
o"J -,I!' .. ;,,"' :~I rnr;"' '.lli, L,... ~,::~:_:Jry

-'

U"'IVIU Uf..l j...lU

AN ELECTRONIC PURSE

Specification, Refinement, and Proof

by

Susan Stepney
David Cooper
Jim Woodcock

Technical Monograph PRG-126
ISBN 0-902928-41-4

July 2000

Oxford University Computing Laboratory
Programming Research Group
Wolfson Building
Parks Road
Oxford OXI 3QD
England

v

Copyright © 2000 Logica UK Ltd

Oxford University Computing Laboratory
Software Engineering Centre
Wolfson Building
Parks Road
Oxford OXl 3QD
England

email:	 stepneys@logica.com
cooperd@prax;s-cs.co.uk
Jim.Woodcock@comlab.Dx.ac.uk

mailto:cooperd@prax;s-cs.co.uk

Contents

Introduc tion I

l.l The application I

1.2 OverView of model and proof structure 3

1.3 Rationale for model structure 5

1.4 Rationale for proof structure 6

1.5 Status 7

I Models 9

2 sps II

2.1 Introduction 11

2.2 Abstract model SPs 11

2.3 Concrete model SPs 12

2.4 SPs and the models 13

3 .J\ model 17

3.1 Introduction 17

3.2 The abstract state 17

3.3 Secure operations IS
3.4 Abstract initial state 21

3.5 Abstract finalisation 22

4 'B model, purse l3
4.1 Overview 23

4.2 Status 23

ti

4.3 Message Details 23

4.4 Clear Exception Log Valida(ion 25

4.5 Messages 25

4.6 A concrete purse 26

4.7 Single Purse operaHons 27

4.8 Invisible operations 28

49 Value transfer operaHons 29

4.10 Exception logging operations 34

5 'B model, world 37

5.1 The world 37

5.2 Aux::iliary deftnHions 38

5.3 Constraints on the ether ,Z
5.4 Framing schema 45

5.5 Ignore, Increase and Abort 46

5.6 Promoted opera(ions 47

5.7 Operations at the world level only 48

5.8 Forging messages 50

5.9 The complete pro(Qcol 50

6 'B initial, final 51

6.1 Initialisation 51

6.2 Finalisation 52

7 C model 55

7.1 Concrete World State 55

7.2 Framing Schema 55

7.3 Ignore, Increase and Abort 56

7.4 Promoted operations 56

7.5 Operations at the world level only 57

7.6 Initial state 58

7.7 Finalisalion 58

8 Consistency 61

8.1 Introduction 61

8.2 Abstract model consisrency proofs 62

8.3 Between model consistency proofs 63

8.4 Concrete model consistency proofs 64

ill

II	 First Refinement: Jt to 13 65

9	 5\ to 'B rules 67

9.1 Security of the implemen[ation	 67

9.2 Backwards rules proof obligations	 68

10	 Rab 71

10.1 Retrieve state	 71

10.2 Retrieve inputs	 79

10.3 Retrieve outpurs	 79

11	 5\ to 'B initialisation 81

ILl Proof obligations 81

11.2 Proof of initial state 81

1l.3 Proof of initial inputs 81

12	 5\ to 'B finalisation 83

12.1 Proof obligations	 83

12.2 Output proof	 83

12.3 State proof	 84

13	 5\ to 1! applicability 87

13.1 Proof obligation	 87

13.2 Proof	 87

14	 .A to 'B lemmas 89

14.1 Introduction	 89

14.2 Lemma 'multiple refinement'	 90

14.3 Lemma 'ignore': separating the branches	 91

14.4 Lemma 'deterministic': simplifying the Okay branch 91

14.5 Lemma 'lost unchanged'	 97

14.6 Lemma'AbIgnore': Operations that refine AbIgnore 99

14.7 Ignore refines AbIgnore	 101

14.8 Abort refines AbIgnore	 102

14.9 Lemma 'abort backward': operations that first abort 110

14.10 Summary of lemmas	 III

15	 Increase 113

15.1 Proof obligation	 113

15.2 invoking lemma 'lost unchanged'	 113

15.3 check·operation-ignore	 114

Iv

16	 StanFrorn 115

16.1 Proof obHgaUon	 115

16.2 Instantiating lemma 'deterministic'	 115

16.3 Beha\liour of maybeLost and defmir21yLosf	 116

16.4 exists-pd	 117

16.5 exists-chosenLosl	 Il7
16.6 check-operation	 Il7

17	 StartTo 119

17.1 Proof obligation	 119

17.2 lnstanliating lenuna 'deterministic'	 119

17.3 Behaviour of maybeLost and definUelyLost	 120

17.4 exists-pd	 121

17.5 exists-chosenLost	 121

17.6 check-operation	 121

18	 Req 123

IB.I Proof obligation 123

IB.2 Instantiating lemma 'deterministic' 123

18.3 Discussion	 124

18.4 exists-pd 125

ta.s exists-chosenlosl 125

18.6 check-operation	 125

18.7 case 1: ReqOkay and RabOkayCIPd'	 127

18.8 case Z: ReqOkay and RabWilIBeLostPd'	 131

18.9 case 3: ReqOkay and RabHasBeenLostPd'	 136

18.10 case 4: ReqOkay and RabEndPd'	 140

19	 Val 143

19.1 Proof obligation	 143

19.2 Instantiating lemma 'deterministic'	 143

19.3 exists-pd	 144

19.4 exists-chosenlost	 144

19.5 check~operation	 144

19.6 Behaviour of maybeLost and definitelyLosl	 145

19.7 Clarifying the hypothesis	 147

20	 Ack 151

20.1 Proof obligation	 151

20.2 Instantiating lemma 'deterministic'	 151

20.3 exists-pd	 152

,

20.4 exists-chosenlost 152
20.5 check-operation 152
20.6 BehaViour of maybeLost and definiCeJyLost 153
20.7 Finishing proof of check-operation 156

21 ReadExceptionLog 157
21.1 Proof obligation 157
21.2 Invoking lemma 'lost unchanged' 158
21.3 check-operaTion-ignore 138

22 ClearEx.ceptionLog 159
22.1 Proof obligation 159
22.2 Invoking lenuna 'Lost unchanged' 160
22.3 check-operation-ignore 160

23 AuthoriseExLogClear 161
23.1 Proof obligation 161
23.2 Proof 161

24 Archive 163
24.1 Proof obligation 163
24.2 Proof 163

III Second Refinement: 'B to C 165

25 11 to C rules 167
25.1 Security of the implementation 167
25.2 Forwards rules proof obligations 167

26 Rbc 171
26.1 Retrieve state 171

27 Initialisation, Finalisation, and Applicability 173
27.1 Initialisation proof 173
27.2 Flnalisation proof 173
27.3 Applicability proofs 174

28 'B to C lemmas 175
28.1 Specialising the proof rules 175
28.2 Correctness of CIgnore 175

Vi

28.3 Correctness of a branch of the operation

28A Correctness of CIncrease

28.5 Correctness of CAbort
28.6 Lemma 'logs unchanged'
28.7 Lenuna 'abort fonvard': operations that first abort

29	 Correctness proofs
29,1 Introduction
29,2 Correctness of CStartFrom

29.3 Correcmess of CStartTo
29.4 Correctness of CReq
29.5 Correctness of CVal

29.6 Correctness of CAck
29.7 Correctness of CReadExceptionLog
29.8 Correctness of CClearExceptionLog

29,9 Correctness of CAuthoriseExLogClear

29.10 Correctness of CArchive

30	 5ununary

IV	 Appendices

A	 Proof Layout
A.I Notation
A.2 Labelling proof steps

B	 Inference rules
E.l Universal quantifier becomes hypothesis
B.2 Disjunction in the hypothesis
B.3 Disjunction in the consequent

BA Conjunction in the consequent

8.5 Cut for lemmas
B.6 Thin
B. 7 Universal Quantification
B.8 Negation
B.9 Contradiction

B.I0 One Point Rule

B.ll Derived Rules

B.12 Proof of the Derived Rilles

176

178

179

181

182

183

183

183

185

188

189

190

192

193

193

194

195

201

203

203

203

205

205

206

206

206

206

207

207

207

207

207

208

208

vii

C lenunas 211

C.1 Lemma 'deterministic'
C.2 Lemma 'lost unchanged'
C.3 Lemma 'AbIgnore'
C.4 Lemma 'A barr refines AbIgnore'
C.S Lemma 'abort backward'
C.6 Lemma 'constraint'
C.7 Lemma 'logs unchanged'
C.8 Lemma 'abort forv..'ard'
e.g Lemma 'compose backward'
C.IO Lemma 'compose fOIWard'
C.11 Lemma 'promoted composition'
C.12 Lemma 'notLoggedAndln'
C.13 Lemma 'lost'
C.14 Lemma 'not lost before'
C15 Lemma 'AbWorld unique'

D ToolkH
D.l Total abstract balance
D.2 Total lost value
D.3 Summing values

211

212

212

213

213

214

214

215

215

217

218

221

222

222

223

225

225

225

226

Acknowledgments

The work described in this monograph took place as part of a development
funded by the NatWes[Development Team (now platform seven).

Part of the refinement work \",as carried out by Eoin MacDonnell.

Chapter 1

Introduction

1.1 The application

This case study is a reduced version of a real devdopment by the NatWes[
Development Team (now platform seven) of a Smartcard product for electronic
commerce. This development was deeply security critical: it was vital to ensure
that these cards would not contain any bugs in implementation or design that
would allow them to be subverted once in the field.

The system consists of a number of electronic purses that carry financial
value, each hosted on a Smartcard. The purses interact with each other via a
communications deVice to exchange value. Once released into the field, each
purse is on its own: it has to ensure the security of all Hs transactions y.,.ithout
recourse to a central conttollcr. All security measures have to be implemented
on the card, with no real-time external audit logging or monitoring.

1.1.1 Models

We develop two key models in this case study. The first is an abstract model,
describing the world of purses and the exchange of value through alOmic trans­
actions, expressing the security proper lies that the cards must presen'e. The
second is a concrete model, reflecting the design of the purses which exchange
value using a message protocol. Both models are described in the Z notalion
ISpivey 1992b) [Woodcock & DaVies 19961lBarden et al. 1994), and we prove
that the concrete model is a refinement of the abstract.

Absrract model

The abstract model is small, simple, and easy to understand. The key operation

2 CHAPTER 1. INTRODUCTION

paying purse I atomic payment receiving purse

-----~

Figure 1. L An atomic transaction in the abstract model

(1) request

~
(2) payment

paring purse receiving purse

~
(3) acknoledgement

Figure 1.2: Part of the n-step protocol used to implement the atomic transaction_
in the concrete model.

transfers a chosen amount of value from one purse to another; the operation is
modelled as an atomic action that simultaneously decrement s the value in the
paying purse and increments the value in Ihe receiVing purse (ftgure 1.1). Two
key system security properties arc maintained by this and other operations:

• no value may be creared in the system; and

• all value is accounted in the system (no value is lost).

The simplicity of the abstract model allO\""s these properties to be expressed in
a way that is easily understood by the client.

Concrete model

The concrete model is rather more complicated, reflecting the details of the' real
system design. The key changes from the abstract are:

transactions are no longer atomic, but instead follow an n-step protocol
(figure I.2);

the conununications medium is insecure and unreliable;

transaction logging is added to handle lost messages; and

1.2. OVER HEW OF MODEL AND PROOF SJRUCTURE

there are no global properlies-each purse has to be implemented in iso­
lation.

The basic protocol is:

1.	 the communications deVice ascertains the transaction to perform;

2.	 the receiving purse requests the transfer of an amount from the paying
purse;

3.	 the paying purse s('nds that amount to the reeching purse; and

4.	 the receiving purse sends an acknowledgement of receipt to the paying
purse.

The protocol, although simple in principle, is complicated by several facts: the
protocol can be stopped at any point by removing the power from a card; the
communications medium could lose a message; and a wire tapper could record
a message and play it back to the same or different card later. In the face of
all these possible actions, the protocol must implement the atomic transfer of
value correctly, as specified in the abstract model.

1.1.2 Proofs

All the security properties of the abstract model are {unctioniJl, and so are
preserved by refinement.

The purpose of performing the proof is to give a very high assurance that
the chosen design (the protocol) does, indeed, behave jusl like the abstract,
atomic transfers. We choose to do rigorous proofs by hand: our experience is
that current proof tools are not yet appropriate for a task of this size. We did,
however, type-check the statements of the proof obligations and many of the
proof steps using a combination of fuzz [Spivey 1992aJ and Formaliser [Flynn
et at. 1990J [Stepney]. As part of the development process, all proofs were also
independently checked by external evaluators.

1.2 Overview of model and proof structure

The specification and security proof have the follo\\ing structure (summarised
in figure 1.3):

• Security Properties, SPs:

- The Security Properties are defined in terms of constraints on secure
operations; they are formalised in Ienus of the appropriate model
concepts (see later).

~ C/i4PTER 1. INTRODUCTION

I SEFs I

I, secunty enforcing ..-1' "ty " . I
I functions, ,secufl properties I

Cha la,2 "~'Fn'i;,'~~=rChaPla, 3
~ of:

" prool, using
, backward rules

" Parlll ,
constrained -;---- -----l
promotion I 'B I

constrained world
I 'B p : Chapter 5 ~----l----J
: single purse I Chapter 4 I

proof, using
forward rules
Parllll

uncons.lrained ~----- -----1
promotion', C

I unconstrained

i singl~ gu,:l---------'tw,,~d,_"~ap~er_'~
I. Chapter 7 _IL

Figure 1.3: Overview of document organisation, \\-ith model and proof structure

- In some cases, where it may nor be evident that a model captures a
particular constraint, the desired property is recast as a theorem and
proved.

• Abstract model, -'2\.: \Vc define an abstract model (Chapter 3), which forms
the Formal Security Policy Model; it consists of a global model in terms of
a simple state and operations:

- the state is a world of (abstract) purses; and
- the operations are defined on this state.

Between model, B: Next we build a 'between' levds modeL This is the first
refinement towards the implementation of purses consisting of local state
information only. This model, B, is structured as a promoted state-and­
operations model:

- The state of a single (concrete) purse, and lhe corresponding stngle­
purse operations, are defined (Chapter 4).

- The purses and operations are promoted to a global state and oper­
ations (Chapter 5). Constraints are put on this promotion to enable
the correctness proofs to be performed.

1.3. RATIONALE FOR MODEL STRUCTURE 5

Concrete model, C: OUf final model is the concrete level model, which
forms the Formal Architectural Design. This model, C, is structured as a
promoted state-and-operations model, very similar to B, except it has no
constraints on the promotion:

- The state of a single (concrete) purse, and the corresponding single­
purse operations, are defined (Chapter 7).

- The purses and operations are promoted to a global state and opera­
tions, with no constraints (Chapter 7).

Security proof .Jt-'B: The securitypolicy is proved to hold for 'B by prming
that 'B is a refinement of 5l. This forms the first part of Explanation of
Consistency.

- The retrieve relation Rab, relating the B and .A worlds, is defined
(Chapter 10).

- The security policy is shown ro hold for 'B by proof thar 'B refines.5\.,
using the 'backward' proof rules (Part 11), This proof comprises the
bulk of the proof work.

Security proof 'B~C: The security policY is proved to hold for C by proving
that C is a refinement of 'B (and hence of A, by transitivity of refinement).
This forms the remaining part of Explanation of Consistency.

- The retrieve relation Rbc, relating the C and 'B worlds, is defined
(Chapter 26).

- The security policy is shown to hold for C by proof that C refines 'B,
using the 'forward' proof rules (Part III). These two levels are relatively
close, so this proof is relatively straightforward.

The mathematical operators and schemas defined in this document are in­
cluded in the index at the end of the docwnent.

1.3 Rationale for model structure

As noted above, this case study has been adapted from a larger, real develop­
ment. In order to produce a case study of a size appropriate for public pre­
sentation, much of the real functionality has had to be removed. Some of the
structure of the larger specification has remained present in the smaUer one,
although it might not have been used had the smaller specification been VvTiI­

ten from scratch_ TIlis omitted functionality, whilst important from a business
perspective, is peripheral to the central security requirements.

6 CHAPTER 1. INTRODUCTION

1.4 Rationale for proof structure

Imagine two specifications.J\ and C, which describe executable machines. Imag­
ine thai, on every step, each machine consumes an input and produces an out­
put Finally, imagine that every execu[ion of C,iewed solely in terms of inputs
and omputs, could equallyell have been an execution of .J\. In this sense,

.J\ can simulate any behaviour of C. If thJs is the case, then we say that C is a
refinement of .J\.

This is exactly what we want to prove in our case study: that the concrete
model is a refinement of the abstract one.

Refinement is an ordering bet'\veen specifications that captures an intu­
itive notion of when a concrete specification implements an abstract onc, This
allows us to postpone implementation detail in \';THing OUT top-level specifica­
tion, focussing only on essential properties. The cost of this abstraction is the
need to refine the specification, reifying data structures and algorithms; refine­
mem is a formal technique for ensuring that essential properUes are present
in a more concrNe specification.

Nondeterminism is used in an abstract specification to describe alterna­
tive acceptable behaviours; in choosing a concrete refinement of an abstract
specification, some of these nondeterminisUc choices may be resolved. Since
we view J' and C only terms of inputs and outputs, nondeterministtl present
in ~~ may be resolved at a different point in C.

Our abstract model, chosen [Q represent the difference between secure
and msecure transactions very clearly, has nondeterministtl in a different place
from the implementation. In fact, it has it in a pJace that precludes proof using
the forward rules of {Spivey 1992b, section 5.61. For this reason we use the
backward rules to prove against the abstract modeL

Al the concrete level,e must describe the purse behaviour in a way that
closely' mirrors the actual design. An important (and obvious) property of the
design is that the purses are independent, that is, each purse acts on the basis
or its ovm, local kno\'V-ledge, and we have no control over the communications
medium between purses. This can be expressed cleanly in Z by building a
rnodel of an indi\idual purse in isola lion, and then promoting [Barden et aI.
1994, chapter 19] this model to a world Mth many purses. To express the fact
that we have no global control over the purses nor over the communications
medium, we must use an unconstrained promotion. This we do in the C model.

Why do we not, then, do a single backward proof step from the J' model
to the C model?

For technical reasons, the backward proof rules need the more concrete
specification to be tightly constrained in its state space. The form of the proofs
forces the description of the state space to include exphci t predicates excluding

1.5. STATUS 7

all but valid states. However, these predicates are not expressible locally [0

purses, and hence cannot be included in specification derived by unconstrained
promotion. That is, we cannot express the predicates needed for the proof in

the C model.
We therefore introduce an intermediate model, the 1J model, which is a

constrained promotion, and hence can contain the predicates needed for the
backward proofs. We. then prove a refinement from.Jt to 1J using the backward
rules. Bul now the constrained promotion 'B is very close to the unconstrained
promotion C, and in parlicular the nondetcrminism Is resolved in the same
place in both models, allO\\oing the forward rules (Q be used. This we do in our
proof of refinement from 'B to C.

1.5 Status

The specification and theorems have been parsed and typc-checked using fuzz
[Spivey 1992aj. There is no use of the %.%unchecked parser directive in the
specification, in the statement of theorems, or in the statement of most of the
intermediate goals; however, some reasoning steps have hidden declarations
to make them type-check and some do not conform to fuzz's syntax at all.

Chapter 2

Security Properties

2.1 Introduction

This chapter gathers wgether the Security Properties (SPs) definitions, for ref­
erence. The SPs are formalised in terms of (he abstract and concrete models,
making use of definitions in Chapters 3 and 4. (The index can be used (0 find
the definitions of these terms.) The full meaning and effect of a SP can be seen
only in the context of the model that includes it.

2.2 Abstract model SPs

The following SPs are expressed in terms of the abstract model 5\., defined in
chapter 3.

2.2.1 No value creation

Serurity Property 1. No value may be created in the system: the sum ofall the
purses' balances does not increase. l

NoValueCreatiml _

6AbWorid

wtalAbBalance abAuchPurse' :s toraLAbBalance abAuthPurse

lPro\'ed to hold for the model, section 2,4, NoValueCreation requtres lhat the sum o[the
be[ore balances is greater or equal to the sum of the after balances. The abslTact model enforces
a stronger condition: that trans[ers change only the purses Involved in the transfer and only by
the amount slated in the transfer.

12 CHAPTER 2. SPS

2.2.2 All value accounled

Security Property 2.1. All value must be accounred for in the system: the sum
o(all purses' balances and lost components does not change. 2

A.. llVa!ueAccounted _

f~Abworld
totalAbBalance abAuthPurse' + totalLost abAuthPurse' "'"

rotalAbBalance abAuthPurse + totalLost abAuthPurse

2.2.3 Authentic purses

Security Property 3. A transfer can occur only between authentic purses.)

Authentic

AbWorld

name?: NAME

name? E dom abAuthPurse

2.2.4 Sufficient funds

Security Property 4. A transfer can occur only if there are sufficient funds in
the from~purse, 4

SufficienfFundsProperty _

AbWorld
Trans(erDerails?

value? $. (abAuthPurse (rom?) .balance

2.3 Concrete model SPs

The following SPs are expressed in terms of the between (and concrece) model
'B, defined in chapter 4.

Ipro\'ed to hold for the model, section 2.4. The concrete level SP 2.2 uses logging to support
mls SP.

lUsed in th~ d~f1nition of: AbTrans(erOkar and AbTrans(erlost, Sl'ction 3.3.3.
~Used in the defmition of: AbTrans(erOka)' and AbTrans(erLost, section 3.3.3. Used in the

proof of: SP1, sl'ction 2.4.1, section 2.4.3; SP2, section 2.4.2, section 2.4.4. Note that the model
also ensures that the balance and value? are non-negative.

2.4. SPS AND mE MODELS 13

2.3.1 Exception logging

Security Property 2.2. If a purse aborts a transfer at a point where value could
be lost, then the purse logs the details. s

_Logl(Necessary ------------­
[6.ConPurse

~xLog{ = exLog U (if status E {epv, epaHhen{pdAurh}else0)

The only rimes the log need be updated are if the purse is in epv (having sent
rhe req message) or in epa (having sent the val but not yet received the ack).
In all other cases the transfer has not yet got far enough for the purse to be
worried that the transfer has failed, or has got far enough that the purse is
happy 'hat the transfer has succeeded.

2.4 SPs and the models

Alilhe SPs hold in the appropriate models.

In most cases, this is obviously true, by construc[ion: the SPs appear as
explicH predicates in the relevant definitions. However, NoValueCreation and
AllValueAccounted are not explicitly included in the operation that changes the
relevant components: AbTrans{er. In this secUon, we demonstrate that the
abstract model indeed satisfies these SPs. That is:

AbTrans{erOkay l- NoValueCreation 1\ AllVafueAccounfed

AbTrans{erLost l- NoValueCreafion 1\ AllValueAccounted

AbIgnore l- NoValueCreation 1\ AlIValueAccounted

In the proofs below, we use the 1D fonn of the definitions, by [cutjting in the
appropriate Trans{erDetails.

2.4.1 Transfer okay, no value creation

AbTrans{erOkayTD I- NoValueCreatiotl

sUsed in the. de.finitton of: AbortPurse, section 4.8.2.

14 CHAPTER 2. SPS

Proof:

totalAbBalance abAuthPurse'

= totalAbBalance{ {(rom?, Co?} ""'3 abAuthPurse')
+ (abAuthPurse' from?),balance
+ (abAuthPurse' to?).balance [totalAbBalance]

= totaL4.bBalance({from?, to?} <El abAuthPurse)
+ { (abAurhPurse (rom?) .balance ­ value?)
+ ((abAuthPurse to?).balance + value?) (AbTransferOkay]

= totaL4bBalanceabAurhPurse

s rotalAbBalanceabAuthPurse

.2.4.1

2.4.2 Transfer okay, all value accounted

AbTmnsferOkayTD I- AlIValueAccounted

Proof:

totaLAbBalance abAuthPurse' + rotalLost abAuthPurse'

= totalAbBalance({from?, to?} <EI abAuthPurse')
+ (abAuthPurse' {rom?J.balance
+ (abAuthPurse' ro?).balance [toraL4.hBalance]

+ toralLose({from?, to?} <El abAurhPurse')
+ (abAuthPurse' from?).losf
+ (abAurhPurse' to?),losr [tatalLostJ

= toraL4bBalance([from?, to?} ""'3 abAuthPurse)
+ ((abAuthPurse from?) .balance - value?)
+ ({abAuthPurse ro?l.balance + value?)

+ totalLost({from?, to?} <El abAurhPurse)
+ (abAuthPurse from?).losr
+ (abAuthPurse to?)./ost [AbTrans(erOkayj

= roraL4bBalanceabAuthPurse + totalLost abAuthPurse

• 2.4.2

2.4. SPS AND THE MODELS 15

2.4.3 Transfer lost, no value creation

AbTransferLostTD I- NoValueCreation

Proof:

totaL4.bBalance abAuthPurse'

= totaL4bBafance({from?, to?} ""il abAuthPurse')
+ (abAuthPurse' from?).balance
+ (abAurhPurse' to?Lbalance [totalAbBalanceJ

= totalAbBalance(rfrom?, to?) <El abAuthPurse)
+ «abAurhPurse (rom?).balance - value?)
+ (abAurhPurse to7).ba/ance [AbTrans{erLost]

= totalAbBalanceabAurhPurse- value? ItotalAbBa/ance]

:$ totalAbBalance abAurhPurse

• 2.4.3

2.4.4 Transfer lost, all value accounted

AbTrans(erLosrID I- AllValueAccounted

Proof:

total4.bBalance abAuthPurse' + toralLost abAuthPurse'

= totalAbBalance({from?, to?J <El abAuthPurse')

+ (abAuthPurse' from?).balance
+ (abAuthPurse' to?).balance ItotaL4bBalanceJ

+ totaILosl([from?, to?} <El abAuthPurse')
+ (abAuthPurse' from?) ,lost
+ (abAuthPurse' to?).lost [totalLost]

= totalAbBalance({from?, to?} <El abAurhPurse)
+ ((abAuthPursefrom?).balance - value?)
+ (abAuthPurse to?).balance

+ totalLost({from?, to?} <El abAuthPurse)
+ «(abAuthPurse from?).1ost + value?)
+ (abAuthPurse to?).lost [AbTrans(erLost]

= totalAbBalance abAuthPurse + totalLost abAuthPurse

16

.2.4.-1

CHAPTER 2. SPS

2.4.5 Transfer ignore

AbIgnore f- NoValueCreafion /\ AliVaJueAccounted

Proof:
Follows directly from the definition of AbIgnore, which changes none of the
relevant values.

• 2.4.5

.2.4

.2

Chapter 3

Abstract model: security policy

3.1 Introduction

The abstract model specification has the following pans:

• State: the abstract world of purses

• Operations: secure changes from one abstract stale to another

• Initialisation: the abstract world starts off secure

• Finalisation:	 a way of obsening part of the abstract world to determine
that it is secure

3.2 The abstract state

3.2.1 A purse

An abstract AbPluse consists of a balance, the value stored in the purse; and a
lost component, the total value lost durIng unsuccessful transfers. (The unsuc­
cessful, but still secure, transfer is defined in section 3.3.3.)

AbPurse ~ [balance. lost: N]

3.2.2 Transfer details

Each purse has a distinct, unique name.

[NAME]

18	 CHAPTER 3. J\ MODEL

The details of a particular transfer include the names of the from and ro purses
and the value to be transferred.

[TransferDetaiis

(rom, to : NAME

value: N

Although it is nol permitted to perform a transfer between a purse and itself,
the consrraint from':/:- to is checked during AbTransfer, rather than put in
Trans{erDetails, since it is permitted to request a transfer with from = to.

Transacrions involving zero value are allowed.

3.2.3 Abstract world

The abstract \\o'orld model contains a mapping from purse names to abstract
purses. The domain of this function corresponds to authentic purses, those
that may engage in transfers l . We allow only a finite number of authentic
purses, to ensure a well-defined total value in the system.

AbWorld ~ [abAuthfurse: NAME - Abfurse]

3.3 Secure operations

HaVing defined our abstract world, AbWorld, we now define operations on the
world that respect the relevant SPs. We call these secure operations. They
comprise:

• AbIgnore: securely do nothing

AbTransfer: securely transfer balance between purses, or securely 'lose'
the balance

3.3.1 Abstract inputs and outputs

We are to prove that the implementation is a refinement of the abstract security
policy specification. This is made simpler if e'/er}' operation has an input and
an output, and if all operations' inputs and outputs are of the same type.

So we define the inputs and outputs (some being 'dummy' values) using a
free type construct:

A1N > aNul/In

I rransfer((TransferDecails))

1SP 3, 'Authentic purses', secrlOn 2.2.3.

19 3.3. SECURE OPERA T!ONS

AOUT ::~ aNul/out

Every abstract operation has the follo\\ing properties:

AbOp-,--,- _

~AbWorid

a? : .4IN; a! : AOUT

a! = aNullOu.t

The output is always aNullOut (that is, we are nOl interested in the abstract
output).

3.3.2 Abstract ignore

Any operation has the option of securely doing nothing.

Ablgnoye _
AbOp

abAurhPurse' = abAuthPurse

3.3.3 Transfer

The transfer operation changes only the balance and lost component of the
relevant purses.

AbPurseTrans(er ~ AbPurse \ (balance, lost)

The secure transfer operations change at most the from and co purse states: all
other purse states are unchanged.

AbWorJdSecureOp . _

AbOp

Trans{erDerails?

a? E ran transfer

oTransferDetaiIs? = transfer-a?

{from?, to?} <EI abAuthPurse' = lfrom?, to?} -<El abAuthPurse

20 CHAPTER 3. ~'1\ MODEL

A transfer can securel,· succeed between two purses if they are distinct, both
purses are authentic2 , and the from purse has sufficient funds:'!.

AbTransferOkay71J _

.4bWorldSecureOp

Aurhenfic[(rom?! name?}
Aurhentic[to? / name?]
Su{ficientFundsProperty

to? "* from?

abAuthPurse' from? = (J16AbPurse I

I1AbPurse = abAuthPurse (rom?
1\ balance' = balance - value?
A lose' = lost
1\ 2AbPurseTrans(er

• OAbPurse')

! abAuthPurse' to? = (J1 t'iAbPurse I

0 AbPurse = abA uthPurse to?

A balance' = balance + value?

1\ lost' = Jose

I

1\ 2AbPurseTransfer
• (}AbPurse')

I

The operation transfers value? from the {rom purse to the to pursc4 . All the
olher components of {he from? and CO? purses arc unchanged, and all other
purses arc unchanged.

The model is more constrained than required by the SPs, and hence it
represents a sufficient, bUI not necessary, behaviour to conform 10 the SPs.

Hiding the auxiliary inputs gives lhe Okay operation as:

AbTransferOkay:; AbTrans{erOkayTD \ (to?,{rom?, value?)

Atransfer can securely lose value between m'o purses if they are distinct, both
purses are authenlic 5 , and the from purse has sufficient funds6 .

2SP 3, 'Authentic purses', section 2.2.3.

3SP4, 'Sufficient funds', section 2.2.4.

4.SP 1, 'No value creaTed', section 2.2.l.

SSP 3, 'Authentic purses', section 2.2.3.

6SP 4, 'Sufficient funds', section 2.2.4.

21 3.4. ABSTRACT INITIAL STATE

I AbTransferLostTD
I AbWorldSecureOp

Authentic[{rom? j name?]
AuthenCic[to? I name?]
SufficienrFundsPropeyty

to? '* from?

abAUfhPurse' from? E { ~AbPurse I
8AbPurse = abAuthPurse from'?
1\ balance' == balance - value?
1\ lost' = lost + value?
1\ 3AbPurseTransfer

• eAbPurse' J

abAuthPurse'to? == abAuthPurse to?

The operation removes value? from the (rom purse's balance,7 and adds it to
the from purse's lost component.s All the other components of the from? purse
are unchanged, The to purse and all other purses are unchanged.

Hiding Ihe auxiliary inputs gives the Okay operation as:

AbTransferLost ~ AbTransferLostTD \ (to?, from?, value?)

The full transfer operation can also securely do nothing, AbIgnore. The full
transfer operation is

AbTrans(er ~ AbTransferOkay v AbTrans(erLost v AbIgnore

3.4 Abstract initial state

One conventional definition of the initial state of a system is as being empty; op­
erations are used to add elements to the state until the desired configuration is
reached. However, we do not "'ish to add new abstract purses to the domain of
abAuchPurse, so we cannot start vvith a system contajning no authentic purses.
So we set up an arbitrary initial state, which satisfies the predicate of AbWorld'.

AblnitState ~ AbWorld'

7SP 1, 'No value cr('ated', section 2.2.1.

BSp 2, 'All value accoumed', section 2.2.2.

22 CHAPTER 3. .:J\ MODEL

So we say that AblnitState has some particular value, we just do not say what
that particular valu~ is. The particuJar value chosen is irrelevant to the ~ecurity

of the system; any' starting state would be securC'.
Initialisation also defines the mapping from global (that is, observable)

inputs to abstract (that lS, modeUed) inputs. This is jusl the identity relation in
the..J\ model:

Al>InirIn ;; [a?, g7 : AIN I a? ~ g7]

3.5 Abstract finalisation

We must 'observe' each security relevant component of the world, in order to
dNNmine that the security properties do indeed hold. Observation b: usuallr
performed by enquiry operations, and any part of the state not visible through
some enquiry operation is deemed unimportant. However, in our case there are
no abstract enquiry operations to observe state components, bm there arc secu­
rity properties related to them, and so they are important. We use finalisaUon
to observe them.

Finalisation takes an abstract state, and 'projects our' the portion of H
we \\ish to observe, inlO a global state. Here we choose to observe lhe entire
abstract state.

The global state is (he same as the abstract slate;

GlobalWorld ~ [g.4uchPurse : NAME - AbPurse]

Finalisalion gives rhe global state cortesponding to an abstract stale. These are
mostly the identity relations in the..J1. model:

AbFinState _

AbWorld
GfobalWorld

gAuthPurse = abAuthPurse

Finalisation also defines the mapping from abstract outputs to global (that is,
observable) outputs.

AbFinOur ~ [al, gl : AOur I a! ::= g!]

Chapter 4

Between model, single purse
operations

4.1 Overview

This chapter covers the purse-level operations, which are: abort, the starl op­
erations, the transfer operations req, val and ack, read log, and clear log.

For the sake of simplicity, we assume that concrete and abstract NAMEs
are dra\oVIl from the same sets.

In this section we refer to 'concrete' rather than 'between' purse, because,
as we see later, there is no difference between the two structurally. The only
difference betvveen the 13 and C worlds is fewer global constraints in the latter.

4.2 Status

A concrete purse has a status, which records its progress through a transaction.

STATUS ::~ eaFrom I eaTo I epr I epv I epa

The statuses are: eaFrom 'expecting any payer', eaTo 'expecting any payee',
epr 'expeeling payment req', epv 'expecting pa}ment ""al', and epa 'expecting
payment ack'.

4.3 Message Details

The abstract level describes the operaUons that transfer value. Purses are sent
instrllcUons Via messages, and we present the structure of compound messages
in this secUon.

24	 CHAPTER 4. 13 MODEL, PURSE

The abstract level describes a transfer of value from one purse to another.
We implement this at the concrete level by a protocol consisting of messages.

• Asingle transfer involves many messages. So we need a way [0 distinguish
messages: we use a fag for req, valor ack.

•	 We have no control over the concrete messages, and cannot forbid the du­
plication of messages. So we need a lay to distinguish separate transac­
tions: we usc sequence numbers that are increased between transactions.
(The transaction sequence number is implemented as a sufficiently large
number. Provided that the initial sequence number is quite small, and each
increment is small, we nc('d not worry about overflow, since the purse \ll,i11
physicall,' wear out first.)

4.3.1 Start message counterparty details

The counterparty details of a payment, which are transmitted -with a start mes­
sage, identify the other purse, the value to be transferred, and the other purse's
transaction sequence number.

counrerpartYDetails

name: NAME

value: N

nextSeqNo : N
D

4.3.2 Payment log message details

Purses store current payment derails, and exception log records that hold suf­
ficient information abom failed or problematic transactions to reconstruct the
value lost in the transfer l . The payment log details identify the different from
and to purses and [he value to be transferred (as in the abstract TransferDerails)
and also the purses' transaction sequence numbers. The combination of purse
name and sequence number uniquely identifies the transaction.

PayDer-atls _

TransferDerails

fromSeqNo, faSe.qNo : N

from oF fa

1Concrete SP 2.2, 'Exception logging', section 2.3.1.

4.4. CLEAR EXCEPTION LOG VALIDA nON 25

We can pur the constraint about distinct purses in the PayDetails, because this
check is made in VaUdStartTo/ From, before the details are set up.

