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The Rationale for a Logical Framework

◮ At its simplest, a logical framework is a logic/type theory with
◮ tools for representing syntax and semantics;
◮ principles for reasoning about syntax and semantics.

◮ A logical framework is usually thought of as a meta-language
into which object languages are translated.

◮ Logical frameworks enjoy a rich history (too long to summarize
here):

◮ ◮ “A Framework for Defining Logics” by Honsell, Harper and
Plotkin (1993) proposed use of dependent type theory.

◮ One may also use a λ-calculus with constants: Higher Order
Abstract Syntax - HOAS; Martin Löf’s Theory of Arities and
Expressions.
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◮ At its simplest, a logical framework is a logic/type theory with
◮ tools for representing syntax and semantics;
◮ principles for reasoning about syntax and semantics.

◮ A logical framework is usually thought of as a meta-language
into which object languages are translated.

◮ An object language is represented in a logical framework by
giving a translation p−q : OL → LF .

◮ The translation function should be representationally adequate,
ie:

◮ injective
◮ a compositional homomorphism, ie commute with (capture

avoiding) substitution
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The Rationale for a Logical Framework

◮ At its simplest, a logical framework is a logic/type theory with
◮ tools for representing syntax and semantics;
◮ principles for reasoning about syntax and semantics.

◮ A logical framework is usually thought of as a meta-language
into which object languages are translated.

◮ An object language is represented in a logical framework by
giving a translation p−q : OL → LF .

◮ The translation function should be representationally adequate,
ie:

◮ injective
◮ a compositional homomorphism, ie commute with (capture

avoiding) substitution

Talk focuses on object languages with binding
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How to Implement Object Syntax with

Binding

How might we implement object level syntax such as

Q ::= Vi | Q ⊃ Q | ∀Vi .Q QPL

A Traditional Approach

◮ Define a recursive type specifying the raw syntax

exp ::= var | Imp exp exp | All var exp

◮ Define capture avoiding substitution (for given notions of free
and bound variables), and

◮ hence define language expressions to be the quotient of exp by
the ∼α equivalence relation.
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How to Implement Object Syntax with

Binding

How might we implement object level syntax such as

Q ::= Vi | Q ⊃ Q | ∀Vi .Q QPL

Or – Higher Order Abstract Syntax

◮ Implement the λ-calculus once and only once

C ::= c | vk | LAMvk.C | C1 C2

◮ Define substitution and α(βη)-equivalence once and only once.
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How to Implement Object Syntax with

Binding

How might we implement object level syntax such as

Q ::= Vi | Q ⊃ Q | ∀Vi .Q QPL

Or – Higher Order Abstract Syntax

◮ We get a logical framework infrastructure. To encode QPL
specify constants Imp :: exp ⇒ exp ⇒ exp and
All :: (exp ⇒ exp) ⇒ exp

◮ One can define an encoding function p−q, where

pQ1 ⊃ Q2q
def
= Imp pQ1q pQ2q

p∀Vi.Qq
def
= All (LAM vi. pQq)
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Human or Machine?

I prefer LF to have binders with names:

C ::= c | vi | LAM vi.C | C1 C2
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Human or Machine?

I prefer LF to have binders with names:

C ::= c | vi | LAM vi.C | C1 C2

However, if I was a machine I’d prefer de Bruijn expressions

C ::= CON n | VAR i | BND j | ABS C | C1 $$ C2

We use locally nameless de Bruijn expressions: BND j is a bound
variable with index j; but VAR i is a named variable, with name i.
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Human or Machine?

I prefer LF to have binders with names:

C ::= c | vi | LAM vi.C | C1 C2

However, if I was a machine I’d prefer de Bruijn expressions

C ::= CON n | VAR i | BND j | ABS C | C1 $$ C2

We use locally nameless de Bruijn expressions: BND j is a bound
variable with index j; but VAR i is a named variable, with name i.

Hybrid gives us the best of both worlds . . .
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Introducing Hybrid

◮ Hybrid is a theory in Isabelle/HOL.

◮ There is a “λ-calculus datatype” which specifies a form of
HOAS.

◮ Hybrid is a logical framework, in which both HOAS and
(co)induction are consistent . . . but that is another story.

