
On the use of guards for logics with data

Thomas Colcombet1, Clemens Ley2, Gabriele Puppis2

1 CNRS/LIAFA
2 Department of Computer Science, Oxford University

Abstract. The notion of orbit finite data monoid was recently intro-
duced by Bojańczyk as an algebraic object for defining recognizable lan-
guages of data words. Following Büchi’s approach, we introduce the new
logic ‘rigidly guarded MSO’ and show that the data languages definable
in this logic are exactly those recognizable by orbit finite data monoids.
We also establish, following this time the approach of Schützenberger,
McNaughton and Papert, that the first-order variant of this logic defines
exactly the languages recognizable by aperiodic orbit finite data monoids.
Finally, we give a variant of the logic that captures the larger class of
languages recognized by non-deterministic finite memory automata.

1 Introduction

Data languages are languages over an infinite alphabet – the letters of which are
called data values – which are closed under permutation of the data values. This
invariance under permutation makes any property concerning the data values,
other than equality, irrelevant. Some examples of data languages are:

• The sets of words containing exactly k distinct data values.
• The sets of words where the first and last data values are equal.
• The sets of words with no consecutive occurrences of the same data value.
• The sets of words where each data value occurs at most once. (⋆)

The intention behind data values in data words (or data trees, . . .) is to model,
e.g. the id’s in a database, or the process or users numbers in the log of a system.
Those numbers are used as identifiers, and we are interested only in comparing
them by equality. The invariance under permutation of data languages captures
this intention. Data words can also be defined to have both a data value and a
letter from a finite alphabet at each position. This is more natural in practice,
and does not make any difference in the results to follow.

The paper aims at understanding better how the classical theory of regular
languages can be extended to data languages. The classical theory associates
regular languages to finite state automata or, equivalently, to finite monoids. For
instance, important properties of regular languages can be detected by exploiting
equivalences with properties of the monoid – see, e.g. Straubing’s book [14] or
Pin’s survey [11] for an overview of the approach.

Recently, Bojańczyk introduced the notion of data monoids [3] as a frame-
work for algebraic characterizations of data languages. Bojańczyk focused on the
languages of data words recognizable by orbit finite data monoids, an analog of

finite monoids for data languages. All the above examples but ⋆ are recognizable
with this definition. Our main objective is to understand better the expressive
power of the orbit finite data monoid model by comparing it with automaton-
based models and logical formalisms for data words.

In terms of logic, there is a natural way to define logics for data words. It
is sufficient for this to use a predicate x ∼ y meaning that the data values at
positions x and y are equal. In particular, one may think that the monadic
(second-order) logic with this new predicate is a good candidate to equivalently
specify recognizable languages, i.e., would play the role of monadic logic in the
standard theory of regular languages. However, this is not the case, as monadic
logic happens to be much too expressive. One inclusion indeed holds: every
language of data words recognized by an orbit finite monoid is definable in
monadic logic. However, the converse does not hold, as witnessed by the formula

∀ x, y. x ≠ y → x ≁ y, (⋆⋆)

which defines the above (non-recognizable) language ⋆. More generally, it has
been shown that monadic logic (indeed, even first-order logic with data equal-
ity) has an undecidable satisfiability problem and it can express properties not
implementable by automaton models, such as finite memory automata (FMA,
described below) [10]. We naturally aim at answering the following question:

Is there a natural variant of monadic logic which defines precisely the
data languages recognizable by orbit finite data monoids?

We answer this question positively, introducing rigidly guarded MSO (abbrevi-
ating monadic second-order logic with rigidly guarded data equality tests). This
logic allows testing equality of two data values only when the two positions are
related in an injective way (we say rigid). That is, data equality tests are allowed
only in formulas of the form ϕ(x, y) ∧ x ∼ y, where ϕ is rigid, i.e., defines a partial
injection. For instance, it is easy to check whether there are two consecutive posi-
tions sharing the same data value, e.g., by the formula ∃ x, y. (x = y+1) ∧ x ∼ y.
The guard (x = y + 1) is rigid since x uniquely determines y, and vice versa.
However, it is impossible to describe the language ⋆ in this logic. In particular,
the above formula ⋆⋆ can be rewritten as ¬∃ x, y. (x ≠ y) ∧ x ∼ y, but this time
the guard x ≠ y is not rigid: for a given x, there can be several y such that x ≠ y.
It may seem a priori that the fact that rigidity is a semantic property is a severe
drawback. This is not the case since (i) rigidity can be enforced syntactically,
and (ii) rigidity is decidable for formulas in our logic.

To validate the robustness of our approach, we also answer to the following
question inspired from the seminal Schützenberger-McNaughton-Papert result:

Does the rigidly guarded FO logic (i.e., the first-order fragment of rigidly
guarded MSO) correspond to aperiodic orbit finite data monoids?

We answer this question positively as well. We finally consider data languages
recognizable by finite memory automata and we prove that a natural variant of
rigidly guarded MSO, called ∃backward-rigidly guarded MSO captures the class
of data languages recognized by non-deterministic finite memory automata.

2

Overall, we don’t claim that data languages recognizable by orbit finite data
monoids are the counterpart to the notion of regular languages in the standard
theory, since this model is rather expressively weak (see related work below).
However, in this restricted framework, we are able to recover several of the
major results which hold for usual regular languages.

Related work. This work is highly related to the well known theory of regular
languages. We refer by this to the key equivalence between monadic logic and
regular languages due to Büchi [5], and the Schützenberger-McNaughton-Papert
result that characterizes the subclass of first-order definable languages [13, 9].

The other branch of related work is the one concerned with languages of data
words. The first contribution in this direction is due to Kaminski and Francez
[7], who introduced finite memory automata (FMA for short). These automata
possess a fixed finite set of registers that can store data values. At each step such
an automaton can compare the current data value with the values stored in the
registers, and can decide to store this value in some register (forgetting the pre-
vious content of the register). This model of automaton, in its non-deterministic
form, has a decidable emptiness problem and an undecidable universality prob-
lem (decidability of the latter problem is recovered in the deterministic variant).

Recently, the deterministic model of FMA has been modified by requiring a
stricter policy in the use of registers [2]. This modification does not affect the
expressive power of the model, but, as opposed to the original model, the new
model can be efficiently minimized. In [1] partial results on relating automata to
logics are also given. The question of characterizing the first-order logic definable
language among the languages recognized by deterministic FMA is still open.

Many other automaton models for data languages have been studied in the
literature (see [12] for a survey). These include pebble automata [10] and data
automata [4], the latter introduced as a mean of capturing decidable logics over
data words. The algebraic theory for these models has not been developed, nor
is there an exact characterization of definability in logics for any of these models.

Contribution and structure of the paper. These are our contributions:

1. We show how infinite orbit finite data monoids can be finitely represented.

2. We introduce a new logic called “rigidly guarded MSO” – a natural weaken-
ing of MSO logic with data equality tests. Although the syntax of our logic
is based on a semantic property, one can decide whether a formula belongs
to the logic or not.

3. We show that satisfiability of rigidly guarded MSO formulas is decidable.

4. We show that rigidly guarded MSO is as expressive as orbit finite data
monoids, and that its first-order fragment corresponds precisely to aperiodic
orbit finite data monoids.

5. We give a decidable variant of rigidly guarded MSO that captures the data
languages recognized by non-deterministic finite memory automata and has
a decidable satisfiability problem. We also provide a decidable logic for data
trees along the same lines.

3

Section 2 gives preliminaries on data languages and data monoids, and explains
how to define representations of data monoids with finitely many orbits. Section 3
introduces rigidly guarded MSO and its first-order fragment. Section 4 describes
the translation from rigidly guarded MSO (resp., FO) formulas to orbit finite
data monoids (resp., aperiodic orbit finite data monoids) recognizing the same
languages. Section 5 describes the converse translation, namely, from (aperiodic)
orbit finite data monoids to rigidly guarded MSO (resp., FO) formulas. Section
6 introduces a variant of rigidly guarded MSO that captures precisely the class
of languages recognized by non-deterministic finite memory automata. Finally,
Section 7 provides an assessment of the results and related open problems.

Acknowledgments. We would like to thank Michael Benedikt and Anca Muscholl
for the many helpful remarks on the paper.

2 Data Monoids

In this paper, D will usually denote an infinite set of data values (e.g., d, e, f, . . .)
and A will denote a finite set of symbols (e.g., a, b, c, . . .). A data word over the
alphabet D × A is a finite sequence u = (d1, a1) . . . (dn, an) in (D × A)∗. The
domain of u, denoted Dom(u), is {1, . . . , n}.

Given a set C ⊆ D of data values, a (data) renaming on C is a permutation
on C that is the identity for all but finitely many values of C. We denote by
GC the set of all renamings on C. Renamings are naturally extended to tuples
of data values, data words, sets of data words, and so on. A data language over
D ×A is a set of data words in (D ×A)∗ that is closed under renamings in GD.

Recall that a monoid is an algebraic structureM = (M, ⋅) where ⋅ is an asso-
ciative product on M andM contains an identity 1M. A monoid is aperiodic if for
all elements s, there is n such that sn = sn+1. We say that the set GC of renamings
acts on a monoid M = (M, ⋅) if there is a function ˆ that maps every renaming
τ ∈ GC to an automorphism τ̂ onM. That is, for all renamings τ, π ∈ GC and all
elements s, t ∈M , we have (i) τ̂ ○ π = τ̂ ○ π̂, (ii) τ̂id(s) = s, where τid is the iden-
tity function on C, (iii) τ̂(s) ⋅ τ̂(t) = τ̂(s ⋅ t), and (iv) τ̂(1M) = 1M. For example,
consider the free monoid ((D ×A)∗, ⋅) consisting of all finite words over D ×A
equipped with the operation of juxtaposition (the empty word ε playing the role
of the identity). The group GD of data renamings acts on the free monoid when
the action is defined by τ̂((d1, a1) . . . (dn, an)) = (τ(d1), a1) . . . (τ(dn), an).

We say that a renaming τ is a stabilizer of an element s of a monoidM acted
upon by GC , if τ̂(s) = s. A set C ′ ⊆ D of data values supports an element s if
all renamings that are the identity on C ′ are stabilizers of s. It is known that
the intersection of two sets that support s is a set that supports s as well [3, 6].
Hence we can define the memory of s, denoted mem(s), as the intersection
of all sets that support s. Note that there are finite monoids whose elements
have infinite memory (see [3] for an example). On the other hand, monoids that
are homomorphic images of the free monoid contains only elements with finite
memory. As we are interested in homomorphic images of the free monoid, we

4

will consider monoids whose elements have finite memory (this property is called
finite support axiom and the resulting algebraic objects data monoids).

Definition 1. A data monoid M = (M, ⋅, ˆ) over C is a monoid (M, ⋅) that is
acted upon by GC , in which every element has finite memory.

Unless otherwise stated, data monoids are defined over the set D of data values.
The orbit of an element s ofM = (M, ⋅, ˆ) is the set of all elements τ̂(s) with

τ ∈ GD. Note that two orbits are either disjoint or equal. We say thatM is orbit
finite if it contains finitely many orbits. It is easy to see that if two elements are
on the same orbit, then their memories have the same size. Hence an orbit finite
data monoid has a uniform bound on the size of the memories (this is not true
for arbitrary data monoids).

A morphism between two data monoidsM = (M, ⋅, ˆ) and N = (N,⊙, ˇ) is a
monoid morphism that commutes with the action of renamings.A data language
L ⊆ (D×A)∗ is recognized by a morphism h ∶ (D×A)∗ → M if the membership
of a word u ∈ (D ×A)∗ in L is determined by the element h(u) ofM, namely, if
L = h−1(h(L)). As L is closed under renamings, h(L) is a union of orbits.

Finite presentations of data monoids. Since orbit finite data monoids are
infinite objects, we need suitable representations that ease algorithmic manipu-
lation. The basic idea is to consider the restriction of an orbit finite data monoid
to a finite set of data values:

Definition 2. Given a data monoid M = (M, ⋅, ˆ) and C ⊆ D, we define the
restriction of M to C to be M∣C = (M ∣C , ⋅ ∣C , ˆ∣C), where M ∣C consists of all
elements s ∈ M such that mem(s) ⊆ C, ⋅ ∣C is the restriction of ⋅ to M ∣C , and
ˆ∣C is the restriction of ˆ to GC and M ∣C .

Note that s ⋅ t ∈M ∣C and τ̂(s) ∈M ∣C for all s, t ∈M ∣C and τ ∈ GC . Hence, if C is
finite,M∣C is a finite data monoid.3 Hereafter, we denote by ∥M∥ the maximum
cardinality of the memories of the elements of an orbit finite data monoid M.

Proposition 1. LetM,M′ be orbit finite data monoids such that ∥M∥ = ∥M′∥
and let C ⊆D be of cardinality at least 2∥M∥. IfM∣C andM′∣C are isomorphic,
then so are M and M′.

The above proposition shows that the restriction of an orbit finite data
monoidM over a sufficiently large finite set C uniquely determinesM. A more
careful analysis shows that many operations on orbit finite data monoids (e.g.,
the product of two such monoids, the quotient with respect to a congruence) can
be performed at the level of the finite restriction. This allows us to effectively
compute the results of algebraic operations on orbit finite data monoids.

Term-based presentations of data monoids. We have just shown how we
can represent an infinite data monoid by a finite one. It is also possible to give
3 One has to keep in mind that data monoids over finite sets do not satisfy the same

properties as those over infinite sets. For instance, the Memory Theorem, as stated
in [3], does not hold for data monoids over finite sets.

5

a more explicit presentation of orbit finite data monoids using what we call a
term-based presentation system. Each element is a term of the form o(d1, . . . , dk)
in which o is an orbit name (belonging to some fixed set) of a fixed arity k, and
d1, . . . , dk are distinct values. Those terms are furthermore considered modulo an
equivalence relation, and equipped with a binary operation. Such a presentation
is valid if the binary operation is associative over the equivalence classes, and if
the data values respect the renaming policy required for data monoids. Under
those suitable assumptions, the equivalence classes of terms equipped with the
associative operation as product and the natural renaming operations form a
data monoid. Furthemore, if there are finitely many orbit names, then the rep-
resented data monoid is orbit finite. We also show that conversely, every orbit
finite data monoid can be represented by such a term-based representation, using
finitely many orbit names.

This kind of presentation ease algorithmic manipulations of the elements
of the data monoid, and are heavily used in the proofs. Some open questions
are directly related to this presentation such as: is it possible to get rid of the
equivalence relation for recognizing a language of data words?

3 Rigidly guarded logics

From now on, we abbreviate monadic second-order logic with data equality tests
by MSO. MSO formulas are built up from atoms of the form x < y, a(x), x ∈X,
or x ∼ y, using boolean connectives and existential quantifications over first-order
variables (e.g., x, y, . . .) and monadic second-order variables (e.g., X,Y, . . .). The
meaning of an atom x ∼ y is that the data values at the two positions that
correspond to the interpretation of the variables x and y must be the same. The
meaning of the other predicates is as usual.

Here we introduce a new logic called “rigidly guarded MSO”. We say that
a formula ϕ(x, y) with two free first-order variables x, y is rigid if for all data
words u ∈ (D × A)∗ and all positions x (resp., y) in u, there is at most one
position y (resp., x) in u such that u ⊧ ϕ(x, y). Rigidly guarded MSO is obtained
from MSO by enforcing the following restriction: every data equality test of the
form x ∼ y must be guarded by a rigid formula ϕ(x, y). Precisely, the formulas
of rigidly guarded MSO are build up using the following grammar:

ϕ ∶= ∃ x. ϕ ∣ ∃ Y . ϕ ∣ x < y ∣ a(x) ∣ x ∈ Y ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕrigid(x, y) ∧ x ∼ y
where a ∈ A and ϕrigid(x, y) is a rigid formula that is generated by the same
grammar. Rigidly guarded FO is the first-order fragment of rigidly guarded MSO.

The notion of rigidity is a semantic property, and this may seem prob-
lematic. However, we can enforce rigidity syntactically as follows. Instead of
a guard ϕrigid(x, y) in a formula, one uses the new guard

ϕ̃rigid(x, y) =def ϕrigid(x, y) ∧ ∀ x′, y′. ϕrigid(x′, y′) → (x = x′ ↔ y = y′) .
It is easy to check that ϕ̃rigid is always rigid, and that furthermore, if ϕrigid

is rigid then it is equivalent to ϕ̃rigid. This trick allows us to enforce rigidity

6

syntactically. We will also see in Corollary 2 below that one can decide if a
formula respects the rigidity assumption in all its guards (the problem being
undecidable when data tests are not guarded).

We remark that in this logic, the similar constructions ϕrigid(x, y) ∧ x ≁ y,
ϕrigid(x, y) → x ∼ y, and ϕrigid(x, y) → x ≁ y can be derived. This is thanks to
the Boolean equivalences ϕ → ϕ′ iff ϕ → (ϕ ∧ ϕ′), ϕ ∧ ¬ϕ′ iff ¬(ϕ → ϕ′), and
ϕ→ ¬ϕ′ iff ¬(ϕ ∧ ϕ′).

Example 1. Let us consider the language L≥k of all data words that contain at
least k different data values. If k = 1 we just need to check the non-emptiness
of the word by the sentence ∃ x. true. For k = 2 it is sufficient to test for the
existence of two distinct consecutive data values, using for instance the formula
∃ x, y. (x + 1 = y) ∧ x ≁ y. For k > 2, one can proceed by induction as follows.
One first observes that if a word has at least k distinct data values, then there is
a minimal factor witnessing this property, say [x, y]. A closer inspection reveals
that, in this case, [x + 1, y − 1] is a maximal factor that uses exactly k − 2 data
values and thus belongs to the language L≥k−2 ∖ L≥k−1. By induction, the fact
that [x+1, y−1] is a maximal factor that belongs to L≥k−2 ∖L≥k−1 is expressible
in rigidly guarded FO by a formula ϕ(x, y). Furthermore, this formula ϕ(x, y)
is rigid according to its semantic definition. We conclude that the language L≥k
is defined by the formula ∃ x, y. ϕ(x, y) ∧ x ≁ y.

To simplify the notation, it is sometimes convenient to think of a first-order
variable x as a second-order variable X interpreted as a singleton set. Therefore,
by a slight abuse of notation, we shall often write variables in uppercase letters,
without explicitly saying whether these are first-order or second-order variables
(their correct types can be inferred from the atoms they appear in). As usual, we
write ϕ(X1, . . . ,Xm) whenever we want to make explicit that the free variables
of ϕ are among X1, . . . ,Xm. Moreover, given a formula ϕ(X1, . . . ,Xm), a data
word u ∈ (D ×A)∗, and some unary predicates U1, . . . , Um ⊆ Dom(u), we write
u ⊧ ϕ(U1, . . . , Um) whenever ϕ holds on u by interpreting the free variables
X1, . . . ,Xm with the predicates U1, . . . , Um.

As usual, given a formula ϕ(X̄) with some free (first-order or monadic second-
order) variables X1, . . . ,Xm, one can see it as defining the language

JϕK = {⟨u,U1, . . . , Um⟩ ∶ u ⊧ ϕ(U1, . . . , Um)} ⊆ (D ×A ×Bm)∗

where B denotes the binary alphabet {0,1} and ⟨u,U1, . . . , Um⟩ is the word over
the alphabet D ×A ×Bm that has letter (d, a, b1, . . . , bm) at position i iff (d, a)
is the i-th letter of u, and for all j = 1 . . .m, bj is 1 if i ∈ Uj , and 0 otherwise.

4 From the logic to data monoids

In this section, we show that every data language defined by a rigidly guarded
MSO sentence is recognized by an orbit finite data monoid. Our proof follows
the classical technique for showing that MSO definable languages over standard
words can be recognized by monoids. Namely, we show that each construction

7

in the logic corresponds to a closure under some operation on recognizable lan-
guages: disjunction corresponds to union, negation corresponds to complement,
existential quantification corresponds to projection, etc.

The principle of the proof is to establish that, given a rigidly guarded MSO
formula ϕ(X̄), the language JϕK is recognized by an orbit finite data monoid.
Though this statement is true, it cannot be used – as it is the case in the standard
theory – as an induction hypothesis. The problem is that the operation that
corresponds to existential quantification (i.e. projection) transforms an orbit
finite data monoid into a data monoid which is not orbit finite, in general. That
is why our induction hypothesis is stronger, and states that JϕK is recognized by
an orbit finite data monoid via a projectable morphism, to be defined below (we
write s ≐ t whenever the elements s and t are in the same orbit):

Definition 3. Let h be a morphism from the free data monoid (D×A×Bm)∗ to
a data monoid M = (M, ⋅, ˆ). We say that h is projectable if for all data words
u ∈ (D×A)∗ and all tuples of predicates Ū = (U1, . . . , Um) and V̄ = (V1, . . . , Vm),

h(⟨u, Ū⟩) ≐ h(⟨u, V̄ ⟩) implies h(⟨u, Ū⟩) = h(⟨u, V̄ ⟩) .

We now state the theorem, which is at the same time our induction hypothesis:

Theorem 1. For all rigidly guarded MSO formulas ϕ(X̄), the language JϕK is
effectively recognized by an orbit finite data monoid with a projectable morphism.

