
Rewriting Conjunctive Queries under
Description Logic Constraints

Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks

Computing Laboratory
University of Oxford

Oxford, UK
{hector.perez-urbina,boris.motik,ian.horrocks}@comlab.ox.ac.uk

Abstract. We consider the problems of conjunctive query answering
and rewriting under Description Logic constraints. We present a query
rewriting algorithm for ELHI knowledge bases, and use it to show that
query answering in this setting is PTime-complete w.r.t. data complexity.
We show that our algorithm is worst-case optimal for languages with
data complexity of query answering ranging from LogSpace to PTime-
complete.

1 Introduction

Query answering under constraints is the problem of computing the answers to
a query over an incomplete database w.r.t. a set of constraints [20]. Since an
incomplete database is only partially specified, the task is to compute the tuples
that satisfy the query in every database that conforms to the partial specification
and satisfies the constraints. Answering conjunctive queries under constraints is
also relevant in several other contexts, including information integration [14],
data exchange [9], and data warehousing [21].

Query answering under constraints can be solved via query rewriting under
constraints: given a query Q over an incomplete database D, consisting of a set
of extensions E and a set of constraints C, we can compute a query Q′ (which
depends on Q and C), such that for every set of extensions E, the answers of Q
over D, and the answers of Q′ over E coincide. This problem has been tackled
by several authors (see for example [5]), who have considered standard database
constraints, such as inclusion dependencies, functional dependencies, and so on.
It is well known that rewriting queries under general constraints is undecidable;
therefore, the expressivity of the constraint languages considered is typically
restricted in order to achieve decidability.

Description Logics (DLs) [2] can be viewed as very expressive but decidable
first-order fragments, which makes them natural candidates for constraint lan-
guages. DLs are a family of knowledge representation formalisms that represent
a given domain in terms of concepts (unary predicates), roles (binary predi-
cates), and individuals (constants). A DL Knowledge Base (KB) consists of a
terminological component T called the TBox, and an assertional component A



2 Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks

called the ABox. In analogy to databases, the TBox can be seen as a conceptual
schema and the ABox as a (partial) instantiation of the schema. DL constraints
are not required to be acyclic in order for query answering to remain decidable.
The use of DLs as constraint languages has already proven to be useful in a
variety of scenarios, such as the Semantic Web [16].

Various rewriting techniques under DL constraints have been proposed. Motik
[15] presented a resolution-based algorithm for reducing very expressive DL KBs
to disjunctive datalog programs. Similarly, Kazakov [13] used saturation-based
theorem proving to derive a range of decision procedures for various DLs of the
EL family of languages [1]. These approaches, however, do not handle conjunctive
queries. Conjunctive query rewriting under DL constraints has been considered
by Calvanese et al. for the DL-Lite family of languages, for which query answer-
ing was shown to be in LogSpace w.r.t. data complexity [7]. Similarly, Rosati
presented a rewriting algorithm for the EL family of languages, and showed that
query answering in EL and ELH is PTime-complete w.r.t. data complexity [19].

Although the aforementioned techniques are closely related, they have all
been developed for specific DLs. Our goal, however, is to obtain a unified al-
gorithm inspired by the resolution-based techniques presented in [13, 15], that
generalizes and extends the results of [7] and [19]. We present a conjunctive query
rewriting algorithm for ELHI [1] and use it to obtain the novel result that con-
junctive query answering for ELHI is PTime-complete w.r.t. data complexity.
ELHI is expressive enough to capture qualified universal quantification, as well
as transitivity and functionality assertions on roles, via known encodings; thus,
it is one of the most expressive Horn DLs for which query answering remains
tractable w.r.t. data complexity. In addition we show that, given a conjunctive
query Q and a TBox T expressed in a sublanguage L of ELHI, our algorithm
produces a rewriting that is optimal for L. If L is a language of the DL-Lite
family, then our rewriting is a union of conjunctive queries, as in [7]; if L is
DL-Lite+, then our rewriting consists of a union of conjunctive queries and a
linear datalog program, as in [17]; finally, if L is a language of the EL family,
then our rewriting is a datalog program, as in [19]. Therefore, our technique not
only deals with the full spectrum of DLs from ELHI down to DL-Litecore [7],
but is optimal w.r.t. data complexity for all such languages. The initial version
of this algorithm was presented in [17], in which we considered DL-Lite+.

