# The Representational Adequacy of HYBRID

Roy L. Crole

University of Leicester

2 December 2011

The Representational Adequacy of HYBRID

## Seminar Outline

A Brief Summary of Logical Frameworks

The  $\operatorname{HyBRID}$  Logical Framework

Translating  $\lambda$ -Expressions into Hybrid

A Model of  $\operatorname{HyBRID}$ 

The Adequacy of de Bruijn Expressions for  $\lambda$ -Expressions

The Adequacy of  $\operatorname{HyBRID}$  for  $\lambda\text{-Expressions}$ 

Simple Representation Results

# The Rationale for a Logical Framework

- ► At its simplest, a logical framework is a logic/type theory with
  - tools for representing syntax and semantics;
  - principles for reasoning about syntax and semantics.
- ► A logical framework is usually thought of as a meta-language into which object languages are translated.
- Logical frameworks enjoy a rich history (too long to summarize here):
- "A Framework for Defining Logics" by Honsell, Harper and Plotkin (1993) proposed use of dependent type theory.
  - One may also use a λ-calculus with constants: Higher Order Abstract Syntax - HOAS; Martin Löf's Theory of Arities and Expressions.

# The Rationale for a Logical Framework

- ► At its simplest, a logical framework is a logic/type theory with
  - tools for representing syntax and semantics;
  - principles for reasoning about syntax and semantics.
- ► A logical framework is usually thought of as a meta-language into which object languages are translated.
- An object language is represented in a logical framework by giving a translation <sup>¬</sup>−<sup>¬</sup>: OL → LF.
- The translation function should be representationally adequate, ie:
  - injective
  - a compositional homomorphism, ie commute with (capture avoiding) substitution

# The Rationale for a Logical Framework

- ► At its simplest, a logical framework is a logic/type theory with
  - tools for representing syntax and semantics;
  - principles for reasoning about syntax and semantics.
- A logical framework is usually thought of as a meta-language into which object languages are translated.
- An object language is represented in a logical framework by giving a translation <sup>¬</sup>−<sup>¬</sup>: OL → LF.
- The translation function should be representationally adequate, ie: Talk focuses on object languages with binding
  - injective
  - a compositional homomorphism, ie commute with (capture avoiding) substitution

How might we implement object level syntax such as

 $Q ::= V_i \mid Q \supset Q \mid \forall V_i. Q \qquad QPL$ 

A Traditional Approach

• Define a recursive type specifying the raw syntax

exp ::= var | Imp exp exp | All var exp

- Define capture avoiding substitution (for given notions of free and bound variables), and
- hence define language expressions to be the quotient of exp by the  $\sim_{\alpha}$  equivalence relation.

How might we implement object level syntax such as

A Traditional Approach

Define a recursive type specify

... we type specific required for each object logic. exp ::= - initions are required for each object logic. The definitions exp -Define car Disadvantag' . ables), and fine language expressions to be the quotient of *exp* by

 $\alpha$  equivalence relation.

How might we implement object level syntax such as

 $Q ::= V_i \mid Q \supset Q \mid \forall V_i. Q \qquad QPL$ 

Or – Higher Order Abstract Syntax

• Implement the  $\lambda$ -calculus once and only once

 $C ::= c \mid v_k \mid \mathsf{LAM} v_k. C \mid C_1 C_2$ 

• Define substitution and  $\alpha(\beta\eta)$ -equivalence once and only once.

How might we implement object level syntax such as

 $Q ::= V_i \mid Q \supset Q \mid \forall V_i. Q \qquad QPL$ 

Or – Higher Order Abstract Syntax

- ▶ We get a *logical framework* infrastructure. To encode QPL specify constants Imp :: exp ⇒ exp ⇒ exp and
  All :: (exp ⇒ exp) ⇒ exp
- One can define an *encoding* function  $\lceil \rceil$ , where

$$\begin{bmatrix} Q_1 \supset Q_2 \\ \neg \end{bmatrix} \stackrel{\text{def}}{=} \operatorname{Imp} \begin{bmatrix} Q_1 \\ \neg \end{bmatrix} \begin{bmatrix} Q_2 \\ \neg \end{bmatrix}$$
$$\begin{bmatrix} \forall V_i, Q \\ \neg \end{bmatrix} \stackrel{\text{def}}{=} \operatorname{All} (\operatorname{LAM} v_i, \begin{bmatrix} Q \\ \neg \end{bmatrix})$$

## Human or Machine?

I prefer  $\mathcal{LF}$  to have binders with names:

 $C ::= c \mid v_i \mid \mathsf{LAM} v_i. C \mid C_1 C_2$ 

## Human or Machine?

I prefer  $\mathcal{LF}$  to have binders with names:

 $C ::= c \mid v_i \mid \mathsf{LAM} v_i. C \mid C_1 C_2$ 

However, if I was a machine I'd prefer de Bruijn expressions

 $C ::= \text{CON } n \mid \text{VAR } i \mid \text{BND } j \mid \text{ABS } C \mid C_1 \$ C_2$ 

We use locally nameless de Bruijn expressions: **BND** j is a bound variable with index j; but **VAR** i is a named variable, with name i.

## Human or Machine?

I prefer  $\mathcal{LF}$  to have binders with names:

 $C ::= c \mid v_i \mid \mathsf{LAM} v_i. C \mid C_1 C_2$ 

However, if I was a machine I'd prefer de Bruijn expressions

 $C ::= \text{CON } n \mid \text{VAR } i \mid \text{BND } j \mid \text{ABS } C \mid C_1 \$ C_2$ 

We use locally nameless de Bruijn expressions: **BND** j is a bound variable with index j; but **VAR** i is a named variable, with name i. HYBRID gives us the best of both worlds ...

# Introducing Hybrid

- HYBRID is a theory in Isabelle/HOL.
- ► There is a "*\lambda*-calculus datatype" which specifies a form of HOAS.
- ► HYBRID is a logical framework, in which both HOAS and (co)induction are consistent ... but that is another story.
- Object level variable binding is represented by Isabelle/HOL's internal meta-variable binding.

# Introducing Hybrid

- HYBRID is a theory in Isabelle/HOL.
- ► There is a "*\lambda*-calculus datatype" which specifies a form of HOAS.
- ► HYBRID is a logical framework, in which both HOAS and (co)induction are consistent ... but that is another story.
- Object level variable binding is represented by Isabelle/HOL's internal meta-variable binding.

HYBRID can convert  $\lambda$ -expressions into de Bruijn expressions

# Introducing Hybrid

- ► HYBRID is a theory in Isabelle/HOL.
- ► There is a "*\lambda*-calculus datatype" which specifies a form of HOAS.
- ► HYBRID is a logical framework, in which both HOAS and (co)induction are consistent ... but that is another story.
- Object level variable binding is represented by Isabelle/HOL's internal meta-variable binding.



