
Modularity and Web Ontologies

Bernardo Cuenca Grau ∗

Information Management Group
School of Computer Science
University of Manchester, UK

bcg@cs.man.ac.uk

Bijan Parsia and Evren Sirin and Aditya Kalyanpur
Maryland Information and Network Dynamics Lab.

8400 Baltimore Av.
College Park, MD, 20740 USA

bparsia@isr.umd.edu, {evren,aditya}@cs.umd.edu

Abstract
Modularity in ontologies is key both for large scale ontology
development and for distributed ontology reuse on the Web.
However, the problems of formally characterizing a modular
representation, on the one hand, and of automatically iden-
tifying modules within an OWL ontology, on the other, has
not been satisfactorily addressed, although their relevance has
been widely accepted by the Ontology Engineering and Se-
mantic Web communities.
In this paper, we provide a notion of modularity grounded on
the semantics of OWL-DL. We present an algorithm for auto-
matically identifying and extracting modules from OWL-DL
ontologies, an implementation and some promising empirical
results on real-world ontologies.

Introduction and Motivation
In Ontology Engineering, as in Software Engineering, mod-
ularity is a much praised virtue. Modular representations
(or programs) are easier to understand, verify, debug, ex-
tend, reuse parts of, and thus facilitate collaborative devel-
opment. For Web ontologies, where the collaboration is, in
large part, uncoordinated, it is often not enough that the on-
tology be modular in a general sense, but that, for a large
ontology, there are extractable parts that can be reused out-
side the context of the original ontology. Furthermore, there
is the expectation that those fragments are not arbitrary, but
maintain some relation to the meaning of those parts in the
original context. Indeed, if the fragments are “modules”,
one would expect that their extraction preserves key aspects
of their embedded meaning.
However, the problems of formally characterizing a mod-

ular representation, on the one hand, and of automatically
identifying modules within an ontology, on the other, have
not been satisfactorily addressed in the Ontology Engineer-
ing and Semantic Web literature, although their relevance
has been widely accepted by those communities.
Basic to a clear notion of modular decomposition of a log-

ical theory (such as an ontology) is an account of the the
correctness of that decomposition. In (Garson 1989), James
Garson proposed a criterion of validity for fragments of a

∗This author is is supported by the EU Project TONES (Think-
ing ONtologiES) ref: IST-007603.
Copyright c� 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

logical theory. A fragment T � of a theory T is a logical
module just if, for some background logic:
• It is locally correct, i.e. any sentence provable in T �

should be provable in T .
• It is locally complete, i.e. every sentence in the signature
of T � that is provable in T should be provable in T �.
The intuition is simple: modular fragments of a theory

should entail all and only the entailments regarding its “sub-
ject matter” that the original theory entailed. When a logi-
cal module is extracted from its original context, no conse-
quences in the signature of the module are lost and no new
consequences are obtained. Thus, from a model-theoretic
perspective, logical modules are self-contained units within
an ontology that can be safely extracted without adding or
removing entailments in the signature of other modules.
Local correctness is a direct consequence of the

monotonicity of a logic and it is a trivial property to show for
the ontology languages we are concerned with. Local com-
pleteness is a strengthening of uniform interpolation (Pitts
1992) (Wolter 1998) in that the interpolant T � is required to
be a subset of the parent theory T . Contrary to local cor-
rectness, the notion of local completeness poses two major
difficulties:
1. Given that, in FOL as well as in Description Logics, con-
tradictions entail everything, every consistent fragment of
an inconsistent ontology will fail to be locally complete.
Garson uses this fact, plus the difficulty of determining
the consistency of a large evolving FOL theory, to argue
that FOL is not a proper logic for modular KR.

2. Very few logics are known to have uniform interpolation
and it is unlikely that the expressive Description Logics
underlying OWL-Lite and OWL-DL do. In particular, the
solution, as well as the theoretical solvability, of the fol-
lowing problems remains an open question for the logics
underlying OWL-Lite and OWL-DL:
(a) Given a fragment T � of an ontology T , is T � a uniform

interpolant of T ?
(b) Given an ontology T and a signature S ⊆ Sig(T),

is there a uniform interpolant T � of T such that
Sig(T �) = S?

In this paper, we address these issues as follows: first, in
a Description Logic setting, where there is a decision pro-

198

cedure for consistency checking that is practical for realistic
KBs (Horrocks & Sattler 2005)(Horrocks, Sattler, & Tobies
2000), it is reasonable to demand that an ontology be con-
sistent; second, although we do not provide a general so-
lution for 2a) and 2b), we will be able to ensure that the
modules obtained using our algorithms are indeed uniform
interpolants of the parent ontology.
Unlike (Garson 1989) and (MacCartney et al. 2003), we

are concerned with reusing parts of ontologies, not just for
improving reasoning performance, but also for the sake of
intelligibility for humans and effective reuse. Thus, we aim
at fulfilling the following additional desiderata:
• Modules should be easily reusable for applications.
• Modules should be intelligible, that is, they should make
sense to ontology engineers seeking to (re)use them.
In particular, in Semantic Web applications, reuse often

boils down to the following task: given a concept name in
the ontology that we want to “borrow”, provide the axioms
in the ontology that are “relevant” to its meaning.
Enforcing modules to be logical, in Garson’s sense, is not

sufficient for addressing these additional requirements.
In order to provide effective reuse, our definition of a

module will be relative to a concept name in the signature of
the ontology, such that each name will be assigned a (single)
module. Reusing a concept then boils down to retrieving its
corresponding module within the ontology. In order to im-
prove intelligibility, our goal will be to obtain modules that
deal with a well-defined subject matter within the ontology.
Thus, in this paper, we aim at formalizing and solving the

following problem:
• Given a concept name A and an ontology T , retrieve a
fragment T �

A ⊆ T such that:
1. it is a logical module of T .
2. it captures the meaning of A in T in a sensible, well-
understood way.

3. it represents a well-defined subject matter.
Formalizing 1) is straightforward. The formalization of 2)

and 3) is indeed more controversial.
In this paper, we argue that a notion of modularity

that meets the requirements listed in this section is indeed
achievable and propose a formal definition of module as well
as an algorithm for quickly identifying and retrieving mod-
ules within an OWL-DL ontology. We investigate which
OWL-DL ontologies can be “safely” modularized accord-
ing to our notion of modularity; in particular, we enforce the
ontologies to:
• be consistent.
• contain no unsatisfiable concepts.
• contain no “dangerous” General Concept Inclusion Ax-
ioms (GCIs).
Ontology inconsistency and concept unsatisfiability can

be effectively determined using a DL reasoner, such as
RACER, FaCT++ or Pellet, and are considered to be seri-
ous semantic defects that significantly corrupt the intended
semantics of the ontology. We understand that these defects

need to be resolved and assume that they have been fixed
prior to the modularization process. A more controversial
issue is how to characterize “dangerous” GCIs. Intuitively,
GCIs may impose semantic constraints on the ontology as
a whole; extracting a fragment from its context in the pres-
ence of these GCIs may yield to unexpected consequences.
In this paper, we provide a formal notion of safe ontology.
For safe ontologies, we guarantee local correctness and com-
pleteness for the retrieved modules and show that modules
can be identified in polynomial time without any user in-
tervention. We describe an implementation of our modular-
ization algorithm based on Manchester’s OWL-API (Bech-
hofer, Lord, & R.Volz 2003), and the open source ontology
editor Swoop (Kalyanpur et al. 2005), as well as some em-
pirical results on real-world ontologies. Finally, we provide
an insight on how to interpret the retrieved modules from a
modeling perspective.