2 Preliminaries

Description Logic ELHI. For P an atomic role, an ELHI basic role has the
form P or P−. For A an atomic concept, and R a basic role, an ELHI basic
concept has the form A, ∃R, ∃R.A, or B1 uB2. A TBox is a set of inclusion
assertions or axioms of the form B1 v B2 or R1 v R2, where B1 and B2

are basic concepts, and R1 and R2 are basic roles. Without loss of generality
we can assume that every axiom in the TBox is in one of the following forms:
A1 v A2, A1 uA2 v A3, A1 v ∃R1, A1 v ∃R1.A2, ∃R1 v A1, ∃R1.A1 v A2, and
R1 v R2, where each Ai is an atomic concept, and Ri is a basic role [1]. DL-Lite+



Rewriting Conjunctive Queries under Description Logic Constraints 3

Table 1: Semantics of ELHI

Semantics of concepts and roles: Semantics of assertions:

AI ⊆ 4I
P I ⊆ 4I ×4I

(B1 uB2)
I = BI

1 ∩BI
2

(P−)I = {〈x, y〉 | 〈y, x〉 ∈ P I}
(∃R)I = {x | ∃y.〈x, y〉 ∈ RI}

(∃R.A)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ AI}

I |= A(a) iff aI ∈ AI

I |= P (a, b) iff (aI , bI) ∈ P I

I |= B1 v B2 iff BI
1 ⊆ BI

2

I |= P1 v P2 iff P I
1 ⊆ P I

2

is obtained from ELHI by disallowing inverse roles and axioms of the form
A1 uA2 v A3. DL-LiteR is obtained from ELHI by disallowing concepts of the
form ∃R1.A1 and axioms of the form A1 uA2 v A3.

An ABox is a set of membership assertions of the form A(a) or P (a, b), where
A is an atomic concept, P is an atomic role, and a and b are constants. An ELHI
knowledge base (KB) K is a tuple 〈T ,A〉, where T is a TBox and A is an ABox.

An interpretation I = (4I , ·I) consists of a nonempty interpretation domain
4I and a function ·I that maps each concept C to a subset CI of 4I , each role
R to a subset RI of 4I ×4I , and each constant a to an element aI of 4I . The
function ·I is shown in the left part of Table 1. An interpretation I is a model
of an inclusion or membership assertion α, written I |= α, if I and α satisfy the
conditions shown in the right part of Table 1. An interpretation I is a model of
a KB K = 〈T ,A〉, written I |= K, if I satisfies each of the assertions in T and
A. A KB K is satisfiable if it has at least one model; furthermore, K logically
implies an assertion α, written K |= α, if all models of K are also models of α.

Conjunctive and Datalog Queries. We use the well-known notions of a
first-order signature, terms, variables, and atoms. A Horn clause is an expression
of the form H ← B1 ∧ · · · ∧Bm, where H is a possibly empty atom and {Bi}
is a set of atoms. The atom H is called the head and the set {Bi} is called
the body. With � we denote the empty clause. A Horn clause C is safe if all
variables occurring in the head also occur in the body. With var(C) we denote the
number of variables in a clause C. The depth of a term is defined as depth(t) = 0
for t a constant or a variable, and depth(f(s1, . . . , sm)) = 1 + max(depth(si));
for atoms we have depth(R(t1, . . . , tn)) = max(depth(t1), . . . , depth(tn)); and for
Horn clauses, depth(C) = max(depth(H), depth(B1), . . . , depth(Bm)).

A datalog program P is a set of function-free, safe Horn clauses. The exten-
sional database (EDB) predicates of P are those that do not occur in the head
atom of any Horn clause in P ; all other predicates are called intensional database
(IDB) predicates. The program P is linear if each Horn clause in P contains at
most one IDB predicate in the body. A datalog query Q is a tuple 〈QP , P 〉,
where QP is a query predicate and P is a datalog program. Q is a linear datalog
query if P is a linear datalog program; Q is called a union of conjunctive queries
if QP is the only IDB predicate in P and the body of each clause in P does
not contain QP ; finally, Q is a conjunctive query if it is a union of conjunctive
queries and P contains exactly one Horn clause. A tuple of constants ~a is an
answer of a datalog query Q = 〈QP , P 〉 on an ELHI KB K = 〈T ,A〉 if and only



4 Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks

if K ∪ P |= QP (~a), where P is considered to be a set of universally quantified
implications with the usual first-order semantics; the set of all answers of Q on
K is denoted by ans(Q,K).

Resolution with Free Selection. Resolution with free selection is a well-
known calculus that can be used to decide satisfiability of a set of Horn clauses [4].
The calculus is parameterized by a selection function S that assigns to each Horn
clause C a nonempty set of atoms such that either S(C) = {H} or S(C) ⊆ {Bi}.
The atoms in S(C) are said to be selected in C. The resolution calculus with
free selection R consists of the following resolution inference rule.

