
Lectures on Categorical Quantum Mechanics

Chris Heunen and Jamie Vicary

February 28, 2012

ii

Preface

Physical systems cannot be studied in isolation, since we can only observe their behaviour
with respect to other systems, such as a measurement apparatus. The central idea of this
course is that the ability to group individual systems into compound systems should be
taken seriously. We take the action of grouping systems together as a primitive notion,
and build models of quantum mechanics from there.

The mathematical tool we use for this is category theory, one of the most beautiful
parts of modern mathematics. It has become abundantly clear that it provides a deep and
powerful language for describing compositional structure in an abstract fashion. It provides
a unifying language for an incredible variety of areas, including quantum theory, quantum
information, logic, topology and representation theory.

This course will tell this story right from the beginning, focusing on monoidal categories
and their applications in quantum information.

Much of this relatively recent field of study is covered only fragmentarily or at the
research level, see e.g. [16]. We feel there is a need for a self-contained text introducing
categorical quantum mechanics at a more leisurely pace; these notes are intended to fill
this space.

Prerequisites

Ideal foundations for this course are given by the Michaelmas term course “Categories,
Proofs and Processes” and the Hilary term course “Quantum Computer Science”. Students
who have not taken these courses will need to be familiar with basic elements of both
of these subjects, including categories, functors, natural transformations, vector spaces,
Hilbert spaces and tensor products.

Acknowledgements

Thanks to the students who let us use them as guinea pigs for testing out this material!
These notes would not exist were it not for the motivation and assistance of Bob Coecke.
We are also grateful to Daniel Marsden for careful reading and useful feedback on early
versions.

iii

iv

Contents

1 Monoidal categories 1

1.1 Monoidal categories . 1

1.2 Graphical calculus . 4

1.3 Examples . 7

1.4 States . 11

1.5 Braiding and Symmetry . 13

1.6 Exercises . 15

2 Abstract linear algebra 17

2.1 Scalars . 17

2.2 Superposition . 19

2.3 Adjoints and the dagger-functor . 24

2.4 Exercises . 27

3 Duals for objects 29

3.1 Introduction . 29

3.2 Interaction with linear structure . 33

3.3 The duality functor . 35

3.4 Dagger-compact categories . 35

3.5 Quantum teleportation . 37

3.6 Traces and dimensions . 37

4 Classical structures 43

4.1 Monoids and comonoids . 43

4.2 Frobenius algebras . 47

4.3 Normal forms . 53

4.4 Phases . 55

4.5 State transfer . 57

4.6* Controlled unitaries . 58

4.7 Exercises . 59

v

vi CONTENTS

5 Complementarity 61

5.1 Bialgebras . 61
5.2 Hopf algebras and complementarity . 63
5.3 Strong complementarity . 65
5.4 Applications . 69
5.5 Exercises . 72

6 Copying and deleting 73

6.1 Closure . 73
6.2 Uniform deleting . 75
6.3 Uniform copying . 75
6.4 Products . 78
6.5 Exercises . 80

7 Complete positivity 81

7.1 Complete positivity . 81
7.2 The CP construction . 83
7.3 Environment structures . 85
7.4 Exercises . 89

Bibliography 91

Index 97

Chapter 1

Monoidal categories

This chapter introduces monoidal categories. These categories form the core of the course,
as they provide the basic language with which the rest of the material will be developed.
They have a powerful graphical calculus, which provides an intuitive, pictorial way to work
with them that elegantly sidesteps much of their technical difficulty. We also introduce our
main examples of monoidal categories, which will be used as running examples throughout
the course.

1.1 Monoidal categories

Roughly, a monoidal category is a category equipped with extra data, allowing one to
group objects and morphisms together into bigger objects and morphisms.

Scope

We will soon give the precise mathematical definition of a monoidal category. To appreciate
it, it is good to realize first what sort of situation it aims to represent. In general, one can
think of objects A,B,C, . . . of a category as systems of a certain type, and of morphisms
A

f−→ B as processes turning a system of type A into a system of type B. This can be
applied to a vast range of structures:

• physical systems, and physical processes governing them;

• data types in computer science, and algorithms manipulating them;

• algebraic or geometric structures in mathematics, and structure-preserving functions;

• logical propositions, and proofs of implications between them;

• one could even think of ingredients in stages of cooking, and recipes to process them
into each other.

1

2 CHAPTER 1. MONOIDAL CATEGORIES

The extra structure of monoidal categories then simply says that we can consider processes
in parallel, as well as in sequence. In the examples above, one could interpret this as:

• letting physical systems evolve next to each other;

• running computer algorithms in parallel;

• taking products or sums of algebraic or geometric structures;

• proving conjunctions of logical implications by proving both implications;

• chopping carrots while boiling rice.

Monoidal categories are the concept that makes all this precise.

Definition and coherence

Definition 1.1 (Monoidal category). A monoidal category is a category C equipped with
the following data, satisfying a property called coherence:

• a functor
⊗

: C×C → C, called the tensor product;

• an object I ∈ C, called the unit object;

• a family of natural isomorphisms αA,B,C : (A⊗B)⊗C → A⊗ (B⊗C) for all objects
A,B,C ∈ C, called the associators;

• a family of natural isomorphisms λA : I ⊗ A → A for all objects A ∈ C, called the
left unitors;

• a family of natural isomorphisms ρA : A ⊗ I → A for all objects A ∈ C, called the
right unitors.

The coherence property is that every well-formed equation built from ◦, ⊗, id, α, α−1, λ,
λ−1, ρ and ρ−1 is satisfied.

Interesting examples of such equations are the triangle and pentagon equations:

(A⊗ I) ⊗ B A⊗ (I ⊗B)

A⊗B

ρA ⊗ idB idA ⊗ λB

αA,I,B

(1.1)

1.1. MONOIDAL CATEGORIES 3

(
(A⊗B) ⊗ C

)
⊗D

(
A⊗ (B ⊗ C)

)
⊗D A⊗

(
(B ⊗ C) ⊗D

)

A⊗
(
B ⊗ (C ⊗D)

)

(A⊗B) ⊗ (C ⊗D)

αA,B,C ⊗ idD

αA,B⊗C,D

idA ⊗ αB,C,D

αA⊗B,C,D αA,B,C⊗D

(1.2)

By the coherence property, for any monoidal category, these diagrams must commute.
Surprisingly, it turns out that these equations (1.1) and (1.2) are sufficient (MacLane,

Kelly).

Theorem 1.2 (Coherence for monoidal categories). Given the data for a monoidal cate-
gory, α, λ and ρ are coherent iff (1.1) and (1.2) hold.

This is a very important and beautiful theorem. It implies the following result — try to
prove this yourself! (It’s not easy.)

Corollary 1.3. Equations (1.1) and (1.2) imply ρI = λI .

Proof. See Exercise Sheet 1.

Strictness

Some types of monoidal category seem particularly simple.

Definition 1.4 (Strict monoidal category). A monoidal category is strict if the natural
isomorphisms α, λ and ρ are identities.

In fact, every monoidal category can be ‘made’ into a strict one.

Theorem 1.5 (Strictification). Every monoidal category is monoidally equivalent to a
strict monoidal category.

We will not give a definition of monoidal equivalence in this course, which determines when
two monoidal categories encode the same information.

This theorem means that, if you prefer, you can always ‘strictify’ your monoidal cate-
gory to obtain an equivalent one for which α, λ and ρ are all identities. However, this often
isn’t very useful. For example, you often have some idea of what you want the objects of
your category to be — but this might might not be compatible with a strict version of
your category.

In particular, it’s often useful for categories to be skeletal, meaning that if any pair A
and B of objects are isomorphic, then they are equal. Every monoidal category is equivalent

4 CHAPTER 1. MONOIDAL CATEGORIES

to a skeletal monoidal category, and skeletal categories are often particularly easy to work
with. However, not every monoidal category is monoidally equivalent to a strict, skeletal
category — you can’t necessarily have both. If you have to choose, it usually turns out
that skeletality is the more useful property to have.

The interchange law

Monoidal categories have an important property called the interchange law.

Theorem 1.6 (Interchange). Any morphisms A
f−→ B, B

g−→ C, D
h−→ E and E

j−→ F in a
monoidal category satisfy the interchange law:

(g ◦ f) ⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h) (1.3)

Proof. This holds because of properties of the category C × C, and from the fact that⊗
: C×C → C is a functor.

(g ◦ f) ⊗ (j ◦ h) ≡⊗(g ◦ f, j ◦ h)

=
⊗(

(g, j) ◦ (f, h)
)

(definition of C×C)

=
(⊗

(g, j)
)
◦
(⊗

(f, h)
)

(functoriality of
⊗

)

≡ (g ⊗ j) ◦ (f ⊗ h)

Recall that the functoriality property for a functor F says that F (f ◦g) = F (f)◦F (g).

1.2 Graphical calculus

We now describe a graphical way to denote the basic protagonists of monoidal categories:
objects, morphisms, composition, and tensor product. This graphical calculus faithfully
captures the essence of working with monoidal categories. In fact, in most cases, it makes
them a lot easier to work with.

Graphical calculus for ordinary categories

First, we describe a graphical notation for ordinary, non-monoidal categories. We draw an
object A like this:

A (1.4)

It’s just a line. In fact, really, you shouldn’t think of this as a picture of the object A;
you should think of it as a picture of the identity morphism idA : A → A. Remember: in
category theory, the morphisms are more important than the objects.

1.2. GRAPHICAL CALCULUS 5

We draw a general morphism A
f−→ B like this:

B

A

f (1.5)

Composition of A
f−→ B and B

g−→ C is drawn like this:

C

A

B

f

g

(1.6)

Let’s see what the identity law f ◦ idA = f = idB ◦ f looks like:

B

A

f
=

B

A

f =

B

A

f
(1.7)

It’s completely trivial — we just have to remember that what is important is the homotopy
class of the diagram. Categories also have an associativity axiom: given C

h−→ D, we must
have (h ◦ g) ◦ f = h ◦ (g ◦ f). We can see what this looks like:

f

g

h

D

C

A

B
=

D

C

A

B

f

g

h

(1.8)

It’s also trivial.
So even for ordinary categories, the graphical calculus is extremely useful: it somehow

‘absorbs’ our axioms, making them a consequence of the notation. This is because the

6 CHAPTER 1. MONOIDAL CATEGORIES

axioms of a category have something to do with the topology of space at a fundamental
level — in particular, 1-dimensional manifolds. Of course, this graphical representation
isn’t so unfamiliar. We usually call it algebra.

Graphical calculus for monoidal categories

Morphisms and composition are drawn in the same way as for ordinary categories. Given
morphisms A

f−→ B and C
g−→ D, we draw f ⊗ g : A⊗ C → B ⊗D in the following way:

B

A

D

C

f g (1.9)

The idea is that f and g represent separate processes, taking place at the same time.
Whereas the graphical calculus for ordinary categories was linear, the graphical calculus
for monoidal categories is planar.

The monoidal unit object I is drawn as the empty diagram:

(1.10)

The left unitor λA : I ⊗ A → A, the right unitor ρA : A ⊗ I → A and the associator
αA,B,C : (A⊗B) ⊗ C → A⊗ (B ⊗ C) are drawn like this:

A A A B C

λA ρA αA,B,C

(1.11)

They are completely trivial. The coherence of α, λ and ρ is therefore important for the
graphical calculus to function: since there can only be a single morphism formed from
these natural isomorphisms between any two given objects, it doesn’t matter that their
graphical calculus encodes no information.

We now consider the graphical representation of the interchange law (1.3):

C

B

A

F

E

D

f

g

h

j

=

C

B

A

F

E

D

f

g

h

j

(1.12)

1.3. EXAMPLES 7

Once again, we see that it is completely trivial — what seemed to be a mysterious algebraic
identity becomes very clear from the graphical perspective.

The point of the graphical calculus is that all of the superficially complex aspects
of the algebraic definition of monoidal categories — the unit law, the associativity law,
associators, left unitors, right unitors, the triangle equation, the pentagon equation, the
interchange law — simply melt away, leaving one able to use the formalism much more
directly. These features are still there, but they are absorbed into the geometry of the
plane, of which our species has an excellent automatic understanding.

We will give a formal statement of the correctness of the graphical calculus later in the
course.

1.3 Examples

It is now high time to have some examples.

Hilbert spaces

We now describe some examples of monoidal categories. Our first example is Hilb, which
will play a central role in this course. We also define FHilb and FHilbss, which are closely
related.

Definition 1.7. The monoidal category Hilb is defined in the following way:

• Objects are separable complex Hilbert spaces H, J,K, . . .;

• Morphisms are bounded linear maps f, g, h, . . .;

• Composition is composition of linear maps;

• Identity maps are given by the identity linear maps;

• Tensor product
⊗

: Hilb×Hilb → Hilb is tensor product of Hilbert spaces;

• Unit object I ∈ Ob(Hilb) is the 1-dimensional Hilbert space C;

• Associators αH,J,K : (H⊗J)⊗K → H⊗(J⊗K) are the unique linear maps sending
|φ〉 ⊗

(
|χ〉 ⊗ |ψ〉

)
7→
(
|φ〉 ⊗ |χ〉

)
⊗ |ψ〉 for all |φ〉 ∈ H, |χ〉 ∈ J and |ψ〉 ∈ K;

• Left unitors λH : C⊗H → H are the unique linear maps sending 1⊗ |φ〉 7→ |φ〉 for
all |φ〉 ∈ H;

• Right unitors ρH : H ⊗ C → H are the unique linear maps sending |φ〉 ⊗ 1 7→ |φ〉
for all |φ〉 ∈ H.

8 CHAPTER 1. MONOIDAL CATEGORIES

Recall that a Hilbert space is separable if it has finite or countable dimension, and that a
linear maps between Hilbert spaces is bounded iff it is continuous. Such maps are defined
on every vector in their domain.

You might have noticed that this definition of Hilb makes no mention of the inner
products on the Hilbert spaces. This structure is crucial for quantum mechanics, so it’s
perhaps surprising it hasn’t made an appearance here. In fact, in the development of this
subject, it took a long time for people to understand the correct way to deal with it. We
will encounter the inner product later on.

We also define a finite-dimensional variant of Hilb.

Definition 1.8. The monoidal category FHilb is the restriction of the monoidal category
Hilb to finite-dimensional Hilbert spaces.

This is particularly appropriate for the purposes of quantum information, where the main
results are often in finite dimensions.

Neither of the monoidal categories Hilb or FHilb are strict, and neither of them are
skeletal. However, for FHilb, there is a monoidally equivalent monoidal category which is
strict and skeletal, which we call FHilbss.

Definition 1.9. The strict, skeletal monoidal category FHilbss is defined in the following
way:

• Objects are natural numbers 0, 1, 2, . . .;

• Morphisms n→ m are matrices of complex numbers with m rows and n columns;

• Composition is given by matrix multiplication;

• Tensor product
⊗

: FHilbss × FHilbss → FHilbss is Kronecker product of ma-
trices:

(f ⊗ g) :=

(
f11g

) (
f21g

)
· · ·

(
f1ng

)
(
f12g

) (
f22g

)
. . .

(
f2ng

)
...

...
. . .

...(
fm1g

) (
fm2g

)
. . .

(
fmng

)

 ;

• Associators, left unitors and right unitors are the identity matrices.

Objects n in Hilbss can be thought of as the Hilbert space Cn, which has a privileged basis.
Linear maps between such Hilbert spaces can be canonically represented as matrices. In
practice, this monoidal category FHilbss is the most convenient place to work when doing
calculations involving finite-dimensional Hilbert spaces.

We do not give a full treatment of the notion of monoidal equivalence in this course, but
it seems intuitively possible that FHilbss somehow ‘captures’ everything that is important
about FHilb as a monoidal category.

Question. What might go wrong if you try to include infinite-dimensional Hilbert spaces
in this strict, skeletal category?

1.3. EXAMPLES 9

Sets and functions

While Hilb will be an important setting for quantum physics, the monoidal category Set

is an important setting for classical physics.

Definition 1.10. The monoidal category Set is defined in the following way:

• Objects are sets;

• Morphisms are functions;

• Composition is function composition;

• Identity morphisms are given by the identity functions;

• Tensor product is Cartesian product of sets, written ‘×’;

• The unit object is a 1-element set {•} (you choose which one!);

• Associators αA,B,C : (A×B)×C → A×(B×C) are the functions taking
(
(a, b), c

)
7→(

a, (b, c)
)
, for a ∈ A, b ∈ B and c ∈ C;

• Left unitors λA : I × A→ A are the functions taking (•, a) 7→ a for a ∈ A;

• Right unitors ρA : A× I → A are the functions taking (a, •) 7→ a for a ∈ A.

Definition 1.11. The monoidal category FSet is the restriction of the monoidal category
Set to finite sets.

If you have studied some category theory, you might know that the Cartesian product in
Set is a product, which is a type of limit in category theory. This is a general phenomenon:
if a category has products, then these can be used to give a monoidal structure. The same
is true for coproducts.

This gives us an important difference between Hilb and Set: while the tensor product
on Set comes from a categorical product, the tensor product on Hilb does not. We will
discover many more differences between Hilb and Set in the coming lectures, which often
tell us things about the differences between quantum and classical information.

Sets and relations

While Hilb is a setting for quantum physics and Set is a setting for classical physics, Rel,
the category of sets and relations, is somewhere in the middle. It seems like it should be
a lot like Set, but in fact, its properties are much more like those of Hilb. This makes
it a fascinating test-bed for investigating different aspects of quantum mechanics from a
categorical perspective.

Definition 1.12. Given sets A and B, a relation A
R−→ B is a subset R ⊆ A× B.

10 CHAPTER 1. MONOIDAL CATEGORIES

If elements a ∈ A and b ∈ B are such that (a, b) ∈ R, then we often indicate this by
writing aR b, or even a ∼ b when R is clear. Since a subset can be defined by giving its
elements, we can define our relations by listing the related elements, in the form a1R b1,
a2R b2, a3R b3, and so on.

We can think of a relation A
R−→ B as indicating the possible ways from elements of A

to elements of B, as follows.

A B B C
R S

Composition then connects up paths.