◮ Object level variable binding is represented by Isabelle/HOL’s
internal meta-variable binding.
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Introducing Hybrid

◮ Hybrid is a theory in Isabelle/HOL.

◮ There is a “λ-calculus datatype” which specifies a form of
HOAS.

◮ Hybrid is a logical framework, in which both HOAS and
(co)induction are consistent . . . but that is another story.

◮ Object level variable binding is represented by Isabelle/HOL’s
internal meta-variable binding.

Hybrid can convert λ-expressions into de Bruijn expressions

user supplied

machine produced
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The Heart of Hybrid

◮ Hybrid includes a datatype exp of de Bruijn expressions:

exp ::= CON con | VAR var | BND bnd

| ABS exp | exp $$ exp

◮ But a user can write expressions of the form

C ::= CON ν | VAR i | BND j

| ABS C | C $$ C | LAM v.C
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The Heart of Hybrid

◮ Hybrid includes a datatype exp of de Bruijn expressions:

exp ::= CON con | VAR var | BND bnd

| ABS exp | exp $$ exp

◮ But a user can write expressions of the form

C ::= CON ν | VAR i | BND j

| ABS C | C $$ C | LAM v.C

Hybrid is a hybrid of λ-calculus and de Bruijn notation
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◮ User inputs Hybrid expression

LAM v1. (LAM v0. (v1 $$ v0)) †

where LAM vi. ξ is Isabelle/HOL binder syntax

◮ † can be automatically proved equal to a Hybrid expression

ABS (ABS (BND 1 $$ BND 0)) :: exp

◮ This is implemented by a function lbnd

LAM vi. ξ 7→ ABS (lbnd 0 Λ vi. ξ)
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◮ User inputs Hybrid expression

LAM v1. (LAM v0. (v1 $$ v0)) †

where LAM vi. ξ is Isabelle/HOL binder syntax

◮ † can be automatically proved equal to a Hybrid expression

ABS (ABS (BND 1 $$ BND 0)) :: exp

◮ This is implemented by a function lbnd

LAM vi. ξ 7→ ABS (lbnd 0 Λ vi. ξ)

We need to define lbnd

HOL meta-binding Λ. vi
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Translating λ-Expressions

An example of p−q : LE → Hybrid:

OL

LF

Let EO = λ v8.λ v2. v8 v3. Then

EH
def
= pEOq

def
= LAM v8. (LAM v2. (v8 $$ VAR 3))

In Hybrid EH is provably equal to

ABS (ABS (BND 1 $$ VAR 3))
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Key Translation Principles

◮ object level free variables vi are expressed as Hybrid

expressions of the form VAR i;

◮ object level bound variables vj are expressed as Hybrid

(bound) meta-variables vj;

◮ object level abstractions λ vj. E are expressed as Hybrid

expressions LAM vj.C; and

◮ object level applications E1 E2 are expressed as Hybrid

expressions C1 $$ C2.

Main theorem: a proof that the translation function Θ , derived
from these principles,

Θ : (object level) λ-expressions −→ Hybrid,

exists and is representationally adequate.
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Defining LAM Via lbnd

Consider the (object level) expression EO
def
= λ v8.λ v2. v8 v2.

This expression is encoded in Hybrid as

EH
def
= LAM v8. (LAM v2. (v8 $$ v2))

Thought 1: LAM vi. ξ denotes ABS (Λ vi. ξ). Then EH would be

ABS (Λ v8. (ABS (Λ v2. (v8 $$ v2))))
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Defining LAM Via lbnd

Consider the (object level) expression EO
def
= λ v8.λ v2. v8 v2.

This expression is encoded in Hybrid as

EH
def
= LAM v8. (LAM v2. (v8 $$ v2))

Thought 1: LAM vi. ξ denotes ABS (Λ vi. ξ). Then EH would be

ABS (Λ v8. (ABS (Λ v2. (v8 $$ v2))))

EH should equal

ABS (Λ v8. (ABS (Λ v2. (BND 1 $$ BND 0))))

but with the “meta binders and variables deleted”.
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Defining LAM Via lbnd

Consider the (object level) expression EO
def
= λ v8.λ v2. v8 v2.