A← B1 ∧ · · · ∧Bi ∧ · · · ∧Bn C ← D1 ∧ · · · ∧Dm

Aσ ← B1σ ∧ · · · ∧Bi−1σ ∧Bi+1σ ∧ · · · ∧Bnσ ∧D1σ ∧ · · · ∧Dmσ

The two clauses above the inference line are called the premises and the clause
below is called the resolvent. We make a technical assumption that the premises
do not have variables in common. The atoms Bi and C must be selected in
the corresponding premises by a selection function and σ = MGU(Bi, C) as
defined in [3]. A set of Horn clauses N is saturated by R if, for any two premises
P1, P2 ∈ N , the set N contains a clause that is equivalent to the resolvent of P1

and P2 up to variable renaming. A derivation by R from a set of Horn clauses N
is a sequence of sets of Horn clauses N = N0, N1, . . . such that, for each i ≥ 0,
we have that Ni+1 = Ni ∪ {C}, where C is the conclusion of an inference by R
from premises in Ni. The limit N∞ of a fair derivation from a set of Horn clauses
N is defined as N∞ =

⋃
i Ni. A set of Horn clauses N is satisfiable if and only

if � 6∈ N∞. A clause C is said to be derivable from N iff C ∈ N∞.

3 Answering Conjunctive Queries in ELHI

Given an ELHI TBox T and a conjunctive query Q = 〈QP , {QC}〉, our goal is
to compute a query rew(Q, T ) such that, for each ABox A, evaluating rew(Q, T )
over A and evaluating the query Q directly over K = 〈T ,A〉 produces exactly
the same answers. We derive this algorithm in two steps. In this section, we first
show how to compute the set of answers ans(Q,K) directly; then, in Section 4
we use this result to derive the rewriting algorithm.

It is well known that ~a ∈ ans(Q,K) if and only if Ξ(K) ∪ {QC , ⊥ ← QP (~a)}
is unsatisfiable, where Ξ(K) is the transformation of K into a set of clauses.
Therefore, to answer Q over K, we need a decision procedure for checking satis-
fiability of sets of clauses. We derive this procedure using the principles outlined
by Joyner [11]. Given K and Q, with N we denote the set of clauses of the forms
shown in Table 3. Clearly, N is finite assuming that K and Q are finite. More-
over, if we translate K into Ξ(K) according to Table 2, then Ξ(K) ∪ {QC} ⊆ N .
Finally, we saturate Ξ(K) ∪ {QC , ⊥ ← QP (~a)} using RDL—a suitably parame-
terized resolution with free selection calculus. Since RDL is sound and complete,
in order to obtain a decision procedure we only need to show that each satura-
tion terminates. This is done in the key Lemma 1 by showing that N is closed
under RDL. We now formally define Ξ, N , and RDL.



Rewriting Conjunctive Queries under Description Logic Constraints 5

Table 2: Translating ELHI axioms into clauses

ELHI clause ELHI axiom

A(a) A(a)
P (a, b) P (a, b)
B(x)← A(x) A v B
C(x)← A(x) ∧B(x) A uB v C
P (x, f i

A(x))← A(x)
A v ∃P.B

B(f i
A(x))← A(x)

ELHI clause ELHI axiom

P (f i
A(x), x)← A(x)

A v ∃P−.B
B(f i

A(x))← A(x)
B(x)← P (x, y) ∧A(y) ∃P.A v B
B(x)← P (y, x) ∧A(y) ∃P−.A v B
S(x, y)← P (x, y) P v S, P− v S−

S(x, y)← P (y, x) P− v S, P v S−

Note 1. Each axiom of the form A v ∃P (−).B is uniquely associated with a function

symbol f i
A.

Definition 1. Let K be an ELHI knowledge base and Q = 〈QP , {QC}〉 a con-
junctive query. The set of clauses Ξ(K) is obtained by transforming K as shown
in Table 2. The set of ELHI clauses N is the set of all clauses of types shown
in Table 3 constructed using the symbols in QC and K.

With RDL we denote the resolution calculus with free selection parameterized
with the following selection function S: given a clause C, (a) if C is of type
A2,A3,T3–T8, then S selects the atoms that are underlined in Table 3; (b) if
C is of type A1, T1, or T2, then, if the body is empty or the depth of the head
is greater than the maximal depth of the body, S selects the head; otherwise, S
selects all deepest body atoms; and (c) if C is of type Q1, then S selects the head
if C contains functional terms in the head or if the body is empty; otherwise, S
selects all deepest body atoms. N∞ denotes the limit of a fair derivation from a
set of clauses N by RDL.