Preliminaries
In this Section, we introduce the logic SHOIQ (Horrocks
& Sattler 2005) and the notions of uniform interpolation and
logical module in the context of DLs.
Before going into formal details, it is worth mention-

ing that OWL-DL is a notational variant of the Descrip-
tion Logic SHOIN (D) (Horrocks, Patel-Schneider, & van
Harmelen 2003). Our results apply to the logic SHOIQ
instead, which presents some subtle differences with respect
to OWL-DL:

1. SHOIQ generalizes the cardinality restrictions in OWL-
DL to qualified cardinality restrictions.

2. OWL-DL provides support for datatypes.

For ease of presentation, we have decided not to consider
datatypes in this paper. Our results, however, can be easily
extended, and datatypes are indeed supported in our imple-
mentation.

The Description Logic SHOIQ
Let C,R be countably infinite and pair-wise disjoint sets of
concept and role names and let I ⊆ C be a set of nominals.
We will denote concept and role names with capital letters
A,B and R,S respectively; nominals will be denoted with
lowercase letters a, b, c.
The set of SHOIQ-roles (roles, for short) is the setR ∪

{Inv(R)|R ∈ R}, where Inv(R) denotes the inverse of a role
R. Concepts are inductively using the following grammar:

C ← A|¬C|C1 � C2|∃R.C| ≥ nS.C

whereA ranges over concept names (including nominals),
C(i) over concepts, R over roles, S over simple roles 1, and
n over positive integers. We use the following abbreviations:
C �D stands for ¬(¬C � ¬D); � and ⊥ stand for A � ¬A
and A�¬A respectively; finally, we use ∀R.C and≤ nS.C
as a shorthand for ∃R.¬C and ¬(≥ n + 1S.C) respectively.

1See (Horrocks & Sattler 2005) for a precise definition of sim-
ple roles.

199

A role inclusion axiom is an expression of the form R1 �
R2, where R1, R2 are roles. A transitivity axiom is an ex-
pression of the form Trans(R), where R ∈ R. For C,D
concepts, a general concept inclusion axiom (GCI) is an ex-
pression of the form C � D. A TBox T is a finite set of
concept inclusion axioms, role inclusion axioms and transi-
tivity axioms.
An interpretation I is a pair I = (∆I , .I), where ∆I is

a non-empty set, called the domain of the interpretation, and
.I is the interpretation function. The interpretation function
assigns to each A ∈ C a subset of ∆I and to each R ∈ R
a subset of of ∆I ×∆I . For a nominal a, the set aI ⊆ ∆I
is additionally required to be a singleton. The interpretation
function extends to complex concept as follows:

(C �D)I = C
I ∩D

I

(¬C)I = ∆I \ C
I

(∃R.C)I = {x ∈ ∆I | ∃y.�x, y� ∈ R
I ∧ y ∈ C

I}
(≥ nR.C)I = {x ∈ ∆I |

#({y ∈ ∆I | �x, y� ∈ R
I ∧ y ∈ C

I}) ≥ n}

The satisfaction of a SHOIQ axiom α in an interpre-
tation I, denoted I |= α, is defined as follows: (1) I |=
R1 � R2 iff (R1)I ⊆ (R2)I ; (2) I |= Trans(R) iff for
every x, y, z ∈ ∆I , if �x, y� ∈ RI and �y, z� ∈ RI , then
�x, z� ∈ RI ; (3) I |= C � D iff CI ⊆ DI . The interpreta-
tion I is a model of the TBox T if it satisfies all the axioms
in T .
A concept C is satisfiable relative to T if there is a model

I of T such thatCI �= ∅. We say that C subsumes D relative
to T if, for every model I of T , CI ⊆ DI .

Logical Modules and Uniform Interpolation
We now introduce uniform interpolation for TBoxes. A
signature S ⊆ C ∪ R is a finite set of concept and role
names. The signature Sig(α) (respectively Sig(T)) of an
axiom α (respectively of a TBox T) is the set of concept
and role names occurring in it. Given a signature S, we
use Con(S) and Rol(S) to denote respectively the set of
SHOIQ-concepts and roles that can be built using only
symbols in S.
Definition 1 (Uniform interpolation for TBoxes)
A TBox T � is a uniform interpolant of a consistent TBox

T if the following conditions hold:
• T |= T �.
• For every axiom α such that Sig(α) ⊆ Sig(T �), if T |= α,
then T � |= α.
Garson’s notion of a logical module can be defined by

using uniform interpolation to formalize local completeness
and by requiring, additionally, the interpolant T � to be a sub-
set of the parent ontology T .
Definition 2 (Logical Module)
Let T be consistent. A TBox T � ⊆ T is a logical module

of T if, for every axiom α such that Sig(α) ⊆ Sig(T �):
T |= α iff T � |= α

Note that, as mentioned before, we will always require
consistency of the ontologies to be modularized.

The Notion of a Module
In this Section, we formalize the notion of a module, T �

A, for
a concept name A in the context of a SHOIQ ontology T .
As a first requirement, we will enforce T �

A to be a logical
module of T .
As argued before, logical modules represent, from a

model-theoretic perspective, self-contained units within the
ontology. However, Garson’s notion of local correctness
and completeness is not sufficient to address all our require-
ments, since:

• it does not determine the scope of the module (i.e. which
symbols should be included in its signature) and, conse-
quently, its size.

• it does not provide an insight on how to interpret the mod-
ule from a modeling perspective.

In order to address these issues, our definition specifies
a class of logical consequences of the input ontology to be
preserved in the extracted module. The goal is to:

1. force the relevant knowledge about the concept to be in-
cluded in its module.

2. make sure that the module represents a well-defined sub-
ject matter and, consequently, that is self-contained from
a modeling perspective.

This class of entailments determines the scope of the mod-
ule and thus the axioms of T that must be included in T �

A.
Including the Relevant Information About the Concept
In traditional DL settings, not all entailments are equally
valued. Indeed, there is a set of standard inference services
which DL-focused systems expose and emphasize, namely:

1. satisfiability of concept names determines whether a con-
cept name A in the KB is satisfiable, i.e. if there is a
model I of the KB for which AI �= ∅.

2. classification computes the subsumption partial ordering
of all the concept names in the KB.