## The Heart of Hybrid

► HYBRID includes a datatype *exp* of de Bruijn expressions:

exp ::= CON con | VAR var | BND bnd| ABS exp | exp\$\$ exp

But a user can write expressions of the form

 $C ::= \text{CON } v \mid \text{VAR } i \mid \text{BND } j$  $\mid \text{ABS } C \mid C \$\$ C \mid \text{LAM } v. C$ 

## The Heart of Hybrid

► HYBRID includes a datatype *exp* of de Bruijn expressions:

exp ::= CON con | VAR var | BND bnd| ABS exp | exp\$\$ exp

But a user can write expressions of the form

 $C ::= \text{CON } \nu \mid \text{VAR } i \mid \text{BND } j$  $\mid \text{ABS } C \mid C \$\$ C \mid \text{LAM } v. C$ 

#### HYBRID is a hybrid of $\lambda$ -calculus and de Bruijn notation

► User *inputs* HYBRID expression

#### LAM $v_1.$ (LAM $v_0.$ ( $v_1$ \$\$ $v_0$ )) +

where LAM  $v_i$ ,  $\xi$  is Isabelle/HOL binder syntax

▶ t can be automatically proved equal to a HYBRID expression

#### **ABS** (**ABS** (**BND** 1 \$\$ **BND** 0)) :: *exp*

This is implemented by a function *lbnd* 

LAM  $v_i$ .  $\xi \mapsto ABS (lbnd \ 0 \ \Lambda v_i$ .  $\xi$ )

► User *inputs* HYBRID expression

#### LAM $v_1$ . (LAM $v_0$ . $(v_1 \$\$ v_0)$ ) +

where LAM  $v_i$ ,  $\xi$  is Isabelle/HOL binder syntax

▶ **†** can be automatically proved equal to a HYBRID expression

#### **ABS** (**ABS** (**BND** 1 \$\$ **BND** 0)) :: *exp*

This is implemented by a function *lbnd* 





Let  $E_O = \lambda v_8 \cdot \lambda v_2 \cdot v_8 v_3$ . Then

$$E_H \stackrel{\text{def}}{=} \ulcorner E_O \urcorner \stackrel{\text{def}}{=} \mathsf{LAM} v_8. (\mathsf{LAM} v_2. (v_8 \$\$ \mathsf{VAR} 3))$$

In HYBRID  $E_H$  is provably equal to

**ABS** (**ABS** (**BND** 1 \$\$ **VAR** 3))

# Key Translation Principles

- ▶ object level free variables v<sub>i</sub> are expressed as HYBRID expressions of the form VAR i;
- object level bound variables v<sub>j</sub> are expressed as HYBRID (bound) meta-variables v<sub>j</sub>;
- ▶ object level abstractions \u03c0 v\_j. E are expressed as HYBRID expressions LAM v\_j. C; and
- ▶ object level applications E<sub>1</sub> E<sub>2</sub> are expressed as HYBRID expressions C<sub>1</sub> \$\$ C<sub>2</sub>.

**Main theorem**: a proof that the translation function  $\Theta$ , derived from these principles,

 $\Theta$  : (object level)  $\lambda$ -expressions  $\longrightarrow$  Hybrid,

exists and is representationally adequate.

## Defining LAM Via *lbnd*

Consider the (object level) expression  $E_O \stackrel{\text{def}}{=} \lambda v_8. \lambda v_2. v_8 v_2.$ This expression is encoded in Hybrid as

# $E_H \stackrel{\text{def}}{=} \mathsf{LAM} \, v_8. \, (\mathsf{LAM} \, v_2. \, (v_8 \, \$ \$ \, v_2))$

Thought 1: LAM  $v_i$ .  $\xi$  denotes ABS  $(\Lambda v_i, \xi)$ . Then  $E_H$  would be ABS  $(\Lambda v_8. (ABS (\Lambda v_2. (v_8 \$\$ v_2))))$ 

# Defining LAM Via *lbnd*

Consider the (object level) expression  $E_O \stackrel{\text{def}}{=} \lambda v_8$ .  $\lambda v_2$ .  $v_8 v_2$ . This expression is encoded in Hybrid as

 $E_H \stackrel{\text{def}}{=} \mathsf{LAM} \, v_8. \, (\mathsf{LAM} \, v_2. \, (v_8 \, \$ \, v_2))$ 

Thought 1: LAM  $v_i$ ,  $\xi$  denotes ABS  $(\Lambda v_i, \xi)$ . Then  $E_H$  would be ABS  $(\Lambda v_8, (ABS (\Lambda v_2, (v_8 \$\$ v_2))))$ 

 $E_H$  should equal

#### ABS $(\Lambda v_8. (ABS (\Lambda v_2. (BND 1 \$\$ BND 0))))$

but with the "meta binders and variables deleted".

The Representational Adequacy of HYBRID

# Defining LAM Via *lbnd*

Consider the (object level) expression  $E_O \stackrel{\text{def}}{=} \lambda v_8 \cdot \lambda v_2 \cdot v_8 v_2$ . This expression is encoded in Hybrid as

 $E_H \stackrel{\text{def}}{=} \mathsf{LAM} \, v_8. \, (\mathsf{LAM} \, v_2. \, (v_8 \, \$ \, v_2))$ 

Thought 2: LAM  $v_i$ .  $\xi$  denotes ABS  $(lbnd_0(\Lambda v_i, \xi))$  and where (hopefully!)

LAM  $v_8$ . (LAM  $v_2$ .  $(v_8 \$\$ v_2)$ ) = ABS (*lbnd*<sub>0</sub>( $\Lambda v_8$ . ABS (*lbnd*<sub>0</sub>( $\Lambda v_2$ .  $v_8 \$\$ v_2$ )))) = : = ABS (BND 1 \$\$ BND 0)

- recurse through the ABS nodes and use *n* to count them—in order to compute the bound de Bruijn indices;
- recurse over \$\$ nodes;
- ► and in each case recursively move the meta-binders A towards the bound meta-variables.

# $lbnd_0(\Lambda v_i. ABS (C[v_i, v_j])) = ABS (lbnd_1(\Lambda v_i. C[v_i, v_j]))$ $\vdots = ABS (C[lbnd_{n_1}(\Lambda v_i. v_i), lbnd_{n_2}(\Lambda v_i. v_j)])$

- recurse through the ABS nodes and use *n* to count them—in order to compute the bound de Bruijn indices;
- recurse over \$\$ nodes;
- ► and in each case recursively move the meta-binders A towards the bound meta-variables.



- recurse through the ABS nodes and use *n* to count them—in order to compute the bound de Bruijn indices;
- recurse over \$\$ nodes;
- ► and in each case recursively move the meta-binders A towards the bound meta-variables.

ABS( $lbnd_0(\Lambda v_i. ABS (C[v_i, v_j]))) = ABS(ABS (lbnd_1(\Lambda v_i. C[v_i, v_j])))$  $= ABS(ABS (lbnd_1(\Lambda v_i. C[v_i, v_j])))$  $= ABS(ABS (C[lbnd_{n_1}(\Lambda v_i. v_i), lbnd_{n_2}(\Lambda v_i. v_j)]))$  $= ABS(ABS (C[BND n_1, lbnd_{n_2}(\Lambda v_i. v_j)]))$ 

- recurse through the ABS nodes and use *n* to count them—in order to compute the bound de Bruijn indices;
- recurse over \$\$ nodes;
- ► and in each case recursively move the meta-binders A towards the bound meta-variables.

 $\mathsf{LAM}\,v_i,\xi \stackrel{\mathrm{def}}{=} \mathsf{ABS}(lbnd_0(\Lambda\,v_i,\xi))$ ABS(  $lbnd_0(\Lambda v_i. ABS(C[v_i, v_i])))$  $= \mathsf{ABS}(\mathsf{ABS}(lbnd_1(\Lambda v_i, C[v_i, v_i])))$ = **ABS**(**ABS** ( $C[lbnd_{n_1}(\Lambda v_i. v_i), lbnd_{n_2}(\Lambda v_i. v_i)])$ ) = ABS(ABS (C[BND  $n_1$ , lbnd<sub>n2</sub>( $\Lambda v_i, v_i$ )]))  $= ABS(ABS(C[BND n_1, v_i]))$ 

LAM  $v_i, \xi \stackrel{\text{def}}{=} \text{ABS} (lbnd_0(\Lambda v_i, \xi))$  and hence

LAM  $v_8$ . (LAM  $v_2$ . ( $v_8$ \$\$  $v_2$ ))

 $= \mathsf{ABS} (lbnd_0(\Lambda v_8, \mathsf{ABS} (lbnd_0(\Lambda v_2, v_8 \$\$ v_2))))$ 

LAM  $v_i, \xi \stackrel{\text{def}}{=} \text{ABS} (lbnd_0(\Lambda v_i, \xi))$  and hence

LAM  $v_8$ . (LAM  $v_2$ .  $(v_8 \$\$ v_2)$ )

 $= \mathsf{ABS} (lbnd_0(\Lambda v_8, \mathsf{ABS} (lbnd_0(\Lambda v_2, v_8 \$\$ v_2))))$ 

