I 
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pdThis = (conAuthPurse' name?).pdAuch 
J\ chosenLost = chosenLost' 

~ 

V n : darn abAuthPurse •
 
(abAuthPurse' n).balance = (abAuthPurse n).balance
 
1\ (abAurhPurse' n).losr = (abAuthPursen).lost
 

Proof:
 
From Rab, we have that lost is a function of definjce/yLost u chosenLosf, which
 
is unchanging, and that balance is a function of maybeLost \ chosenLost, which
 
is also unchanging.
 

• 16.6
 
.16
 



Chapter 17 

Correctness of StartTo
 

17.1 Proof obligation 

We have to prove the correct refinement of each abstract operation. In section 
9.2.4 we give a general simplification of the correctness proof. We use lemma 
'multiple refinement' (section 14.2) to split the proof obligation for each ..Jl 

operation into one for each indiVidual'll operation. 
This chapter proves the 1l operation. 

•	 We use lemma 'ignore' (see section 14.3) to simplify the proof obligation 
by proving the correctness of Ignore (in section 14.7), and Abort (in sec­
tion 14.8), leaVing the Okay branch to be proven here. 

• Since the	 Okay branch of this operation is expressed as a promotion of 
AbortPurseOkay composed with a simpler EafromPurseOkay operation, 
we usc lemma 'abort backward' (section C.S), and prove only that the pro­
motion of the simpler operation is a refinement. 

•	 We use lemm.a 'deterministic' (section C.l) to reduce the proof obligation 
to the three cases exists·pd, exists·chosenLost, and check-operation. 

• Since this operation refines AbIgnore, we use lemma 'AbIgnore' (from sec­
tion C.3) to simplify check-operation to check·operatlon-ignore. 

17.2 Instantiating lemma 'delerministic' 

We take pdThis to be the pdAurh created by the start operation, and chosenLost 
to be unchanging. 
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'P =- pdThis = (conAuthPurse' name?).pdAurh
 

Q ¢:> chosenLost = chosenLosr'
 

17.3 Behaviour of maybeLost and definite/yLost 

We argue that pdThis is not in any of the before sets fromlnEpa, fromLogged, 
tolnErv. or roLogged, where we have pdThis = (conAuthPurse' I1Qrne?).pcLA.uth. 

(conAurhPurse name?).nex.1SeqNo Idefn. Starn·o] 
= (conAuthPurse' name?).pdAuth.toSeqNo 

=:- (conAurhPurse name?).nex{SeqNo [dcfn. pdThis] 
= pdThis,toSeqNo 

=> reqpdThis ~ ether [BerweenWorld constraint B-2l 

=> pdThis r£ fromlnEpa u fromLogged[Berween~Vorld constraint B-12) 
/\ pdThis r£ WInEpv U (oLagged IBerweenWorld constraintB-lO] 

The operation moves one purse from eaFrom into epv; no logs arc written. 
Hence pdThis is in tolnEpv', but hot newly' added to any of the other after sets. 
So 

to1nEpv' ~ to1nEpv u {pdThis)
 
roLagged' = [oLagged
 
fromlnEpa' = frominEpa
 
(romLogged' ~ (rornLogged 

Il follows (ha( maybeLost is unchanged: 

maybeLost'
 

~ to1nEpv' n ((rorninEpa' u frornLogged')
 

~ \to1nEpv u {pdThis} n (frornInEpa u (romLogged) 

~ rnarbeLost u {fpdThis} n (frornInEpa u (rornLogged)) 

=rnaybeLost 

Also, de(inifefyLosr is unchanged: 

definite/yIost'
 

~ toLogged' n (frornInEpa' u frornLogged'J
 

~ toLogged n (frornInEpa u fromLogged)
 

=definirelyLosl 
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17.4 exists-pd 

<PHDp; SrartToPurseEa{romDkay; RabDur; Rabel'; RabIn 

>­
3 pdThis: PayDetails. pdThis = (conAuthPurse' name?).pdAuth 

Proof: 
Use the [one point] rule .....ith the expression for pdThis in the quantifier. 

• 17.4 

17.5 exists-chosenLost 

<PBDp; SrartToPurseEa{romDkay; RabDur; RabC1Pd' [pdThis IpdThis' I 
RabIn I 

pdThis ~ (conAurhPurse' name?).pdAurh 

>­
3 chosenLost : IP PayDetails •
 

chosenLost = chosenLosr'
 
/\ chosenLost s;;: maybeLost
 

Proof: 
We apply the [one point] rule for chosenLost in the consequent (Q give 

<PHDp; SrarrToPurseEa{romDkay; RabDut; RabClPd'[pdThis/ pdThis']; 

RabIn' 
pdThis = (conAuthPurse' name?).pdAuth 

>­
chosenLosr' s; maybeLost 

chosenLost' c;:: maybeLosr' [RabClPd'] 

s;:;: maybeLost (unchanging maybeLost] 

.17.5 

17.6 check-operation 

<PBDp; SrarrToPurseEafromDkay; RabCIPd' [pdThis / pdThis'];
 
AbWorld; RabCIPd I
 

pdThis = (conAuthPurse' name?).pdAuth 
/\ chosenLosr = chosenLost' 

>­
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'V n: domabAuthPurse.
 
(abAuthPurse' nJ.balance = (abAurhPursen).balance
 
1\ (abAuthPurse' n).Iost = (abAuthPursen).losr
 

Proof:
 
From Rab, we have that lost is a function of de(initelyLost u chosenLost, ""hich
 
is unchanging, and that balance is a function of maybeLost \ chosenLost, which
 
is also unchanging.
 

• 17.6
 
.17
 



Chapter 18 

Correctness of Req
 

18.1 Proof obligation 

We have 10 prove the correct refinement of each abstract operation. In seerion 
9.2.4 we give a general simplification of the correctness proof. We use lenuna 
'mulliple refinement' (section 14.2) 10 split the proof obligation for each .Jl. 
operation into one for each individual 'B operation. 

This chapter proves the B operation. 

We use lemma 'ignore' (see section 14.3) to simplify the proof obligation 
by proving the correctness of Ignore (in section 14.7), leaving the Okay 
branch to be proven here. 

•	 We use lemma 'deterministic' (section C.l) to reduce the proof obligation 
to the three cases exists-pd, exisls-chosenLost, and check-operation. 

18.2 Instantiating lemma 'deterministic' 

We must instantiate two general predicates relating to pdThis and chosenLosr. 
The choices for these predicates are based on the fact that the imponant trans­
aclionls the one referred (0 by the req message being consumed by the ReqOkay 
operation, and that before the operation, the set of transactions chosen to be 
lost should be all those chosen to be lost afler the operation, but specifically 
excluding the transaction pdThis. Thus 

'P ~ req- m? = pdThis 

Q. ~ chosenLost = chosenLost' \ {pdThis} 
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A' (I? 
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Figure 18.1: The correctness proof for Req. 

18.3 Discussion 

The correctness proof for Req is summarised in figure 18.1. There are three 
cases: 

The to purse for [he transaction is in epv, and we choose that the transfer
 
will succeed.
 
Before the operation, pdThis $ maybeLost u de(initelyLost, and the appro­

priate retrieve is RabEnd.
 

After the operation, pdThis E maybeLost' \ chosenLost'. and the appropri­

ate rctrie\'~ is RabOka}/; the abstract operation is AbTrans{erOkay.
 

The to purse is in epv, and we choose the transfer ","'ill fail (the to purse
 
\\ill move out of epv before receiVing the va/).
 

Before, pdThis rt maybeLost u de{tnitelyLost, and the appropriate retrieve
 
is RabEnd'.
 

After, pdThis E chosenLosc' , and the appropriate retrieve is RabWillBe­
Lod; the abstract operation is AbTransferLost 

The to purse has already moved out of epv, so will not receive the val: the
 
transfer has failed.
 
Before, pdThis rt maybeLosr U definitelyLost, and the appropriate retrieve
 
is RabEnd.
 

After, pdThis E definitelyLost', and the appropriate retrieve is RabHas­
BeenLos(; the abstract operation is AbTransferLost. 

Tne following proof establishes that these are indeed (he only cases, and that 
ReqOkay correctly refines AbTransfer in each case. 
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18.4 exists-pd 

<I>BOp; ReqPurseOkay; RabOut; RabCl"; Rabin 
f ­

3 pdThis : PayDetaifs • req- m? = pdThis 

Proof: 
We discharge this by removing the existential for pdThis because we have an 
explicit equation for it, using the lone point} rule. 

• 18.4 

18.5 exists-chosenlost 

<I>BOp; ReqPurseOkay; RabOut; RabCIPd'[pdThislpdThis']; Rabin I 
req- m? = pdThis 

f ­

3 chosenLost : IP PayDetails •
 
chosenLosr = chosenLost' \ {pdThis}
 
!\ chosenLost £: maybeLost
 

Proof:
 
That we can construct a chosenLost as the set difference is nue because set
 
difference is always defined. That the subset constraint holds follows as below:
 

chosenLosr' <:;; maybeLost' IRabCIPd'j 

chosenLost' \ {pdThis} " maybeLost' \ {pdThis} [property of set minusI 

chosenLost s;;; maybeLosf' \ {pdThis} [cqn for chosenLost) 

chosenLosr £. maybeLost [lemma 'not lost before', section C.14 I 

• 18.5 

18.6 check-operation 

<I>BOp; ReqPurseOkay; RabOur; RabCIPd'[pdThisjpdThis'];
 
AbWorld; RabClPd; Rabin I
 

req- m? = pdThis
 
!\ chosenLosr = chosenLost' \ {pdThis]
 

f ­


AbTransfer 
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Proof: 
We invoke lemma 'not lost before' 10 add constraints on maybeLosl and de­

(initelyLost to the hypothesis. This allows us to further alter the hypothesis by 
replacing RahClPd v{ith RabEndC/Pd. 

• BOp; ReqPurseOkay;	 RabOu'; RabCIPd' [pdThis/pdThlS'];
 
AblVorld; RabEndClPd; Rab1n I
 

req- m? = pdThis
 
1\ chosenLost = chosenLost' \ {pdThis}
 
1\ maybeLost = mayheLost' \ {pdThis}
 
A defini'elyLost = definitelyLos" \ {pdThts)
 

f ­

AbTransfer 

We use [hyp disj] to split RabC1Pd'[ ... ) into four separate cases (section 10.1.4) 
to prove (using identity in section 10.1.5). In each case, we strenglhen the 
cunsequent by choosing an appropriate disjunct of AbTrans{l'r. 

• case 1: We choose that the value is not lost, so the corresponding abstract 
operation is AbTransferOkay 

<PBOp; ReqPurseOkay; RabOu,; RabOkayClPd' [pdThis/ pdThis']; 
AbWorld; RabEndClPd; Rab1n I 

req- nJ? = pdThis 
1\ chosenLosr = chosellLosr' \ [pdThis} 
1\ maybeLosr = maybeLost' \ {pdThis:· 
1\ de{fmtefyLost = de(iniCelyLust' \ {pdThis J 

f­

AbTransferOkay 

• case 2: \.....e choose that the value will be lost, so the corresponding abstract 
operation is AbTransferLost 

<PBOp; ReqPurseOkay; RabOu';
 
RabWillEeLoseClPd' [pdThis / pdThis'];
 

AbWorld; RabEndClPd; RabIn I 
req- m? = pdThis 
1\ chosenLost = chosenLost' \ {pdThis} 
1\ maybeLosr = maybeLost' \ {pdThis} 
A defini'elyLos' = definiteIyLos" \ !pdThis) 

f ­

AbTrcmsferLost 
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•	 case 3: We say that the value has already been lost, so the corresponding 
abstract operation is AbTransferLosr 

c'PBOp; ReqPurseOkay; RabOut; 
RabHasBeenLosIC/Pd'[pdThisjpdThis']; 

AbWorId; RabEndC/Pd; RabIn I 
req- m? =: pdThis
 
1\ chosenLost:== chosenLost' \ {pdThis}
 
A maybeLos' = maybeLos" \ {pdThis) 
A de/InilelyLos' = denni'elyLost' \ {pdThis) 

f­

AbTransferLost 

case 4: The fourth case is impossible. We choose RabEndC1Pd', and prove 
that the hypothesis is contradictory, so the choice of corresponding ab­
stract operation is unimportant 

4>BOp; ReqPurseOkay; RabOu'; RabEndCIPd'[pdThisjpdThis']: 
AbWorld; RabEndCIPd; RabIn I 

req- m? = pdThis
 
1\ chosenLost =: chosenLost' \ {pdThis}
 
1\ maybeLost =: maybeLost' \ {pdThis}
 
A denni'elyLos' = denni'e/yLost' \ {pdThis) 

f­

AbTransfer 

We now have four independent cases to prove. The next four sections each 
prove one case. 

18.7 case 1: ReqOkay and RabOkayClPd' 

4>BOp; ReqPurseOkay; RabOut; RabOkayCIPd' [pdThisjpdThis' I; 
AbWorld; RabEndClPd; RabIn I 

req- m? = pdThis
 
1\ chosenLosr = chosenLosr' \ {pdThis}
 
1\ maybeLost = maybeLosr' \ {pdThis J
 

A dennitelyLost = dennaelyLos" \ (pdThis) 
f­

AbTrans(erOkay 
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18.7.1 The behaviour of maybeLost and definirelyLost 

We argue that the transaction pdThis is inHially not in maybeLost or de{initely­
Lost, and is moved into maybeLost' \ chosenLost' by this case of the ReqOkay 
operation. The transaction initially was nor far enough progressed to have the 
potential of being lost; afterwards it has progressed far enough that it may be 
lost, but we are actually on the branch thai ",ill succeed. 

We have from RabOkayClPd' that 

pdThis E maybeLost' \ chosenLost' 

Therefore pdThis ~ chosenLost' (by the definition of set minus) and pdThis if 

de{il1itelyLost' (by lemma 'lost'). So we have 

definitelyLost = de{initelyLost' 

maybeLost = maybeLost' \ {pdThisJ 

chosenLost = chosenLost' 

18.7.2 AbTransferOkay 

In this section we prove that an AbWorht that has the correct retrieve properties 
also satisfies AbTransferOkay. Recall [hat our proof obligation is 

4>BOp; ReqPurseOkay; RabOut; RabOkayClPd' [pdThis / pdThis']; 
AbWorld; RabEndClPd; Rabln I 

req- m? = pdThis 
!\ chosenLost = chosenLost' \ {pdThis] 
1\ maybeLost = maybeLost' \ {pdThis) 
A definite/yLos( ~ definite/yLost' \ {pdThis} 

1­

AbTransferOkay 

Each element of AbWor/d is defined by an exphcH equation in RabEndClPd, and 
we show thal this value satisfies AbTransferOkay by shoVYing each predicate 
holds. 

A-I AbOp: This trivial: AbOp imposes no constraints. 

A-2 AbWorldSeeureOp 

a? E ran transfer 
true by cOnstruction of a? from m? in RabIn. 
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no purses other than from? and co? change 
For balance and lost we show that RabEndClPd and 

RabOkayCIPd' [pdThis/ pdThis' ] 

are essentially the same. This is immediate because tn both cases the 
relevant predicates are captured in the same schema OtherPursesRab. 

A-3	 Authentic[ (rom? / name?], Authenricf to? / name?] 

We have pdThls E maybeLost', hence it is in both authenticFrom' and 
in authenricTo'. Hence, by <l>BOp and AbstractBerween, it is also in both 
authenticFrom and in ClurhenticTo. 

A-4	 SUfficientFundsProperty 

true from ConPurse constraint P-2b 

A-S	 to? *- (rom? 

true because pdThis is a PayDerails. 

A-6	 abAuthPurse' from? = ... I abAuthPurse' to? = . 

Each of the four elements (from and to purses, each with balance and lost) 
are handled below, followed by all the other elements in one section. 

The from purse's balance component 

(abAuthPurse pdThis.from).balance
 

= (conAu thPurse pdThis .from).balance
 
+ sumValue(((maybeLost \ chosenLosr) 

n {pd: PayDetaiis I pd.to ~ pdThis.(rom)) 
\ (pdThis}) [RabEndClPd] 

= (coMuthPurse pdThis.froml.balance 
+ sumValue( (((maybeLost' \ (pdThis)) \ chosenl.osr"l 

n I pd: PayDetaiis I pd.to ~ pdThis.(rom) I 
\ (pdThis}) [section 18.7.11 

= (coMuthPurse pdThts.from).balance 
+ sumValue(((maybeLost' \ chosenLosr') 

n {pd: PayDetaiis I pd.to ~ pdThis.(rom]) 
\ {pdThis]) [rearranging] 
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= pdThis.value + (conAulhPurse' pdThis.from).balance 
+ sumValue«(maybeLosr' \ chosenLosr') 

n {pd: PayDetails I pd.ro ~ pdThis.(rom}l 
\ {pdThisJ) [ReqPurseOkay) 

= pdThis,value + (abAuthPurse' pdThis.frorn).balance 
I RabOkayClPd' [ ... J! 

So 

(abAuthPurse' from?).balance = (abAuthPurse from?) .balance - value? 