3. instantiation and retrieval determine whether an individ-
ual is an instance of a concept name and retrieve all the
instances of an atomic concept respectively. In SHOIQ,
instantiation and retrieval can be seen as a particular case
of concept subsumption and classification, since individ-
uals are represented by nominal concepts.

For ontology engineers, it is especially important to en-
sure that a module extracted from an OWL ontology for re-
use or maintenance purposes preserves the results of these
reasoning tasks. In other words, if we are to reuse a con-
cept name A and retrieve a fragment T �

A of the original on-
tology T , we want to make sure that A, as well as all its
sub-concepts, super-concepts and instances are included in
T �

A. We argue that such a fragment reasonably captures the
meaning of A in T .

200

Ensuring Self-Containment from a Modeling Perspec-
tive Ontologies typically contain knowledge about differ-
ent subject matters. An example is the ontology used in the
OWL documentation: the Wine Ontology (Smith, Welty, &
McGuiness 2004). This ontology describes different kinds
of wines according to various criteria, like the area they are
produced in, the kinds of grapes they contain, their flavor
and color, etc. Thus, the Wine Ontology does not contain
information about wines only, but also information about re-
gions, wineries, colors, grapes, and so on. This illustrates
a common pattern in OWL ontologies: although ontologies
usually refer to a core application domain, they also contain
“side” information about other secondary domains. These
domains, although related, are mostly self-contained in the
sense that they only deal with a single “topic”.
This modeling paradigm is not only characteristic of small

and medium sized ontologies, but also occurs in large, high-
quality knowledge bases, written by groups of experts. A
prominent example is the NCI (National Cancer Institute)
ontology (Golbeck et al. 2003), a huge, highly structured
ontology dealing with the biomedical domain. NCI is a
reference terminology covering areas of basic and clinical
science, built with the goal of facilitating translational re-
search in Cancer. The NCI ontology is mainly focused on
genes, but it also contains some information about many
other subject matters, like professional organizations, fund-
ing, research programs, etc.
In order to ensure that our modules are coherent and self-

contained, we require that no subsumption relations exist
between concepts inside the module (i.e., contained in its
signature) and concepts outside the module. Such a condi-
tion enforces a logical separation between the module and
its context.
The intuitions described in this Section yield to the fol-

lowing notion of module:

Definition 3 (Module)
A TBox T �

A ⊆ T is a module for a concept name A ∈
Sig(T) if:

1. T �
A is a logical module in T .

2. for every concept B ∈ Sig(T), the following holds:
(a) T �

A |= (A � B) ⇔ T |= (A � B).
(b) T �

A |= (B � A) ⇔ T |= (B � A).
3. There are no concept names D,E ∈ Sig(T) such that

D ∈ Sig(T �
A), E /∈ Sig(T �

A) and either T |= D � E, or
T |= E � D.

We argue that this formal notion of a module satisfies our
requirements and, hence, it makes perfect sense, both from
a logical and a modeling perspective, to retrieve T �

A instead
of T whenever we need to reuse A.

Safe OWL-DL Ontologies
Given our notion of a module, we show that there is a class
of “safe” OWL-DL theories that can be modularized. In this
Section, we investigate, both from a logical and a model-
ing perspective, when an OWL-DL ontology can be consid-
ered to be safe. In order to understand the potential effect of

“dangerous” GCIs, let us consider the the following simple
ontology, which is not safe:

T = {� � bob; bob � Person; bob �
∃Drives.Car;Car � V ehicle}

with bob being a nominal. In the absence of the first
axiom, the TBox TCar = {Car � V ehicle} is a mod-
ule for the concept name Car in T , according to Defini-
tion 3. However, in the presence of the GCI � � bob, our
definition of module is violated, since T |= bob � Car,
but TCar �|= bob � Car. The problem, in this case, is
caused by the ability of GCIs to fix the size of the inter-
pretation domain in every model of the ontology. The reader
should note that merely including the problematic GCI in
TCar does not help, since T |= Car � Person, but
TCar ∪ {� � bob} �|= Car � Person. In fact, it is not
hard to see that the only module for Car in T is precisely
T .
In order to assess the “globality” of a GCI, we introduce

the notion of a domain expansion.

Definition 4 (Domain Expansion)
Let I = (∆I , .I) and J = (∆J , .J) be interpretations

such that: 1)∆J = ∆I∪Φ, withΦ a non-empty set disjoint
with∆I; 2)AJ = AI for each concept name; 3)RJ = RI

for each role name.
We say that J is the expansion of I with Φ.

Intuitively, the interpretation J is identical to I except
for the fact that it contains some additional elements in the
interpretation domain. These elements do not participate in
the interpretation of concepts or roles. The following ques-
tion naturally arises: if I is a model of T , is J also a model
of T ? Safe ontologies are precisely those whose models are
closed under domain expansions.

Definition 5 (Safety)
Let T be consistent. We say that T is safe if, for every

I |= T and every set Φ disjoint with ∆I , the expansion J
of I with Φ is a model of T .
Examples of unsafe axioms are GCIs that:

• fix the size of the domain in every model of the ontology,
e.g. � � bob.

• establish the existence of a “universal” named concept,
i.e., one that is equivalent to �. For example, � � Car.
Examples of safe GCIs are role domain and range and

concept disjointness.

The Modularization Algorithm
In this section, we present an algorithm that, given an input
ontology T and a concept A, retrieves a module for A in T .
The main idea of the algorithm is to generate a partition-

ing of the input ontology T , represented as a directed labeled
graph (the partitioning graph) and then use the graph to find
the module for each concept in T .
The algorithm consists of three main steps: a safety check,

the generation of a partitioning graph G and the identifica-
tion and extraction of modules from G.

201

The Safety Check
In this Section, we show how to detect the presence of “un-
safe” GCIs. We start by introducing the notion of locality of
a concept:
Definition 6 (Locality)
A concept C is local if, for every interpretation I for C

and every non-empty set Φ disjoint with ∆I , the expansion
J of I with Φ verifies:

CJ = CI

Otherwise, we say that C is non-local. For S a signature,
we denote by local(S) the set of local concepts that can be
constructed using the symbols in S.
Thus, local concepts are those whose interpretation re-

mains invariant under domain expansions. The following
theorem establishes the syntactic countepart to the notion of
locality:
Theorem 1 Let S be a signature and C a concept in
Con(S), then:
• If C is a concept name, then C ∈ local(S).
• If C is of the form ∃R.D or ≥ nR.D, then C ∈ local(S).
• If C of the formD�E, then C ∈ local(S) iff any ofD,E
is in local(S).