4.4 Clear Exception Log Validation

CLEAR is the set of clear codes for purse exception logs. A clear code is pro­
vided by an external source (section 5.7.1) in order to clear a purse's exception
log (section 4.10.2). The function image calculates the clear code for a given
non-empt}' set of exception records. image takes a set of exception logs, and
produces another value used to validate a log dear command. For each set of
PayDetails, there is a unique clear code.

[CLEAR]

,I image: 111'1 PayDetaiIs ,..... CLEAR

The BetweenWorld model is designed so that no logs are ever lost. Indeed,
we must prove that no logs are lost in the refinement of each operation - this
is an 1mplicit part of the refinement correctness proofs. The BetweenWorld
mechanism to ensure that no logs are lost relies on two assumphons.

The first is that clear codes are only ever generated from sets of PayDetails
that are stored in the archive (a secure swre of log records innoduced later).
The second is that clear codes unambiguously idenlify sels of PayDetai/s. The
second of these assumpUons is captured formally by the injective funcllon
image.

In pracUce, image is not injechve on general sets of PayDetails, but it is
injective when restricted to the sets actually encountered.

4.5 Messages

There are various kinds of messages:
The first group of messages may be unprotected. Their forgeabihtyis mod­

elled by having them all present in the initial message ether (see section 6.1).
The second group of messages are all that need to be cryptographically

protected. Their unforgeability is modelled by having them added to the-IDes·
sage ether only by specified operations.

1., 'forged', is a message emitted by operations that ignore the (irrelevant)
input message, or emitted by non·authentic purses. It is also the input mes­
sage to the Ignore, Increase and Abort operations. 1. is implemented as an

26 CHAPTER -I. 13 MODEL, PURSE

unprotected status message, as an error message, as a 'forged' message, or as
'silence', As far as the model is concerned, we choose not to distinguish these
messages from each other, only from (he other distinguished ones. (See also
section 5.8.)

MESSAGE ::= starrFrotn ({ CounterPartyDelails»

I startTo{(CounterPartyDetails)

I readExceptionLog

I req«PayDerai!s))

I val «PayDerails»

I ack«PayDerailsIJ

I exceprionLogResulr((NA.ME x PayDerails»

I exceptionLogClear«NAME x CLEAR»

I 1.

r\ complete payment transaction is made up of a startFrom, startTo, req,
val, and ack message.

4.6 A concrete purse

A concrete purse has a current balance, an exception log for recording failed
or problemaric transfers, a name, a transaction sequence number to be used
for the next transaction, the payment details of the current transaction, and a
stams indicating the purse's position in the currenr transaction.

ConPurse
balance: N
exLog : [fll PayDetails
name: NAME
next5eqNo : N
pdAuth : PayDetatls
starus : 51'.4.TUS

"if pd: exLog. name E {pd.(rotn, pd. to}

status = epr :0:> name =: pdAuth.from
1\ pdAuth. value:::; balance
1\ pdAuth.fromSeqNo < next5eqNo

starus = epv :0:> pdAuth. toSeqNo < nextSeqNo

4.7.	 SINGLE PURSE OPERATIONS 27

I status ~ epa,", pdAuth.(romSeqNo < nextSeqNo

The name is included in the purse's state so that the purse itself can check it is
the correct purse for this transaction.

The predicate on the purse state records the foUmving constrainls:

P-l	 't pd: exLog • name E {pd.(rom, pd. '0)
All log details in the exception log refer to this purse, as the from or the
to party2.

P-2	 status = epr =>

name = pdAurh.{rom

1\ pdAurh.va!ue s balance

1\ pdAurh.(romSeqNo < nextSeqNo

If the purse is expecting a paymenr request, then:

(a)	 it is the from purse of the current transaction].
(b)	 it has sufficient funds for the request 4 (this condition is required be­

cause there is no check for sufficient funds on receipt of the request)
(c)	 its next sequence number is greater than the current transaction's

sequence numbers

P-3	 status = epv => pdAuth.toSeqNo < nextSeqNo
If the purse is expecting a payment value, then its next sequence number
is greater than the current transaction's sequence number6

P-4	 status = epa => pdAuth.fromSeqNo < nextSeqNo
If the purse is expecting a payment acknowledgement, then its next se­
quence number is greater than the current transaction's sequence num·
ber i

4,7 Single Purse operations

4.7.1 ~ervie\¥

The concrete purse specification is structured around the various purse-level
operations:

2Used m: AuxWorid does not add consrraints, section 5.2.1.

3Used in: CReq, B-9, section 29.4.

4Used in: Req, case 1, Su(fidentFundsProperty, section 18.i.2; Req, case 2, SufficientFunds·

Property, section 18.8.2; Req, case 3, Su(ficientFundsPropeny, section 18.9.2.
SUsed in: CReq. B-3, section 29.4.
6Used in: CAban, B-6, section 28.5.
7Used i.tL CAban, B-5, section 28.5.

28 CHAPTER 4. B MODEL, PURSE

• invisible operations

- IncreasePurse

- AbortPurse

value transfer operations

- StartFromPurse

- StartToPurse

- ReqPurse

- ValPurse

- AckPurse

• exception logging operations

- ReadExceptionLogPurse

- ClearEx.ceptionLogPurse

4,8 Invisible operations

Several concrete operations have a common effect on the state \isible in the
model (they affect only implementation state not visible in the model).

4.8.1 Increase Purse

The IncreasePurseOkay operation is used to model actual purse operations that
do not have any effect on the state Visible in this model. except for increasing
the sequence nwnber.

In a simple increase transaction, only the purse's sequence nUIhber may
change. All other components remain unchanged.

ConPurselncrease;; ConPurse \ (nextSellNo)

IncreasePurseOkay _

tiConPurse
m?, m!: MESSAGE

3ConPurselncrease

nextSeqNo' ~ nexrSellNo

m! =.l

4.9. VALUE TRAII/SFER OPERATIONS 29

4.8.2 Abort Purse

The AbortPurseOkay operation is used to model actual purse operaHons that
do not have any effect on the state visible in this model, but that abort and log
incomplete transactions.

In a simple abort transachoD, only the purse's sequence number, exception
log, pdAuth and status may change. All other components remain unchanged.

ConPurseAbon ~ ConPurse \ (nexcSeqNo, exLog, pdAurh, status)

AborrPurseOkay places the purse in status eaFrom (where the pdAurh compo­
nent Is undefined), logging any incoffilJlele transactions if necessary8. No other
component of the purse is altered, except for nexrSeqNo, Which may increase
arbitrarily.

AbortPurseOkay _

D.ConPurse
m? ml : MESSAGE

::::ConPurseAbort
LogI{Necessary

stQtus' = eaFrom
nextSeqNo' ~ nextSeqNo

We do not, at this slage, put any restrictions on the output message m!. Later,
we either compose AbortPurseOkay with another operation, using the latter's
m!, or we promote AbortPurseOkay to the world level, where we define m! = J..

4.9 Value transfer operations

The SeareTo and SeartFrom operations, when starting from eaFrom, chahge only
the sequence number, the slored pdAuth, ahd the status of a purse.

ConPurseSfarr;' ConPurse \ (nextSeqNo, pdAuth, status)

The Req operation change only the balance and the status of a purse.

ConPurseReq :; ConPurse \ (balance, status)

The Val operation change only (he balahce ahd the status of a purse.

ConPurseVal:; ConPurse \ (balance, status)

8Concrete SP 2.2, 'Exception logging', section 2.3.1.

30 CHAPTER 4. 'B MODEL, PURSE

The Ark operation changes only the status of a purse, and allows the pdAnth
to change arbitrarily.

ConPurseAck ;; ConPurse \ (status, pdAuth)

4.9.1 StartFro~rse

A startFrom message is valid only If it refers to a different purse from the
receiver, and mentions a value for which (he from purse has suffIcient funds.

ValidStartFrom
ConPurse
m7 ; MESSAGE

cpd : CounterPartyDetails

m7 E ran sfartFrom

cpd '=" startFrom- m?

cpd..name':l: name
cpd. value :s; balance

To perform the StarrFromPurseEa{romOka)' operaUon, a purse must receivC' a
valid startFrom message, and be in eaFrom.

I
StartFromPurseEa{rOmOkay
6.ConPurse
m?, m! : MESSAGE

cpd: CounterPartyDewils

ValidStartFrom
status = eaFrom

2ConPurseScan

nextSeqNo' > nextSeqNo

pdAuth' ~ (~PayDetaiis I
from =" name
1\ CO = cpd..name
J\ valu~ '=' cpd. value
A fromSeqNo nextSeqNo0:=

A toSeqNo = cpd.nextSeqNo)

31 4.9. VALUE TRANSFER OPERATIONS

I status' = epr

m! =.1

The StartFromPurseEafromOkay operation stores the payment details consist­
ing of the counterparty details and ils ovm name and sequence number (for
later validation), moves to the epr state, increases its sequence number, and
sends an Wlprotected status message.

The StartFromPurseOkay operation first aborts (logging the pending pay­
ment if necessary, and moving to eaFrom), then performs the StartFromPurse­
EafromOkayoperation.

StartFromPurseOkay ~

AbortPurseOkay ~ StartFromPurseEafromOkay \ (cpd)

4.9.2 StartToPurse

A startTo message is valid only if it refers to a different purse from the receiver.

ValidStartTo _

ConPurse
m?: MESSAGE

cpd : CounterPartyDetails

m? E ranstartTo

cpd = startTo-m?

cpd.name"* name

To perform the StartToPurseEafromOkay operation, a purse must receive a
valid startTo message, and be in eaFrom.

StartToPurseEafromOkay _
/),ConPurse
m?, m! : .MESSAGE

cpd : CounterPartyDetails

ValidStartTo
status = eaFrom

3ConPurseStart

32 CHAPTER 4. 13 MODEL, PURSE

ne.xtSeqNo' > nextSeqNo

pdAuth' ~ (p PayDeraiis I

to = name

1\ from"" {pd. name

1\ value = cpd.value

1\ toSeqNo = nex.c5eqNo

A (romSeqNo = cpd,nex.tSeqNo)

status' = epv

m! = req pdAurh'
-----------._--­

The SrartToPurseOkay operation logs the pending payment, if necessary; it
stores the paYIDCnl details, consisting of the coumcrparty details and its own
name and sequence number, for later validation; it moves to the epr state;
it increases Hs sequence number; and it sends a req message containing the
stored payment details.

The StartToPurseOkay operation first aborts (logging the pending pay­
ment if necessary, and mming to eaFrom), then performs the StartToPurse­
EafromOkayoperation.

StarrToPurseOkay ~

AbortPurseOkay 9StartToPurseEa(romOkay \ (cpd)

4.9.3 ReqPurse

An authentic request message is a req message containing the correct stored
payment details (which were stored on receipt of the startFrom message).

AurhenfiCReqMessage

~
ConPurse

m?: MESSAGE

m? = req pdAuth

To perform the ReqPurseOkay operation, a purse must receive a req message
mth the payment details, and be in the epr state,

ReqPurseOkay

.1ConPurse

m?,m!: MESSAGE

33 4.9. VALUE TRANSFER OPERA nONS

AlllhenticReqMessage
SCQtus"" epr

2ConPurseReq

balance' '" balance - pdAuth.value
status' = epa

I ml = val pdAulh

The purse decrements its balance, moves to the epa state, and sends a val
message containing the stored pa}ment details.

4.9.4 ValPurse

An authentic value message is a val message containing the correct stored pay­
ment details (which were stored on receipt of the srartTo message),

AurhenticValMessage -'-- _

ConPurse
m?: MESSAGE

m? = val pdAurh

To perform the ValPurseOkay operation, a purse must receive a val message
v.ith the payment details, and be in [he epv state,

VaIPuyseOkay _

tlConPurse
m?, m!: MESSAGE

AuthenticValMessage
status = epv

3.ConPurseVal

balance' = balance + pdAuth.value
scatus' = eaTo

m! = ack pdAuth

The purse increments its balance, moves to the eaTo state, and sends an ack
message containing the swred payment details.

34 CHAPTER 4. 1J MODEL, PURSE

4.9.5 AckPurse

An authentic acknowledge message is an ack message containing the correct
storedpajment details (whlch were stored on receipt of the startFrom message).

AuthenricAckMessage _

ConPurse
m?: MESSAGE

m? = ack pdAuch

To perform the AckPurseOkay operation, a purse must receive an ack message
with the pajmenl details, and be in the epa state.

AckPurseOkay _

b.ConPurse
m?, m!: MESSAGE

AuthenticAckMessage
status = epa

SConPurseAck

status' "" eaFrom

m! =-l

The purse moves to the eaFrom state, and sends an lmprotected status message.

4.10 Exception logging operations

4.10.1 ReadExceptionLogPurse

To perform the ReadExceptionLogPurseEafromOkay operation, a purse must
receive a readExceptionLog message and be in the eaFrom state.

ReadExceptionLogPurseEafromOkay _

2ConPurse
m?, m!: .~SSAGE

m? = readExceptionLog
status = eaFrom

m! E {l.} U ! ld: exLog' • exceptionLogResult(name, Jd)}

35 4.10. EXCEPTION LOGGING OPERA TIONS

The operation sends an unprotected status message (modelling 'record not
available') or a protected exceptionLogResult message containing one of the
exception logs tagged "\i.th its name9.

The ReadE'(ceptionLogPurseOkay operation first aborts (logging any pend·
ing payment, and moving to eaFroml, and then performs the Read£x.ceprionLog­

PurseEafromOkayoperation.

ReadExceprionLogPurseOkay ,;

AbortPurseOkay;; Read£x.ceptionLogPurseEa{romOkay

4.10.2 ClearExceptionLogPurse

During a clear log transaction the purse's exception log may change, but no
other component can change.

ConPurseClear;; ConPurse \ (e;'<.Log)

To perform the C[earExceptionLogPurseOkay operation, a purse must have a
non-empty exception log and receive a valid exceptionLogClear message. If
the purse receives a valid exceptionLogClear message, has no transaction in
progress and has an empty exception log, then the purse ignores the message.

First we define how [he purse clears as log in eaFrom:

Clear£x.ceptionLogPurseEafromOkay _

6.ConPurse
m?, m! : MESSAGE

exLog *- 0
m? 0;; exceptionLogClear(name, image exLog)
status = eaFrom

'::'ConPurseClear

exLog' 00;;

m! = .1

The purse clears its exception log, and sends an unprotected status message.
The image ensures that log messages have at least been read and moved

to the archive (see AuthoriseExLogClear, section 5.7.1). Procedural mechanisms
must ensure that archive information is not 10stIO .

~ I hlS gives a non-dNenmnistlC response, because we do not model exc('pdon log record num­
bers.

IDConcrete SP 2.2, 'Exception loggmg', senion 2.3.1.

36 CHAPTER 4, 13 MODEL, PURSE

There is a four stage protocol for reading and clearing exception logs:
reading a log to the ether, copying a log from the ether lO the archh'e, autho­
rising a purse exception log clear based on ,..'hat's in the archive, and clearing a
purse's exception log having received authorisation. We notc that as a result of
this protocol, if CJearEx.ceptionLogPurseOkay aborts and logs an uncompleted
transaction, then the purse's excetJtion log ""ill not be cleared. The rcason for
this is as follows. The purse gets to eaFrom by aborting any uncompleted trans­
action. [f this would create a new exccplion record, the clear transaction could
not occur, because the (imaged) exception log in the message would not match
the actual exception log in the purse.

The full clear exception log operation for a purse is thus defined to abort
an uncomplE'ted [ransaction first, and then ckar [he log if appropriate.

ClearExceprionLogPurseOkay

;; AbortPurseOkay ~ ClearExceptionLogPurseEafromOkay

Chapter 5

Between model, promoted world

5.1 The world

The individual purse operations are promoted to the 'world of purses'. This
world contains the purses, a public ether containing all previous messages sent,
and a private archive, which is a secure store of exception logs, each exceptlon
log tagged with the purse that recorded H. lnfonnation cawol be deleted from
the archive, so that the store of exception logs is persistent. This is to be
implemented by mechanisms outside the target of evaluation.

Logbook: B'(NAME - PayDetails)

Logbook ~ 0'({PayDetaiis. (rom - ePayDetailsj
u {PayDerails • fa·- ePayDerails J)

A Logbook is a set of log details, each tagged with a name, Wh€Ie (hat name is
either that of the to purse or that of the from purse in the log details.

In addition, the archive's tagged log details

ConWorld _

conAuthPurse: N4ME ,..... Con Purse
ether: 0' MESSAGE
archive: Logbook

'if n: domcon4.uthPurse. (conAuthPursen).name = n

'rf 1I1d : archive. first nld E dom COnAuthPurse

The archive is a Logbook. In addition, the archive's tagged log details are tagged
only with authentic purse names.

38 CHAPTER 5, 1) MODEL, WORW

I epr Iepa

a 7

x a
a a
a 1

(dill trans)from
incl el1From

no log logto
epv a ?

a aeaTo
TIolog a a(diff trans)

indeaFrom log a 1

Figure 5.1: The amoum lost on the current transaction for each possible slate
of rhe purses. '0' means the value has definitely not been lost; '1' means the
value has definitely been lost; '?' means the value may be lost; 'x' means that
this state is impossible.

5.2 Auxiliary definitions

We define some auxiliary components, for ease of proof later. These compo­
nents are described in detail after the schema. The sel definitelyLost captures
those transactions that have proceeded far enough that we know they cannot
succeed. The set mtlybeLost captures those transactions that have proceeded
far enough that they will lose money if something goes "'Tong, but that could
equally well continue to successful completion. In the other transactions, ei·
ther the transaction has not proceeded far enough to lose anything, or has
proceeded so far that the value has definitely been received.

The way in which the concrete stah~ of the purses relates 10 the amount
of value 'lost' in the transaction can be represented by the table shov.ll in fig­
ure 5.1, where the amount lost on the current transaction is sho\\'Il for each
possible st<:tte of the purses, including purses that have moved on to a different
transaction, v-.'ith or \,ithout logging this one.

-AUxworld

r ConWorld

I

allLogs : NAME Pu)'Details
authenricFrom, authemicTo : ltD PayDetails
{romLogged, toLogged: IF PayDecaiIs
tolnEpv, tolnEapayee, (romInEpr, (romlnEpa: IF PayDerails
de/1nitel}'Lost : !P PayDetails
maybeLost : IF PayDerails

39 5.2. AUXIUARY DEFINITIONS

al1Logs == archive

u { n: domcon.4urhPurse; pd: PayDetails I

pd E (conAurhPurse n),exLog}

authenticFrom
= {pd: PayDetails I pd.from E dom con4.uthPurse}

authenticTo

= {pd: PayDetails I pd.ro E domconAuthPurse}

fromLogged ~ {I'd: authenticFrom I pd.(rom - I'd E aI/Logs I
toLogged ~ {I'd: authenricTo I pd. to - I'd E aI/Logs}

toInErv = {pd: aurhenticTo I

(conAuthPursepd,to).status = epv

1\ (conAurhPurse pd.to).pdAurh ~ I'd)

colnEapayee = [pd: authenticTo I

(conAurhPursepd,to).starus = eaTo

1\ (conAuthPurse pd. to).pdAurh ~ I'd)

{romInEpr = {pd: aurhenticFrom I

(conAurhPursepd.from).status = epr

1\ (conAurhPursepd·from).pdAuth ~ I'd I

fromInEpa = {pd : authenticFrom I

(conAuthPursepd.{rom).status = epa

1\ (conAurhPursepd.(romJ.pdAurh ~ I'd)

definitelyLost ~ roLogged n ((romLogged u (romInEpal
I

I	 maybeLost = (fromInEpa u (romLogged) () tolnEpv

These auxiliary definitions put no further constraints on the state, but simply
define the derived components. Hence they do not need to be implemented.
They are defined merely for ease of use later. We prove that this is so in sec­
tion 5.2.1 below.

The auxiliary components represent the folloWing:

•	 allLogs: All the excep[ion logs; all those logs in [he archive, and those still
uncleared in purses.

• authenticFrom, aurhenticTo: All possible payment derails referring to au­

40 CHAPTER S. 'B MODEL, WORW

thenne from purses, and authentic co purses.

fromLogged: All those payment details logged by a from purse.

roLogged: All those details logged by a to purse.

tolnEpv: All those details for which the to purse is authentic, and is cur·
rentl).' in epv with those details stored. This is a finite set, because con­
AuthPurs€ is a nnHe function.

tolnEapayee: All those details for which the to purse is authentic, and is
currently in eaTo With those details stored.

•	 {romlnEpr: All those details for \.....Wch the (rom purse is authentic, and is
currently in epr \\lith those details stored.

•	 fromlnEpa: All those details for which the from purse is authentic, and is
currently in epa mth those details stored.

• de(1nite/yLost:	 All those details for which h'e know now that the value has
been lost. The val message was definitely sent and definitely not received,
50 ultimately both purses \\111log thl.:. transaction. The authentic to purse
has logged, which it would not have done had it sent the ack, and the
authentic from purse has sent the val and not received the ack, ahd so
never will. See figure 5.2

• maybeLost: All those details that refer to value that may yet be lost or may
yet be transferred successfully from this purse, but which have already
definitely left the purse. This occurs when the authentic from purse has
sent the val and not received the ack and the authentic to purse is in epv,
waiting for the val thaI it mayor may not get. See figure 5.2 It is a finite
sel, because toInEpv is a finite set.

\Ve have the identity

AuxWorld
I­

definilelyLost u maybeLost =

((romInEpa u (romLoggedJ n (tolnEpv u roLogged)

The later proofs of operations that change purse status (the two start, three
protocol and log enquiry operations) are based on how the relevant pd moves
in and out of the sets maybeLost and definitelyLost. (These sets are disjoint
in the BenveenWorld, because Df the BenveenWorld constraints on log sequence
numbers; see lemma 'lost', section C13.)

41 5.2. AUXlLfARY DEFINITIONS

rOWg8r'd//' II!!I
 j,."mwgged
./'

iY""~' ,
/ . c/

jromlnEpa ,~I"EP'

Figure 5.2: The sets defjnirelyLost (vertical hatching) and maybeLost (horizomal
hatching) as subsets of the other auxiliary definitions.

5.2.1 AuxWorld does not add constraints

AuxWorld introduces some new variables, but does not add any further con­
straints on Con World. We define the schema that represents just the new vari­
ables introduced by AuxWorld.

NewVariables ~ 3 ConWorld • AuxWorld

We prove that no further constraints are added by proving the followtng state­
ment.

ConWorld t- 3} NewVan"ables • AuxWorld

Proof:

First we prove existence. We normalise the schemas, draWingou{ any predicates

hidden in the declarations for the new variables. Only one predicate appears,

lim..iting a/ILogs to be a valid Logbook.

ConWorld f- 3 r NewVanables. AuxWorld i\ allLogs E Logbook

Rewrite all the equations for the new variables so that each new variable in
AuxWorld is defined only in terms of variables of Con World. We then use the
one point rule to remove the existential quantification. This leaves just the

42 CHAPTER S. 1l MODEL, WORW

normalised predicate in addition to Conti/orld.

Conl1'orJd
c
Conl1'orld
II archive u {n: domconAuthPurse; pd: PayDetaifs I

pd E (conAuthPursen).exLog)

E Logbook

From the definition of archive, archive is in Logbook. From constraint P-l in
ConPurse, the set of named exception logs is also in Logbook. This discharges
the existence proof.

To prove uniqueness, we need only note that the equations defining the
new variables arc all equality 10 an expression, and by the transitivity of equal­
ity, all possible values are equal.

.5.2.1

5.3 Constraints on the ether

We put some further constraints on the state to forbid 'future messages' and
'future logs', and to record the progress of the protocol.

BetweenWorJd _

AuxWorld

'V pd : PayDetaiis I req pd E ether. pd E authenticTo

~ pd: PayDetai}s I req pd E ether.
pd.toSeqNo < (conAuthPursepd.to).nextSeqNo

~ pd : PayDetails I val pd E ether.
pd.roSeqNo < (conAuthPursepd.to).nextSeqNo
1\ pd .fromSeqNo < (conA.uthPurse pd.from). nextSeqNo

~ pd: PaYDetails lack pd E ether.
pd.toSeqNo < (conA.uthPursepd.co).nextSeqNo
,'I pd .(romSeqNo < (con..4uthPurse pd.from). nextSeqNo

~ pd : fromLogged •
pd.{romSeqNo < (conA.uthPursepd.(rom).nextSeqNo

~ pd: CaLagged. pd.wSeqNo < (conAuchPursepd.to).nextSeqNo

43 5.3.	 CONSTRAINTS ON THE ETHER

V pd : (romLogged I
(conA.uthPurse pd.from).stacus E {epr, epa J •

pd.(romSeqNo
< (conAuthPurse pd.from) .paAuth.{romSeqNo

\;j pd: (oLagged I (conAurhPursepd.to).staeusE {epv,eaTo}.
pd.toSeqNo < (conAuthPursepd.to).pdAuth.toSeqNo

V pd: (romInEpr • disjoint «val pd, ack pd). ether)

\;j pd: PayDetails •
(req pd E ether A ack pd ~ ether)

~ (pd E tolnEpv u toLagged)

V pd : PayDetaifs I val pd E ether 1\ pd E folnEpv •
pd E (romInEpa u (romLogged

V pd : (romInEpa u (romLogged • req pd E ether

(oLagged E IF PayDetails

\;j pd : exceptionLogResult- ~ ether D • pd E allLogs

V pds : 3', PayDetails; name: NAME I
exceptionLogClear(name, image pds) E ether.

{name} x pds £: archive

\;j pd: {romLogged u toLagged • req pd E ether

These constraints express the following conditions (numbered for future refer­
ence in the refinement proofs):

B-1	 All req messages in the ether refer to authentic to purses I,

B-2	 There are no 'future' req messages 2: all req messages in the ether hold
a to purse sequence number less than that purse's next sequence num­
ber. (It puts no constraint on the (rom purse's sequence number, because
the from purse mentioned In a req message need not have starred the
transaction yet, and need not even be authentic.)

B-3	 There are no 'future' val messages 3: all val messages in the ether hold a
to purse sequence number less than that purse's next sequence number

lUsed in R~q, case 4, section 18.10.
2Used tn: Stal'tTo, location of pdThiS, section 17.3; CStaI'tTo, B-16, section 29.3; CReq, B-3,

section 29.4.
3Used In: CSrarrFrom, B-9, section 29.2; CScanTo, B-11, section 29.3. CVal, B-4, section 29.5.

44 CHAPTER 5. 13 MODEL, WORLD

and a {rom purse sequence number less than that purse's next sequence
number.

8-4	 There are no 'fufUre' ack messages 4: all ack messages in the ether hold
a to purse sequence number less than that purse's next sequence nwnbcr
and a {rom purse sequence number less than that purse's next sequence
number.

8-5	 There are no 'future' {rom logs based on the nextSeqNo of the {rom purse
s

8-6 There are no 'future' ro logs based on the nextSeqNo of the to purse G.

8-7	 There are no 'future' {rom logs based on the pdAuth.{romSeqNo of a purse
in epr or epa ': all from logs refer only to past (rom transactions. So all
from logs referring to a purse that is currently in a transaction as a (rom
purse (that is, in epr or epa), hold a from sequence number strictly less
rhan that purse's stored current transactJon sequence number.

8-8	 There are no 'furure' to logs based on the pdAwh.toSeqNo of a purse in
epvor eaTo 8: all CO logs refer only to past to transactions. So all to logs
referring to a purse that is currently in a transaction as a to purse (in epv),
hold a to sequence number strictly less than that purse's stored current
transaction sequence number.

8-9 If the (rom purse is in epr then there is no val message () or ack message lO

in the ether.

B-IO	 There is a req message but no ack message in the ether precisely when
the to purse is in epv or has logged the transaction II.

8-11	 If the to purse Is in epv and there is a val message jn the ether, then either
the (rom purse is in epa or has logged the transaction 12 .

.jUSi'd in: CSrartFrom, 8-9. secTion :!9.2; CSIl1rtTo, B-I0, si'ction :!9,3.

'USi'd in: CSrQrtFrom, B-7, si'cTion 29.:?

6USi'd)n' CSrartTo, B-8, 29.3, 29.3

'Used m: StanFrom, location of pdThis, section 16.3; CReq, B-7, section 29.4: lemma 'nDI'

LcggedAndIn', sectIOn L12.

aUSi'd in: CIl'I/, B-8, section 29.S; lemma 'notLoggedAndln', sectIOn C 12.

9Used m: CVal, 8-9, section 29.S.

IOUsi'd U1 Req, case 4, section 18.10.
iLUsed in: SranTo, locatton of pdThiS, si'ction 17.3; Req, case 4, Si'CtiOll 18.10; Ack, bebaviour

of definltelyLosr, section 20.6.S; Ack, behaviour o[maybeLost, sec non 20.6.6; CAban, B-1O, sec·
!:Ion 28.S; CAban, 8-16, section 28.S; CAck, 8-l 1, secnon 29.6.

12Used In: Val, behavlour of maybeLost, section 19.6.7.

5.4. FRAMING SCHEMA	 45

B-12 If the from purse is in epa or has logged the transaction, then there is a
req in the ether 13.

B-13 The set (oLagged is finite. This is sufficient to ensure that definitelyLost is
finite 14.

B-14	 Log result messages are logged. The log details of any exceptionLogResu]t
message in the ether is either archived or in a purse transaction exception
log 15.

B-15	 Exceprion log clear messages refer only to archived logs 16.

B-16 For each PayDetails in the logs there is a corresponding PayDetaUs in a
req message in [he ether 17.

That the actual implementation does indeed satisfy this predicate needs to be
proved, by a further, small, refinement, that ConWor/d and the operations refine
BetweenWorld and the operations (see' Part III).

5.4	 Framing schema

A framing schema is used to promote the purse operations.

4>BOp	 _

!:l.BetweenWorld
!:l.ConPurse
m? m! : MESSAGE
name?: NAME

m? E ether

name? Edam conAuthPurse

BConPurse == conAuthPurse name?

conAuthPurse' == conAuthPurse EEl {name? eConPurse'}

archive' == archive

ether' == ether u {m!}

BUsed in SeareTo, location of pdThis, section 17.3; CAb<m, B-12, section 28.5; CAbon, B-16,
section 28.5.

14Used1n: various Rab schemas, section 10.1
15Used in: Archive, section 24.2; CArchlve, section 29.10.
16Used In: ExceptionLogClear, invoking lemma 'lost unchanged' section 22.2; CExceprionLog­

Clear, section 29.8.
17 Used 1n: CStartTo, alternative to lemma 'logs unchanged', section 29.3.

46	 CHAPTER 5, 'B MODEL, WORlD

The predicate ensures the folloWing properties common to all promoted oper­
ations:

m? E ether
the input message is in the ether, which ensures it \\'35 either previously
sent by another purse (req, val, ack, etc.l, in the ether since initialisation
(sfarrFrom, startTo, etc.), or input by a special global operation (that is,
AuthoriseExLogClear).

name? E dorn con4.lJ.thPurse
the purse is in the world of authentic purses.

eConPurse =: conAuthPurse name?
The before state of ConPurse we are operating on is the stale of the purse
identified by name?

• cOMurhPurse'	 = conAuthPurse'I! {name? eConPurse'}
The after state of the purse system has name? updated to the af[er state
of ConPurse (which particular state depends on rhe particular operation
details) and aU other purses are unchanged lB.

archive' = archive
The archive remains unchang~d.

•	 ether' = ether u {rn!l

the output message is recorded by the ether.

5.5 Ignore, Increase and Abort

There are various general behaViOurs that operations may engage in: ignore
the input and do nothing; ignore the input but increase the sequence number;
ignore the input but abort the currem payment transaction.

Ignoring is modelled as an unchanging world:

Ignore:; [3BetweenWorld; name? : NAME; rn?, rn! : MESSAGE I m! = 1.-]

Increase has been modeHed at the purse level, and is now promoted and to­
talised:

Increase'; Ignore

v (3 t1ConPurse. 4JBOp t\ IncreasePurseOkay)

1BUsed in Req proof, section 18.7.2.

47 5.6. PROMOTED OPERATIONS

Abort has been modelled at the purse level, and is now promoted and totalised:

Abort ~ Ignore
v (3 C>.ConPurse. AbortPurseOkay A [<I>BOp I m' ~ ~))

5.6 Promoted operations

We promote the individual purse operations, and make them total by disjoining
them with the operation defined above that does nothing.

5.6.1 Value transfer operations

The promored start operations are:

StartFrom ~ Ignore

v Abort

v (3 ~ConPurse • 4>BOp /\ StartFromPurseOkay)

StartTo ~ Ignore
v Abort
v (3 6ConPurse. 4>BOp /\ StartToPurseOkay)

For use in the proofs, we also promote the Eafrorn part of the operations on
their own:

StarlFromEafromOkay ~ 3 6ConPurse •

4> BOp /\ StartFrornPurseEa{rornOkay

StartToEa(romOkay ~ 3 6ConPurse •
4>BOp /\ StarlToPurseEa{romOkay

The promoted protocol operations are:

Req :;;; Ignore v (3 6ConPurse. 4>BOp /\ ReqPurseOkay)

Val';; Ignore v (3 6ConPurse • 4>BOp /\ VafPurseOkay)

Ack .;; Ignore v (3 6ConPurse. 4>BOp /I AckPurseOkay)

5.6.2 Exception log operations

The promoted log enquiry operation is:

ReadExceptionLog :; Ignore
v (3 t:J.ConPurse. ¢BOp /I ReadExceptionLogPurseOkay 1

48 CHAPTER 5. :B MODEL, WORLD

The promoted exception log clear operation is:

ClearExceptionLog :; Ignore
v Abort
v (3 6.ConPurse. 4.>BOp 1\ CIearExceptionLogPurseOkay)

For use in the proofs, we also promote the Eafrom pan of the operations on
their o\,·:n:

ReadExceptionLogEafromOkay ;; 3 6ConPurse •

4BOp 1\ ReadEx.ceptionLogPurseEafromOkay

ClearExceptionLogEa{romOkay ;; 3 6.ConPurse •

¢ BOp 1\ ClearExcep{(onLogPurseEafromOkay

5.7 Operations at the world level only

There are some operations on the world that do nol have equivalents on indi­
Vidual purses. These are not implemented by the target of evaluation, but need
to be implemented by some manual means or external system.

To retain the simpHcity of our proof rules, these operations take the same
input and outputs as all the purse operations.

5.7.1 Exception Log dear authorisation

The message to clear an exception log can be created only for log details which
are already recorded in the archive. The clear code of the message is based
on the selected logs in the archive. The exception log clear message couples
this clear code with the name of a purse. This supports constraint B-15 which
requires that this operation not put a clear message into the ether if the relevant
logs have not been archived.

_AuchoriseExLogClearOkay _

t1Betweenl1'orld
m?, m' : MESSAGE
name?: NAME

conAur-hPurse' conAuthPurse:-0

3 pds: ~l PayDetails •

{name?} x pds £ archtve

1\ m! = exceptionLogClear(name?, imagepds)

49 5.7. OPERATIONS AT mE WORlD LEVEL ONL1·

ether' = ether u {m!}

archive = archive'

AuthoriseExLogClear ~ Ignore v AuthoriseExLogClearOkay

Exception logs must be kept for all time to ensure that all value remains ac­
counted for. The operation to clear purses of their exception logs must be
supported by a mechanism to store the cleared logs. This is what the archive
supplies.

The purse supports the ReadExceplionLog operation, which puts an excep­
tion log record into the ether as a message. As the system implemcnters have
no control over the ether, we have modelled it as lossy at the concrete level,
allowing for messages to be lost from the ether at any time.

The archive is a secure store for information, and to support the security
of the purse there must be a manual mechanism to move Jog messages from
the ether into the archive for safe keeping. This is modelled by the Archive
operation, and is implemented by some mechanism external to the target of
evaluation.

Archive _

6.BetweenWorld
m?, m! : MESSAGE
name?: NAME

conAuthPurse' = conAuthPurse
ether' = ether

archive £:

archive' £:

archive U { log: NAME x PayDetails I
exceptionLogResult log E ether}

m! =-l

This operation non-deterministically copies some exception log information
from messages in the ether into the archive. It ignores its inputs. As one pos­
sible behaviour is to move no messages into the archive, it can behave exactly
like Ignore. The operation is therefore total, and we do not need to dIsjoin it
with Ignore.

50	 CHAPTER 5. 'B MODEL, WORW

5.8 Forging messages

If arbitrary messages can be sent, then obviously the sccuriry can be compro­
mised. We can build into the definition of the ether that if is possible to forge
only some kinds of messages. The only messages H is possible to forge are

• replays of earlier valid messages (added to the	 ether during an earlier
operation)

• unprotected messages (modelled by being in the initial ether, and hence
being replayable at any lime)

• messages it is possible to detect are forged (modcl1ed by the .1- message,
present in the initial ether)

This allows us [0 capture the encryplion properties of messages: a message
encapsulating arbitrary details caIU101 be forged by a third party.