Table 3: Clause Set N for Q = 〈QP , QC〉 and K

Type ELHI clause

A1 B(a)← A(a)
A2 B(a)← A(b)

A3 P (a, b)

T1 D(x)← A(x) ∧B(f i
C(x))

T2 D(f i
C(x))← A(x) ∧B(f i

C(x))
T3 B(x)← P (x, y) ∧ [A(y)]

Type ELHI clause

T4 B(x)← P (y, x) ∧ [A(y)]

T5 S(x, y)← P (x, y)

T6 S(x, y)← P (y, x)

T7 P (x, f i
A(x))← A(x)

T8 P (f i
A(x), x)← A(x)

Q1 QP (~u)← L(~ti)

Note 2. A, B, C, D are atomic concepts; P, S are atomic roles; L is an atomic con-

cept or role; and ~u, ~ti are tuples of terms. With C(t) we denote
∧n

i=1 Ci(t), and

with C(~ti), we denote
∧n

i=1 Ci(~ti), for some n. With [A(t)] we denote a possible oc-

currence of the atom A(t) in a clause. For each clause C of type other than Q1,

if C contains a function symbol of the form f i
A(x), then C contains A(x) in the

body. Each clause C of type Q1 has the following properties: (i) var(C) ≤ var(QC),

(ii) depth(C) ≤ max(1, var(QC)− var(C)), and (iii) if a variable x occurs in a func-

tional term in C, then x occurs in all functional terms in C.

Lemma 1. For each two clauses C1, C2 ∈ N and Cr the resolvent of C1 and
C2 by RDL, we have that Cr ∈ N .



6 Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks

Proof. It can be seen in Table 4 that if C1 and C2 are of type A1–T8, then
Cr is also of type A1–T8. Assume that C1 is of type Q1, satisfying properties
(i)–(iii) of Table 3. If the head atom QP (~t) of C1 is selected, then resolution is
not possible, since no clause in N contains QP in the body.

If a unary body atom A(t) of C1 is selected, then C2 can be of type A1 or
T2; we now show that Cr satisfies properties (i)–(iii) of Table 3.
– If C2 is of type A1, unification is possible only if the term t is either a constant

a or a variable y. In the former case, the unifier σ is empty; in the latter case,
σ = {y 7→ a}. Clearly, var(Cr) ≤ var(C1) and depth(Cr) = depth(C1), so Cr

satisfies (i) and (ii). Furthermore, since A(t) is the deepest atom in C1, the
clause C1 does not contain functional terms, so Cr does not contain them
either; hence, Cr satisfies (iii) vacuously.

– If C2 is of type T2, unification is possible only if the term t is a variable or
a functional term.
• If t is a variable y, then σ = {y 7→ f i

A(x)}. Clearly, var(Cr) = var(C1),
so Cr satisfies (i). Furthermore, depth(C1) = 0 and depth(Cr) ≤ 1, so Cr

satisfies (ii). Finally, every occurrence of y is replaced with f i
A(x), and

C1 does not contain functional terms, so (iii) holds as well.
• If t is a functional term f i

A(s), the unifier is of the form σ = {x 7→ s}.
Clearly, var(Cr) = var(C1), so Cr satisfies (i). Furthermore, since no term
in C1 is deeper than f i

A(s), we have depth(Cr) ≤ depth(C1), so Cr sat-
isfies (ii). Finally, all the functional terms introduced by the inference
share the same variable in C2, namely x, so Cr satisfies (iii).

If a binary atom P (s, t) is selected in C1, then C2 can be of type A3, T7 or
T8. We now show that Cr satisfies properties (i)–(iii) of Table 3.
– If C2 is of type A3, the unification is possible only if the terms s and t are

not functional terms. If they are both constants, the substitution σ is empty;
otherwise, σ maps s, t, or both to the corresponding constants in C2. Clearly,
var(Cr) ≤ var(C1), so Cr satisfies (i). Furthermore, depth(Cr) = depth(C1),
so Cr satisfies (ii). Finally, since P (s, t) is the deepest atom in in C1, the
clause C1 does not contain functional terms, so Cr satisfies (iii) vacuously.