From the above theorem we obtain, in particular, the following key corollaries:

Corollary 1. Every data language definable in rigidly guarded MSO (resp.,
rigidly guarded FO) is recognizable by an orbit finite data monoid (resp., aperi-
odic orbit finite data monoid).

Note that the claim for the first-order case is deduced using the result that
every language recognized by an orbit finite data monoid and definable in FO
(without any rigidity assumption) is recognized by an aperiodic orbit finite data
monoid [3]. That is why Theorem 1 needs not to consider the first-order case.

Corollary 2. The satisfiability problem for rigidly guarded MSO logic is decid-
able. Moreover, one can decide whether a formula belongs to the rigidly guarded
MSO logic, and in this case whether the formula is rigid.

The proof of Theorem 1 is by structural induction on the rigidly guarded
MSO formulas: the translation of the atomic formulas x < y, a(x), x ∈ Y are easy
(at least towards non-aperiodic monoids) and the translations of the Boolean
connectives are as in the classical case.

The translation of the existential closures uses a powerset construction on
orbit finite data monoids. Since data monoids are in general infinite objects, the
standard powerset construction would yield infinitely many orbits even if the
original data monoid has finitely many of them. In our case, the construction
remembers all possible elements of the original monoid, but since the morphism
is projectable, one never has to store more than one element per orbit. Indeed,

8

whenever another element in the same orbit is encountered, it has to be equal
to the one already present: this limitation allows us to preserve orbit finiteness.

The most technical part concerns the translation of the rigidly guarded data
tests ϕ(x, y) ∧ x ∼ y. The rigidity assumption on the guard ϕ(x, y) is cru-
cial for this result: if ϕ(x, y) were not rigid, then the data monoid recognizing
Jϕ(x, y) ∧ x ∼ yK would still be orbit finite, but the morphism would in gen-
eral not be projectable. The proof that Jϕ(x, y) ∧ x ∼ yK is recognized via a
projectable morphism requires a bit of analysis since rigidity is a semantic as-
sumption and hence one cannot directly deduce from it a property for the data
monoid. However, one can use the rigidity property for “normalizing” the data
monoid, allowing the construction to go through.

5 From data monoids to the logic

Having shown that every language defined by a rigidly guarded MSO (resp., FO)
formula is recognized by an orbit finite data monoid (resp., by an aperiodic orbit
finite data monoid), we now show the converse.

Theorem 2. Given an orbit finite data monoid M, a morphism h from the
free data monoid to M, and an orbit o, one can compute a rigidly guarded
MSO sentence ϕ that defines the data language L = h−1(o). Moreover, if M is
aperiodic, then ϕ is a rigidly guarded FO sentence.

This is the most technical result of the paper. Note that in the classical theory
of regular languages, the analogous of Theorem 2 (at least the part involving only
MSO) is straightforward: indeed, a monoid can be used as an automaton, and it
is sufficient to write an MSO formula that guesses a run of such an automaton
and checks that it is valid and accepting. We cannot use such a proof for data
monoids: not only there is no equivalent automaton model, but furthermore, the
above approach is intrinsically not compatible with the notion of rigidity.

Our proof follows a structure similar to Schützenberger’s proof that languages
recognized by aperiodic monoids are definable by star-free expressions (i.e., in
FO logic). The proof relies on an induction on the structure of ideals of the data
monoid, the so called Green’s relations [11]. This requires specific study of this
theory for orbit finite data monoids. Such a study was initiated by Bojańczyk
[3], but we had to develop several new tools for our proof to go through (these
tools concern the size of H-classes and the analysis of the memory inside the J -
classes). As opposed to the classical case, the proof is significantly more involved
for MSO compared to FO.

6 Logics for finite memory automata

In this section, we try to see how guards as introduced above can help con-
structing decidable logics. We consider languages recognized by finite memory
automata (FMA) [7]. These extend finite state automata by a finite set of regis-
ters, storing values from an infinite alphabet D. Data words are processed from

9

left to right. At each step the automaton compares (up to equality) the current
input value with the values that are stored in its registers. Based on this infor-
mation, the automaton decides whether or not to store the input value in one of
its registers, updates its state, and moves one symbol to the right.

The deterministic variant of FMA can be viewed as the natural automaton
counterpart of orbit finite data monoids. However, deterministic FMA are more
expressive than orbit finite data monoids, as witnessed by the language

L =def {d1 . . . dn ∶ n ∈ N, d1 = di for some 1 < i ≤ n}
which is recognizable by deterministic FMA, but not by orbit finite data monoids.
Moreover, unlike classical finite automata, non-deterministic FMA are even more
expressive than deterministic FMA, as witnessed by the language

L′ =def {d1 . . . dn ∶ n ∈ N, di = dj for some 1 ≤ i < j ≤ n}.
It thus comes natural to look for logical characterizations of data languages
recognizable by deterministic (resp., non-deterministic) FMA.

A natural attempt at finding a logic for FMA consists in relaxing the notion
of rigidity. One could imagine using backward-rigid guards for data tests. These
are formulas ϕ(x, y) that determine the leftmost position min(x, y) from the
rightmost position max(x, y) (but possibly not the other way around). Formulas
of backward-rigidly guarded MSO are built up using the grammar:

ϕ ∶= ∃ x. ϕ ∣ ∃ Y . ϕ ∣ x < y ∣ a(x) ∣ x ∈ Y ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕbackward(x, y) ∧ x∼y
where ϕbackward is a backward-rigid formula generated from the same grammar
(as usual, we can enforce backward-rigidity syntactically). For example the above
language L can be easily defined by the backward-rigidly guarded MSO sentence
∃ x, y. (x < y ∧ ∀ z. x ≤ z) ∧ x ∼ y. One can translate backward-rigidly guarded
MSO formulas to equivalent deterministic FMA, but not the other way around:

Proposition 2. Every language definable in backward-rigidly guarded MSO is
recognizable by deterministic FMA. There is a language recognized by a deter-
ministic FMA which cannot be defined in backward-rigidly guarded MSO.

We do not have a candidate logic that corresponds precisely to determin-
istic FMA. However, we are able to characterize the larger class of languages
recognized by non-deterministic FMA. The logic for this class is obtained from
backward-rigidly guarded MSO by allowing the guards to use additional second-
order variables (which however needs to be quantified existentially in the out-
ermost part of the formula). The logic, abbreviated ∃backward-rigidly guarded
MSO, consists of the formulas ∃ Z̄. ϕ, with ϕ is generated by the grammar

ϕ ∶= ∃x. ϕ ∣ ∃Y . ϕ ∣ x<y ∣ a(x) ∣ x∈Y ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ∃backward(x, y, Z̄) ∧ x∼y
where ϕ∃backward is a formula from the same grammar that determines min(x, y)
from max(x, y) and Z̄, and where the quantifications are over variables different
from Z̄ (the variables Z̄ are quantified only in the outermost part of ∃ Z̄. ϕ).

Theorem 3. A language is definable in ∃backward-rigidly guarded MSO iff it is
recognizable by non-deterministic FMA.

10

As it happens for rigidly guarded MSO logic, one can derive from Theorem
3 the following decidability results:

Corollary 3. The satisfiability problem for ∃backward-rigidly guarded MSO is
decidable. Moreover, one can decide whether a formula belongs to the ∃backward-
rigidly guarded MSO, and in this case whether the formula is ∃backward-rigid.

It is also easy to generalize both Theorem 3 and Corollary 3 to data tree
languages recognized by non-deterministic finite memory tree automata [8]. For
this we use a natural variant of ∃backward-rigidly guarded MSO on data trees.
The guarded tests in this case are of the form

ϕ∃downward(x, y, Z̄) ∧ ϕ′∃downward(x, z, Z̄) ∧ y ∼ z
where ϕ∃downward(x, y, Z̄) (resp. ϕ′∃downward(x, z, Z̄)) is a formula in the logic
that determines the position y (resp., z) from an ancestor x in the data tree
and the second-order variables Z̄. This logic happens to be equivalent with the
natural extension of non-deterministic FMA to trees.

Finally, it is natural to look for effective characterizations of data languages
that are both recognizable by non-deterministic FMA and definable in (unre-
stricted) FO. However, it is known that such characterization cannot be achieved:
in [1] it has been shown that the problem of determining whether a language
recognized by a non-deterministic FMA is definable in FO is undecidable. The
problem of characterizing FO within the class of languages recognizable by de-
terministic FMA is still open.

7 Conclusion and future work

We have shown that the algebraic notion of orbit finite data monoid corresponds
to a variant of the logic MSO which is – and this is of course subjective – natural.
It is natural in the sense that it only relies on a single and understandable
principle: guarding data equality tests by rigidly definable relations.

We believe that this notion of guard is interesting by itself. Of course, it is
not the first time that guards are used to recover some decidability properties
from a too expressive logic. What is more original in the present context is the
equivalence with the algebraic object, which shows that this approach is in some
sense maximal: it is not just a particular technique among others for having
decidability, but it is sufficient for completely capturing the expressiveness of
the very natural algebraic model.

Another contribution of the present work is the development of the structural
understanding of orbit finite data monoids. By structural understanding, we refer
to Green’s relations. These relations form a major tool in most involved proofs
concerning finite monoids. The corresponding study of Green’s relations for orbit
finite data monoids was already a major argument in the proof of [3], and it had
to be developed even further in the present work.

Finally, we proved that a variant of the same logic captures the larger class
of data languages recognized by non-deterministic NFA.

11

We are only at the beginning of understanding the various notions of recog-
nizability for data languages. However, several interesting questions were raised
during our study. Some of them concern the fine structure of the logic:

The nesting level of guards seems to be a robust and relevant parameter
in our logic. Can we understand it algebraically? Can we decide it?

Other questions concern the more general model of FMA:
Can we characterize among the languages recognized by deterministic
FMA the ones recognizable by orbit finite data monoids? Can we give a
logic equivalent to deterministic FMA and characterize its FO fragment?

References

[1] M. Benedikt, C. Ley, and G. Puppis. Automata vs. logics on data words.
In Proceedings of the 19th EACSL Annual Conference on Computer Science
Logic (CSL), volume 6247 of Lecture Notes in Computer Science, pages 110–124.
Springer, 2010.

[2] M. Benedikt, C. Ley, and G. Puppis. What you must remember when processing
data words. In Proceedings of the 4th Alberto Mendelzon International Workshop
on Foundations of Data Management (AMW), volume 619 of CEUR Workshop
Proceedings. CEUR-WS.org, 2010.

[3] M. Bojańczyk. Data monoids. In Proceedings of the 28th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), volume 9 of LIPIcs, pages
105–116. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[4] M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-
variable logic on words with data. In Proceedings of the 21th IEEE Symposium on
Logic in Computer Science (LICS), pages 7–16. IEEE Computer Society, 2006.

[5] R.J. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 6(1-6):66–92, 1960.

[6] M. Gabbay and A.M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2002.

[7] M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

[8] M. Kaminski and T. Tan. Tree automata over infinite alphabets. In Proceedings of
the Pillars of Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot
on the Occasion of His 85th Birthday, volume 4800 of Lecture Notes in Computer
Science, pages 386–423. Springer, 2008.

[9] R. McNaughton and S. Papert. Counter-free Automata. M.I.T. Research Mono-
graph. Elsevier MIT Press, 1971.

[10] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over in-
finite alphabets. ACM Transactions on Computational Logic, 5(3):403–435, 2004.

[11] J.E. Pin. Mathematical foundations of automata theory. Available on: http:

//www.liafa.jussieu.fr/~jep/MPRI/MPRI.html, 2010.
[12] T. Schwentick. Automata for XML - a survey. Journal of Computer and System

Sciences, 73(3):289–315, 2007.
[13] M.P. Schützenberger. On finite monoids having only trivial subgroups. Informa-

tion and Control, 8(2):190–194, 1965.
[14] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser

Verlag, 1994.

12

http://www.liafa.jussieu.fr/~jep/MPRI/MPRI.html
http://www.liafa.jussieu.fr/~jep/MPRI/MPRI.html

A Proofs for Section 2 (Data monoids)

Proposition 1. Let M,M′ be orbit finite data monoids such that ∥M∥ = ∥M′∥
and let C ⊆D be of cardinality at least 2∥M∥. IfM∣C andM′∣C are isomorphic,
then so are M and M′.

Proof. Let M = (M, ⋅, ˆ) and M′ = (M ′,⊙, ˇ) and let fC be a data monoid
isomorphism from M∣C to M′∣C . We show how extend fC to an isomorphism
from M to M′. Given s ∈ M , we let τ be any renaming such that τ̂(s) ∈ M ∣C
(note that such a renaming exists since ∣C ∣ ≥ ∣mem(s)∣) and we accordingly define

f(s) = τ̂−1(fC(τ̂(s))).
We prove that the function f is well-defined, namely, that f(s) does not depend
on the choice of the renaming τ . To do that, we consider two renamings τ and σ
such that τ̂(s), σ̂(s) ∈M ∣C , we define t = τ̂−1(fC(τ̂(s))) and t′ = σ̂−1(fC(σ̂(s))),
and we prove that t = t′. Consider the data renaming π ∶= σ ○ τ−1. As in this case
σ = π ○ τ , we get

t′ = σ̌−1(fC(σ̂(s))) = σ̌−1(fC(π̂(τ̂(s)))).
Similarly, as fC ○ π̂ = π̌ ○ fC and as τ−1 = σ−1 ○ π

σ̌−1(fC(π̂(τ̂(s)))) = σ̌−1(π̌(fC(τ̂(s))) = τ̌−1(fC(τ̂(s))) = t

which proves that the function f is well defined.
We claim that f is a bijection from M to M ′. Surjectivity of f is straight-

forward, since for every element s′ ∈ M ′, there exists a renaming τ such that
τ̂(s′) ∈ M ′∣C and hence, if we let s = τ̂−1(f−1

C (τ̂(s′))), we have f(s) = s′. The
proof that f is injective is analogous to the proof that f is well defined, and thus
omitted.

Commutativity with renamings. Now, we show that f commutes with the action
of renamings. Given an element s ∈ M and a renaming π ∈ GD, we choose a
renaming τ such that both τ̂(s) and τ̂(π̂(s)) belong to M ∣C (note that such a
renaming exists since ∣C ∣ ≥ ∣mem(s) ∪mem(π̂(s))∣). We also define the renaming
σ = τ ○ π ○ τ−1. Note that, by construction, we have σ̂(τ̂(s)) = τ̂(π̂(s)). Finally,
by exploiting the definition of f and the fact that fC is a data monoid morphism
from M∣C to M′∣C , we obtain

f(π̂(s)) = τ̌−1(fC(τ̂(π̂(s))))
= τ̌−1(fC(σ̂(τ̂(s))))
= τ̌−1(σ̌(fC(τ̂(s))))
= π̌(τ̌−1(fC(τ̂(s))))
= π̌(f(s)).

Commutativity with products. We conclude the proof by showing that f is a
monoid morphism from M to M′. Clearly, since M ∣C (resp., M ′∣C) contains
the identity 1M of M (resp., the identity 1M′ of M′) and since fC is a monoid
morphism fromM∣C toM′∣C , we have that f(1M) = fC(1M) = 1M′ . Let us now

13

consider two elements s, t ∈M . Let τ be a renaming such that both τ̂(s) and τ̂(t)
belong to M ∣C (again, such a renaming exists since ∣C ∣ ≥ ∣mem(s) ∪mem(t)∣).
Since fC is a monoid morphism, we obtain

f(s ⋅ t) = τ̌−1(fC(τ̂(s ⋅ t)))
= τ̌−1(fC(τ̂(s) ⋅ τ̂(t)))
= τ̌−1(fC(τ̂(s))⊙ fC(τ̂(t)))
= τ̌−1(fC(τ̂(s)))⊙ τ̌−1(fC(τ̂(t)))
= f(s)⊙ f(t).

We can conclude that f is a data monoid isomorphism from M to M′. ◻

In Section 2 we informally described term-based presentation systems for
orbit finite data monoids. Below, we give a formal definition of them. We denote
by TO,C the set of all terms of the form o(d1, . . . , dk), where o is an orbit name
from a finite set O, with associated arity k, and d1, . . . , dk are pairwise distinct
data values from a fixed (possibly infinite) set C.

Definition 4. Let O be a set of orbit names and let C be a (finite or infinite)
set of data values. A term-based presentation system S over (O,C) consists
of a set of terms T = TO,C , a binary operation ⊙ on T , an action ˇ defined by
τ̌(o(d1, . . . , dn)) = o(τ(d1), . . . , τ(dn)), and a congruence ≈ for ⊙ on T such that,
for all terms s, t, u ∈ T and all renamings τ ∈ GC ,
1. Equivariance: τ̌(s)⊙ τ̌(t) = τ̌(s⊙ t),
2. Congruence for renamings: if s ≈ t then τ̌(s) ≈ τ̌(t),
3. Associativity up to ≈: (s⊙ t)⊙ u ≈ s⊙ (t⊙ u),
4. Identity: there is a distinguished term 1 ∈ T satisfying 1⊙ t = t⊙ 1 = t.

Note that as ≈ is a congruence for ⊙, s ≈ s′ and t ≈ t′ imply s⊙ t ≈ s′ ⊙ t′. If S =
(T,⊙, ˇ,≈) is a term-based presentation system then (T,⊙, ˇ) is not necessarily
a data monoid because associativity only holds up to ≈.

We say that S represents the triple M = (M, ⋅, ˆ) if
1. M is the set of ≈-equivalence classes of terms from T ,
2. ⋅ is a binary product on M defined by [s]≈ ⋅ [t]≈ = [s⊙ t]≈,
3. ˆ maps any renaming τ ∈ GC to the function on M defined by τ̂([s]≈) =

[τ̌(s)]≈
(it is easy to check that both ⋅ and ˆ are well defined).

Proposition 3. Every term-based presentation system represents a data monoid.
Conversely, every orbit finite data monoid is represented by a term-based pre-
sentation system.

Proof. We prove the first claim. Let S = (T,⊙, ˇ,≈) be a term-based presentation
system over C and let M = (M, ⋅, ˆ) be the tuple represented by S. It follows
from Conditions 1. and 2. of the definition of a term-based presentation system
that (M, ⋅) is a monoid. We verify the other properties of data monoids:

14

1. We first check that τ̂ ○ π = τ̂ ○ π̂ for all data renamings τ, π ∈ GC . Let [o(d̄)]
be an element of M (we will drop the subscript ≈ in the rest of this proof).
Then

τ̂ ○ π[o(d̄)] = [o((τ ○ π)(d̄))] = [o(τ(π(d̄)))] = τ̂([o(π(d̄))]) = τ̂ ○ π̂([o(d̄)]).
2. Clearly if τid is the identity data renaming then τ̂id([o(d̄)]) = [o(τid(d̄))] =

[o(d̄)].
3. Let [s], [t] ∈ M and a data renaming τ ∈ GC be given. We need to check

that τ̂([s] ⋅ [t]) = τ̂([s]) ⋅ τ̂([t]). We assume that s = o(d̄), t = p(ē), and
s⊙ t = q(f̄). Then

τ̂([s] ⋅ [t]) = τ̂([s⊙ t]) = τ̂([q(f̄)]) = [q(τ(f̄))] = [τ̌(q(f̄))] = [τ̌(s⊙ t)].
From Condition 3. of of Definition 4 we know

τ̌(s⊙ t) ≈ τ̌(s)⊙ τ̌(t).
We continue our calculation as follows

[τ̌(s⊙ t)] = [τ̌(s)⊙ τ̌(t)] = [τ̌(o(d̄))⊙ τ̌(p(ē))] = [o(τ(d̄))⊙ p(τ(ē))]
= [o(τ(d̄))] ⋅ [p(τ(ē))] = τ̂([s]) ⋅ τ̂([t]).

Combining the two equations we get that τ̂([s] ⋅ [t]) = τ̂([s]) ⋅ τ̂([t]).
4. We finally show that τ̂(1) = 1, where 1 is the identity of M. This follows

from Condition 2. of Definition 4.

The second claim requires a more technical proof. Let M = (M, ⋅, ˆ) be an
orbit finite data monoid over C. If C is infinite, then we assume without loss
of generality that the data values in C are the positive natural numbers. If C
is finite, then we assume that C is a prefix of N. We first define a term-based
representation system S = (T,⊙, ˇ,≈) and later we show that S represents M.

Definition of S. Let O be a set of orbit names that contains exactly one orbit
name o for each orbit of M. The arity of o is the arity of the orbit that o
corresponds to. We define T to be the set of terms that are build up from orbit
symbols inO and data values in C. Recall that the action is completely constraint
in a term-based representation system: It has to be defined by τ̌(o(d̄)) = o(τ(d̄))
for all data renamings τ ∈ GC .

The idea of the composition operation ⊙ is to first map two terms s, t to two
terms s̃, t̃ that are canonical some sense. Then we map s̃, t̃ to the monoid, where
we can compute the product. Then we basically apply the reverse operation to
obtain a term u that we define to be the product of s and t.