5.9 The complete protocol

The complete transfer at the between and concrete levels can be described,
informally, by the following sequence of operations:

StartFrom ~ ScartTo ~ Req ~ Val ~ Ack

Other operations may be interleaved in an actual transfer.
The refinement proof in the follOWing sections demonstrates that none of

the individual concrete operations violates the security poUcy.

Chapter 6

Between model, initialisation and
finalisation

6.1 Initialisation

As with the abstract case, we set up a particular initial between state. We donOI
want to model adding new authentic purses to the system, since some of the
operations involved are outside the seclUity boundary. So we allow the world to
be 'sMtched off' and a new world 's\\'itched on', where the new world consists
of the old world as it was, plus the new purses. So our initial state must allow
purses lO be part-way through transactions.

We set constraints on the initial state of the between system to say that
there are all the request messages in the ether, any current transactions must
be valid, and there are no future messages.

BetweeninitStace _

BetweenWorld'

{readExceptionLog, .l}

u

U{ cpd: CounterPartyDetails. {startFromcpd,startTocpd}}

~ ether'

The initial ether contains (or may be considered to contain) the foUo\-\ing mes·
sages:

the log enquiry and .1 messages (hence a purse can always have a forged
message sen I to it)

• all possible start messages, even those referring to a non-authentic purse

52 CHAPTER 6. B INfTlAL, FINAL

• no future messages (ensured by the constraints in BetweenWorld')

So any purse, at any time, can be sent a read log message, or an instruction
to start a transfer; this saves us haVing to model the IFD sending these mes­
sages. Since the IFD does not authenticate start messages, we cannot insist on
authentic purses at this point.

The inability to forge messages means that a req message always mentions
an authentic to purse, and a val message an authentic {rom purse. So a val
message sent on receipt of a req ",ill mention authentic to and {rom purses.

We must also initialise our concrete inputs, since they are different from
the global inputs. This defines how concrete inputs are interpreted.

BetwlnitIn _

g?: AlN

m?:MESSAGE
name? : NAME

m? E ranreq "'>

g? ~ rransfer{ J.l Trans{erDerails I
{rom = (req-m?).(rom
1\ to = (req-m?).to
1\ value = (req-m?).value)

m? It ran req ~ g? = aNuJIIn

6,2 Finalisation

Finalisation maps a BetweenWorld to a GlobalWorld, to specify how the various
concrete state components are observed abstractly.

We finalise b)! choosing to assume that all the transactions in maybeLost
actually are lost. (In some sense, finalisation treats incomplete transactions as
If they would 'abort'.)

BetwFinState~ _

BetweenWorld
GlobalWorld

dorn gAuthPurse = dom con4uthPurse

53 6.2. FINALISATION

V name: dam conAuthPurse •

(gAurhPurse name) .balance = (conAuthPurse name) .balance

1\ (gAurhPurse name)./ost =

sumValue((de(initelyLost u maybeLost)
n { ld : PayDetaiis I ld.{rom ~ name})

There is a simple relationship between concrete and global balance compo­
nents. The global lost component is related to the concrete maybeLost and
de{initelyLost logs (the function sumValue is defined in section D.3).

We must also finalise our concrete outputs, since they are different from
the global outputs_ This defines how concrete outputs are interpreted.

BetwFinOut _

9!:AOUT
m!:MESSAGE

[g! == aNullOut

All concrete outputs are interpreted as the single abstract output, aNullOut.

Chapter 7

Concrete model: implementation

7.1 Concrete World State

The C world state has the same components as the ~ state; we decorate with a
subscript zero to distinguish like-named ~ and C components.

Since tiConWorldo has components dashed-Then-subscripted, whereas we
require subscripted-then·dashed, we defined our own 6 and'::: schemas,

tiConWorldO';' ConWorldo 1\ ConWorld~

2ConWoridO ~ [ClConWorldO I eConWorldo ~ OConWorld~ I

7.2 Framing Schema

The concrete world C has the same operations as the 'B model.
The world we promote to is ConWorld, not Bern'eenWorld. (Remember

ConWorld has the same structure as BetweenWorld, but none of the constraints
about future messages.) We are also allowed to 'lose' messages from the public
ether, which models the fact that the ether may be implemented as a lossy
medium.

So the C framing schema is used to promote the purse operations.

oJ>COp _

ClConWorldO

L'iConPurse
m?, m! : MESSAGE
name?: NAME

56 CHAPTER 7. C MODEL

m? E etherQ

name? E dorn conAuthPurseo
8ConPurse = conAuthPurs£?{) name?

conAuthPurse~:.:: conAuthP'urseo Gl {name? eConPurse'}

archiveQ = archiveo

ether~ s; ethero u {m! 1
~---"-------'-------------

7.3 Ignore, Increase and Abort

The 11 operations Ignore, Increase and Abort have C equivalents, working on
the Cworld instead of the 13 world. These operations are not named operations
of the purse, Le. they are not Visible at the purse interface. We define them so
that they can be used as components in C purse operations.

CIgnore ~ r3ConWorldO; name?: NAME; m?, m!: MESSAGE I m! = 1.)

CIncrease .; CIgnore

v (3 6ConPurse. ~COp A IncreasePurseOkay)

CAban;;: Clgnore
v (3 6ConPurse. AborrPurseOkay A [oI>COp I m! ~ ~])

All subsequent operations defined in this chapter correspond to the actual op­
erations of the purse.

7.4 Promoted operations

As wHh the 13 promoted operations, the C promoted operations are made total
by disjoining with Clgnore.

7.4.1 Value transfer operations

The promoted start operations are:

CStartFrom ;; Clgnore

v CAban

v (3 .6.ConPurse .. ¢ COp 1\ SlartFromPurseOkay)

1.5. OPERATIONS AT THE WORLD LEVEL ONLY 57

csrarlTo ,; CIgnore

v CAban

v (3 .6.ConPurse. 4JCOp 1\ StartToPurseOkay)

The promoted protocol operations are:

CReq'; CIgnore v (3 .6.ConPurse. <fJCOp !\ ReqPurseOkay)

CVal ~ CIgnare v (3 t.CanPurse • 4> COp A VaIPurseOka)')

CAck'; CIgnore v (3 tiConPurse • <fJCOp !\ AckPurseOkay)

7.4.2 Exception log operations

The promoted log enquiry operation is:

CReadExceptionLog ,; CIgnore
v (3 ~ConPurse. ttJCOp 1\ ReadExceptionLogPurseOkay)

The promoted clear operation is:

CClearExceptionLog ,; CIgnore
v CAban
Y (3l::iConPurse. 4JCOp 1\ ClearExceptionLogPurseOkay)

7.5 Operations at the world level only

As with the 1j model, there are some operations that act on the world, rather
than on individual purses. These operations are specified exactly as they are in
the 'B model, but acting on Con World instead of BetweenWorld.

7.5.1 Exception Log dear authorisation

The message to clear an exception log is generated external to the model.

CAuthoriseExLogClear ~ CIgnore

v (32CanPurse. [4>COp I (3Ids: 0') Pa)'Detaiis I
{name?} x Ids ~ archiveo •

m! = exceprionLogClear(name?, imagelds))])

The operation to move exception log information from the ether to the archive
is

58 CHAPTER 7. C MODEL

~~:~h;:r-ld-O-------------------

r m?, m!: MESSAGE

name?: NAME

conAuthPurse~ :=: conAuthPurseo
ether~ £; echero

archiveo £;

archiveo £

archiveo u {Jog: NAME x PayDerails I

exceptionLogResu!r log E ethero }

m!:=:-.L

7.6 Initial state

The initial state of the C world has an ether thal is a subset of one that satisfies
the 'no future messages' constraints placed on the 13 world (the subset is needed
because the C ether is lossy).

ConInirState _

ConWarldb

3BetweenWorld' I BetweenInitState •
conAurhPurseo:=: conAuthPurse'
1\ archiveo = archive'
!\ {-.L} s; ether;; £; ether'

7.7 Finallsation

The 13 finalisation is defined for any ConWor/d; we reuse it for the C finalisation.

ConFinState _

~~:b:~~~~ld

r dam gAuthPurse "" dam conAuthPurseo

'r;/ name: dam conAurhPurseo •

I

7.7. FINAUSA nON S9

(gAuthPurse name).balance

= (conAuthPurseo name).balance

1\ (gAuthPurse name).lost =

sum\/alue((definitelyLosto u maybeLosto)
n { Id: PayDetails Ild,from ~ name II

Chapter 8

Model consistency proofs

8.1 Introduction

In order to increase confidence that the specifications written are not meaning­
less, it is ""lse (0 prove some properties of them.

The leasl Iha I should be done is to demonstrate that the constraints on
the state and those defining each operation do not reduce to false. So for each
model, the consistency proof obligations are:

Show it is possible for at least one slale to exiSI (which demonstrates thaI
the stale invariant is not conlradictory). If we choose this state to he the
initial state, we also demonstrate that initialisation is not vacuous, too.

I- 3 State' • StateInit

Show that each operalion does not have an empty precondition (which
demonstrates that no operation definition is comradiclory).

I- 3 State; Input. pre Op

In fact, here we show thar all our operalions are (Qral, which is the much
SlTonger condition

I- V State; Input. pre Op

We presenr rhese proofs for each of our rhree models below.

62 CHAPTER 8. CONSISTENCY

8.2 Abstracl model consislency proofs

8.2.1 Existence of initial abstract state

\-- 3AbWorJd' • AblnitSrate

Proof:

It is sufficient to find an explicit abstract world that satisfies the constraints of

AblnilsrQte. Consider the abstract world with the components:

abAuthPurse' "" 0

This satisfies the constraints of AbWorld, so is clearly a suitable initial state.
• 8.2.1

8.2.2 Totality of abstract operations

AbIgnore is total.
Proof:

prc AbIgnore

~ pre [l>AbWorld; a?: AIN; a! : AOUT I
abAuthPurse' = abAuthPurse
1\ a! "" aNullOUl J (defn. AbIgnore)

~ [AbWorld; a7 : AIN I

3 AbWorld'; a! : AOUT I

abAurhPurse' = abAuthPurse

1\ a! = aNullOl.{{] [defn. pre I

~ [AbWorld; a7 : AIN I
3abAuthPurse' : NAME _ AbPurse; a! : AOUT I

abAuthPurse' = abAurhPurse
1\ a! = aNullOut J

lone point rule]

~ [AbWorld; a? : AIN]

•
All the abstract operations are total.
Proof:

8.3. BETWEEN MODEL CONSISTENCY PROOFS 63

They are total by construction. They are all of the form AbOpOkay v
AbIgnore, so:

pre AbOp

~ pre (AbO pOkay v AbIgnore)

= pre AbOpOkay v pre AbIgnore

~ pre AbOpOkay v [AbWorld; a?; AIN]

= [AbWorld; a7; AIN]

•
• 8.2.2

.8.2

8.3 Between model consistency proofs

8.3.1 Existence of between initial stare

)- 3 BetweenWorld' • BetweenlnitState

Proof:

J[is sufficient to find an explicit between world that satisfies the constrainls of

BetweenWorldInit.

A world of no purses, an ether that consists of exactly the messages ex­
plicitly allowed of BetweenWorldInit, and an empty archive, is sufficient.

COnA.urhPurse' = (3

ether' = {readExceptionLog, J...}
u U{ cpd : CounterPartyDetails • {startFrom cpd, srartTo cpd) }

archtve' = 0

This satisfies the constraints in ConWorld. It also satisfies the extra constraints
of BetweenWorld: all the quantifiers are over empty sets (of purses or messages)
and hence are trivially true.

• 8.3.3

8.3.2 Totality of between operations

All between operations are total.
Proof:

64 CH4PTER 8. CONSISTENCY

They aU offer the option of Ignore (explicitl}' by disjunction, except for Archive,
which offers it implicit}r). Ignore is the total identity operation.

• 8.3.2

.8.3

8.4 Concrete model consistency proofs

8.4.1 Existence of concrete initial state

f- 3 ConWorldb • ConlnitStare

Proof:
The concrete state is identical to the bef1.\'een state, except for fewer constraints.
Therefore as a between state exists, so docs a concrete onc.

• 8.4.1

8.4.2 Totality of concrete operations

All concrete operations are total.

Proof:

The concrete operations are identical to the between ones. Therefore if the

between operalions are total, so are the concrete ones.

• 8.4.2

.8.4

.8

E':l
0
.....
~

.. aJ

-
=

-
~

co
1;

s aJ
~

~
 aJ

~

..... rI)
~
... ~

Chapter 9

Refinement Proof Rules

9.1 Security of the implemenlation

We prove the concrete model C is secure v,rith respect w the abstract model.J1.
in two stages. We first show (in this part) that 'B refines.J1. then we show (in
part III) that C refines 13. .

To show that 'B refines .J\ we show that every (promoted) 'B operation
correctly refines some .J1. operation.

Much of what the 'B (and C) operations achieve is inviSible at the .J1.level,
so many 'B operations are refinements of AbIgnore (abstractly 'do nothing').
Some of the 'B operations that are refinements of AbIgnore do serve to resolve
abstract non-determinism.

The refinements are

AbTransfer i;; Req

AbIgnore £::: StartFrom

v StartTo

v Val

v Ack

v ReadExceptionLog

v ClearExcepfionLog

v AuthoriseExLogClear

v Archive

v Ignore

v Increase

v Abort

68 CHAPTER 9. 5\. TO 13 RULES

A'; Aln A; Aln AOp A'; AOu/ A; AOul

c:?' ", AFin ,A:':'/l r------1
R' R I R'

Rln Rln ROuI ROUli R~:: '
B/nll ______ ,.l. I BFin ~

B'; BIn B; BIn BOp B'; Haul B; BOul

InIIlalisation Correctness Flnalisation

Figure 9.1: A summary of the backward proof rules. The hypothesis is the
existence of the lower (solid) path. The proof obligation is to demonstrate the
existence of an upper (dashed) path.

Each of these refinements must be proved correct.
For the.Jl to 'B refinement proofs, the following set of 'upward' or 'back­

ward' proof rules are sufficient to show the refinement rWoodcock & Davies
19961. For the 'B to C refinement proofs, the 'downward' or 'forward' proof
rules are sufficient to show the refinement.

These rules are expressed in terms of a 'concrete' (lower) and 'abstract'
(upper) model. In this first refinement the 'abstract' model is .Jl and the 'con­
crete' model is 'E. In the second refinement the 'abstract' model is now 'E and
the 'concrete' model is C

9.2 Backwards rules proof obligations

Appendix A describes the syntax for theorems, and how we lay ou(the proofs.
The backward proof rules are sununarised in figure 9.1, and described below.

9.2.1 Initialisation

We start from some global state G, and initialise it to an abstract initial state
A' and concrete initial state B'. These must be related by the retrieve.

I- V G; GIn; B'; BIn; A'; AIn I BIntlState 1\ BInitIn /\ R' 1\ RIn •

AInitState /\ AInitIn

Given any global initial state G. if we initialise it with BInit to B' , then retrteve B'
to A', we must get the same abstract initial stale as if we had initialised directly
to A' using Alnit.

9.2. BACKWARDS RULES PROOF OBLIGA T/ONS 69

This can be simplified to:

BlnitState; R' I-- AlnitState

BlnitIn; RIn I- AlnUln

9.2.2 Finalisation

We start from some abstract final state A and concrete final state B, related by
the retrieve, and finalise them to the same global final state G/.

f- 'I G'; GOut; B; BOut I BHnState A BHnOut •

3 A; AOm • R /\ ROut /\ AFinStare /\ AFinOut

Given any concrete final state B that finalises \\-1th EFtn to G', then it is possible
(Q find a corresponding abstract final state A, that both retrieves from B and
finalises with AFtn to the same G' .

This can be simplified to:

BFinState I- 3 A • R /\ AFinState

BFinOut I- 3 AGut • ROut /\ AFfnOuf

9.2.3 Applicability

f- 'I B; BIn I ('I A; AIn I R A RIn • pre AOp) • pre BOp

For each operaUon: jfwe are in a concrete state, and if all the abstract states·
to which it retrieves satisfy the precondition of the abstract operation, then we
must also satisfy the precondition of the corresponding concrete operation.

For oUI case, AOp is total (this needs to be proved for each of the abstract
operations - see section 8.2.2). So pre AOp = true. So

('I A; AIn I R A RIn • pre AOp)
=:> (VA; AIn. R 1\ RIn =:> pre AOp)
=:> (V A; AIn. R 1\ RIn =:> true)
=:> (V A; AIn. true)
0> true

So, for total abstract operations, the applicability proof obligation reduces to

B; BIn f- pte BOp

That is, a proof that BOp is total, too. This is discharged in section 8.3.2.

70 CHAPTER 9. .5'\ TO 1l RULES

9.2.4 Correctness

e ~ B; BIn I (It A; AIn I RA RIn • pre AOp) •

(It A'; AOut; B'; BOut! BOp A R' A ROw.

(3 A; AIn • R A RIn A AOp))

For each operation: if we start in a concrete state corresponding to the precon­
dition of the abstract operation (the applicability condition ensures we then
satisfy the concrete operation's precondiHon), and do the concrete operation.
and then retrieve to the abstract state, then we end up in a state that we could
have reached doing the abstract operation.

Using pre AOp = true (proved during appHcability), this reduces to

e It B; BIn. (It A'; AOut; B'; BOut I BOp A R' A ROut.

(3A; AIn. R A RIn A AOp))

Mming the quantifier into the hyPothesis:

B; BIll; A'; AOut; B'; BOut I BOp A R' A ROut

I- 3 A; AIn. R A Rln 1\ .4.0p

Then rearranging the schema predicates from the predicate part ID the decla­
rarion part, and remO\ing the redundant declarations, gives the final form we
USe:

BOp; R'; ROut l- 3A; Aft!. R /\ Rin /\ AOp

Chapter 10

.J\. to 'B retrieve relation

The purpose of the retrieve relation is to capture the details of the various states
the concrete world can be in, and which abstract slatc(s) these correspond to,
and the relationships between the conerNe and abstract inputs and outputs.

For the first refinement, we talk of Rab: the Retrieve from 5t to 11. Later,
for the second refinement, we talk of Rbc: the Rerricve from 'B to C.

10.1 Retrieve state

The domains of the 'B and 5t 'world' functions define the authentic purses.

AbstractBetween _

AbWorld
BetweenWorld

dom abAuthPurse = dom conAuthPurse

.A balance and lost are related to 'B balance and exLogs. The relationship is re~

lational, not functional, and highly non~deterministic part-way through a Irans­
action.

10.1.1 Exposing chosenLost

chosenLost is a non-detenninistic choice of a subset of all the maybeLost values
that we 'choose' to say VoIill be lost.

72	 CHAPTER 10. RAB

RabC/	 _

AbstraetBen.veen
chosenLost : lIP PayDecails

chosenLosr f;; maybeLosc

'rj name: dom conAuthPurse •

(abAuthPursename).lost =
sumValue«de{initelyLosc u chosenLost)

n {pd: PayDetaiis I pd.from ~ name))

t\ (abAuthPurse name).balance =

(con4.uthPurse name).balance
+ sumValue((maybeLosl \ chosenLost)

n {pd : PayDeraiis I pd.to ~ name I)

The predicate links the ':B and Jl values1:

For a purse name, its lost value is the sum of the values in all those trans­
aclions that are definitely lost or that we have chosen to assume lost with
name as the from purse. (Note the deliberate similarity of this definition
and that in BetwFinState.)

•	 The Jl balance of a purse is its '13 balance plus the value of all those trans­
actions we have chosen to assume will not be lost, with name as the to
purse. (For a give name, there is at most one such transaction.)

A consequence of this relationship is that the abstract lose and balance values
of a purse can depend on the corresponding values of more chan one concrete
purse.

10.1.2 Hiding chosenLosr

TherNrieve relatton is then RabCI \\1th the non-detcrminis[ic choice chosenLosr
hidden':

Rab ,; 3 chosenLosr : !P PayDerails • RabCl

We define the retrieve in this way because in the proof we need to have direct
access to chosenLost.

lIt is valid to apply sUTTItialul! in this predicate, because both de(tnitel:-'Lost and maybeLosr
are finite. de(tnlrelyLosr Is finite because of Bet\ll.'l!l!nWorld constraint B-13. may~Losr is finite
because folnEpv Is firute: each pd in the set comprebension for ro/nEpv comes from a dJstinct
purse in cortAurhPurse, whlch Itself is a finite function.

2We use th.ls form to s1mplify tbe general correerness proofs, secOOD 14.4.3,

73 10.1. RETRIEVE STATE

10.1.3 Exposing pdThis

In the proof, we find that we \\-ish to focus on a single pd (any pd). We define
a new schema, RabCIPd, identical to Rabel except for an extra declaration of a
pd.

RabClPd	 _

I RabCl
~Thjs: PayDerails

We split the predicate part of RabClPd into (\....0 cases that partition the possi­
bilities:

•	 'rj name: dam conAuthPurse I name r£ {pdThis.(rom, pdThis.ro}

purses not involved in the pdThis transaction.

•	 'rj name: dam conAurhPurse I name E {pdThis.(rom, pdThis.to}

purses involved in the pdThis transaction.

In all cases the purses other than the from and to purses retrieve their balance
and lost values in the same way, so we factor this part of the predicate out into
a separate schema, OtherPursesRab, which we include 'rvHh the remaining part
of the predicate.

OtherPursesRab	 _

AbstractBetween
chosenLost: iP PayDetails
pdThis : PayDetails

V name: dorn conAuthPurse I name ft {pdThis.from, pdThis.to} •

(abAuthPursename).lost ::=:

sumValue((de{initelyLost u chosenLostl
n { pd : PayDerails I pdfrom ~ name))

/\ (ahAuthPursename).balance::=:

(conAuthPurse name) .balance

+ sumValue((mayheLost \ chosenLostJ

n {pd: PayDerails I pd.ro ~ name})

We split RahClPd into four cases that partition the possibilities:

RabOkayCIPd: pdThis E mayheLost\ chosenLosr half way through a trans­
action that Will succeed. Since maybeLost refers only to authentic purses,

74	 CHAPTER 10. RAE

"ve know that {pdThis.{rom, pdThis.to} ~ dam conAuthPurse, and so the
remaining quantifier is reduced to these two cases.

RabWtllBeLostClPd: pdThis E chosenLost half way through a transaction
that will lose the value (the to purse has not yet aborted, but we choose
that it Will, rather than receive the val). Since chosenLosr ~ maybeLost
refers only to authentic purses, we know that {pdThis.{rom, pdThis.to} £;

darn conAurhPurse, and so the remaining quantifier is reduced TO these
{1\'O cases.

•	 RabHasBeenLostClPd: pdThis E de{initelyLost half way through a trans­
action that has lost the value (the to purse has already moved on). Since
de{initelyLost refers only to authentic purses, \\'e know that {pdThis.{rom,
pdThis.to] s;:: domconAuthPurse, and so the remaining quantifier is re­
duced to these two cases.

• RabEndClPd	 : pdThis $ definite/yLosr u maybeLosr At the beginnmg or
end of a transaction, so there is no non-determinism in the lost or balance
components. A general pdThis may refer ro non-authenric purses, so the
quantifier is reduced no further.

In the later proofs of operations that change purse status (Abort, Req, Val and
Ackl, we argue how the relevant I'd moves in and out of the sets maybeLost
and definitelyLost, and thereby choose the appropriate one of the four cases of
the retrieve to use before and after the operation.

We perform this split by systematically subrracring out the chosen I'd from
the lost and balance expressions. If the I'd was in fact in the relevant set, \ve
then have to add the subtracted value back in, othen\iise we do nothing, since
we have made no change to the expression.

RabOkayCiPd	 _

AbstractBetween
chosenLost : lP PayDetails
pdThis ; PayDetails

chosenLost c;: maybeLost

pdThis E maybeLost \ chosenLost

(abAuthPurse pdThis.from).balance =

(cOnA uthPurse pdThis .from). balance
+ sumValue(((maybeLost \ chosenLost)

n [pd: PayDeraiis I pd.ro ~ pdThls.(rom})
\{pdThls})

75 10.1. RETRIEVE STATE

(abAuthPurse pdThis.to).balance =

pdThis. value
+ (conAuthPurse pdThis.ro).balance
+ sumValue«(maybeLosr \ chosenLost)

n (pd: PayDetaiis I pd.to ~ pdThis.to})
\ (pdThisJ)

'if name: (pdThis.{rom, pdThis.to) •

(abAurhPurse name).losr =

surnValue« (de{inifelyLost u chosenLost)
n { pd : PayDetaiis I pd.{rom ~ name})
\ (pdThisj)

OtherPursesRab

In the Okay case, pdThis is not lost, so its value has to be added back into the
to purse's balance component.

RabWillBeLostCIPd _

AhstractBerween
chosenLosf : IP PayDetaifs
pdThis : PayDetails

chosenLosr £;; mayheLost

pdThis E chosenLosr

(abAuthPurse pdThis.{rom).lost ~

pdThis. value
+ sumValue(«definitelyLosr u chosenLosr)

n (pd: PayDetaiis I pd.{rom ~ pdThis.{rom})
\ (pdThis})

(abAuthPurse pdThis.to).lost ~

sumValue(«definirelyLost u chosenLost)
n (pd: PayDetaiis I pd.(rom ~ pdThis.to))
\ (pdThisJ)

'if name: {pdThis.{rom, pdThis.to} •

(abAurhPurse name).balance =

(conAurhPurse name) .balance

+ sumValue(«mayheLost \ chosenLost)
n (pd : PayDetaiis I pd. to ~ name})

76 CHAPTER 10. RAE

\ {pdThis) I

OtherPursesRab

In the WillBeLosf case, pdThis is chosen lost, so its value has to be added back
into the from purse's lost component

RabHasBeenLosrCIPd

IAbstraClB€eween
chosenLost : lP PayDetails
pdThis: PayDetai!s

chosenLosr <;::; maybeLosr

pdThis E definite/yLosf

(abAuthPursepdThis.{rom).fost ~

pdThis.value
+ sumValue«(definitelyLost u chosenLost)

n {pd: PayDefails i pd.(rom ~ pdThis.(rom})
\{pdThisJ)

(abAuthPurse pdThis.to).lost =

sumValue((defin.UelyLost u chosenLostl

n {pd: PayDerails I pd.(rom" pdThis.to))
\ {pdThis))

't name: {pdThis.(rom,pdThis.toj.

(abAurhPurse name),balance:=

(conAuthPurse name).ba/ance

+ sumValue«((maybeLosl \ chosenLost)

n (pd : PayDetails I pd fo ~ name J)

\ (pdThis})

OtherPursesRab

In the HasBeenLost case, pdThis is definitely lost, so its value has to be added
back into the from purse's lost component.

RabEndC1Pd _

iAbstracrBerween
chosenLosr : lP PayDerails

pdThis : PayDerails

10.1. RETRIEVE STA TE 7i

chosenLost ~ maybeLost

pdThis r£ definitelyLost u maybeLost

'r;j name: dorn conAuthPurse n {pdThis.(rom, pdThis.to} •

(abAuthPurse name) ,lost =

sumValue(«de{initelyLost u chosenLost)
n [pd: PayDetaiis I pd.(rom ~ name))
\ (pdThis))

A (abAuthPurse name).balance =

(conAuthPurse name) .balance

+ sumValue«(maybeLost \ chosenLost)

n {pd: PayDetails I pd.to ~ name))
\ {pdThis))

OtherPursesRab

In the End case, pdThis is in neither component, so its value does not have to
be added back in anY"o'here.

10.1.4 Partition

We have the identity3:

RabClPd
t-

RabCIPd =
(RabOkayClPd

v RabWillBeLostClPd

v RabHasBeenLostCIPd

v RabEndCLPd)

Proof:
The four cases differ in the predicate on pdThis, which together partition the
possibilities. It is obvious that the four cases cover the possibilities. We use
Lemma 'lost', which says that de{initelyLost and maybeLost are disjoint, to show
that the four cases are non-overlapping.

• 10.1.4

3Used in: Req check-operation, splltring into four cases, sectton 18.6.

78 CHAPTER 10. RAB

10.1.5 Quantified forms

Because the introduction of the pd in RabC1Pd is arbitrary, we have the folloWing
identities:

RabCI f- Rabel ¢> ('I pdThis : PayDetaiis • RabClPd)

and

Rabel f- RabCI ¢> (3 pdThis : PayDeraiis • RabClPd)

Proof:
That both these identities hold may seem odd, but can be intuitively understood
by looking at a similar, smaller example. Consider a non-empty subset of N
called X. Then it is certainly true that

3x: X • X ~ X \ [xl u [xl

and also

'I x: X • X ~ X \ {xl u [xl

• 10.1.5

We have just chosen to extract an arbitrary element from the set for special
naming. We do the same with Rabel, selecting an arbitrary pdThis for special
naming, but without changing the meaning of the schema. This means that we
can split up Rabel into a collection of four disjunctions on a pd in different
ways as the proof dictates4 .

10,1.6 The full Retrieve state relation

We also define versions of these schemas with the pdThis and chosenLost hid­
den (so they have the same Signature as Rab):

RabOkay '" RabOkayelPd \ (pdThis, chosenLost)

RabWillBeLost'" RabWiIIBeLostCIPd \ (pdThis. chosenLost)

RabHasBeenLost ~ RabHasBeenLostCIPd \ (pdThis, chosenLost)

RabEnd '" RabEndCIPd \ (pdThis, chosenLost)

4Used in; lemma 'delenninistic', exposing pdThis (twice), section 14.4.3.

79 10.2. RETRJEVEINPUTS

10.2 Retrieve inputs

Each .A operation has the same rype of input, an AlN. Each 'B operation has
the same t,)-'Pe of input, a NAME and a MESSAGE. The input part of the retrieve
captures the relationship between these .A and 'B inputs.

Rabin;;; Betwlnitln[a?! g7J

The B inputs are related to .A inputs in the following manner:

Rl-l Req: the .A transfer details are in the req

Rl-2 All other 'B inputs: the .A input is al\;'ulUn.

10.3 Retrieve outputs

The output retrieve is particularly simple: all 'B outputs retrieve to the single
.A output.

RabOut ;;; BetwFinOut[a!! g!]

Chapter 11

.Jl to 'B initialisation proof

11.1 Proof obligations

The requirement is to prove that the between initial state correctly refines the
abstract initial state, and the between inputs correctly refine the abstract inputs.
That is,

BetweenlnitState; Rab' J- AblnitState

BetwlnitIn; RahIn J- AhlnirIn

11.2 Proof of initial state

We successively thin the hypothesis to expose the consequent.

BetweenWorldIniC 1\ Rab' IhypJ
~ Rab' (thin]

=> AbWorld' [thin]

~ AblnitState [defn AblnitStare]

.11.2

11.3 Proof of initial inputs

Expand Rabin and AblniUn.

BetwlnitIn; Betwlnitln[a7/g?] J- a? = g7

82 CHAPTER 11. A TO'B INITIWSATION

Betwlnitln defines g7 as a total function of (m?, name?); call H {. Thin.

g',a?: NN I 3(: MESSAGE x NAME - NN.

'<I m : MESSAGE; n: NAME •

g7 ~ ((m, n) A a? = ((m, n)

l-- a? = 97

Simplify and thin.

g?, a? : AlN I g7 = a? f- a? = g7

.11.3

.11

Chapter 12

.J\. to 13 finalisation proof

12.1 Proof obligations

The requirement is to prove that the between final state correctly refines the ab­
stract final state, and the between outputs correctly refine the abstract outputs.
That is,

Bel1YFinOut I- 3 a! : AOUT • RabOut /\ AbFinOut

BetlYFinState I- 3 AbWorld • Rab /\ AbFinState

This proof obligation is summarised in figure 12.1.

cho.fenW.~1 = maYbeL(lst~ A

cho.JenW.\'/ = 0 ~~ ~ ?' "' "" AFin
\ \ I "

\ \ I "

\ \ I Rab
\'."I

'" BFin

B

Figure 12.1: Backwards rules finalisation proof obligation

12.2 Output proof

Expand RabOur and AbFinOur.

84	 CHAPTER 12. .Jl TO 'B FlNAUSA nON

BetwFinOur I- 3 al : AOUT • BetwFinOur[a!/ gl] 1\ a! = g!

lone point} a\\iay the a! in the consequent

Befl.YFinOut I- BetwFinOut[gl/ g! I

.12.2

12.3 State proof

We leut] in all AbWorld, and put it equal to the GlobafWor/d.

BerwFinSrQfe; AbWorfd I abAurhPurse = gAurhPurse
f­

3 AbWorld • Rab /\ AbFinSrare

Cutting in this new hypothesis requires us to discharge a side-lemma about the
existence of such an AbWorld. This is triVial to do, by the [one point! rule.

We use {consq exists] to remove the existential quantifier in the consequent,
by using the value just cut in:

Bef1.vFinSrate; AbWorld I abAuthPurse = gAuthPurse
f-

Rab /\ AbFinState

Wcprov(' each of the conjuncts in the consequent separately (consq con)], drop­
ping unneeded hypotheses as appropriate rrhinl.

12.3.1 Case AhFinState

BetwFinState; AbWorld I abAuthPurse =:: gAu.thPurse I- AbFinState

The predicates in AbFinState occur in the hypothesis, so are satisfied triVially.
• 12.3.1

12.3.2 Case Rob

We	 expand out Rab into its conjuncts:

BerwFinState; AbWorld I abAuthPurse = gAuthPurse I- Rab

85 12.3. STATE PROOF

Retrieve of equality

We have the equation

dam abAuthPurse = dam conAurhPurse

which can be sho',vn from the equality of gAurhPurse and conAuthPurse in BEn­
State, and between gAutllPurse and abAuthPurse in the hypothesis.

SimilarlY, in each case the pan of the retrieve to be proven has an equality
between the abstract and concrNe. We show this holds from an equality in

that component between global and concrete in Bern'FinState, and and ('quality
between global and abstract in the hypothesis .

• 12.3.2

Case Rab

BetwFinState; AbWorld I abAurhPurse = gAuthPurse f-- Rab

Expanding BetwFinState, thinning unwanted predicates, substituting for global,
and expanding Rab, we get:

AuxWorld; AbWorld I
V name: dam conAuthPurse •

(abAuthPurse name).lost =

sumValue((definirelyLos(u maybeLost)
n { pd : PayDeraiis I pd.(rom ~ name))

f\ (abAurhPurse name),baJance = (conAuthPurse name).ba/ance
I­

3 chosenLosr : [j) maybeLost •
V name: dam conAuchPurse.

(abAuthPurse name).lost :=

sumValue((defiHitelyLost u chosenLost)
n {pd : PayDetalis I pd.(rom ~ name))

/\ (abAuthPurse name).balance "'"
(conAuthPurse name).balance
+ sumVa!ue«maybeLost \ chosenLost)

n (pd: PayDeraiis I pd.ro ~ name I)

We [one potnt] away the chosenLosr in the consequent by putting it equal to
maybeLosr (haVing [curlin such a value and proved it exists). We also simplify

86 CHAPTER 12. .A TO B FINAUSATION

the equations, now that maybeLost \ chosenLost is empty:

AuxWor/d; AbWarld; chosenLost: IF PayDerails I
chosenLosr = maybeLost
!\ ('rt name: dom conAuthPurse.

(abAuthPurse name).lost =

sumValue((de{jnitelyLost u maybeLost)
n {pd: PayDerails I' pd.{rom = name})

!\ (abAuchPurse name) .balance
= (conAurhPurse name).baJance)

r
'r;j name: dam conAurhPurse •

(abAuthPurse name).1osr =

sumValue({definitelyLost u maybeLost)

n [pd : PayDetaiis I pd.from ~ name I)

!\ (abAuthPursename).balance = (conAurhPurse name).balance

The consequent also appears as an hypothesis, so the proof is complete.
• 12.3.2
• 12.3.2

• 12.3

• 12

Chapter 13

.Jt to 13 applicability proofs

13.1 Proof obligation

In section 9.2.3 we showed that it is sufficient to prove totality of the concrete
operations.

13.2 Proof

Totality for each between operation was sho,""ll in the specification consistency
proofs, secrion 8.3.2 .

• 13

Chapter 14

Lemmas for the j\ to B correctness
proofs

14.1 Introduction

The correctness proof obligation, to be discharged for each abstract operation
AOp, where AOp !; BOpFull BOPI v BOP2 V ... is the corresponding refine­0:

ment, is:

BOpFal/; Rab'; RabOat f- 3 AbWorld; a?; AlN • Rab A RabIn A AOp

This proof obligation is summarised in figure 14.1. There are multiple lower
paths both because the concrete operation is non-deterministic, and because
the retrieve is non-deterministic. For each lower path triple of (B,B',A'), we
have [0 find an A that ensures the existence of an upper path; it does not have
to be the same A in each case.