A C
S ◦R

This corresponds to the following algebraic definition:

S ◦R := {(a, c) | ∃b ∈ B : aRb and bSc} ⊆ A× C (1.13)

We can write this differently as

a (S ◦R) c ⇔
∨

b

(bSc ∧ aRb), (1.14)

where ∨ represents logical OR, and ∧ represents logical AND. Compare this with the
definition of matrix multiplication:

(g ◦ f)ij =
∑

k

gikfkj (1.15)

This gives us an interesting analogy between quantum mechanics and the theory of rela-
tions. Firstly, a relation A

R−→ B tells us, for each a ∈ A and b ∈ B, whether it is possible
for a to produce b. whereas a matrix H

L−→ J gives us an amplitude for a to evolve to
b. Secondly, relational composition tells us the possibility of evolving via an intermediate
point; where as matrix composition tells us the amplitude for this to happen.

We now define our monoidal category of relations.

1.4. STATES 11

Definition 1.13. The monoidal category Rel is defined in the following way:

• Objects are sets;

• Morphisms A
R−→ B are relations;

• Composition of two relations A
R−→ B and B

S−→ C is given as above;

• Identity morphisms A
idA−−→ A are the relations {(a, a) | a ∈ A} ⊆ A× A;

• Tensor product is Cartesian product of sets, written ‘×’;

• The unit object is a 1-element set {•} (you choose which one!);

• Associators αA,B,C : (A × B) × C → A × (B × C) are the relations defined by(
(a, b), c

)
∼
(
a, (b, c)

)
for all a ∈ A, b ∈ B and c ∈ C;

• Left unitors λA : I × A→ A are the relations defined by (•, a) ∼ a for all a ∈ A;

• Right unitors ρA : A× I → A are the relations defined by (a, •) ∼ a for all a ∈ A.

The monoidal category FRel is the restriction of the monoidal category Rel to finite sets.

1.4 States

States of general objects

Morphisms out of the tensor unit I play a special role in a monoidal category. In many
cases we can think of such morphisms as generalized ‘states’ or ‘points’, even though the
objects might not be sets at all.

Definition 1.14 (State). A state of an object A in a monoidal category is a morphism
I → A.

We now examine what the states are in our three example categories.

• In Set, points of a set A are morphisms {•} → A, which correspond to elements
of A;

• In Hilb, points of a Hilbert space H are morphisms C → H, which correspond to
elements of H by considering the image of 1 ∈ C;

• In Rel, points of a set A are relations {•} R−→ A, which correspond to subsets of A.

Definition 1.15 (Well-pointed). We say a monoidal category is well-pointed if for all
parallel pairs of morphisms A

f,g−→ B, we have f = g iff f ◦ a = g ◦ a for all points I
a−→ A.

The idea is that in a well-pointed category, we can tell whether or not morphisms are equal
just by seeing how they affect points of their source objects. The categories Set, Hilb,
and Rel are all well-pointed.

12 CHAPTER 1. MONOIDAL CATEGORIES

Graphical representation

States I
a−→ A have the following graphical representation:

a

A

(1.16)

We can think of this dynamically as a method of preparation of the system A.

Entanglement and product states

For objects A and B of a monoidal category, a morphism I
a−→ A⊗B is a joint state of A

and B. We depict it graphically in the following way:

a

BA

(1.17)

A joint state is a product state, or separable, if it is of the form I
λ−1

I−−→ I ⊗ I
a⊗b−−→ A ⊗ B,

for I
a−→ A and I

b−→ B:

a b

BA

(1.18)

An entangled state is a joint state which is not a product state. Entangled states represent
preparations of A ⊗ B which cannot be decomposed as a preparation of A alongside a
preparation of B. In this case, there is some essential connectivity between A and B which
means that they cannot have been prepared independently.

Let’s see what these look like in our example categories.

• In Hilb:

– Joint states of H and J are elements of H ⊗ J ;

– Product states are factorizable states;

– Entangled states are elements of H ⊗ J which cannot be factorized.

• In Set:

– Joint states of S and T are elements of S × T ;

– Product states are elements (s, t) ∈ S × T coming from s ∈ S and t ∈ T ;

1.5. BRAIDING AND SYMMETRY 13

– Entangled states don’t exist!

• In Rel:

– Joint states of A and B are subsets of A×B;

– Product states are subsets P ⊆ A×B such that, for some R ⊆ A and S ⊆ B,
(a, b) ∈ P iff a ∈ R and b ∈ S;

– Entangled states are subsets of A× B which are not of this form.

This gives us an insight on why entanglement is so difficult for us to understand intuitively:
classically, in the worldview encoded in the category Set, it simply does not occur. If we
allow probabilistic behaviour, then a form of entanglement is classically meaningful — but
quantum entanglement cannot be understood in this way.

1.5 Braiding and Symmetry

Braided monoidal categories

Definition 1.16. A braided monoidal category is a monoidal category C equipped with a
family of natural isomorphisms

σA,B : A⊗B → B ⊗ A (1.19)

satisfying the hexagon equations :

(A⊗ B) ⊗ C

A⊗ (B ⊗ C) (B ⊗ C) ⊗ A

B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C B ⊗ (A⊗ C)

αA,B,C

σA,B⊗C

αB,C,A

σA,B ⊗ idC

αB,A,C

idB ⊗ σA,C

(1.20)

(A⊗B) ⊗ C

A⊗ (B ⊗ C) (B ⊗ C) ⊗ A

B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C B ⊗ (A⊗ C)

αA,B,C

σ−1
B⊗C,A

αB,C,A

σ−1
B,A ⊗ idC

αB,A,C

idB ⊗ σ−1
C,A

(1.21)

14 CHAPTER 1. MONOIDAL CATEGORIES

We can include the braiding in our graphical notation:

σA,B : A⊗B → B ⊗ A σ−1
A,B : A⊗ B → B ⊗ A

(1.22)

Invertibility has the following graphical representation:

= = (1.23)

This captures part of the topological behaviour of strings.
Since they cross over each other, they are not lying on the plane — they are in 3d

space. So while categories have a 1d graphical notation, and monoidal categories have
a 2d graphical notation, we see that braided monoidal categories have a 3d graphical
notation. Because of this, braided monoidal categories have an important connection to
3d topological quantum field theories.

Symmetric monoidal categories

Definition 1.17. A braided monoidal category is symmetric if

σB,A ◦ σA,B = idA⊗B (1.24)

for all objects A, B,

Graphically, this has the following representation:

= (1.25)

Intuitively, this means our strings can pass through each other, and there can be no non-
trivial linkages.

Lemma 1.18. In a symmetric monoidal category we have σA,B = σ−1
B,A, with the following

graphical representation:

= (1.26)

1.6. EXERCISES 15

Proof. Combine (1.23) and (1.25).

In a symmetric monoidal category, there is therefore no distinction between over- and
under-crossings, and so we simplify our graphical notation, drawing

(1.27)

for both.
Suppose we imagine our string diagrams as curves embedded 4d space. Then we can

continuously deform one crossing into the other, by making use of the extra dimension. In
this sense, symmetric monoidal categories have a 4d graphical notation.

Examples

We now see what these structures look like for our example categories Hilb, Set and Rel,
all of which can be equipped with a symmetry.

• In Hilb, σH,J : H⊗J → J⊗H is the unique linear map sending |φ〉⊗|ψ〉 7→ |ψ〉⊗|φ〉
for all |φ〉 ∈ H and ψ ∈ J .

• In Set, σS,T : S × T → T × S is defined by σS,T (s, t) = (t, s) for all s ∈ S, t ∈ T .

• In Rel, σS,T : S × T → T × S is defined by (s, t) ∼ (t, s) for all s ∈ S, t ∈ T .

1.6 Exercises

Notes and further reading

(Symmetric) monoidal categories were introduced independently by Bénabou and Mac Lane in
1963 [10, 51]. Early developments centred around the problem of coherence, and were resolved by
Mac Lane’s Coherence Theorem 1.2. For a comprehensive treatment, see the textbooks [52, 13].

The graphical language dates back to 1971, when Penrose used it to abbreviate tensor contrac-
tion calculations [58]. It was formalized for monoidal categories by Joyal and Street in 1991 [38],
who later also introduced and generalized to braided monoidal categories [40]. For a modern
survey, see [68].

Our remarks about the dimensionality of the graphical calculus are a shadow of higher cate-

gory theory, as first hinted at by Grothendieck [31]. For a modern overview, see [48]. Monoidal

categories are 2-categories with one object, braided monoidal categories are 3-categories with one

object and one 1-cell, and symmetric monoidal categories are 4-categories with one object, one

1-cell and one 2-cell — and n-categories have an n-dimensional graphical calculus; see [7].

16 CHAPTER 1. MONOIDAL CATEGORIES

Chapter 2

Abstract linear algebra

2.1 Scalars

Definition and examples

States of the tensor unit I play a very special role in monoidal categories. The are called
the scalars, and generalize the idea of a ‘base field’ in linear algebra.

Definition 2.1 (Scalars). In a monoidal category, the scalars are the morphisms I → I.

The scalars form a monoid under composition. They are very different in each of our
example categories:

• In Hilb, the scalars are C, the complex numbers, under multiplication;

• In Set, the scalars are 1, the trivial one-element monoid;

• In Rel, the scalars are {true, false} under AND.

Commutativity

In fact, for any monoidal category, this monoid commutative.

Lemma 2.2 (Scalars commute). In a monoidal category, the scalars are commutative.

17

18 CHAPTER 2. ABSTRACT LINEAR ALGEBRA

Proof. We consider the following diagram, for any two scalars a, b : I → I:

I I

I ⊗ I I ⊗ I

I I

I ⊗ I I ⊗ I

a

bb

a⊗ idI

λI ρI

ρ−1
Iλ−1

I

idI ⊗ b
a⊗ idI

idI ⊗ b

λ−1
I ρ−1

I

a

λI ρI

(2.1)

The four side cells of the cube commute by naturality of λI and ρI , and the bottom cell
commutes by an application of the interchange law 1.6. Hence we have ab = ba. Note the
importance of coherence, as we rely one the fact that ρI = λI .

Graphical calculus

A scalar I
a−→ I takes the following form in the graphical calculus:

a (2.2)

So commutativity of scalars has the following graphical representation:

a

b

=
b

a

(2.3)

This is another triviality.

Scalar multiplication

Objects in an arbitrary monoidal category do not have to be anything like vector spaces.
Nevertheless, we replicate many of the features of the mathematics of vector spaces; in
particular, we can multiply morphisms by scalars.

Definition 2.3 (Left scalar multiplication). Let I
a−→ I be a scalar in a monoidal category,

and A
f−→ B an arbitrary morphism. Define a new morphism A

a•f−−→ B as the following
composite.

A B

I ⊗ A I ⊗B

a • f

λ−1
I λI

a⊗ f

2.2. SUPERPOSITION 19

This abstract scalar multiplication satisfies many properties we know from the actual scalar
multiplication of vector spaces. For example, it is associative, as in the following lemma.
The proof is not hard – try it yourself.

Lemma 2.4 (Scalar multiplication). Let I
a,b−→ I be scalars, and A

f−→ B and B
g−→ C be

arbitrary morphism in a monoidal category. Then:

1. idI • f = f ;

2. a • b = a ◦ b;

3. a • (b • f) = (a • b) • f ;

4. (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

2.2 Superposition

In quantum mechanics, given linear maps H
f,g−→ J , we can form their sum H

f+g−−→ J ,
another linear map. When H = C this allows us to form superpositions of states, a
fundamental part of quantum theory. We analyze this abstractly with the help of various
categorical structures.

Zero morphisms

Definition 2.5. An object 1 (or ⊤) is a terminal object if for all objects A, there is a
unique morphism A→ 1. An object 0 (or ⊥) is an initial object if for all objects A, there
is a unique morphism 0 → A. An object 0 is a zero object if it is both initial and terminal.

In a category with a zero object, for all objects A and B, there is a unique morphism
A → 0 → B factorizing through the zero object. We write this as A

0A,B−−→ B, and call it
the zero morphism.

Lemma 2.6. A zero object is unique up to unique isomorphism.

Of our example categories, Hilb and Rel have zero objects, whereas Set does not.

• In Hilb, the 0-dimensional vector space is a zero object, and the zero morphisms are
the zero linear maps.

• In Rel, the empty set is a zero object, and the zero morphisms are the empty rela-
tions.

20 CHAPTER 2. ABSTRACT LINEAR ALGEBRA

Superposition rules

We first define a superposition rule on a category, more formally known as an enrichment
in commutative monoids.

Definition 2.7. An addition operation (A
f,g−→ B) 7→ (A

f+g−−→ B) for every hom-set is an
superposition rule if it has the following properties:

• Commutativity:

f + g = g + f (2.4)

• Associativity:

(f + g) + h = f + (g + h) (2.5)

• Units: for all A, B there is a unit morphism A
uA,B−−−→ B such that for all A

f−→ B:

f + uA,B = f (2.6)

• Addition is compatible with composition:

(g + g′) ◦ f = (g ◦ f) + (g′ ◦ f) (2.7)

g ◦ (f + f ′) = (g ◦ f) + (g ◦ f ′) (2.8)

• Zeros are compatible with composition:

uB,C ◦ uA,B = uA,C (2.9)

Both Hilb and Rel have a superposition rule, while once again Set does not. In Hilb, it
is given by addition of linear maps, and in Rel it is given by union of subsets.

Lemma 2.8. In a category with a zero object and a superposition rule, then for all objects
A, B, we have uA,B = 0A,B.

Proof. uA,B = u0,B ◦ uA,0 [by equation (2.7)]

= 0A,B [by definition]

Because of this lemma, we write 0A,B instead of uA,B whenever we are working in such a
category. We can see this ‘in action’ in both Hilb and Rel: the zero linear map is the unit
for addition, and the empty set is the unit for taking unions.

The existence of a zero object and a superposition rule turns our scalars into a com-
mutative semiring with an absorbing zero, a set equipped with commutative multiplication
and addition operations with the following properties:

(a+ b)c = ac+ bc

a(b+ c) = ab+ ac

a+ b = b+ a

a+ 0 = 0 + a

a0 = 0 = 0a

2.2. SUPERPOSITION 21

In Hilb, this is the field C. In Rel, this is {true, false}, with multiplication given by AND
and addition given by OR.

Biproducts

In a category with a superposition rule, we can define the following structure.

Definition 2.9 (Biproducts). In a category with a zero object and a superposition oper-
ation, the biproduct of an object A and B is an object A ⊕ B equipped with morphisms
A

iA−→ A ⊕ B, B
iB−→ A ⊕ B, A ⊕ B

pA−→ A and A ⊕ B
pB−→ B, satisfying the following

equations:

idA = pA ◦ iA (2.10)

0B,A = pA ◦ iB (2.11)

0A,B = pB ◦ iA (2.12)

idB = pB ◦ iB (2.13)

idA⊕B = (iA ◦ pA) + (iB ◦ pB) (2.14)

Both Hilb and Rel have biproducts: in Hilb, they are the direct sum of Hilbert spaces,
and in Rel they are union of sets.

Lemma 2.10. In a category with biproducts, (A⊕B, pA, pB) form a product of A and B,
and (A⊕B, iA, iB) form a coproduct of A and B.

In fact, biproducts are automatic if a category has both products and a superposition
rule.

Lemma 2.11. If a category has products or coproducts, a zero object, and a superposition
rule, then it has biproducts.

Proof. See Exercise Sheet 1.

Also, in the presence of biproducts, superposition rules are unique.

Lemma 2.12. If a category has a biproducts and a zero object, then it has a unique
superposition rule.

Proof. Our category necessarily has at least one superposition rule, since it is required for
the definition of biproducts. Using this, for any f, g : A → B, we can define a morphism
A

f⊞g−−→ B as follows:

A
∆A−−→ A× A

(i1◦p1)+(i2◦p2)−−−−−−−−−→ A+ A
[f,g]−−→ B (2.15)

22 CHAPTER 2. ABSTRACT LINEAR ALGEBRA

Here, we make use of the fact that biproducts give rise to both products and coproducts.
We can simplify this in the following way:

f ⊞ g = [f, g] ◦ (i1 ◦ p1 + i2 ◦ p2) ◦ ∆A

= [f, g] ◦ i1 ◦ p1 ◦ ∆A + [f, g] ◦ i2 ◦ p2 ◦ ∆A

= f ◦ idA + g ◦ idA

= f + g.

However, from the biproduct equation (2.14), the composite (i1◦p1)+(i2◦p2) used in (2.15)
is the identity, and so our definition of f ⊞ g is independent of our chosen superposition
rule. Since we have shown f ⊞ g = f + g, our superposition rule is therefore unique.

Matrix notation

In a category with biproducts, we can use a matrix notation for our morphisms. For
example, for morphisms A

f−→ C, A
g−→ D, B

h−→ C and B
j−→ D, we write

A⊕B

f h
g j

−−−−−→ C ⊕D (2.16)

to denote the following map:

A⊕ B
(iC ◦ f ◦ pA) + (iD ◦ g ◦ pA) + (iC ◦ h ◦ pB) + (iD ◦ j ◦ pB)−−−→ C ⊕D (2.17)

Matrices with any finite number of rows and columns can be defined in a similar way.

Lemma 2.13. Every morphism A⊕B
k−→ C ⊕D has a matrix representation.

Proof. Suppose we have a morphism A⊕B
k−→ C ⊕D. Then by introducing identities and

expanding, we can rewrite it in the following way:

k = idC⊕D ◦ k ◦ idA⊕B

=
(
(iC ◦ pC) + (iD ◦ pD)

)
◦ k ◦

(
(iA ◦ pA) + (iB ◦ pB)

)

= iC ◦ (pC ◦ k ◦ iA) ◦ pA + iC ◦ (pC ◦ k ◦ iB) ◦ pB
+ iD ◦ (pD ◦ k ◦ iA) ◦ pA + iD ◦ (pD ◦ k ◦ iB) ◦ pB (2.18)

But this is the morphism represented by the following matrix:

(
pC ◦ k ◦ iA pC ◦ k ◦ iB
pC ◦ k ◦ iA pD ◦ k ◦ iB

)
(2.19)

2.2. SUPERPOSITION 23

Matrices compose in the way we would expect, with morphism composition replacing
multiplication of entries. For example, for 2 by 2 matrices:

(
s p
q r

)
◦
(
f g
h j

)
=

(
(s ◦ f) + (p ◦ h) (s ◦ g) + (p ◦ j)
(q ◦ f) + (r ◦ h) (q ◦ g) + (r ◦ j)

)
(2.20)

Identity morphisms have a familiar matrix representation:

idA⊕B =

(
idA 0B,A
0A,B idB

)
(2.21)

We will prove these properties in Exercise Sheet 1.

