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Preface

Abstract

The benefits of exploiting the underlying logic of ontologies are theoretically pro-
ved, although further evidence of their usability is still needed. The research conduc-
ted on this dissertation has been based on the hypothesis that logic formalisms can
be useful in practice to avoid, detect and repair errors in evolving ontologies. Current
logic-based machinery has been adapted and applied to help ontology developers and
domain experts in the resolution of several real use cases. We have designed general
principles based on logic formalisms and we have implemented a set of prototype sys-
tems to support users in different stages of development of ontologies, namely: reuse
of knowledge, concurrent evolution, and integration of independent resources.

Methodology

We have designed general principles based on description logic formalisms and
we have implemented techniques following those principles. Then, these techniques
have been applied in interesting use cases to show the benefits of using logic based
methods.

The designed logic-based principles and implemented techniques aim at being in-
tegrated within the correspondent development activities of the ontology lifecycle.
Thus, they are complementary to state-of-the-art methodologies and workflows to de-
velop ontologies.

Contributions

The goal of this dissertation has been to provide logic-based support in knowledge
reuse, concurrent ontology development and ontology integration. Knowledge reuse
has been supported with semantic techniques to adapt domain thesauri and to safely
reuse knowledge from ontologies. Concurrent changes in collaborative development
scenarios have been assessed enhancing current logic-based debugging techniques.
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Finally, ontology integration has been audited applying semi-automatic and automatic
methods based on designed logic-based principles and state-of-the-art formalisms.

These logic-based methods and techniques have been integrated in a set of pro-
totype systems. Generated results have also been published and disseminated in pres-
tigious international workshops, conferences and journals.

Proposed methods and techniques are complementary to state-of-the-art techno-
logy where we have contributed in different ways. Future research lines will involve
the integration of our methods with this technology in order to enrich current opera-
tion. Further dedication would be also necessary to provide a precise evaluation of our
methods in complex and real use cases.

Keywords: knowledge representation, ontology, thesaurus, OWL, description lo-
gics, ontology integration, ontology modularization, concurrent ontology development
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Prólogo

Resumen

El sentido filosófico del término ontologı́a hace referencia a la esencia misma del
ser, a su existencia (onto=ser). Para un sistema inteligente lo que existe es lo que puede
representarse. En informática una ontologı́a se ha definido como una conceptualiza-
ción formal y compartida de un dominio. Actualmente las ontologı́as tienen un rol
clave en el desarrollo de la Web Semántica, pero también están siendo usadas en otros
dominios como la biomedicina, agricultura, defensa, robótica y astronomı́a.

En la investigación llevada a cabo en esta tesis nos hemos centrado en el diseño
y desarrollo de métodos generales y técnicas basadas en la lógica para dar soporte y
respaldar el desarrollo de ontologı́as en varias de sus fases. La biomedicina ha sido
seleccionada como dominio de aplicación debido a la gran cantidad de recursos de co-
nocimiento que hay disponibles. Sin embargo, nuestra tecnologı́a puede ser extendida
y aplicada en otros dominios.

Cabe destacar que nuestros métodos y técnicas han sido diseñados para el len-
guaje de definición de ontologı́as OWL (Ontology Web Language) y su lógica de
descripción subyacente SROIQ; sin embargo, también pueden ser aplicados sobre
otros formalismos de definición de ontologı́as (ej: OBO), siempre y cuando puedan
ser expresados en OWL.

Como prueba de concepto hemos implementado un conjunto de herramientas ba-
sadas en los métodos y técnicas diseñados en la tesis. Estas herramientas han sido
desarrolladas sobre el interfaz OWL API y diseñadas para el editor de ontologı́as Protégé.
No obstante podrı́an ser extendidas e integradas en otros marcos de trabajo como el
toolkit de NeOn.

Objetivos

Los casos de uso utilizados en la tesis están basados en el dominio de aplicación
del proyecto Health-e-Child1, concretamente en el desarrollo de una ontologı́a sobre

1 Health-e-Child: http://www.health-e-child.org/
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la enfermedad denominada artritis idiopática juvenil (siglas en inglés: JIA). A dicha
ontologı́a la hemos denominado JIAO. Cabe destacar, no obstante, que en esta tesis
no hemos centrado nuestros esfuerzos en la propia creación de JIAO sino en el di-
seño e implementación de métodos para facilitar su desarrollo. Por tanto, los métodos
propuestos pueden ser aplicados a otros dominios.

El conocimiento representado en JIAO involucra diferentes granularidades y sub-
dominios como por ejemplo los aspectos genéticos, tratamientos, anatomı́a, análisis
clı́nicos, etc. Por tanto el desarrollo de ontologı́as como JIAO suele realizarse de
forma colaborativa (los cambios sobre la ontologı́a son creados, argumentados y re-
conciliados por un grupo de desarrolladores) y concurrente (varios desarrolladores
realizan cambios al mismo tiempo). Además, es probable que los desarrolladores no
sean expertos en todos los subdominios de JIAO, por tanto, siempre que sea posible,
es preferible reutilizar ontologı́as y fuentes externas consensuadas por la comunidad.
Este conocimiento a reutilizar puede provenir de diferentes ontologı́as y proyectos
independientes, por tanto, tanto el vocabulario utilizado como la conceptualización
suelen divergir. La correcta integración del conocimiento externo junto con el conoci-
miento de JIAO requiere el establecimiento de correspondencias entre las entidades
de las diferentes fuentes a integrar y un análisis de la compatibilidad de las mismas.

Reutilización, integración y concurrencia/colaboración se presentan como los tres
problemas clave para desarrollar ontologı́as como JIAO. En esta tesis partimos de la
hipótesis de que la lógica puede ser de gran utilidad para detectar y reparar errores en
la evolución de una ontologı́a, y de esta forma dar un soporte lógico al tratamiento de
los tres problemas anteriores.

Metodologı́a y desarrollo

Los beneficios del uso de la lógica para dar soporte a la creación y evolución de
las ontologı́as han sido teóricamente probados, sin embargo, una mayor evidencia de
su usabilidad en la práctica sigue siendo una de las piedras angulares de este campo.

En esta tesis hemos diseñado una serie de principios generales basados en for-
malismos lógicos. Estos principios han sido implementados reutilizando y adaptando
la tecnologı́a actual. Además, hemos desarrollado un conjunto de sistemas prototipo
para dar soporte a los desarrolladores en las diferentes fases de la evolución de una on-
tologı́a: reutilización, integración y colaboración/concurrencia. Estos prototipos han
sido evaluados en varios casos de uso, mostrando los beneficios de usar los métodos y
técnicas propuestos.

La tecnologı́a desarrollada tiene como propósito el ser integrada como parte de las
actividades del ciclo de vida de una ontologı́a. Por tanto, el trabajo llevado a cabo en
esta tesis es totalmente complementario a las metodologı́as y flujos de trabajo actuales
para el desarrollo de ontologı́as.
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Contribuciones

Los métodos y técnicas implementados han sido integrados en el editor de onto-
logı́as Protégé. Los resultados generados han sido publicados y divulgados en diver-
sos talleres, conferencias y revistas tanto de ámbito nacional como internacional. Las
contribuciones de esta tesis se pueden agrupar en tres grandes grupos: reutilización,
desarrollo concurrente e integración.

Contribuciones en la reutilización de conocimiento

El desarrollo de ontologı́as normalmente requiere reutilizar conocimiento de fuen-
tes externas. La reutilización de vocabulario puede ayudar a proporcionar la etiqueta
correcta a un concepto de la ontologı́a . La organización base para los conceptos de
una ontologı́a puede ser importada de tesauros como WordNet o UMLS. Finalmente,
las ontologı́as de dominio pueden ser utilizadas como fuente de descripciones lógicas
sobre las entidades requeridas.

Nuestra aportación a la reutilización de conocimiento ha sido por partida doble.
Por una parte hemos propuesto un método para reutilizar conocimiento de recursos no
ontológicos (ej. tesauros). Este método ha consistido en la extracción, adaptación y ex-
tensión de porciones de UMLS-Meta, Swissport y Drugbank centradas en el dominio
de JIA. Por otra parte, también se ha diseñado e implementado (ProSÉ, una exten-
sión para Protégé) un marco de trabajo para reutilizar ontologı́as de forma segura y
modular. Este marco de trabajo se ha basado en un marco lógico bien fundado, y parte
de las siguientes hipótesis: (1) los desarrolladores, en general, no quieren modificar
el significado original de las entidades reutilizadas, y (2) la cantidad de conocimiento
relevante suele involucrar partes (relativamente) pequeñas de la ontologı́a a reutilizar.

Cabe destacar que ambos métodos no requieren el uso de un razonador y por tanto
solo se basan en la estructura del recurso a reutilizar.

Contribuciones en el desarrollo concurrente de ontologı́as

El control de la evolución de una ontologı́a debe involucrar una gestión de los
cambios realizados y sus efectos (propagación a las entidades dependientes). En la
literatura podemos encontrar varios trabajos que intentan abordar este problema desde
distintos enfoques: representación formal de los cambios, detección y reparación de
inconsistencias, y desarrollo colaborativo y concurrente.

Según demuestran ciertos estudios de usuario, los expertos de dominio buscan he-
rramientas funcionales, fáciles de manejar, y que proporcionen técnicas para facilitar
la comunicación y discusión entre los diferentes desarrolladores. Adicionalmente tam-
bién se interesan por herramientas que prevengan, o reparen si es necesario, conflictos
y consecuencias lógicas no deseadas causados por cambios concurrentes.

Nuestra contribución a la comunidad ha sido el diseño de un marco de trabajo
y la implementación de ContentCVS (un plugin para Protégé) para auditar las con-
secuencias de cambios realizados de forma concurrente en un entorno de desarrollo
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colaborativo. Actualmente, ContentCVS permite una edición ası́ncrona e implemen-
ta un método de versionado pasivo. Por tanto, las versiones deben ser comparadas para
detectar conflictos potenciales. Las técnicas para la detección de cambios y conflictos
están basadas en las nociones de diferencia estructural y semántica (ej. consecuencias
lógicas) entre ontologı́as. ContentCVS requiere del razonador para obtener la dife-
rencia semántica y para utilizar técnicas de reparación basadas en la lógica subyacente
de las ontologı́as. Estas técnicas de reparación guı́an de forma iterativa la aceptación
y rechazo de cambios y consecuencias lógicas no deseadas.

Contribuciones en la integración de ontologı́as

Actualmente existe un número elevado de técnicas para identificar corresponden-
cias entre ontologı́as desarrolladas independientemente. No obstante, la integración
de las ontologı́as junto con las correspondencias puede derivar en consecuencias no
deseadas y por tanto debe ser auditada. Estas consecuencias no deseadas pueden de-
berse a correspondencias erróneas o a incompatibilidades en las descripciones, res-
pecto a las entidades alineadas, de las ontologı́as fuente.

En esta tesis hemos implementado técnicas semiautomáticas y automáticas para
evaluar y auditar la integración semántica de ontologı́as. Las técnicas semiautomáti-
cas han sido creadas para guiar, apoyándose en el razonador, al desarrollador en el
análisis y comprensión de las consecuencias lógicas derivadas de la integración. Las
técnicas automáticas están basadas en principios lógicos (requieren del razonador pe-
ro en menor medida) y tienen como objetivo reducir el número de correspondencias
conflictivas y las consecuencias lógicas que son claramente erróneas. En resumen, las
técnicas automáticas permiten reducir la cantidad de información a revisar por parte
del desarrollador; mientras que las técnicas semiautomáticas permiten guiar la repara-
ción de errores no obvios que necesiten la intervención del desarrollador.

Conclusiones y lı́neas abiertas

Nuestra tecnologı́a presenta notables puntos fuertes, pero también un conjunto de
limitaciones que se plantean como lı́neas abiertas de investigación. Además, aunque
las técnicas y métodos propuestos son complementarios a la tecnologı́a actual, una
comparación más detallada respecto a esta tecnologı́a junto con un análisis de las
posibilidades de integración formarı́a también parte del trabajo futuro.

La reutilización de ontologı́as de forma segura puede ser muy restrictiva cuando
los requerimientos de la aplicación implican tanto la especialización como la genera-
lización de la ontologı́a a reutilizar. Por tanto una dirección interesante en el trabajo
futuro serı́a el análisis de otras estrategias de reutilización para complementar y dotar
de mayor flexibilidad a la actual.

Otra dirección de investigación interesante implicarı́a la evaluación del impacto
del conocimiento reutilizado sobre el conocimiento local y ası́ analizar si el conoci-
miento reutilizado es el apropiado. Las técnicas a utilizar serı́an análogas a las utili-
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zadas en el análisis de cambios concurrentes y en la evaluación de la integración de
ontologı́as.

El marco de trabajo propuesto para el análisis de cambios concurrentes sobre una
ontologı́a también podrı́a ser extendido y mejorado. Actualmente no se consideran
polı́ticas de acceso ni restricciones en los cambios. Estas caracterı́sticas dotarı́an al
sistema de un mayor control sobre la evolución concurrente. Adicionalmente, los pla-
nes de reparación de consecuencias lógicas no deseadas podrı́an ser extendidos para
permitir también la modificación de axiomas ya que actualmente sólo sugieren el bo-
rrado de los mismos.

Las técnicas para la reparación automática de errores en la integración de onto-
logı́as también presentan ciertas limitaciones en lo que respecta al número de corres-
pondencias descartadas. Además, deberı́an analizarse nuevas heurı́sticas para poder
detectar y borrar el menor conjunto de correspondencias posible.

Respecto a la escalabilidad de nuestros métodos, las técnicas de reutilización de
conocimiento, como ya se ha comentado, no necesitan el uso del razonador y sólo
requieren realizar consultas sintácticas sobre la ontologı́a . Sin embargo, las técnicas
semiautomáticas de reparación de errores, debidos a cambios concurrentes sobre la
misma ontologı́a o a la integración de ontologı́as independientes, requieren el uso del
razonador para extraer las justificaciones o conjunto de axiomas causantes de las con-
secuencias lógicas no deseadas. Consecuentemente, el tiempo necesario para extraer
todas las justificaciones para un conjunto muy elevado de consecuencias puede ser
prohibitivo. El uso de razonamiento incremental y módulos lógicos, junto con una re-
paración parcial e iterativa de errores, se presentan como técnicas clave para mejorar
la escalabilidad de los métodos propuestos.

Finalmente, un aspecto no considerado en las tres contribuciones de la tesis es la
especificación formal de los requerimientos. Esta especificación formal nos permitirı́a
realizar una evaluación más precisa de los métodos propuestos, de la entrada requerida
y de los resultados que se deben obtener.

Palabras clave: representación de conocimiento, ontologı́a, tesauro, lógica de des-
cripciones, OWL, integración de ontologı́as, modularización de ontologı́as, desarrollo
concurrente de ontologı́as
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CHAPTER 1
Introduction

Ontologies —formal specifications of a shared domain conceptualization [Gru93a,
BAT97]— are playing a key role in the development of the Semantic Web [LHL01],
and are already being used in domains as diverse as biomedicine [SAR+07], agricultu-
re [LS06], defence [LAF+05], robotics [JYM+08, Wil08, LJRCM09] and astronomy
[LD+07].

This chapter briefly describes current ontology representation formalisms and re-
capitulates our main research challenges and how they have been addressed.

Our research has mainly focused on investigating general methods and techniques
to support ontology development in its different lifecycle phases. Biomedicine has
been selected as the motivating application domain given the large amount of onto-
logical resources currently available. Our techniques, however, can be applied to any
other domain.

This chapter is organized as follows. Section 1.1 gives an overview of existing
ontology representation paradigms. An introduction to the Ontology Web Language
OWL is given in Section 1.2. In Section 1.3 some issues regarding the ontology-based
representations in biomedicine are discussed. Section 1.4 presents an application sce-
nario and introduces our main research challenges. Finally, Section 1.5 summarizes
our main contributions.

1.1. Ontology modelling paradigms

Historically, the three main paradigms [NB03, SCM03, SJR09] for the modelling
of ontologies have been the network-based paradigm (i.e., semantic networks and ot-
her graph-based formalisms), the frame-based paradigm, and the logic-based para-
digm.

1
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Semantic networks are a family of formalisms for graphically representing con-
cepts an their relationships. Concepts are represented by nodes, whereas relationships
are links connecting nodes. The representation paradigm based on semantic networks
has been widely used in artificial intelligence to represent knowledge for expert sys-
tems. Originally, as stated by Woods [Woo75] and Brachman [Bra77], semantic net-
works lacked precise semantics to describe concepts and their relationships, which is
crucial to enable automated reasoning in an unambiguous manner.

KL-ONE and frames systems were among the first efforts to formalize semantic
networks. The language in KL-ONE [BS85] provided formal semantics to many of
the basic constructs used in semantic networks. Concepts were represented and struc-
tured based on the idea of structured inheritance networks [Bra79] by using structure-
forming operations such as specialization, restriction or differentiation. The KL-ONE
language, in contrast to semantic networks, introduced a clear separation between in-
tensional and extensional knowledge. Furthermore, KL-ONE introduced the notion of
automatic classification, i.e., the computation of the implicit subsumption relations
between concepts.

The concept of frame was originally introduced by Minsky [MW75] as an alterna-
tive to logic-oriented approaches in order to provide a more natural way to represent
knowledge. The frames paradigm was interpreted by many as simply an alternative
syntax to first-order logic [Hay79]. There is no doubt, however, that both frames and
the KL-ONE language laid the foundations of modern knowledge representation sys-
tems.

1.1.1. Logic-based representations

The obvious way to provide an unambiguous semantics to semantic networks and
frames is to map their constructs to an underlying logic, such as propositional or first
order predicate logic (FOL).

As stated by Hayes [Hay79], the intended meaning of the basic constructs availa-
ble in semantic networks and frame-based systems could be formalized using FOL.
However, the validity problem as well as other central reasoning problems are un-
decidable in FOL — that is, there is no algorithm that can decide the validity of an
arbitrary FOL formula. Levesque and Brachman [BL84, LB87] emphasized the need
for knowledge representation languages that provide a trade-off between expressive
power and nice computational properties, and they identified a fragment of FOL that
could express the basic constructs available in semantic networks and frame systems.
Originally this subset was called terminological language or concept language, and
eventually evolved into a family of knowledge representation languages called Des-
cription Logics (DL) [BCM+03].

KL-ONE can be seen as the predecessor of current DL-based systems. As in KL-
ONE, DL systems make an explicit distinction between the terminological or intensio-
nal knowledge (a.k.a. Terminological Box or TBox), which refers to the general know-
ledge about the domain, and the assertional or extensional knowledge (a.k.a. Assertio-
nal Box or ABox), which represents facts about specific individuals. An overview of
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early DL systems can be found in [Doy91]. FaCT [TH06], HermiT [SMH08, MSH09],
CEL [BLS06], Pellet [SPG+07], SHER [DFK+09] and RacerPro [HM01] are cu-
rrently used DL systems.

Finally, it is also worth mentioning the Ontolingua system [Gru93b, FFR97], a
frame-based system with logic-based formal semantics. Ontolingua was built on top of
KIF (Knowledge Interchange Format) [RFB+92] — a language based on FOL; howe-
ver, ontologies could be defined in Ontolingua using exclusively frame-like constructs
(thus restricting FOL’s expressive power).

1.2. Formal ontology representation using the Onto-
logy Web Language

The definition of a standard language for the formal definition of ontologies has
been for many years a central research topic for the Semantic Web and Knowledge
Representation communities [CGP00, GPC02].

The Ontology Web Language (OWL) is a World Wide Web Consortium (W3C)
standard [PSHH04, MPSCG09], and it is being widely used in ontology modelling.
The formal underpinning of OWL ontologies is based on formal logic [BCM+03],
with prominent dialects of OWL such as OWL DL and OWL Lite having a direct
correspondence with description logics. There is currently an extensive range of logic-
based algorithmic techniques and infrastructure available for OWL. OWL 2 [CHM+08],
a revision of the former OWL 1 [HPSvH03], is the language of choice in this re-
search. OWL 2 presents, among others, the following main improvements with res-
pect to OWL 1: (1) it provides new DL constructs which were not available in OWL 1
[MPSCG09], some of which provide additional expressive power to the language; (2)
it clarifies the structure and specification of the language [MPSP09]; and (3) it pro-
vides more flexibility in the use of annotations [MPSP09] — extra-logical constructs
that are widely used in ontology modelling.

We next recapitulate the description logic SROIQ (refer to [HKS06] for a more
extensive description), the underlying logic of OWL 2, and introduce the main reaso-
ning services typically implemented by DL systems.

1.2.1. SROIQ in a nutshell

A SROIQ-signature S is the union of the disjoint sets R of atomic roles (deno-
ted by R,S, . . .), C of atomic concepts (denoted by A,B, . . .) and I of individuals
(denoted by a, b, c, . . .).

A SROIQ-role is either R ∈ R or an inverse role R− with R ∈ R. We denote
by Rol the set of SROIQ-roles for the signature S. The function Inv(·) is defined on
Rol as follows: Inv(R) = R− and Inv(R−) = R. A role characteristic axiom is one of
the following forms: Trans(R) (Transitive), Sym(R) (Symetric), Asy(S) (Asymetric),
Ref(R) (Reflexive), Irr(S) (Irreflexive), Func(S) (Functional), InvFunc(S) (Inverse-
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Functional), and Dis(S1, S2,), whereR is a role and S, S1, S2 are simple roles.1 A role
inclusion axiom (RIA) is of the form w v S where w is a finite string of roles (i.e. role
chain) and R an atomic role. An RBoxR is a finite set of RIAs and role characteristic
axioms. To ensure decidability, R should satisfy certain regularity conditions, which
we omit here for simplicity. The following grammar defines the SROIQ-concepts
for S:

Con := > | {a} | A | ¬C | C1 u C2 | ∃R.C | ∃S.Self | >nS.C (1.1)

where a ∈ I, A ∈ C, C(i) ∈ Con, R,S ∈ Rol, with S a simple role, and n a
positive integer. We use the following abbreviations:CtD stands for ¬(¬Cu¬D);⊥
stands for ¬>; ∀R.C stands for ¬(∃R.¬C); and6nS.C stands for ¬(>n+1S.¬C).

A GCI is of the form C1 v C2 with Ci ∈ Con. A TBox T is a finite set of
GCIs. Assertions have the following forms: C(a), R(a, b), ¬R(a, b), a ≈ b, or a 6≈ b,
with C ∈ Con, a, b ∈ I, and R ∈ Rol. An ABox A is a finite set of assertions. A
SROIQ axiom α is either a GCI, an RIA, a role characteristic or an ABox assertion.
A SROIQ-ontology O is a tuple O = 〈T ,R,A〉, where T is a TBox,R is an RBox
and A is an ABox. Table 1.1 gives examples of a subset of SROIQ axioms and
concept constructors.

Following the model-theoretic semantics of DL ontologies, an S-interpretation I
is a pair I = (∆I , ·I), with ∆I a non-empty set, called the domain of the interpre-
tation, and ·I a function that assigns to each R ∈ R a relation RI ⊆ ∆I × ∆I , to
each A ∈ C a set AI ⊆ ∆I , and to each a ∈ I an object aI ∈ ∆I . The function ·I
is extended to complex roles, strings of roles and concepts in the standard way (see
[HKS06]).

The satisfaction relation I |= α between I and an axiom α is also standard
[HKS06]. An interpretation I is a model of O if I satisfies all axioms in O. We say
thatO is consistent if a model ofO exists. An ontologyO entails α, writtenO |= α, if
I |= α for every model I of O. An ontology O entails O′, written O |= O′ if O |= α
for each α ∈ O′. The ontologies O,O′ are semantically equivalent, written O ≡ O′,
if O |= O′ and O′ |= O. Finally, we say that a concept C is satisfiable w.r.t. O if a
model of O exists in which CI 6= ∅.

From now on, we differentiate between inconsistent ontologies (i.e. without a mo-
del) and incoherent ontologies [SC03] (i.e. with unsatisfiable concepts).

Definition 1.1 (Coherent Ontology). An ontology O is coherent if it is consistent and
does not contains unsatisfiable concepts.

1.3. Ontology representations in biomedicine

The differences between ontologies and other terminological knowledge resour-
ces such as lexicons, terminologies and thesauri are often blurred in the literature

1 Refer to [HKS06] for the definition of a simple role
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Table 1.1: Some SROIQ axioms and concept expressions
OWL Axioms

GCI C v D Patient v Person
RIA R v S complicates v affects
Class Assertion C(a) Patient(john)
Property Assertion R(a, b) hasAge(jonh, 28)
Different Individuals a 6≈ b negative factor 6≈ positive factor

Concept Expressions
Atomic Concept A Patient
Complement ¬C ¬SteroidalDrug
Intersection C uD Disease u ∀affects.WholeBody
Union C tD Steroid tNSAID
Universal Restriction ∀R.C ∀hasTreatment.NSAID
Value Restriction ∃R{a} ∃hasGender{female}
Existential ∃R.C ∃hasSymptom.Fever
Min Cardinality >nR.C > 3 affects.Joint
Nominal {a, b, c} {female,male}

[JYJRBRS09b]. Ontologies and terminological resources mainly differ in their ex-
pressive power. While terminological resources mostly describe linguistic properties
(e.g., collecting synonyms) [Hir04, Bod06] and giving a basic organization of terms
within a taxonomy (e.g., hypernymy); ontologies intend to provide formal descriptions
of concepts, which could be rather complex. Thus, ontologies and terminological re-
sources often serve to different purposes and therefore a distinction should be made.

In Figure 1.1 we have arranged the existing formalisms (depicted by boxes) ac-
cording to their semantic expressiveness. Existing biomedical resources are placed to
their closer formalism. Genuine lexical resources are placed closer to the left part
of the diagram, like the Biolexicon [PJYLRS08] or the UMLS Specialist lexicon
[BMS00]. More complex resources lie in between the definition of ontology and le-
xicon like MeSH [MNA+99], ICD classification [icd07], the UMLS2 Metathesaurus
[Bod04] and the set of OBO ontologies [SAR+07] (e.g., the Gene Ontology [ABB+00])
that account for representations similar to semantic networks. Finally, at the end of the
spectrum we find expressive ontologies such as FMA3 [JR04], BioPAX4 [LS07], GA-
LEN5 [RR06], NCI6 [HdCD+05] or SNOMED CT7 [Spa00], which express stronger
semantics.

2 Unified Medical Language System
3 Foundational Model of Anatomy
4 Biological PAthways eXchange
5 Generalized Architecture for Languages, Encyclopaedias and Nomenclatures in medicine
6 National Cancer Institute
7 Systematized NOmenclature of MEDicine Clinical Terms
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Figure 1.1: Adapted Ontology Spectrum based on [LM01, Bod06, JYJRBRS09b]

1.3.1. OBO and OWL ontologies

As already mentioned, OWL is the W3C standard to represent DL ontologies. Ne-
vertheless, within the biomedical domain, OBO [SAR+07, DR06] is the most widely
used ontology language. OWL provides an expressive and formal language, however
domain experts are not necessarily experts in knowledge representation using DLs.
Furthermore, they have been so far interested in gathering together agreed knowledge
instead of giving a more formal and functional representation for it [Lam06].

There have been several efforts [GHH+07, MM07, TAM+09] to provide formal
DL semantics to OBO ontologies and to convert them into OWL. These approaches
have focused on the definition of syntactical and semantic mappings between the OBO
format and OWL. Additionally [TAM+09] also identified the OBO language as a strict
subset of OWL DL, which they call OWL-Bio.

The conversion of OBO ontologies into OWL allows for the interoperability bet-
ween current biomedical resources and the Semantic Web infrastructure (editors, reaso-
ners, and so on). However, although OBO ontologies represent an important commu-
nity effort, they are somewhere in-between what is expected from an ontology and
from a thesaurus [JYJRBRS09b] (see Figure 1.1) and they should be adapted in order
to benefit from Semantic Web techniques.

Moreover, OBO ontologies are not exploiting all the expressivity of the OBO lan-
guage, and in most of the cases they are limited to taxonomies, like the Human Disea-
se Ontology [KS+08]. Other OBO ontologies like the Gene Ontology [ABB+00] also
contain part-whole relationships (i.e., meronymy and holonymy) which also forms
a taxonomy. Thus, one of the most important limitations of OBO ontologies is the
lack of formal descriptions for complex concepts. Instead, they use descriptive na-
mes to label such concepts. These labels are closer to a text definition than to a con-
cept name. For example, the Gene Ontology contains the (biological process) concept
GO:0002498 with label “proteolysis within endoplasmic reticulum associated with
antigen processing and presentation”. Such complex concept should be described in
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a formal ontology by combining somehow smaller units of meaning, e.g., the concept
GO:0002498 could be formally described as in axiom 1.2 where the semantics for
each of its elements are also defined in such a formal ontology.

GO:0002498 ≡ Proteolysis u ∃has location.Endoplasmic Reticulum u (1.2)

∃associated with.(Antigen Processing u Antigen Presentation)

1.3.2. Thesauri-ontology linkage

Thesauri and ontologies can be integrated in different ways. In the simplest ap-
proach, the terminology (synonyms, definitions, links to other resources, etc.) is in-
corporated directly into the ontology using annotation properties. The advantage of
this approach is that all the necessary terminological information is included (at least
syntactically); however, there are two main limitations: (1) the ontology should be kept
up-to-date with changes in the set of synonyms and links to external resources; (2) the
ontology could be overloaded with excessive metadata making it hard to manage.

