
Computing Science

AN ALGEBRAIC THEORY
OF COMPLEXITY FOR VALUED CONSTRAINTS:

ESTABLISHING A GALOIS CONNECTION

David A. Cohen
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1 Introduction

1.1 Background

Classical constraint satisfaction is concerned with the feasibility of satisfying a collection
of constraints. The extension of this framework to include optimisation is now also being
investigated and a theory of so-called soft constraints is being developed.

Several alternative mathematical frameworks for soft constraints have been proposed
in the literature, including the very general frameworks of ‘semi-ring based constraints’
and ‘valued constraints’ [6]. For simplicity, we shall adopt the valued constraint frame-
work here as it is sufficiently powerful to model a wide range of optimisation problems [21].
In this framework, every tuple of values allowed by a constraint has an associated cost,
and the goal is to find an assignment with minimal total cost.

The general constraint satisfaction problem (CSP) is NP-hard, and so is unlikely
to have a polynomial-time algorithm. However, there has been much success in find-
ing tractable fragments of the CSP by restricting the types of relation allowed in the
constraints. A set of allowed relations has been called a constraint language [34]. For
some constraint languages the associated constraint satisfaction problems with constraints
chosen from that language are solvable in polynomial-time, whilst for other constraint
languages this class of problems is NP-hard [35, 34, 27]; these are referred to as tractable
languages and NP-hard languages, respectively. Dichotomy theorems, which classify each
possible constraint language as either tractable or NP-hard, have been established for
constraint languages over 2-element domains [45], 3-element domains [9], for conserva-
tive constraint languages [11], maximal constraint languages [13], languages comprising
of a single binary relation without sources and sinks [4] (see also [2]), and languages
comprising of a single binary relation that is a special triad [3].

The general valued constraint satisfaction problem (VCSP) is also NP-hard, but again
we can try to identify tractable fragments by restricting the types of allowed cost functions
that can be used to define the valued constraints. A set of allowed cost functions has been
called a valued constraint language [21]. Much less is known about the complexity of the
optimisation problems associated with different valued constraint languages, although
some results have been obtained for certain special cases. In particular, a complete
characterisation of complexity has been obtained for valued constraint languages over a
2-element domain with real-valued or infinite costs [21]. This result generalises a number
of earlier results for particular optimisation problems such as Max-Sat [22] and Min-
Ones [23].

One class of cost functions has been extensively studied: the so-called submodular
functions. The problem of minimising a submodular objective function occurs in many
diverse application areas, including statistical physics [25], the design of electrical net-
works [41], and operations research [42, 14, 48]. One of the first problems to be recog-
nised as a case of submodular function minimisation was the Max-Flow/Min-Cut
problem [24]. Another class of examples arises in pure mathematics: the rank func-
tion of a matroid is always a submodular function [28]. After the first two combinatorial
polynomial-time algorithms were proposed for submodular function minimisation [46, 32],
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a series of faster, fully combinatorial and strongly polynomial-time algorithms for this
problem has appeared, see [31] for a survey. The complexity of the best of these algo-
rithms is O(n6 + n5L) where n is the number of variables and L is the time required to
evaluate the function [43], see also [33]. More practical cubic time algorithms have been
developed for many special cases [20, 39, 40], including the Max-Flow/Min-Cut prob-
lem [24], the minimisation of a symmetric submodular function [44], the minimisation of
a {0, 1}-valued submodular function over a 2-element domain [23] and the minimisation
of any sum of binary submodular functions over an arbitrary finite domain [18]. There
exists a class of submodular functions (of arbitrary arity) which can be expressed as cut
functions of graphs, and hence minimised in cubic time. However, not all submodular
functions can be expressed in this way, and hence not all VCSPs with submodular cost
functions are solvable in cubic time by this reduction (see [49] for details).

The results of [23] show that submodularity is essentially the only property giving rise
to tractable {0, 1}-valued constraint languages over a 2-element domain, see [21]. Jonsson
et al. [36] generalised this result to 3-element domains, and Deineko et al. [26] recently
generalised this result to {0, 1}-valued constraint languages over arbitrary finite domains
containing all constants. Kolmogorov and Živný have recently shown that submodularity
is essentially the only reason for tractability for conservative finite-valued VCSPs [38].
However, for more general valued constraint languages, very little is known about the
possible tractable cases.

In the classical CSP framework it has been shown that the complexity of any con-
straint language over any finite domain is determined by certain algebraic properties
known as polymorphisms [35, 34]. This result has reduced the problem of the identifi-
cation of tractable constraint languages to that of the identification of suitable sets of
polymorphisms. In other words, it has been shown to be enough to study just those
constraint languages which are characterised by having a given set of polymorphisms.
Using the algebraic approach, considerable progress has now been made towards a com-
plete characterisation of the complexity of constraint languages over finite domains of
arbitrary size [27, 12, 4, 1, 3, 5].

In the VCSP framework it has been shown that a more general algebraic property
known as a multimorphism can be used to analyse the complexity of certain valued con-
straint languages [19, 15, 21]. Multimorphisms have been used to show that there are
precisely eight maximal tractable valued constraint languages over a 2-element domain
with real-valued or infinite costs, and each of these is characterised by having a particu-
lar form of multimorphism [21]. Furthermore, it was shown that many known maximal
tractable valued constraint languages over larger finite domains are precisely charac-
terised by a single multimorphism and that key NP-hard examples have (essentially) no
multimorphisms [21, 17]. We discuss the notion of multimorphism in more detail in Ap-
pendices A and B, where we show that multimorphisms alone are not sufficient to capture
the expressive power of valued constraints.

Cohen et al. [16] later generalised the notion of a multimorphism slightly, to that of
a fractional polymorphism. They showed that fractional polymorphisms, together with
the polymorphisms of the underlying feasibility relations, characterise the complexity of
any valued constraint language with non-negative rational or infinite costs over any finite
domain [16].
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1.2 Contributions

In this paper, we extend the results of [16] by introducing a new algebraic construct which
we call a weighted polymorphism. We are able to show, using the ideas of [16], that the
weighted polymorphisms of a valued constraint language are sufficient on their own to
determine the complexity of that language. In addition, we are now able to define a Galois
connection between valued constraint languages and sets of weighted polymorphisms, and
characterise the closed sets on both sides (see Figure 1 below, on page 12; the terms used
in this figure, e.g., wPol, Imp, are defined in Section 4).

The Galois connection we establish here can be applied to the search for tractable
valued constraint languages in a very similar way to the application of polymorphisms to
the search for tractable constraint languages in the classical CSP. First, we need only con-
sider valued constraint languages characterised by weighted polymorphisms. This greatly
simplifies the search for a characterisation of all tractable valued constraint languages.
Second, any tractable valued constraint language with finite rational or infinite costs
must have a non-trivial weighted polymorphism. Hence the results of this paper provide
a powerful new set of tools in the search for a polynomial-time/NP-hard dichotomy for
finite-domain optimisation problems defined by valued constraints.

The structure of the paper is as follows. In Section 2 we describe the Valued Constraint
Satisfaction Problem and define the notion of expressibility. In Section 3 we recall the
so-called algebraic approach to the classical Constraint Satisfaction Problem and show
how it fits in the VCSP framework as a special case. In Section 4 we consider valued
constraint satisfaction problems with non-negative rational or infinite cost values, and
show how the complexity of valued constraint languages in this general framework is
characterised by weighted polymorphisms. In Section 5 we give a proof of the main new
theorem establishing the Galois connection.