This expression is encoded in Hybrid as

EH
def
= LAM v8. (LAM v2. (v8 $$ v2))

Thought 2: LAM vi. ξ denotes ABS (lbnd0(Λ vi. ξ)) and where
(hopefully!)

LAMv8. (LAM v2. (v8 $$ v2))

= ABS (lbnd0(Λ v8.ABS (lbnd0(Λ v2. v8 $$ v2))))

=
...

= ABS (BND 1 $$ BND 0)
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We try to define lbndn

◮ recurse through the ABS nodes and use n to count them—in
order to compute the bound de Bruijn indices;

◮ recurse over $$ nodes;
◮ and in each case recursively move the meta-binders Λ towards

the bound meta-variables.

lbnd0(Λ vi.ABS (C[vi , vj]))

= ABS (lbnd1(Λ vi.C[vi, vj]))

...

= ABS (C[lbndn1(Λ vi. vi), lbndn2(Λ vi. vj)])
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We try to define lbndn

◮ recurse through the ABS nodes and use n to count them—in
order to compute the bound de Bruijn indices;

◮ recurse over $$ nodes;
◮ and in each case recursively move the meta-binders Λ towards

the bound meta-variables.

LAMvi. ξ
def
= ABS(lbnd0(Λ vi. ξ))

ABS(
lbnd0(Λ vi.ABS (C[vi , vj])))

= ABS(ABS (lbnd1(Λ vi.C[vi, vj])))

...

= ABS(ABS (C[lbndn1(Λ vi. vi), lbndn2(Λ vi. vj)]))

= ABS(ABS (C[BND n1, lbndn2(Λ vi. vj)]))
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We try to define lbndn

◮ recurse through the ABS nodes and use n to count them—in
order to compute the bound de Bruijn indices;

◮ recurse over $$ nodes;
◮ and in each case recursively move the meta-binders Λ towards

the bound meta-variables.

LAMvi. ξ
def
= ABS(lbnd0(Λ vi. ξ))

ABS(
lbnd0(Λ vi.ABS (C[vi , vj])))

= ABS(ABS (lbnd1(Λ vi.C[vi, vj])))

...

= ABS(ABS (C[lbndn1(Λ vi. vi), lbndn2(Λ vi. vj)]))

= ABS(ABS (C[BND n1, lbndn2(Λ vi. vj)]))

= ABS(ABS (C[BND n1, vj]))
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Example Calculation of LAM Via lbnd

LAM vi. ξ
def
= ABS (lbnd0(Λ vi. ξ)) and hence

LAMv8. (LAM v2. (v8 $$ v2))

= ABS (lbnd0(Λ v8.ABS (lbnd0(Λ v2. v8 $$ v2))))
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Example Calculation of LAM Via lbnd

LAM vi. ξ
def
= ABS (lbnd0(Λ vi. ξ)) and hence

LAMv8. (LAM v2. (v8 $$ v2))

= ABS (lbnd0(Λ v8.ABS (lbnd0(Λ v2. v8 $$ v2))))

= ABS (lbnd0(Λ v8.ABS (lbnd0(Λ v2. v8) $$ lbnd0(Λ v2. v2))))
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Example Calculation of LAM Via lbnd

LAM vi. ξ
def
= ABS (lbnd0(Λ vi. ξ)) and hence

LAMv8. (LAM v2. (v8 $$ v2))

= ABS (lbnd0(Λ v8.ABS (lbnd0(Λ v2. v8 $$ v2))))

= ABS (lbnd0(Λ v8.ABS (lbnd0(Λ v2. v8) $$ lbnd0(Λ v2. v2))))

= ABS (lbnd0(Λ v8.ABS (v8 $$ BND 0)))
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Example Calculation of LAM Via lbnd

LAM vi. ξ
def
= ABS (lbnd0(Λ vi. ξ)) and hence

LAMv8. (LAM v2. (v8 $$ v2))

= ABS (lbnd0(Λ v8.ABS (lbnd0(Λ v2. v8 $$ v2))))

= ABS (lbnd0(Λ v8.ABS (lbnd0(Λ v2. v8) $$ lbnd0(Λ v2. v2))))

= ABS (lbnd0(Λ v8.ABS (v8 $$ BND 0)))

