
The Representation of Structured Objects in

DLs using Description Graphs!

Boris Motik1, Bernardo Cuenca Grau1, and Ulrike Sattler2

1 Computing Laboratory, University of Oxford, UK
2 School of Computer Science, University of Manchester, UK

1 Introduction

Applications of description logics (DLs) often require the representation of and
reasoning with structured objects—that is, objects composed of parts connected
in complex ways. Although DLs are general and powerful languages, they cannot
describe arbitrarily connected structures. The description of structured objects
in DLs can thus be underconstrained, which reduces the number of entailments
and can even cause performance problems for reasoning. Hence, we propose an
extension of DLs with description graphs, which allow structured objects to be
described in a simple and precise way. To represent conditional aspects of the
domain, we also allow for Horn rules over description graphs.

Extending DLs with axioms that can enforce arbitrary structures easily leads
to undecidability [5]. Our formalism, however, is decidable because it can rep-
resent only structured objects whose number of parts is bounded. In practice,
structured objects are usually modeled up to a certain level of granularity, which
naturally determines this bound. We present a reasoning algorithm for the case
where the DL part is expressed in SHIQ [3]. We thus obtain a powerful, decid-
able, and practicable language that combines two complementary formalisms:
unbounded but tree-like structures can be described using standard DL axioms,
and the naturally bounded structured parts can be described using arbitrarily
connected description graphs and rules. Due to lack of space, we cannot present
the correctness proofs in this paper; we refer the interested reader to [6].

We have implemented our procedure in the HermiT reasoner.3 Furthermore,
we have extracted description graphs from the GALEN and FMA ontologies,
classified them successfully, and even detected a modeling error in GALEN.

2 Motivation

Structured objects—objects composed of parts connected in complex ways—
abound in molecular biology and the clinical sciences. Clinical ontologies such as
GALEN [10] and the Foundation Model of Anatomy (FMA) describe numerous

! We thank Alan Rector and Sebastian Brandt for providing us with comments from
domain experts’ perspective.

3 http://web.comlab.ox.ac.uk/oucl/work/boris.motik/HermiT/

(a) Intended Structure (b) Unintended Structure

(c) Unintended Infinite Structure

Fig. 1. Different Models of the Heart in GALEN

structured objects. For example, GALEN models the heart as consisting of the
left and the right ventricles, the two atria, and the valves, all of which participate
in complex relationships, such as “the two ventricles of a heart are separated by
the intraventricular septum.” Figure 1(a) represents the intention behind the
axioms describing the heart in GALEN.

This figure could be represented in DLs using an ABox A. ABox assertions,
however, represent concrete data; thus, A would represent the structure of one
particular heart. In this paper, we consider modeling structured objects at the
TBox level—that is, we want to describe the general structure of all hearts
and then instantiate this description as often as needed. This clearly cannot be
achieved if we describe the structure of the heart using ABox assertions.

We can give a logical, TBox-level interpretation to Figure 1(a) in DLs by
treating vertices as concepts and arrows as participation constraints. For exam-
ple, LeftSideOfHeart and AorticValve are concepts and the arrow between them
states that each left side of the heart has an aortic valve as a structural compo-
nent. Participation constraints can be encoded in DLs using axioms of the form
(1). Let K be a DL KB containing the axioms (1)–(3), and let I be an inter-
pretation that corresponds to Figure 1(a) in the obvious way. Clearly, I |= K,
which justifies the formalization of Figure 1(a) by K.

LeftSideOfHeart ! ∃hasStructuralComponent .AorticValve (1)

AorticValve ! ∃hasAlphaConnection .LeftVentricle (2)

LeftSideOfHeart ! ∃hasSolidDivsion .LeftVentricle (3)

We can now describe various heart conditions; for example, if the aortic
valve suffers from aortic regurgitation (AR), then the left ventricle suffers from

left ventricular hypertrophy (LVH), cf. (4). Then, from (1)–(4) we might want to
derive that, if the aortic valve of the left side of the heart has aortic regurgitation,
then the left ventricle suffers from hypertrophy, cf. (5).