– If C2 is of type T7 (analogous for T8), unification is possible only if the term
t is a variable or a functional term.
• If t is a variable xt, then σ = {xt 7→ f i

A(s), x 7→ s}. Due to the occurs-
check in unification, xt cannot occur in s. The inference thus decreases
the number of variables of C1 in Cr by one: var(Cr) = var(C1)− 1, so
Cr satisfies (i). Furthermore, C1 satisfies (iii), so xt does not occur in
a functional term in C1 (because it does not occur in s). Hence, even
though xt is mapped to a functional term, depth(Cr) ≤ depth(C1) + 1,
so Cr satisfies (ii). Finally, since every occurrence of xt is replaced with
f i

A(s), Cr satisfies (iii) as well.
• Assume that t is a functional term f i

A(t′). If s does not occur in t′, then
s is a variable xs and σ = {x 7→ t′, xs 7→ t′}. If s occurs in t′, the
only way for the inference to be possible is if t′ = s, so σ = {x 7→ t′}. In
both cases, var(Cr) ≤ var(C1) and depth(Cr) ≤ depth(C1), so Cr satisfies



Rewriting Conjunctive Queries under Description Logic Constraints 7

properties (i) and (ii). Furthermore, the inference does not introduce
new functional terms, so Cr satisfies (iii) as well.

This covers all possible forms of C1 and C2, so the lemma holds. ut

Clearly, Lemma 1 implies that the saturation of Ξ(K) ∪ {QC} by RDL ter-
minates. The principles outlined before Definition 1, however, allow us only to
check whether some tuple ~a is an answer to Q over K. In order to compute the
entire set ans(Q,K), we use the answer literal technique—that is, ~a ∈ ans(Q,K)
if and only if QP (~a) ∈ (Ξ(K) ∪ {QC})∞, for any tuple of constants ~a (c.f. [10]).

4 Rewriting Conjunctive Queries in ELHI

In this section, we present an algorithm for query rewriting : given Q and an
ELHI TBox T , we compute a datalog query rew(Q, T ) such that, for any ABox
A, the sets of answers of Q over 〈T ,A〉 and of rew(Q, T ) over A are the same.
Our goal is to produce an optimal rewriting for all sublanguages of ELHI: if T
is in a language between DL-Litecore and DL-LiteR, then rew(Q, T ) should be a
union of conjunctive queries; if T is in DL-Lite+, then rew(Q, T ) should consist
of a union of conjunctive queries and a linear datalog program; finally, if T is in
a language between EL and ELHI, then rew(Q, T ) should be a datalog query.

We derive the rewriting algorithm in two phases: we first show how to convert
Ξ(T ) into a nonoptimal datalog program by eliminating function symbols; then,
we present an additional step to obtain rewritings of optimal form.

Elimination of Function Symbols. The following definition summarizes
the first step of our rewriting algorithm.

Definition 2. For Q = 〈QP , {QC}〉 a conjunctive query and T an ELHI TBox,
ff(Q, T ) is the set that contains exactly all function-free clauses contained in
(Ξ(T ) ∪ {QC})∞.

We now show that, for each ABox A, we have T ∪ {QC} ∪ A |= QP (~a) if and
only if ff(Q, T ) ∪ A |= QP (~a), which makes ff(Q, T ) a rewriting of Q w.r.t. T ,
albeit not necessarily an optimal one. We prove the claim proof-theoretically:
we show that QP (~a) is derivable from Ξ(T ) ∪ {QC} ∪ A if and only if it is
derivable from ff(Q, T ) ∪ A. To this end, we first need to show that we can
always “postpone” the inferences with the ABox clauses in the saturation of
Ξ(T ) ∪ {QC} ∪ A—that is, we can first perform all inferences with nonground
clauses only, and then perform the inferences involving a ground clause. We omit
the proof for lack of space, it can be found in [18].

Lemma 2 ( [18]). Let Q = 〈QP , {QC}〉 be a conjunctive query, T an ELHI
TBox, and A an ABox. For each clause C of type Q1 that is derivable from
Ξ(T ) ∪ {QC} ∪ A, a clause C ′ of type Q1 is derivable from Ξ(T ) ∪ {QC} such
that, for G the subset of all clauses of type A1 and A3 in (ff(Q, T ) ∪ A)∞, we
have {C ′} ∪G |= C.



8 Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks

Table 4: Inferences of RDL on N

A1 + A1 = A1:
A(a) C(a)← A(a) ∧B(a)

C(a)← B(a)

A1 + A2 = A1:
A(a) B(b)← A(a)

B(b)
A1 + T1 = A1:
A(a) C(x)← A(x) ∧B(x)

C(a)← B(a)

A3 + T3 = A1/A2:
P (a, b) B(x)← P (x, y) ∧ [A(y)]

B(a)← [A(b)]
A3 + T5 = A3:
P (a, b) S(x, y)← P (x, y)

S(a, b)

T1 + T2 = T2:
C(x)← A(x) ∧B(x) A(f i

D(x))← F(x)

C(f i
D(x))← B(f i

D(x)) ∧ F(x)
T1 + T2 = T1:
E(x)← B(f i

A(x)) ∧C(f i
A(x)) ∧D(x) B(f i

A(x))← G(x)