There are various classes of 'B operation depending on ,.,.,Weh.Jl operation
is being refined. There are commonalities in the proof strucnrres for these
classes. This chapter develops general mechanisms and lenunas to facilitate
proving most operations. This fits into the follovving main areas

lemma 'multiple refinement'; When the 'B operation that refines an .Jt
operation in a disjunction of several individual B operations, the proof
obligation can be split into one for each indi\.idual B operation.

• lerruna 'ignore': The ignore branch, and any 'abort' branch, of each 'B op­
eration need be proved once only.

lemma 'deterministic': A simplification of all correctness proofs, by ex­
posing the non-determinism in the retrieve, ro the three cases exists-pd,
exists-chosenLost, and check-operation (with the introduction of two ar­

90 CHAPTER 14. 5t TO'B LEMMAS

B: m? /lam!'?
BOplgl1or.,

"'

Figure 14.1: The correctness proof. The hypothesis is the existence all of the
lower (solid) paths. The proof obligation is to demonstrate the existence of an
upper (dashed) path in each case.

bitrary predicates 'P and,Q, instantiated differently depending on the par­
ticular operation).

• lemma 'lost unchanged': Where maybeLost and definite/yLosr are uncha­
nged, the exists-pd and exists-cbosenLost obligations can he automati­
cally discharged.

• lemma 'AbIgnore': A further simplification of the check-operation proof
obligation, for the operations that refine Ablgnore, to check-operation­
ignore.

proof that concrete Ignore refines Ablgnore

proof that concrete Abort Tefinl'S AbIgnore

lemma 'abort baclG\'ard': For an operation expressed as Abon composed
with a simpler version of the operation, we need prove only that the sim­
pler operation is a refinement

The lemmas developed in this chapter are collected together in Appendix C for
case of reference.

14.2 Lemma 'multiple refinement'

In most cases of AOp, the corresponding BOpFuIl is a disjunction of many
individual 'B operations, BOp} v BOP2 v ... whose differences are invisible
abstractly. For example, Ablgnore is refined by a disjunction of several separate
operations.

We use the inference rule [hyp diS)1 to split these large disjunctions into
separate proof obligations for each of the 'B operations.

91 14.3. LEMMA 'lGNORE': SEPARATING mE BRANCHES

14.3 Lemma 'ignore': separating the branches

Each between operation BOp is promoted from BOpPurseOkay, disjoined With
Ignore, and sometimes V\'ith Abort. Call the first disjunction BOpOkay:

BOpOkay ~ 3 C:!.ConPurse. ¢BOp /\ BOpPurseOkay

We use the inference rule [11ypdisj], to split the correctness proof into m'o (or
three) parts, one for each disjunct, each of which must be proved.

Abort; Rab'; RabOut I- 3 AbWorld; a?: AlN • Rab 1\ RabIn 1\ AOp

Ignore; Rab'; RabOut I- 3 AbWorld; a?: AlN • Rab /\ RabIn 1\ AOp

BOpOkay: Rab': RabOut e 3 AbWorld: a?: AIN • Rab A Rabln A AOp

All the abstract operations include an option of failing (equivalent to the con­
crete Ignore), which results in no change to the abstract state. We can therefore
strengthen the conclusion of the Ignore and Abort theorems and prove

Ignore; Rab'; RabOut I- 3 AbWorld; a7: AlN • Rab 1\ RabIn 1\ AbIgnore

Abort; Rab'; RabOut I- 3 AbWorld; a?: AlN • Rab 1\ RabIn 1\ AbIgnore

These are independent of the particular operation AOp. Thus we need prove
these theorems only once (which we do in sections 14.7 and 14.8). To prove
the correctness of BOp we need additionally to prove the remaining BOpOkay
theorem.

14.4 Lemma 'deterministic': simplifying the Okay branch

The Okay branch of the correctness proof is, in general,

BOpOkay; Rab': RabOut f- 3 AbWorld: a?: AJ]V. Rab A Rabln A AOp

[n order to find an AbWorld that is appropriate, we expose the non-determinism
in the retrieve. The non-determinism occurs in the Rab branch of the retrieve
in terms of uncertainty about which transactions still in process will terminate
successfully, and which will terminate with a lost value.

We also expose the transaction that is currently in progress, to make it
available to the proof.

92 CHAPTER 14. A TO'B LEMMAS

14.4.1 Choosing an input

We choose a value of a? that is consistent with RahIn. Since RabIn is functional
from m? and name? to a?, we know this choice of a? is uniquely determined.
We (run this value for a? into the hypothesis, and remO\-e the quantifier on a?

by the [consq exists] rule.
We note that RabIn in the consequent is independent of the choice of

AbWorld, so can be puHcd out of that quantifier.

BOpOkay; RabOuf; Rab'; a?: AIN I RabIn
e
RabIn A (3 AbWoy[d • Rab A. AOp)

We split the proof into two on the conjunction in the consequent Iconsq conjj,
one for RabIn, one for 3 AbWorld • Rab 1\ AOp.

RabIn is trivially satisfied by trus choice of a? in the hypothesis.
The declaration of a? in RabIn allows us to drop the explicit declaration

in the hypothesis, giving

BOpOkay; RabOuf; Rab'; RabIn>- 3 AbWoy/d • Rab A AOp

14.4.2 Cutting in ~ConPurse

It helps to work with the unpromoled fonn of the operation. \Ve do this
by expanding BOpOkay, according to its promoted definition, And [cut]ting
6ConPurse into the hypothesis such 'hat BOpPurseOkay and 4>BOp hold. (The
Side-lemma is satisfied from the expanded definition of BOpOkay in the hy­
pothesis; which states that such a 6ConPurse exists.)

(3 6ConPurse. ¢BOp 1\ BOpPurseOkay);
RabOut; Rab'; RabIn; 6ConPurse I

¢'BOp 1\ BOpPurseOkay

>­
3 AbWorld • Rab 1\ AOp

We rearrange the hypothesis, moving ¢BOp and BOpPurseOkay from the pred·
icate part to the declaration part. Slnce 4>BOp declares 6ConPurse, we remoVe
the latter. We Ithin] the hypothesis of the expanded definition of BOpOkay.

4>BOp; BOpPuyseOkay; RabOuf; Rab'; RabIn>- 3 AbWoy/d. Rab A AOp

93 14.4. LEMMA 'DETERMINISTIC': SIMPUFYlNG THE OKA Y BRANCH

14.4.3 Exposing chosenLost and pdThis

We need to make some of the internal components Visible to the proof to enable
us to break the proof into sections.

We replace Rab' with the quantified form of Rabel' (section 10.1.2), gi'ving

/PBOp; BOpPurseOkay; RabOut;

(3 chosenLost' : IP PayDerails • Rabel'); RabIn

f­

3 AbWorld • Rab A AOp

We now usc [hyp exists} to remove the quantification, giving us

/PBOp; BOpPurseOkay; RabOut; RabCI'; RabIn
f­

3 AbWor/d • Rab A AOp

Next, we [cut] in a declaration of an arbitrary payment detail pdThis. In practice,
this is the Vd for the payment being processed by BOpOkay, but in this general
manipulation we don't have enough infonnation to specify this. We therefore
constrain the pdThis with some arbitrary predicate T.

This generates a non-trivial lemma, exists-pd, to be proved in etlch spectfic
case, as

/PBOp; BOpPurseOkay; RabOut; RabCI'; RabIn
f­

3 pdThis : PayDetails • 'P

and leaves our proof obligation as

/PBOp; BOpPurseOkay; RabOut; RabCI'; RabIn; pdThis: PayDelails I
'P

f­

3 AbWorld • Rab A AOp

In the hypothesis we rewrite Rabel' as the universally quantified form of Rab­
ClPd' (section 10.1.5).

/PBOp; BOpPurseOkay; RabOut;
('<t pdTh/s' : PayDetaiis • RabC/Pd');
RabIn; pdThis: PayDetails I

'P

f­

3 AbWorld • Rab A AOp

94 CHAPTER 14. A TO'B LEMMAS

Rather than hypothesising this is true for all pdThis's, we choose a particular
value in the quantification. (This is valid. [hyp um], because assuming it true
for only a particular value is weaker than assuming it is true for all values.) The
value we choose for pdThis' is that of the value pdThis. This substitutes the
value pdThis [or pdThis' in the Rab' schema. This gives

~BOp; BOpPurseOkay; RabOu'; RabCIPd'[pdThis(pdThis']; RabIn;
pdThis: PayDetails I

'P
f­

3AbWorld • Rab A AOp

The declaration in RabC1Pd' allows us to drop the explicit declaration of pdThis.
So we rcmite this more simply as

~BOp; BOpPurseOkay; RabOut; RabCIPd'[pd7his/pdThis']; RabIn I
'P

f­

3 AbWorld • Rab A AOp

In the consequent we do a similar thing: expose chosenLost, and reMite Rab
as the eXistennally quantified form of RabCfPd (section 10.1.5)

4>BOp; BOpPurseOka)'; RabOut; RabClPd'[pdThis/pdThis']; RabIn I
'P

f­

3 AbWor/d.
(3 chosenLost : [pi PayDetails; pd : PayDerails

• RabCIPd[pd/pdThts])

1\ AOp

We strengthen the consequent by adding the requirement that the value of pd
claimed to ex1st on the right hand side is actually equal to the value pdThis
declared on the left hand side. Similarly, We constrain chosenLost sufficiently.
This we do by adding one requirement we always need (namely, that chosenLost
&; maybeLosr), and one arbitrary predicate.Q, as we did \\lith pdThis. This pred­
icate is instantIated to some specific predicate each time this general manipu­
lation is invoked.

4>BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn I
'P

I­

95 14.4. LEMMA 'DETERMJNISTlC':SlMPUF17NGTHEOKAY BRANCH

3 AbWorld.
(3 chosenLost : IP' PayDetails; pd; PayDetails •

pd ~ pdThis A Q

A chosenLost £;; maybeLost

A RabClPd[pdjpdThis])

A AOp

We can remove the pd in the consequent with the lone point] rule, because we
have an explicit value for it (namely, pdThis).

"'BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThisjpdThis']; RabIn I
l'

~

3 AbWorld •
(3 chosenLosr : IP' PayDetails •

e 1\ chosenLost £; maybeLost

A RabCIPd)

1\ AOp

We [curl into the hypothesis a chosenLost with the same properties as it has
in the consequent (that is, the predicate .Q A chosenLost ~ maybeLost). This
generates a side lemma that such a value exists, exists-chosenLost, which must
be discharged in each specific case, as

"'BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThisjpdThis']; RabIn I

l'
~

3 chosenLosr : IP' PayDetails • .Q 1\ chosenLost ~ maybeLosr

TIlls leaves:

"'BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThisjpdThis']; RabIn;
chosenLosr : lP' PayDetails I

'P /\ Q 1\ chosenLosr £; maybeLost
~

3 .4bWorld.
(3 chosenLost : lP' PayDetails •

Q /\ chosenLost £; maybeLost

A RabCIPd)

/\ .40p

96 CH4PTER 14, J\ TO 'B LEMMAS

We remove the existential quantification using the [consq exists] for c1lOsenLost

~BOp; BOpl'lmeOkay; RabOut; RabCIPd' [pdT/lis / pdThis']; RabIn;
chosenLost : [P PayDetails I

'P 1\ .Q 1\ choserzLost £;; maybeLost

f ­

lAbWorld • RabC1Pd A AOp

We break this into two parts, separaUng the m'D rClrl('ves in the consequent
from AOp. We then prove each part.

Cut in AbWorld such that RabClPd holds. This creates a side lemma to
prove that such an AbWorld exists, consisting of just the retrieve. (This is
dischargl'd in section 14.4.4.)

We arc left with

~BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThis/pdThis'];
AbWorld; RabCIPd; RabIn; chosenLosf: [P PayDetails I

'P 1\ .Q 1\ chosenLost £; maybeLost
f ­

RabC1Pd A AOp

We discharge the retrieves in the consequent directly from the hypothesis, and
remove chosenLoSl and chosenLost £ maybeLos{ as these already occur in Rab­
CIPd, leaVing

<PBOp; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis'];

AbWorld; RabClPd; RabIn I

TAQ
f ­

AOp

• 14.4.3

14.4.4 The existence of AbWorld

We have to prove the side condition generated when we cut in an AbWorld
(above),

il>BOp; BOpPurseOkay; RabOut; RabCIPd'[pdThis/pdTl1is']; RabIn;
chosenLost: [P PayDetails I

'P /\ .Q 1\ chosenLost £; maybeLost

f ­

3 AbWorld • RabCIPd

97 14.5. LEMMA 'LOST UNCHANGED'

We can prove this by invoking lemma 'AbWorldUnique' (section C.IS), provided
we can show that the constraints of the hypothesis of that lemma hold.

Certainly we have Betv.'eenWorJd (from ~BOp), a pdThis and a chosenLosr
such that the constraint chosenLosr £ maybeLost holds. This is sufficient (I)

invoke the lemma.
• 14.4.4

14.4.5 Statement of lemma 'deterministic'

We summarise the results that section 14.4 has developed as a lemma.

Lemma 14.1 (deterministic) The correctness proof for a general Okay branch

consists of the follo¥.wg three proof obligations:

exists-pd:

<l>BOp; BOpPurseOkay; RabOur; Rabel'; RabIn
I~

3 pdThis : PayDetails • T

exists-chosenLost:

<l>BOp; BOpPurseOkay; RabOur; RabClPd'[pdThls/pdThls'); RabIn I
T

I ­

3 chosenLost : IP PayDetails • Q. i\ chosenLosr 5; rnaybeLost

check-operation:

<l>BOp; BOpPurseOkay; RabOur; RabClPd' [pdThis / pdThis'];

AbWorld; RabClPd; RabIn I

TA~

I ­

AOp

•
.14.4

14.5 Lemma 'lost unchanged'

Many operations do not change maybeLosf or definirelyLost. We call a general
such operation BOp3Losr.

98 CHAPTER i4. .Jl. TO 'B LEMMAS

Lemma 14.2 (lost unchanged) For BOpELosC operations, where maybeLosc 0:

maybeLost' and definitefyLosr' == definitelyIosr, the. proof obllgations exists-pd
and exists-<:hosenLost are satisfied automatically by the instantiation of the
predicates 'P and Q as:

'P ¢=:> true

Q ¢=:> chosenLost == chosenLosc'

lea\ing the remaining check-operation proof obligation as

~BOp; BOp2LosrPurseOkay; RabOur; RabCIPd'[pdThis/ pdThis'];
AbWorld; RabCWd; Rabin]

chosenLosr chosenLost'0:=

/\ maybeLost == rnaybeLost'
/\ defil1iCelyLosr' == definitelyIost

~

AOp

•
14.5.1 Proof

We add the hypotheses maybeLosr == maybeLost' and definfrelyLost' = de­
{initelyLosl to the proof obligations for these BOpSLosr operations.

exists-pd

<l>BOp; BOpSLosrPurseOkay; RabOut; RabCl'; Rabin I
maybeLosr' == maybeLost
1\ definitely'Lost' "" definirelyLos(

~

3 pdThis; PClyDecaifs • true

This is trivially true.
• 14.5.1

exists-chosenLost

<I> BOp; BOp:'LosrPurseOkay; RabOur; RabCIPd' [pdThis /pdThis'];
Rabin I
mClybeLosr' = mCl}'beLosc
1\ de(inirelyLosc' = de(inirelyLosc

~

14.6. LEMMA 'ABIGNORE ': OPERA 110NS iliA T REFINE ABIGNORE 99

3 chosenLosc : IP PayDetaiIs •

chosenLost = chosenLost' 1\ chosenLost s; maybeLost

We apply the [one point] rule to remove the existential quantifier in the conse­
quent, substitute for maybeLost, and [thin].

RabC1Pd'[pdThis/pdThis'] I- chosenLost' s; maybeLost'

The hypothesis RabC1Pd'[pdThisjpdThis'] has chosenLost' s; maybeLost',
.14.5.1
.14.5

14.5.2 Sufficient conditions for invoking lenuna 'iosl unchanged'

Since <"PEOp gives us thai archive is unchanged, sufficient conditions for invok­
ing lemma 'los1unchanged' are thaI the operation in question changes neither
the purse's status (hence no movement into or out of epv or epa) nor its excep­
tion log (hence no change 10 from logs or to logs).

14.6 Lemma 'AbIgnore': Operations thaI refine AbIgnore

As sho\'.'n in section 14.2, 10 prove Ihe refinement of Ihe abslracl idenlity op­
era lion AbIgnore, we can separalely prove correctness for each of Ihe between
operalions SrarlFrom, Stm1To, Val, Ack, ReadExcepcionLog, ClearExceptionLog,
AuthoriseExLogClear, Archive, Ignore, Increase, and Abort.

For those which are structured as promoted operalions (that is, all except
Archive and Ignore), consider a general such operation, call it BOpIg. We note
(hat all BOpig operations have the properties:

• BOpig is a promoted operation, and thus alters only one concrete purse.
II has the form

3 D.ConPurse • 4>BOp 1\ BOpIgPurse

• for any	 purse, the name is unchanged (by definilion of the single purse
operations)

• the domain of conAuthPurse is unchanged (by construction of the promo­
lion)

• for any purse, either nextSeqNo is unchanged, or increased.

V BOpIgPurse. nexcSeqNo s: nexlSeqNo'

100 CHAPTER 14. -'1. TOB LEMMAS

We use !hese properties to .simplify the proof obligalion for the BOpIg opera­
lions.

We invoke lemma 'det£'rministic' (section 14.4) to reduce the BOpIg proof
obligation to exists-pd, exists-cbosenLost and check-operation:

~BOp; BOpIgPurse; RabOue; RabClPd'[pdThisjpdThis'];

AbWorld; RabClPd; RabIn i

TAQ

" AbIgnore

Lemma 14.3 (Ablgnore) For a BOpJg operation, the check-operation proof obli­
gation reduces to check-operation-ignore1:

~BOp; BOpIgPurse; RabCIPd'[pdThisjpdThis']; AbWorld; RabClPd I

TAQ
f ­

'rj n : dam abAuthPurse •

(abAurhPurse' n).lost ~ (abAuthPursen).lost

1\ (abAuthPurse' n).balance = (abAuthPursen).balance

•
Proof:

We take the check-operation proof obligation, and expand Ablgnore. The
BOpIgPurse operations have cerlain properties in common; we explicitly state
these in the hypothesis.

<l>BOp; BOpIgPurse; RabOue; RabCIPd' [pdThis j pdThis'];

AbWorld; RabClPd; RabIn I

'PAQ
1\ name' = name
1\ nextSeqNo' ?: nextSeqNo

f-

AbOp 1\ abAuthPur-se' = abAuthPurse

We use [consq conjl to split this proof into two parts. The AbOp part is trivial:
there are no constraints. This leaves the other conjunct to be proven, which is

I Used in; Ignore, 14.7.2.

rewritten as follows:

<l>BOp; BOplgPurse; RabOut; RabC1Pd'[pdThislpdThis'];

AbWorld; RabClPd; Rabin I

'PAQ
1\ name' = name
1\ nextSeqNo' 2: nextSeqNo

f-

V n: domabAuthPurse. abAuthPurse' n = abAwhPursen

We prove this component by component. From <PROp in the hypothesis, all
concrete purses other than purse name? remain unchanged. For the purse
name?, we also have the equality of the pre and post states of name. This leaves
the components balanace and lost. We use thisith (consq corul to reduce our
proof requirement to the following:

<l>BOI'; BOpIgPurse; RabOut; RabClPd' [pdThis I pdThis'];

AbWorld; RabClPd; Rabin I

'PAQ
1\ name' = name
j\ nextSeqNo' 2:: nexcSeqNo

f-

V n : dam abAuchPurse •

(abAuthPurse' n).balance = (abAuthPurse n).balance

j\ (abAuthPurse' n).lost = (abAuthPursen).lost

We then [thin] the hypothesis to get the following, which proves the Ablgnore
lemma.

<l>BOp; BOpIgPurse; RabClPd'[pdThislpdThis']; AbWorld; RabClPd I

'PAQ
f-

V n: domabAuchPurse.

(abAuthPurse' n).balance = (abAuthPurse n).bafance

j\ (abAuthPurse' n).losC = (abAurhPursen).lost

.14,6

14.7 Ignore refines AbIgnore

As we saw at the end of section 14.3, by splitting up promoted operations, we
have generated a requirement to prove the correctness of the Ignore branch
once only. We do that here.

102 CHAPTER 14. j\ TO 11 LEMMAS

14.7.1 Invoking lemma 'detenninistic'

Lemma 'deterministic' (section 14.4.5) carmol be applied as-is, because Ignore
is not \\Titlen as a promotion (in order to ensure it is total). Hmvever, the argu­
ments to split the proof obligation into three parts follow in exactly the same
manner even if the unpromotcd purse is not exposed. The proof obligations
simply have BOpOkay in the hypothesis, instead of lflBOp; BOpPurseOkay. We
use Ihat form to simplify the Ignore proof obligation to three parts, and then in­
vokelemma 'lost unchanged' to discharge the first two obligations. We similarly
use lemma 'AbIgnore' to simplify the third proof obligation to check-operation­
ignore.

14.7.2 check-operation-ignore

Ignore; RabCIPd'[pdThis/pdThis-]; AbWorld; RabClPd I

chosenLost = chosenLost'

1\ maybeLost = maybeLost'

1\ definite/yLost = definitelyLost'

r
'r:/ n: dom abAuthPurse.

(abAuthPurse' n).balance == (abAuthPurse n).ba/ance

1\ (abAurhPurse' n).1osf = (abAllfhPursen)./ost

The proof of this is immediate: Ignore changes no values, definilelyLost, maybe­
Lose and chosenLosf do not change, from the hY'Pothesis; so the abstraCl balance
and lost, which depend only on these unchanging values, are unchanged.

• 14.7.'2

.14.7

14.8 Abort refines AbIgnore

As we saw at the end of section 14.3, by splitting up promoted operations, we
have generated a requirement to prove the correctness of the Abort branch
once onJy. We do that here. We cast it as a lemma, because we also use it to
simplify the proofs of operations that first abort (lemma 'abort backward').

Lemma 14.4 (Abort refines Ablgnore) Concrete Abort refines abstract Ignore. 2

Abort; Rab'; RabOur r 3 AbWorld; a?: AlN • Rab /\ RabIn 1\ AbIgnore

•
2Used in proof of lemma abort, 14.9

103 14.8. ABORT REFINES AB1GNORE

Proof:
Abort is written as a disjunction between Ignore and a promoted Abon­

PurseOkay. We use lemma 'ignore' (section 14.3) to simplify the proof obliga­
tion to the correctness of Ignore (which we discharge in section 14.7), and the
Okay branch, which we prove here.

14.8.1 Invoking lenuna 'deterministic'

We use lemma 'deterministic' (section 14.4.5) to simplify the proof obligations
and then lemma 'AbIgnore' (section 14.6) to simplify the check·operation step.

We have to instantiate the predicates P and Q.
'P is a predicate identifying the pdThis involved in the transaction. This is

the pdAuth stored in the aborting purse, unless the aborting purse is in eaFrom,
in which case we don't have a defined transaction. We cater for the case of no
transaction in the .Q predicate, so P can safely be defined as

'P <'> pdThis ~ pdAuth

Q is a predicate on chosenLosr. The af[er set chosenLost' either has pdThis
removed (if the transaction moves it from chosenLost to de{inicelyLost), or is
unchanged (because pdThis was not in chosenLosr to stan with) or is unchanged
because there was no transaction to abort. Hence

12<'>
(pdThis E maybeLost 1\ chosenLosr = chosenLost' u {pdThis)}
v (pdThis ff maybeLost 1\ status *- eaFrom 1\

chosenLosc = chosenLosc')
v (status = eaFrom 1\ chosenLost = chosenLosr')

14.8.2 exists-pd

The unpromoted operation AbortPurseOkay is incomplete. The output, m! = .i,

is not provided until promotion.

4>BOp; AbortPurseOkay; RabOut; Rabel'; Rabin I m' ~ ~

f­

3 pdThis: PayDetaiis • pdThis ~ pdAUlh

This is immediate by the one point rule.
• 14.8.2

104 CHAPTER 14. J\ TO 'B LEMMAS

14.8.3 Three cases

We spIlt the remaining two proofs, of eJdsts-chosenLost and check-operation,
into three cases each, for each of the three disjuncts of Q. We staTt by arguing
the behaViour of maybeLost and de{initelyLost in the three cases.

•	 Case 1: aborted transaction in 'limbo': The aborting purse is the to purse
in epv; the corresponding from purse is in epa or has logged. Hence abort­
ing the transaction ""'ill definitely lose the value.

pdThis E maybeLost

case 2: aborted transaction not in 'limbo': The aborting purse is not
the (0 purse in epv, or the corresponding from purse is not in epa and
has not logged. The transaction has either not got far enough (Q lose
anything, or has progressed sufficiently far that the value was already
eirher successfully transferred or definitely lost.

pdThis fi maybeLosf /\ status '* eaFrom

• Case 3: no transaction to abort: The aborting purse is in eaFrom, so has
no defined transaction. Nothing is aborted, so no value is lost.

status == eaFrom

Case 1: old transaction in limbo

pdThis E «(romlnEpa U (romLoggedJ n rolnEpv

We argue about the behaViour of maybeLost and de{initefyLost using the fac!
that the purse is the to purse initially in epv in the aborting transaction, and it
logs the old transaction and moves to eaFrom. We argue that the transaction
pdThis, initially in maybeLost by conslruction, is moved into de{initelyLosr' by
this case of the Abort operation. The transacHon was far enough progressed
that value may be lost, and it is lost in this case.

Behaviour of fromInEpa and fromLogged pdThis is in tolnEpv (by our case
assumption), so the only purse undergoing any change (name?) is the to purse;
hence there can be no change to the sta£us or logs of any from pmse. Hence

(rornlnEpa ~ (rornlnEpa'

(romLogged ~ (romLogged'

14.8. ABORT REFINES ABIGNORE lOS

Behaviour of tolnEpv pdThis is in wInEpv (by our case assumption); pdThis
is not in [oInEpv' (Abort puts the purse into eaFrom); all other purses and
transactions remain unchanged. So

roInEpv = tolnEpv' u {pdThis}

Behaviour of [oLagged pdThis is not in toLagged (using lemma 'notLoggcd­
AndIn' 't\-1th pdThis E toInEpv); pdThis is in (oIagged' (the purse makes a to log
when it aborts from epv); all other purses and transactions remain unchanged.
So

toLogged ~ roLogged' \ (pdThis)

Behaviour of definite/yIost

definHeJyLost

~ toLogged n (fromLogged U (romInEpa) [defn definite/yLost)

~ (toLogged' \ (pdThis}) n ((romLogged' u (romInEpd) [abovel

~ (roLogged' n ((romLogged' u (romInEpa')) \ (pdThis) [rearrange)

~ definiteIyLosr' \ (pdThis) [defn definite/yLDSt']

Behaviour of maybeLost

maybeLost

~ ((romInEpa u (romLogged) n tolnEpv [defn maybeLosrl

~ ((romInEpa' u (romLogged') n (tolnEpv' u (pdThis) [above]

~ «fromInEpd u (romLogged') n tolnEpv')
u (((romInEpd u (romLogged') n (pdThisJ) [Spivey]

~ (((romInEpd u (romLogged') n tolnEpv')
u (pdThis) {case asswnption]

~ maybeLosr' u (pdThis) [defn maybeLost')

Case 2: old lransaction not in limbo

pdThis q: (fromInEpa u fromLogged) 11 toInEpv /\ status *- eaFrom

We argue that the transaction pdThis is not moved into or out of maybeLost or
de(initelyLost by this case of the Abort operation.

106	 CHAPTER 14. .;ll TO 'B LEMMAS

Behaviour of {romInEpa u (romLogged If pdThis is in fromInEpa it is also in
{romLogged' (the purse is in epa, so it makes a (rom log when it aboTts); if
pdThiJ is in fromLogged it is also in (romLogged' (logs cannot be removed); if
pdThis is not in (romlnEpa U fromLogged i(is not in (romLogged' (the purse is
not in epa, so does not make a (rom log when it aborts), and not in (romlnEpa'
(because it ends in eaFrom); all the other purses and transactions remain un­
changed. So

{romInEpa u {romLogged ~ (romInEpa' u {romLogged'

Behaviour of de(initelyLost The cases allowed by our case assumption are:

• pdThis refers to the to purse in epv, hence is not in

(romInEpa u (romLogged

and hence not in de(1nirelyLost.

Also it is not in (romlnEpa' u fromLogged', and hence not in defjnitefyLost'.
So dennitdyLost is unchanged.

• pdThis refers to the to purse, but not in epv, or pdThis refers (Q the from
purse, Hence toLogged is unchanged, since no to log is written, and logs
cannot be lost.
Also frornInEpa u (romLogged is unchanged, and so de{tnitelyLost is un­
changed,

So

defjnitelyLost' = definitelyLost

Behaviour of maybeLost The cases allowed by our case aS5umplion are:

•	 pdThis refers w the ro purse in epv, hence is not in

(romInEpa u (romLogged

and hence not in maybeLosl. Also it is not in fromlnEpa' u (romLogged',
and hence not in maybeLost', so maybeLost is unchanged.

•	 pdThis refers to the to purse, but not in epv, or pdThis refers to the from
purse. Hence tolnEpv is unchanged, since no purse moves out of or in
to epv. Also fromInEpa u fromLogged is unchanged, so maybeLost is un­
changed,

107 14.8. ABORT REFINESAB1GNORE

So

maybeLost' = mayheLost

Case 3: no transaction to abort

status = eaFrom

From AbonPurseOkay, no purses change state and no logs are written. There­
fore, de{initelyLost and maybeLost don't change.

de{initelyLost' = de{initelyLost

maybeLost' = maybeLost

14.8.4 exists-chosenLost

We now use the behaviour of maybeLost and de{inirelyLost in the three cases
to prove exists-chosenLost.

4> BOp; AbortPurseOkay; RabOur; RabClPd'[pdThis/pdThis']; RabIn I

ml = 1­

A pdThis ~ pdAuth
f­

3 chosenLost : l? PayDetails •
(pdThis E maybeLost 1\ chosenLost = chosenLost' u {pdThis}

v pdThis rf maybeLosf 1\ status =1= eaFrom
1\ chosenLost = chosenLost'

v status = eaFrom 1\ chosenLosr = chosenLost')
1\ chosenLost ~ maybeLosr

We push the existential quantifier in the consequent into the predicates:

4>BOp; AbortPurseOkay; RabOut; RabCIPd'[pdThis/pdThis']; RabIn I
m! = 1­

A pdThis ~ pdAuth
f­

pdThis E maybeLost

1\ (3 chosenLost : IP PayDetaiIs •

chosenLost = chosenLost' u {pdThis}

1\ chosenLost £ maybeLost)

108 CHAYTER 14. ~ TO 'B LEMMAS

v pdThis rt maybeLost 1\ statUs '* eaFrom
1\ (3 chosenLosr : lP PayDetails •

chosenLost = chosenLost'

1\ chosenLosr £; maybeLost)

v status = eaFrom
1\ (3 chosenLosr : I!» PayDefai/s •

chosenLosr = chosenLosr'

A chosenLosf c;;;: maybeLost)

In each case, we lone poind away the chosenLosrbecause Ihe predicate includes
an expliCit definition for it.

<PROp; AbortPurseOkay; RabOut; RabClPd'[paThis/pdThis']; RabIn I
m! = J.

A paThis ~ pdAuth
f­

pdThis E maybeLost

A chosenLost' u {pdThis} c;;;: maybeLost

v pdThis rt maybeLost A status *- eaFrom

1\ chosenLost' c;;;: maybeLosr

v status = eaFrom

1\ chosenLost' <;; maybeLost

In each case, the predicate is of the form (a 1\ b), and "...e argue below that
a ~ b. This allows us to replace (a 1\ bJ with Q. If we do this, we obtain

<PROp; AbartPurseOkay; RabOut; RabCIPa'(paThis/pdThis']; RabIn I
m!= ..L

A paTh is = paAuth
f­

pdThis E maybeLost

v pdThis rt maybeLost 1\ starus '* eaFrom

v starus ~ eaFrom

which is true.

We now carry out the argumem as described above for each of the three
disjuncts.

109 14.8. ABORT REFINES ABIGNORE

Case 1: old transaction in limbo

We must show that under the assumptions of this lemma and in this case

pdThis E maybeLost =­
chosenLost' u {pdThis} ~ maybeLost

This follows by:

chosenLosr' u {pdThis}

" maybeLost' u {pdThis) [hypothesisl

~ maybeLost [preVious argument for case 1\

• 14.8.4

Case 2: old transaction not in limbo

We must show that under the assumptions of this Lemma and in this case

pdThis f! maybeLost A status :I: eaFrom =>

chosenLost' f; maybeLost

This follows by

chosenLosr' s;;; maybeLosr' [hypothesisI

=> chosenLost' s;; maybeLost [preVious argument for case 2]

• 14.8.4

Case 3: no transaction to abort

We must show that under the assumptions of this lemma and in this case

status = eaFrom =>

chosenLosr' s;; maybeLost

This follows by

chosenLost' <;::;:: maybeLost' [hypothesis]

=> chosenLost' c;::; maybeLos([preVious argument for case 3J

• 14.8.4
• 14.8.4

110 CHAPTER 14. .'l TO 'B LEMMAS

14.8.5 check-operation-ignore

We now use the behaviour of maybeLost and definitelyLost in the three cases
10 prove check-operation-ignore.

~BOp: AbortPurseOkay: RabC/Pd'[pdThisj pdThis'l:

AbWorld: RabC/Pd !

pdThis ~ pdAurh

1\ (pdThis E maybeLost 1\ chosenLost chosenLost' u {pdThis}0:

v pdThis fi maybeLost A status "* eaFrom
A chosenLost = chosenLost'

v status = eaFrom A chosenLost = chosenLost')
,.
'r/ n: dam abAuthPurse •

(abAuthPurse' n).balance = (abAuthPurse n).balance

1\ (abAuthPurse' n)./ost = (abAuthPursen).lost

We can prove this for each or the three disjuncts in the hypothesis by [hyp disj].

Case 1: old transac lion in limbo

lost is a function of de{'initelyLosru chosenLost. The pdThis moves from chosen­
Lost to definiteJyLost', so the union is unchanged.

balance js a function of maybeLost \ ehosenLosr. The pdThis moves from
chosenLosf, and hence from maybeLosc, so the difference is unchanged.

• 14.8.5

Case 2+3: old transaclion not in limbo or no transaction

From ehosenLosr = ehosenLosc' and the argUJm~nts above, all the relevant sets
are unchanging, so lost and balalnee are unchanging.

• 14.8.5
• 14.8.5

.14.8

14.9 Lemma 'abort backward': operations that first abort

Some of the concrete operations are writlen as a composition of AbortPurse·
Okay ""ith a simpler operation starting from eaFrom (StarrFrom, StarrTo, Read~

ExceptionLog, £x.ceptionLogClear).

III 14.10. SUMMARY OF LEMMAS

Lenuna 14.5 (abort backward) Where a concrete operation is \'oJritten as a com·
position of AbortPurseOkay and a simpler operation starting from eaFrom, it
is sufficient to prove that the promotion of the simpler operation alone refines
the relevant abstract operatlon.

3 tiConPurse • 4lBOp 1\ (AbortPurseOkay ~ BOpPurseEa{romOkay);
Rab'; RabOut;
('t BOpEa(romOkay; Rab'; RabOut •

3 AbWorld; a?: AIN • Rab A RabIn A AOp)

f­

3 AbWorld; a? : AlN • Rab 1\ RabIn 1\ AOp

•
Proof

Use lemma 'promoted composition' (section Cll) to rewrite the promo­
tion of the composition to a composition of promotions, yielding

(AbortOkay; BOpEa(romOkay);
Rab'; RabOut;
('t BOpEa(romOkay; Rab'; RabOut •

3 AbWorld; a?: A1N • Rab 1\ RabIn 1\ AOp)
f­

3 AbWorld; a?: A1N • Rob /\ RabIn /\ AOp

If BOpl refines AOpl and BOp2 refines AOp2, then BOpl ~ BOp2 refines
AOpl ~ AOp2 (invoke lemma 'compose backward', section (9).

Take BOpl ~ AborlOkay, AOpl : AbIgnore, and invoke lemma 'Abort
refines AbIgnore' (section 14.8), to discharge this proof.

