
Math. Struct. in Comp. Science: page 1 of 62. c© Cambridge University Press 2011

doi:10.1017/S0960129511000041

The representational adequacy of Hybrid

R. L. CROLE

Department of Computer Science, University of Leicester, University Road, Leicester,

LE1 7RH, United Kingdom

Email: R.Crole@mcs.le.ac.uk

Received 11 August 2010; revised 14 December 2010

The Hybrid system (Ambler et al. 2002b), implemented within Isabelle/HOL, allows object

logics to be represented using higher order abstract syntax (HOAS), and reasoned about

using tactical theorem proving in general, and principles of (co)induction in particular. The

form of HOAS provided by Hybrid is essentially a lambda calculus with constants.

Of fundamental interest is the form of the lambda abstractions provided by Hybrid. The

user has the convenience of writing lambda abstractions using names for the binding

variables. However, each abstraction is actually a definition of a de Bruijn expression, and

Hybrid can unwind the user’s abstractions (written with names) to machine friendly de

Bruijn expressions (without names). In this sense the formal system contains a hybrid of

named and nameless bound variable notation.

In this paper, we present a formal theory in a logical framework, which can be viewed as

a model of core Hybrid, and state and prove that the model is representationally adequate

for HOAS. In particular, it is the canonical translation function from λ-expressions to

Hybrid that witnesses adequacy. We also prove two results that characterise how Hybrid

represents certain classes of λ-expression.

We provide the first detailed proof to be published that proper locally nameless de Bruijn

expressions and α-equivalence classes of λ-expressions are in bijective correspondence. This

result is presented as a form of de Bruijn representational adequacy, and is a key component

of the proof of Hybrid adequacy.

The Hybrid system contains a number of different syntactic classes of expression, and

associated abstraction mechanisms. Hence, this paper also aims to provide a self-contained

theoretical introduction to both the syntax and key ideas of the system. Although this paper

will be of considerable interest to those who wish to work with Hybrid in Isabelle/HOL, a

background in automated theorem proving is not essential.

1. Introduction

1.1. Overview

Many people are involved in the development of computing systems that can be used to

reason about and prove properties of programming languages. In previous work (Ambler

et al. 2002b), we developed the Hybrid logical system, which was implemented as a theory

in Isabelle/HOL, for exactly this purpose. In this paper we develop an underpinning theory

for Hybrid.

R. L. Crole 2

The key features of Hybrid are:

— it provides a form of logical system within which the syntax of an object level logic

can be adequately represented by higher order abstract syntax (HOAS);

— it is consistent with tactical theorem proving in general, and principles of induction and

coinduction in particular; and

— it is definitional, which guarantees consistency within a classical type theory.

We will begin with an overview of the first feature, which should provide sufficient

details for an understanding of this paper. The other features have been discussed in

Ambler et al. (2002b; 2004). We will then proceed to prove our main theorem, which

is an adequacy result for the Hybrid system. Informally, adequacy shows that Hybrid

yields a well-defined form of HOAS into which object level logics can be translated and

reasoned about. More formally, we define an idealised mathematical model of Hybrid,

and then by taking HOAS to be a λ-calculus with constants, we will prove that there

is a representationally adequate mapping (see Harper et al. (1993), Pfenning (2003) and

Harper and Licata (2007)) from HOAS into our mathematical model of Hybrid.

In order to achieve this, we prove that proper locally nameless de Bruijn expressions

and α-equivalence classes of λ-expressions are in bijective correspondence. Although this

is ‘known’ to everyone in the community in the informal sense that everyone knows how

to convert a de Bruijn expression to a λ-expression and vice-versa, proving the existence of

a bijection is not easy. There are some formal proofs of similar bijections in the literature,

and we discuss such results in detail in Section 7. However, the published results either

do not concern locally nameless de Bruijn expressions, or do not consider α-equivalence

classes of λ-expression syntax trees with substitution defined by primitive recursion. This

is the first time a detailed proof has been written down for this particular pair of systems.

While it is true that the conceptual ideas underlying the proof and appearing in this paper

are quite similar to other related proofs in the literature, we include a detailed proof since

doing so allows us to set up our own notation and machinery, which is used to give crucial

intensional details within our proofs of Hybrid adequacy. The proof method plays a key

role in this paper.

1.2. A roadmap for the paper

In the remainder of the introduction: we give an abstract definition of our notion

of representational adequacy; review our notation for de Bruijn expressions and λ-

expressions; and give a table summarising the various forms of syntax used in this

paper.

In Section 2, we explain informally how Hybrid represents and manipulates binders.

A particular function lbnd plays a central role, so we motivate the definition of this

function and give examples. In Section 3, we present a mathematical model of (a core of)

Hybrid and prove the existence of lbnd . In Section 4, we prove in detail that de Bruijn

expressions provide a representationally adequate model of the λ-expressions – the key

result is Theorem 4.1. In Section 5, we state and prove Hybrid adequacy making use of

the results and notation from Section 4 – the key result is Theorem 5.2. In Section 6, we

state and prove some simple representation results. In Section 7, we present an overview

The representational adequacy of Hybrid 3

of related work with the common theme of variable binding. Finally, in Section 8, we

present our conclusions.

1.3. Representational adequacy

In this section, we explain the precise form of representational adequacy that we use in

this paper. Accounts of adequacy may be found in Harper et al. (1993) and Harper and

Licata (2007).

Suppose E1 and E2 are sets of expressions from equational (type) theories which make

use of a notion of substitution. Let V be a set of variables. A notion of substitution

(Fiore 2006) is (typically) a function

s : Ei × Ei × V → Ei,

and λ-calculus with capture avoiding substitution is an obvious example. We shall say

θ : E1 → E2 is a compositional homomorphism if it preserves substitution, that is,

θ(s(E,E ′, v)) = s(θ(E), θ(E ′), θ(v)).

We say that E1 is compositionally isomorphic to E2, E1
∼= E2, if there are mutually inverse

homomorphisms

θ : E1
�� E2 : φ.

Note that this is easily seen to be equivalent to requiring θ to be a bijective compositional

homomorphism (which we refer to as properties B and CH).

Then we say that E2 provides an adequate representation of E1 if we can find a subset

S ⊆ E2 together with an isomorphism of theories θ : E1
∼= S : φ. We shall normally show

this by proving that θ is a bijection (B) (with inverse φ) and that θ is a compositional

homomorphism (CH). See, for example, Theorem 4.1.

1.4. de Bruijn expressions and λ-expressions

We assume familiarity with de Bruijn expressions and λ-expressions, but in this section

we summarise the notation we use. In particular, we wish to make clear what kind of de

Bruijn expressions we will be working with in this paper. If required, more details can be

found in Appendix B.

The set of (object level) locally nameless de Bruijn expressions (de Bruijn 1972;

Gordon 1994) is denoted by DB and generated by

D ::= con(ν) | var(i) | bnd(j) | abs(D) | D1 $ D2

where i and j range over the natural numbers �, and ν over a set of names. We use the

usual notion of level (see the Appendix for the definition), written down as a predicate

level n : DB → � for each n ∈ �. We write DB(l) for the set of de Bruijn expressions at

level l, so PDB def
= DB(0) is the set of proper de Bruijn expressions.

In order to state adequacy, we will need a suitable notion of substitution on de Bruijn

expressions, and this is formulated in the next lemma.

R. L. Crole 4

Proposition 1.1 (de Bruijn Substitution). For any m � m′ � 0 and k � 0 there is a function

DB(m) × DB(m′) × � → DB(m) given by (D,D′, k) �→ D[D′/var(k)], which, informally,

maps (D,D′, k) to the expression D in which all occurrences of var(k) are replaced by D′.

Proof. The substitution function can be defined by simple structural recursion in the

expected way: there is no notion of variable renaming because bound and free variables

are syntactically distinguished, which is one key advantage of locally nameless de Bruijn

expressions. Of course, we do need to prove that the function has the stated source and

target, but we will omit the easy proof here.

We also need to set up a notation for the traditional λ-calculus. The (object level)

expressions are inductively defined by the grammar

E ::= ν | vk | λ vk. E | E E.

and we write LE for the set of all expressions. Given expressions E and E ′, and a

variable vk , we write E[E ′/vk] for a unique expression, which, informally, is E with free

occurrences of vk replaced by E ′, with renaming to avoid capture. If expressions E and

E ′ are α-equivalent, we write E ∼α E
′. We write [E]α for the α-equivalence class of E, and

LE/∼α for the set of α-equivalence classes of expressions. For this paper we will need a

notion of substitution on LE/∼α analogous to Proposition 1.1.

Proposition 1.2. Let Var be the set of variables. There is a well-defined function

LE/∼α × LE/∼α × Var → LE/∼α ([E]α, [E
′]α, vi) �→ [E[E ′/vi]]α.

1.5. Object level and Hybrid level syntax

In this paper there are a variety of binding operations arising from variants of functional

abstraction, together with associated applications. This is potentially confusing, so we

provide a look-up table in Figure 1. In the remainder of the paper we will explain the role

of Hybrid syntax, which is summarised in Figure 1 (along with the syntax for de Bruijn

expressions and λ-expressions). The informal roles of the expressions are as follows:

— The object level syntax should be thought of as an idealised mathematical system, and

independent of Hybrid. We will use it when we establish a formal bijection between

de Bruijn expressions and λ-expressions.

— The Hybrid level syntax corresponds to the syntax in the implemented system. There

is a single de Bruijn application $$. There are two (hybrid) forms of abstraction

operators, ABS and LAM vi. , and these will be explained in detail in due course. The

meta-application and meta-abstraction correspond to the application and abstraction

of the Isabelle/HOL theorem prover at the meta level.

— We will connect these two systems in this paper by showing that Hybrid is adequate

for λ-expressions.

Note that, strictly speaking, we should distinguish between object level and meta level

variables, writing, for example, Vi and vi, respectively. However, no technical problems

arise, or are hidden, by identifying the syntax for variables.

The representational adequacy of Hybrid 5

Syntax Informal Description Defined Defined

InformallyFormally

abs(D) object level de Bruijn abstraction § 1.4 § B.1

D1 $ D2 object level de Bruijn application § 1.4 § B.1

λ vi. E object level lambda abstraction § 1.4 § B.1

E1 E2 object level lambda application § 1.4 § B.1

ABS C Hybrid de Bruijn abstraction § 2.1 § 3

LAM vi. C Hybrid lambda abstraction § 2.1 § 5.2

C1 $$ C2 Hybrid de Bruijn application § 2.1 § 3

Λ vi. C Hybrid meta-abstraction § 1.5 § 4

C1 C2 Hybrid meta-application § 1.5 § 4

Fig. 1. Abstraction and application notation

We shall often wish to define and talk about higher order functions in this paper.

Suppose f has a type τ1 ⇒ τ2 ⇒ τ3 ⇒ τ4. Formally, there are families of functions

(f e1 | e1 ∈ τ1) and (f e1 e2 | e1 ∈ τ1 ∧ e2 ∈ τ2) and so on. We shall sometimes use informal

phrases such as

— ‘the function f e1’, or

— ‘the family of functions f e1 e2’, or

— ‘the function f e1 e2’

when talking about such families, and will vary the exact choice of words according to the

discussion at hand. For example, it is often cleaner to write ‘we shall define the function

f e1’ than to be pedantic and write ‘we shall define the (family of) functions f e1 where

e1 ranges over all elements of τ1’ – the former should be understood as standing for the

latter.

2. The heart of the Hybrid system

2.1. A new variable binding mechanism and induction principle

The goal of this section is to give a high-level overview of the development of the key

ideas in Hybrid, which were originally developed in collaboration with Simon Ambler

and Alberto Momigliano. Our goal was to define a datatype for λ-calculus with constants

over which we can deploy (co)induction principles. The datatype is regarded as a form

of HOAS into which object logics can be translated and reasoned about; one can view

Hybrid as a form of logical framework, in which both HOAS and (co)induction are

consistent and available to the user. The user can work with binding constructs and, in

R. L. Crole 6

particular, named variables (object level variable binding is realised by Isabelle/HOL’s

internal meta-variable binding), and we will explain exactly how this works very shortly.

This makes the system user friendly. However, crucially, Hybrid can convert expressions

of the λ-calculus datatype into de Bruijn expressions for reasoning within the machine.

The starting point was the work of Andrew Gordon (Gordon 1994), which we will now

briefly review. Gordon defines a notation in which expressions have named free variables

given by strings. He can write E = dLAMBDA v e (where v is a string), which corresponds

to a λ-abstraction in which dLAMBDA acts as the usual binder. But, in fact, dLAMBDA is

a function and is defined so that E may be proved equal to a de Bruijn expression with

an outer abstraction and an immediate subexpression, which is e in de Bruijn form, and

in which any of the free occurrences of v in e, which were bound by the outer binder

dLAMBDA in E, have been converted to bound de Bruijn indices. For example,

dLAMBDA v (dAPP (dVAR v) (dVAR u)) = dABS (dAPP (dBND 0) (dVAR u)).

Gordon demonstrated the utility of this idea within a theorem prover. The user may work

with expressions that have explicit named binding variables (such as the v above), but

such expressions are automatically converted to de Bruijn form by the machine, which

the machine can work with more easily. The idea provides a good mechanism through

which the user may work with named bound variables, but it does not exploit the built in

meta-level α-equivalence that a theorem prover typically possesses. What would be ideal is

a system in which Gordon’s string binders are replaced by meta-level binders. This is exactly

what Hybrid achieves, and is one of the key novelties of our approach.

Hybrid provides a binding mechanism similar to dLAMBDA. Gordon’s E would be

written LAM v. C in Hybrid. This is, in fact, a definition for a de Bruijn expression;

and LAM v. C can indeed be proved equal to a de Bruijn expression involving only ABS

and $$. A crucial difference in our approach is that bound variables are actually bound

meta-variables in Isabelle/HOL. Thus, the v in LAM v. C is a meta-variable (and not a

string as in Gordon’s approach), allowing us to exploit the meta-level α-equivalence.

We will now give some examples. Let EO = λ v8. λ v2. v8 v3 and think of this as an object

level expression. Gordon would represent this by

EG = dLAMBDA v8 (dLAMBDA v2 (dAPP (dVAR v8) (dVAR v3))),

which equals dABS (dABS (dAPP (dBND 1) (dVAR v3))). In Hybrid, we choose to denote

object level free variables by expressions of the form VAR i. This has essentially no

impact on the key technical details relating to binders. In Hybrid, the EO above is

rendered as EH
def
= LAM v8. (LAM v2. (v8 $$ VAR 3)) where each subexpression LAM vi. ξ is

an Isabelle/HOL binder. And in Hybrid, EH is provably equal to an expression

ABS (ABS (BND 1 $$ VAR 3))

with an overall effect analogous to Gordon’s approach, but the underlying definitions and

details being very different.

To summarise, Hybrid is a theory defined in Isabelle/HOL. The theory contains a

specification of a datatype exp of de Bruijn expressions, where i and j are de Bruijn

The representational adequacy of Hybrid 7

• Object level free variables vi are expressed as Hybrid expressions of the form VAR i.

• Object level bound variables vj are expressed as Hybrid (bound) meta-variables vj .

• Object level abstractions λ vj . E are expressed as Hybrid expressions LAM vj . C .

• Object level applications E1 E2 are expressed as Hybrid expressions C1 $$ C2.

– For example, λ v8. λ v2. v8 v3 is expressed as LAM v8. (LAM v2. (v8 $$ VAR 3)).

. .

• Hybrid expressions are provably equal to de Bruijn expressions†.

– For example, LAM v8. (LAM v2. (v8 $$ VAR 3)) is provably equal to the de Bruijn expression

ABS (ABS (BND 1 $$ VAR 3)).

Fig. 2. Key principles of Hybrid syntax

indices, and ν are names for constants:

C ::= CON ν | VAR i | BND j | C $$ C | ABS C.

Moreover, there is a specification for expressions of the form LAM vi. C , which are built out

of Isabelle/HOL binders. Figure 2 provides a summary of the key principles of Hybrid –

it may be useful to look back at the syntax summary in Figure 1.

The aim of the current paper is to show that Hybrid really does provide a representation

of the λ-calculus, in the sense that:

One can regard the clauses of Figure 2 as informally specifying a function

Θ : (object level) λ-expressions −→ Hybrid,

and our main theorem (Theorem 5.2) is a proof that the function Θ , which we

shall formally define, is representationally adequate. The function will be defined by

recursion where, for example, Θ (λ vj . E)
def
= LAM vj . (Θ E), and so on.

2.2. Reducing named binders to nameless binders

In formally stating the adequacy theorem, we utilise an auxiliary function lbnd (whose

existence is proved in Proposition 3.2). This function is of central importance, so we will

give some examples and an informal explanation of how lbnd works before stating and

proving the proposition. Consider the expression EO
def
= λ v8. λ v2. v8 v2. A key feature of

Hybrid is that it provides the user with a syntax involving explicitly named binders. This

expression is encoded in Hybrid as

EH
def
= LAM v8. (LAM v2. (v8 $$ v2)).

Notice that it is very easy to write down Hybrid representations of object level expressions:

one replaces object level abstractions λ with ‘meta-level abstractions’ LAM, and object

level application (juxtaposition) with de Bruijn application $$.

† Strictly speaking, we should write proper expressions.

R. L. Crole 8

Consider how we might be able to ‘prove that Hybrid expressions are equal to de

Bruijn expressions’. Of course, the only difficulty arises from LAM binders.

Suppose, as a first thought, that LAM vi. ξ in fact denotes ABS (Λ vi. ξ)†. Then EH would

be

ABS (Λ v8. (ABS (Λ v2. (v8 $$ v2)))).

This expression almost has the structure of an appropriate de Bruijn expression, except

that the meta-variables v8 and v2 should be BND 1 and BND 0, respectively, and the

meta-abstractions should be removed. We need a scheme to count up the number of ABS

nodes on the path from each (bound) variable to the root in order to compute bound de

Bruijn indices such as the 1 and 0. During the counting process, the Λ-meta binders and

binding variables should be removed. Thus we will define a function, say lbndn, with a

parameter n and defined by recursion that:

— descends recursively through the ABS nodes and increases parameter n by one each

time, thereby enabling computation of the bound de Bruijn indices;

— descends recursively over $$ nodes; and

— in each case, recursively moves the meta-binders Λ towards the bound meta-variables,

and both will be removed at the leaf nodes.