Interaction with monoidal structure

In general, linear structure interacts badly with monoidal structure. For example, it isn’t
true in general that f ⊗ (g+h) = (f ⊗ g) + (f ⊗h), or that f ⊗ 0 = 0; for counterexamples
to both of these, consider the category of Hilbert spaces with direct sum as the tensor
product operation. To get this sort of good interaction, we require duals for objects, which
we will encounter in the next chapter.

However, it is possible to prove the following result in general.

Lemma 2.14. In a monoidal category with a zero object, 0 ⊗ 0 ≃ 0.

Proof. We first note that I⊗0 is a zero object, since it is isomorphic to 0. We then consider
the composite morphisms

0
λ−1

0−−→ I ⊗ 0
0I,0⊗id0−−−−−→ 0 ⊗ 0,

0 ⊗ 0
00,I⊗id0−−−−−→ I ⊗ 0

λ0−→ 0.

Composing them in one direction we obtain a morphism of type 0 → 0, which is necessarily
the identity since 0 is a zero object. Composing in the other direction, we obtain the
following:

0 ⊗ 0 I ⊗ 0

0

I ⊗ 00 ⊗ 0

00,I ⊗ id0

λ0

λ−1
0

0I,0 ⊗ id0

idI⊗0

00,0 ⊗ id0

= id0 ⊗ id0

= id0⊗0

Hence 0 ⊗ 0 is isomorphic to a zero object, and so is itself a zero object.

24 CHAPTER 2. ABSTRACT LINEAR ALGEBRA

2.3 Adjoints and the dagger-functor

Introduction

When we defined the monoidal category of Hilbert spaces in Definition 1.7 above, one
peculiarity stood out: we didn’t make any use of the inner product. As a result, only
the vector space structure of the Hilbert spaces was playing a role. However, the inner
products of Hilbert spaces are crucial for quantum mechanics, allowing us to compute
probabilities in the theory. We capture the inner product structure with the abstract
notion of a dagger-functor, and we explore some applications of this concept.

A Hilbert space H is equipped with an inner product, which is a sesquilinear map

〈− |−〉H : H ×H → C. (2.22)

This means it is a map which is antilinear in the first component, linear in the second,
conjugate-symmetric and positive-definite:

〈xφ+ χ |ψ〉H = x〈φ |ψ〉H + x〈χ |ψ〉H (2.23)

〈φ | xχ+ ψ〉H = x〈φ |χ〉H + x〈φ |ψ〉H (2.24)

〈φ |χ〉H = 〈χ |ψ〉H (2.25)

〈φ |φ〉H ≥ 0 (2.26)

We use the inner product to define the adjoint to a linear map, in the following way.

Definition 2.15 (Adjoint of a bounded linear map). For a bounded linear map f : H → J ,
its adjoint f † : J → H is the unique linear map with the following property, for all φ ∈ H
and ψ ∈ J :

〈fφ |ψ〉J = 〈φ | f †ψ〉H . (2.27)

This inspired the terminology for adjoint functors in category theory, although this is not
itself an instance of a categorical adjunction.

We model this abstractly as an endofunctor on our category.

Definition 2.16. The adjunction functor † : Hilb → Hilbop takes bounded linear maps
to their adjoints.

This has the following property:

Lemma 2.17. For all bounded linear maps, (f †)† = f .

The dagger-functor

Definition 2.18. For a category C, a dagger-functor is a functor † : C → Cop such that
for all morphisms f , we have (f †)† = f .

2.3. ADJOINTS AND THE DAGGER-FUNCTOR 25

Definition 2.19. A dagger-category is a category C equipped with a dagger-functor
† : C → Cop.

The category Hilb is the motivating example of a dagger-category, with the dagger-functor
given by the adjunction functor. The category Rel can be made into a dagger-category,
with the dagger-functor given by taking the relational converse: for S

R−→ T , we define
T

R†

−→ S as the relation t R† s iff sR t.
The category Set cannot be made into a dagger-category, since for finite sets A and

B the hom-set Hom(A,B) contains |B||A| elements, but the hom-set Hom(B,A) contains
|A||B| elements. A dagger-functor would give an isomorphism between these sets for all
objects A and B, which is impossible.

Another important non-example is VectC: for an infinite-dimensional vector space V ,
the set Hom(C, V) has a strictly smaller cardinality than the set Hom(V,C). The category
FVectC can be given a dagger-functor: one way to do this is by assigning an inner product
to every object, and then constructing the associated adjunction functor. However, it does
not come with a canonical adjunction functor.

We can prove some basic lemmas about dagger-categories.

Lemma 2.20. In a dagger-category with a zero object, 0†
A,B = 0B,A.

Proof. Immediate from functoriality of the dagger-functor.

Graphical calculus

We depict the action of the dagger-functor by flipping the graphical representation about
a horizontal axis:

f

A

B

7→ f †

B

A

(2.28)

To help us tell the difference, from now on we will draw our morphisms in a way that breaks
their symmetry. Applying the dagger-functor then has the following representation:

f

A

B

7→ f

B

A

(2.29)

We no longer write the † symbol within the label, as this is now indicated by the orientation
of the wedge.

BRA-KET NOTATION.

26 CHAPTER 2. ABSTRACT LINEAR ALGEBRA

Measurement

We have described how a state of an object I
f−→ A can be thought of as a preparation of

A by the process f . Dually, a ‘costate’ A
f†−→ I models the effect of measuring A by the

process f †. A dagger-functor gives us a correspondence between states and costates.

The Way of the Dagger

In a dagger-category, we often want to require that certain structures are compatible
with the dagger-functor. This is something that we can deliberately seek to do for any
particular categorical structure of interest. Often, this can give rise to interesting results.
As a methodology, with tongue in cheek, we can call this the way of the dagger.

To help us apply this approach, we give special names to some basic properties for
morphisms in a dagger-category. These are are generalizations of terms usually reserved
for bounded linear maps between Hilbert spaces.

Definition 2.21. In a †-category, given a morphism A
f−→ B:

1. the adjoint of A
f−→ B is the morphism B

f†−→ A;

2. A
f−→ B is unitary if f ◦ f † = idB and f † ◦ f = idA;

3. A
f−→ B is an isometry if f † ◦ f = idA;

4. A
f−→ A is self-adjoint if A = B and f = f †;

5. A
f−→ A is positive when f = g† ◦ g for some A

g−→ B.

We can combine the notion of dagger-category with the notion of monoidal category in
a natural way.

Definition 2.22. A monoidal dagger-category is a monoidal category which is also a
†-category, such that (f ⊗ g)† = f † ⊗ g† for all morphisms f and g, and such that the
natural isomorphisms α, λ and ρ are unitary at every stage. A braided monoidal dagger-
category is a monoidal dagger category equipped with a unitary braiding.

Both Hilb and Rel are monoidal dagger-categories.
Biproducts can also be compatible with a dagger-functor in an important way.

Definition 2.23. In a dagger-category with a zero object and superpositions, a dagger-
biproduct of objects A and B is a biproduct A ⊕ B with injection and projection maps
satisfying i†A = pA and i†B = pB.

In Rel, every biproduct is a dagger-biproduct. In Hilb, dagger-biproducts are orthogonal
direct sums.

Given two morphisms A
f,g−→ B, it is interesting to ask for the largest subspace of A on

which they agree. If it exists, this is given by the equalizer of f and g.

2.4. EXERCISES 27

Definition 2.24. In a category, the equalizer of parallel morphisms A
f,g−→ B is an object

E equipped with a morphism E
e−→ A such that f ◦ e = g ◦ e, and with the property that

for every morphism X
x−→ A with f ◦ x = g ◦ x, then x = e ◦ x̃ for some X

x̃−→ E.

Definition 2.25. In a dagger-category, a dagger-equalizer of a parallel pair A
f,g−→ B is an

equalizer E
e−→ A such that e is an isometry.

Intuitively, a dagger-equalizer represents the isometric embedding of the largest subspace
of A on which the morphisms f and g agree. The dagger-category Hilb has all dagger-
equalizers, whereas Rel does not.

The existence of dagger-equalizers gives rise to strong restrictions on the properties of
a category, as indicated by the following lemma.

Theorem 2.26. In a dagger-category with dagger-equalizers and a zero object, we have
f ◦ f † = 0 ⇒ f = 0.

Proof. See Exercise Sheet 1.

2.4 Exercises

Notes and further reading

The early uses of category theory were in algebraic topology. Therefore early developments mostly
considered categories like Vect. The most general class of categories for which known methods
worked are so-called Abelian categories, for which biproducts and what we called superposition
rules are important axioms; see Freyd’s book [29]. By Mitchell’s embedding theorem, any Abelian
category embeds into ModR, the category of R-modules for some ring R, preserving all the
important structure [53]. See also [13] for an overview.

Self-duality in the form of involutive endofunctors on categories has been considered as early
as 1950 [49, 50]. A link between adjoint functors and adjoints in Hilbert spaces was made precise
in 1974 [55]. The systematic exploitation of daggers in the way we have been using them started
with Selinger in 2007 [67].

Using different terminology, Lemma 2.2 was proved in 1980 by Kelly and Laplaza [45]. The

realization that endomorphisms of the tensor unit behave as scalars was made explicit by Abram-

sky and Coecke in 2004 [4, 2]. Heunen proved an analogue of Mitchell’s embedding theorem for

Hilb in 2009 [33]. Conditions under which the scalars embed into the complex numbers are due

to Vicary [71].

28 CHAPTER 2. ABSTRACT LINEAR ALGEBRA

Chapter 3

Duals for objects

3.1 Introduction

Definition

Definition 3.1 (Dual object). An object L in a monoidal category is left-dual to an
object R, and R is right-dual to L, written L ⊣ R, when it is equipped with morphisms
η : I → R⊗ L and ε : L⊗R → I making the following two diagrams commute.

L L⊗ I L⊗ (R⊗ L)

L I ⊗ L (L⊗R) ⊗ L

ρ−1
L

idL

idL ⊗ η

α−1
L,R,L

ε⊗ idLλL

(3.1)

R I ⊗R (R⊗ L) ⊗R

R R⊗ I R⊗ (L⊗R)

λ−1
R

idR

η ⊗ idR

αR,L,R

idR ⊗ ερR

(3.2)

The maps η and ε are called the unit and counit, respectively. When L is both left and
right dual to R, we simply call L a dual of R.

29

30 CHAPTER 3. DUALS FOR OBJECTS

Graphical representation

We draw an object L as a wire with an upward-pointing arrow, and its right dual R as a
wire with a downward-pointing arrow.

L R

(3.3)

We then draw η : I → R⊗ L and ǫ : L⊗R → I as bent wires:

R L

L R
(3.4)

The duality equations then take the following graphical form:

= = (3.5)

Particularly when drawn graphically, these are also called the snake equations, for obvious
reasons.

These equations allow us to represent oriented 1d manifolds in our monoidal category.
This is one of the simplest examples of the deep connections between topology and monoidal
category theory.

Examples

Every object in FHilb is dual to itself. To construct the unit and counit maps for a finite-
dimensional Hilbert space H, we first pick a basis |i〉 for H. We then construct C

η−→ H⊗H
and H ⊗H

ǫ−→ C as follows:

η : 1 7→
∑

i

|i〉 ⊗ |i〉 (3.6)

ǫ : |i〉 ⊗ |j〉 7→ δi,j|i〉 (3.7)

We will see below that duals are unique up to isomorphism, so it doesn’t matter which
basis we pick. However, not all bases will give rise to the same maps η, ǫ.

Question. When do two orthonormal bases for a finite-dimensional Hilbert space give rise
to the same duality maps?

3.1. INTRODUCTION 31

For any finite-dimensional Hilbert space, its dual in the sense of linear algebra also gives
rise to a dual object. Since we do not make us of the inner products, this construction also
makes sense for finite-dimensional vector spaces. However, it will not work for an infinite-
dimensional vector space or Hilbert space, as the resulting infinite sum is not well-defined.

The category of finite-dimensional representations of a compact Lie group is a symmet-
ric monoidal category, and also has duals. This example is so important, it leads to the
following terminology:

Definition 3.2. A compact category is a symmetric monoidal category for which every
object has a dual.

In particle physics, particles correspond to particular representations of a Lie group, which
for the standard model is compact (ignoring spacetime symmetries.) If a particle corre-
sponds to an object P , then its antiparticle corresponds to the dual object P ∗. The unit and
counit maps then correspond physically to particle-antiparticle creation and annihilation.
In this context, the graphical calculus has a different name — Feynman diagrams.

The category Rel has duals for all objects, even for sets with infinite cardinality. Again,
the objects are self-dual. For a set S, the duality maps 1

η−→ S ⊗ S and S ⊗ S
ǫ−→ 1 are

defined in the following way:

{•} ∼η (s, s) for all s ∈ S (3.8)

(s, s) ∼ǫ {•} for all s ∈ S (3.9)

The category Set does not have duals for objects. The best way to see this is to note
that, in a category with duals, for all morphisms A

f−→ B we have the following equality:

f

A

B

= f

A

B

(3.10)

Definition 3.3. In a monoidal category with dualities A ⊣ A∗ and B ⊣ B∗, given a
morphism A

f−→ B, we define its name I
pfq−−→ A∗ ⊗ B and coname A ⊗ B∗ xfy−−→ I as the

following morphisms:

f

BA∗

f

A B∗

(3.11)

Morphisms can be recovered from their names or conames. However, in Set, the monoidal
unit object 1 is terminal, and so all conames must be equal. If Set had duals, this would
imply that all functions are equal, which is not true.

32 CHAPTER 3. DUALS FOR OBJECTS

Basic properties

We first show that units determine counits uniquely, if they exist. Similarly, counits de-
termine units uniquely.

Lemma 3.4. In a monoidal category, if (L,R, η, ǫ) and (L,R, η, ǫ′) both exhibit a duality,
then ǫ = ǫ′. Similarly, if (L,R, η, ǫ) and (L,R, η′, ǫ) both exhibit a duality, then η = η′.

Proof. For the first case, we use the following graphical argument.

ǫ

=

ǫ

ǫ′ = ǫ

ǫ′

=

ǫ′

(3.12)

The second case is similar.

Lemma 3.5. In a monoidal category, duals have the following properties:

1. L ⊣ R, L ⊣ R′ ⇔ R ≃ R′, and L ⊣ R, L′ ⊣ R ⇔ L ≃ L′;

2. L ⊣ R, L′ ⊣ R′ ⇒ L⊗R ⊣ R′ ⊗ L′;

3. I ⊣ I;

4. 0 ⊣ 0 if a zero object 0 exists;

5. L ⊣ R ⇒ L⊗⊥ ≃ ⊥ ≃ ⊥⊗R if an initial object ⊥ exists.

6. L ⊣ R ⇒ R⊗⊤ ≃ ⊤ ≃ ⊤⊗ L if a terminal object ⊤ exists.

7. L ⊣ R ⇒ L⊗ 0 ≃ R⊗ 0 ≃ 0 ≃ 0 ⊗ L ≃ 0 ⊗R if a zero object 0 exists.

Proof. See Exercise Sheet 2.

If the monoidal category has a symmetry, then a duality L ⊣ R gives rise to a duality
R ⊣ L, as we now investigate.

Lemma 3.6. In a symmetric monoidal category, L ⊣ R ⇒ R ⊣ L.

Proof. Suppose we have (L,R, η, ǫ) witnessing the duality L ⊣ R. Then we construct a
duality (R,L, η′, ǫ′) as follows, where we use the ordinary graphical calculus for the duality
(L,R, η, ǫ):

I
η′−→ L⊗R R⊗ L

ǫ′−→ I

(3.13)

3.2. INTERACTION WITH LINEAR STRUCTURE 33

Writing out the snake equations for these new duality morphisms, we see that they are
satisfied by using properties of the swap map and the snake equations for the original
duality morphisms η and ǫ.

3.2 Interaction with linear structure

We noted in Chapter 2 that linear structure does not necessarily interact well with monoidal
structure. However, in the presence of duals for objects, this sort of good interaction
is guaranteed. If you think about it, this is quite remarkable, since duals objects are
defined independently from linear structures such as superposition rules, biproducts and
zero objects. This is a reflection of the fact that, for some fundamental reason which is not
yet completely understood, topological structures and linear structures are deeply related.

Lemma 3.7. In a monoidal category, if objects A or B have a left or right dual, then for
any morphism A

f−→ B and any objects C and D,

f ⊗ 0C,D = 0A⊗C,B⊗D,

0C,D ⊗ f = 0C⊗A,D⊗B.

Proof. Use Lemma 3.5, part 7.

Lemma 3.8. In a monoidal category with biproducts, if A has a left or right dual, then
for all objects B and C the following morphisms are inverse to each other:

A⊗ (B ⊕ C) (A⊗B) ⊕ (A⊗ C)

(
idA ⊗

(
idB 0C,B

)

idA ⊗
(
0B,C idC

)
)

(
idA ⊗

(
idB
0B,C

)
idA ⊗

(
0C,B
idC

))
(3.14)

Proof. See Exercise Sheet 2.

Lemma 3.9. In a monoidal category with biproducts and a zero object, if objects A or B
have a left or right dual, then for all objects C and D and all morphisms A

f−→ B and
C

g,h−→ D,

(f ⊗ g) + (f ⊗ h) = f ⊗ (g + h), (3.15)

(g ⊗ f) + (h⊗ f) = (g + h) ⊗ f. (3.16)

34 CHAPTER 3. DUALS FOR OBJECTS

Proof. Composing the morphisms of Lemma 3.8 for B = C to obtain an endomorphism of
A⊗ (C ⊕ C), we can apply the interchange law to obtain

A⊗ (C ⊕ C)
idA⊗

(
idC 0C,C

0C,C 0C,C

)
+idA⊗

(
0C,C 0C,C

0C,C idC

)

−−−−−−−−−−−−−−−−−−−−−−−→ A⊗ (C ⊕ C). (3.17)

By that lemma, this composite is equal to the identity.
By further applications of the matrix calculus and the interchange law, we see that

f ⊗ (g + h) can be written in the following way:

f ⊗ (g + h) =
(
idB ⊗

(
idD idD

))
◦
(
f ⊗

(
g 0
0 h

))
◦
(

idA ⊗
(

idC
idC

))
(3.18)

Inserting the identity in the form of morphism 3.17, and using the interchange law and
distributivity of composition over superposition (2.7), we obtain the following.

f ⊗
(
g 0
0 h

)
=

(
f ⊗

(
g 0
0 h

))
◦
(

idA ⊗
(

idC 0C,C

0C,C 0C,C

)
+ idA ⊗

(
0C,C 0C,C

0C,C idC

))
(3.19)

=

(
f ⊗

(
g 0
0 0

))
+

(
f ⊗

(
0 0
0 h

))
(3.20)

Inserting this into equation 3.18, this gives

f ⊗ (g + h) =
(
idB ⊗

(
idD idD

))
◦
(
f ⊗

(
g 0
0 0

)
+ f ⊗

(
0 0
0 h

))
◦
(

idA ⊗
(

idC
idC

))

= f ⊗
((

idD idD
)
◦
(
g 0
0 0

)
◦
(

idC
idC

))

+ f ⊗
((

idD idD
)
◦
(

0 0
0 h

)
◦
(

idC
idC

))

= (f ⊗ g) + (f ⊗ h),

as required. The equation (g + h) ⊗ f = (g ⊗ f) + (h ⊗ f) can be proved in a similar
way.