2 Valued Constraint Satisfaction Problems

In the valued constraint framework each constraint has an associated function which
assigns a cost to each possible assignment of values and these costs are chosen from some
valuation structure, satisfying the following definition.

Definition 2.1. A valuation structure, Ω, is a totally ordered set, with a minimum
and a maximum element (denoted 0 and ∞), together with a commutative, associative
binary aggregation operator (denoted ⊕), such that for all α, β, γ ∈ Ω, α⊕ 0 = α and
α⊕ γ ≥ β ⊕ γ whenever α ≥ β.

Definition 2.2. Let D be a set and Ω a valuation structure. A function φ : Dr → Ω is
called a cost function of arity r on D taking values in Ω.

Definition 2.3. An instance of the valued constraint satisfaction problem, (VCSP),
is a 4-tuple P = 〈V,D,C,Ω〉 where:

• V is a finite set of variables.
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• D is a set of possible values that may be assigned to those variables.

• Ω is a valuation structure representing possible costs.

• C is a multi-set of constraints. Each element of C is a pair c = 〈σ, φ〉 where σ
is a tuple of variables called the scope of c, and φ is a |σ|-ary cost function on D
taking values in Ω.

Definition 2.4. For any VCSP instance P = 〈V,D,C,Ω〉, an assignment for P is a
mapping s : V → D. The cost of an assignment s, denoted CostP (s), is given by the
aggregation of the costs for the restrictions of s onto each constraint scope, that is,

CostP (s) def=
⊕

〈〈v1,v2,...,vm〉,φ〉∈C

φ(s(v1), s(v2), . . . , s(vm)).

A solution to P is an assignment with minimal cost, and the question is to find a
solution.

Definition 2.5. A valued constraint language is any set Γ of cost functions from
some fixed set D to some fixed valuation structure Ω. We define VCSP(Γ) to be the set
of all VCSP instances in which all cost functions belong to Γ.

The complexity of a valued constraint language Γ will be identified with the com-
plexity of the associated VCSP(Γ), as the following definition indicates.

Definition 2.6. A valued constraint language Γ is called tractable if, for every finite
subset Γf ⊆ Γ, there exists an algorithm solving any instance P ∈ VCSP(Γf ) in polyno-
mial time. Conversely, Γ is called NP-hard if there is some finite subset Γf ⊆ Γ for
which VCSP(Γf ) is NP-hard.

We now define a closure operator on cost functions, which adds to a set of cost
functions all other cost functions which can be expressed using that set, in the sense
defined below.

Definition 2.7. For any VCSP instance P = 〈V,D,C,Ω〉, and any list L = 〈v1, . . . , vr〉
of variables of P, the projection of P onto L, denoted πL(P), is the r-ary cost function
defined as follows:

πL(P)(x1, . . . , xr)
def= min

{s:V→D | 〈s(v1),...,s(vr)〉=〈x1,...,xr〉}
CostP (s) .

We say that a cost function φ is expressible over a constraint language Γ if there exists
a VCSP instance P ∈ VCSP(Γ) and a list L of variables of P such that πL(P) = φ. We
define Express(Γ) to be the expressive power of Γ; that is, the set of all cost functions
expressible over Γ.

Note that the list of variables L may contain repeated entries, and we define the
minimum over an empty set of costs to be ∞.
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Example 2.8. Let P be the VCSP instance with a single variable v and no constraints,
and let L = 〈v, v〉. Then, by Definition 2.7,

πL(P)(x, y) =
{

0 if x = y
∞ otherwise

.

Hence for any valued constraint language Γ, over any set D, taking values in any valu-
ation structure Ω, Express(Γ) contains this binary cost function, which will be called the
equality cost function.

The next result shows that expressibility preserves tractability.

Theorem 2.9 ([16]). A valued constraint language Γ is tractable if and only if Express(Γ)
is tractable; similarly, Γ is NP-hard if and only if Express(Γ) is NP-hard.

This result shows that, when trying to identify tractable valued constraint languages,
it is sufficient to consider only languages of the form Express(Γ). In the following sections,
we will show that such languages can be characterised using certain algebraic properties.

3 Classical Constraint Satisfaction

In this Section we shall consider the special case when the valuation structure Ω consists of
just two elements, 0 and∞. In this case, there is only one possible aggregation operation
that satisfies the required conditions, which we will refer to as addition and denote by +.
Note that 0 + 0 = 0 and 0 +∞ =∞+ 0 =∞+∞ =∞.

Definition 3.1. We denote by RD the set of all cost functions on a set D taking values
in Ω = {0,∞} and by R(k)

D the k-ary cost functions in RD.

With this very simple valuation structure there is a one-to-one correspondence be-
tween the set of cost functions RD and the set of all finitary relations over D. In this
correspondence each cost function φ in RD is associated with the corresponding relation

R(φ) def= {x ∈ Dr : φ(x) <∞} .

Cost functions in RD can also be thought of as predicates. Subsets of RD are sometimes
referred to as crisp constraint languages [21] and can be used to model the classical
constraint satisfaction problem, or CSP, where each assignment is either allowed (cost 0)
or disallowed (cost ∞).

The addition of two cost functions φ1, φ2 ∈ RD corresponds to performing a relational
join operation on the associated relations R(φ1) and R(φ2) [30]. It also corresponds to
taking the conjunction of the associated predicates [12]. Moreover, minimising a cost
function φ ∈ RD over one of its arguments corresponds to taking a relational projection
of R(φ) onto its remaining co-ordinates. It also corresponds to existential quantification
of the corresponding predicate over that argument.
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Definition 3.2. A set Γ ⊆ RD is called a relational clone if it contains the equality
cost function and is closed under

• rearrangement of arguments;

• addition of cost functions;

• minimisation over arbitrary arguments.

For each Γ ⊆ RD we define RelClone(Γ) to be the smallest relational clone containing Γ.

It is a straightforward consequence of Definitions 2.7 and 3.2 that the expressive power
of a crisp constraint language is given by the smallest relational clone containing it, as
the next result indicates.

Proposition 3.3. For any Γ ⊆ RD, Express(Γ) = RelClone(Γ).

This alternative characterisation for the expressive power of a crisp constraint lan-
guage was first observed in [34], and used to study the complexity of such languages
using tools from universal algebra. We will now give a brief summary of this algebraic
approach.

For any finite set D, a function f : Dk → D is called a k-ary operation on D.

Definition 3.4. We denote by OD the set of all finitary operations on D and by O(k)
D

the k-ary operations in OD.

Definition 3.5. The k-ary projections on D are the operations

e
(k)
i : Dk → D , (a1, . . . , ak) 7→ ai .

We denote by J(k)
D the set of all k-ary projections on D.

Definition 3.6. Let f ∈ O(k)
D and g1, . . . , gk ∈ O(l)

D . The superposition of f and
g1, . . . , gk is the l-ary operation

f [g1, . . . , gk] : Dl → D , (x1, . . . , xl) 7→ f(g1(x1, . . . , xl), . . . , gk(x1 . . . , xl)) .

Definition 3.7. A set F ⊆ OD is called a clone of operations if it contains all the
projections on D and is closed under superposition.

For each F ⊆ OD we define Clone(F ) to be the smallest clone containing F . We
denote by Clone(k)(F ) the k-ary operations in Clone(F ).