Take BOp2 = BOpEafromOkay, AOp2 = AOp, and nOle that we have that

BOp refines AOp in the hypothesis.

Note that AbIgnoYe ~ AOp = AOp, to reduce this expression in the conse­

quent .

• 14.9

14.10 Summary of lemmas

ill section 9.2.4 we reduced the refinement correctness proof for an operation
to:

BOp; Rab'; RabOut f- 3 AbWorld; a?: AIN. Rab A RabIn A AOp

llZ CHAPTER 14. .Jl TO 1) LEMM4S

We then built up a set of lemmas which may be used to simplify this proof
requirement.

AOp and BOp are often disjuncHons of simpler operations, and lemmas
'muhiple refinement' (section 14.2) and 'ignore' (section 14.3) are used to prove
that any Ignore or Abort branches of BOp need be proved once only for all
BOps. These two branches are proved in lemmas later on, after further sim­
plification for a general disjunct (Ignore, Abort or Okay) of BOp. This sim­
plification starts v.ith lemma 'deterministic' (section 14.4) Which removes the
3 AbWorld in the consequent of Ihe correctness obligation. In doing so, it re­
quires us to prove three side-lemmas (exists-pd, exists-chosenlost, cbeck­
operation). Lemma 'lost unchanged' (section 14.5) allows the side-lemmas
exists-pd and exists-chosenLost to be discharged immediately given certain
conditions. Lemma 'AbIgnore' (section 14.6) then proVides a simplification of
the side-lemma check-operatioD when AOp is AbIgnore.

We can now prove that the Ignore and Abort branches of BOp are correct
wifh respect to AOp. Section 14.7 proves that Ignore refines AbIgnore, and
lemma 'Abort refines AbIgnore' (section 14.8) handles the Abort branch. Wilh
lemmas 'multiple refinement' and 'ignore', this has now proved the correctness
of the Ignore and Abort branches of all BOp.

Where the Okay branch of an operation is composed of Abort followed
by che 'active' operation, lemma 'abort backward' gives us that we only need to
prove the 'active' part.

Returning to {he proof obligation wrilten above, any of the Ignore or Abort
branches of a BOp opera{ion are dealt with by {he lemmas_ This leaves the
Okay branch (if this contains an initial Abort, this can be ignored - from
lemma 'abort back\\'ard' we need only prove the non-aborting part). Usuall)', we
then apply lemma 'determin1stic' yielding a number of side-lemmas. These may
sometimes be further simplified using lemmas 'lost unchanged' and 'AbIgnore'.
The remaining proof is then particular to the BOp.

Chapter IS

Correctness of Increase

15.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lenuna
'multiple refinement' (section 14.2) to split the proof obligation for each .J\.
operation into one for each individual B operation.

This chapter proves the 'B operation.

We use lemma 'ignore' (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), leaving the Okay
branch to be proven here.

•	 We use lemma 'determ1nistic' (section C.1) to reduce the proof obligation
to the three cases exists-pd, exisls-ehosenLost, and check-operation.

Since this operation leaves the sets rnaybeLost and de/initelyLost uncha­
nged, we use lemma 'lost unchanged' (section C.2) to discharge the exists
pd.-and exists chosenLost-obllgations automatlcally.

• Since this operation refines Ablgnore, we use lemma 'Ablgnore' (from sec­
tion C.3) to simplify check-operation to check-operatlon-lgnore.

15.2 Invoking lemma 'lOSl unchanged'

Section 14.5.2 gives sufficient conditions to be able to invoke lemma 'IOSl un­
changed'. These are that the unpromoted operation changes neither the status
nor the exception log of the purse. Increase includes SConPurselncrease, which
says exactly that. We can therefore invoke lemma 'Lost unchanged'.

114 CHAPTER 15. INCREASE

15.3 check-operation-ignore

~BOp; IncreasePurseOkay; RabOut; RabCIPd'[pdThisjpdThis'];
AbWorld; RabClPd; RabIn I

chosenLosc' = chosenLosc

A maybeLost' = maybeLost

A definitelyLost' = definifelyLost

r
'rJ n: dam abAuthPurse.

(abAuthPurse' n).balance = (abAuthPurse 11).balance

A (abAuthPurse' n).fost = (abAUlhPursenJ.lost

Proof: We have that maybeLos(and definilelyLost are unchanged from the hy­
pothesis. This shows that the balance and lost components of all the abstract
purses remain unchanged.

• 15.3

.15

Chapter 16

Correctness of StartFrom

16.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2A we give a general simplification of the correctness proof. We use lemma
'multiple refinement' (section 14.2) to split the proof obligation for each J\
operation into one for each individual 'B operation.

This chapter proves the 'B operation.

•	 We use lemma 'ignore' (see senion 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), and Abon (in sec­
tion 14.8), leaving the Okay branch to be proven here.

• Since the Okay branch of this operation is expressed as a promotion of
AbortPurseOkay composed with a simpler EafromPurseOkay operation,
we use lemma 'abort backward' (section C.5), and prove only that the pro­
motion of the simpler operation is a refinement.

•	 We use lemma 'deterministic' (section CO to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

• Since this operation refines Ablgnore, we use lemma 'Ablgnore' (from sec­
tion (3) to slInplify check-operation to check-operation-jgnore.

16.2 Instantiating lemma 'deterministic'

We take the pdThfs to be the pdAuth created by the start operation, and chosen­
Lost to be unchanging.

116 CHAPTER 16. 5IARTFROM

'P ¢=;> pdThis = (conAuthPurse' name?).pdAuth

.Q ¢=;> chosenLosr = chosenLost'

16.3 Behaviour of maybeLost and definitelyLost

We argue that pdThis is not in (romInEpa or (romLogged before or aher the
operation, where pdThis = (canAuthPurse' pdThis.(roml.pdAwh.

First, before the operation the purse is in eaFrom, and after tt is in epr,
and hence pdThis can never be in {romInEpa.

From BetweenWorld constraint 8-7 if pdThis were in (romLogged' chen we
would have

(conAur-hPurse name?).pdAuth.fromSeqNo > pdThis.{romSeqNo

but we know these two pdAuths are equal, So pdThis cannot be in {romLogged'.
If the log isn't there after the operation, it certainly isn't there before, so pdThis
is not in toLogged either.

Only the {rom purse changes in this operation, so the sets tolnEpv and
roLogged can't change. Hence

colt1Epv' = tolnEpv

(aLagged' = (oLagged

(romInEpa' ~ (romInEpa

(romLogged' ~ (romLogged

It follows Ihat maybeLost is unchanged:

maybeLost'

= rolt1Epv' n «(romIt1Epa' u (romLogged')

'== talt1Epv n ({romInEpa u (romLogged)

= maybeLost

Also, definitelyLost is unchanged:

defit1irelyLost'

~ roLogged· n «(romInEpa' u (romLogged')

~ roLogged n ((romInEpa u (romI,ogged)

= definirelyLost

16.4. EXISTS-PD 117

16.4 exisls-pd

4>BOp; SrartFromPurseEafromOkay; RabOur; RabCl"; Rabin
,..
3 pdThis: PayDetails. pdThis "" (conAuthPurse' name?).pdAuth

Proof
Use the [one point] rule \"/ith the expression for pdThis in the quantifier.
• 16.4

16.5 exisls-chosenLosl

4>BOp; SrarrFromPurseEafromOkay; RabOur;

RabC/Pd' [pdThisj pdThis']; RabIn I

pdThis == (conAuthPurse' name?),pdAuth

,..
3 chosenLosr: (pl PayDerails •

chosenLosr = chosenLost'

/\ chosenLost s; maybeLost

Proof:
We use the [one poine] rule on chosenLosr to give

4>BOp; StarrfromPurseEafromOkay; RabOur;

RabClPd' [pdThis j pdThis']; RabIn I

pdThis = (conAuthPurse' name?).pdAuth

,..
chosenLost' ~ maybeLosr

We then have

chosenLost' ~ maybeLost' [RabC/Pd']

£ maybeLost (unchanging maybeL,sr]

• 16.5

16.6 check-operation

4>BOp; SrartFromPurseEafromOkay; RabC/Pd' [pdThis I pdThis'];
AbWor/d; RabClPd I

118 CHAPTER 16. STAR7FROM

pdThis = (conAuthPurse' name?).pdAuch
J\ chosenLost = chosenLost'

~

V n : darn abAuthPurse •

(abAuthPurse' n).balance = (abAuthPurse n).balance

1\ (abAurhPurse' n).losr = (abAuthPursen).lost

Proof:

From Rab, we have that lost is a function of definjce/yLost u chosenLosf, which

is unchanging, and that balance is a function of maybeLost \ chosenLost, which

is also unchanging.

• 16.6

.16

Chapter 17

Correctness of StartTo

17.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
'multiple refinement' (section 14.2) to split the proof obligation for each ..Jl

operation into one for each indiVidual'll operation.
This chapter proves the 1l operation.

•	 We use lemma 'ignore' (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), and Abort (in sec­
tion 14.8), leaVing the Okay branch to be proven here.

• Since the	 Okay branch of this operation is expressed as a promotion of
AbortPurseOkay composed with a simpler EafromPurseOkay operation,
we usc lemma 'abort backward' (section C.S), and prove only that the pro­
motion of the simpler operation is a refinement.

•	 We use lemm.a 'deterministic' (section C.l) to reduce the proof obligation
to the three cases exists·pd, exists·chosenLost, and check-operation.

• Since this operation refines AbIgnore, we use lemma 'AbIgnore' (from sec­
tion C.3) to simplify check-operation to check·operatlon-ignore.

17.2 Instantiating lemma 'delerministic'

We take pdThis to be the pdAurh created by the start operation, and chosenLost
to be unchanging.

120 CHAPTER 17. STARTTD

'P =- pdThis = (conAuthPurse' name?).pdAurh

Q ¢:> chosenLost = chosenLosr'

17.3 Behaviour of maybeLost and definite/yLost

We argue that pdThis is not in any of the before sets fromlnEpa, fromLogged,
tolnErv. or roLogged, where we have pdThis = (conAuthPurse' I1Qrne?).pcLA.uth.

(conAurhPurse name?).nex.1SeqNo Idefn. Starn·o]
= (conAuthPurse' name?).pdAuth.toSeqNo

=:- (conAurhPurse name?).nex{SeqNo [dcfn. pdThis]
= pdThis,toSeqNo

=> reqpdThis ~ ether [BerweenWorld constraint B-2l

=> pdThis r£ fromlnEpa u fromLogged[Berween~Vorld constraint B-12)
/\ pdThis r£ WInEpv U (oLagged IBerweenWorld constraintB-lO]

The operation moves one purse from eaFrom into epv; no logs arc written.
Hence pdThis is in tolnEpv', but hot newly' added to any of the other after sets.
So

to1nEpv' ~ to1nEpv u {pdThis)

roLagged' = [oLagged

fromlnEpa' = frominEpa

(romLogged' ~ (rornLogged

Il follows (ha(maybeLost is unchanged:

maybeLost'

~ to1nEpv' n ((rorninEpa' u frornLogged')

~ \to1nEpv u {pdThis} n (frornInEpa u (romLogged)

~ rnarbeLost u {fpdThis} n (frornInEpa u (rornLogged))

=rnaybeLost

Also, de(inifefyLosr is unchanged:

definite/yIost'

~ toLogged' n (frornInEpa' u frornLogged'J

~ toLogged n (frornInEpa u fromLogged)

=definirelyLosl

17.4. EXISTS-PD 121

17.4 exists-pd

<PHDp; SrartToPurseEa{romDkay; RabDur; Rabel'; RabIn

>­
3 pdThis: PayDetails. pdThis = (conAuthPurse' name?).pdAuth

Proof:
Use the [one point] ruleith the expression for pdThis in the quantifier.

• 17.4

17.5 exists-chosenLost

<PBDp; SrartToPurseEa{romDkay; RabDur; RabC1Pd' [pdThis IpdThis' I
RabIn I

pdThis ~ (conAurhPurse' name?).pdAurh

>­
3 chosenLost : IP PayDetails •

chosenLost = chosenLosr'

/\ chosenLost s;;: maybeLost

Proof:
We apply the [one point] rule for chosenLost in the consequent (Q give

<PHDp; SrarrToPurseEa{romDkay; RabDut; RabClPd'[pdThis/ pdThis'];

RabIn'
pdThis = (conAuthPurse' name?).pdAuth

>­
chosenLosr' s; maybeLost

chosenLost' c;:: maybeLosr' [RabClPd']

s;:;: maybeLost (unchanging maybeLost]

.17.5

17.6 check-operation

<PBDp; SrarrToPurseEafromDkay; RabCIPd' [pdThis / pdThis'];

AbWorld; RabCIPd I

pdThis = (conAuthPurse' name?).pdAuth
/\ chosenLosr = chosenLost'

>­

122 CHAPTER 17. STARITO

'V n: domabAuthPurse.

(abAuthPurse' nJ.balance = (abAurhPursen).balance

1\ (abAuthPurse' n).Iost = (abAuthPursen).losr

Proof:

From Rab, we have that lost is a function of de(initelyLost u chosenLost, ""hich

is unchanging, and that balance is a function of maybeLost \ chosenLost, which

is also unchanging.

• 17.6

.17

Chapter 18

Correctness of Req

18.1 Proof obligation

We have 10 prove the correct refinement of each abstract operation. In seerion
9.2.4 we give a general simplification of the correctness proof. We use lenuna
'mulliple refinement' (section 14.2) 10 split the proof obligation for each .Jl.
operation into one for each individual 'B operation.

This chapter proves the B operation.

We use lemma 'ignore' (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), leaving the Okay
branch to be proven here.

•	 We use lemma 'deterministic' (section C.l) to reduce the proof obligation
to the three cases exists-pd, exisls-chosenLost, and check-operation.

18.2 Instantiating lemma 'deterministic'

We must instantiate two general predicates relating to pdThis and chosenLosr.
The choices for these predicates are based on the fact that the imponant trans­
aclionls the one referred (0 by the req message being consumed by the ReqOkay
operation, and that before the operation, the set of transactions chosen to be
lost should be all those chosen to be lost afler the operation, but specifically
excluding the transaction pdThis. Thus

'P ~ req- m? = pdThis

Q. ~ chosenLost = chosenLost' \ {pdThis}

124 CHAPTER 18. REQ

A' (I?

, 0- ~ - - - - - -.. ­ - - - -1
t j AbTransJ"rws(.
, , , , ,

RV{)kay'

RVEnd I I

"
R\.-'mtfBeW5/'

" f"". .. R\'HnsBe.'IILo.\t'

"
lJ: m? '" /('q; ReqOkay
/lame'?

,\bTrans{nOJ;IIy -\ '. (JI!(--------------7·' .

Figure 18.1: The correctness proof for Req.

18.3 Discussion

The correctness proof for Req is summarised in figure 18.1. There are three
cases:

The to purse for [he transaction is in epv, and we choose that the transfer

will succeed.

Before the operation, pdThis $ maybeLost u de(initelyLost, and the appro­

priate retrieve is RabEnd.

After the operation, pdThis E maybeLost' \ chosenLost'. and the appropri­

ate rctrie\'~ is RabOka}/; the abstract operation is AbTrans{erOkay.

The to purse is in epv, and we choose the transfer ","'ill fail (the to purse

\\ill move out of epv before receiVing the va/).

Before, pdThis rt maybeLost u de{tnitelyLost, and the appropriate retrieve

is RabEnd'.

After, pdThis E chosenLosc' , and the appropriate retrieve is RabWillBe­
Lod; the abstract operation is AbTransferLost

The to purse has already moved out of epv, so will not receive the val: the

transfer has failed.

Before, pdThis rt maybeLosr U definitelyLost, and the appropriate retrieve

is RabEnd.

After, pdThis E definitelyLost', and the appropriate retrieve is RabHas­
BeenLos(; the abstract operation is AbTransferLost.

Tne following proof establishes that these are indeed (he only cases, and that
ReqOkay correctly refines AbTransfer in each case.

i8.4. EXiSTS-PD 125

18.4 exists-pd

<I>BOp; ReqPurseOkay; RabOut; RabCl"; Rabin
f ­

3 pdThis : PayDetaifs • req- m? = pdThis

Proof:
We discharge this by removing the existential for pdThis because we have an
explicit equation for it, using the lone point} rule.

• 18.4

18.5 exists-chosenlost

<I>BOp; ReqPurseOkay; RabOut; RabCIPd'[pdThislpdThis']; Rabin I
req- m? = pdThis

f ­

3 chosenLost : IP PayDetails •

chosenLosr = chosenLost' \ {pdThis}

!\ chosenLost £: maybeLost

Proof:

That we can construct a chosenLost as the set difference is nue because set

difference is always defined. That the subset constraint holds follows as below:

chosenLosr' <:;; maybeLost' IRabCIPd'j

chosenLost' \ {pdThis} " maybeLost' \ {pdThis} [property of set minusI

chosenLost s;;; maybeLosf' \ {pdThis} [cqn for chosenLost)

chosenLosr £. maybeLost [lemma 'not lost before', section C.14 I

• 18.5

18.6 check-operation

<I>BOp; ReqPurseOkay; RabOur; RabCIPd'[pdThisjpdThis'];

AbWorld; RabClPd; Rabin I

req- m? = pdThis

!\ chosenLosr = chosenLost' \ {pdThis]

f ­

AbTransfer

126	 CHAPTER 18. REQ

Proof:
We invoke lemma 'not lost before' 10 add constraints on maybeLosl and de­

(initelyLost to the hypothesis. This allows us to further alter the hypothesis by
replacing RahClPd v{ith RabEndC/Pd.

• BOp; ReqPurseOkay;	 RabOu'; RabCIPd' [pdThis/pdThlS'];

AblVorld; RabEndClPd; Rab1n I

req- m? = pdThis

1\ chosenLost = chosenLost' \ {pdThis}

1\ maybeLost = mayheLost' \ {pdThis}

A defini'elyLost = definitelyLos" \ {pdThts)

f ­

AbTransfer

We use [hyp disj] to split RabC1Pd'[...) into four separate cases (section 10.1.4)
to prove (using identity in section 10.1.5). In each case, we strenglhen the
cunsequent by choosing an appropriate disjunct of AbTrans{l'r.

• case 1: We choose that the value is not lost, so the corresponding abstract
operation is AbTransferOkay

<PBOp; ReqPurseOkay; RabOu,; RabOkayClPd' [pdThis/ pdThis'];
AbWorld; RabEndClPd; Rab1n I

req- nJ? = pdThis
1\ chosenLosr = chosellLosr' \ [pdThis}
1\ maybeLosr = maybeLost' \ {pdThis:·
1\ de{fmtefyLost = de(iniCelyLust' \ {pdThis J

f­

AbTransferOkay

• case 2: \.....e choose that the value will be lost, so the corresponding abstract
operation is AbTransferLost

<PBOp; ReqPurseOkay; RabOu';

RabWillEeLoseClPd' [pdThis / pdThis'];

AbWorld; RabEndClPd; RabIn I
req- m? = pdThis
1\ chosenLost = chosenLost' \ {pdThis}
1\ maybeLosr = maybeLost' \ {pdThis}
A defini'elyLos' = definiteIyLos" \ !pdThis)

f ­

AbTrcmsferLost

18.1, CASE I: REQOKAY ANDRABOKAYCLPD'	 127

•	 case 3: We say that the value has already been lost, so the corresponding
abstract operation is AbTransferLosr

c'PBOp; ReqPurseOkay; RabOut;
RabHasBeenLosIC/Pd'[pdThisjpdThis'];

AbWorId; RabEndC/Pd; RabIn I
req- m? =: pdThis

1\ chosenLost:== chosenLost' \ {pdThis}

A maybeLos' = maybeLos" \ {pdThis)
A de/InilelyLos' = denni'elyLost' \ {pdThis)

f­

AbTransferLost

case 4: The fourth case is impossible. We choose RabEndC1Pd', and prove
that the hypothesis is contradictory, so the choice of corresponding ab­
stract operation is unimportant

4>BOp; ReqPurseOkay; RabOu'; RabEndCIPd'[pdThisjpdThis']:
AbWorld; RabEndCIPd; RabIn I

req- m? = pdThis

1\ chosenLost =: chosenLost' \ {pdThis}

1\ maybeLost =: maybeLost' \ {pdThis}

A denni'elyLos' = denni'e/yLost' \ {pdThis)

f­

AbTransfer

We now have four independent cases to prove. The next four sections each
prove one case.

18.7 case 1: ReqOkay and RabOkayClPd'

4>BOp; ReqPurseOkay; RabOut; RabOkayCIPd' [pdThisjpdThis' I;
AbWorld; RabEndClPd; RabIn I

req- m? = pdThis

1\ chosenLosr = chosenLosr' \ {pdThis}

1\ maybeLost = maybeLosr' \ {pdThis J

A dennitelyLost = dennaelyLos" \ (pdThis)
f­

AbTrans(erOkay

128 CHAPTER 18. REQ

18.7.1 The behaviour of maybeLost and definirelyLost

We argue that the transaction pdThis is inHially not in maybeLost or de{initely­
Lost, and is moved into maybeLost' \ chosenLost' by this case of the ReqOkay
operation. The transaction initially was nor far enough progressed to have the
potential of being lost; afterwards it has progressed far enough that it may be
lost, but we are actually on the branch thai ",ill succeed.

We have from RabOkayClPd' that

pdThis E maybeLost' \ chosenLost'

Therefore pdThis ~ chosenLost' (by the definition of set minus) and pdThis if

de{il1itelyLost' (by lemma 'lost'). So we have

definitelyLost = de{initelyLost'

maybeLost = maybeLost' \ {pdThisJ

chosenLost = chosenLost'

18.7.2 AbTransferOkay

In this section we prove that an AbWorht that has the correct retrieve properties
also satisfies AbTransferOkay. Recall [hat our proof obligation is

4>BOp; ReqPurseOkay; RabOut; RabOkayClPd' [pdThis / pdThis'];
AbWorld; RabEndClPd; Rabln I

req- m? = pdThis
!\ chosenLost = chosenLost' \ {pdThis]
1\ maybeLost = maybeLost' \ {pdThis)
A definite/yLos(~ definite/yLost' \ {pdThis}

1­

AbTransferOkay

Each element of AbWor/d is defined by an exphcH equation in RabEndClPd, and
we show thal this value satisfies AbTransferOkay by shoVYing each predicate
holds.

A-I AbOp: This trivial: AbOp imposes no constraints.

A-2 AbWorldSeeureOp

a? E ran transfer
true by cOnstruction of a? from m? in RabIn.

129 18.7. CASE 1: REQOKAY AND RABOKA YCLPD'

no purses other than from? and co? change
For balance and lost we show that RabEndClPd and

RabOkayCIPd' [pdThis/ pdThis']

are essentially the same. This is immediate because tn both cases the
relevant predicates are captured in the same schema OtherPursesRab.

A-3	 Authentic[(rom? / name?], Authenricf to? / name?]

We have pdThls E maybeLost', hence it is in both authenticFrom' and
in authenricTo'. Hence, by <l>BOp and AbstractBerween, it is also in both
authenticFrom and in ClurhenticTo.

A-4	 SUfficientFundsProperty

true from ConPurse constraint P-2b

A-S	 to? *- (rom?

true because pdThis is a PayDerails.

A-6	 abAuthPurse' from? = ... I abAuthPurse' to? = .

Each of the four elements (from and to purses, each with balance and lost)
are handled below, followed by all the other elements in one section.

The from purse's balance component

(abAuthPurse pdThis.from).balance

= (conAu thPurse pdThis .from).balance

+ sumValue(((maybeLost \ chosenLosr)

n {pd: PayDetaiis I pd.to ~ pdThis.(rom))
\ (pdThis}) [RabEndClPd]

= (coMuthPurse pdThis.froml.balance
+ sumValue((((maybeLost' \ (pdThis)) \ chosenl.osr"l

n I pd: PayDetaiis I pd.to ~ pdThis.(rom) I
\ (pdThis}) [section 18.7.11

= (coMuthPurse pdThts.from).balance
+ sumValue(((maybeLost' \ chosenLosr')

n {pd: PayDetaiis I pd.to ~ pdThis.(rom])
\ {pdThis]) [rearranging]

130 CHAPTER 18. REQ

= pdThis.value + (conAulhPurse' pdThis.from).balance
+ sumValue«(maybeLosr' \ chosenLosr')

n {pd: PayDetails I pd.ro ~ pdThis.(rom}l
\ {pdThisJ) [ReqPurseOkay)

= pdThis,value + (abAuthPurse' pdThis.frorn).balance
I RabOkayClPd' [... J!

So

(abAuthPurse' from?).balance = (abAuthPurse from?) .balance - value?

The from purse's lost component

(abAuthPurse pdThis.from).losl

= sumValue{«de{initelyLosf v chosenLost)
n { pd : PayDetaiis I pd.(rom = pdThis.from))

\ (pdThis J) IRabEndClPdj

= sumVaJue«(de{initelyLost' v chosenLost')
n (pd : PayDeraiis I pd.from = pdThis.{rom})

\ (pdThis))

= labAurhPurse' pdThis.from)./osr

[section 18.7.1J

[RabOkayClPd'[.. .][

The to purse's balance component

(abAuthPurse pdThis.lO) .balance

= (conAuthPurse pdThis.to).bal£1nce
+ sumValue((maybeLosl \ chosenLost)

n (pd: PayDeraiis I pd. to = pdThis. to J)

\ (pdThis)) [RabEndCIPdj

= (conAuthPursepdThis.lo).balance
+ sumValue«((maybeLosr' \ (pdThis)) \ chosenLost'l

n (pd: PayDetaiis I pd.'o = pdThis. '0))
\ (pdThis)) (section 18.7.1]

= (conAuthPursepdThis.ro).balance
+ sumVaJue{«maybeLost' \ chosenLosl')

n (pd: PayDe'ails I pd.'o ~ pdThis. to))
\ (pdThis J) [rearranging]

18.8. CASE 2: REQOKA Y AND RABI\7LLBELOSTPD' 131

"" (conAuthPurse' pdThis.ro).balance
+ sumValue«(maybeLosc' \ chosenLost')

n {pd: PayDerails I pd.to = pdThis.to))
\ {pdThis)) I4>BOp]

== (abAuthPurse' pdThis.to).baJance + pdThis.va/ue
IRabOkayCIPd' [.. J)

From the form of (abAuthPurse' pdThis.ro).baJance == pdThis.value+ n inAb­
TransferOkay, we see that this last subtraction ghes a positive result. So

(abAuthPurse' to?).balance = (abAuthPurse ro?).ba/ance + value?

The to purse's lost component

(abAurhPurse pdThts.to).losr

= sumValue(«de{initelyLos[u chosenLost)

n {pd: PayDetails I pd.(rom = pdThis.to})

\ {pdThis}) [RabEndC/Pd)

== sumValue(«definitelyLosc' u chosenLosr')
n {pd: PayDetails I pd.from = pdThis.to J)

\ {pdThis)) [section 18.7.11

= (abAuthPurse' pdThis.to)./ost IRabOkayC1Pd'[...]I

The remaining from and Co purse components

These are unchanging, by 2ConPurseReq, and that the retrieves each define a
unique abstract world.

• 18.7.2

• 18.7

18.8 case 2: ReqOkay and RabWilIBeLostPd'

4>BOp; Req1'urseOkay; RabOut; RabWiIIBeLostClPd' [pdThis I pdThis'J:
AbWorld; RabEndCIPd; RabIn I

132 CHAPTER 18. REQ

req- m? = pdThis
!\ chosenLosr = chosenLost' \ (pdThis}
1\ maybeLosr = maybeLost' \ {pdTh!s}
A definiteIyLost = definitelyLost' \ IpdThis J

~

AbTransferLost

18.8.1 The behaviour of maybeLost and de(initelyLosr

We argue thai the transaction pd is initially not in maybeLost or definirelyLost,
and is moved into chosenLost' by this case of the ReqOkay operation. The
transaction initially was not far enough progressed to have the potential of
being lost; afterwards it has progressed far enough that it may be lost, and \\o'e
choose thai it will be lost

We have from RabWillBeLostCIPd' [. .] that

pdThis E chosenLosr'

Therefore

pdThts E maybeLosr'

because chosenLost' ~ maybeLost'. But we can say that pdThis (j definirelyLosr'
(by lemma 'lost'). So we have

de(inirelyLost = dennilelyLost'

maybeLost = maybeLost' \ [pdThis}

chosenLost = chosenLosr' \ {pdThis J

18.8.2 AbTransferLost

In this section we prove thai an AbWorld lhat has the correc t rettiev~ properties
also satisfies AbTransferLosr. Recall, OUT proof obligation is

<l>BOp; ReqPurseOkay; RabOur; RabWillBeLosrClPd' [pdThis i pdThis'];
AbWorld; RabEndClPd; RabIn I

req- m? = pdThis
/\ chosenLost = chosenLost' \ {pdThis}
/\ maybeLosr = maybeLosr' \ {pdThis}
A definItelyLost = definiteiyLost' \ {pdThis}

~

AbTransferLost

18.8. CASE 2: REQOKAY .WD RAJJWILLBELOSTPD'	 133

Each element of AbWorld is defined by an explicit equaUon in RabEndClPd, and
we show thai this value satisfies AbTransferLosr by showing each predicate
holds.

A-I	 AbOp: This triVial: AbOp imposes nO constraints.

A-2	 AbWorldSecureOp

a? E ran transfer
true by construction of a?

no purses other than from? and to? change
For balance and lost we show that RabEndCLPd and RabWillBelosr­
C1Pd[pdThisjpdThis'] are essentially the same. This is immediate
because in both cases the relevant predicates arc captured 1n the same
schema OrherPursesRab.

A-3	 Authentic(from? / name?], Authentic[to? / name?]
We have pdThis E maybeLost', hence it is in both authenticFrom' and
in authenticTo'. Hence, by 4JBOp and AhsrractBetween, it is also in both
aurhenricFrom and in QuthenticTo.

A-4	 SufftcienrFundsProperty
true from ConPurse constraint P-2b

A-5	 to? *- from?
true because pdThis is a PayDetails_

A-6	 abAuthPurse' from? = '.', abAuthPurse' to? = .

Each of tbe four elements (from and to purses, each with balance and lost)
are handled below, followed by all the other elements in one section.

Tbe from purse's balance component

(abAuthPurse pdThis .from) .balance

= (conAuthPurse pdThis.from).balance

+ sumValue«((maybeLost \ chosenLost)

n { pd: PayDetaiis I pd. to ~ pdThis.(rom })
\ (pdThis)) IRabEndClPd)

= (conAuthPurse pdThts.from).balance
+ sumValue((((maybeLost' \ (pdThis)) \ chosenLosr' \ {pdThisJ)

n (pd: PayDetaiis I pd.!o ~ pdThis.(rom})
\{pdThis)) Isection 18.8.IJ

134 CHAPTER 18. REQ

= (conAuthPurse pdThis.(rom) .balance
+ sumValue«(maybeLost' \ chosenLost')

n {pd: PayDerails I pd.to ~ pdThis.{rom})
\ {pdThis)) (rearranging)

= pdThis.value + (conAurhPurse' pdThis.{rom).balance
+ surnValue«(maybeLost' \ chosenLost')

n {pd: PayDetails I pd.to ~ pdThis.{rom})
\ {pdThis)) [ReqPurseOkay]

= pdThis.vQlue + (abAuchPurse' pdThis.{roml.balance
IRabWillBeLostCLPd' [...]1

So

(abAuthPurse' from?),balance = (abAuthPurse from?).balance - value?

The {rom purse's lost component

(abAuthPurse pdThis. from) .lost

= sumValue(«definitelyLost u chosenLost)
n {pd : PayDeraiis I pdfrom ~ pdThisfrorn))

\ {pdThis}) IRabEndClPd]

~ sumValue(((de!initelyLost' u chosemost' \ {pdThis))
n I pd : PayDetaiis I pdfrom ~ pdThis.{rom})

\ (pdThis)) (section 18.8.1]

= sumValue(« de{initelyLost' U chosenLost')
n I pd : PayDetaiis I pd. from ~ pdThis.{rom})

\ (pdThis)) [rearrangej

~ (abAuthPurse' pdThisfrom).lost - pdThis.value
{RabWillBeLostCLPd' [...]1

The to purse's balance component

(abAuthPurse pdThis. to). balance

= (conAuthPurse pdThis. to) .balance
+ sumValue(« maybeLos(\ chosenLost)

135 18.8. CASE 2: REQOKA Y AND RABWI1l.BELOSTPD'

n {pd: PayDetails I pd. to ~ pdThis.to})
\ {pdThis}) IRabEndClPdj

= (conAurhPursepdThis.to).balance
+ sumValue((((maybeLost' \ {pdThis}) \ chosenLost' \ {pdThisJ)

n {pd: PayDetails I pd.to ~ pdThis.to))
\ {pdThis)) Isection lB.B.])

= (conAuthPursepdThis.to).balance
+ sumVa!ue«(maybeLost' \ chosenLost')

n [pd: PayDetails I pd.to ~ pdThis.to))
\ {pdThis}) Irearranging)

= (conAuthPurse' pdThis.to).balance
+ sumValue«(maybeLost' \ chosenLost')

n (pd: PayDetails I pd.to = pdThis.to})
\ {pdThis}) I<I>BOp)

= (abAurhPurse' pdThis.ro).balance [RabWillBeLostClPd' [...])

The to purse's lost component

(abAuthPurse pdThis. to) .lost

= sumValue(« de{inirel)lLosr v chosenLosr)
n (pd: PayDetails I pd,from = pdThis.to)

\{pdThis}) (RabEndClPdJ

= sumValue(((dellnitelyLost' u chosenLost' \ (pdThis))
n (pd : PayDetails I pd,from = pdThis.to))

\(pdThis)) [section lB.B.l]

= sumVa!ue(«de{initelyLost' u chosenLost')
n {pd : PayDetails I pd.{rom = pdThis.to))

\ {pdThisl! [rearrange)

= (abAuthPurse' pdThis.to).lost [RabWillBeLostCIPd' [...]J

The remaining from and to purse components

These are unchanging, by 3ConPurseReq, and that the retrieves each define a
unique abstract world.

• lB.B.2

136 CHAPTER 18. REQ

.18.8

18.9 case 3: ReqOkay and RabHasBeenLosrPd'

<l>BOp; ReqPurseOkay; RabOu'; RabHasBeenLos,CIPd'[pdThisjpdThis'];
AbWorld; RabEndCIPd; RabIn I

req- m? = pdThis

1\ chosenLost = chosenLosf' \ {pdThis}

A maybeLos' ~ maybeLos" \ (pdThis)

A definitelyLos' ~ definUelyLos" \ (pdThis)

r
AbTrans(erLost

18.9.1 The behaviour of maybeLosc and definitelyIos!

We argue that the transaction pd is initially not in maybeLost or definite/yIost,
and is moved into dennitelyLost' by this case of the ReqOkay operation. The
transaction initially was not far enough progressed to have the potential of
being lost; afterwards it has progressed far enough that it has in fact been lost.

We have from RabHasBeenLostClPd' that

pdThls E defini'elyLos"

Therefore pdThis rt maybeLost' (by lemma 'lost'), and also pdThis 1£ chosenLost'
(because this is a subset of maybeLosr'). So ",,·e have

definUelyLost ~ defini'elyLost' \ (pdThis)

maybeLost = maybeLosr'

chosenLost "= chosenLost'

18.9.2 AbTtansferLost

In this section we prove that an AbWorld that has the correct retrieve properties
also satisfies AbTransferLosr. Recall. our proof obligation is

<l>BOp; ReqPurseOkay; RabOu'; RabHasBeenLostCIPd' [pdThis I pdThis'];
AbWorld; RabEndCIPd; RabIn I

req- m? = pdThis

137 18.9. CASE 3: REQOKA Y AND RABHASBEENLOSTPD'

1\ chosenLosl = chosenLost' \ (pdThis]
1\ maybeLosr = maybeLost' \ {pdThis}

1\ de/'iniCelyLost = definitelyLost' \ {pdThis)

~

AbTrans(erLosc

Each element of AbWorld is defined by an explicit equation in RabEndC1Pd. and
we show that this value satisfies AbTransferLosl by sho\',ing each predicate
holds.

A-I	 AbOp: This trivial: AbOp imposes no constraints,

A-2	 AbWorldSeeureOp

a? E ran transfer

true by construction of a?

no purses other than from? and fa? change

For balance and lost we show that RabEndCIPd and RabHasBeenLosr­

eiFel {pdThisj pdThis] are essentially the same. This is immediate be­

cause in both cases the relevant predicates are captured in the same

schema OrherPursesRab.

A-3	 Authentic[from? I name?], Aurhentic(ro? /name?]
We have pdThis E maybeLost', hence H is in both authenticFrom' and
in authenricTd. Hence, by <PBOp and AbstracrBetween, it is also in both
authenticFrom and in authenticTo.