OBO ontologies are an example of ontologies being integrated with terminological
data. For example, the Human Disease Ontology contains 14040 classes, 7 properties,
15139 subsumption relationships and 445032 annotations (synonyms, references to
entries of other thesauri such as UMLS, ICD, SNOMED and MESH). Therefore it
associates an average of more than 30 annotations per class. The case of the Gene
Ontology is similar, containing more than 190000 annotations for less than 32000
classes.

A loose coupling between the domain ontologies and thesauri is, however, desira-
ble [Hir04]. The development of the FMA ontology is based on this idea and concept
labels are reused from a thesaurus named Terminologia Anatomica [Ros01]. Figure
1.2 shows an example of this desirable setup [JYJRBRS09b] where the thesaurus is
in charge of maintaining the set of synonyms (i.e., labels) for the concept, the defini-
tions, links to external resources, and so on. Whereas the ontology concepts only have
to keep a link to the thesaurus through a single annotation (see OWL code in Table
1.2). This setup not only provides a clearer organization of the knowledge (seman-
tics and logics within the ontology; and lexicon and structure within the thesaurus)
but also eases the alignment and integration of ontologies avoiding the application of
lexical matching (e.g., concepts O1:C and O2:D from Figure 1.2 are linked to same
thesaurus entry and thus they can be potentially aligned).

1.4. Application scenario and challenges

The examples and use cases selected for this dissertations are based on the arthritis
domain of the Health-e-Child (HeC) project [FCI+06, JRBS+06] (specifically, on the
creation of an ontology for the Juvenile Idiopathic Arthritis (JIAO)).

HeC aimed to develop an integrated health care platform for European paedia-
trics and decision support tools to access personalized health information. HeC project
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Figure 1.2: Ontology thesaurus link

<owl:Class rdf:about="ESR_Westergren">
<rdfs:label>Sedimentation rate, Westergren</rdfs:label>
<rdfs:subClassOf rdf:resource="ESR"/>
<dc:identifier>http://krono.act.uji.es/thesaurus#HeCTh1000430</dc:identifier>

</owl:Class>

Table 1.2: Ontology-thesaurus link through an OWL annotation

focused on three paediatric diseases: (1) heart disorders, (2) inflammatory disorders
(e.g. Juvenile Idiopathic Arthritis (JIA)) and (3) brain tumours. One of the objectives
of HeC project was to create several ontologies for representing the relevant domain
knowledge at different levels of granularity: molecular (e.g. genomic and proteomic
data), cellular (e.g. results of blood tests), tissue (e.g. synovial fluid tests), organ (e.g.
affected joints, heart description), body (e.g. examinations, treatments), and popula-
tion (e.g. epidemiological studies). The purpose of this multilevel representation was
to give a complete characterization of the different HeC diseases in order to provide
a rich ontological layer to the HeC System. The goal of this semantic layer was to
support a number of tasks such as data integration of heterogeneous sources, linka-
ge to external knowledge, enhancement of queries over the patient data, and decision
support for diagnosis, prognosis and follow-up [JRBS+06, TZH07, ABB+07].

Juvenile Idiopathic Arthritis (JIA) is a rare kind of arthritis and there is not yet
a consensus about its classification nor even its name [D+05]. So far, three classifi-
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cation schemes have been proposed, namely: ACR (American College of Rheuma-
tology), which uses the term Juvenile Rheumatoid Arthritis (JRA) as preferred name
and proposes three disease subtypes, EULAR (European League Against Rheuma-
tism), which opts for Juvenile Chronic Arthritis (JCA) and proposes six disease subty-
pes, and finally ILAR (International League of Associations for Rheumatology) which
prefers JIA and proposes eight subtypes.

As already mentioned, the knowledge represented by the HeC ontologies involves
different subdomains (e.g. genetics, drug classification, clinical tests) and granulari-
ties (from molecular to population). Thus, the development of JIAO is likely to be
conducted collaboratively (changes over the ontology should be discussed and recon-
ciled) and concurrently (i.e., several developers performing changes at the same time).

Each subtype of JIA is characterized by affecting different set and number of
joints, the occurrence of some symptoms like fever or rash, the laboratory tests that
are analyzed, the different treatments that are applied, etc. The development of JIAO
from scratch would imply the conceptualization of the different joints of the body,
the classification of the drugs for the treatments, the characterization of the different
laboratory tests, etc. Nevertheless this knowledge is already well known by the com-
munity (unlike JIA). Thus, it may be assumed that available biomedical thesauri and
ontologies can provide this knowledge in order to be reused.

Reused knowledge from biomedical ontologies must be integrated, however, avai-
lable biomedical ontologies usually belong to independent projects and they do not
use a common vocabulary. Moreover, the conceptualization process may have been
guided by different points of view. Therefore, correspondences (i.e., alignments or
mappings) between entities of the different ontologies have to be discovered, and the
logic compatibility of the ontology have to be evaluated (diagnosis of alignments).

Reuse, integration and concurrency&collaboration arise as key challenges to de-
velop an ontology such as JIAO. In this dissertation we have designed and imple-
mented logic-based methods and techniques to support the development of ontologies
such as JIAO. However, it is worth mentioning that the creation of such ontologies is
outside the scope of this dissertation, and only some prototype ontologies were created
for evaluation purposes.

1.5. Organization

The research conducted in this dissertation has been motivated and focused on the
challenges presented in previous sections. We have designed methods and techniques
to provide developers with logic-based support to address the three challenges: reuse,
integration and concurrency. We have also implemented a suite of tools that implement
our proposed techniques. A brief summary of the following chapters is presented next.

1.5.1. Chapter 2: Reuse in ontology development

Developers prefer to reuse knowledge that is commonly accepted by the commu-
nity, either because they are not experts in all the subdomains to be modelled, or becau-
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se they just want to save time and commit themselves to well-established knowledge.
The very large size of thesaurus and ontologies as well their variety, however, makes
it difficult to deploy them in particular applications mainly due to scalability (the ma-
nagement of such resources consume huge amount of computational resources) and
visualization (editors can barely load and display these resources) issues. Moreover,
applications usually does not require comprehensive descriptions of the domains but
rather a handful subset of entities and axioms from them.

In Chapter 2, we present two methods to reuse knowledge from thesauri and on-
tologies, respectively. The first method focuses on the refinement of current thesauri
in order to obtain a reference vocabulary for ontology development tasks. The second
method is based on formal semantics to reuse ontologies keeping certain logic-based
guarantees.

1.5.2. Chapter 3: Supporting concurrent ontology evolution

Large domain ontologies are being developed concurrently. The ontology deve-
lopers can be geographically distributed and may contribute in different ways and to
different extents. For example, the NCI ontology is being developed by 20 full ti-
me editors and one curator. Each editor works on a separate copy of the ontology
and, at the end of a two week editing cycle, the curator uses a workflow management
tool to review and approve the changes made by each editor [dCWF+09]. Therefore,
designing and maintaining such large ontologies is a highly complex process, which
involves tracking and managing the frequent changes to the ontology, reconciling con-
flicting views of the domain from different developers, minimising the introduction of
errors (e.g., ensuring that the ontology does not have unintended logical consequen-
ces), and so on.

Chapter 3 gives an overview of existing approaches and presents our novel techni-
ques and tool support.

1.5.3. Chapter 4: Logic-based assessment of ontology integra-
tion

The vocabularies of independent developed ontologies are likely to diverge since
they use different names or naming conventions to refer to their entities. There has
been a growing interest in the development of techniques for identifying correspon-
dences (i.e., mappings) between the ontologies to be integrated. However, the integra-
tion of the ontologies and the mappings usually leads to errors. These errors may be
caused due to incorrect mappings or to inherent incompatibilities between the onto-
logies. Errors usually manifest themselves as unintended logical consequences (e.g.,
unsatisfiable concepts or unintended subsumptions), and they can be difficult to detect,
understand and repair.

Current tools provide little or no support for the user in trying to assess the logical
consequences when integrating ontologies using mappings. In Chapter 4, we present
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novel semi-automatic and automatic methods to provide such support: to detect and
repair the unintended consequences of the integration.

1.5.4. Chapter 5: Conclusions and open lines

Chapter 5 recapitulates our main contributions and results, discusses the limita-
tions of our proposed techniques, and suggests possible extensions or open research
lines. Moreover, a list of the publications related to the dissertation is presented.
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CHAPTER 2
Reuse in ontology

development

The development of an ontology usually requires the reuse of knowledge from
several sources and in different ways [Bor09, GPdCSF09]. Reusing non-logical sym-
bols can help to provide a meaningful label to a concept. Importing a taxonomy from
thesauri such as WordNet [Mil95, Fel98] or UMLS [Bod04] may provide the basis to
organize concepts within the ontology. Borrowing logic descriptions from other onto-
logies may be also useful in order to take advantage of available rich descriptions of
the domain. In summary, there are three main motivations to reuse knowledge:

Developers, in general, save time1 through reusing existing knowledge sources
rather than creating their own from scratch.

The reused knowledge is commonly accepted by the community.

Developers are not always experts in all the subdomains modelled in an onto-
logy.

Thus, external resources will play an important role in the development of ontolo-
gies (e.g., JIAO). In [GPdCSF09], several scenarios requiring knowledge reuse were
proposed in the context of the NeOn methodology framework [DSFB+09]. The con-
tributions of this chapter fit within two of these scenarios: the reuse and adaptation of
non-ontological resources (e.g., thesauri), which is described in Section 2.1, and the
reuse and import of ontologies, which is described in Section 2.2.

1 Reuse in ontology engineering, as in software engineering, will have benefits but it may also have
costs due to re-engineering tasks, as analyzed in [BMT05]. The use of the proper technology (e.g.,
methods and tools) and resources (e.g., ontologies and thesauri) will be key factors.

13
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14 Chapter 2 Reuse in ontology development

2.1. Reusing knowledge from domain thesauri

In [JYJRBRS09b] we analyzed the limitations of current thesauri in order to be
reused for ontology engineering tasks and we proposed a method to extract usable
portions from them. UMLS Metathesaurus (UMLS-Meta) [Bod04] was used as the
core provider of terms and structure, whereas SwissProt2 [BBA+03] and DrugBank3

[WKG+08] served as complementary thesauri.
UMLS-Meta represents the main effort for the creation of a multipurpose refe-

rence thesaurus. UMLS-Meta contains concepts from more than one hundred ter-
minologies, classifications, and thesauri; e.g. FMA, MeSH, SNOMED CT or ICD.
UMLS-Meta 2008AB includes almost two million terms and more than three million
term names, hypernymy classification with more than one million relationships, and
around forty millions of other kinds of relationships.

SwissProt is a manually curated biological database of protein sequences which
aims at providing reliable protein sequences associated with descriptive annotations
such as the protein function, domain structure, variants, etc. DrugBank database com-
bines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with
comprehensive drug target (i.e. sequence, structure, pathway) information. Note that,
unlike UMLS-Meta, both SwissProt and Drugbank represents specialized lexicons.

Both UMLS-Meta, SwissProt and DrugBank represent very important efforts and
they are considered a reference within the bioinformatics community; however, they
should be refined and adapted in order to get a more useful resource for ontology
developers. Section 2.1.1 discusses the main drawbacks of these resources, whereas
Section 2.1.2 presents our method to reuse and adapt them in order to build a custo-
mized thesaurus to serve as the basis for JIAO.

2.1.1. Lexical and structural problems of current thesauri

A number of efforts [MA09, SAM09, JYJRL+08, JYJRBRS09b, HvMS+10] have
focused on the normalization (e.g., rewriting synonyms, filtering redundancy, solving
ambiguity) of terminological resources in order to make them more suitable for a
particular application. Next, we present the main lexical and structural drawbacks we
detected in UMLS-Meta, SwissProt and Drugbank [JYJRL+08, JYJRBRS09b]:

Complex Ambiguity Cases. Some ambiguity cases are rather hard to solve. For
example, the term Prostate Cancer has two associated UMLS-Meta entries:
C0600139UMLS and C0376358UMLS . Both concepts refer to the semantic ty-
pe Neoplastic Process, and they have as preferred labels Carcinoma of prostate
and Malignant tumor of prostate, respectively. These neoplastic processes ha-
ve a close relationship, indeed the former is represented as a child of the later
within the NCI and UMLS-Meta taxonomies.

2 SwissProt: http://www.expasy.ch/sprot/
3 DrugBank: http://www.drugbank.ca/
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Descriptive names. As in OBO ontologies (see Section 1.3.1), some UMLS-
Meta synonyms are closer to a text definition than to a term name. For example,
UMLS-Meta Therapeutic or Preventive termC0580168UMLS : “Amputation of
finger through distal interphalangeal joint”. Swissprot and DrugBank contain
less cases but still some of the entries do not represent a desired concept la-
bel (e.g., Drug APRD00506DRUGBANK , “calcium carbonate with vitamin d,
magnesium, zinc, copper and manganese”). Let us emphasize that not all con-
cepts can be described with a few words, indeed, such complex concepts should
be described in formal ontologies by combining smaller units of meaning of
the thesaurus, e.g. term C0580168UMLS can be formally described as in axiom
Amputationu∃involve.F ingeru∃through.InterphalangealJoint, where
the semantics for each of its elements should be defined in an ontology.

Parametrization in the label. The Clinical Drug C1614077UMLS has the pre-
ferred name “Etanercept 50 mg/mL”. This term indicates not only the drug
name but also the dosage for this pharmaceutical product. The thesaurus should
contain only the generic name, and then the ontology should provide a formal
representation of C1614077UMLS as either a subclass of “Etanercept” (e.g.,
Etanercept 50 v Etanercept u ∃hasDosage.“50mg/mL′′) or an instance.

Structural Problems. The UMLS-Meta taxonomy contains undesired relations-
hips and cycles since it integrates several taxonomies and vocabularies where
terms are not always described and classified following the same criteria 4. Wit-
hin this evolution and integration process, new terms are matched to existing
ones or a new entry is created, in both cases the resulting classification is hard
to determine. For example, Chronic Childhood Arthritis (C0553662UMLS)
has itself as a parent (i.e. broader term) and as a child (i.e. more specific term)
according to SNOMED and ICD−10 classifications. Contrary to UMLS-Meta,
Swissprot and DrugBank, although they are quite comprehensive vocabularies,
lack of a rich classification scheme, being their organization limited to a set of
families or categories.

2.1.2. Thesauri reuse and adaptation method

JIATh, a light-weight thesaurus5 [JYJRBRS09b, JYJRBRS09a] for the Arthritis
domain of HeC project, was created to serve as a basis of the JIAO development.
JIATh aims at containing a clear and not overloaded organization of terms, with le-
xical information (e.g., synonyms) and scope information (e.g., semantic group). We
adopted SKOS [MMB+05], an RDF-like language, to represent JIATh. SKOS has
a rich support for labelling and reporting term metadata (e.g. Preferred label, Alter-
nate labels, definitions, examples) as well as for defining term relationships (e.g. Has
Broader, Has Narrower, Exact Match). Additionally information about the Scope and
Origin Scheme can be added.

4 In Chapter 4 a discussion about the logic-based compatibility of UMLS sources is given
5 We regard a light-weight thesaurus as a thesaurus covering a domain partially
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Figure 2.1: From requirements to a customized thesaurus

UMLS-Meta terms and relationships were reused and filtered to build our custo-
mized term organization. The applied method is depicted in Figure 2.1. Note that we
have followed an informal procedure which could be enriched with formal patterns
such as the presented in [GSGPdCSFVT08]. Our method is split into the following
phases:

Vocabulary extraction. Required terms for the domain were extracted by mining
a set of medical protocols [BJRR+08, BJRNS10] and text resources from the li-
terature [JYJRBRS07, JYJRL+08, LASPPJR08]. UMLS-Meta , Swissprot and
DrugBank were used to annotate terms within protocols and text. Besides the
automatic annotation techniques, manual intervention was also necessary. As a
result a flat vocabulary [JYJRBRS09a] linked to the source domain thesauri was
obtained.

Fragment extraction. Given a set of terms satisfying the requirements (i.e. medi-
cal protocols), we applied the fragment extraction method described in [NL09].
This method encodes the whole UMLS-Meta with an interval index scheme that
allows fast reconstructions of the hierarchies where the selected terms partici-
pate. Additionally, a selection of representative ancestors of the required terms
is performed in order to organize these terms within the fragment.

Fragment Repair. The obtained fragment can still contain undesired relations-
hips. For example Erythrocyte has Disease as broader concept, among others.
This is mainly due to wrong correspondences between the thesauri integrated
within UMLS-Meta, which can imply cycles or undesired subsumptions. Fortu-
nately, UMLS-Meta associates a semantic type [McC89] to each term, such that
terms can be grouped within semantic groups [BM03a]. As in current UMLS-
Meta auditing approaches [Cim98, CMP03, MBB09, MGHP09], these groups
were used to establish compatibility criteria between terms and semantic ty-
pes, that is, two terms can keep a broader-narrower relationship provided that
both terms belong to the same semantic group (i.e. they have compatible se-
mantic types). In the given example, Erythrocyte has Cell as a semantic type
which belongs to the Anatomy semantic group, whereas Disease or Syndrome,
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the semantic type of Disease, belongs to the Disorders semantic group. Thus,
Erythrocyte and Disease cannot have a broader-narrower relationship between
them.

Term Grouping. The terms that have not been classified under another term can
be considered as roots since they do not have a broader term; however, in so-
me cases they are not supposed to be root terms. This lack of classification
may be due to failures in the UMLS-Meta term organization or an incomple-
te domain vocabulary selection. In order to alleviate these potential problems
we have defined a set of preferred top terms and we have associated to each
UMLS-Meta semantic type one of these top terms. Thus, if a term has no broa-
der terms and it is not included within the set of top terms, then that term is
organized under one of the top terms, according to its semantic type. For exam-
ple, Clinical Finding is defined as preferred root concept, and Finding, Patholo-
gic Function, Cell or Molecular Dysfunction and Temporal Concept semantic
types are associated to this root.

Completion. Swissprot and Drugbank specialised vocabularies were used to
complete, with new entries and additional synonyms, the fragment extracted
from UMLS-Meta. These vocabularies lack of a rich classification scheme the-
refore new terms (not included in UMLS-Meta) were associated a semantic type
(e.g. Protein, Drug) and were organized within JIATh using the term grouping
method commented above.

As a result JIATh thesaurus [JYJRBRS09b, JYJRBRS09a] contains 816 terms,
organized in a nine-roots forest with 1135 broader relationships, and with a maximum
depth of 11 levels. Moreover JIATh comprises 6097 term labels, at least one seman-
tic scope label (i.e. semantic type) per term, and links to UMLS-Meta, SwissProt and
DrugBank identifiers. Figure 2.2 shows and example of a SKOS-like JIATh entry.

Figure 2.2: Example of a SKOS-like JIATh entry
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2.2. Supporting safe and economic ontology reuse

Thesauri provide the lexical information about the domain and a basic structure
of the knowledge; however, as already discussed in Sections 1.3.1 and 2.1.1, richer
semantic descriptions requires a logic-based representation. Such logic-based repre-
sentations can be defined from scratch or borrowed from domain ontologies. For the
purposes of this section, NCI [HdCD+05, GFH+03] and GALEN [RR06] have been
selected as reference ontologies. They contain information that is relevant to the do-
main of JIAO, such as detailed descriptions of the human joints as well as diseases
and their symptoms. As an example, Figure 2.3 shows the global picture of the reusing
scenario, where a set of concepts are reused from NCI and GALEN.

Figure 2.3: Constructing JIAO reusing fragments of GALEN and NCI

The developers of JIAO should be concerned about the following two issues
when reusing knowledge from ontologies: (1) the consequences of importing/reusing
knowledge, and (2) the necessary size of knowledge to import. In general, modellers
do not want to damage the original meaning of the reused concepts from NCI and GA-
LEN, and they are only interested in the (relatively small) parts of NCI and GALEN
which are relevant to the JIAO domain.

In this section, we describe a novel method, based on a well-founded logic-based
framework [GHKS08], and ProSÉ 6 [JRGS+08b, JRGS+08c, JRGS+08a] a tool for
modular ontology reuse. We support the user in the safe use of imported symbols and
in the economic import of the relevant part of the reused ontology. Both features are

6 ProSÉ: a Protégé plugin for Reusing Ontologies: Safe and Économique. This Protégé 4
plugin is freely available for download: http://krono.act.uji.es/people/Ernesto/
safety-ontology-reuse
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supported in a well-understood way: safety guarantees that the semantics of imported
concepts is not changed, and economy guarantees that no difference can be observed
between importing the whole ontology and importing only the relevant part.

Next sections are organized as follows. Section 2.2.1 introduces the main underl-
ying formalisms used within our method. The ontology reuse method and logic-based
guarantees followed by ProSÉ are presented in Sections 2.2.2 - 2.2.4. Finally, Section
2.2.5 discusses the related work regarding reuse and underlying techniques.

2.2.1. Underlying formalisms

The goal of this section is to give an brief overview of the used underlying for-
malisms: conservative extension, safety, module and locality. We refer the interested
readers to [GLW06, LWW07, CHKS07, GHKS07, GHKS08] for a more comprehen-
sive description of these formalisms.

2.2.1.1. Conservative extensions

As already mentioned, the developers of JIAO should not change the original
meaning of the reused concepts. This requirement can be formalised using the notion
of a conservative extension [GLW06, LWW07, GHKS08]. In the following, we use
Sig() to denote the signature of an ontology or an axiom (i.e. Sig(O) and Sig(α)).

Definition 2.1 (Conservative Extension). Let O′ ⊆ O be ontologies, and S a signa-
ture. We say that O is an S-conservative extension of O′ if, for every axiom α with
Sig(α) ⊆ S, we have O |= α iff O′ |= α; O is a conservative extension of O′ if O is
an S-conservative extension of O′ for S = Sig(O′).

In our example, Definition 2.1 can be applied as follows:O′ = NCI is the ontology
to be reused,O is the union of JIAO and NCI, S represents the symbols reused from
NCI, such as JRA and Rheumatologic Disorder, and α stands for any axiom over the
reused symbols only, e.g., JRA v Rheumatologic Disorder.

2.2.1.2. Notion of safety

Definition 2.1 assumes that the ontology to be reused is static. In practice, however,
ontologies such as NCI are under development and may evolve beyond the control
of the JIAO developers. Thus, it is convenient to keep NCI separate from JIAO
and make its axioms available on demand via a reference such that the developers of
JIAO need not commit to a particular version of NCI. The notion of safety [GHKS08]
can be seen as a stronger version of conservative extension that abstracts from the
particular ontology to be reused and focuses only on the reused symbols.

Definition 2.2 (Safety for a Signature). Let O be an ontology and S a signature. We
say that O is safe for S if, for every ontology O′ with Sig(O) ∩ Sig(O′) ⊆ S, we
have that O ∪ O′ is a conservative extension of O′. That is, O ∪ O′ has the same
consequences over S as O′ alone, therefore O ∪ O′ |= α iff O′ |= α for every axiom
with Sig(α) ⊆ S
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Definition 2.2 allows us to consider a set of symbols S of our ontology O as
external, with independence of the ontology O′ to be finally imported.

From now on, we distinguish between external and local symbols in our local
ontologies [GHKS07]. Intuitively, the external symbols of an ontology are those that
are assumed to be defined externally in other ontologies (in the local ontology are
only named), whereas local symbols are defined within the ontology itself by possibly
reusing the external symbols in their definitions.

2.2.1.3. Notion of module

As already mentioned, JIAO should import only the relevant parts of NCI and
GALEN, and without losing important information. This idea can be formalised using
the notion of module [GHKS08].

Definition 2.3 (Module for a Signature). Let O′S ⊆ O′ be ontologies and S a sig-
nature. We say that O′S is a module for S in O′ (or an S-module in O′) if, for every
importing ontology O with Sig(O) ∩ Sig(O′) ⊆ S, we have that O ∪ O′ is a conser-
vative extension of O ∪O′S for S ⊆ Sig(O).

Definition 2.3 states that importing a module for S in O′ should give exactly the
same answers as if the whole O′ had been imported.

Safety and module can also be related as follows:

Proposition 2.1 ([GHKS08], Safety and Modules). IfO′\O′S is safe for S∪Sig(O′S),
then O′S is an S-module in O′.

2.2.1.4. Transitivity property

Propositions 2.2 and 2.3 presents the transitivity property for conservative exten-
sions and modules which will be used later on in this Section.

Proposition 2.2 (Transitivity of Conservative Extensions). LetO′ be an S-conservative
extension ofO′S, andO′S an S-conservative extension ofO′′S, thenO′ is an S-conservative
extension of O′′S.

Proof. LetO′ be an S-conservative extension ofO′S; therefore for every axiom αwith
Sig(α) ⊆ S, we have O |= α iff O′S |= α. O′S an S-conservative extension of O′′S;
therefore,O′S |= α iffO′′S |= α. Thus,O |= α iffO′′S |= α andO′ is an S-conservative
extension of O′′S.

Proposition 2.3 (Transitivity of Modules). Let O′S be an S-module in O′, and O′′S a
S-module in O′S, then O′′S is a S-module in O′.

Proof. Since O′S is a S-module in O′ we have that, by Definition 2.3, for every on-
tology O with Sig(O) ∩ Sig(O′) ⊆ S it holds that O ∪ O′ is a S-conservative ex-
tension of O ∪ O′S. Since O′′S a S-module in O′S, then for every ontology O with
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Sig(O)∩Sig(O′S) ⊆ S it holds thatO∪O′S is a S-conservative extension ofO∪O′′S.
SinceO∪O′ is a S-conservative extension ofO∪O′S andO∪O′S is a S-conservative
extension of O ∪ O′′S, by Proposition 2.2, O ∪ O′ is a S-conservative extension of
O ∪O′′S and therefore O′′S is a S-module in O′.

2.2.1.5. Locality condition

Checking whether O is an S-conservative extension of OS, whether O is safe for
S, or whether OS is an S-module in O is, unfortunately, undecidable for expressive
DLs such as SHOIQ or SROIQ.

Therefore, the undecidability problem is addressed in [GHKS08] by means of a
locality condition, a sufficient condition for safety. Thus if an ontology (i.e. all its
axioms) satisfy the locality condition for a given S, then we can guarantee that it is
safe (i.e. local) for S; however the reciprocal does not necessarily hold [GHKS08].

A set of classes of interpretations were characterized in [GHKS08] depending on
the interpretation (⊥ or >) given to the entities outside the selected signature S. Two
classes of interpretations are used in ProSÉ :

⊥-Interpretation (I⊥): This interpretation is used when we are interested in re-
fine and/or reference the symbols from the signature S. Entities not belonging
to S are interpreted as ⊥.

>-Interpretation (I>): This interpretation is used when we are interested in ge-
neralize and/or reference the symbols from the signature S. Entities not belon-
ging to S are interpreted as >.

An ontologyO will be safe for a Signature S if all its axioms α are satisfied by one
of the proposed interpretations. An axiom α is ⊥-local (>-local) w.r.t. S if I⊥ |= α
(I⊥ |= α).

The locality condition is widely applicable in practice and it can be checked syn-
tactically. [GHKS08] proposed a set rules to characterize ⊥-local or >-local axioms
(see Figure 2.4) depending on the required interpretation (I> or I⊥)

Definition 2.4 (Syntactic⊥-Locality and>-Locality). Let S be a signature. An axiom
α is ⊥-local w.r.t. S (>-local w.r.t S) if α ∈ Ax(S), as defined in Figure 2.4. An
ontologyO is⊥-local (>-local) w.r.t. S if α is⊥-local (>-local) w.r.t. S for all α ∈ O.

Both >-locality and ⊥-locality are sufficient for safety:

Proposition 2.4 ([GHKS08], Locality Implies Safety). If an ontologyO is⊥-local or
>-local w.r.t. S, then O is safe for S.

Modules can be defined in terms of locality by using Propositions 2.1 and 2.4.

Definition 2.5 (Locality Modules). LetOS ⊆ O be ontologies, and S a signature. We
say that OS is a ⊥-module (respectively >-module) for S in O if O \ OS is ⊥-local
(respectively >-local) w.r.t. S ∪ Sig(OS).
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Figure 2.4: Syntactic locality conditions. Where, C⊥ ∈ Con⊥(S), C>i ∈
Con>(S), A⊥, A>, r>, r⊥ /∈ S, Sig(R⊥), Sig(R>) * S, and C is any concept
and R is any role.

Locality modules ⊥-modules and >-modules are modules [GHKS08]:

Proposition 2.5 ([GHKS08], Locality-based Modules are Modules). LetOS be either
a ⊥-module or a >-module for S in O and let S′ = S ∪ Sig(OS). Then OS is a S′-
module in O.

In [JRGS+08b] we combined the notions of >-module and ⊥-module in order to
extract a module as small as possible. From Propositions 2.3 and 2.5 we can affirm
that a >-module of a ⊥-module is also a module.

Proposition 2.6 (A >-module of a ⊥-module is a Module). Let OS⊥ be a ⊥-module
for S in O and let OS> a >-module for S in OS⊥ . Then OS> is also a S-module in
O.

Proof. Let S⊥ = Sig(OS⊥) ∪ S and S> = Sig(OS>) ∪ S. By Proposition 2.5, OS⊥

is a S⊥-module in O and OS> is a S>-module in OS⊥ . By Proposition 2.3, OS> is a
S-module in O.