We can extend k-ary operations to operate on tuples in a natural way, as follows. Let
x1, . . . , xk be tuples of length r over a set D. We can obtain another element of Dr by
applying f to the xi co-ordinatewise, as follows:

f(x1, . . . , xk)
def= 〈f(x1,i, . . . , xk,i) | i = 1 . . . r〉 .
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Definition 3.8. Let φ be a cost function of arity r on a set D and let f ∈ O(k)
D . We say

that f is a polymorphism of φ if, for any x1, x2, . . . , xk ∈ Dr such that φ(xi) <∞ for
i = 1, . . . , k, we have

φ(f(x1, x2, . . . , xk)) <∞ .

If f is a polymorphism of φ we say φ is invariant under f .

Definition 3.9. For any valued constraint language Γ over a set D, we denote by Pol(Γ)
the set of all operations on D which are polymorphisms of all cost function φ ∈ Γ and by
Pol(k)(Γ) the k-ary operations in Pol(Γ).

Definition 3.10. For any F ⊆ OD, we denote by Inv(F ) the set of all cost functions in
RD that are invariant under all operations f ∈ F .

For any set D, the mappings Pol and Inv form a Galois connection between OD and
RD. A characterisation of this Galois connection for finite sets D is given by the following
two theorems, originally obtained for sets of relations [29, 7].

Theorem 3.11. For any finite set D, and any F ⊆ OD, Pol(Inv(F )) = Clone(F ).

Theorem 3.12. For any finite set D, and any Γ ⊆ RD, Inv(Pol(Γ)) = RelClone(Γ).

As with any Galois connection [8], this means that there is a one-to-one correspon-
dence between clones and relational clones. Together with Proposition 3.3, this result
shows that the expressive power of any crisp constraint language Γ on a finite set D cor-
responds to a particular clone of operations on D. Hence, by Theorem 2.9, the search for
tractable crisp constraint languages corresponds to a search for suitable clones of opera-
tions [12]. This key observation paved the way for applying deep results from universal
algebra in the search for tractable constraint languages [13, 11, 10, 9].

4 VCSPs with Rational Costs

In this section we consider the somewhat more general case where the valuation structure
contains all positive rational numbers, as well as zero and infinity.

We shall denote by Q+ the set of all positive rational numbers together with 0. For
the remainder of this paper we will consider the case when the valuation structure Ω =
Q+∪{∞}, and the aggregation operation is the standard addition operation on rationals,
+ (extended so that a+∞ =∞ and a∞ =∞, for all a). This valuation structure will be
denoted Q+. It is sufficiently general to encode many standard optimisation problems;
see, for example [21].

Definition 4.1. We denote by ΦD the set of cost functions on D taking values in Q+

and by Φ(r)
D the r-ary cost functions in ΦD.

Definition 4.2. Any cost function φ : Dr → Ω has an associated cost function which
takes only the values 0 and∞, known as its feasibility relation, denoted Feas(φ), which
is defined as follows:

Feas(φ)(x1, . . . , xr)
def=

{
0 if φ(x1, . . . , xr) <∞
∞ otherwise

.
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We now define a closure operator on cost functions with rational costs, which adds to
a set of cost functions all other cost functions which can be obtained from that set by a
certain affine transformation.

Definition 4.3. We say φ, φ′ ∈ ΦD are cost-equivalent, denoted by φ ∼ φ′, if there
exist α, β ∈ Q with α > 0 such that

φ = αφ′ + β .

We denote by Γ∼ the smallest set of cost functions containing Γ which is closed under
cost-equivalence.

The next result shows that adding feasibility relations or cost-equivalent cost functions
does not increase the complexity of Γ.

Theorem 4.4 ([16]). For any valued constraint language Γ, we have:

1. Γ ∪ Feas(Γ) is tractable if and only if Γ is tractable, and Γ ∪ Feas(Γ) is NP-hard if
and only if Γ is NP-hard.

2. Γ∼ is tractable if and only if Γ is tractable, and Γ∼ is NP-hard if and only if Γ is
NP-hard.

We now introduce an algebraic theory for valued constraints based on the notions of
weighted polymorphisms, weighted clones and weighted relational clones.

Definition 4.5. We say a set Γ ⊆ ΦD is a weighted relational clone if it contains
the equality cost function and is closed under

• cost-equivalence and feasibility;

• rearrangement of arguments;

• addition of cost functions;

• minimisation over arbitrary arguments.

For each Γ ⊆ ΦD we define wRelClone(Γ) to be the smallest weighted relational clone
containing Γ.

It is a straightforward consequence of Definitions 2.7 and 4.5 that, for any valued
constraint language Γ ⊆ Φ, the set of cost functions that are cost equivalent to the
expressive power of Γ, together with all associated feasibility relations, is given by the
smallest weighted relational clone containing Γ, as the next result indicates.

Proposition 4.6. For any Γ ⊆ ΦD, Express(Γ ∪ Feas(Γ))∼ = wRelClone(Γ).

Hence, by Theorem 2.9 and Theorem 4.4, the search for tractable valued constraint
languages taking values in Q+ corresponds to a search for suitable weighted relational
clones. As has been done in the crisp case (Section 3), we will now proceed to establish
an alternative characterisation for weighted relational clones which facilitates this search.
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Definition 4.7. We define a k-ary weighted operation on a set D to be a partial
function ω : O(k)

D → Q such that ω(f) < 0 only if f is a projection and∑
f∈dom(ω)

ω(f) = 0 .

The domain of ω, denoted dom(ω), is the subset of O(k)
D on which ω is defined. We

denote by ar(ω) = k the arity of ω.
We denote by WD the finitary weighted operations on D and by W(k)

D the k-ary
weighted operations on D.

Definition 4.8. We say two k-ary weighted operations ω, µ ∈W(k)
D are weight-equivalent

if dom(ω) = dom(µ) and there exists some fixed positive rational c, such that ω(f) =
cµ(f), for all f ∈ dom(ω).

Definition 4.9. For any ω1, ω2 ∈W(k)
D , we define the sum of ω1 and ω2, denoted ω1+ω2,

to be the k-ary weighted operation ω with dom(ω) = dom(ω1) ∪ dom(ω2) and

ω(f) =


ω1(f) + ω2(f) f ∈ dom(ω1) ∩ dom(ω2)
ω1(f) f ∈ dom(ω1)\dom(ω2)
ω2(f) f ∈ dom(ω2)\dom(ω1)

. (1)

Definition 4.10. For any ω ∈W(k)
D and any g1, g2, . . . , gk ∈ O(l)

D , we define the translation
of ω by g1, . . . , gk, denoted ω[g1, . . . , gk], to be the partial function ω[g1, . . . , gk] from O(l)

D

to Q defined by
ω[g1, . . . , gk](f) def=

∑
f ′∈dom(ω)
f=f ′[g1,...,gk]

ω(f ′) . (2)

The domain of ω[g1, . . . , gk] is the set of l-ary operations {f ′[g1, g2, . . . , gk] | f ′ ∈ dom(ω)} .

Example 4.11. Let ω be the 4-ary weighted operation on D given by

ω(f) =

{
−1 if f ∈ J(4)

D

+1 if f ∈ {max(x1, x2),min(x1, x2),max(x3, x4),min(x3, x4)}
,

and let
〈g1, g2, g3, g4〉 =

〈
e
(3)
1 , e

(3)
2 , e

(3)
3 ,max(x1, x2)

〉
.

Then, by Definition 4.10 we have

ω[g1, g2, g3, g4](f) =

 −1 if f ∈ J(3)
D

+1 if f ∈ {max(x1, x2, x3),min(x1, x2),min(x3,max(x1, x2))}
0 if f = max(x1, x2)

.