• If C of the form ¬D, then, C ∈ local(S) iffD /∈ local(S).
Furthermore, if C /∈ local(S), CJ = CI ∪ Φ for every

possible pair of interpretations I,J s.t. J is an expansion
of I with Φ.
As a consequence of the theorem, the problem of deciding

whether C ∈ local(S) for some signature S can be solved in
polynomial time w.r.t. the length |C| of the concept C.
Using the theorem above, we can find an effective proce-

dure for deciding safety:
Theorem 2 Let T be consistent. Then, T is unsafe iff it
explicitly contains a GCI C � D such that C is non-local
and D is local.
As a direct consequence of Theorems 1 and 2, the problem

of deciding safety of a consistent ontology T is polynomial
w.r.t the size |T | of T .

The Partitioning Algorithm
In case of a positive result in the safety check, the algorithm
generates a partitioning of the input ontology. In general
(MacCartney et al. 2003), {Ti}1≤i≤n is a partitioning of a
logical theory T if T =

�
i Ti. Each individual Ti is called

a partition and contains a distinct subset of the axioms of T .
We represent the partitioning by means of a labeled di-

rected graphG = (V,E,L,V). Each node v ∈ V is labeled
with a non-empty partition L(v) ⊆ T . The labels of two dif-
ferent nodes are disjoint (L(vi) ∩ L(vj) = ∅ for i �= j) and
the union of the labels of all the nodes in the graph is pre-
cisely T (i.e.

�
v∈V L(v) = T).

Each edge e = �v, w� is labeled with a non-empty set
of roles L(e) occurring in T . Given an edge e = �v, w�,
we denote its first and second elements v, w by First(e),

-Algorithm Partition(T)
-Input: A SHOIQ ontology T
-Output: A partitioning graph G = (V,E,L,V)

G ← ({v0}, ∅,L,V), with:
L(v0) = T
V(C) = v0 for each concept C in T
V(R) = �v0, v0� for each role R in T
if T not safe, return G

for each role R occurring in T , BoundTo(R) ← ∅
Repeat

G ← DoPartitioningStep(G)
until L(v0) = ∅
V ← V − {v0}
return G

Figure 1: Partitioning Algorithm

-Algorithm DoPartitioningStep(G)
-Input: A partitioning graph G

-Output: Updated graph G

Create new node v with L(v) = ∅ and doV ← V ∪ {v}
Select non-deterministically a conceptX with V(X) = v0,
or a roleX with V(X) = �v0, v0�

ifX a concept, then V(X) ← v

ifX a role then V(X) ← �v, v0�
G ← moveTerms(G, v)
G ← moveAxioms(G, v)
return (G)

Figure 2: Partitioning Steps

Second(e) respectively, and we use e− to denote its inverse
(i.e. e− = �w, v�). We assume that the labels of different
edges are disjoint (L(e) ∩ L(e�) = ∅ for e �= e�).
Given two partitions, their respective signatures may in-

tersect and, consequently, we need a mechanism to devise
the “home” partition of a concept. We introduce a mapping
V in the graph that assigns to each concept and role occur-
ring in T a single node and edge in G, respectively.
Since each symbol is mapped through V into a single

node or edge, the function V allows to “disambiguate” the
shared symbols. This mapping will reveal key for determin-
ing which axioms from the original ontology will be grouped
together in the same partition as well as for retrieving the
module for each concept from the partitioning graph.
The algorithm performs a succession of partitioning

steps, as shown in Figure 1. Each step involves a pair of
nodes in the graph: the node v0, called the source node,
which initially contains in its label the input ontology and
from which axioms are removed, and a the node v, the tar-
get node, generated from scratch, to which these are added.
Note that the source node is always v0 and the target node is
different is each step.
At the beginning of each partitioning step (see Figure 2),

the algorithm selects non-deterministically a symbol X in
the signature of L(v0) and changes the value of V(X). In
the case of a concept, for example, V(X) is updated to v,
which intuitively means that the concept is “moved” to the

202

target partition.
This initial change will trigger new ones, according to

Figure 3.

-Algorithm MoveTerms(G, v)
-Input: A partitioning graph G = (V,E,L,V)
The target node v in the current partitioning step

-Output: A partitioning graph with updated mapping V

Repeat
for all concept C occurring in T with V(C) = v0

if any of the following conditions holds:
1)(C � D) or (D � C) ∈ L(v0), and V(D) = v

2)∃R.C or ≥ nR.C ∈ L(v0) and Second(V(R)) = v

3)(C �D) ∈ L(v0) and V(D) = v

4)C of the formD � E and V(E) = v or V(D) = v

5)C of the form ∃R.D,≥ nR.D and First(V(R)) �= v0

6)(¬C) ∈ L(v0) and V(¬C) = v

7)C, E ∈ BoundTo(R) and V(E) = v

then V(C) ← v

if 2) has held, then BoundTo(R) ← BoundTo(R) ∪ {C}
for all role R with First(V(R)) = v0 or Second(V(R)) = v0

if (R � S) or (S � R) ∈ L(v0) and V(R) �= V(S)
then V(R) ← V(S)
ifD of the form ∃R.C, ≥ nR.C and V(D) = v

then First(V(R)) ← v

if ∃R.C or ≥ nR.C ∈ L(v0), V(C) = v

then Second(V(R)) ← v

if V(R) �= (V(Inv(R)))−

then V(R) ← (V(Inv(R)))−

until no change in V is triggered
return G

Figure 3: Moving Concepts and Roles

Depending on the final value of the V function, some of
the axioms in L(v0) are removed from L(v0) and added to
L(v) and the labels of the edges involving the target and the
source nodes are updated accordingly.
In Figure 5, we provide the content of the partitioning

graph at the end of each partitioning step for an example on-
tology. The reader should be able to reproduce these results
using the the algorithms in Figures 1, 3 and 4.2

Significance of the Partitioning Graph It is worth taking
a closer look to the partitioning graph generated in Figure
5. The graph contains four partitions L(v1), ...,L(v4). A
quick examination of the axioms they contain reveals that
the partitions describe intuitively disjoint subject matters,
namely courses, publications, departments and students re-
spectively.
The correspondence of each partition to a well-defined ap-

plication domain, intuitively disjoint from the rest, is a gen-
eral property of the partitions generated using our algorithm
and can be observed in large, real-world ontologies, such as
NCI.
The decomposition obtained for NCI can be obtained in

less than 45 seconds using our implementation and is shown
2As a remark, the set BoundTo(P) represents the set of terms

that are “forced” to end up in the same partition due to the fact that
a role P cannot appear in the label of two different edges.