E(x)← C(f i
A(x)) ∧ I(x)

T2 + T2 = T2:
E(f i

A(x))← B(f i
A(x)) ∧C(f i

A(x)) ∧D(x) B(f i
A(x))← F(x)

E(f i
A(x))← C(f i

A(x)) ∧G(x)

T3 + T7 = T1:
B(x)← P (x, y) ∧ [C(y)] P (x, f i

A(x))← A(x)

B(x)← A(x) ∧ [C(f i
A(x))]

T3 + T8 = T2:
B(x)← P (x, y) ∧ [C(y)] P (f i

A(x), x)← A(x)

B(f i
A(x))← A(x) ∧ [C(x)]

T5 + T7 = T7:
S(x, y)← P (x, y) P (x, f i

A(x))← A(x)

S(x, f i
A(x))← A(x)

T5 + T8 = T8:
S(x, y)← P (x, y) P (f i

A(x), x)← A(x)

S(f i
A(x), x)← A(x)

Q1 + A1 = Q1:

QP (~u)← A(t) ∧ L(~ti) A(a)

QP (~u)σ ← L(~ti)σ

Q1 + A3 = Q1:

QP (~u)← P (s, t) ∧ L(~ti) P (a, b)

QP (~u)σ ← L(~ti)σ
Q1 + T2 = Q1:

QP (~u)← C(t) ∧ L(~ti) C(f i
A(x))← B(x)

QP (~u)σ ← B(x)σ ∧ L(~ti)σ
Q1 + T7 = Q1:

QP (~u)← P (s, t) ∧ L(~ti) P (x, f i
A(x))← A(x)

QP (~u)σ ← A(x)σ ∧ L(~ti)σ

Note 3. The notation A + B = C denotes that “resolving a clause of type A with

a clause of type B produces a clause of type C.” For simplicity we omit analogous

inferences with inverses.



Rewriting Conjunctive Queries under Description Logic Constraints 9

This lemma now allows us to prove the desired relationship between the
answers of Q over T and A, and the answers of ff(Q, T ) over A. Clearly, if we
assume that QP (~a) is derivable from Ξ(T ) ∪ {QC} ∪ A, then, since QP (~a) is of
type Q1, by Lemma 2, a clause C ′ of type Q1 is derivable from Ξ(T ) ∪ {QC} such
that {C ′} ∪G |= C. Since QP (~a) does not contain function symbols, C ′ cannot
contain function symbols either, so C ′ ∈ ff(Q, T ). Thus, QP (~a) is implied by
ff(Q, T ) ∪G so, by the definition of G, we have ff(Q, T ) ∪ A |= QP (~a). Therefore,
Lemma 3 easily follows.

Lemma 3. Let Q = 〈QP , {QC}〉 be a conjunctive query, T an ELHI TBox,
and A an ABox. Then, ~a ∈ ans(Q, 〈T ,A〉) if and only if ff(Q, T ) ∪ A |= QP (~a).

Optimizing the Program through Unfolding. According to Lemma 3,
the datalog program ff(Q, T ) is a rewriting of Q w.r.t. T . We note, however,
that it is not necessarily optimal for TBoxes of DLs for which query answering
is in NLogSpace w.r.t. data complexity. We illustrate our point with a simple
example. Consider the following DL-Lite+ TBox T and its translation Ξ(T ) to
clauses:

T Ξ(T )

∃ hasParent.Human v Human Human(x) ← hasParent(x, y) ∧ Human(y) (1)

hasMother v hasParent hasParent(x, y) ← hasMother(x, y) (2)

Given the query Q = 〈QP , {QP (x)← Human(x)}〉, one can easily verify that
ff(Q, T ) = Ξ(T ) ∪ {QP (x)← Human(x)}. This is so because such a set does
not contain functional symbols and it is already saturated by RDL. It follows
from [17] that in the case of DL-Lite+, a worst-case optimal rewriting consists of a
linear datalog program and a union of conjunctive queries. In this case, however,
predicates Human and hasParent are IDB predicates in Ξ(T ); therefore, (1) is
not linear, which means that ff(Q, T ) is not an optimal rewriting of Q w.r.t. T .

We now introduce a further unfolding step that transforms ff(Q, T ) into a
datalog program of an optimal form.

Definition 3. The unfolding of L(~x)←M(~m) in N(~n)← L(~x′) ∧P(~p) is the
clause N(~n)σ ←M(~m)σ ∧P(~p)σ, where σ = MGU(L(~x), L(~x′)). Given two sets
of safe Horn clauses R and U , let RU be the smallest set such that R ⊆ RU and,
for each unfolding Cr of a clause C1 ∈ R ∩ U in a clause C2 ∈ R, we have that
Cr ∈ RU . The unfolding of R w.r.t. U is defined as unfold(R,U) = RU \ U .