2.2.1.6. Locality in a nutshell

Table 2.1 summarizes the grammar in Figure 2.4 with the ⊥-local (respectively
>-local) requirements for some simple axioms. Thus this table should be solely used
as a guide. The gramar in Figure 2.4, which contains all syntactic locality conditions,
should be referred when analysing more compex axioms.

Reusing entities in JIAO

Consider the example where JIAO defines the axioms 2.1-2.3. Underlined con-
cepts are reused from NCI or GALEN (see scenario in Figure 2.3) and represents the
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Table 2.1: Basic axioms and requirements to be local. Where A, B, B1 and B2

represents atomic concepts, R an atomic role, and Φ a datatype. Note that A = ⊥
(respectively B = >) involves a syntactic test, thus A (respectively B) is the bottom
(respectively top) concept itself.
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external symbols S = SNCI ] SGALEN , with SGALEN = {Joint} and SNCI =
{JRA, Juvenile Chronic Polyarthritis}.

Polyarticular JRA v JRA (⊥-local) (2.1)
Juvenile Chronic Polyarthritis v Polyarticular JRA (>-local) (2.2)

Polyarticular JRA v > 5 affects.Joint (⊥-local) (2.3)

Axiom 2.2 is >-local w.r.t. SNCI since defines a more general concept (see row 1 in
Table 2.1), whereas axioms 2.1 and 2.3 are ⊥-local w.r.t. SNCI and SGALEN respec-
tively (see rows 1 and 7 from Table 2.1), since they define more specialized concepts
from reused symbols. Note that, the simultaneous refinement and generalisation for a
given Sg and ontology (e.g. symbols from NCI SNCI ) may compromise safety. For
example, JIAO should not simultaneously contain axioms 2.1 and 2.2, since they
imply Juvenile Chronic Polyarthritis v JRA, and therefore JIAO is not safe w.r.t.
SNCI .

Extracting local modules

Local modules are extracted iteratively by checking each axiom with respect to
the current required signature. If an axiom is evaluated as non local then it is added
to the module and the required signature is extended with the signature of the axiom.
The iterative process finishes if after checking all axioms the signature has the same
size as in the beginning of the iteration.

Table 2.2 shows an example ontology within the JIAO domain. Tables 2.3 and
2.4 show how a ⊥-module and a >-module are extracted, respectively. The initial sig-
nature S0 = {Poly JIA, suffered by, Systemic Disease} (underlined concepts
in Table 2.2) and the initial empty moduleM0 = {} are extended stepwise. For sim-
plification reasons, we only show completely the first iteration for each example, for
example, in Table 2.4 two iterations (separated with a dashed line) are needed to in-
clude all axioms. Note that rows from Table 2.1 are referenced as “(i)” where i is the
row identifier.

O = { (α1) Poly JIA v JIA,
(α2) Poly JIA v ∀hasRF.Positive RF,
(α3) Poly JIA v > 5 affects.Joint,
(α4) Systemic JIA v JIA,
(α5) Systemic JIA v Systemic Disease,
(α6) JIA v ∀suffered by.Child,
(α7) ∃affects.WholeBody v Systemic Disease }

Table 2.2: An example ontology with external entities



“tesis” — 2010/9/2 — 16:34 — page 25 — #49i
i

i
i

i
i

i
i

2.2 Supporting safe and economic ontology reuse 25

Consideration Consequence

(α1) Poly JIA ∈ S0 ⇒ α1 is not ⊥-local (1) S1 = S0 ∪ {JIA}
M1 =M0 ∪ {α1}

(α2) hasRF 6∈ S1 ⇒ α2 is ⊥-local (5) S2 = S1

M2 =M1

(α3) Poly JIA ∈ S2 ⇒ α3 is not ⊥-local (7) S3 = S2 ∪ {affects, Joint}
M3 =M2 ∪ {α3}

(α4) Systemic JIA 6∈ S3 ⇒ α4 is ⊥-local (1) S4 = S3

M4 =M3

(α5) analogous to α4 S5 = S4

M5 =M4

(α6) JIA, suffered by ∈ S5 ⇒ α6 is not ⊥-local (5) S6 = S5 ∪ {Child}
M6 =M5 ∪ {α6}

(α7) WholeBody 6∈ S6 ⇒ α7 is ⊥-local (13) S7 = S6

M7 =M6

Table 2.3: An example illustrating the construction of a ⊥-module

Consideration Consequence

(α1) JIA 6∈ S0 ⇒ α1 is >-local (1) S1 = S0

M1 =M0

(α2) Positive RF 6∈ S1 ⇒ α2 is >-local (5) S2 = S1

M2 =M1

(α3) affects, Joint 6∈ S2 ⇒ α3 is >-local (7) S3 = S2

M3 =M2

(α4) JIA 6∈ S3 ⇒ α4 is >-local (1) S4 = S3

M4 =M3

(α5) Systemic Disease ∈ S4 ⇒ α5 is not >-local (1) S5 = S4 ∪ {Systemic JIA}
M5 =M4 ∪ {α5}

(α6) Child 6∈ S5 ⇒ α6 is >-local (5) S6 = S5

M6 =M5

(α7) Systemic Disease ∈ S6 ⇒ α7 is not >-local (13) S7 = S6∪
{affects,WholeBody}
M7 =M6 ∪ {α7}

(α3) affects ∈ S7 ⇒ α3 is not >-local (7) S8 = S7 ∪ {Joint}
M8 =M7 ∪ {α3}

Table 2.4: An example illustrating the construction of a >-module

2.2.2. Reuse method overview

Based on the theory of modularity summarised in Section 2.2.1, we present a novel
method for designing an ontology when knowledge is borrowed from several external
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Figure 2.5: The two phases of import with the required guarantees

ontologies. This method provides precise guidelines for ontology developers to fo-
llow, and ensures that a set of logical guarantees (safety, module coverage and module
independence) will hold at certain stages of the design process. It is worth mentioning
that this method is complementary to current ontology engineering methodologies.
Moreover it assumes a single-developer scenario, thus collaboration issues are not
considered. Chapter 3 presents several techniques, included our proposal, to support
some of the necessary tasks in collaborative ontology development.

The cycle of the proposed method is given in Figure 2.5. This cycle consists of
an offline phase—which is performed independently from the current contents of the
external ontologies—and an online phase—where knowledge from the external onto-
logies is extracted and imported into the current ontology. Note that this separation
is not strict: the first phase is called “offline” simply because it does not need to be
performed online, however, the user may still choose to do so.

2.2.3. Tool support in the offline phase

The offline phase starts with an ontology O being developed (e.g. JIAO). The
ontology developer specifies the set S of symbols7 to be reused from external ontolo-
gies. These symbols can be split into different groups S = S1 ] . . . ] Sn where each
Si ⊆ S represents the external symbols to be borrowed from a particular ontology

7 Note that the labels for these symbols may be borrowed from domain thesaurus as in Section 2.1
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Oi and where “]” denotes that the Si are pairwise disjoint. Note that at this stage it
is only required to indentify groups of entities (i.e. Si) belonging to a same external
source (i.e. Oi). The specification of the concrete external ontologies (e.g. GALEN,
NCI) is optional at this stage, and, even if indicated, the ontology identifier or URI
may not refer to an existing ontology, but it may simply act as a temporary name.

Tool Support. ProSÉ provides functionality for declaring entities as external as well
as for defining the external signature subgroups by means of an external ontology
identifier or URI. As commented above, the ontology identifier could be provisional.
This information is stored in the ontology using OWL annotations [MPSP09] as fo-
llows: we use an ontology annotation axiom per external ontology, an entity annotation
axiom to declare an entity as external, and an entity annotation axiom per external en-
tity to indicate its external ontology. The set of external entities with the same external
ontology identifier can be viewed as one of the Si (see top part of Figure 2.6).

Additionally, ProSÉ also provides an “online” operation in this stage in order to
allow developers to browse through the external ontologies, if already specified, to
choose the symbols they want to reuse.

2.2.3.1. Safety guarantee

At this stage, we want to ensure that the designer ofO does not change the original
meaning of the reused concepts, independently of what their particular meaning is in
the external ontologies. This requirement can be formalised using the notion of safety
introduced in Section 2.2.1.2:

Definition 2.6 (Safety Guarantee). Given an ontology O and signatures
S1, . . . ,Sn, O guarantees safety if O is safe for Si for all 1 ≤ i ≤ n.

In Sections 2.2.1.5 and 2.2.1.6 we argued that the simultaneous refinement and
generalisation of the same signature group Si may violate safety. To preserve safety, as
already introduced in Section 2.2.1.5, we use⊥-locality and>-locality conditions.⊥-
locality for those group of symbols Si to be refined and >-locality for generalisation.

Proposition 2.7. LetO be an ontology and S = S1] . . .]Sn be the union of disjoint
signatures. If, for each Si, either O is ⊥-local or >-local w.r.t. Si, then O guarantees
safety w.r.t. S1, . . . ,Sn.

In order to achieve the safety guarantee at the end of the offline phase, we propose
to follow the procedure sketched in Table 2.5.

Tool Support. ProSÉ allows for the specification, for each external signature group
Si, whether it will be refined or generalised. Once the external entities have been
declared and divided into these groups, the tool allows for safety checking of the
ontology under development w.r.t. each group of external symbols separately. The sa-
fety check8 uses⊥-locality (>-locality) for signature groups that adopt the refinement
(generalisation) view. Figure 2.6 shows the non-local axioms for the signature group
SNCI = {Juvenile Rheumatoid Arthritis, Juvenile Chronic Polyarthritis}.

8 A syntactic locality checker was implemented according to [GHKS08].
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Input Ontology O, disjoint signatures S1, . . . ,Sn
a choice among refinement and generalisation for each Si

Output an ontology OL that guarantees safety

1: OL := O
2: while exists Si such that O not local according to the selection for Si do

3: check

{
⊥-locality of OL w.r.t. Si if Si is to be refined
>-locality of OL w.r.t. Si if Si is to be generalised

4: if non-local then
5: OL := repair OL until it is local for Si according to the choice for Si
6: end if
7: end while
8: return OL

Table 2.5: A procedure for checking safety

2.2.4. Tool support in the online phase

In this phase the ontology designer imports the relevant knowledge from each of
the external ontologies. As already argued, we aim at extracting only those modules
from the external ontologies that are relevant to the reused symbols.

As shown in Figure 2.5, the import for each external ontology Oi is performed in
four steps: (1) First, the Oi for Si is loaded, and therefore the ontology designer com-
mits to a particular version of it. (2) Then, Si can be exteded with super-concepts and
sub-concepts in order to customize the scope of the module to be extracted from Oi.
(3) A module OSi

(⊥-module or a >-module) of Oi is extracted for the customized
Si according to Definition 2.3. (4) Finally, OSi

is imported into O.

2.2.4.1. Module coverage guarantee

The fragment extracted for each customised signature in the online phase must
satisfy the module coverage guarantee. As seen in Section 2.2.1.5 Proposition 2.5,
⊥-locality and >-locality can be used for extracting modules.

Definition 2.7 (Module Coverage Guarantee). Let Si be a signature and OSi
⊆ Oi

ontologies. OSi
guarantees coverage of Si in Oi if OSi

is a module for Si in Oi.

As shown in Tables 2.3 and 2.4, the extraction of ⊥-modules or >-modules may
introduce symbols not in Si, and potentially unnecessary. To make the module as small
as possible, we can extract the>-module of the⊥-module for Si as in Proposition 2.6.

Proposition 2.8. Let OS⊥ = ⊥–Module(Oi,Si), and OS> = >–Module(OS⊥ ,Si).
Then OS> guarantees coverage of Si in Oi.

Proof. Let S> = Sig(OS>) ∪ S. By Proposition 2.6 OS> is a module for S in O. By
Definition 2.7, OS> guarantees coverage of S in O.
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Figure 2.6: Signature groups and safety test

Tool Support. As already commented, the selected external signature group Si can be
customised by adding super-concepts and sub-concepts of their symbols. ProSÉ pro-
vides the functionality for previewing the concept hierarchy of the corresponding ex-
ternal ontology for this purpose. Once the specific signature group under consideration
has been customised, a module for it can be extracted9. As it is shown in Figure 2.7,
the user can compute the module, preview it in a separate frame, and either import it or
cancel the process and come back to the signature customisation stage. Additionally,
the user has also the option to import the whole external ontology instead of importing
a module.

2.2.4.2. Module independence guarantee

The import of the module OSi for Si into O is the last step in the offline phase.
The effect of this import is that the ontology O being developed evolves to O ∪ OSi .
This new ontology might violate safety over the remaining signature groups Sj . Such
an effect is obviously undesirable. Hence the following guarantee should be provided:

Definition 2.8 (Module Independence Guarantee). Let O be the importing ontology,
Si,Sj be signatures. Module independence is guaranteed if, for all Oi with Sig(O) ∩
Sig(Oi) ⊆ Si and for all Oj with Sig(O) ∩ Sig(Oj) ⊆ Sj , it holds that O ∪Oi ∪Oj
is a conservative extension of both O ∪Oi and O ∪Oj .

9 A module extractor was implemented, on top of the locality checker, following [CHKS07, GHKS08]
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Figure 2.7: Signature extension and module import

According to Definition 2.8, importing a module for a signature Si from an exter-
nal ontology Oi into O should not affect the safety of O w.r.t. to the other external
ontologies Oj .

In the conference paper [JRGS+08b] was established that the module indepen-
dence guarantee always holds provided the signature of external ontologies are dis-
joint and the importing ontology is safe for them. However, in the technical report
[JRGS+08d] was shown that external ontologies may contain unsafe or dangeorus
axioms which can cause the violation of the module independece guarantee.10 Thus,
external ontologies must also be local w.r.t. the empty signature, that is, to be consis-
tent, coherent (as in Definition 1.1) and not including unsafe GCIs [GPSK06] such as
> v Joint (redefinition of the universal concept) or > v {ernesto} (limiting the size
of the domain of interpretation).

Note that, in practice, the requirement Sig(O1) ∩ Sig(O2) = ∅ is almost always
met since different reference ontologies usually have different namespaces. However,
although these ontologies are unrelated from a logical point of view, they may intuiti-
vely overlap, that is, they may partially refer to the same entities. A further discussion
is given in Chapter 4 where we analyze the logical consequences of integrating inde-
pendently developed ontologies through mappings (i.e. entity correspondences).

10 Thanks to Thomas and Uli for noticing this error
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Tool Support. ProSÉ has two types of import. The first type performs a classic
import merging the module with the local knowledge, thus, module entities are consi-
dered as local and no further safety checks can be done over this signature. The second
one, however, keeps separated the imported module entities and the local knowledge.
Module entities remain as external entities and therefore guarantees can still be kept
over this external signature.

2.2.5. Related work and discussion

The extraction and reuse of ontology modules has been treated in different ways.
In the literature we can find several approaches (see [PS09] for an overview) which try
to extract a fragment from an ontology according a set of requirements (e.g., a query
or a set of entities). Two ontology modularization groups can be distinguished: traver-
sal based and semantics preservation based. The former group is represented by those
fragmentation techniques which rely on syntactic heuristics for traversing the ontology
and detecting relevant axioms. Prominent examples are PROMPT [NM04, NM09],
Seidenber’s segmenter [SR06, Sei09], OntoPath [JRLS+05, JRLNS07], Nebot’s frag-
menter [NL09] and Stuckenschmidt’s partitioner [SK04, SS09]. These techniques do
not attempt to formally specify the intended outputs and do not provide any guarantee
about the coverage of the extracted fragments.

OntoPath [JRLS+05, JRLNS07] represents our first effort in extracting ontology
fragments according to the user requirements, which were given by means of a XPath-
like [HM00] query. OntoPath system was also focused on the storage and management
of ontologies within a graph-based database [Rio]. Nebot’s fragmenter [NL09], used
in Section 2.1.2 to extract fragments from UMLS-Meta, is an evolution of OntoPath
were the storage of the ontologies were improved and the query language is signature-
driven like in the locality module extractor.

Together with the locality-based approach [GHKS08], in which the presented
reuse method has been based, there are other formal proposals to preserve the se-
mantics of extracted modules and to “safely” combine them. Most of these proposals,
such as E-connections [GPS09], Distributed Description Logics [ST09] and Package-
based Description Logics [BVSH09] propose a specialised semantics (i.e., extended
DL semantics) for controlling the interaction between the importing and the imported
modules to avoid side-effects; for an overview see [CK07, WHB07]. In contrast, our
method and tool assume that reuse is performed by simply building the logical union
of the axioms in the modules preserving the standard semantics. Moreover, we also
provide the user with a collection of reasoning services, such as safety, to check for
side-effects.

Finding the most suitable ontology to reuse has also been an important topic in on-
tology reuse. Our method, however, does not tackles this problem and considers that
the ontologies to be reused are known. This premise does not always necessarily hold,
thus, techniques to evaluate available ontologies according to a set of the requirements
and competencies, such as [Ala06, DLE+07, DTI07, dBG+07, SNNB08, FOSM09,
LED+10], are required. Note that, the first step in ontology reuse requires the speci-
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fication of the set of concepts to be reused (see Section 2.2.3). The evaluation of the
target ontologies will be based on the similarity techniques applied over their concepts
and the set of representative required concepts. These similarity techniques often rely
on the discovering of mappings (i.e., alignments) between the ontology concepts and
the requirements. The use of thesauri, as already discussed in Section 1.3.2, would
ease the identification of these correspondences.

Finally, [TSK09] proposes an approach based on our reuse method which permits
the simultaneous refinement and generalization of the same signature group. However,
as stated in Section 2.2.1.6, this kind of reuse may compromise safety and should be
avoided. Thus, at the requirements stage, it is necessary to face with a fundamental
choice depending on whether the ontology designer wants to either refine or generalise
a particular signature group to be reused from an external ontology.
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CHAPTER 3
Supporting concurrent

ontology evolution

The development of large domain ontologies usually requires expertise about dif-
ferent subdomains. For example the descriptions in the NCI ontology [HdCD+05,
GFH+03] cover diseases, anatomy, genes, drugs and so on. Therefore, such large
ontologies are likely to be developed concurrently and collaboratively by a team of
knowledge engineers and domain experts. Furthermore, these ontologies are in con-
tinuous evolution [HKR08]. The developers of an ontology can be geographically
distributed and may contribute in different ways and to different extents. GALEN,
NCI and SNOMED are prominent examples of collaborative ontology development
projects (see [SR07b] for a survey on multi-user ontology projects):

The NCI ontology is being developed by 20 full time editors and one curator.
Each editor works in a separate copy of the ontology and, at the end of a two
week editing cycle, the curator uses a workflow management tool to integrate,
review and approve the changes made by each editor [dCWF+09].

The development of GALEN ontology adopts a locking mechanism [SR07a,
SR07b] to prevent editing conflicts. To this end, the ontology has been split in
2738 modules which can be extended concurrently, but only one user can mo-
dify a module at the same time. When a version of GALEN is released (com-
monly every 6 months), developers should return and unlock their extended
modules. A single curator is in charge of merging modules, correcting errors,
removing redundancy and classifying the resulting ontology. This process usua-
lly takes one or two weeks.

33



“tesis” — 2010/9/2 — 16:34 — page 34 — #58i
i

i
i

i
i

i
i

34 Chapter 3 Supporting concurrent ontology evolution

The SNOMED CT development team is composed by a central team and four
(distributed geographically) groups which extend different parts of the ontology.
Every two weeks these parts are integrated and conflicts are resolved by the
central team.

Designing and maintaining such large ontologies is, therefore, a highly complex
process, which involves many complicated tasks:

1. to agree on a unified conceptual design and common modelling guidelines;
2. to assign different responsibilities and tasks to each group of developers;
3. to track and manage the frequent changes to the ontology made by different

developers from distributed locations;
4. to compare different versions of the ontology lexically (e.g., names of the intro-

duced ontology entities), structurally (e.g., shape of the axioms), and semanti-
cally (e.g., logical consequences);

5. to detect and reconcile conflicting views of the domain by merging different
ontology versions; and

6. to minimise the introduction of errors (e.g., to ensure that the ontology does not
have unintended logical consequences).

In this chapter, we propose ContentCVS 1 [JRGHL09a, JRGHL09b, JRGHL10b],
a framework and tool support2 that adapts the Concurrent Versioning paradigm. The
ontology editing in ContentCVS is asynchronous, thus developers make changes con-
currently over their local copies.

Currently, ContentCVS implements a passive versioning method. Therefore, ver-
sions must be compared to detect changes and potential conflicts. Change and conflict
detection are based on novel techniques that take into account the structure and se-
mantics of the ontology versions by reusing the notions of structural and semantic
differences between ontologies. ContentCVS follows a method or workflow, which
exploits logic-based techniques, to iteratively support the acceptance and rejection of
changes in order to avoid the occurrence of errors (i.e. unintended consequences) wit-
hin the semantic difference.

ContentCVS partially addresses tasks 3-6 previously mentioned. Thus, it should
be seen as a complementary framework to the state-of-the-art approaches addressing
ontology evolution and benefit from each other. These approaches are presented later
on. A further description of ContentCVS is given in Section 3.2. Moreover, in Section
3.3 a preliminary performance evaluation and user study is provided.

1 A Concurrent ONTology ENgineering Tool.
2 A Protégé 4 plugin is freely available for download: http://krono.act.uji.es/people/
Ernesto/contentcvs
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3.1. State of the art

Ontology evolution (refer to [Sto04, FMK+08, LM08, Pal09] for comprehensive
surveys) is defined as the ability to manage ontology changes and their effects [NK04].

In the literature there exists several efforts analyzing the semantics of changes and
their propagation to dependent entities (e.g., instances) and ontologies. Sections 3.1.1-
3.1.3 discusses and differentiates three types of approaches depending on the main
issue they address, namely: change representation and management, logic-consistency
preservation and concurrent and collaborative development.

3.1.1. Change representation approaches

Ontology evolution and database-schema evolution can be considered similar pro-
blems. However, ontologies have important peculiarities [NK04, Sto04] with respect
to database-schemas, such as the unclear separation between schema and data, or the
implicit semantics of ontologies. Thus, ontology changes may have side effects which
do not happen in traditional schema evolution.

Ontology changes have been characterized and classified in the literature accor-
ding to its implications. Moreover, changes are split into atomic and composite. Pro-
minent examples of change representation approaches can be found in [KN03, Sto04,
Kle04, NK04, NCLM06, PHCGP09]. These approaches intend to keep record of every
change providing them with formal meta-information in order to collect at least the
Five Ws questions about the performed operation.

According to [NK04], previous approaches perform an active or traced versioning.
However, in passive or untraced versioning ontology changes are not tracked. In such
cases, if two ontology versions are required to be compared additional methods are
necessary. For example, [KFKO02, NKKM04] use a number of heuristics to extract a
structural difference between two ontology versions. Recently the literature has also
paid attention to he notion of semantic or logic difference and several approaches
using it can be found [KWW08, KWZ08, KAPS08, EFV10].

ContentCVS, as already mentioned, performs a passive versioning. Currently,
change and conflict detection in ContentCVS is only based on the notions of struc-
tural and semantic differences, thus, a formal representation of changes could enrich
this process.

3.1.2. Consistency preservation approaches

Modelling errors are rather common during the ontology life cycle and they ma-
nifest themselves as non desired logical consequences. Haase and Stojanovic [HS05]
distinguished three types of consistency: structural, logical and user defined. For the
purposes of this dissertation only the last two are considered.

Unsatisfiability is easy to detect but not always easy to solve since the source
of an error is typically hard to understand. In the literature a number of approaches
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have proposed different solutions to represent and understand the source of an un-
satisfiable concept. These approaches can be split into two sets3: glass box techni-
ques [SC03, PT06, KPSH05, KPSG06, SHCvH07, BPS07] and black box techniques
[HS05, WHR+05, KPHS07, HPS08b, JQH09]. The former set is composed by those
techniques that extend the operation of tableau-based reasoning algorithms in order
to keep track of the followed path when getting a clash. The later techniques treat
the reasoner as a black box and they only requires its output. Thus, glass box techni-
ques are reasoner dependent whereas black box techniques do not require a particular
reasoner nor description logic.

Both glass and black box techniques rely on the notion of justification or MUPS
(Minimal Unsatisfiability Preserving Sub-TBoxes), originally introduced in [SC03].
Justifications are the set of axioms which are the cause of a logical consequence (e.g.,
concept subsumption, unsatisfiability).

Definition 3.1 (Justification). Let O |= α. A justification for α in O is an ontology
O′ ⊆ O satisfying the following properties: (i) O′ |= α, and (ii) there is no O′′ ⊂ O′
s.t. O′′ |= α.

User-defined consistency involves user requirements and therefore it has to be ma-
nually or semi-automatically detected. Consequences can be logically correct, that is,
all concepts are satisfied, but concepts can still be missclassified (e.g., Arthritis v
Drug) and/or individuals be placed in an incorrect class (e.g. ernesto ∈ Professor).
Approaches in [KPHS07, HPS08b, JQH09] are not only focused on unsatisfiability
but also in explaining general DL consequences. Moreover, [HPS08b, JQH09] also
try to provide more precise explanations in order to make easier the reparation of such
unintended consequences.

ContentCVS extends and adapts ontology debugging and repair techniques in
order to fix identified logical errors (both unsatisfiability and general unintended con-
sequences) in a concurrent setting.

3.1.3. Concurrent ontology development frameworks

Maintaining medium and large ontologies is usually done in a collaborative way.
This involves a highly complex process which involves not only tracking and mana-
ging the changes to the ontology as in traditional ontology development, but also allo-
wing communication and argumentation between experts, assigning roles and access
policies to the knowledge, reconciling conflicting views of the domain from different
developers, minimising the introduction of errors (e.g., ensuring that the ontology does
not have unintended logical consequences), and so on.

In the literature we can find several frameworks which propose solutions to dif-
ferent necessities in the collaborative ontology lifecycle. In the earlier stages of our
research, we presented a survey and a set of methodology requirements for the colla-
borative development of ontologies [JRL06]. The work carried out was rather prelimi-

3 The referenced approaches has been distributed to each group according to its main contribution,
however some of them present hybrid techniques and/or perform a comparison of both techniques
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nary but some interesting ideas were discussed, such as the differentiation of public,
private and agreed spaces for the developed knowledge, or the possibility of coexis-
tence of local fragments of knowledge in conflict with the global knowledge or other
local points of view.

Next we present an up-to-date list of current frameworks and approaches. The
most of these frameworks have tried to control the set of concurrent changes over
the ontology using mechanisms to restrict the access to the ontology and/or defining
collaborative workflows to discuss and reconcile changes potentially conflictive.

Collaborative Protégé [NTdCM08, TNTM08, SNTM08] is a prominent an qui-
te complete example of a collaborative change management system. It allows
ontology developers to hold discussions, chats, and annotate changes. It also
assign roles and access policies to developers. Changes are formally annotated
as instances of an ontology [KN03, NCLM06] and their commitment follows
a collaborative workflow [SNTM08] to discuss and analyze potential errors.
Moreover, ontology versions can also be compared using the PromptDiff algo-
rithm [NKKM04], which calculates a structural difference between them using
a number of heuristics.

Palma [Pal09] presents in his PhD dissertation a framework to manage and
propagate changes in collaborative ontology development scenarios. The de-
velopment process is formalized by means of a collaborative editorial workflow
[PHJ08]. Additionally, changes are characterized and represented using a meta-
ontology [PHCGP09].

DOGMA-MESS [dMLM06, LD08] also represents a prominent framework and
tool support where the importance of developing common conceptual models is
emphasised, especially when the process of collaborative ontology engineering
crosses the boundaries of a single organisation. DOGMA-MESS contributes to
the field with the following characteristics: (1) there is an explicit separation, as
proposed in Section 1.3.2, of the lexical representation of concepts from its se-
mantic description (i.e., logic-based axioms); thus, conflicts related to the use of
different labels referring to the same entity are minimized. (2) Ontology deve-
lopers extends a consensual upper ontology following some predefined restric-
tions on the extension of an upper knowledge (i.e., reuse policies [LdMM07]),
then if a reuse policy is violated a conflict arises and must be revised.

[RSDT08] have proposed a general framework to develop ontologies using a
version control system. This framework does not provide a concrete mechanism
or workflow to validate/reconcile changes, but a extensible conflict management
operation by integrating state-of-the-art methods. Additionally, [RSDT08] also
proposes the management of different versions and different development bran-
ches. These branches may be required to be merged and reconciled or they can
coexist, even when they are incompatible, for application purposes as proposed
in [JRL06, DBC06].
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The definition of formal or semi-formal argumentation models in order to achie-
ve a consensus over changes has also been an interesting research topic within
the literature. DILIGENT [TPSS05, TSL+07, PTS09] and HCOME [KV06]
are representative methodologies which follow a formal argumentation model
based on the IBIS model [KR70]. For example, DILIGENT exploits an argu-
mentation ontology to describe and store (as instances) the different discussion
threads. Thus, the revision of past decisions and conclusions can be easily re-
trieved and reviewed, unlike traditional communications means like e-mail or
chat. Cicero [DEB+08] implements the DILIGENT methodology, and [Kot08]
presents a system based on the HCOME argumentation model.

Authors in [BCH06] presents an extension of the standard description logics
called package-based DL (P-DL). The ontology is subdivided in packages or
modules, which can be nested in other packages resulting in a hierarchy. The
use of this package hierarchy allow ontology managers to define access poli-
cies and to restrict the visibility of entities and axioms, with different levels of
granularity, in order control the concurrency of changes.