 $= \mathsf{ABS} (lbnd_0(\Lambda v_8, \mathsf{ABS} (lbnd_0(\Lambda v_2, v_8) \$\$ lbnd_0(\Lambda v_2, v_2))))$ 

LAM  $v_i, \xi \stackrel{\text{def}}{=} \text{ABS} (lbnd_0(\Lambda v_i, \xi))$  and hence

LAM  $v_8$ . (LAM  $v_2$ . ( $v_8$ \$\$  $v_2$ ))

- $= \mathsf{ABS} (lbnd_0(\Lambda v_8, \mathsf{ABS} (lbnd_0(\Lambda v_2, v_8 \$\$ v_2))))$
- $= \mathsf{ABS} (lbnd_0(\Lambda v_8, \mathsf{ABS} (lbnd_0(\Lambda v_2, v_8) \$\$ lbnd_0(\Lambda v_2, v_2))))$
- $= \mathsf{ABS} (lbnd_0(\Lambda v_8. \mathsf{ABS} (v_8 \$\$ \mathsf{BND} 0)))$

LAM  $v_i$ ,  $\xi \stackrel{\text{def}}{=} \text{ABS} (lbnd_0(\Lambda v_i, \xi))$  and hence

LAM  $v_8$ . (LAM  $v_2$ . ( $v_8$ \$\$  $v_2$ ))

- $= \mathsf{ABS} (lbnd_0(\Lambda v_8, \mathsf{ABS} (lbnd_0(\Lambda v_2, v_8 \$\$ v_2))))$
- $= \mathsf{ABS} (lbnd_0(\Lambda v_8. \mathsf{ABS} (lbnd_0(\Lambda v_2. v_8) \$\$ lbnd_0(\Lambda v_2. v_2))))$
- $= \mathsf{ABS} (lbnd_0(\Lambda v_8. \mathsf{ABS} (v_8 \$\$ \mathsf{BND} 0)))$
- $= \mathsf{ABS} \left( \mathsf{ABS} \left( lbnd_1(\Lambda v_8, v_8) \$\$ lbnd_1(\Lambda v_8, (\mathsf{BND} 0)) \right) \right)$

LAM  $v_i$ ,  $\xi \stackrel{\text{def}}{=} \text{ABS} (lbnd_0(\Lambda v_i, \xi))$  and hence

LAM  $v_8$ . (LAM  $v_2$ . ( $v_8$ \$\$  $v_2$ ))

- $= \mathsf{ABS} (lbnd_0(\Lambda v_8, \mathsf{ABS} (lbnd_0(\Lambda v_2, v_8 \$\$ v_2))))$
- $= \mathsf{ABS} (lbnd_0(\Lambda v_8, \mathsf{ABS} (lbnd_0(\Lambda v_2, v_8) \$\$ lbnd_0(\Lambda v_2, v_2))))$
- $= \mathsf{ABS} (lbnd_0(\Lambda v_8. \mathsf{ABS} (v_8 \$\$ \mathsf{BND} 0)))$
- $= \mathsf{ABS} (\mathsf{ABS} (lbnd_1(\Lambda v_8, v_8) \$\$ lbnd_1(\Lambda v_8, (\mathsf{BND} 0))))$
- = ABS (ABS (BND 1 \$\$ BND 0))

## A Mathematical Model of Hybrid

 $\Theta$ : (object level)  $\lambda$ -expressions  $\longrightarrow$  Hybrid

Task: formally define  $\Theta$  and prove it representationally adequate.

## A Mathematical Model of Hybrid

#### $\Theta$ : $\mathcal{LE}/\sim_{\alpha} \longrightarrow$ Hybrid

Task: formally define  $\Theta$  and prove it representationally adequate.

• We take the object expressions to be  $\mathcal{LEI}\sim_{\alpha}$ .

## A Mathematical Model of Hybrid

#### $\Theta$ : $\mathcal{LE}/\sim_{\alpha} \longrightarrow$ Hybrid

Task: formally define  $\Theta$  and prove it representationally adequate.

- We take the object expressions to be  $\mathcal{LE}/\sim_{\alpha}$ .
- ► We take HYBRID to be a model of a subset of the system implemented in Isabelle/HOL.
### A Mathematical Model of Hybrid

#### $\Theta$ : $\mathcal{LE}/\sim_{\alpha} \longrightarrow$ Hybrid

Task: formally define  $\Theta$  and prove it representationally adequate.

- We take the object expressions to be  $\mathcal{LEI}\sim_{\alpha}$ .
- ► We take HYBRID to be a model of a subset of the system implemented in Isabelle/HOL.
- I! Our model is a theory in a logical framework !!:

### A Mathematical Model of Hybrid

#### $\Theta$ : $\mathcal{LE}/\sim_{\alpha} \longrightarrow$ Hybrid

Task: formally define  $\Theta$  and prove it representationally adequate.

- We take the object expressions to be  $\mathcal{LEI}\sim_{\alpha}$ .
- ► We take HYBRID to be a model of a subset of the system implemented in Isabelle/HOL.
- I! Our model is a theory in a logical framework !!:
- The meta-variables of the logical framework play the rôle of Isabelle/HOL meta-variables of implemented Hybrid; and

### A Mathematical Model of Hybrid

#### $\Theta$ : $\mathcal{LE}/\sim_{\alpha} \longrightarrow$ Hybrid

Task: formally define  $\Theta$  and prove it representationally adequate.

- We take the object expressions to be  $\mathcal{LEI}\sim_{\alpha}$ .
- ► We take HYBRID to be a model of a subset of the system implemented in Isabelle/HOL.
- I! Our model is a theory in a logical framework !!:
- The meta-variables of the logical framework play the rôle of Isabelle/HOL meta-variables of implemented Hybrid; and
- logical framework binding and application play the rôle of Isabelle/HOL meta-binding and meta-application respectively.

The types are

 $\sigma ::= exp \mid con \mid var \mid bnd \mid \sigma \Rightarrow \sigma$ 

The constants are

| Ν           | :: | con                                   | CON | :: | $con \Rightarrow exp$ |
|-------------|----|---------------------------------------|-----|----|-----------------------|
| i           | :: | var                                   | VAR | :: | $var \Rightarrow exp$ |
| j           | :: | bnd                                   | BND | :: | $bnd \Rightarrow exp$ |
| <b>\$\$</b> | :: | $exp \Rightarrow exp \Rightarrow exp$ | ABS | :: | $exp \Rightarrow exp$ |

► The inductive definition of canonical forms *C* is standard ...

$$\frac{\Gamma(v_k) = \sigma_1 \Rightarrow \sigma_2 \Rightarrow \dots \sigma_n \Rightarrow \gamma \qquad \Gamma \vdash_{can} C_i :: \sigma_i \quad (0 \le i \le n)}{\Gamma \vdash_{can} v_k \vec{C} :: \gamma}$$

$$\frac{\kappa :: \sigma_1 \Rightarrow \sigma_2 \Rightarrow \dots \sigma_n \Rightarrow \gamma \qquad \Gamma \vdash_{can} C_i :: \sigma_i \quad (0 \le i \le n)}{\Gamma \vdash_{can} \kappa \vec{C} :: \gamma}$$

$$\frac{\Gamma, v_k :: \sigma \vdash_{can} C :: \sigma'}{\Gamma \vdash_{can} \Lambda v_k \cdot C :: \sigma \Rightarrow \sigma'}$$

Examples:

#### **BND** 0 $\Lambda v_k$ . **BND** 0 **ABS** C

The Representational Adequacy of HYBRID

$$\frac{\Gamma(v_k) = \sigma_1 \Rightarrow \sigma_2 \Rightarrow \dots \sigma_n \Rightarrow \gamma \qquad \Gamma \vdash_{can} C_i :: \sigma_i \quad (0 \le i \le n)}{\Gamma \vdash_{can} v_k \vec{C} :: \gamma}$$

$$\frac{\kappa :: \sigma_1 \Rightarrow \sigma_2 \Rightarrow \dots \sigma_n \Rightarrow \gamma \qquad \Gamma \vdash_{can} C_i :: \sigma_i \quad (0 \le i \le n)}{\Gamma \vdash_{can} \kappa \vec{C} :: \gamma}$$

$$\frac{\Gamma, v_k :: \sigma \vdash_{can} C :: \sigma'}{\Gamma \vdash_{can} \Lambda v_k. C :: \sigma \Rightarrow \sigma'}$$

Examples:

 $C_1$  \$\$  $C_2$   $\Lambda v_k$ ,  $v_k$  \$\$ VAR 3 ABS (BND 0 \$\$  $v_4$ ) and LAM  $v_4$ . ABS (BND 0 \$\$  $v_4$ ) is equal to a canonical expression.