More formally, we define two functions f and g that that relate the terms
in T with the elements of M. We fix a representative mo inside each orbit o
of M in such a way that mem(mo) is a prefix of the natural numbers, namely,
mem(mo) = {1, . . . ,arity(o)}. We associate with each sequence of data values d̄ =
d1, . . . , dk a renaming σd̄ that maps the numbers 1, . . . , k to the values d1, . . . , dk,
respectively, and that is the identity on D∖{1, . . . , k, d1, . . . , dk}. We then define

15

the function f from T to M such that, for every term o(d̄),
f(o(d̄)) = σ̂d̄(mo).

Note that f is not injective in general. We define ≈ by s ≈ t iff f(s) = f(t).
To define the composition ⊙ we need to choose a distinguished element in

every set f−1(m) for m ∈ M . This can be accomplished by fixing a function g
from M to T such that if m ∈ M then g(m) is the term among f−1(m) whose
data values are minimal with respect to the lexicographical order.

We now define what we meant above by canonical terms. We say that a pair
of terms o(d1, . . . , dn) and p(e1, . . . , em) is canonical, if d1, . . . , dn = 1, . . . , n and
if ei, ej ∈ {e1, . . . , em} ∖ {d1, . . . , dn} and ei < ej then i < j. Clearly for every pair
of terms s, t there is a data renaming σs,t such that σs,t(s), σs,t(t) are canonical.

Now we can define the product: For every pair terms s, t in T we define s⊙ t
to be an element in f−1(f(s) ⋅ f(t)), more precisely we define

s⊙ t = σ̌−1
s,t ○ g (f ○ σ̂s,t (s) ⋅ f ○ σ̂s,t (t)).

Finally we define the identity element 1S of S to be g(1M) where 1M is the
identity element of M. This completes the definition of S = (T,⊙, ˇ,≈).

S is a term-based presentation system. Before we prove that S satisfies the con-
ditions of Definition 4, we establish the following claim.

Claim. Let s, t ∈ T be terms and let τ be a data renaming. Then

(C1) f(τ̌(t)) = τ̂(f(t))
(C2) f(s⊙ t) = f(s) ⋅ f(t)
(C3) τ ○ σs,t (d) = στ(s),τ(t)(d) and στ(s),τ(t) ○ τ (d) = σs,t(d) for all

d ∈ mem(s) ∪mem(t).

Proof of Claim. We first prove Condition C1. Recall that if d̄ =
d1, . . . , dk is a sequence of values, then σd̄ is the data renaming that
maps the numbers 1, . . . , k to the values d1, . . . , dk respectively, and
that is the identity on D ∖ {1, . . . , k, d1, . . . , dk}. We note that for all
data renamings τ and all numbers i ≤ k,

τ ○ σd̄ (i) = στ(d̄)(i). (⋆)

This is because for all i ≤ k, τ ○σd̄ (i) = τ(di) = στ(d̄)(i). We can now
show the claim: Let τ ∈ GC and t = o(d̄) ∈ T with d̄ = d1, . . . , dk be
given. Then

f(τ̌(o(d̄))) = f(o(τ(d̄))) (by definition of ˇ)
= σ̂τ(d̄)(mo) (by definition of f)

= τ̂ ○ σd̄(mo) (by ⋆ and because mem(mo) ⊆ {1, . . . , k})
= τ̂ ○ σ̂d̄ (mo) (because M is a data monoid)
= τ̂(f(o(d̄))) (by definition of f .)

16

We now prove Condition C2:

f(s⊙ t) = σ̂−1
s,t ○ σ̂s,t ○ f (s⊙ t) (because σ̂−1

s,t ○ σ̂s,t = id)

= σ̂−1
s,t ○ f ○ σ̌s,t (s⊙ t) (by Condition C1)

= σ̂−1
s,t ○ f ○ σ̌s,t (σ̌−1

s,t ○ g (f ○ σ̂s,t (s) ⋅ f ○ σ̂s,t (t)))
(by definition of ⊙)

= σ̂−1
s,t ○ f (g (f ○ σ̌s,t (s) ⋅ f ○ σ̌s,t (t)))

(because σ̌s,t ○ σ̌−1
s,t = id)

= σ̂−1
s,t(f ○ σ̌s,t (s) ⋅ f ○ σ̌s,t (t)) (because f ○ g = id)

= σ̂−1
s,t(σ̂s,t ○ f (s) ⋅ σ̂s,t ○ f (t)) (by Condition C1)

= σ̂−1
s,t ○ σ̂s,t (f(s) ⋅ f(t)) (because M is a data monoid)

= f(s) ⋅ f(t) (because σ̂−1
s,t ○ σ̂s,t = id.)

As for the last condition, let d ∈ mem(s) ∪mem(t) be given and as-
sume that s = o(d1, . . . , dn) and that t = p(e1, . . . , em). First consider
the case where di ∈ mem(s). Note that by definition, σs,t(di) = i.
Hence τ ○ σs,t (di) = τ(i) = στ(s),τ(t)(di). If ei ∈ mem(t) is given,
then σs,t(ei) = ∣{e1, . . . , ei} ∖ {d1, . . . , dn}∣ the the result follows in
the same way. The proof that στ(s),τ(t) ○ τ (d) = σs,t(d) is similar. ◻

Turning to the main proof of the proposition, we show that S is a presentation
system by checking the conditions from Definition 4.

1. Congruence for ⊙: We need to show that s ≈ s′ and t ≈ t′ implies that
s ⊙ t ≈ s′ ⊙ t′. Assume that s ≈ s′ and t ≈ t′. Then, using Condition C2, we
get

f(s⊙ t) = f(s) ⋅ f(t) = f(s′) ⋅ f(t′) = f(s′ ⊙ t′)

2. Equivariance: We need to show that τ̌(s)⊙ τ̌(t) = τ̌(s⊙ t) for all s, t ∈ T and
τ ∈ GC .

τ̌(s)⊙ τ̌(t) = σ̌−1
τ̌(s),τ̌(t) ○ g (f ○ σ̂τ̌(s),τ̌(t)(τ̌(s)) ⋅ f ○ σ̂τ̌(s),τ̌(t) (τ̌(t)))

C3= σ̌−1
τ̌(s),τ̌(t) ○ g (f ○ σ̂s,t(s) ⋅ f ○ σ̂s,t (t))

C3= τ̌ ○ σ̌−1
s,t ○ g (f ○ σ̂s,t(s) ⋅ f ○ σ̂s,t (t))

= τ̌(s⊙ t).

3. Congruence for renamings: We need to show that if s ≈ t then σ̌(s) ≈ σ̌(t)
for all s, t ∈ T and σ ∈ GC . Let s, t ∈ T with s ≈ t be given and let σ ∈ GC .
By definition of ≈ this implies that f(s) = f(t). As σ̂ is a function it follows
that σ̂(f(s)) = σ̂(f(t)). By Condition C1 it follows that f(σ̌(s)) = f(σ̌(t)).
Hence σ̌(s) ≈ σ̌(t).

17

4. Associativity up to ≈: Let s, t, u ∈ T be given. We show that (s ⊙ t) ⊙ u =
s⊙ (t⊙ u) using Condition C2 and the associativity of the product ⋅ of M:

f((s⊙ t)⊙ u) = f(s⊙ t) ⋅ f(u)
= (f(s) ⋅ f(t)) ⋅ f(u)
= f(s) ⋅ (f(t) ⋅ f(u))
= f(s) ⋅ f(t⊙ u)
= f(s⊙ (t⊙ u)).

5. Identity: Recall that we defined 1S to be g(1M). As 1M has empty memory,
it follows that g(1M) = f−1(1M). Let t be a term. Then we have

1S ⊙ t = σ̌−1
1S ,t

○ g (f ○ σ̂1S ,t (1S) ⋅ f ○ σ̂1S ,t (t))
= σ̌−1

1S ,t
○ g (f ○ σ̂1S ,t (f−1(1M)) ⋅ f ○ σ̂1S ,t (t))

= σ̌−1
1S ,t

○ g (1M ⋅ f ○ σ̂1S ,t (t))
= σ̌−1

1S ,t
○ g (f ○ σ̂1S ,t (t))

= t.
We can conclude that S is a term-based presentation system.

The term-based system S represents M. It remain to show that S = (T,⊙, ˇ)
represents the data monoid M = (M, ⋅, ˆ). By definition, S represents M̃ =
(M̃, ⋅̃, ˜̂) where M̃ is the set of equivalence classes of ≈, and the product ⋅̃, the
action ˜̂, and the identity 1

M̃
are defined by

[s] ⋅̃ [t] = [s⊙ t]
˜̂τ([s]) = [τ̌(s)]

1
M̃

= [1S]

We know form the first claim of the proposition that M̃ is a data monoid. We
need to show that M̃ and M are isomorphic. Let h ∶ M̃ → M be the function
defined by

h([s]) = f(s).
We show that h is a data monoid isomorphism, that is a bijective data monoid
homomorphism. We first check that h is a homomorphism. There are three prop-
erties to check:

1. We need to show that h([s] ⋅̃ [t]) = h([s]) ⋅ h([t]). Using Conditoin C2 we
can calculate

h([s] ⋅̃ [t]) = h([s⊙ t]) = f(s⊙ t) = f(s) ⋅ f(t) = h([s]) ⋅ h([t])
2. Next we show that h(1

M̃
) = 1M:

h(1
M̃

) = h([1S]) = h(g(1M)) = 1M.

3. Finally, we need to show that for all terms s ∈ T and all renamings τ ∈ GC ,
h(˜̂τ([s])) = τ̂(h([s])). This holds because of the following:

h(˜̂τ([s])) = h([τ̌(s)]) = f(τ̌(s)) = τ̂(f(s)) = τ̂(h([s])).

18

It is immediate from the definition that h is injective. It remains to show that
h is surjective. Let some m ∈ M be given. We need to show that there is some
m̃ ∈ M̃ such that h(m̃) = m. We will show that there is a term t ∈ T such that
f(t) =m. This is sufficient as it implies that h([t]) = f(t) =m.

Let o be the orbit of m and assume that it has arity k. Recall that we
distinguished a representative mo in each orbit o. As m and mo are in the same
orbit there must be a data renaming τ such that τ̂(mo) =m. Also recall that we
showed in (C1) above that f ○ τ̌ = τ̂ ○ f . By multiplying with τ̌−1 on the right we
get f = τ̂ ○ f ○ τ̌−1. Let t = τ̌(o(1, . . . , k)). Then

f(τ̌(o(1, . . . , k))) = τ̂ ○ f ○ τ̌−1(τ̌(o(1, . . . , k)))
= τ̂ ○ f(o(1, . . . , k))
= τ̂(σ̂1,...,k(mo)) (by the definition of f)
= τ̂(mo) (because σ1,...,k = id)
=m.

We just proved that f(t) =m and hence h is surjective. This completes the proof
of the proposition. ◻

19

B Proofs for Section 4 (From the logic to data monoids)

This section is devoted to prove Theorem 1, that is, that the data language
defined by a rigidly guarded MSO formula can be effectively recognized by an
orbit finite data monoid via a projectable morphism. As mentioned in the main
part of the paper, the proof is an induction on the structure of the formula.

For the construction to be effective, we need to compute the result of algebraic
operations, such as product or projection, on orbit finite data monoids. It turns
out that all the operations we need for the proof are compatible with the oper-
ation on the respective restrictions. As an example, for every pair of orbit finite
data monoidsM,M′ and for every C ⊆D, we have that the productM×M′ is
an orbit finite data monoid and, moreover, (M×M′)∣C =M∣C ×M′∣C . It follows
that one can easily compute a finite presentation of the result of an algebraic
construction starting from some given representations of the input orbit finite
data monoids. In view of the above arguments, in the rest of the proof, we shall
often skip the details about how the representations of the various orbit finite
data monoids are computed and we shall focus instead on the pure algebraic
constructions. Hence, by a slight abuse of terminology, we will say that an orbit
finite data monoid M′ is computed from another orbit finite data monoid M
when a presentation ofM′ can be obtained effectively from a given presentation
of M. In a similar way, since morphisms from free data monoids to orbit finite
data monoids are uniquely determined by the images of the singleton data words,
we say that a morphism h′ ∶ (D′ ×A′)∗ → M′ can be computed from another
morphism h ∶ (D×A)∗ → M if for all singleton words u′ ∈ (D′×A′)∗, the image
h′(u′) can be obtained effectively from the images h(u), for u ∈ (D ×A)∗.

We begin by describing the translation of the existential closures of rigidly
guarded MSO formulas:

Lemma 1. Let ϕ(X̄,Xm+1) be a formula and let ϕ′(X̄) = ∃Xm+1. ϕ(X̄,Xm+1).
If JϕK is recognized by an orbit finite data monoidM via homomorphism h, then
we can compute an orbit finite data monoid M′ and a morphism h′ such that
M′ recognizes Jϕ′K via h′.

Proof. For the sake of brevity, we denote the language JϕK over D ×A ×Bm+1

defined by the formula ϕ(X̄,Xm+1) by L, and the language Jϕ′K over D×A×Bm
defined by ϕ′(X̄) = ∃Xm+1. ϕ(X̄,Xm+1) by L′ . We assume that L is recognized
by an orbit finite data monoidM via a morphism h. We will exploit a variant of
the powerset construction applied to the orbit finite data monoidM in order to
obtain an orbit finite data monoidM′ that recognizes L′. The same construction
can be applied to a given restriction M∣C that represents M (see Proposition
1) in order to compute a restriction M′∣C that represents M′. However, note
that the cardinality of the set C must be at least twice the maximal size of the
memories of the elements in M′.

The powerset construction. Let M = (M, ⋅, ˆ). We define M′ = (M ′,⊙, ˇ) as
follows:

20

• the elements in M ′ are the subsets of M that contain only pairwise orbit
distinct elements, namely, those sets S ⊆M such that for all s, s′ ∈ S, s ≐ s′
implies s = s′;

• the product ⊙ in M ′ is defined on pairs of sets S,T ∈M ′ by

S⊙T =
⎧⎪⎪⎨⎪⎪⎩

S ⋅ T if for all s, s′ ∈ S and all t, t′ ∈ T , s ⋅ t ≐ s′ ⋅ t′ implies s ⋅ t = s′ ⋅ t′

∅ otherwise

where S ⋅ T denotes the set {s ⋅ t ∶ s ∈ S, t ∈ T};
• the function ˇ maps any renaming τ to the automorphism τ̌ such that

τ̌(S) = {τ̂(s) ∶ s ∈ S}
for all S ∈M ′.

It is routine to check that the product ⊙ is associative, the function ˇ is a group
action, the empty set ∅ is a null element in M′, and the singleton {1M} is
the identity in M′. Moreover, if n is the number of orbits of M, then every
set S ∈ M ′ has cardinality at most n (indeed, if this were not the case, then S
would contain two distinct elements s and s′ such that s ≐ t, which is against the
definition of M ′). From this property it follows that every set S ∈M ′ has finite
memory, precisely, mem(S) is contained in the union of the memories mem(s)
of the finitely many elements s ∈ S. In fact, since M has at most n orbits and
the memories of two elements in the same orbit have the same size, we obtain
the following upper bound on the size of the memories of the elements of M′:
∣mem(M′)∣ ≤ n∣mem(M)∣.

Another consequence of the above construction is thatM′ has finitely many
orbits. Suppose, by way of contradiction, that there exist infinitely many sets
S1, S2, . . . ∈ M ′ that are pairwise orbit distinct. First of all, we can turn each
set Si into an ordered sequence s̄i = (si,1, . . . , si,ki) (the choice of the order in
which we list the elements is arbitrary and it is not relevant here). We can
then denote by Mi the union of the memories of the elements in each tuple s̄i,
namely, we let Mi = mem(si,1) ∪ . . . ∪mem(si,k). Without loss of generality, we
can assume that (i) all tuples s̄1, s̄2, . . . have the same cardinality k, (ii) all sets
M1,M2, . . . have the same cardinality l, and (iii) for every index 1 ≤ j ≤ k, the
elements s1,j , s2,j , . . . are in the same orbit (note that we can always enforce
these assumptions by restricting to infinite subsequences s̄i1 , s̄i2 , . . .). Now, for
every index i > 1, we fix a renaming πi such that πi(Mi) = M1 (recall that
∣Mi∣ = ∣M1∣ = l). Similarly, for every pair of indices i > 1 and 1 ≤ j ≤ k, we fix a
renaming τi,j such that τ̂i,j(π̂i(si,j)) = s1,j (recall that s1,j and si,j are in the
same orbit). We then consider the functions τi,j restricted to the set M1. From
the Pigeonhole Principle, we have that there exist two indices i ≠ i′ such that,
for every 1 ≤ j ≤ k,

τi,j ∣M1 = τi′,j ∣M1.

In particular, this implies that for every 1 ≤ j ≤ k, the function τ−1
i′,j ○ τi,j is the

identity on the set M1. Moreover, by construction, we have

(π̂−1
i′ ○ τ̂−1

i′,j ○ τ̂i,j ○ π̂i)(si,j) = (π̂−1
i′ ○ τ̂−1

i′,j)(s1,j) = si′,j .

21

Since π̂i(si,j) = s1,j and τ̂−1
i′,j ○ τ̂i,j is the identity on the set M1 ⊇ mem(s1,j),

we have that (τ̂−1
i′,j ○ τ̂i,j)(s1,j) = s1,j and hence (π̂−1

i′ ○ π̂i)(si,j) = si′,j for all
1 ≤ j ≤ k. In conclusion, we have just shown that there exist two indices i ≠ i′
and a renaming πi,i′ (= π−1

i′ ○ πi) such that

π̌i,i′(Si) = {π̂i,i′(si,j) ∶ 1 ≤ j ≤ k} = {si′,j ∶ 1 ≤ j ≤ k} = Si′ .

This is against the hypothesis of the sets Si and Si′ having different orbits. Thus
M′ is a data monoid with finitely many orbits.

The morphism. Below, we define a morphism h′ from the the free data monoid
(D×A×Bm)∗ to the data monoidM′. Precisely, for every expanded data word
⟨u,U1, . . . , Um⟩, we let

h′(⟨u,U1, . . . , Um⟩) = {h(⟨u,U1, . . . , Um, Um+1⟩) ∶ Um+1 ⊆ Dom(u)}
(note that, since h is projectable, then h′(⟨u,U1, . . . , Um⟩) contains only pairwise
orbit distinct elements and hence it is an element of the data monoid M′).

We verify that the morphism h′ is projectable. Let us consider a data word
u and some tuples of predicates Ū = U1, . . . , Um and V̄ = V1, . . . , Vm and suppose
that h′(⟨u, Ū⟩) ≐ h′(⟨u, V̄ ⟩). This means that there is a renaming τ such that

h′(⟨u, V̄ ⟩) = τ̌(h′(⟨u, Ū⟩)).
Moreover, by definition of h′, we have

{h(⟨u, V̄ , Vm+1⟩) ∶ Vm+1 ⊆ Dom(u)} = {τ̂(h(⟨u, Ū ,Um+1⟩)) ∶ Um+1 ⊆ Dom(u)}.
Since h is projectable, we have that the two sets h′(⟨u, Ū⟩) and h′(⟨u, V̄ ⟩) coin-
cide, which proves that h′ is projectable as well.

Recognizability. We now prove that the language L′ defined by ϕ′ = ∃Xm+1. ϕ
is recognized by the data monoid M′ and the morphism h′. For the sake of
brevity, we let F = h(L) and F ′ = h′(L′). We then consider an expanded data
word ⟨u, Ū⟩ ∈ (D×A×Bm)∗ and we prove that ⟨u, Ū⟩ ∈ L′ iff h′(⟨u, Ū⟩) ∈ F ′. The
left-to-right implication is trivial, so we prove the converse implication. Suppose
that h′(⟨u, Ū⟩) ∈ F ′. Since F ′ = h′(L′), we know that there is an expanded data
word ⟨v, V̄ ⟩ ∈ L′ such that h′(⟨u, Ū⟩) = h′(⟨v, V̄ ⟩). We know from the definition
of h′ that

{h(⟨u, Ū ,Um+1⟩) ∶ Um+1 ⊆ Dom(u)} = {h(⟨v, V̄ , Vm+1⟩) ∶ Vm+1 ⊆ Dom(v)}

and from the definition of L′ that (⟨v, V̄ , Vm+1⟩) ∈ L for some unary predi-
cate Vm+1 ⊆ Dom(v). Moreover, since L is recognized by M via the mor-
phism h and ⟨v, V̄ , Vm+1⟩ belongs to L, we have h(⟨v, V̄ , Vm+1⟩) ∈ F and hence
h(⟨u, Ū ,Um+1⟩) ∈ F for some unary predicate Um+1 ⊆ Dom(u). This implies that
⟨u, Ū ,Um+1⟩ ∈ L and hence ⟨u, Ū⟩ ∈ L′. ◻

We now turn to the translation of rigidly guarded data tests.

Lemma 2. Given a rigid formula ϕ(x, y), an orbit finite data monoidM and a
projectable morphism h that recognizes JϕK, one can compute an orbit finite data
monoid M′ and a projectable morphism h′ that recognizes Jϕ(x, y) ∧ x ∼ yK.

22

Proof. Let M = (M, ⋅, ˆ) be an orbit finite data monoid and let h ∶ (D × A ×
B2)∗ → M be a projectable morphism that recognizes L = Jϕ(x, y)K. We first
show that we can assume that h is surjective.