Lemma 3.10. In a monoidal category, L ⊣ R, L′ ⊣ R′ ⇒ L⊕L′ ⊣ R⊕R′ if the necessary
biproducts exist.

3.3. THE DUALITY FUNCTOR 35

3.3 The duality functor

The dual of a morphism

Definition 3.11. For a morphism A
f−→ B and chosen dualities A ⊣ A∗, B ⊣ B∗, the right

dual B∗ f∗−→ A∗ is defined in the following way:

f ∗

A∗

B∗

:= f

A∗

B∗

=: f

A∗

B∗

(3.21)

We represent this graphically by rotating the morphism box representing f , as shown in
the third image here.

The dual can ‘slide’ along the cups and the caps of representing our dualities.

Lemma 3.12. In a symmetric monoidal category, the following equations hold:

f
=

f

f
=

f

Proof. Direct from writing out the definitions of all the components involved.

Right duality functor

Definition 3.13. For a monoidal category C in which every object X has a chosen right
dual X∗, we define the right duality functor (−)∗ : C → Cop as (X)∗ := X∗ on objects,
and (f)∗ := f ∗ on morphisms.

Lemma 3.14. The right duality functor satisfies the axioms for a functor.

Proof. See Exercise Sheet 2.

3.4 Dagger-compact categories

If our monoidal category with duality L ⊣ R is also a dagger category, we introduce the
following graphical representation for the adjoints of our unit and counit:

() †
=

() †
= (3.22)

36 CHAPTER 3. DUALS FOR OBJECTS

These adjoints provide witnesses for a duality R ⊣ L, which gives us the following lemma.

Lemma 3.15. In a monoidal dagger-category, L ⊣ R ⇒ R ⊣ L.

Proof. Direct from the requirement the axiom (f ⊗ g)† = f † ⊗ g† of a monoidal dagger-
category.

Definition 3.16. In a symmetric monoidal dagger-category, a duality L ⊣ R is a dagger-
duality if ǫ† = σR,L ◦ η, or equivalently if ǫ ◦ σR,L = η†.

Graphically, these conditions have the following representation:

= = (3.23)

In this case we can extend the graphical rules developed in Lemma 3.12.

Lemma 3.17. For a dagger-duality L ⊣ R, the following equations hold:

f
=

f

f
=

f

Definition 3.18. A dagger-compact category is a symmetric monoidal dagger-category for
which every object is equipped with a dagger-dual.

When we construct the right duality functor for a dagger-compact category, we ensure that
the chosen right duals for each object are dagger-duals.

Lemma 3.19. On a dagger-compact category, the right duality functor and the dagger-
functor commute.

Proof. See Exercise Sheet 2.

This allows us to define the conjugation functor.

Definition 3.20. On a dagger-compact category, the conjugation functor (−)∗ is defined
as the composite of the dagger-functor and the right duality functor.

Since these functors commute, it does not matter in which order we compose them. Also,
since both the dagger-functor and the right duality functor are contravariant, reversing
the direction of morphisms, the conjugation functor will be covariant, mapping A

f−→ B to
A∗ f∗−→ B∗.

3.5. QUANTUM TELEPORTATION 37

Examples

The category FHilb can be given the structure of a dagger compact category. In FHilbss

this can be done in a canonical way, since every object has a canonical basis, and hence a
canonical self-duality. The duality functor then computes transposition of matrices. Since
the adjunction functor on this category computes the conjugate transpose matrix, it is
clear that this will commute with the duality functor, as we expect from Lemma 3.19. The
conjugation functor then computes the conjugate of a matrix.

In Rel, every object also has a canonical right dual. The duality functor gives trans-
position of relations.

3.5 Quantum teleportation

We can find a basis of costates of C2 ⊗ C
2 of the form xUiy, where the Ui : C2 → C

2 are
unitaries:

Ui

C
2

C
2

(3.24)

We then prepare an initial state composed of the unit of our compact structure, along with
our initial qubit. Measuring in the basis xUiy, we are guaranteed for the effect to be the
following, for some i:

Ui

C
2

Ui

=

C
2

Ui

Ui = (3.25)

3.6 Traces and dimensions

Introduction and basic properties

In a symmetric monoidal category, we can use the existence of duals to define traces of
morphisms.

38 CHAPTER 3. DUALS FOR OBJECTS

Definition 3.21. In a symmetric monoidal category, for an object L with a right dual and
a morphism L

f−→ L, its trace TrL(f) is defined as the following scalar:

f

(3.26)

Definition 3.22. In a symmetric monoidal category, for an object L with a right dual, we
define its dimension as dim(A) := TrL(idL).

For traces and dimensions to be useful notions, we need the following lemma.

Lemma 3.23. The trace of a morphism is well-defined.

Proof. We must show that the same value is obtained whichever choice we make of right
dual and unit and counit maps. Suppose then that we have dualities (L,R, η, ǫ) and
(L,R′, η′, ǫ′), where we draw the first duality using the conventions of equations (3.3-3.4).
We draw η′ and ǫ′ as follows:

η′

R′ L ǫ′

L R′

(3.27)

We then make the following argument:

f

=
f

ǫ′

η′

=
f

ǫ′

η′

3.6. TRACES AND DIMENSIONS 39

=

f

ǫ′

η′

=

f

ǫ′

η′

=
f

ǫ′

η′

(3.28)

The nontrivial step is the third equality, where we make use of naturality of the symmetry.

This abstract trace operation has the cyclic property which we are familiar with from
ordinary linear algebra.

Lemma 3.24. For all morphisms A
f−→ B and B

g−→ A, when A and B have a right dual,
then TrA(g ◦ f) = TrB(f ◦ g).

Proof.

f

g

=

f g

=

f

g

=

f

g

=
g

f

We make use of naturality of the symmetry twice, for the second and fourth equalities.
The second and fourth equalities use properties of dual morphisms.

Further properties

Lemma 3.25. Traces have the following properties in a symmetric monoidal category:

40 CHAPTER 3. DUALS FOR OBJECTS

1. TrA⊗B(f ⊗ g) = TrA(f) ◦ TrB(g) for morphisms A
f−→ A and B

g−→ B;

2. TrA(f + g) = TrA(f) + TrA(g) for A
f,g−→ B;

3. TrA⊕B

(
f g
h j

)
= TrA(f) + TrB(j) when the biproduct A ⊕ B exists, for morphisms

A
f−→ A, B

g−→ A, A
h−→ B and B

j−→ B;

4. TrI(s) = s for a scalar I
s−→ I;

5. TrA(0A,A) = 0I,I for a zero morphism 0A,A;

6.
(

TrA(f)
)†

= TrA(f †) for a morphism A
f−→ A in a strongly compact closed category.

Proof. See Exercise Sheet 2.

This immediately gives us some properties of dimensions of objects:

1. dim(A⊗ B) = dim(A) ◦ dim(B);

2. dim(A⊕ B) = dim(A) + dim(B) when the biproduct A⊕B exists;

3. dim(I) = idI ;

4. dim(0) = 0I,I for a zero object 0.

Notes and further reading

Compact categories were first introduced by Kelly in 1972 as a class of examples in the context
of the coherence problem [43]. They were subsequently studied first from the perspective of
categorical algebra [24, 45], and later in relation to linear logic [64, 9].

The terminology “compact category” is historically explained as follows. If G is a Lie group,
then its finite-dimensional representations form a compact category. The group G can be re-
constructed from the category when it is compact [39]. Thus the name “compact” transferred
from the group to categories resembling those of finite-dimensional representations. Compact
categories and closely related nonsymmetric variants are known under an abundance of different
names in the literature: rigid, pivotal, autonomous, sovereign, spherical, ribbon, tortile, balanced,
and category with conjugates [68].

Abstract traces in monoidal categories were introduced by Joyal, Street and Verity in 1996 [41].
Definition 3.21 is one instance. In fact, Hasegawa proved in 2008 that abstract traces in a compact
category are unique [32]. The link between abstract traces and traces of matrices was made
explicit by Abramsky and Coecke in 2005 [5].

The use of dagger compact categories in foundations of quantum mechanics was initiated in
2004 by Abramsky and Coecke [4]. This was the article that initiated the study of categorical
quantum mechanics.

3.6. TRACES AND DIMENSIONS 41

The graphical calculus for dagger compact categories was worked out in detail by Selinger,
who proved its soundness [68]. In 2008 [66], he also proved that an equation holds in the graph-
ical calculus of dagger compact categories if and only if it holds in every possible instantiation
in FHilb.

The quantum teleportation protocol was discovered in 1993 by Bennett, Brassard, Crépeau,

Jozsa, Peres, and Wootters [11], and has been performed experimentally many times since, over

distances as large as 16 kilometers.

42 CHAPTER 3. DUALS FOR OBJECTS

Chapter 4

Classical structures

As we will see later, compact categories model quantum mechanics, in the sense that a no-
cloning theorem holds. This means the tensor product cannot be a (categorical) product.
So, if we want to consider classical information within our ‘quantum’ categories, we can
only consider copying and deleting operations individually, per object. This chapter does
precisely that.

4.1 Monoids and comonoids

Let’s start by making the notions of copying and deleting more precise in our setting of
symmetric monoidal categories. Clearly, copying should be an operation of type A

d−→ A⊗A.
We draw it in the following way:

d

A

AA

(4.1)

What does it mean that d ‘copies’ information? First, it shouldn’t matter if we switch
both output copies, corresponding to the requirement that σA,A ◦ d = d.

d

A

AA

=
d

A

AA

(4.2)

Secondly, if we make a third copy, if shouldn’t matter if we make it from the first or the
second copy. We can formulate this abstractly as αA,A,A ◦ (d⊗ idA)◦d = (idA⊗d)◦d, with

43

44 CHAPTER 4. CLASSICAL STRUCTURES

the following graphical representation:

d

d

A A A

A

=
d

d

A AA

A

(4.3)

Finally, remember that we think of I as the empty system. So deletion should be an
operation of type A

e−→ I. With this in hand, we can formulate what it means that both
output copies should equal the input: that ρA ◦ (idA ⊗ e) ◦ d = idA and λA ◦ (e⊗ idA) ◦ d.

d

A

A

e

=

A

A

=
d

A

A

e

(4.4)

These three properties together constitute the structure of a comonoid on A.

Definition 4.1 (Comonoid). A comonoid in a monoidal category is a triple (A, d, e) of
an object A and morphisms A

d−→ A ⊗ A and A
e−→ I satisfying equations (4.3) and (4.4).

If the monoidal category is symmetric and equation (4.2) holds, the comonoid is called
cocommutative.

The map d is called the comultiplication, and e is called the counit. Properties (4.3)
and (4.6) are coassociativity and counitality.

Some examples of comonoids:

• In Set, the tensor product is in fact a Cartesian product, so any object A carries a
unique commutative comonoid structure with comultiplication A

d−→ A× A given by
d(a) = (a, a), and the unique function A→ 1 as counit.

• In Rel, any group G forms a comonoid with comultiplication g ∼ (h, h−1g) for all
g, h ∈ G, and counit 1 ∼ •. The comonoid is cocommutative when the group is
abelian.

• In FHilb, any choice of basis |i〉 for a Hilbert space H provides it with comonoid
structure, with comultiplication A

d−→ A ⊗ A defined by |i〉 7→ |i〉 ⊗ |i〉 and counit
A

e−→ I defined by |i〉 7→ 1.

4.1. MONOIDS AND COMONOIDS 45

The comonoids in a monoidal category can be made into a category themselves. The
morphisms in this category are morphisms in the original category satisfying the comonoid
homomorphism property.

Definition 4.2 (Comonoid homomorphism). A comonoid homomorphism from a monoid
(A, d, e) to a monoid (A′, d′, e′) is a morphism A

f−→ A′ such that (f ⊗ f) ◦ d = d′ ◦ f and
e′ ◦ f = e.

You might be growing tired of “co” before every other word. Indeed, dualizing every-
thing gives the more well-known notion of a monoid. In fact, this notion is so important,
that one can almost say the entire reason for defining monoidal categories is that one can
define monoids in them.

Definition 4.3 (Monoid). A monoid in a monoidal category is a triple (A,m, u) of an
object A, a morphism A ⊗ A

m−→ A, and a point I
u−→ A, satisfying the following two

equations called associativity and unitality :

m

m

A A A

A

=

m

m

AAA

A

(4.5)

m

A

A

u

=

A

A

=
m

A

A

u

(4.6)

In a symmetric monoidal category, a monoid is called commutative when the following
equation holds.

m
=

m
(4.7)

There are many examples of monoids:

• The tensor unit I in any monoidal category can be equipped with the structure of a
monoid, with d = ρI (= λI) and e = idI .

46 CHAPTER 4. CLASSICAL STRUCTURES

• A monoid in Set gives the ordinary mathematical notion of a monoid. Any group is
an example.

• A monoid Hilb is called an algebra. The multiplication is a linear functionA⊗ A
m−→ A,

corresponding to a bilinear function A×A→ A. Hence an algebra is a set where we
can not only add vectors and multiply vectors with scalars, but also multiply vectors
with each other in a bilinear way. For example, Cn forms an algebra under pointwise
multiplication; the unit is the point (1, 1, . . . , 1).

The monoids in a monoidal category can be made into a category themselves. The mor-
phisms in this category are morphisms in the original category satisfying the monoid ho-
momorphism property.

Definition 4.4 (Monoid homomorphism). A monoid homomorphism from a monoid (A,m, u)
to a monoid (A′,m′, u′) is a morphism A

f−→ A′ such that f ◦m = m′◦(f⊗f) and u′ = f ◦u.

In a monoidal dagger-category, there is a duality between monoids and comonoids.

Lemma 4.5. If (A, d, e) is a comonoid in a monoidal dagger-category, then (A, d†, e†) is
a monoid.

Proof. Equations (4.5) and (4.6) are just (4.3) and (4.4) vertically reflected.

As we saw above, any group G gives a comonoid in Rel with d = {(g, (h, h−1g) | g, h ∈ G}.
The dagger-functor on Rel constructs converse relations, and applying this turns our ex-
ample into a monoid in Rel with multiplication G×G

m−→ G given by (g, h) ∼ gh and unit
1

u−→ G given by • ∼ 1.
For the rest of this section, we will simplify our graphical notation for monoids and

comonoids in he following way:

instead of d

A A

A

instead of

A

e

instead of m

A A

A

4.2. FROBENIUS ALGEBRAS 47

instead of

A

u

However, although our notations for d and m are related by flipping about a horizontal
axis, as are our notations for e and u, these will not necessarily be related to each other
by a dagger-functor, so some care must be taken reading this notation.

4.2 Frobenius algebras

There are various ways in which a comonoid and a monoid on the same object can interact.
In this chapter we will study one such way, namely Frobenius algebras. This turns out to
be the right notion to capture classical information. We show how this enables us to model
protocols such as state transfer and teleportation.

There are two ways in which a multiplication and a comultiplication can be composed.
Let’s start with the easiest one: comultiplication followed multiplication.

Definition 4.6. A pair of a comonoid (A, d, e) and a monoid (A,m, u) in a monoidal
category is called special when d is a retraction of m: m ◦ d = idA.

= (4.8)

Now we move on to the other order of composition: first multiplication and then
comultiplication. One way to do this that we will consider is the Frobenius law.

Definition 4.7 (Frobenius algebra via diagrams). In a monoidal category, a Frobenius
algebra is a comonoid (A, d, e) and a monoid (A,m, u) satisfying the following equation,
called the Frobenius law :

= (4.9)

In a monoidal dagger-category, when m = d† and u = e†, we call this a dagger-Frobenius
algebra.

48 CHAPTER 4. CLASSICAL STRUCTURES

Lemma 4.8. For a Frobenius algebra, the following equalities hold:

= = (4.10)

Proof. See Exercise Sheet 3.

Examples 4.9. For some examples of Frobenius algebras:

• Let A be an object in the monoidal category FHilb. Any choice of orthogonal basis
{|i〉}i=1,...,n for A endows it with the structure of a Frobenius algebra as follows.
Define A

d−→ A⊗A by linearly extending d(|i〉)) = |i〉 ⊗ |i〉, define A
e−→ C by linearly

extending e(|i〉) = 1. Then e†(z) = z
∑n

i=1 |i〉, d†(|i〉 ⊗ |i〉) = 1 and d†(|i〉 ⊗ |j〉) = 0
when i 6= j. This algebra is special when the basis is orthonormal instead of just
orthogonal.

• Any finite group G induces a Frobenius algebra in FHilb. Let A = C[G] be the
Hilbert space of linear combinations of elements of G with its standard inner product.
In other words, A has G as an orthonormal basis. Define A ⊗ A

d†−→ A by linearly
extending d†(g, h) = gh, and define C

e†−→ A by e†(z) = z · 1G — this gives an
algebra structure called the group algebra. Then define d(g) =

∑
h∈G gh

−1 ⊗ h =∑
h∈G h⊗ h−1g.

• Any group G also induces a Frobenius algebra in Rel. Define d† = {((g, h), gh) |
g, h ∈ G} : G×G→ G and e† = {(∗, 1G)} : 1 → G.

More generally, recall that a groupoid is a category whose every morphism is an
isomorphism. Any groupoid G induces a Frobenius algebra in Rel on the set G of
all morphisms in G. Define d† = {((g, f), g ◦ f) | dom(g) = cod(f)}, e† = {(∗, idx) |
x ∈ Ob(G)}.