-Algorithm MoveAxioms(G,v)
-Input: A partitioning graph G

The target node v in the current partitioning step
-Output: An updated partitioning graph G

for each Axiom α ∈ L(v0)
if α is of any of the following forms:
1)C � D and V(C) = V(D) = v

2)R � S, and V(R) = V(S), with First(V (R)) �= v0

then L(v0) ← L(v0)− {α} and L(v) ← L(v) ∪ {α}
for each R with V(R) = �v0, v�,
do L(�v0, v�) ← L(�v0, v�) ∪ {R}
for each R ∈ L(�vj , v0�) with vj �= v

if ∃C ∈ BoundTo(R) with V(C) = v then
L(�vj , v0�) ← L(�vj , v0�)− {R}
if L(�vj , v0�) = ∅ then E ← E− �vj , v0�
if �vj , v� /∈ E then
E ← E ∪ �vj , v�
L(�vj , v�) ← L(�vj , v�) ∪ {R}

return G

Figure 4: Moving Axioms

on the left hand side of Figure 6. The figure uses the graph
layout in the ontology editor Swoop for visualizing parti-
tioning graphs. In such a layout, the size of the nodes is
proportional to the size of the partitions. Isolated nodes are
represented in white, leaf nodes in gray and nodes with out-
going edges in black.
The partitions of NCI represent a well-defined sub-

domain within the ontology. For example, the knowledge
about genes, drugs, medical techniques, etc. are each asso-
ciated to a different partition. These domains are pair-wise
disjoint in the sense that they do not share objects (a drug is
not a gene and vice-versa). The connections suggest which
domains within the ontology are most relevant. For example,
highly interconnected partitions, such as the ones dealing
with genes and diseases, are central to the ontology. Other
nodes, like the one dealing with anatomical structures, are
leaves in the graph, and hence represent “secondary” sub-
ject matters.
The following theorem justifies why this fact is generally

observed:

Theorem 3 Let T be safe and G = Partition(T) with G =
(V,E,L,V) and |V| = n, then there exists a model J =
(∆J .J) of T such that:

• ∆J =
�

i=1,...,n ∆Ji with ∆Ji ∩∆Jk = ∅ for i �= k, and
∆Ji �= ∅.

• AJ ⊆ ∆Ji , for each concept name A ∈ Sig(T) such that
V(A) = vi.

• RJ ⊆ ∆Ji ×∆Jj , for each role name R ∈ Sig(T) such
that V(R) = �vi, vj�.
The theorem establishes the existence of a very special

family of models for T . These models evaluate each parti-
tion in a different logical sub-domain, disjoint from the rest.
We argue that there exists a very close correspondence be-
tween the ability to distinguish disjoint logical sub-domains

203

T = { V = {v1, v2, v3, v4}
St � ∃enrolledIn.Co E = {�v4, v1�, �v4, v3�, �v3, v4�}
St � Person L(v1) = { Co � � }; L(v2) = { Paper � Pub}
Prof � ∃teaches.Co � ∃memberOf.Dept L(v3) = {Dept. � ∃memberOf

−
.St};

Paper � Pub L(v4) = { St � ∃enrolledIn.Co; St � Person;
Dept. � ∃memberOf

−
.St Prof � ∃teaches.Co � ∃memberOf.Dept

∃enrolledIn.� � Person} ∃enrolledIn.� � Person}

Figure 5: A Decomposition into a Partitioning Graph

Figure 6: Partitioning Graph for NCI (left) and OWL-S (right)

and the existence of different subject matters within an OWL
ontology.
The theorem provides an insight about the way the on-

tology has been modeled. In particular, it suggests one of
the following: either the partitions correspond to actual non-
overlapping subject matters, intended by the ontology engi-
neer, or the ontology is underspecified and some of the parti-
tions correspond to “unused information”. In the latter case,
these partitions identify parts of the ontology that probably
need to be further developed.
An example of the latter case are the SWEET-JPL ontolo-

gies, which constitute NASA’s effort for providing a formal-
ization of the Earth Science domain. The SWEET ontolo-
gies include several thousand terms, spanning a broad extent
of Earth Science and related concepts using OWL 3.
The resulting partitioning graph is shown in Figure 7. The

partitioning reveals a significant number of small indepen-
dent nodes. The existence of these small, independent frag-
ments is hard to detect by direct inspection of the original
ontologies and is not desirable from a modeling perspective,
unless one actually wanted to evolve them separately.
The existence of the class of models identified in Theorem

3makes it possible to identify axioms that cannot be entailed
by the ontology T :
Theorem 4 Let T be safe and G = Partition(T) with G =

3The ontologies can be downloaded from
http://sweet.jpl.nasa.gov/sweet

(V,E,L,V), then the axioms of the following form cannot
be entailed by T : 1) C � D, with C,D local and V(C) �=
V(D); 2) R � S with V(R) �= V(S).
We will use this result to show that the retrieved modules

verify property 3) in Definition 3.

Identification and Extraction of Modules
The module for each concept is obtained from the partition-
ing graph using the algorithm in Figure 8. According to the
Figure, if V(A) = vi, the module for A in T is the union
of all the axioms contained in the nodes that are accessible
from vi through a directed path in G. There are cases, how-
ever, where the module for X computed this way does not
satisfy Definition 3. For example, consider the following
ontology:

T = {C � ∀R.B ; B � E; a � C ; a � ∃R.b}
The partitioning algorithm would generate a graph with

two nodes v, w, with L(v) = {C � ∀R.B; a � C; a �
∃R.b} and L(w) = {B � E} connected by an edge �v, w�
with L(�v, w�) = {R}. The module T �

B for B would be just
T �

B = L(w); however T |= b � B, which is not entailed in
T �

B , thus violating Definition 3. The problem is caused by
the presence of nominals. When the label of a node contains
nominals, we need to “backtrack” in the graph and consider
its predecessors as well (see Figure 8).
The correctness of our approach is based on the following

theorems:

204

Figure 7: Partitioning Graph for SWEET-JPL

-Algorithm GenerateModule(G, C)
-Input: The partition graph G

A concept C in T
-Output: The module T � for C in T

v ← V(C)
T � ← L(v)
Add to T � all axioms in the label of the nodes accessible from v.
if L(v) has nominals, then
for each predecessor w of v in G:
Select any conceptD in L(w)
T � ← T � ∪ GenerateModule(G, D)

return T �

Figure 8: Generation of Modules

Theorem 5 The ontology T � = GenerateModule(G, C) is
a logical module of T .
Theorem 6 The ontology T � = GenerateModule(G, C)
with G = Partition(T) is a module for C w.r.t. T .
It is not hard to verify that our modularization algorithm

is worst-case quadratic in the size of the input ontology and
hence the module for a concept in a consistent ontology can
be obtained in polynomial time.
As an example of module extraction from a partitioning

graph, consider Figure 6, which shows the decomposition
for the OWL-S ontologies, describing Web Services. The
ontology exhibits a nice decomposition, since a significant
proportion of nodes correspond to independent or leaf nodes
(white and gray nodes respectively), which is ideal for re-
use. Interestingly, there is a improvement in modularity
for every concept, in the sense that every module is strictly
smaller than the ontology as a whole. Finally, note that the

whole modularization process is completely automatic. No
user intervention is required at any stage of the process.