Claim 1. Given an orbit finite data monoid M and a morphism h ∶
(D×A)∗ → M, one can compute the data sub-monoid h((D×A)∗).

Proof of Claim 1. Suppose that the orbit finite data monoid M =
(M, ⋅, ˆ) is represented by its restriction M∣C , for some finite subset
C of D such that ∣C ∣ ≥ 2∣mem(M)∣. LetM′ = h((D×A)∗) be the data
sub-monoid induced by h. Clearly, we have ∣mem(M)∣ = ∣mem(M′)∣
and hence, by Proposition 1, the data sub-monoid M′ is uniquely
determined by its restriction M′∣C . Moreover, the domain of M′∣C
is the finite set h((A × C)∗), which is computable from M∣C and
h∣(A × C). Finally, the product and the group action of the data
sub-monoid M′∣C are the restrictions of the product and the group
action ofM to the finite set h((A×C)∗). This shows thatM′∣C can
be computed from M∣C and h∣(A ×C). This completes the proof of
Claim 1. ◻

Unfortunately, the property of projectability is not straightforwardly pre-
served when we turn a morphism for a rigid guard ϕ(x, y) to a morphism for the
rigidly guarded comparison ϕ ∧ x ∼ y. In this case, we derive from the rigidity
assumption on ϕ a stronger notion of projectability, which is defined below and
which is called 0-reduced projectability.

Hereafter, we call an element 0N of a data monoid N a null element if
0N ⋅m = m ⋅ 0N = 0N . It is easy to see that if a data monoid has a null element
then this element is unique. Note that if a language L is accepted by a data
monoid, then L is accepted by a data monoid with a null. Hence in the following
we will assume that M has a null element.

Definition 5. Let h be a morphism from (D ×A×B2)∗ to a data monoid M =
(M, ⋅, ˆ). We say that h is 0-reduced if for all data words u ∈ (D ×A)∗ and all
positions x,x′, y, y′ ∈ Dom(u), the following implications hold:
• If h(⟨u,{x},∅⟩) = h(⟨u,{x′},∅⟩) then x = x′ or h(⟨u,{x},∅⟩) = h(⟨u,{x′},∅⟩) =

0M.
• If h(⟨u,∅,{y}⟩) = h(⟨u,∅,{y′}⟩) then y = y′ or h(⟨u,∅,{y}⟩) = h(⟨u,∅,{y′}⟩) =

0M.

We show that the languages defined by rigid formulas are recognized by
morphisms that are both 0-reduced and projectable (we shortly call them 0-
reduced projectable morphisms).

Claim 2. Let ϕ(x, y) be a rigid formula. Given an orbit finite data
monoidM and a projectable morphism that recognizes Jϕ(x, y)K, one
can compute an orbit finite data monoid M′ and a 0-reduced pro-
jectable morphism that recognizes Jϕ(x, y)K.

23

Proof of Claim 2. Let M = (M, ⋅, ˆ) be an orbit finite data monoid
and h ∶ (D×A×B2)∗ → M a projectable morphism that recognizes
L = Jϕ(x, y)K. By Claim 1, we can assume, that h is a surjective
mapping. Below, we construct a new orbit finite data monoidM′, as
a quotient of M, and a corresponding morphism h′ that recognizes
the same language L = Jϕ(x, y)K. As usual, the same construction
can be applied effectively to a given restriction M∣C that represents
M, thus obtaining a corresponding representation M′∣C of M′.

Collapsing bad elements. Let F = h(L) and let G be the maximal set
of all elements such that M ⋅G ⋅M ∩ F = ∅. Intuitively, G contains
those elements of M that cannot be extended to some elements in
F by concatenating elements to the left, to the right, or both. Note
that G is an ideal of M, namely, M ⋅G ⋅M ⊆ G, and, furthermore,
it is closed under the action of renamings, namely, τ̂(G) ⊆ G for all
renamings τ . We now introduce the equivalence ≈G that groups any
two elements s, t ∈ M whenever we have either s = t or s ∈ G and
t ∈ G. Note that ≈G is a congruence with respect to the product of
M, namely, if s ≈G s′ and t ≈G t′, then s ⋅ t ≈G s′ ⋅ t′. The equivalence
≈G is also compatible with the action of renamings, namely, if s ≈G t,
then τ̂(s) ≈G τ̂(t) for all renamings τ . This allows us to define a data
monoidM′ as the quotient ofM with respect to ≈G, namely, as the
triple M′ = (M/≈G

,⊙, ˇ), where
• [s]≈G

⊙ [t]≈G
= [s ⋅ t]≈G

,
• τ̌([s]≈G

) = [τ̂(s)]≈G

Note that both functions ⊙ and ˇ are well defined.
ClearlyM′ is an orbit finite data monoid. Moreover, we observe that
for all r ∈M ∖G, the ≈G-equivalence class of r is the singleton {r}.
The only other element of M/≈G

is the entire set G. In addition G is
a null element of M′. Hence we will also denote it by 0M′ .

The morphism. We now define the morphism h′ ∶ (D×A×B2)∗ → M′

that recognizes L. This is nothing but the functional composition
hG○h of the morphism h from (D×A×B2)∗ toM and the morphism
hG from M to M′ defined by

hG(s) = [s]≈G
.

Note that both h and hG are surjective morphisms and hence h′ is
surjective as well. Moreover, since h−1

G ○hG is the identity on F = h(L),
we have

L = h−1(h(L)) = h−1(F) = h−1(h−1
G (hG(F))) = (h′)−1(h′(L)).

This shows that h′ recognizes the language L.

Projectability. Below, we verify that the morphism h′ is projectable.
Consider a data word u ∈ (D×A)∗ and some predicates U1, U2, V1, V2 ⊆
Dom(u) and suppose that h′(⟨u,U1, U2⟩) and h′(⟨u,V1, V2⟩) are in

24

the same orbit, namely, that there is a data renaming τ such that
h′(⟨u,V1, V2⟩) = τ̌(h′(⟨u,U1, U2⟩)). We distinguish two cases depend-
ing on whether one element among h′(⟨u,U1, U2⟩) and h′(⟨u,V1, V2⟩)
coincides with 0M′ or not. If h′(⟨u,U1, U2⟩) = 0M′ , then we recall
that 0M′ has empty memory and we obtain

h′(⟨u,V1, V2⟩) = τ̌(h′(⟨u,U1, U2⟩)) = τ̌(0M′) = 0M′ = h′(⟨u,U1, U2⟩).
A similar conclusion can be obtained from h′(⟨u,V1, V2⟩) = 0M′ .
In the remaining case, we assume that neither h′(⟨u,U1, U2⟩) nor
h′(⟨u,V1, V2⟩) are the null element. By construction, we know that
neither h(⟨u,U1, U2⟩) nor h(⟨u,V1, V2⟩) belong to the ideal G and
hence h′(⟨u,U1, U2⟩) = {h(⟨u,U1, U2⟩)} and also h′(⟨u,V1, V2⟩) =
{h(⟨u,V1, V2⟩)}. Moreover, we have

h′(⟨u,V1, V2⟩) = τ̌(h′(⟨u,U1, U2⟩)) = {τ̂(h(⟨u,U1, U2⟩))}
and hence h(⟨u,V1, V2⟩) = τ̂(⟨u,U1, U2⟩). Finally, since h is pro-
jectable, we obtain h(⟨u,U1, U2⟩) = h(⟨u,V1, V2⟩) and therefore we
get h′(⟨u,U1, U2⟩) = h′(⟨u,V1, V2⟩). This shows that h′ is projectable
as well.

0-Reduced projectability. We now exploit the fact that the language L
is defined by a rigid formula ϕ(x, y) to prove that the morphism h′ is
also 0-reduced. Let u ∈ (D×A)∗ be a data word and let x,x′ ∈ Dom(u)
be two positions in it. By way of contradiction, we assume that x ≠ x′
and h′(⟨u,{x},∅⟩) = h′(⟨u,{x′},∅⟩) ≠ 0M′ and we prove that ϕ(x, y)
is not rigid (the same conclusion can be obtained from the assump-
tion that there exist two positions y, y ∈ Dom(u) such that y ≠ y′ and
h′(⟨u,∅,{y}⟩) = h′(⟨u,∅,{y′}⟩) ≠ 0M′ , thus proving that the mor-
phism h′ is 0-reduced). Since h′(⟨u,{x},∅⟩) = h′(⟨u,{x′},∅⟩) ≠ 0M′ ,
we know that h(⟨u,{x},∅⟩) = h(⟨u,{x′},∅⟩) ∉ G and hence there ex-
ist s, t ∈M such that s⋅h(⟨u,{x},∅⟩)⋅t = s⋅h(⟨u,{x′},∅⟩)⋅t ∈ F . More-
over, since h is surjective, we know that there exist two expanded
data words ⟨v,U1, U2⟩ and ⟨w,V1, V2⟩ such that h(⟨u,U1, U2⟩) = s
and h(⟨v, V1, V2⟩) = t. Since M and h recognize the language L de-
fined by the formula ϕ(x, y) and F = h(L), we have that ϕ(x, y)
is satisfied by both the sequence ⟨v,U1, U2⟩⟨u,{x},∅⟩⟨w,V1, V2⟩ and
the sequence ⟨v,U1, U2⟩⟨u,{x′},∅⟩⟨w,V1, V2⟩. Finally, since x ≠ x′,
we must conclude that ϕ(x, y) is not rigid. This completes the proof
of Claim 2. ◻

We can now start with the main part of the proof of Lemma 2. Recall that
M = (M, ⋅, ˆ) is the data monoid that recognizes L = Jϕ(x, y)K via the projectable
morphism h ∶ (D ×A ×B2)∗ → M. We denote by N = (N,⊙, ˇ) the syntactic
data monoid of the language defined by x ∼ y and by g ∶ (D ×A ×B2)∗ → N
the corresponding morphism that recognizes Jx ∼ yK. The data monoid N has
finitely many orbits and its elements can be assumed to be terms of one the
following forms:

25

1. o(ε), which plays the role of the identity 1N in N and which corresponds to
the image of the empty word under g;

2. o(d), for any d ∈ D, which corresponds to the image of the data words
expanded by a singleton predicate U = {x} and the empty predicate V = ∅
under g;

3. p(d), for any d ∈ D, which corresponds to the image of the data words
expanded by the empty predicate U = ∅ and a singleton predicate V = {y}
under g;

4. r(ε), with corresponds to the image of the expanded data words that satisfy
x ∼ y under g;

5. s(ε), which plays the role of the null element 0N in N and which corresponds
to the image under g of the data words expanded with two non-empty pred-
icates U,V that do not satisfy x ∼ y

For example, we have o(d) ⊙ p(d) = r(ε) and o(d) ⊙ p(e) = s(ε), for all pairs of
distinct values d, e ∈D. Note that the morphism g is not projectable.

The 0-collapse product. We define the data monoidM′ for the formula ϕ(x, y) ∧
x ∼ y using a suitable variant of the algebraic product of M and N , which we
call 0-collapse product (strictly speaking, the 0-collapse product is a special form
of semi-direct product). Formally, we let M′ be the triple (M ′,⊚,̃), where

• M ′ consists of all pairs (m,n) ∈M ×N such that m = 0M implies n = 0N ;
• for every (m,n), (m′, n′) ∈ M ′, the product (m,n) ⊚ (m′, n′) is either the

pair (m ⋅m′, n⊙n′) or the pair (0M,0N), depending on whether m ⋅m′ ≠ 0M
or not;

• τ̃(m,n) = (τ̂(m), τ̌(n)) for all (m,n) ∈M ′ and all τ ∈ ΓD.
Clearly, the thus defined data monoid M′ has finitely many orbits.

The Morphism. Accordingly, we denote by h′ the morphism that maps any ex-
panded word ū ∈ (D × A × B2)∗ to either the pair (h(ū), g(ū)) or the pair
(0M,0N), depending on whether h(ū) ≠ 0M or not. Clearly, h′ recognizes the
language Jϕ(x, y) ∧ x ∼ yK.
Projectability. Below, we prove that h′ is a projectable morphism. Consider a
data word u ∈ (D×A)∗ and some predicates U1, U2, V1, V2 ⊆ Dom(u) and suppose
that the elements h′(⟨u,U1, U2⟩) and h′(⟨u,V1, V2⟩) are in the same orbit. We dis-
tinguish between the case where h(⟨u,U1, U2⟩) = 0M (and hence h(⟨u,V1, V2⟩) =
0M as well) and the case where h(⟨u,U1, U2⟩) ≠ 0M (and hence h(⟨u,V1, V2⟩) ≠
0M as well). In the former case, we immediately have h′(⟨u,U1, U2⟩) = (0M,0N) =
h′(⟨u,V1, V2⟩). In the latter case, h′(⟨u,U1, U2⟩) = (h(⟨u,U1, U2⟩), g(⟨u,U1, U2⟩))
and h′(⟨u,V1, V2⟩) = (h(⟨u,V1, V2⟩), g(⟨u,V1, V2⟩)) and hence, from the defi-
nition of the action ̃ of M′, we obtain h(⟨u,U1, U2⟩) ≐ h(⟨u,V1, V2⟩) and
g(⟨u,U1, U2⟩) ≐ g(⟨u,V1, V2⟩). Moreover, since h is projectable, we have that
h(⟨u,U1, U2⟩) = h(⟨u,V1, V2⟩). We still need to prove that that g(⟨u,U1, U2⟩) =
g(⟨u,V1, V2⟩) holds as well. To do that, we distinguish between the following
subcases:

26

1. U1 = U2 = ∅. We have g(⟨u,U1, U2⟩) = 1N and hence, since 1N has empty
memory and g(⟨u,U1, U2⟩) ≐ g(⟨u,V1, V2⟩), we obtain that g(⟨u,V1, V2⟩) =
1N .

2. Both U1 and U2 are non-empty. In this case g(⟨u,U1, U2⟩) must be ei-
ther the null element 0N or the term r(ε) (recall that this term repre-
sents all expanded data words that satisfy x ∼ y). Both elements have
empty memory and hence from g(⟨u,U1, U2⟩) ≐ g(⟨u,V1, V2⟩) we devise
g(⟨u,U1, U2⟩) = g(⟨u,V1, V2⟩).

3. U1 ≠ ∅ and U2 = ∅. Clearly, U1 is a singleton of the form {x}. Similarly, since
g(⟨u,U1, U2⟩) ≐ g(⟨u,V1, V2⟩), we have that V1 is a singleton of the form {x′}
and V2 = ∅. We then recall that h(⟨u,U1, U2⟩) = h(⟨u,V1, V2⟩) ≠ 0M and that
the morphism h is 0-reduced, which implies that x = x′. This shows that
g(⟨u,U1, U2⟩) = g(⟨u,V1, V2⟩).

4. U1 = ∅ and U2 ≠ ∅. This case is symmetric to the previous one and can be
dealt with by similar arguments.

It follows that h′ is a projectable morphism. ◻

We are now ready to prove the theorem and the corollaries in Section 4.

Theorem 1. For all rigidly guarded MSO formulas ϕ(X̄), the language JϕK is
effectively recognized by an orbit finite data monoid with a projectable morphism.

Proof. As already mentioned, the proof is by structural induction on the rigidly
guarded MSO formula ϕ(X̄). As for the base cases, we observe that the languages
defined by the atomic formulas x < y, a(x), and x ∈ Y are recognized by suitable
orbit finite data monoids and projectable morphisms. As for the inductive step,
we suppose to be given a formula ϕ (resp., two formulas ϕ1 and ϕ2) with m
free variables X1, . . . ,Xm, an orbit finite data monoidM (resp., two orbit finite
data monoids M1 and M2), and a projectable morphism h ∶ (D ×A ×Bm)∗ →
M (resp., two projectable morphisms h1 ∶ (D × A × Bm)∗ → M1 and h2 ∶
(D × A × Bm)∗ → M2) recognizing the languages defined by ϕ (resp., the
languages defined by ϕ1 and ϕ2). We then observe that the language defined by
the formula ¬ϕ (resp., ϕ1 ∧ ϕ2) is recognized by the orbit finite data monoid
M (resp.,M1 ×M2) via the projectable morphism h (resp., h1 ×h2). As for the
existential closure, Lemma 1 implies that the language defined by the formula
∃Xm. ϕ is recognized by a suitable orbit finite data monoidM′ via a projectable
morphism h′, both computable from M and h. Finally, if m = 2 and ϕ(x1, x2)
is a rigid formula, then we know from Lemma 2 how to compute an orbit finite
data monoid M′ and a projectable morphism h′ that recognizes the language
defined by ϕ(x1, x2) ∧ x1 ∼ x2. This concludes the proof of the theorem. ◻

Corollary 1. Every data language definable in rigidly guarded MSO (resp.,
rigidly guarded FO) is recognizable by an orbit finite data monoid (resp., aperi-
odic orbit finite data monoid).

27

Proof. The case of rigidly guarded MSO corresponds just to Theorem 1 in the
case of a sentence ϕ.

The case of rigidly guarded FO could be proved by establishing the aperiod-
icity at the same time. However, in our case, it is sufficient to remark that, ac-
cording to [3], every data language definable in (non-necessarily rigidly guarded)
FO is recognized by an aperiodic data monoid (in particular the syntactic one).
Hence, if we consider the syntactic data monoid (we do not develop this object
further here) of a language definable in rigidly guarded FO, it is aperiodic from
[3], and it is finite orbit as a quotient of the finite orbit data monoid obtained
from Theorem 1. ◻

Corollary 2. The satisfiability problem for rigidly guarded MSO logic is decid-
able. Moreover, one can decide whether a formula belongs to the rigidly guarded
MSO logic and in this case whether the formula is rigid.

Proof. By Theorem 1, any formula of rigidly guarded MSO can be effectively
transformed into an orbit finite data monoid. Satisfiability of this formula then
corresponds to language non-emptiness. This can be tested by a simple satura-
tion argument on the algebraic object.

As for the second claim, to decide whether a formula ϕ belongs to the rigidly
guarded MSO logic it is sufficient to check that (i) the formula ϕ satisfies the
syntactical restrictions given by the grammar of rigidly guarded MSO formulas
and (ii) all data comparisons are guarded by rigid formulas of the form α(x, y).
Both the first and the second tasks can be performed by an induction of the
structure of the formula ϕ. In particular, we observe that a guard α(x, y) is
rigid iff the formula

αrigid? =def ∀ x,x′, y, y′. α(x, y) ∧ α(x′, y′) → (x = x′ ↔ y = y′)
holds on all words. The latter condition can be tested using the first claim of
the corollary (a direct construction is also possible). ◻

28

C Proofs for Section 5 (From data monoids to the logic)

In this section we prove Theorem 2. We first outline the key ideas underlying
the proof. Hereafter,M is an orbit finite data monoid and h is a morphism form
the free data monoid (D ×A)∗ to M.

The objective of the proof is to find suitable formulas that, given some po-
sitions x ≤ y in a word w, determine the orbit of h(w[x, y]) (i.e. the image of
the infix w[x, y] under the morphism h). The general technique is to exploit an
induction on certain ideals of the orbit finite data monoid, which are induced by
the so-called Green’s relations (to be defined later). Roughtly speaking, we first
construct the desired formulas for shorter infixes of the word and then we move
up towards longer infixes, until we determine the orbit of the entire word. Doing
so, we need to be able to compute the orbit of an infix w[x, y] on the basis of
some bounded amount of information related to some factors of it (e.g. w[x, z]
and w[z + 1, y] for some z between x and y). This requires not only to compute
the orbit of h(w[x, y]), but also its memorable values. Here “computing memo-
rable values” means being able to locate some positions in w[x, y] that carry the
memorable values of the element h(w[x, y]). For this, one uses formulas of the
form ϕ(x, y, z1, . . . , zn) which determine the orbit of h(w[x, y]) and some wit-
nessing positions z1, . . . , zn for the memorable values. This must be done with
care in order to preserve the rigidity assumptions necessary for the logic.

Definition 6. We say that a formula ϕ(x1, . . . , xn) determines xj from xi if
for all words w and positions x in w, there is y such that w ⊧ ϕ(x1, . . . , xn) and
xi = x implies xj = y.
The formula ϕ(x1, . . . , xn) is rigid if xi determines xj for all i and all j among
1, . . . , n (note that this is consistent with our previous definition).

Below, we formalize the notion of “computing the orbits under some guard”.

Definition 7. A formula ϕ(x, y, z1, . . . , zn) is a witnessing formula if it deter-
mines all variables from x and, symmetrically, all variables from y, and whenever
w ⊧ ϕ(x, y, z1, . . . , zn), then x ≤ zi ≤ y for all 1 ≤ i ≤ n.
A formula witnesses the orbit o if it is a witnessing formula and

w ⊧ ϕ(x, y, z1, . . . , zn) implies h(w[x, y]) = o(w[z1], . . . ,w[zn]).
A family of formulas F = (ϕo)o∈O computes the orbits under the guard α(x, y)
if each formula ϕo witnesses the orbit o, and ⋁o ∃ z̄. ϕo(x, y, z̄) is equivalent
to α(x, y). One says that one can compute the orbits under the guard α if there
exists such a family.