AorticValve #HasAR ! ∀hasAlphaConnection .HasLVH (4)

LeftSideOfHeart # ∃hasStructuralComponent .(AorticValve # HasAR)
! ∃hasSolidDivision .HasLVH

(5)

Unfortunately, (5) does not follow from K: axioms (2) and (3) imply the exis-
tence of two left ventricles, but no axiom in K states that these two ventricles are
necessarily the same object. Thus, an interpretation I ′ corresponding to Figure
1(b) is also a model of K. In I ′, even if the aortic valve has aortic regurgitation,
the second left ventricle is unaffected. Hence, I ′ %|= (5), so K %|= (5) as well.

The knowledge base K is thus underconstrained: some models of K do not
correspond to the actual structure of the heart shown in Figure 1(a). This dis-
crepancy can prevent us from drawing some quite reasonable conclusions, such as
(5). Furthermore, it can also cause problems with the performance of reasoning.
For example, we might use axioms (3) and (6)–(7) to describe the relationships
between the left side of the heart, the left ventricle, and the mitral valve.

LeftVentricle ! ∃isBetaConnectionOf .MitralValve (6)

MitralValve ! ∃isStructuralComponentOf .LeftSideOfHeart (7)

These axioms do not state that the mitral valve in (6) is a structural component
of the “initial” left side of the heart. Thus, the interpretation from Figure 1(c)
is a “canonical” model of these axioms—it is “canonical” in the sense that it
reflects the least amount of information derivable from the axioms. In order to
disprove an entailment, a DL reasoner will try to construct such a model, which
can be much larger than the intended one. According to our experience, this is
a major source of performance problems with reasoning.

Therefore, we need to extend K with additional axioms that make all models
of K as close as possible to the intended conceptualization in Figure 1(a). This,
however, is not possible in DLs. DLs can represent unbounded or even infinite
domains. For example, the domain of all people does not exhibit a natural bound
on its size. Thus, we can represent the fact that “every person has exactly two
parents who are persons.” To ensure termination of reasoning with such axioms,
DLs typically exhibit (a variant of) the tree model property. The relationship
between the left side of the heart, the aortic valve, and the left ventricle, however,
is triangular. Hence, to ensure that the ventricles implied by (2) and (3) are the
same in every model of K, we must leave the confines of traditional DLs. SROIQ
addresses this problem to a certain extent [4], but it still does not allow us to
axiomatize arbitrarily connected structures.

Rule formalisms can axiomatize nontree structures. For example, the follow-
ing SWRL [2] rule forces the two ventricles from Figure 1(b) to be the same:

LeftSideOfHeart(x) ∧ hasStructuralComponent(x, y) ∧
hasAlphaConnection(y, z) ∧ LeftVentricle(z) ∧
hasSolidDivsion (x, w) ∧ LeftVentricle(w) → z ≈ w

(8)

From the standpoint of modeling, the equality of the two left ventricles is in
(8) not represented explicitly: it follows from the complex interaction between
axioms (1)–(3) and (8). This modeling style is hard to use in practice and suscep-
tible to modeling errors. From the standpoint of automated reasoning, SWRL is
undecidable [2], which is a significant impediment to its adoption in practice.

SWRL-like rules can, however, naturally express certain conditional aspects
of structured objects. For example, if the septum has a ventricular septal defect,
then there is a blood flow from the left to the right ventricle. Such a rule cannot
be expressed in DLs since it implies non-tree-like antecedents. If we, however,
deal with arbitrarily connected structures, such as the one shown in Figure 1(a),
such rules are essential for drawing the correct inferences.

Various decidable combinations of DLs and rules cannot be used for TBox
modeling. For example, the DL-safe rules [8] are syntactically restricted such
that they apply only to the explicitly named objects. Role-safe [5] and weakly
safe [9] rules also impose restrictions that prevent the application of the rules
to arbitrary elements of the domain. While these can be useful in answering
ABoxes queries, they have no effect on TBox entailments.

3 Description Graphs

We propose a formalism that can overcome some of the problems identified in
Section 2. The main idea is that parts of an object can naturally be represented
by a graph. All subsequent definitions are parameterized by a graph-extended
DL signature, which consists of pair-wise disjoint sets of atomic concepts NC ,
atomic tree roles NRt , atomic graph roles NRg , and individuals NI .

Definition 1. A description graph G = (V, E,λ) is a directed labeled graph
where (i) V = {1, . . . , "} is a finite set of integers called vertices, (ii) E ⊆ V ×V
is a set of edges, and (iii) λ labels each i ∈ V with a set λ〈i〉 ⊆ NC, and each
〈i, j〉 ∈ E with a set λ〈i, j〉 ⊆ NRg . For an atomic concept A, VA is the set of
vertices that contain A in their label: VA = {k ∈ V | A ∈ λ〈k〉}.