A-4	 Su{ficientFundsProperty
true from ConPurse constraint P-2b

A-S	 to? *- from?
true because pdThis is a PayDetails.

A-6	 abAuthPurse' from? = "', abAuthPurse' to? =

Each of the four elements (from and to purses, each With balance and lost)
are handled below, followed by all the other elements in one section.

The from purse's balance component

(abAuthPurse pdThis.from).balance

= (corL4uthPurse pdThis.from) .balance

+ sumVaJue(((maybeLost \ chosenLostl

n {pd: ParDe tails I pd.to ~ pdThis.(rom))
\ (pdThisJ) [RabEndCIPd)

138 CHAPTER 18. REQ

=: (con4uthPurse pdThis.{rom) .balance
+ sumValue(((maybeLost' \ chosenLost')

n {pd: PayDetails I pJ.to = pdThisfrom I)
\ {pdThis)) [section 18.9.11

= pdThis.value + (con4uthPurse' pdThis.(roml.balance
+ suml/alue(((maybeLost' \ chosenLost')

n I pd: PayDerails! pd. '0 ~ pdThis.from))
\ {pdThis)) IReqPurseOkay[

= pdThis.vafue + (abAuchPurse' pdThis.{rom).balance
[RabHasBeenLostC1Pd'[..]1

So

(abAuthPurse' from?).balance =: (abAuthPurse from?) .balance - value?

The {rom purse's lost component

(abAuthPurse pdThi!l.froml.lost

=: sum\/alue(((definitelyLosr u chosenLosf)

n {pd : PayDeeails [pd.(rom ~ pdThis.(rom J I

\ {pdThisJ) [RabEndCIPdI

=: sumValue(Udefinite}yLosl' \ (pdThisJ u chosenLost')
n {pd : PayDeeails 1 pd.(rom = pdThis.(rom J I

\ (pdThis)) [section 18.9.1}

=: sumValue(((de(initefyLost' u chosenLosr')
n {pd : PayDeraiis [pd.(rom = pdThis.from})

\ [pdThis}) [rearrangel

=: (abAuthPurse' pdThis.{rom)./ost - pdThis. value
[RabHasBeenLosrC1Pd' [...]1

The to purse's balance component

(abA uthPurse pdThis. to). balance

= (cort4uthPursepdThis.to).balance

139 18.9. CASE 3: REQOKAY ANDRABHASBEENLOS7PD'

+ sum Value(((maybeLost \ chosenLost)
n (pd: PayDetaiis I pd.to ~ pdThis.to))

\ {pdThis)) (RabEndClPd]

::= (coMuthPurse pdThis .to) .balance
+ sumValue«(maybeLost' \ chosenLost'}

n (pd: PayDetaiis I pd.to ~ pdThis.to])
\ {pdThis)) [section 18.9.1]

= (conAuthPurse' pdThis.to).balance
+ sumValue«(maybeLost' \ chosenLost')

n { pd : PayDetaiis I pd. to ~ pdThis. to))
\ {pdThis)) [<I>BOp!

== (abAuthPurse' pdThis.toLbalance IRabHasBrenLostClPd' [...]]

The to purse's lost componenl

(abAuthPurse pdThis.to).lost

== sumValue(« de{jnitelyLost u chosenLost)
() (pd: PayDetaiis , pd.(rom ~ pdThis.to))

\ {pdThis)) [RabEndClPd]

== sumValue«(de{inite!yLosr' \ {pdThis} u chosenLost')
() (pd: Pa}'Detaiis I pd.from ~ pdThis.to])

\ {pdThis}) (section 18.9.11

= sumValue{«de{initelyLost' u chosenLosr')
() (pd: Pa}'Detaiis I pd.(rom ~ pdThis.to})

\ (pdThis)) [rearrange]

~ (abAuthPurse' pdThis.to)./ost [RabHasBeenLostClPd'[. ..] I

The remaining from and to purse components

These are unchanging, by 3ConPurseReq, and that the retrieves each define a
unique abstract world.

• 18.9.2
.18.9

140 CHAPTER i8. REQ

18.10 case 4: ReqOkay and RabEndPd'

<l>BOp; ReqPurseOkay; RabOut; RabEndClPd'[pdThis/ pdThis'];
AbWorld; RabEndCIPd; RabIn I

req- m? = pdThis

/\ chosenLost = dlOsenLost' \ {pdThis}

/\ maybeLost = maybeLost' \ {pdThis]

A defimtelyLost ~ definitelyLost' \ (pdThis)

f­

AbTransfer

We show that RabEndClPd'[...J is false under ReqOkay, and then proceed by
[contradiction], because this shows the antecedent of the theorem is false, and
hence the theorem is true.

<l>BOp; ReqPurseOkay; RabOut; AbWorld';
pdThis: PayDetails; chosenLost' : iP PayDetails I

req- m? = pdThis
f­

~ RabEndC1Pd' [pdThis I pdThis']

It suffices to show that pdThis E definite1yLost' u maybeLost'. We have

defjnitelyLost' u maybeLost'

~ ({rominEpa' u (romLogged') n (toInEpv' U loLogged')

ReqPurseOkay gives us that the after state of the purse is epa; pdThis is in
QUlhenticFrom, from 4>BOp; hence pdThis is in fromlnEpLl' _ So it is sufficient to
show either pdThis is in tolnEpv' or in toLagged'.

We know from the existence of the req, ""ith BenveenWorld constraint B-1,
that pdThis E aUlhenticTo. There is no ack in the ether':

pdThis E fromlnEpr [precondition ReqPurseOkay]

=:> ack pdThis ~ ether [BerweenWorld constraint B-91

::) ack pdThis ~ ether' ldefn. ReqPurseOkay and <PBOp]

Hence

req pdThis E ether' [precondition ReqPurseOkay]
1\ ack pdThis ~ ether' [above]

=:> pdThis E tolnEpv' u toLogged' [BenveenWorld constraint 8-10}

--

t: !i@

~ ~ >­~

g, i;j .;,;
~

is a ~ a:i
~

0
.,;-

CO
w

 a:i
a:i

.iol
-

'"
g. • ••
w

~

~

~

Chapter 19

Correctness of Val

19.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correeUless proof. We use lenuna
'multiple refinement' (section 14.2) to split the proof obligation for each .Jt

operation into one for each individual 13 operation.
This chapter proves the 13 operation.

•	 We use lemma 'ignore' (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), leaving the Okay
branch to be proven here.

•	 We use lemma 'deterministic' (section el) to reduce the proof obligation
to the three cases exists-pd, exists-chosenLosl, and check-operation.

Since this operation refines AbIgnore, we use lemma 'AbIgrlOre' (from sec­
lion C.3) to simplify check-operation to check-operation-ignore.

19.2 lnstantiating lemma 'detenninistic'

The choices for the predicates relating to pdThis and chosenLost are based on
the fact that the important transaction is the one stored in the purse perfonning
the ValOkay operation, and that before the operation, the set of transactions
chosen to be lost should be all those chosen to be lost after tbe operation.. Thus

'P ~ pdThis = (conAuthPursename?).pdAuth

.Q ~ chosenLost = chosenLosr'

H. CH4PTER 19. VAL

19.3 exists-pd

<PEOp; ValFurseOkay; RabOa'; Rabel'; RabIn
f­

3 pdThis : PayDetails • pdThis = (conAuthPurse name?) .pdAuth

Proof:
This is immediate by the [one point] rule, as we have an explicit definition of
pdThis.

• 19.3

19.4 exists-chosenlost

<PEOp; Va/FurseOkay; RabOat; RabClPd'[pdThislrdThis']; RabIn!
pdThis = (conAuthPurse name?).pdAuth

f­

3 chosenLost : [P PayDecails •
chosenLosr = chosenLost'
1\ chosenLost s; maybeLosl

Proof:
We can [one point] away the quantification because we have an explicit definition
of chosenLost (as chosenLost'). We show that the constraint holds by

chosenLost = chosenLost' [defn.)

c.;;; maybeLost' [RabClPd'[.. .JI

" maybeLost \ {pdThis) Isee 19.6.7]

£: maybeLosr [defn. \1

• 19.4

19.5 check-operation

<PEOp; Va/FurseOkay; RabCLPd'[pdThislpdThis']; AbWor/d; RabClPd I
pdThis = (conAuthPurse name?).pdAuth
1\ chosenLosr = chosenLost'

f­

'r:/ n: dam abAurhPurse.
(abAuthPurse' nLbalance = (abAuthPurse n).balance
1\ (abAuthPurse' n).lost = (abAuthPursen).lost

145 19.6. BEHAVIOUR OF MA YBELOST AND DERNITELYLOST

We prove this first by investigating the way in which the key sets de{initelyLost
and maybeLost arc modified by the operation. HaVing got equations for these
changes, we then look at the equations for the components balance and lost
for two types of purses; the to purse in the transaction pdThis, and all other
purses.

19.6 Behaviour of maybeLost and definitelyLost

We argue that the transaction pdThis is initially in maybeLost, and is moved
out of it, but not into de{initelyLost', by the \.·'alOkay operation. This operation
determines that the transaction is successful.

19.6.1 frornlogged

No logs change, so

(romLogged' ~ (romLogged

19.6.2 toLogged

No logs change, so

toLogged' = toLogged

After the operation the purse is in eaTo, and pdThis is in QurhenticTo, from
ilJBOp. hence pdThis E tolnEapayee'. Lemma 'notLoggcdAndln' (section C.12)
gives us:

pdThis ~ toLogged'

19.6.3 to1nEpv

From the precondition of ValPurseOkay we know the purse is in epv, and we
know that the name of this purse is equal to pdThis.to. After the operation,
this purse is in eaTo (that is, not in epv). No other purses change.

rolnEpv' ~ tolnEpv \ {pdThis)

tolnEpv ~ tolnEpv' u {pdThis I

]46 CHAPTER 19. VAL

]9.6.4 tromlnEpa

Only the to purse changes.

(romInEpa' ~ (romInEpa

]9.6.S definltelyLos<

definitelyLost'

~ wLogged' n ((romLogged' u (romInEpa') Idetn)

~ roLogged n ((romLogged u (romInEpa) [above]

= definitelyLost Idetnl

19.6.6 chosenLosl

chosenLosr' = chosenLost

by choice. So

definitelyLost u chosenLost = de{jniCelyLost' u chosenLost'

19.6.7 maybeLost

maybeLosr'

= (fromInEpa' u frornLogged') n wInEpv' {detn]

~ ((rom1nEpa u (romLoggedJ n Uo1nEpv \ (pdThis}) [above]

~ (((romInEpa u (romLogged) n ro1nEpv) \ {pdThis} (Spivey]

~ maybeLosr \ (pdThis} [detn]

val E ether 1\ to.status = epv [precondition ValPurseOkayI

0> pdThis E (romInEpa u (romLogged [B-ll]

;;:> pdThis E maybeLost [tolnEpv, defn maybeLostJ

pdThis E maybeLost (above]
1\ pdThis rt chosenLost' [because pdThis f/: maybeLost' 1

=> pdThis E maybeLost t\ pdThis f/: chosenLost

:::> pdThis E maybeLost \ chosenLost

1-17 19.7. ClARlFYlNG THE HYPOlliESIS

Also

maybeLost \ chosenLosr = (maybeLost' \ chosenLosl') u {pdThis}

19.7 Clarifying the hypothesis

We can show tlIar the hypothesis is actually stronger than it looks, in that we can
replace RabCIPd "i'h RabOkayCIPd and replace RabCIPd' ,,1'h RabEndClPd'.
This is because pdThis E maybeLosr \ chosenLost, implying that RabOkayCIPd
holds.

pdThis f£ maybeLost' (see construction of maybeLost') and so it cannot
be in chosenLost'. pdThis ([maybeLost' and so it cannot be in maybeLosr' \
chosenLost'. pdThis f£ de(lnitelyLost' because it is not in (oLagged'.

This implies that RabEndClPd'[...] holds. So we have to prove

<l>BOp; ValPurseOkay; RabEndClPd' [pdThis I pdThis' J;
AbWorld; RabOkayCIPd I

pdThis = (conAuthPurse name?).pdAuth
A chosenLost = chosenLosr'

f-

V n: domabAuthPurse.

(abAuthPurse' n).balance = (abAuthPurse ~l).balance

A (abAuthPurse' n}.lost = (abAuthPurse ~l).lost

We do this for each of the three components, for all the purses other than
the 10 purse engaged in this transaction, and for exactly the to purse in this
transaction.

19.7.1 Case balance component for non-pdThis.to purse

'r/ n: domabAuthPurse In =1= pdThis.to.

(abAurhPurse' n).balance

= (conAuthPurse' n).balance

+ sumValue(((maybeLost' \ chosenLost')
n	 (pd: PayDeraiis I pd. to ~ n}) \ [pdThls})

[RabEndCIPd'[pdThis I pdThis' JI
= (conAuthPurse' n).balance

+ sumValue((((maybeLost' \ chosenLost') u {pdThis})
n {pd: PayDetaiis I pd. to ~ n)) \ {pdThisJ)

lunion and subtraction cancel]

148	 CHAPTER 19. VAL

== (conAuthPurse' n).balance
+ sumVa/ue(((maybeLosf \ chosenLosll
n (pd: PayDetails I pd. '0 ~ n)) \ (pdThis})

[equation earlier]

= (COnAuthPurse n).balance

+ sumVaIue(((maybeLosr \ choserzLosr)
n (pd: PayDetails I pd.to ~ n}) \ (pdThis])

[<PBDPJ

= (abAuthPurse n).balance IRabDkayCIPdJ

.19.7.1

19.7.2 Case lost component for non-pdThis.to purse

In this case the defining equations in the retrieve depend upon detinUe/yimt u
chosenLost, which we derived as unchanging earlier. r.fJBOp does not change the
concrete values, so the abstract values do not change either.

• 19.7.2

19.7.3 Case balance component for pdThis.to purse

(abAuthPurse' pdThis.tol.baiance

= (conAuthPurse' pdThts. to) ,balance

+ sumValue(((maybeLosl' \ chaser/lost')

n	 (pd: PayDetails I pd.to ~ pdThis.toj) \ {pdThisJ)
[RabEndCIPd'[.. .]J

= {conAuthPurse' pdThis.to).balance
+ sum Value((((maybeLosr' \ chosenLost') u {pdThiS})

n {pd: PayDetails I pd.ro ~ pdThis.to}) \ {pdThisJ)
[union and subtraction cancel]

= (conAuthPurse' pdThis.to).balance
+ sumValue(((maybeLost \ chosenLosr)

n (pd: PayDeraiis I pd.ro ~ pdThis.to}) \ {pdThis})
[equation earlier]

149 19.7. ClARIFYING THE HYPOTHESIS

= (corL4.urhPurse pdThis.to).balance + pdThis.vaJue
+ sumValue(((maybeLost \ chosenLost)

n {pd: PayDetaiis I pdto ~ pdThis.talJ \ (pdThis})
[VaiPurseOkayl

" (abAuthPurse pdThis. fa).balance IRabOkayC1Pdl

.19.7.3

19.7.4 Case lost component for pdThis.to purse

In this case the defining equations in the retrieve depend upon definitelyLosl U

chosenLost, which we derived as unchanging earlier. 'v"alOkay does not change
the concrete values, so the abstract values do not change either.

• 19.7.4
• 19.7

• 19

Chapter 20

Correctness of Ack

20.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
'multiple refinement' (section 14.2) to split the proof obligation for each 5\
operation iIHo onc for each individual 'B operation.

This chapter proves the 'B operaUon.

•	 We use lemma 'ignore' (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), leaving the Okay
branch (0 be proven here.

•	 We use lemma 'deterministic' (section Cll to reduce the proof obligation
to the three cases exists-pd, exiSls-cbosenLost, and check-operation.

• Since this operation refines AbIgnore, we use lemma 'Ablgnore' (from sec­
(ion C.3) (Q simplify check-operation to check-operation-ignore.

20.2 Instantiating lemma 'deterministic'

We must instantiate two general predicates relating to pdThis and chosenLost.
The choices for these predicates are based on the fact tbat the important trans·
action is the one stored in the purse performing the AckOkay operation, and
that before the operation, the set of transactions chosen to be lost should be
all tbose chosen to be lost after the operation, because this operation plays no

152 CHAPTER 20. ACK

parr in deciding which transactions succeed and \",'hich ones lose. Thus

'P ~ pdThis = (conAuthPurse name?).pdAuth

Q. ~ chosenLost = chosenLost'

20.3 exisls-pd

<l>BOp; AckPurseOkay; RabOur; RabCl'; RabIn
f ­

3 pdThis: PayDetaiis • pdThis = (cDllAurhPurse name?).pdAuth

Proof:

This is immediate by lone point] rule, as we have an explicit definition of pdThis .

• 20.3

20,4 exisls-chosenlost

<l>BOp; AckPurseOkay; RabOur; RabClPd'[pdThis/pdThis']; RabIn I
pdThis = (conAurhPursename?).pdAuth

f ­

3 chosenLosr : IP PayDetails •
chosenLost = chosenLost'
1\ chosenLost s; maybeLost

Proof:
We can [one point] away the quantification because we have an expliClt definition
of chosenLost {as chasenLost'}. We shm.... that the constraint holds by

chosenLost = chosenLost' [def]

~ maybeLosr' [RabClPd' [... J1
~ maybeLost Isec 206.61

.20.4

20.5 check-<lperation

<l>BOp; AckPurseOkay; RabCIPd'[pdThis/pdThis']; AbWorld; RabClPd I
pdThis = (CDMuthPursename?).pdAuth
1\ chosenLost = chosenLost'

f ­

153 20.6. BEHA WOUR OF MAYBELOST AND DEFINfTELYLOST

V n : domabAuthPurse.
(abAuthPurse' n).balance = (abAuthPurse n).balance
A (abAuthPurse' nUost = (abAuthPurse n).1ost

Proof:

We prove this by investigating the way in which the key sets de{initelyLost and

maybeLost are modified by the operation.

20.6 Behaviour of maybeLost and definitelyLost

We argue that the transaction pd is inHially in neither maybeLost nor de{initely­
Lost, and is not moved into either of them by the AckOkay operatioll_ The
transaction was initially far enough along to have already succeeded.

20.6.1 Behaviour of fromLogged

From <lJBOp, which says that only the purse name? changes, and then anl)"
according to AckJ'urseOkay, and from the definition of AckPurseOkay, in which
exLog' = exLog, we can see that

fromLogged' ~ fromLogged

20.6.2 Behaviour of (oLagged

Exactly as we argued for (romLogged,

coLogged' coLogged:.:0

20.6.3 Behaviour of tolnEpv

If toInEpv' "* colnEpv, th€r€ must be some pd in one and not in the other. From
the definition of wInEpv, this means that for some purse that changes, either
before or after the operation its status must equal epv. That is,

(conAuchPursepd.co).scQCUS = epv

(conAuthPurse' pd.ro).starus = epv

v

154 CHAPTER 20. ACK

From tflBOp we have that the only purse that changes is name? FromAckPurse·
Okay we have that

(conA.uthPurse name?).status = epa

(conAuthPurse' name?).status = eaFrom

(neHher equal to epv). Therefore, no such pd exists, and we have

tolnEpv' = tolnEpv

20.6.4 Behaviour of (romlnEpa

If (romlnEpa' 'I: fromlnEpa, there must be some pd in one and not in the other.
From the definition of fromlnEpa, this means that for some purse that changes,
either before or after the operation its status must equal epa. That is,

(cOnAuthPurse pd.from) .status = epa
v
(conAuthPurse' pd.from).status = epa

The only name that changes is name?, and from AckPurseOkay we have that

(conA.uthPursename?).status = epa

(conAuthPurse' name?).status = eaFrom

Therefore, we have

fromlnEpa' ~ (romlnEpa \ {pd : PayDetails I pd.(rom ~ name'
1\ (conAuthPursename?).status = epa
/\ (conAuthPursename?).pdAuth = pd}

In fact, the last predicate in this set limits the pd to a single value, equal to
pdThis, so we have

fromlnEpa' ~ fromlnEpa \ IpdThis)

We now build up (he two sets definirelyLost and maybeLost.

155 20.6. BEHAVIOUR OF MAYBELOST ANDDEFINfTELYLOST

20.6.5 Behaviour of definitelyLosr

defini,eIyLos,' ~ ,oLogged' n ((rornLogged' u (romInEpa') [defn]

= toLogged [above identities}
n «(romLogged u «(romInEpa \ {pdThis)))

~ ,oLogged [pdThis ~ (rornLogged, see below[
n «fromLogged u (romInEpa) \ {pdThis))

~ «(rornLogged u (romInEpa) [algebra]
n (toLogged \ {pdThis})

~ «(rornLogged u (romInEpa) n ,oLogg,.IThis ~ ,oLogged, see below[

~ definitelyLos' Idefn]

We bave pdThis ~ fromLogged, from tbe fact 'bat pdThis E (romInEpa (because
the before purse state is epa, and epBOp gives pdThis E aurhenticFrom), and
using lemma 'notLoggedAndln'.

We have pd rt ,oLogged:

ack pd E ether (precondition AckPurseOkay]

~ pd ~ 'oInEpv U ,oLogged lBetweenWorId constraint B-IOJ

~ pd ~ 'oLogged pawl

Thus we have

defini'elyLos" ~ defini'elyLos'

20.6.6 Behaviour of maybeLosr

maybeLos" ~ ((romInEpa' U (romLogged') n ,oInEpv' [defn.]

~ «(romInEpa U «(rornLogged \ {pdThis})) n 'oInEpv
{above identitiesl

~ «((romInEpa U (rornLogged) \ {pdThis)) n ,oInEpv
IpdThis ~ (rornLogged, as above]

~ «(romInEpa U (rornLogged) n (toInEpv \ {pdThis}) [algebra]

~ «(romInEpa U (rornLogged) n ,oInEpv(pdThis ~ toInEpv, see below]

~ maybeLosr Idefn.]

156 CHAPTER ZO. ACK

We have pdThis 'i tolnEpv:

ack pd E ether [precondition AckOkay)

.:::> vdThis fi colnEpv u toLogged [BecweenWorld constraint 8-10]

=:- pdThis fi rolnEpv lIawl

Thus WE' have

maybeLost' = maybeLost

20.7 Finishing proof of check-operation

The above shows that none of the three sets definitelyLost, maybeLost or chosen­
Lost changes. As AckOkay does not alter any concrete balance or lost, and
given that the abstract values are defined solely in terms of these (illlchanging)
values, it follows that the abstract values don't change, thus discharging the
check-operation proof obligation.

• 20.5

.20

Chapter 21

Correctness of ReadExceptionLog

21.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lenuna
'multiple refinement' (section 14.2) to split the proof obligation for each .J\

operation into one for each indiVidual 'B operation.
This chapter proves the 'B operation.

We use lemma 'ignore' (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), and Abort (in sec­
tion 14.8), leaving the Okay branch to be proven here.

Since the Okay branch of this operation is expressed as a promotion of
AborrPurseOkay composed with a simpler EafromPurseOkay operation,
we use lemma 'abort backward' (section C.S), and prove only that the pro­
motion of the simpler operation is a refinement.

We use lemma 'deterministic' (section C.l) to reduce the proof obligation
to the three cases exists-pd, exists-chosenLost, and check-operation.

Since this operation leaves the sets maybeLost and definitelyLost uncha­
nged, we use lemma 'lost unchanged' (section C.2) to discharge the exists
pd-and exists chosenLost-obligations automaUcally.

• Since this operation refines Ab/gnore, we use lemma 'Ab/gnore' (from sec­
tion C.3) to simplify check-operation to check-operation-ignore.

158 CHAPTER 21 READEXCEP110NLOG

21.2 Invoking lemma 'lost unchanged'

We have the constrainl SConPurse in the definition of ReadExJ::eprionLogPurse­
EafromOkay. From cfJBOp and 3ConPurse, we knm'\' that archive and conAurh­
Purse remain unchanged, as do de(inilelyLost and maybeLost. Hence we can
invoke lemma 'Lost unchanged'.

21.3 check-operation-ignore

lflBOp; ReadExceprionLogPurseEa{romOkay;

RabOut; RabCIPd' [pdThis / pdThis'];

AbWorld; RabClPd; Rab1n I

chosenLosr' = chosenLosr
1\ maybeLosl' = maybeLost
1\ de{jnitelyLost' = definitelyLost

~

'rj n : dam abAuehPurse •

(abAuthPurse' nLbalance = (abAuthPurse n).balance

1\ (llbAuthPurse' n).1ost = (abAuthPursen}.lost

Proof:
We have thai maybeLost and de(inirclyLost are unchanged from the hypothe­
sis. Hence the balance and lost components of all the abstract purses remain
unchanged, satisfying our proof requirement.

• 21.3

.21

Chapter ZZ

Correctness of ClearExceptionLog

22.1 Proof obligation

We have to prove the correct refinement of each abstract operarion. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
'multiple refinement' (section 14.2) to split the proof obligation for each .A
operation into one for each individual 'B operation.

This chapter proves the B operation.

•	 We use lemma 'ignore' (see section 14.3) to simplify the proof obligation
by proving the correctness of Ignore (in section 14.7), and Abort (in sec­
tion 14.8), leaving the Okay branch to be proven here.

• Since the	 Okay branch of this operation is expressed as a promotion of
AbortPurseOkay composed with a simpler EafromPurseOkay opera[ion,
we use lerruna 'aboft backward' (section C.s), and prove only that the pro­
motion of the simpler operation is a refinement.

•	 We use lemma 'deterministic' (section C.1) to reduce the proof obligation
to the thIee cases exists-pd, exists-chosenLost, and check-operation.

• Since this operation leaves the sets maybeLosf and de{initelyLost Illlcha­
nged, we use lemma 'lost unchanged' (section C.2) to discharge the exists
pd·and exists chosenLost-obIigations automatically.

• Since this operation refines AbIgnore. we use lenuna 'AbIgnore' (from sec­
tion C.3) to simplify check-operation to check-operation-ignore.

160 CHAPTER ZZ. CLEAREXCEPTIONLOG

22.2 Invoking lemma 'Lost unchanged'

The purse's exception log is cLeared, so we cannot use the 'sufficient conditions'
to invoke lemma 'lost unchanged': we need first to show that (romLogged and
toLugyl?d are unchanged.

We have from the operation definition that the exception log details in the
purse that are to be cleared match the ones in the exceptionLogClear message.
We have, from constraint B-15 that the log details in the message are already
in the archive. So deleting them from the purse ""ill not change aI/Logs. But
fromLogged and (oLagged partition al/Logs, so these do not change either.

Hence we can invoke lemma 'Lost unchanged'.

22.3 check-operation-ignore

4JBOp; ClearExcepnonLogPurseEa(romOkay;
RabOur; RabClPd' [pdThis (pdThis' J;
AbWorld; RabCWd; RaWnl

choserrLost' = chosenLost

A maybeLost' = maybeLost

A definitelyLosr' ~ definirelyLosr

<­
'if n: domabAuthPurse.

(abAuthPurse' n).balance = {abAurhPurse nl.halance

A (abAuthPurse' n).losc = (abAuthPursen).iost

Proof:

We have that maybeLosc and de{initelyLost are unchanged from the hypothe­

sis. Hence the balance and lost components of all the abs tract purses remain

unchanged.

• 22.3

.22

Chapter 23

Correctness of AuthoriseExLogClear

23.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In section
9.2.4 we give a general simplification of the correctness proof. We use lemma
'multiple refinement' to split the proof obligation for each .J'l operation into
ODe for each individual 'B operation.

This chapter proves the 'B operation.

We use lemma 'ignore' to simplify the proof obligation further to proving
the correctness of Ignore (section 14.7), leaVing tbe Okay branch to be
proven.

We cannot use any of the other simplifications directly for AuthorfseExLogClear,
since it cannot be written as a promotion. So the correcmess proof obligation
for AuthoriseExLogClear is

AuthoriseExLogClearOkay; Rab'; RabOut
f­

3 AbWorld; a?: AlN • Rab 1\ RabIn /\ AbIgnore

23.2 Proof

First we choose an input. We argue exactly as in section 14.4.1 to reduce the
obligarton to:

Authorise"ExLogClearOkay; Rab'; RabOut; RabIn
f­

3 AbWorld • Rab " AbIgnore

162 CHAPTER 23. ArnHORISEEXLOGCLEAR

We [cuO in a before AbWorld equal to the after AbWorld' in Rab' (the side lemma
is trivial), and use [consq exists] to remove the qlJantifier from the consequent.

AuthoriseExLogClearOkay; Rab'; RabOut; RabIn; AbWorld I

BAbWorld = BAbWorld'
c-
Rab 1\ AbIgnore

AbIgnore is certainly satisfied by the equal abstract before and after worlds.
It remains to show that Rab is satisfied. The only difference betv.'een

the concrete before and after worlds, as given by AurhoriseExLogClearOkay, is
the addition of an exceptionLogClear message in the ether. But Rab does not
depend on exceptionLogClear messages, and so we can deduce Rab direcllr
from Rub'

.23.2

.23

Chapter 24

Correctness of Archive

24.1 Proof obligation

We have to prove the correct refinement of each abstract operation. In secriOD
9.2.4 we give a general simplification of the correctness proof. We use lenuna
'multiple refinement' to split tlIe proof obligation for each A operation into
one for each individual 'B operation.

This chapter proves the 'B operation.
We cannot use any more of the usual simplifications directly for ArchiVe,

since it cannot be written as a promotion. So the correctness proof obligation
for Archive is

Archive; Rab'; RabOut I- 3 AbWorld; a? : AlN • Rab 1\ RabIn 1\ AbIgnore

24.2 Proof

First we choose an input. We argue exactly as in section 14.4.1 to reduce the
obligation to:

ArchiVe; Rab'; RabOur; RabIn f- 3 AbWorld • Rab A AbIgnore

We [cut) in a before AbWorld equal to the after AbWorld' in Rab' (the side lenuna
is trivial), and use [consq exists] [Q remove the quantifier from the consequent.

ArchiVe; Rab'; RabOur; RabIn; AbWorld I

8AbWorid = 8AbWorld'

f-

Rab 1\ Ablgnore

164 CHAPTER 24, ARCHNE

AbIgnore is certainly satisfied by the equal abstract before and after worlds.
It remains to show that Rab is satisfied. The only difference between the

concrete before and after worlds, as given by Archive, is the inclusion of some
log details in the archive. We have, from BetweenWorld constraint B-14, that
the log details added to the archive from the exceptimlLogResult message arc
already in allLogs. So, although the archive grows, the operation does not add
any new logs to the world. Thus fromLogged and roLogged don', change. Hence
maybeLost and definitelyLost don't change. Therefore, nothing that Rab relies
upon changes in the concrete world, and so we can deduce Rab directly from
Rab',

.24,2

.24

• •

(J

0
.....
tel
.....

-
e aJ=

-- ...
aJ

~

I:loo
~

 aJ
~

"0

d 0 ~
aJ
~

~

co
~

Chapter 25

Refinement Proof Rules

25.1 Security of the implementation

We prove the concrete model C is secure with respect [Q the between model
'B by showing that every concrete operation correctly refines a between opera­
nOlL The concrete and between operations are similarly-named. The full list of
refinements is:

StartTo ~ CStartTo

StartFrom ~ CStartFrom

Req i;;; CReq

Val i;;; CVal

Ack c; CAck

ReadExceptionLog i;;; CReadExceptionLog

ClearExceptionLog i;;; CClearExceplionLog

AuthoriseExLogClear i;;; CAuthonseExLogClear

Archive t; CArchive

Abort ~ CAbort

Increase t; CIncrease

Ignore i;;; CIgnore

25.2 Forwards rules proof obligations

Each of these refinements must be proved correct.
[Spivey 1992b, Chapter 5] presents the theorems that need to be proved

for the most commonly-occurring case of non-determinism, sometimes called
'downward' or 'forv.lard' conditions, where the abstract and concrete inputs and

168 CHAPTER 25. 11 TO C RULE5

outputs are idenUcal. These, augmentedith a finalisation proof, aTe appro­
priale for the 'B 1O C reftnemen{ proofs.

The fOTh'ard rules are summarised in figure 25.1. Note how the paths are
differem from the backward case (figure 9.1) because of the direction of the R
arrows.

25.2.1 Retrieve

The retrieve relation has one pan lhallinks the abstract and concrete states.

25.2.2 Initialisation

GnU I- 3 H' • BInit II R'

25.2.3 Finalisation

R; CFin I- BEin

25.2.4 Applicability

R; BIn I pre BOp f- pre COp

25.2.5 Correctness

R; COp I pre BOp I-] B' • R' ,\ BOp

We can simplliy the correctness conctltion because we know that all the
between operations are total, i.e.

pre BOp = true

TIlls was proved earlier, in section 8.3.2.
We can therefore simplify the correctness condition to

R; COp f- 3B'. R' A BOp

169 25.2. FORWARD5 RULE5 PROOF OBUGATlON5

B' B BOp B' B

Blm/ /"'f,
U

, Rr",B::~
' , R'

Clnil :~ l ~
 }

C' C COp C' C

Initialisation Correctness Finalisalion

Figure 25.1: A summary of the fomard proof rules. The hypothesis is the
existence of the lower (solid) path. The proof obligarion is to demonstrate the
existence of an upper (dashed) path.

Chapter 26

13 to C retrieve relation

26.1 Retrieve state

The 'B and C worlds are identical, except that the C world can 'lose' ether mes­
sages.

,Rbc _

BetweenWorld
ConWorldo
---~-

conAuthPurseo = conA.uthPurse

ethero ~ ether

archiveo = archive

The subscript zero on the concrete world serves ro distinguish like-named be­
tween and concrete components.

Chapter 27

Initialisation, Finalisation, and
Applicability

27.1 initialisation proof

ConlnitState I- :3 BetvveenWorld' • BetweenlnitState 1\ Rbc'

Proof:

We expand ConInitStare in the hypothesis according to its definition.

Con World;', I
(3 Bet1t'eenWorld' I BetweenlnitStare.

conAuthPurseo = conAuthPurse'

/\ archive' = archive'

/\ {.l.) ~ ether~ <;: ether')

~

3 BetweenWorld' • BetweenlnitStare /\ Rbc'

From the definition of Rbc', we can see that the consequent follows directly
from the hY'Pothesis,

.27.1

27.2 Finalisation proof

Rbc; ConFinStare I- BetwFinStare

Proof:

We have defined ConFinScate and BetwFinState to have the same mathematical

form.

174 CHAPTER 27. lNITIAUSATION, FlNAUSATION, AND APPUCABIUTY

Rbc in the hypothesis requires the concrete and between purse slates and
archives to be identical, and allows the between ether to be bigger than the
concr-ete ether.

Finalisation of the purses depends only on the purse states (identical by
hypothesis) and on the sets definifelyLost and maybeLost. These sets them­
selves depend only on purse states and on the archive (also identical for con­
crete and between worlds by the retrieve in the hypothesis). As result, gAuch­
Purse for between finalisation is identical to that for concrete finalisation.

• 27.2

27.3 Applicability proofs

Applicability follows automatically from the totality of the concrete operations
as shown in section 8.4 .

• 27.3

Chapter 28

Lemmas for the 'B to C correctness
proofs

28.1 Specialising the proof rules

For each concrete operation COp and corresponding between operation BOp
we have to show

Rbc; COp f- 3 BetweenWorld' • Rbc' 1\ BOp

Many operations are defined as the disjunction of other operations. A COp
will have the same branches as a corresponding BOp: a CIgnore branch, and
either a CAbon or COpOkay branch, or both. We sphr the proof obligation into
CIgnore, CAbart and COpOkay branches, as \\'e did in section 14.3. This gives
some or all of the following proof requirements, depending on which branches
are in COp:

Rbc; Clgnore l- 3 BetweenWorld' • Rbc' 1\ Ignore

Rbc; CAbort t- 3 BetweenWorld' • Rbc' 1\ Abort

Rbc; COpOkay r~ 3 BerweenWorld' • Rbc' A BOpOkay

The correctness of the CIgnore branch is dealt with below in section 28.2. We
then develop the correctness proof for the CAborr and COpOkay branches, and
introduce a lenuna applicable to certain operations. Follov..mg this, we present
the proof of correctness of two common branches - CIncrease and CAban.

28,2 Correctness of CIgnore

The correctness of the CIgnore branch follows trivially by choosing

176 CHAPTER 28. 'B TO C LEMMAS

8Berweenl-'\-'orld' "= eBetweenWorld

.28.2

28.3 Correctness of a branch of the operation

283.1 Choosing Ben.yeenlforld'

In choosing BetweenWorld', we base our choice of the conAuthPurse' and ar­
chive' componen{s on Rbc', and our choice of the ether' componem on BOp­
Okay' .