Frobenius algebras can also be defined in a different way, closer to the way in which
they were originally conceived.

Definition 4.10 (Frobenius algebra via form). A Frobenius algebra is a monoid (A,m, u)
equipped with a form e : A→ I, such that the composite

(4.11)

forms part of a self-duality A ⊣ A. Such a form is sometimes called non-degenerate.

4.2. FROBENIUS ALGEBRAS 49

Lemma 4.11. Definitions 4.7 and 4.10 are equivalent.

Proof. See Exercise Sheet 3.

Carrying Frobenius algebra structure is essentially a finite-dimensional property. As
the following theorem shows, Frobenius algebras always have dual objects.

Theorem 4.12 (Frobenius algebras have duals). If an object (A, d, e,m, u) is a Frobenius
algebra in a monoidal category, then A = A∗ is self-dual (in the sense of Definition 3.1)
by ηA = d ◦ u and εA = e ◦m.

A A
=

A A

A A
=

A A

(4.12)

Proof. We have to verify the snake equations (3.5).

= = =

The first equality is the definition (4.12), the second equality is the Frobenius law (4.9),
and the third equality follows from unitality (4.6) and counitality (4.4). Similarly, the
other snake equation holds.

Definition 4.13. A homomorphism of Frobenius algebras is a morphism that is simulta-
neously a monoid homomorphism and a comonoid homomorphism.

Lemma 4.14. In a monoidal category, a homomorphism of Frobenius algebras is invertible.

Proof. Given Frobenius algebras on objects A and B and a Frobenius algebra homomor-
phism A

f−→ B, we construct an inverse to f as follows:

f

B

A

(4.13)

50 CHAPTER 4. CLASSICAL STRUCTURES

We can demonstrate that the composite of this with f gives the identity in one direction:

f

B

f

B

=

B

f

B

=

B

B

=

B

B

(4.14)

Here the first equality uses the comonoid homomorphism property, the second equality uses
the monoid homomorphism property, and the third equality follows from Theorem 4.12.
The other composite is also the identity by a similar argument.

We will see later that in a monoidal category with duals, the no-cloning theorem pre-
vents us from choose copying and deleting maps uniformly. But we can use this contrapos-
itively: instead of stating something negative about quantum objects (“you cannot copy
them uniformly”), we state something positive about classical objects (“you can equip
them with a non-uniform copying operation”).

Definition 4.15 (Classical structure). A classical structure in a dagger–symmetric monoidal
category is a commutative special dagger-Frobenius algebra.

Because of cocommutativity (4.2), we only need to require one half of counitality (4.4) and
one half of the Frobenius law (4.9). In fact, we need not have mentioned (co)associativity,
because it is implied by speciality (4.8) and the Frobenius law (4.9). Also, in compact
categories, the Frobenius law (4.9) implies unitality (4.4). Hence to check that (A, d, e) is
a classical structure, we only need to verify the following properties:

= = = (4.2, 4.8, 4.9)

Classical structures in Hilbert spaces

As we saw in Example 4.9, any choice of orthonormal basis for a finite-dimensional Hilbert
space A induces a Frobenius algebra structure on A. In fact, this makes A into a classical
structure, as is easy to verify. As it turns out, every classical structure in FHilb is of this
form. Given a classical structure (A, d, e), we retrieve an orthonormal basis for A by its
set of copyable states.

4.2. FROBENIUS ALGEBRAS 51

Definition 4.16 (Copyable state). A state I
x−→ A of a comonoid (A, d, e) is copyable when

(x⊗ x) ◦ ρI = d ◦ x.

x
=

x x
(4.15)

Lemma 4.17. Nonzero copyable states of a classical structure in FHilb are orthonormal.

Proof. It follows from speciality that any nonzero copyable state x has unit norm:

‖x‖ = 〈x | x〉1/2 = 〈d† ◦ d(x) | x〉1/2 = ‖d(x)‖ = ‖x⊗ x‖ = ‖x‖2.

Let x, y be nonzero copyable states and assume that 〈x | y〉 6= 0. Then:

x x x

x x y

=

x x

x y

=

xx

yx

=

x x x

x y y

In other words, 〈x | x〉〈x | x〉〈y | x〉 = 〈x | x〉〈y | x〉〈y | x〉. Since x 6= 0 also 〈x | x〉 6= 0. So we
can divide to get 〈x | x〉 = 〈x | y〉. Similarly we can find 〈y | x〉 = 〈y | y〉. Hence these inner
products are all in R, and are all equal. But then

〈x− y | x− y〉 = 〈x | x〉 − 〈x | y〉 − 〈y | x〉 + 〈y | y〉 = 0,

so x− y = 0.

To show that any classical structure comes from an orthonormal basis, we need to show
that there are ‘enough copyable states’. Unfortunately, this relies on some mathematical
results that are too deep to cover here, so we state the following lemma without proof.

Lemma 4.18. Let (A, d, e) be a classical structure in FHilb. Unless A = 0, it has a
nonzero copyable state.

Theorem 4.19 (Classical structures are bases). Classical structures on A in FHilb cor-
respond to orthonormal bases of A.

Proof. Let a classical structure be given. By Lemma 4.17, its nonzero copyable states
are orthonormal. Suppose that their linear span S is not all of A. Then we can write
A = S ⊕ S⊥ with S⊥ 6= 0. Consider the following diagram.

m

iS⊥ ⊗ iS⊥ pS ⊗ pS

m m

iS⊥ pS

S⊥ ⊗ S⊥ A⊗ A S ⊗ S

S⊥ A S

52 CHAPTER 4. CLASSICAL STRUCTURES

Because S⊥ = ker(pS) and pS ◦ iS⊥ = 0, the dashed arrow exists making the left square
commute. In other words, A⊗A

m−→ A restricts to a function S⊥ ⊗ S⊥ m−→ S⊥, making S⊥

into a classical structure in its own right. But then Lemma 4.18 gives a nonzero vector in
S⊥ ∩ S, which is a contradiction.

We have justified our definition of classical structure by intuitively thinking of it as
copying and deleting operations. As we will see later on, the axioms of a classical structure
indeed enable one to work as if handling flows of classical information. The previous
theorem really vindicates that our definition was on the right track.

Classical structures in sets and relations

As we saw in Example 4.9, any groupoid G forms a Frobenius algebra in Rel. This is a
classical structure, except that (co)commutativity is perhaps not satisfied.

Definition 4.20. An abelian groupoid is a category in which:

• every morphism is an isomorphism;

• if f and g are composable morphisms, then g ◦ f = f ◦ g. (For this equation to make
sense, f and g must necessarily be endomorphisms A→ A on some object A.)

As it turns out, every classical structure (G, d, e,m, u) in Rel is of this form! First, let’s
unravel what the conditions mean. From speciality (4.8), it quickly follows that m is single-
valued: ((g, f), h) ∈ m and ((g, f), h′) ∈ m imply h = h′. So we can write m(g, f) = h
instead of ((g, f), h) ∈ m without any problems. We will even write g ◦m f = h instead
to suggest that G is going to be a category in its own right — but don’t confuse ◦m in
G with the composition ◦ in Rel. However, a priori there might not always be an h with
g ◦m f = h! Therefore, we will use the so-called Kleene equality : x

.
= y asserts that if either

side of the equality is defined, then so is the other, and they are equal.

Lemma 4.21. Every classical structure (G, d, e,m, u) in Rel has a set U ⊆ G such that
for every f ∈ G there are unique x, y ∈ U with y ◦m f .

= f
.
= f ◦m x, namely

U = {g ∈ G | (∗, g) ∈ u}.

Proof. Unitality (4.6) means that

∀f ∈ G∃x ∈ U : f ◦m x .
= f,

∀f ∈ G∀x ∈ U : (∃g ∈ G : f ◦m x .
= g) ⇒ f ◦m x .

= f.

So if f ◦m x .
= f , then also (f ◦m x) ◦m x .

= f . By associativity (4.5) then x ◦m x is defined,
and x ◦m x

.
= x. Now suppose that f ◦m x

.
= f

.
= f ◦m x′. It follows from the Frobenius

law (4.9) that x
.
= e ◦m x′ for some e ∈ G, so that x ◦m x′ .= e ◦m x′ ◦m x′ exists. But then

x
.
= x ◦m x′ .= x′ by unitality again.

4.3. NORMAL FORMS 53

Theorem 4.22. Classical structures on G in Rel correspond to abelian groupoids whose
set of morphisms is G.

Proof. Given a classical structure G, we define a category G as follows.

• As objects, we take x ∈ U as defined by Lemma 4.21.

• As morphisms x→ y, we take those f ∈ G with y ◦m f .
= f

.
= f ◦m x.

• As identity on x we just take x itself.

• Composition is given by ◦m. This is well-defined and associative by (4.5): if x
f−→ y

and y
g−→ z, then g ◦m f .

= g ◦m y ◦m f exists.

Let x
f−→ y be a morphism. Then y ◦m f

.
= f

.
= f ◦m x, so ((y, f), (f, x)) ∈ d ◦ m. We

indicate this by annotating the left-hand side diagram below.

f

f x

y f

=
g

f x

fy

Hence, there must be g ∈ G on the right-hand side. But that means that g ◦m f .
= x and

f ◦m g .
= y, so g and f are inverses.

4.3 Normal forms

As you might expect, there are only so many ways you can copy (using d), forget (using e),
compare (using d†) and create (using e†) classical information. In fact, as long as we are
talking about connected diagrams of classical information flows, there is only one! That
is, we can prove the following theorem, which reminds one of the Coherence Theorem 1.2.

Theorem 4.23 (Spider theorem). Let (A, d, e) be a classical structure. Any connected
morphism A⊗m → A⊗n built out of d, e, id, σ,⊗ and † equals the following normal form.

n︷ ︸︸ ︷

︸ ︷︷ ︸
m

(4.16)

54 CHAPTER 4. CLASSICAL STRUCTURES

So any morphism built from d, e, id, σ,⊗, † can be built from normal forms with ⊗ and σ.

Proof. We start by ignoring the swap σ, and consider a morphism A⊗m → A⊗n built out
of , , , , and . Take one of the building blocks . Our strategy will be to
push it down, until it comes before any . What can we meet on our way down? If we
meet a , we can use unitality (4.6), and the vanishes. Using the Euler characteristic
of the diagram (regarded as a planar graph with g inner faces), we find

#

()
= m+ g − 1 + #

()
, #

()
= n+ g − 1 + #

()
.

In particular, there are enough copies of to spend on getting rid of all the . We can
also meet another . In this case we can use associativity (4.5) to push our chosen one
below the one we meet. Finally, we can meet a . This can happen in three ways:

or or .

The first case vanishes by speciality, and in the second and third cases we use the Frobenius
law (4.9) to push the below the . In the same way, we can push up all the ,
getting rid of all in the process, and end up with the desired normal form.

Next, consider diagrams that may involve swap maps as well. Pick one of them. By
naturality, we can make sure that only pieces are parallel with our swap map:

w x

y z

Since the diagram is connected, some of the other regions w, x, y, z of the diagram must
be connected to each other. Suppose w and x are connected to each other. Then they
are connected by a diagram involving strictly less swap maps than the original, so by
induction we can assume it can be brought on normal form. But then, perhaps by using
coassociativity, we can make sure that our chosen swap map comes directly above a .
So by cocommutativity, our swap map vanishes, and we are done. The same argument
holds when if y and z are interconnected.

We’re down to the case where w and y are connected to each other. Then each of
the subdiagrams w and y contain strictly less swaps than the original, and we may assume

4.4. PHASES 55

them to be on normal form. So the direct neighbourhood of our swap map looks as follows.

= = = =

Hence we can make our swap map vanish. The first equality is cocommutativity, the
second is naturality of the swap, the third is the Frobenius law, and the fourth equality is
cocommutativity again.

4.4 Phases

In quantum information theory, an interesting family of maps are phase gates : diagonal
matrices whose diagonal entries are complex numbers of norm 1. For a particular Hilbert
space equipped with a basis, these form a group under composition, which we will call the
phase group. This turns out to work fully abstractly: any classical structure in any dagger
compact category gives rise to a phase group.

Definition 4.24 (Phase). Let (A,m, u) be a classical structure. A state I
φ−→ A is called

a phase when the following equation holds.

φ

φ

= (4.17)

Its phase shift is the morphism d ◦ (φ⊗ id) : A→ A, which we denote as follows.

φ =
φ

(4.18)

Notice that the unit of a classical structure is always a phase.

Proposition 4.25. Let (A,m, u) be a classical structure in a dagger symmetric monoidal
category. Its phases form an abelian group under φ+ ψ := m ◦ (φ⊗ ψ) with unit u.

φ+ ψ
=

φ ψ
(4.19)

56 CHAPTER 4. CLASSICAL STRUCTURES

Proof. It follows from the Spider Theorem 4.23 that φ+ ψ is again a phase when φ and ψ
are phases. Since m is commutative, the phases thus form a commutative monoid.

−φ
=

φ
(4.20)

By definition (4.17), it is in fact an abelian group, with inverse −φ = (φ⊗ id) ◦ η.

The group of the previous proposition is called the phase group. Equivalently, the phase
shifts form an abelian group under composition. For example, let a classical structure on
A in FHilb be given by an orthonormal basis {|i〉}i=1,...,n. Its phases are the vectors in A
of the form

eiφ1

...
eiφn

when written on basis {|i〉}, for real numbers φi. The group operations are simply

eiφ1

...
eiφn

+

eiψ1

...
eiψn

 =

ei(φ1+ψ1)

...
ei(φn+ψn)

 , 0 =

1
...
1

 =

ei0

...
ei0

The phase shift accompanying a phase is the unitary matrix

eiφ1 0 · · · 0
0 eiφ2 · · · 0
...

...
. . .

...
0 0 · · · eiφn

 .

In Rel, the phase group of a classical structure induced by an abelian group G as in
Example 4.9, is G itself. More generally, consider an abelian groupoid G and the classical
structure in Rel it induces. Its phase group is the product group

∏
x∈Ob(G)G(x, x).

Theorem 4.26 (Generalized spider theorem). Let (A, d, e) be a classical structure. Any

4.5. STATE TRANSFER 57

connected morphism A⊗m → A⊗n built out of d, e, id, σ,⊗, † and phase shifts equals

n︷ ︸︸ ︷

∑
φ

︸ ︷︷ ︸
m

(4.21)

where φ ranges over all the phases used in the diagram.

Proof. Adapting the proof of the Spider Theorem 4.23, we can get to a normal form of the
form (4.16), with phases dangling at the bottom. But then we can propogate those phases
upwards, by the very definition of the phase group operation (4.19). When we reach the
“middle” of our diagram, all phases will have been incorporated, and we end up with the
desired form (4.21).

4.5 State transfer

Given: two qubits, one in an unknown state and one in the state |+〉 = |0〉 + |1〉.
Goal : transfer the unknown state from the first qubit to the second.
Extra challenge: apply a phase gate φ to the first qubit in the process.

We now study a protocol called state transfer. It operates by using two projections. The
first is used to condition on measurement outcomes, and the second is the “measurement
projection” (4.22) below. To be precise, consider the computational basis {|0〉, |1〉} on C

2

and the classical structure this induces. By virtue of the spider theorem, we can be quite
lax when drawing wires connected by classical structures. They are all the same morphism
anyway. For example:

= = (4.22)

is a projection C
2 ⊗ C

2 → C
2 ⊗ C

2.
The protocol consists of three steps. First, prepare the second qubit in |+〉. Second, ap-

ply the measurement projection to the compound system of both qubits. Third, condition

58 CHAPTER 4. CLASSICAL STRUCTURES

on the first qubit.

prepare second qubit

measurement projection

condition on first qubit

By the Spider Theorem 4.23, this equals the identity! Hence this protocol indeed achieves
the goal of transfering the first qubit to the second. To appreciate the power of the graphical
calculus, one only needs to compute the same protocol using matrices.

By using the generalized Spider Theorem 4.26, we can also easily achieve the extra
challenge, by the following adapted protocol.

φ =

prepare second qubit

measurement projection

condition on first qubitφ

This protocol is important in measurement-based quantum computing.

4.6* Controlled unitaries

Definition 4.27 (Controlled unitary). Let (A, d, e) be a classical structure. A controlled
unitary is a morphism A⊗ B

u−→ C satisfying the following equations.

u

u

C

B

B

A

= B

A

u

u

B

C

C

A

= C

A

(4.23)

In the category FHilb, consider the classical structure on C
n induced by a basis

{|1〉, . . . , |n〉}. Then C
n ⊗ H

u−→ K is a controlled unitary precisely when the n maps
H → K given by x 7→ u(|i〉 ⊗ x) are unitaries. In particular, in this way we can make
quantum computation gates like CNOT.

4.7. EXERCISES 59

We can model quantum teleportation by making use of a classical structure on the
object A we want to teleport, a controlled unitary, and the assumption that the scalar
dim(A) is invertible.

u

A

u

A

BobAlice

=

u

u

A

A

A

BobAlice

=

BobAlice

= dim(A)·

BobAlice

(4.24)

4.7 Exercises

Notes and further reading

The Frobenius law (4.9) is named after F. Georg Frobenius, who first studied the requirement that
A ∼= A∗ as right A-modules for a ring A in the context of group representations in 1903 [30]. The
formulation with multiplication and comultiplication we use is due to Lawvere in 1967 [47], and
was rediscovered by Quinn in 1995 [60] and Abrams in 1997 [1]. Dijkgraaf realized in 1989 that
the category of commutative Frobenius algebras is equivalent to that of 2-dimensional topological
quantum field theories [26]. For a comprehensive treatment, see the monograph by Kock [46].

Coecke and Pavlović first realized in 2007 that commutative Frobenius algebras could be used
to model the flow of classical information [22].

Theorem 4.19, that classical structures in FHilb correspond to orthonormal bases, was proved
in 2009 by Coecke, Pavlović and Vicary [23]. In 2011, Abramsky and Heunen adapted Defini-
tion 4.15 to generalize this correspondence to infinite dimensions in Hilb [6].

Theorem 4.22, that classical structures inRel are groupoids, was proved by Heunen, Contreras
and Cattaneo in 2012 [34], generalizing earlier work on the commutative case by Pavlović in
2009 [57].

The phase group was made explicit by Coecke and Duncan in 2008 [17], and later Edwards
in 2009 [28, 19].

The state transfer protocol is important in efficient measurement-based quantum computa-

tion. It is due to Perdrix in 2005 [59].