The key idea is to enable this by pattern matching against the Λ meta-binders (which

we can do in Isabelle/HOL). Notice that ABS nodes are, by construction, in one-to-one

correspondence with the Λ nodes.

For example, suppose C[vi, vj] is a Hybrid expression containing the named variables

vi and vj . Then for i
= j, we would expect

lbnd0(Λ vi.ABS (C[vi, vj])) = ABS (lbnd1(Λ vi. C[vi, vj]))

...

= ABS (C[lbndn1
(Λ vi. vi), lbndn2

(Λ vi. vj)]). (∗)

We are left with the definition of lbndn1
(Λ vi. vj) and lbndn2

(Λ vi. vi). Now the binding

variable vi originated with the ABS node tied to the binding Λ vi. Hence we should define

lbndn(Λ vi. vi)
def
= BND n.

The (bound) vj should be left alone (to be matched at some other time with a binder

Λ vj) so

lbndn(Λ vi. vj)
def
= vj .

In either case, Λ-binders and binding variables are finally removed. Hence the expression

(∗) above should equal ABS (C[BND n, vj]). The following is a concrete example, featuring

only an $$ node:

lbnd0(Λ v2. v8 $$ v2) = lbnd0(Λ v2. v8) $$ lbnd0(Λ v2. v2) = v8 $$ BND 0.

† This is not type correct since, in fact, ABS :: exp ⇒ exp (see Figure 3)! However, it is a first informal thought

in the progression towards HOAS – a LAM abstraction is understood as a constructor ABS applied to a

meta-abstraction. These type-incorrect expressions appear only in the current informal explanations.

The representational adequacy of Hybrid 9

We are in fact led to define LAM vi. ξ as ABS (lbnd0(Λ vi. ξ)), so

LAM v8. (LAM v2. (v8 $$ v2)) = ABS (lbnd0(Λ v8.ABS (lbnd0(Λ v2. v8 $$ v2))))

= ABS (lbnd0(Λ v8.ABS (v8 $$ BND 0)))

= ABS (ABS (lbnd1(Λ v8. v8) $$ lbnd1(Λ v8. (BND 0))))

= ABS (ABS (BND 1 $$ BND 0)).

In summary, each instance of the lbnd function descends recursively through its argument

through higher-order matching of the meta-abstractions. At each ABS or $$ node, a meta-

abstraction is ‘moved’ towards the leaf nodes; and when descending over ABS nodes, a

counter is increased. All leaf nodes are left unchanged, unless they are variables. In the

case of variables, if the name of the meta-abstraction (for example, Λ v2.) that has been

‘moved’ to the leaf (for example, v8) is different (for example, Λ v2. v8), the leaf node

remains unchanged (for example, v8). However, if it has the same name (for example,

Λ v8. v8), the node becomes BND n where n is the counter, and thus the original bound

name becomes the correct de Bruijn bound index (for example, v8 becomes BND 1).

2.3. Formalising lbnd

It is the formalisation and implementation of the function lbnd that lies at the heart of

the Hybrid system. In the next section we will show how to develop a model of the full

Hybrid system, and give a definition and existence proof of lbnd .

3. A model of core Hybrid

3.1. Modelling Hybrid in a logical framework

The specific goal of this section is to describe a mathematical model of Hybrid and then

show that the model provides an adequate representation of the λ-calculus. Recall the

informal description of

Θ : (object level) λ-expressions −→ Hybrid

given at the end of Section 2.1.

We will now formally define Θ and prove it to be representationally adequate. We will

take the λ-calculus to be the set LE/∼α. We now define exactly what we will mean in the

rest of this paper when we write Hybrid. Recall once again that there is an Isabelle/HOL

theory called Hybrid. As such, we could consider working formally within higher order

logic in this paper. This would lead to a considerable amount of additional technical

detail: in particular, we would need to express the core content of this paper within higher

order logic, and we feel that this would obscure the key ideas with yet a further layer

of syntax. The important observation is that the functions and reasoning used in this

paper are indeed implemented in Isabelle/HOL in a consistent manner, so the proof of

adequacy could be written down working within higher order logic if desired. However,

since the intention of this paper is to focus on core features of our system, we work here

R. L. Crole 10

ν :: con

i :: var

j :: bnd

CON :: con ⇒ exp

VAR :: var ⇒ exp

BND :: bnd ⇒ exp

$$:: exp ⇒ exp ⇒ exp

ABS :: exp ⇒ exp

Fig. 3. Constructor constants

with a model of the core subset of the system implemented in Isabelle/HOL, but we shall

still refer to this (model of the) core subset as Hybrid.

In order to realise this model, we shall use the machinery of logical frameworks (see,

for example, Harper et al. (1993) and Pfenning (2003), and, perhaps, Anderson and

Pfenning (2004) and Harper and Pfenning (2005)). More precisely, we define our model of

the Hybrid core subset as a theory in a logical framework. Note that we will work with a

logical framework in which the types are just simple types generated from some ground

types, and not the more general type systems of, for example, Harper et al. (1993) and

Pfenning (2003)). Key to this is the following convention:

— The meta-variables of the logical framework play the role of Isabelle/HOL meta-

variables of implemented Hybrid.

— Logical framework abstraction and application play the role of Isabelle/HOL meta-

abstraction and meta-application, respectively.

We will now define the theory. The theory has ground types con , var , bnd and exp,

ranged over by γ. The (higher) types are given by σ ::= γ | σ ⇒ σ. We declare constructor

constants in Figure 3 where i and j range over the natural numbers, and ν over a set of

names for (object level) constants. We shall use κ to range over the constructor constants

of the theory. The judgements are generated using the standard type assignment system

of such a logical framework. More precisely, suppose Γ is a context, that is, a finite partial

function from the set of framework meta-variables to types. Then the type assignment

system has judgements of the form Γ � e :: σ. We omit the (usual) inductive definition.

We define

LFσ(Γ)
def
= {e | Γ � e :: σ}

LF def
=

⋃
σ,Γ

LFσ(Γ).

We give the inductive definition of canonical forms C in Figure 4. They are introduced

using the judgements Γ �can C :: σ. We write

CLFσ(Γ)
def
= {C | Γ �can C :: σ}.

The representational adequacy of Hybrid 11

Γ(vk) = σ1 ⇒ σ2 ⇒ . . . σn ⇒ γ Γ �can Ci :: σi (0 � i � n)
VAR

Γ �can vk �C :: γ

κ :: σ1 ⇒ σ2 ⇒ . . . σn ⇒ γ Γ �can Ci :: σi (0 � i � n)
CST

Γ �can κ �C :: γ

Γ, vk :: σ �can C :: σ′

ABS

Γ �can Λ vk. C :: σ ⇒ σ′

Fig. 4. Inductive definition of canonical forms

VAR
′ [Γ(vk) = σ]

Γ �atm vk :: σ
CST

′

Γ �atm κ :: σ

Γ �atm A :: γ
INC

Γ �can ′ A :: γ

Γ �atm A :: σ ⇒ σ′ Γ �can ′ C :: σ
APP

Γ �atm A C :: σ

Γ, vk :: σ �can ′ C :: σ′

ABS
′

Γ �can ′ Λ vk. C :: σ ⇒ σ′

Fig. 5. Inductive definition of canonical forms through atomic forms

Given a list of meta-variables L = vk1
, . . . , vkm , we write ΓL

exp for the context (partial

function) vk1
:: exp, . . . , vkm :: exp. Note that it is standard to prove that CLFσ(Γ) ⊆

LFσ(Γ).

Remark 3.1. The ellipsis notation in Figure 4 is of course a short-hand for an infinite

collection of formal inductive rules, one for each value of n ranging over �. These rules

are quite convenient for presenting the proofs in this paper, but one can also generate the

set of canonical forms using a finite set of rules (Harper and Licata 2007) as in Figure 5.

One can prove (by rule induction) that

CLFσ(Γ) = {C | Γ �can ′ C :: σ}.

We will now give the formal definition of lbnd .

Proposition 3.2 (defining lbnd). For all n � 0 and lists L, there is a unique function with

the following source and target

lbnd n : CLFexp⇒exp(Γ
L
exp) → CLFexp(Γ

L
exp)

R. L. Crole 12

satisfying the following recursion equations

lbnd n (Λ vk.CON ν) = CON ν

lbnd n (Λ vk. vk) = BND n

lbnd n (Λ vk. vk′) = vk′ where k
= k′

lbnd n (Λ vk.VAR i) = VAR i

lbnd n (Λ vk.BND j) = BND j

lbnd n (Λ vk. C1 $$ C2) = (lbnd n (Λ vk. C1)) $$ (lbnd n (Λ vk. C2))

lbnd n (Λ vk.ABS C) = ABS (lbnd (n + 1) (Λ vk. C)).

Proof. Informally, the existence and uniqueness of each lbnd n is straightforward; the

equations above can be regarded as a recursive definition arising from an inductively

defined set, namely, the canonical forms (in context) of Figure 4. However, since the exact

inductive rules that specify the source of the function are not completely immediate, we

will give a detailed proof of existence (see Appendix A for background on what this

means).

Let I be the inductively defined set of all canonical forms in context specified in

Figure 4. Let

S
def
= CLFexp⇒exp(Γ

L
exp)

W
def
= CLFexp(Γ

L
exp).

Let � ⇒ W be the set of functions from � to W . We will give an existence proof of a

function F : S → (� ⇒ W) and define

lbnd n C
def
= F(C)(n)

for any n ∈ �. The recursion equations will follow trivially from the action of F .

Let I0
def
= � and Ih+1 be those elements of I with deduction trees of height less than

or equal to h + 1 where h ∈ �. It is standard that I =
⋃

h∈� Ih and that the Ih form an

increasing sequence of sets ordered by inclusion.

Let

S0
def
= �

S1
def
= �

Sh+1
def
= {C | ΓL

exp �can C :: exp ⇒ exp ∈ Ih+1 − Ih} (for h � 1).

It is easy to see that S =
⋃

h∈� Sh, and, moreover, that this is a union of pairwise disjoint

sets. We will now construct the function F : S → (� ⇒ W) by defining a sequence of

functions Fh : Sh → (� ⇒ W) and taking F
def
=

⋃
h∈� Fh, which is a union of functions

with pairwise disjoint sources (and hence trivially a function).

First we consider the form of C ∈ Sh+1 for h � 1 (recall Figure 4). This element

cannot be generated with final rule VAR or CST as no ground type γ is the higher type

The representational adequacy of Hybrid 13

exp ⇒ exp. Hence, the final rule is ABS, and we must have

ΓL
exp , vk :: exp �can C ′ :: exp

where C ≡ Λ vk. C
′. Note also that C ′ ∈ Ih − Ih−1.

The sequence of functions Fh is defined by:

— F0 : S0 → (� ⇒ W):

We take F0 to be the empty function.

— F1 : S1 → (� ⇒ W):

We take F1 to be the empty function.

— F2 : S2 → (� ⇒ W):

If Λ vk. C
′ ∈ S2, then C ′ ∈ I1 − I0 = I1 and C ′ also has type exp. C ′ ∈ I1 implies it can

only be derived using VAR or CST with empty hypothesis set, and the type forces the

rule to be VAR. Thus, C ′ ≡ vk′ , making C ≡ Λ vk. vk′ . Hence F2 is fully specified for

any n ∈ � by

F2(Λ vk. vk)(n)
def
= BND n

F2(Λ vk. vk′)(n)
def
= vk′ (where k
= k′).

— F3 : S3 → (� ⇒ W):

If Λ vk. C
′ ∈ S3, then C ′ ∈ I2 − I1 and C ′ also has type exp. By examining the rules we

see that C ′ must be one of CON ν, VAR i, BND j, vk′ $$ vk′′ or ABS vk′′′ . Hence F2 is

fully specified for any n ∈ � by

F3(Λ vk.CON ν)(n)
def
= CON ν

F3(Λ vk.VAR i)(n)
def
= VAR i

F3(Λ vk.BND j)(n)
def
= BND j

F3(Λ vk. vk′ $$ vk′′)(n)
def
= (F2(Λ vk. vk′)(n)) $$ (F2(Λ vk. vk′′)(n))

F3(Λ vk.ABS vk′′′)(n)
def
= ABS (F2(Λ vk. vk′′′)(n + 1)).

— Fh : Sh → (� ⇒ W) where h � 4:

We prove by induction that for all h � 4 there is such a function Fh that is fully

specified by the clauses

Fh(Λ vk. C1 $$ C2)(n)
def
= ((

h−1⋃
0

Fr)(Λ vk. C1)(n)) $$ ((

h−1⋃
0

Fr)(Λ vk. C2)(n))

Fh(Λ vk.ABS C3)(n)
def
= ABS ((

h−1⋃
0

Fr)(Λ vk. C3)(n + 1))

together with the functions Fh defined above for h = 0, 1, 2, 3.

If h = 0, the proposition is vacuous.

We will now assume the proposition holds for all numbers r less than or equal to an

arbitrary h, and prove it holds for h + 1. So we now assume h + 1 � 4 and suppose

R. L. Crole 14

that Λ vk. C
′ ∈ Sh+1 where C ′ ∈ Ih − Ih−1 and, of course,

ΓL
exp , vk :: exp �can C ′ :: exp.

Now h � 3, and, by examining the rules used to generate C ′, we see that either

C ′ ≡ C1 $$ C2 with each Cr ∈ Ih−1 and of type exp, or C ′ ≡ ABS C3 with C3 ∈ Ih−1

and of type exp. Hence Λ vk. Cs ∈
⋃h

0 Sr for s = 1, 2, 3. By induction, each of the

functions Fr exist for 0 � r � h. Hence Fh+1 is indeed completely specified by the

given clauses.

Defining F
def
=

⋃
h∈� Fh, which exists given that the Fh all exist, it is virtually immediate

that the given definition of lbnd satisfies the stated recursion conditions. Uniqueness is an

easy exercise.

To finish the proof, we need to verify that lbnd preserves α-equivalence (defined over

all expressions). Now suppose that e ∼α e′ and, moreover, e, e′ ∈ CLFexp⇒exp(Γ
L
exp). By

inspecting the rules defining α-equivalence and the rules of Figure 4, we see that e ≡ Λ vk. C

and the only applicable rule of α-equivalence is the renaming axiom. So we need to show

that whenever ΓL
exp �can Λ vk. C :: exp ⇒ exp, we have

lbnd n (Λ vk. C) = lbnd n (Λ vk′ . C[vk′/vk])

provided vk′ does not occur free in C .

Suppose the final rule used in the derivation is ABS. Of course,

ΓL
exp , vk :: exp �can C :: exp. (∗)

We must now consider all the possible ways this judgement could have been derived. The

statement (∗) cannot have been derived using ABS, as exp is not a higher type. If (∗) was

derived using VAR, it is easy to see that C ≡ vk′′ for some k′′. If k
= k′′, we have

lbnd n (Λ vk. vk′′)
def
= vk′′

= lbnd n (Λ vk′ . vk′′)

= lbnd n (Λ vk′ . vk′′ [vk′/vk])

where the assumption that vk′ is not free implies that k′
= k′′. In the case k = k′′ both

expressions equal BND n. We omit all the routine details for the cases where (∗) was

derived using CST.

4. The adequacy of de Bruijn expressions for λ-expressions

In this section we demonstrate very precisely that de Bruijn expressions provide an

adequate representation of the expressions of the λ-calculus. In establishing Hybrid

adequacy in Section 5, we will make extensive use of the notation and functions used in

our proof of de Bruijn adequacy, as well as the result itself.

Recall that in Section 1.4 we set up our syntax for λ-expressions and de Bruijn

expressions. In Section 4.1, we state de Bruijn adequacy formally. In Section 4.2, we

give an outline of a proof, listing the key propositions – the formal statements of the

propositions, together with their proofs, appear in the Appendix C. In Section 4.3, we

The representational adequacy of Hybrid 15

define the families of functions used to establish the required bijection – the proofs of

existence also appear in the Appendix C. In Section 4.4, we prove the adequacy result in

the form of Theorem 4.1.

4.1. The Representational Adequacy Theorem

We wish to prove the following theorem, which will be used in Section 5 to prove an

adequacy result for Hybrid.

Theorem 4.1 (de Bruijn representational adequacy). There is a function

θ : LE/∼α → PDB ⊆ DB

that is representationally adequate, that is to say, θ is a compositional isomorphism

LE/∼α
∼= PDB. Equivalently:

B θ is bijective; and

CH θ is a compositional homomorphism

θ([E]α[[E
′]α/vk]) = θ([E]α)[θ([E

′]α)/var(k)].

Note that we appeal to Propositions 1.1 and 1.2 in stating CH.

4.2. A proof outline

In this section we will give an informal outline of the proof, but first we need some more

notation.

A list L is one whose elements (if any) are object level variables vk . We write ε for

the empty list, and vk, L and L,L′ for cons and concatenation, respectively. Thus, a typical

non-empty list is v10, v70, v70, v6, v2, v0, v10. If a list L is non-empty, the head has position

0, and the last element has position |L| − 1 where |L| is the length of the list. Thus v70
occurs at positions 1 and 2 in the example just given. If L is non-empty and vk occurs

in it, we write vk ∈ L. Suppose also that the first occurrence is at position p. Then we

write pos vk L for p. If vk
∈ L, then pos vk L is undefined. We write elt pL for the variable

vk at position p if there is one, otherwise elt pL is undefined. We say that L is ordered

if L is a list and has no repeated elements, and the indices occur in decreasing order.

Thus a typical non-empty ordered list is v100, v7, v6, v2, v0. If S is a set of variables, we will

use informal notation such as S ∩L to mean the intersection of S and the set of variables

in L.

The compositional isomorphism θ will be built out of a certain pair of L-indexed

families of functions:

[[−]]L : LE �� DB(|L|) : (|−|)L.
We will also make use of these functions in Section 5. Here we give informal descriptions

of them before the formal definitions in the next section.