The Representational Adequacy of HYBRID

$$\frac{\Gamma(v_k) = \sigma_1 \Rightarrow \sigma_2 \Rightarrow \dots \sigma_n \Rightarrow \gamma \qquad \Gamma \vdash_{can} C_i :: \sigma_i \quad (0 \le i \le n)}{\Gamma \vdash_{can} v_k \vec{C} :: \gamma}$$

$$\frac{\kappa :: \sigma_1 \Rightarrow \sigma_2 \Rightarrow \dots \sigma_n \Rightarrow \gamma \qquad \Gamma \vdash_{can} C_i :: \sigma_i \quad (0 \le i \le n)}{\Gamma \vdash_{can} \kappa \vec{C} :: \gamma}$$

$$\frac{\Gamma, v_k :: \sigma \vdash_{can} C :: \sigma'}{\Gamma \vdash_{can} \Lambda v_k. C :: \sigma \Rightarrow \sigma'}$$

We shall define:

$$\mathcal{CLF}_{\sigma}(\Gamma) \stackrel{\text{def}}{=} \{ C \mid \underbrace{v_{i_1} :: \sigma_1, \ldots, v_{i_m} :: \sigma_m}_{\Gamma} \vdash_{can} C :: \sigma \}$$

# Formally Defining *lbnd*

If  $\Gamma_{exp}^L = v_{k_1} :: exp, \dots, v_{k_m} :: exp$  there is a unique function

*lbnd n* : 
$$\mathcal{CLF}_{exp \Rightarrow exp}(\Gamma_{exp}^{L}) \rightarrow \mathcal{CLF}_{exp}(\Gamma_{exp}^{L})$$

which satisfies the following recursion equations

- ► lbnd n  $(\Lambda v_k. v_k) = \mathsf{BND} n$
- ▶ *lbnd n*  $(\Lambda v_k, v_{k'}) = v_{k'}$  where  $k \neq k'$
- ► lbnd n ( $\Lambda v_k$ . VAR i) = VAR i
- ► *lbnd n*  $(\Lambda v_k$ . BND j) = BND j
- ► lbnd n  $(\Lambda v_k, C_1 \$\$ C_2) = (lbnd n (\Lambda v_k, C_1)) \$\$$

(*lbnd n*  $(\Lambda v_k, C_2)$ )

▶ *lbnd n*  $(\Lambda v_k. ABS C) = ABS ($ *lbnd* $<math>(n+1) (\Lambda v_k. C))$ 

Let  $\mathcal{DB}(l)$  be de Bruijn expressions of level l. Let  $L = v_{k_1}, \dots, v_{k_m}$ . Then there is a function

 $heta_L: \mathcal{LE}/\sim_{lpha} 
ightarrow \mathcal{DB}(|L|)$ 

where, for example,

 $\theta_{\epsilon}[\lambda v_8.\lambda v_2.v_8 v_3]_{\alpha}$ 

Let  $\mathcal{DB}(l)$  be de Bruijn expressions of level l. Let  $L = v_{k_1}, \dots, v_{k_m}$ . Then there is a function

 $heta_L: \mathcal{LE}/\sim_{lpha} 
ightarrow \mathcal{DB}(|L|)$ 

where, for example,

 $\theta_{\epsilon}[\lambda v_8, \lambda v_2, v_8 v_3]_{\alpha}$ = ABS (ABS  $\theta_{[v_2, v_8]}([v_8]_{\alpha} [v_3]_{\alpha}))$ 

Let  $\mathcal{DB}(l)$  be de Bruijn expressions of level l. Let  $L = v_{k_1}, \dots, v_{k_m}$ . Then there is a function

 $heta_L: \mathcal{LE}/\sim_{lpha} 
ightarrow \mathcal{DB}(|L|)$ 

where, for example,

 $\theta_{\epsilon} [\lambda v_8. \lambda v_2. v_8 v_3]_{\alpha}$   $= \text{ABS} (\text{ABS} \ \theta_{[v_2, v_8]}([v_8]_{\alpha} \ [v_3]_{\alpha}))$   $= \text{ABS} (\text{ABS} (\text{BND} (pos v_8 [v_2, v_8]) \$\$ \text{ VAR 3}))$ 

Let  $\mathcal{DB}(l)$  be de Bruijn expressions of level l. Let  $L = v_{k_1}, \dots, v_{k_m}$ . Then there is a function

 $heta_L: \mathcal{LE}/\sim_{lpha} 
ightarrow \mathcal{DB}(|L|)$ 

where, for example,

 $\theta_{\epsilon} [\lambda v_8. \lambda v_2. v_8 v_3]_{\alpha}$   $= ABS (ABS \ \theta_{[v_2, v_8]}([v_8]_{\alpha} \ [v_3]_{\alpha}))$   $= ABS (ABS (BND \ (pos v_8 \ [v_2, v_8]) \ \$ \ VAR \ 3))$   $= ABS (ABS \ (BND \ 1 \ \$ \ VAR \ 3))$ 

Theorem There is a function

#### $heta: \, \mathcal{LE}/\!\!\sim_lpha o \mathcal{DB}(0) \subseteq \mathcal{DB}$

which is representationally adequate, that is to say  $\theta$  is a compositional isomorphism  $\mathcal{LEI}\sim_{\alpha} \cong \mathcal{DB}(0)$ .

Theorem There is a function

### $heta: \mathcal{LE}/\!\!\sim_lpha o \mathcal{DB}(0) \subseteq \mathcal{DB}$

which is representationally adequate, that is to say  $\theta$  is a compositional isomorphism  $\mathcal{LEI}\sim_{\alpha} \cong \mathcal{DB}(0)$ .

Equivalently

B  $\theta$  is bijective; and

CH  $\theta$  is a compositional homomorphism

 $\theta([E]_{\alpha}[[E']_{\alpha}/v_k]) = \theta([E]_{\alpha})[\theta([E']_{\alpha})/\mathsf{VAR} \ k]$ 

Theorem There is a function

#### $heta: \mathcal{LE}/\!\!\sim_lpha o \mathcal{DB}(0) \subseteq \mathcal{DB}$

which is representationally adequate, that is to say  $\theta$  is a compositional isomorphism  $\mathcal{LEI}\sim_{\alpha} \cong \mathcal{DB}(0)$ .

- Shankar (1988) gave a mechanical proof for pure de Bruijn.
- Crole (MSCS, 2011) is the first detailed proof for locally nameless de Bruijn.