= ABS (ABS (lbnd1(Λ v8. v8) $$ lbnd1(Λ v8. (BND 0))))
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Example Calculation of LAM Via lbnd

LAM vi. ξ
def
= ABS (lbnd0(Λ vi. ξ)) and hence

LAMv8. (LAM v2. (v8 $$ v2))

= ABS (lbnd0(Λ v8.ABS (lbnd0(Λ v2. v8 $$ v2))))

= ABS (lbnd0(Λ v8.ABS (lbnd0(Λ v2. v8) $$ lbnd0(Λ v2. v2))))

= ABS (lbnd0(Λ v8.ABS (v8 $$ BND 0)))

= ABS (ABS (lbnd1(Λ v8. v8) $$ lbnd1(Λ v8. (BND 0))))

= ABS (ABS (BND 1 $$ BND 0))
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A Mathematical Model of Hybrid

Θ : (object level) λ-expressions −→ Hybrid

Task: formally define Θ and prove it representationally adequate.
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A Mathematical Model of Hybrid

Θ : LE /∼α −→ Hybrid

Task: formally define Θ and prove it representationally adequate.

◮ We take the object expressions to be LE /∼α.

◮ We take Hybrid to be a model of a subset of the system
implemented in Isabelle/HOL.

◮ !! Our model is a theory in a logical framework !!:

◮ The meta-variables of the logical framework play the rôle of
Isabelle/HOL meta-variables of implemented Hybrid; and

◮ logical framework binding and application play the rôle of
Isabelle/HOL meta-binding and meta-application respectively.
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Hybrid Types and Canonical Expressions

◮ The types are

σ ::= exp | con | var | bnd | σ ⇒ σ

◮ The constants are

N :: con CON :: con ⇒ exp
i :: var VAR :: var ⇒ exp
j :: bnd BND :: bnd ⇒ exp

$$ :: exp ⇒ exp ⇒ exp ABS :: exp ⇒ exp

◮ The inductive definition of canonical forms C is standard . . .
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Hybrid Types and Canonical Expressions

Γ(vk) = σ1 ⇒ σ2 ⇒ . . . σn ⇒ γ Γ ⊢can Ci :: σi (0≤i≤n)

Γ ⊢can vk ~C :: γ

κ :: σ1 ⇒ σ2 ⇒ . . . σn ⇒ γ Γ ⊢can Ci :: σi (0≤i≤n)

Γ ⊢can κ ~C :: γ

Γ, vk :: σ ⊢can C :: σ′

Γ ⊢can Λ vk.C :: σ ⇒ σ′

Examples:

BND 0 Λ vk.BND 0 ABS C
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Hybrid Types and Canonical Expressions

Γ(vk) = σ1 ⇒ σ2 ⇒ . . . σn ⇒ γ Γ ⊢can Ci :: σi (0≤i≤n)

Γ ⊢can vk ~C :: γ

κ :: σ1 ⇒ σ2 ⇒ . . . σn ⇒ γ Γ ⊢can Ci :: σi (0≤i≤n)

Γ ⊢can κ ~C :: γ

Γ, vk :: σ ⊢can C :: σ′

Γ ⊢can Λ vk.C :: σ ⇒ σ′

Examples:

C1 $$ C2 Λ vk. vk $$ VAR 3 ABS (BND 0 $$ v4)

and LAM v4.ABS (BND 0 $$ v4) is equal to a canonical
expression.
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Hybrid Types and Canonical Expressions

Γ(vk) = σ1 ⇒ σ2 ⇒ . . . σn ⇒ γ Γ ⊢can Ci :: σi (0≤i≤n)

Γ ⊢can vk ~C :: γ

κ :: σ1 ⇒ σ2 ⇒ . . . σn ⇒ γ Γ ⊢can Ci :: σi (0≤i≤n)

Γ ⊢can κ ~C :: γ

Γ, vk :: σ ⊢can C :: σ′

Γ ⊢can Λ vk.C :: σ ⇒ σ′

We shall define:

CLFσ(Γ)
def
= {C | vi1 :: σ1, . . . , vim :: σm

︸ ︷︷ ︸

Γ

⊢can C :: σ}
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Formally Defining lbnd