60 CHAPTER 4. CLASSICAL STRUCTURES

Chapter 5

Complementarity

In this chapter we will study what happens when we have two interacting classical struc-
tures. Specifically, we are interested in they are ‘maximally incompatible’, or complemen-
tary. In the case of qubits, such mutually unbiased bases play a pivotal role in quantum
information theory. We will show how this gets us Hadamard gates, and hence universal
quantum computation. Graphically, we will distinguish between the two (co)units and
(co)multiplications by colouring their dots differently.

5.1 Bialgebras

It turns out that complementarity can be modelled by letting the multiplication of one
observable interact with the comultiplication of the other in a way that is in many ways
opposite to the way the multiplication and the comultiplication of a single classical struc-
ture interact.

Definition 5.1. A pair of a comonoid (A, d, e) and a monoid (A,m, u) is called disconnected
when m ◦ d = u ◦ e.

= (5.1)

As far as interaction between monoids and comonoids goes, speciality and disconnect-
edness are opposite extremes. As the following proposition shows, both cannot happen
simultaneously under reasonable conditions.

Proposition 5.2. If a comonoid (A, d, e) and a monoid (A,m, u) are simultaneously special
and disconnected, and (e ◦ u) • idA = idA implies e ◦ u = idI , then A ∼= I.

61

62 CHAPTER 5. COMPLEMENTARITY

Proof. We will show that e and u are each others’ inverses. Applying equation (5.1) and
then equation (4.8) establishes e ◦ u = idA. Conversely,

= = = ,

which by assumption implies that e ◦ u = idI .

There is another way in which we can compose first multiplication and then comulti-
plication, called the bialgebra laws.

Definition 5.3 (Bialgebra). A bialgebra in a monoidal category consists of a monoid
(A,m, u) and a comonoid (A, d, e) on the same object, satisfying the following equations,
called the bialgebra laws.

= = = = (5.2)

The last equation u ◦ e = idI is not missing a picture, because we are drawing idI as
the empty picture (1.10). The following concise formulation is a good way to remember
the bialgebra laws.

Lemma 5.4. A comonoid (A, d, e) and monoid (A,m, u) form a bialgebra if and only if d
and e are monoid homomorphisms.

Proof. Just unfold the definitions. This involves showing that A ⊗ A carries a monoid
structure when A does, which we leave as an exercise.

Examples 5.5. • Considering Hilb as a monoidal category under biproducts, any
object A has a bialgebra structure given by its copying and deleting maps: d =(

1
1

)
: A→ A⊕ A, e =!A : 0 → A, u =!A : A→ 0, m =

(
1 1

)
: A⊕ A→ A.

• Any finite monoid G (in Set) induces a bialgebra in (Hilb,⊗,C) as follows. Let
A = C[G] be the Hilbert space of linear combinations of elements of G with its
standard inner product. In other words, A has G as an orthonormal basis. Define
A⊗A

m−→ A by linearly extending m(g, h) = gh, define C
u−→ A by u(z) = z · 1G, and

define d and e by linearly extending d(g) = g ⊗ g and e(g) = 1.

5.2. HOPF ALGEBRAS AND COMPLEMENTARITY 63

Notice that m and u can also make A into a Frobenius algebra as in Example 4.9, but
with different d and e. Indeed, by the following theorem, they have to be different
unless G is the trivial monoid.

• Any monoid G is a bialgebra in the monoidal category Set, by d(g) = (g, g), e(g) = ∗,
u(∗) = 1G, m(g, h) = gh.

Notice again that m and u can also make G into a Frobenius algebra in Rel as in
Example 4.9, but again, with different d and e.

• Fock space?

As far as interaction between monoids and comonoids is concerned, Frobenius algebras
and bialgebras are opposite extremes. The following theorem shows that both cannot hap-
pen simultaneously, except in the trivial case. The crux is that the Frobenius law (4.9)
equates connected diagrams, whereas the bialgebra laws (5.2) equate connected diagrams
with disconnected ones. As we saw with special and disconnected algebras in Proposi-
tion 5.2, the only object that is both connected and disconnected is the tensor unit.

Theorem 5.6 (Bialgebras cannot be Frobenius). If (A, d, e, d†, e†) is both a Frobenius
algebra and a bialgebra in a monoidal category, then A ∼= I.

Proof. We will show that u = e† and e are each others’ inverses. The bialgebra laws (5.2)
already require that e ◦ u = idI .

= = =

The first equality is counitality (4.4), the second equality is one of the bialgebra law (5.2),
and the last equality follows from Theorem 4.12.

The previous theorem is not all that surprising when we realize that e ◦ u is the dimension
of A. Equation (5.2) says that A and I have the same dimension. But notice that the
proof of the previous theorem holds equally well when we had merely required e ◦ u to be
positive and invertible, instead of e ◦ u = idI . We will in fact do this soon, but first we
consider Hopf algebras.

5.2 Hopf algebras and complementarity

A property that often goes together with bialgebras is the so-called Hopf law.

64 CHAPTER 5. COMPLEMENTARITY

Definition 5.7 (Hopf law). Let (A, d, e) be a comonoid and (A,m, u) a monoid, and
A

s−→ A a morphism. The Hopf law states m ◦ (idA ⊗ s) ◦ d = idA = m ◦ (s⊗ idA) ◦ d. The
morphism s is called the antipode.

s = = s (5.3)

The example we gave of a bialgebra C[G] induced by a finite monoid G in fact satisfies
the Hopf law if and only if the monoid is a group. The antipode C[G]

s−→ C[G] is the linear
extension of s(g) = g−1, and the algebra is then called the group algebra. In this sense
bialgebras satisfying the Hopf law are the quantum version of groups.

Proposition 5.8. Bialgebras algebras in Set satisfying the Hopf law are precisely groups.

Proof. Given a bialgebra (G, d, e,m, u, s) in Set satisfying the Hopf law, define a multipli-
cation on G by gh := m(g, h), define inverses by g−1 := s(g), and set 1 := u(∗) ∈ G. It
follows from the Hopf law (5.3) that g−1g = 1 = gg−1, and hence that G is a group.

Conversely, let G be a group. Define G
d−→ G × G by d(g) = (g, g). Similarly, define

e(g) = ∗, u(∗) = 1G, m(g, h) = gh, and s(g) = g−1. It is a quick exercise to verify that
these data satisfy the bialgebra laws (5.2) and the Hopf law (5.3).

Now, suppose we have not just a pair of a monoid and a comonoid, but a pair of classical
structures. In FHilb, this means we have chosen two bases of a single space. Then there
is a canonical choice for an antipode, and the Hopf law encodes that the two bases are
mutually unbiased.

Definition 5.9. Two bases {ei}, {e′i} of a Hilbert space H are mutually unbiased when
|〈ei | e′j〉|2 = 1/ dim(H) for all i, j.

The idea is that each of the elements of one basis make maximal angles with each of the
elements of the other basis. In other words, having perfect information about the system
in one basis reveals nothing at all in the other basis. For example, in the case of qubits, the
bases {|0〉, |1〉} and {|+〉, |−〉} are mutually unbiased. We can reformulate this graphically
as follows.

ei

e′j

e′j

ei

= (5.4)

In FHilb, basis vectors correspond to copyable states, and satisfy the following equation.

= (5.5)

5.3. STRONG COMPLEMENTARITY 65

Moreover, they form a basis, which gives a stronger version of well-pointedness.

Definition 5.10. A classical structure on A has enough copyable states when two mor-
phisms A

f,g−→ B are equal as soon as f ◦ ψ = g ◦ ψ for all copyable states I
ψ−→ A.

If
f

ψ

=
g

ψ

for all copyable states ψ, then f = g . (5.6)

Definition 5.11 (Complementarity). Two classical structures are called complementary
when they satisfy the Hopf law (5.3) for the following antipode.

s = (5.7)

Proposition 5.12. Suppose equations (5.5) and (5.6) hold. Then the Hopf law (5.3) is
equivalent to equation (5.4). Hence two orthonormal bases on a Hilbert space are mutually
unbiased if and only if the classical structures they induce are complementary.

Proof. Assume equations (5.4) and (5.5), and draw copyable states in the same color as
the classical structure that copies them. Then:

i

s

j

=

i

j

=

i i

j j

=

i j

j i

= idI =

i

j

Equation (5.6) now establishes the Hopf law (5.3). The converse is similar.

5.3 Strong complementarity

We will now investigate a strong version of complementarity, where not just the Hopf law
holds, but also the bialgebra laws. In fact, the latter will imply the former. However, as we
saw in Proposition 5.2 and Theorem 5.6, we will need to scale by an appropriate dimension
factor. This leads to a scaled version of the bialgebra laws.

66 CHAPTER 5. COMPLEMENTARITY

Definition 5.13 (Scaled bialgebra, strong complementarity). A scaled bialgebra is a pair
of a monoid (A, ,) and a comonoid (A, ,) satisfying the following equations.

= = = = (5.8)

Two classical structures are called strongly complementary when the monoid of one forms
a scaled bialgebra with the comonoid of the other.

Lemma 5.14. Suppose that the scalar is invertible. For two strongly complementary
classical structures, the following defines a monoid structure on the copyable states of .

i · j

=

i j

1

= (5.9)

In fact, this defines a submonoid of the phase group for (,).

Proof. Associativity and unitality are clear, but we have to prove that i · j and 1 are again
copyable states. For i · j:

i j

=

i j

=

i j i j

And for 1:
1

= = =
1 1

Since the scalar is invertible, 1 is a copyable state.

Lemma 5.15. Suppose that the scalar is invertible. If they have enough copyable
states, then strongly complementary classical structures satisfy the following equation.

= = (5.10)

5.3. STRONG COMPLEMENTARITY 67

Hence = dim(A).

Proof. First, use Lemma 5.14:

i j

k

=

i j

k

=

i · j

k

=

k

i · j

=

i j

k

Then, we can conclude the right equation of (5.10) from property (5.6). Similarly, for the
left equation of (5.10):

=
1

=
1

=

Finally:

= = =

and the latter equals dim(A) by the Spider Theorem 4.23 and Theorem 4.12.

Lemma 5.16. Suppose that the scalar is invertible. If two strongly complementary
classical structures have enough copyable states, then the antipode (5.7) is self-adjoint, and
is an automorphism for both classical structures.

Proof. First we prove that s = s† using Lemma 5.15.

= = =

Consequently, s preserves units. Using Lemma (5.10) again:

s
= = =

s s

Therefore s is a homomorphism of Frobenius algebras, and must be an isomorphism by
Lemma 4.14.

68 CHAPTER 5. COMPLEMENTARITY

Proposition 5.17. Suppose that the scalar is invertible. If two strongly complementary
classical structures have enough copyable states, then they are complementary.

Proof.

s = = = = =

The first equality is the definition of s, the second equality is Lemma 5.16, the third equality
is the scaled bialgebra law (5.8), the fourth equation uses the Spider Theorem 4.23 and
the scaled bialgebra law (5.8), and the last equation follows from Lemma 5.15.

The classification of pairs of complementary classical structures (i.e. mutually unbiased
bases) on a finite-dimensional Hilbert space is an open problem. But we can classify strong
complementarity completely.

Theorem 5.18. Pairs of strongly complementary classical structures on H in FHilb cor-
respond to abelian groups of order dim(H).

Proof. Let G be an abelian group of order n. Its elements form a basis {|g〉} for H = C
n.

Defining

d : |g〉 7→ |g〉 ⊗ |g〉, e : |g〉 7→ 1

m : |g〉 ⊗ |h〉 7→ 1√
n
|g + h〉 u : 1 7→

∑

g∈G

|g〉

gives classical structures (A, d, e, d†, e†) and (A,m†, u†,m, u). Moreover, (A, d, e,m, u) is a
scaled version of the group algebra, and hence forms a scaled bialgebra. Therefore these
two classical structures are strongly complementary.

For the converse, let two strongly complementary classical structures be given. By
Lemma 5.14 the copyable states of form a monoid under , and in fact a submonoid
of the phase group. But the phase group is finite, and any submonoid of a finite group is
a (sub)group itself. This already establishes the theorem, but let’s work out what inverses
look like anyway. The following equation now follows from Proposition 5.17 for any state
that is copyable under .

s
= s = =

1

5.4. APPLICATIONS 69

By Lemma 5.16 the antipode s is a homomorphism of Frobenius algebras and therefore
an isomorphism by Lemma 4.14. Thus s permutes classical points. Hence the previous
equation implies that each copyable state i has a copyable state i′ such that:

i i′

=

1

Therefore all copyable states of have inverses, and is isomorphic to the group
algebra C[G] for that abelian group G.

5.4 Applications

We can now consider some applications to quantum computation. We start by defining
CNOT gates. This gate performs a NOT operation on the second qubit if the first (control)
qubit is |1〉, and does nothing if the first qubit is |0〉. But the definition itself makes sense
for arbitrary pairs of classical structures.

CNOT := (5.11)

Proposition 5.19. Two classical structures (,) and (,) are complementary
if and only if the following equation holds.

= (5.12)

Proof. Both implications follow from one application of the Spider Theorem (4.23) and
one application of the Hopf law (5.3).

Theorem 5.20. Two complementary classical structures (,) and (,) are
strongly complementary if and only if the following equation holds.

= (5.13)

70 CHAPTER 5. COMPLEMENTARITY

Proof. First, assume strong complementarity. Then:

= = =

By naturality of the swap, the scaled bialgebra law (5.8) and Proposition 5.19.
Conversely:

= ⇒

1 2

3 4

=

1 2

3 4

⇒

2 3

1 4

=

2 2

1 4

The first implication follows from postcomposing with CNOT and Proposition 5.19. The
second implication follows from the Spider Theorem 4.23; for convenience, we have labeled
the wires to make the idenfication. The other scaled bialgebra laws follow similarly.

For the rest of this section, we work in the category FHilb, fix A = C
2, let (,)

be defined by the Z basis {|0〉, |1〉}, and define (,) to copy the X basis {|+〉, |−〉}.
Equation (5.11) now indeed reduces to the CNOT gate.

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (5.14)

The relationship between the two classical structures is |+〉 = |0〉 + |1〉, and |−〉 =
|0〉 − |1〉. Hence they are transformed into each other by the Hadamard gate.

H =
1√
2

(
1 1
1 −1

)
= H (5.15)

Thus the following equations are satisfied.

=

H

H H α

=

α

H

H

H

= (5.16)

5.4. APPLICATIONS 71

In addition to the CNOT gate, we can now also define the CZ gate abstractly. This
gate performs a Z phase shift on the second qubit when the first (control) qubit is |1〉, and
leaves it alone when the first qubit is |0〉.

Lemma 5.21. The CZ gate can be defined as follows.

CZ := H (5.17)

Proof. We can rewrite equation (5.17) as follows.

CZ =

H

H

Hence

CZ = (id ⊗H) ◦ CNOT ◦ (id ⊗H) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

This is indeed the controlled Z gate.

Proposition 5.22. 2 • CZ ◦ CZ = id.

Proof.

H

H
=

H

H

=

H

H

=

H

H

=

Qubits have the nice property that any unitary on them can be implemented via its
Euler angles. More precisely: for any unitary C

2 u−→ C
2, there exist phases ϕ, ψ, θ such

that u = Zθ ◦ Xψ ◦ Zϕ. Therefore we can implement such unitaries abstractly using just
CZ-gates and Hadamard gates.

72 CHAPTER 5. COMPLEMENTARITY

Theorem 5.23. If a unitary C
2 u−→ C

2 in FHilb has Euler angles ϕ, ψ, θ, then:

u =

ϕ ψ θ

H H

H H

(5.18)

Proof. By using the Generalized Spider Theorem 4.26 equation (5.18) reduces to

ϕ H ψ H θ H H

But by equation (5.16), this is just:

ϕ ψ θ

which equals u, by definition of the Euler angles.

5.5 Exercises

Notes and further reading

Complementarity has been a basic principle of quantum theory from very early on. It was pro-
posed by Niels Bohr in the 1920s, and is closely identified with the Copenhagen interpretation [62].
Its mathematical formulation in terms of mutually unbiased bases is due to Schwinger in 1960 [63].
The abstract formulation in terms of classical structures we used was first given by Coecke and
Duncan in 2008 [17]. Strong complementarity was first discussed in that article, and the ensuing
Theorem 5.18 is due to Coecke, Duncan, Kissinger and Wang in 2012 [18].

The applications in Section 5.4 are basic properties in quantum computation [54], and are
especially important to measurement based quantum computing [61]. See [27] for more abstract
results on Euler angles.

Bialgebras and Hopf algebras are the starting point for the theory of quantum groups [42, 70].

They have been around in algebraic form since the 1960s, when Heinz Hopf first studied them [35].

Graphical notation for them is becoming more standard now, with so-called Sweedler notation

as a middle ground [14].

Chapter 6

Copying and deleting

Our running examples of compact categories involved tensor products rather than products
or direct sums. This chapter shows there is a good reason for doing so: categorical products
might give a perfectly good example of a monoidal category, but they cannot give examples
of compact categories except in degenerate cases.

This sets “classical” categories like Set apart from more “quantum” categories like Rel

and Hilb. To see the difference between, for example, Set and Rel, we have to think about
classical and quantum information. Recall the famous no-cloning theorem, and its slightly
less well-known sibling the no-deleting theorem. They show that quantum information is
distinguished by the fact that it cannot be copied or deleted. Conversely, we will show that
tensor products equipped with uniform copying and deleting operators are (categorical)
products. But before we go into these matters, we have to review the issue of closure.

6.1 Closure

Up to now we have mostly considered objects and morphisms up to “first order”: we think
of morphisms as a transformation of the input type into the output type. But sometimes
we would like to talk about transformations of morphisms into morphisms. For example,
when we have a superposition rule as in Vect, addition of matrices yields a new matrix.

Indeed, the monoidal category Vect is able to handle “higher order” morphisms.
Namely, if V and W are vector spaces, then the set

W V = {f : V → W | f linear} (6.1)

is again a vector space, with pointwise operations such as (f + g)(x) = f(x) + g(x).
(In fact, this is the homset Vect(V,W) itself!) Thus we can talk about transformations of
morphisms as being just ordinary morphisms by encoding morphisms as vectors in function
spaces.