The from purse's lost component 

(abAuthPurse pdThis.from).losl 

= sumValue{«de{initelyLosf v chosenLost) 
n { pd : PayDetaiis I pd.(rom = pdThis.from)) 

\ (pdThis J) IRabEndClPdj 

= sumVaJue«(de{initelyLost' v chosenLost') 
n (pd : PayDeraiis I pd.from = pdThis.{rom}) 

\ (pdThis)) 

= labAurhPurse' pdThis.from)./osr 

[section 18.7.1J 

[RabOkayClPd'[ .. .][ 

The to purse's balance component 

(abAuthPurse pdThis.lO) .balance 

= (conAuthPurse pdThis.to).bal£1nce 
+ sumValue( (maybeLosl \ chosenLost) 

n (pd: PayDeraiis I pd. to = pdThis. to J) 

\ (pdThis)) [RabEndCIPdj 

= (conAuthPursepdThis.lo).balance 
+ sumValue«((maybeLosr' \ (pdThis)) \ chosenLost'l 

n (pd: PayDetaiis I pd.'o = pdThis. '0)) 
\ (pdThis)) (section 18.7.1] 

= (conAuthPursepdThis.ro).balance 
+ sumVaJue{«maybeLost' \ chosenLosl') 

n (pd: PayDe'ails I pd.'o ~ pdThis. to)) 
\ (pdThis J) [rearranging] 



18.8. CASE 2: REQOKA Y AND RABI\7LLBELOSTPD' 131 

"" (conAuthPurse' pdThis.ro).balance 
+ sumValue«(maybeLosc' \ chosenLost') 

n {pd: PayDerails I pd.to = pdThis.to)) 
\ {pdThis)) I4>BOp] 

== (abAuthPurse' pdThis.to).baJance + pdThis.va/ue 
IRabOkayCIPd' [ .. J) 

From the form of (abAuthPurse' pdThis.ro).baJance == pdThis.value+ n inAb­
TransferOkay, we see that this last subtraction ghes a positive result. So 

(abAuthPurse' to?).balance = (abAuthPurse ro?).ba/ance + value? 

The to purse's lost component 

(abAurhPurse pdThts.to).losr
 

= sumValue( «de{initelyLos[ u chosenLost)
 
n {pd: PayDetails I pd.(rom = pdThis.to}) 

\ {pdThis} ) [RabEndC/Pd) 

== sumValue( «definitelyLosc' u chosenLosr') 
n {pd: PayDetails I pd.from = pdThis.to J) 

\ {pdThis)) [section 18.7.11 

= (abAuthPurse' pdThis.to)./ost IRabOkayC1Pd'[... ]I 

The remaining from and Co purse components 

These are unchanging, by 2ConPurseReq, and that the retrieves each define a 
unique abstract world. 

• 18.7.2 

• 18.7 

18.8 case 2: ReqOkay and RabWilIBeLostPd' 

4>BOp; Req1'urseOkay; RabOut; RabWiIIBeLostClPd' [pdThis I pdThis'J: 
AbWorld; RabEndCIPd; RabIn I 
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req- m? = pdThis 
!\ chosenLosr = chosenLost' \ (pdThis} 
1\ maybeLosr = maybeLost' \ {pdTh!s} 
A definiteIyLost = definitelyLost' \ IpdThis J 

~ 

AbTransferLost 

18.8.1 The behaviour of maybeLost and de(initelyLosr 

We argue thai the transaction pd is initially not in maybeLost or definirelyLost, 
and is moved into chosenLost' by this case of the ReqOkay operation. The 
transaction initially was not far enough progressed to have the potential of 
being lost; afterwards it has progressed far enough that it may be lost, and \\o'e 
choose thai it will be lost 

We have from RabWillBeLostCIPd' [. .] that 

pdThis E chosenLosr' 

Therefore 

pdThts E maybeLosr' 

because chosenLost' ~ maybeLost'. But we can say that pdThis (j definirelyLosr' 
(by lemma 'lost'). So we have 

de(inirelyLost = dennilelyLost' 

maybeLost = maybeLost' \ [pdThis} 

chosenLost = chosenLosr' \ {pdThis J 

18.8.2 AbTransferLost 

In this section we prove thai an AbWorld lhat has the correc t rettiev~ properties 
also satisfies AbTransferLosr. Recall, OUT proof obligation is 

<l>BOp; ReqPurseOkay; RabOur; RabWillBeLosrClPd' [pdThis i pdThis']; 
AbWorld; RabEndClPd; RabIn I 

req- m? = pdThis 
/\ chosenLost = chosenLost' \ {pdThis} 
/\ maybeLosr = maybeLosr' \ {pdThis} 
A definItelyLost = definiteiyLost' \ {pdThis} 

~ 

AbTransferLost 
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Each element of AbWorld is defined by an explicit equaUon in RabEndClPd, and 
we show thai this value satisfies AbTransferLosr by showing each predicate 
holds. 

A-I	 AbOp: This triVial: AbOp imposes nO constraints. 

A-2	 AbWorldSecureOp 

a? E ran transfer 
true by construction of a? 

no purses other than from? and to? change 
For balance and lost we show that RabEndCLPd and RabWillBelosr­
C1Pd[pdThisjpdThis'] are essentially the same. This is immediate 
because in both cases the relevant predicates arc captured 1n the same 
schema OrherPursesRab. 

A-3	 Authentic(from? / name?], Authentic[ to? / name?] 
We have pdThis E maybeLost', hence it is in both authenticFrom' and 
in authenticTo'. Hence, by 4JBOp and AhsrractBetween, it is also in both 
aurhenricFrom and in QuthenticTo. 

A-4	 SufftcienrFundsProperty 
true from ConPurse constraint P-2b 

A-5	 to? *- from? 
true because pdThis is a PayDetails_ 

A-6	 abAuthPurse' from? = '.', abAuthPurse' to? = . 

Each of tbe four elements (from and to purses, each with balance and lost) 
are handled below, followed by all the other elements in one section. 

Tbe from purse's balance component 

(abAuthPurse pdThis .from) .balance
 

= (conAuthPurse pdThis.from).balance
 
+ sumValue«((maybeLost \ chosenLost) 

n { pd: PayDetaiis I pd. to ~ pdThis.(rom } ) 
\ (pdThis)) IRabEndClPd) 

= (conAuthPurse pdThts.from).balance 
+ sumValue((((maybeLost' \ (pdThis)) \ chosenLosr' \ {pdThisJ) 

n (pd: PayDetaiis I pd.!o ~ pdThis.(rom}) 
\{pdThis)) Isection 18.8.IJ 
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= (conAuthPurse pdThis.(rom) .balance 
+ sumValue«(maybeLost' \ chosenLost') 

n {pd: PayDerails I pd.to ~ pdThis.{rom}) 
\ {pdThis)) (rearranging) 

= pdThis.value + (conAurhPurse' pdThis.{rom).balance 
+ surnValue«(maybeLost' \ chosenLost') 

n {pd: PayDetails I pd.to ~ pdThis.{rom}) 
\ {pdThis)) [ReqPurseOkay] 

= pdThis.vQlue + (abAuchPurse' pdThis.{roml.balance 
IRabWillBeLostCLPd' [... ]1 

So 

(abAuthPurse' from?),balance = (abAuthPurse from?).balance - value? 

The {rom purse's lost component 

(abAuthPurse pdThis. from) .lost 

= sumValue( «definitelyLost u chosenLost) 
n {pd : PayDeraiis I pdfrom ~ pdThisfrorn)) 

\ {pdThis} ) IRabEndClPd] 

~ sumValue(( (de!initelyLost' u chosemost' \ {pdThis) ) 
n I pd : PayDetaiis I pdfrom ~ pdThis.{rom}) 

\ (pdThis)) (section 18.8.1] 

= sumValue( « de{initelyLost' U chosenLost') 
n I pd : PayDetaiis I pd. from ~ pdThis.{rom}) 

\ (pdThis)) [rearrangej 

~ (abAuthPurse' pdThisfrom).lost - pdThis.value 
{RabWillBeLostCLPd' [... ]1 

The to purse's balance component 

(abAuthPurse pdThis. to). balance 

= (conAuthPurse pdThis. to) .balance 
+ sumValue( « maybeLos( \ chosenLost) 
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n {pd: PayDetails I pd. to ~ pdThis.to}) 
\ {pdThis}) IRabEndClPdj 

= (conAurhPursepdThis.to).balance 
+ sumValue( (( (maybeLost' \ {pdThis}) \ chosenLost' \ {pdThisJ) 

n {pd: PayDetails I pd.to ~ pdThis.to)) 
\ {pdThis)) Isection lB.B.]) 

= (conAuthPursepdThis.to).balance 
+ sumVa!ue«(maybeLost' \ chosenLost') 

n [pd: PayDetails I pd.to ~ pdThis.to)) 
\ {pdThis}) Irearranging) 

= (conAuthPurse' pdThis.to).balance 
+ sumValue«(maybeLost' \ chosenLost') 

n (pd: PayDetails I pd.to = pdThis.to}) 
\ {pdThis}) I<I>BOp) 

= (abAurhPurse' pdThis.ro).balance [RabWillBeLostClPd' [... ]) 

The to purse's lost component 

(abAuthPurse pdThis. to) .lost 

= sumValue( « de{inirel)lLosr v chosenLosr) 
n (pd: PayDetails I pd,from = pdThis.to) 

\{pdThis}) (RabEndClPdJ 

= sumValue(((dellnitelyLost' u chosenLost' \ (pdThis)) 
n (pd : PayDetails I pd,from = pdThis.to)) 

\(pdThis)) [section lB.B.l] 

= sumVa!ue( «de{initelyLost' u chosenLost') 
n {pd : PayDetails I pd.{rom = pdThis.to)) 

\ {pdThisl! [rearrange) 

= (abAuthPurse' pdThis.to).lost [RabWillBeLostCIPd' [... ]J 

The remaining from and to purse components 

These are unchanging, by 3ConPurseReq, and that the retrieves each define a 
unique abstract world. 

• lB.B.2 
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.18.8 

18.9 case 3: ReqOkay and RabHasBeenLosrPd' 

<l>BOp; ReqPurseOkay; RabOu'; RabHasBeenLos,CIPd'[pdThisjpdThis']; 
AbWorld; RabEndCIPd; RabIn I
 

req- m? = pdThis
 
1\ chosenLost = chosenLosf' \ {pdThis}
 

A maybeLos' ~ maybeLos" \ (pdThis)
 
A definitelyLos' ~ definUelyLos" \ (pdThis)
 

r 
AbTrans(erLost 

18.9.1 The behaviour of maybeLosc and definitelyIos! 

We argue that the transaction pd is initially not in maybeLost or definite/yIost, 
and is moved into dennitelyLost' by this case of the ReqOkay operation. The 
transaction initially was not far enough progressed to have the potential of 
being lost; afterwards it has progressed far enough that it has in fact been lost. 

We have from RabHasBeenLostClPd' that 

pdThls E defini'elyLos" 

Therefore pdThis rt maybeLost' (by lemma 'lost'), and also pdThis 1£ chosenLost' 
(because this is a subset of maybeLosr'). So ",,·e have 

definUelyLost ~ defini'elyLost' \ (pdThis)
 

maybeLost = maybeLosr'
 

chosenLost "= chosenLost' 

18.9.2 AbTtansferLost 

In this section we prove that an AbWorld that has the correct retrieve properties 
also satisfies AbTransferLosr. Recall. our proof obligation is 

<l>BOp; ReqPurseOkay; RabOu'; RabHasBeenLostCIPd' [pdThis I pdThis']; 
AbWorld; RabEndCIPd; RabIn I 

req- m? = pdThis 



137 18.9. CASE 3: REQOKA Y AND RABHASBEENLOSTPD' 

1\ chosenLosl = chosenLost' \ (pdThis] 
1\ maybeLosr = maybeLost' \ {pdThis}
 
1\ de/'iniCelyLost = definitelyLost' \ {pdThis)
 

~ 

AbTrans(erLosc 

Each element of AbWorld is defined by an explicit equation in RabEndC1Pd. and 
we show that this value satisfies AbTransferLosl by sho\',ing each predicate 
holds. 

A-I	 AbOp: This trivial: AbOp imposes no constraints, 

A-2	 AbWorldSeeureOp 

a? E ran transfer
 
true by construction of a?
 
no purses other than from? and fa? change
 
For balance and lost we show that RabEndCIPd and RabHasBeenLosr­

eiFel {pdThisj pdThis] are essentially the same. This is immediate be­

cause in both cases the relevant predicates are captured in the same
 
schema OrherPursesRab.
 

A-3	 Authentic[from? I name?], Aurhentic(ro? /name?] 
We have pdThis E maybeLost', hence H is in both authenticFrom' and 
in authenricTd. Hence, by <PBOp and AbstracrBetween, it is also in both 
authenticFrom and in authenticTo. 

A-4	 Su{ficientFundsProperty 
true from ConPurse constraint P-2b 

A-S	 to? *- from? 
true because pdThis is a PayDetails. 

A-6	 abAuthPurse' from? = "', abAuthPurse' to? = 

Each of the four elements (from and to purses, each With balance and lost) 
are handled below, followed by all the other elements in one section. 

The from purse's balance component 

(abAuthPurse pdThis.from).balance
 

= (corL4uthPurse pdThis.from) .balance
 
+ sumVaJue( (( maybeLost \ chosenLostl 

n {pd: ParDe tails I pd.to ~ pdThis.(rom)) 
\ (pdThisJ) [RabEndCIPd) 
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=: (con4uthPurse pdThis.{rom) .balance 
+ sumValue( (( maybeLost' \ chosenLost') 

n {pd: PayDetails I pJ.to = pdThisfrom I) 
\ {pdThis)) [section 18.9.11 

= pdThis.value + (con4uthPurse' pdThis.(roml.balance 
+ suml/alue(((maybeLost' \ chosenLost') 

n I pd: PayDerails! pd. '0 ~ pdThis.from)) 
\ {pdThis)) IReqPurseOkay[ 

= pdThis.vafue + (abAuchPurse' pdThis.{rom).balance 
[RabHasBeenLostC1Pd'[ .. ]1 

So 

(abAuthPurse' from?).balance =: (abAuthPurse from?) .balance - value? 

The {rom purse's lost component 

(abAuthPurse pdThi!l.froml.lost
 

=: sum\/alue( (( definitelyLosr u chosenLosf)
 
n {pd : PayDeeails [ pd.(rom ~ pdThis.(rom J I 

\ {pdThisJ) [RabEndCIPdI 

=: sumValue(Udefinite}yLosl' \ (pdThisJ u chosenLost') 
n {pd : PayDeeails 1 pd.(rom = pdThis.(rom J I 

\ (pdThis)) [section 18.9.1} 

=: sumValue( ((de(initefyLost' u chosenLosr') 
n {pd : PayDeraiis [ pd.(rom = pdThis.from}) 

\ [pdThis}) [rearrangel 

=: (abAuthPurse' pdThis.{rom)./ost - pdThis. value 
[RabHasBeenLosrC1Pd' [ ... ]1 

The to purse's balance component 

(abA uthPurse pdThis. to). balance
 

= (cort4uthPursepdThis.to).balance
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+ sum Value(( (maybeLost \ chosenLost) 
n (pd: PayDetaiis I pd.to ~ pdThis.to)) 

\ {pdThis)) (RabEndClPd] 

::= (coMuthPurse pdThis .to) .balance 
+ sumValue«(maybeLost' \ chosenLost'} 

n (pd: PayDetaiis I pd.to ~ pdThis.to]) 
\ {pdThis)) [section 18.9.1] 

= (conAuthPurse' pdThis.to).balance 
+ sumValue«(maybeLost' \ chosenLost') 

n { pd : PayDetaiis I pd. to ~ pdThis. to) ) 
\ {pdThis)) [<I>BOp! 

== (abAuthPurse' pdThis.toLbalance IRabHasBrenLostClPd' [ ... ]] 

The to purse's lost componenl 

(abAuthPurse pdThis.to).lost 

== sumValue( « de{jnitelyLost u chosenLost) 
() (pd: PayDetaiis , pd.(rom ~ pdThis.to)) 

\ {pdThis)) [RabEndClPd] 

== sumValue«(de{inite!yLosr' \ {pdThis} u chosenLost') 
() (pd: Pa}'Detaiis I pd.from ~ pdThis.to]) 

\ {pdThis}) (section 18.9.11 

= sumValue{«de{initelyLost' u chosenLosr') 
() (pd: Pa}'Detaiis I pd.(rom ~ pdThis.to}) 

\ (pdThis)) [rearrange] 

~ (abAuthPurse' pdThis.to)./ost [RabHasBeenLostClPd'[ . .. ] I 

The remaining from and to purse components 

These are unchanging, by 3ConPurseReq, and that the retrieves each define a 
unique abstract world. 

• 18.9.2 
.18.9 
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18.10 case 4: ReqOkay and RabEndPd' 

<l>BOp; ReqPurseOkay; RabOut; RabEndClPd'[pdThis/ pdThis']; 
AbWorld; RabEndCIPd; RabIn I 

req- m? = pdThis
 
/\ chosenLost = dlOsenLost' \ {pdThis}
 
/\ maybeLost = maybeLost' \ {pdThis]
 
A defimtelyLost ~ definitelyLost' \ (pdThis)
 

f­

AbTransfer 

We show that RabEndClPd'[ ...J is false under ReqOkay, and then proceed by 
[contradiction], because this shows the antecedent of the theorem is false, and 
hence the theorem is true. 

<l>BOp; ReqPurseOkay; RabOut; AbWorld'; 
pdThis: PayDetails; chosenLost' : iP PayDetails I 

req- m? = pdThis 
f­

~ RabEndC1Pd' [pdThis I pdThis'] 

It suffices to show that pdThis E definite1yLost' u maybeLost'. We have 

defjnitelyLost' u maybeLost' 

~ ({rominEpa' u (romLogged') n (toInEpv' U loLogged') 

ReqPurseOkay gives us that the after state of the purse is epa; pdThis is in 
QUlhenticFrom, from 4>BOp; hence pdThis is in fromlnEpLl' _ So it is sufficient to 
show either pdThis is in tolnEpv' or in toLagged'. 

We know from the existence of the req, ""ith BenveenWorld constraint B-1, 
that pdThis E aUlhenticTo. There is no ack in the ether': 

pdThis E fromlnEpr [precondition ReqPurseOkay] 

=:> ack pdThis ~ ether [BerweenWorld constraint B-91 

::) ack pdThis ~ ether' ldefn. ReqPurseOkay and <PBOp] 

Hence 

req pdThis E ether' [precondition ReqPurseOkay] 
1\ ack pdThis ~ ether' [above] 

=:> pdThis E tolnEpv' u toLogged' [BenveenWorld constraint 8-10} 
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Chapter 19 

Correctness of Val
 

19.1 Proof obligation 

We have to prove the correct refinement of each abstract operation. In section 
9.2.4 we give a general simplification of the correeUless proof. We use lenuna 
'multiple refinement' (section 14.2) to split the proof obligation for each .Jt 

operation into one for each individual 13 operation. 
This chapter proves the 13 operation. 