Note that ω[g1, g2, g3, g4] satisfies the conditions of Definition 4.7 and hence is a weighted
operation.
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Example 4.12. Let ω be the same as in Example 4.11 but now consider〈
g′1, g

′
2, g
′
3, g
′
4

〉
=
〈
e
(4)
1 ,max(x2, x3),min(x2, x3), e(4)

4

〉
.

By Definition 4.10 we have

ω[g′1, g
′
2, g
′
3, g
′
4](f) =

 −1 if f ∈ {e(4)
1 ,max(x2, x3),min(x2, x3), e(4)

4 }

+1 if f ∈
{

max(x1, x2, x3),min(x1,max(x2, x3)),
max(min(x2, x3), x4),min(x2, x3, x4)

}
.

Note that ω[g′1, g
′
2, g
′
3, g
′
4] does not satisfy the conditions of Definition 4.7 because, for

example, ω[g′1, g
′
2, g
′
3, g
′
4](f) < 0 when f = max(x2, x3), which is not a projection. Hence

ω[g′1, g
′
2, g
′
3, g
′
4] is not a weighted operation.

Definition 4.13. If the result of a translation is a weighted operation, then that transla-
tion will be called a proper translation.

Remark 4.14. For any ω ∈ W(k)
D , if g1, . . . , gk are projections, then it can be shown

that the function ω[g1, . . . , gk] satisfies the conditions of Definition 4.7, and hence is a
weighted operation. This means that a translation by any list of projections is always a
proper translation.

We are now ready to define weighted clones.

Definition 4.15. Let C be a clone of operations on D. We say a set W ⊆ WD is a
weighted clone with support C if it contains all zero-valued weighted operations whose
domains are subsets of C and is closed under weight-equivalence, addition, and proper
translation by operations from C.

For each W ⊆WD we define wClone(W ) to be the smallest weighted clone containing
W .

Remark 4.16. The support of wClone(W ) is the clone generated by the domains of the
elements of W . That is, the support of wClone(W ) is given by Clone(∪ω∈W dom(ω)).

Example 4.17. For any clone of operations, C, there exists a unique weighted clone
which consists of all weighted operations assigning weight 0 to each subset of C.

Definition 4.18. Let φ ∈ Φ(r)
D and let ω ∈W(k)

D . We say that ω is a weighted polymorphism
of φ if, for any x1, x2, . . . , xk ∈ Dr such that φ(xi) <∞ for i = 1, . . . , k, we have∑

f∈dom(ω)

ω(f)φ(f(x1, x2, . . . , xk)) ≤ 0 . (3)

If ω is a weighted polymorphism of φ we say φ is improved by ω.

Note that, because ω(f)∞ = ∞ for any value ω(f), then, if inequality (3) holds we
must have φ(f(x1, . . . , xk)) < ∞, for all f ∈ dom(ω). In other words, if φ is improved
by ω, then every element of dom(ω) must be a polymorphism of φ.
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Example 4.19. Consider the class of submodular set functions [42]. These are precisely
the cost functions on {0, 1} satisfying

φ(min(x1, x2)) + φ(max(x1, x2))− φ(x)− φ(y) ≤ 0 .

In other words, the set of submodular functions are defined as the set of cost functions
on {0, 1} with the 2-ary weighted polymorphism ωSM defined by

ωSM (f) =

{
−1 if f ∈ {e(2)

1 , e
(2)
2 }

+1 if f ∈ {min(x1, x2),max(x1, x2)}
.

Definition 4.20. For any Γ ⊆ ΦD, we denote by wPol(Γ) the set of all finitary weighted
operations on D which are weighted polymorphisms of all cost function φ ∈ Γ and by
wPol(k)(Γ) the k-ary weighted operations in wPol(Γ).

Definition 4.21. For any W ⊆WD, we denote by Imp(W ) the set of all cost functions
in ΦD that are improved by all weighted operations ω ∈ W and by Imp(r)(W ) the r-ary
cost functions in Imp(W ).

It follows immediately from the definition of a Galois connection [8] that, for any
set D, the mappings wPol and Imp form a Galois connection between WD and ΦD. A
characterisation of this Galois connection for finite sets D is given by the following two
theorems (see Figure 1 for a diagram).

Theorem 4.22. For any finite set D, and any finite Γ ⊆ ΦD,

Imp(wPol(Γ)) = wRelClone(Γ).

Theorem 4.23. For any finite set D, and any finite W ⊆WD,

wPol(Imp(W )) = wClone(W ).

As with any Galois connection [8], this means that there is a one-to-one correspon-
dence between weighted clones and weighted relational clones. Hence, by Proposition 4.6,
Theorem 2.9, and Theorem 4.4, the search for tractable valued constraint languages tak-
ing values in Q+ corresponds to a search for suitable weighted clones.

5 Proof of Theorems 4.22 and 4.23

A key tool in proving Theorems 4.22 and 4.23 is the Farkas Lemma from Linear Pro-
gramming [42, 47]. We state below the variant we use in our proofs.

Lemma 5.1 (Farkas 1894). Let S and T be finite sets of indices, where T is the disjoint
union of two subsets, T≥ and T=. For all i ∈ S, and all j ∈ T , let ai,j and bj be rational
numbers. Exactly one of the following holds:

11



ΦD

∅

WD

∅

Sets of
cost functions

Sets of
weighted operations

Γ

wPol(Γ)

Imp(wPol(Γ))
= wRelClone(Γ)

wPol

Imp

ΦD

∅

WD

∅

Sets of
cost functions

Sets of
weighted operations

F

Imp(F)

wPol(Imp(F))
= wClone(F)wPol

Imp

Figure 1: Galois connection between ΦD and WD.
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• Either there exists a set of non-negative rational numbers {xi | i ∈ S} and a rational
number c such that

for each j ∈ T≥,
∑
i∈S

ai,j xi ≥ bj + c, and,

for each j ∈ T=,
∑
i∈S

ai,j xi = bj + c.

• Or else there exists a set of integers {yj | j ∈ T} such that
∑

j∈T yj = 0 and:

for each j ∈ T≥, yj ≥ 0,

for each i ∈ S,
∑
j∈T

yj ai,j ≤ 0, and

∑
j∈T

yj bj > 0.

Such a set is called a certificate of unsolvability.

A similar result to Theorem 4.22 was obtained in [16, Theorem 4] using the related
algebraic notion of fractional polymorphism. The proof given in [16] can be adapted in a
straightforward way, so we omit the details.

We will prove Theorem 4.23 in two parts. First, we show in Proposition 5.2 that the
weighted polymorphisms of a set of cost functions form a weighted clone. Then we show
in Theorem 5.4 that any weighted operation that improves all cost functions in Imp(W )
is an element of the weighted clone wClone(W ).

Proposition 5.2. Let D be a finite set.

1. For all Γ ⊂ ΦD, wPol(Γ) is a weighted clone with support Pol(Γ).

2. For all W ⊂WD, wClone(W ) ⊆ wPol(Imp(W )).

Proof. Certainly wPol(Γ) contains all zero-valued weighted operations with domains con-
tained in Pol(Γ), since all of these satisfy the conditions set out in Definition 4.18. Simi-
larly, wPol(Γ) is closed under addition and weight-equivalence, since both of these oper-
ations preserve inequality (3). Hence, to show wPol(Γ) is a weighted clone we only need
to show wPol(Γ) is closed under proper translations by members of Pol(Γ).