The vector space W V comes with nice property we might expect from such a function
space. If we have f ∈ W V and x ∈ V , then there is f(x) ∈ W . Moreover, this assignment
is linear in both f and x. In other words, there is a bilinear function V ×W V → W given

73

74 CHAPTER 6. COPYING AND DELETING

by (f, x) 7→ f(x). Hence, there is an evaluation map ev : V ⊗W V → W . Objects that
stand in such a relation to the tensor product are called exponentials in general.

Definition 6.1 (Exponential). Let A and B be objects in a symmetric monoidal category.
Their exponential is an object BA together with a map ev : A⊗ BA → B such that every
morphism f : A⊗X → B allows a unique morphism h : X → BA with f = ev ◦ (idA ⊗ h).

A⊗X B

A⊗BA

f

idA ⊗ h
ev (6.2)

The category is called closed when every pair of objects has an exponential.

For the monoidal category Hilb, equation (6.1) does not obviously give a well-defined
object: what would the inner product be? Indeed, Hilb is not closed. In finite dimension,
however, we can take the so-called Hilbert-Schmidt inner product 〈f | g〉 = Tr(f † ◦ g). In
general, objects that have duals always have exponentials!

Lemma 6.2. If an object A in a symmetric monoidal category has a dual A∗, and B is
any object, then BA := A∗ ⊗B is an exponential.

Proof. Define the evaluation map by

ev = λB ◦ (ηA ⊗ idB) ◦ αA,A∗,B : A⊗ (A∗ ⊗ B) → B.

It is now trivial to check equation (6.2).

Hence we can think of an object A in a compact category as an output type, and its dual
A∗ as the corresponding input type. According to our definitions, the previous lemma says
that compact categories are always closed. Regardless, compact categories are sometimes
also called compact closed categories.

Taking B = I in Lemma 6.2 gives an especially nice setting. We can encode morphisms
as states in this way. We repeat the definition of names and conames from Definition 3.3.

Definition 6.3 (Name, coname). The name of a morphism f : A → B in a compact
category is the morphism pfq = (idA∗ ⊗ f) ◦ ηA : I → A∗⊗B. Its coname is the morphism
xfy = εB ◦ (f ⊗ idB∗) : A⊗B∗ → I.

pfq

A∗ B

= f

BA∗
xfy

A B∗

= f

A B∗

(6.3)

This is also called map-state duality or the Choi-Jamio lkowski isomorphism. With this
preparation, we can get back to thinking about copying and deleting.

6.2. UNIFORM DELETING 75

6.2 Uniform deleting

The counit A
e−→ I of a comonoid A tells us we can ‘forget’ about A if we want to. In

other words, we can delete the information contained in A. It is perfectly possible to delete
individual systems like this. The no-deleting theorem only prohibits a systematic way of
deleting arbitrary systems.

What happens when every object in our category can be deleted systematically? In our
setting, deleting systematically means that the deleting operations respect the categorical
structure of composition and tensor products. This means that deleting is uniform, in the
sense that it doesn’t matter if we delete something right away, or first process it for a while
and then delete the result. In that case, we can say something quite dramatic.

Definition 6.4 (Uniform deleting). A monoidal category has uniform deleting if there is

a natural transformation A
eA−→ I with eI = idI , making the following diagram commute

for all objects A and B:

A⊗ B

I ⊗ I I

eA ⊗ eB eA⊗B

λI

(6.4)

We now show that uniform deleting has significant effects in a compact category.

Definition 6.5 (Preorder). A preorder is a category that has at most one morphism
A→ B for any pair of objects A,B.

Theorem 6.6 (Deleting collapse). If a compact category has uniform deleting, then it must
be a preorder.

Proof. Let A
f,g−→ B be morphisms. Naturality of e makes the following diagram commute.

A⊗B∗ I

I I

eA⊗B∗

xfy idI

eI

(6.5)

But because deleting is uniform, eI = idI . So xfy = eA⊗B∗ , and similarly xgy = eA⊗B∗ .
Hence f = g.

6.3 Uniform copying

We now move to uniform copying. The comultiplication A
d−→ A⊗A of a comonoid lets us

copy the information contained in one object A. What happens if we have this ability for
all objects, systematically?

76 CHAPTER 6. COPYING AND DELETING

Definition 6.7 (Uniform copying). A symmetric monoidal category has uniform copying
if there is a natural transformation A

dA−→ A ⊗ A with dI = ρI , satisfying equations (4.2)
and (4.3), and making the following diagram commute for all objects A,B.

dA dB

A B

A BB A

= dA⊗B

A B BA

BA

(6.6)

This turns out to be a drastic restriction on the category, as we will see in the Copying
collapse theorem below. First we need some preparatory lemmas.

Lemma 6.8. If a compact category has uniform copying, then

A∗ A A∗ A
=

A∗ A A∗ A

Proof. First, consider the following equalities.

A∗ A A∗ A =
A∗ A A∗ A

dI

(because dI = ρI)

=
dA∗⊗A

A∗ A AA∗

(by naturality of d)

=
dA∗ dA

A∗ AA A∗

(by equation (6.6))

6.3. UNIFORM COPYING 77

Let’s temporarily call this equation (∗). Then:

A∗ A A∗ A
= dA∗ dA

A∗ AA A∗

(by equation (∗))

=

dA∗ dA

A∗ A∗A A

(by equation (4.2))

=

A∗ A A∗ A

(by equation (∗))

Lemma 6.9. If a compact category has uniform copying, then σA,A = idA⊗A.

Proof.

A A

A A

=

A A

A A

=

A A

A A

=

A A

A A

The middle equation is Lemma 6.8, and the outer equations are standard operations in a
symmetric monoidal category.

Theorem 6.10 (Copying collapse). If a compact category has uniform copying, then every
endomorphism is a scalar multiple of the identity. In fact, f = Tr(f)• idA for any A

f−→ A.

78 CHAPTER 6. COPYING AND DELETING

Proof.

f

A

A

= f

A

A

= f

A

A

= f

A

A

The central equality makes use of Lemma 6.9.

Thus, if a compact category has uniform copying, all endo-homsets are 1-dimensional, in
the sense that they are in bijection with the scalars. Hence, in this sense, all objects are
1-dimensional, and the category degenerates.

6.4 Products

Let’s forget about compact structure for this section. What happens when a symmetric
monoidal category has uniform copying and deleting? When we phrase the latter property
right, it turns out to imply that the tensor product is an actual (categorical) product. First
recall what products are.

Definition 6.11 (Products). A product of two objects A,B in a category is an object
A× B together with morphisms A× B

pA−→ A and A× B
pB−→ B, such that every diagram

as below has a unique morphism 〈f, g〉 making both triangles commute.

C

A BA×BpA pB

f g
〈f, g〉

(6.7)

An object I is terminal when there is a unique morphism A
!A−→ I for every object A. A

category that has a terminal object and products for all pairs of objects is called cartesian.

For an example, let’s temporarily go back to the compact case. There, uniform deleting
implies that I is terminal. But in general, I being terminal is strictly stronger than uniform
deleting.

Lemma 6.12. Let C be a monoidal category.

6.4. PRODUCTS 79

1. If the tensor unit I is terminal, then C has uniform deleting.

2. If C is compact and has uniform deleting, then its tensor unit I is terminal.

Proof. If I is terminal, we can define !A = eA : A → I. This will automatically satisfy
naturality as well as equation (6.4). For the second part, notice that any object A has at
least one morphism A→ I, namely eA. By the deleting collapse theorem 6.6, this must be
the only morphism of that type.

Now we can make precise when tensor products are (categorical) products. We will
clearly need uniform copying and deleting. Additionally, the copying and deleting operators
have to form comonoids, and the tensor unit has to be terminal.

Theorem 6.13. The following are equivalent for a symmetric monoidal category:

• it is Cartesian; more precisely, tensor products are products;

• it has uniform copying and deleting, I is terminal, and equation (4.4) holds.

Proof. If the category is Cartesian, it is trivial to see that eA = !A and dA = 〈idA, idA〉
provide uniform copying and deleting operators that moreover satisfy (4.4). Moreover, I
is by definition terminal.

For the converse, we need to prove that A ⊗ B is a product of A and B. Define
pA = ρA ◦ (idA⊗ !B) : A⊗B → A and pB = λB ◦ (!A⊗ idB) : A⊗B → I. For given C

f−→ A
and C

g−→ B, define 〈f, g〉 = (f ⊗ g) ◦ d.

First, suppose C
m−→ A⊗B satisfies pA◦m = f and pB◦m = g; we show that m = 〈f, g〉.

〈f, g〉 =

f

dC

g

= m

dC

m

eAeB

= dA⊗B

m

eAeB

= · · ·

= dA

m

dB

eAeB

= m.

80 CHAPTER 6. COPYING AND DELETING

The second equality is our assumption, the third equality is naturality of d, the fourth
equality is equation (6.6), and the last equality follows from equation (4.4). Hence medi-
ating morphisms, if they exist, are unique: they all equal 〈f, g〉.

Finally, we show that 〈f, g〉 indeed satisfies (6.7).

pB ◦ 〈f, g〉 = f

dC

g

eA

=
dC

eC g

= g

The first equality holds by definition, the second equality is naturality of e, and the last
equality is equation (4.4). Similarly pA ◦ 〈f, g〉 = f .

6.5 Exercises

Notes and further reading

The no-cloning theorem was proved in 1982 independently by Wootters and Zurek, and Dieks [72,
25]. The categorical version we presented here is due to Abramsky in 2010 [3]. The no-deleting
theorem we presented is due to Coecke and was also published in that paper.

Theorem 6.13 is “folklore”: it has long been known by category theorists, but seems never
to have been published. Jacobs gave a logically oriented account in 1994 [37]. It should be
mentioned here that, in compact categories, products are automatically biproducts, which was
proved by Houston in 2008 [36].

The notion of closure of monoidal categories is the starting point for a large area called

enriched category theory [44]. Exponentials also play an important role in categorical logic,

namely that of implications between logical formulae.

Chapter 7

Complete positivity

In Chapter 6 we have seen that the kind of categories we consider do not support uni-
form copying and deleting. However, that does not yet guarantee they model quantum
mechanics. Classical mechanics might have copying, and quantum mechanics might not,
but statistical mechanics, for example, has no copying either. What really sets quantum
mechanics apart is the fact that uniform broadcasting is impossible. This means we have
to add another layer of structure to our categories. This chapter studies a beautiful con-
struction with which we don’t have to step outside the realm of dagger compact categories
after all. As a result, we show that broadcasting is impossible, finishing our categorical
setup capturing quantum mechanics.

The key point is that in quantum mechanics, we often do not know precisely what
pure state a system is in, but we do know that it is in one of several pure states with
certain probability. This leads to general states being convex sums of pure states, which
can conveniently be captured using density matrices — positive matrices with unit trace.
We will not concern ourselves with the trace condition. Recall that unlike superposition,
which is inherent to the physical system, these probabilities only represent our own (lack
of) knowledge about the system.

7.1 Complete positivity

We have defined states as morphisms I
ψ−→ A. Such a state is normal when ψ† ◦ ψ = idI .

In the category Hilb, normal states thus correspond to normal vectors, i.e. vectors ψ on
the unit sphere, i.e. ‖ψ‖ = 1. However, in this chapter it will be more convenient to think
of the rank 1 map ψ ◦ ψ† : A→ A induced by a (pure) state.

Definition 7.1 (Pure state). A pure state of an object A is a morphism A → A of the
form ψ ◦ ψ† for a morphism ψ : I → A with ψ† ◦ ψ = idI .

Hence pure states are by definition positive maps. Then, abstracting from the category
Hilb, general states, also called mixed states, are convex sums of pure states.

Definition 7.2 (Mixed state). A mixed state of an object A is a positive morphism A
ρ−→ A.

81

82 CHAPTER 7. COMPLETE POSITIVITY

When working in compact categories, instead of morphisms A→ B, we can equivalently
work with matrices I → A∗ ⊗ B by taking names (see Definition 3.3).

Definition 7.3 (Positive matrix). A positive matrix is a morphism I
pρq−−→ A∗ ⊗ A that is

the name of a positive morphism A
ρ−→ A.

Graphically, positive matrices are morphisms of the following form.

ρ

AA

=
√
ρ

√
ρ

B

AA

=
√
ρ

√
ρ

A A

B

(7.1)

The morphism
√
ρ and the object B are by no means unique.

Next, we of course want processes to send (mixed) states to (mixed) states. In other
words, we are only interested in morphisms A∗ ⊗ A → B∗ ⊗ B that preserve positive
matrices. Once again taking our cue from the situation in FHilb, these turn out to be the
following sort of morphisms.

Definition 7.4 (Completely positive morphism). A morphism A∗ ⊗A
f−→ B∗ ⊗B is com-

pletely positive when the following morphism B ⊗ A∗ → B ⊗ A∗ is positive.

f

A

BA

B

(7.2)

This definition looks fairly abstract, so let’s unpack it.

Theorem 7.5 (Stinespring Dilation Theorem). The following are equivalent:

1. A∗ ⊗ A
f−→ B∗ ⊗B is completely positive;

2. there is an object C and a morphism A
g−→ C⊗B making the following equation true.

f

B B

AA

= g g

C

A A

B B

(7.3)

Given a completely positive map f as in the previous theorem, the morphisms g are
called its Kraus morphisms. Similarly, the object C is called the ancilla of f . These are
not unique.

7.2. THE CP CONSTRUCTION 83

7.2 The CP construction

We will now see that completely positive morphisms behave well under our categorical
operations, and hence form a well-behaved category in their own right. Thus we will
assign to any dagger compact category C a new one called CP(C).

Lemma 7.6 (CP respects structure). In a dagger compact category:

(i) the identity map A∗ ⊗ A
id−→ A∗ ⊗ A is completely positive;

(ii) if A∗ ⊗ A
f−→ B∗ ⊗ B and B∗ ⊗ B

g−→ C∗ ⊗ C are completely positive, then so is
A∗ ⊗ A

g◦f−−→ C∗ ⊗ C;

(iii) if A∗ ⊗ A
f−→ B∗ ⊗B and C∗ ⊗ C

g−→ D∗ ⊗D are completely positive, then so is

f g g f

B B

A AC C

D D

(7.4)

Proof. This is obvious from the graphical calculus and Theorem 7.5.

idA

A

A

idA

A

A

I

f

A

f

A

g g

C C

Definition 7.7 (The CP construction). Given a dagger compact category C, we define
a new category CP(C). Its objects are the same as those of C. A morphism A → B
in CP(C) is a completely positive morphism A∗ ⊗ A

f−→ B∗ ⊗ B in C. Composition and
identities in CP(C) are as in C.

Notice that CP(C) is indeed a well-defined category by Lemma 7.6.

Lemma 7.8 (CP kills phases). Let C be a dagger compact category.

(i) There is a functor F : C → CP(C), defined by F (A) = A∗ ⊗ A and F (f) = f∗ ⊗ f .

84 CHAPTER 7. COMPLETE POSITIVITY

(ii) The functor F is faithful up to global phases. More precisely: if F (f) = F (g) for
A

f,g−→ B, then there are scalars I
φ,θ−→ I with φ • f = θ • g and φ† • φ = θ† • θ.

Proof. Part (i) is clear. Let f, g as in part (ii) be given. Define

φ =
f

f

BA θ =
f

g

BA

Then:

φ f =
f

f

BA

f

=
f

g

BA

g

= θ g

And:

φ† φ =

f

f

BA

f

f

B A

=

f

g

BA

g

f

B A

= θ† θ

This proof is completely graphical and does not depend on anything like angles.

In fact, CP(C) is not just a category, but again a dagger compact category.

Theorem 7.9 (CP is dagger compact). If C is a dagger compact category, so is CP(C).

Proof. The proof consists of verifying a lot of equations, but the graphical calculus makes
them all easy. See Table 7.1 for a dictionary. We check one equation as an example:
naturality of σ. To prove that

f g

A C

D B

=
g f

D B

A C

7.3. ENVIRONMENT STRUCTURES 85

holds in CP(C), we must prove the following equation in C.

f g

C A A C

B D D B

= g f

A CC A

D BB D

But this is clearly satisfied.

Question. What would go wrong if we insisted that morphisms in CP(C) preserve trace?

Examples

By spelling out the definition, we see that a morphism X×X R−→ Y ×Y in Rel is completely
positive when the following two properties hold for all x, x′ ∈ X and y, y′ ∈ Y :

(x′, x)R(y′, y) ⇐⇒ (x, x′)R(y, y′), (7.5)

(x′, x)R(y′, y) =⇒ (x, x)R(y, y). (7.6)

In the category Hilb, we can identify (Cn)∗ ⊗ C
n with the Hilbert space Mn of n-by-

n matrices, with inner product 〈f | g〉 = Tr(f †g). By Choi’s theorem, completely positive
morphisms Cm → C

n in Hilb are then precisely what are usually called completely positive
maps: a linear map Mm

T−→ Mn is called positive when it preserves positive matrices, and
completely positive when Mm ⊗Mk

T⊗idMk−−−−→ Mn ⊗Mk is positive. The idea behind this
usual definition is that not only T should send states to states, but also regarding T as
a local operation on a larger system should send states to states. We can now recognize
Theorem 7.5 as the Stinespring Dilation Theorem, and the CP construction of Definition 7.7
as lifting that characterization to a definition.

We can regard the ancilla system C as the “amount of probabilistic mixing” inherent
in the completely positive morphism f . Indeed, morphisms in image of the functor C →
CP(C) have ancilla system I, and hence no mixing at all. In the case of Hilb, the minimal
dimension of C make this amount more precise.

7.3 Environment structures

In categories of the form CP(C), any object A allows a morphism A
⊤A−−→ I, namely

A∗ ⊗ A
σA∗,A−−−→ A⊗ A∗ εA−→ I ∼= I∗ ⊗ I.

A A

(7.7)

86 CHAPTER 7. COMPLETE POSITIVITY

In CP(C): In C:

f : f

A

B

f

A

B

A

B

f †: f

B

A

f

B

A

B

A

f ∗: f

B

A

f

B B

A A

f∗: f

A

B

f

A A

B B

idA: A A A

g ◦ f :
f

g

A

B

C

f

g

A

B

A

B

C C

f ⊗ g: f

A

B

g

C

D

f g

A C C A

B D D B

σA,B:
A

B A

B B

A B

A A

B A

B

and similarly for c = idA, αA,B,C , α
−1
A,B,C , λA, λ

−1
A , σA,B, ηA, εA:

c: c

X

Y

c c

X

Y

X

Y

Table 7.1: The CP construction, graphically.