We aim at proving that for every rigid formula α(x, y) (and, in particular,
for the rigid formula α(x, y) = (¬∃ z. z < x) ∧ (¬∃ z. z > y)), one can compute
the orbits under α. The key idea is to exploit an induction on the algebraic
structure of the orbit finite data monoid M. This induction is guided by the
so-called Green’s relations, introduced just below.

As already noticed in [3], a relevant part of Green’s theory [?, 11], which holds
for finite monoids, can be lifted to locally finite monoids and, in particular, to

29

orbit finite data monoids. The basic Green’s relations ≤R, ≤L, ≤J associated
with M are the preorders defined by:

s ≤R t iff s⋅M ⊆ t⋅M s ≤L t iff M ⋅s ⊆M ⋅t s ≤J t iff M ⋅s⋅M ⊆M ⋅t⋅M.

We denote by R, L, J the corresponding equivalence relations (e.g., s J t iff
s ≤J t and t ≤J s) and we define an additional fourth relation H defined by sH t
iff sR t and s L t. Given an element s of a data monoid M, we denote by R(s)
(resp., L(s), J(s), H(s)) the R-class (resp., L-class, J -class, H-class) of s.

We also lift the above relations to orbits, namely, for each K among R, L,
J , we denote by ≤

K̇
the preorder relation such that s ≤

K̇
t iff s ≤K τ̂(t) for some

renaming τ ∈ GD. We do the same for the equivalence relations R, L, J , H.

The proof of Theorem 2 is an induction based on the J̇-classes of M:

Lemma 3 (Inductive statement). For every J̇ -class J̇ of M, the following
claims hold:
(C1) there is a formula ϕJ̇(x, y) such that w ⊧ ϕJ̇(x, y) iff h(w[x, y]) ∈ J̇ ;

(C2) for every guard α(x, y) such that w ⊧ α(x, y) implies h(w[i, j]) ≥
J̇
J̇ , there

exists effectively a family of formulas Fα computing the orbits under α.

We will prove the above lemma twice: the first time under the assumption
that M is aperiodic, returning formulas of the rigidly guarded FO logic, and
the second time without the assumption of aperiodicity, returning formulas of
the rigidly guarded MSO logic. In the aperiodic case, for computing the orbit
of an infix, one uses the fact that it is sufficient to know its L-class and its R-
class, plus the equality relationships between the memorable values in the two
classes (this follows basically from the fact that the H-classes of an aperiodic
monoid are singletons). This is not true in the general (non-aperiodic) case, and
different objects have to be used, which results in the use of monadic second-
order variables.

Moreover, in both the aperiodic and the non-aperiodic cases a careful anal-
ysis of Green’s relations and of memories of elements in an orbit finite data
monoid is required. We do this in the next Section C.1. Later, we will prove the
inductive invariant in the aperiodic case (Section C.2) and in the non-aperiodic
case (Section C.3).

C.1 Green’s theory and memorable values

Here we focus our attention on the memorable values of the elements of orbit
finite data monoids.

Definition 8. Given an element m of an orbit finite data monoidM, we define
by memR(s) (resp., memL(s)) to be the intersection of mem(t) for all elements
t in the R-class (resp., L-class) of s.

We callR-memorable (resp., L-memorable) values of s the values in memR(s)
(resp., memL(s)).

30

Our final goal is to transform data monoids into rigidly guarded formulas.
For this, one needs to locate where the memorable data values come from. An
important tool is the following result:

Proposition 4. For every element s of an orbit finite data monoidM, we have
mem(s) = memR(s) ∪memL(s).

Before turning to the proof Proposition 4, let us show that a similar result
fails for data monoids with infinitely many data orbits. Consider the data lan-
guage Leven ⊆ D∗ that consists of all words u ∈ D∗ where every value d ∈ D
occurs in u an even number of times. The syntactic data monoid of the language
Leven consists of one element mC for each finite subset C of D. The product
corresponds to the symmetric difference of sets. It is easy to see that the memo-
rable values of mC are exactly the values in C, which are neither L-memorable
nor R-memorable (the data monoid is a group).

In order to prove Proposition 4, we need to introduce a couple of other
concepts. An inverse of an element s of a monoid, is an element t such that
s ⋅ t = t ⋅ s = 1M. If the inverse of s exists, then it can be easily proven to
be unique and hence it can be denoted by s−1. A data group is simply a data
monoid where all elements have an inverse. The next lemma shows that orbit
finiteness is, quite surprisingly, a severe restriction for data groups.

Lemma 4. Every orbit finite data group is finite.

Proof. We first observe that:

Claim 1. In an orbit finite data group, mem(s) = mem(s−1).

Proof of Claim 1. Since orbit finite data groups are locally finite,
there is n > 0 such that sn = 1 and hence s−1 = sn−1. This implies
mem(s−1) = mem(sn−1) ⊆ mem(s). By symmetry, we get mem(s) =
mem(s−1). ◻

Claim 2. mem s ∖mem t ⊆ mem(s ⋅ t).

Proof of Claim 2. Indeed, mem(s) = mem(s ⋅ t ⋅ t−1) ⊆ mem(s ⋅ t) ∪
mem(t−1) = mem(s ⋅ t)∪mem(t). Hence, mem(s)∖mem(t) ⊆ mem(s ⋅
t). ◻

Now, assume, towards a contradiction, that G is an infinite data group with
finitely many orbits. G must contain an infinite orbit o. Let H = {h1, h2, . . .} be
some infinite subset of o such that each element hi has a distinguished memorable
value di that is not memorable in any other element of H. Then, from the above
claim, for all k, {d1, . . . , dk} ⊆ mem(s1⋯sk). This contradicts the finite memory
property. ◻

It is know that every H-class H of a monoid is associated with a group
Γ (H) called the Schützenberger group [11] (in fact there exist two such groups,

31

but we will only consider one of them here). We define T (H) to be the set
of all elements t ∈ H such that t ⋅ H is a subset of H. For each t ∈ T (H)
we let γt be the transformation on H that maps h ∈ H to t ⋅ h. Formally the
Schützenberger group Γ (H) consists of the set of all transformations γt with
t ∈ T (H). The multiplication operation of the group is the functional composition
○. Moreover, there is a natural way to extend the action ˆ of the data monoid
M to an action ˜ on Γ (H) by simply letting τ̃(γs) = γτ̂(s) for all renamings
τ ∈ ΓD∖(memR(H)∪memL(H)), where memR(H) = memR(h) and memL(H) =
memL(h) for some arbitrary element h ∈ H (note that all elements of H have
the same set of R-memorable values and the same set of L-memorable values).
The following lemma shows that ˜ is indeed a group action on the Schützenberger
group Γ (H).
Lemma 5. If M = (M, ⋅, ˆ) is a data monoid over the set D of data values
and H is an H-class of M, then (Γ (H), ○, ˜) is a data group over the set D ∖
(memR(H) ∪ memL(H)). Moreover, if M is orbit finite, then (Γ (H), ○, ˜) is
orbit finite as well.

Proof. It is known that (Γ (H), ○) is a group. We only need to verify that ˜
is an action on Γ (H). We first show that Γ (H) is closed under the action ˜
of the renamings over D ∖ (memR(H) ∪memL(H)). By definition of ˜, this is
equivalent to verifying that H is closed under the action ˆ of renamings over
D ∖ (memR(H) ∪ memL(H)). The following proof is similar to proof of the
Memory Theorem for J -classes in [3]; however, we give a complete proof here
for the sake of self-containment.

Suppose that H is the intersection of an R-class R and an L-class L. As a
renaming is a permutation that is the identity on all but finite many values, any
renaming over D∖ (memR(H)∪memL(H)) can be decomposed into a sequence
of transpositions of pairs of values from D∖(memR(H)∪memL(H)). Therefore,
in order to prove the closure of H = R∩L under the action of the renamings over
D ∖ (memR(H) ∪memL(H)), it is sufficient to prove a similar closure property
for the transpositions πde of pair of elements d, e ∉ memR(H) ∪memL(H). We
first show that R is closed under such transpositions. Let d and e be two values
outside memR(H) and let πde be their transposition. Since d, e ∉ memR(H),
we know that there exist two elements s, t ∈ R such that d is not memorable
in s and b is not memorable in t. Let f be a value outside mem(s) ∪ mem(t).
By definition of memory, we know that π̂df , where πdf is the transposition of d
and f , is a stabilizer of s and, similarly, π̂ef is a stabilizer of t. Now, consider
an element s′ that is R-equivalent to s. There must exist u and u′ in M such
that s ⋅ u = s′ and s′ ⋅ u′ = s. Since ˆ commutes with the product of M, we
obtain π̂df(s′) = π̂df(s ⋅ u) and hence π̂df(s′) ≤R π̂df(s). By similar arguments,
we obtain π̂df(s′) ≥R π̂df(s). We thus have π̂df(s′)R π̂df(s) = s ∈ R. A symmetric
argument shows that π̂ef(s′) R π̂ef(s) = s ∈ R. Since πde = πdf ○ πef ○ πdf , we
conclude that π̂de(s) ∈ R. Finally, a similar proof shows that π̂de(s) ∈ L. Putting
all together, we have that for every s ∈ H = R ∩ L and every renaming τ over
D ∖ (memR(H) ∪ memL(H)), τ̂(s) ∈ R ∩ L = H. This shows that H is closed
under the action ˆ of renamings over D ∖ (memR(H) ∪memL(H)).

32

Below, we verify that ˜ is a group morphism from the group of renamings
GD∖(memR(H)∪memL(H)) to the group of automorphisms on Γ (H). Clearly, the
function ˜ maps the identity ι on GD∖(memR(H)∪memL(H)) to the trivial auto-
morphism ι̃ on Γ (H) (i.e., ι̃(γs) = γι̂(s) = γs). Moreover, ˜ is a morphism because

τ̃ ○ π(γs) = γτ̂○π(s) = γτ̂○π̂(s) = (τ̃ ○ π̃)(γs).
Finally, we observe that γs⋅t = γs ○ γt (indeed, for every h ∈H, we have γs⋅t(h) =
(s ⋅ t) ⋅ h = s ⋅ (t ⋅ h) = γs(t ⋅ h) = γs ○ γt(h)) and hence

τ̂(γs) ○ τ̂(γt) = γτ̂(s) ○ γτ̂(t) = γτ̂(s)⋅τ̂(t) = γτ̂(s⋅t) = τ̂(γs⋅t) = τ̂(γs ○ γt).

To complete the proof of the lemma, we need to prove that (Γ (H), ○, ˜) is orbit
finite when M is orbit finite. Let us consider two elements s, t ∈H and suppose
that s and t are in the same orbit, namely, that there is τ ∈ GD∖(memR(H)∪memL(H))

such that t = τ̂(s). Since ˜ is a group action, we know that γt = γτ̂(s) = τ̃(γs).
This shows that the two elements γs and γt of Γ (H) are on the same orbit. ◻

It is known that any H-class H of a monoid has the same cardinality of the
associated Schützenberger group Γ (H). Hence, we obtain the following interest-
ing property:

Corollary 4. All H-classes of an orbit finite data monoid are finite.

Proof. Let H be an H-class of an orbit finite data monoid M. By Lemma 5,
we can associate with H an orbit finite data group (Γ (H), ○, ˜), where Γ (H)
is the Schützenberger group of H. By Lemma 4, it follows that Γ (H) is finite.
Moreover, it is known from classical results in algebra (see, for instance, [11]),
that the Schützenberger group Γ (H) has the same cardinality as the H-class H.
We thus conclude that H is finite. ◻

We are now ready to prove Proposition 4.

Proof (Proof of Proposition 4). We aim at mem(s) ⊆ memR(s) ∪ memL(s).
Assume towards a contradiction that there is a value d ∈ mem(s)∖ (memR(s)∪
memL(s)). As d ∉ memR(s), there is an s′ in the R-class of s such that d ∉
mem(s′). Then there are u,u′ ∈M such that s⋅u = s′ and s′⋅u′ = s. Symmetrically,
as d ∉ memL(s), s has an L-equivalent element s′′ such that d ∉ mem(s′′), and
there are v, v′′ ∈M such that v ⋅ s = s′′ and v′′ ⋅ s′′ = s.

Let d1, d2, . . . be an infinite sequence of pairwise distinct values that are
not in the memory of either s, s′, or s′′. We denote by πi the transposition
of d with di. As neither d nor d1, d2, . . . are in the memory of s′, τ̂i(s′) = s′

and hence τ̂i(s ⋅ u) = τ̂i(s′) = s′. Combining this with s′ ⋅ u′ = s we obtain
τ̂i(s) ⋅ τ̂i(u) ⋅ u′ = s′ ⋅ u′ = s and hence τ̂i(s) ≥R s. Similarly, one proves that
τ̂i(s) ≤R s and hence τ̂i(s) R s. By symmetry τ̂i(s) L s. Hence τ̂i(s) belongs
to the H-class of s. As d is memorable in s, τ̂i(s) is different from s. Thus the
H-class of s is infinite, contradicting Corollary 4. ◻

33

C.2 The translation in the aperiodic case

Through the rest of this section we assume that M is an aperiodic orbit finite
data monoid M and we prove the inductive statement given in Lemma 3.

We will tacitly assume that all formulas defined hereafter are rigidly guarded
first-order formulas. Moreover, for the sake of brevity, we will often fill the pa-
rameters of a formula ϕ(x1, . . . , xn) with ∗ to denote that the corresponding
variables are existentially quantified. With this notation, if ϕ(x, y, z) is rigid
(according to the general definition given at the beginning of Section C, then so
is ϕ(∗, x, y), as well as ϕ(x,∗, y) and ϕ(x, y,∗).

It is also convient to assume that M is represented by a term-based pre-
sentation system S = (T,⊙, ˇ,≈). This means that the elements of M are the
≈-equivalence classes of terms in T . However, by a slight abuse of notation, we
shall often identify the elements of the data monoid M with the terms in T ,
writing, for instance, h(w[x, y]) = o(d1, . . . , dk).

We start by presenting an special, but important, case of Lemma 3, which
shows that the orbits of infixes of length 1 can be computed (this will serve as
our base case for the inductive construction):

Lemma 6. Let α1(x, y)=defx = y. One can compute the orbits under the guard α1.

Proof. Remark that the morphism h maps singleton words to orbits that have
memory size at most 1. The family F 1 =def (φ1

o)o∈O that computes the orbits
under α1 is simply:

φ1
o(x, y) =def ⋁

h((d,a))=o()

a(x) ∧ x = y (if o has memory size 0)

φ1
o(x, y, z) =def ⋁

h((d,a))=o(d)

a(x) ∧ x = y ∧ x = z (if o has memory size 1)

φ1
o(x, y) =def false. (otherwise)

◻

The following lemma discloses another key argument in the proof of Lemma 3,
which is obtained by syntactic transformations of formulas.

Lemma 7 (Sub-definability Lemma). For all formulas ϕ(x, y) that deter-
mine y from x, there exist finitely many formulas βi(z, y) that determine y
from z, and such that for all x ≤ z ≤ y,

w ⊧ ϕ(x, y) implies w ⊧ βi(z, y) for some i.

Proof. We remark that the following proof can be read either with formulas
meaning “rigidly guarded FO formulas”, or “rigidly guarded MSO formulas”;
both results hold, using the same proof.

We start by recalling the following Composition Lemma originating from the
Feferman-Vaught/Shelah composition method.

34

Composition Lemma. Given a standard MSO/FO sentence ϕ (that
uses only the order <, and some unary predicates, but no data com-
parisons), there exists a finite set of pairs of formulas (αi, βi)i=1...k

such that for all words u and v,

uv ⊧ ϕ iff u ⊧ αi and v ⊧ βi for some i.

It is routine to check that the statement of the Sub-definability Lemma fol-
lows from the above result in the case of standard MSO/FO formulas: the vari-
able z cuts the word into uv, with v starting at letter z (it is sufficient to prove
the statement for x ≤ z ≤ y). Let us concentrate ourselves on the data word case.

Preliminary remark: Any rigidly guarded data test α(x, y) ∧ x ∼ y, since it
determines y from x is equivalent to the formula:

α(x, y) ∧ (∃ z. α(x, z) ∧ x ∼ z)
´¹¹¸¹¹¹¶

call it α∼(x)

.

(this formalizes the fact that rigidly guarded data tests behave almost like unary
predicates).

Formal elimination of data tests. Consider now a rigidly guarded MSO/FO
formula ϕ (possibly with free variables). One transforms it into the standard
MSO/FO formula ϕ∗ (with the same free variables) inductively as follows:

(∃ x. ψ)∗ =def ∃ x. ψ∗ (∃X. ψ)∗ =def ∃X. ψ∗

(¬ψ)∗ =def ¬ψ∗ (ψ2 ∨ ψ2)∗ =def ψ∗1 ∨ ψ∗2

(x ∈X)∗ =def x ∈X (x < y)∗ =def x < y
(a(x))∗ =def a(x)

and most importantly

(α(x, y) ∧ x ∼ y)∗ =def α∗(x, y) ∧ [α∼](x)
(where [α∼] is a new unary predicate)

Given a data word w, let the (classical) word w∗ be obtained from w by removing
all data values and by adding the predicates [α∼] such that w∗ ⊧ [α∼](x) iff w ⊧
α∼(x). The above construction – thanks to the preliminary remark – is such that
w ⊧ ϕ(X̄) iff w∗ ⊧ ϕ∗(X̄) for all choices of w and X̄. This means in particular
that any formula ϕ is equivalent to the formula ϕ∗ where each unary predicate
[α∼](x) is syntactically replaced by α∼(x).

Main part of the proof. Consider a formula ϕ(x, y) that determines y from x. It
can happen that x does not determine y in ϕ∗(x, y) (since the unary predicates
[α∼] could be chosen in a way inconsistent with any choice of data values). This
can be corrected easily. Consider:

ψ∗(x, y) =def ϕ∗(x, y) ∧ ∀ y′. ϕ∗(x, y′) → y′ = y.
This formula ψ∗ is equivalent to ϕ∗ as long as ϕ∗ determines y from x for a
given choice of w,x. Otherwise, it simply does not hold. Hence x determines y

35

in ψ∗(x, y) by construction. This means that ψ∗(x, y) is subject to the ap-
plication of the standard MSO/FO case. Thus let β∗1 (z, y), . . . , β∗k(z, y) be the
corresponding formulas.

From each β∗i (z, y) we construct βi(z, y) by syntactically replacing each
unary predicate [α∼](x′) by α∼(x′). It is clear that, since β∗i (z, y) determines y
from z, so does βi(z, y). Furthermore, for all w and all x ≤ z ≤ y, w ⊧ ϕ(x, y)
iff w∗ ⊧ ϕ∗(x, y) iff w∗ ⊧ ψ∗(x, y) (this is because there is no other y such
that w ⊧ ϕ(z, y), and hence no other choice of y such that w∗ ⊧ ϕ∗(x, y)).
Hence, there exists i such that w∗ ⊧ β∗i (z, y) and w ⊧ βi(z, y) follows. ◻

An immediate consequence of the above lemma is the following:

Corollary 5. Every witnessing formula is equivalent to a finite disjunction of
rigid formulas.

Proof. Consider a witnessing formula ϕ(x, y, z1, . . . , zn). Since ϕ(x, y,∗, . . . ,∗)
determines y from x, one can apply Lemma 7 and get some formulas α1, . . . , αk.

The desired rigid formulas are

ϕi1,...,in(x, y, z1, . . . , zn) =def ϕ(x, y, z1, . . . , zn) ∧ αi1(z1, y) ∧ . . . ∧ αin(zn, y).
where i1, . . . , in range over {1, . . . , k}. One easily checks that the formulas ϕi1,...,in
are rigid. Indeed, x determines zk, which itself, by αik determines y, which de-
termines x. Since this holds for every k = 1, . . . , n, we get that ϕi1,...,in is rigid.

Of course, ϕi1,...,in implies ϕ by definition. Conversely, given some x, y, z1, . . . , zn
such that w ⊧ ϕ(x, y, z1, . . . , zn). For each k = 1, . . . , n, by Lemma 7, there ex-
ists ik such that s ⊧ αik(zk, y). It follows that w ⊧ ϕi1,...,in(x, y, z1, . . . , zn).
Overall, ϕ is equivalent to a disjunction of rigid formulas. ◻

Corollary 5 can be used for composing families of formula that compute
orbits, as shown by the following lemma:

Lemma 8. If F and F ′ compute the orbits under the guards α(x, y) and α′(x, y),
respectively, there exists effectively a family F ⋅F ′ which computes the orbit under
the guard

(α ⋅ α′)(x, y) =def ∃ z. α(x, z) ∧ α′(z + 1, y).

Proof. Let F be (ϕo)o∈O, and F ′ be (ϕ′o)o∈O. We aim at constructing F ⋅ F ′ =
(ψo)o∈O which computes the orbits under α ⋅ α′.