The functions [[−]]L, one for each L, are defined by recursion over the structure of

λ-expressions (see Proposition 4.2). The list L should be thought of as naming certain

binding variables in a λ-expression. Roughly speaking, [[−]]L will descend through the

R. L. Crole 16

constructors of an expression, replacing λ-application nodes by de Bruijn application

nodes, and replacing λ-abstraction nodes by de Bruijn abstraction nodes. When descending

through a λ-abstraction node with binder vi, the list L is updated to vi, L. At variable

nodes (leaves), if the leaf is in the list of binding variables, it becomes a de Bruijn bound

variable index, otherwise it becomes a de Bruijn free variable index. The bound variable

index is determined using the position of the variable in L. Note that [[−]]L delivers a de

Bruijn expression at level |L|.
In order to show that θ is an isomorphism, we show that each function (|−|)L is, roughly

speaking, an inverse to [[−]]L. The existence of the family of functions (|−|)L is proved

in Proposition 4.3. Once again, each (|−|)L is defined by recursion, here over de Bruijn

expressions. When recursing over a de Bruijn abstraction node, a binding variable vI is

created and added to the list L of binding variables. The value of index I is chosen to

be larger than any index in L and any index in the de Bruijn expression that (|−|)L is

recursing over.

In Proposition C.3 we show that for any L, if E ∼α E
′, then [[E]]L = [[E ′]]L, establishing

that [[−]]L preserves α-equivalent expressions. We will be able to use this fact to define θ,

whose source is LE/∼α, from the family [[−]]L whose source is LE.

In Proposition C.4 we show that

[[(|D|)L]]L = D,

thereby demonstrating that [[−]]L is an inverse for (|−|)L.

In Proposition C.5 we show that

(|[[E]]L|)L′ ∼α E[L′/L],

and hence that up to α-equivalence, (|−|)L is an inverse for [[−]]L. Note that the strength

of the proposition, which involves L
= L′, is required during the inductive stages of its

proof. Only once we have proved this may we consider the case when L = L′.

In Proposition C.6, we show that the functions [[−]]L are indeed compositional

homomorphisms.

We can then prove Theorem 4.1. The idea, roughly speaking, is that θ is the function

[[−]]ε and that it has an inverse φ given by (|−|)ε; when θ and φ are first applied to

expressions, the list ε of binding variables is empty. The propositions have established

that θ is well defined on α-equivalence classes, and that θ and φ yield an isomorphism since

they are inverses for each other. Finally, θ is a compositional homomorphism since [[−]]ε is.

4.3. Setting up the bijection

Here we will just state the existence of the families of functions required to establish the

bijection – the proofs are given in Appendix C. The reason for giving the definition of

the functions in the main text is that other proofs in the paper make direct use of the

definitions.

Proposition 4.2 (defining [[−]]L). For any L, there is a function

[[−]]L : LE → DB(|L|)

The representational adequacy of Hybrid 17

satisfying the following recursion equations (in particular, [[−]]ε : LE → PDB):

[[ν]]L = con(ν)

[[vi]]L =

{
bnd(pos vi L) if vi ∈ L

var(i) if vi
∈ L

(where pos vi L is the position

of the variable vi in L)

[[E1 E2]]L = [[E1]]L $ [[E2]]L

[[λ vi. E]]L = abs([[E]]vi,L).

Proposition 4.3 (defining (|−|)L). For any ordered L, there is a function

(|−|)L : DB(|L|) → LE

satisfying the following recursion equations (in particular, (|−|)ε : PDB → LE):

(|con(ν)|)L = ν

(|var(i)|)L = vi

(|bnd(j)|)L = elt j L (where elt j L is the jth element of L)

(|D1 $ D2|)L = (|D1|)L (|D2|)L
(|abs(D)|)L = λ vM+1. (|D|)vM+1 ,L

where in the last equation M = Max(D;L) with

Max(D;L)
def
= Max {i | var(i) ∈ D}

⋃
{j | head(L) = vj}︸ ︷︷ ︸

� if L empty

.

We take Max �
def
= 0. Informally, Max(D;L) denotes the maximum of the free indices

occurring in D and the indices of L.

4.4. Proving de Bruijn adequacy

We can now prove Theorem 4.1.

Proof of Theorem 4.1. (It may help to revisit Section 4.2 and refer to the Appendix

when required.)

B Recall from Propositions 4.2 and 4.3, defining [[−]]L and (|−|)L, respectively, that we

have the existence of a pair of families of functions:

[[−]]L : LE �� DB(|L|) : (|−|)L.

Consider the following diagram, with q the surjective quotient map, and ε the empty

list where, of course, PDB def
= DB(|ε|) = DB(0):

LE/∼α
� q LE

[[−]]ε ��
(|−|)ε

PDB.

We may define

θ : LE/∼α
�� PDB : φ

R. L. Crole 18

by setting θ([E]α)
def
= [[E]]ε for any E ∈ LE and φ

def
= q ◦ (|−|)ε. Note that by

Proposition C.3, [[−]]ε is equal on α-equivalent expressions, so the definition of θ is

a good one. We then have

(θ ◦ φ)(D) = [[(|D|)ε]]ε = D

using Proposition C.4 (the identity [[−]]L ◦ (|−|)L), and

(φ ◦ θ)[E]α = [(|[[E]]ε|)ε]α = [E]α

using Proposition C.5 (the identity (|−|)L ◦ [[−]]L).

CH The fact that θ is a compositional homomorphism is immediate from Proposition C.6

([[−]]L compositional homomorphism) and the definition of θ.

5. The adequacy of Hybrid for λ-expressions

5.1. The Representational Adequacy Theorem

Before we can state the adequacy theorem, we will need a notion of substitution for

Hybrid. The existence of the substitution function is given by the following lemma.

Lemma 5.1. There is a function

CLFexp(Γ
L
exp) × CLFexp(Γ

L
exp) × � → CLFexp(Γ

L
exp)

denoted by (C,C ′, k) �→ C[C ′/VAR k], which, informally, maps (C,C ′, k) to the expression

C in which all occurrences of VAR k are replaced by C ′.

Proof. The formal definition of the function, and the proof, are omitted. Note that the

set CLFexp(Γ
L
exp) does not involve expressions that bind variables, so the definition of

the function is entirely straightforward since there is no need for renaming.

Theorem 5.2 is the key theorem of this paper.

Theorem 5.2 (Hybrid representational adequacy). There is a well-defined function

Θε : LE/∼α → Θε (LE/∼α) ⊆ CLFexp(ε)

arising from the family of unique well-defined functions

ΘL : LE/∼α → CLFexp(Γ
L
exp)

satisfying the recursion equations

ΘL ([ν]α)
def
= CON ν

ΘL ([vi]α)
def
=

{
vi if vi ∈ L

VAR i if vi
∈ L

ΘL ([E1 E2]α)
def
= (ΘL [E1]α) $$ (ΘL [E2]α)

ΘL ([λ vi. E]α)
def
= LAM vi.Θvi,L ([E]α)

The representational adequacy of Hybrid 19

where in the last equation we write LAM vi. ξ as an abbreviation for ABS (lbnd 0 (Λ vi. ξ)).

Then Θε is representationally adequate, that is to say, Θε is a compositional isomorphism

LE/∼α
∼= Θε(LE/∼α). Equivalently:

B it is bijective (onto its image); and

CH it is a compositional homomorphism, which means that

Θε ([E]α[[E
′]α/vk]) = Θε ([E]α)[Θε ([E ′]α)/VAR k]

where the right-hand expression exists by Lemma 5.1.

At this stage it will be instructive to experiment with computing the adequacy

function Θ. For example, take EO
def
= λ v8. λ v2. v8 v3 and then compute Θε [EO]α, which is

the formal definition of the Hybrid encoding of EO . The answer should be the expression

EH (below) where the abbreviations above have been fully expanded. The function Θε

works recursively:

— λ-binder nodes are replaced by instances of LAM (recall that LAM vi. ξ is an abbrevi-

ation for ABS (lbnd 0 (Λ vi. ξ))).

— Application nodes are replaced by $$.

— ΘL recursively collects the names of the λ-binders in L, and when it reaches leaf

node variables it checks to see if the leaf is in scope of a binder or not. If it is (for

example, v8), the leaf remains unchanged; if not, (for example, v3) the leaf vi becomes

VAR i.

Thus

EH = ABS (lbnd 0 Λ v8. (ABS (lbnd 0 Λ v2. (v8 $$ VAR 3))))

and one can also check that this equals

ABS (ABS (BND 1 $$ VAR 3)).

5.2. Factoring Hybrid adequacy

A key to proving Theorem 5.2 is the existence of a function inst . This provides an explicit

connection between the function Θε and the function θ of Theorem 4.1. In fact, as we

shall see, informally speaking, Θε = inst ◦ θ. We already have an adequacy result for θ,

and we will be able to obtain the same for inst . We proceed like this because Θ maps

λ-expressions to Hybrid de Bruijn expressions in a very intensional and indirect way

(utilising calls to the function lbnd at each node of the λ-expression) and it is difficult

to prove adequacy of this function directly. It is far easier to prove properties, such as

injectivity, of inst . We will first introduce inst using examples.

Recall (where an overline connects related abstraction nodes, binding and bound

variables) that

Θε [λ v8. λ v2. v8 v2]α = ABS (lbind 0Λ v8. ABS (lbind 0Λ v2. v8 $$ v2)) (∗)

Θv8 [λ v2. v8 v2]α = ABS (lbind 0Λ v2. v8 $$ v2). (∗∗)

R. L. Crole 20

Although the function lbnd has a complex intensional definition, the ‘key’ information

specified in (∗∗) can be simplified to the data

([v8], ÂBS (v8 $$ v2), 0) = ([v8],ABS (̂v8 $$ v2), 1)

= ([v8],ABS (̂v8 $$ v̂2), 1)

where an indicator ˆ descends recursively through the expression, and a counter records

that there is one ABS node between the variables and the root node. Note that the list

of variables [v8] records the ‘once bound (∗) but now free (∗∗)’ variables, that is, the

‘dangling’ variables. This is sufficient information to:

— replace v2 with its de Bruijn index – we have counted just one abstraction, and v2 is

not in the list of ‘dangling’ variables; and
— leave v8 alone – entries in the list of ‘dangling’ variables remain unchanged.

Hence, the expression ([v8],ABS (̂v8 $$ v̂2), 1) ‘equals’ ABS (v8 $$ BND 0).

This leads us to formulate inst . This function takes as inputs a counter, a list of n

variables, and any de Bruijn expression. It descends recursively through the expression,

counting abstraction nodes as it goes. When any leaf node bound index j is reached,

it can use the counter to determine if the index is dangling or not. If it is, the index

is replaced by the (j − n)th variable, and if it is not, it is left alone. Thus we would

have

inst 0 v8 (ABS (BND 1 $$ BND 0)︸ ︷︷ ︸
[[λ v2 . v8 v2]]v8

) =

...

= ABS (v8 $$ BND 0)

= Θv8 [λ v2. v8 v2]α.

Putting all of this together suggests that we can prove ΘL = (inst 0 L) ◦ [[−]]L, and,

in fact, subject to tidying up the technical details, this is what we shall do. We can then

prove representational adequacy of each function in the function composition.

5.3. A proof outline

We have now assembled enough infrastructure for our proof of Hybrid adequacy. We

first give an outline of the top-level structure of the adequacy proof. The proof of the

theorem uses three key propositions, which are described below. These three propositions

together with Theorem 4.1 allow us to prove Hybrid adequacy, that is, Theorem 5.2.

Consider the diagram in Figure 6.

In Proposition 5.6 we show that the function ΘL exists (and hence that Θε exists). We do

this by proving that the graph of ΘL is equal to the graph of the composition (inst 0 L) ◦
ι ◦ θL of three well-defined functions. Recall that [[−]]L is defined in Proposition 4.2. The

function θL is defined by [[−]]L ◦ q−1 where q : LE → LE/∼α is the quotient function.

In Lemma 5.3 we prove the existence of the function inst . Two other technical lemmas,

Lemmas 5.4 and 5.5, are also required to establish that ΘL = (inst 0 L) ◦ ι ◦ θL.

In Proposition 5.8 we show that the function hdb, which is shown to exist in Lemma 5.7,

is a left inverse for the function inst , in the formal sense that

The representational adequacy of Hybrid 21

LE/∼α

ΘL � CLFexp(Γ
L
exp)

LE/∼α

���������
θL� DB(|L|) ⊂

ι � DB inst 0 L� CLFexp(Γ
L
exp)

���������
hdb 0 L� DB

LE/∼α

���������
θL� DB(|L|)

���������
⊂
ι � DB

����������
id � DB

����������
Fig. 6. Functions used in the adequacy proof

(hdb 0 L) ◦ (inst 0 L) = idDB.

Hence inst is injective.

In Proposition 5.10 we show that inst is a compositional homomorphism, using the

technical Lemma 5.9.

The Hybrid adequacy proof follows from this. θε is representationally adequate by

Theorem 4.1 for de Bruijn representational adequacy, since it is equal to θ from the

theorem. And since Θε = (inst 0 ε) ◦ ι ◦ θε, all we need to know then is that inst 0 ε is

injective and compositional, which follows from Propositions 5.8 and 5.10.

5.4. Infrastructure for the proof outline

We begin with a formal definition of the function inst . Recall that its input includes a list

of variables and a de Bruijn expression. The output is the de Bruijn expression in which

dangling bound indices are replaced by variables from the list. As such, each output is a

canonical form that can be generated in a context whose domain of definition is the (set

of) variables from the list, each with type exp.

Lemma 5.3 (defining inst). For each n � 0 and list L, there is a unique function with the

following source and target

inst n L : DB → CLFexp(Γ
L
exp)

satisfying the recursion equations

inst n L con(ν) = CON ν

inst n L var(i) = VAR i

inst n L bnd(j) =

{
elt (j − n)L if n � j and j − n < |L|
BND j otherwise (that is n > j or j − n � |L|)

(recall from Section 4.2, that elt pL computes the pth element in L)

inst n L (D1 $ D2) = (inst n L D1) $$ (inst n L D2)

inst n L abs(D) = ABS (inst (n + 1) L D).

R. L. Crole 22

Proof. DB is an inductively defined set, so by standard results (see Appendix A) the

unique function inst n L exists by appealing to structural recursion over DB, provided

the expressions on the right-hand sides of the equations are elements of CLFexp(Γ
L
exp)

on the (inductive) assumption that recursive calls of inst are elements of CLFexp(Γ
L
exp).

Note that elt (j − n)L is defined since 0 � j − n < |L| and it is clear from VAR (see

Figure 4) that ΓL
exp �can elt (j − n)L :: exp. All the remaining left-hand sides are trivially

in CLFexp(Γ
L
exp).

The next significant step is to prove that ΘL = (inst 0 L) ◦ θL. In order to do this we

will need two lemmas that are rather technical in nature. Before stating them formally

and giving proofs, we will give some informal motivation and illustrations.

A useful exercise at this point is to show that

inst 1 ε (abs((bnd(1) $ bnd(0))))

and

lbnd 0 (Λ v8. (inst 0 v8 (abs((bnd(1) $ bnd(0))))))

are equal. In fact the next lemma, Lemma 5.4, is central to our main proof. It shows how

the functions lbnd and inst interact by stating that such equations hold in general. We

motivate it by giving further informal examples and analysis.

Suppose D[bnd(j)] is a de Bruijn expression in which there are n abs nodes between

the bound index j and the root. Consider inst 1 L D[bnd(j)]. The output of this function

is essentially D[bnd(j)] but with:

— any bnd(j) replaced by elem(j − (n + 1))L when

0 � j − (n + 1) � |L| ≡ n + 1 � j � |L| + (n + 1).

Now consider inst 0 (vk, L) D[bnd(j)]. The output of this function is essentially D[bnd(j)]

but with

— any bnd(j) replaced by elem(j − n)L when

0 � j − n � |vk, L| ≡ n � j � (1 + |L|) + n.

Thus the second output is the same as the first, but in addition any bnd(n) gets replaced

by vk . Hence one can see that

(inst 1 L D[bnd(j)])[vk/bnd(n)] = inst 0 (vk, L) D[bnd(j)] (∗)

and one may conjecture that

lbnd 0 (Λ vk. inst 0 (vk, L) D[bnd(j)]) = (inst 0 (vk, L) D[bnd(j)])[bnd(n)/vk]

= (inst 1 L D[bnd(j)])[vk/bnd(n)][bnd(n)/vk]

= inst 1 L D[bnd(j)]

with the first equation following from the definition of lbnd and the second from (∗). This

is formalised in the following lemma.

The representational adequacy of Hybrid 23

Lemma 5.4 (relating lbnd and inst for Proposition 5.6). Given any D ∈ DB, list L, n � 0,

and meta-variable vk fresh for L, we have

lbnd n (Λ vk. inst n (vk, L) D) = inst (n + 1) L D.

Proof. We prove the lemma by induction on D.

— The argument for constants con(ν) is similar to that for the inductive case of free

indices, and applications are easy, and thus omitted.

— var(i):

Routine calculations give

lbnd n (Λ vk. inst n (vk, L) var(i)) = lbnd n (Λ vk.VAR i)

= VAR i

= inst (n + 1) L var(i).

— bnd(j):

We first assume that n � j and j − n < |vk, L|, and consider the cases of j − n = 0 and

j − n � 1 separately:

– If j − n = 0, we have

lbnd n (Λ vk. inst n (vk, L) bnd(j)) = lbnd n (Λ vk. elt (j − n) (vk, L))

= lbnd n (Λ vk. vk)

= BND n = BND j

= inst (n + 1) L bnd(j)

where the final equality follows since n + 1 > n = j.

– If j − n � 1, we have

lbnd n (Λ vk. inst n (vk, L) bnd(j)) = lbnd n (Λ vk. (elt (j − n) (vk, L)))

= lbnd n Λ (vk. vk′)

(where k
= k′ by freshness)

= vk′

= elt (j − (n + 1))L

= inst (n + 1) L bnd(j)

where the final equality follows since n + 1 � j and j − (n + 1) < |L|.
Now suppose that either n > j or j − n � |vk, L|. So we have

lbnd n (Λ vk. inst n (vk, L) bnd(j)) = lbnd n (Λ vk.BND j)

= BND j

= inst (n + 1) L bnd(j)

where the final equality follows because either n + 1 > j or j − (n + 1) � |L|.

R. L. Crole 24

— abs(D):

We have

lbnd n (Λ vk. inst n (vk, L) abs(D)) = lbnd n (Λ vk.ABS (inst (n + 1) (vk, L) D))

= ABS (lbnd (n + 1) (Λ vk. inst (n + 1) (vk, L) D))

= ABS (inst (n + 2) L D)

= inst (n + 1) L abs(D)

where the first, second and fourth equalities are true by definition, and the third is by

induction.

The following lemma allows us to do some variable renaming when applying the

function inst . It will be used during the inductive steps of proofs that deal with abstractions,

and hence also variable renaming. Recall that [[−]]− was defined in Proposition 4.2.