•	 We use lemma 'ignore' (see section 14.3) to simplify the proof obligation 
by proving the correctness of Ignore (in section 14.7), leaving the Okay 
branch to be proven here. 

•	 We use lemma 'deterministic' (section el) to reduce the proof obligation 
to the three cases exists-pd, exists-chosenLosl, and check-operation. 

Since this operation refines AbIgnore, we use lemma 'AbIgrlOre' (from sec­
lion C.3) to simplify check-operation to check-operation-ignore. 

19.2 lnstantiating lemma 'detenninistic' 

The choices for the predicates relating to pdThis and chosenLost are based on 
the fact that the important transaction is the one stored in the purse perfonning 
the ValOkay operation, and that before the operation, the set of transactions 
chosen to be lost should be all those chosen to be lost after tbe operation.. Thus 

'P ~ pdThis = (conAuthPursename?).pdAuth
 

.Q ~ chosenLost = chosenLosr'
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19.3 exists-pd 

<PEOp; ValFurseOkay; RabOa'; Rabel'; RabIn 
f­

3 pdThis : PayDetails • pdThis = (conAuthPurse name?) .pdAuth 

Proof: 
This is immediate by the [one point] rule, as we have an explicit definition of 
pdThis. 

• 19.3 

19.4 exists-chosenlost 

<PEOp; Va/FurseOkay; RabOat; RabClPd'[pdThislrdThis']; RabIn! 
pdThis = (conAuthPurse name?).pdAuth 

f­

3 chosenLost : [P PayDecails • 
chosenLosr = chosenLost' 
1\ chosenLost s; maybeLosl 

Proof: 
We can [one point] away the quantification because we have an explicit definition 
of chosenLost (as chosenLost'). We show that the constraint holds by 

chosenLost = chosenLost' [defn.) 

c.;;; maybeLost' [RabClPd'[ .. .JI 

" maybeLost \ {pdThis) Isee 19.6.7] 

£: maybeLosr [defn. \1 

• 19.4 

19.5 check-operation 

<PEOp; Va/FurseOkay; RabCLPd'[pdThislpdThis']; AbWor/d; RabClPd I 
pdThis = (conAuthPurse name?).pdAuth 
1\ chosenLosr = chosenLost' 

f­

'r:/ n: dam abAurhPurse. 
(abAuthPurse' nLbalance = (abAuthPurse n).balance 
1\ (abAuthPurse' n).lost = (abAuthPursen).lost 
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We prove this first by investigating the way in which the key sets de{initelyLost 
and maybeLost arc modified by the operation. HaVing got equations for these 
changes, we then look at the equations for the components balance and lost 
for two types of purses; the to purse in the transaction pdThis, and all other 
purses. 

19.6 Behaviour of maybeLost and definitelyLost 

We argue that the transaction pdThis is initially in maybeLost, and is moved 
out of it, but not into de{initelyLost', by the \.·'alOkay operation. This operation 
determines that the transaction is successful. 

19.6.1 frornlogged 

No logs change, so 

(romLogged' ~ (romLogged 

19.6.2 toLogged 

No logs change, so 

toLogged' = toLogged 

After the operation the purse is in eaTo, and pdThis is in QurhenticTo, from 
ilJBOp. hence pdThis E tolnEapayee'. Lemma 'notLoggcdAndln' (section C.12) 
gives us: 

pdThis ~ toLogged' 

19.6.3 to1nEpv 

From the precondition of ValPurseOkay we know the purse is in epv, and we 
know that the name of this purse is equal to pdThis.to. After the operation, 
this purse is in eaTo (that is, not in epv). No other purses change. 

rolnEpv' ~ tolnEpv \ {pdThis)
 

tolnEpv ~ tolnEpv' u {pdThis I
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]9.6.4 tromlnEpa 

Only the to purse changes. 

(romInEpa' ~ (romInEpa 

]9.6.S definltelyLos< 

definitelyLost' 

~ wLogged' n ((romLogged' u (romInEpa') Idetn) 

~ roLogged n ((romLogged u (romInEpa) [above] 

= definitelyLost Idetnl 

19.6.6 chosenLosl 

chosenLosr' = chosenLost 

by choice. So 

definitelyLost u chosenLost = de{jniCelyLost' u chosenLost' 

19.6.7 maybeLost 

maybeLosr' 

= (fromInEpa' u frornLogged') n wInEpv' {detn] 

~ ((rom1nEpa u (romLoggedJ n Uo1nEpv \ (pdThis}) [above] 

~ (((romInEpa u (romLogged) n ro1nEpv) \ {pdThis} (Spivey] 

~ maybeLosr \ (pdThis} [detn] 

val E ether 1\ to.status = epv [precondition ValPurseOkayI 

0> pdThis E (romInEpa u (romLogged [B-ll] 

;;:> pdThis E maybeLost [tolnEpv, defn maybeLostJ 

pdThis E maybeLost (above] 
1\ pdThis rt chosenLost' [because pdThis f/: maybeLost' 1 

=> pdThis E maybeLost t\ pdThis f/: chosenLost 

:::> pdThis E maybeLost \ chosenLost 
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Also 

maybeLost \ chosenLosr = (maybeLost' \ chosenLosl') u {pdThis} 

19.7 Clarifying the hypothesis 

We can show tlIar the hypothesis is actually stronger than it looks, in that we can 
replace RabCIPd "i'h RabOkayCIPd and replace RabCIPd' ,,1'h RabEndClPd'. 
This is because pdThis E maybeLosr \ chosenLost, implying that RabOkayCIPd 
holds. 

pdThis f£ maybeLost' (see construction of maybeLost') and so it cannot 
be in chosenLost'. pdThis ([ maybeLost' and so it cannot be in maybeLosr' \ 
chosenLost'. pdThis f£ de(lnitelyLost' because it is not in (oLagged'. 

This implies that RabEndClPd'[ ... ] holds. So we have to prove 

<l>BOp; ValPurseOkay; RabEndClPd' [pdThis I pdThis' J; 
AbWorld; RabOkayCIPd I 

pdThis = (conAuthPurse name?).pdAuth 
A chosenLost = chosenLosr' 

f-

V n: domabAuthPurse.
 
(abAuthPurse' n).balance = (abAuthPurse ~l).balance
 

A (abAuthPurse' n}.lost = (abAuthPurse ~l).lost
 

We do this for each of the three components, for all the purses other than 
the 10 purse engaged in this transaction, and for exactly the to purse in this 
transaction. 

19.7.1 Case balance component for non-pdThis.to purse 

'r/ n: domabAuthPurse In =1= pdThis.to.
 
(abAurhPurse' n).balance
 

= (conAuthPurse' n).balance
 
+ sumValue(((maybeLost' \ chosenLost') 
n	 (pd: PayDeraiis I pd. to ~ n}) \ [pdThls}) 

[RabEndCIPd'[pdThis I pdThis' JI 
= (conAuthPurse' n).balance 

+ sumValue( (( (maybeLost' \ chosenLost') u {pdThis}) 
n {pd: PayDetaiis I pd. to ~ n)) \ {pdThisJ) 

lunion and subtraction cancel] 
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== (conAuthPurse' n).balance 
+ sumVa/ue( (( maybeLosf \ chosenLosll 
n (pd: PayDetails I pd. '0 ~ n)) \ (pdThis}) 

[equation earlier] 

= (COnAuthPurse n).balance 

+ sumVaIue(((maybeLosr \ choserzLosr) 
n (pd: PayDetails I pd.to ~ n}) \ (pdThis]) 

[<PBDPJ 

= (abAuthPurse n).balance IRabDkayCIPdJ 

.19.7.1 

19.7.2 Case lost component for non-pdThis.to purse 

In this case the defining equations in the retrieve depend upon detinUe/yimt u 
chosenLost, which we derived as unchanging earlier. r.fJBOp does not change the 
concrete values, so the abstract values do not change either. 

• 19.7.2 

19.7.3 Case balance component for pdThis.to purse 

(abAuthPurse' pdThis.tol.baiance
 

= (conAuthPurse' pdThts. to) ,balance
 
+ sumValue(((maybeLosl' \ chaser/lost') 

n	 (pd: PayDetails I pd.to ~ pdThis.toj) \ {pdThisJ) 
[RabEndCIPd'[ .. .]J 

= {conAuthPurse' pdThis.to).balance 
+ sum Value( (( (maybeLosr' \ chosenLost') u {pdThiS}) 

n {pd: PayDetails I pd.ro ~ pdThis.to} ) \ {pdThisJ) 
[union and subtraction cancel] 

= (conAuthPurse' pdThis.to).balance 
+ sumValue( ((maybeLost \ chosenLosr) 

n (pd: PayDeraiis I pd.ro ~ pdThis.to}) \ {pdThis}) 
[equation earlier] 
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= (corL4.urhPurse pdThis.to).balance + pdThis.vaJue 
+ sumValue(((maybeLost \ chosenLost) 

n {pd: PayDetaiis I pdto ~ pdThis.talJ \ (pdThis}) 
[VaiPurseOkayl 

" (abAuthPurse pdThis. fa).balance IRabOkayC1Pdl 

.19.7.3 

19.7.4 Case lost component for pdThis.to purse 

In this case the defining equations in the retrieve depend upon definitelyLosl U 

chosenLost, which we derived as unchanging earlier. 'v"alOkay does not change 
the concrete values, so the abstract values do not change either. 

• 19.7.4 
• 19.7 

• 19 



Chapter 20 

Correctness of Ack
 

20.1 Proof obligation 

We have to prove the correct refinement of each abstract operation. In section 
9.2.4 we give a general simplification of the correctness proof. We use lemma 
'multiple refinement' (section 14.2) to split the proof obligation for each 5\ 
operation iIHo onc for each individual 'B operation. 

This chapter proves the 'B operaUon. 

•	 We use lemma 'ignore' (see section 14.3) to simplify the proof obligation 
by proving the correctness of Ignore (in section 14.7), leaving the Okay 
branch (0 be proven here. 

•	 We use lemma 'deterministic' (section Cll to reduce the proof obligation 
to the three cases exists-pd, exiSls-cbosenLost, and check-operation. 

• Since this operation refines AbIgnore, we use lemma 'Ablgnore' (from sec­
(ion C.3) (Q simplify check-operation to check-operation-ignore. 

20.2 Instantiating lemma 'deterministic' 

We must instantiate two general predicates relating to pdThis and chosenLost. 
The choices for these predicates are based on the fact tbat the important trans· 
action is the one stored in the purse performing the AckOkay operation, and 
that before the operation, the set of transactions chosen to be lost should be 
all tbose chosen to be lost after the operation, because this operation plays no 
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parr in deciding which transactions succeed and \",'hich ones lose. Thus 

'P ~ pdThis = (conAuthPurse name?).pdAuth 

Q. ~ chosenLost = chosenLost' 

20.3 exisls-pd 

<l>BOp; AckPurseOkay; RabOur; RabCl'; RabIn 
f ­

3 pdThis: PayDetaiis • pdThis = (cDllAurhPurse name?).pdAuth 

Proof:
 
This is immediate by lone point] rule, as we have an explicit definition of pdThis .
 

• 20.3 

20,4 exisls-chosenlost 

<l>BOp; AckPurseOkay; RabOur; RabClPd'[pdThis/pdThis']; RabIn I 
pdThis = (conAurhPursename?).pdAuth 

f ­

3 chosenLosr : IP PayDetails • 
chosenLost = chosenLost' 
1\ chosenLost s; maybeLost 

Proof: 
We can [one point] away the quantification because we have an expliClt definition 
of chosenLost {as chasenLost'}. We shm.... that the constraint holds by 

chosenLost = chosenLost' [def] 

~ maybeLosr' [RabClPd' [ ... J1 
~ maybeLost Isec 206.61 

.20.4 

20.5 check-<lperation 

<l>BOp; AckPurseOkay; RabCIPd'[pdThis/pdThis']; AbWorld; RabClPd I 
pdThis = (CDMuthPursename?).pdAuth 
1\ chosenLost = chosenLost' 

f ­
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V n : domabAuthPurse. 
(abAuthPurse' n).balance = (abAuthPurse n).balance 
A (abAuthPurse' nUost = (abAuthPurse n).1ost 

Proof:
 
We prove this by investigating the way in which the key sets de{initelyLost and
 
maybeLost are modified by the operation.
 

20.6 Behaviour of maybeLost and definitelyLost 

We argue that the transaction pd is inHially in neither maybeLost nor de{initely­
Lost, and is not moved into either of them by the AckOkay operatioll_ The 
transaction was initially far enough along to have already succeeded. 

20.6.1 Behaviour of fromLogged 

From <lJBOp, which says that only the purse name? changes, and then anl)" 
according to AckJ'urseOkay, and from the definition of AckPurseOkay, in which 
exLog' = exLog, we can see that 

fromLogged' ~ fromLogged 

20.6.2 Behaviour of (oLagged 

Exactly as we argued for (romLogged, 

coLogged' coLogged:.:0 

20.6.3 Behaviour of tolnEpv 

If toInEpv' "* colnEpv, th€r€ must be some pd in one and not in the other. From 
the definition of wInEpv, this means that for some purse that changes, either 
before or after the operation its status must equal epv. That is, 

(conAuchPursepd.co).scQCUS = epv 

(conAuthPurse' pd.ro).starus = epv 

v 
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From tflBOp we have that the only purse that changes is name? FromAckPurse· 
Okay we have that 

(conA.uthPurse name?).status = epa
 

(conAuthPurse' name?).status = eaFrom
 

(neHher equal to epv). Therefore, no such pd exists, and we have 

tolnEpv' = tolnEpv 

20.6.4 Behaviour of (romlnEpa 

If (romlnEpa' 'I: fromlnEpa, there must be some pd in one and not in the other. 
From the definition of fromlnEpa, this means that for some purse that changes, 
either before or after the operation its status must equal epa. That is, 

(cOnAuthPurse pd.from) .status = epa 
v 
(conAuthPurse' pd.from).status = epa 

The only name that changes is name?, and from AckPurseOkay we have that 

(conA.uthPursename?).status = epa 

(conAuthPurse' name?).status = eaFrom 

Therefore, we have 

fromlnEpa' ~ (romlnEpa \ {pd : PayDetails I pd.(rom ~ name' 
1\ (conAuthPursename?).status = epa 
/\ (conAuthPursename?).pdAuth = pd} 

In fact, the last predicate in this set limits the pd to a single value, equal to 
pdThis, so we have 

fromlnEpa' ~ fromlnEpa \ IpdThis) 

We now build up (he two sets definirelyLost and maybeLost. 



155 20.6. BEHAVIOUR OF MAYBELOST ANDDEFINfTELYLOST 

20.6.5 Behaviour of definitelyLosr 

defini,eIyLos,' ~ ,oLogged' n ((rornLogged' u (romInEpa') [defn] 

= toLogged [above identities} 
n «(romLogged u «(romInEpa \ {pdThis))) 

~ ,oLogged [pdThis ~ (rornLogged, see below[ 
n «fromLogged u (romInEpa) \ {pdThis)) 

~ «(rornLogged u (romInEpa) [algebra] 
n (toLogged \ {pdThis}) 

~ «(rornLogged u (romInEpa) n ,oLogg,.IThis ~ ,oLogged, see below[ 

~ definitelyLos' Idefn] 

We bave pdThis ~ fromLogged, from tbe fact 'bat pdThis E (romInEpa (because 
the before purse state is epa, and epBOp gives pdThis E aurhenticFrom), and 
using lemma 'notLoggedAndln'. 

We have pd rt ,oLogged: 

ack pd E ether (precondition AckPurseOkay] 

~ pd ~ 'oInEpv U ,oLogged lBetweenWorId constraint B-IOJ 

~ pd ~ 'oLogged pawl 

Thus we have 

defini'elyLos" ~ defini'elyLos' 

20.6.6 Behaviour of maybeLosr 

maybeLos" ~ ((romInEpa' U (romLogged') n ,oInEpv' [defn.] 

~ «(romInEpa U «(rornLogged \ {pdThis})) n 'oInEpv 
{above identitiesl 

~ «((romInEpa U (rornLogged) \ {pdThis)) n ,oInEpv 
IpdThis ~ (rornLogged, as above] 

~ «(romInEpa U (rornLogged) n (toInEpv \ {pdThis}) [algebra] 

~ «(romInEpa U (rornLogged) n ,oInEpv(pdThis ~ toInEpv, see below] 

~ maybeLosr Idefn.] 
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We have pdThis 'i tolnEpv: 

ack pd E ether [precondition AckOkay) 

.:::> vdThis fi colnEpv u toLogged [BecweenWorld constraint 8-10] 

=:- pdThis fi rolnEpv lIawl 

Thus WE' have 

maybeLost' = maybeLost 

20.7 Finishing proof of check-operation 

The above shows that none of the three sets definitelyLost, maybeLost or chosen­
Lost changes. As AckOkay does not alter any concrete balance or lost, and 
given that the abstract values are defined solely in terms of these (illlchanging) 
values, it follows that the abstract values don't change, thus discharging the 
check-operation proof obligation. 

• 20.5
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Chapter 21 

Correctness of ReadExceptionLog
 

21.1 Proof obligation 

We have to prove the correct refinement of each abstract operation. In section 
9.2.4 we give a general simplification of the correctness proof. We use lenuna 
'multiple refinement' (section 14.2) to split the proof obligation for each .J\ 

operation into one for each indiVidual 'B operation. 
This chapter proves the 'B operation. 