### Approaching HYBRID Adequacy

There is a well-defined function

 $\Theta_{\varepsilon} : \mathcal{LE}/\sim_{\alpha} \to \Theta_{\varepsilon} \left( \mathcal{LE}/\sim_{\alpha} \right) \subseteq \mathcal{CLF}_{exp}(\varepsilon)$ 

arising from the family of unique well-defined functions

 $\Theta_L : \mathcal{LE}/\sim_{\alpha} \to \mathcal{CLF}_{exp}(\Gamma^L_{exp})$ 

satisfying the recursion equations

 $\Theta_L \left( [E_1 \ E_2]_{\alpha} \right) \stackrel{\text{def}}{=} \left( \Theta_L \ [E_1]_{\alpha} \right) \$\$ \left( \Theta_L \ [E_2]_{\alpha} \right)$ 

## Approaching HYBRID Adequacy

There is a well-defined function

 $\Theta_{\epsilon} : \mathcal{LE}/\sim_{\alpha} \to \Theta_{\epsilon} \left( \mathcal{LE}/\sim_{\alpha} \right) \subseteq \mathcal{CLF}_{exp}(\epsilon)$ 

arising from the family of unique well-defined functions

$$\Theta_L : \mathcal{LE}/\sim_{lpha} 
ightarrow \mathcal{CLF}_{exp}(\Gamma^L_{exp})$$

satisfying the recursion equations

 $\Theta_L ([\lambda v_i. E]_{\alpha}) \stackrel{\text{def}}{=} \mathsf{LAM} v_i. \Theta_{v_i,L} ([E]_{\alpha})$ where we write  $\mathsf{LAM} v_i. \xi$  as an abbreviation for **ABS** (*lbnd* 0 ( $\Lambda v_i. \xi$ )).

### Approaching HYBRID Adequacy

There is a well-defined function

 $\Theta_{\varepsilon} : \mathcal{LE}/\sim_{\alpha} \to \Theta_{\varepsilon} \left( \mathcal{LE}/\sim_{\alpha} \right) \subseteq \mathcal{CLF}_{exp}(\varepsilon)$ 

arising from the family of unique well-defined functions

$$\Theta_L : \mathcal{LE}/\sim_{\alpha} \to \mathcal{CLF}_{exp}(\Gamma^L_{exp})$$

satisfying the recursion equations

$$\Theta_L\left([v_i]_{\alpha}\right) \stackrel{\text{def}}{=} \begin{cases} v_i \text{ if } v_i \in L\\ \mathsf{VAR} i \text{ if } v_i \notin L \end{cases}$$

# HYBRID Adequacy

#### Theorem The function

$$\Theta_{\epsilon} : \mathcal{LE}/\sim_{\alpha} \to \Theta_{\epsilon} (\mathcal{LE}/\sim_{\alpha}) \subseteq \mathcal{CLF}_{exp}(\epsilon)$$

is representationally adequate, that is B it is bijective (onto its image); and CH it is a compositional homomorphism which means that  $\Theta_{\epsilon} ([E]_{\alpha}[[E']_{\alpha}/v_{k}]) = \Theta_{\epsilon} ([E]_{\alpha})[\Theta_{\epsilon} ([E']_{\alpha})/VAR k]$ 

### $\Theta_{\epsilon} [\lambda v_8. \lambda v_2. v_8 v_3]_{\alpha}$ = LAM v\_8. LAM v\_2. $\Theta_{[v_2, v_8]}([v_8]_{\alpha} [v_3]_{\alpha})$

#### $\Theta_{\epsilon} [\lambda v_8. \lambda v_2. v_8 v_3]_{\alpha}$

- = LAM  $v_8$ . LAM  $v_2$ .  $\Theta_{[v_2,v_8]}([v_8]_{\alpha} [v_3]_{\alpha})$
- $= \text{ LAM } v_8. \text{ LAM } v_2. (\Theta_{[v_2, v_8]}[v_8]_{\alpha} \$\$ \Theta_{[v_2, v_8]}[v_3]_{\alpha})$

#### $\Theta_{\epsilon} [\lambda v_8. \lambda v_2. v_8 v_3]_{\alpha}$

- = LAM  $v_8$ . LAM  $v_2$ .  $\Theta_{[v_2,v_8]}([v_8]_{\alpha} [v_3]_{\alpha})$
- $= \text{ LAM } v_8. \text{ LAM } v_2. (\Theta_{[v_2, v_8]}[v_8]_{\alpha} \$\$ \Theta_{[v_2, v_8]}[v_3]_{\alpha})$
- = LAM  $v_8$ . LAM  $v_2$ . ( $v_8$  \$\$ VAR 3)

- $\Theta_{\epsilon} [\lambda v_8. \lambda v_2. v_8 v_3]_{\alpha}$ 
  - $= LAM v_8. LAM v_2. \Theta_{[v_2, v_8]}([v_8]_{\alpha} [v_3]_{\alpha})$
  - $= \text{ LAM } v_8. \text{ LAM } v_2. (\Theta_{[v_2, v_8]}[v_8]_{\alpha} \$\$ \Theta_{[v_2, v_8]}[v_3]_{\alpha})$
  - = LAM  $v_8$ . LAM  $v_2$ . ( $v_8$  \$\$ VAR 3)
  - = ABS (lbnd 0  $\Lambda v_8$ . (ABS (lbnd 0  $\Lambda v_2$ . ( $v_8$  \$\$ VAR 3))))

### $\Theta_{\epsilon} [\lambda v_8. \lambda v_2. v_8 v_3]_{\alpha}$

- $= LAM v_8. LAM v_2. \Theta_{[v_2, v_8]}([v_8]_{\alpha} [v_3]_{\alpha})$
- $= \text{ LAM } v_8. \text{ LAM } v_2. (\Theta_{[v_2, v_8]}[v_8]_{\alpha} \$\$ \Theta_{[v_2, v_8]}[v_3]_{\alpha})$
- = LAM  $v_8$ . LAM  $v_2$ . ( $v_8$  \$\$ VAR 3)
- = ABS (lbnd 0  $\Lambda v_8$ . (ABS (lbnd 0  $\Lambda v_2$ . ( $v_8$  \$\$ VAR 3))))

### **=** ABS (ABS (BND 1 \$\$ VAR 3))

= :



We show  $\Theta_L$  exists by

LEMMA proving existence of *inst* 

▶ PROPOSITION showing  $\Theta_L = (inst \ 0 \ L) \circ \iota \circ \theta_L$ 



A Proof of Adequacy:

- $\theta = \theta_{\epsilon}$  is representationally adequate (de Bruijn adequacy).
- Since Θ = Θ<sub>ε</sub> = (*inst* 0 ε) ι θ<sub>ε</sub>, then Θ<sub>ε</sub> is representationally adequate if *inst* 0 ε is.

The Representational Adequacy of HYBRID



PROPOSITION We show *inst* is injective by

- LEMMA proving existence of *hdb*, and
- LEMMA showing *hdb* is a left inverse for *inst*.

The Representational Adequacy of HYBRID



PROPOSITION We show that *inst* is a compositional homomorphism by direct proof (omitted from this talk—see the paper).



$$\lambda \underbrace{v_6}_{2} \cdot \lambda \underbrace{v_8}_{1} \cdot \lambda \underbrace{v_2}_{0} \cdot v_6 v_3$$

 $inst \ 0 \ [v_8, v_6] \ (\mathsf{ABS} \ (\mathsf{BND} \ 2 \ \$ \ \mathsf{VAR} \ 3))$  $= \mathsf{ABS} \ (inst \ \underbrace{1}_n \ \underbrace{[v_8, v_6]}_L \ (\mathsf{BND} \ \underbrace{2}_j \ \$ \ \mathsf{VAR} \ 3))$ 

- **BND 2** matches  $\lambda$ -binding variable 2.
- $\lambda$ -binding  $v_2$  has been counted by 1.
- Therefore **BND** 2 matches  $\lambda$ -binding (2-1) in  $[v_8, v_6] = v_6$ .
- **BND** *j* matches  $\lambda$ -binder (j n) in *L*.

$$\lambda \underbrace{v_6}_{2} \cdot \lambda \underbrace{v_8}_{1} \cdot \lambda \underbrace{v_2}_{0} \cdot v_6 v_3$$

 $inst \ 0 \ [v_8, v_6] \ (\mathsf{ABS} \ (\mathsf{BND} \ 2 \ \$ \ \mathsf{VAR} \ 3))$  $= \mathsf{ABS} \ (inst \underbrace{1}_n \underbrace{[v_8, v_6]}_L \ (\mathsf{BND} \ \underbrace{2}_j \ \$ \ \mathsf{VAR} \ 3))$ 