Lemma 5.5 (for Proposition 5.6). For all E ∈ LE, all n � 0, all lists L,L′ such that

n = |L′| and all variables vi, vk , we have

(inst n (vi, L) [[E]]L′ ,vi,L)[vk/vi] = inst n (vk, L) [[E]]L′ ,vi,L.

Proof. The proof is by induction over E ∈ LE:

— The details for constants and applications are easy and thus omitted.

— vα:

We consider the following cases:

– Case vα
∈ L′, vi, L:

We have [[vα]]L′ ,vi,L = var(α), so

(inst n (vi, L) [[vα]]L′ ,vi,L)[vk/vi] = (inst n (vi, L) var(α))[vk/vi]

= (VAR α)[vk/vi]

= (VAR α)

= inst n (vk, L) var(α).

– Case vα ∈ L′:

We have [[vα]]L′ ,vi,L = bnd(j) where j = pos vα (L′, vi, L) < |L′| = n, so

(inst n (vi, L) [[vα]]L′ ,vi,L)[vk/vi] = (inst n (vi, L) bnd(j))[vk/vi]

= BND j

= inst n (vk, L) bnd(j).

The representational adequacy of Hybrid 25

– Case vα
∈ L′ and α = i:

We have [[vα]]L′ ,vi,L = bnd(pos vα (L′, vi, L)) = bnd(n), so

(inst n (vi, L) [[vα]]L′ ,vi,L)[vk/vi] = (inst n (vi, L) bnd(n))[vk/vi]

= vi[vk/vi]

= vk

= inst n (vk, L) bnd(n).

– Case vα
∈ L′, vi and vα ∈ L:

We have [[vα]]L′ ,vi,L = bnd(j) where

j = pos vα (L′, vi, L) > n,

so 0 < j − n = pos vα (vi, L) < |vi, L| and

(inst n (vi, L) [[vα]]L′ ,vi,L)[vk/vi] = (inst n (vi, L) bnd(j))[vk/vi]

= (elt (j − n) (vi, L))[vk/vi]

= vα[vk/vi]

= vα

= elt (j − n) (vk, L)

= inst n (vk, L) bnd(j).

— λ vα. E:

We have

(inst n (vi, L) [[λ vα. E]]L′ ,vi,L)[vk/vi] = (inst n (vi, L) abs([[E]]vα,L′ ,vi,L))[vk/vi]

= ABS (inst (n + 1) (vi, L) [[E]]vα,L′ ,vi,L)

= ABS ((inst (n + 1) (vk, L) [[E]]vα,L′ ,vi,L)[vk/vi])

= (inst n (vi, L) abs([[E]]vα,L′ ,vi,L))[vk/vi]

= inst n (vk, L) [[λ vα. E]]L′ ,vi,L

with the third equality following by induction.

We can now formalise our explanation in Section 5.2 in which we said that the

function ΘL would be factored through the function θL, and provide a proof. Note that

the following proposition provides an explicit connection between the Hybrid encoding

function Θε and the de Bruijn adequacy function θ = θε.

Proposition 5.6 (factoring ΘL). For any [E]α ∈ LE/∼α and list L, we have

ΘL [E]α = inst 0 L (θL([E]α))

where the action of ΘL is specified in the statement of Theorem 5.2.

Recall from Section 5.3 that for any E we set

θL([E]α)
def
= ([[−]]L ◦ q−1)([E]α) = [[E]]L,

R. L. Crole 26

which is well defined by Proposition C.3. Hence the action yields a well-defined function

ΘL as it is the composition action of three other well-defined functions:

ΘL = (inst 0 L) ◦ ι ◦ θL : LE/∼α → DB(|L|) → DB → CLFexp(Γ
L
exp).

Proof. Note that the function inst 0 L is defined on DB and hence on any subset! We

prove by induction on E ∈ LE that

(∀E)(∀L)(inst 0 L (θL([E]α)) = ΘL ([E]α)) :

— Constants and applications are easy, so the details are omitted.

— vi:

When vi ∈ L, we have

inst 0 L (θL([vi]α)) = inst 0 L (bnd(pos vi L))

= elt (pos vi L)L

= vi

def
= ΘL ([vi]α)

where the second equality follows because 0 � pos vi L < |L|.
The other simple case is left as an exercise.

— λ vi. E:

We choose vk to be fresh for L, E and vi. Then

inst 0 L (θL([λ vi. E]α)) = inst 0 L (θL([λ vk. E[vk/vi]]α))

(Definition of θL and Proposition C.3)

def
= inst 0 L (abs([[E[vk/vi]]]vk ,L))

def
= ABS (inst 1 L [[E[vk/vi]]]vk ,L)

= ABS (lbnd 0 (Λ vk. inst 0 (vk, L) [[E[vk/vi]]]vk ,L))

(Lemma 5.4 with vk
∈ L)

= ABS (lbnd 0 (Λ vk. inst 0 (vk, L) [[E]]vi,L))

(Lemma C.11 with vk
∈ fv (E))

= ABS (lbnd 0 (Λ vk. (inst 0 (vi, L) [[E]]vi,L)[vk/vi]))

(Lemma 5.5)

= ABS (lbnd 0 (Λ vi. inst 0 (vi, L) [[E]]vi,L))

(α)

= ABS (lbnd 0 (Λ vi. inst 0 (vi, L) θvi,L([E]α)))

= ABS (lbnd 0 (Λ vi.Θvi,L [E]α))

def
= ΘL ([λ vi. E]α).

Step (α) follows from Proposition 3.2 since canonical forms are identified up to α-

equivalence: note that we must ensure vk
∈ inst 0 (vi, L) [[E]]vi,L. In fact, it is easy to

The representational adequacy of Hybrid 27

see that for any D, L̂ and m, the variables occurring in inst m L̂ D must come from

L̂. Thus the condition holds as vk is fresh for vi, L. The penultimate equality is by

induction.

The other key step in proving the main theorem is to show that inst is an injective

function. We achieve this by defining a left inverse, whose existence is proved in the next

lemma. Before reading the proof, it may help to work through the following example

calculation:

hdb 0 v8 (inst 0 v8 (ABS (BND 1 $$ BND 0)))

= hdb 0 v8 (ABS (v8 $$ BND 0))

= ABS ((hdb 1 v8 v8) $$ (hdb 1 v8 (BND 0)))

= ABS (BND 1 $$ BND 0).

Lemma 5.7 (defining hdb for Proposition 5.8)). For all n � 0 and list L, there is a unique

function with the following source and target

hdb n L : CLFexp(Γ
L
exp) → DB

satisfying the following recursion equations:

hdb n L vk = bnd((pos vk L) + n)

hdb n L (CON ν) = con(ν)

hdb n L (VAR i) = var(i)

hdb n L (BND j) = bnd(j)

hdb n L (C1 $$ C2) = (hdb n L (C1)) $ (hdb n L (C2))

hdb n L (ABS C) = abs(hdb (n + 1) L C).

For the first equation, recall from Section 4.2 that pos eL computes position of e in L.

Proof. Let I be the inductively defined set of all canonical forms in context specified in

Figure 4. Let L be arbitrary and S
def
= CLFexp(Γ

L
exp). We will give an existence proof of

a function F : S → (� ⇒ ({L} ⇒ W)) and define for any n ∈ �

hdb n L C
def
= F(C)(n)(L).

Let I0
def
= � and Ih+1 be those elements of I with deduction trees of height less than

or equal to h + 1 where h ∈ �. It is standard that I =
⋃

h∈� Ih and that the Ih form an

increasing sequence of sets ordered by inclusion.

Define

S0
def
= �

Sh+1
def
= {C | ΓL

exp �can C :: exp ∈ Ih+1 − Ih} (for h � 0).

It is easy to see that S =
⋃

h∈� Sh, and, moreover, that this is a union of pairwise

disjoint sets. We will now construct the function F : S → � ⇒ ({L} ⇒ W) by defining a

R. L. Crole 28

sequence of functions Fh : Sh → (� ⇒ ({L} ⇒ W)) and taking F
def
=

⋃
h∈� Fh, which is a

union of functions with pairwise disjoint sources:

— F0 : S0 → (� ⇒ ({L} ⇒ W)):

We take F0 to be the empty function.

— F1 : S1 → (� ⇒ ({L} ⇒ W)):

If C ∈ S1, then by examining the generating rules we see that C must be vk . Hence F1

is fully specified for each n ∈ � by

F1(vk)(n)(L)
def
= bnd((pos vk L) + n).

— F2 : S2 → (� ⇒ ({L} ⇒ W)):

If C ∈ S2, then by examining the rules, we see that C must be CON ν, VAR i, BND j

or vk $$ vk′ , or ABS vk′′ . Hence F2 is fully specified for each n ∈ � by

F2(CON ν)(n)(L)
def
= CON ν

F2(VAR i)(n)(L)
def
= VAR i

F2(BND j)(n)(L)
def
= BND j

F2(vk $$ vk′)(n)(L)
def
= (F1(vk)(n)(L)) $$ (F1(vk′)(n)(L))

F2(ABS vk′′)(n)(L)
def
= ABS (F1(vk′′)(n + 1)(L)).

— Fh : Sh → (� ⇒ ({L} ⇒ W)) where h � 3:

We prove by induction that for all h � 3 there is such a function Fh that is fully

specified by the clauses

Fh(C1 $$ C2)(n)(L)
def
= ((

h−1⋃
0

Fr)(C1)(n)(L)) $$ ((

h−1⋃
0

Fr)(C2)(n)(L))

Fh(ABS C3)(n)(L)
def
= ABS ((

h−1⋃
0

Fr)(C3)(n)(L))

together with the functions Fh defined above for h = 0, 1, 2.

If h = 0, the proposition is vacuous.

So we now assume the proposition holds for all numbers r less than or equal to an

arbitrary h, and prove it holds for h + 1. So we assume that h + 1 � 3. Suppose

C ∈ Sh+1. Now h � 2 and by examining the rules used to generate C we see that either

C ≡ C1 $$ C2 with each Cs ∈ Ih−1 of type exp, or C ≡ ABS C3 with C3 ∈ Ih−1 of type

exp. Hence Cs ∈
⋃h

0 Sr for s = 1, 2, 3. By induction, each of the functions Fr exist for

0 � r � h, so Fh+1 is indeed completely specified by the given clauses.

Defining F
def
=

⋃
h∈� Fh, which exists given that the Fh all exist, it is virtually immediate

that the given definition of inst satisfies the stated recursion conditions.

The next proposition states that the function inst has a left inverse, and is thus injective.

The result is a key step in proving Hybrid adequacy.

The representational adequacy of Hybrid 29

Proposition 5.8 (left inverse for inst). Given any D ∈ DB, n � 0 and ordered list L, we

have

hdb n L (inst n L D) = D.

In particular, each function

inst n L : DB → CLFexp(Γ
L
exp)

is injective, with left sided inverse hdb n L.

Proof. The existence of the functions follows from Lemmas 5.3 and 5.7. The equalities

are proved by induction over de Bruijn expressions:

— The details for constants, variables and applications are easy.

— bnd(j):

The first possibility is that

hdb n L (inst n L bnd(j)) = hdb n L (elt (j − n)L)

= bnd((pos (elt (j − n)L)L) + n)

= bnd(j).

Note that this depends crucially on the fact that L is ordered. The second possibility

is that

hdb n L (inst n L bnd(j)) = hdb n L (BND j)

= bnd(j).

— abs(D):

We have

hdb n L (inst n L abs(D)) = hdb n L (ABS (inst (n + 1) L D))

= abs(hdb (n + 1) L (inst (n + 1) L D))

= abs(D)

where the final equality follows by induction.

Before finally proving the adequacy theorem, we give a short technical lemma that allows

us to show in Proposition 5.10 that the function inst is a compositional homomorphism.

Lemma 5.9 (for Proposition 5.10). For all n � 0, ordered L, and D ∈ DB(|L|), if n � m

where m is the minimum level of D, we have

inst (n + 1) L D = inst n L D.

Proof. This is a routine induction over D. For the case where D is bnd(j), note that

inst returns BND j as the minimum level m of bnd(j) is j + 1, and thus both n and n + 1

are strictly greater than j.

Proposition 5.10 (inst compositional homomorphism). For any D,D′ ∈ DB, n, k � 0 and

ordered L, if n � m where m is the minimum level of D′, we have

inst n L (D[D′/var(k)]) = (inst n L D)[inst n L D′/VAR k].

R. L. Crole 30

Proof. The proof is by induction on D. All of the cases are easy, except for abstractions

abs(D), which require Lemma 5.9. We have

inst n L (abs(D)[D′/var(k)]) = ABS (inst (n + 1) L (D[D′/var(k)]))

= ABS ((inst (n + 1) L D)[inst (n + 1) L D′/VAR k])

= (inst n L abs(D))[inst (n + 1) L D′/VAR k].

The second equality is by induction, since n + 1 � n � m where m is the minimum level

of D′. The third follows from simple applications of the definitions. We are then done by

appeal to Lemma 5.9 applied to D′.

5.5. Proving Hybrid adequacy

We can now prove Theorem 5.2.

Proof of Theorem 5.2.

B We only need to show that Θε is injective. From Proposition 5.6 (giving factoring

of ΘL), we know that

Θε = (inst 0 ε) ◦ ι ◦ θε.

But θε = θ and θ is injective by de Bruijn representational adequacy, Theorem 4.1.

Inclusion ι is trivially injective. Furthermore, inst 0 ε is injective from the left inverse,

which is given by Proposition 5.8 (noting that ε is ordered by definition).

CH The Hybrid substitution function exists by Lemma 5.1. We then calculate

Θε ([E]α[[E
′]α/vk])

def
= Θε [E[E ′/vk]]α (1)

= inst 0 ε [[E[E ′/vk]]]ε (2)

= inst 0 ε ([[E]]ε[[[E
′]]ε/var(k)]) (3)

= (inst 0 ε [[E]]ε)[inst 0 ε [[E ′]]ε/VAR k] (4)

= (Θε [E]α)[Θε [E ′]α/VAR k] (5)

where: Equation 2 follows from Proposition 5.6 (giving factoring of ΘL); Equation 3

follows from de Bruijn representational adequacy, Theorem 4.1; Equation 4 follows

from Proposition 5.10 showing that inst is a compositional homomorphism – note

that the value of n in the lemma is 0, so n � m where m = 0 is the minimum level

of [[E ′]]ε ∈ DB(0); and Equation 5 follows from Proposition 5.6 again.

6. Representation results

We can now use the results of the previous sections to prove some facts about the

Hybrid representation of λ-expressions. Recall the notion of a proper de Bruijn term

from Section 1.4 – see also Appendix B.1. We will now provide an analogous definition

for canonical expressions in Hybrid and prove that they correspond exactly to λ-

expressions. We also define the notion of a Hybrid abstraction and show that such

expressions correspond to λ-abstraction expressions. These predicates are important since

The representational adequacy of Hybrid 31

they are required for the formulation of induction principles. We can illustrate the

notion of abstraction through an example. Suppose ABS C is proper: for example,

let C = ABS (BND 0 $$ BND 1). Then C is of level 1, and, in particular, there may

now be some dangling bound indices: for example, BND 1 in ABS (BND 0 $$ BND 1).

An abstraction is produced by replacing each occurrence of a dangling index with a

metavariable and then abstracting the meta variable. Our example yields the abstraction

Λ v.ABS (BND 0 $$ v).

We will now briefly mention an induction principle for Hybrid. When Hybrid is put

into practice, an object logic will be translated by regarding the datatype of de Bruijn plus

LAM vi. ξ expressions as a form of HOAS. This requires that the constructors CON, VAR,

$$ and LAM should be injective, with disjoint images (van Dalen 1989). The approach

is to identify predicated subsets of exp and exp ⇒ exp. The subset of exp consists

of expressions that reduce to proper de Bruijn expressions (see Section 1.4). The subset of

exp ⇒ exp consists of functions C such that LAM vi. C vi is proper. The subsets consist of

proper and abstraction expressions, respectively. With this, one may prove the following

in Hybrid:

∀i. Φ(VAR i)

∀C ,C ′. proper C ∧ Φ(C) ∧ proper C ′ ∧ Φ(C ′) =⇒ Φ(C $$ C ′)

∀C. abst C ∧ (∀C ′. proper C ′ =⇒ Φ(C ′) =⇒ Φ(C C ′)) =⇒ Φ(LAM vi. C vi)

Φ(C)

6.1. Describing Hybrid proper expressions using LE

Proposition 6.1. For all n � 0 and lists L there is a unique function with the following

source and target

level n : CLFexp(Γ
L
exp) → �

satisfying the following recursion equations

level n (CON ν) = T

level n vk = F

level n (VAR i) = T

level n (BND j) = n > j

level n (C1 $$ C2) = (level nC1) ∧ (level nC2)

level n (ABS C) = level (n + 1)C.

Proof. We will omit the proof, which is similar in spirit to the proof given for

Proposition 3.2.

We say that an element C ∈ CLFexp(Γ
L
exp) is proper if level 0C is equal to T .

Theorem 6.2. Suppose C ∈ CLFexp(ε) and that C is proper. Then there exists [E]α ∈
LE/∼α such that

Θε [E]α = C.

R. L. Crole 32

Proof. We omit the proof, which is similar to the proof given for Theorem 6.5

below.

6.2. Describing Hybrid abstraction expressions using LE

Proposition 6.3. For all n � 0 and lists L, there is a unique function with the following

source and target

abst n : CLFexp⇒exp(Γ
L
exp) → �

satisfying the following recursion equations:

abst n (Λ vk.CON ν) = T

abst n (Λ vk. vk) = T

abst n (Λ vk. vk′) = F

abst n (Λ vk.VAR i) = T

abst n (Λ vk.BND j) = n < j

abst n (Λ vk. C1 $$ C2) = (abst n (Λ vk. C1)) ∧ (abst n (Λ vk. C2))

abst n (Λ vk.ABS C) = abst (n + 1) (Λ vk. C).

Proof. We omit the proof, which is very similar to the proof of Proposition 3.2.

We say that an element C ∈ CLFexp⇒exp(Γ
L
exp) is an abstraction if abst 0 C is equal to

T .

Lemma 6.4. Given any canonical expression C ∈ CLFexp(vi :: exp) and n � 0 for which

abst n (Λ vi. C) = T ,

we have

inst n vi (hdb n vi C) = C.