If Γ
L
exp = vk1 :: exp, . . . , vkm :: exp there is a unique function

lbnd n : CLF exp⇒exp(Γ
L
exp) → CLF exp(Γ

L
exp)

which satisfies the following recursion equations

◮ lbnd n (Λ vk. vk) = BND n

◮ lbnd n (Λ vk. vk′) = vk′ where k 6= k′

◮ lbnd n (Λ vk.VAR i) = VAR i

◮ lbnd n (Λ vk.BND j) = BND j

◮ lbnd n (Λ vk.C1 $$ C2) = (lbnd n (Λ vk.C1)) $$

(lbnd n (Λ vk.C2))

◮ lbnd n (Λ vk.ABS C) = ABS (lbnd (n+ 1) (Λ vk.C))
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de Bruijn Representational Adequacy

Let DB(l) be de Bruijn expressions of level l.

Let L = vk1 , . . . , vkm. Then there is a function

θL : LE /∼α → DB(|L|)

where, for example,

θǫ[λ v8.λ v2. v8 v3]α
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Let L = vk1 , . . . , vkm. Then there is a function

θL : LE /∼α → DB(|L|)

where, for example,

θǫ[λ v8.λ v2. v8 v3]α

= ABS (ABS θ[v2,v8]([v8]α [v3]α))
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de Bruijn Representational Adequacy

Let DB(l) be de Bruijn expressions of level l.

Let L = vk1 , . . . , vkm. Then there is a function

θL : LE /∼α → DB(|L|)

where, for example,

θǫ[λ v8.λ v2. v8 v3]α

= ABS (ABS θ[v2,v8]([v8]α [v3]α))

= ABS (ABS (BND (pos v8 [v2, v8]) $$ VAR 3))
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de Bruijn Representational Adequacy

Let DB(l) be de Bruijn expressions of level l.

Let L = vk1 , . . . , vkm. Then there is a function

θL : LE /∼α → DB(|L|)

where, for example,

θǫ[λ v8.λ v2. v8 v3]α

= ABS (ABS θ[v2,v8]([v8]α [v3]α))

= ABS (ABS (BND (pos v8 [v2, v8]) $$ VAR 3))
= ABS (ABS (BND 1 $$ VAR 3))
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de Bruijn Representational Adequacy

Theorem
There is a function

θ : LE /∼α → DB(0) ⊆ DB

which is representationally adequate, that is to say θ is a
compositional isomorphism LE /∼α

∼= DB(0).
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de Bruijn Representational Adequacy

Theorem
There is a function

θ : LE /∼α → DB(0) ⊆ DB

which is representationally adequate, that is to say θ is a
compositional isomorphism LE /∼α

∼= DB(0).

Equivalently

B θ is bijective; and

CH θ is a compositional homomorphism

θ([E]α[[E
′]α/vk]) = θ([E]α)[θ([E

′]α)/VAR k]
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de Bruijn Representational Adequacy

Theorem
There is a function

θ : LE /∼α → DB(0) ⊆ DB

which is representationally adequate, that is to say θ is a
compositional isomorphism LE /∼α

∼= DB(0).

◮ Shankar (1988) gave a mechanical proof for pure de Bruijn.

◮ Crole (MSCS, 2011) is the first detailed proof for locally
nameless de Bruijn.
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Approaching Hybrid Adequacy

There is a well-defined function

Θǫ : LE /∼α → Θǫ (LE /∼α) ⊆ CLF exp(ǫ)

arising from the family of unique well-defined functions

ΘL : LE /∼α → CLF exp(Γ
L
exp)

satisfying the recursion equations

ΘL ([E1 E2]α)
def
= (ΘL [E1]α) $$ (ΘL [E2]α)
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Approaching Hybrid Adequacy

There is a well-defined function

Θǫ : LE /∼α → Θǫ (LE /∼α) ⊆ CLF exp(ǫ)

arising from the family of unique well-defined functions

ΘL : LE /∼α → CLF exp(Γ
L
exp)

satisfying the recursion equations

ΘL ([λ vi . E]α)
def
= LAM vi.Θvi,L ([E]α)

where we write LAM vi. ξ as an abbreviation for
ABS (lbnd 0 (Λ vi. ξ)).
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Approaching Hybrid Adequacy