Related Work
The problem of modularity in Web ontologies has been re-
cently addressed in (StuckenSchmidt & Klein 2004), (Noy
& Musen 2003) and (Seidenberg & Rector 2006).
In (StuckenSchmidt & Klein 2004), the output of the

modularization process is presented as a graph visualization
of the different kinds of information contained in the input
ontology. However, the heuristics used to generate the visu-
alization only consider a small fragment of OWL-DL and no
correspondence between the nodes of the graph and sets of
axioms is provided.
(Noy & Musen 2003) and (Seidenberg & Rector 2006)

describe different structural techniques for extracting rele-
vant fragments of ontologies. Although the output in these
cases, as opposed to (StuckenSchmidt & Klein 2004), is a
set of axioms, a formal characterization of their properties is
lacking and hence no notion of correctness of the process is
established.
(MacCartney et al. 2003) explores partitioning FOL the-

ories to improve theorem proving performance. The work
rigorously addresses logical issues, such as interpolation.
However, the focus is on improving reasoning performance
only and, thus, does not address reuse tasks. Our goal in
this paper has been very different, since we have examined
modularization primarily for reuse purposes.
In our previous work (Cuenca-Grau, Parsia, & E.Sirin

2005), we proposed E-Connections (Kutz et al. 2004) as a
suitable formalism for combining (rather than decomposing)
OWL ontologies describing largely disjoint subject matters.
There is indeed a tight relationship between E-Connections
and our partitioning algorithm. In fact, the partitioning
graph can be seen syntactically as a knowledge base in the
language of an E-Connection, with the roles in the edges
of the graph corresponding to link relations. This syntac-
tic correspondence provides an intuition on why Theorems
3 and 4 hold. The reader should note, however, that the E-
Connections framework defines its own semantics; in fact,
all the models of an E-Connected KB are enforced to be of
the form given in Theorem 3. In this paper, however, we see
E-Connections as a way of guiding the partitioning process,
rather than as a logical formalism.

Conclusion
Ontology engineers need a clear notion of what to expect
from a modularization process, both from a logical and a
modeling perspective. Without such an understanding, the
ontology engineer is at a loss. The result is the adoption
of ad-hoc and highly unpredictable techniques as a common
practice, which often leads to undesired results.
In this paper, we have presented a method for auto-

matically identifying and extracting relevant fragments of
ontologies, called modules, with precise semantic guaran-
tees. Our method encompasses the full expressive power of
OWL-DL and provides a good computational performance.
Our initial experimental results with real-world ontologies

205

show that, for most concepts, the modules we obtain can be
notably smaller than the original ontology, which facilitates
re-use, processability, understandability and maintenance.

References
Bechhofer, S.; Lord, P.; and R.Volz. 2003. Cooking the
semantic web with the OWL API. In Proc. of the Second
International Semantic Web Conference (ISWC-2003).
Cuenca-Grau, B.; Parsia, B.; and E.Sirin. 2005. Combining
OWL ontologies using E-connections. Elsevier’s Journal
On Web Semantics 4(1).
Garson, J. 1989. Modularity and relevant logic. Notre
Dame Journal of Formal Logic 30(2):207–223.
Golbeck, J.; Fragoso, G.; Hartel, F.; Hendler, J.; Parsia, B.;
and Oberthaler, J. 2003. The national cancer institute’s the-
saurus and ontology. Elsevier’s Journal of Web Semantics
1(1).
Horrocks, I., and Sattler, U. 2005. A tableaux decision
procedure for SHOIQ. In Proc. of the 19th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2005). Morgan Kaufman.
Horrocks, I.; Patel-Schneider, P. F.; and van Harmelen, F.
2003. From SHIQ and RDF to OWL: The making of a
web ontology language. Elsevier’s Journal of Web Seman-
tics 1(1):7–26.
Horrocks, I.; Sattler, U.; and Tobies, S. 2000. Practical rea-
soning for very expressive description logics. Logic Jour-
nal of the IGPL 8(3):239–263.
Kalyanpur, A.; Parsia, B.; E.Sirin; Cuenca-Grau, B.; and
Hendler, J. 2005. Swoop: A web editing browser. Else-
vier’s Journal On Web Semantics 4(2).
Kutz, O.; Lutz, C.; Wolter, F.; and Zakharyaschev, M.
2004. E-connections of abstract description systems. Arti-
ficial Intelligence 156(1):1-73.
MacCartney, B.; McIlraith, S. A.; Amir, E.; and Uribe, T.
2003. Practical partition-based theorem proving for large
knowledge bases. In Proc. of the 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2003).
Noy, N., and Musen, M. 2003. The PROMPT suite: Inter-
active tools for ontology mapping and merging. Int.Journal
of Human-Computer Studies 6(59).
Patel-Schneider, P.; Hayes, P.; and I.Horrocks. 2004. Web
ontology language OWL Abstract Syntax and Semantics.
W3C Recommendation.
Pitts, A. 1992. On an interpretation of second order quan-
tification in first-order intuitionistic propositional logic.
Journal of Symbolic Logic 1(57):33–52.
Seidenberg, J., and Rector, A. 2006. Web ontology seg-
mentation: Analysis, classification and use. In Proc. of the
2006 International World Wide Web Conference (WWW-
2006).
Smith, M.; Welty, C.; and McGuiness, D. 2004. OWLWeb
Ontology Language Guide. W3C Recommendation.
StuckenSchmidt, H., and Klein, M. 2004. Structure-based
partitioning of large class hierarchies. In Proc. of the Third
International Semantic Web Conference (ISWC 2004).

Wolter, F. 1998. Fusions of modal logics revisited. In
Kracht, M.; de Rijke, M.; Wansing, H.; and Zakharyaschev,
M., eds., Advances in Modal Logic. CSLI.

Appendix A: Proofs
Proof for Theorem 1
Let I = (∆I , .I) be an interpretation for C and J =
(∆J , .J) an expansion of I with set Φ.
First, it is easy to see that, for every roleR (a role name or

its inverse), RJ = RI . Then, we proceed by induction on
the structure ofC. At the base of the induction, we have that,
if C is a concept name then, by definition of J , CJ = CI

and C ∈ local(S).
We now verify the induction step:

• Let C be of the form ¬D. If D ∈ local(S), by induction,
DJ = DI . Since CJ = ∆J \DJ , ∆J = ∆I ∪ Φ and
DJ = DI , then CJ = CI ∪ Φ and thus C /∈ local(S).
If D /∈ local(S), by induction, DJ = DI ∪ Φ; since
CJ = ∆J \ DJ , ∆J = ∆I ∪ Φ and DJ = DI ∪ Φ,
then CJ = CI and thus C ∈ local(S).

• Let C be of the form C1 �C2. If C1, C2 /∈ local(S), then
CJ = CJ1 ∩ CJ2 = (CI1 ∪ Φ) ∩ (CI2 ∪ Φ) = CI ∪ Φ
and thus C /∈ local(S). If any Ci ∈ local(S), then it is
immediate to verify that CJ = CI1 ∩ CI2 = CI and thus
C ∈ local(S).

• If C is of the form ∃R.D or≥ nR.D, it is easy to see that
the induction hypothesis holds, since RJ = RI , CJ =
CI independently of whether D is local or not.