The approach [SKKM03, KSKM07] presents a dependency management fra-
mework and tool support in which collaboratively developed ontologies are di-
vided in several modules organized within a hierarchy of dependencies. The
edition of modules is asynchronous, and only one developer can modify a mo-
dule at the same time. That is, modules are locked before starting its extension.
Changes over a module may influence dependent modules, thus, in order to de-
tect and avoid undesired cases (e.g., inconsistency) changes are characterized
and a number of countermeasures are taken depending on the change. In this
way, dependent module owners can reject changes in case of conflict.

Seidenberg and Rector [SR07a, SR07b] also proposes a locking mechanism to
allow concurrent extension of ontologies. Developers selects the entity to be
modified and then extract a fragment or segment [SR06, Sei09] for this entity,
which will be locked. They also propose several types of locking allowing dif-
ferent degrees of freedom.

WebODE [CFLGPV02], WebOnto [Dom98] and OntoEdit [SEA+02] were pio-
neers systems giving support for collaborative and concurrent editing of the
same ontology. WebODE supports the concurrent edition by means of synch-
ronization mechanisms and role assignment. OntoEdit presents an entity-like
locking mechanism, thus, OntoEdit modellers must lock the entity or set of
entities before editing them. WebOnto forces the locking of the whole onto-
logy to be modified but dependent sub-ontologies are kept unlocked. Tadzebao
complements WebOnto with support to keep synchronous and asynchronous
discussions between ontology modellers.

As stated in [BCH06, SR07a] the precise guarantees provided by methods based
on access policies are not clear. Thus, ContentCVS techniques may serve to guaran-
tee that the impact of merging independent set of changes is error free.



“tesis” — 2010/9/2 — 16:34 — page 39 — #63i
i

i
i

i
i

i
i

3.2 Assessment of concurrent ontology changes with ContentCVS 39

3.2. Assessment of concurrent ontology changes with
ContentCVS

This section is devoted to the analysis of ContentCVS framework and tool. We
start considering a motivating use case based on the collaborative and concurrent deve-
lopment of JIAO. This example is intended only for illustration purposes and hence
it is rather simplistic. The types of conflicting ontology changes illustrated in this sec-
tion, however, are indeed realistic as we will see later on in Section 3.3.1, where we
analyse a sequence of versions of a medical ontology used in a real scenario.

OntologyO0

α1 RA v Disease

α2 Systemic Disease v Disease u ∃affects.WholeBody

α3 Disease u ∃affects.WholeBody v Systemic Disease

α4 Disease u ∃suffered By.Child v Juvenile Disease

α5 Negative RF u Positive RF v ⊥
α6 AbnormalRA v RA u ∀hasRF.Negative RF

α7 MultiJoint Disease v Disease u> 5 affects.Joint

Table 3.1: A fragment of an ontology about arthritis

Suppose that two developers, John and Anna, independently extend a version O0

of the ontology in Table 3.1 by describing types of systemic arthritis and juvenile arth-
ritis respectively. To this end, both John and Anna define a kind of arthritis called JIA
(Juvenile Idiopathic Arthritis). Hence, even if largely distinct, the domains described
by John and Anna overlap, which may lead to conflicts. For simplicity, in what follows
we only consider John and Anna’s descriptions of JIA.

Suppose that John and Anna construct their respective versions O1 and O2 by
adding to O0 the axioms (∆O)1 and (∆O)2 from Table 3.2 (i.e., O1 = O0 ∪ (∆O)1

and O2 = O0 ∪ (∆O)2). Some of the axioms added by John and Anna are the same
(e.g., β1), or present only minor (and semantically irrelevant) differences (e.g., β2 and
β′2); however, other axioms are clearly different (e.g., γ3 and δ3).

To compare John and Anna’s conceptualisations of the domain, the upper part of
Table 3.3 presents some axioms and their entailment status w.r.t.O1 andO2. The table
shows that John and Anna agree on some points; e.g., both think that Polyarticular
JIA is a kind of disease (entailment σ3) and neither claimed that every JIA is also
a Systemic JIA (non-entailment σ4). However, John’s and Anna’s views also present
significant differences; e.g., John defined the notion of Olyarticular JIA , whereas
Anna did not, and Anna’s conceptualisation implies that JIA is a juvenile disease
(entailment σ2), whereas John’s does not.

John and Anna’s changes could be reconciled by building the unionO3 = O1∪O2

of their ontologies. Due to complex interactions between O1 and O2, however, O3

entails new consequences which did not follow from either O1 or O2 alone; some
of these are shown in the lower part of Table 3.3, together with an indication as to
whether the consequence is desirable. Although some of these new consequences may
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Ontology (∆O)1: Ontology (∆O)2:

β1 RA v ∃hasRF.> RA v ∃hasRF.>
β2 JIA v ∃treatment.(Steroid t DMAR) β2’ JIA v ∃treatment.(DMAR t Steroid)

γ1 JIA v RA u Systemic Disease δ1 JIA v RA u ∃suffered By.Child

γ2 RA u Systemic Disease v JIA δ2 JIA u ∃affects.WholeBody v SystemicJIA

γ3 Poly JIA v JIA uMultiJoint Disease δ3 Poly JIA v JIA u= 3 affects.Joint

γ4 Poly JIA v AbnormalRA δ4 Poly JIA v ∀hasRF.Positive RF

γ5 Oly JIA v JIA u ¬Poly JIA δ5 SystemicJIA v JIA u ∃hasSymptom.Fever

Table 3.2: VersionsO1 = O0 ∪ (∆O)1 andO2 = O0 ∪ (∆O)2 of an ontologyO0

σ Axiom: O1 |=?σ, follows from: O2 |=?σ, follows from:
σ1 Oly JIA v Systemic Disease Yes γ1, γ5 No —
σ2 JIA v Juvenile Disease No — Yes α1, α4, δ1
σ3 Poly JIA v Disease Yes α1, γ1, γ3 Yes α1, δ1, δ3
σ4 JIA v SystemicJIA No — No —

σ Axiom: O3 |=?σ, O1 |=?σ, O2 |=?σ, follows from: Desirable?

σ4 JIA v SystemicJIA Yes No No γ1, α2, δ2 No

σ5 Poly JIA v ⊥ Yes No No γ4, β1, δ4, α5, α6 No

α7, γ3, δ3

σ6 Oly JIA v Juvenile Disease Yes No No γ5, α1, α4, δ1 Yes

Table 3.3: Example Subsumption Relations in O1, O2, and O3 = O1 ∪ O2

be desirable (e.g., σ6) others are clearly undesirable, and indicate modelling errors in
the merged ontology (e.g., σ4 and σ5).

This example illustrates some of the challenges of collaborative ontology deve-
lopment. The development of an ontology may be the responsibility of several deve-
lopers, each of whom typically makes small but relatively frequent modifications to
the ontology. In this setting, developers need to regularly merge and reconcile their
modifications to ensure that the ontology captures a consistent unified view of the do-
main. The changes performed by different users may, however, interact and conflict
in complex ways. Tools supporting collaboration should therefore provide means for:
(i) keeping track of ontology versions and changes and reverting, if necessary, to a
previously agreed upon version, (ii) comparing potentially conflicting versions and
identifying conflicting parts, (iii) identifying errors in the reconciled ontology cons-
tructed from the conflicting versions, and (iv) suggesting possible ways to repair the
identified errors with a minimal impact on the ontology.

In order to address (i), we propose to adapt the Concurrent Versioning paradigm
to ontology development as described in Section 3.2.1. To address (ii) we propose a
notion of conflict between ontology versions and provide means for identifying con-
flicting parts based on it, as described in Section 3.2.2. To address (iii) we propose in
Section 3.2.3 a framework for comparing the entailments that hold in the compared
versions and in the reconciled ontology, based on the notion of deductive difference
[KWW08, KWZ08] and also describe techniques for helping users decide which of
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the reported entailments are intended. Finally, to address (iv), we propose in Section
3.2.3 several improvements to existing techniques for ontology debugging and repair,
and we adapt them to a collaborative setting.

In Sections 3.2.1, 3.2.2, and 3.2.3, we describe both our general approach and al-
gorithmic techniques as well as their implementation in ContentCVS. Section 3.2.4
reuses ContentCVS techniques to guarantee an desired local evolution of the onto-
logy.

3.2.1. CVS-based collaboration

In software engineering, a successful paradigm for collaboration in large pro-
jects has been the Concurrent Versioning Paradigm. A Concurrent Versioning System
(CVS) uses a client-server architecture: a CVS server stores the current version of a
project and its change history; CVS clients connect to the server to check out a copy
of the project, allowing developers to work on their own local copy, and then later to
commit their changes to the server. This allows several developers to make changes
concurrently to a project. To keep the system in a consistent state, the server only ac-
cepts changes to the latest version of any given project file. Developers should hence
use the CVS client to regularly commit their changes and update their local copy with
changes made by others. Manual intervention is only needed when a conflict arises
between a committed version in the server and a yet-uncommitted local version. Con-
flicts are reported whenever the two compared versions of a file are not equivalent
according to a given notion of equivalence between versions of a file.

Our tool ContentCVS closely follows the CVS paradigm. The most recent version
OR of the ontology, which represents the developers’ shared understanding of the
domain, is kept in a server’s shared repository. Each developer with access to the
repository maintains a local copy OL of the ontology, which can be modified at will.
This local copy can be either in conflict with OR (conflict = true) or not in conflict
(conflict = false). Furthermore, the system maintains version numbers vR and vL for
OR and OL respectively as well a local backup copy OLbak of the latest local version
that was “written” to the repository.

At any time, a developer can access the repository using one of the following basic
operations: export, check-out, update and commit. These operations involve checking
whether two ontology files O and O′ are equivalent under a specific notion of equi-
valence between ontology files, which will be introduced in Section 3.2.2 (denoted
O ∼ O′).

The checkout operation (Figure 3.1(a)) allows a developer to acquire a local copy
OL of OR, provided that OL does not already exist. The ontology resulting from a
successful checkout is obviously in a non-conflicted state (i.e., conflict = false), and
it inherits the version number vR of OR.

The export operation (Figure 3.1(b)) allows a developer to create a new repository,
provided that no such repository already exists. The local ontology is then exported to
the repository and the version numbers of OL and OR are initialised.

The update operation (Figure 3.2) allows ontology developers to keep their local
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(a) Checkout (b) Export

Figure 3.1: Semantics of the checkout and export operations in ContentCVS

Figure 3.2: Semantics of the update operation in ContentCVS

copy OL up-to-date by accessing the repository and incorporating the changes made
by others. The update process starts by checking whetherOL has not changed since it
was last updated (i.e., whether OLbak v OL); in case OL has changed, it next checks
whether the changes made by others are consistent with those made locally—that is
whetherOL v OR. In either case (i.e., if eitherOLbak v OL orOL v OR) it is safe to
replaceOL with the versionOR from the repository. Otherwise, a conflict is reported.

Finally, the commit operation (Figure 3.3), allows ontology developers to write
(commit) their local changes to the repository. If OLbak v OL then there are no mea-
ningful local changes and hence no action is required. Otherwise, the commit process
only succeeds if OL is up-to-date (vL = vR) and not in conflict (conflict = false). In
case of success, the commit operation involves replacing OR with OL and incremen-
ting the version number.

Consider our running example and suppose that Anna has already committed her
changes, so OR = O2; meanwhile, John modifies his local copy, so OL = O1. If
John then tries to commit his changes, the operation will fail because vL 6= vR (the
local copy is not up-to-date); if he tries to update his local copy, the operation will
fail because there have been local changes that are incompatible with those made by
Anna, and OL ends up in a conflicted state. Conflicts will need to be resolved before
the commit operation can succeed.
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Figure 3.3: Semantics of the commit operation in ContentCVS

3.2.2. Change and conflict detection

As mentioned in Section 3.2.1, change and conflict detection amounts to checking
whether two compared versions of a file are not “equivalent” according to a given
notion of equivalence between versions of a file. A typical CVS treats the files in
a software project as ordinary text files and hence checking equivalence amounts to
determining whether the two versions are syntactically equal (i.e., they contain exactly
the same characters in exactly the same order). This notion of equivalence is, however,
too strict in the case of ontologies, since OWL files have very specific structure and
semantics. For example, if two OWL files are identical except for the fact that two
axioms appear in different order, the corresponding ontologies should be treated as
“equivalent”: an ontology contains a set of axioms and hence their order is irrelevant
[CHM+08]. Another possibility is to use the notion of logical equivalence. Logical
equivalence is, however, too permissive: even if O ≡ O′—the strongest assumption
from a semantic point of view—conflicts may still exist. This might result from the
presence of incompatible annotations (statements that act as comments and do not
carry logical meaning) [CHM+08], or a mismatch in modelling styles; for example,
O may be written in a simple language such as the OWL 2 EL profile [CHM+08,
MCH+09] and contain α := (A v B uC), whileO′ may contain β := (¬B t¬C v
¬A). Even though α ≡ β, the explicit use of negation and disjunction means that O′
is outside the EL profile.

Therefore, the notion of a conflict should be based on a notion of ontology equiva-
lence “in-between” syntactical equality and logical equivalence. We propose to borrow
the notion of structural equivalence from the OWL 2 specification [MPSP09]. Intui-
tively, this notion of equivalence is based solely on comparing structures by using
the definition of the modelling constructs available in OWL 2; for example, several
constructs are defined as sets of objects (e.g., ontologies are defined as sets of axioms,
conjunction of concepts as a set of conjuncts, and so on); hence changes in the order
in which these set elements appear in the ontology file should be seen as irrelevant
(see Table 3.4).

In DL syntax, structural equivalence can be formalised as follows. For the sa-
ke of simplicity, our definition here comprises only the description logic SROIQ
[HKS06], which provides the logical underpinning for OWL 2. This definition can be
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Component Type Syntax Structural Characterization
Ontology O SET of axioms
Concept Subsumption C v D LIST of concept descriptions
Concept Equivalence C ≡ D SET of concept descriptions
Role Subsumption R v S LIST of role descriptions
Role Equivalence R ≡ S SET of role descriptions
Concept Disjointness disjoint(C,D) SET of concept descriptions
Role Disjointness disjoint(R,S) SET of role descriptions
Inverse Roles R− SET of role descriptions
Role Composition R ◦ S LIST of role descriptions
Role Assertions a : C LIST of entity descriptions
Class Assertions R(a, b) LIST of entity descriptions
Universal Quantification ∀R.C LIST of entity descriptions
Existential Quantification ∃R.C LIST of entity descriptions
Number Restriction >nR.C LIST of entity descriptions
Union C tD SET of concept descriptions
Intersection C uD SET of concept descriptions
Nominals/Enumerations {a1, . . . , an} SET of individuals
Different Individuals Diff(a1, . . . , an) SET of individuals
Same Individuals Same(a1, . . . , an) SET of individuals
Unary Operators i.e. ¬C, Trans(R) Only one entity

Table 3.4: OWL 2 constructors and their structural characterization

easily extended to cover also datatypes and extra-logical statements, such as annota-
tions. We refer the reader to [MPSP09] for a complete characterisation of structural
equivalence.

Definition 3.2 (Structural Equivalence). The structural equivalence relation v over
a set of concepts Con is defined by induction. First, C v C for each C ∈ Con. For
the induction step, we have:

C v D implies (¬C) v (¬D);

C v D implies ♦R.C v ♦R.D for ♦ ∈ {∃,∀,≥ n,≤ n,= n}; and

C1 v C2 and D1 v D2 implies (C1 ./ D1) v (C2 ./ D2) v (D2 ./ C2), for
./ ∈ {u,t}.

The relation v is extended to axioms over a set of concepts Con and roles Rol as
follows: α v α for each concept or role axiom α and, if C1 v C2 and D1 v D2, then
(C1 v D1) v (C2 v D2), for Ci, Di ∈ Con. Finally v is extended to ontologies
as follows: O v O′ if, for every α ∈ O (respectively α ∈ O′) there is a β ∈ O′
(respectively β ∈ O) such that α v β.
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For example, the axioms β2 and β′2 in Table 3.2 are structurally equivalent because
they only differ in the order of the elements in a disjunction. If O v O′ we can safely
assume that they are compatible and thus not in conflict.

The use of the notion of structural equivalence as a formal basis for detecting
conflicts between ontology versions presents a number of compelling advantages:

It is a notion “in-between” syntactical equality and logical equivalence: on the
one hand irrelevant syntactic differences are ruled out as conflicts based solely
on the structure of the OWL language; on the other hand, structurally equivalent
ontologies are also guaranteed to be logically equivalent.

It preserves species and profiles [MCH+09] of OWL and OWL 2 respectively;
for example if O and O′ are structurally equivalent and O is in OWL Lite (res-
pectively in any of the profiles of OWL 2), thenO′ is also in OWL Lite (respec-
tively in the same OWL 2 profile as O).

It takes into account extra-logical components of an ontology, such as annota-
tions.

It is an agreed-upon notion, obtained as a result of extensive discussions within
the W3C OWL Working Group during the standardisation of OWL 2. Further-
more, it is not exclusive to OWL 2: it can be directly applied to OWL DL, and
a similar notion could obviously be devised for most other ontology languages.

It is supported by mainstream ontology development APIs, such as the OWL
API.

Finally, the identification of the conflicting parts in O and O′ using the notion of
structural equivalence can be performed by computing their structural difference.

Definition 3.3 (Structural Difference). The structural difference between O1 and O2

is the set Λs of axioms α ∈ Oi for which there is no β ∈ Oj s.t. α v β with
i, j ∈ {1, 2} and i 6= j.

ContentCVS reuses the functionality available in the OWL API for deciding
structural equivalence and implements a straightforward algorithm for computing struc-
tural differences that follows directly from Definition 3.3.

3.2.2.1. Using a shared vocabulary

Some concepts are hard to describe and the selection of a proper label for them
is not always a straightforward task. The problem of label (i.e. term) selection, to
better describe the ontology concepts without ambiguity, is well known by the com-
munity and already a topic of discussion in ontology development projects like Open-
Galen [ope10]. Furthermore, the occurrence of redundant entities (i.e. entities which
are intended to have the same meaning but with different labels) is also an important
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Figure 3.4: Conflict resolution method (informal).

problem that bothers the community when they develop an ontology collaboratively
[SMS09].

ContentCVS assumes the existence of a thesaurus shared by all the ontology mo-
dellers. This shared thesaurus intends to serve as a bag of symbols (i.e., vocabulary
provider) containing at least all concept labels which are being used within the onto-
logy. Thus, when a modeller requires the creation of a new concept, she first checks if
there exists an appropriated label within the thesaurus. Otherwise the modeller should
create a new entry in the thesaurus.

The reuse of symbols from domain thesauri [JYJRBRS09b], as commented in
Section 1.3.2, would reduce significantly the problem of merging two ontology ver-
sions since the alignment of the versions would not be necessary. In that way, Con-
tentCVS can only focus on the analysis of the logic based consequences of the mer-
ging. In Chapter 4, we deal with the problem of integrating independently developed
ontologies, which do not share a reference thesaurus, and thus a mapping is required
in order to align their disparate vocabularies.

Future evolutions of ContentCVS will imply the integration with some initiatives
for extending Protégé in order to link the ontology development process with available
terminological resources such as UMLS-Meta4, WordNet5 or NCBO ontologies6.

3.2.3. Conflict resolution method

Conflict resolution is the process of constructing a reconciled ontology from two
ontology versions which are in conflict. Unlike text-based CVS systems the detection
and resolution of errors can be performed semi-automatically by guiding the user with
the candidate choices. Our approach allows users to resolve the identified conflicts at
two different levels:

Structural, where only the structure of the compared ontology versions is taken
into account to build the reconciled ontology (see Section 3.2.3.1).

4 UMLS Tab: http://protegewiki.stanford.edu/index.php/UMLS_Tab
5 OntoLing: http://protegewiki.stanford.edu/index.php/OntoLing
6 BioPortal Reference Plugin: http://protegewiki.stanford.edu/index.php/
BioPortal_Reference_Plugin
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Input:OL,OR: ontologies withOL 6v OR, conflict = true and structural difference Λs
Output:OL: ontology; conflict: boolean value;
1: (X) Select S ⊆ Λs
2: OLtemp := (OL \ Λs) ∪ S
3: (X) ifOLtemp is satisfactory returnOL := OLtemp, conflict := false
4: (X) Select approximation function diff≈
5: Compute diff≈(OLtemp,OL), diff≈(OLtemp,OR), diff≈(OL,OLtemp) and diff≈(OR,OLtemp)

6: (X) Select =+ ⊆ diff≈(OLtemp,OL) ∪ diff≈(OLtemp,OR)

7: (X) Select =− ⊆ diff≈(OL,OLtemp) ∪ diff≈(OR,OLtemp)

8: Compute minimal plans P forOLtemp given =+, =−,O+ := Λs \ S, andO− := S
9: (X) if no satisfactory plan in P, returnOL, conflict := true

10: (X) Select P = 〈P+,P−〉 ∈ P
11: returnOL := (OLtemp ∪ P+) \ P−, conflict := false

Table 3.5: Conflict resolution method.

Structural and semantic, where both the structure and the logical consequences
of the compared ontology versions as well as of the reconciled ontology are
taken into consideration (see Sections 3.2.3.1—3.2.3.6).

In the former case, the overhead involved in using a reasoner and examining its
output is avoided; however, the reconciled ontology may contain errors (e.g., undesi-
red logical consequences), which would remain undetected.

In the latter case, errors in the reconciliation process can be detected, with the
assistance of a reasoner, by computing the logical consequences of the reconciled
ontology and comparing them to those of the relevant ontology versions. Errors in
the reconciled ontology could manifest themselves, however, not only as unsatisfiable
concepts or unintended (or missing) subsumptions between atomic concepts, but also
as unintended (or missing) entailments involving complex concepts. We propose to
use the notion of deductive difference for error detection (see Section 3.2.3.2), which
ensures that errors associated with complex entailments are also detected. However,
considering complex entailments obviously comes at a price, both in terms of compu-
tational cost and of complication of the GUI. Thus, a CVS client should allow users
to customise the types of relevant entailments for error detection and guide them in
the selection process (see Section 3.2.3.2). Finally, error repair is a complicated pro-
cess for which tool support should be provided. Our approach involves a number of
techniques to achieve this goal (see Sections 3.2.3.3 and 3.2.3.6).

Our approach is summarised in Figure 3.4 and Table 3.5. The steps marked with
a tickmark (X) are those that require human intervention. We next describe in detail
each of the steps in Table 3.5.

3.2.3.1. Selection of axioms using structural difference

Conflict resolution in text files is usually performed by first identifying and dis-
playing the conflicting sections in the two files (e.g., a line, or a paragraph) and then
manually selecting the desired content. Analogously, our proposal for structural con-
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Figure 3.5: GUI for structural differences in ContentCVS

flict resolution involves computing and displaying the structural difference Λs (i.e.,
those axioms for which a structurally equivalent axiom does not occur in both onto-
logies) and then manually selecting which of these axioms should be included in a
(provisional) version OLtemp of OL (Step 1). The ontology OLtemp is obtained from the
non-conflicting part of OL plus the selected axioms S from the conflicting part (Step
2).

After constructing OLtemp, the user may declare the conflict resolved (Step 3), in
which case conflict resolution remains a purely syntactic process, as in the case of text
files. Otherwise, semantic consequences of their choices and make sure that OLtemp

meets their requirements (typically, includes as much information as possible without
leading to inconsistencies or other undesired entailments).

ContentCVS implements a simple GUI to facilitate the selection of axioms from
the structural difference, which is shown in Figure 3.5 for our running example. The
left-hand-side (respectively the right-hand-side) of the figure shows the axioms in
Λs∩OL (respectively in Λs∩OR). Unlike PromptDiff [NKKM04], ContentCVS ex-
ploits the definition of structural difference now provided in the OWL 2 specification
[CHM+08].

To facilitate the comparison, axioms are sorted and aligned according to the en-
tities they define. Axioms not aligned with others are shown last in a distinguished
position. The selected axioms are indicated in the GUI using a highlighted tickmark
(X). Furthermore, ContentCVS provides additional functionality for determining the
origin of each axiom in the structural difference. In particular, ContentCVS, indicates
whether an axiom appears in the difference as a result of an addition or a deletion by
comparing OL and OR to the local backup copy OLbak of the latest local version that
was “written” to the repository. For example, the axiom (Poly JRA v AbnormalRA)
on the left-hand-side of Figure 3.5 was added to OLbak in the local ontology (indicated
by an icon representing a user with a ‘+’), whereas the axiom (Systemic Disease v
Diseaseu∃affects.WholeBody) was deleted fromOLbak in the repository (indicated by
an icon representing the Globe with a cross ‘×’).
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3.2.3.2. Deductive differences

In contrast to text files, the selected parts from OL and OR can interact in unex-
pected ways, which may lead to errors that should be repaired. To help users detect
such errors, we propose to compare the entailments that hold in OLtemp with those that
hold in OL and OR by using the notion of deductive difference [KWW08, KWZ08].

Definition 3.4 (Deductive Difference). The deductive difference diff(O,O′) between
O and O′ expressed in a DL DL is the set of DL-axioms α s.t. O 6|= α and O′ |= α.

Intuitively, this difference is the set of all (possibly complex) entailments that hold
in one ontology but not in the other.

Example 3.1. In our running example, for the selection in Figure 3.5, there are en-
tailments that (i) hold in OLtemp and not in OL, such as τ1 := (SystemicJRA v
∃has Symptom.Fever); (ii) hold inOLtemp but not in eitherOL orOR, such as σ5 from
Table 3.3; (iii) hold inOL but not inOLtemp, such as τ2 := (RAu∃affects.WholeBody v
JRA); and finally (iv) hold in OR but not in OLtemp, such as σ2 in Table 3.3. Cases (i)
and (ii) represents new entailments in OLtemp, wheras (iii) and (iv) lost entailments
w.r.t. OL or OR.

Therefore, we argue that the relevant deductive differences between OLtemp, OL
and OR capture all potential errors that may have been introduced in the reconcilia-
tion process. However, the notion of deductive difference has several drawbacks in
practice. First, checking whether diff(O,O′) = ∅ is undecidable in expressive DLs,
such as SROIQ (OWL 2) and SHOIQ (OWL DL) [KWW08]. Second, the number
of entailments in the difference can be huge (even infinite), and so likely to overwhelm
users. These practical drawbacks motivate the need for approximations— subsets of
the deductive difference (see Step 4 in Table 3.5).

Definition 3.5 (Approximation of Deductive Difference). A function diff≈(O,O′) is
an approximation for diff(O,O′) if for each pairO,O′ of ontologies, diff≈(O,O′) ⊆
diff(O,O′).

A useful approximation should be easy to compute, yet still provide meaningful
information to the user. One possibility is to define an approximation by considering
only entailments of a certain form. Our tool ContentCVS allows users to customise
approximations by selecting among the following kinds of entailments, where A,B
are atomic concepts (including >, ⊥) and R,S atomic roles or inverses of atomic
roles: (i) A v B, (ii) A v ¬B, (iii) A v ∃R.B, (iv) A v ∀R.B, and (v) R v S.
The smallest implemented approximation considers only axioms of the form (i), which
amounts to comparing the classification hierarchy of both ontologies, while the largest
considers all types (i)—(v). Clearly, the larger the class of entailments presented to the
user, the more errors could be detected. The corresponding differences, however, are
harder to compute, harder to present to the user, and may be harder for the user to
understand them.
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Example 3.2. In our running example, ContentCVS would cover the entailments τ1
in Example 3.1 (using an approximation of the form (iii)), and σ2 and σ5 from Table
3.3 (using entailments of the form (i)). On the other hand, to cover entailments such
as τ2 (Example 3.1) an approximation based on a more expressive language would be
needed.

Although these approximations can all be algorithmically computed, only the en-
tailments of the form (i) and (v) are typically provided by reasoners as standard outputs
of classification. Computing deductive differences based on entailments (ii)-(iv) is po-
tentially very expensive since it may involve performing a large number of additional
entailment tests. To reduce the number of tests, ContentCVS uses the notion of a
locality-based module [CHKS07, GHKS08] (see Section 2.2).

In order to check for all entailments of the form (ii)-(iv), ContentCVS first ex-
tracts the locality-based module for A and looks for potential entailments only within
the module. For example, in the case of (iii) ContentCVS would only test entailments
where both R and B are in the vocabulary of the module OA, which significantly re-
duces the search space. Furthermore, the actual relevant entailments can be checked
w.r.t. the (small) module, and not with respect to the (potentially large) original onto-
logy. Our experiments in Section 3.3 suggest that the use of locality-based modules
makes the computation of approximations to the deductive difference based on all
types (i)-(v) of entailments computationally feasible.

The OWLDiff tool7 implements the deductive difference between OWL 2 EL on-
tologies [KWW08]. The differences are shown in a GUI as a set of highlighted enti-
ties, which are the ones whose meaning differs between the two ontologies. However,
unlike ContentCVS , the tool does not provide means for defining tractable approxi-
mations or for explaining these differences to the user.

3.2.3.3. Selection of entailments

While some entailments in the computed differences are intended, others reveal
errors in OLtemp, as illustrated by the following example.

Example 3.3. In our example (Table 3.3), the entailment JRA v Juvenile Disease
(σ2) is intended. In contrast, Poly JRA v ⊥ (σ5) reveals an inconsistency in OLtemp,
and hence an obvious error.

Steps 6 and 7, from Table 3.5, thus involve selecting entailments that: (i) are inten-
ded and should follow from OLtemp (written =+ in Table 3.5), and (ii) are unintended
and should not follow from OLtemp (written =−). Figure 3.6 shows the ContentCVS
GUI for selecting =− (top part) and =+ (bottom part) entailments.