We now define the notion of graph-extended DL knowledge bases. The defi-
nition of graph-regular rules ensures that each such rule can become applicable
only to objects from the same instance of the description graph G, which is
required to obtain a decidable formalism.

Definition 2. A rule is an expression of the form (9) where Bi and Hj are
atoms. A rule is graph-regular if it uses only atomic concepts and graph roles
and if each pair of variables from the rule occurs in some Bi.

B1 ∧ . . . ∧Bn → H1 ∨ . . . ∨Hm (9)

A graph-extended DL knowledge base K = (T , G,P ,A) is a 4-tuple where
(i) T is DL TBox over the signature (NC , NRt , NI), (ii) G is a description
graph with " vertices, (iii) P is a finite set of graph-regular rules, and (iv) A is
an ABox over (NC , NRt , NRg , NI) that can also contain graph assertions of the
form G(a1, . . . , a!) for ai ∈ NI .

For example, let K = (T , G,P ,A) be a graph-extended DL knowledge base
where T contains the axioms (10)–(12). Intuitively, axiom (10) says that each
person has a parent and a heart; axiom (11) ensures that the heart of each
sufferer from aortic regurgitation is an instance of HasAR; and axiom (12) says
that, on each aortic valve suffering from aortic regurgitation, some person is
performing a surgery on it.

Person ! ∃hasParent .Person # ∃hasHeart .Heart (10)

AR Sufferer ! ∀hasHeart .HasAR (11)

AorticValve # HasAR ! ∃performsSurgeryOn−.Person (12)

Let G correspond to Figure 1(a), let P contain the rule (13) that propagates the
HasAR concept over the structural components of the heart, and let A contain
the assertions Person(a) and AR Sufferer(a).

HasAR(x) ∧ hasStructuralComponent(x, y) → HasAR(y) (13)

We now define the semantics of graph-extended KBs.

Definition 3. An interpretation I = (/I , ·I) interprets a graph G = (V, E,λ)
with " vertices as an "-ary relation GI ⊆ (/I)!. An interpretation I satisfies G,
written I |= G, if all of the following conditions hold.

i-key property: for each 1 ≤ i ≤ ", and ∀x1, . . . , x!, y1, . . . , y! ∈ /I :

〈x1, . . . , x!〉 ∈ GI ∧ 〈y1, . . . , y!〉 ∈ GI ∧ xi = yi →
∧

1≤j≤!

xj = yj

Disjointness property: ∀x1, . . . , x!, y1, . . . , y! ∈ /I :

〈x1, . . . , x!〉 ∈ GI ∧ 〈y1, . . . , y!〉 ∈ GI →
∧

1≤i<j≤n

xi %= yj

A-start property: for each atomic conceptA with VA %= ∅,

∀x ∈ /I : x ∈ AI → ∃x1, . . . , x! ∈ /I : 〈x1, . . . , x!〉 ∈ GI ∧
∨

k∈VA

x = xk

Vertex layout property: for each i ∈ V and A ∈ λ〈i〉,

∀x1, . . . , x! ∈ /I : 〈x1, . . . , x!〉 ∈ GI → xi ∈ AI

Edge layout property: for each 〈i, j〉 ∈ E and R ∈ λ〈i, j〉,

∀x1, . . . , x! ∈ /I : 〈x1, . . . , x!〉 ∈ GI → 〈xi, xj〉 ∈ RI

Each model I of our example knowledge base K consists of two distinct
parts, as shown in Figure 2. The tree backbone consists of objects (shown as
large squares) connected through tree roles (shown using thick lines), and it is
constructed using the standard DL axioms in T . Apart from the tree backbone, I
also contains arbitrarily connected but naturally bounded graph instances, such
as the structure of the heart of each person. Unlike in the case of axioms (1)–
(3) and Figure 1(b), each graph instance is necessarily of the form as specified
by G in each such model I. Note that the tree backbone of I need not be

Fig. 2. A Typical Model of K

contiguous: the bottom-most AorticValve object av can be connected to other
objects through tree roles.