We use lemma 'ignore' (see section 14.3) to simplify the proof obligation 
by proving the correctness of Ignore (in section 14.7), and Abort (in sec­
tion 14.8), leaving the Okay branch to be proven here. 

Since the Okay branch of this operation is expressed as a promotion of 
AborrPurseOkay composed with a simpler EafromPurseOkay operation, 
we use lemma 'abort backward' (section C.S), and prove only that the pro­
motion of the simpler operation is a refinement. 

We use lemma 'deterministic' (section C.l) to reduce the proof obligation 
to the three cases exists-pd, exists-chosenLost, and check-operation. 

Since this operation leaves the sets maybeLost and definitelyLost uncha­
nged, we use lemma 'lost unchanged' (section C.2) to discharge the exists 
pd-and exists chosenLost-obligations automaUcally. 

• Since this operation refines Ab/gnore, we use lemma 'Ab/gnore' (from sec­
tion C.3) to simplify check-operation to check-operation-ignore. 
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21.2 Invoking lemma 'lost unchanged' 

We have the constrainl SConPurse in the definition of ReadExJ::eprionLogPurse­
EafromOkay. From cfJBOp and 3ConPurse, we knm'\' that archive and conAurh­
Purse remain unchanged, as do de(inilelyLost and maybeLost. Hence we can 
invoke lemma 'Lost unchanged'. 

21.3 check-operation-ignore 

lflBOp; ReadExceprionLogPurseEa{romOkay;
 
RabOut; RabCIPd' [pdThis / pdThis'];
 
AbWorld; RabClPd; Rab1n I
 

chosenLosr' = chosenLosr 
1\ maybeLosl' = maybeLost 
1\ de{jnitelyLost' = definitelyLost 

~ 

'rj n : dam abAuehPurse •
 
(abAuthPurse' nLbalance = (abAuthPurse n).balance
 
1\ (llbAuthPurse' n).1ost = (abAuthPursen}.lost
 

Proof: 
We have thai maybeLost and de(inirclyLost are unchanged from the hypothe­
sis. Hence the balance and lost components of all the abstract purses remain 
unchanged, satisfying our proof requirement. 

• 21.3
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Chapter ZZ 

Correctness of ClearExceptionLog
 

22.1 Proof obligation 

We have to prove the correct refinement of each abstract operarion. In section 
9.2.4 we give a general simplification of the correctness proof. We use lemma 
'multiple refinement' (section 14.2) to split the proof obligation for each .A 
operation into one for each individual 'B operation. 

This chapter proves the B operation. 

•	 We use lemma 'ignore' (see section 14.3) to simplify the proof obligation 
by proving the correctness of Ignore (in section 14.7), and Abort (in sec­
tion 14.8), leaving the Okay branch to be proven here. 

• Since the	 Okay branch of this operation is expressed as a promotion of 
AbortPurseOkay composed with a simpler EafromPurseOkay opera[ion, 
we use lerruna 'aboft backward' (section C.s), and prove only that the pro­
motion of the simpler operation is a refinement. 

•	 We use lemma 'deterministic' (section C.1) to reduce the proof obligation 
to the thIee cases exists-pd, exists-chosenLost, and check-operation. 

• Since this operation leaves the sets maybeLosf and de{initelyLost Illlcha­
nged, we use lemma 'lost unchanged' (section C.2) to discharge the exists 
pd·and exists chosenLost-obIigations automatically. 

• Since this operation refines AbIgnore. we use lenuna 'AbIgnore' (from sec­
tion C.3) to simplify check-operation to check-operation-ignore. 
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22.2 Invoking lemma 'Lost unchanged' 

The purse's exception log is cLeared, so we cannot use the 'sufficient conditions' 
to invoke lemma 'lost unchanged': we need first to show that (romLogged and 
toLugyl?d are unchanged. 

We have from the operation definition that the exception log details in the 
purse that are to be cleared match the ones in the exceptionLogClear message. 
We have, from constraint B-15 that the log details in the message are already 
in the archive. So deleting them from the purse ""ill not change aI/Logs. But 
fromLogged and (oLagged partition al/Logs, so these do not change either. 

Hence we can invoke lemma 'Lost unchanged'. 

22.3 check-operation-ignore 

4JBOp; ClearExcepnonLogPurseEa(romOkay; 
RabOur; RabClPd' [pdThis (pdThis' J; 
AbWorld; RabCWd; RaWnl
 

choserrLost' = chosenLost
 
A maybeLost' = maybeLost
 
A definitelyLosr' ~ definirelyLosr
 

<­
'if n: domabAuthPurse.
 

(abAuthPurse' n).balance = {abAurhPurse nl.halance
 
A (abAuthPurse' n).losc = (abAuthPursen).iost
 

Proof:
 
We have that maybeLosc and de{initelyLost are unchanged from the hypothe­

sis. Hence the balance and lost components of all the abs tract purses remain
 
unchanged.
 

• 22.3
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Chapter 23 

Correctness of AuthoriseExLogClear
 

23.1 Proof obligation 

We have to prove the correct refinement of each abstract operation. In section 
9.2.4 we give a general simplification of the correctness proof. We use lemma 
'multiple refinement' to split the proof obligation for each .J'l operation into 
ODe for each individual 'B operation. 

This chapter proves the 'B operation. 

We use lemma 'ignore' to simplify the proof obligation further to proving 
the correctness of Ignore (section 14.7), leaVing tbe Okay branch to be 
proven. 

We cannot use any of the other simplifications directly for AuthorfseExLogClear, 
since it cannot be written as a promotion. So the correcmess proof obligation 
for AuthoriseExLogClear is 

AuthoriseExLogClearOkay; Rab'; RabOut 
f­

3 AbWorld; a?: AlN • Rab 1\ RabIn /\ AbIgnore
 

23.2 Proof 

First we choose an input. We argue exactly as in section 14.4.1 to reduce the 
obligarton to: 

Authorise"ExLogClearOkay; Rab'; RabOut; RabIn 
f­

3 AbWorld • Rab " AbIgnore
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We [cuO in a before AbWorld equal to the after AbWorld' in Rab' (the side lemma 
is trivial), and use [consq exists] to remove the qlJantifier from the consequent. 

AuthoriseExLogClearOkay; Rab'; RabOut; RabIn; AbWorld I 

BAbWorld = BAbWorld' 
c-
Rab 1\ AbIgnore 

AbIgnore is certainly satisfied by the equal abstract before and after worlds. 
It remains to show that Rab is satisfied. The only difference betv.'een 

the concrete before and after worlds, as given by AurhoriseExLogClearOkay, is 
the addition of an exceptionLogClear message in the ether. But Rab does not 
depend on exceptionLogClear messages, and so we can deduce Rab direcllr 
from Rub' 

.23.2 
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Chapter 24 

Correctness of Archive
 

24.1 Proof obligation 

We have to prove the correct refinement of each abstract operation. In secriOD 
9.2.4 we give a general simplification of the correctness proof. We use lenuna 
'multiple refinement' to split tlIe proof obligation for each A operation into 
one for each individual 'B operation. 

This chapter proves the 'B operation. 
We cannot use any more of the usual simplifications directly for ArchiVe, 

since it cannot be written as a promotion. So the correctness proof obligation 
for Archive is 

Archive; Rab'; RabOut I- 3 AbWorld; a? : AlN • Rab 1\ RabIn 1\ AbIgnore 

24.2 Proof 

First we choose an input. We argue exactly as in section 14.4.1 to reduce the 
obligation to: 

ArchiVe; Rab'; RabOur; RabIn f- 3 AbWorld • Rab A AbIgnore 

We [cut) in a before AbWorld equal to the after AbWorld' in Rab' (the side lenuna 
is trivial), and use [consq exists] [Q remove the quantifier from the consequent. 

ArchiVe; Rab'; RabOur; RabIn; AbWorld I
 
8AbWorid = 8AbWorld'
 

f-


Rab 1\ Ablgnore 
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AbIgnore is certainly satisfied by the equal abstract before and after worlds. 
It remains to show that Rab is satisfied. The only difference between the 

concrete before and after worlds, as given by Archive, is the inclusion of some 
log details in the archive. We have, from BetweenWorld constraint B-14, that 
the log details added to the archive from the exceptimlLogResult message arc 
already in allLogs. So, although the archive grows, the operation does not add 
any new logs to the world. Thus fromLogged and roLogged don', change. Hence 
maybeLost and definitelyLost don't change. Therefore, nothing that Rab relies 
upon changes in the concrete world, and so we can deduce Rab directly from 
Rab', 

.24,2 
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Chapter 25 

Refinement Proof Rules
 

25.1 Security of the implementation 

We prove the concrete model C is secure with respect [Q the between model 
'B by showing that every concrete operation correctly refines a between opera­
nOlL The concrete and between operations are similarly-named. The full list of 
refinements is: 

StartTo ~ CStartTo
 
StartFrom ~ CStartFrom
 
Req i;;; CReq
 
Val i;;; CVal
 
Ack c; CAck
 
ReadExceptionLog i;;; CReadExceptionLog
 
ClearExceptionLog i;;; CClearExceplionLog
 
AuthoriseExLogClear i;;; CAuthonseExLogClear
 
Archive t; CArchive
 
Abort ~ CAbort
 

Increase t; CIncrease
 
Ignore i;;; CIgnore
 

25.2 Forwards rules proof obligations 

Each of these refinements must be proved correct. 
[Spivey 1992b, Chapter 5] presents the theorems that need to be proved 

for the most commonly-occurring case of non-determinism, sometimes called 
'downward' or 'forv.lard' conditions, where the abstract and concrete inputs and 
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outputs are idenUcal. These, augmented ......ith a finalisation proof, aTe appro­
priale for the 'B 1O C reftnemen{ proofs. 

The fOTh'ard rules are summarised in figure 25.1. Note how the paths are 
differem from the backward case (figure 9.1) because of the direction of the R 
arrows. 

25.2.1 Retrieve 

The retrieve relation has one pan lhallinks the abstract and concrete states. 

25.2.2 Initialisation 

GnU I- 3 H' • BInit II R' 

25.2.3 Finalisation 

R; CFin I- BEin 

25.2.4 Applicability 

R; BIn I pre BOp f- pre COp 

25.2.5 Correctness 

R; COp I pre BOp I- ] B' • R' ,\ BOp 

We can simplliy the correctness conctltion because we know that all the 
between operations are total, i.e. 

pre BOp = true 

TIlls was proved earlier, in section 8.3.2. 
We can therefore simplify the correctness condition to 

R; COp f- 3B'. R' A BOp 
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B' B BOp B' B 

Blm/ /"'f, 
U 

, Rr",B::~ 
' , R' 

Clnil :~ l ~
 } 

C' C COp C' C 

Initialisation Correctness Finalisalion 

Figure 25.1: A summary of the fomard proof rules. The hypothesis is the 
existence of the lower (solid) path. The proof obligarion is to demonstrate the 
existence of an upper (dashed) path. 



Chapter 26 

13 to C retrieve relation 

26.1 Retrieve state 

The 'B and C worlds are identical, except that the C world can 'lose' ether mes­
sages. 

,Rbc _ 

BetweenWorld 
ConWorldo 
---~-

conAuthPurseo = conA.uthPurse 

ethero ~ ether 

archiveo = archive 

The subscript zero on the concrete world serves ro distinguish like-named be­
tween and concrete components. 



Chapter 27 

Initialisation, Finalisation, and 
Applicability 

27.1 initialisation proof 

ConlnitState I- :3 BetvveenWorld' • BetweenlnitState 1\ Rbc' 

Proof:
 
We expand ConInitStare in the hypothesis according to its definition.
 

Con World;', I 
(3 Bet1t'eenWorld' I BetweenlnitStare.
 

conAuthPurseo = conAuthPurse'
 
/\ archive' = archive'
 
/\ {.l.) ~ ether~ <;: ether' )
 

~ 

3 BetweenWorld' • BetweenlnitStare /\ Rbc' 

From the definition of Rbc', we can see that the consequent follows directly 
from the hY'Pothesis, 

.27.1 

27.2 Finalisation proof 

Rbc; ConFinStare I- BetwFinStare 

Proof:
 
We have defined ConFinScate and BetwFinState to have the same mathematical
 
form.
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Rbc in the hypothesis requires the concrete and between purse slates and 
archives to be identical, and allows the between ether to be bigger than the 
concr-ete ether. 

Finalisation of the purses depends only on the purse states (identical by 
hypothesis) and on the sets definifelyLost and maybeLost. These sets them­
selves depend only on purse states and on the archive (also identical for con­
crete and between worlds by the retrieve in the hypothesis). As result, gAuch­
Purse for between finalisation is identical to that for concrete finalisation. 

• 27.2 

27.3 Applicability proofs 

Applicability follows automatically from the totality of the concrete operations 
as shown in section 8.4 . 

• 27.3 



Chapter 28 

Lemmas for the 'B to C correctness 
proofs 

28.1 Specialising the proof rules 

For each concrete operation COp and corresponding between operation BOp 
we have to show 

Rbc; COp f- 3 BetweenWorld' • Rbc' 1\ BOp 

Many operations are defined as the disjunction of other operations. A COp 
will have the same branches as a corresponding BOp: a CIgnore branch, and 
either a CAbon or COpOkay branch, or both. We sphr the proof obligation into 
CIgnore, CAbart and COpOkay branches, as \\'e did in section 14.3. This gives 
some or all of the following proof requirements, depending on which branches 
are in COp: 

Rbc; Clgnore l- 3 BetweenWorld' • Rbc' 1\ Ignore 

Rbc; CAbort t- 3 BetweenWorld' • Rbc' 1\ Abort 

Rbc; COpOkay r~ 3 BerweenWorld' • Rbc' A BOpOkay 

The correctness of the CIgnore branch is dealt with below in section 28.2. We 
then develop the correctness proof for the CAborr and COpOkay branches, and 
introduce a lenuna applicable to certain operations. Follov..mg this, we present 
the proof of correctness of two common branches - CIncrease and CAban. 

28,2 Correctness of CIgnore 

The correctness of the CIgnore branch follows trivially by choosing 
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8Berweenl-'\-'orld' "= eBetweenWorld 

.28.2 

28.3 Correctness of a branch of the operation 

283.1 Choosing Ben.yeenlforld' 

In choosing BetweenWorld', we base our choice of the conAuthPurse' and ar­
chive' componen{s on Rbc', and our choice of the ether' componem on BOp­
Okay' . 

We have COnAuthPurse~ and archiveD in the hypothesis, and we use this 
to provide the value for COnAuthPurse' and archive', respectively (this satisfies 
the constraint on conAuehPurse' and archive' in Rbc'). 

conAuthPurse' = conAuthPurseo 
archive' = archiveb 

m! and ether are declared in the hypothesis, and ether' can be constructed 
deterministically from these (note that the folloWing construction satisfies the 
relevant constraint in BOpOkay - either in tPBOp or e;\.'plicitly as in Archtve). 

echer' = ether u 1m!} 

We need to show that the chosen BetweenWorld' and m! satisfy each of the 
canJuncts in the consequent (retrieve Rbc' and operation BOpOkay). 

We also need to show that this choice is indeed an after BetweenWorld' 
(that it satisfies the constraints on BetweenWorld specified in section 5.3). 

2&3.2 Case BOpOkay 

from the choice of ether' above, {he relevant constraint on ether' in BOpOkay 
is satisfied by construction. 

At most one purse changes in COpOkay. tel us call this new purse value 
p. This gives 

conAuthPurse~ = conAuthPurseo ED {p] 

conAuthPurse~ = conAuthPursee {p] IRbc) 

conAuthPurse' "'= conAuthPurse e {p} (choice of conAuthPurse'l 

This satisfies the constraint on conAuthPurse' in BOpOkay (where at most one 
purse changes in an identical manner to COpOkay). 
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archive' is a function of archive and m!, defined in BOpOkay. Call this 
fl1J1ction f: 

If: Logbook x MESSAGE - Logbook 

Because COpOkay is defined in an analogous way, f also relates 'lrchiveo to 
archiv€o and mL 

From the hypothesis we have COpOkay and Rbc, and v·:Hh our choice of 
archive' Wl' have, respectively 

archive~ = (archiveo, m!) 
1\ archive = archiveo 
1\ archive' = archive'o 

Substituting the 1a tter two equations into the first gives the predicate in BOp~ 

Okay. 
Thus, the BOpOkay constraints on all the components of our chosen Be­

tween World' are satisfied under the correctness hypothesis and choice of Be­
tween World' . 

• 28.3.2 

28.3.3 Case Rbc' 

Both the conAuthPurse' and archive' components of BetweenWorld' satisfy Rbc' 
from the choice of BetweenWorld'. 

All COpOkay operations constrain ether' as 

ether6 ~ ethero u {m!} 

either through tfJCOp, or explicitly in CArchive. Hence for erhey' we have 

ether' 

== ether u {m!} Ichoice of erher'} 

~ ethero u {m!} [Rbc] 

~ ethero [COpOkay] 

This satisfies the constraint on ether' in Rbc'. 

28.3.4 Case 'obey constraints' 

We know from the hypothesis that the before BetweenWorld satisfies [he con· 
straints, so we need check only that [he chosen message m!, and any change of 
purse state during the operation, maintains this constraint. 
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Lenuna 28.1 (constraint) If an operation obeys the follo\\ing properties, then 
it preserves (he BerweenWorld constraints: 

• it docs not change purse status or current transaction details (pdAuth) 

• it does not change alILogs 

• it does not change the payment detail messages, exception log read mes­
sages or exception log clear messages in the ether (either by not emHting 
such a message, or by emitting an already existing message) 

• no sequence number decreases (all concrete operations have the property, 
so it is automatically satisfied) 

• 
Proof:
 
The BetweenWorid constraints refer only to certain ether messages (req, val,
 
ad, exceptionLogResult and exceptfollLogClear), and relate their presence or
 
absence to purse status (srarus, pdAuth and nextSeqNo) and allLogs. From the
 
hypolhesis we can invoke lemma 'logs unchanged' (section C. 7) to say that, as
 
alllags does not change, not does a/Logs. So operations that do not change the
 
purse status, do not change allLogs, and do not emit any relevant new messages,
 
V\fi.ll aUlOmalically preserve the constraints.
 