7 OWLDiff: http://krizik.felk.cvut.cz/km/owldiff/index.html, http://
sourceforge.net/projects/owldiff
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Figure 3.6: Displaying new and lost entailments for OLtemp in ContentCVS

3.2.3.4. Explaining the entailments

The development of techniques to help users understand the relevant deductive
differences and subsequently select the sets of intended and unintended entailments
is especially challenging. Thus, a tool should explain, on the one hand, why the new
entailments that hold inOLtemp do not hold inOL andOR alone and, on the other hand,
why the lost entailments that hold in OL and OR do not hold in OLtemp.

ContentCVS has reused and adapted the notion of justification from Definition
3.1. Note that, we denote by Just(α,O) the set of all justifications for α in O.

Figure 3.7 shows the ContentCVS GUI to represent all justifications for the en-
tailment Poly JRA v ⊥. We have extended the operation provided by Protégé 4
[HPS08a], which gives explanations for arbitrary entailments, in order to graphically
indicate which axioms in the justifications were selected in Step 2 of Table 3.5 from
OL andOR, marking them with ‘L’ and ‘R’ respectively. The unmarked axioms occur
in both ontologies. Additionally, axioms shared by all justifications are marked with
’J’.

Computing all justifications is expensive, so ContentCVS uses the optimisation
from [SQJH08], which have proved effective in practice. Our algorithm for extracting
all the justifications for an entailment of the form A v C, for A an atomic concept,
is based on extracting first the locality-based module for A in the ontology and then
compute the justifications w.r.t. the module instead of w.r.t. the whole ontology.
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Figure 3.7: Justifications for entailment Poly JRA v ⊥

3.2.3.5. Ordering the entailments

Even with the explanations provided, the potentially large number of relevant en-
tailments may overwhelm users. These entailments should therefore be presented in a
way that makes them easier to understand and manage. To this end, ContentCVS ex-
tends known ontology debugging techniques by identifying dependencies between
entailments. As an illustration, consider σ2 := (JRA v Juvenile Disease) from Ta-
ble 3.3 and τ4 := (SystemicJRA v Juvenile Disease) which hold in OLtemp but
not in OL. The entailment τ4 depends on σ2 since whenever σ2 is invalidated by
removing axioms from OLtemp, then τ4 is also invalidated. Similarly, the entailment
τ5 := (Oly JRA v ∃affects.WholeBody) depends on the entailment τ6 := (JRA v
∃affects.WholeBody): adding any set of axioms fromOL orOR that causes τ6 to hold
in OLtemp would also cause τ5 to hold. We formalise these intuitions in our setting as
follows:

Definition 3.6 (Orderings). Let O |= α, β. The orderings .+ and .− over O are
defined as follows:

1. α .+ β iff for each Jα ∈ Just(α,O), there is a Jβ ∈ Just(β,O) s.t. Jβ ⊆ Jα.
2. α .− β iff for each Jβ ∈ Just(β,O) there is a Jα ∈ Just(α,O) s.t. Jα ⊆ Jβ .

The orderings .+ and .− are consistent with our intuitions as shown in the follo-
wing proposition, which follows directly from Definitions 3.1 (Justification) and 3.6
(Orderings):

Proposition 3.1. Let O |= α, β, O′ ⊂ O. 1) If α .− β then O′ 6|= α implies O′ 6|= β,
and 2) if α .+ β O′ |= α implies O′ |= β.

Proof. First we prove Condition 1. Let α .− β and O′ 6|= α. Since O |= α, for each
Jα ∈ Just(α,O) there is an axiom γ ∈ Jα s.t. γ 6∈ O′. Otherwise, O′ would imply
α. Let Jβ ∈ Just(β,O). By definition of .−, there must be a Jα ∈ Just(α,O) s.t.
Jα ⊆ Jβ . Since O′ does not include one axiom from each Jα, then it also does not
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Figure 3.8: Orderings .+ and .− in ContentCVS

include one axiom from each Jβ and therefore O′ 6|= β, as required. We now prove
Condition 2. Let α .+ β and O′ |= α. Since O |= α, there exists a justification Jα ∈
Just(α,O) s.t. Jα ⊆ O′. By definition of .+ there must exist a Jβ ∈ Just(β,O) s.t.
Jβ ⊆ Jα. Therefore Jα ⊆ O′ and O′ |= α, as required.

Figure 3.8 shows the ContentCVS GUI with the new and lost entailments, as
in Figure 3.6, but represented within a dependency tree according to .− (top part)
and .+ (bottom part) orderings. Entailments can also be added to =+ or =−, or their
justification can be shown.

3.2.3.6. Repair plans generation

Changing the set of entailments can only be achieved by modifying the ontology
itself. In general, there may be zero or more possible choices of sets of axioms to add
and/or remove in order to satisfy a given set of requirements. We call each of these
possible choices a repair plan (or plan, for short).

Definition 3.7 (Repair Plan). LetO, =+, =−,O+ andO− be finite sets of axioms s.t.
O− ⊆ O, O+ ∩ O = ∅, O |= =−, O ∪ O+ |= =+, and O 6|= α for each α ∈ =+.
A repair plan for O given O+, O− =+ and =− is a pair P = 〈P+,P−〉 such that
P+ ⊆ O+, P− ⊆ O− and the following conditions hold:

1. (O ∪ P+) \ P− |= α for each α ∈ =+, and

2. (O ∪ P+) \ P− 6|= β for each β ∈ =−.
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P is minimal if there is no P1 s.t. P+
1 ⊂ P+ and P−1 ⊂ P−.

Definition 3.7 extends the notion of a plan proposed in the ontology repair lite-
rature (e.g., see [KPSG06]). In particular, the goal of a plan in [KPSG06] is always
to remove a set of axioms so that certain entailments do not hold anymore; hence,
a plan is always guaranteed to exist. In contrast, a plan as in Definition 3.7 also in-
volves adding axioms so that certain entailments hold; therefore, possibly conflicting
sets of constraints need to be satisfied. Furthermore, existing repair techniques (e.g.
[KPSG06]) are restricted to obvious inconsistencies (i.e., unsatisfiable concepts), whe-
reas our techniques apply to errors caused by arbitrary entailments.

Step 8 from Table 3.5 involves the computation of all minimal plans (denoted P).
In our case, the ontology O to be repaired is OLtemp from Step 3. The intended and
unintended entailments (=+ and =−) are those selected in Steps 6 and 7. We assume
that a plan can add any subset of the axioms in Λs, which were not originally selected
in Step 2 (i.e., O+ = Λs \ S), and it can remove any subset of the selected axioms
(i.e., O− = S). Hence, we assume that a plan should not remove axioms outside Λs,
since they are common to both versions of the ontology.

Example 3.4. Given =+ = {σ2} and =− = {σ5} from Example 3.3, four mini-
mal plans can be identified: P1 = 〈{δ1}, {δ3, δ4}〉; P2 = 〈{δ1}, {δ3, γ4}〉; P3 =
〈{δ1}, {γ3, γ4}〉; P4 = 〈{δ1}, {γ3, δ4}〉.

In Step 9 users can select from P a plan to be applied. If no plan matches their
intentions, the conflict resolution process ends as it started; that is, by returning the
old version of OL in a conflicting state (Step 9). In contrast, if a plan P is selected,
then P is applied by returning the ontology (OLtemp ∪ P+) \ P− in a non-conflicting
state (Steps 10–11), which is then ready to be committed.

Definition 3.7 suggests a simple procedure for computing all plans: for each pos-
sible P+ ⊆ O+ and P− ⊆ O−, use a reasoner to check if 〈P+,P−〉 satisfies Condi-
tions 1 and 2 from Definition 3.7. ContentCVS , however, implements an optimised
version of Algorithm 1, which uses inverted indexes, reduces the number of combina-
tions and avoids potentially expensive entailment checks by reusing the justifications
already computed when obtaining the dependency relations (.+ and .−) from Defi-
nition 3.6. The correctness of the algorithm is a direct consequence of the following:
(i) in order for an entailment α ∈ =+ to hold after the execution of a plan 〈P+,P−〉,
(O ∪ P+) \ P− must contain at least one justification for α in O ∪ O+ (Lines 6–
10); (ii) in order for an entailment β ∈ =− not to hold after the execution of a plan
〈P+,P−〉, it is sufficient to show that no justification for β inO∪O+ is contained in
(O ∪ P+) \ P− (Lines 11–15). The set of all minimal plans can be straightforwardly
computed once all the plans have been obtained.

Proposition 3.2. Algorithm 1 returns all plans for the given input.

Proof. For any P ∈ P, with P = 〈P+,P−〉, we show that P is a plan for O gi-
ven O+, O− =+ and =−, as per Definition 3.7. The facts that P+ ⊆ O+ and
P− ⊆ O− are clear from Line 2. For each α ∈ =+, Line 7 implies that there is a
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Algorithm 1 Computing all plans using justifications
Procedure all Plans(O,O+,O−,=+,=−)
Input:O,O+,O−, =+, =− as in Definition 3.7, Just(γ,O ∪O+) for each γ ∈ =+ ∪ =−
Output: P: set of all plans
1: P := ∅
2: for each P+ ⊆ O+ and each P− ⊆ O− do
3: validPlan := true
4: for each α ∈ =+ do
5: foundJust := false
6: for each Jα ∈ Just(α,O ∪O+) do
7: if Jα ⊆ (O ∪ P+) \ P− foundJust := true
8: end for
9: if foundJust = false then validPlan := false

10: end for
11: for each β ∈ =− do
12: for each Jβ ∈ Just(β,O ∪O+) do
13: if Jβ ⊆ (O ∪ P+) \ P− then validPlan := false
14: end for
15: end for
16: if validPlan = true then P := P ∪ {〈P+,P−〉}
17: end for
18: return P

Jα ∈ Just(α,O ∪ O+) s.t. Jα ∈ (O ∪ P+) \ P−, and the definition of justifica-
tion immediately implies that P satisfies Condition 1 from Definition 3.7. For each
β ∈ =−, Lines 14 and 15 imply that P− removes at least one axiom from each justi-
fication for β in O ∪ P+; hence P also satisfies Condition 2.

Let us assume that there exists a plan 〈P+,P−〉 /∈ P for O given O+, O− =+

and=−. This means that either there is an α ∈ =+ s.t. no justification for α inO∪O+

is contained in (O ∪ P+) \ P−, or there is a β ∈ =− and a justification Jβ for β in
O ∪ O+ s.t. Jβ ⊆ (O ∪ P+) \ P−. In the first case, there can be no justification for
α in (O ∪ P+) \ P−, because (O ∪ P+) \ P− ⊆ O ∪O+, so (O ∪ P+) \ P− 6|= α,
contradicting our assumption that 〈P+,P−〉 is a plan. In the second case, Jβ ∈ (O ∪
P+)\P−, which implies (O∪P+)\P− |= β, also contradicting our assumption.

3.2.3.7. Plan selection in ContentCVS

Figure 3.9 illustrates the ContentCVS GUI for visualising plans. It shows one of
the minimal plans for our running example. ContentCVS identifies the axioms in the
structural difference of OL (marked with a ‘L’) or OR (marked with a ‘R’), and also
detects axioms that are shared by all minimal plans (marked with a ‘P’).

The user can execute any of the obtained plans using the option “Use Plan” in the
bottom part of Figure 3.9. However, selecting the most suitable plan is not always an
easy task and may involve hundred or even thousand of possibilities. For this reason,
ContentCVS provided users with techniques to support the plan selection. Although
the number of plans can be rather huge the number of involved axioms in them may be
relatively small, thus ContentCVS shows all the axioms in plans in a separate frame,
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Figure 3.9: GUI for plan selection in ContentCVS

Figure 3.10: Refinement of plans in ContentCVS

enabling the user to select which ones among them a plan must either add or delete
(see Figure 3.10). Note that not all the refinements guarantee the existence of a plan.

Additionally, ContentCVS also allows the previsualization of the impact of a re-
pair plan by computing the logical difference, as in Section 3.2.3.2, between the re-
paired ontology (OLtemp ∪ P+) \ P−) and OLtemp. This impact will show if the plan
corrected the errors, recovered the intended lost entailments and/or other entailments
where added or lost.

3.2.4. Local evolution in ContentCVS

ContentCVS also integrates a local evolution functionality in which developers
can compare the current local versionOL w.r.t. the base revisionOLbak (i.e. the version
imported in the las update) in order to analyse the logical impact of local changes.
Figure 3.11 shows the GUI to represent the logical difference between OL and OLbak.
Axioms in the right hand side represents all the consequences in OL (new conse-
quences not entailed in OLbak are marked with a ’N’). The left hand side shows those
entailments inOLbak but not inOL, that is, lost entailments inOL that may be required
to be recovered.

The GUI allows the selection of intended and unintended entailments, respectively,
and the generation of repair plans as explained in Sections 3.2.3.3–3.2.3.7.
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Figure 3.11: Local consistency preservation in ContentCVS

3.3. Evaluation of ContentCVS

Our evaluation tries to answer the following important questions:

1. Do conflicts of the kind described in Section 3.2 occur in practice?

2. Are the implemented algorithms computationally feasible in practice?

3. Do our proposed techniques provide useful assistance to ontology engineers?

4. Is ContentCVS easy and intuitive to use?

To address the first question we analyse in Section 3.3.1 a sequence of versions
of a realistic ontology and the respective change logs of each version. To address the
second question, we describe in Section 3.3.2 a number of synthetic experiments using
the same sequence of ontology versions. Finally, to address the last two questions, we
have conducted a pilot user study, which we describe in Section 3.3.3.

3.3.1. Analysis of real changes

In this section, we study a sequence of 10 versions of a medical ontology develo-
ped at the University of Manchester and used in the context of the Clinergy project8.
The sizes of the different versions vary from 71 concepts, 13 roles and 195 axioms
in the first version to 207 concepts, 38 roles and 620 axioms in the last version; all
the versions are expressed in the description logic SHIQ(D). The ontology was de-
veloped during a short period of time: from July 21st 2008 until July 28th 2008. On
average, the developers generated one or two versions of the ontology each day. This
situation, in which versions are generated very frequently, is consistent with the sce-
nario described in Section 3.2.

8 Clinergy project: http://www.opengalen.org/sources/software.html
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This medical ontology is divided into two main disjoint concepts: Document entity
and Domain entity. Most document related concepts are placed under Document
content spec which is split into Section content spec and Clin Holder. The latter is
aimed at containing relations to clinical variables. Within the set of domain entities
we can fin anatomical entities and entities related to the patient, namely: Condition,
Act, Feature, Indicant, and Value. It also has a set of properties relating document and
domain entities such as references and has topic.

Table 3.6 summarises the content of the change logs of each version9. For exam-
ple, the second column represents the changes performed from version O1 to version
O2. The table clearly shows how the ontology grows as it is being developed: most
of the changes involve addition of entities, axioms and annotations. Most of the ad-
ded axioms are concept axioms (mostly inclusions, equivalence and disjoint axioms),
which is a typical situation when modelling using OWL. Interestingly there are also
a significant number of deletions, which reflects the fact that ontology developers are
revising their modelling choices and fixing errors. Extra-logical changes such as mo-
difications in the annotations are also fairly common, which suggests that they should
be taken into account when identifying potential conflicts.

Change O2 O3 O4 O5 O6 O7 O8 O9 O10

Concepts added 8 3 10 38 24 1 27 11 23
Concepts deleted 2 0 1 1 0 0 1 3 1
Roles added 0 0 3 4 3 0 6 1 0
Roles deleted 0 0 1 0 0 0 0 1 0

Concept axioms added 31 6 18 53 51 5 47 26 52
Concept axioms deleted 8 0 10 9 0 3 5 14 17
Role axioms added 0 0 3 6 6 0 7 2 0
Role axioms deleted 0 0 3 0 0 0 2 0 0

Annotations added 10 5 32 19 30 2 43 26 38
Annotations deleted 2 2 9 2 0 0 2 6 6

Table 3.6: Summary of change logs.

Excerpt from verion O4

α1 Document entity u Domain entity v ⊥
α2 Document content spec v Document entity

α3 Indicant v Domain entity

α4 Present absent indicant v Indicant

α5 Section content spec v Document content spec

α6 ∃includes sub doc.> v Document content spec

α7 has sub doc v includes sub doc

Table 3.7: A relevant fragment of version O4

9 A document with an overview of the changes can be downloaded from: http://krono.act.
uji.es/people/Ernesto/contentcvs/synthetic-study
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Changes over Domain Entities (∆O4)1

γ1 Bruise to surface structure v Trauma to surface structure

γ2 Trauma to surface structure v Present absent indicant

γ3 Trauma to surface structure v ∀has locus.Surface Anatomical structure

γ4 Surface Anatomical structure v Anatomic structure

γ5 Anatomic structure v Domain entity

Changes over Document Entities (∆O4)2

δ1 Bruise to surface structure v Section content spec

δ2 Surface trauma subsection spec v Section content spec

δ3 Bruise to surface structure v ∃has sub doc.First heart sound clin holder

δ4 Bruise to surface structure v ∃has sub doc.Second heart sound clin holder

δ5 Bruise to surface structure v ∃has sub doc.Heart murmur clin holder

Table 3.8: Excerpt of changes (∆O4)1 and (∆O4)2 performed over version O4

In order to verify that conflicts of the kind described in Section 3.2 are likely
to occur in practice, we have also performed a detailed analysis of the change logs.
Our findings suggest that changes leading to an error, such as the unsatisfiability of a
concept, may involve the simultaneous modification of different aspects of the domain.
As an example, we have analyzed the evolution from version O4 to version O5. Two
groups of changes, (∆O4)1 and (∆O4)2 from Table 3.8, were detected using the
structural difference between O4 and O5.

Merging (∆O4)1 and (∆O4)2 together with the fragment of O4 from Table 3.7
leads to the unsatisfiability of the concept Bruise to surface structure. This unsatis-
fiability is caused by the simultaneous use of Bruise to surface structure both as a
Domain entity and as Document entity. The changes in (∆O4)1 describe Bruise to
surface structure as an anatomical structure (and hence as a domain entity), whereas
the changes in (∆O4)2 describe it as a section of content (and hence as a document
entity).

Under the assumption that changes in (∆O4)1 and (∆O4)2 have been performed
concurrently by different ontology engineers, the presence of incompatible changes
leads precisely to the issues pointed out in Section 3.2. This assumption is reasonable,
as different aspects of the domain (e.g., domain entities and document entities) are
likely to be developed by different experts.

It is worth mentioning that the unsatisfiability was not repaired until version O10.
Therefore, developers were not able to detect it until that version. Frameworks such as
ContentCVS would have eased such detection and would have proposed a set of can-
didate repair plans. Moreover an early detection of an error usually eases its unders-
tanding. For example, in version O5 the explanation of the unsatisfiability involves 4
justifications with 9 axiom each, whereas in versionO9 involves 12 justifications with
8-10 axioms each.
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Input:O,O′: ontologies; approximation function diff≈
Compute Λs and store its size (I) and computation time (II)
repeat

Randomly select S ⊆ Λs, and computeOaux := O ∪ S
Compute diff≈(Oaux,O) ∪ diff≈(Oaux,O′) and store its size (III)
Compute diff≈(O,Oaux) and store its size (IV)
Get all justifications for entailments in diff≈; store avg. time per justification (V)
Compute .+ and .−, and store the number of roots (VI)
Randomly select =− from roots of .− and =+ from roots of .−

Compute P (minimal plans) and store number of plans (VII) and computation time (VIII)
until 200 iterations have been performed

Table 3.9: Synthetic experiments

3.3.2. Performance evaluation

In our experiments we have simulated the evolution of an ontology by using the
sequence of versions from Section 3.3.1. The experiments were performed on a laptop
computer with a 1.82 GHz processor and 3Gb of RAM. The average classification
time of an ontology in the sequence is approximately one second when using the
Pellet reasoner.

For each pair Oi,Oi+1, i ∈ {1, . . . , 9} of consecutive versions, and both the
smallest and largest approximations of the deductive difference implemented in Con-
tentCVS, we have performed the experiment in Table 3.9. The Roman numbers in
Table 3.9 refer to measurements that are stored during the experiment and presented
in Table 3.10. These experiments follow our approach for conflict resolution in Table
3.5, with the assumption that version Oi is the local ontology, version Oi+1 is the on-
tology in the repository, and the steps in Table 3.5 requiring manual intervention are
performed randomly.

Table 3.10 summarises our results10. Most of the values in the table are either
average or maximum values for the 200 iterations in the loop from Table 3.9. Average
values are indicated with the tag ‘avg’ in the header, and maximum values with the
tag ‘max’.

First, from a computational point of view, the main bottleneck is the computation
of all the justifications for the entailments of interest. Once the justifications have been
computed, the time needed for computing the plans is relatively low. In Table 3.10, we
can see that the average time needed per justification can reach 5,9 seconds (see V,
O4&O5); if 300 justifications have to be computed in total, then the total time may
reach 30 minutes. Hence, it is important to investigate optimisation techniques for
computing all justifications; first steps in this direction have been taken in [KPHS07,
HPS08b, SQJH08].

Second, the amount of information presented to the user largely depends on the se-
lected approximation for the deductive difference (see Section 3.2.3.2). In the case of
the smallest approximation, the average number of axioms in the relevant differences

10 Synthetic study: http://krono.act.uji.es/people/Ernesto/contentcvs/
synthetic-study
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Smallest diff≈ approximation Largest diff≈ approximation
I II III IV V VI VII VIII III IV V VI VII VIII

O &O′ avg avg avg avg avg/max avg avg avg avg avg avg/max avg

O1&O2 50 0.03 15 6 0.1 15 1 / 1 1.5 111 17 2.0 33 495 / 5508 10.3
O3&O4 82 0.02 13 4 0.26 13 3 / 18 1.7 128 90 0.9 30 46 / 896 3.6
O4&O5 93 0.02 31 14 0.1 29 3 / 32 1.2 267 48 5.9 49 2.7 / 6 30
O7&O8 110 0.03 19 15 0.02 18 1 / 4 0.07 216 78 1.2 47 488 / 3888 4
O8&O9 79 0.02 15 6 0.06 14 1 / 2 0.3 251 14 3.7 46 101 / 720 21.5
O9&O10 117 0.01 24 8 1.5 24 7 / 50 15.6 208 154 5.3 31 35 / 225 22.7

Table 3.10: Summary of results. Roman numbers refer to Table 3.9. Time measures
are given in seconds

(see III and IV) is in the range 4–31, and the average number of minimal plans (see
VII) is in the range 1–50. In contrast, in the case of the largest approximation, these
average numbers are in the ranges 14–267, and 6–5508 respectively. The amount of
information the user would need to consider is thus much larger. Table 3.10 also shows
that the use of the dependency relations .+ and .− can lead to a significant reduction
in the amount of information that is initially presented to the user (VI). Note that for
the largest approximation the number of roots for .+ and .− is comparable to the size
of the relevant deductive differences for the smallest approximation.

Overall, we believe that this experiment demonstrates that the algorithms imple-
mented in ContentCVS exhibit reasonable performance, and that our approach is
computationally feasible. The use of larger approximations of deductive difference
may, however, require improved techniques for computing justifications. The use of
larger approximations may also risk overwhelming the user with information, alt-
hough presentation techniques such as the dependency one implemented in Con-
tentCVS can help to ameliorate this problem.

3.3.3. User study

We have conducted a pilot user study to evaluate the usability of the GUI imple-
mented in ContentCVS, as well as to provide empirical evidence of the adequacy of
our approach in practice. The details of the conducted study, including the question-
naire and the test ontologies, are available online11.

3.3.3.1. Design of the study

The user study consists of three main parts, each of which involves the completion
of a number of tasks, as we describe next.

Part 1: Local evolution of an ontology

The first part of the study simulates a conventional ontology repair scenario whe-
re a (single) developer performs a number of changes to his/her ontology O0 and,
as a result, creates a new version O1 of the ontology in which errors may have been

11 User study: http://krono.act.uji.es/people/Ernesto/contentcvs/
user-study
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introduced. The main goal is to evaluate the repair techniques implemented in Con-
tentCVS, in particular the identification of errors using deductive differences and the
repair of these errors via the generation and selection of suitable plans.

The test ontology used in this part of the study describes the domain of academic
publications and bibliographic references, which the participants in the study are ex-
pected to be relatively familiar with. The changes to the original version O0 involve
the definition of three new concepts and the deletion of a property domain restriction.
Users were first asked to use a reasoner to classify O1, examine the resulting entail-
ments and try to understand the given justifications. Next, users were asked to identify
and repair two kinds of errors, namely the occurrence of unintended entailments in
O1 that did not occur in O0, and the lost of intended entailments that held in O0, but
not in O1. Finally, users were asked to repeat this process by taking into account not
only simple subsumptions, but also entailments of the form A v ¬B, A v ∃R.B and
A v ∀R.B.

Part 2: Reconciliation of two independently-developed ontology versions

This part of the study simulates the scenario where a (single) developer working
with a local copy OL of an ontology performs a CVS-update and needs to reconcile
the local version OL with the version OR in the repository. The main goal is twofold;
first, to evaluate the functionality in ContentCVS for directly comparing ontology
versions, both from a syntactic and from a semantic point of view; second, to evaluate
the means provided by ContentCVS for building an error-free reconciled version
ready to be committed to the CVS repository.

Users were asked to reconcile two versions of an ontology describing types of Ju-
venile Idiopathic Arthritis. To this end, they first examined the structural difference
between both versions and selected the axioms to be included in a temporary version
OLtemp of the reconciled ontology. Next, users classified OLtemp and identified errors in
the form of missing intended entailments or new unintended ones. As in Part 1, users
were then asked to repeat this latter step by considering additional types of entailments
and to use the proposed dependency relation between entailments to group them. Fi-
nally users were asked to repair the identified errors by selecting a suitable plan. Note
that the test ontology versions used in this part of the study closely reproduces our
running example, and the tasks involved follow our methodology in Table 3.5 from
Section 3.2.3.

Part 3: Collaborative development of an ontology

The final part of the study simulates the scenario where a number of users are
developing an ontology concurrently using ContentCVS. As in Part 1, we used the
familiar domain of publications and bibliographic references.

Each test involved three or four participants in the study. To produce a controlled
experiment, each participant was asked to extend an initial version of the ontology
by performing a number of changes specified a-priori. The first participant was in
charge of performing changes concerning different types of academic staff members;
the second one made changes concerning events such as conferences; the third one
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made changes concerning academic organisations; finally, the fourth one was asked to
describe different kinds of resources and publications.

Each participant was asked to perform a CVS-commit either upon completion of
all the changes, or when explicitly indicated in their task sheets. In order to provide a
more realistic environment, the exact point in time in which users attempt to commit
their changes was not a-priori fixed. If the commit failed, the participant was asked to
perform an update and reconcile the changes using their ContentCVS client. Once
the participants had agreed upon a reconciled version of the ontology, they were asked
to discuss it among themselves and with the coordinator of the study.

3.3.3.2. Results and discussion

In total, eight people participated in Parts 1 and 2 of the study. In the case of Part
3, we conducted three collaborative tests each of which involved either three or four
participants.

The participants of the study are academic researchers, most of them working
in fields other than the Semantic Web. For example, some of the participants work
in a bio-genomics group, others in a robotics and cognitive sciences group, and so
on. Most users evaluated their experience in knowledge representation as “interme-
diate”, in first order logic as either “intermediate” or “low” and in description logics
and OWL also as either “intermediate” or “low”. All participants except for one had
tried Protégé before and half of them had used a reasoner before when developing
an ontology. However, none of the participants was familiar with justification-based
explanations. The results can be summarised as follows:

Part 1: Most users were able to understand the justifications provided by Protégé,
although most of them found it “hard” or “very hard” to resolve potential errors
manually. Furthermore, all the participants were able to identify both new unin-
tended entailments and lost intended entailments when using ContentCVSand
described the functionality provided by our tool for identifying these entail-
ments as either “good” or “very good”. Most participants were satisfied with
the smallest approximation of the deductive difference implemented in Con-
tentCVS, and complained about excessive amounts of displayed information
when using the largest implemented approximation instead. None of them con-
sidered that ContentCVS should aim at implementing richer approximations.
Concerning the generation of plans, most users declared this functionality as
either “useful” or “very useful” and found the capabilities of ContentCVS to
recommend plans also useful.

Part 2: Most users considered either “useful” or “very useful” the computation
of structural differences between ontology versions. However, many users found
it difficult to detect potential errors simply by examining the structural differen-
ce. As in Part 1, users liked the functionality in ContentCVS for detecting
potential errors using approximations of the deductive difference. Interestingly,
by using the largest approximation implemented in ContentCVS, users were
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able to detect errors other than unsatisfiable concepts and atomic subsumptions,
which they found useful. Furthermore, all users considered that the use of a
large approximation leads to an excessive amount of displayed information; ho-
wever, all of them also found the presentation technique based on the depen-
dency relation (.) very useful in alleviating this problem, but complained about
the response time. Finally, most users were either “very satisfied” or “satisfied”
with the reconciled ontology obtained after the execution of the selected repair
plan.