Each tuple in the "-ary relation GI corresponds to one instance of the de-
scription graph G. The i-key and the disjointness properties ensure that each
object occurring in a graph part of I occurs in exactly one tuple of GI , which
essentially captures the idea behind natural boundedness. Since this tuple is
bounded in size, each graph part of I is bounded as well, which can be used to
ensure termination of model construction.

The A-start property ensures that I contains an appropriate instance of G
whenever I contains an instance γ of a concept A labeling a vertex of G. If A
labels more than one vertex of G, the A-start property “guesses” the vertex of
G that γ should be matched to. Consider, for example, a graph containing a
vertex labeled with Hand and five vertices labeled with Finger . If some object
γ is an instance of Finger , without further information we cannot disambiguate
which of the five fingers γ stands for. Therefore, we need to make a “guess”
and examine all five possibilities independently. The vertex and edge layout
properties simply ensure that each instance of G indeed contains the appropriate
relational structure of G.

4 Reasoning Algorithm

To support reasoning over graph-extended KBs, we derived an algorithm that
decides satisfiability of K = (T , G,P ,A) with T expressed in SHIQ. The algo-
rithm proceeds in two phases. In the preprocessing phase, T and G are translated
into equisatisfiable sets of rules. In the hypertableau phase, an attempt is made
to construct a model of A, P , and the rules obtained in preprocessing.

The TBox T is preprocessed into a set of rules Ξ(T) of the form (9). The
translation of G into a set of rules Ξ(G) uses concepts ∃G|k, which are inter-
preted as (∃G|i)I = {s | ∃t1, . . . , t! : 〈t1, . . . , t!〉 ∈ GI ∧ s = ti}. The set Ξ(G) is

computed as shown in Definition 4, and it captures the conditions from Defini-
tion 3 in a straightforward way; hence, I |= G iff I |= Ξ(G).

Definition 4. For a description graph G = (V, E,λ), the set Ξ(G) consists of
the following rules, for " = |V |:

G(x1, . . . , x!) ∧G(y1, . . . , yi−1, xi, yi+1, . . . , y!) → xj ≈ yj for each i, j ∈ V

G(x1, . . . , x!) ∧G(y1, . . . , yj−1, xi, yj+1, . . . , y!) → ⊥ for each 1 ≤ i < j ≤ "

A(x) →
∨

k∈VA
∃G|k(x) for each A such that VA %= ∅

G(x1, . . . , x!) → A(xi) for each i ∈ V and A ∈ λ〈i〉

G(x1, . . . , x!) → R(xi, xj) for 〈i, j〉 ∈ E and R ∈ λ〈i, j〉

The hypertableau algorithm can be applied to any set of rules R that are
admissible according to a certain criteria [6]. Intuitively, an admissible set of
rules R must consist of a subset Rg of graph-regular rules and of a subset of
Rt of tree rules that are obtained from the DL axioms in a TBox T . The set of
rules R = Ξ(T) ∪ Ξ(G) ∪ P is admissible.

Definition 5 summarizes the calculus for checking satisfiability of (R,A) for
R an admissible set of rules. This algorithm differs from the standard one in two
main points. First, our algorithm contains the ∃G-rule that generates an instance
of G for an assertion ∃G|i(s). In spirit, the ∃G-rule is similar to the ≥-rule that
expands assertions of the form ≥ n R.C(s) by introducing fresh successors of s.
Second, our algorithm contains an appropriately modified version of blocking [3]
to ensure termination.

Our derivation rules generate only models of the form shown in Figure 2.
There, the individual a is named. The individual h1 is generated by deriving
∃hasHeart .Heart(a) by (10) and then expanding it by the ≥-rule; hence, h1 is
a tree individual. All other individuals that correspond to the structure of the
heart (including av) are created by instantiating G, so they are graph individuals.
To ensure termination, we apply the ∃G-rule with the lowest priority. The rules
in R ensure that no two instances of G can share an individual. Hence, for each
tree individual t (such as h1) that “enters” an instance of G, we can establish a
bound on the number of graph individuals occurring generated for t.

Definition 5. Generalized Individuals. Let T and Γ be two disjoint count-
ably infinite sets of tree and graph symbols. A generalized individual is a finite
string α0.α1.αn such that α0 ∈ NI , αi ∈ T ∪ Γ for 1 ≤ i ≤ n, and αi−1 ∈ Γ
implies αi %∈ Γ . If αn ∈ NI , the individual is named; if αn ∈ T, the individual
is a tree individual; and if αn ∈ Γ , the individual is a graph individual.