• 28.3.4 
Even when lemma 'constraint' does not apply, we know from lhe form of the 
operation that at most ooc purse changes, and one message is emitted. As 
at mos[ one purse changes, the proof that the BerweenWorld consrrainls are 
preserved need refer only to this purse; the constraints hold on the other purses 
before {he operation by hypothesis, and so they hold afterward, too. 

28.3.5 Summary of ConOkay proof obligatioo 

For each operation, we have to show that either lemma 'constraint' holds or 
that [he choice of BetweenWorld' obeys the constraints (see section 5.3). 

28.4 Correcmess of CIncrease 

Gncrease does not change status or pdAuth, does not log, and no relevant 
message is emitted to the ether, so lerruna 'constraint' (section C.6) is applicable. 

• 28.4 
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28.5 Correctness of CAbort 

Lemma 'constraint' is not applicable, because CAban moves one purse inro 
eaFrom, and it may not have been in tills state before, and it may log a pending 
transaction. Therefore we have to show that our chosen BetweenWorld' obeys 
the constraints. 

One ..1 message is emitted, and (possibly) one log is recorded. 

B-1	 req =:> authentic to purse. No new req messages. 

B-2	 No future reqs. No new req messages. 

B-3	 No future vals. No new val messages. 

B~4	 No future acks. No nev...· ack messages. 

8-5	 No future {rom logs. The purse moves into eaFrom, possibly logging a 
transaction, and possibly increasing nexrSeqNo. This does not invalidate 
this constrain t for any preVious logs. To create a new from log, Ihe purse 
would have had to have been in epa (from LogI/Necessary). Hence, using 
ConPurse constraint P-2, we have 

pdAuth.fromSeqNo < nexrSeqNo 

From AborrPurse, we also have 

nextSeqNo .:S nextSeqNo' 

This gives 

pdAuth.(romSeqNo < nextSeqNo' 

The pdAuth is logged when the pre-state purse is in epa, and thus the new 
log obeys the constraint. 

B-6	 No future to logs. The purse mOVes into eaFrom, possibly logging a trans­
action, and possibly increasing nexrSeqNo. This does not invalidate [his 
constraint for any previous logs. To create a new to log, the purse would 
have had to have been in epv (from LogI{Necessary); hence, using ConPurse 
constraint P-2a, we have 

pdAuth. toSeqNo < nextSeqNo 

From AbortPurse, we also have 

nex,tSeqNo .:S nex'rSeqNo' 
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This gives 

pdAuth.toSeqNo < nextSeqNo' 

The pMuth is logged when the pre-state purse is in epv, and thus the new 
log obeys the constraint 

B-7	 from in {epr, epa}, so no future {rom logs. The purse moves into eaFrom, 
so no new purses in epr or epa. 

8-8	 to in {epv, eaTol, so no future to logs. The purse moves into eaFrom, so 
no new purses in epv or eaTo. 

8-9	 epr ~ ---, val 1\ ...., ack. The purse moves into eaFrom, and so does not 
move into epr. 

8-10 req 1\ ..., ack <=> WInEpy v toLogged. 

case =):
 
No new req messages; no ack messages removed from the ether.
 
The purse may have moved out of epv, but in such a case LogI{Ne­

cessmy says that it logs, hence re-establishing the condition.
 

•	 case ~: 

No purses newly in epv. 
There might be a new to log, in which case we must show there was 
a req, bUI no ack before. A to log can be made only by a purse mov­
ing out of epv. Then the BetvveenWorld constraint B-IO, on tolnEpv, 
before the operation gives us the required req and lack of ack. 

B-ll	 epv 1\ val ~ fromInEpa v froml.ogged. No purses newly in epv; no new 
val messages. 
The purse may have moved out of epa. But in such a case Logl/Necessary 
says that it logs, hence re-eslablishing the condition. 

B-12	 fromInEpa v fromLogged ~ req. No purses newly in epa. 
There might be a new from log, in which case we must show there was 
a reL1 before. A from log can be made only by a purse mo\>ing out of 
epa. Then the BetvveenWorfd constraint B-12, on frornlnEpa, before the 
operation gives us the required req. 

B-13	 roLogged finite. At most one to log \\Titlen, so finite before gives finite 
after. 

B-14	 exceptionLogResults in aliLogs. No new exception log result messages. 

B-15	 Oeared logs archived. No exceptionLogCJear messages are added, and the 
archive is unchanged. 
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8-16	 req for each Log. If there are no new logs, then the constraint holds from 
the pre-state. 
[f a transaction exception is logged, then the purse stams must have been 
either epv or epa. From constraints 8-10 and 8-12, there was a req in the 
pre-state ether for the transaction which was logged. This req ""ill also be 
in the post-state ether. 

• 28.5 

28.6 Lemma 'logs unchanged' 

Lemma 28.2 (logs unchanged) When the archive and the indiVidual purse Jogs 
do not change, and when no new req messages are added [Q the ether, the set 
of PayDetails representing allihe logs does not change either. 

BOpOkay I archive' = archive 
J\ req c> ether' = req t> ether 
J\ "iI n: dam conAuthPurse • 

(conA.uthPurse' n),exLog = (conAuthPursen).exLog 
f­

aI/Logs' ~ aI/Logs 
J\ roLogged' = toLogged 
A (romLogged' " (romLogged 

• 
Proof: 

aIlLogs = archive 
u { n : dam conAurhPurse; ld: PayDetails I 

ld E (conAuthPurse n) .exLog I 
[defn] 

= archive' 
u { n : darn conAuthPurse'; ld: PayDetails I 

Id E (conAuthPurse' n).exLog) 
[assumption and <l>BOp} 

~ allLogs' Idefnl 

allLogs = { n : dar
n ..... pd E allLogs J\ 

n conAuth
req pd E 

Purse; pd
ether} 
: PayDetails I 

Idefn} 
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= { n: dam conAuthPurse'; pd: PayDetails J 

n ...... pd E allLogs' 1\ req pd E ether' } 
[assumption and above] 

= al1Logs' 
Idefn] 

The arguments for toLogged and fromLogged follow in exactly the same way, 
.28.6 

28.7 Lemma 'abort forward'; operations that first abort 

Some concre[(~ operations are \\Tinen as a composition of AhoY( and a simpler 
operation starting from eaFrom (StartFrom, StartTo, ReadExceprionLog, Clear­
ExceptionLog, ctc.). 

Lenuna 28.3 (abort forward) Where a C operation is ""Tit ten as a composition 
of CAbort and a simpler operation starting from eaFrom, and the corresponding 
'B operation is strucmred analogously, it is sufficient to prove (hat the simpler 
C operation refines the corresponding 'B operation. 

(CAhort; COpEa(rom); Rhc; 
(V COpEafrom; Rbc. 3 BerweenWorld' • Rbc' 1\ BOpEafrom) 

f­

3 BenYeenWorld' • Rbc' 1\ (Abort 9BOpEClfrom) 

• 
Proof We have already proved in section 28.5 that CAbort refines Abort. Adding 
this TO our hypothesis, "...·e get 

(CAhort; COpEa(rom); Rhc; 
(\1' CAbort; Rbc. 3 Benveen~Vorld' • Rbc' 1\ Abort); 
(\1' COpEClfrom; Rbc. 3 Benveen~Vorld' • Rbc' 1\ BOpEafroml 

f­

3 BenveenH'orld' • Rbc' 1\ (Abort ~ BOpEafrom) 

The hypothesis is now in precisely the fonn required to use lemma 'compose 
[orn'ard', (section C.IO) and we do so to prove the consequent. 

.28.7 
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Correctness proofs
 

29.1 Introduction 

Many of the follmvmg arguments are about constraints of the form 

antecedent 0:;. consequent 

The correctness arguments are of three kinds: 

B~ 1 Argue that the operation leaves the truth values of both antecedent and 
consequent unaltered, so that the truth before the operation establishes 
the truth afterwards. 

B-2	 The operation might make the antecedent true after when it was false 
before, by adding a new message 10 a sel, or moving a purse into a set In 
this case it is necessary to show thai the consequent is true after. 

B-3	 The operation might make the consequent false afler when it was OUe 
before, by movtng a purse oul of a set. In Ihis case if is necessary to show 
thai the antecedent is false after. 

Nole thai we do not need 10 argue thai a constraint cannot be changed by 
removing a message: messages stay in the ether once there. 

29.2 Correcmess of CStartFrom 

StartFromOkay comprises AbortPurse followed by StartFromEa(romPurseOk­
ay at the unpromoted leveL As a result, we can apply lemma 'abort forward' 
(section C.8), leaving us to prove the correctness of StartFromEafromPurseOkay. 
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Lemma 'constraint' is not applicable, because StartFromEafromPurseOk­
ay changes status: it moves the purse from eaFrom into epr. Therefore we 
have to show that our chosen BetweenWorld' obeys {he constraints. 

One 1. message is emiUed, and no logs are recorded. 
We can invoke lemma 'logs unchanged', section C?, because no new req 

messages are produced, no new purse logs are produced, and (he archive docs 
not change. Therefore, the sets aULags, (rornLogged and (oLagged remain un­
changed. 

B-1	 req ~ authentic to purse. No new req messages. 

B-2 No future reqs. No new req messages. 

B-3 No future vals. No new val messages. 

B-4 No future aeks. No new ack messages. 

8-5 No future from logs. No new logs. 

8-6 No future to logs. No ncw logs. 

B-7	 from in {epr, epa} ~ no future from logs. There are no new logs, but the 
purse moves Into epr, so we must prove that the constraint for this purse 
holds (for all other purses in epr, the constraint holds beforehand, and 
so holds afterwards). In StartFrom, the post-state pdAuth'.fromSeqNo is 
equalw prc-state nextSeqNo. Coupling this with constraint B-5 we have 

'r:j pd : fromLogged I pd .(rom = name? • 
pd.(romSeqNo < (conA.uthPurse' pd.from).pdAuth.(romSeqNo 

Since the logs don', change we have 

'r:j pd: (romLogged' I pd.(rom = name? • 
pd.('romSeqNo < (conAuthPurse· pd.(rom).pdAulh.('romSeqNo 

which proves the cons!raint for purse name? 

B~8	 to in {epv, eaTo) ~ no future to logs. No new logs, and the purse moves 
into epr. 

B-9	 epr =:> ..., val/\ ...., ack. The purse moves into epr, so it is necessary to show 
there was no valor ack before. 
The pd we are considering is given by 

pd == (conAuthPurse' name?).pdAuth 
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Noting that pd. {rom = name?, the definition of StartFrom then gives us 
that 

(cOrL4uthPurse name?).nextSeqNo 
= {conAuthPurse' name?),pdAuth.{romSeqNo 

=:- (conAuthPursepd.(rom).nextSeqNo = pd.{romSeqNo 

=:- val pd ~ ether fBen-veenWorld constrainl B-3] 
/\ ack pd fi ether [Ben-veenWorld constrain! B-4} 

8-10	 req 1\ ---, ack ~ coTnEpv v toLogged. 

case =::0:
 

No new req messages. The purse moved from eaFrom to epr .....ithout
 
genera ling new logs. Hence, true before implies true after.
 
case ~:
 

No purses newly in epv and no new logs. No ads added to the erher.
 

8-11	 epv 1\ val => fromInEpa v {romLogged. No purses newly in epv; no new 
val messages. The purse did not move out of epa. 

8-12	 {romlnEpa v (romLogged => req. No purses newly in epa; no new lo~s. 

8-13	 {oLogged finite. No new logs.· 

8-14	 exceptionLogResults in allLogs. No new log result messages. 

8-15 Cleared logs archived. No new exceptiollLogCfear. messages. 

8-16	 req for each log. No new elemenls added to fromLogged or toLQgged. 

• 29.2 

29.3 Correctness of CStartTo 

StartToOkay is composed of AbortPurse followed by StartToEafromPurseOkay 
at Ihe unpromoled level. As a resull, we can apply lemma 'aborl forward' (sec­
lion e.8), leaving us 10 prove Ihe correclncSS of StartToEafromPurseOkay. 

Lemma 'constrainl' is not applicable, because StartToEafromPur~eOkay 

moves one purse inlo epv, and il was nOI in lhis slale before. Therefore we 
have 10 show that our chosen BerneenWorld' obeys the conslrainls. 

One req message is emitled, and no new logs are recorded. We cannot
 
invoke lemma 'logs unchanged' because we do have a new req message, bUI
 
conslraint 8-16 gives us Ihe same result This is nOI a circular argument.
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B-1	 req authentic to purse. One new req, which refers to the name? purse0::> 

as the Co purse. q,BOp states that this purse is authentic. 

B-2	 No future reqs. SrarrToPurseEafromOka}J emits one req message, which 
has its nextSeqNo in it by construction. It also increases nextSeqNo. The 
req message meets the constraints because the referenced to purse (itsdD 
has a larger nextSeqNo after the operation. 

B-3 No future vats. No new val messages. 

B-4 No future aeks. No new ack messages. 

B-5 No future from logs. No ne~.... logs. 

B-Ei No future to logs. No new logs. 

B-7	 from in {epr, epa) .::::- no future {rom logs. There are no new logs and the 
purse moves into epv, so this constraint does not apply to this purse. 

B-8	 to in [epv, eaTo} =:> no future to logs. There are no new Jogs, but the 
purse moves into epY, so we must prove that the constraint for this purse 
holds (for all other purses in epv, the constraint holds beforehand, and so 
holds afterwards). In SfartTo, the post-state pdAuth'. toSeqNo is equal to 
pre-state nextSeqNo. Coupling this with constraint B-6 we have 

V pd: toLogged I pd. to = name? • 
pd.toSeqNo < (cOnAuthPurse' pd,to).pdAuth.roSeqNo 

Since the logs don't change, we have 

V pd: lOLogged' I pd.to = name? • 
pd .toSeqNo < (conAuthPurse' pd. to) ,pdAuth_ toSeqNo 

\....hich proves the constraint for purse name?
 

B-9 epr ~ ---, val /\ ---, ack. No purses newly in epr; no new vals or acks.
 

B-lO	 req A ---, ack eo) tolnEpv v roLogged. We claim that there is a ne\.... reLl for 
\vhich there is no ack in the ether, and the purse moves into epv. As a 
result, we prove the consequent for each irnp!icalion direction. 

case 0::.:
 
We must prove tolnEpv v toLogged. The purse moves into epv, thus
 
establishing the consequent.
 
case ¢:::
 
The purse moves into epv, so we must shmv that there is a req, but no
 
ack, for the purse's pdAuth'. From ScartTo, we have m! = req pdAuth'.
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so the req is in the ether. It is then necessary to show there is no ack 
before. The pd we arc considering is given by 

pd ~~ (conAuthPurse' name?).pdAuth 

Noting that pd.to = name?, the definition of StartTo gives us that 

(conAuthPurse name?) .nextSeqNo 
= (conAuthPurse' name?) .pdAuth. toSeqNo 

==:> (conAuthPurse pd. to) .nextSeqNo = pd. toSeqNo 

==:> ack pd f£ ether [Between World constraint B-4] 

Hence, we have the corresponding req but no ack. 

B-ll epv /\ val ==:> fromlnEpa v {romLogged. To prove this constraint, we 
demonstrate that the antecedent is false: the purse moves into epv, so we 
must show that there is no val before. The pd we are considering is given 
by 

pd = = (conAuthPurse' name?) .pdAuth 

Noting that pd.to = name?, the definition of StartTo gives us that 

(conAuthPurse name?) .nextSeqNo 
= (conAuthPurse' name?).pdAuth.toSeqNo 

=:- (conAurhPursepd.to).nextSeqNo = pd.toSeqNo 

=:- val pd f£ ether [BetweenWorld constraint B-3] 

Hence, there is no val before, and no val is emitted by this operation. 

B-12 {romlnEpa v fromLogged 0::> req. No purses newly in epa; no new logs. 

B-13 toLogged finite. No new logs. 

B-14 Read exception record messages are logged. No new log result messages. 

B-1S Cleared logs archived. No new exceptionLogClear messages. 

B-16 req for each log. No new elements added to {romLogged or toLogged. 

• 29.3 
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29.4 Correctness of CReq 

Lemma 'constraint' is not applicable, because a purse moves from epr to epa 
and em..its a val message. Therefore we have to show that our chosen BelWeen­
World' obeys the constraints. 

We can invoke lemma 'logs unchanged', section C.7, because no new req 
messages are produced, no new purse logs arc produced, and the archive does 
nol change. Therefore, the sets allLogs, fromLogged and toLogged remain un­
changed. 

B-1	 req =:> authentic to purse. No new req messages. 

B-2 No future reqs. No new req messages. 

B-3	 No future vals. Req puts a va] in {he ether'. Let pd be the pay details of 
the val. Hence, 

pd = = (conAuthPurse name?).pdAuth
 
m?=reqpd
 
m! = valpd
 

To show that the new val message upholds this constraint, we have to 
demonstrate that this is not a future message\Vith respect to purse name?: 

pd.roSeqNo < (conAurhPurse.' pd.ro).nexrSeqNo 
pd.fromSeqNo < (conA,uthPurse' pd.{rom).nexcSeqNo 

Since req pd is in the ether, from B-2 we can then satisfy the requirement 
for the to sequence number. Since the pre-state status was err, using 
purse constraint P-2c we know that 

pd.{romSeqNo < nextSeqNo 

Since Req does not aher nextSeqNo, we thus have 

pd.{romSeqNo < (conAuthPurse' pd.from).nextSeqNo 

B~4 No future acks. No new ack messages. 

B~5	 No future from logs. No new logs. 

B~6 No future to logs. No new logs. 