Proof. We prove the lemma by induction over the derivations of canonical forms:

— VAR:

By the assumption, C is a variable, and only C = vi ensures that we have

abst n (Λ vi. C) = T .

Hence

inst n vi (hdb n vi vi) = inst n vi (bnd(n)) (∗)

= elt (n − n) vi

= elt 0 vi

= v

with (∗) holding since n � n and n − n = 0 < |vi| = 1.

The representational adequacy of Hybrid 33

— CST:

The cases where κ is CON or VAR are trivial. The case $$ is also immediate by

induction. When κ is BND, we have abst n (Λ vi.BND j) = n < j, and then

inst n vi (hdb n vi (BND j)) = inst n vi (bnd(j))

= BND j.

Finally, when κ is ABS, we have abst n (Λ vi.ABS C) = abst (n + 1) C , and then

inst n vi (hdb n vi (ABS C)) = inst n vi (abs(hdb (n + 1) vi C))

= ABS (inst (n + 1) vi (hdb (n + 1) vi C))

= ABS C

with the final equation valid by induction.

Theorem 6.5. Suppose C ∈ CLFexp⇒exp(ε) and that C is an abstraction. Then there exists

[λ vi. E]α ∈ LE/∼α such that

Θε [λ vi. E]α = LAM vi. C vi.

Proof. We define

E
def
= (|hdb 0 vi (C vi)|)vi .

From Proposition C.4 it follows that

[[E]]vi = hdb 0 vi (C vi).

Then we have

Θε [λ vi. E]α = ((inst 0 ε) ◦ ι ◦ θε)[λ vi. E]α (6)

= inst 0 ε [[λ vi. E]]ε (7)

= inst 0 ε abs(([[E]]ε)) (8)

= ABS (inst 1 ε [[E]]ε) (9)

= ABS (lbnd 0 (Λ vi. inst 0 vi [[E]]v)) (10)

= ABS (lbnd 0 Λ vi. inst 0 v (hdb 0 v (C vi))) (11)

= ABS (lbnd 0 Λ vi. C vi) (12)

def
= LAM vi. C vi (13)

where: Equation 6 follows from Proposition 5.6; Equation 7 follows from the definition

of θL in Section 5.3; Equation 8 follows by calculating with θL; Equation 9 follows from

Lemma 5.3; Equation 10 follows from Lemma 5.4; and Equation 12 is obtained by appeal

to Lemma 6.4.

R. L. Crole 34

7. Related work

7.1. Hybrid systems

In this section we review some of the work that has been done on developing systems for

representing and reasoning about syntax with variable binding.

Our original work demonstrated the utility of the Hybrid approach. Simple case studies

appeared in Ambler et al. (2002b), and the (somewhat notorious) Howe’s method was

tackled in Ambler et al. (2002a). Comparisons of the Hybrid approach with other systems

can be found in Momigliano et al. (2001) and Felty and Pientka (2010).

In such case studies one needs to know that the translation of an object logic into the

logic used for reasoning (that is, the meta logic, which in our case studies is Hybrid itself)

is adequate. One reason for doing this is that it ensures (or at least provides evidence)

that results proved about the representations of the object logic in the meta logic actually

do hold for the object logic itself. From this point of view, one might regard the result of

this paper as a kind of ‘generic’ adequacy. It is for future work to investigate if this can

be made technically precise and is indeed of practical use – see Aydemir et al. (2008) for

background discussions about adequacy.

For work by others that is directly related to ours, note that Venanzio Capretta and

Amy Felty have recently implemented a Hybrid system in Coq (Capretta and Felty 2007).

Although the approach is slightly different, their work was inspired by the techniques

presented in Ambler et al. (2002b) – see also Section 7.4.

Hybrid systems have also been formulated and implemented with respect to two-level

logic approaches to specification and reasoning (Momigliano and Ambler 2003; Felty

and Momigliano 2010). Typically, there is a level defined by a specification logic for

encoding structural semantics. And then another level is provided for the development of

proofs of properties about specifications; such proofs may involve (co)induction but the

additional level avoids the usual problems met when trying to combine inductive proofs

and hypothetical judgements.

In each of these papers there are slight technical variations in the approaches towards

hybrid syntax. For example, in Coq, the lbnd function is defined using the description

axiom from the classical libraries, whereas Isabelle/HOL Hybrid uses the description

operator. However, at heart, one finds that such syntax is formulated using the key

notions we have presented (mathematically) in this paper. It remains for future work to

present a summary of the methodologies developed by other authors, and to prove the

conjecture that the adequacy proofs developed here can be easily translated to these other

scenarios, but it seems likely that this is the case.

7.2. Nameless binders

The notion of nameless binders was introduced in de Bruijn (1972). One finds syntax such

as λ.(λ.1)0 in which binding structure is specified by binding indices. Free variables may be

named, for example, as v, or realised as indices – the locally nameless and pure approaches

described elsewhere in this paper. See Hindley and Seldin (1988) for a textbook account

The representational adequacy of Hybrid 35

of nameless systems; a comparison of nameless and named binding systems can be found

in Berghofer and Urban (2007).

Shankar investigated bijections between pure de Bruijn expressions and λ-expressions

in Shankar (1988), studying a variety of meta-theoretic properties. It seems that this

paper is probably the closest work to ours in the literature from the point of detailing a

bijection between de Bruijn and λ-expressions and some of the technical details are rather

similar to ours. Shankar does not need to identify proper expressions, an advantage

of pure de Bruijn, but does have to work with extremely complicated definitions of

substitution.

Gordon (1994) proved that there is a bijection between locally nameless de Bruijn

expressions (as used in this paper) and a formulation of λ-expressions (called META) that

is very close to that found in Hybrid. If one examines Gordon’s work in detail, one

could consider viewing META expressions as ordinary λ-expressions, but only in as much

as one might do so with the named binding syntax in Hybrid. Gordon does not formalise

α-equivalence classes of syntax trees, as we do in our paper, and he does not work with

standard primitive recursive substitution.

Norrish and Vestergaard (2007) also undertakes such a proof, but with yet another

variation of de Bruijn expressions, although closely related to pure de Bruijn – they

comment that ‘The result most similar to that in this [Norrish and Vestergaard 2007]

paper is Shankars . . . [Shankar 1988]’. Norrish and Vestergaard provide a very thorough

survey indeed of the work undertaken to formalise such bijections, and their paper is a

great place to learn the state-of-the-art.

Interestingly, recent work by Aydemir, Charguéraud, Pierce, Pollack and Weirich

(Aydemir et al. 2008) has led to a novel logical framework that combines such a locally

nameless representation of terms with cofinite quantification of free variable names in

inductive definitions of relations on terms. This deals with the other side of the same

coin: the problem of the renaming of free names in proof derivations. It seems they are

able to obtain structural induction principles using cofinite quantification that are strong

enough for meta-theoretic reasoning.

In our paper, only limited forms of (simple) substitution of de Bruijn expressions

are required. One may wish to deal with substitutions that realise, for example, β-

reductions. For functions that encode such substitutions, see, for example, the excellent

book Paulson (1997).

7.3. Named binders

Machines are quite good at manipulating binding indices, but humans are not. It is

much easier for most users to have an explicit link between a binding λ and a bound

variable, and, fundamentally, this can be encoded as a pair (v, E) where the named

variable v would inhabit the binding λ node in a typical abstract syntax tree. This

introduces the fundamental complication of α-equivalence. Traditional mechanisations

worked with raw abstract syntax trees but had to ensure that α-equivalence is an

invariant (Ford and Mason 2001; Melham 1994; Vestergaard and Brotherson 2001).

These tools provide considerable support for induction and recursion, but dealing with

R. L. Crole 36

α-equivalence is a considerable burden. As we discussed earlier, Gordon defines syntax

with name binding in terms of an underlying type of de Bruijn λ-expression, which

yields an automated system for α-conversion (Gordon 1994). The work presented in the

current paper provides a similar working environment, but deals with named binders in

a more sophisticated and convenient way, with the convenience of making direct use

of the binding system of an implemented meta-logic (here, Isabelle/HOL). For other

issues concerning renaming arising in proofs, see McKinna and Pollack (1999), and

for a short comparison of definitions of α-equivalence using named binders, see Crole

(2010).

All of these approaches deal with α-conversion that is overlaid on expressions of

inductive datatypes whose elements are fundamentally raw syntax trees. A conceptually

different approach is to work in a world where α-convertability is a native property, and

then to construct datatypes. Such a novel approach was pioneered by Gabbay and Pitts

(Gabbay and Pitts 1999). They introduced a non-classical set-theory with an internal

notion of permutation of atoms. Permutation is then used to provide a form of name

swapping; elements can be identified up to swapped names, which provides an in-built

form of α-equivalence. Such a set-theory yields a natural notion of structural induction and

recursion over α-equivalence classes of expressions, but it is incompatible with the axiom of

choice. For recent developments, see Pitts (2006). These basic ideas were developed into a

first-order axiomatic presentation formalising a primitive notion of swapping and freshness

of names from which binding can be derived (Pitts 2001; Pitts 2003). An axiomatic

approach closer to the spirit of this paper can be found in Gordon and Melham (1996).

For the use of Isabelle in implementing nominal techniques, see Urban and Tasson (2005)

and Urban (2008). The latter paper describes a formalisation of the λ-calculus using

nominal techniques. Central to the formalisation is an inductive set that is bijective with

α-equivalence classes of λ-expressions. Further work has studied unification within the

nominal framework (Urban et al. 2004). One aim of this work is to develop a framework

for meta-programming applications, especially for developing operational semantics (see

also Miller (2006)). As such, an ML-like programming language, FreshML, has been coded

(Shinwell et al. 2003; Shinwell and Pitts 2005). More recently, a metalanguage targeted at

operational semantics has been developed (Lakin and Pitts 2007). A number of people are

now working on nominal logic (Pitts 2003), and, for example, concepts from this system

have been considerably developed in Clouston and Pitts (2007) and Clouston (2010).

Cheney has developed a simple type theory for nominal logic (Cheney 2009) and has

proved results such as type soundness and normalisation. Formulations of LF style

frameworks in a nominal setting appear in Berghofer et al. (2008) with updates in

Berghofer et al. (2010).

Capture-avoiding substitution is central to our work, and appears, for example, in spe-

cifications of logics and type theories. Murdoch Gabbay and Aad Mathijssen axiomatise

capture-avoiding substitution using Nominal Algebra in Gabbay and Mathijssen (2008).

More recently, in Gabbay and Mathijssen (2010), αβ-equivalence has been axiomatised in

Nominal Algebra and proved sound and complete. This provides evidence that Nominal

Algebra, in particular, is a good syntax in which to express axioms for names and

binding.

The representational adequacy of Hybrid 37

7.4. Functional abstraction binders

In this setting, binding is encapsulated through either:

(1) functions from names to expressions; or

(2) functions from expressions to expressions.

For a general survey of such approaches, see Momigliano et al. (2001). We have already

mentioned that Venanzio Capretta and Amy Felty have implemented a Hybrid system in

Coq (Capretta and Felty 2007).

Further material on HOAS in type theory can be found in Capretta and Felty (2009),

which contains generalisations both of our own work on Hybrid and of that in Capretta

and Felty (2007). Roughly speaking, Capretta and Felty (2009) provides a language of

universal algebra with bindings (and higher order signatures) that has an underlying de

Bruijn syntax. It has interesting connections with many other current approaches to this

general area of research.

Approach (1) first appeared in Despeyroux et al. (1995). It was developed to deal with

the issues arising from exotic expressions created when realising binders: if binders

are realised as functions on inductive datatypes, there will exist expressions whose

type matches the datatype but are not equal to the expressions that are supposed to

arise from the type. (Of course, in Hybrid, non-exotic terms are isolated through the

predicates of properness and abstraction.) This kind of approach to binding is logically

axiomatised in Honsell et al. (2001a) on the Theory of Contexts, which defines a higher-

order logic inconsistent with unique choice, but extended with axioms that capture

properties of freshness. Higher-order induction and recursion on expressions are assumed.

An application of this approach to the π-calculus appears in Honsell et al. (2001b).

For another case-study, see Miculan (2001), where the axioms seem less successful,

since, although coinduction is available, substitution must be coded explicitly. A possible

disadvantage of this approach is the complexity of the axiom system; indeed, establishing

consistency is a non-trivial task. For deeper connections between the nominal logic

approach of Pitts and the Theory of Contexts, see Honsell et al. (2005).

For approach (2), see Pfenning and Elliott (1988) and Harper et al. (1993). In such a

setting there are two ways to integrate HOAS and induction: one where they coexist in

the same language and the other where inductive reasoning is conducted at an additional

meta-level. In the first of these, a key problem is how to formulate (primitive) recursive

definitions on functions of higher type while preserving adequacy of representations. This

has been realised for the simply-typed case in Despeyroux et al. (1997), and more recently

for the dependently-typed case in Despeyroux and Leleu (2000). The idea is to separate at

the type-theoretic level, using an S4 modal operator, the primitive recursive space (which

encompasses functions defined through case analysis and iteration) from the parametric

function space (whose members are those convertible to expressions built only using the

constructors). In the Twelf project (Pfenning and Schürmann 1999; Felty 2002a) inductive

reasoning is conducted at an additional meta-level in a fully automated way. Using the

meta-logic, one can express and inductively prove meta-logical properties of an object

logic. The encoding is adequate, so the proof of the existence of the appropriate meta-level

object(s) guarantees the proof of the corresponding object-level property.

R. L. Crole 38

Felty and Momigliano have undertaken considerable work on the two-level reasoning

approach (Momigliano et al. 2009; Felty and Momigliano 2009; Felty 2002b; Felty and

Momigliano 2010) that is also seen in systems such as Abella and Twelf. Properties such

as type soundness for a simple pure functional language have been proved using an

intuitionistic specification logic. More advanced work has considered a similar result for

a continuation style presentation of the operational semantics, but this time using an

ordered linear logic for the specification layer. This is particularly pleasing as it shows

the possibility of incorporating new specification logics, while also dealing with a fairly

complex example.

Related to this, McDowell and Miller introduced a meta-meta logic, FOλ∆IN , that is

based on intuitionistic logic augmented with definitional reflection (Hallnas 1991) and

induction on natural numbers (McDowell and Miller 1997). Other inductive principles

are derived through the use of appropriate measures. At the meta-meta level, they

reasoned about object-level judgements formulated in second-order logic. They proved

the consistency of the method by showing that FOλ∆IN enjoys cut-elimination (McDow-

ell 1997). Note that the FOλ∆IN system of McDowell and Miller (2002) is interactive.

The latest developments of these kinds of ideas appear in the Abella system documented

in Gacek (2008). Abella is an interactive system for reasoning about object languages

(Gacek 2008; Gacek et al. 2008) and has a two-level structure. Specifications are made

in the logic of second-order hereditary Harrop formulas and the logic is executable. The

reasoning logic of Abella is able to encode the semantics of the specification logic as a

definition, thereby enabling reasoning over specifications.

7.5. Models of binders

Although not directly related to the work in this paper, we should note that a considerable

amount of work has been done on the use of presheaf categories to model variable binding.

The basic ideas appear in Fiore et al. (1999) and Hofmann (1999), and Gabbay and Pitts

also develop presheaf models in Gabbay and Pitts (2002). Roughly speaking, the idea

is that for each n ∈ � there is a set of expressions with n free variables, yielding a

contravariant functor from (�,⊆) to Set in which injections m ⊆ n are mapped to

binding functions that map expressions with n free variables to expressions with m free

variables. Ambler et al. (2004) gives an interesting example related to the Hybrid system.

8. Conclusions

We have shown that the core of the Hybrid system is adequate for the λ-calculus. In

particular, binding is realised through a form of functional abstraction, so we have an

adequate formulation of HOAS. We have also stated some simple representation results

that establish direct links between Hybrid predicates and λ-expressions. Further work

could involve the investigation of the notion of n-ary abstraction and associated higher

order induction principles.

The representational adequacy of Hybrid 39

Hybrid presents users with a variety of forms of binding constructs, and the internal

operation of certain key functions can be confusing to beginners. We hope that this

paper achieves its intended purpose of outlining the roles of these key functions, and

providing informative details about their operation through the various formal results

presented here. Hopefully, one can concentrate on the key mathematical details without

being burdened by the full implementation of Hybrid. Of course, it is only fair to say

that any user will need to understand how to apply these functions in practice, and

this will involve skills and knowledge over and above what we have presented in this

paper.

Appendix A. Induction and recursion

Induction and recursion play a central role in this paper, so in this appendix we give a

brief outline of our assumptions in this paper in this regard (Aczel 1977; Crole 1998).

Suppose we have a universal set U. A set of (finitary) rules R ⊆ P(U) ×U is a collection

of pairs (A, c) where A is a finite subset of U. If A is empty, we call c a base element. A

set I is inductively defined by a set of rules R if

I = µ(X
G�→ {e ∈ U | ∃(A, e) ∈ R ∧ A ⊆ X})

where µ denotes the least fixpoint of the endofunction G on P(U). From this, one can

derive the usual principle of induction for proving ∀i ∈ I.Φ(i). One can also prove that

the elements i of I are exactly those elements of U for which there is a finite rooted tree

with root i and such that any node c with set of children A forms a rule in R. Moreover,

if Ih is the collection of roots of such trees with height at most h, one can prove that

I =
⋃

h∈� Ih.

One can show further that functions f : I → W can be defined through recursion

equations (van Dalen 1989). Suppose that for each base element c we specify f(c) = w ∈ W

and for each rule ({a1, . . . , an}, c) we specify

f(c) = E[f(a1), . . . , f(an)] ∈ W

where E is some element of W depending on the f(ai). Then, under certain conditions

(van Dalen 1989), one can prove that an f satisfying the equations f(c) = ξ exists and is

unique. Typically, the existence proof is carried out by specifying functions fh : Ih → W

such that

fh+1(c) = E[(

h⋃
r=0

fr)(a1), . . . , (

h⋃
r=0

fr)(an)]

and setting

f
def
=

⋃
h∈�

fh.

In this paper, we will prove the existence of functions using minor adaptations of this

approach.

R. L. Crole 40

Appendix B. de Bruijn expressions and λ-expressions

B.1. Syntax

We begin by inductively defining a set of (object level) de Bruijn expressions. The set of

expressions is denoted by DB, with expressions generated by

D ::= con(ν) | var(i) | bnd(j) | abs(D) | D1 $ D2

where i and j range over the natural numbers �, and ν ranges over a set of names.