Let ω ∈ wPol(k)(Γ) and suppose ω′ = ω[g1, . . . , gk] is a proper translation of ω, where
g1, g2, . . . , gk ∈ Pol(l)(Γ). We will now show that ω′ ∈ wPol(l)(Γ). Suppose φ is an r-ary
cost function satisfying ω ∈ wPol({φ}), i.e., φ and ω satisfy (3) for any x1, x2, . . . , xk ∈
Feas(φ). Given any x′1, x

′
2, . . . , x

′
l ∈ Feas(φ), set xi = gi(x′1, x

′
2, . . . , x

′
l) for i=1,2,. . . ,k.

Then, if we set f ′ = f [g1, . . . , gk], we have f ′(x′1, x
′
2, . . . , x

′
l) = f(x1, x2, . . . , xk), for any

f ∈ O(k)
D . Hence, by Definition 4.10, we have∑
f ′∈dom(ω′)

ω′(f ′)φ(f ′(x′1, x
′
2, . . . , x

′
k) =

∑
f∈dom(ω)

ω(f)φ(f(x1, x2, . . . , xk) ≤ 0 .

For the second part, we observe that W ⊆ wPol(Imp(W )) and, therefore, wClone(W ) ⊆
wClone(wPol(Imp(W ))) = wPol(Imp(W )).
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We will make use of the following lemma, which shows that a weighted sum of arbitrary
translations of any weighted operations ω1 and ω2 can be obtained by translating ω1 and
ω2 by projection operations, forming a weighted sum, and then translating the result.

Lemma 5.3. For any weighted operations ω1 ∈W(k)
D and ω2 ∈W(l)

D and any g1, . . . , gk ∈
O(m)
D and g′1, . . . , g

′
l ∈ O(m)

D ,

c1 ω1[g1, . . . , gk] + c2 ω2[g′1, . . . , g
′
l] = ω[g1, . . . , gk, g′1, . . . , g

′
l] , (4)

where ω = c1 ω1[e(k+l)1 , . . . , e
(k+l)
k ] + c2 ω2[e(k+l)k+1 , . . . , e

(k+l)
k+l ]

Proof. For any f ∈ dom(ω), the result of applying the right-hand side expression in
equation (4) to f is:

∑
f ′∈dom(ω)

f=f ′[g1,...,gk,g
′
1,...,g

′
l]


∑

h′∈dom(ω1)

f ′=h′[e
(k+l)
1 ,...,e

(k+l)
k ]

c1 ω1(h′) +
∑

h′∈dom(ω2)

f ′=h′[e
(k+l)
k+1 ,...,e

(k+l)
k+l ]

c2 ω2(h′)

 .

Replacing each f ′ by the equivalent superposition of h′ with projections, we obtain:∑
h′∈dom(ω1)
f=h′[g1,...,gk]

c1 ω1(h′) +
∑

h′∈dom(ω2)
f=h′[g′

1,...,g
′
l]

c2 ω2(h′) ,

which is the result of applying the left-hand-side of Equation 4 to f .

Theorem 5.4. For all finite W ⊂WD, wPol(Imp(W )) ⊆ wClone(W ).

Proof. We prove the theorem as follows. Given a weighted operation ω0 ∈W(k)
D , we show

that either there exists a cost function φ ∈ Imp(W ) such that ω0 6∈ wPol({φ}) or else
ω0 is equal to a positive weighted sum of translations of weighted operations in W , and
hence ω0 ∈ wClone(W ).

Let M = |D|k. We first observe that it is sufficient to consider φ ∈ Imp(M)(W ). To
see this, suppose there exists a cost function φ ∈ Imp(W ) with arity N > M such that
ω0 6∈ wPol({φ}) and let x1, . . . , xk ∈ DN be any set of tuples for which the inequality
(3) does not hold for ω0 and φ. Let X be the k × N matrix whose rows are the tuples
x1, . . . , xk. Since N > M it follows that some of the columns in this matrix must be
equal. Moreover, if the i-th and j-th column of X are equal, then so will be the i-th and
j-th entry of the tuple f(x1, . . . , xk) obtained by applying any f ∈ O(k)

D to these k tuples.
Now let φ′ be the cost function of arity ≤ M that depends only on the first of each

of these repeated columns, and takes the same values as φ takes on arguments with the
appropriate entries repeated. Let X′ be the reduced form of X (with repeated columns
deleted). By this approach, we can construct φ′ so that φ′ ∈ Imp(W ), but X′ gives a
certificate for ω0 6∈ wPol({φ}), i.e., the rows of X′ form a list of tuples for which (3) is
violated for ω0 and φ′.
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Moreover, if we have a cost function φ ∈ Imp(W ) with arity N < M such that
ω0 6∈ wPol({φ}), then φ can be extended to a cost function φ′ of arity M that does
not depend on the M − N added inputs, and, hence, is also contained in Imp(W ) but
ω0 6∈ wPol({φ′}).

By the argument given above, there exists a cost function φ ∈ Imp(W ) such that
ω0 6∈ wPol({φ}) if and only if there exists a cost function φM ∈ Imp(M)(W ) such that
ω0 6∈ wPol({φM}). Furthermore, by reordering the arguments of φM if necessary, we can
assume that φM and ω0 violate (3) on the particular list of tuples x1, . . . , xk given by
taking the rows of a matrix, XM , whose columns are precisely the tuples in Dk, ordered
lexicographically.

By Definition 4.18, such a cost function φM exists if and only if the following system
of inequalities can be satisfied, for all ω ∈ W and all t1, . . . , tar(ω) ∈ DM such that
φM (ti) <∞ for i = 1, . . . , ar(ω),∑

g∈dom(ω)

ω(g)φM (g(t1, . . . , tar(ω))) ≤ 0 , (5)

and, for the tuples x1, . . . , xk forming the rows of XM, φM (xi) <∞ for i = 1, . . . , k and∑
f∈dom(ω0)

ω0(f)φM (f(x1, . . . , xk)) > 0 . (6)

Every tuple t ∈ DM can be viewed as the list of values for a function t : Dk → D.
Hence, to satisfy the above system of inequalities, we need to find values in Q+ for the
set of variables {φM (t) | t : Dk → D}.

We now observe that, by inequality (5), for any ω ∈ W , if φM (ti) < ∞ for i =
1, . . . , ar(ω), then φM (g(t1, . . . , tar(ω))) < ∞ for all g ∈ dom(ω). Hence φM (t) < ∞ for
all t ∈ Clone(k)(

⋃
ω∈W dom(ω)). All other values of φM can be set to ∞, as this just

reduces the number of inequalities in the system.
Set Ck(W ) = Clone(k)(

⋃
ω∈W dom(ω)). Using translation of weighted operations

(Definition 4.10), we can rewrite the inequalities (5) to obtain the following equivalent
system: for all ω ∈W , and all t1, . . . , tar(ω) ∈ Ck(W ),∑

h∈dom(ω[t1,...,tar(ω)])

ω[t1, . . . , tar(ω)](h)φM (h(x1, . . . , xk)) ≤ 0 . (7)

Now, by applying Lemma 5.1 to the resulting system of inequalities, we conclude that
either a solution φM exists, in which case ω0 6∈ wPol(Imp(W )), or else there exists a set
of non-negative rational numbers

{cω[t1,...,tar(ω)] | ω ∈W, t1, . . . , tar(ω) ∈ Ck(W )}

such that for every f ∈ Ck(W ),∑
ω∈W

∑
〈t1,...,tar(ω)〉
ti∈Ck(W )

cω[t1,...,tar(ω)]ω[t1, . . . , tar(ω)](f) ≥ ω0(f) . (8)
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By Definition 4.7, adding the left-hand side of these inequalities over all f gives 0, and
so does adding the right hand sides, so each inequality must actually be an equality. In
other words, ω0 is equal to a positive weighted sum of translations of weighted operations
in W .