B~7	 from in {epr, epa} ~ no future from logs. No new logs. 
The from purse mOVes from epr into epa. BetweenvVorld constraint B-7 
held on epr. 
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B-B	 CO in {epv, eaTo} ~ no future to logs. No ne".... logs; no purses newly in epv 
or eaTo. 

B-9	 epr ~ -, val/\ ...., ack. No purses newly in epr; no new acks. 
We need to show the emitted val does not have the same pd as the stored 
pdAueh of any purse currently in epr. It has the same pd as the pdAurh 
stored in the purse from which it was emitted, which moved from epr 
and is now in epa. No other purse can also have this pdAuth, because 
pdAuth includes the name of the purse (ConPurse constraint P-2al, and 
purse names are unique. 

B-IO req 1\ ...., ack ~ toInEp\, v toLogged. 

case ;=:.: No new req or ack messages. 
case <0:: No purses newly in epv; no new logs. 

B-ll epv /\ val ~ {romlnEpa v fromLogged. The from purse emits a val. It 
also moves mto epa, thereby establishing the constraint. 

B-12 frmnJnEpa v {romLogged =:> req. The purse moves into epa. The opera­
tion precondition gives the presence of the required req. 

B-13 toLogged finite. No new logs. 

B-14 Read exception record messages are logged. No new log result messages. 

B-15 Cleared logs archived. No new excepfionLogClear messages. 

B-16 req for each log. No new elements added to {romLogged or toLogged. 

• 29.4 

29.5 Correctness of eVal 

Lemma 'constraint' is not applicable, because a purse moves from epv to ea­
Pllyee and emits an ack message. Therefore we have to show that our chosen 
BetweenWorld' obeys the constraints. 

We can invoke lemma 'logs unchanged', section C7, because no new req 
messages are produced, no new purse logs are produced, and the archive does 
not change. Therefore, the sets allLogs, fromLogged and toLogged remain un­
changed. 

B-1 req ~ authentic CO purse. No new req messages.
 

B-2 No future reqs. Val emits no ne" req messages.
 

B-3 No future vals. Val emits no ne val messages.
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B-4	 No future acks. ValOkay puts an ack in the ether', but it has the same pd 
as the val read from the ether, which obeys BetweenWorld constraint B-3. 
So the ack's pd obeys the constraint. 

B-5 No future from logs. No TIc..•.. togs.
 

B-6 No future to logs. No new logs.
 

B-7 (rom in {epr, epa} =:> no future from logs. No new logs; no purses newly
 
in epr or epa. 

B-8 ro in {epv, eaTo) =:> no future to logs. No new logs. 
The to purse moves from epv into eaTo. BetweenWorld constraint B~8 

held on epv. 

B-9 epr =:> --, val /\ -, ack. No purses newly in epr. 
We need to shm\' the emitted ack does not have the same pd as any 
purse currently in epr. It has the same pd as the val message, and so 
BefWeenWorld constraint B-9 on val gives us the required condilion. 

B-10 req /I .., ack ~ tolnEpv v toLogged. 

case =::-: ValOkay emits an ack, making the antecedent false. 
case e::: From lemma 'notLoggedAndln', secrion C.12, the purse can­
not be in toLogged. ValOkay moves the purse out of epv MthoU( 
logging, making the antecedent false. 

B-11 epY /\ val ~ (romlnEpa v (romLogged. No purses newly in epv; no new 
val messages; no purses leaVing epa, no changing logs. 

B-1.? (romlnEpa v (romLogged ~ req. No purses newly In epa; no new logs. 

B-13 toLogged finite. No new logs. 

8-14 Read exception record messages are logged. No new log result messages. 

8-15 Cleared logs archived. No new exceptionLogClear messages. 

B-16 req for each log. No new clements added to fromLogged or {oLogged. 

• 29.5 

29.6 Correcmess of CAck 

Lemma 'constraint' is not applicable, because a purse moves from epa to ea­
Payer. Therefore we have to show Ihat our chosen BetweenWorld' obeys the 
constrainls. 

It emits a 1.. message. We can invoke lemma 'logs unchanged', section C.7, 
because no new req messages are produced, no new purse logs are produced, 
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and the archive does not change. Therefore, the sets allLogs, fromLogged and 
toLagged remain unchanged. 

B-1 req =} authentic to purse. No new req messages. 

B-2 No future reqs. No new req messages.
 

B-3 No future vals. No new val messages.
 

8-4 No fumre acks. No new ack messages.
 

8-5 No future from logs. No new logs.
 

B-6 No future to logs. No new logs.
 

B-7 from in {epr, epa1 => no future from logs. No purses ne\\'ly in epr or epa.
 

8-8 to in {epv, eaTa] =} no future to logs. No purses newly in epv or el1To. 

8-9 epr =) ..., val/\ ...., ack. No purses newly in epr; no new vats or acks. 

8-10	 req /\ ..., ack ¢:::> toInEpv v toragged. 

•	 case:o:>: No new reqs; no new acks; no purses moving out of eflY, no 
logs lost. 

•	 case .¢::: No purses newly in epv; no new logs. 

B-11	 epv /\ val => (romInEpa v (romLogged. No purses newly in epv; no new 
vals. 

The purse moves out of epa without logging, so we need to show thallhe 
antecedent is false for this purse. It is sufficient to show the antecedent is 
false before the operation (since the operation does not change if). There is 
an ack message, AckOkay's inpur, so BetlVeenWorld constraint 8-10 gives 
us pd f tolnEpv. 

B-12	 fromlnEpa v (romLogged => req. No purses newly in epa; no new logs. 

8-13	 toLogged finite. No new logs. 

8-14	 Read exception record messages are logged. No new log result messages. 

8-15	 Cleared logs archived. No new excepCionLogClear messages. 

8-16	 req for each log. No ne\-',' elements added to fromLogged or toLogged. 

•	 29.6 
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29.7 Correctness of CReadExceptionLog 

ReadExceptionLogOkay is composed of AbortPurse followed by ReadExceprion­
LogEa{romPurseOkayat the unpromoted levd As a result, we can apply lemma 
'abort forward' (section C.8), leaving us to prove the correctness of ReadExcept­
ionLogEafromPurseOkay. 

This operation does not change any purse, but it does emit an exceptioh­
LogResult message. As a result, lemma 'constraint' is not applicable. 

We can invoke lemma 'logs unchanged', section C7, because no new req 
messages are produced, no new purse logs are produced, and the archiVe does 
not change. Therefore, the sets aliLogs, fromlDgged and toLogged remain un­
changed. 

B-1 req ~ authentic to purse. No new req messages.
 

B-2 No future reqs. No new req messages.
 

B-3 No future vals. No new val messages.
 

B-4 No future aeks. No new aek messages.
 

B-S No future from logs. No new logs.
 

B-6 No future to logs. No new logs.
 

B-7 (rom in {epr, epa} ~ no future from logs. No purses newl}' In epr or epa.
 

B~8 to in {epv, eaTo] no future to logs. No purses newl}' in epv or eaTo.
:0:> 

B-9 epr 0::) ..., val /\ ..., aek. No purses newly in epr; no new vals or £leks. 

£-10 req II ..., aek <=:> fOlnEpv v roLogged. 

• case ~: No new reqs; no new £leks; no purses moving out of epv, no 
logs lost. 

• case ¢::': No purses newly in epv; no new logs. 

£-11	 epv II val ~ frornInEpa v (romLogged. No purses newl}' in epv; no new 
vals; no purse moves out of epa; no logs lost. 

£-12	 (romlnEpa v fromLogged 0::) req. No purses newly in epa; no new logs. 

B-13	 [oLogged finite. No new logs. 

B~14	 Read exception record messages are Jogged. There rna}' be a new ex­
cepttonLogResult message. If this is so, then we must show that this refers 
to a stored exception log record. From ReadExceptionLogPurseEafrom­
Okay, we have 

m! E {.l} U {ld : exLog' • exceptionLogResu1t(name, Id)} 
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Hence, if there is an exceptionLogResulr message, it refers to an exception 
record which is in the log of purse name?, and so is in al/Logs'. This 
upholds the constraint. 

B-1S Cleared logs archived. No new exceptionLogClear messages. 

8-16 req for each log. No new elements added to (romLogged or toLogged. 

• 29.7 

29.8 CorreClness of CCiearExceptionLog 

ClearExceptionLogOkay is composed of AbonPurse followed by ClearEx(ept­
ionLogEafromPurseOkay at the unpromoted level As a result, we can apply 
lemma 'abort forward' (section C.8), leaving us to prove the correctness of 
ClearExceptionLogEafromPurseOkay. 

The operation changes only one purse, and emits a 1.. message. The only 
change to the purse is that its exception log is cleared. However, we havl' the 
pre-condition that the input message matches the the exception log (exLog). 
The input message comes from the ether, and hence from constraint 8-15 We 
know that the pu:rse's exception log must have already been recorded in the 
archive. In this way, clearing the purse's log does not affect allLogs. So lenuna 
'constraint' (section C.6) is applicable. 

• 29.8 

29.9 Correctness of CAuthoriseExLogClear 

Lemma 'constraint' is not applicable, because an exceptionLogC!ear message is 
emitted to the ether. So, we must show that the constraints hold afterwards. 

No purses are changed. 
We can invoke lenuna 'logs unchanged', section C.7, because no new req 

messages are produced, no new purse logs are produced, and the archive does 
not change. Therefore, the sets allLogs, (romLogged and toLogged remain un­
changed. 

B-1 req:::;, authentic to purse. No new req messages.
 

B-2 No future reqs. No new req messages.
 

B-3 No future va/so No new val messages.
 

8-4 No future acks. No new ack messages.
 

8-5 No future from logs. No new logs.
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B-6 No future to logs. No new logs. 

B-7 (rom in {epr. epa] ~ no future from logs. No purses newly in epr or epa. 

B-8 to in {epv, eaTo} ~ no fumre to logs. No purses newly in epv or earo. 

B-9 epr ~ ...., val /\ --, ack. No purses newly in epr; no new vals or acks. 

8-10 req /\ --, ack ¢:::' tolnEpv If (oLagged . 

•	 case~: No new reqs; no new acks; no purses moving out of epv; no 
logs lost. 

•	 case c=: No purses newly in epv; no new logs. 

8-11	 epv /\ val::) fromInEpa v frornLogged. No purses newly in epv; no new 
vals; no purse moves out of epa; no logs lost. 

B-12	 fromlnEpa v fromLogged ::) req. No purses newly in epa; no new logs. 

8-13	 roLogged finite. No TIew logs. 

8-14 Read exception record messages are logged. No new exception log read 
messages. 

8-15 Cleared logs archived. There is a new exceprionLogCrear message. How­
ever, the operation contains the pre-condition that the log records for 
which the message is generated musl be in the archive. Hence, the con­
straint is upheld. 

B-16	 req for each log. No new elements added to {romLogged or (oLogged. 

29.10 Correctness of CArchive 

This operation archives the contents of some of the excepcionLogResulc mes­
sages in the ether. It does nol change any purse, or change the ether. 

From B-14, we know that those exception records referred to by the ex­
ceptionLogResu/t messages are already in u11L09s. As a result, adding them to 
oTchtvedoes nol change allLogs. This operation does not change any purse, and 
does not emit a payment details message. So lemma 'constraint' is applicable. 

• 29.10
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Chapter 30 

Summary
 

The proofs presen t cd in this report constHute a proof that the architecrural 
design given by the C model is secure v.-ith respect to the security properties as 
described in the Formal Security Policy Model (the .J\ model) and the Security 
Properties. 

We have presented the proofs in a logical sequence, but even so, it can 
be hard to be sure that no steps have been missed. The following table gives a 
hierarchical view of the proof, showing at each level how a proof goal is satisfied 
by a number of subgoals. Each line in the table is one proof goal, together with 
a section reference for where that proof goal is addressed. 

If the proof goal has child goals (goals one level of indent deeper) then the 
section reference explains how it is that the goal can be satisfied by its collection 
of subgoals. For example, goal 1.4 (AbTransfer upholds properties) is proved 
by proving three subgoals: 1.4.1 (SP 1), 1.4.2 (SP 2.1) and 1.4.3 (SP 6.21. The 
reference for goal 1.4 is to section 2.4, where it is argued that we have only (Q 

prove the three SPs 1,2.1 and 6.2 because all other SPs can be proved trhially. 
If a goal has no further subgoals, its section reference is the proof of this 

goal directly. 
H can be seen that all proof goals have section references, and all steps 

have been addressed. 

System secure by definition 
1. Abstract preserves security properties by definition 
1.1. AbIgnore upholds properties 2.4 
1.2. AbTransfer upholds properties 2.4 
1.2.1. SP 1 2.4 
1.2.1.1. Okay 2.4.1 
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1.2.1.2. Lost 

l.2.2. SP 2.1 

1.2.2.1. Okay 
1.2.2.2. Los. 
2. Concrete preserves security properties 
2.1. Each concrete operation upholds proper­
ties 

3. Abstract operations are lOtal 
4. A is refined by B 
4.1. [nit 

4.1.1. state inHialisation 
4.1.2. input initialisation 
4.2. Applicabili.y 
4.2.1. pre AOp = true 

4.2.2. simpler applicability 
4.2.2.1. pre BOp ~ true 
4.3. Correctness 
4.3.1. pre AOp = true 
4.3.2. simpler correctness 
4.3.2.1. AbTransfer 
4.3.2.1.1. Ignore 
4.3.2.1.2. Okay and Lost 
4.3.2.1.2.1. exists·pd 
4.3.2.1.2.2. eXists-chosenLost 
4.3.2.1.2.3. check-operation 
4.3.2.2. Ablgnore 
4.3.2.2.1. StartFrom 

4.3.2.2.1.1. Ignore 
4.3.2.2.1.2. Abort 
4.3.2.2.1.3. Okay 
4.3.2.2.1.3.1. Abort 
4.3.2.2.1.3.2. EaPayer operation 
4.3.2.2.1.3.2.1. exis.s·pd 
4.3.2.2.1.3.2.2. exists-chosenLost 

4.3.2.2.1.3.2.3. check-operation 
4.3.2.2.1.3.2.3.1. check-operation-ignore 
4.3.2.2.2. StartTo 

CHAPTER 30. SUMMARY 

2.4.3 

2.4 
2.4.2 

2.4.4 
by definition 
2.4 

8.2.2 

by definition 
by definition 
11.2 

11.3 

9.2.3 

8.2.2 
by definition 
8.3.2 

9.2.4 

8.2.2 

by definition 
9 and 14.3 
14.7 
(.1 

18.4 

18.5 
18.6 

9 and 14.2 
14.3 

14.7 

14.8 
(,5 

14.8 
(.1 

16.4 

16.5 
(,3 

16.6 

14.3 
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4.3.2.2.2.1. Ignore 
4.3.2.2.2.2. Abort 

4.3.2.2.2.3. Okay 

4.3.2.2.2.3.1. Abort 

4.3.2.2.2.3.2. EaPayer operation 

4.3.2.2.2.3.2.1. exisls-pd 
4.3.2.2.2.3.2.2. cxists-chosenLost 

4.3.2.2.2.3.2.3. check-operation 
4.3.2.2.2.3.2.3.1. check-operation-ignore 

4.3.2.2.3. Val 
4.3.2.2.3.1. Ignore 
4.3.2.2.3.2. Okay 
4.3.2.2.3.2.1. cxists-pd 
4.3.2.2.3.2.2 exists-chosenlost 
4.3.2.2.3.2.3. check·operation 
4.3.2.2.3.2.3.1. check-opcration-ignorc 
4.3.2_2.4. Ack 
4.3.2.2.4.1. Ignore 
4.3.2.2.4.2. Okay 
4.32.2.4.2.1. exists-pd 
4.3.2.2.4.2.2 exists·chosenlost 
4.3.2.2.4.2.3. check-operation 
4.3.2.2.4.2.3.1. chcck-operation-ignore 
4.3.2.2.5. ReadE.xceptionlog 
4.3.2.2.5.1. Ignore 
4.3.2.2.5.2. Okay 

4.3.2.2.5.2.1. AbOrl 
4.3.2.2.5.2.2. EaPayer operation 

4.3.2.2.5.2.2.1. lemma lost unchanged 
4.3.2.2.5.2.2.2. check-operation 
4.3.2.2.5.2.2.2.1. check-operation-ignorc 
4.3.2.2.6. ClearExceptionlog 
4.3.2.2.6.1. Ignore 
4.3.2.2.6.2. Abo" 
4.3.2.2.6.3. Okay 
4.3.2.2.6.3.1. Abo" 
4.3.2.2.6.3.2. EaPayer operation 

14.7 
14.8 
C.5 
14.8 
C.l 
17.4 
17.5 

C.3 
17.6 
14.3 

14.7 

C.l and 19.2 
19.3 
19.4 
C.3 
19.5 and on 

14.3 
14.7 
C.I and 20.2 

20.3 
20.4 
C.3 
20.5 and on 
14.3 

14.7 
C.5 
14.8 
C.l and 21 
C.2 

C.3 
21.3 

14.3 
14.7 
14.8 
C.S 
14.8 
C.l and 22 
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4.3.2.2.6.3.2.1. lemma lost unchanged 
·U.2.2.6.3.2.2. check-operation 
4.3.2.2.6.3.2.2.1. check-operation- ignore 
4.3.2.2.7. AuthoriseExLogClear 

4.3.2.2.7.1. Ignore 
4.3.2.2.7.2. Okay 

4.3.2.2.8. Archive 

4.3.2.2.9. Ignore 

4.3.2.2.10. Increase 

4.3.2.2.11. Abort
 

-1.4. Finalisation
 

4.4.1. output finalisation
 
4.-=i.2. state finalisation
 
5. B is re Fined by C 

5.1. !nit 

52. Applicability 

5.2.1. pre COp = true 

5.3. Correctness 

5.3.1. Simpler correctness 
5.3.1.1. StartTo is refined 
5.3.1.1.1. Okay branch 
5.3.1.1.1.1. Eafrom branch 
5.3.1.1.1.2. Abort branch 
5.3.1.1.2. Cignore branch 
5.3.1.1.3. CAbort branch 