Given an ELHI clause type T, with T* we denote all clauses of type T with
at most one body atom.

The rewriting rew(Q, T ) of a conjunctive query Q = 〈QP , {QC}〉 w.r.t. an
ELHI TBox T is the query 〈QP , unfold(R,U)〉, where R = ff(Q, T ) and U is
the subset of N of all clauses of types T1*, T3*, T4*, T5, and T6.

It was shown in [17] that given two sets of clauses R and U , for any set of
facts A and any predicate F that does not occur in U , we have R ∪A |= F (~a)
if and only if unfold(R,U) ∪A |= F (~a). Theorem 1 follows from this fact, given
Lemma 3, and that we can assume that QP does not occur in Ξ(T ).



10 Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks

Theorem 1. For a conjunctive query Q, an ELHI TBox T , and an ABox A,
we have ans(Q, 〈T ,A〉) = ans(rew(Q, T ),A).

We now prove important properties about the structure of the rewriting.
First, we note that since ff(Q, T ) is function-free and the unfolding phase does
not introduce functional terms, Lemma 4 trivially follows.

Lemma 4. For Q = 〈QP , {QC}〉 a conjunctive query and T an ELHI TBox,
rew(Q, T ) is a datalog query.

Lemma 5. For Q = 〈QP , {QC}〉 a conjunctive query and T a DL-Lite+ TBox,
and rew(Q, T ) = 〈QP , P 〉, the program P can be split into disjoint subsets UQ

and UC such that 〈QP , UQ〉 is a union of conjunctive queries and 〈QP , UC〉 is a
linear datalog query.

Proof. Let UQ ⊆ P be the set of all clauses of type Q1 in P . Clearly, 〈QP , UQ〉 is
a union of conjunctive queries. It follows from Table 2 that Ξ(T ) only contains
clauses of types T1*, T2*, T3, T5, and T7. By analyzing the inferences shown
in Table 4, one can see that saturating a set of clauses of these types by RDL

produces only clauses of types T1, T2*, T3, T5, and T7. Therefore, ff(Q, T ) only
contains clauses of types T1*, T3, T5, and Q1. Let UC = P \ UQ. The datalog
program UC is obtained by unfolding clauses of types T1*, T3*, and T5 in
ff(Q, T ), and then by removing all clauses of such types and of type Q1. Thus, UC

contains only clauses of type T3 and clauses of the form B(x)← P (x, y) ∧ S(y, z)
that are obtained by unfolding a clause of type T3* in a clause of type T3. Since
no clause in UC contains a role predicate in the head, all role predicates are EDB
predicates. Moreover, since clauses of type T3 can contain a unary predicate in
the head, unary predicates can be IDB predicates. Nevertheless, unary predicates
can only occur in the body of clauses of type T3, so all such clauses are linear.
Thus, UC is a linear datalog program. ut

Lemma 6. For Q = 〈QP , {QC}〉 a conjunctive query and T a DL-LiteR TBox,
rew(Q, T ) is a union of conjunctive queries.

Proof. It follows from Table 2 that Ξ(T ) only contains clauses of types T1*,
T3*, T4*, T5, T6, T7 and T8. By analyzing the inferences shown in Table 4,
one can see that saturating a set of clauses of these types by RDL produces only
clauses of types T1*, T2*, T3*, T4*, T5, T6, T7 and T8. Therefore, ff(Q, T ) only
contains clauses of types T1*, T3*, T4*, T5, T6, and Q1. These are precisely
the types of clauses that are to be unfolded; therefore, all clauses in ff(Q, T )
that are not of type Q1 are unfolded in clauses of type Q1, which immediately
means that rew(Q, T ) is a union of conjunctive queries. ut

5 Complexity Analysis

In this section, we determine the data complexity of answering conjunctive
queries over ELHI KBs, and show that our algorithm produces worst-case



Rewriting Conjunctive Queries under Description Logic Constraints 11

optimal rewritings for all the subsets of ELHI with query answering ranging
from LogSpace to PTime-complete. According to [6], checking entailment of
a ground concept assertion is PTime-hard if we allow for assertions of the
form ∃P.A v B and A u B v C. Moreover, it is well known that deciding if
P ∪A |= QP (~a) for a datalog program P , a set of facts A, and a tuple of con-
stants ~a, can be performed in PTime in the size of A [8]. Therefore, Theorem
2 follows given Theorem 1, Lemma 4, and that the size of rew(Q, T ) does not
depend on the size of A.