Hence, by Lemma 5.3 and Remark 4.14, ω0 is equal to a translation of some element
ω′0 ∈ wClone(W ), so ω0 ∈ wClone(W ).

6 Conclusions

We have presented an algebraic theory of valued constraint languages analogous to the
theory of clones used to study the complexity of the classical constraint satisfaction
problem. We showed that the complexity of any valued constraint language with rational
costs is determined by certain algebraic properties of the cost functions allowed in the
language: the weighted polymorphisms.

In previous work [35, 34] it has been shown that every tractable crisp constraint
language can be characterised by an associated clone of operations. That work initiated
the use of algebraic properties in the search for tractable constraint languages, an area
that has seen considerable activity in recent years; see, for instance, [13, 11, 12, 9, 36, 26, 4,
1, 3, 5]. The results in this paper show that a similar result holds for the valued constraint
satisfaction problem: every tractable valued constraint language is characterised by an
associated weighted clone. We hope that our results here will provide a similar impetus
for the investigation of tractable valued constraint satisfaction problems.

References

[1] L. Barto, M. Kozik, Constraint Satisfaction Problems of Bounded Width, in: Pro-
ceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’09), 2009, pp. 461–471.

[2] L. Barto, M. Kozik, New Conditions for Taylor Varieties and CSP, in: Proceedings
of the 25th IEEE Symposium on Logic in Computer Science (LICS’10), 2010, pp.
100-109.
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A Multimorphisms

In previous work [19, 15, 21, 17, 37] the algebraic notion of a multimorphism has been
used to study the complexity of valued constraint languages. In this appendix, and the
following one, we explain how multimorphisms are related to weighted polymorphisms,
and show that a simple approach using multimorphisms does not establish a suitable
Galois connection for valued constraints.

Definition A.1 ([19]). A k-ary multi-function on D is a function F : Dk → Dk.
Each k-ary multi-function F corresponds to a tuple of functions 〈f1, . . . , fk〉, where each
fi : Dk → D.

For any r-ary cost function φ, we say that a k-ary multi-function F is a multimorphism
of φ if, for all x1, . . . , xk ∈ Dr,

k∑
i=1

φ(xi) ≥
k∑
i=1

φ(fi(x1, . . . , xk)) .

For any set of cost functions Γ, we will say F is a multimorphism of Γ if F is a multi-
morphism of every φ ∈ Γ. The set of all multimorphisms of Γ will be denoted Mul(Γ).

The submodular cost functions are characterised by having the binary multimorphism
〈min,max〉. In fact, every known tractable valued constraint language has been shown
to be characterised by a single multimorphism [21], or two multimorphisms [37].

Definition A.2. We call a multi-function F a multi-projection if there exists some
permutation π on {1, 2, . . . , k}, such that F (x)[i] = x[π(i)] for each i = 1, . . . , k.

Note that every cost function has every multi-projection as a multimorphism.

Definition A.3. Let F = 〈f1, . . . , fk〉 and G = 〈g1, . . . , gk〉 be a pair of k-ary multi-
functions. We define the composition of F and G as follows:

G ◦ F = 〈f1[g1, . . . , gk], . . . , fk[g1, . . . , gk]〉 .

Definition A.4. Let F = 〈f1, . . . , fk〉 and G = 〈g1, . . . , gl〉 be a pair of multi-functions.
We define the addition of F and G as follows:

F +G = 〈f1(x1, . . . , xk), . . . , fk(x1, . . . , xk), g1(xk+1, . . . , xk+l), . . . , gl(xk+1, . . . , xk+l)〉 .

Definition A.5. We call a set of multi-functions F a multi-clone if it contains all
multi-projections and is closed under composition and addition.

For any set of multi-functions F , we define the multi-clone generated by F , which we
denote MClone(F), to be the smallest multi-clone containing F .

It will be convenient to associate each multi-function with a weighted operation in the
following way. Let F = 〈f1, . . . , fk〉 be a k-ary multi-function, and define a corresponding
weighted operation ωF , with domain {f1, f2, . . . , fk} ∪ J(k)

D , as follows:

ωF (f) def=

{
countF (f)− 1 f = e

(k)
i for some i = 1, . . . , k

countF (f) f ∈ {f1, . . . , fk}
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where countF (f) = |{i : fi = f}|. It is straightforward to check that F ∈ Mul(Γ) if and
only if ωF ∈ wPol(Γ).

By identifying F with ωF , we can consider the multimorphisms of a valued constraint
language Γ to be a (strict) subset of the weighted polymorphisms of Γ. This identification
allows us to extend Definition 4.21 to sets of multi-functions, and hence define Imp(F)
for any set of multi-functions F .

A natural question to ask is whether MClone(F) is equal to Mul(Imp(F)). If this
were true, it might provide a simpler Galois connection than the one we have considered
earlier in this paper.

It is straightforward to check that MClone(F) ⊆ Mul(Imp(F)). However, in this
appendix we will show that the reverse inclusion does not hold. More precisely, we will
show that there exists a multi-function on a domain of size 2 which is a multimorphism of
every submodular cost function, but which is not contained in MClone(〈min,max〉). This
result explains why it was necessary to introduce the more general notion of translation
(Definition 4.10) in order to derive the Galois connection in Theorem 4.23.

To establish this result, we first derive certain structural properties of the elements of
MClone(〈min,max〉). In the following, we restrict our attention to the Boolean case and
use the binary Boolean operations x ∧ y and x ∨ y to represent min(x, y) and max(x, y),
respectively. Since we are interested in multi-functions which are multimorphisms of all
submodular functions, we can restrict our attention to elements of Clone(∧,∨), i.e., the
monotone Boolean functions. Any element t ∈ Clone(k)(∧,∨) can be represented as

t =
∨
i∈It

(
∧
j∈Ti

xj) ,

where It is a set of indices and {Ti : i ∈ It} is a Sperner family of subsets of {1, . . . , k}.1

Definition A.6. The Boolean multi-function SORTj
i , where j > i, is defined as follows:

SORTj
i (x)[p] =


x[p] if p /∈ {i, j}
x[i] ∧ x[j] p = i

x[i] ∨ x[j] p = j

This operation sorts the values in positions i and j into ascending order.

The multi-function SORTj
i can be seen as the multi-function obtained by adding the

multi-function 〈min,max〉 and a (k−2)-ary multi-projection, and then composing with an
appropriate multi-projection. Thus, we can view every element of MClone(〈min,max〉)
as a composition of some sequence of SORTj

i functions and multi-projections. In fact,
the next result shows that every element of MClone(〈min,max〉) can be represented as a
composition of SORTj

i functions composed with a single multi-projection.

1A Sperner family of {1, . . . , k} is a set of subsets of {1, . . . , k} such that no set is contained in any
other set.
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Proposition A.7. Every element of MClone(〈min,max〉) can be represented as

SORTj1
i1
◦ · · · ◦ SORTjm

im
◦π ,

for some i1, j1, . . . , im, jm, and some multi-projection π.

Proof. By our discussion above, it is sufficient to show that any multi-function of the
form π ◦ SORTj

i is equivalent to a multi-function of the form SORTj′

i′ ◦π
′. Hence in any

composition sequence of SORTj
i functions and multi-projections, the multi-projections

can be moved to the end, and combined to form a single multi-projection.
Applying π ◦ SORTj

i to the tuple x yields the tuple

xπ(1), . . . , (xπ(i) ∧ xπ(j)), . . . , (xπ(i) ∨ xπ(j)), . . . , xπ(k) .