Proof for Theorem 2
(⇒)
Suppose that T is unsafe, then there is a model I |= T

and a set Φ s.t. J �|= T , with J being the expansion of
I with Φ. We also have that T is composed of a set of
GCIs C � D and each of these GCIs can be of one of the
following forms (only):

1. Both C,D local concepts. By definition, CJ = CI and
DJ = DI . Therefore, J |= C � D

2. C local and D non-local. Now, CJ = CI and DJ =
DI ∪ Φ. Again, since CI ⊆ DI , we have that J |= C �
D.

3. C andD non-local. Now, CJ = CI∪Φ andDJ = DI∪
Φ. Again, since CI ⊆ DI , we have that J |= C � D.

4. C non-local andD local. In this case, CJ = CI ∪Φ and
DJ = DI . However, since Φ ∩DI = ∅, J �|= C � D.

Note that in order not to be satisfied by J , the GCI must
be of the form 4), which is an unsafe GCI.

(⇐)
Suppose that T contains explicitly an unsafe GCIC � D.

Since such a GCI is unsafe, C is non-local and D is local.
Let I be a model of T and J an extension of I with some
set Φ, thenDJ = DI and CJ = CI ∪Φ and, sinceDJ =
DI ⊆ ∆I and Φ∩∆I = ∅, J �|= C � D and consequently
J �|= T ; thus T is not safe.

206

Proof for Theorem 3
Since T is consistent, there exists an interpretation I =
(∆I , .I) s.t. I |= T . We show that we can construct from
I an interpretation J of the desired form s.t. J |= T . First,
we define the domain∆J of J using the following steps:

1. ∆J ← ∅
2. For every x ∈ ∆I , generate n new objects x1, ..., xn and
do ∆J ← ∆J ∪ {x1, ..., xn}.
Now, we define the interpretation function .J as well as

the n sets (∆Ji)1≤i≤n as follows:

1. Initialize ∆Ji ← ∅ for all 1 ≤ i ≤ n; initialize
AJ , RJ ← ∅ for each concept name A and role name
R.

2. For every concept name A with V(A) = vi and every
x ∈ AI , do AJ ← AJ ∪ {xi} and∆Ji ← ∆Ji ∪ {xi}.

3. For every role name R s.t. V(R) = �vi, vj� and every
pair �x, y� ∈ RI , do RJ ← RJ ∪ �xi, yj�,∆Ji ← ∆Ji ∪
{xi};∆Jj ← ∆Jj ∪ {yj}.
By construction, it is easy to see that:

• ∆J =
�

i=1,...,n ∆Ji , with ∆Ji �= ∅ for 1 ≤ i ≤ n

• ∆Ji ∩∆Jj = ∅ for i �= j

• AJ ⊆ ∆Ji , for each A with V(A) = vi

• RJ ⊆ ∆Ji ×∆Jj , with V(R) = �vi, vj�

Note also that, by construction of J , �xi, yj� ∈ RJ ⇔
�x, y� ∈ RI , for every role.
We show that J |= T . For such a purpose, we use the

following result (♣):

CLAIM(♣): Let C be a concept s.t V(C) = vi, then:

1. If C is local, then CJ = {xi|x ∈ CI}
2. If C is not local, then CJ =

�
k �=i ∆Jk ∪ {xi|x ∈ CI}

Using the definition of J and the properties of the parti-
tioning graph, the claim is easily shown by induction on the
structure of C; the induction uses similar arguments as the
ones employed in the proof for Theorem 1. We just include
here a sample case of the induction step in order to illustrate
the arguments employed along the proof:

• If C of the form ∃R.D, then C is local by Theorem 1. By
construction of the partitioning graph G, V(R) = �vi, vj�
for some j ∈ {1, ..., n} and V(D) = vj . By definition of
J , RJ ⊆ ∆Ji × ∆Jj and ∆Jk ∩ ∆Jm = ∅ for k �= m.
Using the semantics of SHOIQ it is not hard to see that
CJ ⊆ ∆Ji . It only remains to be shown that xi ∈ CJ iff
x ∈ CI , with xi ∈ ∆Ji :

– (⇒) If xi ∈ CJ , then there exists an element yj ∈
∆Jj s.t. �xi, yj� ∈ RJ and yj ∈ DJ . We have that
�xi, yj� ∈ RJ ⇔ �x, y� ∈ RI and hence �x, y� ∈ RI .
By induction hypothesis, y ∈ DI . Therefore x ∈ CI .

– (⇐) If x ∈ CI , then there exists an element y ∈ ∆Ji
s.t. �x, y� ∈ RI and y ∈ DI . We have that �xi, yj� ∈
RJ ⇔ �x, y� ∈ RI and hence �xi, yj� ∈ RJ . By
induction hypothesis, yj ∈ DJ and thus xi ∈ CJ .

Using ♣ it is easy to show that J |= T . By safety of
T and the properties of the partitioning graph, T can only
contain GCIs C � D such that V(C) = V(D) = vi for
some i ∈ {1, ..., n} and either of the following:
1. Both C,D local concepts. By ♣, CJ only contains el-
ements in ∆Ji . Also by ♣, if xi ∈ CJ , then x ∈ CI .
Since I satisfies the GCI, CI ⊆ DI and thus x ∈ DI .
By ♣, x ∈ DJ and hence J satisfies the GCI.

2. For C local and D non-local, the argument is identical to
the previous case

3. Both C,D non-local. By ♣, both CJ andDJ contain all
the elements in∆J \∆Ji ; thus we focus only on elements
of ∆Ji . Again by ♣, if xi ∈ CJ , then x ∈ CI . Since I
satisfies the GCI, CI ⊆ DI and thus x ∈ DI . By ♣,
x ∈ DJ and hence J satisfies the GCI.
The fact that J satisfies the role inclusion and transitivity

axioms in T is straightforward to verify.

Proof for Theorem 5
Lemma 1 Let T � = GenerateModule(T , C) with T � �= T
and suppose that Sig(T �) ∩ Sig(T \ T �) = ∅. Let I =
(∆I , .I) be a model of T � and J = (∆J , .J) be a model
of T \ T � s.t. ∆I ∩∆J = ∅, then the interpretationM =
(∆M, .M) defined as follows:
• ∆M = ∆I ∪∆J .
• AM = AI if A ∈ Sig(T �) and AM = AJ otherwise.
• RM = RI if R ∈ Sig(T �) and RJ otherwise.
is a model of T .
Proof:
M |= T � as a consequence of the definition of safety,

since:
1. T � is safe, and safe ontologies are invariant under domain
expansions.