- **BND 2** matches  $\lambda$ -binding variable 2.
- $\lambda$ -binding  $v_2$  has been counted by **1**.
- Therefore **BND** 2 matches  $\lambda$ -binding (2-1) in  $[v_8, v_6] = v_6$ .
- **BND** *j* matches  $\lambda$ -binder (j n) in *L*.

$$\lambda \underbrace{v_6}_2 \cdot \lambda \underbrace{v_8}_1 \cdot \lambda \underbrace{v_2}_0 \cdot v_6 v_3$$

 $inst \ 0 \ [v_8, v_6] \ (\mathsf{ABS} \ (\mathsf{BND} \ 2 \ \$ \ \mathsf{VAR} \ 3))$  $= \mathsf{ABS} \ (inst \ \underbrace{1}_n \ \underbrace{[v_8, v_6]}_L \ (\mathsf{BND} \ \underbrace{2}_j \ \$ \ \mathsf{VAR} \ 3))$ 

- **BND 2** matches  $\lambda$ -binding variable 2.
- $\lambda$ -binding  $v_2$  has been counted by 1.
- Therefore **BND** 2 matches  $\lambda$ -binding (2-1) in  $[v_8, v_6] = v_6$ .
- **BND** *j* matches  $\lambda$ -binder (j n) in *L*.

$$\lambda \underbrace{v_6}_2 \cdot \lambda \underbrace{v_8}_1 \cdot \lambda \underbrace{v_2}_0 \cdot v_6 v_3$$

 $inst \ 0 \ [v_8, v_6] \ (\mathsf{ABS} \ (\mathsf{BND} \ 2 \ \$ \ \mathsf{VAR} \ 3))$  $= \mathsf{ABS} \ (inst \ \underbrace{1}_n \ \underbrace{[v_8, v_6]}_L \ (\mathsf{BND} \ \underbrace{2}_j \ \$ \ \mathsf{VAR} \ 3))$ 

- **BND 2** matches  $\lambda$ -binding variable 2.
- $\lambda$ -binding  $v_2$  has been counted by 1.
- Therefore **BND** 2 matches  $\lambda$ -binding (2-1) in  $[v_8, v_6] = v_6$ .
- **BND** *j* matches  $\lambda$ -binder (j n) in *L*.

$$\lambda \underbrace{v_6}_2 . \lambda \underbrace{v_8}_1 . \lambda \underbrace{v_2}_0 . v_6 v_3$$

 $inst \ 0 \ [v_8, v_6] \ (ABS \ (BND \ 2 \ \$ \ VAR \ 3))$  $= ABS \ (inst \ \underbrace{1}_n \ \underbrace{[v_8, v_6]}_L \ (BND \ \underbrace{2}_j \ \$ \ VAR \ 3))$  $= ABS \ (v_6 \ \$ \ VAR \ 3)$ 

inst n L (BND 
$$j$$
)  $\stackrel{\text{def}}{=}$  elt  $(j - n)$  L

The Representational Adequacy of HYBRID

#### Lemma There is a unique function

inst n L : 
$$\mathcal{DB} \to \mathcal{CLF}_{exp}(\Gamma_{exp}^L)$$

which satisfies the recursion equations

• inst n L (VAR i) = VAR i

*inst n L* (BND *j*) = 
$$\begin{cases} elt (j-n) L & if 0 \le j-n < |L| \\ BND j & otherwise \end{cases}$$

inst n L (D<sub>1</sub> \$\$ D<sub>2</sub>) = (inst n L D<sub>1</sub>) \$\$ (inst n L D<sub>2</sub>)
inst n L (ABS D) = ABS (inst (n + 1) L D)

### Example Calculation of *inst*



 $inst \ \mathbf{0} \ [v_2, v_8] \ (\mathsf{ABS} \ (\mathsf{BND} \ 1 \ \$ \ \mathsf{BND} \ 0 \ \$ \ \mathsf{VAR} \ 3))$   $= \mathsf{ABS} \ (inst \ \mathbf{1} \ [v_2, v_8] \ (\mathsf{BND} \ 1 \ \$ \ \mathsf{BND} \ 0 \ \$ \ \mathsf{VAR} \ 3))$   $= \mathsf{ABS} \ (inst \ \mathbf{1} \ [v_2, v_8] \ (\mathsf{BND} \ 1) \ \$ \ \dots$   $\dots inst \ \mathbf{1} \ [v_2, v_8] \ (\mathsf{BND} \ 0) \ \$ \ inst \ \mathbf{1} \ [v_2, v_8] \ (\mathsf{VAR} \ 3))$   $= v_2 \ \$ \ \mathsf{BND} \ 0 \ \$ \ \mathsf{VAR} \ 3$
# Example Calculation of *inst*



 $inst \ 0 \ [v_2, v_8] \ (ABS \ (BND \ 1 \ \$ \ BND \ 0 \ \$ \ VAR \ 3))$   $= ABS \ (inst \ 1 \ [v_2, v_8] \ (BND \ 1 \ \$ \ BND \ 0 \ \$ \ VAR \ 3))$   $= ABS \ (inst \ 1 \ [v_2, v_8] \ (BND \ 1) \ \$ \ \dots$   $\dots inst \ 1 \ [v_2, v_8] \ (BND \ 0) \ \$ \ inst \ 1 \ [v_2, v_8] \ (VAR \ 3))$   $= v_2 \ \$ \ BND \ 0 \ \$ \ VAR \ 3$ 

# Example Calculation of *inst*



 $inst \ 0 \ [v_2, v_8] \ (ABS \ (BND \ 1 \ \$ \ BND \ 0 \ \$ \ VAR \ 3))$   $= ABS \ (inst \ 1 \ [v_2, v_8] \ (BND \ 1 \ \$ \ BND \ 0 \ \$ \ VAR \ 3))$   $= ABS \ (inst \ 1 \ [v_2, v_8] \ (BND \ 1) \ \$ \ \dots$   $\dots inst \ 1 \ [v_2, v_8] \ (BND \ 0) \ \$ \ inst \ 1 \ [v_2, v_8] \ (VAR \ 3))$   $= v_2 \ \$ \ BND \ 0 \ \$ \ VAR \ 3$ 

# Example Calculation of *inst*



 $inst \ 0 \ [v_2, v_8] \ (ABS \ (BND \ 1 \ \$ \ BND \ 0 \ \$ \ VAR \ 3))$   $= ABS \ (inst \ 1 \ [v_2, v_8] \ (BND \ 1 \ \$ \ BND \ 0 \ \$ \ VAR \ 3))$   $= ABS \ (inst \ 1 \ [v_2, v_8] \ (BND \ 1) \ \$ \ \dots$   $\dots inst \ 1 \ [v_2, v_8] \ (BND \ 0) \ \$ \ inst \ 1 \ [v_2, v_8] \ (VAR \ 3))$   $= v_2 \ \$ \ BND \ 0 \ \$ \ VAR \ 3$ 

## Proposition $\Theta_{\epsilon} = (inst \ 0 \ \epsilon) \circ \iota \circ \theta_{\epsilon}$



Let's illustrate the proof ... uses a key lemma ...