5.3.1.2. StartFrom is refined 
5.3.1.2.1. Okay branch 

5.3.1.2.1.1. Eafrom branch 
5.3.1.2.1.2. Abort branch 
5.3.1.2.2. CIgnore branch 
53.1.2.3. CAbort branch 
5.3.1.3. Req is refined 

5.3.1.3.1. Okay branch 

5.3.1.3.2. Clgnore branch 
5.3.1.4. Val is refined 

5.3.1.4.1. Okay branch 

5.3.1.4.2. CIgnore branch 

CHAPTER 30. SUMMARY 

C2 

C3 
22.3 

14.3 

14.7 
23.2 

24.2 

14.7 

15.3 
14.8 
by definition 

12.2 

12.3 
established rules 25.2 
27.1 

27.3 

8.4.2 

25.2.5 
25 

28.1 
29.3 and Cl0 

29.3 

28.5 
28.2 
28.5 

28.1 
29.2 and CI 0 

29.2 

28.5 
28.2 
28.5 
28.1 

29.4 

28.2 

28.1 

29.5 
28.2 
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5.3.1.5. Ack is refined 
5.3.1.5.1. Okay branch 

5.3.1.5.2. CIgnore branch 
5.3.1.6. ReadExceptionlog is refined 
5.3.1.6.1. Okay branch 
5.3.1.6.1.1. Eafrom branch 
5.3.1.6.1.2. Abort branch 
5.3.1.6.2. Clgnore branch 
5.3.1.7. ClearExcep[ionLog is refined 
5.3.1.7.1. Okay branch 
5.3,1.7.1.1 Eafrom branch 
5.3.1.7.1.2. Abort branch 
5.3.1.7.2. CIgnore branch 
5.3.1.7.3. CAbort branch 
5.3.1.8. AuthoriseExLogClcar is refined 
5.3.1.8.1. Okay branch 

5.3.1.8.2. Clgnore branch 
5.3.1.9. Archive is refined 
5.3.2. Totality of BOp 

5.4. Finalisation 

28.1 
29.6 

28.2 

28.1 

29.7 and C10 

29.7 
28.5 
28.2 

28.1 

29.8 and C10 

29.8 

28.5 

28.2 

28.5 

28.1 

29.9 

28.2 

29.10 

8.3.2 

27.2 
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Appendix A 

Proof Layout
 

A.I Notation 

The notation 

Abs!; Cone 

says the the Abs operation is refined by the Cone operation. 
In order to prove that Abs is indeed validly refined by Cone, we need to 

prove various 'correctness conditions', expressed as theorems (section 9). 
That the predicate 

VDIP.Q 

is always true is expressed as the theorem 

f-VDIP.Q 

which is equivalent to 

DIPf-Q 

This can be read as a theorem that states that, under hypothesis DIP (dec­
larations D constrained by predicates P), consequent Q (a predicate) has been 
proved to hold. DIP is usually ""Tilten as a schema text, and Q may be written 
using a schema as predicate. 

A.2 Labelling proof steps
 

In labelling various steps of the proofs below, we use the following notation.
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• ldefn PI: from the definition of (he schema predicate P 

• Ih}'PI: from the hypothesis of the theorem 

• [prop xl: from a property of the Z operator x 

• [name]: usc of inference rule name 



Appendix B 

Inference rules
 

The proofs presented are rigorous, but informal, in that they have not been 
checked by a macWne proof-checker. 

We present below the sort of inference rules we have used. Such explicit 
use of inference rules improves the readability of the proofs by showing exactly 
what steps of mathematical reasoning are being made. These inference rues 
are not intended as a definition of the logic being used, but as guidance about 
the reasoning steps. 

The Inference rule 

PI P2 ... PM 
[ rulename] 

C 

says that conclusion C can be inferred if every premiss Pi can be proved. (The 
rule name is used for labelling proof steps.) 

The inference rule 

PI,P2, ...• PrJ 
I ruJename] 

C 

says that conclusion C can be inferred if any premiss Pi can be proved. 

B.l Universal quantifier becomes hypothesis 

SI-P 
[ uni hyp )

'r'Vs.P 
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B.2 Disjunction in the hypothesis 

Given an hypothesis contain.ing a disjunct, it is sufficient to prove the theorem 
for each case. 

RI--P Sf-P 
[ hyp disj] 

RVSf-P 

B.3 Disjunction in the consequent 

Given a consequent containing a disjunct, it is sufficient to prove the theorem 
for only one case (since this is a harder thing to prove). 

R e- P, R e- Q 
[ consq dis) J 

Re-PvQ 

B.4 Conjunction in the consequent 

Given a consequent containing a conjunct, it is suffiCient to prove the theorem 
for each case separately. 

Re-P Rf-Q 
[ consq con} ] 

Rf-P"Q 

We can add canjuncts to the consequent (since this is a harder thing to prove). 

Re-P"Q 
( strengthen consq ]

Re-P 

B.5 Cut for lemmas
 

Cut is a way to introduce new hypotheses, and discharge them as lemmas.
 

R;DIQe-P Re-3D.Q 
[ cut)

Re-P 
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B.6 Thin
 

We can remove assumptions.
 

I-R 
[ thin]

PI-R 

B.7 Universal Quantification 

Universals can be replaced by a particular choice in the hypothesis 

Xl EX=;> P(Xl) f- R 
[ hyp un; J 

\I x: X • P(x) I- R 

B.8 Negation
 

In order to prove something, yOll can assume its negation.
 

~PI-

[ negaHon]
I-P 

B.9 Contradiction 

If R can be proved, assuming its negation allows you to prove anything (because 
false:::;> anything). 

I-R 
[ contradiction] 

-, R I- anything 

B.IO One Point Rule 

ill order to prove there exists a value with a property, it is enough to exmbit 
such a value. 

I- P['/x] 
[ one point] 

1--3x-Pl\x==t 

proVided x is not free in t. 
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B.ll	 Derived Rules 

We find it useful to derive some compound rules, These make the proofs in the 
body of the document easier to follow, and can themselves be proved from the 
inference rules above. 

B.11.1	 One point cu t 

P~ Q 
[ consq exists] 

P~3P.Q 

and very similar!}' 

P~ Q 
[ consq exists] 

P ~ (3 PI A Q 

B.l1.2	 Existential in the hypothesis 

x: X; DIP f ­
[ hyp exisrs ] 

DI3x:X.Pf­

B.12 Proof of the Derived Rules
 

We derive each of the deriv('d rules above from the main inference rules.
 

8.12.1	 Derivation of One point cut 

We can derive the first one-point cut rule ([consq exisrsl) as follows. First, we 
expand P into a declaration D and a predicate p. 

Dlpt-3D_pAq [starting point) 

Dip f- 3D'. p[D'/D] A q[D'/D] [rename bound declaration] 

DIp f- 3 D' • p[D' / DJ A q[D' / DJ A D' ~ D (strengthen consequent] 

Dip f- p[D' /D][D/D'] A q[D' /D][D/D'] [one point rule] 

Dlpf-PAq [simplify renamingI 

Dlpf-q [discharge p from hyp] 

The second onepoint-cut rule follows exactly the same ",'ay. except that q is not 
bound by the existential, and so none of the renamings alters it. 
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8.12.2 Derivation of existential in the hypothesis 

D I (3 x: X • P) ~ [starting point] 

D; x: X I P A (3 x : X • P) ~ D I (3 x: X • P) ~ 3 x: X • P 
[cut in x : X I PI 

D; x: X I P" (3 x : X • P) ~ [discharge side lemma from hypl 

D;x:XIP~ (chin] 

as required. 
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Lemmas and their proofs
 

C.l Lemma 'deterministic' 

Lemma 1 (deterministic) The correctness proof for a general Okay branch con­

sists of the follm\o'ing three proof obligations: 1
 

exists-pd:
 

<PBOp; BOpPurseOkay; RabOur; RabCl'; RabIn 
f­

3 pdThis : PayDerails • l'
 

exists-chosenLost: 

<PBOp; BOpPurseOkay; RabOur; RabClPd'[pdThis/pdThis']; RabIn I 
l' 

1­

3 chosenLost : [J!l PayDetails • Q 1\ chosenLost ~ maybeLos{
 

(:heck-operation: 

<P BOp; BOpPurseOkay; RabOut; RabCIPd' [pdThis / pdThis'];
 
AbWorld; RabClPd; RabIn I
 

1'AQ
 
f­


AOp 

• 
IUSI'd in: lemma 'Ablgnore'. section 14.6; lemma 'Ignore', section 14.7; lemma 'Abon refines 

AbIgnore', section 14.8; used to simpbfr every ;\.:B operatIon proof. 
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Proof:
 

See section 14.4.5 .
 

• C.1 

C.2 Lemma 'lost unchanged' 

L~mma 2 (lost unchanged) For BOpSLos{ operations, where we have that may­
beLosr' = maybeLost and defjnitelyLosr' = definitelyLost, the proof obligations 
exists.pd and exists-chosenlost are satisfied automatically by the instantiation 
of the predicates 'P and .Q as: 2 

'P ~ true 

.Q ¢o} chosenLosl = chosenLos£' 

• 
Proof: 

See section 14.5 

• C.2 

C.3 Lemma 'AbIgnore' 

Consider an operation BOpIg which refines AbIgnore. The operation should 
hare the folloVoling properties. 

BOplg is a promoted operation, and thus alters only one concrete purse. 

for any purse, the name is unchanged. 

the domain of corzAuthPurse is unchanged (by construction of the promo­
tion) 

for any purse, either nextSeqNo is unchanged, or increased. 

Where these properties hold for BOpIg, we can apply lemma Ablgnore. 

'Used in ExceptionLogEnquiry, chapter 21; bceptionLogClear, chapter 22. 
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Lemma 3 (AbIgnore) For a BOpIg operation, the check~operation proof obliga­
tion reduces to 3 

<l>BOp; BOpIgPurse; RabClPd'[pdThisjpdThis'); AbWorld; RabClPd I 
'PAQ 

l-

V n: domabAuthPurse.
 
(abAuthPurse' n).lost = (abAuthPursen).lost
 
1\ (abAuthPurse' nl.ba/ance = (abAuthPursenl.balance
 

• 
Proof:
 
See section 14.6.
 

• C.3 

C.4 Lemma 'Abort refines AbIgnore' 

Lemma 4 (Abort refines AbIgnore) Concrete Abort refines abstract AbIgnore.4 

Abort; Rab'; RabOut f- 3 AbWorld; a?: AIN • Rab 1\ RabIn 1\ AbIgnore 

• 
Proof:
 
See section 14.8.
 

• C.4 

C.S Lemma 'abort backward' 

Lemma 5 (abort backward) Where a concrete operation is written as a compo­
sition of AbortPurseOkay and a simpler operation starting from eaFrarn, it is 
sufficient to prove that the promotion of the simpler operation alone refines 
the relevant abstract operation. S 

lUsed in: 'Ignore', section 14.7; lemma 'Abort refines AbIgnore', secrion 14.8; used to slmpllJy 
every .J1.-:B opera non proof that refines Ablgnore. 

"'Used In: lerruna 'abort bacTh·ard', section c.s 
sUsed in: SrartFrom, section 16; StartTo, section 17; ClearExceprwnLog, section 22; RMdEx­

ceprionLog, section 21 
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(3l'iConPurse. 4>BOp 1\ (AbortPurseOkay ~ BOpPurseEafromOkay)); 
Rab'; RabOut; 
( '1 BOpEa(romOkay; Rab'; RabOut • 

3 AbWorld; a? : AIN • Rab A RabIn A AOp) 
~ 

3 AbWorld; a? : AlN • Rab A RabIn A AOp 

• 
Proof: 
See section 14.9. 

• C5 

C6 Lemma 'constraint' 

Lemma 6 (constraint) If an operation does not change purse status and does 
not change the presence of paylllent detail messages in the ether (either by not 
emitting such a message, or by emiHing an already existing message), then it 
preserves the Bern'eenWorld constraints. 6 • 

Proof:
 
See section 28.3.4 .
 

• C.6 

C7 Lemma 'logs unchanged' 

Lemma 7 (logs unchanged) When the archive and the individual purse logs do 
not change, and when no new req messages are added to the ether, the set of 
PayDetails representing all the logs does not change either. 7 

BOpOkay I archive' = archive
 
1\ (ran req) nether' = (ran req) nether.
 
1\ 'V n: dom conAuthPurse.
 

(conAuthPurse' n).exLog = (conA.uthPursen).exLog 
~ 

allLogs' = allLogs 
1\ toLogged' = toLogged 
1\ {romLogged' = {romLogged 

6Used in: Increase. section 28.4; CClearExceprionLog, section 29.8; CArchlve, section 29.10. 
7Used in: lemma 'constramt', section 28.3.4; CStartFrom, section 29.2; CReq, section 29.4; 

n'a/, section 29.5; CAck, section 29.6; CReadfueprionLog, section 29.7; CAurhonseExLogClear. 
Sl'ction 29.9. 
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•
 
Proof:
 
See section 28.6.
 

• C.7 

C,8 Lemma 'abort forward' 

Lemma 8 (abort forward) Where a C operation is written as a composition of 
CAbort and a stInpler operation starling from eaFrom, and the corresponding 
B operation is structured similarly, H is sufficient to prove that the simpler C 
operation refines corresponding B operation 8. 

(CAbort; COpEa{rom); Rbc; 
('rJ COpEafrom; Rbc. 3BerneenH/orld' • Rbc' 1\ BOpEafromJ 

f­

3 BelWeenWorld' • Rbc' /\ (Abort '9 BOpEa{rom) 

• 
Proof:
 
See section 28.7.
 

• C.8 

c,g Lemma 'compose backward' 

Lemma C.l (compose backward) If, under the backwards refinement rules, a 
concrete operation COp} is a refinement of abstract operation AOPl , and COpz 
is a refinement of AO~2, then their composition is a refinement of the abstract 
composition 9. 

(COpl ~ COP2); R'; ROut; 
('I COPl; R'; ROut. (3 A; AIn. R A RIn A AOPl)); 
('I COp,; R'; ROut. (3A; AIn. R A RIn A AOp,)) 

f­

3 A; AIM' R A RIn A (AOPl ; AOp,) 

• 
8Used in: CSf&u-rFrorn, section 29.2; CStartTo, secnon 29.3; CRead£:(ceptionLog, section 29.7; 

CClearExceprionLog, section 29.8. 
9U!.ed in: lemma 'abort backward', section C.5. 
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Proof: 

This result is reasonably self-evident, from the definition of refinement in terms 
of complete programs. 

We show that the particular form of the theorem holds here. Without loss 
of generality, assume that the concrete and abstract state schemas have a single 
component, c and a respectively. (A multi-component state is isomorphic to a 
single component state consisting of all the mU1U-components bundled into a 
single schema or Cartesian product.) 

Expand the compositions, and rename the quantified variables in the hy­
pothesis. 

13 Co· COpIieole'] /\ COp, [eole]); R'; ROut; 
I \I COPI [cole']; Ro; ROut. 13.'1; AIIl. R /\ RIll A AOPI [aola'])); 
(\I COp,[eole]; R'; ROut. 13.'10; AIIl • Ro /\ RIll A AOP2[aola])) 

~ 

3.'1; AIIl. R /\ RIll /\ (3.'10. AOPI[aola'] /\ AOp,[aola]) 

Use lhyp exists( to drop the 3 in the hypothesis, then simplify. 

COPl [Cole']; COp,[eole]; R'; ROut; 
I\lCOPI[eole']; Ro; ROut. 

(3.'1; .'1111. R /\ RIIi/\ .'1OPl[aola'])); 
(\I COp, [cole]; R'; ROut. 

13.'10; AIIl. Ro /\ RIll /\ AOp,[aola])) 
~ 

3 A; AIn. R 1\ RIn 1\ (3 Ao • AOPI lao/a'] 1\ AOp2[aO! a]) 

Use D 1\ ('r;f D • P) =:> P (0 simplify the second universal quantifier in the 
hypothesis. 

COPl [Cole'); COp,[eole]; R'; ROue;
 
(\I COPL[eole']; Ro; ROut.
 
(3 A; AIIl. R /\ RIll /\ AOpIiaola'])) I
 
3Ao; AIn. R(J 1\ RIn 1\ AOpz[ao!a] 

~ 

3.'1; AIIl. R /\ RIll /\ (3.'10. AOPI[aola'] 1\ .'1Op,[ao/a]) 
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Use [hyp eXists] to drop the 3 in the hypothesis, then simplify. 

COI'l [co/c']; COp,[co/c]; Ro: R'; ROut; RIn; AOp,[ao/a]:
 
(\f COpll co/c']; Ro; ROut.
 

(3A; Aln.RARInAo4Opl[ao/a'J)
 
f ­

3 A: AIn' R A RIn A (3 Ao • AOpI[ao/a'] A AOp,[ao/a]) 

Repeat the previous three steps to simplify the remaining quantifier in the hy­
pothesis. 

CDI'I [co/c'J: COp2[CO/C]; R; Ro; R'; ROue; RIn:
 
0401'1 [ao/a'J; AOp2[ao/a]
 
f ­

304; Ain. R A RIn A (3 Ao' o4OpI[ao/a'] A AOp,[ao/a])
 

Move the inner 3 in the conscquem outwards. 

COp,[co/c']; COP2[cO/C): R; Ro; R'; ROue; RIn;
 

0401'1 lao/a']; A01'2[aO/a]
 
f ­

3 A; .4.0; AIn. R /\ Rln /\ AOPl [aola'] /\ AOp:![ao/a] 

All the terms are in the hypothesis. 
• e.g 

C.IO Lemma 'compose forward' 

Lemma C.2 (compose forv,lard) If, under the forwards refinement rules, con­
erNe operation COPl is a refinement of abstract operation AOP1. and COpz is 
a refinement of AOP2, then their composition is a refinement of the abstract 
composition JO. 