Part 3: Most participants had used a CVS system before for managing text fi-
les and described the CVS functionality implemented in ContentCVS as eit-
her “very useful” or “useful”. Many participants emphasised the importance of
some previous training for taking full advantage of the CVS functionality in
ContentCVS. As in parts 1 and 2, the use of a combination of structural and
deductive differences for detecting errors plus the computation of plans for re-
pairing them was evaluated very positively. Concerning the ontology obtained
as a result of the collaboration, the participants were able to obtain an error-free
ontology and were satisfied with the result. Only in one case the final discussion
revealed an error in the final ontology; however the participants acknowledged
that this error was not due to a deficiency of the tool.

Finally, all users evaluated the tool very positively; in particular, most of them
evaluated the GUI as “good” and the ontology development workflow implemented
in the tool as either “very good” or “good”. Therefore, we consider the feedback very
positive in general. The main points of criticism were the following:

Excessive amounts of information displayed when using “large” approxima-
tions of the deductive difference. Even if the identification of dependencies bet-
ween entailments helped in alleviating this problem, we consider it important
to investigate new ways of organising a potentially overwhelming number of
entailments.

Slow response of the tool when computing all justifications of certain entail-
ments and/or computing large approximations of the deductive difference. For
large-scale ontology development, the further optimisation of our algorithms
will be necessary. To this end, we consider especially promising the use of in-
cremental reasoning techniques (see for example first results in [CHWK07]),
which aim at avoiding unnecessary re-computations after performing a (small)
number of changes to the ontology.

3.4. Discussion

We have proposed a novel approach for facilitating concurrent ontology develop-
ment, described a tool that implements it and presented an evaluation of the tool. The
main contributions of our research can be summarised as follows:
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We have adapted the Concurrent Versioning paradigm to ontology engineering,
which allows developers to make changes concurrently and remotely to the sa-
me ontology, track changes, and manage versions.
We have proposed notions of equivalence and difference between ontology ver-
sions.
We have proposed a collection of techniques for resolving conflicts between
ontology versions both at the structural and at the semantic level.
We have adapted and enhanced state-of-the art ontology debugging and repair
techniques to our collaborative setting.
We have implemented and evaluated a prototypical tool and obtained promising
empirical results and encouraging feedback from users.

In future work, we plan to improve our tool in a number of ways. First, we are working
on improving the system’s performance and in particular the computation of justifi-
cations. As pointed out in Section 3.3, the use of incremental reasoning techniques
is particularly interesting in this regard. Second, we are enhancing the tool with new
features. In particular, we plan to support richer approximations and the use of unit
tests—files containing a set of unintended entailments that can be used to detect mo-
delling errors. Furthermore, we aim to integrate in our tool some of the functionality
provided by state-of-the-art frameworks, such as Collaborative Protégé, for holding
discussions and annotating changes. Another interesting direction for future research
would be to provide means for assigning responsibilities and duties to different on-
tology developers and support for automatically checking whether changes made by
developers are consistent with their duties. Finally, the integration of a reference the-
saurus [JYJRBRS09b] within the proposed framework would minimise the lexical
conflicts related to the use of different labels to refer the same entity
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CHAPTER 4
Logic-based assessment of

ontology integration

Effective ontology integration techniques are often needed both during ontology
development (e.g., when an ontology being developed reuses one or more external on-
tologies), and when ontologies are used in conjunction with data (e.g. when integrating
and querying data sources annotated using different ontologies).

When the ontologies to be integrated have been independently developed, their
vocabularies will most likely diverge, either because they use different namespaces,
or because they use different names or naming conventions to refer to their entities.
As a consequence, these ontologies will most likely be unrelated from a logical point
of view, even if they intuitively overlap.

To exchange or migrate data between ontology-based applications, it is crucial
to establish correspondences (or mappings) between their ontologies. Creating such
mappings manually is often unfeasible due to the size and complexity of modern on-
tologies. For example, SNOMED CT in its version from January 2009 contains more
than 300,000 entities, while NCI (version 08.05d) contain around 79,000 entities. Sin-
ce the number of potential mappings grows (at least) quadratically with the number
of entities in the relevant ontologies, it would be necessary to consider (at least) 10
billion candidate mappings between SNOMED CT and NCI.

The problem of automatically generating mappings between independently de-
veloped ontologies (aka the ontology alignment/matching problem) has been a pro-
minent topic of research and it has been extensively investigated (e.g., see [KS03,
CSH06, ES07, AG09, SE08, SE10] for comprehensive surveys and available tools).

Ontology integration has also benefited from the relationship between ontologies
and database schemas. The alignment and integration of schemas has been a long-

67
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standing problem for the database community, and it is still an active research area
(e.g., see [RB01, SE05, DH05] for excellent surveys).

When reasoning with the ontologies to be integrated together with the automa-
tically generated mappings, however, errors are likely to occur. There are two main
causes for these errors. On the one hand, mappings suggested by automated tools are
error-prone. On the other hand, even if the correct mappings have been found, the on-
tologies may contain conflicting descriptions of the overlapping entities. These errors
manifest themselves as unintended logical consequences (e.g., unsatisfiable concepts
or unintended subsumptions), and they can be difficult to detect, understand and re-
pair. However, existing tools provide little or no support for the user in trying to obtain
the right logical consequences when integrating ontologies using mappings.

The contributions of this chapter are aimed to provide such support by means of
semi-automatic and automatic techniques to detect and repair unintended consequen-
ces of the integration. The formal semantics of the mappings are defined in Section
4.1. Section 4.2 presents a method and a tool to guide the user in the analysis of the
impact of integrating two ontologies using mappings. In Section 4.3 a set of heuristics
have been implemented according to logic-based principles in order to automatically
assess and repair the integration of large ontologies.

4.1. Formal representation of ontology mappings

Mappings are often represented as a tuple 〈id, e1, e2, n, ρ〉 [Euz07], where id is a
unique identifier for the mapping, e1, e2 are entity names in the vocabulary of O1 and
O2 respectively, n is a numeric confidence measure between 0 and 1, and ρ is a relation
between e1 and e2 (typically subsumption (v), equivalence (≡), or disjointness (⊥)).

The use of logic-based techniques requires the adoption of a formal representation
of the mappings. This is crucial to reason unambiguously with the source ontologies
and the corresponding mappings. A number of specialised semantics for ontology
mappings have been proposed so far in the literature (e.g. [Euz07, ST09, GPS09]), but
there is no consensus on which ones are more suitable for practical applications. In this
research, however, we have chosen to represent ontology mappings as OWL 2 axioms
[CHM+08]. Such a representation seems semantically coherent, and allows us to reuse
the extensive range of OWL algorithmic techniques and infrastructure currently avai-
lable. In this setting, we can therefore restrict ourselves to consider the situation where
OWL 2 ontologies O1 and O2 are integrated via a third OWL 2 ontologyM, which
contains the relevant mappings (e.g., U := O1 ∪ O2 ∪M).

We assume from now on that a set of mappings is represented as an OWL 2 onto-
logyM, where mappings are given as OWL axioms of the form SubClassOf(e1 e2),
EquivalentClasses(e1 e2), or DisjointClasses(e1 e2), with id (the mapping id) and n
(the confidence value) added as OWL axiom annotations [CHM+08]. We denote with
conf(α) the confidence value with which an axiom α is annotated. Representing map-
pings in this way gives them a standard “crisp” semantics, with ids and confidence
values being represented as annotations and thus having no effect on the entailments.



“tesis” — 2010/9/2 — 16:34 — page 69 — #93i
i

i
i

i
i

i
i

4.2 Supporting the right ontology integration using ContentMap 69

4.2. Supporting the right ontology integration using
ContentMap

In this section we describe a novel method and a tool1 called ContentMap 2

[JRCHB09, JRGHL09c] to guide the user in the assessment of the integration of two
independently developed ontologies using mappings.

The rest of the sections are organized as follows. Section 4.2.1 introduces the
main challenges that should be addressed for an error-free ontology integration. The
method, algorithms and tool support are presented in Section 4.2.2. Finally, Section
4.2.3 gives an evaluation of ContentMap , which suggests that our approach is useful
in practice.

Table 4.1: Example ontologies
Ontology O1

α1 Juvenile Arthritis v Systemic Disease u Rheumatoid Arthritis

α2 Multi Joint Disease v Disease u> 5 affects.Joint

α3 Rheumatoid Arthritis v Disease u ∃has Factor.>
α4 Poly Juvenile Arthritis v Juvenile Arthritis uMulti Joint Disease

α5 Oly Juvenile Arthritis v Juvenile Arthritis u ¬Poly Juvenile Arthritis

α6 Oly Juvenile Arthritis v ∀has Factor.Negative Factor

α7 Negative Factor u Positive Factor v ⊥
Ontology O2

β1 Juv Rheum Arthritis v Rheum Arthritis u Juv Disease

β2 Rheum Arthritis v Disease u ∃has Rheum Factor.>
β3 Poly Juv Rheum Arthritis v Juv Rheum Arthritis u= 3 affects.Joint

β4 Poly Juv Rheum Arthritis v ∀has Rheum Factor.Positive Rheum Factor

β5 Negative Rheum Factor u Positive Rheum Factor v ⊥

4.2.1. Challenges in ontology integration

In this section, we discuss some of the problems that arise when integrating on-
tologies using mappings, and we analyze the requirements for a suitable tool. As use
case, we have considered the domain of JIAO (see Section 1.4). For example, suppo-
se that Peter wants to develop an ontology about juvenile forms of arthritis. He finds

1 A Protégé 4 plugin is freely available for download: http://krono.act.uji.es/people/
Ernesto/contentmap

2 A logiC-based ONtology inTEgratioN Tool using MAPpings
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Table 4.2: Example mappings
Intended Mappings

〈µ1, 1:Joint, 2:Joint, 1,0, (≡)〉;
〈µ2, 1:Disease, 2:Disease, 1, (≡)〉;
〈µ3, 1:Disease, 2:Disease, 1,0, (≡)〉;
〈µ4, 1:affects, 2:affects, 0,87, (≡)〉;
〈µ5, 1:Rheumatoid Arthritis, 2:Rheum Arthritis, 1,0, (≡)〉;
〈µ6, 2:Juv Disease, 1:Disease, 0,63, (v)〉;
〈µ7, 1:Poly Juvenive Arthritis, 2:Poly Juv Rheum Arthritis, 0,7, (≡)〉;
〈µ8, 1:has Factor, 2:has Rheum Factor, 0,7, (≡)〉;
〈µ9, 1:Positive Factor, 2:Positive Rheum Factor, 0,75, (≡)〉;
〈µ10, 1:Negative Factor, 2:Negative Rheum Factor, 0,75, (≡)〉;
〈µ11, 2:Juv Rheum Arthritis, 1:Rheumatoid Arthritis, 0,5, (v)〉;
Erroneous Mappings

〈µ12, 1:Rheumatoid Arthritis, 2:Juv Rheum Arthritis, 0,5, (v)〉;
〈µ13, 1:Disease, 2:Juv Disease, 0,63, (v)〉;
〈µ14, 1:Positive Factor, 2:Negative Rheum Factor, 0,63, (≡)〉;
〈µ15, 2:Positive Factor, 1:Negative Rheum Factor, 0,63, (≡)〉;

on the Web two independently developed ontologies O1 and O2 with different voca-
bularies, which describe different types of arthritis and juvenile diseases respectively,
and decides that an integration of these two ontologies would make a good starting
point. Although largely independent, the two ontologies do overlap; for example, both
describe a particular form of juvenile arthritis known as JRA (Juvenile Rheumatoid
Arthritis), although they use different vocabulary in their descriptions. The overlap-
ping parts of O1 and O2 are shown in Table 4.1.

Suppose that Peter—the ontology developer—uses an automatic mapping tool to
find correspondences between entities inO1 andO2. Table 4.2 contains the mappings
obtained by Peter using that ontology mapping tool 3. The prefixes ‘1:’ and ‘2:’ for
the entity names refer to the namespaces (omitted in Table 3.2) of O1 and O2. Note
that the mappings and confidence values suggested by different tools can vary enor-
mously, so experience and/or experimentation may be needed in order to select the
most suitable tool (or combination of tools) for the problem at hand.

As shown in Table 4.2, some of the mappings are clearly erroneous and, under any
reasonable semantics for the mappings, will lead to unintended logical consequences.
Indeed, the mappings µ14 and µ15 entail the logical equivalence of two concepts that
are disjoint in both O1 and O2 (see also intended mappings µ9 and µ10); also, the
mapping µ12 will lead to unintended subsumptions since not all forms of rheumatoid
arthritis affect only children. Furthermore, even if only intended mappings had been
generated, errors would still occur due to conflicting descriptions of some of the enti-

3 The tool OLA (OWL lite alignment tool) [EV04] was used for this example.
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ties shared in both ontologies. For example, the descriptions of Polyarticular Juvenile
Rheumatoid Arthritis (axioms α4, α2 in O1 and β3 in O2) are contradictory: in O1 it
is described as a disease that affects at least 5 different joints, whereas in O2 it is said
to affect exactly 3 joints. Thus, the intended mapping µ7 reveals this incompatibility
between O1 and O2.

This example suggests some requirements for a tool supporting ontology integra-
tion using mappings: (i) generating sets of mappings, either manually or by selec-
ting one or more mapping algorithms and setting their parameters; (ii) editing sets
of mappings and filtering them according to different criteria; (iii) reasoning with the
ontologies to be integrated together with the relevant mappings; (iv) comparing the
entailments holding before and after the integration and detecting possible unintended
entailments; (v) suggesting possible ways to repair the identified errors.

4.2.2. Proposed method, algorithms and tool support

Our novel approach to address the requirements from Section 4.2.1 is given at a
high level in Figure 4.1 and formally in Table 4.3. It is an interactive process where
some steps involve computations that tools should perform automatically, while others
(marked with (?)) may require manual intervention. It consists of four main parts: i)
Computation of mappings (Steps 1–3); ii) Computation of new entailments (Steps 4–
6); iii) Detection of errors (Step 7); iv) Repair of the identified errors (Steps 8–12).

Table 4.3: Ontology integration method
Input:O1,O2: ontologies with Sig(O1) = S1,Sig(O2) = S2 and S1 ∩S2 = {>,⊥}
Output: O′1,O′2: modified ontologies
M′: Mappings between S1 and S2

1: (?) Select mapping algorithm map(O1,O2)
2: (?) SelectM⊆ map(O1,O2)
3: (?) if O1,O2,M satisfactory, then return O′1 := O1,O′2 := O2,M′ :=M
4: U := O1 ∪ O2 ∪M
5: (?) Select approximation functions diff≈ and mdiff≈

6: Compute Λ = diff≈S1
(O1,U) ∪ diff≈S2

(O2,U) ∪mdiff≈S1,S2
(M,U)

7: (?) Select =+,=− ⊆ Λ
8: (?) Select O− ⊆ U
9: P := all minimal plans for U given =+, =−, and O−

10: (?) if no satisfactory plan in P, then come back to either Step 2 or Step 7
11: (?) Select P ∈ P
12: return O′1 := O1 \ P,O′2 := O2 \ P,M′ :=M\P
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Figure 4.1: Merging method (informal). Numbers refer to Table 4.3

4.2.2.1. Computation of the mappings

Ontology mappings can be computed using one or more mapping tools (see Step
1), and can subsequently be refined (Step 2) in various ways (e.g., via manual selection
or filtering according to a given threshold). After obtaining and possibly refining the
mappings, a user may decide that the integration process is complete (Step 3), in which
case it remains a purely syntactic process. They may, however, want to analyse the
semantic consequences of the integration, in which case a reasoner is required.

ContentMap provides for the input ontologies to be loaded, and for one or more
mapping tools to be selected. Different weights can also be assigned to each of the
mapping tools. It is also possible to load pre-computed mappings in the form of an
OWL ontology. The GUI for visualising the mappings in ContentMap is shown in
Figure 4.2. Mappings marked with X are to be accepted, whereas mappings marked
with⊗ are to be rejected. Users can automatically filter the mappings by setting a con-
fidence threshold τ : mappings with a confidence value lower than τ are automatically
marked for rejection while those with a confidence value greater than τ are marked
for acceptance. These selections can then be refined at will.

4.2.2.2. Computation of new entailments

To help users understand the semantic consequences of the integration, they should
be informed about new entailments that hold in the merged ontology U , but not inO1,

Figure 4.2: GUI for visualising explicit mappings in ContentMap
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O2 andM alone. To this end, as in Definition 3.4, we reuse the notion of deductive
difference [KWW08] (diffS(O,O′)).

In our integration scenario, we want to inform the user about new entailments
that hold over the signature of O1 or O2 (i.e., S1 or S2) as a result of the integra-
tion, i.e., diffS1(O1,U) and diffS2(O2,U). In our example from Tables 4.1 and 4.2,
where the mappings are given as an OWL 2 ontology as described above, the en-
tailments (Positive Factor v ⊥) and (Rheum Arthritis v Juv Disease) belong to
diffS1

(O1,U) and diffS2
(O2,U) respectively.

In addition, we want to inform the user about new entailments that contain symbols
from both O1 and O2. These entailments can be seen as inferred mappings provided
that the notion of a mapping is generalised to be an arbitrary DL axiom using terms
from two signatures:

Definition 4.1 (DL-mapping). Let DL be a DL and let S1,S2 be two DL-signatures
s.t. S1 ∩ S2 = {>,⊥}. Let S = S1 ∪ S2. A DL-mapping between S1 and S2 is a
DL-axiom α over S such that (Sig(α) ∩ Si) \ {>,⊥} 6= ∅ for each i ∈ {1, 2}. The
axiom α is annotated with an identifier and with a confidence value 0 < conf(α) ≤ 1.

Definition 3.4 (deductive difference) can be extended to take into account the new
mappings, i.e.:

mdiffS1,S2
(O,O′) = {α ∈ diffS(O,O′) | α DL-mapping between S1, S2} (4.1)

In our scenario, inferred mappings are captured by mdiffS1,S2(M,U). For exam-
ple, the mapping (1:Juvenile Arthritis v 2:Rheum Arthritis) would belong to this
difference, because it is entailed by U but not byM alone.

The deductive difference, as commented previously in Section 3.2.3.2, is undeci-
dable for complex logics. Currently, algorithms only exist for (fragments of) the OWL
2 EL and QL profiles [MCH+09, KWW08, KWZ08], however, their output could
be infinite. These drawbacks motivate the need for approximations— subsets of the
difference—that the user can select in Step 5 from Table 4.3. The approximation fun-
ction diff≈S (O,O′) for diffS(O,O′) is defined as in Definition 3.5. Analogously, the
set of new mappings can also be approximated as follows:

Definition 4.2 (Approximation of the Deductive Difference for DL-mappings). A
function mdiff≈S1,S2

(O,O′) is an approximation for mdiffS1,S2
(O,O′) if for any two

DL-ontologies O,O′, mdiff≈S1,S2
(O,O′) ⊆ mdiffS1,S2(O,O′).

ContentMap, as ContentCVS in Section 3.2.3.2, provides an approximation of
the deductive difference by only allowing entailments of the following kind: (i) A v
B, (ii) A v ¬B, (iii) A v ∃R.B, (iv) A v ∀R.B, and v) R v S. Where A,B
are atomic concepts (including >,⊥) and R,S atomic roles. Note that, the smallest
implemented approximation considers only axioms of the form (i), which amounts
to comparing the classification hierarchy of both ontologies. Figure 4.3 shows the
ContentMap GUI with the deductive differences, where new ontology entailments
are displayed above and new entailed mappings below.
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Figure 4.3: GUI for visualising new entailments in ContentMap

4.2.2.3. Giving explanation to errors

The development of techniques to help users understand the entailments form the
deductive difference and subsequently select the sets of intended and unintended en-
tailments is especially challenging. Thus, support is required to explain why the new
entailments that hold in U do not hold in O1, O2 andM alone.

Some entailments in the relevant (approximate) differences may be intended, while
others may reveal potential errors in the merged ontology U . Step 7 therefore involves
selecting entailments that: (i) are intended and should be entailed in U (written =+ in
Table 4.3), and (ii) are unintended and should not be entailed by U (written =−).

In our example, the entailments (Positive Factor v ⊥) and (Rheum Arthritis v
Juv Disease) in diffS1

(O1,U) and diffS2
(O2,U) respectively, are unintented and should

belong to =−. In contrast, the entailed mapping (1:Rheum Arthritis v 2:Disease) is
intended and should be included in =+.

ContentMap has also reused the notion of justification (see Definition 3.1). Note
that, Just(α,O) represents the set of all justifications for α inO. Figure 4.4 shows the
GUI to represent all justifications for the entailment Oly Juvenile Arthritis v ⊥. Like
in ContentCVS , the operation provided by Protégé 4 [HPS08a] is extended. On the
one hand, ContentMap uses the optimisation from [SQJH08]. On the other hand, new
graphic characteristics are added, so that the GUI indicates whether the axioms in the
justifications come from O1, O2, or the mappingsM (marked with ‘1’, ‘2’ and ‘M’
respectively). Additionally, axioms shared by all justifications are marked with ’J’.

4.2.2.4. Ordering and suggesting entailments

The potentially large number of relevant entailments may overwhelm the user.
Thus, ContentMap organizes the entailments within a hierarchy, and perform sug-
gestions about which entailments to include in =+ and =−.
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Figure 4.4: Justifications for entailment Oly Juvenile Arthritis v ⊥

Like in ContentCVS (Section 4.2.2.4), ContentMap exploits the dependencies
between entailments to organise the way in which they are presented (see Figure 4.5).
Intuitively an entailment β depends on α in O if, whenever α is invalidated by remo-
ving a set of axioms from O, then β is also invalidated. This implies that if α ∈ =−,
then β should also be included in =− (and never in =+). Thus, we have reused the
dependency order .− from Definition 3.6.

In order to suggest to the user which entailments to include in =+ and =−, Con-
tentMap exploits both the dependencies between entailments and the confidence va-
lues for each explicit mapping. We use the confidence values in the mappings to com-
pute confidence values in the entailments from each of the obtained differences: we
consider our confidence in an entailment to be equal to the maximum confidence we
have in one of its justifications, and our confidence in a justification to be the product
of our confidences in each of the axioms it contains. We formalise this in the following

Figure 4.5: GUI for visualising the dependency relationship
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Algorithm 2 Heuristic suggestions for =+, =−

Input: Λ = diff≈S1
(O1,U) ∪ diff≈S2

(O2,U) ∪mdiff≈S1,S2
(M,U) as in Table 4.3

τdel, τadd: real values with 0 < τdel ≤ τadd ≤ 1
.−: dependency relation between axioms in Λ w.r.t. U
Output: =+,=−: entailments suggested to be hold or not

1: =+,=− := ∅
2: for each α ∈ Λ do
3: if α of the form A v ⊥ for A an atomic concept then
4: =− := =− ∪ {α}
5: for each β ∈ Λ such that α .− β do =− := =− ∪ {β}
6: end if
7: conf(α) := confidence of α as in Definition 4.3
8: if conf(α) ≤ τdel then =− := =− ∪ {α}
9: if conf(α) ≥ τadd and α /∈ =− then =+ := =+ ∪ {α}

10: end for
11: return =+,=−

definition, in which we extend conf() to arbitrary (explicit) axioms and justifications.
We assume that we have complete confidence in an axiom (i.e., conf(α) = 1) if it is
not a mapping.

Definition 4.3 (Confidence in an Entailment). LetO be an ontology, α an axiom inO
that is not annotated with a confidence value, J a justification, and β an entailment
s.t. O |= β. We define conf(α) = 1, and conf(J ) and conf(β) as follows:

conf(J ) =
∏
γ∈J

conf(γ) and conf(β) = max(
⋃

J∈Just(β,O)

conf(J )) (4.2)

The following proposition shows that the confidence values in Definition 4.3 are
well-behaved w.r.t. Definition 3.6: if β depends on α then the confidence in β is sma-
ller than the confidence in α.

Proposition 4.1. If α .− β, then conf(β) ≤ conf(α)

Proof. if α .− β, then for each Jβ ∈ Just(β,U) there must exist a Jα ∈ Just(α,U)
s.t. Jα ⊆ Jβ . By definition of conf(J ) (see Definition 4.3), it is immediate to see
that conf(Jβ) ≤ conf(Jα). Thus, for each Jβ ∈ Just(β,U) there must exist a Jα ∈
Just(α,U) s.t. conf(Jβ) ≤ conf(Jα). By Definition 4.3 it is immediate to see that
conf(β) ≤ conf(α).

In order to compute initial suggestions for =− and =+, ContentMap implements
the heuristics of Algorithm 2, which are based on the ordering between entailments
and their relative confidence. The algorithm accepts as input the entailments in the
relevant differences, their dependencies, and two confidence thresholds τdel and τadd.
For each input entailment α, Algorithm 2 uses .−, τdel and τadd to either include
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it in =+ (i.e. α is intended), in =− (i.e. α is unintended) or in neither of them. An
entailment α is included in =− if it reveals a contradiction (Line 3), depends on a
contradiction (Line 5), or if its confidence according to Definition 4.3 is lower than
τdel (Line 8). In contrast, α is included in =+ if it is not contained in =− and its
confidence is higher than the threshold τadd (Line 9).

4.2.2.5. Repair plans generation

If the user has selected one or more unintended entailments (i.e., =− 6= ∅), then U
clearly contains errors. These errors can always be repaired by removing axioms from
U—in the limit, removing all the axioms from U will eliminate all entailments. Ho-
wever, any removal of axioms should also respect =+, the user’s selection of intended
entailments, i.e., the entailments in =+ should still hold after any removal of axioms.

As previously mentioned, errors could be due to erroneous mappings, to inherently
conflicting knowledge in the two ontologies, or to some combination of both. Repai-
ring such errors might, therefore, require the removal of axioms from M, O1 and
O2. The user may, however, have a (principled or pragmatic) preference regarding the
source of axioms to be removed; e.g.,M might be considered the most likely source
of errors, or it may be impossible to change (one or both of) O1 and O2. We adapt,
from Defintion 3.7, the notion of a repair plan (or plan) used for ContentCVS. A
plan is defined for an ontology O w.r.t. the (un-) intended entailments =− and =+,
and a subsetO− ofO, where the axioms inO− are those that are allowed to be remo-
ved from O. Note that current plans, unlike ContentCVS plans, only involve axioms
to be deleted (there is not information loss). Thus, such plans are simply a subset of
the axioms in O− whose removal from O both eliminates the entailments in =− and
preserves those in =+. In general, there may be zero or more of such plans.

Definition 4.4. Let O, =+, =−, and O− be finite sets of axioms such that O− ⊆ O,
O |= =−, O |= =+, and =+ ∩ =− = ∅.

A repair plan for O given O−, =+ and =− is a set P ⊆ O− such that: 1) (O \
P) |= α for each α ∈ =+, and 2) (O\P) 6|= β for each β ∈ =−. A plan P is minimal
if there is no P1 such that P1 ⊂ P .

According to Definition 4.4, plans are computed according to three kinds of re-
quirements: the errors to fix (=−), the entailments to preserve (=+), and the set of
axioms that a plan could potentially remove (O−). In our setting, these are selected
by the user in Steps 7, 8 from Table 4.3. ContentMap implements an optimized algo-
rithm following Definition 4.4.

In our example, if Peter imports O1 and O2 from the Web, and if he is not willing
to copy and modify them (e.g., if he wants to always import the latest versions), then
plans should only remove axioms from the mappings (i.e., O− = M). However, the
descriptions of Polyarticular Juvenile Rheumatoid Arthritis in O1 and O2 are inhe-
rently in contradiction and hence, if O− = M, the corresponding error cannot be
fixed without deleting reasonable mappings. In this case a more sensible choice would
be to repair one or both of O1 and O2.
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Note that conflicting choices in =+ and =− may make it impossible to find any
plan. Some of these conflicts can be detected using the dependency relation .−, as
shown in the following proposition:

Proposition 4.2. Let O, =+, =− and O− be as in Definition 4.4 and let O |= α, β. If
α .− β w.r.t. O, α ∈ =− and β ∈ =+, then no plan exists.

Proof. Assume that α ∈ =−, β ∈ =+, and that there is a plan P for O given O−, =+

and=−. From the definition of a plan,O′ = O\P is s.t.O′ 6|= α, and from Proposition
3.1, O 6|= β. However, since β ∈ =+, we also have that O′ |= β, contradicting our
assumption that P is a plan.

4.2.2.6. Plan selection support

There may also be particular selections of O−, =+ and =− for which the number
of minimal plans is very large. In this case, selecting the most suitable minimal plan
becomes difficult for users.

In order to assist users in the selection of a minimal plan (Steps 10-11), Content-
Map implements a number of heuristics based on the confidence of the mappings in
the plans and the total number of involved axioms in the plan. The definition of con-
fidence is extended to a plan P as in Equation 4.3. The selection of low confidence
plans is desirable since it involves the removal of low confidence mappings.

conf(P) =
∏
α∈P

conf(α) (4.3)

Figure 4.6: Selection of plans in ContentMap

The GUI in ContentMap for displaying and selecting minimal plans is shown in
Figure 4.6. The confidence in the plan is given in the upper part of the figure. The
axioms are marked according to their provenance (in the figure, they are all mappings
and hence are marked with ‘M’). Axioms that occur in all minimal plans are additio-
nally marked with a ‘P’.
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4.2.3. Evaluation

The evaluation concerns three important aspects of our approach: (1) Performan-
ce: do the algorithms implemented in ContentMap run in a reasonable time?. (2)
Usability: is a suitable amount of information presented to the user during each step
of the integration process? (3) Quality of the ontologies and mappings after the inte-
gration: does our approach help to both resolve inherent disagreements between the
ontologies and improve the quality of the mappings automatically generated by exis-
ting tools?.