Successors and Predecessors. A generalized individual x.α is a successor
of x, predecessor is the inverse of successor, and descendant and ancestor are
the transitive closures of successor and predecessor, respectively.

Graph Cluster. Generalized individuals s and t are from the same graph
clusters if either (i) s is either a named individual or a graph successor of a
named individual, and t is also either a named individual or a graph successor

of a named individual, (ii) both s and t are graph successors of the same tree
individual, or (iii) one individual is a graph successor of the other individual.

Generalized ABox. In the rest of this paper, we allow ABoxes to contain
generalized individuals and the assertion ⊥ which is false in all interpretations,
and we take a ≈ b (a %≈ b) to also stand for b ≈ a (b %≈ a).

Initial ABox. An ABox is initial if all concepts in it are possibly negated
atomic concepts, it is nonempty, and it contains only named individuals.

Pairwise Anywhere Blocking. A concept is blocking-relevant if it is of
the form A, ≥ n R.A, ≥ n R.¬A, or ∃G|i, for A an atomic concept, R a (not
necessarily atomic) role, and G a description graph. The labels of an individual
and of an individual pair in an ABox A are defined as LA(s) = {C | C(s) ∈ A
and C is blocking-relevant } and LA(s, t) = {R | R(s, t) ∈ A}. Let ≺ be a a
transitive and irreflexive relation on the generalized individuals such that, if s′ is
an ancestor of s, then s′ ≺ s. By induction on ≺, we assign to each individual s
in A a status as follows: s is directly blocked by an individual s′ iff (i) both s and
s′ are tree individuals, (ii) s′ is not blocked, (iii) s′ ≺ s, (iv) LA(s) = LA(s′)
and LA(t) = LA(t′), and (v) LA(s, t) = LA(s′, t′) and LA(t, s) = LA(t′, s′), for
t and t′ the predecessors of s and s′, respectively; s is indirectly blocked iff its
predecessor is blocked; and s is blocked iff it is directly or indirectly blocked.

Pruning. The ABox pruneA(s) is obtained from A by removing all assertions
that contain a descendant of s.

Merging. The ABox mergeA(s → t) is obtained from the ABox pruneA(s)
by replacing s with t in all assertions.

Clash. An ABox A contains a clash iff ⊥ ∈ A; otherwise, A is clash-free.
Derivation Rules. Table 1 specifies derivation rules that, given a clash-free

ABox A and a set of rules R, derive the ABoxes 〈A1, . . . ,An〉. In the Hyp-rule,
σ is a mapping from the set of variables NV to the individuals in A, and σ(U)
is obtained from U by replacing each variable x with σ(x).

Rule Priority. The ∃G-rule is applicable only if no other rule is applicable.
Derivation. A derivation for a set of admissible rules R and an initial ABox

A is a pair (T, ρ) where T is a finitely branching tree and ρ labels the nodes of
T with ABoxes such that (i) ρ(ε) = A for ε the root of the tree, and (ii) for
each node t, if one or more derivation rules are applicable to ρ(t) and R, then
t has children t1, . . . , tn such that the ABoxes 〈ρ(t1), . . . , ρ(tn)〉 are the result of
applying one applicable derivation rule chosen by respecting the rule priority. A
derivation is clash-free if it has a leaf node labeled with a clash-free ABox.

Theorem 1. For an admissible set of rules R and an initial ABox A, (i) if
(R,A) is satisfiable, then each derivation for R and A is clash-free, (ii) if a
clash-free derivation for R and A exists, then (R,A) is satisfiable, and (iii) each
derivation for R and A is finite.

5 From DL Axioms to Graphs

Validating our approach is currently difficult due to the lack of test data. In or-
der to obtain some test data and to facilitate the adoption of our approach, we

Table 1. Derivation Rules of the Hypertableau Calculus

Hyp-rule

If 1. U1 ∧ ... ∧ Um → V1 ∨ ... ∨ Vn ∈ R,
2. a mapping σ : NV → NA exists such that
2.1 σ(Ui) ∈ A for each 1 ≤ i ≤ m and
2.2 σ(Vj) (∈ A for each 1 ≤ j ≤ n,

then A1 = A ∪ {⊥} if n = 0; or
Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n if n > 0.