(COI'l ; C01'2); R;
 
(\f COp,; R. (304'. R' A o4OpIl);
 

(\f COp,; R. ( 3.4' • R' A AOI'2»
 
f-


3A'.R' /\ (AOpI ~AOpl) 

• 
lOUsed in: lemma 'abort rom'ard', section 28.7. 
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Proof: 
Follows as for lenuna 'compose backward', above. 
• C.IO 

Cll Lemma 'promoted composition' 

Lemma C.3 (promoted composition) The promotion of the composition of (Wo 

operaHons is equal to the composition of the promotions of the two operations 
II 

Assume the existenn~ of a local state Local, which, without loss of gener­
ality we assume has a single variable x; a global state Global, ""ith a standard 
promotion framing schema, ¢ 

[Local
 
.:X
 

Global	 _ 

[	 locals: NAME ....... Local 

4> _ 

!>.Global 

.6.Local 
n? : NAME 

n? E dom locals 
locals n? = eLoca/ 
locals' = locals $ {n? ..... eLocal' ) 

4>;	 Op,; 01'2 

f­

3 fiLocal • ¢ 1\ (OPI ~ OP2) 
= ( 3 .6.Local • ¢ 1\ 0Pl ) ~ ( 3 ilLocal • ¢ 1\ 0"'2 ) 

• 
llUsed m: lemma 'abort backward', genion C.S 
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Proof: 
We prove this by expanding the definition of composition as an existential quan­
tification, and then showing that this quantification and the quantification used 
in the promotion commute. 

E\.'Pand the composition on the right hand side, and [hen expand the def­
inition of 4'>. 

( 3 b.Local • <P 1\ 0111) ~ ( 3 ,1Locol • ¢ /\ 0112 ) 

= 3 Globalo • (3!'lLocal. ¢[localso/locals'] /\ OPt) 
/\ (3 ~Loca/. 4>[locaJso/locals] /\ Off!.) 

= 3 Globalo • 
(3 6.Local • 

[ locals; localso ; NAME -- Local 1 

n? E dam locals 
/\ locals n? = BLocaI 
1\ loca/so = locals EEl {n? >-> eLocal'} ] 

A OpJ! 

A (3 "'Local. 
[ localSo; locals' : NAME - Local I 

n? Edam Iocalso 
/\ localso n? = eLocal 
/\ locals' = 10calso EII {n? ....... eLocal'} ]
 

A Op, ) 

Rename the after state in the first operation to LocalCl and the before state in 
the second operation to Loca1b_ Choosing different names makes it easier to 
combine the schemas across the quantifiers. 

~ 3 Globalo •
 
( 3 Local; Locala _
 

[ locals; loealso : NAME -+0 Local I 

n? E dom locals 
/\ locals n? = BLocal 
/\ localso = locals EII [n? ..... eLocala} ] 

A OPllXa/x']) 

/\ (3 Localb; Local' ­
[ loealso; locals' : NAME -+0 Local I 

n? E dom loealso 
/\ localso n? = () Loealb 
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1\ locals' "= loea/so 6;1 {n7 0-. eLocal'} ] 
A Op,[x,./x]) 

Combine all these as a single schema, puHing the quantifications into the pred­
icate. 

= [locals; locals': NAME ---- Local I 
310calo; Local; Local'; Locala; Loealt> • 

n? E dom locals
 
1\ locals n? = eLocal
 

1\ 10ca/so = locals Ell {n? ..... eLocala }
 

1\ n7 E dom localso
 
1\ loea/so n? = OLocalb
 
1\ locals' = localso 1Il In? ..... Oioeal'}
 
A OpllXuIX']
 
A 0l'2[""lxJ]
 

We can remove the quantificaHon of lacala because we have a full definition of 
it in terms of other variables. This leaves the following equations relating the 
remaining variables. 

= [locals; locals' : NAME -- Local I 
3 Local; Local'; Locala; Locah •
 

n7 E dom locals
 
t\ locals n? = eLocal
 

/\ BLocaIt> = BLoca/a
 
1\ locals' = locals 1Il {n7 - Oioeal'}
 
A Op,[Xulx']
 
A Op,[xblx] ]
 

Using the equation that eLocalb = BLocala, rename Locala and Loealt> both to 
Locala. 

= [locals; locals' : NAME -- Local I 
3 Local; Local'; Locala • 

11? E dorn locals 
/\ locals 117 = OLocal 
/\ locals' = locals 6' {n? BLocal'} 0-+ 

A OP1[XO/X'] 
A Op,[Xolx]] 

Redistribute the quantifications 



= 3 Local; Local' • 
(locals; locals' : NAME -- Local I 

n? E dom locals 
1\ locals n? = OLocal 
/\ locals' = locals Gl [n? >- OLoeal' J 

A (3Localo. OpIl"o/x'J t, 01'2 ["o/xJ ) J 

and rewrite in terms of composition 

= 3 Local; Local' • ~ 1\ (OPl g0P-2) 

= 3 t::.Local • ¢ 1\ (Opl ~ 0P2) 

This is the left hand side of the equation, and hence the proof is complete. 
• C.ll 

el2 Lemma 'notLoggedAndln' 

Lemma C.4 (notLoggedAndIn) If a purse is engaged in a transaction, it does not 
have a log for that transaction 12_ 

BetweenWorld 
t ­
(fromInEpr u (romInEpa) n (romLogged ~ 0 
/\ (tolnEpv u tolnEapayee) n toLogged = 0 

• 
Proof:
 
Consider the to purse case. We consider the pd stored in the to purse, so
 

pd E (tolnEpv u rolnEapayee) ~
 

pd.toSeqNo ~ (conAuthPursepd.to).pdAuth.toSeqNo
 

We have, from BetweenWorld constraint B-8, that 

pd E toLogged ~ pd.toSeqNo < (conAuchPursepd.to).pdAuth.toSeqNo 

Hence there can be no pd in both sets. 
The arguments for the from cases follow similarly, from BetweenWorld 

constraint B-7. 
• C.12 

1211sed In: Val, behaviour of toLogged, section 19.6.2; Ack, behaviour of de[inlrefyLosr, sec­
tion 20.6.5; eVa}, B-10, section 29.5; lemma 'lost'. section C.l3; lemma 'not lost before'. sec­
tion C.14. 
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c.n Lemma 'lost' 

Lemma C.S (lost) The sets definirelyLost and mayheLosr are disjoint: a pd can 
never be in both. 13 

Between World I- definirelyLost n mayheLosr = 0 

• 
Proof: 

definirelyLosr n ma}JbeLost
 

~ toLogged n ((romLogged u (romInEpa)
 
n ((romInEpa u (romLoggedl n tolnEpv Idefn.1 

~ toLogged n tolnEpv n ((romLogged u (romInEpa) Irearranging] 

= 0 ILemma 'notLoggedAndln' (section C.12)] 

.C.13 

C.14 Lemma 'not lost before' 

Lemma e.6 (not lost before) pdThis is not lost before the Req operation, al­
though it maybe lost after. 1.:1 

<l>BOp; ReqPurseOkay; pdThis: PayDetails I (req- m?) ~ pdThis 
f­

definitelyLost = definitelyLost' \ IpdThis}
 
/\ maybeLosc = maybeLost' \ {pdThis}
 

• 
Proof:
 
From the definition of the way the state changes in ReqOkay we can say that
 
(he following sets are (he same before and afterward:
 

(romI.ogged ~ (romI.ogged'
 
/\ CoLogged = roLogged'
 
/\ coInEtJV = toInEtJV'
 

uUsed in: Req, case 1, section IB.7.1; Req, case 2, section IB.B.l; Req, case 3, section 1B.9.1. 
HUsed in: Req, exists-chosenLost, section 18.5; Req, check-operation. section 18.6. 
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For the set fromlnEpa, we know from ReqOkay that beforehand this pdThis ""as 
noUn the set and afterward it l1-'as. So 

pdThis E (romlnEpa' 
~ frominEpa ~ (rominEpa' \ IpdThisJ 

From Lemma 'notLoggedAndln' (section C.12), we have:: 

pdThis E (romInEpa' ~ pdThis f (romLogged' 

Reminding ourselves of the definitions of de(inilelyLost and using the identilies 
above, we have 

definifelyLosf 
~ toLogged n IfromLogged u (rominEpa) [delnJ 
~ wLogged' n (fromLogged' u (rominEpa' \ {pdThis)) laboveJ 
~ toLogged' n ((romLogged' u (rominEpa') \ {pdThis) 

[pdThis f (romLogg,d'J 
~ (WLogged' n ((romLogged' u (rominEpa')) \ {pdThis} [SpiveyJ 
~ defmirelyLosr' \ {pdThisJ [deCnJ 

Similarly for maybeLost: 

maybeLosf 
~ ((rominEpa u (romLogged) n WInEpv [deCnJ 
~ ((frominEpa' \ {pdThis)) u (romLogged') n roInEpv' [aboveJ 
~ (((rominEpa' u (romLogged') \ {pdThis)) n roInEpv' 

(pdThis f (romLogged' J 

~ ((frominEpa' u (romLogged') n toInEpv') \ {pdThis} [prop \J 
~ maybeLosr' \ {pdThis} [defj 

• C.14 

C.I5 Lemma 'AbWorld unique' 

Lenuna C.? (AbWorld unique) Given BetweenWorld and a choice of which trans­
actions Y\ill be lost, there is always exactly one AbWorld that retrieves,lS 

BetweenWorld; chosenLost: IP' PayDetails; pdThis: PayDetaiIs I 
chosenLosr s; maybeLosr 

>­
3) AbWorld • RabClPd
 

ISUsed in: (enuna 'detemunistic', section 14.4.4. 
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•
 
Proof:
 
Each element of AbWorld has an eXplicit equation in Rab defining if Uniquely
 
in terms of BeweenWorld components. The components are entirely indepen­

dent, and the only constraint that ties any together is that on chosenLosc and
 
maybeLost, which we have clirectly in the hypothesis.
 

The constraints required of any AhWorld can be sho\'o,'ll to hold as follows: 

•	 abAuthPurse; NAME -- AbPurse 
conAuthPurse is a finite function. From the retrieve AbstractBetween the 
domain of abAuthPurse equals the domain of cOnAuthPurse, and so is 
finite, too. 

•	 CIS 
.c 



----

Appendix 0 

Auxiliary toolkit definitions
 

0.1 Total abstract balance 

The function toraLAbBalance returns the total value held in a finite collection 
of purses. 

totalAbBalance: (NAME -- AbPurse) - ~ 

rotalAbBalance 0 === 0 

'r;j w : NAME -- AbPurse; n: NAME; AbPurse.1 n rf: dam w • 
totalAbBalance({n - BAbPurse} u w) ~ 

balance + rotalAbBalance w 

This recursive definition is valid, because it is finite, and hence bounded. 

D.2 Total lost value
 

The function roralLosr returns the total value lost by a finite collection of purses.
 

toraLLost: (NAME - AbPurse) - N 

toralLost 0 = 0 

V w : NAME -- AbPurse; n: NAME; AbPurse I n ff dam w • 
totalLost( {n BAbPurse} u w) = lost + totalLosr w0-0 

This recursive definition is valid, because it is finite, and hence bounded. 
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D.3 Summing values 

We define the sum of the values in a set of exception logs, or a set of pay­
ment details. This recursive definition is valid, because it is tillite, and hence 
bounded. 

sumValul?: IF PayDerails - ~ 

sumValue0 = 0 

'rj pds : [F PayDerails; PayDetails I BPayDetails fi pds • 
sumValue( {BPayDecails} u pds) = value + sum Value pds 
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Index
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<l>COp, 37
 
1-,20 
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AbIgnore, 16
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AbOp, 16
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AbTrans(erOkay1D, 17
 
AbWorld,16
 
AbWorldSecureOp, 16
 
Aek, 33
 
ack,20
 
AekPurseOkay, 24
 
AIN,16
 

aULags; A.uxWorld, 28
 
AllValueAccounted,13 
aNulUn, 16
 
aNullOur, 16
 
AOUT,16 
Archive, 34
 
archive, 27
 
Authentic, 13
 
AurhenticAckMessage, 24
 
authenticFrom; AuxWorJd, 28
 
AuthenticReqMessage, 24
 
aurhenticTo; AuxWorld, 28
 
AuthenticValMessage, 24
 
AuthoriseExLogClearOkay, 33
 
AuxWorld, 28
 

balance; AhPurse, 15
 
balance; ConPurse, 20
 
Bet'.'I-'eenlnitStare, 35
 
BerweenWorld, 30
 
BerwFinOut, 36
 
BetwFinState. 36
 
BetwlnitIn, 36
 

CAbort, 38
 
CAek, 38
 
CArchtve, 39
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C.4.uthoriseExLogClear, 39
 
CC/earExceptionLog, 38
 
check-operation, 58
 
CIgnore, 38
 
Clncrease, 38
 
CLEAR,19
 
ClearExceptionLog, 33
 
ClearExcepNonLogEapayerOkaY,33
 
CiearExceptionLogPurseEapayer01<:ay, 

26
 
ClearExceptionLogPurseOkay. 26
 
ConFinState, 39
 
ConInitState, 39
 
ConPurse, 20
 
ConPurseAborr, 22
 
ConPurseAck,22
 
ConPurseClear, 26
 
ConPurselncrease. 21
 
ConPurseReq, 22
 

ConPurseStart, 22
 
ConPurseVal, 22
 
consequent, 114
 
consqconj. 116
 
consqdisj, 116
 
consqexists, 117
 
contradiction, 117
 
ConWarld, 27
 
CounterPartyDetails, 19
 
cpd; StartFromPurseEapayerOkay, 22
 

cpd; StartToPurseEapayerOkay, 23
 
cpd; ValidStartFrom, 22
 
cpd; FalidStartTo, 23
 
CReadExceplionLog, 38
 
CReq, 38
 
CStartFrom, 38
 
CStarrTo, 38
 
cut, 116
 
CVal,38
 

definitelyLost; Aux"World, 28
 

eaPa}'ee, 18
 
eaPayer, 18
 
epa, 18
 
epr, 18
 
epv, 18
 
ether; ConWorld,27
 
excepfionLogClear, 20
 
exceptionLogResult,20
 
exists-chosenLost, 58
 
exists-pd, 58
 
exLog; ConPurse, 20
 

from; Trans{erDetails, 16
 
(rominEpa; AuxWorld, 28
 
(rominEpr; AuxWorld, 28
 
(romLogged; AuxWorld, 28
 
{romSeqNo; PayDetails, 19
 

GlobalWorld, 18
 

hypdisj, 116
 
hypexists, 117
 
hypuni, 116
 
hypothesis, 114
 

Ignore, 32, 55
 
image, 19
 
Increase, 32
 
IncreasePurseOkay, 21
 

lemma 'Abort refines Ablgnore', 61
 
lemma 'AbIgnore', 119
 
lemma 'abon backward', 65, 119
 
lemma 'abort fonvard', 120
 
lemma 'Abort refines Ablgnore', 119
 
lemma 'AbWorid unique', 125
 
lemma 'compose backward', 121
 
lemma 'compose forward', 121
 
lemma 'constraint', 100, 120
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lemma 'ignore', 55
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lcnuna 'lost unchanged'. 59, 119
 
lemma 'lost', 124
 
lemma 'not lost before', 124
 
lenuna 'notloggedAndln', 124
 
lemma 'promoted composition', 122
 
Logbook, 27
 
LogI{Necessary, 13
 
lost; AbPurse, 1 S
 

maybeLost; AuxWorld, 28
 
MESSAGE,20 

NAME,15
 
name; ConPurse, 20
 
name; CounterPartyDerails, 19
 
negation, 116
 
nextSeqNo; ConPurse, 20
 
nextSeqNo; CounterPartyDetails, 19
 
NoVa}ueCrealion, 12
 

onf'.poinr, 117
 
OrherPursesRab, 46
 

PayDecails, 19
 
pdA.uth; ConPurse, 20
 
purse; ConWorld, 27
 

Rab,46 
RabCI,45 
RabClPd,46 
RabEnd,49 
RabEndClPd,48 
RabllasBeenLost, 49
 
RabHasBeenLosrCIPd,48
 
RabIn, 50
 
RabOkay, 49
 
RabOkayCIPd, 47
 
RabOur, 50
 
RabWi/1BeLost, 49
 
RabWillBeLosrClPd,47 
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ReadEXcepNanLog, 33
 

APPENDiX D. TOOLKIT 

readExceptionLog, 20
 
ReadD<ceptionLogEapayerOkay, 33
 
ReadExceptionLogPurseEapayerOkay,
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ReadExceptionLogPurseOkay, 25
 
Req,33
 
req, 20
 

ReqPurseOkay, 24
 
RerryAck, 25
 
RetryReq, 25
 
RetryVal,25
 

StarcFrom, 32
 
startFrom, 20
 
ScartFromEapayerOkay, 33
 
StartFromPurseEapayerOkay, 22
 
StartFromPurseOkay, 23
 
ScanTo, 32
 
startTo, 20
 
StartToEapayerOkay, 33
 
StarcToPurseEapayerOkay, 23
 
StarcToPurseOkay, 24
 
STATUS, 18
 
status; ConPurse, 20
 
strengthenconsq, 116
 
Su/ficientFundsProperty, 13
 
sumVa[ue, 127
 

rhin, 116
 
to; TransferDetails, 16
 
rolnEapayee; AuxWorld, 28
 
co/nEpv; AuxWorld, 28
 

lOLogged; AuxWor/d, 28
 
roSeqNo; PayDetails, 19
 

rotaLAbBalance. 126
 
torafLost, 126
 
transfer, 16
 
TransferDecails, 16
 

Utlihyp, lIS 

Val,33 
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val,20 
ValidStartFrom, 22
 
ValidStartTo,23 
ValPurseOkay, 24
 
value; CounterPartyDetails, 19
 
value; TransferDetails, 16
 