There is a well-defined function

Θǫ : LE /∼α → Θǫ (LE /∼α) ⊆ CLF exp(ǫ)

arising from the family of unique well-defined functions

ΘL : LE /∼α → CLF exp(Γ
L
exp)

satisfying the recursion equations

ΘL ([vi]α)
def
=

{
vi if vi ∈ L
VAR i if vi 6∈ L
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Hybrid Adequacy

Theorem
The function

Θǫ : LE /∼α → Θǫ (LE /∼α) ⊆ CLF exp(ǫ)

is representationally adequate, that is

B it is bijective (onto its image); and

CH it is a compositional homomorphism which means that

Θǫ ([E]α[[E
′]α/vk]) = Θǫ ([E]α)[Θǫ ([E

′]α)/VAR k]
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Example Calculation of Θ

Θǫ [λ v8.λ v2. v8 v3]α

= LAM v8.LAM v2.Θ[v2,v8]([v8]α [v3]α)
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Outline Proof of Hybrid Adequacy

LE /∼α
ΘL

- CLF exp(Γ
L
exp)

LE /∼α

w
w
w
w
w
w
w
w

θL
- DB(|L|) ⊂

ι
- DB

inst 0 L
- CLF exp(Γ

L
exp)

w
w
w
w
w
w
w

hdb 0 L
- DB

LE /∼α

w
w
w
w
w
w
w
w

θL
- DB(|L|)

w
w
w
w
w
w
w
w

⊂
ι
- DB

w
w
w
w
w
w
w
w

id
- DB

w
w
w
w
w
w
w
w

We show ΘL exists by

◮ LEMMA proving existence of inst

◮ PROPOSITION showing ΘL = (inst 0 L) ◦ ι ◦ θL
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A Proof of Adequacy:
◮ θ = θǫ is representationally adequate (de Bruijn adequacy).

◮ Since Θ = Θǫ = (inst 0 ǫ) ◦ ι ◦ θǫ, then Θǫ is representationally
adequate if inst 0 ǫ is.
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PROPOSITION We show inst is injective by

◮ LEMMA proving existence of hdb, and

◮ LEMMA showing hdb is a left inverse for inst.
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PROPOSITION We show that inst is a compositional homomorphism by
direct proof (omitted from this talk—see the paper).
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Deriving inst

λ v6
︸︷︷︸

2

.λ v8
︸︷︷︸

1

.λ v2
︸︷︷︸

0

. v6 v3 seek Θǫ = (inst 0 ǫ)◦ι ◦ θǫ

λ v2. v6 v3
ΘL

- ABS (v6 $$ VAR 3)

λ v2. v6 v3

w
w
w
w
w
w
w
w

θL
- ABS (BND 2 $$ VAR 3)

inst 0 L
- ABS (v6 $$ VAR 3)

w
w
w
w
w
w
w
w

where L
def
= [v8, v6]
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Deriving inst

λ v6
︸︷︷︸

2

.λ v8
︸︷︷︸

1

.λ v2
︸︷︷︸

0

. v6 v3

inst 0 [v8, v6] (ABS (BND 2 $$ VAR 3))

= ABS (inst 1
︸︷︷︸

n

[v8, v6]
︸ ︷︷ ︸

L

(BND 2
︸︷︷︸

j

$$ VAR 3))

◮ BND 2 matches λ-binding variable 2.

◮ λ-binding v2 has been counted by 1.

◮ Therefore BND 2 matches λ-binding (2− 1) in [v8, v6] = v6.

◮ BND j matches λ-binder (j− n) in L.
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Deriving inst

λ v6
︸︷︷︸

2

.λ v8
︸︷︷︸

1

.λ v2
︸︷︷︸

0

. v6 v3

inst 0 [v8, v6] (ABS (BND 2 $$ VAR 3))

= ABS (inst 1
︸︷︷︸

n

[v8, v6]
︸ ︷︷ ︸

L

(BND 2
︸︷︷︸

j

$$ VAR 3))

= ABS (v6 $$ VAR 3)

inst n L (BND j)
def
= elt (j− n) L
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Lemma
There is a unique function

inst n L : DB → CLF exp(Γ
L
exp)

which satisfies the recursion equations

◮ inst n L (VAR i) = VAR i

◮

inst n L (BND j) =

{
elt (j− n) L if 0 ≤ j− n < |L|
BND j otherwise

◮ inst n L (D1 $$ D2) = (inst n L D1) $$ (inst n L D2)