In our experiments, we used a suite of four ontologies adapted from the 2004 EON
Ontology Alignment Contest4 which describe the domain of bibliographic references.
These ontologies have been developed independently by INRIA (OINR), MIT (OMIT),
UMBC (OUMBC) and AIFB Karlsruhe (OAIFB) respectively. Their sizes vary from
58 classes, 46 object properties, 26 data properties and 235 axioms in OAIFB to 18
classes, 12 object properties, 19 data properties and 96 axioms in OUMBC. Even if
small, all these ontologies are fairly expressive (OINR and OMIT are expressible in
the DL ALCHQ(D), OUMBC in ALCIN (D) and OAIFB in ALCI(D) respectively).
Their average classification time is less than a second when using Pellet 1,5.

In the 2004 EON contest, OINR was used as reference ontology, and the other on-
tologies were independently aligned with it using each of the competing tools. For
evaluation, a manually produced gold standard containing the agreed-upon, correct
mappings was provided for each pair of aligned ontologies. The gold standards for
OMIT, OUMBC and OAIFB contain 119, 83 and 98 mappings respectively. The expe-
riments are organised in two parts, which we specify next, and were performed on a
laptop with a 1,82 GHz processor and 3GB of RAM.

4.2.3.1. Repair of ontologies using gold standard

First, we have evaluated the semantic consequences of integrating each of OMIT,
OUMBC andOAIFB withOINR using the corresponding gold standard to detect inherent
disagreements between them. In each case, we have applied our method from Table
4.3, with the mappings in Step 2 being the corresponding gold standard. We have
used both the smallest and the largest approximations of the deductive differences
implemented in ContentMap (see Section 4.2.2.2), and obtained the following results.

1. AlignmentOMIT,OINR: for the smallest (resp. the largest) approximation, there
were 3 (resp. 33) new entailments in OMIT, 13 (resp. 85) in OINR and 35 (resp.
189) new mappings.

2. AlignmentOUMBC,OINR: for the smallest (largest) approximation, there were 2
(7) new entailments in OUMBC, 10 (300) in OINR and 28 (176) new mappings.

3. Alignment OAIFB, OINR:for the smallest (largest) approximation, there were 4
(37) new entailments in OAIFB, 2 (19) in OINR and 46 (140) new mappings.

4 http://oaei.ontologymatching.org/2004/Contest/
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Note that the number of new entailments (and hence the amount of information that
ContentMap shows to users) largely depends on the selected approximation.

In all cases we found a significant number of obviously unintended inferences
due to inherent disagreements between the ontologies being integrated. For exam-
ple, when integrating OAIFB and OINR, our ContentMap detected a total of 34 newly
unsatisfiable concepts in the two ontologies. The large number of (rather complex)
justifications for some of these entailments makes manual repair almost unfeasible.
When computing the corresponding plans, we found that the problem was originated
by the ranges of two datatype properties, which were incompatible; hence, the modi-
fication of two axioms sufficed to fix all the errors at once. In most cases, a significant
number of obviously unintended new subsumptions were also detected. For example,
merging OMIT and OINR resulted in the new subsumptions TechnicalReport v Date
and TechnicalReport v ∃date.Reference. Again, the obtained plans revealed the ori-
gin of the problem, see axioms 4.4-4.7.

OINR:year v OMIT:hasYear (4.4)

OMIT:TechnicalReport v >OMIT:hasY ear 1.Literal (4.5)

OINR:TechnicalReport v OMIT:Technicalreport (4.6)

OINR:year hasDomain OINR:Date (4.7)

4.2.3.2. Synthetic repair of automatically generated mappings

Having repaired the test ontologies using the gold standard mappings, we used
ContentMap to automatically detect and repair errors resulting from the generation
of new mappings using the mapping tools OLA [EV04, KEV07] , AROMA [Dav08,
Dav09] and CIDER [GM08, GdM09]. Our goal was twofold: first, to show that the
algorithms in ContentMap are practical; second, to show that ContentMap can be
used to automatically detect and repair errors, as well as to improve the quality of
automatically generated mappings.

For each pair of test ontologies, and for various sets of automatically generated
mappings, we have performed the synthetic experiments in Table 4.4, which closely
follow our proposed method from Table 4.3. In contrast to Table 4.3, however, the
repair of errors is performed in two stages: first, the obvious errors are repaired (i.e.
unsatisfiable concepts); then, those entailments that ContentMap found unintended
given a threshold τdel. For these experiments we have used the smallest approximation
of the deductive difference available in ContentMap . The roman numbers in Table
4.4 refer to measurements that are stored during the experiment.

Obtained results are given in Tables 4.5 and 4.6. Next, we summarise the main
conclusions drawn from these experiments. First, from a computational point of view,
the main bottleneck is the computation of all the justifications for the entailments of
interest. Once the justifications have been computed, the time needed for computing
the plans is relatively low. Hence, it is important to investigate optimisations for com-
puting all justifications as in [SQJH08].
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Table 4.4: Synthetic experiments
Input: O1,O2: ontologies with Sig(O1) = S1,Sig(O2) = S2 and S1 ∩ S2 = ∅
M: automatically-generated mappings between S1 and S2,MG : gold standard

1: FilterM given a confidence threshold τ (I, II)
2: Compute precision (III) and recall (IV) ofM with respect toMG
3: Compute diff≈S1

(O1,U), diff≈S2
(O2,U) and mdiff≈S1,S2

(M,U) (V, VI) for U :=
O1 ∪ O2 ∪M

4: Stage 1: Deletion of unsatisfiability (IX)
5: Compute all minimal plans for U given O− = M, =+ = ∅, and =− := new

concept unsatisfiability entailments (XII).
6: Store number of plans (XIII) and extraction time (XIV).
7: ComputeO′1 := O1 \P,O′2 := O2 \P,M′ :=M\P(XV), for P the best plan.
8: Compute precision (XVIII) and recall (XIX) ofM′ with respect toMG
9: Stage 2: Deletion of suggested entailments (IX)

10: Compute Λ = diff≈S1
(O′1,U ′)∪diff≈S2

(O′2,U ′)∪mdiff≈S1,S2
(M′,U ′) (V, VI)(XVI,

XVII) for U ′ := O′1 ∪ O′2 ∪M′
11: Compute dependency relation .− over Λ
12: Store time of computing .− (VIII) and number of roots for .− (VII)
13: Compute all minimal plans for U ′ given O− = M′, =+ = ∅ and =− (XI):= as

obtained in Algorithm 2 for a pre-fixed confidence threshold τdel (X).
14: Store number of plans (XIII) and extraction time (XIV).
15: Compute O′′1 :=O′1\P,O′′2 :=O′2\P,M′′:=M′\P (XIV), for P the best plan.
16: Compute Λ = diff≈S1

(O′′1 ,U ′′) ∪ diff≈S2
(O′′2 ,U ′′) ∪ mdiff≈S1,S2

(M′′,U ′′) (XVI,
XVII) for U ′′ := O′′1 ∪ O′′2 ∪M′′

17: Compute precision (XVIII) and recall (XIX) ofM′′ with respect toMG

Second, the use of the dependencies relationship .− significantly reduces the
amount of information that the user would need to examine. Furthermore, errors can
be grouped under the same root or entailment.

Third, the use of automatically generated mappings did result in the occurrence
of a significant number of unintended entailments. For example, when aligningOAIFB

and OINR using CIDER with confidence threshold τ = 0,1 (notice that CIDER usua-
lly works with low confidence values), we found 55 new unsatisfiable concepts. Af-
ter fixing these errors, ContentMap found 34 unintended subsumption relationships
using Algorithm 2 for a threshold τ1 = 0,3. Moreover, we checked manually selected
examples and found out that the heuristically detected unintended subsumptions were
indeed errors; furthermore, these errors were mostly caused by incorrect mappings.

Fourth, the application of the plans resulted in the automatic correction of the iden-
tified errors, which resulted in an improvement in the precision of the mappings. The
improvement in precision occurred in all cases and varied from 1 %-5 %, achieving
a good balance with respect to the recall, which remained unchanged in most cases,
although a decrease from 1 %-3 % was observed in a few isolated cases.
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(a) Results for OLA (b) Results for CIDER

Table 4.5: Obtained results for OLA and CIDER
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Table 4.6: Obtained results for AROMA
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4.2.4. Related work and conclusion

In the last few years, the problem of automatically generating mappings between
ontologies has been extensively investigated. A comprehensive and up-to-date source
of information about the topic (including papers, tools, ontologies for evaluation, etc.)
can be found in [SE10]. The debugging and revision of mappings [MFRW00, MST07,
MST09, JMSK09, MS09, MSvZ09] have also been treated in the literature. Chimaera
[MFRW00] was one of the pioneering systems for ontology merging and diagnosis.
The diagnosis process was based on a test suit to evaluate the completeness and the
correcteness of the merged ontology. The research carried out in [MST07, MST09]
has so far been focused on mappings represented using Distributed Description Lo-
gics (DDL) [ST09], and therefore they provide extra semantics for the management of
mappings. In our approach, due to application purposes, we have reused the seman-
tics of OWL 2 [CHM+08] and adopted a much simpler representation of mappings.
Approaches in [JMSK09, MS09] present heuristics to repair errors, however they do
not consider other unintended entailments. In [MSvZ09] a web-based tool was pro-
posed to support the user in the mapping evaluation. As ContentMap , this tool tries
to involve the user within the evaluation process. However, it does not consider so far
the general impact of the mappings (i.e., unintended entailments) but only provides
suggestions to repair/avoid obvious unsatisfiability errors.

Our work is also related to the existing approaches for debugging and repairing
inconsistencies in OWL ontologies (e.g. [SC03, KPSG06, HPS08b, JQH09]). From
them we have borrowed the notion of justification and the implementation integrated
within Protégé 4 [HPS08a]. However, in both of these lines of research, the detected
and repaired errors are limited to unsatisfiable concepts and inconsistent ontologies.

We believe that our approach, when compared to existing work, presents a num-
ber of improvements. First, the entailments to be repaired are not restricted to obvious
inconsistencies, but can include any unintended entailment. Second, users can custo-
mise the kinds of entailments to be taken into account when comparing the integrated
ontology to the individual ones in order to detect errors (i.e., select the approxima-
tion of the deductive difference). Third, users can select not only which entailments
should be invalidated, but also which ones should necessarily hold upon completion of
the repair process. To this end, we provide a number of novel techniques for helping
the user to select which entailments are (un)intended, such as the computation of the
dependencies between entailments (the relation .−), confidence in entailments accor-
ding to the confidence in the mappings, automatic suggestions, etc. Fourth, we provide
efficient algorithms for computing all the repair plans and to help the user select the
most suitable plan from amongst those computed. Fifth, when compared to existing
work on debugging and repair in OWL, we provide a clear distinction between the
ontologies being integrated and the mappings, and users can customise the ontologies
from which the plans are allowed to delete axioms. Finally, we provide a fully-fledged
editor and reasoning infrastructure integrated with Protégé 4.

Our approach, however, has a weak point when dealing with big ontologies and a
high number of errors. As already discussed in Section 4.2.3 the main bottleneck is
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the computation of all the justifications for the entailments of interest. For example,
the integration of FMA and NCI given a set of candidate mappings produces more
than 40,000 unsatisfiable concepts. The extraction of all justifications for those errors
in order to obtain the repair plans would be computationally prohibitive, even when
only an small set of axioms are the cause of the errors.

Recent approaches have tried to design heuristics and provide efficient method
to automatically discard conflicting mappings and solve most of the errors. Promi-
nent examples are [JMSK09, MS09], which have been already introduced above, and
[JRGHL09d, JRGHL10a], which belong to our research contribution and are descri-
bed in Section 4.3. The approach in Section 4.3 applies a set of principles to assess
the integration of large ontologies. These principles are not intended to produce an
error-free output but a reduction in the number of errors. Then, a tool such as Con-
tentMap can be applied in order to repair the remaining errors for which manual
intervention is usually necessary.

4.3. Auditing the integration of large ontologies

UMLS Metathesaurus (UMLS-Meta) [Bod04], as already introduced in Section
2.1, represents the most comprehensive effort for integrating biomedical thesauri and
ontologies through mappings. Currently, the integration of new sources in UMLS-
Meta combines lexical algorithms [Aro01, MBB06, HGHC07, HGH+09], expert as-
sessment [Bod04] and auditing protocols [GPHC09]. In its 2009AA version, UMLS-
Meta integrates more than one hundred thesauri and ontologies, including SNOMED
CT, FMA, and NCI, and contains more than 6 million entities. UMLS-Meta provides a
list with more than two million unique identifiers (CUIs). Each CUI can be associated
to entities belonging to different sources. Pairs of entities from different sources with
the same CUI are synonyms and hence can be represented as an equivalence mapping.

It has been noticed that UMLS-Meta, despite being carefully curated by domain
experts, may contain errors [Cim98, CMP03, MBB09, MGHP09, JYJRBRS09b]. Cu-
rrent auditing techniques aimed at detecting potential errors mostly rely on the UMLS
semantic network [McC89] — a “top level” semantic model grouping the entities
from the UMLS-Meta sources into suitable semantic categories. Semantic categories
are then organised into so-called semantic groups [BM03b]. For example “Heart” is
associated with the semantic category “Body Part, Organ, or Organ Component” and
the semantic group “Anatomy”. Errors can then be detected by identifying incompa-
tibilities in the assignment of such semantic categories to entities in the sources. For
example the UMLS-Meta “Globular Actin” has, among others, “Amino Acid, Pepti-
de, or Protein” and “Cell Component” as semantic categories, which belong to two
different semantic groups “Chemicals & Drugs” and “Anatomy” respectively.

In this Section we present two main contributions [JRGHL09d, JRGHL10a]. First,
we provide empirical evidence suggesting that UMLS-Meta in its 2009AA version
contains a significant number of logic-based errors, and we prove that the logic-based
semantics of the ontology sources may be used to enhance current UMLS-Meta de-
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sign and auditing methods in order to avoid such errors. Note that, we have used FMA,
NCI and SNOMED CT as the UMLS-Meta ontology sources to conduct our experi-
ments. Second, we propose general principles and specific logic-based techniques to
effectively detect and repair such errors. Such principles and techniques are intended
to support the assessment of the integration of large ontologies (e.g., FMA, SNO-
MED CT or NCI). As commented in Section 4.2.4, tools such as ContentMap must
be complemented with automatic techniques in order to reduce the number of errors
when integrating large ontologies.

Our empirical results are very encouraging and show the effectiveness of our te-
chniques in practice. Furthermore, we believe that our novel techniques [JRCHB09,
JRGHL09d, JRGHL10a] are complementary to current UMLS-Meta auditing met-
hods [Cim98, CMP03, MBB09, MGHP09, GPHC09] and studying how they can be
effectively combined constitutes an interesting direction for the auditing of UMLS-
Meta and for the general assessment of ontology integration.

4.3.1. Logical representation of UMLS-Meta mappings

A formal representation of the mappings, as introduced in Section 4.1, is required
in order to reason with the source ontologies and the corresponding mappings (e.g.,
UMLS-Meta). Therefore, the first step is to provide formal semantics to the mappings
in UMLS-Meta.

We have processed the MRCONSO file from the UMLS-Meta distribution [oM10].
This file contains every entity in UMLS-Meta together with its concept unique identi-
fier (CUI), its source vocabulary, its language, and other attributes not relevant for this
work. Table 4.7 shows an excerpt from the rows in the MRSCONSO file associated to
the CUI C0022417 (which represents the notion of “Joint”) with source vocabulary
FMA, SNOMED CT or NCI.

Table 4.7: An excerpt from the MRCONSO file for “Joint”

It follows from Table 4.7 that the notion of “Joint” is shared by FMA, SNOMED
CT and NCI. In particular, FMA contains the entities Joint and Set of joints, NCI
the entitiesArticulation and Joint, and SNOMED only the entity Joint structure.
All these entities have been annotated with the CUI C0022417 and therefore, accor-
ding to UMLS-Meta’s intended meaning, they are synonyms. Then, for each pair of
entities e and e′ from different sources and annotated with the same CUI, we have
generated the OWL 2 mapping axiom EquivalentClasses(e e′). The axioms obtained
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Table 4.8: Mappings between FMA, NCI and SNOMED CT. The prefixes “FMA:”,
“NCI :” and “SNOMED :” are shown explicitly to emphasise that each ontology
source uses a different namespace to refer to its entities. However, for simplicity, we
will often obviate these prefixes in the text.

for our example CUI are given in Table 4.8. We do not explicitly generate axioms
involving entities from the same source because we are interpreting UMLS-Meta as a
mapping theory, whose purpose is to integrate independently developed sources, rather
than to model the domain (i.e., to add explicit content to each of the sources indepen-
dently). Note, however, that the mappings from Table 4.8 do modify the contents of
the ontology sources implicitly (for example, they imply that the entitiesArticulation
and Joint from NCI are equivalent, even if they are not in the original source). In the
following section, we argue that such implicit modifications of a source due only to
the mappings are one of the main causes of logical errors.

Once UMLS-Meta mappings has a logic-based representation, we can enable lo-
gical reasoning over the union of the source ontologies and their respective UMLS-
Meta mappings and obtain logical consequences that were not derivable from any of
them in isolation. Our main hypothesis is that such logical consequences can be used
to identify errors in the mappings (e.g., UMLS-Meta mappings) as well as to detect
inherent incompatibilities between the source ontologies (e.g. FMA, NCI, SNOMED
CT). To verify this hypothesis, we have identified three general principles, which are
described in Section 4.3.2. and designed a number of logic-based techniques that fo-
llow those general principles (See Section 4.3.3).

4.3.2. Proposed principles

We have identified three general principles, which describe how logic-based tech-
niques can be applied to the integration of two ontology sources O1 and O2 using a
third mapping ontologyM.

1. The Conservativity Principle: Given an ontology source (say,O1) and
the mappingsM, the union O1 ∪M should not introduce new semantic
relationships between entities from O1.

The conservativity principle is based on the purpose ofM, which is to enable the
interaction between O1 and O2, rather than to provide a new description of the do-
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Figure 4.7: Conservativity principle violation

main. In the case of our previous example about “Joints”, UMLS-Meta contains two
mappings establishing the equivalence between the entity Joint structure from SNO-
MED CT and the FMA entities Joint and Set of joints respectively. As a consequence,
UMLS-Meta implies that Joint is also equivalent to Set of joints. However, in FMA
Joint neither subsumes, nor it is subsumed by Set of joints (see Figure 4.7). The con-
servativity principle suggests that the obtained mappings are in conflict and (at least)
one of them is likely to be incorrect.

2. The Consistency Principle: The ontologyO1∪O2∪M should be con-
sistent and all the entities in its vocabulary should be satisfiable [BCM+03].

According to the consistency principle, the integration of well-established ontolo-
gies should not introduce logical inconsistencies, which are clear manifestations of a
design error. These may be due to either erroneous mappings or to inherent incompati-
bilities between the source ontologies. In any case, in order for the integrated ontology
to be successfully used in an application, these errors should be repaired by modifying
either the source ontologies or the mappings.

For example, as shown in Figure 4.8, UMLS-Meta maps the FMA concept Pro-
tein to the NCI concept Protein, and the FMA concept Lymphokine to the NCI con-
cept Therapeutic Lymphokine. In FMA, Lymphokine is a Protein, whereas in NCI
Therapeutic Limphokine is a Pharmacologic Substance. Furthermore, Pharmacolo-
gic Substance and Protein are disjoint in NCI and hence the union of NCI, FMA and
UMLS-Meta would imply that Lymphokine and Therapeutic Limphokine are unsatis-
fiable (i.e., there can be no instances of either entity).

3. The Locality Principle: If two entities e1 and e2 from ontologies O1

and O2 are correctly mapped, then the entities semantically related to e1

in O1 are likely to be mapped to those semantically related to e2 in O2.
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Figure 4.8: Consistency principle violation

If the locality principle does not hold, then the following situations can be iden-
tified: (1) M may be incomplete and new mappings should be discovered, (2) the
definitions of both concepts in their respective ontologies may be different or incom-
patible, or (3) the mapping between e1 and e2 may be erroneous.

4.3.3. Implemented techniques

We next propose a collection of logic-based techniques based on each of these
general principles. Our techniques exploit the following observations about UMLS-
Meta ontology sources and mappings:

Ob1: The OWL 2 ontologyM that encodes the contents of UMLS-Meta only
contains axioms of the form EquivalentClasses(e1 e2) where e1 is only mentio-
ned in O1 and e2 is only mentioned in O2 (note that, as illustrated in Table 4.8,
different ontology sources use different namespaces to refer to their entities).
This observation is crucial to the design of techniques based on the conservati-
vity principle.

Ob2: UMLS-Meta ontology sources such as SNOMED CT, NCI and FMA con-
tain both positive and negative information (e.g., if something is a “Protein”,
then it is not a “Drug”). Logical inconsistencies can arise due to the simultaneo-
us presence (either explicit or implicit) of two conflicting statements containing
positive and negative information, e.g., the statement in FMA that lymphoki-
ne is a kind of protein and the (implicit) statement that lymphokine is not a
kind of protein. This observation is important to design techniques based on the
consistency principle.
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Ob3: The entities described in UMLS-Meta ontology sources such as SNO-
MED CT, NCI and FMA are “loosely interconnected”. Roughly speaking, this
implies that the “meaning” of an entity in each of these ontologies only depends
on a very small set of entities in the ontology that are “semantically related” to it.
To formalise the notion of an entity being “semantically related” to another en-
tity in an ontology, we use the logic-based ontology modularisation framework
[GHKS08] already introduced in Section 2.2. This observation is important to
design techniques based on either the consistency or the locality principles.

4.3.3.1. Implementing the conservativity principle

The conservativity principle can be directly expressed as the following reasoning
problem. We say that an ontology source (say, O1) violates conservativity if there
exists an OWL 2 axiom α such thatO1∪M implies α, butO1 does not imply α. This
problem is strongly related to the notion of conservative extension [GLW06, LWW07,
GHKS08]. It is well-known that its computational complexity is very high even for
lightweight ontology languages, and no practical algorithms currently exists. As we
describe next, however, in the case of UMLS-Meta we can exploit Observation Ob1
to significantly simplify the problem.

LetM contain only axioms of the form EquivalentClasses(e1 e2) where e1 is only
mentioned in O1 and e2 is only mentioned in O2. Then, O1 violates conservativity if
and only if there exist axioms EquivalentClasses(e1 e2) and EquivalentClasses(e′1 e2)
inM, with e1 and e′1 different entities in O1, such that O1 alone does not imply the
axiom EquivalentClasses(e1 e

′
1). In such case the mappings EquivalentClasses(e1 e2)

and EquivalentClasses(e′1 e2) are in conflict and one of them may be incorrect.
In our previous example (recall Figure 4.7), the mappings EquivalentClasses(Joint

Joint structure) and EquivalentClasses(Set of joints Joint structure) between
FMA and SNOMED CT are likely to be in conflict. In order to identify such conflic-
ting mappings, it suffices to (syntactically) check inM whether two entities from one
of the sources (e.g., Joint and Set of joints from FMA) are mapped to the same
entity in the other source (e.g., Joint structure from SNOMED CT) and then check
(semantically) whether these two entities were already equivalent with respect (only)
to the former source. These checks can be performed efficiently in practice: the former
is syntactic, and the latter involves a single semantic test using an ontology reasoner
(e.g., Does FMA imply that Joint and Set of joints are equivalent?).

4.3.3.2. Implementing the consistency principle

Similarly to the conservativity principle, the consistency principle can also be ea-
sily formulated as a reasoning problem. Let us denote with sig(O) the vocabulary
of an ontology O. We say that O1, O2 and M violate consistency if there is an en-
tity e ∈ sig(O1) ∪ sig(O2) that is unsatisfiable with respect to O1 ∪ O2 ∪M (i.e.,
O1 ∪ O2 ∪M implies the axiom EquivalentClasses(e owl :Nothing)).

The obvious way to check consistency violation and identify sets of conflicting
mappings is to use an ontology reasoner to check the satisfiability of each entity in
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the vocabulary of O1 ∪ O2 ∪M and then apply state-of-the-art ontology debugging
techniques (see Section 3.1.2) or frameworks such as ContentMap (see Section 4.2)
to identify and disambiguate conflicts. In our example from Figure 4.8, we could use a
reasoner to identify that the concepts Lymphokine and Therapeutic Limphokine
are unsatisfiable with respect to the integration of FMA and NCI via UMLS-Meta.
Then, debugging techniques could be used to identify the mappings and axioms from
the source ontologies responsible for these errors. This approach, however, as already
commented in Section 4.2.4, could be computationally prohibitive when the ontolo-
gies to be integrated are large and the number of errors are likely to be high.

In our particular setting, unsatisfiable concepts can be caused by either erroneous
mappings, or by inherent incompatibilities between the source ontologies. Our met-
hod relies on first identifying and disambiguating conflicting pairs of mappings (i.e.,
mappings that when occurring together make a concept unsatisfiable) and only then
detecting and resolving incompatibilities between the sources.

Detecting conflicting mappings
We next exploit Observations Ob2 and Ob3 to define a simple heuristic techni-

que, which is along the lines of those presented in [MST08, JMSK09, MS09]. The
disjointness-based inconsistency heuristic is defined as follows. If e and e′ from O1

are mapped to f and f ′ from O2 and O1 implies that e is subsumed by e′, but O2 im-
plies that f and f ′ are disjoint, then the consistency principle is violated (recall Figure
4.8). Note that the converse does not necessarily hold. This heuristic requires semantic
tests to check whether e is subsumed by e′ in O1 and whether f and f ′ are disjoint
in O2. However, this heuristic requires only the classification of each of the source
ontologies independently. Note that many reasoners can produce also the implicit dis-
jointness relationships between their entities as an additional output of classification
with only a relatively short additional delay. Furthermore, by Observation Ob3 we can
optimise even further and perform only the classification of the logic-based modules
for the mapped entities in each of the source ontologies. Consider, for example, the
mappings between FMA and SNOMED CT. The module in FMA for the entities that
are mapped to SNOMED CT contains only 10,204 entities (out of 67,000), and the co-
rresponding module in SNOMED CT contains only 15,428 entities (out of 300,000).
That is, extracting and classifying the modules instead of classifying the source onto-
logies as a whole results in a considerable simplification. Finally, the set of conflicting
mappings is obtained and therefore there is no need to apply expensive debugging
techniques to retrieve the sets of axioms responsible for the inconsistency.

4.3.3.3. Implementing the locality principle

The conservativity and consistency principles allow us to identify pairs of map-
pings in UMLS-Meta that are in mutual conflict. However, since UMLS-Meta does
not assign a confidence value to each mapping, it is not clear how to disambiguate
these conflicts (e.g., how to decide whether to map Joint structure to Joint or to
Set of joints). If there are too many conflicts, manual disambiguation becomes un-
feasible. We propose to apply the locality principle in order to compute a confidence
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value for each conflicting mapping, which we can then exploit for (partially) automa-
ting the disambiguation process.

Recent works [TvOS09, TvOSW10] have also implemented disambiguation tech-
niques exploiting the scope of the mapped entities. However, these techniques have
been only based on the alignment of thesauri, thus the scope has been limited to the
analysis of broader and narrower entities.

Computing confidence values
Assume that e from O1 is mapped via a mapping µ to f from O2. As already

mentioned in Observation Ob3, the application of the locality principle relies on a
well-known ontology modularisation framework (refer to [GHKS08] or Section 2.2).
Therefore, if most of the entities in the module M1

e for e inO1 (i.e., those entities that
are “semantically related” to e in O1) are also mapped to those in the module M2

f for
f in O2, then we can assign a high confidence value to µ. Intuitively, such confidence
values conf(µ) can be obtained by computing the ratio between the number of entities
in the modules which are mapped via UMLS-Meta, and the total number of entities
in the modules:

conf(µ) =
| Mapped entities in sig(M1

e ) | + | Mapped entities in sig(M2
f ) |

| sig(M1
e ) | + | sig(M2

f ) |
(4.8)

However, since the modules are of relatively small size, UMLS-Meta often does
not contain enough mappings between the modules to obtain an accurate value. For
example, UMLS-Meta contains the mapping between Upper Extremity from NCI
and Arm from FMA, but none of the entities, apart from the mentioned ones, in the
module for Upper Extremity in NCI is mapped to an entity in the module for Arm
in FMA. To address this issue, we used the ISUB lexical matching algorithm [SSK05]
to obtain additional lexical correspondences between entities in the modules. Algo-
rithm 3 calculates a refined confidence value confr(µ). Note that this new confidence
value does not necessarily ranges from 0 to 1.