≥-rule

If 1. ≥ n R.C(s) ∈ A,
2. s is not blocked in A, and
3. there are no individuals u1, . . . , un such

that {ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪
{ui (≈ uj | 1 ≤ i < j ≤ n} ⊆ A,

then A1 := A ∪ {ar(R, s, ti), C(ti) | 1 ≤ i ≤ n}
∪ {ti (≈ tj | 1 ≤ i < j ≤ n}
where t1, . . . , tn are fresh pairwise distinct
tree successors of s.

≈-rule

If s ≈ t ∈ A and s (= t
then A1 := mergeA(s → t) if t is a named

individual or if s is a descendant of t; or
A1 := mergeA(t → s) otherwise.

⊥-rule

If s (≈ s ∈ A or {A(s), ¬A(s)} ⊆ A
then A1 := A ∪ {⊥}.
∃G-rule

If 1. ∃G|i(s) ∈ A for G a description graph
with ! vertices,

2. s is not blocked in A, and
3. there are no individuals

u1, . . . , ui−1, ui+1, . . . , u! such that
G(u1, . . . , ui−1, s, ui+1, . . . , u!) ∈ A

then A1 := A ∪ {G(t1, . . . , ti−1, s, ti+1, . . . , t!)}
where t1, . . . , ti−1, ti+1, . . . , t! are
fresh pairwise distinct graph individuals
from the same graph cluster as s.

Note: A is a generalized ABox, R is a set of admissible rules, and
NA is the set of individuals occurring in A.

developed an algorithm that automatically transforms a TBox T into a graph-
extended knowledge base K. For example, our algorithm can automatically con-
struct the graph shown in Figure 1(a) from the axioms such as (1)–(3). Clearly,
the knowledge base K is only a rough approximation; however, it can be used
as a starting point for a more comprehensive remodeling of T into a proper
graph-extended KB. Our transformation of a TBox T1 into a graph-extended
KB K = (T , G,P ,A) is based on two assumptions.

First, only some concepts and roles from T1 are relevant for G. For example,
the Heart concept is clearly relevant to the description graph of human anatomy;
in contrast, the Disease concept is not relevant because it does not represent the
structure of a human body. Similarly, the hasStructuralComponent role clearly
belongs to the graph, while the hasAge role does not.

Second, each concept relevant to G should be represented by one vertex in
G, and that edges in G can be decoded from axioms of the form A ! ∃R.B. Our
assumption is that, by writing axioms such as (1)–(3), modelers actually wanted
to say “the aortic valve has an alpha connection to the left ventricle, and the
left side of heart has the same left ventricle as a solid division.”

Our algorithm is parameterized with a DL TBox T1, a set of relevant concepts
NCg , and relevant roles NRg . The latter set actually defines the set of graph roles,
and all other roles are considered to be tree roles. Our algorithm first normalizes
T1 in a certain way. Then, it creates a vertex i in V for each concept A ∈ NCg

and sets λ〈i〉 = {A}, after which it processes each axiom α ∈ T1 as follows:

– If α is of the form A ! ∃R.B where {A, B} ⊆ NCg and R ∈ NRg , then, for
i and j vertices such that λ〈i〉 = {A} and λ〈j〉 = {B}, the algorithm adds
the edge 〈i, j〉 to E and extends λ such that R ∈ λ〈i, j〉.

– If α does not contain a role from NRg , the algorithm simply copies α to
the resulting TBox T . If α contains only roles from NRg and no existential
quantifier, α is translated into a graph-regular rule and added to P .

– If α is not of the above form, then either it involves a graph and a tree role
simultaneously, or it is of the form A ! ∃R.B but some of A, B, or R are
not relevant for the graph. Such an axiom either invalidates the syntactic
restrictions of our formalism or it does not have a natural interpretation;
hence, our algorithm ignores α.

Determining the sets NCg and NRg manually is not easy. According to our
experience with GALEN and FMA, a good strategy is to manually identify a set
of roles N ′

Rg
that naturally belong to the graph, and then to take NRg as the

closure of N ′
Rg

w.r.t. the explicit role inclusions from T1. Then, we take NCg as
the set of all concepts A and B occurring in an axiom A ! ∃R.B ∈ T1 such that
R ∈ NRg . Intuitively, if A and B are connected by a role that should be included
into the graph, then it is likely that A and B should be included into the graph
as well. This idea, however, requires some refinement; we refer the interested
reader to the long version of this paper [6] for a more detailed discussion. The
transformation tool can be downloaded from HermiT’s Web site.