The orbit resulting from the product of an element in orbit o with an an ele-
ment in orbit o′ depends on the relative data values. For each possible relation-
ship, we will produce a formula. This relationship will be represented by using
explicit terms, which contain data values. Consider two terms of the form t =
o(c1, . . . , ck) and t′ = o′(c′1, . . . , c′k′) (up to renaming, there are only finitely
many possibilities for the pair (t, t′)). Their product is o′′(d1, . . . , dn) =def t ⋅ t′.
Call (ϕp)p=1...m (similarly (ϕ′p′)p′=1...m′) the rigid formulas obtained from ϕo

36

(resp. from ϕ′o′) by Corollary 5. Consider now the formula:

ψt⋅t′(x, y, z′′1 . . . , z′′n) =def ∃ z1 . . . zk, ξ, z
′
1 . . . z

′
k′ . (a)

⋁
p,p′

ϕp(x, ξ, z̄) ∧ ϕp′(ξ + 1, y, z̄′) (b)

∧ ⋀
ci=c′j

αp,p′,i,j(zi, z′j) ∧ zi ∼ z′j (c)

∧ ⋀
ci≠c′j

αp,p′,i,j(zi, z′j) ∧ zi /∼ z′j (d)

∧ ⋀
di=cj

z′′i = zj ∧ ⋀
di=c′j ,di/∈{c1,...,cm}

z′′i = z′j (e)

where

αp,p′,i,j(zi, z′j) =def ∃ y. ϕp(∗, y, ∗̄, zi, ∗̄) ∧ ϕp′(y + 1,∗, ∗̄, z′j , ∗̄).
Given x and y, the formula first guesses the intermediate position ξ and the
variables z̄ and z̄′ witnessing the data values of h(w[x, ξ]) and of h(w[ξ + 1, y])
respectively (a). It then guesses p, p′ which are used to make the formulas rigid,
and checks the consistency with the variables (b). Line (c) checks that whenever
a data value in t and a data value of t′ are equal, then the corresponding witness
positions in the word share the same data value. This equality comparison is done
using the guard αp,p′,i,j(zi, z′j) (if this guard would be removed, the formula
would still compute the same result, but the formula would not be a rigidly
guarded FO formula). This guard of course holds between zi and z′j when (b)
holds. It is also obviously rigid since the ϕp and ϕ′p′ formulas are rigid. The
same argument is used for the inequalities in (d). Finally (e) uniquely defines
the witnesses for the data values.

Overall, the formula ψt⋅t′ witnesses o′, and furthermore, given any x, ξ, y such
that w ⊧ α(x, ξ), w ⊧ α′(ξ + 1, y), τ(t) = h(w[x, ξ]) and τ(t′) = h(w[ξ + 1, y] for
some renaming τ , then w ⊧ ψt,t′(x, y, z̄) for some z̄.

Finally, the formula ψo is simply defined as:

ψo(x, y, z̄) =def ⋁
t⋅t′∈o

ψt⋅t′(x, y, z̄).

(it tries every possibilities of a product yielding to orbit o). ◻

Using Lemma 6 and Lemma 8, one can compute the orbits of infixes of fixed
length:

Corollary 6. Let αk(x, y) =def x + k − 1 = y, there exists effectively a family of
formulas which computes orbits under αk.

We now recall a direct consequence of Theorem V.1.9 from [11]:

Lemma 9. For every pair of elements s, t of M, if s J t and s ≤R t, then sR t
(and symmetrically for L).

The above lemma immediately implies the following:

37

Lemma 10. Let [x, y] be a minimal interval such that h(w[x, y]) /≥J̇ J̇ , then
either
1. x = y or x + 1 = y, or;
2. [x + 1, y − 1] is a maximal interval such that h(w[x, y]) >

J̇
J̇ .

From now on, we assume that Claims C1 and C2 of Lemma 3 hold for every
J̇ -class above J̇ (which is the induction hypothesis for classes above J̇).

Lemma 11. There exists a formula αmin
/≥
J̇
J̇
(x, y) such that w ⊧ αmin

/≥
J̇
J̇
(x, y) iff [x, y]

is a minimal interval such that h(w[x, y]) /≥
J̇
J̇ . Furthermore, it is rigid, and

one can compute the orbits under αmin
/≥
J̇
J̇

.

Proof. Lemma 10 describes what can be such intervals [x, y]. Naturally, the
last case is the most interesting. Let α(x, y) be a formula stating that [x, y] is a
maximal interval such that h(w[x, y]) >

J̇
J̇ and x < y. It is possible to write such

a formula using the induction hypothesis C1. This formula is rigid, by definition.
Hence, using this time Claim C2, one has a family of formulas F which computes
the orbit under the guard α.

The formula αmin
/≥
J̇
J̇
(x, y) is then simply:

α1(x, y) ∧ F 1(x, y) /≥
J̇
J̇

∨ α2(x, y) ∧ F 2(x, y) /≥
J̇
J̇

∨ ((α1 ⋅ α) ⋅ α1)(x, y) ∧ ((F 1 ⋅ F) ⋅ F 1)(x, y) /≥
J̇
J̇

where we use families of formulas F, . . . as if they were functions computing
orbits. This shorthand of notation should be clear to understand, and can be
transformed into regular formulas by explicitly unfolding all cases. This is correct
by Lemma 10.

Finally, this formula αmin
/≥
J̇
J̇
(x, y) is rigid by definition, and a family of formulas

computing the orbits under this guard is also easy to obtain using the same kind
of constructions. ◻

We are now ready to prove the induction steps for both Claim C1 and Claim
C2 of Lemma 3 with respect to the J̇ -class J̇ (we remark that only the proof
of C2 relies on the fact that the orbit finite data monoid is aperiodic).

Lemma 12 (Induction step for C1). There exists a formula ϕJ̇(x, y) such
that w ⊧ ϕJ̇(x, y) iff h(w[x, y]) ∈ J̇ .

Proof. The formula disproves the existence of a minimal interval [x′, y′] in-
cluded in [x, y] such that αmin

/≥
J̇
J̇
(x′, y′) holds, using Lemma 11. This implies

h(w[x, y]) ≥
J̇
J̇ . The formula then excludes the case h(w[x, y]) >

J̇
J̇ using the

induction hypothesis C1 for all K̇ >
J̇
J̇ . ◻

Lemma 13 (Induction step for C2). For every guard α(x, y) such that w ⊧
α(x, y) implies h(w[x, y]) ≥

J̇
J̇ , one can compute the orbits under α.

38

Proof. Of course, it is sufficient to prove the lemma for the case when w ⊧ α(x, y)
implies h(w[x, y]) ∈ J̇ , since using Claim C2 it is possible to compute the orbits
in the other cases. Let αmin

J̇
(x, y) be the formula expressing that [x, y] is minimal

such that h(w[x, y]) ∈ J̇ (doable thanks to Lemma 12). From its definition, αmin
J̇

is rigid.
Consider the formula β(x, y, z1, z2, z3, z4) which holds if (i) α(x, y), (ii) z1 ≥ x

is minimal such that αmin
J̇

(z1, z2), and (iii) z4 ≤ y is maximal such that αmin
J̇

(z3, z4).
Remark first that since (i) implies h(w[x, y]) ∈ J̇ , all points z1, z2, z3, and z4

belong to [x, y]. Hence, β is a witnessing formula, and by Corollary 5, it is
equivalent to a disjunction of rigid formulas, say β1, . . . , βn.

We describe below the steps performed by the formulas computing the orbits
under α.
1. It detects for which i, w ⊧ βi(x, y, z1, z2, z3, z4) holds, and guesses the corre-

sponding variables z1, z2, z3, z4 (this implies in particular w ⊧ α(x, y), hence
h(w[x, y]) ∈ J̇).

2. It computes the orbit of h(w[x, z2]) (and h(w[z3, x]) in a similar way). This
is doable since:
By definition of β, if w ⊧ βi(x,∗, y − 1,∗,∗,∗) then h(w[x, y − 1]) >

J̇
J̇ .

Hence, using the induction hypothesis C2, one can compute the orbits under
the guard βi(x,∗, y−1,∗,∗,∗). Furthermore by Lemma 11, one can compute
the orbits under αmin

J̇
. Overall, one can compute the orbits under βi(x,∗, y−

1,∗,∗,∗) ⋅ αJ̇(y, z), i.e., under βi(x,∗,∗, y,∗,∗). This means that one can
compute the orbit of h(w[x, z2]).

3. Recall that in any aperiodic orbit finite data monoid all H-classes are sin-
gletons. Since the considered data monoid is aperiodic, we have that t =
h(w[x, y]) is the only element (up to ≈) such that t ∈ R(h(w[x, z2])) ∩
L(h(w[z3, y])). It follows that we know the orbit of h(w[x, y]). It remains
to provide witnesses for the data values.
Since h(w[x, z2]) J h(w[x, y]) and h(w[x, z2]) ≥R h(w[x, y]), we have that
h(w[x, z2]) R h(w[x, y]). In the symmetric way, h(w[z3, y]) L h(w[x, y]).
Hence, by Proposition 4, each memorable value from t occurs either in
h(w[x, z2]) or in h(w[z3, y]). This means that every data value in t is already
witnessed at step 2.

◻

The above arguments prove Lemma 3 under the assumption that the orbit
finite data monoid M is aperiodic. We observe that the lemma directly implies
the part of Theorem 2 that deals with the aperiodic case:

Corollary 7. Every data language recognized by a finite orbit aperiodic data
monoid is definable by a rigidly guarded FO sentence.

Proof. One should provide, given an orbit o, a formula which holds over a word w
iff h(w) ∈ o. Other situations are obtained by disjunction of this single orbit case.
Consider the guard α(x, y) = (¬∃ z. z < x) ∧ (¬∃ z. z > y). It holds iff x is the

39

first position and y the last position of the word. Since by Claim C2 of Lemma
3 one can compute the orbits under α, the language h−1(o) is definable. ◻

C.3 The translation in the non-aperiodic case

We have seen in the previous section how to establish Theorem 2 in the ape-
riodic case. The other part, stating that every data language recognized by an
orbit finite data monoid is definable in rigidly guarded MSO logic, is proved by
following the same structure, i.e., by relying on the same induction on J̇ -classes
and on similar constructions. Only two things need to be changed. The first one
is that Lemma 7 needs to be reproven for rigidly guarded MSO (doable with the
exact same proof). The second issue lies in the proof of Lemma 13, when the
hypothesis of aperiodicity is used for the first time, namely at step 3).

We fix for the rest of this section a (possibly non-aperiodic) orbit finite data
monoid M = (M, ⋅, ˆ) over a set D of data values and a morphism h from the
free data monoid (D × A)∗ to M. We tacitly assume that every ‘formula’ is a
rigidly-guarded MSO formula.

The objective is to reprove Lemma 3, but this time without assuming that
the underlying monoid is aperiodic. We note that the proof of Claim C1 given
in Section C.2 does not exploit the assumption that the monoid is aperiodic (as
far as the induction hypothesis is admitted). Hence we can reuse this part of the
proof for the data monoid M. It thus remains to prove Claim C2 for a given
J̇ -class J̇ .

To compute the orbits under a rigid guard α(x, y), we will split the infix
between x and y into many pieces. That is, given an infix w[x, y] of a word
w, our formula will first guess a special partition of w[x, y] into smaller factors
w1, . . . ,wn that can be handled by the induction hypothesis, then it will perform
sub-computations for the orbits of the factors, and finally check the orbit of the
partial products h(w1)⋅. . .⋅h(wi), up to the orbit of the entire product h(w[x, y]).
In what follows, J̇ is a fixed J̇ -class, and we assume that h(w[x, y]) ∈ J̇ .

The partitions we are interested in are the following ones (here, for simplicity,
we assume that the whole word is concerned – this means that we do not have
to bother with the extremities of the factor we want to check):

Definition 9. A partition of a word w is a decomposition of w into u0, . . . , un+1

where each ui with 1 ≤ i ≤ n is non-empty. We say that a partition u0, . . . , un+1

of a word w is an J̇-partition if
1. h(u1 ⋅ . . . ⋅ un) ∈ J̇ , and
2. h(ui) ∈ J̇ for all 1 ≤ i ≤ n − 1.

We say that a partition u0, . . . , un+1 of a word w is a almost J̇-partition if
1. h(u1 ⋅ . . . ⋅ un) ∈ J̇ , and
2. either h(ui) ∈ J̇ or h(ui+1) ∈ J̇ for all 1 ≤ i ≤ n − 1.

We want to use the induction hypothesis on the factors of the partition.
Hence we consider “rigidly guarded partitions”:

40

Definition 10. A partition u0, . . . , un+1 of w is rigidly guarded under a guard
α(x, y) if

1. w ⊧ α(x, y) where x is the first position of u1 and y is the last position of
un,

2. there exist finitely many rigid formulas α1(x′, y′), . . . , αm(x′, y′) such that
for all 1 ≤ i ≤ n, if x′ is the position of the beginning of ui, and y′ its the
position of the end of ui, then w ⊧ αj(x′, y′) for some 1 ≤ j ≤m.

It is orbit-computable under α if, in addition, one can compute the orbits under
each αi.

The following definition makes precise what it means for a partition to be
represented in a rigidly guarded MSO logic.

Definition 11. A presentation for a partition u0, . . . , un+1 of w is a pair (X,Y)
of monadic second-order variables such that

1. x ∈ X iff there is some 1 ≤ i ≤ n such that x is the position of the beginning
of ui,

2. y ∈ Y iff there is some 1 ≤ i ≤ n such that y is the position of the end of ui.

Lemma 14. For every rigid guard α(x, y), there is a formula αalmost(X,Y)
such that for all words w, w ⊧ αalmost(X,Y) iff (X,Y) is a presentation for
an almost-J̇-partition of w. In addition, such a partition is orbit-computable
under the guard α. Furthermore, for all words w, if w ⊧ α(x, y), then there is a
pair (X,Y) such that w ⊧ αalmost(X,Y).

Proof. The formula αalmost(X,Y) checks that the partition u0, . . . , un+1 of w
induced by (X,Y) is a special almost-J̇-partition: If an interval ui is in J̇ , then
it must be a minimal interval in J̇ . More precisely αalmost(X,Y) checks that:

• h(u1 ⋅ . . . ⋅ un) ∈ J̇ . This can be done using the formula ϕJ̇ from Claim C1 of
Lemma 3.

• For all 1 ≤ i ≤ n − 1, either h(ui) ∈ J̇ or h(ui+1) ∈ J̇ . This can be checked by
a combination of αmin

/≥
J̇
J̇

from Lemma 11 and of ϕJ̇ from Claim C1.

• For all 1 ≤ i ≤ n − 1, either ui is a minimal interval in J̇ or h(ui) is in a
J̇ -class above J̇ . The first case can be checked by αmin

/≥
J̇
J̇

. The second case
can be checked using the formulas ϕJ̇ .

It follows that w ⊧ αalmost(X,Y) iff (X,Y) is a presentation for an almost-J̇-
partition of w.

We now show how αalmost can check that the partition u0, . . . , un+1 is rigidly
guarded under α. Clearly it can check that w ⊧ α(x, y), where x′ is the first
position of u1 and y is the last position of un. To check the second condition of
Definition 10 we define the following finite set G→ of formulas:

1. The formula αmin
/≥
J̇
J̇
(x′, y′) from Lemma 11 is in G→ .

41

2. Recall that α(x, y) is a rigid guard. By the Sub-definability Lemma 7 there
exist finitely many formulas βi(x′, y′) for α that determine y′ from x′. We
let all these formulas βi be contained in G→ .

3. Let β�
1 (y′, z′), . . . , β�

k′(y′, z′) be the formulas obtained from the rigid formula
αmin
/≥
J̇
J̇
(x′, z′) using again Lemma 7 (we consider here the version of the lemma

for formulas that determine y′ from z′). G→ contains all formulas of the form

β →j (x′, y′) =def ∃ z′. αmin
/≥
J̇
J̇
(x′, z′) ∧ β�

j (z′, y′).

It is easy to check that each γ → (x′, y′) ∈ G→ determines y′ from x′. We claim
that for all 1 ≤ i ≤ n, if x′ is the position of the beginning of ui and y′ its the
position of the end of ui, then there is a formula γ → (x′, y′) ∈ G→ such that
w ⊧ γ → (x′, y′). We distinguish three different cases:

i) Case: ui is a minimal interval in J̇ . In this case the formula αmin
/≥
J̇
J̇
(x′, y′) has

the desired properties.

ii) Case i = n. Then there is a formula among the βi(x′, y′) with the desired
properties.

iii) Otherwise ui is an interval in a J̇-class above J̇ , and 1 ≤ i ≤ n − 1. In this
case we claim that there is an index j such that β →j ∈ G→ is the suitable
formula: Assume that x′ is the position at the beginning of ui and that y′

is the position at the end of ui. Then αmin
/≥
J̇
J̇
(x′, z′) determines some z′ from

x′ such that w[x′, y′] is a minimal interval in J̇ . As ui is in a higher J̇-class
than J̇ and 1 ≤ i ≤ n − 1, it follows that z′ must be in ui+1. As u1, . . . , un is
an almost-J̇ partition, ui+1 must be a minimal interval in J̇ . We observed
before that these intervals are rigidly guarded by αmin

/≥
J̇
J̇
(x′, y′). By the Sub-

definability Lemma 7, there must be a formula β →j (x′, y′) that determines
y′ from x′.

Symmetrically, one can define a set G� with the respective properties for going
from right to left. We then define

G =def {γ → (x′, y′) ∧ γ�(x′, y′) ∶ γ → ∈ G→ , γ� ∈ G�}.
Clearly each formula in G is rigid (possibly unsatisfiable). It follows from the
above observation that G satisfies the second condition of Definition 10.

Let us sum up what we have proven so far: The partition u0, . . . , un+1 of w
induced by (X,Y) is a special almost-J̇-partition where each interval is either
in a J̇ -class above J̇ , or it is a minimal interval in J̇ . In addition, the partition
is guarded by G. Hence we can compute the orbit of each of the ui under the
respective guard by using Lemma 11 and the induction hypothesis. This means
that u0, . . . , un+1 is orbit-computable.

What remains to be done is to show that such a partition exists. Consider
an almost-J̇-partition u0, . . . , un+1 such that for every 1 ≤ i ≤ n − 1, either ui
or ui+1 is minimal in h−1(J̇). If there exists still some ui such that h(ui) ∈ J̇ ,
but which is not minimal, then such ui can be decomposed into vv′v′′, where v′

is minimal such that h(v′) ∈ J̇ and either v or v′′ is non-empty. We substitute

42

in the partition vv′v′′ for ui, yielding a finer partition which still satisfies the
property. This refinement process is iterated, starting from the trivial partition
of w into a single word, and it stops when there are no more non-minimal ui’s
such that h(ui) ∈ J̇ . If no extra refinement steps are possible, this means that
the expected form for the partition has been obtained. ◻

Lemma 15. For every rigid guard α(x, y), there is a formula αpartition(X,Y)
that defines rigidly guarded J̇-partitions orbit-computable under α(x, y). Fur-
thermore, for all words w, if w ⊧ α(x, y), then there is at least one pair (X,Y)
such that w ⊧ αpartition(X,Y).

Proof. The formula αpartition(X,Y) starts by guessing two sets X ′ and Y ′ such
that αalmost(X ′, Y ′). Let also (αi(x′, y′))1≤i≤k be the rigid guards for the parti-
tion. This corresponds to an almost-J̇-partition of w into u0, u1, . . . , un, un+1.

For the sake of simplicity we assume that n is even (otherwise, the (n+1)-th
factor has to be treated separately). In this case, one considers a new partition
of w into u0, v1 . . . vm, un+1, where m = n/2, v1 = u1u2, v2 = u3u4, . . ., vm =
un−1un. It is not difficult to define the new partition on the basis of the former
one using MSO formulas. Let (X,Y) be the presentation of the new partition
u0, v1, . . . , vm, un+1 of w.

It is also easy to see that, since vi = u2i−1u2i for all 1 ≤ i ≤ m and u1, . . . , un
is an almost-J̇-partition, either h(u2i−1) ∈ J̇ or h(u2i) ∈ J̇ . In both cases we get
h(vi) ∈ J̇ . It thus follows that v1, . . . , vn is a J̇-partition.

What remains to be done is to prove that this partition is rigidly guarded and
that one can compute the orbits under α. However, this is very simple. Indeed,
since each the ui’s are rigidly guarded by one of the αi’s, each of the vi’s is
rigidly guarded by one of the αi ⋅ αj for some 1 ≤ i, j ≤ k. One can also compute
the orbits using Lemma 8. ◻

At this point we know how the formula will be looking for a witness of
the value of h(w[x, y]) by guessing a partition u0, u1, . . . , un, un+1 such that
h(w[x, y] = h(u1 . . . un) using Lemma 15. It remains to develop a tool for being
able to evaluate h(w[x, y]) = h(u1 . . . un), knowing h(u1), . . . , h(un). Of course,
this cannot be done by comparing all the data values involved in h(u1), . . . , h(un).
There are too many of them, and it is impossible to do it using rigidly guarded
tests. We show below that it is sufficient to perform some sort of an approxima-
tion of this computation. The necessary machinery is defined below.