◮ inst n L (ABS D) = ABS (inst (n+ 1) L D)

The Representational Adequacy of Hybrid 23/33



Example Calculation of inst

inst n [vi1 , . . . , vim] D

level counter

meta-variables de Bruijn expression

inst 0 [v2, v8] (ABS (BND 1 $$ BND 0 $$ VAR 3))

= ABS (inst 1 [v2, v8] (BND 1 $$ BND 0 $$ VAR 3))

= ABS (inst 1 [v2, v8] (BND 1) $$ . . .

. . . inst 1 [v2, v8] (BND 0) $$ inst 1 [v2, v8] (VAR 3))

= v2 $$ BND 0 $$ VAR 3

The Representational Adequacy of Hybrid 24/33



Example Calculation of inst

inst n [vi1 , . . . , vim] D

level counter

meta-variables de Bruijn expression

inst 0 [v2, v8] (ABS (BND 1 $$ BND 0 $$ VAR 3))

= ABS (inst 1 [v2, v8] (BND 1 $$ BND 0 $$ VAR 3))

= ABS (inst 1 [v2, v8] (BND 1) $$ . . .

. . . inst 1 [v2, v8] (BND 0) $$ inst 1 [v2, v8] (VAR 3))

= v2 $$ BND 0 $$ VAR 3

The Representational Adequacy of Hybrid 24/33



Example Calculation of inst

inst n [vi1 , . . . , vim] D

level counter

meta-variables de Bruijn expression

inst 0 [v2, v8] (ABS (BND 1 $$ BND 0 $$ VAR 3))

= ABS (inst 1 [v2, v8] (BND 1 $$ BND 0 $$ VAR 3))

= ABS (inst 1 [v2, v8] (BND 1) $$ . . .

. . . inst 1 [v2, v8] (BND 0) $$ inst 1 [v2, v8] (VAR 3))

= v2 $$ BND 0 $$ VAR 3

The Representational Adequacy of Hybrid 24/33



Example Calculation of inst

inst n [vi1 , . . . , vim] D

level counter
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inst 0 [v2, v8] (ABS (BND 1 $$ BND 0 $$ VAR 3))

= ABS (inst 1 [v2, v8] (BND 1 $$ BND 0 $$ VAR 3))
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Proposition
Θǫ = (inst 0 ǫ) ◦ ι ◦ θǫ

LE /∼α
ΘL

- CLF exp(Γ
L
exp)

LE /∼α

w
w
w
w
w
w
w
w

θL
- DB(|L|) ⊂

ι
- DB

inst 0 L
- CLF exp(Γ

L
exp)

w
w
w
w
w
w
w

hdb 0 L
- DB

LE /∼α

w
w
w
w
w
w
w
w

θL
- DB(|L|)

w
w
w
w
w
w
w
w

⊂
ι
- DB

w
w
w
w
w
w
w
w

id
- DB

w
w
w
w
w
w
w
w

Let’s illustrate the proof . . . uses a key lemma . . .

The Representational Adequacy of Hybrid 25/33



Lemma

lbnd n (Λ vk. inst n (vk, L) D) = inst (n+ 1) L D

Θǫ([λ v8.λ v2. v8 v3]α)

= LAM v8.LAMv3.Θ[v2,v8]([v8]α [v3]α)

= ABS (lbnd 0 Λ v8. (ABS (lbnd 0 Λ v2. (v8 $$ VAR 3))))

= ABS (lbnd 0 Λ v8. (ABS (. . .