Disambiguating conservativity conflicts automatically.
Figure 4.9 depicts sets of conflicting mappings obtained using the conservativity

principle together with the confidence values we have obtained for each of them. Con-
sider the mappings between NCI and FMA on the left-hand-side of the figure. Let
µ1, µ2 represent the mappings respectively connecting Upper Extremity in NCI to
Upper limb andArm in FMA, and let µ3, µ4 represent those relatingArm in NCI to
Upper Limb and Arm from FMA, respectively. We can identify the following four
conflicts:

κ1 = {µ1, µ2} κ2 = {µ3, µ4} κ3 = {µ1, µ3} κ4 = {µ2, µ4} (4.9)

In order to disambiguate all the conflicts between two source ontologies, we need
to remove one mapping per conflict in such a way that the result of adding their con-
fidence values is minimised. This is a standard diagnosis problem, for which practical
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Algorithm 3 Obtaining additional lexical correspondences
Input: M1

e , M2
f , µ := EquivalentClasses(e f),MUMLS

Output: Refined confidence value confr(µ)

1: ξlex := 1 . We count the µ mapping
2: for each ei ∈M1

e do
3: for each fi ∈M2

f do
4: µi := EquivalentClasses(ei fi)
5: if µi ∈MUMLS then
6: ξlex + + . UMLS mappings are worth 1
7: else
8: if confisub(µi) ≥ 0,75 then
9: . We only consider reliable lexical correspondences

10: ξlex := ξlex + confisub(µi)
11: end if
12: end if
13: end for
14: end for
15: confr(µ) = 2×ξlex

|sig(M1
e )|+|sig(M2

f )|
16: return confr(µ)

Figure 4.9: Combined cases of ambiguity

algorithms are well-known [Rei87]. In our example, the solution involves removing
the mappings µ2 (with confidence 0,06) and µ3 (with confidence 0,30).

Disambiguating consistency conflicts automatically.
Consistency conflicts are detected, as described in Section 4.3.3.2, by checking

the logic compatibility between pair of mappings. The disambiguation process can be
as simple as discarding the mappings with less confidence value. In the example cases
from Figure 4.10, the mappings with confidence 0,09 and 0,29 would be discarded.
However we detected that a considerable number of mappings were involved in seve-
ral conflicts. Thus, in order to avoid innecesary deletions of mappings we applied a
voting mechanisms. Thus, the desambiguation of a conflict, using the confidence va-
lues, leads to the increment of the number of (negative) votes of a mapping, instead of
its direct elimination. After the voting process, mappings are reviewed and those with
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more than 2 votes are discarded. Mappings with 1 or 2 votes are saved if and only if all
the mappings which voted them have a higher number of votes. Obviously, mappings
with no votes are kept.

Figure 4.10: Disambiguating consistency conflicts

4.3.3.4. Resolving incompatibilities between ontologies

Even if the mappings between two ontology sources are the intended ones, the
sources may describe a particular aspect of the domain in incompatible ways. For
example, consider Figure 4.11 describing the notion of “Visceral Pleura” in FMA and
NCI. The three mappings between the entities “Visceral Pleura”, “Lung” and “Thora-
cic Cavity” in both ontologies are clearly the intended ones. However, their integration
results in V isceral P leura becoming unsatisfiable. According to NCI, the visceral
pleura is located in a lung; furthermore, it is a pleural tissue, which can only be located
in the thoracic cavity. However, according to FMA the thoracic cavity is an immaterial
anatomical entity, whereas the lung is a material anatomical entity. Finally, material
and immaterial entities are disjoint, as implied by FMA. Therefore, the visceral pleura
is located in some anatomical entity that is both material and immaterial, which leads
to a contradiction.

These source incompatibilities are not always apparent; for example Figure 4.12
shows the justification for V isceral P leura v ⊥ where twenty axioms (three of
them are mappings) are involved. We believe that, in such cases, the ontology engineer
must participate in the repair process and need to be supported by suitable tools like
ContentMap [JRCHB09].

As presented in Section 4.2, ContentMap proposes different repair plans for those
entailments that the user indicates are unintended and ranks them accoding to the
impact of their application. These plans may involve both the deletion or modification
of source ontology axioms, and thus expert intervention is required to select the most
appropriate repair.

4.3.4. Empirical results

We have evaluated our techniques using UMLS-Meta version 2009AA and the co-
rresponding versions of FMA, NCI and SNOMED CT, which contain 66,724, 78,989
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Figure 4.11: Unsatisfiability due to incompatibilities between FMA and NCI

Figure 4.12: Justification for V isceral P leura v ⊥

and 304,802 entities, respectively. After translating the UMLS-Meta mappings into
OWL 2, we obtained 3,024 mapping axioms between FMA and NCI, 9,072 between
FMA and SNOMED CT and 19,622 between SNOMED CT and NCI.

When reasoning over each of the source ontologies independently, all their en-
tities were found satisfiable. However, after the respective integrations via UMLS-
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Meta mappings, we obtained a huge number of unsatisfiable entities, namely 5,015
when integrating FMA and NCI, 16,764 with FMA and SNOMED CT, and 76,025
with SNOMED CT and NCI. Thus, from a semantic point of view, the integration of
these ontologies via UMLS-Meta is far from error-free.

In order to identify conflicts between the obtained UMLS-Meta mappings, we
have then applied the conservativity and consistency principles.

Using the principle of conservativity, we found 991 conflicting mapping bet-
ween FMA and NCI, 2,426 between FMA and SNOMED CT and 9,080 bet-
ween SNOMED CT and NCI.

Using the disjointness-based inconsistency heuristic, we found 300 conflicting
mapping pairs between FMA and NCI, 14,959 between FMA and SNOMED
CT and 34,628 between SNOMED CT and NCI. Note that each of these con-
flicts will certainly lead to the unsatisfiability of an entity in the union of the
respective source ontologies and UMLS-Meta mappings.

As discussed in Section 4.3.3.3, the locality principle allows us to assign a confi-
dence value to each UMLS-Meta mapping and then exploit this value to automatically
disambiguate the conflicts detected by the conservativity and consistency principles.
The automatic disambiguation process removed 570 (19 %) of the mappings between
FMA and NCI, 4,077 (45 %) of those between FMA and SNOMED CT and 13,358
(63 %) of those between SNOMED CT and NCI.

After automatic disambiguation, we found only 2 unsatisfiable entities when inte-
grating FMA and NCI (recall example from Figure 4.11), 44 for FMA and SNOMED
CT, and none for SNOMED CT and NCI. As already discussed, these errors are most
likely due to inherent incompatibilities between the ontology sources; thus, expert
assessment is required. ContentMap was then used to understand and repair these
remaining inconsistencies. ContentMap proposed 19 repair plans for FMA and NCI
and 372 FMA and SNOMED CT. We have inspected the top-ranked repair plans and
found them intuitive and reasonable from a modelling perspective.

Despite the large number of deprecated mappings during automatic disambigua-
tion, the integration of our source ontologies via UMLS-Meta still results in a consi-
derable number of (possibly intended) new logical consequences. For example, after
repairing all inconsistencies using ContentMap, the integration between FMA and
SNOMED CT still results in 973 new subsumption relationships between FMA enti-
ties and 586 new subsumption relationships between SNOMED CT entities. Further
manual revision (e.g., using again our tool ContentMap) would be necessary to deter-
mine which ones among these new consequences are unintended.

4.3.5. Discussion

When integrating ontology sources via UMLS-Meta, the contents of the ontology
sources should be taken into account. Several authors have proposed different kinds
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of structural analysis of SNOMED CT, FMA and NCI to evaluate their compatibi-
lity. For example, Bodenreider and Zhang [BZ06] compared the representation and
coverage of anatomy in SNOMED CT and FMA; to this end, they applied matching
techniques to obtain lexical correspondences and performed a structural validation of
them. Bodenreider [Bod08] also performed a comparison of SNOMED CT and NCI
mapped via UMLS-Meta. The comparison relied on the analysys of the “neighbour-
hood” (e.g. shared superclasses, shared subclasses, related classes) of the SNOMED
CT and NCI entities considered as equivalent according to UMLS-Meta.

We have argued that the rich logic-based semantics of ontology sources should
also be considered together with their lexical and structural information. We have
provided empirical evidence suggesting that, by taking into account the semantics
of the sources, one can detect a significant number of additional errors in UMLS-
Meta as well as many inherent incompatibilities between the sources’ description of
particular domains. We therefore consider that our results naturally complement those
in [BZ06, Bod08], as well as current auditing methodologies in UMLS-Meta [Cim98,
CMP03, MBB09, MGHP09, GPHC09].

Furthermore, we have identified general principles and specific repair techniques,
which can be applied not only to assess resources such as UMLS-Meta but also the
integration of ontologies in general.

Although the obtained results show the feasibility of our techniques in practice,
we consider, however, that they can be imporved in several ways. In particular, our
automatic disambiguation is rather aggressive, in the sense that a significant number
of mappings are discarded in order to prevent logical errors. We plan to explore how
the disambiguation process can be relaxed to include as many of the original mappings
as possible. Finally, we aim at seeking feedback from domain experts concerning both
the automatic and the tool-assisted disambiguation processes.
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CHAPTER 5
Conclusions and open lines

In this research, we have proposed logic-based techniques and implemented pro-
totype systems for knowledge reuse, concurrent evolution, and integration of indepen-
dent resources.

Our techniques have been designed for the Ontology Web Language (OWL) and its
revision OWL 2 [PSHH04, MPSCG09], but can also be applied to any other ontology
formalisms (e.g., OBO language), provided that such formalisms can be expressed in
or translated into OWL. Our software prototypes are compatible with current Seman-
tic Web infrastructure, such as the OWL API 1 [BVL03, HB09], and are currently
available as Protégé plugins2; however, they could also be adapted and integrated into
other similar frameworks, such as the NeOn toolkit3 [EBHW08].

The well-founded modularization framework from Cuenca-Grau et al. [GHKS08]
deserves an special mention since it has provided our contributions with a transver-
sal technology, which has been applied in a number of situations and for different
purposes, e.g., reuse, visualization, optimized processing, extraction of justifications,
reasoning with modules, and so on.

Proposed methods and systems have been discussed in the context of state-of-the-
art technologies; however further comparison with current available techniques and
tools would be necessary in order to provide a more precise evaluation of our proposed
techniques. Next, we recapitulate our main contributions and discuss possible lines for
future research.

1 OWL API: http://owlapi.sourceforge.net/
2 Implemented Tools: ProSÉ , ContentCVS and ContentMap , http://krono.act.uji.es/
people/Ernesto/index_html#tools

3 NeOn toolkit: http://www.neon-toolkit.org

99
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5.1. Contributions to knowledge reuse

Our contribution to knowledge reuse has been twofold. First, we have presented
a method for reusing knowledge from non-ontological resources (e.g., thesauri). Se-
cond, we have designed a framework to reuse knowledge from ontologies in an econo-
mic and safe way, based on the modularization formalism from [GHKS08]. It is worth
mentioning that both reuse methods do not require the use of a DL reasoner, as they
are solely based on the structure of the input thesauri/ontologies.

The approach to safely reuse from external ontologies restricts the shape of the
axioms involving external entities, according to the locality conditions from [GHKS08].
These locality restrictions, however, could be too strict for certain applications. The-
refore, an interesting direction for future research would be to analyze other reuse
strategies which can be complemented with locality conditions.

Another interesting research direction could be the evaluation of the impact of the
reused knowledge over the importing ontology (and not only over the reused know-
ledge). The techniques described in Chapters 3 and 4 could be extended and adapted
for this purpose. In this way, the evaluation of the impact would be useful to analyze
the suitability of the reused resources.

Finally, a common limitation of both contributions is that they neglect a formal
specification of requirements such as the proposed in [dCSFGPVT09]. For future
work, we are planning to consider formal approaches to specify user requirements
in order to determine which knowledge resources should be reused .

5.1.1. Publications

Most of the results described here have been documented in the following publi-
cations:

[JYJRBRS09b] Antonio Jimeno-Yepes, Ernesto Jiménez-Ruiz, Rafael Berlanga,
and Dietrich Rebholz-Schuhmann. Reuse of terminological resources for efficient
ontological engineering in life sciences. BMC Bioinformatics, 10(Suppl 10):S4, 2009.

[JRGS+08b] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler, Tho-
mas Schneider, and Rafael Berlanga Llavori. Safe and Economic Re-Use of On-
tologies: A Logic-Based Methodology and Tool Support. In The Semantic Web:
Research and Applications, 5th European Semantic Web Conference, ESWC, volume
5021 of Lecture Notes in Computer Science, 2008.

[JRGS+08c] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler, Tho-
mas Schneider, and Rafael Berlanga Llavori. Safe and Economic Re-Use of On-
tologies: A Logic-Based Methodology and Tool Support. Proceedings of the 21st
International Workshop on Description Logics (DL), Volume 353 of CEUR WS Pro-
ceedings, 2008. Shortened version of conference paper [JRGS+08b].

[JRGS+08a] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler, Tho-
mas Schneider, and Rafael Berlanga Llavori. ProSÉ: a Protégé plugin for Reusing
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Ontologies, Safe and Économique (DEMO). In XIII Jornadas de Ingenierı́a del Soft-
ware y Bases de Datos (JISBD), 2008.

Former research on ontology fragmentation was also published in the following
papers:

[JRLNS07] Ernesto Jiménez-Ruiz, Rafael Berlanga Llavori, Victoria Nebot, and
Ismael Sanz. OntoPath: A language for retrieving ontology fragments. In The 6th
International Conference on Ontologies, DataBases, and Applications of Semantics
(ODBASE), OTM Conferences, volume 4803 of Lecture Notes in Computer Science,
2007.

[JRNL+07] Ernesto Jiménez-Ruiz, Victoria Nebot, Rafael Berlanga, Ismael Sanz
and Alfonso Rios. A Protégé Plug-in-based System to Manage and Query large
Domain Ontologies. 10th International Protégé Conference, July 15-18, 2007, Buda-
pest, Hungary.

[JRLS+05] E. Jiménez-Ruiz, R. Berlanga, I. Sanz, M. J. Aramburu, R. Danger.
OntoPathView: A Simple View Definition Language for the Collaborative Deve-
lopment of Ontologies. In B. López et al. (Eds.): Artificial Intelligence Research and
Development, pages 429-436. IOS Press, 2005.

It is worth mentioning that text mining techniques have also been applied to both
the reuse of terms from the literature or medical protocols and the detection of inter-
esting fragments from available thesauri, such as UMLS-Meta. The following publi-
cations summarize our contributions to this particular area:

[JYJRL+08] Antonio Jimeno-Yepes, Ernesto Jiménez-Ruiz, Vivian Lee, Sylvain
Gaudan, Rafael Berlanga, and Dietrich Rebholz-Schuhmann. Assessment of disease
named entity recognition on a corpus of annotated sentences. BMC Bioinforma-
tics, 9(Suppl 3):S3, 2008.

[BJRNS10] Rafael Berlanga, Ernesto Jiménez-Ruiz, Victoria Nebot, and Ismael
Sanz. FAETON: Form analysis and extraction tool for ontology construction. In-
ternational Journal of Computer Applications in Technology (IJCAT). In press 2010.

[BJRR+08] Rafael Berlanga, Ernesto Jiménez-Ruiz, Dmitry Rogulin, Victoria Ne-
bot, David Manset, Andrew Branson, Tamas Hauer, Richard Mc- Clatchey, Dmitry
Rogulin, Jetendr Shamdasani, and et al. Medical data integration and the seman-
tic annotation of medical protocols. In The 21th IEEE International Symposium on
Computer-Based Medical Systems (CBMS), 2008.

[LASPPJR08] Rafael Berlanga Llavori, Henry Anaya-Sánchez, Aurora Pons- Po-
rrata, and Ernesto Jiménez-Ruiz. Conceptual subtopic identification in the medi-
cal domain. In Advances in Artificial Intelligence - IBERAMIA 2008, 11th Ibero-
American Conference on AI, volume 5290 of Lecture Notes in Computer Science,
2008.



“tesis” — 2010/9/2 — 16:34 — page 102 — #126i
i

i
i

i
i

i
i

102 Chapter 5 Conclusions and open lines

5.2. Contributions to concurrent ontology evolution

User studies have proved that ontology developers are mainly interested in simple
but functional tools [SMS09]. Mechanisms to allow communication among develo-
pers and techniques to describe changes are the most demanded functionalities. Ne-
vertheless they also required mechanisms to prevent conflicts (e.g., undesired logical
consequences) between concurrent changes.

We have designed and implemented a framework to assess concurrent changes in
collaborative ontology development. This framework follows an asynchronous editing
paradigm, performs an untraced versioning, and evaluates the logic impact of merging
concurrent changes. Moreover, suggestions are given in order to curate errors (i.e.,
unintended consequences). We have also conducted a preliminary user study and per-
formance evaluation from which we obtained encouraging feedback from users and
promising empirical results.

Our framework could be improved in a number of ways. Currently, our framework
does not consider access policies nor predefined restriction on the changes (e.g., unit
test or extension policies). An interesting future work would involve the design of
extension policies to better control the concurrent evolution of the ontology. Moreo-
ver, current repair suggestions only involve the deletion or addition of axioms, which
in some cases may be too strong. Suggestions involving the modification of axioms
should be a future feature for the framework.

Another interesting line would be the integration of our framework within current
collaborative ontology evolution methodologies and workflows (e.g., [Pal09]) in or-
der to consider both technical (e.g., assignment of duties, change representation and
characterization) and social aspects (e.g., discussion and argumentation).

Regarding scalability, the computation of justifications for a huge number of con-
sequences could be computationally prohibitive. Therefore, the generation of plans or
suggestion to repair a large number of errors could also be computationally unfeasi-
ble. The use of incremental reasoning techniques and the use of logic-based modules
is particularly interesting in this regard. Furthermore, it should be noticed that the
longer modellers have been working independently, the larger the number of possible
errors and conflicts. For example, NCI and SNOMED CT require a complex curation
process after each development cycle which may take sevaral weeks [SR07b].

Finally, the assessment of the compatibility of independent sets of changes should
only focus on the semantic level, avoiding lexical problems about the normalization of
labels referring to the same entity. Thus, the reuse of terminological resources would
avoid many of such lexical discrepancies [JYJRBRS09b].

5.2.1. Publications

The following papers summarize our contributions to the community:

[JRGHL10b] E. Jiménez-Ruiz, B. Cuenca Grau, I. Horrocks, R. Berlanga. Suppor-
ting Concurrent Development of Ontologies: Framework, Algorithms and Tool.
Submitted to Data & Knowledge Engeneering Journal, 2010.
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[JRGHL09a] E. Jiménez-Ruiz, B. Cuenca Grau, I. Horrocks, R. Berlanga. Buil-
ding Ontologies Collaboratively using ContentCVS. Proceedings of the 22nd In-
ternational Workshop on Description Logics (DL2009). Volume 477 of CEUR WS
Proceedings, 2009.

[JRGHL09b] E. Jiménez-Ruiz, B. Cuenca Grau, I. Horrocks, R. Berlanga. Con-
tentCVS: A CVS-based Collaborative ONTology ENgineering Tool (DEMO). Pro-
ceedings of the 2nd International Workshop on Semantic Web Applications and Tools
for Life Sciences (SWAT4LS2009). Volume 559 of CEUR WS Proceedings, 2009

[JRL06] E. Jiménez-Ruiz, R. Berlanga. A View-based Methodology for Collabo-
rative Ontology Engineering: an Approach for Complex Applications (VIMeth-
COE). In 1st International Workshop (WETICE workshop) on Semantic Technologies
in Collaborative Applications (STICA), 2006. Selected ”best workshop paper”based
on reviews.

5.3. Contributions to the integration of independent
ontological resources

Ontology integration should be an audited process since ontologies may contain
conflicting descriptions of the overlapping entities; thus, even if the appropriate co-
rrespondences have been established, the integrated ontology may contain errors (e.g.,
unintended consequences). We have designed and implemented semi-automatic and
automatic techniques to assess the integration of independently created ontologies.

Our semi-automatic techniques support the user in the analysis and understanding
of the consequences derived from the integration. Moreover, they provide suggestions
to repair logic errors. These techniques are similar to the ones we have applied to the
assessment of concurrent changes; therefore, they have similar benefits and limita-
tions. Scalability is even more critical in the setting of ontology integration since, in
contrast to the case of concurrent development where “commit” operations are relati-
vely frequent, the number of mappings between medium or large ontologies, and the
consequences of the integration are usually huge. Thus, manual assessment of map-
ping and their respective consequences can be rather costly.

Implemented automatic techniques are based on logic-based principles and aimed
at reducing the number of erroneous or conflictive mappings and the number of ob-
vious unintended consequences. Obtained results showed the feasibility of these te-
chniques in practice; however a significant number of mappings were discarded. We
plan to explore how these techniques can be relaxed in order to be less aggressive and
discard smaller sets of mappings.

5.3.1. Publications

We have contributed to the ontology integration community with the following
publications:
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[JRCHB09] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks, and Ra-
fael Berlanga. Ontology integration using mappings: Towards getting the right
logical consequences. In Proc. of European Semantic Web Conference (ESWC), vo-
lume 5554 of LNCS, pages 173-187. Springer-Verlag, 2009.

[JRGHL10a] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks, and
Rafael Berlanga Llavori. Logic-based assessment of the compatibility of UMLS onto-
logy sources. Accepted for publication in Journal of Biomedical Semantics, 2010.

[JRGHL09c] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks, and
Rafael Berlanga Llavori. Logic-based ontology integration using ContentMap. In XIV
Jornadas de Ingenierı́a del Software y Bases de Datos (JISBD), pages 316-319, 2009.

[JRGHL09d] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks, and
Rafael Berlanga Llavori. Towards a logic-based assessment of the compatibility
of UMLS sources. In Proceedings of the 2nd International Workshop on Semantic
Web Applications and Tools for Life Sciences (SWAT4LS 2009), Amsterdam, The
Netherlands, volume 559 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.
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[BPS07] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn.
Pinpointing in the description logic EL+. In Joachim Hertzberg,
Michael Beetz, and Roman Englert, editors, 30th Annual German
Conference on AI, KI, volume 4667 of Lecture Notes in Computer
Science, pages 52–67. Springer, 2007.

[Bra77] Ronald J. Brachman. What’s in a concept: structural foundations
for semantic networks. International Journal of Man-Machine
Studies, 9(2):127 – 152, 1977.

[Bra79] Ronald J. Brachman. On the epistemological status of semantic
networks. In N. V. Findler, editor, Associative networks: Repre-
sentation and use of knowledge by computers. New York: Aca-
demic, 1979.

[BS85] Ronald J. Brachman and James G. Schmolze. An overview of the
KL-ONE knowledge representation system. Cognitive Science,
9(2):171 – 216, 1985.

[BVL03] Sean Bechhofer, Raphael Volz, and Phillip W. Lord. Cooking
the Semantic Web with the OWL API. In International Seman-
tic Web Conference, volume 2870 of Lecture Notes in Computer
Science, pages 659–675. Springer, 2003.

[BVSH09] Jie Bao, George Voutsadakis, Giora Slutzki, and Vasant Hona-
var. Package-based description logics. In Stuckenschmidt et al.
[SPS09], pages 349–371.

[BZ06] Olivier Bodenreider and Songmao Zhang. Comparing the repre-
sentation of anatomy in the fma and snomed ct. In AMIA Annual
Symposium, pages 46–50, 2006.



“tesis” — 2010/9/2 — 16:34 — page 108 — #132i
i

i
i

i
i

i
i

108 BIBLIOGRAPHY
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[JRLNS07] Ernesto Jiménez-Ruiz, Rafael Berlanga Llavori, Victoria Nebot,
and Ismael Sanz. OntoPath: A language for retrieving onto-
logy fragments. In The 6th International Conference on Onto-
logies, DataBases, and Applications of Semantics (ODBASE),
OTM Conferences, volume 4803 of Lecture Notes in Computer
Science, pages 897–914. Springer, 2007.
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Marı́a José Aramburu Cabo, and Roxana Dánger. Ontopathview:
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[JRNL+07] Ernesto Jiménez-Ruiz, Victoria Nebot, Rafael Berlanga Llavori,
Ismael Sanz, and Alfonso Rios. A Protégé plug-in-based system
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Protégé owl tab to read/save obo ontologies. Bioinformatics,
23(14):1868–1870, 2007.

[MMB+05] Alistair Miles, Brian Matthews, Dave Beckett, Dan Brickley, Mi-
chael Wilson, and Nikki Rogers. SKOS: A language to describe
simple knowledge structures for the web. In Proc of the XTech
Conference: XML, the Web and beyond., 2005.

[MNA+99] Stuart Nelson Md, Stuart J. Nelson, Alan R. Aronson, Tamas E.
Doszkocs, and H. Florence Chang Ms. Automated assignment of
medical subject headings. In Proceedings of the American Medi-
cal Informatics Association (AMIA) Annual Symposium, 1999.

[MPSCG09] Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca-
Grau. OWL 2 Web Ontology Language Direct Semantics.
W3C Recommendation, 2009. http://www.w3.org/TR/
owl2-semantics/.

[MPSP09] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL
2 web ontology language structural specification and functional-
style syntax. W3C Recommendation, 2009. http://www.w3.
org/TR/owl2-syntax/.

[MS09] Christian Meilicke and Heiner Stuckenschmidt. An efficient met-
hod for computing alignment diagnoses. In Third International
Conference on Web Reasoning and Rule Systems, RR, pages 182–
196, 2009.

[MSH09] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau
Reasoning for Description Logics. Journal of Artificial Intelli-
gence Research, 36:165–228, 2009.

[MST07] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin.
Repairing ontology mappings. In Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence, pages 1408–
1413. AAAI Press, 2007.

[MST08] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin.
Supporting manual mapping revision using logical reasoning. In
Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, AAAI, pages 1213–1218, 2008.

[MST09] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin.
Reasoning Support for Mapping Revision. J Logic Computation,
19(5):807–829, 2009.



“tesis” — 2010/9/2 — 16:34 — page 123 — #147i
i

i
i

i
i

i
i

BIBLIOGRAPHY 123

[MSvZ09] Christian Meilicke, Heiner Stuckenschmidt, and Ondřej Šváb Za-
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Protégé. In Proceedings of the Workshop on Collaborative
Construction, Management and Linking of Structured Knowled-
ge (CK2009), collocated with the 8th International Semantic Web
Conference (ISWC), 2009.

[SNNB08] Rodolfo Stecher, Claudia Niederée, Wolfgang Nejdl, and Paolo
Bouquet. Adaptive ontology re-use: finding and re-using sub-
ontologies. IJWIS, 4(2):198–214, 2008.



“tesis” — 2010/9/2 — 16:34 — page 127 — #151i
i

i
i

i
i

i
i

BIBLIOGRAPHY 127

[SNTM08] Abraham Sebastian, Natalya Fridman Noy, Tania Tudorache, and
Mark A. Musen. A generic ontology for collaborative ontology-
development workflows. In 16th International Conference on
Knowledge Engineering, EKAW, volume 5268 of Lecture Notes
in Computer Science, pages 318–328, 2008.

[Spa00] K. Spackman. SNOMED RT and SNOMED CT. promise of an
international clinical ontology. M.D. Computing, 17, 2000.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kal-
yanpur, and Yarden Katz. Pellet: A practical OWL-DL reasoner.
J. Web Sem., 5(2):51–53, 2007.

[SPS09] Heiner Stuckenschmidt, Christine Parent, and Stefano Spacca-
pietra, editors. Modular Ontologies: Concepts, Theories and Te-
chniques for Knowledge Modularization, volume 5445 of Lectu-
re Notes in Computer Science. Springer, 2009.

[SQJH08] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase.
A modularization-based approach to finding all justifications for
OWL DL entailments. In John Domingue and Chutiporn Anuta-
riya, editors, ASWC, volume 5367 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2008.

[SR06] Julian Seidenberg and Alan L. Rector. Web ontology segmenta-
tion: analysis, classification and use. In Proceedings of the 15th
international conference on World Wide Web, WWW, pages 13–
22, 2006.

[SR07a] Julian Seidenberg and Alan L. Rector. A methodology for asyn-
chronous multi-user editing of semantic web ontologies. In De-
rek H. Sleeman and Ken Barker, editors, K-CAP, pages 127–134.
ACM, 2007.

[SR07b] Julian Seidenberg and Alan L. Rector. The state of multi-user
ontology engineering. In Bernardo Cuenca Grau, Vasant Hona-
var, Anne Schlicht, and Frank Wolter, editors, 2nd International
Workshop on Modular Ontologies, WoMO, volume 315 of CEUR
Workshop Proceedings. CEUR-WS.org, 2007.

[SS09] Heiner Stuckenschmidt and Anne Schlicht. Structure-based par-
titioning of large ontologies. In Stuckenschmidt et al. [SPS09],
pages 187–210.

[SSK05] Giorgos Stoilos, Giorgos B. Stamou, and Stefanos D. Kollias. A
string metric for ontology alignment. In Proc. of the Internatio-
nal Semantic Web Conference (ISWC), pages 624–637, 2005.



“tesis” — 2010/9/2 — 16:34 — page 128 — #152i
i

i
i

i
i

i
i

128 BIBLIOGRAPHY

[ST09] Luciano Serafini and Andrei Tamilin. Composing modular on-
tologies with distributed description logics. In Stuckenschmidt
et al. [SPS09], pages 321–347.

[Sto04] Ljiljana Stojanovic. Methods and tools for ontology evolution,
2004. PhD thesis, University of Karlsruhe.

[TAM+09] Syed Hamid Tirmizi, Stuart Aitken, Dilvan A. Moreira, Chris
Mungall, Juan Sequeda, Nigam H. Shah, and Daniel P. Miranker.
OBO & OWL: Roundtrip ontology transformations. In Procee-
dings of the 2nd International Workshop on Semantic Web Ap-
plications and Tools for Life Sciences (SWAT4LS 2009), Amster-
dam, The Netherlands, 2009.

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic
reasoner: System description. In Furbach and Shankar [FS06],
pages 292–297.

[TNTM08] Tania Tudorache, Natalya Fridman Noy, Samson W. Tu, and
Mark A. Musen. Supporting collaborative ontology development
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