Definition 12. Two sequences of terms t1, . . . , tn and t′1, . . . , t
′
n are locally con-

sistent if
• for all 1 ≤ i ≤ n, both terms ti and t′i are in J̇ , and both products t1 ⋅ . . . ⋅ tn

and t′1 ⋅ . . . ⋅ t′n are in J̇ as well,
• for all 1 ≤ i < n, there is a renaming πi such that π̂i(ti) = t′i and π̂i(ti+1) =
t′i+1,

• t1 = t′1 and tn = t′n. The sequences are called almost locally consistent if,
instead of t1 = t′1 and tn = t′n, there is a renaming τ such that τ̂(t1) = t′1,
and τ̂(tn) = t′n.

43

The following lemma shows why we are interested in locally consistent se-
quences:

Lemma 16. Let t1, . . . , tn and t′1, . . . , t
′
n be two sequences of terms.

1. If t1, . . . , tn and t′1, . . . , t
′
n are locally consistent, then t1 ⋅ . . . ⋅ tn = t′1 ⋅ . . . ⋅ t′n.

2. If t1, . . . , tn and t′1, . . . , t
′
n are almost locally consistent, then τ̂(t1 ⋅ . . . ⋅ tn) =

τ̂(t′1 ⋅ . . . ⋅ t′n) for some renaming τ .

Proof. To prove the lemma, we need to introduce further definitions. We denote
the arity of a term t by arity(t). The domain D of a sequence of terms t1, . . . , tn is
the set of pairs (i, k), where i ≤ n specifies the term ti, and k ≤ arity(ti) specifies
a placeholder for a data value in ti. We equip the domain D of a sequence t̄ of
terms with an equivalence relation E, that is the finest equivalence such that
(i, k) ∈ D is equivalent to (i+1, k′) ∈ D whenever the k-th memorable value of ti
and the k′-th memorable value of ti+1 share the same data value. Of course, all
elements in an equivalence class have the same associated data value. A coloring
of (D,E) is a labeling of the equivalence classes of E by data values. The sequence
t̄ naturally defines a coloring of (D,E) by associating to each equivalence class
the data value of its elements. An element (i, k) in D is a border position if i = 1
or i = n. Two colorings are border-equal if they agree on all border positions.
A border class is an equivalence class that contains a border position. We then
establish the following claims:

Claim 1. If two sequences of terms are locally consistent, then they
define the same domain D and the same equivalence E, and, further-
more, the corresponding colorings are border-equal.

Proof of Claim 1. Let t̄ and t̄′ be locally consistent sequences of terms.
It is obvious that t̄ and t̄′ have the same domain and it is equally
trivial that their colorings are border-equal. In addition, the equiva-
lence between two positions (i, k) and (i+1, k′) only depends on the
equalities between the data values in ti and ti+1. Those equalities are
the same in ti and ti+1 as in t′i and t′i+1 as there is a data renaming
π such that π̂(ti) = t′i and π̂(ti+1) = t′i+1. ◻

Two colorings have a small difference if their domains and equivalences are
the same and they disagree on the color of at most one equivalence class. Two
locally consistent sequences have a small difference if their colorings have small
difference.

Claim 2. Two locally consistent sequences of terms that have a small
difference have the same value.

Proof of Claim 2. Let t1, . . . , tn and t′1, . . . , t
′
n be locally consistent

sequences of terms that have a small difference. Let C be the equiv-
alence class for which the two colorings differ. Let i be the smallest
number such that there is (i, k) ∈ C and let j be the biggest number

44

such that (j, k′) ∈ C for some k, k′ ∈ N. As t1, . . . , tn and t′1, . . . , t
′
n are

locally consistent, it follows that 1 < i and j < n. Let d be the color
of C in t1, . . . , tn, and d′ be the color of C in t′1, . . . , t

′
n. We define τ

to be the permutation that swaps the data values d and d′ and is the
identity elsewhere. We observe that:

i) τ ○ τ is the identity.
ii) τ̂(ti) = t′i for all i ∈ {i, . . . , j}.

iii) ti = t′i for all i ∈ {1, . . . , i − 1} ∪ {j + 1, . . . , n}.
iv) τ̂(s′) = s′ for s′ = t′i−1 ⋅ . . . ⋅ t′j+1. This is because neither d nor d′

are memorable in s′: by Proposition 4 every value is either an
L-memorable value or aR-memorable value. As t′i−1, . . . , t

′
j+1 are

all in the same J̇ -class, it follows that all R-memorable values
in s′ must occur in t′i−1 and all L-memorable values in s′ must
occur in t′j+1. As neither d nor d′ occur in either t′i−1 or t′j+1 it
follows that d and d′ are not memorable in s′.

The above remarks allow us to conclude the proof of Claim 2:

t1 ⋅ . . . ⋅ tn = t1 ⋅ . . . ⋅ ti−2 ⋅ τ̂(τ̂(ti−1) ⋅ . . . ⋅ τ̂(tj+1)) ⋅ tj+2 ⋅ . . . ⋅ tn
(by (1))

= t1 ⋅ . . . ⋅ ti−2 ⋅ τ̂(t′i−1 ⋅ . . . ⋅ t′j+1) ⋅ tj+2 ⋅ . . . ⋅ tn (by (2))

= t′1 ⋅ . . . ⋅ t′i−2 ⋅ τ̂(t′i−1 ⋅ . . . ⋅ t′j+1) ⋅ t′j+2 ⋅ . . . ⋅ t′n (by (3))

= t′1 ⋅ . . . ⋅ t′i−2 ⋅ t′i−1 ⋅ . . . ⋅ t′j+1 ⋅ t′j+2 ⋅ . . . ⋅ t′n (by (4))

◻

We can finally turn to the main proof. Consider two locally consistent sequences t̄
and t̄′. By Claim 1, t̄ and t̄′ define the same domain D, and the same equivalence
E, and the corresponding colorings are border-equal. We show that one can
transform t̄ into t̄′ by steps of small-difference. Of course, using Claim 2, this
would conclude the proof.

It is sufficient to describe how the coloring evolves at each step. Let m be
the number of non-border equivalence classes, and let d1, . . . , dm be fresh values
(appearing neither in t̄ nor in t̄′). Transforming t̄ to t̄′ is done in two phases.
One first performs the following m-steps: at step i, for i = 1, . . . ,m, one recolors
the i-th equivalence class by di. One then performs other m-steps during which
one recolors the i-th equivalence class, for each i = 1, . . . ,m, by its color in t̄′.
This concludes the proof of the first part of the lemma.

The second part of the lemma, dealing with an almost locally consistent
sequence of terms, just follows from the fact that if t1, . . . , tn is almost locally
consistent with t′1, . . . , t

′
n, then there exist a renaming τ and a sequence t′′1 , . . . , t

′′
n

of terms such that t1, . . . , tn is locally consistent with t′′1 , . . . , t
′′
n and t1 ⋅ . . . ⋅ tn =

τ̂(t′′1 ⋅ . . . ⋅ t′′n). ◻

The general idea for proving the induction step of Claim C2 of Lemma 3 is
that the formula that computes the orbits under a rigid guard α will guess a

45

suitable J̇-partition u0, u1, . . . un, un+1 of the underlying data word w. For evalu-
ating the product h(u1) ⋅h(u2) ⋅h(un), the formula will guess a sequence of terms
t1 . . . tn which is locally consistent with h(u1) . . . h(un). This may look difficult
a priori, because there are infinitely many possible terms (as there are infinitely
many data values) and an MSO formula would not be able to guess such a se-
quence. However, our last preparatory lemma shows that it suffices to considers
sequences of terms built over a set of data values of bounded cardinality.

Lemma 17. For each sequence of terms t1 . . . tn, there is a sequence of terms t′1 . . . t
′
n

that is locally consistent with t1 . . . tn and uses at most 4∥M∥ distinct data values.

Proof. We can reus the objects in the proof of Lemma 16, namely, we can view
a sequence of terms as a domain, an equivalence relation, and a coloring. We can
assume without loss of generality that:

• the set D of all data values is the set of positive integers,

• the data values in t1 and in tn belong to the set [1,2∥M∥] (call this range
of values the set of border colors),

• all other data values (i.e. those that to not appear either in t1 or tn) have
color greater than 4∥M∥.

By using induction on i = 2, . . . , n− 1, we transform the coloring associated with
the sequence t1, . . . , tn into a coloring where all positions up to position i in the
domain have data values smaller than or equal to 4∥M∥. Such a transformation
is perfmormed as follows. If there is a color at position i + 1 that is greater
than 4∥M∥, we recolor all the data values appearing at position i+1 that do not
belong to [1,4∥M∥] by arbitrarily chosen new colors among [2∥M∥ + 1,4∥M∥].
Note that we can do that, since there are at most ∥M∥ data values involved
in the term ti and hence there are always at least ∥M∥ fresh data values from
[2∥M∥ + 1,4∥M∥] that we can choose.

At the end of the transformation, every position uses only data values among
[1,4∥M∥], and the coloring is still valid. This means that the resulting sequence
t′1, . . . , t

′
n of terms fulfills the concludsions of the lemma. ◻

We can prove the induction step for Claim C2 of Lemma 3.

Lemma 18 (Induction step for C2). For every guard α(x, y) such that w ⊧
α(x, y) implies h(w[x, y]) ≥

J̇
J̇ , one can compute the orbits under α.

Proof. The construction starts as in the proof of Lemma 13, but things change
at point 3 since the construction there exploits aperiodicity. We continue the
construction, without the assumption of aperiodicity, as follows.

3. One guesses a J̇-partition which is rigidly guarded and orbit-computable us-
ing the formula αpartition(X,Y) of Lemma 15. We denote by u0, u1, . . . , un, un+1

this partition.

46

4. One guesses some terms t1, . . . , tn over a finite set data set C of size 4∥M∥.
There are finitely many such terms, so this can be done using monadic quan-
tifications. This must be done in such a way that the information concern-
ing ti is located on the factor ui, say on the first letter. One then com-
putes t = t1 ⋅ . . . ⋅ tn. This can be done inductively using MSO since the
partial products of the terms t1, . . . , tn range over a finite set.

5. One checks the almost local consistency between t1 . . . tn and h(u1) . . . h(un).
This is done as follows.
Consider any index 1 ≤ i ≤ n−1 (this amounts at using a universal first-order
quantification). Let β(x, y) and β′(x′, y′) be the rigid guards for ui and
for ui+1 and let ti = o(d1, . . . , dk) and ti+1 = o′(d′1, . . . , d′h) be two terms. One
first guesses (using disjunctions) the rigid formula ϕ(x, y, z̄) that witnesses
the orbit of ti over ui, as well as the rigid formula ϕ′(x′, y′, z̄′) that witnesses
the orbit of ti+1 over ui+1. One then checks that those formula indeed holds
for some z̄ and some z̄′.
Now, in order to check the almost local consistency it is sufficient that all the
equality relations between the data values of ti and the data values of ti+1

are satisfied. For this, one checks that for all values dl in ti and d′l′ in ti+1:
• if dl = d′l′ , then (∃ y. ϕ(∗, y, ∗̄, zl, ∗̄) ∧ ϕ′(y + 1,∗, ∗̄, z′l′ , ∗̄)) ∧ zl ∼ z′l′

holds (the guard is rigid since ϕ and ϕ′ are rigid),
• if dl ≠ d′l′ , then (∃ y. ϕ(∗, y, ∗̄, zl, ∗̄) ∧ ϕ′(y + 1,∗, ∗̄, z′l′ , ∗̄)) ∧ zl ≁ z′l′

holds (same argument for the rigidity).
Finally, one needs to check equalities between the data values of the first
term t1 and the last term t′n. For this we reuse the same notation, namely,
we assume that t1 = o(d1, . . . , dk) and tn = o′(d′1, . . . , d′h) and we check that:

• if dl = d′l′ , then (∃ x, y. ϕ(x,∗, ∗̄, zl, ∗̄) ∧ α(x, y) ∧ ϕ(∗, y, ∗̄, z′l′ , ∗̄)) ∧ zl ∼
z′l′ holds (rigidity holds as above, since α is rigid),

• if dl ≠ d′l′ , then (∃ x, y. ϕ(x,∗, ∗̄, zl, ∗̄) ∧ α(x, y) ∧ ϕ(∗, y, ∗̄, z′l′ , ∗̄)) ∧ zl ≁
z′l′ holds (same argument for the rigidity).

6. At this point, h(w) has to be in the same orbit as t. What remains to be
done is witness the data values. For this, once more one uses Proposition 4.
Since h(w) J̇ h(u1), and h(w) ≤

J̇
h(u1), we have h(w) Ṙ h(u1). In the

same way, we have h(w) L̇ h(un). This means that every memorable value
of h(w) is already present either in h(u1) or in h(un). Hence, the formula
can locate in a rigid way the positions of the memorable values of h(u1)
and h(un). If t1 ⋅ . . . tn contains a data value d and d occurs in t1, then the
corresponding position in u1 that witnesses the memorable value d is used,
and symmetrically for un.

◻

47

D Proofs for Section 6
(Logics for finite memory automata)

Before turning to the proofs of the results about finite memory automata, we
describe an equiavalent variant of these automata from [2]. Hereafter, given a
sequence of data values u = d1 . . . dk from an infinite set D and a set I ⊆ Dom(u)
of positions in u, we denote by u∣I the sub-sequence obtained from u by selecting
the positions in I. Moreover, we denote by [u] the isomorphism type of u, namely,
the class of all data words u′ for which there is a renaming τ ∈ GD such that
τ(u′) = u.

Definition 13. A (non-deterministic) finite-memory automaton (FMA) is a tu-
ple of the form A = (D,A, k,Q0, . . . ,Qk, T, I, F), where

• D is the infinite set of data values,

• A is the finite alphabet,

• k is the maximum number of stored values,

• Q0, . . . ,Qk are pairwise disjoint finite sets of control states,

• T is a finite set of transition rules of the form (p, a, θ,E, q), where p ∈ Qi
for some 0 ≤ i ≤ k, a ∈ A, θ is the isomorphism type of a data word of length
i + 1, E ⊆ {1, . . . , i + 1}, and q ∈ Qj, with j = i + 1 − ∣E∣,

• I ⊆ Q0 is a set of initial control states;

• F ⊆ Q0 ∪ . . . ∪Qk is a set of final control states.

A configuration of A is defined as a pair of the form (q, r) consisting of a control
state q ∈ Qi, with 0 ≤ i ≤ k, and a memory content r ∈ Di. The meaning of a
transition rule of the form (p, a, θ,E, q) is that the automaton can move from a
configuration (p, r) to a configuration (q, s) by consuming a pair (d, a) ∈ D ×A
iff the word rd has isomorphism type θ and s is obtained from rd by removing
all positions in E.

We enforce two sanity conditions to every transition rule (p, a, θ,E, q):
1. To guarantee that the length of the target memory content s never exceeds
k, we assume that the set E is non-empty whenever q ∈ Qk.

2. The memory is updated like a stack: if the isomorphism type θ is of the form
[rd], with r(j) = a for some 1 ≤ j ≤ ∣r∣, then E must contain the index j.

Note in particular that the second sanity condition has two advantages: the
content s of the target memory always contains pairwise distinct data values
and, moreover, the order of the data values in the memory is the order of their
last occurrences in the consumed input word.

The notion of (successful) run of an FMA A and the notion of recognized
language L (A) are defined in the usual way. Finally, we say that an FMA
A = (D,A, k,Q0, . . . ,Qk, T, I, F) is deterministic if (i) the set of initial states I is
a singleton {q0} and (ii) there is no pair of transitions (p, θ,E, q), (p, θ,E′, q′) ∈ T
with q ≠ q′ or E ≠ E′. Similarly, A is said to be complete if for every control state

48

q ∈ Qi and every isomrphism type θ with i + 1 positions, T contains a transition
rule of the form (q, θ,E, q′).

We divide the proof of Proposition 2 into two lemmas, one dealing with the
translation of backward-rigidly guarded MSO formulas into equivalent determin-
istic FMA, and the other one dealing with the counterexample for the converse
translation.

Lemma 19. Every language definable in backward-rigidly guarded MSO is rec-
ognizable by deterministic FMA.

Proof. This proof is based on a technique similar to the proof of Theorem 1.
Specifically, we want to exploit closure properties of (suitable forms of) deter-
ministic FMA under complementation (corresponding to negations of formulas),
intersection (corresponding to conjunctions of formulas), and projection (corre-
sponding to existential quantifications).

Let us first discuss the operation of projection on deterministic FMA. In
general, this operation maps a deterministic FMA to a non-deterministic FMA.
Moreover, unlike classical finite automata, arbitrary non-deterministic FMA
cannot be determinized: the standard subset construction might turn a non-
deterministic FMA into one with an infinite state space (note that the same
issue occurs when projecting from an orbit finite data monoid). We solve this
problem by restricting to a special form of deterministic FMA, which is similar
to the notion of projectability for data monoid morphisms given (see Section 4).

As usual, A denotes a finite set of symbols, B denotes the binary alphabet
{0,1} (which is used to encode valuations of first-order and monadic second-
order variables), and D denotes an infinite set of data values. In the following
definition, we denote by A(w) the configuration reached by the automaton A
after consuming w.

Definition 14. An FMA A over the alphabet D×A×Bm is projectable if (i) it
is deterministic and complete and for all data words w ∈ (D×A)∗ and (ii) for all
tuples of predicates Ū = (U1, . . . , Um) and V̄ = (V1, . . . , Vm), if the configurations
A(⟨w, Ū⟩) and A(⟨w, V̄ ⟩) have the same control state, then they coincide.

We now prove the relevant closure properties of projectable FMA.

Claim 1. Projectable FMA are closed under projection.

Proof of Claim 1. Let us consider a projectable FMA A = (D,A ×
Bm+1, k,Q0, . . . ,Qk, T, I, F). We need to construct a projectable FMA
that recognizes the language

L′ =def {⟨w, Ū⟩ ∶ ∃ Um+1 ⊆ Dom(w). ⟨w, Ū ,Um+1⟩ ∈ L (A)}

where Ū = U1, . . . Um. We now define A′ to be the FMA (D,A ×
Bm, k′,Q′

0, . . . ,Q
′
h, T

′, I ′, F ′), where
• k′ = k ⋅ ∣Q0 ∪ . . . ∪Qk ∣, namely, A′ uses up to k registers for each

state of A;

49

• for all 0 ≤ i ≤ k′, the set Q′
i contains all partial functions f from

Q0 ∪ . . . ∪Qk into the powerset of {1, . . . , i} such that

1. if q ∈ Qj and f(q) is defined then ∣f(q)∣ = j;
2. ⋃q∈Dom(f) f(q) = {1, . . . , i}.

Intuitively, a configuration (f, r) of A′, with f ∈ Q′
i and r ∈ Di,

represents the set of all configurations of A of the form (q, r∣f(q))
with q ∈ Dom(f).

• The transition relation T ′ is defined in such a way that whenever
A′ is in a configuration (f, r) and it reads (d, a, b1, . . . , bm), then
it can move to any configuration (g, s) such that

1. if a state q of A is in the domain of g, then there is a
symbol bm+1 ∈ {0,1} and a control state p ∈ Dom(f) such
that A moves from configuration (p, r∣f(p)) to configuration
(q, s∣g(q)) when reading (d, a, b1, . . . , bm, bm+1);

2. if a state q of A is not in the domain of g, then there is no
symbol bm+1 ∈ {0,1}, no control state p ∈ Dom(f), and no set
I ⊆ {1, . . . , k′} such that A moves from (p, r∣f(p)) to (q, s∣I)
when reading (d, a, b1, . . . , bm, bm+1).

We observe that, according to the above explanation, whether
A′ moves from a configuration (f, r) to a configuration (g, s)
by reading (d, a, b1, . . . , bm) depends only on the control states
f and g and on the equality relationships between the value d
and the values in r and s. In particular, it depends neither on
the concrete data value d, nor on the memory contents r and s.
For this reason, one can turn the above description into a formal
definition for the transition relation T ′ that uses isomorphism
types and that satisfies the sanity conditions introduced at the
beginning of this section (we omit the tedious details of such a
definition). Below, we verify that these transition rules are deter-
ministic when restricted to reachable control states.

• I ′ is the partial function that maps every initial state in I of A
to the empty set and that is undefined on all other states;

• F ′ is the set of all partial functions f ∈ Q′
0 ∪ . . . ∪Q′

k′ such that
Dom(f) ∩ F ≠ ∅.