There are two cases to consider. If π(i) < π(j) then we can obtain the same sequence by
applying SORTπ(j)

π(i) ◦π.

On the other hand, if π(i) > π(j) we must apply SORTπ(i)
π(j). We then need to apply

the multi-projection obtained by composing π with the transposition (i j) to get the same
result as π ◦ SORTj

i .

Definition A.8. We say k-ary multi-function F on D is conservative if, for all x ∈ Dk

the multi-sets of values {x[i] : 1 ≤ i ≤ k} and {F (x)[i] : 1 ≤ i ≤ k} are equal.

Definition A.9. We shall call a k-ary Boolean multi-function F lowering if, for each
x ∈ {0, 1}k we have that F (x) is lexicographically less than or equal to x.

It is straightforward to check that each function SORTj
i is conservative and lowering,

and the composition of any two conservative lowering functions is itself conservative and
lowering.

Proposition A.10. If a conservative multi-function F is lowering, and π is a permuta-
tion such that F ◦ π 6= F , then F ◦ π is not lowering.

Proof. Since π is not the identity, we know there must exist some value i ∈ {1, 2, . . . , k}
such that π(i) < i. Let s be the smallest such value and let x = 0s−11k−s+1. Since F is
both conservative and lowering, we have F (x) = x. Applying π to x gives a tuple x′ with
x′[π(s)] = 1. Thus, since π(s) < s, we have x′ >lex x.

We are now able to prove the main result of this appendix.

Theorem A.11. There exists a multi-function which is a multimorphism of every sub-
modular cost function, but which is not contained in MClone(〈min,max〉).

Proof. We prove this result by exhibiting a 4-ary multi-function F on a domain of size
2, which is a multimorphism of all submodular functions, but which is not equal to a
composition of SORT functions.
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We define F = 〈f1, f2, f3, f4〉, where

f1 = x1 ∧ x3 ∧ x4 ,

f2 = (x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x4) ,
f3 = (x1 ∧ x2) ∨ (x1 ∧ x4) ∨ x3 ,

f4 = x1 ∨ x2 ∨ x4 .

Viewed as a table, we have

x1 0000000011111111
x2 0000111100001111
x3 0011001100110011
x4 0101010101010101
f1 0000000000010001
f2 0000010100000111
f3 0011001101111111
f4 0101111111111111

It is straightforward to check from this table that F is conservative and lowering.
Hence by Proposition A.7 and Proposition A.10, F belongs to MClone(〈min,max〉) if
and only if it is equal to a composition of SORT functions.

Suppose F = F ′◦SORTj
i , where F ′ is obtained as the composition of SORT functions.

Then, we must have fi < fj (in the lattice of terms generated by ∧ and ∨), and, moreover,
there must be a pair s, t ∈ Clone(4)(∨,∧) such that fi = s ∧ t and fj = s ∨ t. The only
pairs 〈i, j〉 that satisfy fi < fj are 〈1, 3〉, 〈1, 4〉 and 〈2, 4〉.

Consider first the possibility that i = 1 and j = 3, and suppose f1 = s∧t and f3 = s∨t
for some s, t ∈ Clone(4)(∨,∧). We can write

s =
∨
i∈Is

∧
j∈Si

xj


t =

∨
i∈It

∧
j∈Ti

xj

 ,

where the sets {Si : i ∈ Is} and {Ti : i ∈ It} are both Sperner families of subsets of
{1, . . . , k}.

We must have each of {1, 2}, {1, 4}, {3} equal to some Si or Ti, since f3 = s ∨ t.
Moreover, since f1 = x1 ∧ x3 ∧ x4, we can assume (w.l.o.g.) that S1 = {1, 4} and
T1 = {3}. Setting S2 = {1, 2} implies that

s ∧ t ≥ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x3 ∧ x4) > f1 ;

hence we cannot have S2 = {1, 2}. On the other hand, setting T2 = {1, 2} gives

s ∧ t ≥ (x1 ∧ x2 ∧ x4) ∨ (x1 ∧ x3 ∧ x4) > f1 .
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Thus, we cannot have that F = F ′ ◦ SORT3
1. A similar argument can be used to show

that F = F ′ ◦ SORT4
1 and F = F ′ ◦ SORT4

2 are also both impossible.
Hence, we have shown that F cannot be generated as the composition of SORT

functions, and hence cannot belong to MClone(〈min,max〉).
Finally, we show that F is a multimorphism of all submodular functions. Let W =

{ωSM}, where ωSM is the weighted polymorphism associated with the multimorphism
〈min,max〉 that characterises the set of submodular cost functions (Example 4.19),

ωSM (f) =

{
−1 if f ∈ {e(2)

1 , e
(2)
2 }

+1 if f ∈ {x1 ∧ x2, x1 ∨ x2}
.

Now consider the following 4 translations of ωSM : ωSM [xi, yi], where the yi are given by

y1 = (x1 ∧ x3) ∨ x2 ∨ x4 ,

y2 = (x1 ∧ x3) ∨ x4 ,

y3 = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x1 ∧ x4) ,
y4 = x1 ∧ x3 .

Note that the following equalities hold:

x1 ∧ y1 = y3 , x1 ∨ y1 = f4 ,

x2 ∧ y2 = f2 , x2 ∨ y2 = y1 ,

x3 ∧ y3 = y4 , x3 ∨ y3 = f3 ,

x4 ∧ y4 = f1 , x4 ∨ y4 = y2 .

Thus, if we let ω′ =
∑4

i=1 ωSM [xi, yi] we have

ω′(f) =


−1 f ∈ {xi : 1 ≤ i ≤ 4}
0 f ∈ {yi : 1 ≤ i ≤ 4}
+1 f ∈ {fi : 1 ≤ i ≤ 4}

Since ω′ ∈ wClone(ωSM ), we know, by Theorem 4.23, that ω′ is a weighted polymorphism
of every cost function improved by ωSM . Hence F satisfies the inequality in Defintion A.1
for all such cost functions, and so is a multimorphism of all submodular functions.

B Multimorphisms are not enough

As explained in Appendix A, the multimorphisms of a valued constraint language can be
viewed as a subset of the set of weighted polymorphisms. This raises the natural question
of whether the multimorphisms of a valued constraint language are sufficient in all cases
to capture the expressive power of the language.

In this appendix we show that this is not true. We will call a weighted polymorphism
ω trivial if ω(f) = 0 for all f ∈ dom(ω). We will construct a cost function, φD, with a
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non-trivial weighted polymorphism. However, we will also show that the only multimor-
phisms of φD are multi-projections. Hence, the expressive power of φD is not captured
by considering its multimorphisms alone.

For any domain D = {1, 2, . . . , d} where d = |D| > 2 we define a binary cost function
φD as follows:

φD(x, y) def=



0 if x = 1 and y = 2,
1 if x = 2 and y = 1,
2d3 + x if y = 2 and x > 2,
2d3 + y if x = 2 and y > 2,
2d3 + 1/y if x = 1 and y > 2,
2d3 + 1/x if y = 1 and x > 2,
2d3 + d+ 1 if x = y,

2d3 otherwise.

Theorem B.1. The cost function φD has a non-trivial unary weighted polymorphism.

Proof. For any p, q ∈ D, p 6= q, let fp,q be the unary function from D to D where

fp,q(x) def=


1 if x = p > 2,
2 if x = q > 2,
x otherwise.