One should think of a de Bruijn expression as a finite rooted syntax tree. The leaf nodes

are labelled: by constants con(ν); by var(i), which corresponds to a free variable; or by

bnd(j), which corresponds to a bound variable. We will be informal in our notation for

occurrences of subtrees. For example, we may write var(i) ∈ D, or possibly even i ∈ D.

We call the j in expressions bnd(j) a bound index. We call the i in expressions var(i) a

free index. Given a de Bruijn expression D, a bound index j that occurs in D is said to be

dangling if the number of abs nodes occurring on the path between the index j and the

root of D is j or less. Otherwise, it is not dangling. D is said to be at level l, where l � 0, if

enclosing† D inside l nodes, each labelled with abs, ensures that the resulting expression

has no dangling indices. We can define a predicate level n : DB → � for each n ∈ �

where �
def
= {T ,F} such that the Boolean level l D is true just when D is of level l by

setting

level l (con(ν)) = T

level l (var(i)) = T

level l (bnd(j)) = l > j

level l (D1 $ D2) = (level l D1) ∧ (level l D2)

level l (abs(D)) = level (l + 1)D.

It is (informally) clear that for any D, a (unique) minimum level m exists, and that D is

at level l for any l � m. We write DB(l) for the set of de Bruijn expressions at level l.

This particular form of de Bruijn expression was originally chosen for the Hybrid

system since it offers a good mixture of desirable features. Although we choose to specify

free variables using natural numbers rather than strings, results and proofs in Hybrid

may be written down in a way that is similar to what one would see in conventional

syntax with names for free and bound variables (though such issues are not of direct

concern in this paper).

Note that there are other presentations of de Bruijn terms. Pure de Bruijn has been

studied extensively in Huet (1994), Nipkow (2001) and Shankar (1988). In this notation,

indices solely of the form var(i) are used to stand for both free and bound variables.

A problem with this approach is that any particular pure de Bruijn expression could

represent a family of λ-expressions. The pure de Bruijn expression abs(abs(V3 $ V0))

† D enclosed by two such nodes is abs(abs(D)).

The representational adequacy of Hybrid 41

could be a representation of any λ-expression of the form λ vi. λ vk. vj vk where i
= j.

The point is that the value j for the free variable is obviously not determined uniquely

from informal working. Thus not only must any machine formalisation deal with tracking

bound indices, but there must also be a fixed enumeration of free variables that are used

to specify the actual values of indices like j. One is thus led to complex operations on

indices that appear in both statements and proofs. In particular, substitution is a painful

beast. Hybrid’s locally nameless de Bruijn expressions go some way to alleviating these

problems.

However, in order to consider a formal correspondence with λ-expressions, we have

to introduce a notion of proper de Bruijn expressions (this is not required when using

pure de Bruijn). Recall that DB(l) is the set of de Bruijn expressions at level l. It follows

that

PDB = DB(0) ⊆ DB(1) ⊆ . . . ⊆ DB(l) ⊆ . . . ,

and it is easy to see that DB =
⋃

l<ω DB(l) by considering minimum levels. Let PDB def
=

DB(0) be the set of proper de Bruijn expressions. A proper expression is one that has

no dangling indices (this follows from the formal definition). Such a proper expression

corresponds to a λ-expression. We will formulate the correspondence in detail in this

paper, since it forms a key part of our adequacy proof.

We also set up a notation for the traditional λ-calculus. The expressions will consist of

constants, variables, applications and abstractions. More precisely, we have a countable

set of variables, with a typical variable denoted by vk where k � 0, that is k ∈ �. The

expressions are inductively defined by the grammar

E ::= ν | vk | λ vk. E | E E.

We adopt the usual notions of free and bound variables, and α-equivalence. For complete-

ness, we will now outline our notation. If vk occurs in E, we write vk ∈ E (we omit the

usual definition of occurs in). We write fv (E) for the set of variables occurring freely in

E. In abstractions of the form λ vk. E, we refer to the occurrence of vk immediately after

the binder λ as a binding occurrence, and any free occurrences of vk in E are bound in

λ vk. E. We sometimes call E the scope of the abstraction, and, in general, any variable vk′

occurring in any E ′ is bound if it occurs in a sub-expression either as a binding occurrence,

or within the scope of a binding occurrence of vk′ . Given expressions E and E ′, and a

variable vk , we write E[E ′/vk] for a unique expression, which, informally, is E with free

occurrences of vk replaced by E ′, with renaming to avoid capture. Our definition appears

in Figure 7, and ensures that the action

(E,E ′, vk) �→ E[E ′/vk]

really is a function. We say that vw is fresh for E if the variable has no occurrences in the

expression. Having defined substitution, we can now define α-equivalence. We write LE
for the set of all expressions. If expressions E and E ′ are α-equivalent, we write E ∼α E

′.

In this paper, α-equivalence is an inductively defined subset of LE × LE generated by

R. L. Crole 42

formal axioms and rules. There is a single axiom of the form

λ vk. E ∼α λ vk′ . E[vk′/vk]

where k
= k′ and vk′ is any variable for which vk′
∈ fv (E). There are also structural

congruence rules for application and abstraction, plus the usual rules for equivalence

relations. We write [E]α for the α-equivalence class of E, and LE/∼α for the set of

α-equivalence classes of expressions. For the purposes of this paper, we will also need a

notion of substitution on LE/∼α, analogous to Proposition 1.1.

Proposition B.1. Let Var be the set of variables. There is a well-defined function

LE/∼α × LE/∼α × Var → LE/∼α ([E]α, [E
′]α, vi) �→ [E[E ′/vi]]α.

Proof. This is an immediate consequence of Lemma B.5. Note that the lemma makes

use of simultaneous substitutions. We need to define such a notion in order to complete the

proofs presented in the appendix; proofs by induction over the structure of λ-expressions

involve α-renaming, and simultaneous substitution is required for the provision of suitably

strong inductive hypotheses.

B.2. Substitution for λ-expressions

We noted in the proof of Proposition B.1 that a notion of simultaneous substitution is

required in order to carry out proofs of its subsidiary lemmas. Furthermore, because the

function [[−]]L involves arbitrary lists L, we require a definition that mirrors this so that

it interacts well with the full machinery of the paper, and other lemmas in this appendix.

Let L and LLE be lists of equal length, where L is a list of variables vk as usual, and

LLE is a list of LE expressions. Suppose E ′ ∈ LLE and vk ∈ L both occur at some

position p. Then we shall say the expression and variable are mates, and say that one is

the mate of the other. If vk ∈ L, we refer to the first occurrence as active, written vk↑.

Any other occurrences are referred to as inactive, written vk↓. We write E[LLE/L] for,

informally, the simultaneous capture avoiding substitution of each expression E ′ ∈ LLE

for free occurrences in E of its mate in L. The definition of the simpler E[E ′/vk] is then

immediate. Note that some free variables in E may have multiple occurrences in L; if this

happens, the expression in LLE that is the mate of the active occurrence is the one that

is substituted – see the formal definition in Figure 7. For example,

(v1 v2)[E6, E5, E8/v1, v2, v1] = E6 E5.

We want to define such substitutions to be functions on syntax. This will give us a

clean and direct definition of α-equivalence. However, we have to take great care with the

definition of capture avoiding substitution on abstractions where a renaming takes place:

in particular, with the choice of the renaming variable. The definition is given in Figure 7.

One may wonder if our proofs could be simplified by defining substitution on abstractions

so that renaming always takes place; this would appear to eliminate the cases in Figure 7.

However, although this reduces case analyses, the extra burden of always renaming is

The representational adequacy of Hybrid 43

Let Var be the set of variables. There is a well-defined function

LE × LE × Var → LE (E,E ′, vi) �→ E[E ′/vi]

ν[LLE/L]
def
= ν

vk[L
LE/L]

def
=

{
elt (pos vk L)LLE if vk ∈ L

vk if vk
∈ L

(E1 E2)[L
LE/L]

def
= (E1[L

LE/L]) (E2[L
LE/L])

(λ vk. E)[LLE/L]
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ vk. E[LLE/L]

if (∀X ∈ L)

⎛
⎜⎝ X↓ ∨ X
∈ fv (E)

∨
(vk
∈ fv (elt (pos X L)LLE))

⎞
⎟⎠

λ vw. E[vw/vk][LLE/L]

if (∃X ∈ L)

⎛
⎜⎝ X↑ ∧ X ∈ fv (E)

∧
vk ∈ fv (elt (pos X L)LLE)

⎞
⎟⎠

where

— w is chosen to be the maximum of the indices occurring in E, LLE and L, plus 1 (note that as

vk ∈ fv (elt (pos X L)LLE) holds in the clause involving w, we have w > k); and

— given lists LLE and L of equal length, LLE and L are the same lists in which any occurrences

of vk in L together with their mates in LLE are removed.

Fig. 7. Simultaneous substitution

quite significant, and can really add clutter to the many substitutions under abstractions

that one might otherwise perform without such renaming.

Lemma B.2. Suppose E ∼α E ′ for any expressions E and E ′. Then for any lists L and

LLE,

E[LLE/L] ∼α E
′[LLE/L].

Proof. The proof is by induction over ∼α. However, the full proof is surprisingly tricky,

and many authors gloss over the details, and even suggest that the induction is routine.

The proof can only be regarded as routine once a number of other small results have

been proved, each formalising a fact about the properties of simultaneous substitution.

Moreover, the ‘proofs’ of each of the results referred to requires the ‘other’ results within

its own proof. The upshot is that these results must all be proved by induction at the

same time, with the proof of each result calling the inductive hypotheses of the others.

We collect these results together in Lemmas B.3 and B.4.

R. L. Crole 44

Lemma B.3. In this lemma, we will regard lists of variable L as lists of (simple) expressions

LLE. Suppose

Φ(E)
def
=(∀L1, L

′
1, L2, L

′
2)(L1 ∩ L2 = � ∧ L1 ∩ L′

2 = � =⇒
E[L′

1/L1][L
′
2/L2] ∼α E[L′

2/L2][L
′
1[L

′
2/L2]/L1])

Ψ(E)
def
=(∀L,L′,M,M ′)(∀vk)((∀X ∈ L(X↓ ∨ X
∈ fvE ∨ mate(X)
= vk)) =⇒

E[L′[M ′/M]/L] ∼α E[L′[M ′/M]/L])

Θ(E)
def
=(∀L,L′)(∀vk)(vk
∈ fvE =⇒ E[L′/L] ∼α E[L′/L]).

Then for all E ∈ LE, we have Φ(E) ∧ Ψ(E) ∧ Θ(E).

Proof. The proof is a very tedious strong induction over the size of expressions and

is omitted. In verifying, for example, an inductive step for Φ(E), one typically not only

requires inductive hypotheses Φ(E ′) but also Ψ(E ′) and Θ(E ′). The three conjuncts cannot

be proved independently.

Lemma B.4. For any E ∈ LE, any L1 and LLE
1 of equal length, and L2 and LLE

2 of equal

length, such that no free variable in LLE
1 occurs in L2, we have

E[LLE
1 /L1][L

LE
2 /L2] ∼α E[LLE

1 , LLE
2 /L1, L2].

Proof. The proof is by induction over the size of E. We omit the proof, but observe

that Lemma B.3 is crucial.

Lemma B.5. The simultaneous substitution function for LE (Figure 7) can be extended

to LE/∼α. More precisely, there is a well-defined function specified by

([E]α, [L
LE]α, L) �→ [E[LLE/L]]α

where [LLE]α means a list of α-equivalence classes of expressions.

Proof. The idea is to combine Lemma B.2 with the fact (provable by induction) that

if LLE
1 and LLE

2 are two lists of equal length and consisting of pairwise α-equivalent

expressions, then the function −[LLE
1 /+] equals −[LLE

2 /+].

Appendix C. Proofs of propositions for de Bruijn adequacy

C.1. The propositions

This section contains the proofs of the propositions outlined in Section 4.2. The proofs

themselves refer to subsidiary lemmas that are stated and proved in Section C.2.

The representational adequacy of Hybrid 45

Proposition C.1 (≡ Proposition 4.2 – defining [[−]]L). For any L, there is a function

[[−]]L : LE → DB(|L|)

satisfying the following recursion equations (in particular, [[−]]ε : LE → PDB):

[[ν]]L = con(ν)

[[vi]]L =

{
bnd(pos vi L) if vi ∈ L

var(i) if vi
∈ L

(where pos vi L is the position

of the variable vi in L)

[[E1 E2]]L = [[E1]]L $ [[E2]]L

[[λ vi. E]]L = abs([[E]]vi,L).

Proof. We first prove by induction on E that

(∀E ∈ LE)(∀L)([[E]]L ∈ DB)

(which is virtually immediate). This ensures that uses of level type check, so we can then

prove

(∀E ∈ LE)(∀L)(level |L| [[E]]L).

We give details of the proof (within each case L is an arbitrary list):

— The details for constants and applications are easy.

— vi:

If vi
∈ L, which includes the case when L is empty,

level |L| [[vi]]L = level |L| var(i) = T .

If vi ∈ L,

level |L| [[vi]]L = level |L| (pos vi L)

= (pos vi L)

< |L|
= T .

— λ vi. E:

We have

level |L| [[λ vi. E]]L = level |L| abs([[E]]vi,L)

= level (|L| + 1) [[E]]vi,L

= T ,

with the final equality holding by induction.

R. L. Crole 46

Proposition C.2 (≡ Proposition 4.3 – defining (|−|)L). For any ordered L, there is a function

(|−|)L : DB(|L|) → LE

satisfying the following recursion equations (in particular, (|−|)ε : PDB → LE):

(|con(ν)|)L = ν

(|var(i)|)L = vi

(|bnd(j)|)L = elt j L (where elt j L is the jth element of L)

(|D1 $ D2|)L = (|D1|)L (|D2|)L
(|abs(D)|)L = λ vM+1. (|D|)vM+1 ,L

where in the last equation M = Max(D;L) with

Max(D;L)
def
= Max {i | var(i) ∈ D}

⋃
{j | head(L) = vj}︸ ︷︷ ︸

� if L empty

.

We take Max �
def
= 0. Informally, Max(D;L) denotes the maximum of the free indices

occurring in D and the indices of L.

Proof. We prove by induction on D that

(∀D ∈ DB)(∀ ordered L)(level |L|D =⇒ (|D|)L ∈ LE):

— The details for constants, free indices and applications are easy and omitted.

— bnd(j):

If level |L| bnd(j), then 0 � j < |L| so L
= ε. So (|bnd(j)|)L = elt j L is defined and

hence exists in LE.

— abs(D):

Note that

level |L| abs(D) = level (|L| + 1)D.

Hence, by induction, for any ordered list L′, we have (|D|)L′ ∈ LE if |L′| = |L| + 1.

If M = Max(D;L), then vM+1, L is ordered. Hence (|D|)vM+1 ,L
is in LE, and thus so is

λ vM+1. (|D|)vM+1 ,L
.

Note that the choice of M in λ vM+1. (|D|)vM+1 ,L
ensures that vM+1, L is ordered, so the

recursive definition makes sense, and, moreover, the binding variable is chosen so that

when free indices var(i) in D are mapped recursively to λ-calculus variables vi in the scope

of the binding variable vM+1, they will not be (accidently) captured, as M + 1 > i. The

following example can be checked as an exercise:

(|abs(abs(bnd(0)) $ abs(bnd(3)) $ var(8))|)v7 ,v6 = λ v9. (λ v10. v10) (λ v10. v6) v8.

Proposition C.3 ([[−]]L preserves α-equivalence). For any L, if E ∼α E
′, then [[E]]L = [[E ′]]L.

In particular, [[E]]ε = [[E ′]]ε.

The representational adequacy of Hybrid 47

Proof. We prove

(∀(E,E ′) ∈ ∼α)(∀L)([[E]]L = [[E ′]]L)

by induction on the axioms and rules defining alpha equivalence. The only difficult part

concerns the axiom

λ vk. E ∼α λ vk′ . E[vk′/vk]

in which vk′ is chosen so that it is not free in E. We have

[[λ vk. E]]L
def
= abs([[E]]vk ,L)

= abs([[E[vk′/vk]]]vk′ ,L)

def
= [[λ vk. E[vk′/vk]]]L.

The equality follows from Lemma C.11, with L′ = ε so that (trivially) vk and vk′ are not

in L′.

Proposition C.4 (the identity [[−]]L ◦ (|−|)L). Let D ∈ DB and L be any ordered list such

that for all vk ∈ L, if any, k � Max(D; ε) + 1. Then

level |L|D =⇒ [[(|D|)L]]L = D.

Proof. The proof is a straightforward induction over D ∈ DB (constants are trivial, but

note that the other two base cases make crucial use of the assumptions in the proposition):

— Constants are trivial.

— var(i):

We have [[(|var(i)|)L]]L = [[vi]]L = var(i) for all L, since if vi ∈ L then

i � Max(var(i); ε) + 1 = i + 1,

which is a contradiction.

— bnd(j):

We have

[[(|bnd(j)|)L]]L = bnd(pos (elt j L)L) = bnd(j)

because (crucially) L is ordered.

— The details for the two inductive cases, abstraction and application, are easy and

omitted.

Proposition C.5 (the identity (|−|)L ◦ [[−]]L). Let E ∈ LE, and let L and L′ be lists, with

L′ ordered, such that |L| = |L′|. Then

(|[[E]]L|)L′ ∼α E[L′/L].

Proof. We apply induction over LE:

— As ever, constants and applications are trivial.

R. L. Crole 48

— vi:

If vi
∈ L, we have

(|[[vi]]L|)L′
def
= (|var(i)|)L′

def
= vi

= vi[L
′/L].

If vi ∈ L, then

(|[[vi]]L|)L′
def
= (|pos vi L|)L′

def
= elt (pos vi L)L′

def
= vi[L

′/L].

— λ vi. E:

We have

(|[[λ vi. E]]L|)L′
def
= (|abs([[E]]vi,L)|)L′ (14)

∼α λ vw. (|[[E]]vi,L|)vw,L′ (15)

∼α λ vw. E[vw, L
′/vi, L] (16)

∼α λ vw. E[vw/vi][L
′/L] (17)

= (λ vw. E[vw/vi])[L
′/L] (18)

∼α (λ vi. E)[L′/L] (19)

where: Equivalence (15) holds by appeal to Corollary C.9, where w is also chosen

large enough to be fresh for E, L, L′ and vi; Equivalence (16) holds by induction,

noting that vw, L
′ is indeed ordered; Equivalence (17) holds by appeal to Lemma B.4;

Equation (18) follows from the definition of substitution – note that the choice of w

ensures that there is no deletion of mate pairs; and the final step (19) follows from

the axiom of α-equivalence and Proposition B.2.