- $\Theta_{\epsilon}([\lambda v_8.\lambda v_2.v_8 v_3]_{\alpha})$
- $= \mathsf{LAM}\,v_8.\,\mathsf{LAM}\,v_3.\,\Theta_{[v_2,v_8]}([v_8]_{\alpha}\,[v_3]_{\alpha})$
- $= \mathsf{ABS} (lbnd \ 0 \ \Lambda v_8. (\mathsf{ABS} (lbnd \ 0 \ \Lambda v_2. (v_8 \$\$ \mathsf{VAR} 3))))$
- = ABS (*lbnd* 0  $\Lambda v_8$ . (ABS (...
  - ... *lbnd* 0  $\Lambda$   $v_2$ . *inst* 0  $[v_2, v_8]$  (BND 1 \$\$ VAR 3))))
- $= \mathsf{ABS} (\textit{lbnd 0} \Lambda v_8. (\mathsf{ABS} (\textit{inst 1} [v_8] (\mathsf{BND 1} \$\$ \mathsf{VAR 3}))))$
- $= \mathsf{ABS} (lbnd \ 0 \ \Lambda v_8. (inst \ 0 \ [v_8] \ \mathsf{ABS} ((\mathsf{BND} \ 1 \ \$ \ \mathsf{VAR} \ 3))))$
- = ABS (inst 1  $\epsilon$  (ABS ((BND 1 \$\$ VAR 3))))
- $= inst \ 0 \ \epsilon \ (ABS \ ((BND \ 1 \ \$ \ VAR \ 3)))$
- $= inst \ 0 \ \epsilon \ \theta_{\epsilon}([\lambda \ v_8. \lambda \ v_2. v_8 \ v_3]_{\alpha})$

- $\Theta_{\epsilon}([\lambda v_8.\lambda v_2.v_8 v_3]_{\alpha})$
- $= \mathsf{LAM}\,v_8.\,\mathsf{LAM}\,v_3.\,\Theta_{[v_2,v_8]}([v_8]_{\alpha}\,[v_3]_{\alpha})$
- $= \mathsf{ABS} (lbnd \ 0 \ \Lambda v_8. (\mathsf{ABS} (lbnd \ 0 \ \Lambda v_2. (v_8 \ \$ \ \mathsf{VAR} \ 3))))$
- = ABS (*lbnd* 0  $\Lambda v_8$ . (ABS (...
  - ... lbnd 0  $\Lambda v_2$ . inst 0  $[v_2, v_8]$  (BND 1 \$\$ VAR 3))))
- $= \mathsf{ABS} (lbnd \ 0 \ \Lambda v_8. (\mathsf{ABS} (inst \ 1 \ [v_8] \ (\mathsf{BND} \ 1 \ \$ \ \mathsf{VAR} \ 3))))$
- $= \mathsf{ABS} (lbnd \ 0 \ \Lambda v_8. (inst \ 0 \ [v_8] \ \mathsf{ABS} ((\mathsf{BND} \ 1 \ \$ \ \mathsf{VAR} \ 3))))$
- = ABS (inst 1  $\epsilon$  (ABS ((BND 1 \$\$ VAR 3))))
- $= inst \ 0 \ \epsilon \ (ABS \ ((BND \ 1 \ \$ \ VAR \ 3)))$
- $= inst \ 0 \ \epsilon \ \theta_{\epsilon}([\lambda \ v_8. \lambda \ v_2. v_8 \ v_3]_{\alpha})$

- $\Theta_{\epsilon}([\lambda v_8.\lambda v_2.v_8 v_3]_{\alpha})$
- $= \mathsf{LAM}\,v_8.\,\mathsf{LAM}\,v_3.\,\Theta_{[v_2,v_8]}([v_8]_{\alpha}\,[v_3]_{\alpha})$
- $= \mathsf{ABS} (lbnd \ 0 \ \Lambda v_8. (\mathsf{ABS} (lbnd \ 0 \ \Lambda v_2. (v_8 \ \$ \ \mathsf{VAR} \ 3))))$
- = ABS (*lbnd* 0  $\Lambda v_8$ . (ABS (...
  - ... *lbnd* 0  $\Lambda v_2$ . *inst* 0 [ $v_2$ ,  $v_8$ ] (BND 1 \$\$ VAR 3))))
- $= \mathsf{ABS} (\textit{lbnd 0} \Lambda v_8. (\mathsf{ABS} (\textit{inst 1} [v_8] (\mathsf{BND 1} \$\$ \mathsf{VAR 3}))))$
- $= \mathsf{ABS} (\textit{lbnd 0} \Lambda v_8. (\textit{inst 0} [v_8] \mathsf{ABS} ((\mathsf{BND 1} \$ \mathsf{VAR 3}))))$
- = ABS (inst 1  $\epsilon$  (ABS ((BND 1 \$\$ VAR 3))))
- $= inst \ 0 \ \epsilon \ (ABS \ ((BND \ 1 \ \$ \ VAR \ 3)))$
- $= inst \ 0 \ \epsilon \ \theta_{\epsilon}([\lambda \ v_8. \lambda \ v_2. v_8 \ v_3]_{\alpha})$

- $\Theta_{\epsilon}([\lambda v_8.\lambda v_2.v_8 v_3]_{\alpha})$
- $= \mathsf{LAM}\,v_8.\,\mathsf{LAM}\,v_3.\,\Theta_{[v_2,v_8]}([v_8]_{\alpha}\,[v_3]_{\alpha})$
- $= \mathsf{ABS} (lbnd \ 0 \ \Lambda v_8. (\mathsf{ABS} (lbnd \ 0 \ \Lambda v_2. (v_8 \ \$ \ \mathsf{VAR} \ 3))))$
- = ABS (*lbnd* 0  $\Lambda v_8$ . (ABS (...
  - ... *lbnd* 0  $\Lambda v_2$ . *inst* 0 [ $v_2$ ,  $v_8$ ] (BND 1 \$\$ VAR 3))))
- $= \mathsf{ABS} (\textit{lbnd 0} \Lambda v_8. (\mathsf{ABS} (\textit{inst 1} [v_8] (\mathsf{BND 1} \$\$ \mathsf{VAR 3}))))$
- $= \mathsf{ABS} (lbnd \ 0 \ \Lambda v_8. (inst \ 0 \ [v_8] \ \mathsf{ABS} ((\mathsf{BND} \ 1 \ \$ \ \mathsf{VAR} \ 3))))$
- $= ABS (inst 1 \epsilon (ABS ((BND 1 \$\$ VAR 3))))$
- $= inst \ 0 \ \epsilon \ (ABS \ ((BND \ 1 \ \$ \ VAR \ 3)))$
- $= inst \ 0 \ \epsilon \ \theta_{\epsilon}([\lambda \ v_8. \lambda \ v_2. v_8 \ v_3]_{\alpha})$

- $\Theta_{\epsilon}([\lambda v_8.\lambda v_2.v_8 v_3]_{\alpha})$
- $= \mathsf{LAM}\,v_8.\,\mathsf{LAM}\,v_3.\,\Theta_{[v_2,v_8]}([v_8]_{\alpha}\,[v_3]_{\alpha})$
- $= \mathsf{ABS} (lbnd \ 0 \ \Lambda v_8. (\mathsf{ABS} (lbnd \ 0 \ \Lambda v_2. (v_8 \ \$ \ \mathsf{VAR} \ 3))))$
- = ABS (*lbnd* 0  $\Lambda v_8$ . (ABS (...
  - ... *lbnd* 0  $\Lambda v_2$ . *inst* 0 [ $v_2$ ,  $v_8$ ] (BND 1 \$\$ VAR 3))))
- $= \mathsf{ABS} (\textit{lbnd 0} \Lambda v_8. (\mathsf{ABS} (\textit{inst 1} [v_8] (\mathsf{BND 1} \$\$ \mathsf{VAR 3}))))$
- $= \mathsf{ABS} \ (lbnd \ 0 \ \Lambda v_8. \ (inst \ 0 \ [v_8] \ \mathsf{ABS} \ ((\mathsf{BND} \ 1 \ \$ \ \mathsf{VAR} \ 3))))$
- = ABS (inst 1  $\epsilon$  (ABS ((BND 1 \$\$ VAR 3))))
- $= inst \ \mathbf{0} \ \epsilon \ (\mathsf{ABS} \ ((\mathsf{BND} \ 1 \ \$ \ \mathsf{VAR} \ 3)))$
- $= inst \ 0 \ \epsilon \ \theta_{\epsilon}([\lambda \ v_8. \lambda \ v_2. v_8 \ v_3]_{\alpha})$

Proposition  $\Theta_{\epsilon} = (inst \ 0 \ \epsilon) \circ \iota \circ \theta_{\epsilon}$ 

- $\Theta_{\epsilon}([\lambda v_8.\lambda v_2.v_8 v_3]_{\alpha})$
- $= \mathsf{LAM}\,v_8.\,\mathsf{LAM}\,v_3.\,\Theta_{[v_2,v_8]}([v_8]_{\alpha}\,[v_3]_{\alpha})$
- $= \mathsf{ABS} (lbnd \ 0 \ \Lambda v_8. (\mathsf{ABS} (lbnd \ 0 \ \Lambda v_2. (v_8 \ \$ \ \mathsf{VAR} \ 3))))$
- = ABS (*lbnd* 0  $\Lambda v_8$ . (ABS (...