We have COnAuthPurse~ and archiveD in the hypothesis, and we use this
to provide the value for COnAuthPurse' and archive', respectively (this satisfies
the constraint on conAuehPurse' and archive' in Rbc').

conAuthPurse' = conAuthPurseo
archive' = archiveb

m! and ether are declared in the hypothesis, and ether' can be constructed
deterministically from these (note that the folloWing construction satisfies the
relevant constraint in BOpOkay - either in tPBOp or e;\.'plicitly as in Archtve).

echer' = ether u 1m!}

We need to show that the chosen BetweenWorld' and m! satisfy each of the
canJuncts in the consequent (retrieve Rbc' and operation BOpOkay).

We also need to show that this choice is indeed an after BetweenWorld'
(that it satisfies the constraints on BetweenWorld specified in section 5.3).

2&3.2 Case BOpOkay

from the choice of ether' above, {he relevant constraint on ether' in BOpOkay
is satisfied by construction.

At most one purse changes in COpOkay. tel us call this new purse value
p. This gives

conAuthPurse~ = conAuthPurseo ED {p]

conAuthPurse~ = conAuthPursee {p] IRbc)

conAuthPurse' "'= conAuthPurse e {p} (choice of conAuthPurse'l

This satisfies the constraint on conAuthPurse' in BOpOkay (where at most one
purse changes in an identical manner to COpOkay).

177 28.3. CORRECTNESS OF A 8RANCH OF THE OPERATION

archive' is a function of archive and m!, defined in BOpOkay. Call this
fl1J1ction f:

If: Logbook x MESSAGE - Logbook

Because COpOkay is defined in an analogous way, f also relates 'lrchiveo to
archiv€o and mL

From the hypothesis we have COpOkay and Rbc, and v·:Hh our choice of
archive' Wl' have, respectively

archive~ = (archiveo, m!)
1\ archive = archiveo
1\ archive' = archive'o

Substituting the 1a tter two equations into the first gives the predicate in BOp~

Okay.
Thus, the BOpOkay constraints on all the components of our chosen Be­

tween World' are satisfied under the correctness hypothesis and choice of Be­
tween World' .

• 28.3.2

28.3.3 Case Rbc'

Both the conAuthPurse' and archive' components of BetweenWorld' satisfy Rbc'
from the choice of BetweenWorld'.

All COpOkay operations constrain ether' as

ether6 ~ ethero u {m!}

either through tfJCOp, or explicitly in CArchive. Hence for erhey' we have

ether'

== ether u {m!} Ichoice of erher'}

~ ethero u {m!} [Rbc]

~ ethero [COpOkay]

This satisfies the constraint on ether' in Rbc'.

28.3.4 Case 'obey constraints'

We know from the hypothesis that the before BetweenWorld satisfies [he con·
straints, so we need check only that [he chosen message m!, and any change of
purse state during the operation, maintains this constraint.

178 CHAPTER 28. 11 TO C LEMMAS

Lenuna 28.1 (constraint) If an operation obeys the follo\\ing properties, then
it preserves (he BerweenWorld constraints:

• it docs not change purse status or current transaction details (pdAuth)

• it does not change alILogs

• it does not change the payment detail messages, exception log read mes­
sages or exception log clear messages in the ether (either by not emHting
such a message, or by emitting an already existing message)

• no sequence number decreases (all concrete operations have the property,
so it is automatically satisfied)

•
Proof:

The BetweenWorid constraints refer only to certain ether messages (req, val,

ad, exceptionLogResult and exceptfollLogClear), and relate their presence or

absence to purse status (srarus, pdAuth and nextSeqNo) and allLogs. From the

hypolhesis we can invoke lemma 'logs unchanged' (section C. 7) to say that, as

alllags does not change, not does a/Logs. So operations that do not change the

purse status, do not change allLogs, and do not emit any relevant new messages,

V\fi.ll aUlOmalically preserve the constraints.

• 28.3.4
Even when lemma 'constraint' does not apply, we know from lhe form of the
operation that at most ooc purse changes, and one message is emitted. As
at mos[one purse changes, the proof that the BerweenWorld consrrainls are
preserved need refer only to this purse; the constraints hold on the other purses
before {he operation by hypothesis, and so they hold afterward, too.

28.3.5 Summary of ConOkay proof obligatioo

For each operation, we have to show that either lemma 'constraint' holds or
that [he choice of BetweenWorld' obeys the constraints (see section 5.3).

28.4 Correcmess of CIncrease

Gncrease does not change status or pdAuth, does not log, and no relevant
message is emitted to the ether, so lerruna 'constraint' (section C.6) is applicable.

• 28.4

28.5. CORRECTNESS OF CilBORT	 179

28.5 Correctness of CAbort

Lemma 'constraint' is not applicable, because CAban moves one purse inro
eaFrom, and it may not have been in tills state before, and it may log a pending
transaction. Therefore we have to show that our chosen BetweenWorld' obeys
the constraints.

One ..1 message is emitted, and (possibly) one log is recorded.

B-1	 req =:> authentic to purse. No new req messages.

B-2	 No future reqs. No new req messages.

B-3	 No future vals. No new val messages.

B~4	 No future acks. No nev...· ack messages.

8-5	 No future {rom logs. The purse moves into eaFrom, possibly logging a
transaction, and possibly increasing nexrSeqNo. This does not invalidate
this constrain t for any preVious logs. To create a new from log, Ihe purse
would have had to have been in epa (from LogI/Necessary). Hence, using
ConPurse constraint P-2, we have

pdAuth.fromSeqNo < nexrSeqNo

From AborrPurse, we also have

nextSeqNo .:S nextSeqNo'

This gives

pdAuth.(romSeqNo < nextSeqNo'

The pdAuth is logged when the pre-state purse is in epa, and thus the new
log obeys the constraint.

B-6	 No future to logs. The purse mOVes into eaFrom, possibly logging a trans­
action, and possibly increasing nexrSeqNo. This does not invalidate [his
constraint for any previous logs. To create a new to log, the purse would
have had to have been in epv (from LogI{Necessary); hence, using ConPurse
constraint P-2a, we have

pdAuth. toSeqNo < nextSeqNo

From AbortPurse, we also have

nex,tSeqNo .:S nex'rSeqNo'

180	 CHAPTER 28. 1) TO C lEMMAS

This gives

pdAuth.toSeqNo < nextSeqNo'

The pMuth is logged when the pre-state purse is in epv, and thus the new
log obeys the constraint

B-7	 from in {epr, epa}, so no future {rom logs. The purse moves into eaFrom,
so no new purses in epr or epa.

8-8	 to in {epv, eaTol, so no future to logs. The purse moves into eaFrom, so
no new purses in epv or eaTo.

8-9	 epr ~ ---, val 1\, ack. The purse moves into eaFrom, and so does not
move into epr.

8-10 req 1\ ..., ack <=> WInEpy v toLogged.

case =):

No new req messages; no ack messages removed from the ether.

The purse may have moved out of epv, but in such a case LogI{Ne­

cessmy says that it logs, hence re-establishing the condition.

•	 case ~:

No purses newly in epv.
There might be a new to log, in which case we must show there was
a req, bUI no ack before. A to log can be made only by a purse mov­
ing out of epv. Then the BetvveenWorld constraint B-IO, on tolnEpv,
before the operation gives us the required req and lack of ack.

B-ll	 epv 1\ val ~ fromInEpa v froml.ogged. No purses newly in epv; no new
val messages.
The purse may have moved out of epa. But in such a case Logl/Necessary
says that it logs, hence re-eslablishing the condition.

B-12	 fromInEpa v fromLogged ~ req. No purses newly in epa.
There might be a new from log, in which case we must show there was
a reL1 before. A from log can be made only by a purse mo\>ing out of
epa. Then the BetvveenWorfd constraint B-12, on frornlnEpa, before the
operation gives us the required req.

B-13	 roLogged finite. At most one to log \\Titlen, so finite before gives finite
after.

B-14	 exceptionLogResults in aliLogs. No new exception log result messages.

B-15	 Oeared logs archived. No exceptionLogCJear messages are added, and the
archive is unchanged.

181 28.6.	 LEMMA 'LOGS UNCHANGED'

8-16	 req for each Log. If there are no new logs, then the constraint holds from
the pre-state.
[f a transaction exception is logged, then the purse stams must have been
either epv or epa. From constraints 8-10 and 8-12, there was a req in the
pre-state ether for the transaction which was logged. This req ""ill also be
in the post-state ether.

• 28.5

28.6 Lemma 'logs unchanged'

Lemma 28.2 (logs unchanged) When the archive and the indiVidual purse Jogs
do not change, and when no new req messages are added [Q the ether, the set
of PayDetails representing allihe logs does not change either.

BOpOkay I archive' = archive
J\ req c> ether' = req t> ether
J\ "iI n: dam conAuthPurse •

(conA.uthPurse' n),exLog = (conAuthPursen).exLog
f­

aI/Logs' ~ aI/Logs
J\ roLogged' = toLogged
A (romLogged' " (romLogged

•
Proof:

aIlLogs = archive
u { n : dam conAurhPurse; ld: PayDetails I

ld E (conAuthPurse n) .exLog I
[defn]

= archive'
u { n : darn conAuthPurse'; ld: PayDetails I

Id E (conAuthPurse' n).exLog)
[assumption and <l>BOp}

~ allLogs' Idefnl

allLogs = { n : dar
n pd E allLogs J\

n conAuth
req pd E

Purse; pd
ether}
: PayDetails I

Idefn}

182 CHAPTER 28. 1! TOC LEMMAS

= { n: dam conAuthPurse'; pd: PayDetails J

n pd E allLogs' 1\ req pd E ether' }
[assumption and above]

= al1Logs'
Idefn]

The arguments for toLogged and fromLogged follow in exactly the same way,
.28.6

28.7 Lemma 'abort forward'; operations that first abort

Some concre[(~ operations are \\Tinen as a composition of AhoY(and a simpler
operation starting from eaFrom (StartFrom, StartTo, ReadExceprionLog, Clear­
ExceptionLog, ctc.).

Lenuna 28.3 (abort forward) Where a C operation is ""Tit ten as a composition
of CAbort and a simpler operation starting from eaFrom, and the corresponding
'B operation is strucmred analogously, it is sufficient to prove (hat the simpler
C operation refines the corresponding 'B operation.

(CAhort; COpEa(rom); Rhc;
(V COpEafrom; Rbc. 3 BerweenWorld' • Rbc' 1\ BOpEafrom)

f­

3 BenYeenWorld' • Rbc' 1\ (Abort 9BOpEClfrom)

•
Proof We have already proved in section 28.5 that CAbort refines Abort. Adding
this TO our hypothesis, "...·e get

(CAhort; COpEa(rom); Rhc;
(\1' CAbort; Rbc. 3 Benveen~Vorld' • Rbc' 1\ Abort);
(\1' COpEClfrom; Rbc. 3 Benveen~Vorld' • Rbc' 1\ BOpEafroml

f­

3 BenveenH'orld' • Rbc' 1\ (Abort ~ BOpEafrom)

The hypothesis is now in precisely the fonn required to use lemma 'compose
[orn'ard', (section C.IO) and we do so to prove the consequent.

.28.7

Chapter 29

Correctness proofs

29.1 Introduction

Many of the follmvmg arguments are about constraints of the form

antecedent 0:;. consequent

The correctness arguments are of three kinds:

B~ 1 Argue that the operation leaves the truth values of both antecedent and
consequent unaltered, so that the truth before the operation establishes
the truth afterwards.

B-2	 The operation might make the antecedent true after when it was false
before, by adding a new message 10 a sel, or moving a purse into a set In
this case it is necessary to show thai the consequent is true after.

B-3	 The operation might make the consequent false afler when it was OUe
before, by movtng a purse oul of a set. In Ihis case if is necessary to show
thai the antecedent is false after.

Nole thai we do not need 10 argue thai a constraint cannot be changed by
removing a message: messages stay in the ether once there.

29.2 Correcmess of CStartFrom

StartFromOkay comprises AbortPurse followed by StartFromEa(romPurseOk­
ay at the unpromoted leveL As a result, we can apply lemma 'abort forward'
(section C.8), leaving us to prove the correctness of StartFromEafromPurseOkay.

184	 CH4PTER 29. CORRECTNESS PROOFS

Lemma 'constraint' is not applicable, because StartFromEafromPurseOk­
ay changes status: it moves the purse from eaFrom into epr. Therefore we
have to show that our chosen BetweenWorld' obeys {he constraints.

One 1. message is emiUed, and no logs are recorded.
We can invoke lemma 'logs unchanged', section C?, because no new req

messages are produced, no new purse logs are produced, and (he archive docs
not change. Therefore, the sets aULags, (rornLogged and (oLagged remain un­
changed.

B-1	 req ~ authentic to purse. No new req messages.

B-2 No future reqs. No new req messages.

B-3 No future vals. No new val messages.

B-4 No future aeks. No new ack messages.

8-5 No future from logs. No new logs.

8-6 No future to logs. No ncw logs.

B-7	 from in {epr, epa} ~ no future from logs. There are no new logs, but the
purse moves Into epr, so we must prove that the constraint for this purse
holds (for all other purses in epr, the constraint holds beforehand, and
so holds afterwards). In StartFrom, the post-state pdAuth'.fromSeqNo is
equalw prc-state nextSeqNo. Coupling this with constraint B-5 we have

'r:j pd : fromLogged I pd .(rom = name? •
pd.(romSeqNo < (conA.uthPurse' pd.from).pdAuth.(romSeqNo

Since the logs don', change we have

'r:j pd: (romLogged' I pd.(rom = name? •
pd.('romSeqNo < (conAuthPurse· pd.(rom).pdAulh.('romSeqNo

which proves the cons!raint for purse name?

B~8	 to in {epv, eaTo) ~ no future to logs. No new logs, and the purse moves
into epr.

B-9	 epr =:> ..., val/\, ack. The purse moves into epr, so it is necessary to show
there was no valor ack before.
The pd we are considering is given by

pd == (conAuthPurse' name?).pdAuth

29.3. CORRECTNESS OF CSTARTTO	 IB5

Noting that pd. {rom = name?, the definition of StartFrom then gives us
that

(cOrL4uthPurse name?).nextSeqNo
= {conAuthPurse' name?),pdAuth.{romSeqNo

=:- (conAuthPursepd.(rom).nextSeqNo = pd.{romSeqNo

=:- val pd ~ ether fBen-veenWorld constrainl B-3]
/\ ack pd fi ether [Ben-veenWorld constrain! B-4}

8-10	 req 1\ ---, ack ~ coTnEpv v toLogged.

case =::0:

No new req messages. The purse moved from eaFrom to eprithout

genera ling new logs. Hence, true before implies true after.

case ~:

No purses newly in epv and no new logs. No ads added to the erher.

8-11	 epv 1\ val => fromInEpa v {romLogged. No purses newly in epv; no new
val messages. The purse did not move out of epa.

8-12	 {romlnEpa v (romLogged => req. No purses newly in epa; no new lo~s.

8-13	 {oLogged finite. No new logs.·

8-14	 exceptionLogResults in allLogs. No new log result messages.

8-15 Cleared logs archived. No new exceptiollLogCfear. messages.

8-16	 req for each log. No new elemenls added to fromLogged or toLQgged.

• 29.2

29.3 Correctness of CStartTo

StartToOkay is composed of AbortPurse followed by StartToEafromPurseOkay
at Ihe unpromoled level. As a resull, we can apply lemma 'aborl forward' (sec­
lion e.8), leaving us 10 prove Ihe correclncSS of StartToEafromPurseOkay.

Lemma 'constrainl' is not applicable, because StartToEafromPur~eOkay

moves one purse inlo epv, and il was nOI in lhis slale before. Therefore we
have 10 show that our chosen BerneenWorld' obeys the conslrainls.

One req message is emitled, and no new logs are recorded. We cannot

invoke lemma 'logs unchanged' because we do have a new req message, bUI

conslraint 8-16 gives us Ihe same result This is nOI a circular argument.

186	 CHAPTER 29. CORRECTNESS PROOFS

B-1	 req authentic to purse. One new req, which refers to the name? purse0::>

as the Co purse. q,BOp states that this purse is authentic.

B-2	 No future reqs. SrarrToPurseEafromOka}J emits one req message, which
has its nextSeqNo in it by construction. It also increases nextSeqNo. The
req message meets the constraints because the referenced to purse (itsdD
has a larger nextSeqNo after the operation.

B-3 No future vats. No new val messages.

B-4 No future aeks. No new ack messages.

B-5 No future from logs. No ne~.... logs.

B-Ei No future to logs. No new logs.

B-7	 from in {epr, epa) .::::- no future {rom logs. There are no new logs and the
purse moves into epv, so this constraint does not apply to this purse.

B-8	 to in [epv, eaTo} =:> no future to logs. There are no new Jogs, but the
purse moves into epY, so we must prove that the constraint for this purse
holds (for all other purses in epv, the constraint holds beforehand, and so
holds afterwards). In SfartTo, the post-state pdAuth'. toSeqNo is equal to
pre-state nextSeqNo. Coupling this with constraint B-6 we have

V pd: toLogged I pd. to = name? •
pd.toSeqNo < (cOnAuthPurse' pd,to).pdAuth.roSeqNo

Since the logs don't change, we have

V pd: lOLogged' I pd.to = name? •
pd .toSeqNo < (conAuthPurse' pd. to) ,pdAuth_ toSeqNo

\....hich proves the constraint for purse name?

B-9 epr ~ ---, val /\ ---, ack. No purses newly in epr; no new vals or acks.

B-lO	 req A ---, ack eo) tolnEpv v roLogged. We claim that there is a ne\.... reLl for
\vhich there is no ack in the ether, and the purse moves into epv. As a
result, we prove the consequent for each irnp!icalion direction.

case 0::.:

We must prove tolnEpv v toLogged. The purse moves into epv, thus

establishing the consequent.

case ¢:::

The purse moves into epv, so we must shmv that there is a req, but no

ack, for the purse's pdAuth'. From ScartTo, we have m! = req pdAuth'.

187 29.3. CORRECINESS OF CSTARJTO

so the req is in the ether. It is then necessary to show there is no ack
before. The pd we arc considering is given by

pd ~~ (conAuthPurse' name?).pdAuth

Noting that pd.to = name?, the definition of StartTo gives us that

(conAuthPurse name?) .nextSeqNo
= (conAuthPurse' name?) .pdAuth. toSeqNo

==:> (conAuthPurse pd. to) .nextSeqNo = pd. toSeqNo

==:> ack pd f£ ether [Between World constraint B-4]

Hence, we have the corresponding req but no ack.

B-ll epv /\ val ==:> fromlnEpa v {romLogged. To prove this constraint, we
demonstrate that the antecedent is false: the purse moves into epv, so we
must show that there is no val before. The pd we are considering is given
by

pd = = (conAuthPurse' name?) .pdAuth

Noting that pd.to = name?, the definition of StartTo gives us that

(conAuthPurse name?) .nextSeqNo
= (conAuthPurse' name?).pdAuth.toSeqNo

=:- (conAurhPursepd.to).nextSeqNo = pd.toSeqNo

=:- val pd f£ ether [BetweenWorld constraint B-3]

Hence, there is no val before, and no val is emitted by this operation.

B-12 {romlnEpa v fromLogged 0::> req. No purses newly in epa; no new logs.

B-13 toLogged finite. No new logs.

B-14 Read exception record messages are logged. No new log result messages.

B-1S Cleared logs archived. No new exceptionLogClear messages.

B-16 req for each log. No new elements added to {romLogged or toLogged.

• 29.3

188	 CHAPTER 29. CORRECTNESS PROOFS

29.4 Correctness of CReq

Lemma 'constraint' is not applicable, because a purse moves from epr to epa
and em..its a val message. Therefore we have to show that our chosen BelWeen­
World' obeys the constraints.

We can invoke lemma 'logs unchanged', section C.7, because no new req
messages are produced, no new purse logs arc produced, and the archive does
nol change. Therefore, the sets allLogs, fromLogged and toLogged remain un­
changed.

B-1	 req =:> authentic to purse. No new req messages.

B-2 No future reqs. No new req messages.

B-3	 No future vals. Req puts a va] in {he ether'. Let pd be the pay details of
the val. Hence,

pd = = (conAuthPurse name?).pdAuth

m?=reqpd

m! = valpd

To show that the new val message upholds this constraint, we have to
demonstrate that this is not a future message\Vith respect to purse name?:

pd.roSeqNo < (conAurhPurse.' pd.ro).nexrSeqNo
pd.fromSeqNo < (conA,uthPurse' pd.{rom).nexcSeqNo

Since req pd is in the ether, from B-2 we can then satisfy the requirement
for the to sequence number. Since the pre-state status was err, using
purse constraint P-2c we know that

pd.{romSeqNo < nextSeqNo

Since Req does not aher nextSeqNo, we thus have

pd.{romSeqNo < (conAuthPurse' pd.from).nextSeqNo

B~4 No future acks. No new ack messages.

B~5	 No future from logs. No new logs.

B~6 No future to logs. No new logs.

B~7	 from in {epr, epa} ~ no future from logs. No new logs.
The from purse mOVes from epr into epa. BetweenvVorld constraint B-7
held on epr.

29.5. CORRECTNESS OF CVAL	 189

B-B	 CO in {epv, eaTo} ~ no future to logs. No ne".... logs; no purses newly in epv
or eaTo.

B-9	 epr ~ -, val/\, ack. No purses newly in epr; no new acks.
We need to show the emitted val does not have the same pd as the stored
pdAueh of any purse currently in epr. It has the same pd as the pdAurh
stored in the purse from which it was emitted, which moved from epr
and is now in epa. No other purse can also have this pdAuth, because
pdAuth includes the name of the purse (ConPurse constraint P-2al, and
purse names are unique.

B-IO req 1\, ack ~ toInEp\, v toLogged.

case ;=:.: No new req or ack messages.
case <0:: No purses newly in epv; no new logs.

B-ll epv /\ val ~ {romlnEpa v fromLogged. The from purse emits a val. It
also moves mto epa, thereby establishing the constraint.

B-12 frmnJnEpa v {romLogged =:> req. The purse moves into epa. The opera­
tion precondition gives the presence of the required req.

B-13 toLogged finite. No new logs.

B-14 Read exception record messages are logged. No new log result messages.

B-15 Cleared logs archived. No new excepfionLogClear messages.

B-16 req for each log. No new elements added to {romLogged or toLogged.

• 29.4

29.5 Correctness of eVal

Lemma 'constraint' is not applicable, because a purse moves from epv to ea­
Pllyee and emits an ack message. Therefore we have to show that our chosen
BetweenWorld' obeys the constraints.

We can invoke lemma 'logs unchanged', section C7, because no new req
messages are produced, no new purse logs are produced, and the archive does
not change. Therefore, the sets allLogs, fromLogged and toLogged remain un­
changed.

B-1 req ~ authentic CO purse. No new req messages.

B-2 No future reqs. Val emits no ne" req messages.

B-3 No future vals. Val emits no ne val messages.

190	 CHAPTER 29. CORREC7NESS PROOFS

B-4	 No future acks. ValOkay puts an ack in the ether', but it has the same pd
as the val read from the ether, which obeys BetweenWorld constraint B-3.
So the ack's pd obeys the constraint.

B-5 No future from logs. No TIc..•.. togs.

B-6 No future to logs. No new logs.

B-7 (rom in {epr, epa} =:> no future from logs. No new logs; no purses newly

in epr or epa.

B-8 ro in {epv, eaTo) =:> no future to logs. No new logs.
The to purse moves from epv into eaTo. BetweenWorld constraint B~8

held on epv.

B-9 epr =:> --, val /\ -, ack. No purses newly in epr.
We need to shm\' the emitted ack does not have the same pd as any
purse currently in epr. It has the same pd as the val message, and so
BefWeenWorld constraint B-9 on val gives us the required condilion.

B-10 req /I .., ack ~ tolnEpv v toLogged.

case =::-: ValOkay emits an ack, making the antecedent false.
case e::: From lemma 'notLoggedAndln', secrion C.12, the purse can­
not be in toLogged. ValOkay moves the purse out of epv MthoU(
logging, making the antecedent false.

B-11 epY /\ val ~ (romlnEpa v (romLogged. No purses newly in epv; no new
val messages; no purses leaVing epa, no changing logs.

B-1.? (romlnEpa v (romLogged ~ req. No purses newly In epa; no new logs.

B-13 toLogged finite. No new logs.

8-14 Read exception record messages are logged. No new log result messages.

8-15 Cleared logs archived. No new exceptionLogClear messages.

B-16 req for each log. No new clements added to fromLogged or {oLogged.

• 29.5

29.6 Correcmess of CAck

Lemma 'constraint' is not applicable, because a purse moves from epa to ea­
Payer. Therefore we have to show Ihat our chosen BetweenWorld' obeys the
constrainls.

It emits a 1.. message. We can invoke lemma 'logs unchanged', section C.7,
because no new req messages are produced, no new purse logs are produced,

29.6.	 CORRECTNESS OF CACK 191

and the archive does not change. Therefore, the sets allLogs, fromLogged and
toLagged remain unchanged.

B-1 req =} authentic to purse. No new req messages.

B-2 No future reqs. No new req messages.

B-3 No future vals. No new val messages.

8-4 No fumre acks. No new ack messages.

8-5 No future from logs. No new logs.

B-6 No future to logs. No new logs.

B-7 from in {epr, epa1 => no future from logs. No purses ne\\'ly in epr or epa.

8-8 to in {epv, eaTa] =} no future to logs. No purses newly in epv or el1To.

8-9 epr =) ..., val/\, ack. No purses newly in epr; no new vats or acks.

8-10	 req /\ ..., ack ¢:::> toInEpv v toragged.

•	 case:o:>: No new reqs; no new acks; no purses moving out of eflY, no
logs lost.

•	 case .¢::: No purses newly in epv; no new logs.

B-11	 epv /\ val => (romInEpa v (romLogged. No purses newly in epv; no new
vals.

The purse moves out of epa without logging, so we need to show thallhe
antecedent is false for this purse. It is sufficient to show the antecedent is
false before the operation (since the operation does not change if). There is
an ack message, AckOkay's inpur, so BetlVeenWorld constraint 8-10 gives
us pd f tolnEpv.

B-12	 fromlnEpa v (romLogged => req. No purses newly in epa; no new logs.

8-13	 toLogged finite. No new logs.

8-14	 Read exception record messages are logged. No new log result messages.

8-15	 Cleared logs archived. No new excepCionLogClear messages.

8-16	 req for each log. No ne\-',' elements added to fromLogged or toLogged.

•	 29.6

192	 CHAPTER 29. CORRECTNESS PROOFS

29.7 Correctness of CReadExceptionLog

ReadExceptionLogOkay is composed of AbortPurse followed by ReadExceprion­
LogEa{romPurseOkayat the unpromoted levd As a result, we can apply lemma
'abort forward' (section C.8), leaving us to prove the correctness of ReadExcept­
ionLogEafromPurseOkay.

This operation does not change any purse, but it does emit an exceptioh­
LogResult message. As a result, lemma 'constraint' is not applicable.

We can invoke lemma 'logs unchanged', section C7, because no new req
messages are produced, no new purse logs are produced, and the archiVe does
not change. Therefore, the sets aliLogs, fromlDgged and toLogged remain un­
changed.

B-1 req ~ authentic to purse. No new req messages.

B-2 No future reqs. No new req messages.

B-3 No future vals. No new val messages.

B-4 No future aeks. No new aek messages.

B-S No future from logs. No new logs.

B-6 No future to logs. No new logs.

B-7 (rom in {epr, epa} ~ no future from logs. No purses newl}' In epr or epa.

B~8 to in {epv, eaTo] no future to logs. No purses newl}' in epv or eaTo.
:0:>

B-9 epr 0::) ..., val /\ ..., aek. No purses newly in epr; no new vals or £leks.

£-10 req II ..., aek <=:> fOlnEpv v roLogged.

• case ~: No new reqs; no new £leks; no purses moving out of epv, no
logs lost.

• case ¢::': No purses newly in epv; no new logs.

£-11	 epv II val ~ frornInEpa v (romLogged. No purses newl}' in epv; no new
vals; no purse moves out of epa; no logs lost.

£-12	 (romlnEpa v fromLogged 0::) req. No purses newly in epa; no new logs.

B-13	 [oLogged finite. No new logs.

B~14	 Read exception record messages are Jogged. There rna}' be a new ex­
cepttonLogResult message. If this is so, then we must show that this refers
to a stored exception log record. From ReadExceptionLogPurseEafrom­
Okay, we have

m! E {.l} U {ld : exLog' • exceptionLogResu1t(name, Id)}

193 29.8. CORRECTNESS OF CCL£4REXCEP7IONLOG

Hence, if there is an exceptionLogResulr message, it refers to an exception
record which is in the log of purse name?, and so is in al/Logs'. This
upholds the constraint.

B-1S Cleared logs archived. No new exceptionLogClear messages.

8-16 req for each log. No new elements added to (romLogged or toLogged.

• 29.7

29.8 CorreClness of CCiearExceptionLog

ClearExceptionLogOkay is composed of AbonPurse followed by ClearEx(ept­
ionLogEafromPurseOkay at the unpromoted level As a result, we can apply
lemma 'abort forward' (section C.8), leaving us to prove the correctness of
ClearExceptionLogEafromPurseOkay.

The operation changes only one purse, and emits a 1.. message. The only
change to the purse is that its exception log is cleared. However, we havl' the
pre-condition that the input message matches the the exception log (exLog).
The input message comes from the ether, and hence from constraint 8-15 We
know that the pu:rse's exception log must have already been recorded in the
archive. In this way, clearing the purse's log does not affect allLogs. So lenuna
'constraint' (section C.6) is applicable.

• 29.8

29.9 Correctness of CAuthoriseExLogClear

Lemma 'constraint' is not applicable, because an exceptionLogC!ear message is
emitted to the ether. So, we must show that the constraints hold afterwards.

No purses are changed.
We can invoke lenuna 'logs unchanged', section C.7, because no new req

messages are produced, no new purse logs are produced, and the archive does
not change. Therefore, the sets allLogs, (romLogged and toLogged remain un­
changed.

B-1 req:::;, authentic to purse. No new req messages.

B-2 No future reqs. No new req messages.

B-3 No future va/so No new val messages.

8-4 No future acks. No new ack messages.

8-5 No future from logs. No new logs.

194	 CHAPTER 29. CORRECTNESS PROOFS

B-6 No future to logs. No new logs.

B-7 (rom in {epr. epa] ~ no future from logs. No purses newly in epr or epa.

B-8 to in {epv, eaTo} ~ no fumre to logs. No purses newly in epv or earo.

B-9 epr ~, val /\ --, ack. No purses newly in epr; no new vals or acks.

8-10 req /\ --, ack ¢:::' tolnEpv If (oLagged .

•	 case~: No new reqs; no new acks; no purses moving out of epv; no
logs lost.

•	 case c=: No purses newly in epv; no new logs.

8-11	 epv /\ val::) fromInEpa v frornLogged. No purses newly in epv; no new
vals; no purse moves out of epa; no logs lost.

B-12	 fromlnEpa v fromLogged ::) req. No purses newly in epa; no new logs.

8-13	 roLogged finite. No TIew logs.

8-14 Read exception record messages are logged. No new exception log read
messages.

8-15 Cleared logs archived. There is a new exceprionLogCrear message. How­
ever, the operation contains the pre-condition that the log records for
which the message is generated musl be in the archive. Hence, the con­
straint is upheld.

B-16	 req for each log. No new elements added to {romLogged or (oLogged.

29.10 Correctness of CArchive

This operation archives the contents of some of the excepcionLogResulc mes­
sages in the ether. It does nol change any purse, or change the ether.

From B-14, we know that those exception records referred to by the ex­
ceptionLogResu/t messages are already in u11L09s. As a result, adding them to
oTchtvedoes nol change allLogs. This operation does not change any purse, and
does not emit a payment details message. So lemma 'constraint' is applicable.

• 29.10

.29

Chapter 30

Summary

The proofs presen t cd in this report constHute a proof that the architecrural
design given by the C model is secure v.-ith respect to the security properties as
described in the Formal Security Policy Model (the .J\ model) and the Security
Properties.

We have presented the proofs in a logical sequence, but even so, it can
be hard to be sure that no steps have been missed. The following table gives a
hierarchical view of the proof, showing at each level how a proof goal is satisfied
by a number of subgoals. Each line in the table is one proof goal, together with
a section reference for where that proof goal is addressed.

If the proof goal has child goals (goals one level of indent deeper) then the
section reference explains how it is that the goal can be satisfied by its collection
of subgoals. For example, goal 1.4 (AbTransfer upholds properties) is proved
by proving three subgoals: 1.4.1 (SP 1), 1.4.2 (SP 2.1) and 1.4.3 (SP 6.21. The
reference for goal 1.4 is to section 2.4, where it is argued that we have only (Q

prove the three SPs 1,2.1 and 6.2 because all other SPs can be proved trhially.
If a goal has no further subgoals, its section reference is the proof of this

goal directly.
H can be seen that all proof goals have section references, and all steps

have been addressed.