2. For the signature of T �,M can be seen as the expansion
of I with set ∆J , since the signatures of T � and T \ T �

are disjoint.
Analogously, T \ T � is safe andM can be seen, for the

signature of T \T �, as the expansion of J with set∆I . Thus
M |= T \ T �.
Lemma 2 Let T � = GenerateModule(T , C) and suppose
that: 1) the signatures of T and T \ T � share at least one
symbol; 2) Sig(T �) does not contain nominals.
Let I = (∆I , .I) be a model of T � and J = (∆J , .J)

be a model of T s.t. ∆I ∩∆J = ∅, then the interpretation
M = (∆M, .M) defined as follows:
• ∆M = ∆I ∪∆J .
• AM = AI ∪ AJ , if A ∈ Sig(T �) and AM = AJ other-
wise.

207

• RM = RI ∪RJ if R ∈ Sig(T �) and RJ otherwise.
is a model of T .
Proof:
We first show the following claim (♦):

1. For every concept C in T s.t. C ∈ Con(Sig(T �)), CM =
CJ ∪ CI .

2. For every other concept C occurring in T , CM = CJ , if
C is local and and CM = CJ ∪∆I otherwise.
Proof for ♦:
Let C ∈ Con(Sig(T �)). The proof goes by induction on

the structure of C; the base of the induction is straightfor-
ward to verify, using the definition ofM. For the induction
step, we include here, as a sample, the cases of negation
and existential restriction; the remaining cases can be easily
checked using similar arguments:
• Let C be of the form ¬D. By induction hypothesis,

DM = DJ ∪DI . By the semantics, CM = ∆M \DM.
Hence, CM = (∆J ∪∆I) \ (DJ ∪DI). Since DJ ⊆
∆J , DI ⊆ ∆I , and ∆I ∩ ∆J = ∅, we have that
CM = (∆I \ DI) ∪ (∆J \ DJ) = (¬D)I ∪ (¬D)J ,
which verifies the induction hypothesis.

• Let C be of the form ∃R.D. We have that RM = RI ∪
RJ and by induction hypothesis DM = DI ∪DJ , with
∆I∩∆J = ∅,RI ⊆ ∆I×∆I andRJ ⊆ ∆J ×∆J . By
the semantics of (∃R.D) it is easy to see that the induction
hypothesis holds.
Let now C ∈ Con(Sig(T \ T �)) s.t. C /∈ Con(Sig(T �)).

First note that if R is a role occurring in T \T �, then RM =
RJ , for any role. The proof again goes by induction on the
structure of C. The base of the induction is easy to verify;
for the induction step, we include here the cases of negation
and existential restriction:
• Let C be of the form ¬D. Two possibilities:
– D is local, in which case C is non-local. Since D is
local, by induction hypothesis DM = DJ . By the
semantics of concept negation, CM = ∆M \ DM.
Hence, CM = (∆J ∪∆I)\DJ . SinceDJ ⊆ ∆J and
∆I∩∆J = ∅, we have thatCM = ∆I∪(∆J \DJ) =
∆I ∪ (¬D)J = ∆I ∪ CJ .

– D is non-local, in which case C is local. Since D is
non-local, by induction hypothesis DM = DJ ∪∆I .
By the semantics, CM = ∆M \DM. Hence, CM =
(∆J ∪∆I) \ (∆I ∪DJ . Since DJ ⊆ ∆J and∆I ∩
∆J = ∅, we have that CM = ∆J \DJ = (¬D)J .

• If C is of the form ∃R.D, then C is local. Given the way
modules are generated, we have two possibilities
– D ∈ Con(Sig(T \ T �)) but not in Con(Sig(T �)). We
have RM = RJ . Again two possibilities:
∗ D is local, which implies that DM = DJ . It is im-
mediate to see that CM = CJ using the semantics of
existential restrictions.

∗ D is non-local, in which caseDM = DJ ∪∆I . Since
RM = RJ , there is no element y ∈ ∆M s.t. �x, y� ∈
RM and y ∈ ∆I , since y must be in ∆J . Therefore
CM = CJ and the induction hypothesis holds.

– D ∈ Con(Sig(T �)). In this case, again RM = RJ and
DM = DJ ∪ DI . We have that DI ⊆ ∆I and the
proof reduces to the case above.

Using the safety of T and ♦, it is not hard to see that
M |= T . In particular,
• if C � D ∈ T � then, by ♦, CM = CJ ∪CI andDM =

DJ ∪DI . Since I,J |= T �, then CI ⊆ DI and CJ ⊆
DJ ; therefore, CM ⊆ DM andM satisfies the axiom.

• if C � D ∈ T \ T � then, by ♦, CM = CJ , if C is local
and CM = CJ ∪Φ, if C is non-local; analogously forD.
Since T is safe, we can only have safe GCIs in T \ T �; it
is easy to verify that, if C � D is safe and J satisfies it,
then also doesM.

Proof for Theorem 5
We now prove Theorem 5 using Lemma 1 and Lemma 2.
In order for T � to be locally complete w.r.t. T it must

verify the following condition: for every axiom C � D s.t.
C,D ∈ Con(Sig(T �)), if T |= C � D, then T � |= C � D.
By the way modules are generated, we have three possi-

bilities:
1. T � = T .
2. Sig(T \ T �) and Sig(T �) are disjoint.
3. Sig(T \T �) and Sig(T �) are not disjoint and Sig(T �) does
not contain nominals.
Case 1) is obvious; we prove 2) and 3)
Case 2): Suppose that T |= C � D but T � �|= C � D.

Then, there is a model I of T � s.t. I �|= C � D. Since
Sig(T �) and Sig(T \ T �) are disjoint, we can always find a
model J |= T \ T � s.t. ∆I ∩ ∆J = ∅. Then, the inter-
pretation M as defined in Lemma 1 is a model of T . By
Theorem 2, the GCI C � D must be safe. It is not hard to
see thatM �|= C � D, which yields a contradiction.
Case 3): Suppose that T |= C � D but T � �|= C � D.

Then, there is a model I of T � s.t. I �|= C � D. Since
T � does not contain nominals, we can always find a model
J |= T s.t. ∆I ∩∆J = ∅. Then, the interpretationM as
defined in Lemma 2 is a model of T . Since I �|= C � D,
CI �⊆ DI . Since, by ♦ in Lemma 2 CM = CI ∪ CJ and
DM = DI ∪DJ and by definition of I,J , CI ∩∆J = ∅
it follows that CI �⊆ DI ∪DJ and thereforeM �|= C � D,
which yields a contradiction.

Proof for Theorem 6
We show that T � is a module for A w.r.t. T . First, T � is a
logical module, as shown in Theorem 5. Second, condition
3) in Definition 3 holds as a direct consequence of Theo-
rem 4. We now verify condition 2) in Definition 3.Let B a
concept name in Sig(T). Two possibilities:
• B ∈ Sig(T �). In this case Properties 2a), 2b) in Definition
2 hold as a straightforward consequence of Theorem 5.

• B /∈ Sig(T �). In this case, by Theorem 4, T �|= A � B
and T �|= B � A. By monotonicity, these entailments
also do not hold in T � and thus 2a), 2b) also hold.

208