. . . lbnd 0 Λ v2. inst 0 [v2, v8] (BND 1 $$ VAR 3))))

= ABS (lbnd 0 Λ v8. (ABS (inst 1 [v8] (BND 1 $$ VAR 3))))

= ABS (lbnd 0 Λ v8. (inst 0 [v8] ABS ((BND 1 $$ VAR 3))))

= ABS (inst 1 ǫ (ABS ((BND 1 $$ VAR 3))))

= inst 0 ǫ (ABS (ABS ((BND 1 $$ VAR 3)))

= inst 0 ǫ θǫ([λ v8.λ v2. v8 v3]α)
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Defining hdb

Lemma
There is a unique function (an inverse to inst)

hdb n L : CLF exp(Γ
L
exp) → DB

satisfying the recursion equations

◮ hdb n L vk = BND ((pos vk L) + n)

◮ hdb n L (VAR i) = VAR i

◮ hdb n L (BND j) = BND j

◮ hdb n L (C1 $$ C2) = (hdb n L (C1)) $$ (hdb n L (C2))

◮ hdb n L (ABS C) = ABS (hdb (n+ 1) L C)
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Proposition
inst is injective.

0 ≤ j− n < |L|

hdb n L (inst n L (BND j))
= BND (pos ((elt (j− n) L) L)) + n

= BND ((j− n) + n) = BND j
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Proposition
inst is injective.

0 ≤ j− n < |L|

hdb n L (inst n L (BND j))
= BND (pos ((elt (j− n) L) L)) + n

= BND ((j− n) + n) = BND j

n > j or j− n ≥ |L|

hdb n L (inst n L (BND j)) = hdb n L (BND j) = BND j
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Proposition
inst is a compositional homomorphism: see journal paper
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Hybrid Representation Results

◮ Suppose ABS C is proper eg
ABS (ABS (BND 0 $$ BND 1)).
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Hybrid Representation Results

◮ Suppose ABS C is proper eg
ABS (ABS (BND 0 $$ BND 1)).

◮ Then C is of level 1, and some bound indices may dangle; for
example ABS (BND 0 $$ BND 1).

◮ An abstraction is produced by replacing each occurrence of a
dangling index with a meta-variable and then abstracting:
Λ v.ABS (BND 0 $$ v).

Abstractions feature in the induction rule

∀i. Φ(VAR i)
∀C ,C′. proper C∧ Φ(C)∧ proper C′ ∧ Φ(C′) =⇒ Φ(C $$ C′)
∀C. abst C∧
(∀C′. proper C′ =⇒ Φ(C′) =⇒ Φ(C C′)) =⇒ Φ(LAM vi.C vi)

Φ(C)
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Hybrid Representation Results

Proposition
There is a unique function

abst n : CLF exp⇒exp(Γ
L
exp) → B

which satisfies the following recursion equations

◮ abst n (Λ vk. vk) = T

◮ abst n (Λ vk. vk′) = F no free meta-variables

◮ abst n (Λ vk.VAR i) = T

◮ abst n (Λ vk.BND j) = n < j j does not dangle

◮ abst n (Λ vk.C1 $$ C2) =
(abst n (Λ vk.C1))∧ (abst n (Λ vk.C2))

◮ abst n (Λ vk.ABS C) = abst (n+ 1) (Λ vk.C)
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Hybrid Representation Results

We say that an element C ∈ CLF exp⇒exp(Γ
L
exp) is an abstraction

if abst 0 C is equal to T.

Theorem
Suppose that C ∈ CLF exp⇒exp(ǫ) and that C is an abstraction.
Then there exists [λ vi. E]α ∈ LE /∼α such that

Θǫ [λ vi. E]α = LAMvi.C vi
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Related Work

◮ Nameless binders introduced by de Bruijn (1972). Free
variables may be named, the locally nameless approach, or
specified as indices, the pure approach.

◮ Shankar (1988) investigated bijections between pure de Bruijn
and λ-expressions:

◮ The closest work to ours detailing a bijection.
◮ No need to identify proper expressions, but complicated

substitution.

◮ Our work extends Gordon’s (1994) on locally nameless de
Bruijn expressions and conversions from λ-expressions; he does
not formalise α-equivalence classes.

◮ Norrish and Vestergaard (2007) provide a very thorough survey
of such bijections. They work with another variation of de
Bruijn expressions . . .
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Conclusions

◮ We have shown the Hybrid system representationally
adequate for the λ-calculus.

◮ We have representation results that link Hybrid predicates
and λ-expressions.

◮ Further work could involve the investigation of the notion of
n-ary abstraction and associated higher order induction
principles . . .

◮ We might consider a dependently typed version of Hybrid . . .

◮ Categorical and nominal models and techniques . . . especially
presheaf models.
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