Now consider the weighted operation ω ∈W(1)
D defined as ω(e(1)

1 ) = −1 and ω(fp,q) =
1/(d(d− 1)) for every p 6= q. We will prove that ω ∈ wPol(φD) by showing that φD and
ω satisfy Inequality (3) from Definition 4.18, for every 〈x, y〉 ∈ D2.

If 〈x, y〉 ∈ {1, 2}2 then fp,q is the identity so

1
d(d− 1)

∑
p 6=q

φD(fp,q(x), fp,q(y)) = φD(x, y) .

For any a ∈ D, we have that φD(a, a) = 2d3 + d+ 1. Hence, if x = y,

1
d(d− 1)

∑
p 6=q

φD(fp,q(x), fp,q(y)) = φD(x, y) .

Now consider 〈x, y〉 /∈ {1, 2}2 satisfying x 6= y. In all such cases there is some fp,q for
which φD(fp,q(x), fp,q(y)) ≤ 1; these are given in the table below.

〈x, y〉 〈p, q〉
〈1, b〉 〈1, b〉
〈2, b〉 〈b, 1〉
〈a, 1〉 〈1, a〉
〈a, 2〉 〈a, 1〉
〈a, b〉 〈a, b〉
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Hence, for any x, y /∈ {1, 2}2 satisfying x 6= y, the sum
∑

p 6=q φD(fp,q(x), fp,q(y)) has
at least one term with value ≤ 1. Then, since the maximum value of φD is 2d3 + d + 1,
we have

1
d(d− 1)

∑
p6=q

φD(fp,q(x), fp,q(y)) ≤
(

1− 1
d(d− 1)

)
(2d3 + d+ 1) +

1
d(d− 1)

= 2d3 − d2 + 2
d− 1

≤ 2d3

≤ φD(x, y) .

The last inequality comes from the fact that φD(x, y) ≥ 2d3 for all x, y ∈ Dk.

Next we show that every multimorphism of φD is a multi-projection. We first show
that every multimorphism of φD must behave like a multi-projection on tuples from
{1, 2}k.

Lemma B.2. Any k-ary multimorphism of φD acts as a multi-projection when applied
to tuples in {1, 2}k.

Proof. Let F be a k-ary multimorphism (k ≥ 1) of φD. We will first show that F is
conservative on all tuples in {1, 2}k. Using this result, we are then able to show that F
must behave like a multi-projection on {1, 2}k.

We start by observing that since 〈1, 2〉 is the only assignment with cost 0, F must fix
1k and 2k. Next, suppose x ∈ {1, 2}k and let 〈x′1, . . . , x′k〉 = F (x). We will consider two
tableau in our analysis of F : the 2 × k tableau with i-th row equal to 〈1, x[i]〉, and the
2 × k tableau with i-th row 〈x[i], 2〉. By considering how F must behave on these two
tableaux, we are able to show that F is conservative.

Suppose x has r 1s and k − r 2s and x′ has r′ 1s, s′ 2s, and t′ values > 2. The total
cost of applying φD to the rows in the first tableau is

k∑
i=1

φD(1, x[i]) = r(2d3 + d+ 1) , (9)

and the corresponding cost for the tableau obtained by applying F to the first tableau is

k∑
i=1

φD(1, x′[i]) ≥ r′(2d3 + d+ 1) + 2t′d3 . (10)

Here we are using the fact that φD(a, b) ≥ 2d3 when a 6= b and 〈a, b〉 /∈ {1, 2}2. Since F
is a multimorphism of φD, we must have (9) ≥ (10), by Definition A.1; this implies that

(r − r′)(2d3 + d+ 1) ≥ 2t′d3 . (11)
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Similarly, the total cost of applying φD to the rows in the second tableau is

k∑
i=1

φD(x[i], 2) = (k − r)(2d3 + d+ 1) , (12)

and the corresponding cost for the tableau obtained by applying F to the second tableau
is

k∑
i=1

φD(x′[i], 2) ≥ s′(2d3 + d+ 1) + 2t′d3 . (13)

Again, the fact that F is a multimorphism implies (12) ≥ (13); hence,

(k − r − s′)(2d3 + d+ 1) ≥ 2t′d3 . (14)

Combining (11) and (14) gives

(k − r′ − s′)(2d3 + d+ 1) ≥ 4t′d3 . (15)

But t′ = k − r′ − s′, so (15) can only be true when t′ = 0. Then (11) and (14) can only
hold when r = r′. Hence, F is conservative on {1, 2}k.

Let vi be the element of {1, 2}k with exactly one 1 at position i. We define a permu-
tation on {1, 2, . . . , k} according to the action of F on the tuples vi, by setting π(i) to
be the unique j ∈ {1, 2, . . . , k} such that F (vi)[j] = 1. We will now show that F behaves
like the multi-projection defined by π, when applied to any tuple in {1, 2}k.

Since φD has maximum cost when its two arguments are equal it follows that if
x, y ∈ {1, 2}k have no 1s in common, i.e., there is no i ∈ {1, 2, . . . , k} with x[i] = y[i] = 1,
than F (x) and F (y) also have no 1s in common.

Now suppose z ∈ {1, 2}k satisfies z[i] = 2 for some i ∈ {1, 2, . . . , k}. Then, since vi
and z have no 1s in common, it follows that F (vi) and F (z) have no 1s in common, i.e.,
F (z)[π(i)] = 2. Since this holds for each i with z[i] = 2, we can conclude that F behaves
like the permutation π when applied to any z ∈ {1, 2}k.

Theorem B.3. The only multimorphisms of φD are multi-projections.

Proof. Let F be a k-ary multimorphism of φD. By Lemma B.2, we know that there exists
a permutation π on {1, 2, . . . , k} such that F behaves like π when applied to tuples in
{1, 2}k. Hence, if we compose F with the multi-projection corresponding to the inverse
permutation, π−1, we get a multimorphism F ′ of φD that behaves like the identity on
{1, 2}k. We will now show that F ′ is, in fact, the identity. Then, since the inverse of any
multi-projection is itself a multi-projection, we are able to conclude that F must be a
multi-projection.

Let x ∈ Dk and let y = F ′(x). We define a new tuple z = z(x, y) according to the
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following table.

〈x[i], y[i]〉 z[i] φD(x[i], z[i]) φD(y[i], z[i])
〈2, 1〉 1 1 2d3 + d+ 1

〈a, 1〉where a > 2 1 2d3 + 1/a 2d3 + d+ 1
〈1, 2〉 2 0 2d3 + d+ 1

〈a, 2〉where a > 2 2 2d3 + a 2d3 + d+ 1
〈1, b〉where b > 2 2 0 2d3 + b
〈2, b〉where b > 2 1 1 2d3 + 1/b
〈a, b〉where 2 < a < b 2 2d3 + a 2d3 + b
〈a, b〉where a > b > 2 1 2d3 + 1/a 2d3 + 1/b

〈a, a〉 1 φD(a, 1) φD(a, 1)

Consider the tableau whose columns are given by x and z. Since F ′ is a multimorphism
of φD, we must have

k∑
i=1

φD(x[i], z[i]) ≥
k∑
i=1

φD(y[i], z[i]) , (16)

since F ′(z) = z. As demonstrated in the above table, whenever x[i] 6= y[i] we will have

φD(x[i], z[i]) < φD(y[i], z[i]) .

Thus, in order for (16) to hold, we must have x[i] = y[i] for i = 1, . . . , k. In other words,
we must have x = F ′(x) for all x ∈ Dk.
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