System secure by definition
1. Abstract preserves security properties by definition
1.1. AbIgnore upholds properties 2.4
1.2. AbTransfer upholds properties 2.4
1.2.1. SP 1 2.4
1.2.1.1. Okay 2.4.1

196

1.2.1.2. Lost

l.2.2. SP 2.1

1.2.2.1. Okay
1.2.2.2. Los.
2. Concrete preserves security properties
2.1. Each concrete operation upholds proper­
ties

3. Abstract operations are lOtal
4. A is refined by B
4.1. [nit

4.1.1. state inHialisation
4.1.2. input initialisation
4.2. Applicabili.y
4.2.1. pre AOp = true

4.2.2. simpler applicability
4.2.2.1. pre BOp ~ true
4.3. Correctness
4.3.1. pre AOp = true
4.3.2. simpler correctness
4.3.2.1. AbTransfer
4.3.2.1.1. Ignore
4.3.2.1.2. Okay and Lost
4.3.2.1.2.1. exists·pd
4.3.2.1.2.2. eXists-chosenLost
4.3.2.1.2.3. check-operation
4.3.2.2. Ablgnore
4.3.2.2.1. StartFrom

4.3.2.2.1.1. Ignore
4.3.2.2.1.2. Abort
4.3.2.2.1.3. Okay
4.3.2.2.1.3.1. Abort
4.3.2.2.1.3.2. EaPayer operation
4.3.2.2.1.3.2.1. exis.s·pd
4.3.2.2.1.3.2.2. exists-chosenLost

4.3.2.2.1.3.2.3. check-operation
4.3.2.2.1.3.2.3.1. check-operation-ignore
4.3.2.2.2. StartTo

CHAPTER 30. SUMMARY

2.4.3

2.4
2.4.2

2.4.4
by definition
2.4

8.2.2

by definition
by definition
11.2

11.3

9.2.3

8.2.2
by definition
8.3.2

9.2.4

8.2.2

by definition
9 and 14.3
14.7
(.1

18.4

18.5
18.6

9 and 14.2
14.3

14.7

14.8
(,5

14.8
(.1

16.4

16.5
(,3

16.6

14.3

197

4.3.2.2.2.1. Ignore
4.3.2.2.2.2. Abort

4.3.2.2.2.3. Okay

4.3.2.2.2.3.1. Abort

4.3.2.2.2.3.2. EaPayer operation

4.3.2.2.2.3.2.1. exisls-pd
4.3.2.2.2.3.2.2. cxists-chosenLost

4.3.2.2.2.3.2.3. check-operation
4.3.2.2.2.3.2.3.1. check-operation-ignore

4.3.2.2.3. Val
4.3.2.2.3.1. Ignore
4.3.2.2.3.2. Okay
4.3.2.2.3.2.1. cxists-pd
4.3.2.2.3.2.2 exists-chosenlost
4.3.2.2.3.2.3. check·operation
4.3.2.2.3.2.3.1. check-opcration-ignorc
4.3.2_2.4. Ack
4.3.2.2.4.1. Ignore
4.3.2.2.4.2. Okay
4.32.2.4.2.1. exists-pd
4.3.2.2.4.2.2 exists·chosenlost
4.3.2.2.4.2.3. check-operation
4.3.2.2.4.2.3.1. chcck-operation-ignore
4.3.2.2.5. ReadE.xceptionlog
4.3.2.2.5.1. Ignore
4.3.2.2.5.2. Okay

4.3.2.2.5.2.1. AbOrl
4.3.2.2.5.2.2. EaPayer operation

4.3.2.2.5.2.2.1. lemma lost unchanged
4.3.2.2.5.2.2.2. check-operation
4.3.2.2.5.2.2.2.1. check-operation-ignorc
4.3.2.2.6. ClearExceptionlog
4.3.2.2.6.1. Ignore
4.3.2.2.6.2. Abo"
4.3.2.2.6.3. Okay
4.3.2.2.6.3.1. Abo"
4.3.2.2.6.3.2. EaPayer operation

14.7
14.8
C.5
14.8
C.l
17.4
17.5

C.3
17.6
14.3

14.7

C.l and 19.2
19.3
19.4
C.3
19.5 and on

14.3
14.7
C.I and 20.2

20.3
20.4
C.3
20.5 and on
14.3

14.7
C.5
14.8
C.l and 21
C.2

C.3
21.3

14.3
14.7
14.8
C.S
14.8
C.l and 22

198

4.3.2.2.6.3.2.1. lemma lost unchanged
·U.2.2.6.3.2.2. check-operation
4.3.2.2.6.3.2.2.1. check-operation- ignore
4.3.2.2.7. AuthoriseExLogClear

4.3.2.2.7.1. Ignore
4.3.2.2.7.2. Okay

4.3.2.2.8. Archive

4.3.2.2.9. Ignore

4.3.2.2.10. Increase

4.3.2.2.11. Abort

-1.4. Finalisation

4.4.1. output finalisation

4.-=i.2. state finalisation

5. B is re Fined by C

5.1. !nit

52. Applicability

5.2.1. pre COp = true

5.3. Correctness

5.3.1. Simpler correctness
5.3.1.1. StartTo is refined
5.3.1.1.1. Okay branch
5.3.1.1.1.1. Eafrom branch
5.3.1.1.1.2. Abort branch
5.3.1.1.2. Cignore branch
5.3.1.1.3. CAbort branch

5.3.1.2. StartFrom is refined
5.3.1.2.1. Okay branch

5.3.1.2.1.1. Eafrom branch
5.3.1.2.1.2. Abort branch
5.3.1.2.2. CIgnore branch
53.1.2.3. CAbort branch
5.3.1.3. Req is refined

5.3.1.3.1. Okay branch

5.3.1.3.2. Clgnore branch
5.3.1.4. Val is refined

5.3.1.4.1. Okay branch

5.3.1.4.2. CIgnore branch

CHAPTER 30. SUMMARY

C2

C3
22.3

14.3

14.7
23.2

24.2

14.7

15.3
14.8
by definition

12.2

12.3
established rules 25.2
27.1

27.3

8.4.2

25.2.5
25

28.1
29.3 and Cl0

29.3

28.5
28.2
28.5

28.1
29.2 and CI 0

29.2

28.5
28.2
28.5
28.1

29.4

28.2

28.1

29.5
28.2

199

5.3.1.5. Ack is refined
5.3.1.5.1. Okay branch

5.3.1.5.2. CIgnore branch
5.3.1.6. ReadExceptionlog is refined
5.3.1.6.1. Okay branch
5.3.1.6.1.1. Eafrom branch
5.3.1.6.1.2. Abort branch
5.3.1.6.2. Clgnore branch
5.3.1.7. ClearExcep[ionLog is refined
5.3.1.7.1. Okay branch
5.3,1.7.1.1 Eafrom branch
5.3.1.7.1.2. Abort branch
5.3.1.7.2. CIgnore branch
5.3.1.7.3. CAbort branch
5.3.1.8. AuthoriseExLogClcar is refined
5.3.1.8.1. Okay branch

5.3.1.8.2. Clgnore branch
5.3.1.9. Archive is refined
5.3.2. Totality of BOp

5.4. Finalisation

28.1
29.6

28.2

28.1

29.7 and C10

29.7
28.5
28.2

28.1

29.8 and C10

29.8

28.5

28.2

28.5

28.1

29.9

28.2

29.10

8.3.2

27.2

o ~
N

Appendix A

Proof Layout

A.I Notation

The notation

Abs!; Cone

says the the Abs operation is refined by the Cone operation.
In order to prove that Abs is indeed validly refined by Cone, we need to

prove various 'correctness conditions', expressed as theorems (section 9).
That the predicate

VDIP.Q

is always true is expressed as the theorem

f-VDIP.Q

which is equivalent to

DIPf-Q

This can be read as a theorem that states that, under hypothesis DIP (dec­
larations D constrained by predicates P), consequent Q (a predicate) has been
proved to hold. DIP is usually ""Tilten as a schema text, and Q may be written
using a schema as predicate.

A.2 Labelling proof steps

In labelling various steps of the proofs below, we use the following notation.

204 APPENDL\ A PROOF LAYOUT

• ldefn PI: from the definition of (he schema predicate P

• Ih}'PI: from the hypothesis of the theorem

• [prop xl: from a property of the Z operator x

• [name]: usc of inference rule name

Appendix B

Inference rules

The proofs presented are rigorous, but informal, in that they have not been
checked by a macWne proof-checker.

We present below the sort of inference rules we have used. Such explicit
use of inference rules improves the readability of the proofs by showing exactly
what steps of mathematical reasoning are being made. These inference rues
are not intended as a definition of the logic being used, but as guidance about
the reasoning steps.

The Inference rule

PI P2 ... PM
[rulename]

C

says that conclusion C can be inferred if every premiss Pi can be proved. (The
rule name is used for labelling proof steps.)

The inference rule

PI,P2, ...• PrJ
I ruJename]

C

says that conclusion C can be inferred if any premiss Pi can be proved.

B.l Universal quantifier becomes hypothesis

SI-P
[uni hyp)

'r'Vs.P

206 APPENDIX B. INFERENCE RULES

B.2 Disjunction in the hypothesis

Given an hypothesis contain.ing a disjunct, it is sufficient to prove the theorem
for each case.

RI--P Sf-P
[hyp disj]

RVSf-P

B.3 Disjunction in the consequent

Given a consequent containing a disjunct, it is sufficient to prove the theorem
for only one case (since this is a harder thing to prove).

R e- P, R e- Q
[consq dis) J

Re-PvQ

B.4 Conjunction in the consequent

Given a consequent containing a conjunct, it is suffiCient to prove the theorem
for each case separately.

Re-P Rf-Q
[consq con}]

Rf-P"Q

We can add canjuncts to the consequent (since this is a harder thing to prove).

Re-P"Q
(strengthen consq]

Re-P

B.5 Cut for lemmas

Cut is a way to introduce new hypotheses, and discharge them as lemmas.

R;DIQe-P Re-3D.Q
[cut)

Re-P

8.6. mIN 207

B.6 Thin

We can remove assumptions.

I-R
[thin]

PI-R

B.7 Universal Quantification

Universals can be replaced by a particular choice in the hypothesis

Xl EX=;> P(Xl) f- R
[hyp un; J

\I x: X • P(x) I- R

B.8 Negation

In order to prove something, yOll can assume its negation.

~PI-

[negaHon]
I-P

B.9 Contradiction

If R can be proved, assuming its negation allows you to prove anything (because
false:::;> anything).

I-R
[contradiction]

-, R I- anything

B.IO One Point Rule

ill order to prove there exists a value with a property, it is enough to exmbit
such a value.

I- P['/x]
[one point]

1--3x-Pl\x==t

proVided x is not free in t.

208	 APPENDIX B. INFERENCE RVIES

B.ll	 Derived Rules

We find it useful to derive some compound rules, These make the proofs in the
body of the document easier to follow, and can themselves be proved from the
inference rules above.

B.11.1	 One point cu t

P~ Q
[consq exists]

P~3P.Q

and very similar!}'

P~ Q
[consq exists]

P ~ (3 PI A Q

B.l1.2	 Existential in the hypothesis

x: X; DIP f ­
[hyp exisrs]

DI3x:X.Pf­

B.12 Proof of the Derived Rules

We derive each of the deriv('d rules above from the main inference rules.

8.12.1	 Derivation of One point cut

We can derive the first one-point cut rule ([consq exisrsl) as follows. First, we
expand P into a declaration D and a predicate p.

Dlpt-3D_pAq [starting point)

Dip f- 3D'. p[D'/D] A q[D'/D] [rename bound declaration]

DIp f- 3 D' • p[D' / DJ A q[D' / DJ A D' ~ D (strengthen consequent]

Dip f- p[D' /D][D/D'] A q[D' /D][D/D'] [one point rule]

Dlpf-PAq [simplify renamingI

Dlpf-q [discharge p from hyp]

The second onepoint-cut rule follows exactly the same ",'ay. except that q is not
bound by the existential, and so none of the renamings alters it.

209 8.12. PROOF OF THE DERlVED RULES

8.12.2 Derivation of existential in the hypothesis

D I (3 x: X • P) ~ [starting point]

D; x: X I P A (3 x : X • P) ~ D I (3 x: X • P) ~ 3 x: X • P
[cut in x : X I PI

D; x: X I P" (3 x : X • P) ~ [discharge side lemma from hypl

D;x:XIP~ (chin]

as required.

Appenclix C

Lemmas and their proofs

C.l Lemma 'deterministic'

Lemma 1 (deterministic) The correctness proof for a general Okay branch con­

sists of the follm\o'ing three proof obligations: 1

exists-pd:

<PBOp; BOpPurseOkay; RabOur; RabCl'; RabIn
f­

3 pdThis : PayDerails • l'

exists-chosenLost:

<PBOp; BOpPurseOkay; RabOur; RabClPd'[pdThis/pdThis']; RabIn I
l'

1­

3 chosenLost : [J!l PayDetails • Q 1\ chosenLost ~ maybeLos{

(:heck-operation:

<P BOp; BOpPurseOkay; RabOut; RabCIPd' [pdThis / pdThis'];

AbWorld; RabClPd; RabIn I

1'AQ

f­

AOp

•
IUSI'd in: lemma 'Ablgnore'. section 14.6; lemma 'Ignore', section 14.7; lemma 'Abon refines

AbIgnore', section 14.8; used to simpbfr every ;\.:B operatIon proof.

212 APPENDIX C LEMMAS

Proof:

See section 14.4.5 .

• C.1

C.2 Lemma 'lost unchanged'

L~mma 2 (lost unchanged) For BOpSLos{ operations, where we have that may­
beLosr' = maybeLost and defjnitelyLosr' = definitelyLost, the proof obligations
exists.pd and exists-chosenlost are satisfied automatically by the instantiation
of the predicates 'P and .Q as: 2

'P ~ true

.Q ¢o} chosenLosl = chosenLos£'

•
Proof:

See section 14.5

• C.2

C.3 Lemma 'AbIgnore'

Consider an operation BOpIg which refines AbIgnore. The operation should
hare the folloVoling properties.

BOplg is a promoted operation, and thus alters only one concrete purse.

for any purse, the name is unchanged.

the domain of corzAuthPurse is unchanged (by construction of the promo­
tion)

for any purse, either nextSeqNo is unchanged, or increased.

Where these properties hold for BOpIg, we can apply lemma Ablgnore.

'Used in ExceptionLogEnquiry, chapter 21; bceptionLogClear, chapter 22.

CA, LEMMA 'ABOR T REFINES ABIGNORE' 213

Lemma 3 (AbIgnore) For a BOpIg operation, the check~operation proof obliga­
tion reduces to 3

<l>BOp; BOpIgPurse; RabClPd'[pdThisjpdThis'); AbWorld; RabClPd I
'PAQ

l-

V n: domabAuthPurse.

(abAuthPurse' n).lost = (abAuthPursen).lost

1\ (abAuthPurse' nl.ba/ance = (abAuthPursenl.balance

•
Proof:

See section 14.6.

• C.3

C.4 Lemma 'Abort refines AbIgnore'

Lemma 4 (Abort refines AbIgnore) Concrete Abort refines abstract AbIgnore.4

Abort; Rab'; RabOut f- 3 AbWorld; a?: AIN • Rab 1\ RabIn 1\ AbIgnore

•
Proof:

See section 14.8.

• C.4

C.S Lemma 'abort backward'

Lemma 5 (abort backward) Where a concrete operation is written as a compo­
sition of AbortPurseOkay and a simpler operation starting from eaFrarn, it is
sufficient to prove that the promotion of the simpler operation alone refines
the relevant abstract operation. S

lUsed in: 'Ignore', section 14.7; lemma 'Abort refines AbIgnore', secrion 14.8; used to slmpllJy
every .J1.-:B opera non proof that refines Ablgnore.

"'Used In: lerruna 'abort bacTh·ard', section c.s
sUsed in: SrartFrom, section 16; StartTo, section 17; ClearExceprwnLog, section 22; RMdEx­

ceprionLog, section 21

214 APPENDIX C. LEMMAS

(3l'iConPurse. 4>BOp 1\ (AbortPurseOkay ~ BOpPurseEafromOkay));
Rab'; RabOut;
('1 BOpEa(romOkay; Rab'; RabOut •

3 AbWorld; a? : AIN • Rab A RabIn A AOp)
~

3 AbWorld; a? : AlN • Rab A RabIn A AOp

•
Proof:
See section 14.9.

• C5

C6 Lemma 'constraint'

Lemma 6 (constraint) If an operation does not change purse status and does
not change the presence of paylllent detail messages in the ether (either by not
emitting such a message, or by emiHing an already existing message), then it
preserves the Bern'eenWorld constraints. 6 •

Proof:

See section 28.3.4 .

• C.6

C7 Lemma 'logs unchanged'

Lemma 7 (logs unchanged) When the archive and the individual purse logs do
not change, and when no new req messages are added to the ether, the set of
PayDetails representing all the logs does not change either. 7

BOpOkay I archive' = archive

1\ (ran req) nether' = (ran req) nether.

1\ 'V n: dom conAuthPurse.

(conAuthPurse' n).exLog = (conA.uthPursen).exLog
~

allLogs' = allLogs
1\ toLogged' = toLogged
1\ {romLogged' = {romLogged

6Used in: Increase. section 28.4; CClearExceprionLog, section 29.8; CArchlve, section 29.10.
7Used in: lemma 'constramt', section 28.3.4; CStartFrom, section 29.2; CReq, section 29.4;

n'a/, section 29.5; CAck, section 29.6; CReadfueprionLog, section 29.7; CAurhonseExLogClear.
Sl'ction 29.9.

215 C.S. LFMMA 'ABORT FOR WARD'

•

Proof:

See section 28.6.

• C.7

C,8 Lemma 'abort forward'

Lemma 8 (abort forward) Where a C operation is written as a composition of
CAbort and a stInpler operation starling from eaFrom, and the corresponding
B operation is structured similarly, H is sufficient to prove that the simpler C
operation refines corresponding B operation 8.

(CAbort; COpEa{rom); Rbc;
('rJ COpEafrom; Rbc. 3BerneenH/orld' • Rbc' 1\ BOpEafromJ

f­

3 BelWeenWorld' • Rbc' /\ (Abort '9 BOpEa{rom)

•
Proof:

See section 28.7.

• C.8

c,g Lemma 'compose backward'

Lemma C.l (compose backward) If, under the backwards refinement rules, a
concrete operation COp} is a refinement of abstract operation AOPl , and COpz
is a refinement of AO~2, then their composition is a refinement of the abstract
composition 9.

(COpl ~ COP2); R'; ROut;
('I COPl; R'; ROut. (3 A; AIn. R A RIn A AOPl));
('I COp,; R'; ROut. (3A; AIn. R A RIn A AOp,))

f­

3 A; AIM' R A RIn A (AOPl ; AOp,)

•
8Used in: CSf&u-rFrorn, section 29.2; CStartTo, secnon 29.3; CRead£:(ceptionLog, section 29.7;

CClearExceprionLog, section 29.8.
9U!.ed in: lemma 'abort backward', section C.5.

216 APPENDLl(C UMM45

Proof:

This result is reasonably self-evident, from the definition of refinement in terms
of complete programs.

We show that the particular form of the theorem holds here. Without loss
of generality, assume that the concrete and abstract state schemas have a single
component, c and a respectively. (A multi-component state is isomorphic to a
single component state consisting of all the mU1U-components bundled into a
single schema or Cartesian product.)

Expand the compositions, and rename the quantified variables in the hy­
pothesis.

13 Co· COpIieole'] /\ COp, [eole]); R'; ROut;
I \I COPI [cole']; Ro; ROut. 13.'1; AIIl. R /\ RIll A AOPI [aola']));
(\I COp,[eole]; R'; ROut. 13.'10; AIIl • Ro /\ RIll A AOP2[aola]))

~

3.'1; AIIl. R /\ RIll /\ (3.'10. AOPI[aola'] /\ AOp,[aola])

Use lhyp exists(to drop the 3 in the hypothesis, then simplify.

COPl [Cole']; COp,[eole]; R'; ROut;
I\lCOPI[eole']; Ro; ROut.

(3.'1; .'1111. R /\ RIIi/\ .'1OPl[aola']));
(\I COp, [cole]; R'; ROut.

13.'10; AIIl. Ro /\ RIll /\ AOp,[aola]))
~

3 A; AIn. R 1\ RIn 1\ (3 Ao • AOPI lao/a'] 1\ AOp2[aO! a])

Use D 1\ ('r;f D • P) =:> P (0 simplify the second universal quantifier in the
hypothesis.

COPl [Cole'); COp,[eole]; R'; ROue;

(\I COPL[eole']; Ro; ROut.

(3 A; AIIl. R /\ RIll /\ AOpIiaola'])) I

3Ao; AIn. R(J 1\ RIn 1\ AOpz[ao!a]

~

3.'1; AIIl. R /\ RIll /\ (3.'10. AOPI[aola'] 1\ .'1Op,[ao/a])

217 Cl~ LEMMA'CO~POSEFORWARD'

Use [hyp eXists] to drop the 3 in the hypothesis, then simplify.

COI'l [co/c']; COp,[co/c]; Ro: R'; ROut; RIn; AOp,[ao/a]:

(\f COpll co/c']; Ro; ROut.

(3A; Aln.RARInAo4Opl[ao/a'J)

f ­

3 A: AIn' R A RIn A (3 Ao • AOpI[ao/a'] A AOp,[ao/a])

Repeat the previous three steps to simplify the remaining quantifier in the hy­
pothesis.

CDI'I [co/c'J: COp2[CO/C]; R; Ro; R'; ROue; RIn:

0401'1 [ao/a'J; AOp2[ao/a]

f ­

304; Ain. R A RIn A (3 Ao' o4OpI[ao/a'] A AOp,[ao/a])

Move the inner 3 in the conscquem outwards.

COp,[co/c']; COP2[cO/C): R; Ro; R'; ROue; RIn;

0401'1 lao/a']; A01'2[aO/a]

f ­

3 A; .4.0; AIn. R /\ Rln /\ AOPl [aola'] /\ AOp:![ao/a]

All the terms are in the hypothesis.
• e.g

C.IO Lemma 'compose forward'

Lemma C.2 (compose forv,lard) If, under the forwards refinement rules, con­
erNe operation COPl is a refinement of abstract operation AOP1. and COpz is
a refinement of AOP2, then their composition is a refinement of the abstract
composition JO.

(COI'l ; C01'2); R;

(\f COp,; R. (304'. R' A o4OpIl);

(\f COp,; R. (3.4' • R' A AOI'2»

f-

3A'.R' /\ (AOpI ~AOpl)

•
lOUsed in: lemma 'abort rom'ard', section 28.7.

218	 APPENDIX C. LEMMAS

Proof:
Follows as for lenuna 'compose backward', above.
• C.IO

Cll Lemma 'promoted composition'

Lemma C.3 (promoted composition) The promotion of the composition of (Wo

operaHons is equal to the composition of the promotions of the two operations
II

Assume the existenn~ of a local state Local, which, without loss of gener­
ality we assume has a single variable x; a global state Global, ""ith a standard
promotion framing schema, ¢

[Local

.:X

Global	 _

[locals: NAME Local

4> _

!>.Global

.6.Local
n? : NAME

n? E dom locals
locals n? = eLoca/
locals' = locals $ {n? eLocal')

4>;	 Op,; 01'2

f­

3 fiLocal • ¢ 1\ (OPI ~ OP2)
= (3 .6.Local • ¢ 1\ 0Pl) ~ (3 ilLocal • ¢ 1\ 0"'2)

•
llUsed m: lemma 'abort backward', genion C.S

219 Cll. LEMMA 'PROMOTED COMPOSITION'

Proof:
We prove this by expanding the definition of composition as an existential quan­
tification, and then showing that this quantification and the quantification used
in the promotion commute.

E\.'Pand the composition on the right hand side, and [hen expand the def­
inition of 4'>.

(3 b.Local • <P 1\ 0111) ~ (3 ,1Locol • ¢ /\ 0112)

= 3 Globalo • (3!'lLocal. ¢[localso/locals'] /\ OPt)
/\ (3 ~Loca/. 4>[locaJso/locals] /\ Off!.)

= 3 Globalo •
(3 6.Local •

[locals; localso ; NAME -- Local 1

n? E dam locals
/\ locals n? = BLocaI
1\ loca/so = locals EEl {n? >-> eLocal'}]

A OpJ!

A (3 "'Local.
[localSo; locals' : NAME - Local I

n? Edam Iocalso
/\ localso n? = eLocal
/\ locals' = 10calso EII {n? eLocal'}]

A Op,)

Rename the after state in the first operation to LocalCl and the before state in
the second operation to Loca1b_ Choosing different names makes it easier to
combine the schemas across the quantifiers.

~ 3 Globalo •

(3 Local; Locala _

[locals; loealso : NAME -+0 Local I

n? E dom locals
/\ locals n? = BLocal
/\ localso = locals EII [n? eLocala}]

A OPllXa/x'])

/\ (3 Localb; Local' ­
[loealso; locals' : NAME -+0 Local I

n? E dom loealso
/\ localso n? = () Loealb

220 APPENDIX C. LEMMAS

1\ locals' "= loea/so 6;1 {n7 0-. eLocal'}]
A Op,[x,./x])

Combine all these as a single schema, puHing the quantifications into the pred­
icate.

= [locals; locals': NAME ---- Local I
310calo; Local; Local'; Locala; Loealt> •

n? E dom locals

1\ locals n? = eLocal

1\ 10ca/so = locals Ell {n? eLocala }

1\ n7 E dom localso

1\ loea/so n? = OLocalb

1\ locals' = localso 1Il In? Oioeal'}

A OpllXuIX']

A 0l'2[""lxJ]

We can remove the quantificaHon of lacala because we have a full definition of
it in terms of other variables. This leaves the following equations relating the
remaining variables.

= [locals; locals' : NAME -- Local I
3 Local; Local'; Locala; Locah •

n7 E dom locals

t\ locals n? = eLocal

/\ BLocaIt> = BLoca/a

1\ locals' = locals 1Il {n7 - Oioeal'}

A Op,[Xulx']

A Op,[xblx]]

Using the equation that eLocalb = BLocala, rename Locala and Loealt> both to
Locala.

= [locals; locals' : NAME -- Local I
3 Local; Local'; Locala •

11? E dorn locals
/\ locals 117 = OLocal
/\ locals' = locals 6' {n? BLocal'} 0-+

A OP1[XO/X']
A Op,[Xolx]]

Redistribute the quantifications

= 3 Local; Local' •
(locals; locals' : NAME -- Local I

n? E dom locals
1\ locals n? = OLocal
/\ locals' = locals Gl [n? >- OLoeal' J

A (3Localo. OpIl"o/x'J t, 01'2 ["o/xJ) J

and rewrite in terms of composition

= 3 Local; Local' • ~ 1\ (OPl g0P-2)

= 3 t::.Local • ¢ 1\ (Opl ~ 0P2)

This is the left hand side of the equation, and hence the proof is complete.
• C.ll

el2 Lemma 'notLoggedAndln'

Lemma C.4 (notLoggedAndIn) If a purse is engaged in a transaction, it does not
have a log for that transaction 12_

BetweenWorld
t ­
(fromInEpr u (romInEpa) n (romLogged ~ 0
/\ (tolnEpv u tolnEapayee) n toLogged = 0

•
Proof:

Consider the to purse case. We consider the pd stored in the to purse, so

pd E (tolnEpv u rolnEapayee) ~

pd.toSeqNo ~ (conAuthPursepd.to).pdAuth.toSeqNo

We have, from BetweenWorld constraint B-8, that

pd E toLogged ~ pd.toSeqNo < (conAuchPursepd.to).pdAuth.toSeqNo

Hence there can be no pd in both sets.
The arguments for the from cases follow similarly, from BetweenWorld

constraint B-7.
• C.12

1211sed In: Val, behaviour of toLogged, section 19.6.2; Ack, behaviour of de[inlrefyLosr, sec­
tion 20.6.5; eVa}, B-10, section 29.5; lemma 'lost'. section C.l3; lemma 'not lost before'. sec­
tion C.14.

222 APPENDIX C LEMMAS

c.n Lemma 'lost'

Lemma C.S (lost) The sets definirelyLost and mayheLosr are disjoint: a pd can
never be in both. 13

Between World I- definirelyLost n mayheLosr = 0

•
Proof:

definirelyLosr n ma}JbeLost

~ toLogged n ((romLogged u (romInEpa)

n ((romInEpa u (romLoggedl n tolnEpv Idefn.1

~ toLogged n tolnEpv n ((romLogged u (romInEpa) Irearranging]

= 0 ILemma 'notLoggedAndln' (section C.12)]

.C.13

C.14 Lemma 'not lost before'

Lemma e.6 (not lost before) pdThis is not lost before the Req operation, al­
though it maybe lost after. 1.:1

<l>BOp; ReqPurseOkay; pdThis: PayDetails I (req- m?) ~ pdThis
f­

definitelyLost = definitelyLost' \ IpdThis}

/\ maybeLosc = maybeLost' \ {pdThis}

•
Proof:

From the definition of the way the state changes in ReqOkay we can say that

(he following sets are (he same before and afterward:

(romI.ogged ~ (romI.ogged'

/\ CoLogged = roLogged'

/\ coInEtJV = toInEtJV'

uUsed in: Req, case 1, section IB.7.1; Req, case 2, section IB.B.l; Req, case 3, section 1B.9.1.
HUsed in: Req, exists-chosenLost, section 18.5; Req, check-operation. section 18.6.

223 C.i5. LEMMA 'ABWORLD UNIQUE'

For the set fromlnEpa, we know from ReqOkay that beforehand this pdThis ""as
noUn the set and afterward it l1-'as. So

pdThis E (romlnEpa'
~ frominEpa ~ (rominEpa' \ IpdThisJ

From Lemma 'notLoggedAndln' (section C.12), we have::

pdThis E (romInEpa' ~ pdThis f (romLogged'

Reminding ourselves of the definitions of de(inilelyLost and using the identilies
above, we have

definifelyLosf
~ toLogged n IfromLogged u (rominEpa) [delnJ
~ wLogged' n (fromLogged' u (rominEpa' \ {pdThis)) laboveJ
~ toLogged' n ((romLogged' u (rominEpa') \ {pdThis)

[pdThis f (romLogg,d'J
~ (WLogged' n ((romLogged' u (rominEpa')) \ {pdThis} [SpiveyJ
~ defmirelyLosr' \ {pdThisJ [deCnJ

Similarly for maybeLost:

maybeLosf
~ ((rominEpa u (romLogged) n WInEpv [deCnJ
~ ((frominEpa' \ {pdThis)) u (romLogged') n roInEpv' [aboveJ
~ (((rominEpa' u (romLogged') \ {pdThis)) n roInEpv'

(pdThis f (romLogged' J

~ ((frominEpa' u (romLogged') n toInEpv') \ {pdThis} [prop \J
~ maybeLosr' \ {pdThis} [defj

• C.14

C.I5 Lemma 'AbWorld unique'

Lenuna C.? (AbWorld unique) Given BetweenWorld and a choice of which trans­
actions Y\ill be lost, there is always exactly one AbWorld that retrieves,lS

BetweenWorld; chosenLost: IP' PayDetails; pdThis: PayDetaiIs I
chosenLosr s; maybeLosr

>­
3) AbWorld • RabClPd

ISUsed in: (enuna 'detemunistic', section 14.4.4.

224 APPENDIX C LEMMAS

•

Proof:

Each element of AbWorld has an eXplicit equation in Rab defining if Uniquely

in terms of BeweenWorld components. The components are entirely indepen­

dent, and the only constraint that ties any together is that on chosenLosc and

maybeLost, which we have clirectly in the hypothesis.

The constraints required of any AhWorld can be sho\'o,'ll to hold as follows:

•	 abAuthPurse; NAME -- AbPurse
conAuthPurse is a finite function. From the retrieve AbstractBetween the
domain of abAuthPurse equals the domain of cOnAuthPurse, and so is
finite, too.

•	 CIS
.c

Appendix 0

Auxiliary toolkit definitions

0.1 Total abstract balance

The function toraLAbBalance returns the total value held in a finite collection
of purses.

totalAbBalance: (NAME -- AbPurse) - ~

rotalAbBalance 0 === 0

'r;j w : NAME -- AbPurse; n: NAME; AbPurse.1 n rf: dam w •
totalAbBalance({n - BAbPurse} u w) ~

balance + rotalAbBalance w

This recursive definition is valid, because it is finite, and hence bounded.

D.2 Total lost value

The function roralLosr returns the total value lost by a finite collection of purses.

toraLLost: (NAME - AbPurse) - N

toralLost 0 = 0

V w : NAME -- AbPurse; n: NAME; AbPurse I n ff dam w •
totalLost({n BAbPurse} u w) = lost + totalLosr w0-0

This recursive definition is valid, because it is finite, and hence bounded.

226 APPENDIX D. TOOLKIT

D.3 Summing values

We define the sum of the values in a set of exception logs, or a set of pay­
ment details. This recursive definition is valid, because it is tillite, and hence
bounded.

sumValul?: IF PayDerails - ~

sumValue0 = 0

'rj pds : [F PayDerails; PayDetails I BPayDetails fi pds •
sumValue({BPayDecails} u pds) = value + sum Value pds

Bibliography

[Barden et al. 1994J
Rosalind Barden, Susan Stepney, and David Cooper. Z in Practice. ReS
PractHioners Series. Prentice Hall, 1994.

[Fl}TIIl er al. 19901
Mike Flynn, Tim Hoverd, and David Brazier. Formahser-an interactive
support 1001 for Z.ln]ohn E. Nicholls, editor, Z User Workshop: Proceedings
of the ·Hh Annual Z User Meeting, Oxford 1989, Workshops in Computing,
pages 128-141. Springer Verlag, 1990.

[Spivey 1992a]
]. Michael Spivey. The fuzz Manual. Computer Science Consultancy, 2nd
edition, 1992. ftp://ftp.comlab.ox.ac.uk/pub/Zforum/fuzz.

[Spivey 1992b]
]. Michael Spivey. The Z Notation: a Reference Manual. Prentice Hall, 2nd
edition, 1992.

[Stepney]
Susan Stepney. Formaliser Home Page. http://public.log;ca.com/
-formaliser/.

[Woodcock & Davies 1996]
Jim Woodcock and Jim Davies. Using Z: Specification, Refinemenl, and
Proof Prentice Hall, 1996.

228 APPENDIX D. TOOLKIT

Index

<l>BOp, 31

<l>COp, 37

1-,20

abAuthPurse; AbWorid, 16

AbFinOut, 18

AbFinState, 18

AbIgnore, 16

Ablnitln, 1B
AblnitState, 17

AbOp, 16

Abort, 32

AbortPurseOkay, 22

AbPurse, 15

AbPurseTransfer, 16

AbstractBetween, 45

AbTransfer, 17

AbTransferLost, 17

AbTransferLostID, 17

AbTrans(erOkay, 17

AbTrans(erOkay1D, 17

AbWorld,16

AbWorldSecureOp, 16

Aek, 33

ack,20

AekPurseOkay, 24

AIN,16

aULags; A.uxWorld, 28

AllValueAccounted,13
aNulUn, 16

aNullOur, 16

AOUT,16
Archive, 34

archive, 27

Authentic, 13

AurhenticAckMessage, 24

authenticFrom; AuxWorJd, 28

AuthenticReqMessage, 24

aurhenticTo; AuxWorld, 28

AuthenticValMessage, 24

AuthoriseExLogClearOkay, 33

AuxWorld, 28

balance; AhPurse, 15

balance; ConPurse, 20

Bet'.'I-'eenlnitStare, 35

BerweenWorld, 30

BerwFinOut, 36

BetwFinState. 36

BetwlnitIn, 36

CAbort, 38

CAek, 38

CArchtve, 39

229 D.3. SUMMING VALUES

C.4.uthoriseExLogClear, 39

CC/earExceptionLog, 38

check-operation, 58

CIgnore, 38

Clncrease, 38

CLEAR,19

ClearExceptionLog, 33

ClearExcepNonLogEapayerOkaY,33

CiearExceptionLogPurseEapayer01<:ay,

26

ClearExceptionLogPurseOkay. 26

ConFinState, 39

ConInitState, 39

ConPurse, 20

ConPurseAborr, 22

ConPurseAck,22

ConPurseClear, 26

ConPurselncrease. 21

ConPurseReq, 22

ConPurseStart, 22

ConPurseVal, 22

consequent, 114

consqconj. 116

consqdisj, 116

consqexists, 117

contradiction, 117

ConWarld, 27

CounterPartyDetails, 19

cpd; StartFromPurseEapayerOkay, 22

cpd; StartToPurseEapayerOkay, 23

cpd; ValidStartFrom, 22

cpd; FalidStartTo, 23

CReadExceplionLog, 38

CReq, 38

CStartFrom, 38

CStarrTo, 38

cut, 116

CVal,38

definitelyLost; Aux"World, 28

eaPa}'ee, 18

eaPayer, 18

epa, 18

epr, 18

epv, 18

ether; ConWorld,27

excepfionLogClear, 20

exceptionLogResult,20

exists-chosenLost, 58

exists-pd, 58

exLog; ConPurse, 20

from; Trans{erDetails, 16

(rominEpa; AuxWorld, 28

(rominEpr; AuxWorld, 28

(romLogged; AuxWorld, 28

{romSeqNo; PayDetails, 19

GlobalWorld, 18

hypdisj, 116

hypexists, 117

hypuni, 116

hypothesis, 114

Ignore, 32, 55

image, 19

Increase, 32

IncreasePurseOkay, 21

lemma 'Abort refines Ablgnore', 61

lemma 'AbIgnore', 119

lemma 'abon backward', 65, 119

lemma 'abort fonvard', 120

lemma 'Abort refines Ablgnore', 119

lemma 'AbWorid unique', 125

lemma 'compose backward', 121

lemma 'compose forward', 121

lemma 'constraint', 100, 120

lemma 'deterministic', 58, 118

lemma 'ignore', 55

lemma 'logs Wlchanged', 120

230

lcnuna 'lost unchanged'. 59, 119

lemma 'lost', 124

lemma 'not lost before', 124

lenuna 'notloggedAndln', 124

lemma 'promoted composition', 122

Logbook, 27

LogI{Necessary, 13

lost; AbPurse, 1 S

maybeLost; AuxWorld, 28

MESSAGE,20

NAME,15

name; ConPurse, 20

name; CounterPartyDerails, 19

negation, 116

nextSeqNo; ConPurse, 20

nextSeqNo; CounterPartyDetails, 19

NoVa}ueCrealion, 12

onf'.poinr, 117

OrherPursesRab, 46

PayDecails, 19

pdA.uth; ConPurse, 20

purse; ConWorld, 27

Rab,46
RabCI,45
RabClPd,46
RabEnd,49
RabEndClPd,48
RabllasBeenLost, 49

RabHasBeenLosrCIPd,48

RabIn, 50

RabOkay, 49

RabOkayCIPd, 47

RabOur, 50

RabWi/1BeLost, 49

RabWillBeLosrClPd,47
Roc, 96

ReadEXcepNanLog, 33

APPENDiX D. TOOLKIT

readExceptionLog, 20

ReadD<ceptionLogEapayerOkay, 33

ReadExceptionLogPurseEapayerOkay,

25

ReadExceptionLogPurseOkay, 25

Req,33

req, 20

ReqPurseOkay, 24

RerryAck, 25

RetryReq, 25

RetryVal,25

StarcFrom, 32

startFrom, 20

ScartFromEapayerOkay, 33

StartFromPurseEapayerOkay, 22

StartFromPurseOkay, 23

ScanTo, 32

startTo, 20

StartToEapayerOkay, 33

StarcToPurseEapayerOkay, 23

StarcToPurseOkay, 24

STATUS, 18

status; ConPurse, 20

strengthenconsq, 116

Su/ficientFundsProperty, 13

sumVa[ue, 127

rhin, 116

to; TransferDetails, 16

rolnEapayee; AuxWorld, 28

co/nEpv; AuxWorld, 28

lOLogged; AuxWor/d, 28

roSeqNo; PayDetails, 19

rotaLAbBalance. 126

torafLost, 126

transfer, 16

TransferDecails, 16

Utlihyp, lIS

Val,33

231 D.3. SUMMING VALUES

val,20
ValidStartFrom, 22

ValidStartTo,23
ValPurseOkay, 24

value; CounterPartyDetails, 19

value; TransferDetails, 16