We can now prove that the translation functions [[−]]L are compositional homomorph-

isms.

Proposition C.6 ([[−]]L compositional homomorphism). Given any expressions E,E ′ ∈ LE,

list L and variable vk , if vk
∈ L and fv (E ′) ∩ L = �, then

[[E[E ′/vk]]]L = [[E]]L[[[E ′]]L/var(k)]. (∗)

Proof. The substitution functions exist from Propositions 1.1 and B.1. The proof

proceeds by induction over the size of the expression E. We write size(E) for the size of

E where constants and variables have size 1, the size of an application is the sum of the

sizes of the two subterms, and the size of an abstraction is the size of the body plus 1.

We write Φ(E) for (∗) when E ′, L and k are universally quantified and satisfy the given

The representational adequacy of Hybrid 49

constraints. We write Ψ(n) for

(∀E)(size(E) = n =⇒ Φ(E))

and prove ∀n.Ψ(n) by induction on n. We write LHS and RHS for the appropriate

instance of (∗) in the inductive steps below.

— Ψ(1):

If E is a constant, the result is immediate. Otherwise, we choose E to be vi, of size 1,

and prove Φ(vi).

– Case i = k:

LHS = [[E ′]]L

= var(i)[[[E ′]]L/var(k)]

= [[vi]]L[[[E ′]]L/var(k)]

= RHS

with the third equality following because vi = vk
∈ L.

– Case i
= k:

LHS = [[vi]]L

= [[vi]]L[[[E ′]]L/var(k)]

= RHS

where if vi ∈ L, the second equality is immediate, otherwise, the equality follows

because i
= k.

— (∀n)[(∀m < n)(Ψ(m)) =⇒ Ψ(n)] where n � 2:

Consider the case when the expression is λ vi. E and size(λ vi. E) = n. We prove

Φ(λ vi. E).

– Case i = k:

LHS = [[λ vi. E]]L

= abs([[E]]vi,L)

= abs([[E]]vi,L[[[E ′]]L/var(k)])

= abs([[E]]vi,L)[[[E ′]]L/var(k)]

= RHS

where the third equality follows from Lemma C.12 since vk = vi ∈ vi, L, so

var(k) = var(i)
∈ [[E]]vi,L.

R. L. Crole 50

– Case i
= k:

We examine sub-cases according to whether the substitution involves a name clash

or not:

• Subcase vk
∈ fv (λ vi. E) or vi
∈ fv (E ′)):

If vk
∈ fv (λ vi. E), we have

LHS = [[λ vi. E]]L

= abs([[E]]vi,L)

= abs([[E]]vi,L[[[E ′]]L/var(k)])

= abs([[E]]vi,L)[[[E ′]]L/var(k)]

= RHS

where the third equality follows from Lemma C.12 because vk
∈ fv (λ vi. E) and

i
= k imply vk
∈ fv (E).

If vi
∈ fv (E ′), we have

LHS = [[λ vi. E[E ′/vk]]]L (20)

= abs([[E[E ′/vk]]]vi,L) (21)

= abs([[E]]vi,L[[[E ′]]vi,L/var(k)]) (22)

= abs([[E]]vi,L[[[E ′]]L/var(k)]) (23)

= RHS (24)

where: Equation (22) follows by induction as size(E) = n − 1, so Φ(E) holds,

and vk
∈ vi, L and fv (E ′) ∩ (vi, L) = �; and Equation (23) follows from an

instance of Lemma C.13 in which L′ = ε and again fv (E ′) ∩ (vi, L) = �.

• Subcase vk ∈ fv (λ vi. E) and vi ∈ fv (E ′)):

LHS = [[λ vw. E[vw/vi][E
′/vk]]]L (25)

= abs([[E[vw/vi][E
′/vk]]]vw,L) (26)

= abs([[E[vw/vi]]]vw,L[[[E ′]]vw,L/var(k)]) (27)

= abs([[E]]vi,L[[[E ′]]L/var(k)]) (28)

= RHS (29)

where: Equation (27) follows by induction since

size(E[vw/vi]) = size(E) = n − 1

and w is the maximum of the indices in E, E ′ and vk , plus 1; and Equation (28)

follows from Lemmas C.11 and C.13.

— The details for applications are easy and omitted.

C.2. Lemmas for the propositions

In this section we present a series of lemmas that are required for the proofs of

the propositions in Section C.1. They are presented without detailed motivation and

The representational adequacy of Hybrid 51

explanation, since the main results can be understood conceptually without a deep

understanding of the lemmas (Lemmas C.9, C.11, C.12 and C.13 are used in the proofs of

the propositions in Section C.1; Lemma C.9 depends on Lemmas C.7 and C.8; Lemma

C.8 depends on Lemma C.7; and Lemma C.11 depends on Lemma C.10).

Throughout this section, the list L′ in any E[L′/L] will in fact be a list of variables.

Lemma C.7. Let D ∈ DB(|L|) be any expression, with L any ordered list. Suppose also

that k � Max(D;L) + 1. Then vk is not free in (|D|)L.

Proof. We prove this by induction over DB:

— Constants and applications are trivial.

— var(i):

We have (|var(i)|)L = vi. So, if k � Max(var(i);L) + 1, we have k > i and we are done.

— bnd(j):

We have (|bnd(j)|)L = elt j L. This is similar to previous case: k is strictly greater than

any index in L.

— abs(D):

We pick

k � Max(abs(D);L) + 1 = Max(D;L) + 1.

Note that

(|abs(D)|)L
def
= λ vM+1. (|D|)vM+1 ,L

where M
def
= Max(D;L). Thus

k � M + 1 = Max(D; vM+1, L).

If k = M + 1, we have vk is not free in (|abs(D)|)L, as any free occurrence will be

captured.

If k > M + 1, we have k � Max(D; vM+1, L) + 1, so, by induction, vk is not free in

(|D|)vM+1 ,L
, and we are done.

Lemma C.8. Let L′, L and L̂, L be ordered lists, with |L′| = |L̂| � 1. Let D ∈ DB(|L̂, L|).
Then

(|D|)L̂,L[L′/L̂] ∼α (|D|)L′ ,L

whenever

Min{k | ∃vk ∈ L′} � Max(D; L̂, L) + #Abs(D) + 1 (∗)

where #Abs(D) is the number of ‘abstraction’ nodes in D; and

Min{k | ∃vk ∈ L̂} � Max(D; ε) + 1. (∗∗)

Proof.

The proof is by induction over DB:

— Constants and applications are trivial.

R. L. Crole 52

— bnd(j):

We have

(|bnd(j)|)L̂,L[L′/L̂]
def
= (elt j (L̂, L))[L′/L̂]

= elt j (L′, L)

def
= (|bnd(j)|)L′ ,L

where each step follows from the definitions, and the second equality holds because

L′, L and L̂, L are ordered and |L̂| = |L′|.
— var(i):

We have

(|var(i)|)L̂,L[L′/L̂]
def
= vi[L

′/L̂]

= vi

def
= (|var(i)|)L′ ,L

where the second equality holds because any index in L̂ is greater than or equal to

Max(var(i); ε) + 1 = i + 1 > i

by assumption (∗∗).

— abs(D):

Suppose M
def
= Max(abs(D); L̂, L) and

Min{k | ∃vk ∈ L′} � Max(abs(D); L̂, L) + #Abs(abs(D)) + 1

= M + (#Abs(D) + 1) + 1 (i)

> M + 1 (ii)

and

Min{k | ∃vk ∈ L̂} � Max(abs(D); ε) + 1 = Max(D; ε) + 1. (iii)

Then we have

(|abs(D)|)L̂,L[L′/L̂]
def
= (λ vM+1. (|D|)vM+1 ,L̂,L

)[L′/L̂] (30)

= λ vM+1. (|D|)vM+1 ,L̂,L
[L′/L̂] (31)

∼α λ vM ′+1. (|D|)vM+1 ,L̂,L
[L′/L̂][vM ′+1/vM+1] (32)

∼α λ vM ′+1. (|D|)vM+1 ,L̂,L
[L′, vM ′+1/L̂, vM+1] (33)

= λ vM ′+1. (|D|)vM+1 ,L̂,L
[vM ′+1, L

′/vM+1, L̂] (34)

∼α λ vM ′+1. (|D|)vM′+1 ,L
′ ,L (35)

def
= (|abs(D)|)L′ ,L. (36)

From (ii), vM+1
∈ L′, so the substitution in Equation (30) does not involve renaming.

Furthermore, recall that, by definition,

M
def
= Max(abs(D); L̂, L).

The representational adequacy of Hybrid 53

Hence vM+1
∈ L̂ and thus, recalling the definition of substitution, Equation (31) holds

with L′ = L′ and L̂ = L̂.

We set M ′ def
= Max(D;L′, L), so M ′ > M + 1 by (ii). From Lemma C.7, vM ′+1 is not

free in (|D|)vM+1 ,L̂,L
provided

M ′ + 1 � Max(D; vM+1, L̂, L) + 1.

But this holds, as M ′ > M + 1, and by (iii) and list order, we have

Max(D; vM+1, L̂, L) = M + 1.

Furthermore, M ′ + 1 is strictly greater than the indices in L′ by definition, and thus

vM ′+1 is not free in (|D|)vM+1 ,L̂,L
[L′/L̂]. By the axiom for α-equivalence, Equation (32)

holds.

Again, as vM+1
∈ L′ (proved above), by Lemma B.4 we have Equation (33).

Equation (34) holds as we have vM+1
∈ L̂ (proved above).

Equation (35) holds by induction together with the congruence of abstraction, as the

conditions of the lemma both hold as follows. Note that (∗) is true because

Min{k | ∃vk ∈ vM ′+1, L
′} = Min{k | ∃vk ∈ L′}

� (M + 1) + (#Abs(D) + 1)

= Max(D; vM+1, L̂, L) + #Abs(D) + 1

where the inequality holds by (i), and the final equality follows from the arguments

above. Also, (∗∗) is true because (iii) implies

Min{k | ∃vk ∈ vM+1, L̂} = Min{k | ∃vk ∈ L̂}
� Max(D; ε) + 1.

Lemma C.9. For any ordered L and D ∈ DB, there is a sufficiently large w � 0 for which

(|abs(D)|)L ∼α λ vw. (|D|)vw,L.

Proof. Recall that (|abs(D)|)L
def
= λ vM+1. (|D|)vM+1 ,L

with M
def
= Max(D;L). In particular,

vM+1, L is ordered. It follows from Lemma C.8 that

(|D|)vM+1 ,L
[vw/vM+1] ∼α (|D|)vw,L (†)

provided (∗) and (∗∗) hold:

(∗) holds provided we choose

w � Max(D; vM+1, L) + #Abs(D) + 1;

(∗∗) holds because

Min{k | vk ∈ vM+1} = M + 1

= Max(D;L) + 1

� Max(D; ε) + 1.

R. L. Crole 54

Furthermore, vw, L is ordered. We have

λ vw. (|D|)vw,L ∼α λ vw. (|D|)vM+1 ,L
[vw/vM+1]

by applying a congruence rule to (†), and

λ vw. (|D|)vM+1 ,L
[vw/vM+1] ∼α λ vM+1. (|D|)vM+1 ,L

= (|abs(D)|)L
by Lemma C.7, noting that

w � Max(D; vM+1, L) + 1

implies

vw
∈ fv (|D|)vM+1 ,L

along with an instance of the axiom for α-equivalence.

Lemma C.10. For any E ∈ LE and lists L and L′, and any vk , if the conditions

vk
∈ fv (E) ∨ vk ∈ L′ (∗)

vk′
∈ fv (E) ∨ vk′ ∈ L′ (∗∗)

hold, then

[[E]]L′ ,vk ,L = [[E]]L′ ,vk′ ,L.

Proof. We use induction over LE:

— Constants and applications are trivial.

— vi:

We have to check that

[[vi]]L′ ,vk ,L = [[vi]]L′ ,vk′ ,L.

This requires a case analysis:

– If vi ∈ L′, we are done.

– Suppose vi
∈ L′.

Note that if vi = vk , then, by condition (∗), we must have vi
∈ vi, which gives a

contradiction, so vi
= vk .

A symmetric argument for (∗∗) shows that vi
= vk′ .

Thus either vi ∈ L and we are done, or vi is not in any of the lists and both sides

of the required equality are equal to var(i).

— λ vi. E:

We have to check that

abs([[E]]vi,L′ ,vk ,L) = abs([[E]]vi,L′ ,vk′ ,L)

under the assumptions

vk
∈ fv (λ vi. E) ∨ vk ∈ L′

vk′
∈ fv (λ vi. E) ∨ vk′ ∈ L′.

The representational adequacy of Hybrid 55

The equality will follow by induction provided both

vk
∈ fv (E) ∨ vk ∈ vi, L
′ (∗)

vk′
∈ fv (E) ∨ vk′ ∈ vi, L
′ (∗∗)

hold. In (∗), suppose vk
∈ vi, L
′. We must then have vk
∈ fv (λ vi. E) and vk
= vi, so

vk
∈ fv (E). Thus (∗) holds. The argument for (∗∗) is analogous.

Lemma C.11. Let E ∈ LE, L′ and L be any lists, and vk , vk′ be variables for which

vk′
∈ fv (E), vk
∈ L′ and vk′
∈ L′. Then we have

[[E[vk′/vk]]]L′ ,vk′ ,L = [[E]]L′ ,vk ,L. (∗)

Proof. The proof is by induction on the size of the expression E, where constants and

variables have size 1, the size of an application is the sum of the sizes of the two subterms

and the size of an abstraction is the size of the body plus 1. We write size(E) for the size

of E and Φ(E) for (∗) in which L, L′, k and k′ are universally quantified and satisfy the

given constraints. We write Ψ(n) for

(∀E)(size(E) = n =⇒ Φ(E))

and prove ∀n.Φ(n) by strong induction on n. Note (carefully!) that we have to prove Ψ(1)

explicitly – the base case for the induction. We write LHS and RHS for the left- and

right-hand sides of the equality in the lemma.

— Ψ(1):

Consider arbitrary expressions of size 1. If it is a constant, the result is immediate.

Otherwise, we have a variable, say vi. We have to prove Φ(vi). Note that vk′ must not

be free in vi, so i
= k′.

– Case i = k:

If i = k, then

LHS = [[vk′]]L′ ,vk′ ,L

= pos vk′ (L′, vk′ , L)

= pos vi (L
′, vk, L)

= [[vi]]L′ ,vk ,L

= RHS

where the positions are equal due to the constraints of the lemma on L′.

– Case i
= k:

We have to prove that

[[vi]]L′ ,vk′ ,L = [[vi]]L′ ,vk ,L.

R. L. Crole 56

If vi ∈ L′, we are done, so we suppose vi
∈ L′. Note further that k
= i
= k′. Hence

either vi ∈ L, and we are done, or vi
∈ L and

var(i)
def
= [[vi]]L′ ,vk′ ,L

= [[vi]]L′ ,vk ,L

def
= var(i).

— (∀n)((∀m < n)(Ψ(m) =⇒ Ψ(n))):

We choose arbitrary n � 2 and assume that Ψ(m) holds for all m smaller than n. We

must prove Ψ(n). So consider an arbitrary expression N of size n. We have to prove

that Φ(N) holds, assuming Φ(M) for all expressions M of size smaller than N.

In the case when N ∈ LE is of the form E1 E2, the result follows by a routine

induction argument, which we omit.

Note that for the case when N ∈ LE is of the form λ vi. E, we can assume that Φ(M)

for any M with size(M) < size(E) + 1. We have to prove that

LHS
def
= [[(λ vi. E)[vk′/vk]]]L′ ,vk′ ,L

= [[λ vi. E]]L′ ,vk ,L

def
= RHS

when

vk′
∈ fv (λ vi. E)
def
= fv (E) \ {vi},

and vk
∈ L′ and vk′
∈ L′.

We consider:

– Case i = k:

Here the variable vk is not free in λ vi. E, so

LHS = abs([[E]]vi,L′ ,vk′ ,L)

RHS = abs([[E]]vi,L′ ,vk ,L).

Equality follows from Lemma C.10 provided the assumptions of the lemma are

satisfied. Note that if i = k′, we are (trivially) done, so suppose i
= k′. Now (∗)

holds because i = k implies vk ∈ vi, L, and (∗∗) holds because vk′
∈ fv (E) \ {vi} and

i
= k′ imply vk′
∈ fv (E).

– Case i
= k:

Here the variable vk may be free in λ vi. E.

• Subcase vk
∈ fv (E) or vi
= vk′ :

This case occurs when the substitution does not involve a renaming. Note that

LHS = abs([[E[vk′/vk]]]vi,L′ ,vk′ ,L)

RHS = abs([[E]]vi,L′ ,vk ,L).

The representational adequacy of Hybrid 57

If vi
= vk′ , then vk′
∈ fv (E) follows using the same reasoning as in case i = k

above. Also, since i
= k and i
= k′, we get that LHS = RHS follows inductively

from Φ(E) because size(E) < size(E) + 1.

If vk
∈ fv (E) (and i = k′ say), then LHS = abs([[E]]vi,L′ ,vk′ ,L). Equality follows

from Lemma C.10 provided the assumptions of the lemma are satisfied: (∗)

holds because vk
∈ fv (E); and (∗∗) holds because i = k′ implies vk′ ∈ vi, L.

• Subcase vk ∈ fv (E) and vi = vk′):

Here we have

LHS = [[λ vw. E[vw/vi][vk′/vk]]]L′ ,vk′ ,L (37)

def
= abs([[E[vw/vi][vk′/vk]]]vw,L′ ,vk′ ,L) (38)

= abs([[E[vw/vi]]]vw,L′ ,vk ,L) (39)

= abs([[E]]vi,L′ ,vk ,L) (40)

def
= RHS . (41)

In Equation (37), w is the maximum of the indices in E, vk and vk′ , plus 1.