... *lbnd* 0  $\Lambda v_2$ . *inst* 0  $[v_2, v_8]$  (BND 1 \$\$ VAR 3))))

- $= \mathsf{ABS} \ (\textit{lbnd} \ 0 \ \Lambda \ v_8. \ (\mathsf{ABS} \ (\textit{inst} \ 1 \ [v_8] \ (\mathsf{BND} \ 1 \ \$ \ \mathsf{VAR} \ 3))))$
- $= \mathsf{ABS} (lbnd \ 0 \ \Lambda v_8. (inst \ 0 \ [v_8] \ \mathsf{ABS} ((\mathsf{BND} \ 1 \ \$ \ \mathsf{VAR} \ 3))))$
- = ABS (inst 1  $\epsilon$  (ABS ((BND 1 \$\$ VAR 3))))
- $= inst \ 0 \ \epsilon \ (ABS \ (ABS \ ((BND \ 1 \ \$ VAR \ 3))))$
- $= inst \ 0 \ \epsilon \ \theta_{\epsilon}([\lambda v_8, \lambda v_2, v_8 v_3]_{\alpha})$

# Defining *hdb*

Lemma There is a unique function (an inverse to inst)

hdb n L : 
$$\mathcal{CLF}_{exp}(\Gamma_{exp}^L) \to \mathcal{DB}$$

satisfying the recursion equations

- ► hdb n L  $v_k = \text{BND}((pos v_k L) + n)$
- $\blacktriangleright hdb \ n \ L \ (VAR \ i) = VAR \ i$
- $hdb \ n \ L \ (BND \ j) = BND \ j$
- ▶ hdb n L  $(C_1$  (C<sub>1</sub>) = (hdb n L  $(C_1)$ ) (hdb n L  $(C_2)$ )
- ► hdb n L (ABS C) = ABS (hdb (n+1) L C)

Proposition *inst* is injective.

 $0\leq j-n<|L|$ 

# $hdb \ n \ L \ (inst \ n \ L \ (BND \ j)) \\ = BND \ (pos \ ((elt \ (j - n) \ L) \ L)) + n \\ = BND \ ((j - n) + n) = BND \ j$

Proposition *inst* is injective.

 $0\leq j-n<|L|$ 

# $hdb \ n \ L \ (inst \ n \ L \ (BND \ j)) \\ = BND \ (pos \ ((elt \ (j - n) \ L) \ L)) + n \\ = BND \ ((j - n) + n) = BND \ j$

Proposition *inst* is injective.

 $0\leq j-n<|L|$ 

 $hdb \ n \ L \ (inst \ n \ L \ (BND \ j)) \\ = BND \ (pos \ ((elt \ (j - n) \ L) \ L)) + n \\ = BND \ ((j - n) + n) = BND \ j \\ n > j \ or \ j - n \ge |L|$ 

 $hdb \ n \ L \ (inst \ n \ L \ (BND \ j)) = hdb \ n \ L \ (BND \ j) = BND \ j$ 

## Proposition *inst* is a compositional homomorphism: see journal paper

Suppose ABS C is proper eg
 ABS (ABS (BND 0 \$\$ BND 1)).

- Suppose ABS C is proper eg
  ABS (ABS (BND 0 \$\$ BND 1)).
- Then C is of level 1, and some bound indices may dangle; for example ABS (BND 0 \$\$ BND 1).

- Suppose ABS C is proper eg
  ABS (ABS (BND 0 \$\$ BND 1)).
- Then C is of level 1, and some bound indices may dangle; for example ABS (BND 0 \$\$ BND 1).
- An abstraction is produced by replacing each occurrence of a dangling index with a meta-variable and then abstracting:
  Λ v. ABS (BND 0 \$\$ v).

- Suppose ABS C is proper eg
  ABS (ABS (BND 0 \$\$ BND 1)).
- Then C is of level 1, and some bound indices may dangle; for example ABS (BND 0 \$\$ BND 1).
- An abstraction is produced by replacing each occurrence of a dangling index with a meta-variable and then abstracting:
  Λ v. ABS (BND 0 \$\$ v).

Abstractions feature in the induction rule

 $\forall i. \ \Phi(\mathsf{VAR} \ i) \\ \forall C \ , C'. \ \mathsf{proper} \ C \land \Phi(C) \land \mathsf{proper} \ C' \land \Phi(C') \Longrightarrow \Phi(C \ \$ \ C') \\ \forall C. \ \mathsf{abst} \ C \land \\ (\forall C'. \ \mathsf{proper} \ C' \Longrightarrow \Phi(C') \Longrightarrow \Phi(C \ C')) \Longrightarrow \Phi(\mathsf{LAM} \ v_i. \ C \ v_i) \\ \Phi(C)$ 

Proposition

There is a unique function

abst 
$$n: \mathcal{CLF}_{exp \Rightarrow exp}(\Gamma_{exp}^L) \to \mathbb{B}$$

which satisfies the following recursion equations

- abst  $n(\Lambda v_k, v_k) = T$
- *abst*  $n(\Lambda v_k, v_{k'}) = F$
- abst  $n (\Lambda v_k$ . VAR i) = T
- *abst*  $n (\Lambda v_k$ . BND j) = n < j
- ► abst n ( $\Lambda v_k$ .  $C_1$  \$\$  $C_2$ ) = (abst n ( $\Lambda v_k$ .  $C_1$ ))  $\land$  (abst n ( $\Lambda v_k$ .  $C_2$ ))
- ► abst n ( $\Lambda v_k$ . ABS C) = abst (n + 1) ( $\Lambda v_k$ . C)

no free meta-variables

*j* does not dangle

We say that an element  $C \in CL\mathcal{F}_{exp \Rightarrow exp}(\Gamma_{exp}^{L})$  is an abstraction if *abst* 0 *C* is equal to *T*.

Theorem Suppose that  $C \in CLF_{exp \Rightarrow exp}(\epsilon)$  and that C is an abstraction. Then there exists  $[\lambda v_i, E]_{\alpha} \in LE/\sim_{\alpha}$  such that

 $\Theta_{\epsilon} [\lambda v_i. E]_{\alpha} = \mathsf{LAM} v_i. C v_i$ 

# **Related Work**

- Nameless binders introduced by de Bruijn (1972). Free variables may be named, the locally nameless approach, or specified as indices, the pure approach.
- Shankar (1988) investigated bijections between pure de Bruijn and λ-expressions:
  - The closest work to ours detailing a bijection.
  - No need to identify proper expressions, but complicated substitution.
- Our work extends Gordon's (1994) on locally nameless de Bruijn expressions and conversions from λ-expressions; he does not formalise α-equivalence classes.
- Norrish and Vestergaard (2007) provide a very thorough survey of such bijections. They work with another variation of de Bruijn expressions . . .

# Conclusions

- ► We have shown the HYBRID system representationally adequate for the  $\lambda$ -calculus.
- We have representation results that link HyBRID predicates and λ-expressions.
- Further work could involve the investigation of the notion of *n*-ary abstraction and associated higher order induction principles . . .
- $\blacktriangleright$  We might consider a dependently typed version of HyBRID  $\ldots$
- Categorical and nominal models and techniques ... especially presheaf models.