7.3. ENVIRONMENT STRUCTURES 87

We can think of this morphism as tracing out the system A: if I
pρq−−→ A∗ ⊗A is the matrix

of a map A
ρ−→ A, then ⊤A ◦ pρq = Tr(ρ) : I → I by Definition 3.21. As it turns out, we

can axiomatize whether a given abstract category is of the form CP(C) in this way.

Definition 7.10 (Environment structure). An environment structure for a dagger compact
category C consists of the following data:

• a dagger compact category Ĉ of which C is a dagger compact subcategory, that
satisfies Ob(Ĉ) = Ob(C);

• for each object A, a morphism A
⊤A−−→ I, depicted as ;

satisfying the following properties:

(i) ⊤I = idI and ⊤A⊗B = (⊤A ⊗⊤B) ◦ λI ;

I
= ,

A B
=

A B
(7.8)

(ii) for all A
f,g−→ C ⊗B in C:

f f

C

A A

B B

= g g

C

A A

B B

in C ⇐⇒ f

A

B

= g

A

B

in Ĉ; (7.9)

(iii) for each A
f̂−→ B in Ĉ there is A

f−→ C ⊗ B such that

f

A

B

= f

A

B

in Ĉ. (7.10)

Morphisms in Ĉ are depicted with round corners.

Intuitively, we think of C as consisting of pure states, and the supercategory Ĉ of con-
taining mixed states. Condition (7.10) then reads that every mixed state can be regarded
as a pure state in an extended system. The idea behind the ground symbol is that the
ancilla system becomes the ‘environment’, into which our system is plugged.

88 CHAPTER 7. COMPLETE POSITIVITY

Starting with a dagger compact category C, write D for the image of the functor
C → CP(C. Explicitly, D is the subcategory of CP(C) whose morphisms can be written
with ancilla I. (Don’t forget that C → CP(C) is not faithful, see Lemma 7.8!) This
category D is clearly dagger compact again. Then D has an environment structure with
D̂ = CP(C), and ⊤A given by (7.7). Conversely, having an environment structure is
essentially the same as working with a category of completely positive morphisms, as the
following theorem shows.

Theorem 7.11. If a dagger compact category C comes with an environment structure,
then there is an invertible functor ξ : CP(C) → Ĉ that satisfies ξ(A) = A on objects and
ξ(f ⊗ g) = ξ(f) ⊗ ξ(g) on morphisms.

Proof. Define ξ by ξ(A) = A on objects, and as follows on morphisms.

ξ

f f

C

A A

B B

= f

A

B

This is indeed functorial by (7.8):

ξ(g ◦ f) = ξ

 f f

g g

=

f

g

=

f

g

= ξ(g) ◦ ξ(f).

It is obvious that the functor ξ is invertible: (7.9) shows that it faithful, and (7.10) shows
that it is full. Finally, by (7.8):

ξ

 g f f g

= f g = f g

So ξ(f ⊗ g) = ξ(f) ⊗ ξ(g).

Environment structures give us a convenient way to graphically handle categories of
completely positive maps, because we do not have to “double” the pictures all the time.

7.4. EXERCISES 89

7.4 Exercises

Notes and further reading

The use of completely positive maps originated for algebraic reasons in operator algebra theory,
and dates back at least to 1955, when Stinespring proved his dilation theorem [69]. Quantum
information theory could be said to have grown out of operator algebra theory, and repurposed
completely positive maps. See also the textbooks [56, 12].

The CP construction is due to Selinger in 2007 [65]. Coecke and Heunen subsequently realized
in 2011 that compactness is not necessary for the construction, and it therefore also works for
infinite dimensional Hilbert spaces [20].

Environment structures are due to Coecke [15, 21].

The no-broadcasting theorem was proved in 1996 and is due to Barnum, Caves, Jozsa, Fuchs

and Schumacher [8].

90 CHAPTER 7. COMPLETE POSITIVITY

Bibliography

[1] Lowell Abrams. Frobenius algebra structures in topological quantum field theory and
quantum cohomology. PhD thesis, Johns Hopkins University, 1997.

[2] Samson Abramsky. Abstract scalars, loops, and free traced and strongly compact
closed categories. In Algebra and Coalgebra in Computer Science, CALCO’05, pages
1–30. Springer, 2005.

[3] Samson Abramsky. No-cloning in categorical quantum mechanics. In Simon Gay
and Ian Mackey, editors, Semantic Techniques in Quantum Computation, pages 1–28.
Cambridge University Press, 2010.

[4] Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols.
In Logic in Computer Science 19, pages 415–425. IEEE Computer Society, 2004.

[5] Samson Abramsky and Bob Coecke. Abstract physical traces. Theory and Applications
of Categories, 14(6):111–124, 2005.

[6] Samson Abramsky and Chris Heunen. H*-algebras and nonunital Frobenius algebras:
first steps in infinite-dimensional categorical quantum mechanics. Clifford Lectures,
AMS Proceedings of Symposia in Applied Mathematics, 2011.

[7] John Baez and James Dolan. Higher-dimensional algebra and topological quantum
field theory. Journal of Mathematical Physics, 36:6073–6105, 1995.

[8] Howard Barnum, Carlton M. Caves, Chris A. Fuchs, Richard Jozsa, and Benjamin
Schumacher. Noncommuting mixed states cannot be broadcast. Physical Review
Letters, 76(15):2818–2821, 1996.

[9] Michael Barr. *-autonomous categories, volume 752 of Lecture Notes in Mathematics.
Springer, 1979.

[10] Jean Bénabou. Categories avec multiplication. Comptes Rendus de l’Acadmie des
Sciences. Série I. Mathmatique, pages 1887–1890, 1963.

[11] Charles H. Bennett, Giles Brassard, Claue Crépeau, Richard Jozsa, Asher Peres, and
William K. Wootters. Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels. Physical Review Letters, 70:1895–1899, 1993.

91

92 BIBLIOGRAPHY

[12] Rejandra Bhatia. Positive definite matrices. Princeton University Press, 2007.

[13] Francis Borceux. Handbook of Categorical Algebra. Encyclopedia of Mathematics and
its Applications 50–52. Cambridge University Press, 1994.

[14] Stephen U. Chase and Moss Sweedler. Hopf algebras and Galois theory. Number 97
in Lecture Notes in Mathematics. Springer, 1969.

[15] Bob Coecke. De-linearizing linearity: projective quantum axiomatics from strong
compact closure. In Peter Selinger, editor, QPL 5, volume 170 of Electronic Notes in
Theoretical Computer Science, pages 49–72, 2007.

[16] Bob Coecke, editor. New structures for physics. Number 813 in Lecture Notes in
Physics. Springer, 2011.

[17] Bob Coecke and Ross Duncan. Interacting quantum observables. In International
Colloquium on Automata, Languages and Programming, volume 5126 of Lecture Notes
in Computer Science, pages 298–310. Springer, 2008.

[18] Bob Coecke, Ross Duncan, Aleks Kissinger, and Quanlong Wang. Strong complemen-
tarity and non-locality in categorical quantum mechanics. to appear, 2012.

[19] Bob Coecke, Bill Edwards, and Robert W. Spekkens. Phase groups and the origin
of non-locality for qubits. In Bob Coecke, Prakash Panangaden, and Peter Selinger,
editors, QPL 9, volume 270 of Electronic Notes in Theoretical Computer Science,
pages 15–36, 2011.

[20] Bob Coecke and Chris Heunen. Pictures of complete positivity in arbitrary dimension.
Proceedings of QPL 2011, 2011.

[21] Bob Coecke, Éric O. Paquette, and Simon Perdrix. Bases in diagrammatic quantum
protocols. In Mathematical Foundations of Programming Semantics 24, volume 218
of Electronic Notes in Theoretical Computer Science, pages 131–152. Elsevier, 2008.

[22] Bob Coecke and Duško Pavlović. Quantum measurements without sums. In Mathe-
matics of Quantum Computing and Technology. Taylor and Francis, 2007.

[23] Bob Coecke, Duško Pavlović, and Jamie Vicary. A new description of orthogonal
bases. Mathematical Structures in Computer Science, 2009.

[24] Brian J. Day. Note on compact closed categories. Journal of the Australian Mathe-
matical Society, Series A 24(3):309–311, 1977.

[25] Dennis Dieks. Communication by EPR devices. Physics Letters A, 92(6):271–272,
1982.

[26] Robbert Dijkgraaf. A geometric approach to two dimensional conformal field theory.
PhD thesis, University of Utrecht, 1989.

BIBLIOGRAPHY 93

[27] Ross Duncan and Simon Perdrix. Graph states and the necessity of euler decompo-
sition. In Klaus Ambos-Spies, Benedikt Löwe, and Wolfgang Merkle, editors, Com-
putability in Europe, volume 5635 of Lecture Notes in Computer Science, pages 167–
177. Springer, 2009.

[28] Bill Edwards. Non-locality in categorical quantum mechanics. PhD thesis, Oxford
University, 2009.

[29] Peter Freyd. Abelian Categories: An introduction to the theory of functor. Harper
and Row, 1964.

[30] F. Georg Frobenius. Theorie der hyperkomplexen grössen. Sitzungsberichte der
Koniglich Preussischen Akademie Der Wissenschaften, 24:504–537; 634–645, 1903.

[31] Alexandre Grothendieck. Pursuing stacks. Documents Mathématiques, Société
Mathétique de France, 1983. Letter to Daniel Quillen.

[32] Masahito Hasegawa. On traced monoidal closed categories. Mathematical Structures
in Computer Science, 19:217–244, 2008.

[33] Chris Heunen. An embedding theorem for Hilbert categories. Theory and Applications
of Categories, 22(13):321–344, 2009.

[34] Chris Heunen, Ivan Contreras, and Alberto S. Cattaneo. Relative Frobenius algebras
are groupoids. to appear in Journal of Pure and Applied Algebra, 2012.

[35] Heinz Hopf. Über die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallge-
meinerungen. Annals of Mathematics, 42:22–52, 1941.

[36] Robin Houston. Finite products are biproducts in a compact closed category. Journal
of Pure and Applied Algebra, 212(2):394–400, 2008.

[37] Bart Jacobs. Semantics of weakening and contraction. Annals of Pure and Applied
Logic, 69:73–106, 1994.

[38] André Joyal and Ross Street. The geometry of tensor calculus I. Advances in Mathe-
matics, 88:55–113, 1991.

[39] André Joyal and Ross Street. An introduction to Tannaka duality and quantum
groups. In Category Theory, Part II, volume 1488 of Lecture Notes in Mathematics,
pages 411–492. Springer, 1991.

[40] André Joyal and Ross Street. Braided tensor categories. Advances in Mathematics,
102:20–78, 1993.

[41] André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 3(447–468), 1996.

94 BIBLIOGRAPHY

[42] Christian Kassel. Quantum Groups. Springer, 1995.

[43] G. Max Kelly. Many variable functorial calculus (I). In Coherence in Categories,
volume 281 of Lecture Notes in Mathematics, pages 66–105. Springer, 1970.

[44] G. Max Kelly. Basic Concepts of Enriched Category Theory. Cambridge University
Press, 1982.

[45] G. Max Kelly and Miguel L. Laplaza. Coherence for compact closed categories. Journal
of Pure and Applied Algebra, 19:193–213, 1980.

[46] Joachim Kock. Frobenius algebras and 2-D Topological Quantum Field Theories. Num-
ber 59 in London Mathematical Society Student Texts. Cambridge University Press,
2003.

[47] F. William Lawvere. Ordinal sums and equational doctrines. In Beno Eckmann, editor,
Seminar on triples and categorical homology theory, number 80 in Lecture Notes in
Mathematics, pages 141–155, 1967.

[48] Tom Leinster. Higher operads, higher categories. Number 298 in London Mathematical
Society Lecture Note Series. Cambridge University Press, 2004.

[49] Saunders Mac Lane. Duality for groups. Bulletin of the American Mathematical
Society, 56(6):485–516, 1950.

[50] Saunders Mac Lane. An algebra of additive relations. Proceedings of the National
Academy of Sciences, 47:1043–1051, 1961.

[51] Saunders Mac Lane. Natural associativity and commutativity. Rice University Studies,
49:28–46, 1963.

[52] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 2nd edition,
1971.

[53] Barry Mitchell. Theory of Categories. Academic Press, 1965.

[54] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation. Cambridge University Press, 2000.

[55] Paul H. Palmquist. Adjoint functors induced by adjoint linear transformations. Pro-
ceedings of the American Mathematical Society, 44(2):251–254, 1974.

[56] Vern Paulsen. Completely bounded maps and operators algebras. Cambridge University
Press, 2002.

[57] Duško Pavlović. Quantum and classical structures in nondeterministic computation.
In P. Bruza et al., editor, Third International symposium on Quantum Interaction,
volume 5494 of Lecture Notes in Artificial Intelligence, pages 143–157. Springer, 2009.

BIBLIOGRAPHY 95

[58] Roger Penrose. Applications of negative dimensional tensors. In Combinatorial math-
ematics and its applications, pages 221–244, 1971.

[59] Simon Perdrix. State transfer instead of teleportation in measurement-based quantum
computation. International journal of quantum information, 3(1):219–223, 2005.

[60] Frank Quinn. Lectures on axiomatic topological quantum field theory. In Geometry
and quantum field theory, pages 323–453. American Mathematical Society, 1995.

[61] Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Physical
Review Letters, 86(22):5188, 2001.

[62] Léon Rosenfeld. Foundations of Quantum Physics II, chapter Complementarity:
Bedrock of the quantal description, pages 284–285. Number 7 in Niels Bohr, col-
lected works. Elsevier, 1996.

[63] Julian Schwinger. Unitary operator bases. Proceedings of the National Academy of
Sciences: Physics, 46:570–579, 1960.

[64] Robert A. G. Seely. Linear logic, ∗-autonomous categories and cofree coalgebras.
In Categories in Computer Science and Logic, volume 92, pages 371–382. American
Mathematical Society, 1989.

[65] Peter Selinger. Dagger compact closed categories and completely positive maps. In
Quantum Programming Languages, volume 170 of Electronic Notes in Theoretical
Computer Science, pages 139–163. Elsevier, 2007.

[66] Peter Selinger. Finite dimensional Hilbert spaces are complete for dagger compact
closed categories. In Quantum Physics and Logic, Electronic Notes in Theoretical
Computer Science, 2008.

[67] Peter Selinger. Idempotents in dagger categories. In Quantum Programming Lan-
guages, volume 210 of Electronic Notes in Theoretical Computer Science, pages 107–
122. Elsevier, 2008.

[68] Peter Selinger. A survey of graphical languages for monoidal categories. In New
Structures for Physics, Lecture Notes in Physics. Springer, 2009.

[69] W. Forrest Stinespring. Positive functions on C*-algebras. Proceedings of the American
Mathematical Society, pages 211–216, 1955.

[70] Ross Street. Quantum Groups: a path to current algebra. Number 19 in Australian
Mathematical Society Lecture Series. Cambridge University Press, 2007.

[71] Jamie Vicary. Completeness of †-categories and the complex numbers. Journal of
Mathematical Physics, 52:082104, 2011.

96 BIBLIOGRAPHY

[72] William K. Wootters and Wojciech H. Zurek. A single quantum cannot be cloned.
Nature, 299:802–803, 1982.

Index

Adjoint, 24, 26
Algebra, 46

disconnected, 61
special, 47

Ancilla, 82
Antipode, 63, 65
Associator, 2

Basis
Mutually unbiased, 64

Bialgebra, 62
scaled, 65

Biproduct, 21
dagger, 26

Category
Cartesian, 78
compact closed, 74
monoidal closed, 74
skeletal, 3
well-pointed, 11

Choi-Jamio lkowski, 74
Classical structure, 50
Classical structures

Complementary, 65
CNOT gate, 69
Coherence, 2, 3
Comonoid, 44

homomorphism, 45
Complementarity, 65

strong, 65
Coname, 31, 74
Copyable state

enough, 65
CZ gate, 71

Dagger-category, 24

Dagger-functor, 24
Dual object, 29

left, 29
right, 29

Environment structure, 87
Equalizer

dagger, 27
Euler angles, 71
Evaluation, 74
Exponential, 74

Fock space, 63
Frobenius algebra, 47

homomorphism, 49

Group algebra, 48, 62, 64
Groupoid, 48

abelian, 52

Hadamard gate, 70
Hilbert space, 7
Hopf law, 63

Initial object, 19
Inner product

Hilbert-Schmidt, 74
Interchange law, 4
Isometry, 26

Map-state duality, 74
Matrix

positive, 82
Monoid, 45

homomorphism, 46
Monoidal category, 2

braided, 13

97

98 INDEX

dagger, 26
strict, 3
symmetric, 14

Morphism
completely positive, 82
Kraus, 82
positive, 26
zero, 19

Name, 31, 74
Normal form, 53

Object
initial, 19
terminal, 19, 78
zero, 19

Phase, 55
Phase group, 56
Phase shift, 55
Preorder, 75
Product, 78

Relation, 9

Scalar, 17
Scalar multiplication, 18
Self-adjoint, 26
Snake equation, 30
Spider theorem, 53

generalized, 56
State, 11

copyable, 50
entangled, 12
joint, 12
mixed, 81
product, 12
pure, 81
separable, 12

State transfer, 57
Superposition rule, 20

Teleportation, 58
Tensor product, 2
Terminal object, 19

Trace, 37

Uniform copying, 75
Uniform deleting, 75
Unit object, 2
Unitary, 26

controlled, 58
Unitor, 2

Well-pointed, 65

Zero
morphism, 19
object, 19

	Monoidal categories
	Monoidal categories
	Graphical calculus
	Examples
	States
	Braiding and Symmetry
	Exercises

	Abstract linear algebra
	Scalars
	Superposition
	Adjoints and the dagger-functor
	Exercises

	Duals for objects
	Introduction
	Interaction with linear structure
	The duality functor
	Dagger-compact categories
	Quantum teleportation
	Traces and dimensions

	Classical structures
	Monoids and comonoids
	Frobenius algebras
	Normal forms
	Phases
	State transfer
	Controlled unitaries
	Exercises

	Complementarity
	Bialgebras
	Hopf algebras and complementarity
	Strong complementarity
	Applications
	Exercises

	Copying and deleting
	Closure
	Uniform deleting
	Uniform copying
	Products
	Exercises

	Complete positivity
	Complete positivity
	The CP construction
	Environment structures
	Exercises

	Bibliography
	Index