It is routine to verify that the (non-deterministic) FMA A′ recognizes
the language L′ above.
We now argue that A′ can be turned into a projectable FMA by
simply pruning the unreachable control states (this can be done by
a simple reachability analysis, see for instance [2]). In the following
we assume that A′ contains no unreachable states.
We start by showing that A′ is deterministic. Assume towards a con-
tradiction that A′ contains transitions (f, (a, b1, . . . , bm), θ,E, g) and
(f, (a, b1, . . . , bm), θ,E′, g′) such that g = g′ or E ≠ E′. We first show

50

that in fact g must be equal to g′. As we assumed that A′ contains
only reachable states, there must be a data word ⟨w,U1, . . . , Um⟩ ∈
(D ×A ×Bm)∗ such that

(f, r) ∈ A′(⟨w,U1, . . . , Um⟩).
Let d be a data value such that (d, a, b1, . . . , bm) activates the two
transitions above. Then there are register assignments s and s′ such
that

(g, s), (g′, s′) ∈ A′(⟨w,U1, . . . , Um⟩ ⋅ (d, a, b1, . . . , bm)).
Let q be any state in the domain of g. This means that there is a sym-
bol bm+1 ∈ {0,1} and a control state p in the domain of f such that A
moves from (p, r∣f(p)) to (q, s∣g(q)) when reading (d, a, b1, . . . , bm, bm+1).
Of course, we can say the same for g′ and hence g′(q) must be defined
as well.
We know from the definition of A′ that for every state in the domain
of g, and in particular for the state q, there is a unary predicate
Um+1 ⊆ Dom(w) and a symbol bm+1 ∈ {0,1} such that A reaches
configuration (q, s∣g(q)) after first parsing ⟨w,U1, . . . , Um, Um+1⟩ and
then parsing (d, a, b1, . . . , bm, bm+1), namely,

A(⟨w,U1, . . . , Um, Um+1⟩ ⋅ (d, a, b1, . . . , bm, bm+1)) = (q, s∣g(q)).
The same arguments apply to the configuration (g′, s′), which prove
the existence of a unary predicate U ′

m+1 ⊆ Dom(w) and a symbol
b′m+1 ∈ {0,1}, such that

A(⟨w,U1, . . . , Um, U
′
m+1⟩ ⋅ (d, a, b1, . . . , bm, b′m+1)) = (q, s′∣g′(q)).

Since A is projectable, we have s∣g(q) = s′∣g′(q). Moreover, we know
from the sanity conditions that both s and s′ are obtained from the
same memory content r by first appending the input value d and
then selecting some sub-sequences. Since r has no repetitions of the
same data value and since s∣g(q) = s′∣g′(q), we must have g(q) = g′(q).
We have just shown that g = g′.
Let us finally consider the memory contents s and s′. From the def-
inition of A′ we know that both s and s′ contain no repeated data
values and, moreover, ⋃q∈Dom(g) g(q) = {1, . . . , ∣s∣}. As g = g′ and
s∣g(q) = s′∣g(q) for all q ∈ Dom(g) it follows that s = s′. Therefore E
must be equal to E′. ◻

Summing up, we proved that the restriction of A′′ to the set of reachable
control states is a deterministic FMA. Similar arguments can be used to prove
that this automaton is also complete and, moreover, projectable, which concludes
the proof of closure under projections.

Claim 2. Projectable FMA are closed under intersection and com-
plementation.

51

Proof (Sketch) of Claim 2. Closure under intersection and comple-
mentation of projectable FMA is proved, as in the classical case, by
computing “products” of projectable FMA and by complementing
the set of final control states, respectively. ◻

Intersection with non-projectable FMA. There is still one missing property that
we need to verify, which is related to the translation of backward-rigidly guarded
data tests of the form ϕ(x, y) ∧ x ∼ y. For this, we inductively translate the
backward-rigid guard ϕ(x, y) into a projectable FMA A that recognizes the data
language JϕK over the alphabet D × A × B2. We also construct a deterministic
(but not projectable) FMA B recognizing the language Jx ∼ yK over the same al-
phabet. To prove that the intersection language Jϕ(x, y) ∧ x ∼ yK is recognized
by a projectable FMA, we need to process A in order to enforce a stronger notion
of projectability (called, as usual, 0-reduced projectability), which is compatible
with intersections of non-projectable languages. Below, we say that a configura-
tion of A is a 0-configuration if it has empty memory and all transitions on this
configuration are self-loops.

Definition 15. An FMA A over the alphabet D×A×B2 is 0-reduced projectable
if (i) it is projectable and (ii) for all data words w ∈ (D ×A)∗ and all positions
x,x′, y ∈ Dom(w), if the two configurations A(⟨w,{x},∅⟩) and A(⟨w,{x′},∅⟩)
coincide, then x = x′ or both configurations are a 0-configuration.

We now prove the following:

Claim 3. Let ϕ(x, y) be a backward-rigid formula. Given a pro-
jectable FMA A that recognizes JϕK, one can compute a 0-reduced
projectable FMA A′ that recognizes JϕK.

Proof of Claim 3. The 0-reduced projectable FMA A′ is obtained
from A by simply grouping together those control states from which
the automaton cannot accept, no matter what it reads. We call these
states trap states. Computing trap states can be done again by a sim-
ple reachability analysis. Formally, one defines A′ as the FMA ob-
tained from A by introducing a new control state qsink, with memory
size 0, by redirecting to qsink all the transitions that reach some trap
state (erasing at same time the entire memory), and finally pruning
the trap states. Clearly, the thus defined automaton A′ is equivalent
to A. Moreover, it is easy to see that is deterministic, complete, and
projectable.
We need to prove that A′ is 0-reduced projectable. For this we use
the fact that the automaton recognizes the language JϕK, which is
defined by the backward-rigid formula ϕ(x, y). Let w ∈ (D × A)∗
be a data word and let x,x′ ∈ Dom(w) be two positions in it. By
way of contradiction, we assume that (i) x ≠ x′ and (ii) the two
configurations A′(⟨w,{x},∅⟩) and A′(⟨w,{x′},∅⟩) concide but they
are not the 0-configuration (qsink, ε). From this we argue that ϕ(x, y)

52

is not backward-rigid. Since the configuration A′(⟨w,{x},∅⟩) is not
a 0-configuration, it can reach a final configuration, namely, there is
an expanded data word ⟨v,U1, U2⟩ ∈ (D ×A ×B2) such that

⟨w,{x},∅⟩ ⋅ ⟨v,U1, U2⟩ ∈ L (A′).
Similarly, since A′(⟨w,{x},∅⟩) = A′(⟨w,{x′},∅⟩), we have that

⟨w,{x′},∅⟩ ⋅ ⟨v,U1, U2⟩ ∈ L (A′).
Since x ≠ x′, this is against the backward-rigidity of the formula
ϕ(x, y) defining L (A′). This completes the proof of Claim 3. ◻

We now argue that the data language Jϕ(x, y) ∧ x ∼ yK is recognized by a
projectable FMA. We denote by A′ a 0-reduced projectable FMA recognizing
JϕK. Moreover, we denote by B the “minimal” deterministic FMA that recognizes
Jx ∼ yK. The automaton B has four control states:

1. a control state qwait, with empty memory, for parsing the prefix up to
min(x, y),

2. a control state qcheck, with memory size 1, for parsin the infix from min(x, y)+
1 to max(x, y),

3. a final control state qaccept, with empty memory, for parsing the suffix from
max(x, y)+1 to the end, in the case where the data test x ∼ y was successful,

4. a sink control state qreject, with empty memory, for parsing the same suffix
above, but in the case where the data test x ∼ y failed.

One can construct an FMA C recognizing Jϕ(x, y) ∧ x ∼ yK using a suitable
product between the 0-reduced projectable FMA A′ and the deterministic (but
not projectable) FMA B described above. This product is very similar to the
0-collapse product of orbit finite data monoids (see the proof of Lemma 2 in
Section B). Intuitively, C mimics the computations of A′ and B on the input
word, but as soon as A′ reaches the (unique) 0-configuration, the component
that simulates the computation of B is reset to a special void configuration with
empty memory. Of course the defined FMA C is deterministic and complete, as
A′ and B are so.

We verify that C is projectable. Consider a data word w ∈ (D×A)∗ and some
predicates U1, U2, V1, V2 ⊆ Dom(u). Suppose that the configurations C(⟨u,U1, U2⟩)
and C(⟨u,V1, V2⟩) contain the same control state. We consider also the configu-
rations reached by A′ after parsing ⟨u,U1, U2⟩ and ⟨u,V1, V2⟩. In particular, we
distinguish between the case where A′(⟨u,U1, U2⟩) is the 0-configuration (and
hence A′(⟨u,V1, V2⟩) as well) and the case where A′(⟨u,U1, U2⟩) is not the 0-
configuration (and hence A′(⟨u,V1, V2⟩) as well). In the former case, we immedi-
ate obtain that the two configurations reached by C after parsing ⟨u,U1, U2⟩ and
⟨u,V1, V2⟩ must coincide (this is because the components of these two configura-
tions that simulate B have been reset as A′ has reached the 0-configuration). In
the latter case, since C(⟨u,U1, U2⟩) and C(⟨u,V1, V2⟩) contain the same control
state, we have the same for the configurationsA′(⟨u,U1, U2⟩) andA′(⟨u,V1, V2⟩).
Moreover, since A′ is projectable, we get A′(⟨u,U1, U2⟩) = A′(⟨u,V1, V2⟩). So the

53

only way the configurations C(⟨u,U1, U2⟩) and C(⟨u,V1, V2⟩) can differ is in the
components that simulate B. Below, we analyse these components and we argue
that they coincide:

1. If U1 = U2 = ∅, then B(⟨u,U1, U2⟩) = (qwait, ε). Moreover, since C(⟨u,U1, U2⟩)
and C(⟨u,V1, V2⟩) share the same control state, the two components of C(⟨u,U1, U2⟩)
and C(⟨u,V1, V2⟩) for simulating B encode the same control state of B. In
particular, it follows that B(⟨v, V1, V2⟩) has control state qwait and hence
B(⟨u,U1, U2⟩) = B(⟨v, V1, V2⟩).

2. If both U1 and U2 are non-empty, then B(⟨u,U1, U2⟩) is either (qaccept, ε)
or (qreject, ε). Using arguments similar to the previous case, one obtains
B(⟨u,U1, U2⟩) = B(⟨v, V1, V2⟩).

3. If U1 ≠ ∅ and U2 = ∅, then clearly U1 is a singleton of the form {x} and
the configuration B(⟨u,U1, U2⟩) contains the control state qcheck and the data
value at the position x of u. Similarly, since the configurations B(⟨u,U1, U2⟩)
and B(⟨u,V1, V2⟩) share the same control state, we have that V1 is a single-
ton of the form {x′} and V2 = ∅. Moreover, since the two configurations
A′(⟨u,U1, U2⟩) and A′(⟨u,U1, U2⟩) coincide and they are different from the
0-configuration, we have x = x′. This implies B(⟨u,U1, U2⟩) = B(⟨v, V1, V2⟩).

4. The last case U1 = ∅ and U2 ≠ ∅ is similar to the previous one.

It follows that C(⟨u,U1, U2⟩) = C(⟨u,V1, V2⟩). This shows that C is a projectable
FMA.

Proof of the main lemma. As previously mentioned, the proof that any backward-
rigidly guarded MSO formula ϕ can be translated into an equivalent determinis-
tic (and projectable) FMA goes by structural induction on ϕ, using the closures
of deterministic projectable FMA under projection, complement, intersection.
For the backward-rigidly guarded data tests one uses the construction just men-
tioned above. ◻

Lemma 20. There is a language recognized by a deterministic FMA which can-
not be defined in backward-rigidly guarded MSO.

Proof. Consider the language L′′ of data words of the form

d1 d2 . . . dn

for which there is a sequence of indices 1 = i1 < i2 < . . . < ik = n satisfying
dij+1 = dij+1 for all 1 ≤ j < k and dij+1 ≠ dh for all ij + 1 < h < ij+1

4.
It is easy to see that L′′ is recognized by a deterministic FMA that uses only

one register: at each phase, the automaton stores the value under the current
position and then moves to the right searching for the another occurrence of the
stored value – if it does not find such an occurrence, then it rejects, otherwise,

4 This language is a variant of an example given in [?] to study data languages recog-
nized by pebble automata.

54

as soon as the occurrence is found, the automaton moves to the next position to
the right (if any, otherwise it accepts) and starts a new phase.

Below, we fix a generic formula ϕ of backward-rigidly guarded MSO and we
show that it cannot define the language L′′. For this, we let k be the number
of occurrences of data comparisons of the form α(y, z) ∧ y ∼ z in ϕ. We then
consider a family of data words of the form

wn = 0 u(0)n 0 1 u(1)n 1 . . . n u(n)n n

where n ranges over the positive natural numbers, each word u
(i)
n has length

exactly n, and the juxtaposition u
(0)
n ⋅ u(1)n ⋅ . . . ⋅ u(n)n contains pairwise distinct

values from the set N ∖ {0, . . . , n} (therefore, the only equalities that hold in
wn are those between the occurrences of the data values 0, . . . , n). Without loss
of generality, we also assume that for every backward-rigidly guarded data test
α(x, y) ∧ x ∼ y in ϕ, the guard α(x, y) holds only if x is interpreted by a position
to the left of the position that interprets y.

Using an encoding similar to the proof of Corollary 5, one can turn each
data word wn into a classical word w∗

n over the finite alphabet {0,1}k where
every position y of w∗

n is labeled by a k-tuple of boolean values, each of them
representing the “observable” equality between the value at the position y of wn
and the value at the unique position x determined from y via the backward-rigid
guard of a corresponding data test α(x, y) ∧ x ∼ y of ϕ. Accordingly, we can
rewrite every sub-formula β of ϕ into a formula β∗ of standard MSO by replacing
each backward-rigid guard α(x, y) of a data test in β by a fresh unary predicate

[α∼](y).
Clearly, we have that for every n, every backward-rigid guard α(x, y) of ϕ, and
every position x < ∣wn∣ in wn,

wn ⊧ α(x, ∣wn∣) iff w∗
n ⊧ α∗(x, ∣wn∣).

Moreover, one can prove that there is a number nα, which only depends on α,
such that for all n ∈ N and all pairs of positions 1 ≤ x < y ≤ ∣wn∣,

w∗
n ⊧ α∗(x, y) implies 1 ≤ x ≤ nα ∨ y − nα ≤ x < y. (⋆)

The proof of ⋆ is by structural induction on the number of nested rigid guards.
The statement holds because the word wn is over the alphabet D, that is, there
are no labels from a finite alphabet that can be used to “rigidly jump” far from
the original position y and from the endpoints of the word. We omit the details.

If we let y = ∣wn∣ = (n + 1)2 in the above implication and we consider a
sufficiently large n (i.e. n > nα for all backward-rigid guards α of ϕ), we obtain
that there is no backward-rigid guard α(x, y) in ϕ that, given the last position y
in wn, which carries the value n, determines the position x of the other occurrence
of the value n in wn. This shows that

wn ⊧ ϕ iff w∗
n ⊧ ϕ∗ iff wn[∣wn∣↦ n + 1] ⊧ ϕ

55

where wn[∣wn∣↦ n+1] is the data word obtained from wn by relabeling the last
position with the fresh value n+1. Since wn ∈ L′′ and wn[∣wn∣↦ n+1] ∉ L′′, this
shows that ϕ does not define the language L′′. ◻

Proposition 2. Every language definable in backward-rigidly guarded MSO is
recognizable by deterministic FMA. Conversely, there is a language recognized by
a deterministic FMA which cannot be defined in backward-rigidly guarded MSO.

Proof. The first claim follows from Lemma 19. The second claim follows from
Lemma 20. ◻

We now turn to the proof of the main theorem of Section 6.

Theorem 3. A language is definable in ∃backward-rigidly guarded MSO iff it is
recognizable by non-deterministic FMA.

Proof. Having established Lemma 19, the translation from an ∃backward-rigidly
formula ∃ Z̄. ϕ to an equivalent non-deterministic FMA that recognizes the
language L = J∃ Z̄. ϕK is straightforward. For this, we first translate ϕ into a
deterministic FMA A that recognizes the language L′ = JϕK (note that this
language is over the alphabet D×A×Bm, where m = ∣Z̄ ∣). After that, we project
A onto the alphabet D×A: the resulting automaton is a non-deterministic FMA
that guesses the correct interpretation for the second-order variables Z̄ on any
input data word that belongs to the language L = J∃ Z̄. ϕK.

We now prove the converse direction, that is, we translate a non-deterministic
FMA A = (D,A, k,Q0, . . . ,Qk, T, I, F) into an equivalent ∃backward-rigidly
guarded MSO sentence. As in the classical theory, the proof is based on an
encoding a successful run of A on the input word. For this we need a second-
order variable Zt for each transition rule t ∈ T of A. The formula that defines the
recognized language L (A) begins with a block of existential monadic quanti-
fiers of the form ∃ Z̄. , where Z̄ = (Zt)t∈T . The matrix of the desired formula (i.e.
the part after the block of existential monadic quantifiers) is a backward-rigidly
guarded MSO formula ϕ(Z̄) that checks that the interpretations of the variables
Z̄) encode a valid run of A.

Formally, given an input data word w = (d1, a1) . . . (dn, an), the formula ϕ(Z̄)
checks that:
1. For all positions 1 ≤ x ≤ ∣w∣, exactly one variable Zt with t ∈ T holds at x

(i.e., ∀ x. ⋁t∈T x ∈ Zt ∧ ⋁t≠t′∈T x ∉ Zt ∨ x ∉ Zt′). We will say that a transition
rule t is encoded at a position x if x ∈ Zt holds.

2. For all positions 1 ≤ x < ∣w∣, the target state of the transition rule encoded
at position x coincides with the source state of the transition rule encoded
at position x + 1 (i.e., ∀ x. ⋁t=(p,θ,E,q),t′=(q,a,θ′,E′,q′)∈T x ∈ Zt ∧ x + 1 ∈ Zt′).

3. The transition rule encoded at the first position of the word starts with an
intial control state and the transition rule encoded at the last position of the
word ends with a final control state.

56

4. For all positions 1 ≤ x ≤ ∣w∣, if t = (p, a, θ,E, q) is the transition rule encoded
at position x, then a = ax, where ax is the symbol that appears at position
x of the input word.

5. For all positions 1 ≤ x ≤ ∣w∣, if t = (p, a, θ,E, q) is the transition rule encoded
at position x, then θ is the isomorphism type of rx−1 ⋅ dx, where rx is the
memory content at position x−1 in the encoded run of A and dx is the data
value at position x of the input word .
To see how this check is done, consider an example of a partial run of A:

(q0, r0)
(d1,a1)ÐÐ→ (q1, r1)

(d2,a2)ÐÐ→ . . .
(dx−1,ax−1)ÐÐ→ (qx−1, rx−1).

For each register i of rx−1, we need to determine the “provenance” of the
value rx−1[i] in the prefix (d1, a1)(d2, a2) . . . (dx−1, ax−1) of the input word,
namely, we need to locate some position y ≤ x− 1 such that dy = rx−1[i]. We
thus reconstruct, for each z ≤ x − 1, the position fx,i(z) of the occurrence of
rx−1[i] (if any) in the memory rz. This can be done by a suitable formula
that first guesses some monadic variables W1, . . . ,Wk encoding the partial
function fx,i(z), and then verifies, using the run encoded by the variables Z̄,
that the guess is correct. One can also do this using only first-order quantifi-
cations, since the partial function fx,i(z) can only decrease as z increases;
however, we prefer not to discuss this option in detail. We then compute the
leftmost position y such that fx,i(z) is defined on all z = y, . . . , x−1. Clearly,
this implies dy = rx−1[i].
The formula that determines y from x using Z̄ is of the form

αi(y, x, Z̄) =def βi(y, x, Z̄) ∧ ∀ y′. y′ < y → ¬βi(y′, x, Z̄)
where

βi(y, z, Z̄) =def ∃W1, . . . ,Wk. ∀ z.

y ≤ z ≤ x − 1 → (⋁
1≤j≤k

z ∈Wj ∧ ¬ ⋀
1≤j<j′≤k

z ∈Wj ∧ z ∈Wj′

∧ ⋁
1≤j≤k, p∈Qj

t=(p,a,θ,E,q)∈T

z ∈ Zt ∧ z ∈Wj ∧ z − 1 ∈Wj−∣E∩{1,...,j}∣)

Note that αi(y, x, Z̄) is an ∃backward-rigid formula. We can thus use αi as a
guard to test equality between the data value dx at position x and the data
value di (= rx−1[i]) at position y.
Using the above constructions we can check that the isorphism type of the
transition rule encoded at position x coincides with the isomorphism type of
rx−1 ⋅ dx.

Thus ϕ(Z̄) is a formula that verifies that the sequence of transition rules encoded
by Z̄ is a valid run of A on the input word. Hence ∃ Z̄. ϕ(Z̄) is a ∃backward-
rigidly guarded MSO sentence that defines the language L (A) recognized by
A. ◻

57

Corollary 3. The satisfiability problem for ∃backward-rigidly guarded MSO is
decidable. Moreover, one can decide whether a formula belongs to the ∃backward-
rigidly guarded MSO, and this case whether the formula is ∃backward-rigid.

Proof. By Theorem 3, any formula of ∃backward-rigidly guarded MSO can be ef-
fectively transformed into a non-deterministic FMA. Satisfiability of ∃backward-
rigidly guarded MSO then corresponds to non-emptiness of languages recognized
by non-deterministic FMA. The latter problem is known to be decidable from
[7].

The second claim follows from arguments similar to the proof of Corollary 2,
that is, one can inductively check that every sub-formula satisfies the syntactical
restrictions given by the grammar of ∃backward-rigidly guarded MSO. For the
sub-formulas α(x, y, Z̄) that are guards of data equality tests, one has also to
verify that α is ∃backward-rigid by checking the validity of the formula

α∃backward? =def ∀ x,x′, y, Z̄. α(x, y, Z̄) ∧ α(x′, y, Z̄) → x = x′.
◻

58

	On the use of guards for logics with dataeserved @d = *@let@token