We applied our transformation algorithm to the original version of GALEN;
furthermore, FMA is a very large ontology, so we have applied our algorithm
to a fragment of FMA that describes the heart. Both ontologies can be down-
loaded from HermiT’s Web page. Our transformation clearly leads to a change
in the semantics of the ontology, and some information is lost in the process.
Many parts of the resulting description graph, however, correspond with the in-
tuitive descriptions of the anatomy of the body. For example, the graph shown
in Figure 1(a) has been extracted from the transformed ontology.

6 Evaluation and Discussion

We have implemented our reasoning calculus in the HermiT reasoner. To evalu-
ate the approach, we have classified the original ontologies using HermiT, trans-
formed them using the algorithm from Section 5 into graph-extended KBs, and
classified the resulting KBs using our reasoning algorithm We performed the
experiments using a standard laptop with 1 GB of RAM. The classification of
the original version of GALEN and the fragment of FMA took 129 s and 57 s,
respectively; furthermore, the classification of the transformed ontologies took
781 s and 6 s, respectively. These results show that, even with a prototypical
implementation, we can process complex ontologies, which we take as indication
that our approach is practically feasible.

From a representation point of view, the transformed ontologies are more
constrained than the original ones, so we expect to obtain new entailments. In
GALEN, we discovered a concept that is satisfiable in the original ontology, but
is unsatisfiable in the transformed ontology, which revealed a modeling error; see
[6] for more details. In the case of FMA, we did not obtain any new subsumption
relationships. This is due to the fact that most of the subsumption relationships
in FMA are represented explicitly as axioms of the form A ! B where A and
B are atomic concepts. For example, the fact that the heart is an organ is

represented explicitly with the axiom Heart ! Organ, and it is not derived from
the structure of the heart; clearly, such inferences are performed in the same way
on both tree-like and nontree structures.

7 Conclusion

We have extended DLs with description graphs and rules, which can be used to
describe structured objects. Unlike most existing combinations of DLs and rules
in which rules can be used only for query answering [5, 8, 9, 1, 7], our rules also
fully participate in TBox reasoning. Based on an observation that many struc-
tured objects exhibit a natural bound on their size, we derived a hypertableau
reasoning algorithm for our formalism, which we implemented in the HermiT
reasoner. To obtain suitable test data, we extracted description graphs out of
GALEN and FMA medical terminologies. We successfully classified the resulting
ontologies and even detected a modeling error.

We see two open problems for future research. First, graph-extended KBs
should provide for several and not just one description graph, as this would
allow breaking up a large graph into several more manageable parts. Second, to
allow for a wider users’ community, we would need to extend ontology editors
such as Protégé with description graphs.

References

1. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set
Programming with Description Logics for the Semantic Web. In Proc. KR 2004,
pages 141–151, 2004.

2. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language.
In Proc. WWW 2004, pages 723–731, 2004.

3. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive
Description Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

4. O. Kutz, I. Horrocks, and U. Sattler. The Even More Irresistible SROIQ. In Proc.

KR 2006, pages 68–78, 2006.
5. A. Y. Levy and M.-C. Rousset. Combining Horn Rules and Description Logics in

CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.
6. B. Motik, B. Cuenca Grau, and U. Sattler. Structured Objects in OWL: Repre-

sentation and Reasoning. In Proc. WWW 2008, Beijing, China, April 21-25 2008.
ACM Press. To appear.

7. B. Motik and R. Rosati. A Faithful Integration of Description Logics with Logic
Programming. In Proc. IJCAI 2007, pages 477–482, 2007.

8. B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules.
Journal of Web Semantics, 3(1):41–60, 2005.

9. R. Rosati. DL + log: A Tight Integration of Description Logics and Disjunctive
Datalog. In Proc. KR 2006, pages 68–78, 2006.

10. W.D. Solomon, A. Roberts, J. E. Rogers, C. J. Wroe C.J., and A. L. Rector.
Having our cake and eating it too: How the GALEN Intermediate Representation
reconciles In Proc. AMIA, pages 819–823, 2000.