Equation (39) follows from the induction hypothesis Φ(E[vw/vi]) since:

size(E[vw/vi]) = size(E) < size(E) + 1;

neither vk nor vk′ is in vw, L
′; and vk′
∈ fv (E[vw/vi]) using the original assumption

about vk′ and the definition of w. Equation (40) follows by induction in a similar

fashion. This completes the proof.

By examining the definition of the de Bruijn expression [[E]]L, it is easy to see that

the expression can only have a ‘free variable’ subterm var(k) if vk
∈ L (for example,

[[v1 v2]]v1 ,v3 = bnd(0) $ var(2)). Since L enumerates binding variables as the function [[−]]L
descends through expressions E, we have vk
∈ L implies that vk ∈ fv (E) (consider the

contrapositive example [[λ v2. v1 v2]]ε = abs([[v2]]v1 v2
)). Hence we have the following lemma.

Lemma C.12. For any E ∈ LE, list L and variable vk , if either vk
∈ fv (E) or vk ∈ L, we

have var(k)
∈ [[E]]L.

Proof. The proof is by a simple induction over E ∈ LE.

The next lemma gives conditions enabling variables to be dropped from a list. It plays a

role when computing de Bruijn expressions from λ-expressions involving substitutions with

renaming, allowing the fresh variable to be eliminated at suitable points in calculations.

Lemma C.13. Let E ∈ LE, L and L′ be any lists and vi be a variable. Also, suppose that

for any vk ∈ fv (E), either vk ∈ L′ or vk
∈ vi, L. Then [[E]]L′ ,vi,L = [[E]]L′ ,L.

Proof. The proof is by a simple induction over E ∈ LE.

R. L. Crole 58

Acknowledgements

I would very much like to thank both Alberto Momigliano for his support during the

early stages of this work and the anonymous referees, whose detailed reports have led to

considerable improvements.

References

Aczel, P. (1977) An Introduction to Inductive Definitions. In: Handbook of Mathematical Logic.

(Latest impression, 1993.)

Ambler, S. J., Crole, R. L. and Momigliano, A. (2002a) A Hybrid Encoding of Howe’s Method

for Establishing Congruence of Bisimilarity. (Extended Abstract). In: Proceedings of the Third

International Workshop on Logical Frameworks and Meta-Languages (LFM’02). Electronic

Notes in Theoretical Computer Science 70 (2).

Ambler, S. J., Crole, R. L. and Momigliano, A. (2002b) Combining Higher Order Abstract Syntax

with Tactical Theorem Proving and (Co)Induction. In: Proceedings of the 15th International

Conference on Theorem Proving in Higher Order Logics. Springer-Verlag Lecture Notes in

Computer Science 2410 13–30.

Ambler, S. J., Crole, R. L. and Momigliano, A. (2004) A Combinator and Presheaf Topos

Model for Primitive Recursion over Higher Order Abstract Syntax. In: Baaz, M., Makowsky,

J. and Voronkov, A. (eds.) Computer Science Logic/8th Kurt Godel Colloquium Poster

Collection, Vienna, August 2003. Collegium Logicum (Proceedings of the Kurt Godel Society),

KGS Publications 83–90.

Anderson, P. and Pfenning, F. (2004) Verifying Uniqueness in a Logical Framework. In: Proceedings

of the 17th International Conference on Theorem Proving in Higher Order Logics. Springer-Verlag

Lecture Notes in Computer Science 3223.

Aydemir, B. E., Charguéraud, A., Pierce, B. C., Pollack, R. and Weirich, S. (2008) Engineering Formal

Metatheory. SIGPLAN Notices 43 (1) 3–15.

Berghofer, S. and Urban, C. (2007) A Head-to-Head Comparison of de Bruijn Indices and Names. In:

Proceedings of the First International Workshop on Logical Frameworks and Meta-Languages:

Theory and Practice (LFMTP 2006). Electronic Notes in Theoretical Computer Science 174 (5)

53–67.

Berghofer, S., Cheney, J. and Urban, C. (2008) Mechanizing the Metatheory of LF. In: Proc. of

the 23rd IEEE Symposium on Logic in Computer Science (LICS 2008), IEEE Computer Society

45–56.

Berghofer, S., Cheney, J. and Urban, C. (2010) Mechanizing the Metatheory of LF. Technical report,

Edinburgh and Munich.

Capretta, V. and Felty, A. (2007) Combining de Bruijn Indices and Higher-Order Abstract Syntax

in Coq. In: Altenkirch, T. and McBride, C. (eds.) Proceedings of TYPES 2006. Springer-Verlag

Lecture Notes in Computer Science 4502 63–77.

Capretta, V. and Felty, A. (2009) Higher Order Abstract Syntax in Type Theory. In: Cooper, S. B.,

Geuvers, H., Pillay, A. and Väänänen, J. (eds.) Logic Colloquium 2006. Lecture Notes in Logic

32, Cambridge University Press 65–90.

Cheney, J. (2009) A Simple Nominal Type Theory. Electronic Notes in Computer Science 228 37–52.

Clouston, R. (2010) Equational Logic for Names and Binders, Ph.D. thesis, University of Cambridge

Computer Laboratory.

The representational adequacy of Hybrid 59

Clouston, R.A. and Pitts, A.M. (2007) Nominal equational logic. In: Cardelli, L., Fiore, M. and

Winskel, G. (eds.) Computation, Meaning and Logic, Articles dedicated to Gordon Plotkin.

Electronic Notes in Theoretical Computer Science 1496 223–257.

Crole, R. L. (1998) Lectures on [Co]Induction and [Co]Algebras. Technical Report 1998/12,

Department of Mathematics and Computer Science, University of Leicester.

Crole, R. L. (2010) α-Equivalence Equalities.

de Bruijn, N. (1972) Lambda Calculus Notation with Nameless Dummies: a Tool for Automatic

Formula Manipulation, with Application to the Church Rosser Theorem. Indagationes

Mathematicae 34 (5) 381–392.

Despeyroux, J., Felty, A. and Hirschowitz, A. (1995) Higher-order abstract syntax in Coq. In:

Dezani-Ciancaglini, M. and Plotkin, G. (eds.) Proceedings of the International Conference on

Typed Lambda Calculi and Applications. Springer-Verlag Lecture Notes in Computer Science 902

124–138.

Despeyroux, J. and Leleu, P. (2000) Metatheoretic results for a modal λ-calculus. Journal of

Functional and Logic Programming 1.

Despeyroux, J., Pfenning, F. and Schürmann, C. (1997) Primitive recursion for higher-order abstract

syntax. In: Hindley, R. (ed.) Proceedings of the Third International Conference on Typed Lambda

Calculus and Applications (TLCA’97). Springer-Verlag Lecture Notes in Computer Science 1210

147–163. (An extended version is available as Technical Report CMU-CS-96-172, Carnegie

Mellon University.)

Felty, A. (2002a) Interactive Theorem Proving in Twelf. The Association of Logic Programming

Newsletter 15 (3).

Felty, A. (2002b) Two-level Meta-reasoning in Coq. In: Carreño, V.A. (ed.) Proceedings of the 15th

International Conference on Theorem Proving in Higher Order Logics. Springer-Verlag Lecture

Notes in Computer Science 2342.

Felty, A. and Pientka, B. (2010) Reasoning with Higher-Order Abstract Syntax and Contexts: A

Comparison. In: Kaufmann, M. and Paulson, L. (eds.) International Conference on Interactive

Theorem Proving. Springer-Verlag Lecture Notes in Computer Science 6172 228–243.

Felty, A. P. and Momigliano, A. (2009) Reasoning with Hypothetical Judgments and Open Terms

in Hybrid. In: PPDP ’09: Proceedings of the 11th ACM SIGPLAN conference on Principles and

practice of declarative programming, ACM 83–92.

Felty, A. P. and Momigliano, A. (2010) Hybrid – A Definitional Two-Level Approach to Reasoning

with Higher-Order Abstract Syntax. Journal of Automated Reasoning 1–63.

Fiore, M., Plotkin, G.D. and Turi, D. (1999) Abstract Syntax and Variable Binding. In: Proceedings

of the 14th Annual Symposium on Logic in Computer Science (LICS’99), IEEE Computer Society

Press 193–202.

Fiore, M. P. (2006) On the structure of substitution. Invited address for the 22nd Mathematical

Foundations of Programming Semantics Conference (MFPS XXII), DISI, University of Genova,

Italy.

Ford, J. and Mason, I. A. (2001) Operational Techniques in PVS – A Preliminary Evaluation. In:

Proceedings of the Australasian Theory Symposium, CATS ’01.

Gabbay, M. and Mathijssen, A. (2008) Capture-Avoiding Substitution as a Nominal Algebra

(journal version). Formal Aspects of Computing 20 (4-5) 451–479.

Gabbay, M. and Mathijssen, A. (2010) A Nominal Axiomatisation of the Lambda-Calculus. Journal

of Logic and Computation 20 (2) 501–531.

Gabbay, M. and Pitts, A. (1999) A New Approach to Abstract Syntax Involving Binders. In: Longo,

G. (ed.) Proceedings of the 14th Annual Symposium on Logic in Computer Science (LICS’99), IEEE

Computer Society Press 214–224.

R. L. Crole 60

Gabbay, M. J. and Pitts, A.M. (2002) A New Approach to Abstract Syntax with Variable Binding.

Formal Aspects of Computing 13 341–363.

Gacek, A. (2008) The Abella Interactive Theorem Prover (System Description). In: Armando, A.,

Baumgartner, P. and Dowek, G. (eds.) Proceedings of IJCAR. Springer-Verlag Lecture Notes in

Computer Science 5195 154–161.

Gacek, A., Miller, D. and Nadathur, G. (2008) Combining Generic Judgments with Recursive

Definitions. In: Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer

Science, LICS 2008, IEEE Computer Society 33–44.

Gordon, A. (1994) A Mechanisation of Name-Carrying Syntax up to Alpha-Conversion. In:

Joyce, J. J. and Seger, C.-J.H. (eds.) International Workshop on Higher Order Logic Theorem

Proving and its Applications. Springer-Verlag Lecture Notes in Computer Science 780 414–427.

Gordon, A.D. and Melham, T. (1996) Five Axioms of Alpha-Conversion. In: von Wright, J., Grundy,

J. and Harrison, J. (eds.) Proceedings of the 9th International Conference on Theorem Proving

in Higher Order Logics (TPHOLs’96). Springer-Verlag Lecture Notes in Computer Science 1125

173–190.

Hallnas, L. (1991) Partial Inductive Definitions. Theoretical Computer Science 87 (1) 115–147.

Harper, R., Honsell, F. and Plotkin, G. (1987) A Framework for Defining Logics. In: Proceedings,

Symposium on Logic in Computer Science, Ithaca, New York, IEEE Computer Society Press 194–

204.

Harper, R., Honsell, F. and Plotkin, G. (1993) A Framework for Defining Logics. Journal of the

Association for Computing Machinery 40 (1) 143–184.

Harper, R. and Licata, D.R. (2007) Mechanizing Metatheory in a Logical Framework. Journal of

Functional Programming 17 (4-5) 613–673.

Harper, R. and Pfenning, F. (2005) On Equivalence and Canonical Forms in the LF Type Theory.

Transactions on Computational Logic 6 61–101.

Hindley, J. and Seldin, J. (1988) Introduction to Combinators and the Lambda Calculus, London

Mathematical Society Student Texts 1, Cambridge University Press.

Hofmann, M. (1999) Semantical Analysis of Higher-Order Abstract Syntax. In: Proceedings of 14th

Annual IEEE Symposium on Logic in Computer Science, LICS’99, Trento, Italy, IEEE Computer

Society Press 204–213.

Honsell, F., Miculan, M. and Scagnetto, I. (2001a) An axiomatic approach to metareasoning on

systems in higher-order abstract syntax. In: Proceedings ICALP’01. Springer-Verlag Lecture Notes

in Computer Science 2076 963–978.

Honsell, F., Miculan, M. and Scagnetto, I. (2001b) Π-calculus in (Co)Inductive Type Theories.

Theoretical Computer Science 2 (253) 239–285.

Honsell, F., Miculan, M. and Scagnetto, I. (2005) Translating Specifications from Nominal Logic to

CIC with the Theory of Contexts. In: Pollack, R. (ed.) MERLIN’05, Mechanized Reasoning about

Languages with Variable Binding 2005 Workshop, ACM Digital Library.

Huet, G. P. (1994) Residual Theory in Lambda-Calculus: a Formal Development. Journal of

Functional Programming 4 (3) 371394.

Lakin, M.R. and Pitts, A.M. (2007) A Metalanguage for Structural Operational Semantics. In:

Morazán, M. (ed.) Eighth Symposium on Trends in Functional Programming (TFP 2007), Intellect

19–35.

McDowell, R. (1997) Reasoning in a Logic with Definitions and Induction, Ph.D. thesis, University

of Pennsylvania.

McDowell, R. and Miller, D. (1997) A Logic for Reasoning with Higher-Order Abstract Syntax:

An Extended Abstract. In: Winskel, G. (ed.) Proceedings of the Twelfth Annual Symposium on

Logic in Computer Science, IEEE Computer Society Press 434–445.

The representational adequacy of Hybrid 61

McDowell, R. and Miller, D. (2002) Reasoning with Higher-Order Abstract Syntax in a Logical

Framework. ACM Transactions on Computational Logic 3 (1) 80–136.

McKinna, J. and Pollack, R. (1999) Some Lambda Calculus and Type Theory Formalized. Journal

of Automated Reasoning 23 (3-4) 373–409.

Melham, T. F. (1994) A Mechanized Theory of the π-Calculus in HOL. Nordic Journal of Computing

1 (1) 50–76.

Miculan, M. (2001) Developing (Meta)Theory of Lambda-Calculus in the Theory of Contexts. In:

Ambler, S., Crole, R. and Momigliano, A. (eds.) MERLIN 2001: Proceedings of the Workshop on

MEchanized Reasoning about Languages with variable bINding. Electronic Notes in Theoretical

Computer Science 58 1–22.

Miller, D. (2006) Representing and reasoning with operational semantics. In: Furbach, U. and

Shankar, N. (eds.) Automated Reasoning: Third International Joint Conference, IJCAR 2006.

Springer-Verlag Lecture Notes in Computer Science 4130 4–20.

Momigliano, A. and Ambler, S. J. (2003) Multi-Level Meta-Reasoning with Higher Order Abstract

Syntax. In: Gordon, A.D. (ed.) Foundations of Software Science and Computation Structures.

Springer-Verlag Lecture Notes in Computer Science 2620 375–391.

Momigliano, A., Ambler, S. J. and Crole, R. L. (2001) A Comparison of Formalizations of the

Meta-Theory of a Language with Variable Bindings in Isabelle. In: Boulton, R. J. and Jackson,

P. B. (eds.) Supplemental Proceedings of the 14th International Conference on Theorem Proving

in Higher Order Logics, Report EDI-INF-RR-0046 267–282.

Momigliano, A., Martin, A. J. and Felty, A. P. (2009) Two-level Hybrid: A System for Reasoning

using Higher Order Abstract Syntax. In: Proceedings of the International Workshop on Logical

Frameworks and Meta-Languages: Theory and Practice (LFMTP 2008). Electronic Notes in

Theoretical Computer Science 196 85–93.

Nipkow, T. (2001) More Church-Rosser Proofs (in Isabelle/HOL). Journal of Automated Reasoning

26 51–66.

Norrish, M. and Vestergaard, R. (2007) Proof Pearl: de Bruijn Terms Really Do Work. In: Schneider,

K. and Brandt, J. (eds.) Theorem Proving in Higher Order Logics, 20th International Conference.

Springer-Verlag Lecture Notes in Computer Science 4732 207–222.

Paulson, L. (1997) ML for the Working Programmer, Second Edition, Cambridge University Press.

Pfenning, F. (2003) Computation and deduction. (Available from: http://www.cs.cmu.edu/

~twelf/notes/cd.ps.)

Pfenning, F. and Elliott, C. (1988) Higher-Order Abstract Syntax. In: Proceedings of the ACM

SIGPLAN ’88 Symposium on Language Design and Implementation 199–208.

Pfenning, F. and Schürmann, C. (1999) System Description: Twelf – A Meta-Logical Framework for

Deductive Systems. In: Ganzinger, H. (ed.) Proceedings of the 16th International Conference on

Automated Deduction (CADE-16). Springer-Verlag Lecture Notes in Artificial Intelligence 1632

202–206.

Pitts, A.M. (2001) Nominal Logic: A First Order Theory of Names and Binding. In: Kobayashi, N.

and Pierce, B. C. (eds.) Proceedings: Theoretical Aspects of Computer Software, 4th International

Symposium, TACS 2001. Springer-Verlag Lecture Notes in Computer Science 2215 219–242.

Pitts, A.M. (2003) Nominal Logic, a First Order Theory of Names and Binding. Information and

Computation 186 165–193.

Pitts, A.M. (2006) Alpha-Structural Recursion and Induction. Journal of the ACM 53 459–506.

Shankar, N. (1988) A Mechanical Proof of the Church–Rosser Theorem. ACM 35 (3) 475522.

Shinwell, M.R. and Pitts, A.M. (2005) Fresh Objective Caml User Manual. Technical Report

UCAM-CL-TR-621, University of Cambridge Computer Laboratory.

R. L. Crole 62

Shinwell, M.R., Pitts, A.M. and Gabbay, M. J. (2003) FreshML: Programming with Binders Made

Simple. In: Eighth ACM SIGPLAN International Conference on Functional Programming (ICFP

2003), Uppsala, Sweden, ACM Press 263–274.

Urban, C. (2008) Nominal Techniques in Isabelle/HOL. Journal of Automated Reasoning 40 (4)

327–356.

Urban, C., Pitts, A.M. and Gabbay, M. J. (2004) Nominal unification. Theoretical Computer Science

323 473–497.

Urban, C. and Tasson, C. (2005) Nominal Techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.)

Proceedings of the 20th Conference on Automated Deduction (CADE 2005), Tallinn, Estonia.

Springer-Verlag Lecture Notes in Computer Science 3632 38–53.

van Dalen, D. (1989) Logic and Structure, Third Edition, Corrected Third Printing, Universitext,

Springer-Verlag.

Vestergaard, R. and Brotherson, J. (2001) A Formalized First-Order Conflence Proof for the λ-

Calculus using One Sorted Variable Names. In: Middelrop, A. (ed.) Proceedings of RTA’12.

Springer-Verlag Lecture Notes in Computer Science 2051 306–321.