Theorem 2. For a conjunctive query Q = 〈QP , {QC}〉 and an ELHI knowledge
base K = 〈T ,A〉, deciding whether ~a ∈ ans(Q,K) is PTime-complete w.r.t. data
complexity.

We now discuss the optimality of our rewriting. First, by Lemma 4, if T
is an ELH TBox, then rew(Q, T ) is a datalog query; therefore, we can evaluate
rew(Q, T ) in PTime [8], just as in [19]. Similarly, by Lemma 5, if T is a DL-Lite+

TBox, then rew(Q, T ) consists of a union of conjunctive queries and a linear dat-
alog program; therefore, we can evaluate rew(Q, T ) in NLogSpace [17], just as
in [17]. Finally, by Lemma 6, if T is a DL-LiteR TBox, then rew(Q, T ) is a union
of conjunctive queries; therefore, we can evaluate rew(Q, T ) in LogSpace [12],
just as in [7]. Summing up, our algorithm deals with the full spectrum of lan-
guages from DL-LiteR to ELHI, which includes DL-Lite+ and EL. Furthermore,
it is optimal w.r.t. data complexity for all such languages, which makes it a gen-
eralization of the rewriting algorithms of Rosati [19], Pérez-Urbina et al. [17],
and Calvanese et al. [7].

6 Future Work

We plan to extend the technique to deal with more expressive DLs, and in par-
ticular with an extended version of ELHI including nominals. Finally, we plan
to implement our query answering technique in a prototype Information Inte-
gration system—we have established a promising relationship with researchers
at the University of Newcastle who are using Information Integration in their
ComparaGRID project,1 and we plan to use ComparaGRID as an evaluation
framework for our prototype system.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope. In International
Joint Conferences on Artificial Intelligence (IJCAI-05), 2005.

2. F. Baader and W. Nutt. Basic Description Logics, chapter 2, pages 47–100. Cam-
bridge University Press, 2003.

3. F. Baader and W. Snyder. Unification Theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532.
Elsevier Science, 2001.

1 http://www.comparagrid.org



12 Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks

4. L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 2,
pages 19–100. North Holland, 2001.

5. A. Cal̀ı. Query Answering by Rewriting in GLAV Data Integration Systems Under
Constraints. In C. Bussler, V. Tannen, and I. Fundulaki, editors, SWDB, volume
3372, pages 167–184, 2004.

6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of the 10th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2006), pages
260–270, 2006.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Fam-
ily. J. of Automated Reasoning, 2007.

8. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive
Power of Logic Programming. In IEEE Conference on Computational Complexity,
pages 82–101, 1997.

9. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and
Query Answering. In ICDT, pages 207–224, 2003.

10. C. Green. Theorem proving by resolution as a basis for question-answering systems.
In B. Meltzer and D. Michie, editors, 4th Annual Machine Intelligence Workshop,
page 183208. Edinburgh University Press, 1969.

11. W. H. Joyner. Resolution strategies as decision procedures. J. ACM, 23(3):398–
417, 1976.

12. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. In
Symposium on Principles of Database Systems, pages 299–313, 1990.

13. Y. Kazakov. Saturation-Based Decision Procedures for Extensions of the Guarded
Fragment. PhD thesis, Universität des Saarlandes, March 2006.

14. M. Lenzerini. Data Integration: a theoretical perspective. In PODS ’02: Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 233–246, New York, NY, USA, 2002. ACM Press.

15. B. Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univesität Karlsruhe (TH), January 2006.

16. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language
Semantics and Abstract Syntax. W3C Recommendation, Frebruary 2004.

17. H. Pérez-Urbina, B. Motik, and I. Horrocks. Rewriting Conjunctive Queries over
Description Logic Knowledge Bases. In Proceedings of the International Workshop
on Semantics in Data and Knowledge Bases, March 2008. To appear.

18. H. Pérez-Urbina, B. Motik, and I. Horrocks. Rewriting Conjunctive Queries under
Description Logic Constraints. Technical report, University of Oxford, 2008.

19. R. Rosati. On conjunctive query answering in EL. In Proceedings of the 2007
International Workshop on Description Logics (DL2007), CEUR-WS, 2007.

20. R. van der Meyden. Logical Approaches to Incomplete Information: A Survey. In
J. Chomicki and G. Saake, editors, Logics for Databases and Information Systems,
pages 307–356. Kluwer, 1998.

21. J. Widom. Research Problems in Data Warehousing. In 4th International Confer-
ence on Information and Knowledge Management, pages 25–30, Baltimore, Mary-
land, 1995.


